File: | build/source/llvm/lib/CodeGen/MachinePipeliner.cpp |
Warning: | line 1922, column 13 Value stored to 'Order' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. |
10 | // |
11 | // This SMS implementation is a target-independent back-end pass. When enabled, |
12 | // the pass runs just prior to the register allocation pass, while the machine |
13 | // IR is in SSA form. If software pipelining is successful, then the original |
14 | // loop is replaced by the optimized loop. The optimized loop contains one or |
15 | // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If |
16 | // the instructions cannot be scheduled in a given MII, we increase the MII by |
17 | // one and try again. |
18 | // |
19 | // The SMS implementation is an extension of the ScheduleDAGInstrs class. We |
20 | // represent loop carried dependences in the DAG as order edges to the Phi |
21 | // nodes. We also perform several passes over the DAG to eliminate unnecessary |
22 | // edges that inhibit the ability to pipeline. The implementation uses the |
23 | // DFAPacketizer class to compute the minimum initiation interval and the check |
24 | // where an instruction may be inserted in the pipelined schedule. |
25 | // |
26 | // In order for the SMS pass to work, several target specific hooks need to be |
27 | // implemented to get information about the loop structure and to rewrite |
28 | // instructions. |
29 | // |
30 | //===----------------------------------------------------------------------===// |
31 | |
32 | #include "llvm/CodeGen/MachinePipeliner.h" |
33 | #include "llvm/ADT/ArrayRef.h" |
34 | #include "llvm/ADT/BitVector.h" |
35 | #include "llvm/ADT/DenseMap.h" |
36 | #include "llvm/ADT/MapVector.h" |
37 | #include "llvm/ADT/PriorityQueue.h" |
38 | #include "llvm/ADT/SetOperations.h" |
39 | #include "llvm/ADT/SetVector.h" |
40 | #include "llvm/ADT/SmallPtrSet.h" |
41 | #include "llvm/ADT/SmallSet.h" |
42 | #include "llvm/ADT/SmallVector.h" |
43 | #include "llvm/ADT/Statistic.h" |
44 | #include "llvm/ADT/iterator_range.h" |
45 | #include "llvm/Analysis/AliasAnalysis.h" |
46 | #include "llvm/Analysis/CycleAnalysis.h" |
47 | #include "llvm/Analysis/MemoryLocation.h" |
48 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
49 | #include "llvm/Analysis/ValueTracking.h" |
50 | #include "llvm/CodeGen/DFAPacketizer.h" |
51 | #include "llvm/CodeGen/LiveIntervals.h" |
52 | #include "llvm/CodeGen/MachineBasicBlock.h" |
53 | #include "llvm/CodeGen/MachineDominators.h" |
54 | #include "llvm/CodeGen/MachineFunction.h" |
55 | #include "llvm/CodeGen/MachineFunctionPass.h" |
56 | #include "llvm/CodeGen/MachineInstr.h" |
57 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
58 | #include "llvm/CodeGen/MachineLoopInfo.h" |
59 | #include "llvm/CodeGen/MachineMemOperand.h" |
60 | #include "llvm/CodeGen/MachineOperand.h" |
61 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
62 | #include "llvm/CodeGen/ModuloSchedule.h" |
63 | #include "llvm/CodeGen/RegisterPressure.h" |
64 | #include "llvm/CodeGen/ScheduleDAG.h" |
65 | #include "llvm/CodeGen/ScheduleDAGMutation.h" |
66 | #include "llvm/CodeGen/TargetOpcodes.h" |
67 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
68 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
69 | #include "llvm/Config/llvm-config.h" |
70 | #include "llvm/IR/Attributes.h" |
71 | #include "llvm/IR/Function.h" |
72 | #include "llvm/MC/LaneBitmask.h" |
73 | #include "llvm/MC/MCInstrDesc.h" |
74 | #include "llvm/MC/MCInstrItineraries.h" |
75 | #include "llvm/MC/MCRegisterInfo.h" |
76 | #include "llvm/Pass.h" |
77 | #include "llvm/Support/CommandLine.h" |
78 | #include "llvm/Support/Compiler.h" |
79 | #include "llvm/Support/Debug.h" |
80 | #include "llvm/Support/MathExtras.h" |
81 | #include "llvm/Support/raw_ostream.h" |
82 | #include <algorithm> |
83 | #include <cassert> |
84 | #include <climits> |
85 | #include <cstdint> |
86 | #include <deque> |
87 | #include <functional> |
88 | #include <iomanip> |
89 | #include <iterator> |
90 | #include <map> |
91 | #include <memory> |
92 | #include <sstream> |
93 | #include <tuple> |
94 | #include <utility> |
95 | #include <vector> |
96 | |
97 | using namespace llvm; |
98 | |
99 | #define DEBUG_TYPE"pipeliner" "pipeliner" |
100 | |
101 | STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline")static llvm::Statistic NumTrytoPipeline = {"pipeliner", "NumTrytoPipeline" , "Number of loops that we attempt to pipeline"}; |
102 | STATISTIC(NumPipelined, "Number of loops software pipelined")static llvm::Statistic NumPipelined = {"pipeliner", "NumPipelined" , "Number of loops software pipelined"}; |
103 | STATISTIC(NumNodeOrderIssues, "Number of node order issues found")static llvm::Statistic NumNodeOrderIssues = {"pipeliner", "NumNodeOrderIssues" , "Number of node order issues found"}; |
104 | STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch")static llvm::Statistic NumFailBranch = {"pipeliner", "NumFailBranch" , "Pipeliner abort due to unknown branch"}; |
105 | STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop")static llvm::Statistic NumFailLoop = {"pipeliner", "NumFailLoop" , "Pipeliner abort due to unsupported loop"}; |
106 | STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader")static llvm::Statistic NumFailPreheader = {"pipeliner", "NumFailPreheader" , "Pipeliner abort due to missing preheader"}; |
107 | STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large")static llvm::Statistic NumFailLargeMaxMII = {"pipeliner", "NumFailLargeMaxMII" , "Pipeliner abort due to MaxMII too large"}; |
108 | STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII")static llvm::Statistic NumFailZeroMII = {"pipeliner", "NumFailZeroMII" , "Pipeliner abort due to zero MII"}; |
109 | STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found")static llvm::Statistic NumFailNoSchedule = {"pipeliner", "NumFailNoSchedule" , "Pipeliner abort due to no schedule found"}; |
110 | STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage")static llvm::Statistic NumFailZeroStage = {"pipeliner", "NumFailZeroStage" , "Pipeliner abort due to zero stage"}; |
111 | STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages")static llvm::Statistic NumFailLargeMaxStage = {"pipeliner", "NumFailLargeMaxStage" , "Pipeliner abort due to too many stages"}; |
112 | |
113 | /// A command line option to turn software pipelining on or off. |
114 | static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), |
115 | cl::desc("Enable Software Pipelining")); |
116 | |
117 | /// A command line option to enable SWP at -Os. |
118 | static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", |
119 | cl::desc("Enable SWP at Os."), cl::Hidden, |
120 | cl::init(false)); |
121 | |
122 | /// A command line argument to limit minimum initial interval for pipelining. |
123 | static cl::opt<int> SwpMaxMii("pipeliner-max-mii", |
124 | cl::desc("Size limit for the MII."), |
125 | cl::Hidden, cl::init(27)); |
126 | |
127 | /// A command line argument to force pipeliner to use specified initial |
128 | /// interval. |
129 | static cl::opt<int> SwpForceII("pipeliner-force-ii", |
130 | cl::desc("Force pipeliner to use specified II."), |
131 | cl::Hidden, cl::init(-1)); |
132 | |
133 | /// A command line argument to limit the number of stages in the pipeline. |
134 | static cl::opt<int> |
135 | SwpMaxStages("pipeliner-max-stages", |
136 | cl::desc("Maximum stages allowed in the generated scheduled."), |
137 | cl::Hidden, cl::init(3)); |
138 | |
139 | /// A command line option to disable the pruning of chain dependences due to |
140 | /// an unrelated Phi. |
141 | static cl::opt<bool> |
142 | SwpPruneDeps("pipeliner-prune-deps", |
143 | cl::desc("Prune dependences between unrelated Phi nodes."), |
144 | cl::Hidden, cl::init(true)); |
145 | |
146 | /// A command line option to disable the pruning of loop carried order |
147 | /// dependences. |
148 | static cl::opt<bool> |
149 | SwpPruneLoopCarried("pipeliner-prune-loop-carried", |
150 | cl::desc("Prune loop carried order dependences."), |
151 | cl::Hidden, cl::init(true)); |
152 | |
153 | #ifndef NDEBUG |
154 | static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); |
155 | #endif |
156 | |
157 | static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", |
158 | cl::ReallyHidden, |
159 | cl::desc("Ignore RecMII")); |
160 | |
161 | static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, |
162 | cl::init(false)); |
163 | static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, |
164 | cl::init(false)); |
165 | |
166 | static cl::opt<bool> EmitTestAnnotations( |
167 | "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), |
168 | cl::desc("Instead of emitting the pipelined code, annotate instructions " |
169 | "with the generated schedule for feeding into the " |
170 | "-modulo-schedule-test pass")); |
171 | |
172 | static cl::opt<bool> ExperimentalCodeGen( |
173 | "pipeliner-experimental-cg", cl::Hidden, cl::init(false), |
174 | cl::desc( |
175 | "Use the experimental peeling code generator for software pipelining")); |
176 | |
177 | namespace llvm { |
178 | |
179 | // A command line option to enable the CopyToPhi DAG mutation. |
180 | cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, |
181 | cl::init(true), |
182 | cl::desc("Enable CopyToPhi DAG Mutation")); |
183 | |
184 | /// A command line argument to force pipeliner to use specified issue |
185 | /// width. |
186 | cl::opt<int> SwpForceIssueWidth( |
187 | "pipeliner-force-issue-width", |
188 | cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, |
189 | cl::init(-1)); |
190 | |
191 | } // end namespace llvm |
192 | |
193 | unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; |
194 | char MachinePipeliner::ID = 0; |
195 | #ifndef NDEBUG |
196 | int MachinePipeliner::NumTries = 0; |
197 | #endif |
198 | char &llvm::MachinePipelinerID = MachinePipeliner::ID; |
199 | |
200 | INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,static void *initializeMachinePipelinerPassOnce(PassRegistry & Registry) { |
201 | "Modulo Software Pipelining", false, false)static void *initializeMachinePipelinerPassOnce(PassRegistry & Registry) { |
202 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry); |
203 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry); |
204 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry); |
205 | INITIALIZE_PASS_DEPENDENCY(LiveIntervals)initializeLiveIntervalsPass(Registry); |
206 | INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,PassInfo *PI = new PassInfo( "Modulo Software Pipelining", "pipeliner" , &MachinePipeliner::ID, PassInfo::NormalCtor_t(callDefaultCtor <MachinePipeliner>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeMachinePipelinerPassFlag ; void llvm::initializeMachinePipelinerPass(PassRegistry & Registry) { llvm::call_once(InitializeMachinePipelinerPassFlag , initializeMachinePipelinerPassOnce, std::ref(Registry)); } |
207 | "Modulo Software Pipelining", false, false)PassInfo *PI = new PassInfo( "Modulo Software Pipelining", "pipeliner" , &MachinePipeliner::ID, PassInfo::NormalCtor_t(callDefaultCtor <MachinePipeliner>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeMachinePipelinerPassFlag ; void llvm::initializeMachinePipelinerPass(PassRegistry & Registry) { llvm::call_once(InitializeMachinePipelinerPassFlag , initializeMachinePipelinerPassOnce, std::ref(Registry)); } |
208 | |
209 | /// The "main" function for implementing Swing Modulo Scheduling. |
210 | bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { |
211 | if (skipFunction(mf.getFunction())) |
212 | return false; |
213 | |
214 | if (!EnableSWP) |
215 | return false; |
216 | |
217 | if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && |
218 | !EnableSWPOptSize.getPosition()) |
219 | return false; |
220 | |
221 | if (!mf.getSubtarget().enableMachinePipeliner()) |
222 | return false; |
223 | |
224 | // Cannot pipeline loops without instruction itineraries if we are using |
225 | // DFA for the pipeliner. |
226 | if (mf.getSubtarget().useDFAforSMS() && |
227 | (!mf.getSubtarget().getInstrItineraryData() || |
228 | mf.getSubtarget().getInstrItineraryData()->isEmpty())) |
229 | return false; |
230 | |
231 | MF = &mf; |
232 | MLI = &getAnalysis<MachineLoopInfo>(); |
233 | MDT = &getAnalysis<MachineDominatorTree>(); |
234 | ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); |
235 | TII = MF->getSubtarget().getInstrInfo(); |
236 | RegClassInfo.runOnMachineFunction(*MF); |
237 | |
238 | for (const auto &L : *MLI) |
239 | scheduleLoop(*L); |
240 | |
241 | return false; |
242 | } |
243 | |
244 | /// Attempt to perform the SMS algorithm on the specified loop. This function is |
245 | /// the main entry point for the algorithm. The function identifies candidate |
246 | /// loops, calculates the minimum initiation interval, and attempts to schedule |
247 | /// the loop. |
248 | bool MachinePipeliner::scheduleLoop(MachineLoop &L) { |
249 | bool Changed = false; |
250 | for (const auto &InnerLoop : L) |
251 | Changed |= scheduleLoop(*InnerLoop); |
252 | |
253 | #ifndef NDEBUG |
254 | // Stop trying after reaching the limit (if any). |
255 | int Limit = SwpLoopLimit; |
256 | if (Limit >= 0) { |
257 | if (NumTries >= SwpLoopLimit) |
258 | return Changed; |
259 | NumTries++; |
260 | } |
261 | #endif |
262 | |
263 | setPragmaPipelineOptions(L); |
264 | if (!canPipelineLoop(L)) { |
265 | LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "\n!!! Can not pipeline loop.\n" ; } } while (false); |
266 | ORE->emit([&]() { |
267 | return MachineOptimizationRemarkMissed(DEBUG_TYPE"pipeliner", "canPipelineLoop", |
268 | L.getStartLoc(), L.getHeader()) |
269 | << "Failed to pipeline loop"; |
270 | }); |
271 | |
272 | LI.LoopPipelinerInfo.reset(); |
273 | return Changed; |
274 | } |
275 | |
276 | ++NumTrytoPipeline; |
277 | |
278 | Changed = swingModuloScheduler(L); |
279 | |
280 | LI.LoopPipelinerInfo.reset(); |
281 | return Changed; |
282 | } |
283 | |
284 | void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { |
285 | // Reset the pragma for the next loop in iteration. |
286 | disabledByPragma = false; |
287 | II_setByPragma = 0; |
288 | |
289 | MachineBasicBlock *LBLK = L.getTopBlock(); |
290 | |
291 | if (LBLK == nullptr) |
292 | return; |
293 | |
294 | const BasicBlock *BBLK = LBLK->getBasicBlock(); |
295 | if (BBLK == nullptr) |
296 | return; |
297 | |
298 | const Instruction *TI = BBLK->getTerminator(); |
299 | if (TI == nullptr) |
300 | return; |
301 | |
302 | MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); |
303 | if (LoopID == nullptr) |
304 | return; |
305 | |
306 | assert(LoopID->getNumOperands() > 0 && "requires atleast one operand")(static_cast <bool> (LoopID->getNumOperands() > 0 && "requires atleast one operand") ? void (0) : __assert_fail ("LoopID->getNumOperands() > 0 && \"requires atleast one operand\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 306, __extension__ __PRETTY_FUNCTION__)); |
307 | assert(LoopID->getOperand(0) == LoopID && "invalid loop")(static_cast <bool> (LoopID->getOperand(0) == LoopID && "invalid loop") ? void (0) : __assert_fail ("LoopID->getOperand(0) == LoopID && \"invalid loop\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 307, __extension__ __PRETTY_FUNCTION__)); |
308 | |
309 | for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { |
310 | MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); |
311 | |
312 | if (MD == nullptr) |
313 | continue; |
314 | |
315 | MDString *S = dyn_cast<MDString>(MD->getOperand(0)); |
316 | |
317 | if (S == nullptr) |
318 | continue; |
319 | |
320 | if (S->getString() == "llvm.loop.pipeline.initiationinterval") { |
321 | assert(MD->getNumOperands() == 2 &&(static_cast <bool> (MD->getNumOperands() == 2 && "Pipeline initiation interval hint metadata should have two operands." ) ? void (0) : __assert_fail ("MD->getNumOperands() == 2 && \"Pipeline initiation interval hint metadata should have two operands.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 322, __extension__ __PRETTY_FUNCTION__)) |
322 | "Pipeline initiation interval hint metadata should have two operands.")(static_cast <bool> (MD->getNumOperands() == 2 && "Pipeline initiation interval hint metadata should have two operands." ) ? void (0) : __assert_fail ("MD->getNumOperands() == 2 && \"Pipeline initiation interval hint metadata should have two operands.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 322, __extension__ __PRETTY_FUNCTION__)); |
323 | II_setByPragma = |
324 | mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); |
325 | assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.")(static_cast <bool> (II_setByPragma >= 1 && "Pipeline initiation interval must be positive." ) ? void (0) : __assert_fail ("II_setByPragma >= 1 && \"Pipeline initiation interval must be positive.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 325, __extension__ __PRETTY_FUNCTION__)); |
326 | } else if (S->getString() == "llvm.loop.pipeline.disable") { |
327 | disabledByPragma = true; |
328 | } |
329 | } |
330 | } |
331 | |
332 | /// Return true if the loop can be software pipelined. The algorithm is |
333 | /// restricted to loops with a single basic block. Make sure that the |
334 | /// branch in the loop can be analyzed. |
335 | bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { |
336 | if (L.getNumBlocks() != 1) { |
337 | ORE->emit([&]() { |
338 | return MachineOptimizationRemarkAnalysis(DEBUG_TYPE"pipeliner", "canPipelineLoop", |
339 | L.getStartLoc(), L.getHeader()) |
340 | << "Not a single basic block: " |
341 | << ore::NV("NumBlocks", L.getNumBlocks()); |
342 | }); |
343 | return false; |
344 | } |
345 | |
346 | if (disabledByPragma) { |
347 | ORE->emit([&]() { |
348 | return MachineOptimizationRemarkAnalysis(DEBUG_TYPE"pipeliner", "canPipelineLoop", |
349 | L.getStartLoc(), L.getHeader()) |
350 | << "Disabled by Pragma."; |
351 | }); |
352 | return false; |
353 | } |
354 | |
355 | // Check if the branch can't be understood because we can't do pipelining |
356 | // if that's the case. |
357 | LI.TBB = nullptr; |
358 | LI.FBB = nullptr; |
359 | LI.BrCond.clear(); |
360 | if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { |
361 | LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n" ; } } while (false); |
362 | NumFailBranch++; |
363 | ORE->emit([&]() { |
364 | return MachineOptimizationRemarkAnalysis(DEBUG_TYPE"pipeliner", "canPipelineLoop", |
365 | L.getStartLoc(), L.getHeader()) |
366 | << "The branch can't be understood"; |
367 | }); |
368 | return false; |
369 | } |
370 | |
371 | LI.LoopInductionVar = nullptr; |
372 | LI.LoopCompare = nullptr; |
373 | LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); |
374 | if (!LI.LoopPipelinerInfo) { |
375 | LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n" ; } } while (false); |
376 | NumFailLoop++; |
377 | ORE->emit([&]() { |
378 | return MachineOptimizationRemarkAnalysis(DEBUG_TYPE"pipeliner", "canPipelineLoop", |
379 | L.getStartLoc(), L.getHeader()) |
380 | << "The loop structure is not supported"; |
381 | }); |
382 | return false; |
383 | } |
384 | |
385 | if (!L.getLoopPreheader()) { |
386 | LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Preheader not found, can NOT pipeline Loop\n" ; } } while (false); |
387 | NumFailPreheader++; |
388 | ORE->emit([&]() { |
389 | return MachineOptimizationRemarkAnalysis(DEBUG_TYPE"pipeliner", "canPipelineLoop", |
390 | L.getStartLoc(), L.getHeader()) |
391 | << "No loop preheader found"; |
392 | }); |
393 | return false; |
394 | } |
395 | |
396 | // Remove any subregisters from inputs to phi nodes. |
397 | preprocessPhiNodes(*L.getHeader()); |
398 | return true; |
399 | } |
400 | |
401 | void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { |
402 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
403 | SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); |
404 | |
405 | for (MachineInstr &PI : B.phis()) { |
406 | MachineOperand &DefOp = PI.getOperand(0); |
407 | assert(DefOp.getSubReg() == 0)(static_cast <bool> (DefOp.getSubReg() == 0) ? void (0) : __assert_fail ("DefOp.getSubReg() == 0", "llvm/lib/CodeGen/MachinePipeliner.cpp" , 407, __extension__ __PRETTY_FUNCTION__)); |
