Bug Summary

File:lib/CodeGen/MachinePipeliner.cpp
Warning:line 2438, column 13
Value stored to 'NewReg' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name MachinePipeliner.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp -faddrsig
1//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10//
11// This SMS implementation is a target-independent back-end pass. When enabled,
12// the pass runs just prior to the register allocation pass, while the machine
13// IR is in SSA form. If software pipelining is successful, then the original
14// loop is replaced by the optimized loop. The optimized loop contains one or
15// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16// the instructions cannot be scheduled in a given MII, we increase the MII by
17// one and try again.
18//
19// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20// represent loop carried dependences in the DAG as order edges to the Phi
21// nodes. We also perform several passes over the DAG to eliminate unnecessary
22// edges that inhibit the ability to pipeline. The implementation uses the
23// DFAPacketizer class to compute the minimum initiation interval and the check
24// where an instruction may be inserted in the pipelined schedule.
25//
26// In order for the SMS pass to work, several target specific hooks need to be
27// implemented to get information about the loop structure and to rewrite
28// instructions.
29//
30//===----------------------------------------------------------------------===//
31
32#include "llvm/ADT/ArrayRef.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/MapVector.h"
36#include "llvm/ADT/PriorityQueue.h"
37#include "llvm/ADT/SetVector.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Analysis/AliasAnalysis.h"
44#include "llvm/Analysis/MemoryLocation.h"
45#include "llvm/Analysis/ValueTracking.h"
46#include "llvm/CodeGen/DFAPacketizer.h"
47#include "llvm/CodeGen/LiveIntervals.h"
48#include "llvm/CodeGen/MachineBasicBlock.h"
49#include "llvm/CodeGen/MachineDominators.h"
50#include "llvm/CodeGen/MachineFunction.h"
51#include "llvm/CodeGen/MachineFunctionPass.h"
52#include "llvm/CodeGen/MachineInstr.h"
53#include "llvm/CodeGen/MachineInstrBuilder.h"
54#include "llvm/CodeGen/MachineLoopInfo.h"
55#include "llvm/CodeGen/MachineMemOperand.h"
56#include "llvm/CodeGen/MachineOperand.h"
57#include "llvm/CodeGen/MachinePipeliner.h"
58#include "llvm/CodeGen/MachineRegisterInfo.h"
59#include "llvm/CodeGen/RegisterPressure.h"
60#include "llvm/CodeGen/ScheduleDAG.h"
61#include "llvm/CodeGen/ScheduleDAGMutation.h"
62#include "llvm/CodeGen/TargetOpcodes.h"
63#include "llvm/CodeGen/TargetRegisterInfo.h"
64#include "llvm/CodeGen/TargetSubtargetInfo.h"
65#include "llvm/Config/llvm-config.h"
66#include "llvm/IR/Attributes.h"
67#include "llvm/IR/DebugLoc.h"
68#include "llvm/IR/Function.h"
69#include "llvm/MC/LaneBitmask.h"
70#include "llvm/MC/MCInstrDesc.h"
71#include "llvm/MC/MCInstrItineraries.h"
72#include "llvm/MC/MCRegisterInfo.h"
73#include "llvm/Pass.h"
74#include "llvm/Support/CommandLine.h"
75#include "llvm/Support/Compiler.h"
76#include "llvm/Support/Debug.h"
77#include "llvm/Support/MathExtras.h"
78#include "llvm/Support/raw_ostream.h"
79#include <algorithm>
80#include <cassert>
81#include <climits>
82#include <cstdint>
83#include <deque>
84#include <functional>
85#include <iterator>
86#include <map>
87#include <memory>
88#include <tuple>
89#include <utility>
90#include <vector>
91
92using namespace llvm;
93
94#define DEBUG_TYPE"pipeliner" "pipeliner"
95
96STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline")static llvm::Statistic NumTrytoPipeline = {"pipeliner", "NumTrytoPipeline"
, "Number of loops that we attempt to pipeline", {0}, {false}
}
;
97STATISTIC(NumPipelined, "Number of loops software pipelined")static llvm::Statistic NumPipelined = {"pipeliner", "NumPipelined"
, "Number of loops software pipelined", {0}, {false}}
;
98STATISTIC(NumNodeOrderIssues, "Number of node order issues found")static llvm::Statistic NumNodeOrderIssues = {"pipeliner", "NumNodeOrderIssues"
, "Number of node order issues found", {0}, {false}}
;
99STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch")static llvm::Statistic NumFailBranch = {"pipeliner", "NumFailBranch"
, "Pipeliner abort due to unknown branch", {0}, {false}}
;
100STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop")static llvm::Statistic NumFailLoop = {"pipeliner", "NumFailLoop"
, "Pipeliner abort due to unsupported loop", {0}, {false}}
;
101STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader")static llvm::Statistic NumFailPreheader = {"pipeliner", "NumFailPreheader"
, "Pipeliner abort due to missing preheader", {0}, {false}}
;
102STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large")static llvm::Statistic NumFailLargeMaxMII = {"pipeliner", "NumFailLargeMaxMII"
, "Pipeliner abort due to MaxMII too large", {0}, {false}}
;
103STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII")static llvm::Statistic NumFailZeroMII = {"pipeliner", "NumFailZeroMII"
, "Pipeliner abort due to zero MII", {0}, {false}}
;
104STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found")static llvm::Statistic NumFailNoSchedule = {"pipeliner", "NumFailNoSchedule"
, "Pipeliner abort due to no schedule found", {0}, {false}}
;
105STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage")static llvm::Statistic NumFailZeroStage = {"pipeliner", "NumFailZeroStage"
, "Pipeliner abort due to zero stage", {0}, {false}}
;
106STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages")static llvm::Statistic NumFailLargeMaxStage = {"pipeliner", "NumFailLargeMaxStage"
, "Pipeliner abort due to too many stages", {0}, {false}}
;
107
108/// A command line option to turn software pipelining on or off.
109static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
110 cl::ZeroOrMore,
111 cl::desc("Enable Software Pipelining"));
112
113/// A command line option to enable SWP at -Os.
114static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
115 cl::desc("Enable SWP at Os."), cl::Hidden,
116 cl::init(false));
117
118/// A command line argument to limit minimum initial interval for pipelining.
119static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
120 cl::desc("Size limit for the MII."),
121 cl::Hidden, cl::init(27));
122
123/// A command line argument to limit the number of stages in the pipeline.
124static cl::opt<int>
125 SwpMaxStages("pipeliner-max-stages",
126 cl::desc("Maximum stages allowed in the generated scheduled."),
127 cl::Hidden, cl::init(3));
128
129/// A command line option to disable the pruning of chain dependences due to
130/// an unrelated Phi.
131static cl::opt<bool>
132 SwpPruneDeps("pipeliner-prune-deps",
133 cl::desc("Prune dependences between unrelated Phi nodes."),
134 cl::Hidden, cl::init(true));
135
136/// A command line option to disable the pruning of loop carried order
137/// dependences.
138static cl::opt<bool>
139 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
140 cl::desc("Prune loop carried order dependences."),
141 cl::Hidden, cl::init(true));
142
143#ifndef NDEBUG
144static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
145#endif
146
147static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
148 cl::ReallyHidden, cl::init(false),
149 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
150
151namespace llvm {
152
153// A command line option to enable the CopyToPhi DAG mutation.
154cl::opt<bool>
155 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
156 cl::init(true), cl::ZeroOrMore,
157 cl::desc("Enable CopyToPhi DAG Mutation"));
158
159} // end namespace llvm
160
161unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
162char MachinePipeliner::ID = 0;
163#ifndef NDEBUG
164int MachinePipeliner::NumTries = 0;
165#endif
166char &llvm::MachinePipelinerID = MachinePipeliner::ID;
167
168INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,static void *initializeMachinePipelinerPassOnce(PassRegistry &
Registry) {
169 "Modulo Software Pipelining", false, false)static void *initializeMachinePipelinerPassOnce(PassRegistry &
Registry) {
170INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
171INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry);
172INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry);
173INITIALIZE_PASS_DEPENDENCY(LiveIntervals)initializeLiveIntervalsPass(Registry);
174INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,PassInfo *PI = new PassInfo( "Modulo Software Pipelining", "pipeliner"
, &MachinePipeliner::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MachinePipeliner>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMachinePipelinerPassFlag
; void llvm::initializeMachinePipelinerPass(PassRegistry &
Registry) { llvm::call_once(InitializeMachinePipelinerPassFlag
, initializeMachinePipelinerPassOnce, std::ref(Registry)); }
175 "Modulo Software Pipelining", false, false)PassInfo *PI = new PassInfo( "Modulo Software Pipelining", "pipeliner"
, &MachinePipeliner::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MachinePipeliner>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMachinePipelinerPassFlag
; void llvm::initializeMachinePipelinerPass(PassRegistry &
Registry) { llvm::call_once(InitializeMachinePipelinerPassFlag
, initializeMachinePipelinerPassOnce, std::ref(Registry)); }
176
177/// The "main" function for implementing Swing Modulo Scheduling.
178bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
179 if (skipFunction(mf.getFunction()))
180 return false;
181
182 if (!EnableSWP)
183 return false;
184
185 if (mf.getFunction().getAttributes().hasAttribute(
186 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
187 !EnableSWPOptSize.getPosition())
188 return false;
189
190 // Cannot pipeline loops without instruction itineraries if we are using
191 // DFA for the pipeliner.