408 | auto *RC = MRI.getRegClass(DefOp.getReg()); |
409 | |
410 | for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { |
411 | MachineOperand &RegOp = PI.getOperand(i); |
412 | if (RegOp.getSubReg() == 0) |
413 | continue; |
414 | |
415 | // If the operand uses a subregister, replace it with a new register |
416 | // without subregisters, and generate a copy to the new register. |
417 | Register NewReg = MRI.createVirtualRegister(RC); |
418 | MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); |
419 | MachineBasicBlock::iterator At = PredB.getFirstTerminator(); |
420 | const DebugLoc &DL = PredB.findDebugLoc(At); |
421 | auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) |
422 | .addReg(RegOp.getReg(), getRegState(RegOp), |
423 | RegOp.getSubReg()); |
424 | Slots.insertMachineInstrInMaps(*Copy); |
425 | RegOp.setReg(NewReg); |
426 | RegOp.setSubReg(0); |
427 | } |
428 | } |
429 | } |
430 | |
431 | /// The SMS algorithm consists of the following main steps: |
432 | /// 1. Computation and analysis of the dependence graph. |
433 | /// 2. Ordering of the nodes (instructions). |
434 | /// 3. Attempt to Schedule the loop. |
435 | bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { |
436 | assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.")(static_cast <bool> (L.getBlocks().size() == 1 && "SMS works on single blocks only.") ? void (0) : __assert_fail ("L.getBlocks().size() == 1 && \"SMS works on single blocks only.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 436, __extension__ __PRETTY_FUNCTION__)); |
437 | |
438 | SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, |
439 | II_setByPragma, LI.LoopPipelinerInfo.get()); |
440 | |
441 | MachineBasicBlock *MBB = L.getHeader(); |
442 | // The kernel should not include any terminator instructions. These |
443 | // will be added back later. |
444 | SMS.startBlock(MBB); |
445 | |
446 | // Compute the number of 'real' instructions in the basic block by |
447 | // ignoring terminators. |
448 | unsigned size = MBB->size(); |
449 | for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), |
450 | E = MBB->instr_end(); |
451 | I != E; ++I, --size) |
452 | ; |
453 | |
454 | SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); |
455 | SMS.schedule(); |
456 | SMS.exitRegion(); |
457 | |
458 | SMS.finishBlock(); |
459 | return SMS.hasNewSchedule(); |
460 | } |
461 | |
462 | void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { |
463 | AU.addRequired<AAResultsWrapperPass>(); |
464 | AU.addPreserved<AAResultsWrapperPass>(); |
465 | AU.addRequired<MachineLoopInfo>(); |
466 | AU.addRequired<MachineDominatorTree>(); |
467 | AU.addRequired<LiveIntervals>(); |
468 | AU.addRequired<MachineOptimizationRemarkEmitterPass>(); |
469 | MachineFunctionPass::getAnalysisUsage(AU); |
470 | } |
471 | |
472 | void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { |
473 | if (SwpForceII > 0) |
474 | MII = SwpForceII; |
475 | else if (II_setByPragma > 0) |
476 | MII = II_setByPragma; |
477 | else |
478 | MII = std::max(ResMII, RecMII); |
479 | } |
480 | |
481 | void SwingSchedulerDAG::setMAX_II() { |
482 | if (SwpForceII > 0) |
483 | MAX_II = SwpForceII; |
484 | else if (II_setByPragma > 0) |
485 | MAX_II = II_setByPragma; |
486 | else |
487 | MAX_II = MII + 10; |
488 | } |
489 | |
490 | /// We override the schedule function in ScheduleDAGInstrs to implement the |
491 | /// scheduling part of the Swing Modulo Scheduling algorithm. |
492 | void SwingSchedulerDAG::schedule() { |
493 | AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); |
494 | buildSchedGraph(AA); |
495 | addLoopCarriedDependences(AA); |
496 | updatePhiDependences(); |
497 | Topo.InitDAGTopologicalSorting(); |
498 | changeDependences(); |
499 | postprocessDAG(); |
500 | LLVM_DEBUG(dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dump(); } } while (false); |
501 | |
502 | NodeSetType NodeSets; |
503 | findCircuits(NodeSets); |
504 | NodeSetType Circuits = NodeSets; |
505 | |
506 | // Calculate the MII. |
507 | unsigned ResMII = calculateResMII(); |
508 | unsigned RecMII = calculateRecMII(NodeSets); |
509 | |
510 | fuseRecs(NodeSets); |
511 | |
512 | // This flag is used for testing and can cause correctness problems. |
513 | if (SwpIgnoreRecMII) |
514 | RecMII = 0; |
515 | |
516 | setMII(ResMII, RecMII); |
517 | setMAX_II(); |
518 | |
519 | LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_IIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "MII = " << MII << " MAX_II = " << MAX_II << " (rec=" << RecMII << ", res=" << ResMII << ")\n"; } } while ( false) |
520 | << " (rec=" << RecMII << ", res=" << ResMII << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "MII = " << MII << " MAX_II = " << MAX_II << " (rec=" << RecMII << ", res=" << ResMII << ")\n"; } } while ( false); |
521 | |
522 | // Can't schedule a loop without a valid MII. |
523 | if (MII == 0) { |
524 | LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Invalid Minimal Initiation Interval: 0\n" ; } } while (false); |
525 | NumFailZeroMII++; |
526 | Pass.ORE->emit([&]() { |
527 | return MachineOptimizationRemarkAnalysis( |
528 | DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader()) |
529 | << "Invalid Minimal Initiation Interval: 0"; |
530 | }); |
531 | return; |
532 | } |
533 | |
534 | // Don't pipeline large loops. |
535 | if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { |
536 | LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMiido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "MII > " << SwpMaxMii << ", we don't pipeline large loops\n"; } } while (false ) |
537 | << ", we don't pipeline large loops\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "MII > " << SwpMaxMii << ", we don't pipeline large loops\n"; } } while (false ); |
538 | NumFailLargeMaxMII++; |
539 | Pass.ORE->emit([&]() { |
540 | return MachineOptimizationRemarkAnalysis( |
541 | DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader()) |
542 | << "Minimal Initiation Interval too large: " |
543 | << ore::NV("MII", (int)MII) << " > " |
544 | << ore::NV("SwpMaxMii", SwpMaxMii) << "." |
545 | << "Refer to -pipeliner-max-mii."; |
546 | }); |
547 | return; |
548 | } |
549 | |
550 | computeNodeFunctions(NodeSets); |
551 | |
552 | registerPressureFilter(NodeSets); |
553 | |
554 | colocateNodeSets(NodeSets); |
555 | |
556 | checkNodeSets(NodeSets); |
557 | |
558 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " Rec NodeSet "; I.dump(); } }; } } while (false) |
559 | for (auto &I : NodeSets) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " Rec NodeSet "; I.dump(); } }; } } while (false) |
560 | dbgs() << " Rec NodeSet ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " Rec NodeSet "; I.dump(); } }; } } while (false) |
561 | I.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " Rec NodeSet "; I.dump(); } }; } } while (false) |
562 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " Rec NodeSet "; I.dump(); } }; } } while (false) |
563 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " Rec NodeSet "; I.dump(); } }; } } while (false); |
564 | |
565 | llvm::stable_sort(NodeSets, std::greater<NodeSet>()); |
566 | |
567 | groupRemainingNodes(NodeSets); |
568 | |
569 | removeDuplicateNodes(NodeSets); |
570 | |
571 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " NodeSet "; I.dump(); } }; } } while (false) |
572 | for (auto &I : NodeSets) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " NodeSet "; I.dump(); } }; } } while (false) |
573 | dbgs() << " NodeSet ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " NodeSet "; I.dump(); } }; } } while (false) |
574 | I.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " NodeSet "; I.dump(); } }; } } while (false) |
575 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " NodeSet "; I.dump(); } }; } } while (false) |
576 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (auto &I : NodeSets) { dbgs() << " NodeSet "; I.dump(); } }; } } while (false); |
577 | |
578 | computeNodeOrder(NodeSets); |
579 | |
580 | // check for node order issues |
581 | checkValidNodeOrder(Circuits); |
582 | |
583 | SMSchedule Schedule(Pass.MF, this); |
584 | Scheduled = schedulePipeline(Schedule); |
585 | |
586 | if (!Scheduled){ |
587 | LLVM_DEBUG(dbgs() << "No schedule found, return\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "No schedule found, return\n" ; } } while (false); |
588 | NumFailNoSchedule++; |
589 | Pass.ORE->emit([&]() { |
590 | return MachineOptimizationRemarkAnalysis( |
591 | DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader()) |
592 | << "Unable to find schedule"; |
593 | }); |
594 | return; |
595 | } |
596 | |
597 | unsigned numStages = Schedule.getMaxStageCount(); |
598 | // No need to generate pipeline if there are no overlapped iterations. |
599 | if (numStages == 0) { |
600 | LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "No overlapped iterations, skip.\n" ; } } while (false); |
601 | NumFailZeroStage++; |
602 | Pass.ORE->emit([&]() { |
603 | return MachineOptimizationRemarkAnalysis( |
604 | DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader()) |
605 | << "No need to pipeline - no overlapped iterations in schedule."; |
606 | }); |
607 | return; |
608 | } |
609 | // Check that the maximum stage count is less than user-defined limit. |
610 | if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { |
611 | LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStagesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "numStages:" << numStages << ">" << SwpMaxStages << " : too many stages, abort\n" ; } } while (false) |
612 | << " : too many stages, abort\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "numStages:" << numStages << ">" << SwpMaxStages << " : too many stages, abort\n" ; } } while (false); |
613 | NumFailLargeMaxStage++; |
614 | Pass.ORE->emit([&]() { |
615 | return MachineOptimizationRemarkAnalysis( |
616 | DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader()) |
617 | << "Too many stages in schedule: " |
618 | << ore::NV("numStages", (int)numStages) << " > " |
619 | << ore::NV("SwpMaxStages", SwpMaxStages) |
620 | << ". Refer to -pipeliner-max-stages."; |
621 | }); |
622 | return; |
623 | } |
624 | |
625 | Pass.ORE->emit([&]() { |
626 | return MachineOptimizationRemark(DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), |
627 | Loop.getHeader()) |
628 | << "Pipelined succesfully!"; |
629 | }); |
630 | |
631 | // Generate the schedule as a ModuloSchedule. |
632 | DenseMap<MachineInstr *, int> Cycles, Stages; |
633 | std::vector<MachineInstr *> OrderedInsts; |
634 | for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); |
635 | ++Cycle) { |
636 | for (SUnit *SU : Schedule.getInstructions(Cycle)) { |
637 | OrderedInsts.push_back(SU->getInstr()); |
638 | Cycles[SU->getInstr()] = Cycle; |
639 | Stages[SU->getInstr()] = Schedule.stageScheduled(SU); |
640 | } |
641 | } |
642 | DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; |
643 | for (auto &KV : NewMIs) { |
644 | Cycles[KV.first] = Cycles[KV.second]; |
645 | Stages[KV.first] = Stages[KV.second]; |
646 | NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; |
647 | } |
648 | |
649 | ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), |
650 | std::move(Stages)); |
651 | if (EmitTestAnnotations) { |
652 | assert(NewInstrChanges.empty() &&(static_cast <bool> (NewInstrChanges.empty() && "Cannot serialize a schedule with InstrChanges!") ? void (0) : __assert_fail ("NewInstrChanges.empty() && \"Cannot serialize a schedule with InstrChanges!\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 653, __extension__ __PRETTY_FUNCTION__)) |
653 | "Cannot serialize a schedule with InstrChanges!")(static_cast <bool> (NewInstrChanges.empty() && "Cannot serialize a schedule with InstrChanges!") ? void (0) : __assert_fail ("NewInstrChanges.empty() && \"Cannot serialize a schedule with InstrChanges!\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 653, __extension__ __PRETTY_FUNCTION__)); |
654 | ModuloScheduleTestAnnotater MSTI(MF, MS); |
655 | MSTI.annotate(); |
656 | return; |
657 | } |
658 | // The experimental code generator can't work if there are InstChanges. |
659 | if (ExperimentalCodeGen && NewInstrChanges.empty()) { |
660 | PeelingModuloScheduleExpander MSE(MF, MS, &LIS); |
661 | MSE.expand(); |
662 | } else { |
663 | ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); |
664 | MSE.expand(); |
665 | MSE.cleanup(); |
666 | } |
667 | ++NumPipelined; |
668 | } |
669 | |
670 | /// Clean up after the software pipeliner runs. |
671 | void SwingSchedulerDAG::finishBlock() { |
672 | for (auto &KV : NewMIs) |
673 | MF.deleteMachineInstr(KV.second); |
674 | NewMIs.clear(); |
675 | |
676 | // Call the superclass. |
677 | ScheduleDAGInstrs::finishBlock(); |
678 | } |
679 | |
680 | /// Return the register values for the operands of a Phi instruction. |
681 | /// This function assume the instruction is a Phi. |
682 | static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, |
683 | unsigned &InitVal, unsigned &LoopVal) { |
684 | assert(Phi.isPHI() && "Expecting a Phi.")(static_cast <bool> (Phi.isPHI() && "Expecting a Phi." ) ? void (0) : __assert_fail ("Phi.isPHI() && \"Expecting a Phi.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 684, __extension__ __PRETTY_FUNCTION__)); |
685 | |
686 | InitVal = 0; |
687 | LoopVal = 0; |
688 | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
689 | if (Phi.getOperand(i + 1).getMBB() != Loop) |
690 | InitVal = Phi.getOperand(i).getReg(); |
691 | else |
692 | LoopVal = Phi.getOperand(i).getReg(); |
693 | |
694 | assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.")(static_cast <bool> (InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.") ? void (0) : __assert_fail ("InitVal != 0 && LoopVal != 0 && \"Unexpected Phi structure.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 694, __extension__ __PRETTY_FUNCTION__)); |
695 | } |
696 | |
697 | /// Return the Phi register value that comes the loop block. |
698 | static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { |
699 | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
700 | if (Phi.getOperand(i + 1).getMBB() == LoopBB) |
701 | return Phi.getOperand(i).getReg(); |
702 | return 0; |
703 | } |
704 | |
705 | /// Return true if SUb can be reached from SUa following the chain edges. |
706 | static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { |
707 | SmallPtrSet<SUnit *, 8> Visited; |
708 | SmallVector<SUnit *, 8> Worklist; |
709 | Worklist.push_back(SUa); |
710 | while (!Worklist.empty()) { |
711 | const SUnit *SU = Worklist.pop_back_val(); |
712 | for (const auto &SI : SU->Succs) { |
713 | SUnit *SuccSU = SI.getSUnit(); |
714 | if (SI.getKind() == SDep::Order) { |
715 | if (Visited.count(SuccSU)) |
716 | continue; |
717 | if (SuccSU == SUb) |
718 | return true; |
719 | Worklist.push_back(SuccSU); |
720 | Visited.insert(SuccSU); |
721 | } |
722 | } |
723 | } |
724 | return false; |
725 | } |
726 | |
727 | /// Return true if the instruction causes a chain between memory |
728 | /// references before and after it. |
729 | static bool isDependenceBarrier(MachineInstr &MI) { |
730 | return MI.isCall() || MI.mayRaiseFPException() || |
731 | MI.hasUnmodeledSideEffects() || |
732 | (MI.hasOrderedMemoryRef() && |
733 | (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); |
734 | } |
735 | |
736 | /// Return the underlying objects for the memory references of an instruction. |
737 | /// This function calls the code in ValueTracking, but first checks that the |
738 | /// instruction has a memory operand. |
739 | static void getUnderlyingObjects(const MachineInstr *MI, |
740 | SmallVectorImpl<const Value *> &Objs) { |
741 | if (!MI->hasOneMemOperand()) |
742 | return; |
743 | MachineMemOperand *MM = *MI->memoperands_begin(); |
744 | if (!MM->getValue()) |
745 | return; |
746 | getUnderlyingObjects(MM->getValue(), Objs); |
747 | for (const Value *V : Objs) { |
748 | if (!isIdentifiedObject(V)) { |
749 | Objs.clear(); |
750 | return; |
751 | } |
752 | Objs.push_back(V); |
753 | } |
754 | } |
755 | |
756 | /// Add a chain edge between a load and store if the store can be an |
757 | /// alias of the load on a subsequent iteration, i.e., a loop carried |
758 | /// dependence. This code is very similar to the code in ScheduleDAGInstrs |
759 | /// but that code doesn't create loop carried dependences. |
760 | void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { |
761 | MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; |
762 | Value *UnknownValue = |
763 | UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); |
764 | for (auto &SU : SUnits) { |
765 | MachineInstr &MI = *SU.getInstr(); |
766 | if (isDependenceBarrier(MI)) |
767 | PendingLoads.clear(); |
768 | else if (MI.mayLoad()) { |
769 | SmallVector<const Value *, 4> Objs; |
770 | ::getUnderlyingObjects(&MI, Objs); |
771 | if (Objs.empty()) |
772 | Objs.push_back(UnknownValue); |
773 | for (const auto *V : Objs) { |
774 | SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; |
775 | SUs.push_back(&SU); |
776 | } |
777 | } else if (MI.mayStore()) { |
778 | SmallVector<const Value *, 4> Objs; |
779 | ::getUnderlyingObjects(&MI, Objs); |
780 | if (Objs.empty()) |
781 | Objs.push_back(UnknownValue); |
782 | for (const auto *V : Objs) { |
783 | MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = |
784 | PendingLoads.find(V); |
785 | if (I == PendingLoads.end()) |
786 | continue; |
787 | for (auto *Load : I->second) { |
788 | if (isSuccOrder(Load, &SU)) |
789 | continue; |
790 | MachineInstr &LdMI = *Load->getInstr(); |
791 | // First, perform the cheaper check that compares the base register. |
792 | // If they are the same and the load offset is less than the store |
793 | // offset, then mark the dependence as loop carried potentially. |
794 | const MachineOperand *BaseOp1, *BaseOp2; |
795 | int64_t Offset1, Offset2; |
796 | bool Offset1IsScalable, Offset2IsScalable; |
797 | if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, |
798 | Offset1IsScalable, TRI) && |
799 | TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, |
800 | Offset2IsScalable, TRI)) { |
801 | if (BaseOp1->isIdenticalTo(*BaseOp2) && |
802 | Offset1IsScalable == Offset2IsScalable && |
803 | (int)Offset1 < (int)Offset2) { |
804 | assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&(static_cast <bool> (TII->areMemAccessesTriviallyDisjoint (LdMI, MI) && "What happened to the chain edge?") ? void (0) : __assert_fail ("TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && \"What happened to the chain edge?\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 805, __extension__ __PRETTY_FUNCTION__)) |
805 | "What happened to the chain edge?")(static_cast <bool> (TII->areMemAccessesTriviallyDisjoint (LdMI, MI) && "What happened to the chain edge?") ? void (0) : __assert_fail ("TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && \"What happened to the chain edge?\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 805, __extension__ __PRETTY_FUNCTION__)); |
806 | SDep Dep(Load, SDep::Barrier); |
807 | Dep.setLatency(1); |
808 | SU.addPred(Dep); |
809 | continue; |
810 | } |
811 | } |
812 | // Second, the more expensive check that uses alias analysis on the |
813 | // base registers. If they alias, and the load offset is less than |
814 | // the store offset, the mark the dependence as loop carried. |
815 | if (!AA) { |
816 | SDep Dep(Load, SDep::Barrier); |
817 | Dep.setLatency(1); |
818 | SU.addPred(Dep); |
819 | continue; |
820 | } |
821 | MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); |
822 | MachineMemOperand *MMO2 = *MI.memoperands_begin(); |
823 | if (!MMO1->getValue() || !MMO2->getValue()) { |
824 | SDep Dep(Load, SDep::Barrier); |
825 | Dep.setLatency(1); |
826 | SU.addPred(Dep); |
827 | continue; |
828 | } |
829 | if (MMO1->getValue() == MMO2->getValue() && |
830 | MMO1->getOffset() <= MMO2->getOffset()) { |
831 | SDep Dep(Load, SDep::Barrier); |
832 | Dep.setLatency(1); |
833 | SU.addPred(Dep); |
834 | continue; |
835 | } |
836 | if (!AA->isNoAlias( |
837 | MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), |
838 | MemoryLocation::getAfter(MMO2->getValue(), |
839 | MMO2->getAAInfo()))) { |