192 if (mf.getSubtarget().useDFAforSMS() &&
193 (!mf.getSubtarget().getInstrItineraryData() ||
194 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
195 return false;
196
197 MF = &mf;
198 MLI = &getAnalysis<MachineLoopInfo>();
199 MDT = &getAnalysis<MachineDominatorTree>();
200 TII = MF->getSubtarget().getInstrInfo();
201 RegClassInfo.runOnMachineFunction(*MF);
202
203 for (auto &L : *MLI)
204 scheduleLoop(*L);
205
206 return false;
207}
208
209/// Attempt to perform the SMS algorithm on the specified loop. This function is
210/// the main entry point for the algorithm. The function identifies candidate
211/// loops, calculates the minimum initiation interval, and attempts to schedule
212/// the loop.
213bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
214 bool Changed = false;
215 for (auto &InnerLoop : L)
216 Changed |= scheduleLoop(*InnerLoop);
217
218#ifndef NDEBUG
219 // Stop trying after reaching the limit (if any).
220 int Limit = SwpLoopLimit;
221 if (Limit >= 0) {
222 if (NumTries >= SwpLoopLimit)
223 return Changed;
224 NumTries++;
225 }
226#endif
227
228 setPragmaPipelineOptions(L);
229 if (!canPipelineLoop(L)) {
230 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\n!!! Can not pipeline loop.\n"
; } } while (false)
;
231 return Changed;
232 }
233
234 ++NumTrytoPipeline;
235
236 Changed = swingModuloScheduler(L);
237
238 return Changed;
239}
240
241void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
242 MachineBasicBlock *LBLK = L.getTopBlock();
243
244 if (LBLK == nullptr)
245 return;
246
247 const BasicBlock *BBLK = LBLK->getBasicBlock();
248 if (BBLK == nullptr)
249 return;
250
251 const Instruction *TI = BBLK->getTerminator();
252 if (TI == nullptr)
253 return;
254
255 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
256 if (LoopID == nullptr)
257 return;
258
259 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand")((LoopID->getNumOperands() > 0 && "requires atleast one operand"
) ? static_cast<void> (0) : __assert_fail ("LoopID->getNumOperands() > 0 && \"requires atleast one operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 259, __PRETTY_FUNCTION__))
;
260 assert(LoopID->getOperand(0) == LoopID && "invalid loop")((LoopID->getOperand(0) == LoopID && "invalid loop"
) ? static_cast<void> (0) : __assert_fail ("LoopID->getOperand(0) == LoopID && \"invalid loop\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 260, __PRETTY_FUNCTION__))
;
261
262 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
263 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
264
265 if (MD == nullptr)
266 continue;
267
268 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
269
270 if (S == nullptr)
271 continue;
272
273 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
274 assert(MD->getNumOperands() == 2 &&((MD->getNumOperands() == 2 && "Pipeline initiation interval hint metadata should have two operands."
) ? static_cast<void> (0) : __assert_fail ("MD->getNumOperands() == 2 && \"Pipeline initiation interval hint metadata should have two operands.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 275, __PRETTY_FUNCTION__))
275 "Pipeline initiation interval hint metadata should have two operands.")((MD->getNumOperands() == 2 && "Pipeline initiation interval hint metadata should have two operands."
) ? static_cast<void> (0) : __assert_fail ("MD->getNumOperands() == 2 && \"Pipeline initiation interval hint metadata should have two operands.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 275, __PRETTY_FUNCTION__))
;
276 II_setByPragma =
277 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
278 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.")((II_setByPragma >= 1 && "Pipeline initiation interval must be positive."
) ? static_cast<void> (0) : __assert_fail ("II_setByPragma >= 1 && \"Pipeline initiation interval must be positive.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 278, __PRETTY_FUNCTION__))
;
279 } else if (S->getString() == "llvm.loop.pipeline.disable") {
280 disabledByPragma = true;
281 }
282 }
283}
284
285/// Return true if the loop can be software pipelined. The algorithm is
286/// restricted to loops with a single basic block. Make sure that the
287/// branch in the loop can be analyzed.
288bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
289 if (L.getNumBlocks() != 1)
290 return false;
291
292 if (disabledByPragma)
293 return false;
294
295 // Check if the branch can't be understood because we can't do pipelining
296 // if that's the case.
297 LI.TBB = nullptr;
298 LI.FBB = nullptr;
299 LI.BrCond.clear();
300 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
301 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"
; } } while (false)
302 dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"
; } } while (false)
;
303 NumFailBranch++;
304 return false;
305 }
306
307 LI.LoopInductionVar = nullptr;
308 LI.LoopCompare = nullptr;
309 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) {
310 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"
; } } while (false)
311 dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"
; } } while (false)
;
312 NumFailLoop++;
313 return false;
314 }
315
316 if (!L.getLoopPreheader()) {
317 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Preheader not found, can NOT pipeline current Loop\n"
; } } while (false)
318 dbgs() << "Preheader not found, can NOT pipeline current Loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Preheader not found, can NOT pipeline current Loop\n"
; } } while (false)
;
319 NumFailPreheader++;
320 return false;
321 }
322
323 // Remove any subregisters from inputs to phi nodes.
324 preprocessPhiNodes(*L.getHeader());
325 return true;
326}
327
328void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
329 MachineRegisterInfo &MRI = MF->getRegInfo();
330 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
331
332 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
333 MachineOperand &DefOp = PI.getOperand(0);
334 assert(DefOp.getSubReg() == 0)((DefOp.getSubReg() == 0) ? static_cast<void> (0) : __assert_fail
("DefOp.getSubReg() == 0", "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 334, __PRETTY_FUNCTION__))
;
335 auto *RC = MRI.getRegClass(DefOp.getReg());
336
337 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
338 MachineOperand &RegOp = PI.getOperand(i);
339 if (RegOp.getSubReg() == 0)
340 continue;
341
342 // If the operand uses a subregister, replace it with a new register
343 // without subregisters, and generate a copy to the new register.
344 unsigned NewReg = MRI.createVirtualRegister(RC);
345 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
346 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
347 const DebugLoc &DL = PredB.findDebugLoc(At);
348 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
349 .addReg(RegOp.getReg(), getRegState(RegOp),
350 RegOp.getSubReg());
351 Slots.insertMachineInstrInMaps(*Copy);
352 RegOp.setReg(NewReg);
353 RegOp.setSubReg(0);
354 }
355 }
356}
357
358/// The SMS algorithm consists of the following main steps:
359/// 1. Computation and analysis of the dependence graph.
360/// 2. Ordering of the nodes (instructions).
361/// 3. Attempt to Schedule the loop.
362bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
363 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.")((L.getBlocks().size() == 1 && "SMS works on single blocks only."
) ? static_cast<void> (0) : __assert_fail ("L.getBlocks().size() == 1 && \"SMS works on single blocks only.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 363, __PRETTY_FUNCTION__))
;
364
365 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
366 II_setByPragma);
367
368 MachineBasicBlock *MBB = L.getHeader();
369 // The kernel should not include any terminator instructions. These
370 // will be added back later.
371 SMS.startBlock(MBB);
372
373 // Compute the number of 'real' instructions in the basic block by
374 // ignoring terminators.
375 unsigned size = MBB->size();
376 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
377 E = MBB->instr_end();
378 I != E; ++I, --size)
379 ;
380
381 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
382 SMS.schedule();
383 SMS.exitRegion();
384
385 SMS.finishBlock();
386 return SMS.hasNewSchedule();
387}
388
389void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
390 if (II_setByPragma > 0)
391 MII = II_setByPragma;
392 else
393 MII = std::max(ResMII, RecMII);
394}
395
396void SwingSchedulerDAG::setMAX_II() {
397 if (II_setByPragma > 0)
398 MAX_II = II_setByPragma;
399 else
400 MAX_II = MII + 10;
401}
402
403/// We override the schedule function in ScheduleDAGInstrs to implement the
404/// scheduling part of the Swing Modulo Scheduling algorithm.
405void SwingSchedulerDAG::schedule() {
406 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
407 buildSchedGraph(AA);
408 addLoopCarriedDependences(AA);
409 updatePhiDependences();
410 Topo.InitDAGTopologicalSorting();
411 changeDependences();
412 postprocessDAG();
413 LLVM_DEBUG(dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dump(); } } while (false)
;
414
415 NodeSetType NodeSets;
416 findCircuits(NodeSets);
417 NodeSetType Circuits = NodeSets;
418
419 // Calculate the MII.
420 unsigned ResMII = calculateResMII();
421 unsigned RecMII = calculateRecMII(NodeSets);
422
423 fuseRecs(NodeSets);
424
425 // This flag is used for testing and can cause correctness problems.
426 if (SwpIgnoreRecMII)
427 RecMII = 0;
428
429 setMII(ResMII, RecMII);
430 setMAX_II();
431
432 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_IIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "MII = " << MII <<
" MAX_II = " << MAX_II << " (rec=" << RecMII
<< ", res=" << ResMII << ")\n"; } } while (
false)
433 << " (rec=" << RecMII << ", res=" << ResMII << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "MII = " << MII <<
" MAX_II = " << MAX_II << " (rec=" << RecMII
<< ", res=" << ResMII << ")\n"; } } while (
false)
;
434
435 // Can't schedule a loop without a valid MII.
436 if (MII == 0) {
437 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"
; } } while (false)
438 dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"
; } } while (false)
439 << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"
; } } while (false)
;
440 NumFailZeroMII++;
441 return;
442 }
443
444 // Don't pipeline large loops.
445 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
446 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMiido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "MII > " << SwpMaxMii
<< ", we don't pipleline large loops\n"; } } while (false
)
447 << ", we don't pipleline large loops\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "MII > " << SwpMaxMii
<< ", we don't pipleline large loops\n"; } } while (false
)
;
448 NumFailLargeMaxMII++;
449 return;
450 }
451
452 computeNodeFunctions(NodeSets);
453
454 registerPressureFilter(NodeSets);
455
456 colocateNodeSets(NodeSets);
457
458 checkNodeSets(NodeSets);
459
460 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
461 for (auto &I : NodeSets) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
462 dbgs() << " Rec NodeSet ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
463 I.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
464 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
465 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
;
466
467 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
468
469 groupRemainingNodes(NodeSets);
470
471 removeDuplicateNodes(NodeSets);
472
473 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
474 for (auto &I : NodeSets) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
475 dbgs() << " NodeSet ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
476 I.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
477 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
478 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
;
479
480 computeNodeOrder(NodeSets);
481
482 // check for node order issues
483 checkValidNodeOrder(Circuits);
484
485 SMSchedule Schedule(Pass.MF);
486 Scheduled = schedulePipeline(Schedule);
487
488 if (!Scheduled){
489 LLVM_DEBUG(dbgs() << "No schedule found, return\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "No schedule found, return\n"
; } } while (false)
;
490 NumFailNoSchedule++;
491 return;
492 }
493
494 unsigned numStages = Schedule.getMaxStageCount();
495 // No need to generate pipeline if there are no overlapped iterations.
496 if (numStages == 0) {
497 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "No overlapped iterations, no need to generate pipeline\n"
; } } while (false)
498 dbgs() << "No overlapped iterations, no need to generate pipeline\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "No overlapped iterations, no need to generate pipeline\n"
; } } while (false)
;
499 NumFailZeroStage++;
500 return;
501 }
502 // Check that the maximum stage count is less than user-defined limit.
503 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
504 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStagesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "numStages:" << numStages
<< ">" << SwpMaxStages << " : too many stages, abort\n"
; } } while (false)
505 << " : too many stages, abort\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "numStages:" << numStages
<< ">" << SwpMaxStages << " : too many stages, abort\n"
; } } while (false)
;
506 NumFailLargeMaxStage++;
507 return;
508 }
509
510 generatePipelinedLoop(Schedule);
511 ++NumPipelined;
512}
513
514/// Clean up after the software pipeliner runs.
515void SwingSchedulerDAG::finishBlock() {
516 for (MachineInstr *I : NewMIs)
517 MF.DeleteMachineInstr(I);
518 NewMIs.clear();
519
520 // Call the superclass.
521 ScheduleDAGInstrs::finishBlock();
522}
523
524/// Return the register values for the operands of a Phi instruction.
525/// This function assume the instruction is a Phi.
526static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
527 unsigned &InitVal, unsigned &LoopVal) {
528 assert(Phi.isPHI() && "Expecting a Phi.")((Phi.isPHI() && "Expecting a Phi.") ? static_cast<
void> (0) : __assert_fail ("Phi.isPHI() && \"Expecting a Phi.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 528, __PRETTY_FUNCTION__))
;
529
530 InitVal = 0;
531 LoopVal = 0;
532 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
533 if (Phi.getOperand(i + 1).getMBB() != Loop)
534 InitVal = Phi.getOperand(i).getReg();
535 else
536 LoopVal = Phi.getOperand(i).getReg();
537
538 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.")((InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."
) ? static_cast<void> (0) : __assert_fail ("InitVal != 0 && LoopVal != 0 && \"Unexpected Phi structure.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 538, __PRETTY_FUNCTION__))
;
539}
540
541/// Return the Phi register value that comes from the incoming block.
542static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
543 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
544 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
545 return Phi.getOperand(i).getReg();
546 return 0;
547}
548
549/// Return the Phi register value that comes the loop block.
550static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
551 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
552 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
553 return Phi.getOperand(i).getReg();
554 return 0;
555}
556
557/// Return true if SUb can be reached from SUa following the chain edges.
558static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
559 SmallPtrSet<SUnit *, 8> Visited;
560 SmallVector<SUnit *, 8> Worklist;
561 Worklist.push_back(SUa);
562 while (!Worklist.empty()) {
563 const SUnit *SU = Worklist.pop_back_val();
564 for (auto &SI : SU->Succs) {
565 SUnit *SuccSU = SI.getSUnit();
566 if (SI.getKind() == SDep::Order) {
567 if (Visited.count(SuccSU))
568 continue;
569 if (SuccSU == SUb)
570 return true;
571 Worklist.push_back(SuccSU);
572 Visited.insert(SuccSU);
573 }
574 }
575 }
576 return false;
577}
578
579/// Return true if the instruction causes a chain between memory
580/// references before and after it.
581static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
582 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
583 (MI.hasOrderedMemoryRef() &&
584 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
585}
586
587/// Return the underlying objects for the memory references of an instruction.
588/// This function calls the code in ValueTracking, but first checks that the
589/// instruction has a memory operand.
590static void getUnderlyingObjects(const MachineInstr *MI,
591 SmallVectorImpl<const Value *> &Objs,
592 const DataLayout &DL) {
593 if (!MI->hasOneMemOperand())
594 return;
595 MachineMemOperand *MM = *MI->memoperands_begin();
596 if (!MM->getValue())
597 return;
598 GetUnderlyingObjects(MM->getValue(), Objs, DL);
599 for (const Value *V : Objs) {
600 if (!isIdentifiedObject(V)) {
601 Objs.clear();
602 return;
603 }
604 Objs.push_back(V);
605 }
606}
607
608/// Add a chain edge between a load and store if the store can be an
609/// alias of the load on a subsequent iteration, i.e., a loop carried
610/// dependence. This code is very similar to the code in ScheduleDAGInstrs
611/// but that code doesn't create loop carried dependences.
612void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
613 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
614 Value *UnknownValue =
615 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
616 for (auto &SU : SUnits) {
617 MachineInstr &MI = *SU.getInstr();
618 if (isDependenceBarrier(MI, AA))
619 PendingLoads.clear();
620 else if (MI.mayLoad()) {
621 SmallVector<const Value *, 4> Objs;
622 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
623 if (Objs.empty())
624 Objs.push_back(UnknownValue);
625 for (auto V : Objs) {
626 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
627 SUs.push_back(&SU);
628 }
629 } else if (MI.mayStore()) {
630 SmallVector<const Value *, 4> Objs;
631 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
632 if (Objs.empty())
633 Objs.push_back(UnknownValue);
634 for (auto V : Objs) {
635 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
636 PendingLoads.find(V);
637 if (I == PendingLoads.end())
638 continue;
639 for (auto Load : I->second) {
640 if (isSuccOrder(Load, &SU))
641 continue;
642 MachineInstr &LdMI = *Load->getInstr();
643 // First, perform the cheaper check that compares the base register.
644 // If they are the same and the load offset is less than the store
645 // offset, then mark the dependence as loop carried potentially.
646 const MachineOperand *BaseOp1, *BaseOp2;
647 int64_t Offset1, Offset2;
648 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) &&
649 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) {
650 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
651 (int)Offset1 < (int)Offset2) {
652 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&((TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
"What happened to the chain edge?") ? static_cast<void>
(0) : __assert_fail ("TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && \"What happened to the chain edge?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 653, __PRETTY_FUNCTION__))
653 "What happened to the chain edge?")((TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
"What happened to the chain edge?") ? static_cast<void>
(0) : __assert_fail ("TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && \"What happened to the chain edge?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 653, __PRETTY_FUNCTION__))
;
654 SDep Dep(Load, SDep::Barrier);
655 Dep.setLatency(1);
656 SU.addPred(Dep);
657 continue;
658 }
659 }
660 // Second, the more expensive check that uses alias analysis on the
661 // base registers. If they alias, and the load offset is less than
662 // the store offset, the mark the dependence as loop carried.
663 if (!AA) {
664 SDep Dep(Load, SDep::Barrier);
665 Dep.setLatency(1);
666 SU.addPred(Dep);
667 continue;
668 }
669 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
670 MachineMemOperand *MMO2 = *MI.memoperands_begin();
671 if (!MMO1->getValue() || !MMO2->getValue()) {
672 SDep Dep(Load, SDep::Barrier);
673 Dep.setLatency(1);
674 SU.addPred(Dep);
675 continue;
676 }
677 if (MMO1->getValue() == MMO2->getValue() &&
678 MMO1->getOffset() <= MMO2->getOffset()) {
679 SDep Dep(Load, SDep::Barrier);
680 Dep.setLatency(1);
681 SU.addPred(Dep);
682 continue;
683 }
684 AliasResult AAResult = AA->alias(
685 MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
686 MMO1->getAAInfo()),
687 MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
688 MMO2->getAAInfo()));
689
690 if (AAResult != NoAlias) {
691 SDep Dep(Load, SDep::Barrier);
692 Dep.setLatency(1);
693 SU.addPred(Dep);
694 }
695 }
696 }
697 }
698 }
699}
700
701/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
702/// processes dependences for PHIs. This function adds true dependences
703/// from a PHI to a use, and a loop carried dependence from the use to the
704/// PHI. The loop carried dependence is represented as an anti dependence
705/// edge. This function also removes chain dependences between unrelated
706/// PHIs.
707void SwingSchedulerDAG::updatePhiDependences() {
708 SmallVector<SDep, 4> RemoveDeps;
709 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
710
711 // Iterate over each DAG node.
712 for (SUnit &I : SUnits) {
713 RemoveDeps.clear();
714 // Set to true if the instruction has an operand defined by a Phi.
715 unsigned HasPhiUse = 0;
716 unsigned HasPhiDef = 0;
717 MachineInstr *MI = I.getInstr();
718 // Iterate over each operand, and we process the definitions.