840 | SDep Dep(Load, SDep::Barrier); |
841 | Dep.setLatency(1); |
842 | SU.addPred(Dep); |
843 | } |
844 | } |
845 | } |
846 | } |
847 | } |
848 | } |
849 | |
850 | /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer |
851 | /// processes dependences for PHIs. This function adds true dependences |
852 | /// from a PHI to a use, and a loop carried dependence from the use to the |
853 | /// PHI. The loop carried dependence is represented as an anti dependence |
854 | /// edge. This function also removes chain dependences between unrelated |
855 | /// PHIs. |
856 | void SwingSchedulerDAG::updatePhiDependences() { |
857 | SmallVector<SDep, 4> RemoveDeps; |
858 | const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); |
859 | |
860 | // Iterate over each DAG node. |
861 | for (SUnit &I : SUnits) { |
862 | RemoveDeps.clear(); |
863 | // Set to true if the instruction has an operand defined by a Phi. |
864 | unsigned HasPhiUse = 0; |
865 | unsigned HasPhiDef = 0; |
866 | MachineInstr *MI = I.getInstr(); |
867 | // Iterate over each operand, and we process the definitions. |
868 | for (const MachineOperand &MO : MI->operands()) { |
869 | if (!MO.isReg()) |
870 | continue; |
871 | Register Reg = MO.getReg(); |
872 | if (MO.isDef()) { |
873 | // If the register is used by a Phi, then create an anti dependence. |
874 | for (MachineRegisterInfo::use_instr_iterator |
875 | UI = MRI.use_instr_begin(Reg), |
876 | UE = MRI.use_instr_end(); |
877 | UI != UE; ++UI) { |
878 | MachineInstr *UseMI = &*UI; |
879 | SUnit *SU = getSUnit(UseMI); |
880 | if (SU != nullptr && UseMI->isPHI()) { |
881 | if (!MI->isPHI()) { |
882 | SDep Dep(SU, SDep::Anti, Reg); |
883 | Dep.setLatency(1); |
884 | I.addPred(Dep); |
885 | } else { |
886 | HasPhiDef = Reg; |
887 | // Add a chain edge to a dependent Phi that isn't an existing |
888 | // predecessor. |
889 | if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) |
890 | I.addPred(SDep(SU, SDep::Barrier)); |
891 | } |
892 | } |
893 | } |
894 | } else if (MO.isUse()) { |
895 | // If the register is defined by a Phi, then create a true dependence. |
896 | MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); |
897 | if (DefMI == nullptr) |
898 | continue; |
899 | SUnit *SU = getSUnit(DefMI); |
900 | if (SU != nullptr && DefMI->isPHI()) { |
901 | if (!MI->isPHI()) { |
902 | SDep Dep(SU, SDep::Data, Reg); |
903 | Dep.setLatency(0); |
904 | ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep); |
905 | I.addPred(Dep); |
906 | } else { |
907 | HasPhiUse = Reg; |
908 | // Add a chain edge to a dependent Phi that isn't an existing |
909 | // predecessor. |
910 | if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) |
911 | I.addPred(SDep(SU, SDep::Barrier)); |
912 | } |
913 | } |
914 | } |
915 | } |
916 | // Remove order dependences from an unrelated Phi. |
917 | if (!SwpPruneDeps) |
918 | continue; |
919 | for (auto &PI : I.Preds) { |
920 | MachineInstr *PMI = PI.getSUnit()->getInstr(); |
921 | if (PMI->isPHI() && PI.getKind() == SDep::Order) { |
922 | if (I.getInstr()->isPHI()) { |
923 | if (PMI->getOperand(0).getReg() == HasPhiUse) |
924 | continue; |
925 | if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) |
926 | continue; |
927 | } |
928 | RemoveDeps.push_back(PI); |
929 | } |
930 | } |
931 | for (int i = 0, e = RemoveDeps.size(); i != e; ++i) |
932 | I.removePred(RemoveDeps[i]); |
933 | } |
934 | } |
935 | |
936 | /// Iterate over each DAG node and see if we can change any dependences |
937 | /// in order to reduce the recurrence MII. |
938 | void SwingSchedulerDAG::changeDependences() { |
939 | // See if an instruction can use a value from the previous iteration. |
940 | // If so, we update the base and offset of the instruction and change |
941 | // the dependences. |
942 | for (SUnit &I : SUnits) { |
943 | unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; |
944 | int64_t NewOffset = 0; |
945 | if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, |
946 | NewOffset)) |
947 | continue; |
948 | |
949 | // Get the MI and SUnit for the instruction that defines the original base. |
950 | Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); |
951 | MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); |
952 | if (!DefMI) |
953 | continue; |
954 | SUnit *DefSU = getSUnit(DefMI); |
955 | if (!DefSU) |
956 | continue; |
957 | // Get the MI and SUnit for the instruction that defins the new base. |
958 | MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); |
959 | if (!LastMI) |
960 | continue; |
961 | SUnit *LastSU = getSUnit(LastMI); |
962 | if (!LastSU) |
963 | continue; |
964 | |
965 | if (Topo.IsReachable(&I, LastSU)) |
966 | continue; |
967 | |
968 | // Remove the dependence. The value now depends on a prior iteration. |
969 | SmallVector<SDep, 4> Deps; |
970 | for (const SDep &P : I.Preds) |
971 | if (P.getSUnit() == DefSU) |
972 | Deps.push_back(P); |
973 | for (int i = 0, e = Deps.size(); i != e; i++) { |
974 | Topo.RemovePred(&I, Deps[i].getSUnit()); |
975 | I.removePred(Deps[i]); |
976 | } |
977 | // Remove the chain dependence between the instructions. |
978 | Deps.clear(); |
979 | for (auto &P : LastSU->Preds) |
980 | if (P.getSUnit() == &I && P.getKind() == SDep::Order) |
981 | Deps.push_back(P); |
982 | for (int i = 0, e = Deps.size(); i != e; i++) { |
983 | Topo.RemovePred(LastSU, Deps[i].getSUnit()); |
984 | LastSU->removePred(Deps[i]); |
985 | } |
986 | |
987 | // Add a dependence between the new instruction and the instruction |
988 | // that defines the new base. |
989 | SDep Dep(&I, SDep::Anti, NewBase); |
990 | Topo.AddPred(LastSU, &I); |
991 | LastSU->addPred(Dep); |
992 | |
993 | // Remember the base and offset information so that we can update the |
994 | // instruction during code generation. |
995 | InstrChanges[&I] = std::make_pair(NewBase, NewOffset); |
996 | } |
997 | } |
998 | |
999 | namespace { |
1000 | |
1001 | // FuncUnitSorter - Comparison operator used to sort instructions by |
1002 | // the number of functional unit choices. |
1003 | struct FuncUnitSorter { |
1004 | const InstrItineraryData *InstrItins; |
1005 | const MCSubtargetInfo *STI; |
1006 | DenseMap<InstrStage::FuncUnits, unsigned> Resources; |
1007 | |
1008 | FuncUnitSorter(const TargetSubtargetInfo &TSI) |
1009 | : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} |
1010 | |
1011 | // Compute the number of functional unit alternatives needed |
1012 | // at each stage, and take the minimum value. We prioritize the |
1013 | // instructions by the least number of choices first. |
1014 | unsigned minFuncUnits(const MachineInstr *Inst, |
1015 | InstrStage::FuncUnits &F) const { |
1016 | unsigned SchedClass = Inst->getDesc().getSchedClass(); |
1017 | unsigned min = UINT_MAX(2147483647 *2U +1U); |
1018 | if (InstrItins && !InstrItins->isEmpty()) { |
1019 | for (const InstrStage &IS : |
1020 | make_range(InstrItins->beginStage(SchedClass), |
1021 | InstrItins->endStage(SchedClass))) { |
1022 | InstrStage::FuncUnits funcUnits = IS.getUnits(); |
1023 | unsigned numAlternatives = llvm::popcount(funcUnits); |
1024 | if (numAlternatives < min) { |
1025 | min = numAlternatives; |
1026 | F = funcUnits; |
1027 | } |
1028 | } |
1029 | return min; |
1030 | } |
1031 | if (STI && STI->getSchedModel().hasInstrSchedModel()) { |
1032 | const MCSchedClassDesc *SCDesc = |
1033 | STI->getSchedModel().getSchedClassDesc(SchedClass); |
1034 | if (!SCDesc->isValid()) |
1035 | // No valid Schedule Class Desc for schedClass, should be |
1036 | // Pseudo/PostRAPseudo |
1037 | return min; |
1038 | |
1039 | for (const MCWriteProcResEntry &PRE : |
1040 | make_range(STI->getWriteProcResBegin(SCDesc), |
1041 | STI->getWriteProcResEnd(SCDesc))) { |
1042 | if (!PRE.Cycles) |
1043 | continue; |
1044 | const MCProcResourceDesc *ProcResource = |
1045 | STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); |
1046 | unsigned NumUnits = ProcResource->NumUnits; |
1047 | if (NumUnits < min) { |
1048 | min = NumUnits; |
1049 | F = PRE.ProcResourceIdx; |
1050 | } |
1051 | } |
1052 | return min; |
1053 | } |
1054 | llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!")::llvm::llvm_unreachable_internal("Should have non-empty InstrItins or hasInstrSchedModel!" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 1054); |
1055 | } |
1056 | |
1057 | // Compute the critical resources needed by the instruction. This |
1058 | // function records the functional units needed by instructions that |
1059 | // must use only one functional unit. We use this as a tie breaker |
1060 | // for computing the resource MII. The instrutions that require |
1061 | // the same, highly used, functional unit have high priority. |
1062 | void calcCriticalResources(MachineInstr &MI) { |
1063 | unsigned SchedClass = MI.getDesc().getSchedClass(); |
1064 | if (InstrItins && !InstrItins->isEmpty()) { |
1065 | for (const InstrStage &IS : |
1066 | make_range(InstrItins->beginStage(SchedClass), |
1067 | InstrItins->endStage(SchedClass))) { |
1068 | InstrStage::FuncUnits FuncUnits = IS.getUnits(); |
1069 | if (llvm::popcount(FuncUnits) == 1) |
1070 | Resources[FuncUnits]++; |
1071 | } |
1072 | return; |
1073 | } |
1074 | if (STI && STI->getSchedModel().hasInstrSchedModel()) { |
1075 | const MCSchedClassDesc *SCDesc = |
1076 | STI->getSchedModel().getSchedClassDesc(SchedClass); |
1077 | if (!SCDesc->isValid()) |
1078 | // No valid Schedule Class Desc for schedClass, should be |
1079 | // Pseudo/PostRAPseudo |
1080 | return; |
1081 | |
1082 | for (const MCWriteProcResEntry &PRE : |
1083 | make_range(STI->getWriteProcResBegin(SCDesc), |
1084 | STI->getWriteProcResEnd(SCDesc))) { |
1085 | if (!PRE.Cycles) |
1086 | continue; |
1087 | Resources[PRE.ProcResourceIdx]++; |
1088 | } |
1089 | return; |
1090 | } |
1091 | llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!")::llvm::llvm_unreachable_internal("Should have non-empty InstrItins or hasInstrSchedModel!" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 1091); |
1092 | } |
1093 | |
1094 | /// Return true if IS1 has less priority than IS2. |
1095 | bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { |
1096 | InstrStage::FuncUnits F1 = 0, F2 = 0; |
1097 | unsigned MFUs1 = minFuncUnits(IS1, F1); |
1098 | unsigned MFUs2 = minFuncUnits(IS2, F2); |
1099 | if (MFUs1 == MFUs2) |
1100 | return Resources.lookup(F1) < Resources.lookup(F2); |
1101 | return MFUs1 > MFUs2; |
1102 | } |
1103 | }; |
1104 | |
1105 | } // end anonymous namespace |
1106 | |
1107 | /// Calculate the resource constrained minimum initiation interval for the |
1108 | /// specified loop. We use the DFA to model the resources needed for |
1109 | /// each instruction, and we ignore dependences. A different DFA is created |
1110 | /// for each cycle that is required. When adding a new instruction, we attempt |
1111 | /// to add it to each existing DFA, until a legal space is found. If the |
1112 | /// instruction cannot be reserved in an existing DFA, we create a new one. |
1113 | unsigned SwingSchedulerDAG::calculateResMII() { |
1114 | LLVM_DEBUG(dbgs() << "calculateResMII:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "calculateResMII:\n"; } } while (false); |
1115 | ResourceManager RM(&MF.getSubtarget(), this); |
1116 | return RM.calculateResMII(); |
1117 | } |
1118 | |
1119 | /// Calculate the recurrence-constrainted minimum initiation interval. |
1120 | /// Iterate over each circuit. Compute the delay(c) and distance(c) |
1121 | /// for each circuit. The II needs to satisfy the inequality |
1122 | /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest |
1123 | /// II that satisfies the inequality, and the RecMII is the maximum |
1124 | /// of those values. |
1125 | unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { |
1126 | unsigned RecMII = 0; |
1127 | |
1128 | for (NodeSet &Nodes : NodeSets) { |
1129 | if (Nodes.empty()) |
1130 | continue; |
1131 | |
1132 | unsigned Delay = Nodes.getLatency(); |
1133 | unsigned Distance = 1; |
1134 | |
1135 | // ii = ceil(delay / distance) |
1136 | unsigned CurMII = (Delay + Distance - 1) / Distance; |
1137 | Nodes.setRecMII(CurMII); |
1138 | if (CurMII > RecMII) |
1139 | RecMII = CurMII; |
1140 | } |
1141 | |
1142 | return RecMII; |
1143 | } |
1144 | |
1145 | /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, |
1146 | /// but we do this to find the circuits, and then change them back. |
1147 | static void swapAntiDependences(std::vector<SUnit> &SUnits) { |
1148 | SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; |
1149 | for (SUnit &SU : SUnits) { |
1150 | for (SDep &Pred : SU.Preds) |
1151 | if (Pred.getKind() == SDep::Anti) |
1152 | DepsAdded.push_back(std::make_pair(&SU, Pred)); |
1153 | } |
1154 | for (std::pair<SUnit *, SDep> &P : DepsAdded) { |
1155 | // Remove this anti dependency and add one in the reverse direction. |
1156 | SUnit *SU = P.first; |
1157 | SDep &D = P.second; |
1158 | SUnit *TargetSU = D.getSUnit(); |
1159 | unsigned Reg = D.getReg(); |
1160 | unsigned Lat = D.getLatency(); |
1161 | SU->removePred(D); |
1162 | SDep Dep(SU, SDep::Anti, Reg); |
1163 | Dep.setLatency(Lat); |
1164 | TargetSU->addPred(Dep); |
1165 | } |
1166 | } |
1167 | |
1168 | /// Create the adjacency structure of the nodes in the graph. |
1169 | void SwingSchedulerDAG::Circuits::createAdjacencyStructure( |
1170 | SwingSchedulerDAG *DAG) { |
1171 | BitVector Added(SUnits.size()); |
1172 | DenseMap<int, int> OutputDeps; |
1173 | for (int i = 0, e = SUnits.size(); i != e; ++i) { |
1174 | Added.reset(); |
1175 | // Add any successor to the adjacency matrix and exclude duplicates. |
1176 | for (auto &SI : SUnits[i].Succs) { |
1177 | // Only create a back-edge on the first and last nodes of a dependence |
1178 | // chain. This records any chains and adds them later. |
1179 | if (SI.getKind() == SDep::Output) { |
1180 | int N = SI.getSUnit()->NodeNum; |
1181 | int BackEdge = i; |
1182 | auto Dep = OutputDeps.find(BackEdge); |
1183 | if (Dep != OutputDeps.end()) { |
1184 | BackEdge = Dep->second; |
1185 | OutputDeps.erase(Dep); |
1186 | } |
1187 | OutputDeps[N] = BackEdge; |
1188 | } |
1189 | // Do not process a boundary node, an artificial node. |
1190 | // A back-edge is processed only if it goes to a Phi. |
1191 | if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || |
1192 | (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) |
1193 | continue; |
1194 | int N = SI.getSUnit()->NodeNum; |
1195 | if (!Added.test(N)) { |
1196 | AdjK[i].push_back(N); |
1197 | Added.set(N); |
1198 | } |
1199 | } |
1200 | // A chain edge between a store and a load is treated as a back-edge in the |
1201 | // adjacency matrix. |
1202 | for (auto &PI : SUnits[i].Preds) { |
1203 | if (!SUnits[i].getInstr()->mayStore() || |
1204 | !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) |
1205 | continue; |
1206 | if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { |
1207 | int N = PI.getSUnit()->NodeNum; |
1208 | if (!Added.test(N)) { |
1209 | AdjK[i].push_back(N); |
1210 | Added.set(N); |
1211 | } |
1212 | } |
1213 | } |
1214 | } |
1215 | // Add back-edges in the adjacency matrix for the output dependences. |
1216 | for (auto &OD : OutputDeps) |
1217 | if (!Added.test(OD.second)) { |
1218 | AdjK[OD.first].push_back(OD.second); |
1219 | Added.set(OD.second); |
1220 | } |
1221 | } |
1222 | |
1223 | /// Identify an elementary circuit in the dependence graph starting at the |
1224 | /// specified node. |
1225 | bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, |
1226 | bool HasBackedge) { |
1227 | SUnit *SV = &SUnits[V]; |
1228 | bool F = false; |
1229 | Stack.insert(SV); |
1230 | Blocked.set(V); |
1231 | |
1232 | for (auto W : AdjK[V]) { |
1233 | if (NumPaths > MaxPaths) |
1234 | break; |
1235 | if (W < S) |
1236 | continue; |
1237 | if (W == S) { |
1238 | if (!HasBackedge) |
1239 | NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); |
1240 | F = true; |
1241 | ++NumPaths; |
1242 | break; |
1243 | } else if (!Blocked.test(W)) { |
1244 | if (circuit(W, S, NodeSets, |
1245 | Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) |
1246 | F = true; |
1247 | } |
1248 | } |
1249 | |
1250 | if (F) |
1251 | unblock(V); |
1252 | else { |
1253 | for (auto W : AdjK[V]) { |
1254 | if (W < S) |
1255 | continue; |
1256 | B[W].insert(SV); |
1257 | } |
1258 | } |
1259 | Stack.pop_back(); |
1260 | return F; |
1261 | } |
1262 | |
1263 | /// Unblock a node in the circuit finding algorithm. |
1264 | void SwingSchedulerDAG::Circuits::unblock(int U) { |
1265 | Blocked.reset(U); |
1266 | SmallPtrSet<SUnit *, 4> &BU = B[U]; |
1267 | while (!BU.empty()) { |
1268 | SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); |
1269 | assert(SI != BU.end() && "Invalid B set.")(static_cast <bool> (SI != BU.end() && "Invalid B set." ) ? void (0) : __assert_fail ("SI != BU.end() && \"Invalid B set.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 1269, __extension__ __PRETTY_FUNCTION__)); |
1270 | SUnit *W = *SI; |
1271 | BU.erase(W); |
1272 | if (Blocked.test(W->NodeNum)) |
1273 | unblock(W->NodeNum); |
1274 | } |
1275 | } |
1276 | |
1277 | /// Identify all the elementary circuits in the dependence graph using |
1278 | /// Johnson's circuit algorithm. |
1279 | void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { |
1280 | // Swap all the anti dependences in the DAG. That means it is no longer a DAG, |
1281 | // but we do this to find the circuits, and then change them back. |
1282 | swapAntiDependences(SUnits); |
1283 | |
1284 | Circuits Cir(SUnits, Topo); |
1285 | // Create the adjacency structure. |
1286 | Cir.createAdjacencyStructure(this); |
1287 | for (int i = 0, e = SUnits.size(); i != e; ++i) { |
1288 | Cir.reset(); |
1289 | Cir.circuit(i, i, NodeSets); |
1290 | } |
1291 | |
1292 | // Change the dependences back so that we've created a DAG again. |
1293 | swapAntiDependences(SUnits); |
1294 | } |
1295 | |
1296 | // Create artificial dependencies between the source of COPY/REG_SEQUENCE that |
1297 | // is loop-carried to the USE in next iteration. This will help pipeliner avoid |
1298 | // additional copies that are needed across iterations. An artificial dependence |
1299 | // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. |
1300 | |
1301 | // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) |
1302 | // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE |
1303 | // PHI-------True-Dep------> USEOfPhi |
1304 | |
1305 | // The mutation creates |
1306 | // USEOfPHI -------Artificial-Dep---> SRCOfCopy |
1307 | |
1308 | // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy |
1309 | // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled |
1310 | // late to avoid additional copies across iterations. The possible scheduling |
1311 | // order would be |
1312 | // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. |
1313 | |
1314 | void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { |
1315 | for (SUnit &SU : DAG->SUnits) { |
1316 | // Find the COPY/REG_SEQUENCE instruction. |
1317 | if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) |
1318 | continue; |
1319 | |
1320 | // Record the loop carried PHIs. |
1321 | SmallVector<SUnit *, 4> PHISUs; |
1322 | // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. |
1323 | SmallVector<SUnit *, 4> SrcSUs; |
1324 | |
1325 | for (auto &Dep : SU.Preds) { |
1326 | SUnit *TmpSU = Dep.getSUnit(); |
1327 | MachineInstr *TmpMI = TmpSU->getInstr(); |
1328 | SDep::Kind DepKind = Dep.getKind(); |
1329 | // Save the loop carried PHI. |
1330 | if (DepKind == SDep::Anti && TmpMI->isPHI()) |
1331 | PHISUs.push_back(TmpSU); |
1332 | // Save the source of COPY/REG_SEQUENCE. |
1333 | // If the source has no pre-decessors, we will end up creating cycles. |
1334 | else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) |
1335 | SrcSUs.push_back(TmpSU); |
1336 | } |
1337 | |
1338 | if (PHISUs.size() == 0 || SrcSUs.size() == 0) |
1339 | continue; |
1340 | |
1341 | // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this |
1342 | // SUnit to the container. |
1343 | SmallVector<SUnit *, 8> UseSUs; |
1344 | // Do not use iterator based loop here as we are updating the container. |
1345 | for (size_t Index = 0; Index < PHISUs.size(); ++Index) { |
1346 | for (auto &Dep : PHISUs[Index]->Succs) { |