719 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
720 MOE = MI->operands_end();
721 MOI != MOE; ++MOI) {
722 if (!MOI->isReg())
723 continue;
724 unsigned Reg = MOI->getReg();
725 if (MOI->isDef()) {
726 // If the register is used by a Phi, then create an anti dependence.
727 for (MachineRegisterInfo::use_instr_iterator
728 UI = MRI.use_instr_begin(Reg),
729 UE = MRI.use_instr_end();
730 UI != UE; ++UI) {
731 MachineInstr *UseMI = &*UI;
732 SUnit *SU = getSUnit(UseMI);
733 if (SU != nullptr && UseMI->isPHI()) {
734 if (!MI->isPHI()) {
735 SDep Dep(SU, SDep::Anti, Reg);
736 Dep.setLatency(1);
737 I.addPred(Dep);
738 } else {
739 HasPhiDef = Reg;
740 // Add a chain edge to a dependent Phi that isn't an existing
741 // predecessor.
742 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
743 I.addPred(SDep(SU, SDep::Barrier));
744 }
745 }
746 }
747 } else if (MOI->isUse()) {
748 // If the register is defined by a Phi, then create a true dependence.
749 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
750 if (DefMI == nullptr)
751 continue;
752 SUnit *SU = getSUnit(DefMI);
753 if (SU != nullptr && DefMI->isPHI()) {
754 if (!MI->isPHI()) {
755 SDep Dep(SU, SDep::Data, Reg);
756 Dep.setLatency(0);
757 ST.adjustSchedDependency(SU, &I, Dep);
758 I.addPred(Dep);
759 } else {
760 HasPhiUse = Reg;
761 // Add a chain edge to a dependent Phi that isn't an existing
762 // predecessor.
763 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
764 I.addPred(SDep(SU, SDep::Barrier));
765 }
766 }
767 }
768 }
769 // Remove order dependences from an unrelated Phi.
770 if (!SwpPruneDeps)
771 continue;
772 for (auto &PI : I.Preds) {
773 MachineInstr *PMI = PI.getSUnit()->getInstr();
774 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
775 if (I.getInstr()->isPHI()) {
776 if (PMI->getOperand(0).getReg() == HasPhiUse)
777 continue;
778 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
779 continue;
780 }
781 RemoveDeps.push_back(PI);
782 }
783 }
784 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
785 I.removePred(RemoveDeps[i]);
786 }
787}
788
789/// Iterate over each DAG node and see if we can change any dependences
790/// in order to reduce the recurrence MII.
791void SwingSchedulerDAG::changeDependences() {
792 // See if an instruction can use a value from the previous iteration.
793 // If so, we update the base and offset of the instruction and change
794 // the dependences.
795 for (SUnit &I : SUnits) {
796 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
797 int64_t NewOffset = 0;
798 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
799 NewOffset))
800 continue;
801
802 // Get the MI and SUnit for the instruction that defines the original base.
803 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
804 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
805 if (!DefMI)
806 continue;
807 SUnit *DefSU = getSUnit(DefMI);
808 if (!DefSU)
809 continue;
810 // Get the MI and SUnit for the instruction that defins the new base.
811 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
812 if (!LastMI)
813 continue;
814 SUnit *LastSU = getSUnit(LastMI);
815 if (!LastSU)
816 continue;
817
818 if (Topo.IsReachable(&I, LastSU))
819 continue;
820
821 // Remove the dependence. The value now depends on a prior iteration.
822 SmallVector<SDep, 4> Deps;
823 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
824 ++P)
825 if (P->getSUnit() == DefSU)
826 Deps.push_back(*P);
827 for (int i = 0, e = Deps.size(); i != e; i++) {
828 Topo.RemovePred(&I, Deps[i].getSUnit());
829 I.removePred(Deps[i]);
830 }
831 // Remove the chain dependence between the instructions.
832 Deps.clear();
833 for (auto &P : LastSU->Preds)
834 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
835 Deps.push_back(P);
836 for (int i = 0, e = Deps.size(); i != e; i++) {
837 Topo.RemovePred(LastSU, Deps[i].getSUnit());
838 LastSU->removePred(Deps[i]);
839 }
840
841 // Add a dependence between the new instruction and the instruction
842 // that defines the new base.
843 SDep Dep(&I, SDep::Anti, NewBase);
844 Topo.AddPred(LastSU, &I);
845 LastSU->addPred(Dep);
846
847 // Remember the base and offset information so that we can update the
848 // instruction during code generation.
849 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
850 }
851}
852
853namespace {
854
855// FuncUnitSorter - Comparison operator used to sort instructions by
856// the number of functional unit choices.
857struct FuncUnitSorter {
858 const InstrItineraryData *InstrItins;
859 const MCSubtargetInfo *STI;
860 DenseMap<unsigned, unsigned> Resources;
861
862 FuncUnitSorter(const TargetSubtargetInfo &TSI)
863 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
864
865 // Compute the number of functional unit alternatives needed
866 // at each stage, and take the minimum value. We prioritize the
867 // instructions by the least number of choices first.
868 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
869 unsigned SchedClass = Inst->getDesc().getSchedClass();
870 unsigned min = UINT_MAX(2147483647 *2U +1U);
871 if (InstrItins && !InstrItins->isEmpty()) {
872 for (const InstrStage &IS :
873 make_range(InstrItins->beginStage(SchedClass),
874 InstrItins->endStage(SchedClass))) {
875 unsigned funcUnits = IS.getUnits();
876 unsigned numAlternatives = countPopulation(funcUnits);
877 if (numAlternatives < min) {
878 min = numAlternatives;
879 F = funcUnits;
880 }
881 }
882 return min;
883 }
884 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
885 const MCSchedClassDesc *SCDesc =
886 STI->getSchedModel().getSchedClassDesc(SchedClass);
887 if (!SCDesc->isValid())
888 // No valid Schedule Class Desc for schedClass, should be
889 // Pseudo/PostRAPseudo
890 return min;
891
892 for (const MCWriteProcResEntry &PRE :
893 make_range(STI->getWriteProcResBegin(SCDesc),
894 STI->getWriteProcResEnd(SCDesc))) {
895 if (!PRE.Cycles)
896 continue;
897 const MCProcResourceDesc *ProcResource =
898 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
899 unsigned NumUnits = ProcResource->NumUnits;
900 if (NumUnits < min) {
901 min = NumUnits;
902 F = PRE.ProcResourceIdx;
903 }
904 }
905 return min;
906 }
907 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!")::llvm::llvm_unreachable_internal("Should have non-empty InstrItins or hasInstrSchedModel!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 907)
;
908 }
909
910 // Compute the critical resources needed by the instruction. This
911 // function records the functional units needed by instructions that
912 // must use only one functional unit. We use this as a tie breaker
913 // for computing the resource MII. The instrutions that require
914 // the same, highly used, functional unit have high priority.
915 void calcCriticalResources(MachineInstr &MI) {
916 unsigned SchedClass = MI.getDesc().getSchedClass();
917 if (InstrItins && !InstrItins->isEmpty()) {
918 for (const InstrStage &IS :
919 make_range(InstrItins->beginStage(SchedClass),
920 InstrItins->endStage(SchedClass))) {
921 unsigned FuncUnits = IS.getUnits();
922 if (countPopulation(FuncUnits) == 1)
923 Resources[FuncUnits]++;
924 }
925 return;
926 }
927 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
928 const MCSchedClassDesc *SCDesc =
929 STI->getSchedModel().getSchedClassDesc(SchedClass);
930 if (!SCDesc->isValid())
931 // No valid Schedule Class Desc for schedClass, should be
932 // Pseudo/PostRAPseudo
933 return;
934
935 for (const MCWriteProcResEntry &PRE :
936 make_range(STI->getWriteProcResBegin(SCDesc),
937 STI->getWriteProcResEnd(SCDesc))) {
938 if (!PRE.Cycles)
939 continue;
940 Resources[PRE.ProcResourceIdx]++;
941 }
942 return;
943 }
944 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!")::llvm::llvm_unreachable_internal("Should have non-empty InstrItins or hasInstrSchedModel!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 944)
;
945 }
946
947 /// Return true if IS1 has less priority than IS2.
948 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
949 unsigned F1 = 0, F2 = 0;
950 unsigned MFUs1 = minFuncUnits(IS1, F1);
951 unsigned MFUs2 = minFuncUnits(IS2, F2);
952 if (MFUs1 == 1 && MFUs2 == 1)
953 return Resources.lookup(F1) < Resources.lookup(F2);
954 return MFUs1 > MFUs2;
955 }
956};
957
958} // end anonymous namespace
959
960/// Calculate the resource constrained minimum initiation interval for the
961/// specified loop. We use the DFA to model the resources needed for
962/// each instruction, and we ignore dependences. A different DFA is created
963/// for each cycle that is required. When adding a new instruction, we attempt
964/// to add it to each existing DFA, until a legal space is found. If the
965/// instruction cannot be reserved in an existing DFA, we create a new one.
966unsigned SwingSchedulerDAG::calculateResMII() {
967
968 LLVM_DEBUG(dbgs() << "calculateResMII:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "calculateResMII:\n"; } } while
(false)
;
969 SmallVector<ResourceManager*, 8> Resources;
970 MachineBasicBlock *MBB = Loop.getHeader();
971 Resources.push_back(new ResourceManager(&MF.getSubtarget()));
972
973 // Sort the instructions by the number of available choices for scheduling,
974 // least to most. Use the number of critical resources as the tie breaker.
975 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
976 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
977 E = MBB->getFirstTerminator();
978 I != E; ++I)
979 FUS.calcCriticalResources(*I);
980 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
981 FuncUnitOrder(FUS);
982
983 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
984 E = MBB->getFirstTerminator();
985 I != E; ++I)
986 FuncUnitOrder.push(&*I);
987
988 while (!FuncUnitOrder.empty()) {
989 MachineInstr *MI = FuncUnitOrder.top();
990 FuncUnitOrder.pop();
991 if (TII->isZeroCost(MI->getOpcode()))
992 continue;
993 // Attempt to reserve the instruction in an existing DFA. At least one
994 // DFA is needed for each cycle.
995 unsigned NumCycles = getSUnit(MI)->Latency;
996 unsigned ReservedCycles = 0;
997 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
998 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
999 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to reserve resource for "
<< NumCycles << " cycles for \n"; MI->dump();
}; } } while (false)
1000 dbgs() << "Trying to reserve resource for " << NumCyclesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to reserve resource for "
<< NumCycles << " cycles for \n"; MI->dump();
}; } } while (false)
1001 << " cycles for \n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to reserve resource for "
<< NumCycles << " cycles for \n"; MI->dump();
}; } } while (false)
1002 MI->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to reserve resource for "
<< NumCycles << " cycles for \n"; MI->dump();
}; } } while (false)
1003 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to reserve resource for "
<< NumCycles << " cycles for \n"; MI->dump();
}; } } while (false)
;
1004 for (unsigned C = 0; C < NumCycles; ++C)
1005 while (RI != RE) {
1006 if ((*RI++)->canReserveResources(*MI)) {
1007 ++ReservedCycles;
1008 break;
1009 }
1010 }
1011 // Start reserving resources using existing DFAs.
1012 for (unsigned C = 0; C < ReservedCycles; ++C) {
1013 --RI;
1014 (*RI)->reserveResources(*MI);
1015 }
1016
1017 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCyclesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "ReservedCycles:" << ReservedCycles
<< ", NumCycles:" << NumCycles << "\n"; } }
while (false)
1018 << ", NumCycles:" << NumCycles << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "ReservedCycles:" << ReservedCycles
<< ", NumCycles:" << NumCycles << "\n"; } }
while (false)
;
1019 // Add new DFAs, if needed, to reserve resources.
1020 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1021 LLVM_DEBUG(dbgs() << "NewResource created to reserve resources"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "NewResource created to reserve resources"
<< "\n"; } } while (false)
1022 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "NewResource created to reserve resources"
<< "\n"; } } while (false)
;
1023 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1024 assert(NewResource->canReserveResources(*MI) && "Reserve error.")((NewResource->canReserveResources(*MI) && "Reserve error."
) ? static_cast<void> (0) : __assert_fail ("NewResource->canReserveResources(*MI) && \"Reserve error.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 1024, __PRETTY_FUNCTION__))
;
1025 NewResource->reserveResources(*MI);
1026 Resources.push_back(NewResource);
1027 }
1028 }
1029 int Resmii = Resources.size();
1030 LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Retrun Res MII:" << Resmii
<< "\n"; } } while (false)
;
1031 // Delete the memory for each of the DFAs that were created earlier.
1032 for (ResourceManager *RI : Resources) {
1033 ResourceManager *D = RI;
1034 delete D;
1035 }
1036 Resources.clear();
1037 return Resmii;
1038}
1039
1040/// Calculate the recurrence-constrainted minimum initiation interval.
1041/// Iterate over each circuit. Compute the delay(c) and distance(c)
1042/// for each circuit. The II needs to satisfy the inequality
1043/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1044/// II that satisfies the inequality, and the RecMII is the maximum
1045/// of those values.
1046unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1047 unsigned RecMII = 0;
1048
1049 for (NodeSet &Nodes : NodeSets) {
1050 if (Nodes.empty())
1051 continue;
1052
1053 unsigned Delay = Nodes.getLatency();
1054 unsigned Distance = 1;
1055
1056 // ii = ceil(delay / distance)
1057 unsigned CurMII = (Delay + Distance - 1) / Distance;
1058 Nodes.setRecMII(CurMII);
1059 if (CurMII > RecMII)
1060 RecMII = CurMII;
1061 }
1062
1063 return RecMII;
1064}
1065
1066/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1067/// but we do this to find the circuits, and then change them back.
1068static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1069 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1070 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1071 SUnit *SU = &SUnits[i];
1072 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1073 IP != EP; ++IP) {
1074 if (IP->getKind() != SDep::Anti)
1075 continue;
1076 DepsAdded.push_back(std::make_pair(SU, *IP));
1077 }
1078 }
1079 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1080 E = DepsAdded.end();
1081 I != E; ++I) {
1082 // Remove this anti dependency and add one in the reverse direction.
1083 SUnit *SU = I->first;
1084 SDep &D = I->second;
1085 SUnit *TargetSU = D.getSUnit();
1086 unsigned Reg = D.getReg();
1087 unsigned Lat = D.getLatency();
1088 SU->removePred(D);
1089 SDep Dep(SU, SDep::Anti, Reg);
1090 Dep.setLatency(Lat);
1091 TargetSU->addPred(Dep);
1092 }
1093}
1094
1095/// Create the adjacency structure of the nodes in the graph.
1096void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1097 SwingSchedulerDAG *DAG) {
1098 BitVector Added(SUnits.size());
1099 DenseMap<int, int> OutputDeps;
1100 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1101 Added.reset();
1102 // Add any successor to the adjacency matrix and exclude duplicates.
1103 for (auto &SI : SUnits[i].Succs) {
1104 // Only create a back-edge on the first and last nodes of a dependence
1105 // chain. This records any chains and adds them later.
1106 if (SI.getKind() == SDep::Output) {
1107 int N = SI.getSUnit()->NodeNum;
1108 int BackEdge = i;
1109 auto Dep = OutputDeps.find(BackEdge);
1110 if (Dep != OutputDeps.end()) {
1111 BackEdge = Dep->second;
1112 OutputDeps.erase(Dep);
1113 }
1114 OutputDeps[N] = BackEdge;
1115 }
1116 // Do not process a boundary node, an artificial node.
1117 // A back-edge is processed only if it goes to a Phi.
1118 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1119 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1120 continue;
1121 int N = SI.getSUnit()->NodeNum;
1122 if (!Added.test(N)) {
1123 AdjK[i].push_back(N);
1124 Added.set(N);
1125 }
1126 }
1127 // A chain edge between a store and a load is treated as a back-edge in the
1128 // adjacency matrix.
1129 for (auto &PI : SUnits[i].Preds) {
1130 if (!SUnits[i].getInstr()->mayStore() ||
1131 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1132 continue;
1133 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1134 int N = PI.getSUnit()->NodeNum;
1135 if (!Added.test(N)) {
1136 AdjK[i].push_back(N);
1137 Added.set(N);
1138 }
1139 }
1140 }
1141 }
1142 // Add back-edges in the adjacency matrix for the output dependences.
1143 for (auto &OD : OutputDeps)
1144 if (!Added.test(OD.second)) {
1145 AdjK[OD.first].push_back(OD.second);
1146 Added.set(OD.second);
1147 }
1148}
1149
1150/// Identify an elementary circuit in the dependence graph starting at the
1151/// specified node.
1152bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1153 bool HasBackedge) {
1154 SUnit *SV = &SUnits[V];
1155 bool F = false;
1156 Stack.insert(SV);
1157 Blocked.set(V);
1158
1159 for (auto W : AdjK[V]) {
1160 if (NumPaths > MaxPaths)
1161 break;
1162 if (W < S)
1163 continue;
1164 if (W == S) {
1165 if (!HasBackedge)
1166 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1167 F = true;
1168 ++NumPaths;
1169 break;
1170 } else if (!Blocked.test(W)) {
1171 if (circuit(W, S, NodeSets,
1172 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1173 F = true;
1174 }
1175 }
1176
1177 if (F)
1178 unblock(V);
1179 else {
1180 for (auto W : AdjK[V]) {
1181 if (W < S)
1182 continue;
1183 if (B[W].count(SV) == 0)
1184 B[W].insert(SV);
1185 }
1186 }
1187 Stack.pop_back();
1188 return F;
1189}
1190
1191/// Unblock a node in the circuit finding algorithm.
1192void SwingSchedulerDAG::Circuits::unblock(int U) {
1193 Blocked.reset(U);
1194 SmallPtrSet<SUnit *, 4> &BU = B[U];
1195 while (!BU.empty()) {
1196 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1197 assert(SI != BU.end() && "Invalid B set.")((SI != BU.end() && "Invalid B set.") ? static_cast<
void> (0) : __assert_fail ("SI != BU.end() && \"Invalid B set.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 1197, __PRETTY_FUNCTION__))
;
1198 SUnit *W = *SI;
1199 BU.erase(W);
1200 if (Blocked.test(W->NodeNum))
1201 unblock(W->NodeNum);
1202 }
1203}
1204
1205/// Identify all the elementary circuits in the dependence graph using
1206/// Johnson's circuit algorithm.
1207void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1208 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1209 // but we do this to find the circuits, and then change them back.
1210 swapAntiDependences(SUnits);
1211
1212 Circuits Cir(SUnits, Topo);
1213 // Create the adjacency structure.
1214 Cir.createAdjacencyStructure(this);
1215 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1216 Cir.reset();
1217 Cir.circuit(i, i, NodeSets);
1218 }
1219
1220 // Change the dependences back so that we've created a DAG again.