1347 | if (Dep.getKind() != SDep::Data) |
1348 | continue; |
1349 | |
1350 | SUnit *TmpSU = Dep.getSUnit(); |
1351 | MachineInstr *TmpMI = TmpSU->getInstr(); |
1352 | if (TmpMI->isPHI() || TmpMI->isRegSequence()) { |
1353 | PHISUs.push_back(TmpSU); |
1354 | continue; |
1355 | } |
1356 | UseSUs.push_back(TmpSU); |
1357 | } |
1358 | } |
1359 | |
1360 | if (UseSUs.size() == 0) |
1361 | continue; |
1362 | |
1363 | SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); |
1364 | // Add the artificial dependencies if it does not form a cycle. |
1365 | for (auto *I : UseSUs) { |
1366 | for (auto *Src : SrcSUs) { |
1367 | if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { |
1368 | Src->addPred(SDep(I, SDep::Artificial)); |
1369 | SDAG->Topo.AddPred(Src, I); |
1370 | } |
1371 | } |
1372 | } |
1373 | } |
1374 | } |
1375 | |
1376 | /// Return true for DAG nodes that we ignore when computing the cost functions. |
1377 | /// We ignore the back-edge recurrence in order to avoid unbounded recursion |
1378 | /// in the calculation of the ASAP, ALAP, etc functions. |
1379 | static bool ignoreDependence(const SDep &D, bool isPred) { |
1380 | if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) |
1381 | return true; |
1382 | return D.getKind() == SDep::Anti && isPred; |
1383 | } |
1384 | |
1385 | /// Compute several functions need to order the nodes for scheduling. |
1386 | /// ASAP - Earliest time to schedule a node. |
1387 | /// ALAP - Latest time to schedule a node. |
1388 | /// MOV - Mobility function, difference between ALAP and ASAP. |
1389 | /// D - Depth of each node. |
1390 | /// H - Height of each node. |
1391 | void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { |
1392 | ScheduleInfo.resize(SUnits.size()); |
1393 | |
1394 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (int I : Topo) { const SUnit &SU = SUnits[I]; dumpNode(SU); } }; } } while (false) |
1395 | for (int I : Topo) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (int I : Topo) { const SUnit &SU = SUnits[I]; dumpNode(SU); } }; } } while (false) |
1396 | const SUnit &SU = SUnits[I];do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (int I : Topo) { const SUnit &SU = SUnits[I]; dumpNode(SU); } }; } } while (false) |
1397 | dumpNode(SU);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (int I : Topo) { const SUnit &SU = SUnits[I]; dumpNode(SU); } }; } } while (false) |
1398 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (int I : Topo) { const SUnit &SU = SUnits[I]; dumpNode(SU); } }; } } while (false) |
1399 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (int I : Topo) { const SUnit &SU = SUnits[I]; dumpNode(SU); } }; } } while (false); |
1400 | |
1401 | int maxASAP = 0; |
1402 | // Compute ASAP and ZeroLatencyDepth. |
1403 | for (int I : Topo) { |
1404 | int asap = 0; |
1405 | int zeroLatencyDepth = 0; |
1406 | SUnit *SU = &SUnits[I]; |
1407 | for (const SDep &P : SU->Preds) { |
1408 | SUnit *pred = P.getSUnit(); |
1409 | if (P.getLatency() == 0) |
1410 | zeroLatencyDepth = |
1411 | std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); |
1412 | if (ignoreDependence(P, true)) |
1413 | continue; |
1414 | asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - |
1415 | getDistance(pred, SU, P) * MII)); |
1416 | } |
1417 | maxASAP = std::max(maxASAP, asap); |
1418 | ScheduleInfo[I].ASAP = asap; |
1419 | ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; |
1420 | } |
1421 | |
1422 | // Compute ALAP, ZeroLatencyHeight, and MOV. |
1423 | for (int I : llvm::reverse(Topo)) { |
1424 | int alap = maxASAP; |
1425 | int zeroLatencyHeight = 0; |
1426 | SUnit *SU = &SUnits[I]; |
1427 | for (const SDep &S : SU->Succs) { |
1428 | SUnit *succ = S.getSUnit(); |
1429 | if (succ->isBoundaryNode()) |
1430 | continue; |
1431 | if (S.getLatency() == 0) |
1432 | zeroLatencyHeight = |
1433 | std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); |
1434 | if (ignoreDependence(S, true)) |
1435 | continue; |
1436 | alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + |
1437 | getDistance(SU, succ, S) * MII)); |
1438 | } |
1439 | |
1440 | ScheduleInfo[I].ALAP = alap; |
1441 | ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; |
1442 | } |
1443 | |
1444 | // After computing the node functions, compute the summary for each node set. |
1445 | for (NodeSet &I : NodeSets) |
1446 | I.computeNodeSetInfo(this); |
1447 | |
1448 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1449 | for (unsigned i = 0; i < SUnits.size(); i++) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1450 | dbgs() << "\tNode " << i << ":\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1451 | dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1452 | dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1453 | dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1454 | dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1455 | dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1456 | dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1457 | dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1458 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false) |
1459 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs () << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits [i]) << "\n"; dbgs() << "\t MOV = " << getMOV (&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n" ; dbgs() << "\t ZLD = " << getZeroLatencyDepth (&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }; } } while (false); |
1460 | } |
1461 | |
1462 | /// Compute the Pred_L(O) set, as defined in the paper. The set is defined |
1463 | /// as the predecessors of the elements of NodeOrder that are not also in |
1464 | /// NodeOrder. |
1465 | static bool pred_L(SetVector<SUnit *> &NodeOrder, |
1466 | SmallSetVector<SUnit *, 8> &Preds, |
1467 | const NodeSet *S = nullptr) { |
1468 | Preds.clear(); |
1469 | for (const SUnit *SU : NodeOrder) { |
1470 | for (const SDep &Pred : SU->Preds) { |
1471 | if (S && S->count(Pred.getSUnit()) == 0) |
1472 | continue; |
1473 | if (ignoreDependence(Pred, true)) |
1474 | continue; |
1475 | if (NodeOrder.count(Pred.getSUnit()) == 0) |
1476 | Preds.insert(Pred.getSUnit()); |
1477 | } |
1478 | // Back-edges are predecessors with an anti-dependence. |
1479 | for (const SDep &Succ : SU->Succs) { |
1480 | if (Succ.getKind() != SDep::Anti) |
1481 | continue; |
1482 | if (S && S->count(Succ.getSUnit()) == 0) |
1483 | continue; |
1484 | if (NodeOrder.count(Succ.getSUnit()) == 0) |
1485 | Preds.insert(Succ.getSUnit()); |
1486 | } |
1487 | } |
1488 | return !Preds.empty(); |
1489 | } |
1490 | |
1491 | /// Compute the Succ_L(O) set, as defined in the paper. The set is defined |
1492 | /// as the successors of the elements of NodeOrder that are not also in |
1493 | /// NodeOrder. |
1494 | static bool succ_L(SetVector<SUnit *> &NodeOrder, |
1495 | SmallSetVector<SUnit *, 8> &Succs, |
1496 | const NodeSet *S = nullptr) { |
1497 | Succs.clear(); |
1498 | for (const SUnit *SU : NodeOrder) { |
1499 | for (const SDep &Succ : SU->Succs) { |
1500 | if (S && S->count(Succ.getSUnit()) == 0) |
1501 | continue; |
1502 | if (ignoreDependence(Succ, false)) |
1503 | continue; |
1504 | if (NodeOrder.count(Succ.getSUnit()) == 0) |
1505 | Succs.insert(Succ.getSUnit()); |
1506 | } |
1507 | for (const SDep &Pred : SU->Preds) { |
1508 | if (Pred.getKind() != SDep::Anti) |
1509 | continue; |
1510 | if (S && S->count(Pred.getSUnit()) == 0) |
1511 | continue; |
1512 | if (NodeOrder.count(Pred.getSUnit()) == 0) |
1513 | Succs.insert(Pred.getSUnit()); |
1514 | } |
1515 | } |
1516 | return !Succs.empty(); |
1517 | } |
1518 | |
1519 | /// Return true if there is a path from the specified node to any of the nodes |
1520 | /// in DestNodes. Keep track and return the nodes in any path. |
1521 | static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, |
1522 | SetVector<SUnit *> &DestNodes, |
1523 | SetVector<SUnit *> &Exclude, |
1524 | SmallPtrSet<SUnit *, 8> &Visited) { |
1525 | if (Cur->isBoundaryNode()) |
1526 | return false; |
1527 | if (Exclude.contains(Cur)) |
1528 | return false; |
1529 | if (DestNodes.contains(Cur)) |
1530 | return true; |
1531 | if (!Visited.insert(Cur).second) |
1532 | return Path.contains(Cur); |
1533 | bool FoundPath = false; |
1534 | for (auto &SI : Cur->Succs) |
1535 | if (!ignoreDependence(SI, false)) |
1536 | FoundPath |= |
1537 | computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); |
1538 | for (auto &PI : Cur->Preds) |
1539 | if (PI.getKind() == SDep::Anti) |
1540 | FoundPath |= |
1541 | computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); |
1542 | if (FoundPath) |
1543 | Path.insert(Cur); |
1544 | return FoundPath; |
1545 | } |
1546 | |
1547 | /// Compute the live-out registers for the instructions in a node-set. |
1548 | /// The live-out registers are those that are defined in the node-set, |
1549 | /// but not used. Except for use operands of Phis. |
1550 | static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, |
1551 | NodeSet &NS) { |
1552 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
1553 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
1554 | SmallVector<RegisterMaskPair, 8> LiveOutRegs; |
1555 | SmallSet<unsigned, 4> Uses; |
1556 | for (SUnit *SU : NS) { |
1557 | const MachineInstr *MI = SU->getInstr(); |
1558 | if (MI->isPHI()) |
1559 | continue; |
1560 | for (const MachineOperand &MO : MI->operands()) |
1561 | if (MO.isReg() && MO.isUse()) { |
1562 | Register Reg = MO.getReg(); |
1563 | if (Reg.isVirtual()) |
1564 | Uses.insert(Reg); |
1565 | else if (MRI.isAllocatable(Reg)) |
1566 | for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); |
1567 | ++Units) |
1568 | Uses.insert(*Units); |
1569 | } |
1570 | } |
1571 | for (SUnit *SU : NS) |
1572 | for (const MachineOperand &MO : SU->getInstr()->operands()) |
1573 | if (MO.isReg() && MO.isDef() && !MO.isDead()) { |
1574 | Register Reg = MO.getReg(); |
1575 | if (Reg.isVirtual()) { |
1576 | if (!Uses.count(Reg)) |
1577 | LiveOutRegs.push_back(RegisterMaskPair(Reg, |
1578 | LaneBitmask::getNone())); |
1579 | } else if (MRI.isAllocatable(Reg)) { |
1580 | for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); |
1581 | ++Units) |
1582 | if (!Uses.count(*Units)) |
1583 | LiveOutRegs.push_back(RegisterMaskPair(*Units, |
1584 | LaneBitmask::getNone())); |
1585 | } |
1586 | } |
1587 | RPTracker.addLiveRegs(LiveOutRegs); |
1588 | } |
1589 | |
1590 | /// A heuristic to filter nodes in recurrent node-sets if the register |
1591 | /// pressure of a set is too high. |
1592 | void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { |
1593 | for (auto &NS : NodeSets) { |
1594 | // Skip small node-sets since they won't cause register pressure problems. |
1595 | if (NS.size() <= 2) |
1596 | continue; |
1597 | IntervalPressure RecRegPressure; |
1598 | RegPressureTracker RecRPTracker(RecRegPressure); |
1599 | RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); |
1600 | computeLiveOuts(MF, RecRPTracker, NS); |
1601 | RecRPTracker.closeBottom(); |
1602 | |
1603 | std::vector<SUnit *> SUnits(NS.begin(), NS.end()); |
1604 | llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { |
1605 | return A->NodeNum > B->NodeNum; |
1606 | }); |
1607 | |
1608 | for (auto &SU : SUnits) { |
1609 | // Since we're computing the register pressure for a subset of the |
1610 | // instructions in a block, we need to set the tracker for each |
1611 | // instruction in the node-set. The tracker is set to the instruction |
1612 | // just after the one we're interested in. |
1613 | MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); |
1614 | RecRPTracker.setPos(std::next(CurInstI)); |
1615 | |
1616 | RegPressureDelta RPDelta; |
1617 | ArrayRef<PressureChange> CriticalPSets; |
1618 | RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, |
1619 | CriticalPSets, |
1620 | RecRegPressure.MaxSetPressure); |
1621 | if (RPDelta.Excess.isValid()) { |
1622 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " << TRI->getRegPressureSetName (RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess .getUnitInc() << "\n"; } } while (false) |
1623 | dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " << TRI->getRegPressureSetName (RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess .getUnitInc() << "\n"; } } while (false) |
1624 | << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " << TRI->getRegPressureSetName (RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess .getUnitInc() << "\n"; } } while (false) |
1625 | << ":" << RPDelta.Excess.getUnitInc() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " << TRI->getRegPressureSetName (RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess .getUnitInc() << "\n"; } } while (false); |
1626 | NS.setExceedPressure(SU); |
1627 | break; |
1628 | } |
1629 | RecRPTracker.recede(); |
1630 | } |
1631 | } |
1632 | } |
1633 | |
1634 | /// A heuristic to colocate node sets that have the same set of |
1635 | /// successors. |
1636 | void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { |
1637 | unsigned Colocate = 0; |
1638 | for (int i = 0, e = NodeSets.size(); i < e; ++i) { |
1639 | NodeSet &N1 = NodeSets[i]; |
1640 | SmallSetVector<SUnit *, 8> S1; |
1641 | if (N1.empty() || !succ_L(N1, S1)) |
1642 | continue; |
1643 | for (int j = i + 1; j < e; ++j) { |
1644 | NodeSet &N2 = NodeSets[j]; |
1645 | if (N1.compareRecMII(N2) != 0) |
1646 | continue; |
1647 | SmallSetVector<SUnit *, 8> S2; |
1648 | if (N2.empty() || !succ_L(N2, S2)) |
1649 | continue; |
1650 | if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { |
1651 | N1.setColocate(++Colocate); |
1652 | N2.setColocate(Colocate); |
1653 | break; |
1654 | } |
1655 | } |
1656 | } |
1657 | } |
1658 | |
1659 | /// Check if the existing node-sets are profitable. If not, then ignore the |
1660 | /// recurrent node-sets, and attempt to schedule all nodes together. This is |
1661 | /// a heuristic. If the MII is large and all the recurrent node-sets are small, |
1662 | /// then it's best to try to schedule all instructions together instead of |
1663 | /// starting with the recurrent node-sets. |
1664 | void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { |
1665 | // Look for loops with a large MII. |
1666 | if (MII < 17) |
1667 | return; |
1668 | // Check if the node-set contains only a simple add recurrence. |
1669 | for (auto &NS : NodeSets) { |
1670 | if (NS.getRecMII() > 2) |
1671 | return; |
1672 | if (NS.getMaxDepth() > MII) |
1673 | return; |
1674 | } |
1675 | NodeSets.clear(); |
1676 | LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Clear recurrence node-sets\n" ; } } while (false); |
1677 | } |
1678 | |
1679 | /// Add the nodes that do not belong to a recurrence set into groups |
1680 | /// based upon connected components. |
1681 | void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { |
1682 | SetVector<SUnit *> NodesAdded; |
1683 | SmallPtrSet<SUnit *, 8> Visited; |
1684 | // Add the nodes that are on a path between the previous node sets and |
1685 | // the current node set. |
1686 | for (NodeSet &I : NodeSets) { |
1687 | SmallSetVector<SUnit *, 8> N; |
1688 | // Add the nodes from the current node set to the previous node set. |
1689 | if (succ_L(I, N)) { |
1690 | SetVector<SUnit *> Path; |
1691 | for (SUnit *NI : N) { |
1692 | Visited.clear(); |
1693 | computePath(NI, Path, NodesAdded, I, Visited); |
1694 | } |
1695 | if (!Path.empty()) |
1696 | I.insert(Path.begin(), Path.end()); |
1697 | } |
1698 | // Add the nodes from the previous node set to the current node set. |
1699 | N.clear(); |
1700 | if (succ_L(NodesAdded, N)) { |
1701 | SetVector<SUnit *> Path; |
1702 | for (SUnit *NI : N) { |
1703 | Visited.clear(); |
1704 | computePath(NI, Path, I, NodesAdded, Visited); |
1705 | } |
1706 | if (!Path.empty()) |
1707 | I.insert(Path.begin(), Path.end()); |
1708 | } |
1709 | NodesAdded.insert(I.begin(), I.end()); |
1710 | } |
1711 | |
1712 | // Create a new node set with the connected nodes of any successor of a node |
1713 | // in a recurrent set. |
1714 | NodeSet NewSet; |
1715 | SmallSetVector<SUnit *, 8> N; |
1716 | if (succ_L(NodesAdded, N)) |
1717 | for (SUnit *I : N) |
1718 | addConnectedNodes(I, NewSet, NodesAdded); |
1719 | if (!NewSet.empty()) |
1720 | NodeSets.push_back(NewSet); |
1721 | |
1722 | // Create a new node set with the connected nodes of any predecessor of a node |
1723 | // in a recurrent set. |
1724 | NewSet.clear(); |
1725 | if (pred_L(NodesAdded, N)) |
1726 | for (SUnit *I : N) |
1727 | addConnectedNodes(I, NewSet, NodesAdded); |
1728 | if (!NewSet.empty()) |
1729 | NodeSets.push_back(NewSet); |
1730 | |
1731 | // Create new nodes sets with the connected nodes any remaining node that |
1732 | // has no predecessor. |
1733 | for (SUnit &SU : SUnits) { |
1734 | if (NodesAdded.count(&SU) == 0) { |
1735 | NewSet.clear(); |
1736 | addConnectedNodes(&SU, NewSet, NodesAdded); |
1737 | if (!NewSet.empty()) |
1738 | NodeSets.push_back(NewSet); |
1739 | } |
1740 | } |
1741 | } |
1742 | |
1743 | /// Add the node to the set, and add all of its connected nodes to the set. |
1744 | void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, |
1745 | SetVector<SUnit *> &NodesAdded) { |
1746 | NewSet.insert(SU); |
1747 | NodesAdded.insert(SU); |
1748 | for (auto &SI : SU->Succs) { |
1749 | SUnit *Successor = SI.getSUnit(); |
1750 | if (!SI.isArtificial() && !Successor->isBoundaryNode() && |
1751 | NodesAdded.count(Successor) == 0) |
1752 | addConnectedNodes(Successor, NewSet, NodesAdded); |
1753 | } |
1754 | for (auto &PI : SU->Preds) { |
1755 | SUnit *Predecessor = PI.getSUnit(); |
1756 | if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) |
1757 | addConnectedNodes(Predecessor, NewSet, NodesAdded); |
1758 | } |
1759 | } |
1760 | |
1761 | /// Return true if Set1 contains elements in Set2. The elements in common |
1762 | /// are returned in a different container. |
1763 | static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, |
1764 | SmallSetVector<SUnit *, 8> &Result) { |
1765 | Result.clear(); |
1766 | for (SUnit *SU : Set1) { |
1767 | if (Set2.count(SU) != 0) |
1768 | Result.insert(SU); |
1769 | } |
1770 | return !Result.empty(); |
1771 | } |
1772 | |
1773 | /// Merge the recurrence node sets that have the same initial node. |
1774 | void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { |
1775 | for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; |
1776 | ++I) { |
1777 | NodeSet &NI = *I; |
1778 | for (NodeSetType::iterator J = I + 1; J != E;) { |
1779 | NodeSet &NJ = *J; |
1780 | if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { |
1781 | if (NJ.compareRecMII(NI) > 0) |
1782 | NI.setRecMII(NJ.getRecMII()); |
1783 | for (SUnit *SU : *J) |
1784 | I->insert(SU); |
1785 | NodeSets.erase(J); |
1786 | E = NodeSets.end(); |
1787 | } else { |
1788 | ++J; |
1789 | } |
1790 | } |
1791 | } |
1792 | } |
1793 | |
1794 | /// Remove nodes that have been scheduled in previous NodeSets. |
1795 | void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { |
1796 | for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; |
1797 | ++I) |
1798 | for (NodeSetType::iterator J = I + 1; J != E;) { |
1799 | J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); |
1800 | |
1801 | if (J->empty()) { |
1802 | NodeSets.erase(J); |
1803 | E = NodeSets.end(); |
1804 | } else { |
1805 | ++J; |
1806 | } |
1807 | } |
1808 | } |
1809 | |
1810 | /// Compute an ordered list of the dependence graph nodes, which |
1811 | /// indicates the order that the nodes will be scheduled. This is a |
1812 | /// two-level algorithm. First, a partial order is created, which |
1813 | /// consists of a list of sets ordered from highest to lowest priority. |
1814 | void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { |
1815 | SmallSetVector<SUnit *, 8> R; |
1816 | NodeOrder.clear(); |
1817 | |
1818 | for (auto &Nodes : NodeSets) { |
1819 | LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "NodeSet size " << Nodes .size() << "\n"; } } while (false); |
1820 | OrderKind Order; |
1821 | SmallSetVector<SUnit *, 8> N; |
1822 | if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { |
1823 | R.insert(N.begin(), N.end()); |
1824 | Order = BottomUp; |