1221 swapAntiDependences(SUnits);
1222}
1223
1224// Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1225// is loop-carried to the USE in next iteration. This will help pipeliner avoid
1226// additional copies that are needed across iterations. An artificial dependence
1227// edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1228
1229// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1230// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1231// PHI-------True-Dep------> USEOfPhi
1232
1233// The mutation creates
1234// USEOfPHI -------Artificial-Dep---> SRCOfCopy
1235
1236// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1237// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1238// late to avoid additional copies across iterations. The possible scheduling
1239// order would be
1240// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1241
1242void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1243 for (SUnit &SU : DAG->SUnits) {
1244 // Find the COPY/REG_SEQUENCE instruction.
1245 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1246 continue;
1247
1248 // Record the loop carried PHIs.
1249 SmallVector<SUnit *, 4> PHISUs;
1250 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1251 SmallVector<SUnit *, 4> SrcSUs;
1252
1253 for (auto &Dep : SU.Preds) {
1254 SUnit *TmpSU = Dep.getSUnit();
1255 MachineInstr *TmpMI = TmpSU->getInstr();
1256 SDep::Kind DepKind = Dep.getKind();
1257 // Save the loop carried PHI.
1258 if (DepKind == SDep::Anti && TmpMI->isPHI())
1259 PHISUs.push_back(TmpSU);
1260 // Save the source of COPY/REG_SEQUENCE.
1261 // If the source has no pre-decessors, we will end up creating cycles.
1262 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1263 SrcSUs.push_back(TmpSU);
1264 }
1265
1266 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1267 continue;
1268
1269 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1270 // SUnit to the container.
1271 SmallVector<SUnit *, 8> UseSUs;
1272 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) {
1273 for (auto &Dep : (*I)->Succs) {
1274 if (Dep.getKind() != SDep::Data)
1275 continue;
1276
1277 SUnit *TmpSU = Dep.getSUnit();
1278 MachineInstr *TmpMI = TmpSU->getInstr();
1279 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1280 PHISUs.push_back(TmpSU);
1281 continue;
1282 }
1283 UseSUs.push_back(TmpSU);
1284 }
1285 }
1286
1287 if (UseSUs.size() == 0)
1288 continue;
1289
1290 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1291 // Add the artificial dependencies if it does not form a cycle.
1292 for (auto I : UseSUs) {
1293 for (auto Src : SrcSUs) {
1294 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1295 Src->addPred(SDep(I, SDep::Artificial));
1296 SDAG->Topo.AddPred(Src, I);
1297 }
1298 }
1299 }
1300 }
1301}
1302
1303/// Return true for DAG nodes that we ignore when computing the cost functions.
1304/// We ignore the back-edge recurrence in order to avoid unbounded recursion
1305/// in the calculation of the ASAP, ALAP, etc functions.
1306static bool ignoreDependence(const SDep &D, bool isPred) {
1307 if (D.isArtificial())
1308 return true;
1309 return D.getKind() == SDep::Anti && isPred;
1310}
1311
1312/// Compute several functions need to order the nodes for scheduling.
1313/// ASAP - Earliest time to schedule a node.
1314/// ALAP - Latest time to schedule a node.
1315/// MOV - Mobility function, difference between ALAP and ASAP.
1316/// D - Depth of each node.
1317/// H - Height of each node.
1318void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1319 ScheduleInfo.resize(SUnits.size());
1320
1321 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { const SUnit
&SU = SUnits[*I]; dumpNode(SU); } }; } } while (false)
1322 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { const SUnit
&SU = SUnits[*I]; dumpNode(SU); } }; } } while (false)
1323 E = Topo.end();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { const SUnit
&SU = SUnits[*I]; dumpNode(SU); } }; } } while (false)
1324 I != E; ++I) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { const SUnit
&SU = SUnits[*I]; dumpNode(SU); } }; } } while (false)
1325 const SUnit &SU = SUnits[*I];do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { const SUnit
&SU = SUnits[*I]; dumpNode(SU); } }; } } while (false)
1326 dumpNode(SU);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { const SUnit
&SU = SUnits[*I]; dumpNode(SU); } }; } } while (false)
1327 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { const SUnit
&SU = SUnits[*I]; dumpNode(SU); } }; } } while (false)
1328 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { const SUnit
&SU = SUnits[*I]; dumpNode(SU); } }; } } while (false)
;
1329
1330 int maxASAP = 0;
1331 // Compute ASAP and ZeroLatencyDepth.
1332 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1333 E = Topo.end();
1334 I != E; ++I) {
1335 int asap = 0;
1336 int zeroLatencyDepth = 0;
1337 SUnit *SU = &SUnits[*I];
1338 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1339 EP = SU->Preds.end();
1340 IP != EP; ++IP) {
1341 SUnit *pred = IP->getSUnit();
1342 if (IP->getLatency() == 0)
1343 zeroLatencyDepth =
1344 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1345 if (ignoreDependence(*IP, true))
1346 continue;
1347 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1348 getDistance(pred, SU, *IP) * MII));
1349 }
1350 maxASAP = std::max(maxASAP, asap);
1351 ScheduleInfo[*I].ASAP = asap;
1352 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
1353 }
1354
1355 // Compute ALAP, ZeroLatencyHeight, and MOV.
1356 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1357 E = Topo.rend();
1358 I != E; ++I) {
1359 int alap = maxASAP;
1360 int zeroLatencyHeight = 0;
1361 SUnit *SU = &SUnits[*I];
1362 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1363 ES = SU->Succs.end();
1364 IS != ES; ++IS) {
1365 SUnit *succ = IS->getSUnit();
1366 if (IS->getLatency() == 0)
1367 zeroLatencyHeight =
1368 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1369 if (ignoreDependence(*IS, true))
1370 continue;
1371 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1372 getDistance(SU, succ, *IS) * MII));
1373 }
1374
1375 ScheduleInfo[*I].ALAP = alap;
1376 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1377 }
1378
1379 // After computing the node functions, compute the summary for each node set.
1380 for (NodeSet &I : NodeSets)
1381 I.computeNodeSetInfo(this);
1382
1383 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1384 for (unsigned i = 0; i < SUnits.size(); i++) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1385 dbgs() << "\tNode " << i << ":\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1386 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1387 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1388 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1389 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1390 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1391 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1392 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1393 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1394 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
;
1395}
1396
1397/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1398/// as the predecessors of the elements of NodeOrder that are not also in
1399/// NodeOrder.
1400static bool pred_L(SetVector<SUnit *> &NodeOrder,
1401 SmallSetVector<SUnit *, 8> &Preds,
1402 const NodeSet *S = nullptr) {
1403 Preds.clear();
1404 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1405 I != E; ++I) {
1406 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1407 PI != PE; ++PI) {
1408 if (S && S->count(PI->getSUnit()) == 0)
1409 continue;
1410 if (ignoreDependence(*PI, true))
1411 continue;
1412 if (NodeOrder.count(PI->getSUnit()) == 0)
1413 Preds.insert(PI->getSUnit());
1414 }
1415 // Back-edges are predecessors with an anti-dependence.
1416 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1417 ES = (*I)->Succs.end();
1418 IS != ES; ++IS) {
1419 if (IS->getKind() != SDep::Anti)
1420 continue;
1421 if (S && S->count(IS->getSUnit()) == 0)
1422 continue;
1423 if (NodeOrder.count(IS->getSUnit()) == 0)
1424 Preds.insert(IS->getSUnit());
1425 }
1426 }
1427 return !Preds.empty();
1428}
1429
1430/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1431/// as the successors of the elements of NodeOrder that are not also in
1432/// NodeOrder.
1433static bool succ_L(SetVector<SUnit *> &NodeOrder,
1434 SmallSetVector<SUnit *, 8> &Succs,
1435 const NodeSet *S = nullptr) {
1436 Succs.clear();
1437 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1438 I != E; ++I) {
1439 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1440 SI != SE; ++SI) {
1441 if (S && S->count(SI->getSUnit()) == 0)
1442 continue;
1443 if (ignoreDependence(*SI, false))
1444 continue;
1445 if (NodeOrder.count(SI->getSUnit()) == 0)
1446 Succs.insert(SI->getSUnit());
1447 }
1448 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1449 PE = (*I)->Preds.end();
1450 PI != PE; ++PI) {
1451 if (PI->getKind() != SDep::Anti)
1452 continue;
1453 if (S && S->count(PI->getSUnit()) == 0)
1454 continue;
1455 if (NodeOrder.count(PI->getSUnit()) == 0)
1456 Succs.insert(PI->getSUnit());
1457 }
1458 }
1459 return !Succs.empty();
1460}
1461
1462/// Return true if there is a path from the specified node to any of the nodes
1463/// in DestNodes. Keep track and return the nodes in any path.
1464static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1465 SetVector<SUnit *> &DestNodes,
1466 SetVector<SUnit *> &Exclude,
1467 SmallPtrSet<SUnit *, 8> &Visited) {
1468 if (Cur->isBoundaryNode())
1469 return false;
1470 if (Exclude.count(Cur) != 0)
1471 return false;
1472 if (DestNodes.count(Cur) != 0)
1473 return true;
1474 if (!Visited.insert(Cur).second)
1475 return Path.count(Cur) != 0;
1476 bool FoundPath = false;
1477 for (auto &SI : Cur->Succs)
1478 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1479 for (auto &PI : Cur->Preds)
1480 if (PI.getKind() == SDep::Anti)
1481 FoundPath |=
1482 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1483 if (FoundPath)
1484 Path.insert(Cur);
1485 return FoundPath;
1486}
1487
1488/// Return true if Set1 is a subset of Set2.