1825 | LLVM_DEBUG(dbgs() << " Bottom up (preds) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << " Bottom up (preds) "; } } while (false); |
1826 | } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { |
1827 | R.insert(N.begin(), N.end()); |
1828 | Order = TopDown; |
1829 | LLVM_DEBUG(dbgs() << " Top down (succs) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << " Top down (succs) "; } } while (false); |
1830 | } else if (isIntersect(N, Nodes, R)) { |
1831 | // If some of the successors are in the existing node-set, then use the |
1832 | // top-down ordering. |
1833 | Order = TopDown; |
1834 | LLVM_DEBUG(dbgs() << " Top down (intersect) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << " Top down (intersect) "; } } while (false); |
1835 | } else if (NodeSets.size() == 1) { |
1836 | for (const auto &N : Nodes) |
1837 | if (N->Succs.size() == 0) |
1838 | R.insert(N); |
1839 | Order = BottomUp; |
1840 | LLVM_DEBUG(dbgs() << " Bottom up (all) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << " Bottom up (all) "; } } while (false); |
1841 | } else { |
1842 | // Find the node with the highest ASAP. |
1843 | SUnit *maxASAP = nullptr; |
1844 | for (SUnit *SU : Nodes) { |
1845 | if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || |
1846 | (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) |
1847 | maxASAP = SU; |
1848 | } |
1849 | R.insert(maxASAP); |
1850 | Order = BottomUp; |
1851 | LLVM_DEBUG(dbgs() << " Bottom up (default) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << " Bottom up (default) "; } } while (false); |
1852 | } |
1853 | |
1854 | while (!R.empty()) { |
1855 | if (Order == TopDown) { |
1856 | // Choose the node with the maximum height. If more than one, choose |
1857 | // the node wiTH the maximum ZeroLatencyHeight. If still more than one, |
1858 | // choose the node with the lowest MOV. |
1859 | while (!R.empty()) { |
1860 | SUnit *maxHeight = nullptr; |
1861 | for (SUnit *I : R) { |
1862 | if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) |
1863 | maxHeight = I; |
1864 | else if (getHeight(I) == getHeight(maxHeight) && |
1865 | getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) |
1866 | maxHeight = I; |
1867 | else if (getHeight(I) == getHeight(maxHeight) && |
1868 | getZeroLatencyHeight(I) == |
1869 | getZeroLatencyHeight(maxHeight) && |
1870 | getMOV(I) < getMOV(maxHeight)) |
1871 | maxHeight = I; |
1872 | } |
1873 | NodeOrder.insert(maxHeight); |
1874 | LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << maxHeight->NodeNum << " "; } } while (false); |
1875 | R.remove(maxHeight); |
1876 | for (const auto &I : maxHeight->Succs) { |
1877 | if (Nodes.count(I.getSUnit()) == 0) |
1878 | continue; |
1879 | if (NodeOrder.contains(I.getSUnit())) |
1880 | continue; |
1881 | if (ignoreDependence(I, false)) |
1882 | continue; |
1883 | R.insert(I.getSUnit()); |
1884 | } |
1885 | // Back-edges are predecessors with an anti-dependence. |
1886 | for (const auto &I : maxHeight->Preds) { |
1887 | if (I.getKind() != SDep::Anti) |
1888 | continue; |
1889 | if (Nodes.count(I.getSUnit()) == 0) |
1890 | continue; |
1891 | if (NodeOrder.contains(I.getSUnit())) |
1892 | continue; |
1893 | R.insert(I.getSUnit()); |
1894 | } |
1895 | } |
1896 | Order = BottomUp; |
1897 | LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "\n Switching order to bottom up " ; } } while (false); |
1898 | SmallSetVector<SUnit *, 8> N; |
1899 | if (pred_L(NodeOrder, N, &Nodes)) |
1900 | R.insert(N.begin(), N.end()); |
1901 | } else { |
1902 | // Choose the node with the maximum depth. If more than one, choose |
1903 | // the node with the maximum ZeroLatencyDepth. If still more than one, |
1904 | // choose the node with the lowest MOV. |
1905 | while (!R.empty()) { |
1906 | SUnit *maxDepth = nullptr; |
1907 | for (SUnit *I : R) { |
1908 | if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) |
1909 | maxDepth = I; |
1910 | else if (getDepth(I) == getDepth(maxDepth) && |
1911 | getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) |
1912 | maxDepth = I; |
1913 | else if (getDepth(I) == getDepth(maxDepth) && |
1914 | getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && |
1915 | getMOV(I) < getMOV(maxDepth)) |
1916 | maxDepth = I; |
1917 | } |
1918 | NodeOrder.insert(maxDepth); |
1919 | LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << maxDepth->NodeNum << " "; } } while (false); |
1920 | R.remove(maxDepth); |
1921 | if (Nodes.isExceedSU(maxDepth)) { |
1922 | Order = TopDown; |
Value stored to 'Order' is never read | |
1923 | R.clear(); |
1924 | R.insert(Nodes.getNode(0)); |
1925 | break; |
1926 | } |
1927 | for (const auto &I : maxDepth->Preds) { |
1928 | if (Nodes.count(I.getSUnit()) == 0) |
1929 | continue; |
1930 | if (NodeOrder.contains(I.getSUnit())) |
1931 | continue; |
1932 | R.insert(I.getSUnit()); |
1933 | } |
1934 | // Back-edges are predecessors with an anti-dependence. |
1935 | for (const auto &I : maxDepth->Succs) { |
1936 | if (I.getKind() != SDep::Anti) |
1937 | continue; |
1938 | if (Nodes.count(I.getSUnit()) == 0) |
1939 | continue; |
1940 | if (NodeOrder.contains(I.getSUnit())) |
1941 | continue; |
1942 | R.insert(I.getSUnit()); |
1943 | } |
1944 | } |
1945 | Order = TopDown; |
1946 | LLVM_DEBUG(dbgs() << "\n Switching order to top down ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "\n Switching order to top down " ; } } while (false); |
1947 | SmallSetVector<SUnit *, 8> N; |
1948 | if (succ_L(NodeOrder, N, &Nodes)) |
1949 | R.insert(N.begin(), N.end()); |
1950 | } |
1951 | } |
1952 | LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "\nDone with Nodeset\n"; } } while (false); |
1953 | } |
1954 | |
1955 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Node order: "; for (SUnit *I : NodeOrder) dbgs() << " " << I->NodeNum << " "; dbgs() << "\n"; }; } } while (false) |
1956 | dbgs() << "Node order: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Node order: "; for (SUnit *I : NodeOrder) dbgs() << " " << I->NodeNum << " "; dbgs() << "\n"; }; } } while (false) |
1957 | for (SUnit *I : NodeOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Node order: "; for (SUnit *I : NodeOrder) dbgs() << " " << I->NodeNum << " "; dbgs() << "\n"; }; } } while (false) |
1958 | dbgs() << " " << I->NodeNum << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Node order: "; for (SUnit *I : NodeOrder) dbgs() << " " << I->NodeNum << " "; dbgs() << "\n"; }; } } while (false) |
1959 | dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Node order: "; for (SUnit *I : NodeOrder) dbgs() << " " << I->NodeNum << " "; dbgs() << "\n"; }; } } while (false) |
1960 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Node order: "; for (SUnit *I : NodeOrder) dbgs() << " " << I->NodeNum << " "; dbgs() << "\n"; }; } } while (false); |
1961 | } |
1962 | |
1963 | /// Process the nodes in the computed order and create the pipelined schedule |
1964 | /// of the instructions, if possible. Return true if a schedule is found. |
1965 | bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { |
1966 | |
1967 | if (NodeOrder.empty()){ |
1968 | LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" )do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "NodeOrder is empty! abort scheduling\n" ; } } while (false); |
1969 | return false; |
1970 | } |
1971 | |
1972 | bool scheduleFound = false; |
1973 | // Keep increasing II until a valid schedule is found. |
1974 | for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { |
1975 | Schedule.reset(); |
1976 | Schedule.setInitiationInterval(II); |
1977 | LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Try to schedule with " << II << "\n"; } } while (false); |
1978 | |
1979 | SetVector<SUnit *>::iterator NI = NodeOrder.begin(); |
1980 | SetVector<SUnit *>::iterator NE = NodeOrder.end(); |
1981 | do { |
1982 | SUnit *SU = *NI; |
1983 | |
1984 | // Compute the schedule time for the instruction, which is based |
1985 | // upon the scheduled time for any predecessors/successors. |
1986 | int EarlyStart = INT_MIN(-2147483647 -1); |
1987 | int LateStart = INT_MAX2147483647; |
1988 | // These values are set when the size of the schedule window is limited |
1989 | // due to chain dependences. |
1990 | int SchedEnd = INT_MAX2147483647; |
1991 | int SchedStart = INT_MIN(-2147483647 -1); |
1992 | Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, |
1993 | II, this); |
1994 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst (" << SU->NodeNum << ") "; SU->getInstr()-> dump(); dbgs() << "\n"; }; } } while (false) |
1995 | dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst (" << SU->NodeNum << ") "; SU->getInstr()-> dump(); dbgs() << "\n"; }; } } while (false) |
1996 | dbgs() << "Inst (" << SU->NodeNum << ") ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst (" << SU->NodeNum << ") "; SU->getInstr()-> dump(); dbgs() << "\n"; }; } } while (false) |
1997 | SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst (" << SU->NodeNum << ") "; SU->getInstr()-> dump(); dbgs() << "\n"; }; } } while (false) |
1998 | dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst (" << SU->NodeNum << ") "; SU->getInstr()-> dump(); dbgs() << "\n"; }; } } while (false) |
1999 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst (" << SU->NodeNum << ") "; SU->getInstr()-> dump(); dbgs() << "\n"; }; } } while (false); |
2000 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n" , EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while ( false) |
2001 | dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n" , EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while ( false) |
2002 | LateStart, SchedEnd, SchedStart);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n" , EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while ( false) |
2003 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n" , EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while ( false); |
2004 | |
2005 | if (EarlyStart > LateStart || SchedEnd < EarlyStart || |
2006 | SchedStart > LateStart) |
2007 | scheduleFound = false; |
2008 | else if (EarlyStart != INT_MIN(-2147483647 -1) && LateStart == INT_MAX2147483647) { |
2009 | SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); |
2010 | scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); |
2011 | } else if (EarlyStart == INT_MIN(-2147483647 -1) && LateStart != INT_MAX2147483647) { |
2012 | SchedStart = std::max(SchedStart, LateStart - (int)II + 1); |
2013 | scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); |
2014 | } else if (EarlyStart != INT_MIN(-2147483647 -1) && LateStart != INT_MAX2147483647) { |
2015 | SchedEnd = |
2016 | std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); |
2017 | // When scheduling a Phi it is better to start at the late cycle and go |
2018 | // backwards. The default order may insert the Phi too far away from |
2019 | // its first dependence. |
2020 | if (SU->getInstr()->isPHI()) |
2021 | scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); |
2022 | else |
2023 | scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); |
2024 | } else { |
2025 | int FirstCycle = Schedule.getFirstCycle(); |
2026 | scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), |
2027 | FirstCycle + getASAP(SU) + II - 1, II); |
2028 | } |
2029 | // Even if we find a schedule, make sure the schedule doesn't exceed the |
2030 | // allowable number of stages. We keep trying if this happens. |
2031 | if (scheduleFound) |
2032 | if (SwpMaxStages > -1 && |
2033 | Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) |
2034 | scheduleFound = false; |
2035 | |
2036 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n" ; }; } } while (false) |
2037 | if (!scheduleFound)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n" ; }; } } while (false) |
2038 | dbgs() << "\tCan't schedule\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n" ; }; } } while (false) |
2039 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n" ; }; } } while (false); |
2040 | } while (++NI != NE && scheduleFound); |
2041 | |
2042 | // If a schedule is found, ensure non-pipelined instructions are in stage 0 |
2043 | if (scheduleFound) |
2044 | scheduleFound = |
2045 | Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); |
2046 | |
2047 | // If a schedule is found, check if it is a valid schedule too. |
2048 | if (scheduleFound) |
2049 | scheduleFound = Schedule.isValidSchedule(this); |
2050 | } |
2051 | |
2052 | LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFounddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Schedule Found? " << scheduleFound << " (II=" << Schedule.getInitiationInterval() << ")\n"; } } while (false) |
2053 | << " (II=" << Schedule.getInitiationInterval()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Schedule Found? " << scheduleFound << " (II=" << Schedule.getInitiationInterval() << ")\n"; } } while (false) |
2054 | << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Schedule Found? " << scheduleFound << " (II=" << Schedule.getInitiationInterval() << ")\n"; } } while (false); |
2055 | |
2056 | if (scheduleFound) { |
2057 | scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); |
2058 | if (!scheduleFound) |
2059 | LLVM_DEBUG(dbgs() << "Target rejected schedule\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Target rejected schedule\n" ; } } while (false); |
2060 | } |
2061 | |
2062 | if (scheduleFound) { |
2063 | Schedule.finalizeSchedule(this); |
2064 | Pass.ORE->emit([&]() { |
2065 | return MachineOptimizationRemarkAnalysis( |
2066 | DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader()) |
2067 | << "Schedule found with Initiation Interval: " |
2068 | << ore::NV("II", Schedule.getInitiationInterval()) |
2069 | << ", MaxStageCount: " |
2070 | << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); |
2071 | }); |
2072 | } else |
2073 | Schedule.reset(); |
2074 | |
2075 | return scheduleFound && Schedule.getMaxStageCount() > 0; |
2076 | } |
2077 | |
2078 | /// Return true if we can compute the amount the instruction changes |
2079 | /// during each iteration. Set Delta to the amount of the change. |
2080 | bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { |
2081 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
2082 | const MachineOperand *BaseOp; |
2083 | int64_t Offset; |
2084 | bool OffsetIsScalable; |
2085 | if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) |
2086 | return false; |
2087 | |
2088 | // FIXME: This algorithm assumes instructions have fixed-size offsets. |
2089 | if (OffsetIsScalable) |
2090 | return false; |
2091 | |
2092 | if (!BaseOp->isReg()) |
2093 | return false; |
2094 | |
2095 | Register BaseReg = BaseOp->getReg(); |
2096 | |
2097 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
2098 | // Check if there is a Phi. If so, get the definition in the loop. |
2099 | MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); |
2100 | if (BaseDef && BaseDef->isPHI()) { |
2101 | BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); |
2102 | BaseDef = MRI.getVRegDef(BaseReg); |
2103 | } |
2104 | if (!BaseDef) |
2105 | return false; |
2106 | |
2107 | int D = 0; |
2108 | if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) |
2109 | return false; |
2110 | |
2111 | Delta = D; |
2112 | return true; |
2113 | } |
2114 | |
2115 | /// Check if we can change the instruction to use an offset value from the |
2116 | /// previous iteration. If so, return true and set the base and offset values |
2117 | /// so that we can rewrite the load, if necessary. |
2118 | /// v1 = Phi(v0, v3) |
2119 | /// v2 = load v1, 0 |
2120 | /// v3 = post_store v1, 4, x |
2121 | /// This function enables the load to be rewritten as v2 = load v3, 4. |
2122 | bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, |
2123 | unsigned &BasePos, |
2124 | unsigned &OffsetPos, |
2125 | unsigned &NewBase, |
2126 | int64_t &Offset) { |
2127 | // Get the load instruction. |
2128 | if (TII->isPostIncrement(*MI)) |
2129 | return false; |
2130 | unsigned BasePosLd, OffsetPosLd; |
2131 | if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) |
2132 | return false; |
2133 | Register BaseReg = MI->getOperand(BasePosLd).getReg(); |
2134 | |
2135 | // Look for the Phi instruction. |
2136 | MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); |
2137 | MachineInstr *Phi = MRI.getVRegDef(BaseReg); |
2138 | if (!Phi || !Phi->isPHI()) |
2139 | return false; |
2140 | // Get the register defined in the loop block. |
2141 | unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); |
2142 | if (!PrevReg) |
2143 | return false; |
2144 | |
2145 | // Check for the post-increment load/store instruction. |
2146 | MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); |
2147 | if (!PrevDef || PrevDef == MI) |
2148 | return false; |
2149 | |
2150 | if (!TII->isPostIncrement(*PrevDef)) |
2151 | return false; |
2152 | |
2153 | unsigned BasePos1 = 0, OffsetPos1 = 0; |
2154 | if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) |
2155 | return false; |
2156 | |
2157 | // Make sure that the instructions do not access the same memory location in |
2158 | // the next iteration. |
2159 | int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); |
2160 | int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); |
2161 | MachineInstr *NewMI = MF.CloneMachineInstr(MI); |
2162 | NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); |
2163 | bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); |
2164 | MF.deleteMachineInstr(NewMI); |
2165 | if (!Disjoint) |
2166 | return false; |
2167 | |
2168 | // Set the return value once we determine that we return true. |
2169 | BasePos = BasePosLd; |
2170 | OffsetPos = OffsetPosLd; |
2171 | NewBase = PrevReg; |
2172 | Offset = StoreOffset; |
2173 | return true; |
2174 | } |
2175 | |
2176 | /// Apply changes to the instruction if needed. The changes are need |
2177 | /// to improve the scheduling and depend up on the final schedule. |
2178 | void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, |
2179 | SMSchedule &Schedule) { |
2180 | SUnit *SU = getSUnit(MI); |
2181 | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = |
2182 | InstrChanges.find(SU); |
2183 | if (It != InstrChanges.end()) { |
2184 | std::pair<unsigned, int64_t> RegAndOffset = It->second; |
2185 | unsigned BasePos, OffsetPos; |
2186 | if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) |
2187 | return; |
2188 | Register BaseReg = MI->getOperand(BasePos).getReg(); |
2189 | MachineInstr *LoopDef = findDefInLoop(BaseReg); |
2190 | int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); |
2191 | int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); |
2192 | int BaseStageNum = Schedule.stageScheduled(SU); |
2193 | int BaseCycleNum = Schedule.cycleScheduled(SU); |
2194 | if (BaseStageNum < DefStageNum) { |
2195 | MachineInstr *NewMI = MF.CloneMachineInstr(MI); |
2196 | int OffsetDiff = DefStageNum - BaseStageNum; |
2197 | if (DefCycleNum < BaseCycleNum) { |
2198 | NewMI->getOperand(BasePos).setReg(RegAndOffset.first); |
2199 | if (OffsetDiff > 0) |
2200 | --OffsetDiff; |
2201 | } |
2202 | int64_t NewOffset = |
2203 | MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; |
2204 | NewMI->getOperand(OffsetPos).setImm(NewOffset); |
2205 | SU->setInstr(NewMI); |
2206 | MISUnitMap[NewMI] = SU; |
2207 | NewMIs[MI] = NewMI; |
2208 | } |
2209 | } |
2210 | } |
2211 | |
2212 | /// Return the instruction in the loop that defines the register. |
2213 | /// If the definition is a Phi, then follow the Phi operand to |
2214 | /// the instruction in the loop. |
2215 | MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { |
2216 | SmallPtrSet<MachineInstr *, 8> Visited; |
2217 | MachineInstr *Def = MRI.getVRegDef(Reg); |
2218 | while (Def->isPHI()) { |
2219 | if (!Visited.insert(Def).second) |
2220 | break; |
2221 | for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) |
2222 | if (Def->getOperand(i + 1).getMBB() == BB) { |
2223 | Def = MRI.getVRegDef(Def->getOperand(i).getReg()); |
2224 | break; |
2225 | } |
2226 | } |
2227 | return Def; |
2228 | } |
2229 | |
2230 | /// Return true for an order or output dependence that is loop carried |
2231 | /// potentially. A dependence is loop carried if the destination defines a valu |