1489template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1490 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1491 if (Set2.count(*I) == 0)
1492 return false;
1493 return true;
1494}
1495
1496/// Compute the live-out registers for the instructions in a node-set.
1497/// The live-out registers are those that are defined in the node-set,
1498/// but not used. Except for use operands of Phis.
1499static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1500 NodeSet &NS) {
1501 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1502 MachineRegisterInfo &MRI = MF.getRegInfo();
1503 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1504 SmallSet<unsigned, 4> Uses;
1505 for (SUnit *SU : NS) {
1506 const MachineInstr *MI = SU->getInstr();
1507 if (MI->isPHI())
1508 continue;
1509 for (const MachineOperand &MO : MI->operands())
1510 if (MO.isReg() && MO.isUse()) {
1511 unsigned Reg = MO.getReg();
1512 if (TargetRegisterInfo::isVirtualRegister(Reg))
1513 Uses.insert(Reg);
1514 else if (MRI.isAllocatable(Reg))
1515 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1516 Uses.insert(*Units);
1517 }
1518 }
1519 for (SUnit *SU : NS)
1520 for (const MachineOperand &MO : SU->getInstr()->operands())
1521 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1522 unsigned Reg = MO.getReg();
1523 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1524 if (!Uses.count(Reg))
1525 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1526 LaneBitmask::getNone()));
1527 } else if (MRI.isAllocatable(Reg)) {
1528 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1529 if (!Uses.count(*Units))
1530 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1531 LaneBitmask::getNone()));
1532 }
1533 }
1534 RPTracker.addLiveRegs(LiveOutRegs);
1535}
1536
1537/// A heuristic to filter nodes in recurrent node-sets if the register
1538/// pressure of a set is too high.
1539void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1540 for (auto &NS : NodeSets) {
1541 // Skip small node-sets since they won't cause register pressure problems.
1542 if (NS.size() <= 2)
1543 continue;
1544 IntervalPressure RecRegPressure;
1545 RegPressureTracker RecRPTracker(RecRegPressure);
1546 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1547 computeLiveOuts(MF, RecRPTracker, NS);
1548 RecRPTracker.closeBottom();
1549
1550 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1551 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1552 return A->NodeNum > B->NodeNum;
1553 });
1554
1555 for (auto &SU : SUnits) {
1556 // Since we're computing the register pressure for a subset of the
1557 // instructions in a block, we need to set the tracker for each
1558 // instruction in the node-set. The tracker is set to the instruction
1559 // just after the one we're interested in.
1560 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1561 RecRPTracker.setPos(std::next(CurInstI));
1562
1563 RegPressureDelta RPDelta;
1564 ArrayRef<PressureChange> CriticalPSets;
1565 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1566 CriticalPSets,
1567 RecRegPressure.MaxSetPressure);
1568 if (RPDelta.Excess.isValid()) {
1569 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
1570 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
1571 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
1572 << ":" << RPDelta.Excess.getUnitInc())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
;
1573 NS.setExceedPressure(SU);
1574 break;
1575 }
1576 RecRPTracker.recede();
1577 }
1578 }
1579}
1580
1581/// A heuristic to colocate node sets that have the same set of
1582/// successors.
1583void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1584 unsigned Colocate = 0;
1585 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1586 NodeSet &N1 = NodeSets[i];
1587 SmallSetVector<SUnit *, 8> S1;
1588 if (N1.empty() || !succ_L(N1, S1))
1589 continue;
1590 for (int j = i + 1; j < e; ++j) {
1591 NodeSet &N2 = NodeSets[j];
1592 if (N1.compareRecMII(N2) != 0)
1593 continue;
1594 SmallSetVector<SUnit *, 8> S2;
1595 if (N2.empty() || !succ_L(N2, S2))
1596 continue;
1597 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1598 N1.setColocate(++Colocate);
1599 N2.setColocate(Colocate);
1600 break;
1601 }
1602 }
1603 }
1604}
1605
1606/// Check if the existing node-sets are profitable. If not, then ignore the
1607/// recurrent node-sets, and attempt to schedule all nodes together. This is
1608/// a heuristic. If the MII is large and all the recurrent node-sets are small,
1609/// then it's best to try to schedule all instructions together instead of
1610/// starting with the recurrent node-sets.
1611void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1612 // Look for loops with a large MII.
1613 if (MII < 17)
1614 return;
1615 // Check if the node-set contains only a simple add recurrence.
1616 for (auto &NS : NodeSets) {
1617 if (NS.getRecMII() > 2)
1618 return;
1619 if (NS.getMaxDepth() > MII)
1620 return;
1621 }
1622 NodeSets.clear();
1623 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Clear recurrence node-sets\n"
; } } while (false)
;
1624 return;
1625}
1626
1627/// Add the nodes that do not belong to a recurrence set into groups
1628/// based upon connected componenets.
1629void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1630 SetVector<SUnit *> NodesAdded;
1631 SmallPtrSet<SUnit *, 8> Visited;
1632 // Add the nodes that are on a path between the previous node sets and
1633 // the current node set.
1634 for (NodeSet &I : NodeSets) {
1635 SmallSetVector<SUnit *, 8> N;
1636 // Add the nodes from the current node set to the previous node set.
1637 if (succ_L(I, N)) {
1638 SetVector<SUnit *> Path;
1639 for (SUnit *NI : N) {
1640 Visited.clear();
1641 computePath(NI, Path, NodesAdded, I, Visited);
1642 }
1643 if (!Path.empty())
1644 I.insert(Path.begin(), Path.end());
1645 }
1646 // Add the nodes from the previous node set to the current node set.
1647 N.clear();
1648 if (succ_L(NodesAdded, N)) {
1649 SetVector<SUnit *> Path;
1650 for (SUnit *NI : N) {
1651 Visited.clear();
1652 computePath(NI, Path, I, NodesAdded, Visited);
1653 }
1654 if (!Path.empty())
1655 I.insert(Path.begin(), Path.end());
1656 }
1657 NodesAdded.insert(I.begin(), I.end());
1658 }
1659
1660 // Create a new node set with the connected nodes of any successor of a node
1661 // in a recurrent set.
1662 NodeSet NewSet;
1663 SmallSetVector<SUnit *, 8> N;
1664 if (succ_L(NodesAdded, N))
1665 for (SUnit *I : N)
1666 addConnectedNodes(I, NewSet, NodesAdded);
1667 if (!NewSet.empty())
1668 NodeSets.push_back(NewSet);
1669
1670 // Create a new node set with the connected nodes of any predecessor of a node
1671 // in a recurrent set.
1672 NewSet.clear();
1673 if (pred_L(NodesAdded, N))
1674 for (SUnit *I : N)
1675 addConnectedNodes(I, NewSet, NodesAdded);
1676 if (!NewSet.empty())
1677 NodeSets.push_back(NewSet);
1678
1679 // Create new nodes sets with the connected nodes any remaining node that
1680 // has no predecessor.
1681 for (unsigned i = 0; i < SUnits.size(); ++i) {
1682 SUnit *SU = &SUnits[i];
1683 if (NodesAdded.count(SU) == 0) {
1684 NewSet.clear();
1685 addConnectedNodes(SU, NewSet, NodesAdded);
1686 if (!NewSet.empty())
1687 NodeSets.push_back(NewSet);
1688 }
1689 }
1690}
1691
1692/// Add the node to the set, and add all of its connected nodes to the set.
1693void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1694 SetVector<SUnit *> &NodesAdded) {
1695 NewSet.insert(SU);
1696 NodesAdded.insert(SU);
1697 for (auto &SI : SU->Succs) {
1698 SUnit *Successor = SI.getSUnit();
1699 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1700 addConnectedNodes(Successor, NewSet, NodesAdded);
1701 }
1702 for (auto &PI : SU->Preds) {
1703 SUnit *Predecessor = PI.getSUnit();
1704 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1705 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1706 }
1707}
1708
1709/// Return true if Set1 contains elements in Set2. The elements in common
1710/// are returned in a different container.
1711static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1712 SmallSetVector<SUnit *, 8> &Result) {
1713 Result.clear();
1714 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1715 SUnit *SU = Set1[i];
1716 if (Set2.count(SU) != 0)
1717 Result.insert(SU);
1718 }
1719 return !Result.empty();
1720}
1721
1722/// Merge the recurrence node sets that have the same initial node.
1723void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1724 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1725 ++I) {
1726 NodeSet &NI = *I;
1727 for (NodeSetType::iterator J = I + 1; J != E;) {
1728 NodeSet &NJ = *J;
1729 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1730 if (NJ.compareRecMII(NI) > 0)
1731 NI.setRecMII(NJ.getRecMII());
1732 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1733 ++NII)
1734 I->insert(*NII);
1735 NodeSets.erase(J);
1736 E = NodeSets.end();
1737 } else {
1738 ++J;
1739 }
1740 }
1741 }
1742}
1743
1744/// Remove nodes that have been scheduled in previous NodeSets.
1745void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1746 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1747 ++I)
1748 for (NodeSetType::iterator J = I + 1; J != E;) {
1749 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1750
1751 if (J->empty()) {
1752 NodeSets.erase(J);
1753 E = NodeSets.end();
1754 } else {
1755 ++J;
1756 }
1757 }
1758}
1759
1760/// Compute an ordered list of the dependence graph nodes, which
1761/// indicates the order that the nodes will be scheduled. This is a
1762/// two-level algorithm. First, a partial order is created, which
1763/// consists of a list of sets ordered from highest to lowest priority.