2232 | /// that may be used or defined by the source in a subsequent iteration. |
2233 | bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, |
2234 | bool isSucc) { |
2235 | if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || |
2236 | Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) |
2237 | return false; |
2238 | |
2239 | if (!SwpPruneLoopCarried) |
2240 | return true; |
2241 | |
2242 | if (Dep.getKind() == SDep::Output) |
2243 | return true; |
2244 | |
2245 | MachineInstr *SI = Source->getInstr(); |
2246 | MachineInstr *DI = Dep.getSUnit()->getInstr(); |
2247 | if (!isSucc) |
2248 | std::swap(SI, DI); |
2249 | assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.")(static_cast <bool> (SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.") ? void (0) : __assert_fail ("SI != nullptr && DI != nullptr && \"Expecting SUnit with an MI.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 2249, __extension__ __PRETTY_FUNCTION__)); |
2250 | |
2251 | // Assume ordered loads and stores may have a loop carried dependence. |
2252 | if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || |
2253 | SI->mayRaiseFPException() || DI->mayRaiseFPException() || |
2254 | SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) |
2255 | return true; |
2256 | |
2257 | // Only chain dependences between a load and store can be loop carried. |
2258 | if (!DI->mayStore() || !SI->mayLoad()) |
2259 | return false; |
2260 | |
2261 | unsigned DeltaS, DeltaD; |
2262 | if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) |
2263 | return true; |
2264 | |
2265 | const MachineOperand *BaseOpS, *BaseOpD; |
2266 | int64_t OffsetS, OffsetD; |
2267 | bool OffsetSIsScalable, OffsetDIsScalable; |
2268 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
2269 | if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, |
2270 | TRI) || |
2271 | !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, |
2272 | TRI)) |
2273 | return true; |
2274 | |
2275 | assert(!OffsetSIsScalable && !OffsetDIsScalable &&(static_cast <bool> (!OffsetSIsScalable && !OffsetDIsScalable && "Expected offsets to be byte offsets") ? void (0) : __assert_fail ("!OffsetSIsScalable && !OffsetDIsScalable && \"Expected offsets to be byte offsets\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 2276, __extension__ __PRETTY_FUNCTION__)) |
2276 | "Expected offsets to be byte offsets")(static_cast <bool> (!OffsetSIsScalable && !OffsetDIsScalable && "Expected offsets to be byte offsets") ? void (0) : __assert_fail ("!OffsetSIsScalable && !OffsetDIsScalable && \"Expected offsets to be byte offsets\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 2276, __extension__ __PRETTY_FUNCTION__)); |
2277 | |
2278 | MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); |
2279 | MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); |
2280 | if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) |
2281 | return true; |
2282 | |
2283 | unsigned InitValS = 0; |
2284 | unsigned LoopValS = 0; |
2285 | unsigned InitValD = 0; |
2286 | unsigned LoopValD = 0; |
2287 | getPhiRegs(*DefS, BB, InitValS, LoopValS); |
2288 | getPhiRegs(*DefD, BB, InitValD, LoopValD); |
2289 | MachineInstr *InitDefS = MRI.getVRegDef(InitValS); |
2290 | MachineInstr *InitDefD = MRI.getVRegDef(InitValD); |
2291 | |
2292 | if (!InitDefS->isIdenticalTo(*InitDefD)) |
2293 | return true; |
2294 | |
2295 | // Check that the base register is incremented by a constant value for each |
2296 | // iteration. |
2297 | MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); |
2298 | int D = 0; |
2299 | if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) |
2300 | return true; |
2301 | |
2302 | uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); |
2303 | uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); |
2304 | |
2305 | // This is the main test, which checks the offset values and the loop |
2306 | // increment value to determine if the accesses may be loop carried. |
2307 | if (AccessSizeS == MemoryLocation::UnknownSize || |
2308 | AccessSizeD == MemoryLocation::UnknownSize) |
2309 | return true; |
2310 | |
2311 | if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) |
2312 | return true; |
2313 | |
2314 | return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); |
2315 | } |
2316 | |
2317 | void SwingSchedulerDAG::postprocessDAG() { |
2318 | for (auto &M : Mutations) |
2319 | M->apply(this); |
2320 | } |
2321 | |
2322 | /// Try to schedule the node at the specified StartCycle and continue |
2323 | /// until the node is schedule or the EndCycle is reached. This function |
2324 | /// returns true if the node is scheduled. This routine may search either |
2325 | /// forward or backward for a place to insert the instruction based upon |
2326 | /// the relative values of StartCycle and EndCycle. |
2327 | bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { |
2328 | bool forward = true; |
2329 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Trying to insert node between " << StartCycle << " and " << EndCycle << " II: " << II << "\n"; }; } } while (false) |
2330 | dbgs() << "Trying to insert node between " << StartCycle << " and "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Trying to insert node between " << StartCycle << " and " << EndCycle << " II: " << II << "\n"; }; } } while (false) |
2331 | << EndCycle << " II: " << II << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Trying to insert node between " << StartCycle << " and " << EndCycle << " II: " << II << "\n"; }; } } while (false) |
2332 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Trying to insert node between " << StartCycle << " and " << EndCycle << " II: " << II << "\n"; }; } } while (false); |
2333 | if (StartCycle > EndCycle) |
2334 | forward = false; |
2335 | |
2336 | // The terminating condition depends on the direction. |
2337 | int termCycle = forward ? EndCycle + 1 : EndCycle - 1; |
2338 | for (int curCycle = StartCycle; curCycle != termCycle; |
2339 | forward ? ++curCycle : --curCycle) { |
2340 | |
2341 | if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || |
2342 | ProcItinResources.canReserveResources(*SU, curCycle)) { |
2343 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\tinsert at cycle " << curCycle << " "; SU->getInstr()->dump(); }; } } while (false) |
2344 | dbgs() << "\tinsert at cycle " << curCycle << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\tinsert at cycle " << curCycle << " "; SU->getInstr()->dump(); }; } } while (false) |
2345 | SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\tinsert at cycle " << curCycle << " "; SU->getInstr()->dump(); }; } } while (false) |
2346 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\tinsert at cycle " << curCycle << " "; SU->getInstr()->dump(); }; } } while (false); |
2347 | |
2348 | if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) |
2349 | ProcItinResources.reserveResources(*SU, curCycle); |
2350 | ScheduledInstrs[curCycle].push_back(SU); |
2351 | InstrToCycle.insert(std::make_pair(SU, curCycle)); |
2352 | if (curCycle > LastCycle) |
2353 | LastCycle = curCycle; |
2354 | if (curCycle < FirstCycle) |
2355 | FirstCycle = curCycle; |
2356 | return true; |
2357 | } |
2358 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\tfailed to insert at cycle " << curCycle << " "; SU->getInstr()->dump() ; }; } } while (false) |
2359 | dbgs() << "\tfailed to insert at cycle " << curCycle << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\tfailed to insert at cycle " << curCycle << " "; SU->getInstr()->dump() ; }; } } while (false) |
2360 | SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\tfailed to insert at cycle " << curCycle << " "; SU->getInstr()->dump() ; }; } } while (false) |
2361 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "\tfailed to insert at cycle " << curCycle << " "; SU->getInstr()->dump() ; }; } } while (false); |
2362 | } |
2363 | return false; |
2364 | } |
2365 | |
2366 | // Return the cycle of the earliest scheduled instruction in the chain. |
2367 | int SMSchedule::earliestCycleInChain(const SDep &Dep) { |
2368 | SmallPtrSet<SUnit *, 8> Visited; |
2369 | SmallVector<SDep, 8> Worklist; |
2370 | Worklist.push_back(Dep); |
2371 | int EarlyCycle = INT_MAX2147483647; |
2372 | while (!Worklist.empty()) { |
2373 | const SDep &Cur = Worklist.pop_back_val(); |
2374 | SUnit *PrevSU = Cur.getSUnit(); |
2375 | if (Visited.count(PrevSU)) |
2376 | continue; |
2377 | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); |
2378 | if (it == InstrToCycle.end()) |
2379 | continue; |
2380 | EarlyCycle = std::min(EarlyCycle, it->second); |
2381 | for (const auto &PI : PrevSU->Preds) |
2382 | if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) |
2383 | Worklist.push_back(PI); |
2384 | Visited.insert(PrevSU); |
2385 | } |
2386 | return EarlyCycle; |
2387 | } |
2388 | |
2389 | // Return the cycle of the latest scheduled instruction in the chain. |
2390 | int SMSchedule::latestCycleInChain(const SDep &Dep) { |
2391 | SmallPtrSet<SUnit *, 8> Visited; |
2392 | SmallVector<SDep, 8> Worklist; |
2393 | Worklist.push_back(Dep); |
2394 | int LateCycle = INT_MIN(-2147483647 -1); |
2395 | while (!Worklist.empty()) { |
2396 | const SDep &Cur = Worklist.pop_back_val(); |
2397 | SUnit *SuccSU = Cur.getSUnit(); |
2398 | if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) |
2399 | continue; |
2400 | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); |
2401 | if (it == InstrToCycle.end()) |
2402 | continue; |
2403 | LateCycle = std::max(LateCycle, it->second); |
2404 | for (const auto &SI : SuccSU->Succs) |
2405 | if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) |
2406 | Worklist.push_back(SI); |
2407 | Visited.insert(SuccSU); |
2408 | } |
2409 | return LateCycle; |
2410 | } |
2411 | |
2412 | /// If an instruction has a use that spans multiple iterations, then |
2413 | /// return true. These instructions are characterized by having a back-ege |
2414 | /// to a Phi, which contains a reference to another Phi. |
2415 | static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { |
2416 | for (auto &P : SU->Preds) |
2417 | if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) |
2418 | for (auto &S : P.getSUnit()->Succs) |
2419 | if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) |
2420 | return P.getSUnit(); |
2421 | return nullptr; |
2422 | } |
2423 | |
2424 | /// Compute the scheduling start slot for the instruction. The start slot |
2425 | /// depends on any predecessor or successor nodes scheduled already. |
2426 | void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, |
2427 | int *MinEnd, int *MaxStart, int II, |
2428 | SwingSchedulerDAG *DAG) { |
2429 | // Iterate over each instruction that has been scheduled already. The start |
2430 | // slot computation depends on whether the previously scheduled instruction |
2431 | // is a predecessor or successor of the specified instruction. |
2432 | for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { |
2433 | |
2434 | // Iterate over each instruction in the current cycle. |
2435 | for (SUnit *I : getInstructions(cycle)) { |
2436 | // Because we're processing a DAG for the dependences, we recognize |
2437 | // the back-edge in recurrences by anti dependences. |
2438 | for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { |
2439 | const SDep &Dep = SU->Preds[i]; |
2440 | if (Dep.getSUnit() == I) { |
2441 | if (!DAG->isBackedge(SU, Dep)) { |
2442 | int EarlyStart = cycle + Dep.getLatency() - |
2443 | DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; |
2444 | *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); |
2445 | if (DAG->isLoopCarriedDep(SU, Dep, false)) { |
2446 | int End = earliestCycleInChain(Dep) + (II - 1); |
2447 | *MinEnd = std::min(*MinEnd, End); |
2448 | } |
2449 | } else { |
2450 | int LateStart = cycle - Dep.getLatency() + |
2451 | DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; |
2452 | *MinLateStart = std::min(*MinLateStart, LateStart); |
2453 | } |
2454 | } |
2455 | // For instruction that requires multiple iterations, make sure that |
2456 | // the dependent instruction is not scheduled past the definition. |
2457 | SUnit *BE = multipleIterations(I, DAG); |
2458 | if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && |
2459 | !SU->isPred(I)) |
2460 | *MinLateStart = std::min(*MinLateStart, cycle); |
2461 | } |
2462 | for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { |
2463 | if (SU->Succs[i].getSUnit() == I) { |
2464 | const SDep &Dep = SU->Succs[i]; |
2465 | if (!DAG->isBackedge(SU, Dep)) { |
2466 | int LateStart = cycle - Dep.getLatency() + |
2467 | DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; |
2468 | *MinLateStart = std::min(*MinLateStart, LateStart); |
2469 | if (DAG->isLoopCarriedDep(SU, Dep)) { |
2470 | int Start = latestCycleInChain(Dep) + 1 - II; |
2471 | *MaxStart = std::max(*MaxStart, Start); |
2472 | } |
2473 | } else { |
2474 | int EarlyStart = cycle + Dep.getLatency() - |
2475 | DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; |
2476 | *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); |
2477 | } |
2478 | } |
2479 | } |
2480 | } |
2481 | } |
2482 | } |
2483 | |
2484 | /// Order the instructions within a cycle so that the definitions occur |
2485 | /// before the uses. Returns true if the instruction is added to the start |
2486 | /// of the list, or false if added to the end. |
2487 | void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, |
2488 | std::deque<SUnit *> &Insts) { |
2489 | MachineInstr *MI = SU->getInstr(); |
2490 | bool OrderBeforeUse = false; |
2491 | bool OrderAfterDef = false; |
2492 | bool OrderBeforeDef = false; |
2493 | unsigned MoveDef = 0; |
2494 | unsigned MoveUse = 0; |
2495 | int StageInst1 = stageScheduled(SU); |
2496 | |
2497 | unsigned Pos = 0; |
2498 | for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; |
2499 | ++I, ++Pos) { |
2500 | for (MachineOperand &MO : MI->operands()) { |
2501 | if (!MO.isReg() || !MO.getReg().isVirtual()) |
2502 | continue; |
2503 | |
2504 | Register Reg = MO.getReg(); |
2505 | unsigned BasePos, OffsetPos; |
2506 | if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) |
2507 | if (MI->getOperand(BasePos).getReg() == Reg) |
2508 | if (unsigned NewReg = SSD->getInstrBaseReg(SU)) |
2509 | Reg = NewReg; |
2510 | bool Reads, Writes; |
2511 | std::tie(Reads, Writes) = |
2512 | (*I)->getInstr()->readsWritesVirtualRegister(Reg); |
2513 | if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { |
2514 | OrderBeforeUse = true; |
2515 | if (MoveUse == 0) |
2516 | MoveUse = Pos; |
2517 | } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { |
2518 | // Add the instruction after the scheduled instruction. |
2519 | OrderAfterDef = true; |
2520 | MoveDef = Pos; |
2521 | } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { |
2522 | if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { |
2523 | OrderBeforeUse = true; |
2524 | if (MoveUse == 0) |
2525 | MoveUse = Pos; |
2526 | } else { |
2527 | OrderAfterDef = true; |
2528 | MoveDef = Pos; |
2529 | } |
2530 | } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { |
2531 | OrderBeforeUse = true; |
2532 | if (MoveUse == 0) |
2533 | MoveUse = Pos; |
2534 | if (MoveUse != 0) { |
2535 | OrderAfterDef = true; |
2536 | MoveDef = Pos - 1; |
2537 | } |
2538 | } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { |
2539 | // Add the instruction before the scheduled instruction. |
2540 | OrderBeforeUse = true; |
2541 | if (MoveUse == 0) |
2542 | MoveUse = Pos; |
2543 | } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && |
2544 | isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { |
2545 | if (MoveUse == 0) { |
2546 | OrderBeforeDef = true; |
2547 | MoveUse = Pos; |
2548 | } |
2549 | } |
2550 | } |
2551 | // Check for order dependences between instructions. Make sure the source |
2552 | // is ordered before the destination. |
2553 | for (auto &S : SU->Succs) { |
2554 | if (S.getSUnit() != *I) |
2555 | continue; |
2556 | if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { |
2557 | OrderBeforeUse = true; |
2558 | if (Pos < MoveUse) |
2559 | MoveUse = Pos; |
2560 | } |
2561 | // We did not handle HW dependences in previous for loop, |
2562 | // and we normally set Latency = 0 for Anti deps, |
2563 | // so may have nodes in same cycle with Anti denpendent on HW regs. |
2564 | else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { |
2565 | OrderBeforeUse = true; |
2566 | if ((MoveUse == 0) || (Pos < MoveUse)) |
2567 | MoveUse = Pos; |
2568 | } |
2569 | } |
2570 | for (auto &P : SU->Preds) { |
2571 | if (P.getSUnit() != *I) |
2572 | continue; |
2573 | if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { |
2574 | OrderAfterDef = true; |
2575 | MoveDef = Pos; |
2576 | } |
2577 | } |
2578 | } |
2579 | |
2580 | // A circular dependence. |
2581 | if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) |
2582 | OrderBeforeUse = false; |
2583 | |
2584 | // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due |
2585 | // to a loop-carried dependence. |
2586 | if (OrderBeforeDef) |
2587 | OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); |
2588 | |
2589 | // The uncommon case when the instruction order needs to be updated because |
2590 | // there is both a use and def. |
2591 | if (OrderBeforeUse && OrderAfterDef) { |
2592 | SUnit *UseSU = Insts.at(MoveUse); |
2593 | SUnit *DefSU = Insts.at(MoveDef); |
2594 | if (MoveUse > MoveDef) { |
2595 | Insts.erase(Insts.begin() + MoveUse); |
2596 | Insts.erase(Insts.begin() + MoveDef); |
2597 | } else { |
2598 | Insts.erase(Insts.begin() + MoveDef); |
2599 | Insts.erase(Insts.begin() + MoveUse); |
2600 | } |
2601 | orderDependence(SSD, UseSU, Insts); |
2602 | orderDependence(SSD, SU, Insts); |
2603 | orderDependence(SSD, DefSU, Insts); |
2604 | return; |
2605 | } |
2606 | // Put the new instruction first if there is a use in the list. Otherwise, |
2607 | // put it at the end of the list. |
2608 | if (OrderBeforeUse) |
2609 | Insts.push_front(SU); |
2610 | else |
2611 | Insts.push_back(SU); |
2612 | } |
2613 | |
2614 | /// Return true if the scheduled Phi has a loop carried operand. |
2615 | bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { |
2616 | if (!Phi.isPHI()) |
2617 | return false; |
2618 | assert(Phi.isPHI() && "Expecting a Phi.")(static_cast <bool> (Phi.isPHI() && "Expecting a Phi." ) ? void (0) : __assert_fail ("Phi.isPHI() && \"Expecting a Phi.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 2618, __extension__ __PRETTY_FUNCTION__)); |
2619 | SUnit *DefSU = SSD->getSUnit(&Phi); |
2620 | unsigned DefCycle = cycleScheduled(DefSU); |
2621 | int DefStage = stageScheduled(DefSU); |
2622 | |
2623 | unsigned InitVal = 0; |
2624 | unsigned LoopVal = 0; |
2625 | getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); |
2626 | SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); |
2627 | if (!UseSU) |
2628 | return true; |
2629 | if (UseSU->getInstr()->isPHI()) |
2630 | return true; |
2631 | unsigned LoopCycle = cycleScheduled(UseSU); |
2632 | int LoopStage = stageScheduled(UseSU); |
2633 | return (LoopCycle > DefCycle) || (LoopStage <= DefStage); |
2634 | } |
2635 | |
2636 | /// Return true if the instruction is a definition that is loop carried |
2637 | /// and defines the use on the next iteration. |
2638 | /// v1 = phi(v2, v3) |
2639 | /// (Def) v3 = op v1 |
2640 | /// (MO) = v1 |
2641 | /// If MO appears before Def, then then v1 and v3 may get assigned to the same |
2642 | /// register. |
2643 | bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, |
2644 | MachineInstr *Def, MachineOperand &MO) { |
2645 | if (!MO.isReg()) |
2646 | return false; |
2647 | if (Def->isPHI()) |
2648 | return false; |
2649 | MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); |
2650 | if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) |
2651 | return false; |
2652 | if (!isLoopCarried(SSD, *Phi)) |
2653 | return false; |
2654 | unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); |
2655 | for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { |
2656 | MachineOperand &DMO = Def->getOperand(i); |
2657 | if (!DMO.isReg() || !DMO.isDef()) |
2658 | continue; |
2659 | if (DMO.getReg() == LoopReg) |
2660 | return true; |
2661 | } |
2662 | return false; |
2663 | } |
2664 | |
2665 | /// Determine transitive dependences of unpipelineable instructions |
2666 | SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( |
2667 | SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { |
2668 | SmallSet<SUnit *, 8> DoNotPipeline; |
2669 | SmallVector<SUnit *, 8> Worklist; |
2670 | |
2671 | for (auto &SU : SSD->SUnits) |
2672 | if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) |
2673 | Worklist.push_back(&SU); |
2674 | |
2675 | while (!Worklist.empty()) { |
2676 | auto SU = Worklist.pop_back_val(); |
2677 | if (DoNotPipeline.count(SU)) |
2678 | continue; |
2679 | LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"; } } while (false); |
2680 | DoNotPipeline.insert(SU); |
2681 | for (auto &Dep : SU->Preds) |
2682 | Worklist.push_back(Dep.getSUnit()); |
2683 | if (SU->getInstr()->isPHI()) |
2684 | for (auto &Dep : SU->Succs) |
2685 | if (Dep.getKind() == SDep::Anti) |
2686 | Worklist.push_back(Dep.getSUnit()); |
2687 | } |
2688 | return DoNotPipeline; |
2689 | } |
2690 | |
2691 | // Determine all instructions upon which any unpipelineable instruction depends |
2692 | // and ensure that they are in stage 0. If unable to do so, return false. |
2693 | bool SMSchedule::normalizeNonPipelinedInstructions( |
2694 | SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { |
2695 | SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); |
2696 | |
2697 | int NewLastCycle = INT_MIN(-2147483647 -1); |
2698 | for (SUnit &SU : SSD->SUnits) { |
2699 | if (!SU.isInstr()) |
2700 | continue; |
2701 | if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { |
2702 | NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); |
2703 | continue; |
2704 | } |
2705 | |
2706 | // Put the non-pipelined instruction as early as possible in the schedule |
2707 | int NewCycle = getFirstCycle(); |
2708 | for (auto &Dep : SU.Preds) |
2709 | NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); |
2710 | |
2711 | int OldCycle = InstrToCycle[&SU]; |
2712 | if (OldCycle != NewCycle) { |
2713 | InstrToCycle[&SU] = NewCycle; |
2714 | auto &OldS = getInstructions(OldCycle); |
2715 | llvm::erase_value(OldS, &SU); |
2716 | getInstructions(NewCycle).emplace_back(&SU); |
2717 | LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "SU(" << SU.NodeNum << ") is not pipelined; moving from cycle " << OldCycle << " to " << NewCycle << " Instr:" << *SU.getInstr (); } } while (false) |
2718 | << ") is not pipelined; moving from cycle " << OldCycledo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "SU(" << SU.NodeNum << ") is not pipelined; moving from cycle " << OldCycle << " to " << NewCycle << " Instr:" << *SU.getInstr (); } } while (false) |
2719 | << " to " << NewCycle << " Instr:" << *SU.getInstr())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "SU(" << SU.NodeNum << ") is not pipelined; moving from cycle " << OldCycle << " to " << NewCycle << " Instr:" << *SU.getInstr (); } } while (false); |
2720 | } |
2721 | NewLastCycle = std::max(NewLastCycle, NewCycle); |
2722 | } |
2723 | LastCycle = NewLastCycle; |
2724 | return true; |
2725 | } |
2726 | |
2727 | // Check if the generated schedule is valid. This function checks if |
2728 | // an instruction that uses a physical register is scheduled in a |
2729 | // different stage than the definition. The pipeliner does not handle |
2730 | // physical register values that may cross a basic block boundary. |
2731 | // Furthermore, if a physical def/use pair is assigned to the same |
2732 | // cycle, orderDependence does not guarantee def/use ordering, so that |
2733 | // case should be considered invalid. (The test checks for both |
2734 | // earlier and same-cycle use to be more robust.) |
2735 | bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { |
2736 | for (SUnit &SU : SSD->SUnits) { |
2737 | if (!SU.hasPhysRegDefs) |
2738 | continue; |
2739 | int StageDef = stageScheduled(&SU); |
2740 | int CycleDef = InstrToCycle[&SU]; |
2741 | assert(StageDef != -1 && "Instruction should have been scheduled.")(static_cast <bool> (StageDef != -1 && "Instruction should have been scheduled." ) ? void (0) : __assert_fail ("StageDef != -1 && \"Instruction should have been scheduled.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 2741, __extension__ __PRETTY_FUNCTION__)); |
2742 | for (auto &SI : SU.Succs) |
2743 | if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) |
2744 | if (Register::isPhysicalRegister(SI.getReg())) { |
2745 | if (stageScheduled(SI.getSUnit()) != StageDef) |
2746 | return false; |
2747 | if (InstrToCycle[SI.getSUnit()] <= CycleDef) |
2748 | return false; |
2749 | } |
2750 | } |
2751 | return true; |
2752 | } |
2753 | |
2754 | /// A property of the node order in swing-modulo-scheduling is |
2755 | /// that for nodes outside circuits the following holds: |
2756 | /// none of them is scheduled after both a successor and a |
2757 | /// predecessor. |
2758 | /// The method below checks whether the property is met. |
2759 | /// If not, debug information is printed and statistics information updated. |
2760 | /// Note that we do not use an assert statement. |
2761 | /// The reason is that although an invalid node oder may prevent |
2762 | /// the pipeliner from finding a pipelined schedule for arbitrary II, |
2763 | /// it does not lead to the generation of incorrect code. |
2764 | void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { |
2765 | |
2766 | // a sorted vector that maps each SUnit to its index in the NodeOrder |
2767 | typedef std::pair<SUnit *, unsigned> UnitIndex; |
2768 | std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); |
2769 | |
2770 | for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) |
2771 | Indices.push_back(std::make_pair(NodeOrder[i], i)); |
2772 | |
2773 | auto CompareKey = [](UnitIndex i1, UnitIndex i2) { |
2774 | return std::get<0>(i1) < std::get<0>(i2); |
2775 | }; |
2776 | |
2777 | // sort, so that we can perform a binary search |
2778 | llvm::sort(Indices, CompareKey); |
2779 | |
2780 | bool Valid = true; |
2781 | (void)Valid; |
2782 | // for each SUnit in the NodeOrder, check whether |
2783 | // it appears after both a successor and a predecessor |
2784 | // of the SUnit. If this is the case, and the SUnit |
2785 | // is not part of circuit, then the NodeOrder is not |
2786 | // valid. |
2787 | for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { |
2788 | SUnit *SU = NodeOrder[i]; |
2789 | unsigned Index = i; |
2790 | |
2791 | bool PredBefore = false; |
2792 | bool SuccBefore = false; |
2793 | |
2794 | SUnit *Succ; |
2795 | SUnit *Pred; |
2796 | (void)Succ; |
2797 | (void)Pred; |
2798 | |
2799 | for (SDep &PredEdge : SU->Preds) { |
2800 | SUnit *PredSU = PredEdge.getSUnit(); |
2801 | unsigned PredIndex = std::get<1>( |
2802 | *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); |
2803 | if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { |
2804 | PredBefore = true; |
2805 | Pred = PredSU; |
2806 | break; |
2807 | } |
2808 | } |
2809 | |
2810 | for (SDep &SuccEdge : SU->Succs) { |
2811 | SUnit *SuccSU = SuccEdge.getSUnit(); |
2812 | // Do not process a boundary node, it was not included in NodeOrder, |
2813 | // hence not in Indices either, call to std::lower_bound() below will |
2814 | // return Indices.end(). |
2815 | if (SuccSU->isBoundaryNode()) |
2816 | continue; |
2817 | unsigned SuccIndex = std::get<1>( |
2818 | *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); |
2819 | if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { |
2820 | SuccBefore = true; |
2821 | Succ = SuccSU; |
2822 | break; |
2823 | } |
2824 | } |
2825 | |
2826 | if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { |
2827 | // instructions in circuits are allowed to be scheduled |
2828 | // after both a successor and predecessor. |
2829 | bool InCircuit = llvm::any_of( |
2830 | Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); |
2831 | if (InCircuit) |
2832 | LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "In a circuit, predecessor " ;; } } while (false); |
2833 | else { |
2834 | Valid = false; |
2835 | NumNodeOrderIssues++; |
2836 | LLVM_DEBUG(dbgs() << "Predecessor ";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Predecessor ";; } } while ( false); |
2837 | } |
2838 | LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum << " are scheduled before node " << SU->NodeNum << "\n";; } } while (false) |
2839 | << " are scheduled before node " << SU->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum << " are scheduled before node " << SU->NodeNum << "\n";; } } while (false) |
2840 | << "\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum << " are scheduled before node " << SU->NodeNum << "\n";; } } while (false); |
2841 | } |
2842 | } |
2843 | |
2844 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n" ; }; } } while (false) |
2845 | if (!Valid)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n" ; }; } } while (false) |
2846 | dbgs() << "Invalid node order found!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n" ; }; } } while (false) |
2847 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n" ; }; } } while (false); |
2848 | } |
2849 | |
2850 | /// Attempt to fix the degenerate cases when the instruction serialization |
2851 | /// causes the register lifetimes to overlap. For example, |
2852 | /// p' = store_pi(p, b) |
2853 | /// = load p, offset |
2854 | /// In this case p and p' overlap, which means that two registers are needed. |
2855 | /// Instead, this function changes the load to use p' and updates the offset. |
2856 | void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { |
2857 | unsigned OverlapReg = 0; |
2858 | unsigned NewBaseReg = 0; |
2859 | for (SUnit *SU : Instrs) { |
2860 | MachineInstr *MI = SU->getInstr(); |
2861 | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { |
2862 | const MachineOperand &MO = MI->getOperand(i); |
2863 | // Look for an instruction that uses p. The instruction occurs in the |
2864 | // same cycle but occurs later in the serialized order. |
2865 | if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { |
2866 | // Check that the instruction appears in the InstrChanges structure, |
2867 | // which contains instructions that can have the offset updated. |
2868 | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = |
2869 | InstrChanges.find(SU); |
2870 | if (It != InstrChanges.end()) { |
2871 | unsigned BasePos, OffsetPos; |
2872 | // Update the base register and adjust the offset. |
2873 | if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { |
2874 | MachineInstr *NewMI = MF.CloneMachineInstr(MI); |
2875 | NewMI->getOperand(BasePos).setReg(NewBaseReg); |
2876 | int64_t NewOffset = |
2877 | MI->getOperand(OffsetPos).getImm() - It->second.second; |
2878 | NewMI->getOperand(OffsetPos).setImm(NewOffset); |
2879 | SU->setInstr(NewMI); |
2880 | MISUnitMap[NewMI] = SU; |
2881 | NewMIs[MI] = NewMI; |
2882 | } |
2883 | } |
2884 | OverlapReg = 0; |
2885 | NewBaseReg = 0; |
2886 | break; |
2887 | } |
2888 | // Look for an instruction of the form p' = op(p), which uses and defines |
2889 | // two virtual registers that get allocated to the same physical register. |
2890 | unsigned TiedUseIdx = 0; |
2891 | if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { |
2892 | // OverlapReg is p in the example above. |
2893 | OverlapReg = MI->getOperand(TiedUseIdx).getReg(); |
2894 | // NewBaseReg is p' in the example above. |
2895 | NewBaseReg = MI->getOperand(i).getReg(); |
2896 | break; |
2897 | } |
2898 | } |
2899 | } |
2900 | } |
2901 | |
2902 | /// After the schedule has been formed, call this function to combine |
2903 | /// the instructions from the different stages/cycles. That is, this |
2904 | /// function creates a schedule that represents a single iteration. |
2905 | void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { |
2906 | // Move all instructions to the first stage from later stages. |
2907 | for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { |
2908 | for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; |
2909 | ++stage) { |
2910 | std::deque<SUnit *> &cycleInstrs = |
2911 | ScheduledInstrs[cycle + (stage * InitiationInterval)]; |
2912 | for (SUnit *SU : llvm::reverse(cycleInstrs)) |
2913 | ScheduledInstrs[cycle].push_front(SU); |
2914 | } |
2915 | } |
2916 | |
2917 | // Erase all the elements in the later stages. Only one iteration should |
2918 | // remain in the scheduled list, and it contains all the instructions. |
2919 | for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) |
2920 | ScheduledInstrs.erase(cycle); |
2921 | |
2922 | // Change the registers in instruction as specified in the InstrChanges |
2923 | // map. We need to use the new registers to create the correct order. |
2924 | for (const SUnit &SU : SSD->SUnits) |
2925 | SSD->applyInstrChange(SU.getInstr(), *this); |
2926 | |
2927 | // Reorder the instructions in each cycle to fix and improve the |
2928 | // generated code. |
2929 | for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { |
2930 | std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; |
2931 | std::deque<SUnit *> newOrderPhi; |
2932 | for (SUnit *SU : cycleInstrs) { |
2933 | if (SU->getInstr()->isPHI()) |
2934 | newOrderPhi.push_back(SU); |
2935 | } |
2936 | std::deque<SUnit *> newOrderI; |
2937 | for (SUnit *SU : cycleInstrs) { |
2938 | if (!SU->getInstr()->isPHI()) |
2939 | orderDependence(SSD, SU, newOrderI); |
2940 | } |
2941 | // Replace the old order with the new order. |
2942 | cycleInstrs.swap(newOrderPhi); |
2943 | llvm::append_range(cycleInstrs, newOrderI); |
2944 | SSD->fixupRegisterOverlaps(cycleInstrs); |
2945 | } |
2946 | |
2947 | LLVM_DEBUG(dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dump();; } } while (false); |
2948 | } |
2949 | |
2950 | void NodeSet::print(raw_ostream &os) const { |
2951 | os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV |
2952 | << " depth " << MaxDepth << " col " << Colocate << "\n"; |
2953 | for (const auto &I : Nodes) |
2954 | os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); |
2955 | os << "\n"; |
2956 | } |
2957 | |
2958 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
2959 | /// Print the schedule information to the given output. |
2960 | void SMSchedule::print(raw_ostream &os) const { |
2961 | // Iterate over each cycle. |
2962 | for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { |
2963 | // Iterate over each instruction in the cycle. |
2964 | const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); |
2965 | for (SUnit *CI : cycleInstrs->second) { |
2966 | os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; |
2967 | os << "(" << CI->NodeNum << ") "; |
2968 | CI->getInstr()->print(os); |
2969 | os << "\n"; |
2970 | } |
2971 | } |
2972 | } |
2973 | |
2974 | /// Utility function used for debugging to print the schedule. |
2975 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void SMSchedule::dump() const { print(dbgs()); } |
2976 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void NodeSet::dump() const { print(dbgs()); } |
2977 | |
2978 | void ResourceManager::dumpMRT() const { |
2979 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2980 | if (UseDFA)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2981 | return;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2982 | std::stringstream SS;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2983 | SS << "MRT:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2984 | SS << std::setw(4) << "Slot";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2985 | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2986 | SS << std::setw(3) << I;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2987 | SS << std::setw(7) << "#Mops"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2988 | << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2989 | for (int Slot = 0; Slot < InitiationInterval; ++Slot) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2990 | SS << std::setw(4) << Slot;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2991 | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2992 | SS << std::setw(3) << MRT[Slot][I];do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2993 | SS << std::setw(7) << NumScheduledMops[Slot] << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2994 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2995 | dbgs() << SS.str();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false) |
2996 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std ::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I ]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }; } } while (false); |
2997 | } |
2998 | #endif |
2999 | |
3000 | void ResourceManager::initProcResourceVectors( |
3001 | const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { |
3002 | unsigned ProcResourceID = 0; |
3003 | |
3004 | // We currently limit the resource kinds to 64 and below so that we can use |
3005 | // uint64_t for Masks |
3006 | assert(SM.getNumProcResourceKinds() < 64 &&(static_cast <bool> (SM.getNumProcResourceKinds() < 64 && "Too many kinds of resources, unsupported") ? void (0) : __assert_fail ("SM.getNumProcResourceKinds() < 64 && \"Too many kinds of resources, unsupported\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 3007, __extension__ __PRETTY_FUNCTION__)) |
3007 | "Too many kinds of resources, unsupported")(static_cast <bool> (SM.getNumProcResourceKinds() < 64 && "Too many kinds of resources, unsupported") ? void (0) : __assert_fail ("SM.getNumProcResourceKinds() < 64 && \"Too many kinds of resources, unsupported\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 3007, __extension__ __PRETTY_FUNCTION__)); |
3008 | // Create a unique bitmask for every processor resource unit. |
3009 | // Skip resource at index 0, since it always references 'InvalidUnit'. |
3010 | Masks.resize(SM.getNumProcResourceKinds()); |
3011 | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { |
3012 | const MCProcResourceDesc &Desc = *SM.getProcResource(I); |
3013 | if (Desc.SubUnitsIdxBegin) |
3014 | continue; |
3015 | Masks[I] = 1ULL << ProcResourceID; |
3016 | ProcResourceID++; |
3017 | } |
3018 | // Create a unique bitmask for every processor resource group. |
3019 | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { |
3020 | const MCProcResourceDesc &Desc = *SM.getProcResource(I); |
3021 | if (!Desc.SubUnitsIdxBegin) |
3022 | continue; |
3023 | Masks[I] = 1ULL << ProcResourceID; |
3024 | for (unsigned U = 0; U < Desc.NumUnits; ++U) |
3025 | Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; |
3026 | ProcResourceID++; |
3027 | } |
3028 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3029 | if (SwpShowResMask) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3030 | dbgs() << "ProcResourceDesc:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3031 | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3032 | const MCProcResourceDesc *ProcResource = SM.getProcResource(I);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3033 | dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3034 | ProcResource->Name, I, Masks[I],do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3035 | ProcResource->NumUnits);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3036 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3037 | dbgs() << " -----------------\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3038 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false) |
3039 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n" ; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource (I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n" , ProcResource->Name, I, Masks[I], ProcResource->NumUnits ); } dbgs() << " -----------------\n"; } }; } } while ( false); |
3040 | } |
3041 | |
3042 | bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { |
3043 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "canReserveResources:\n" ; }; } } while (false) |
3044 | if (SwpDebugResource)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "canReserveResources:\n" ; }; } } while (false) |
3045 | dbgs() << "canReserveResources:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "canReserveResources:\n" ; }; } } while (false) |
3046 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "canReserveResources:\n" ; }; } } while (false); |
3047 | if (UseDFA) |
3048 | return DFAResources[positiveModulo(Cycle, InitiationInterval)] |
3049 | ->canReserveResources(&SU.getInstr()->getDesc()); |
3050 | |
3051 | const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); |
3052 | if (!SCDesc->isValid()) { |
3053 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n" ; dbgs() << "isPseudo:" << SU.getInstr()->isPseudo () << "\n"; }; } } while (false) |
3054 | dbgs() << "No valid Schedule Class Desc for schedClass!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n" ; dbgs() << "isPseudo:" << SU.getInstr()->isPseudo () << "\n"; }; } } while (false) |
3055 | dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n" ; dbgs() << "isPseudo:" << SU.getInstr()->isPseudo () << "\n"; }; } } while (false) |
3056 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n" ; dbgs() << "isPseudo:" << SU.getInstr()->isPseudo () << "\n"; }; } } while (false); |
3057 | return true; |
3058 | } |
3059 | |
3060 | reserveResources(SCDesc, Cycle); |
3061 | bool Result = !isOverbooked(); |
3062 | unreserveResources(SCDesc, Cycle); |
3063 | |
3064 | LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";; } } while (false); |
3065 | return Result; |
3066 | } |
3067 | |
3068 | void ResourceManager::reserveResources(SUnit &SU, int Cycle) { |
3069 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources:\n" ; }; } } while (false) |
3070 | if (SwpDebugResource)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources:\n" ; }; } } while (false) |
3071 | dbgs() << "reserveResources:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources:\n" ; }; } } while (false) |
3072 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources:\n" ; }; } } while (false); |
3073 | if (UseDFA) |
3074 | return DFAResources[positiveModulo(Cycle, InitiationInterval)] |
3075 | ->reserveResources(&SU.getInstr()->getDesc()); |
3076 | |
3077 | const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); |
3078 | if (!SCDesc->isValid()) { |
3079 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n" ; dbgs() << "isPseudo:" << SU.getInstr()->isPseudo () << "\n"; }; } } while (false) |
3080 | dbgs() << "No valid Schedule Class Desc for schedClass!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n" ; dbgs() << "isPseudo:" << SU.getInstr()->isPseudo () << "\n"; }; } } while (false) |
3081 | dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n" ; dbgs() << "isPseudo:" << SU.getInstr()->isPseudo () << "\n"; }; } } while (false) |
3082 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n" ; dbgs() << "isPseudo:" << SU.getInstr()->isPseudo () << "\n"; }; } } while (false); |
3083 | return; |
3084 | } |
3085 | |
3086 | reserveResources(SCDesc, Cycle); |
3087 | |
3088 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { dumpMRT(); dbgs() << "reserveResources: done!\n\n"; } }; } } while (false) |
3089 | if (SwpDebugResource) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { dumpMRT(); dbgs() << "reserveResources: done!\n\n"; } }; } } while (false) |
3090 | dumpMRT();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { dumpMRT(); dbgs() << "reserveResources: done!\n\n"; } }; } } while (false) |
3091 | dbgs() << "reserveResources: done!\n\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { dumpMRT(); dbgs() << "reserveResources: done!\n\n"; } }; } } while (false) |
3092 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { dumpMRT(); dbgs() << "reserveResources: done!\n\n"; } }; } } while (false) |
3093 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { dumpMRT(); dbgs() << "reserveResources: done!\n\n"; } }; } } while (false); |
3094 | } |
3095 | |
3096 | void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, |
3097 | int Cycle) { |
3098 | assert(!UseDFA)(static_cast <bool> (!UseDFA) ? void (0) : __assert_fail ("!UseDFA", "llvm/lib/CodeGen/MachinePipeliner.cpp", 3098, __extension__ __PRETTY_FUNCTION__)); |
3099 | for (const MCWriteProcResEntry &PRE : make_range( |
3100 | STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) |
3101 | for (int C = Cycle; C < Cycle + PRE.Cycles; ++C) |
3102 | ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; |
3103 | |
3104 | for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) |
3105 | ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; |
3106 | } |
3107 | |
3108 | void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, |
3109 | int Cycle) { |
3110 | assert(!UseDFA)(static_cast <bool> (!UseDFA) ? void (0) : __assert_fail ("!UseDFA", "llvm/lib/CodeGen/MachinePipeliner.cpp", 3110, __extension__ __PRETTY_FUNCTION__)); |
3111 | for (const MCWriteProcResEntry &PRE : make_range( |
3112 | STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) |
3113 | for (int C = Cycle; C < Cycle + PRE.Cycles; ++C) |
3114 | --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; |
3115 | |
3116 | for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) |
3117 | --NumScheduledMops[positiveModulo(C, InitiationInterval)]; |
3118 | } |
3119 | |
3120 | bool ResourceManager::isOverbooked() const { |
3121 | assert(!UseDFA)(static_cast <bool> (!UseDFA) ? void (0) : __assert_fail ("!UseDFA", "llvm/lib/CodeGen/MachinePipeliner.cpp", 3121, __extension__ __PRETTY_FUNCTION__)); |
3122 | for (int Slot = 0; Slot < InitiationInterval; ++Slot) { |
3123 | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { |
3124 | const MCProcResourceDesc *Desc = SM.getProcResource(I); |
3125 | if (MRT[Slot][I] > Desc->NumUnits) |
3126 | return true; |
3127 | } |
3128 | if (NumScheduledMops[Slot] > IssueWidth) |
3129 | return true; |
3130 | } |
3131 | return false; |
3132 | } |
3133 | |
3134 | int ResourceManager::calculateResMIIDFA() const { |
3135 | assert(UseDFA)(static_cast <bool> (UseDFA) ? void (0) : __assert_fail ("UseDFA", "llvm/lib/CodeGen/MachinePipeliner.cpp", 3135, __extension__ __PRETTY_FUNCTION__)); |
3136 | |
3137 | // Sort the instructions by the number of available choices for scheduling, |
3138 | // least to most. Use the number of critical resources as the tie breaker. |
3139 | FuncUnitSorter FUS = FuncUnitSorter(*ST); |
3140 | for (SUnit &SU : DAG->SUnits) |
3141 | FUS.calcCriticalResources(*SU.getInstr()); |
3142 | PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> |
3143 | FuncUnitOrder(FUS); |
3144 | |
3145 | for (SUnit &SU : DAG->SUnits) |
3146 | FuncUnitOrder.push(SU.getInstr()); |
3147 | |
3148 | SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; |
3149 | Resources.push_back( |
3150 | std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); |
3151 | |
3152 | while (!FuncUnitOrder.empty()) { |
3153 | MachineInstr *MI = FuncUnitOrder.top(); |
3154 | FuncUnitOrder.pop(); |
3155 | if (TII->isZeroCost(MI->getOpcode())) |
3156 | continue; |
3157 | |
3158 | // Attempt to reserve the instruction in an existing DFA. At least one |
3159 | // DFA is needed for each cycle. |
3160 | unsigned NumCycles = DAG->getSUnit(MI)->Latency; |
3161 | unsigned ReservedCycles = 0; |
3162 | auto *RI = Resources.begin(); |
3163 | auto *RE = Resources.end(); |
3164 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Trying to reserve resource for " << NumCycles << " cycles for \n"; MI->dump(); }; } } while (false) |
3165 | dbgs() << "Trying to reserve resource for " << NumCyclesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Trying to reserve resource for " << NumCycles << " cycles for \n"; MI->dump(); }; } } while (false) |
3166 | << " cycles for \n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Trying to reserve resource for " << NumCycles << " cycles for \n"; MI->dump(); }; } } while (false) |
3167 | MI->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Trying to reserve resource for " << NumCycles << " cycles for \n"; MI->dump(); }; } } while (false) |
3168 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { dbgs() << "Trying to reserve resource for " << NumCycles << " cycles for \n"; MI->dump(); }; } } while (false); |
3169 | for (unsigned C = 0; C < NumCycles; ++C) |
3170 | while (RI != RE) { |
3171 | if ((*RI)->canReserveResources(*MI)) { |
3172 | (*RI)->reserveResources(*MI); |
3173 | ++ReservedCycles; |
3174 | break; |
3175 | } |
3176 | RI++; |
3177 | } |
3178 | LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCyclesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "ReservedCycles:" << ReservedCycles << ", NumCycles:" << NumCycles << "\n"; } } while (false) |
3179 | << ", NumCycles:" << NumCycles << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "ReservedCycles:" << ReservedCycles << ", NumCycles:" << NumCycles << "\n"; } } while (false); |
3180 | // Add new DFAs, if needed, to reserve resources. |
3181 | for (unsigned C = ReservedCycles; C < NumCycles; ++C) { |
3182 | LLVM_DEBUG(if (SwpDebugResource) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { if (SwpDebugResource) dbgs() << "NewResource created to reserve resources" << "\n"; } } while (false) |
3183 | << "NewResource created to reserve resources"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { if (SwpDebugResource) dbgs() << "NewResource created to reserve resources" << "\n"; } } while (false) |
3184 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { if (SwpDebugResource) dbgs() << "NewResource created to reserve resources" << "\n"; } } while (false); |
3185 | auto *NewResource = TII->CreateTargetScheduleState(*ST); |
3186 | assert(NewResource->canReserveResources(*MI) && "Reserve error.")(static_cast <bool> (NewResource->canReserveResources (*MI) && "Reserve error.") ? void (0) : __assert_fail ("NewResource->canReserveResources(*MI) && \"Reserve error.\"" , "llvm/lib/CodeGen/MachinePipeliner.cpp", 3186, __extension__ __PRETTY_FUNCTION__)); |
3187 | NewResource->reserveResources(*MI); |
3188 | Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); |
3189 | } |
3190 | } |
3191 | |
3192 | int Resmii = Resources.size(); |
3193 | LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { dbgs() << "Return Res MII:" << Resmii << "\n"; } } while (false); |
3194 | return Resmii; |
3195 | } |
3196 | |
3197 | int ResourceManager::calculateResMII() const { |
3198 | if (UseDFA) |
3199 | return calculateResMIIDFA(); |
3200 | |
3201 | // Count each resource consumption and divide it by the number of units. |
3202 | // ResMII is the max value among them. |
3203 | |
3204 | int NumMops = 0; |
3205 | SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); |
3206 | for (SUnit &SU : DAG->SUnits) { |
3207 | if (TII->isZeroCost(SU.getInstr()->getOpcode())) |
3208 | continue; |
3209 | |
3210 | const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); |
3211 | if (!SCDesc->isValid()) |
3212 | continue; |
3213 | |
3214 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { DAG->dumpNode(SU ); dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" << " WriteProcRes: "; } }; } } while (false ) |
3215 | if (SwpDebugResource) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { DAG->dumpNode(SU ); dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" << " WriteProcRes: "; } }; } } while (false ) |
3216 | DAG->dumpNode(SU);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { DAG->dumpNode(SU ); dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" << " WriteProcRes: "; } }; } } while (false ) |
3217 | dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { DAG->dumpNode(SU ); dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" << " WriteProcRes: "; } }; } } while (false ) |
3218 | << " WriteProcRes: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { DAG->dumpNode(SU ); dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" << " WriteProcRes: "; } }; } } while (false ) |
3219 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { DAG->dumpNode(SU ); dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" << " WriteProcRes: "; } }; } } while (false ) |
3220 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { DAG->dumpNode(SU ); dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" << " WriteProcRes: "; } }; } } while (false ); |
3221 | NumMops += SCDesc->NumMicroOps; |
3222 | for (const MCWriteProcResEntry &PRE : |
3223 | make_range(STI->getWriteProcResBegin(SCDesc), |
3224 | STI->getWriteProcResEnd(SCDesc))) { |
3225 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc *Desc = SM.getProcResource(PRE.ProcResourceIdx); dbgs() << Desc->Name << ": " << PRE.Cycles << ", " ; } }; } } while (false) |
3226 | if (SwpDebugResource) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc *Desc = SM.getProcResource(PRE.ProcResourceIdx); dbgs() << Desc->Name << ": " << PRE.Cycles << ", " ; } }; } } while (false) |
3227 | const MCProcResourceDesc *Desc =do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc *Desc = SM.getProcResource(PRE.ProcResourceIdx); dbgs() << Desc->Name << ": " << PRE.Cycles << ", " ; } }; } } while (false) |
3228 | SM.getProcResource(PRE.ProcResourceIdx);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc *Desc = SM.getProcResource(PRE.ProcResourceIdx); dbgs() << Desc->Name << ": " << PRE.Cycles << ", " ; } }; } } while (false) |
3229 | dbgs() << Desc->Name << ": " << PRE.Cycles << ", ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc *Desc = SM.getProcResource(PRE.ProcResourceIdx); dbgs() << Desc->Name << ": " << PRE.Cycles << ", " ; } }; } } while (false) |
3230 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc *Desc = SM.getProcResource(PRE.ProcResourceIdx); dbgs() << Desc->Name << ": " << PRE.Cycles << ", " ; } }; } } while (false) |
3231 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc *Desc = SM.getProcResource(PRE.ProcResourceIdx); dbgs() << Desc->Name << ": " << PRE.Cycles << ", " ; } }; } } while (false); |
3232 | ResourceCount[PRE.ProcResourceIdx] += PRE.Cycles; |
3233 | } |
3234 | LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { if (SwpDebugResource) dbgs() << "\n"; } } while (false); |
3235 | } |
3236 | |
3237 | int Result = (NumMops + IssueWidth - 1) / IssueWidth; |
3238 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "#Mops: " << NumMops << ", " << "IssueWidth: " << IssueWidth << ", " << "Cycles: " << Result << "\n"; }; } } while (false) |
3239 | if (SwpDebugResource)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "#Mops: " << NumMops << ", " << "IssueWidth: " << IssueWidth << ", " << "Cycles: " << Result << "\n"; }; } } while (false) |
3240 | dbgs() << "#Mops: " << NumMops << ", "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "#Mops: " << NumMops << ", " << "IssueWidth: " << IssueWidth << ", " << "Cycles: " << Result << "\n"; }; } } while (false) |
3241 | << "IssueWidth: " << IssueWidth << ", "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "#Mops: " << NumMops << ", " << "IssueWidth: " << IssueWidth << ", " << "Cycles: " << Result << "\n"; }; } } while (false) |
3242 | << "Cycles: " << Result << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "#Mops: " << NumMops << ", " << "IssueWidth: " << IssueWidth << ", " << "Cycles: " << Result << "\n"; }; } } while (false) |
3243 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) dbgs() << "#Mops: " << NumMops << ", " << "IssueWidth: " << IssueWidth << ", " << "Cycles: " << Result << "\n"; }; } } while (false); |
3244 | |
3245 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << "ID" << std::setw(16 ) << "Name" << std::setw(10) << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" << "\n"; dbgs() << SS.str(); } }; } } while (false) |
3246 | if (SwpDebugResource) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << "ID" << std::setw(16 ) << "Name" << std::setw(10) << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" << "\n"; dbgs() << SS.str(); } }; } } while (false) |
3247 | std::stringstream SS;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << "ID" << std::setw(16 ) << "Name" << std::setw(10) << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" << "\n"; dbgs() << SS.str(); } }; } } while (false) |
3248 | SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << "ID" << std::setw(16 ) << "Name" << std::setw(10) << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" << "\n"; dbgs() << SS.str(); } }; } } while (false) |
3249 | << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << "ID" << std::setw(16 ) << "Name" << std::setw(10) << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" << "\n"; dbgs() << SS.str(); } }; } } while (false) |
3250 | << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << "ID" << std::setw(16 ) << "Name" << std::setw(10) << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" << "\n"; dbgs() << SS.str(); } }; } } while (false) |
3251 | dbgs() << SS.str();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << "ID" << std::setw(16 ) << "Name" << std::setw(10) << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" << "\n"; dbgs() << SS.str(); } }; } } while (false) |
3252 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << "ID" << std::setw(16 ) << "Name" << std::setw(10) << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" << "\n"; dbgs() << SS.str(); } }; } } while (false) |
3253 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << "ID" << std::setw(16 ) << "Name" << std::setw(10) << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" << "\n"; dbgs() << SS.str(); } }; } } while (false); |
3254 | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { |
3255 | const MCProcResourceDesc *Desc = SM.getProcResource(I); |
3256 | int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; |
3257 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) << Desc->NumUnits << std::setw(10) << ResourceCount[I] << std ::setw(10) << Cycles << "\n"; dbgs() << SS. str(); } }; } } while (false) |
3258 | if (SwpDebugResource) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) << Desc->NumUnits << std::setw(10) << ResourceCount[I] << std ::setw(10) << Cycles << "\n"; dbgs() << SS. str(); } }; } } while (false) |
3259 | std::stringstream SS;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) << Desc->NumUnits << std::setw(10) << ResourceCount[I] << std ::setw(10) << Cycles << "\n"; dbgs() << SS. str(); } }; } } while (false) |
3260 | SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) << Desc->NumUnits << std::setw(10) << ResourceCount[I] << std ::setw(10) << Cycles << "\n"; dbgs() << SS. str(); } }; } } while (false) |
3261 | << Desc->NumUnits << std::setw(10) << ResourceCount[I]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) << Desc->NumUnits << std::setw(10) << ResourceCount[I] << std ::setw(10) << Cycles << "\n"; dbgs() << SS. str(); } }; } } while (false) |
3262 | << std::setw(10) << Cycles << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) << Desc->NumUnits << std::setw(10) << ResourceCount[I] << std ::setw(10) << Cycles << "\n"; dbgs() << SS. str(); } }; } } while (false) |
3263 | dbgs() << SS.str();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) << Desc->NumUnits << std::setw(10) << ResourceCount[I] << std ::setw(10) << Cycles << "\n"; dbgs() << SS. str(); } }; } } while (false) |
3264 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) << Desc->NumUnits << std::setw(10) << ResourceCount[I] << std ::setw(10) << Cycles << "\n"; dbgs() << SS. str(); } }; } } while (false) |
3265 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("pipeliner")) { { if (SwpDebugResource) { std::stringstream SS ; SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) << Desc->NumUnits << std::setw(10) << ResourceCount[I] << std ::setw(10) << Cycles << "\n"; dbgs() << SS. str(); } }; } } while (false); |
3266 | if (Cycles > Result) |
3267 | Result = Cycles; |
3268 | } |
3269 | return Result; |
3270 | } |
3271 | |
3272 | void ResourceManager::init(int II) { |
3273 | InitiationInterval = II; |
3274 | DFAResources.clear(); |
3275 | DFAResources.resize(II); |
3276 | for (auto &I : DFAResources) |
3277 | I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); |
3278 | MRT.clear(); |
3279 | MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); |
3280 | NumScheduledMops.clear(); |
3281 | NumScheduledMops.resize(II); |
3282 | } |