1764void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1765 SmallSetVector<SUnit *, 8> R;
1766 NodeOrder.clear();
1767
1768 for (auto &Nodes : NodeSets) {
1769 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "NodeSet size " << Nodes
.size() << "\n"; } } while (false)
;
1770 OrderKind Order;
1771 SmallSetVector<SUnit *, 8> N;
1772 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1773 R.insert(N.begin(), N.end());
1774 Order = BottomUp;
1775 LLVM_DEBUG(dbgs() << " Bottom up (preds) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Bottom up (preds) "; } } while
(false)
;
1776 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1777 R.insert(N.begin(), N.end());
1778 Order = TopDown;
1779 LLVM_DEBUG(dbgs() << " Top down (succs) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Top down (succs) "; } } while
(false)
;
1780 } else if (isIntersect(N, Nodes, R)) {
1781 // If some of the successors are in the existing node-set, then use the
1782 // top-down ordering.
1783 Order = TopDown;
1784 LLVM_DEBUG(dbgs() << " Top down (intersect) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Top down (intersect) "; }
} while (false)
;
1785 } else if (NodeSets.size() == 1) {
1786 for (auto &N : Nodes)
1787 if (N->Succs.size() == 0)
1788 R.insert(N);
1789 Order = BottomUp;
1790 LLVM_DEBUG(dbgs() << " Bottom up (all) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Bottom up (all) "; } } while
(false)
;
1791 } else {
1792 // Find the node with the highest ASAP.
1793 SUnit *maxASAP = nullptr;
1794 for (SUnit *SU : Nodes) {
1795 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1796 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1797 maxASAP = SU;
1798 }
1799 R.insert(maxASAP);
1800 Order = BottomUp;
1801 LLVM_DEBUG(dbgs() << " Bottom up (default) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Bottom up (default) "; } }
while (false)
;
1802 }
1803
1804 while (!R.empty()) {
1805 if (Order == TopDown) {
1806 // Choose the node with the maximum height. If more than one, choose
1807 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1808 // choose the node with the lowest MOV.
1809 while (!R.empty()) {
1810 SUnit *maxHeight = nullptr;
1811 for (SUnit *I : R) {
1812 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1813 maxHeight = I;
1814 else if (getHeight(I) == getHeight(maxHeight) &&
1815 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1816 maxHeight = I;
1817 else if (getHeight(I) == getHeight(maxHeight) &&
1818 getZeroLatencyHeight(I) ==
1819 getZeroLatencyHeight(maxHeight) &&
1820 getMOV(I) < getMOV(maxHeight))
1821 maxHeight = I;
1822 }
1823 NodeOrder.insert(maxHeight);
1824 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << maxHeight->NodeNum <<
" "; } } while (false)
;
1825 R.remove(maxHeight);
1826 for (const auto &I : maxHeight->Succs) {
1827 if (Nodes.count(I.getSUnit()) == 0)
1828 continue;
1829 if (NodeOrder.count(I.getSUnit()) != 0)
1830 continue;
1831 if (ignoreDependence(I, false))
1832 continue;
1833 R.insert(I.getSUnit());
1834 }
1835 // Back-edges are predecessors with an anti-dependence.
1836 for (const auto &I : maxHeight->Preds) {
1837 if (I.getKind() != SDep::Anti)
1838 continue;
1839 if (Nodes.count(I.getSUnit()) == 0)
1840 continue;
1841 if (NodeOrder.count(I.getSUnit()) != 0)
1842 continue;
1843 R.insert(I.getSUnit());
1844 }
1845 }
1846 Order = BottomUp;
1847 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\n Switching order to bottom up "
; } } while (false)
;
1848 SmallSetVector<SUnit *, 8> N;
1849 if (pred_L(NodeOrder, N, &Nodes))
1850 R.insert(N.begin(), N.end());
1851 } else {
1852 // Choose the node with the maximum depth. If more than one, choose
1853 // the node with the maximum ZeroLatencyDepth. If still more than one,
1854 // choose the node with the lowest MOV.
1855 while (!R.empty()) {
1856 SUnit *maxDepth = nullptr;
1857 for (SUnit *I : R) {
1858 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1859 maxDepth = I;
1860 else if (getDepth(I) == getDepth(maxDepth) &&
1861 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1862 maxDepth = I;
1863 else if (getDepth(I) == getDepth(maxDepth) &&
1864 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1865 getMOV(I) < getMOV(maxDepth))
1866 maxDepth = I;
1867 }
1868 NodeOrder.insert(maxDepth);
1869 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << maxDepth->NodeNum <<
" "; } } while (false)
;
1870 R.remove(maxDepth);
1871 if (Nodes.isExceedSU(maxDepth)) {
1872 Order = TopDown;
1873 R.clear();
1874 R.insert(Nodes.getNode(0));
1875 break;
1876 }
1877 for (const auto &I : maxDepth->Preds) {
1878 if (Nodes.count(I.getSUnit()) == 0)
1879 continue;
1880 if (NodeOrder.count(I.getSUnit()) != 0)
1881 continue;
1882 R.insert(I.getSUnit());
1883 }
1884 // Back-edges are predecessors with an anti-dependence.
1885 for (const auto &I : maxDepth->Succs) {
1886 if (I.getKind() != SDep::Anti)
1887 continue;
1888 if (Nodes.count(I.getSUnit()) == 0)
1889 continue;
1890 if (NodeOrder.count(I.getSUnit()) != 0)
1891 continue;
1892 R.insert(I.getSUnit());
1893 }
1894 }
1895 Order = TopDown;
1896 LLVM_DEBUG(dbgs() << "\n Switching order to top down ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\n Switching order to top down "
; } } while (false)
;
1897 SmallSetVector<SUnit *, 8> N;
1898 if (succ_L(NodeOrder, N, &Nodes))
1899 R.insert(N.begin(), N.end());
1900 }
1901 }
1902 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\nDone with Nodeset\n"; } }
while (false)
;
1903 }
1904
1905 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
1906 dbgs() << "Node order: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
1907 for (SUnit *I : NodeOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
1908 dbgs() << " " << I->NodeNum << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
1909 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
1910 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
;
1911}
1912
1913/// Process the nodes in the computed order and create the pipelined schedule
1914/// of the instructions, if possible. Return true if a schedule is found.
1915bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
1916
1917 if (NodeOrder.empty()){
1918 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" )do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "NodeOrder is empty! abort scheduling\n"
; } } while (false)
;
1919 return false;
1920 }
1921
1922 bool scheduleFound = false;
1923 unsigned II = 0;
1924 // Keep increasing II until a valid schedule is found.
1925 for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
1926 Schedule.reset();
1927 Schedule.setInitiationInterval(II);
1928 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Try to schedule with " <<
II << "\n"; } } while (false)
;
1929
1930 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1931 SetVector<SUnit *>::iterator NE = NodeOrder.end();
1932 do {
1933 SUnit *SU = *NI;
1934
1935 // Compute the schedule time for the instruction, which is based
1936 // upon the scheduled time for any predecessors/successors.
1937 int EarlyStart = INT_MIN(-2147483647 -1);
1938 int LateStart = INT_MAX2147483647;
1939 // These values are set when the size of the schedule window is limited
1940 // due to chain dependences.
1941 int SchedEnd = INT_MAX2147483647;
1942 int SchedStart = INT_MIN(-2147483647 -1);
1943 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1944 II, this);
1945 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
1946 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
1947 dbgs() << "Inst (" << SU->NodeNum << ") ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
1948 SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
1949 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
1950 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
;
1951 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n"
, EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while (
false)
1952 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n"
, EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while (
false)
1953 LateStart, SchedEnd, SchedStart);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n"
, EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while (
false)
1954 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n"
, EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while (
false)
;
1955
1956 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
1957 SchedStart > LateStart)
1958 scheduleFound = false;
1959 else if (EarlyStart != INT_MIN(-2147483647 -1) && LateStart == INT_MAX2147483647) {
1960 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
1961 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
1962 } else if (EarlyStart == INT_MIN(-2147483647 -1) && LateStart != INT_MAX2147483647) {
1963 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
1964 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
1965 } else if (EarlyStart != INT_MIN(-2147483647 -1) && LateStart != INT_MAX2147483647) {
1966 SchedEnd =
1967 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
1968 // When scheduling a Phi it is better to start at the late cycle and go
1969 // backwards. The default order may insert the Phi too far away from
1970 // its first dependence.
1971 if (SU->getInstr()->isPHI())
1972 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
1973 else
1974 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
1975 } else {
1976 int FirstCycle = Schedule.getFirstCycle();
1977 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
1978 FirstCycle + getASAP(SU) + II - 1, II);
1979 }
1980 // Even if we find a schedule, make sure the schedule doesn't exceed the
1981 // allowable number of stages. We keep trying if this happens.
1982 if (scheduleFound)
1983 if (SwpMaxStages > -1 &&
1984 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
1985 scheduleFound = false;
1986
1987 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
1988 if (!scheduleFound)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
1989 dbgs() << "\tCan't schedule\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
1990 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
;
1991 } while (++NI != NE && scheduleFound);
1992
1993 // If a schedule is found, check if it is a valid schedule too.
1994 if (scheduleFound)
1995 scheduleFound = Schedule.isValidSchedule(this);
1996 }
1997
1998 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << IIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Schedule Found? " << scheduleFound
<< " (II=" << II << ")\n"; } } while (false
)
1999 << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Schedule Found? " << scheduleFound
<< " (II=" << II << ")\n"; } } while (false
)
;
2000
2001 if (scheduleFound)
2002 Schedule.finalizeSchedule(this);
2003 else
2004 Schedule.reset();
2005
2006 return scheduleFound && Schedule.getMaxStageCount() > 0;
2007}
2008
2009/// Given a schedule for the loop, generate a new version of the loop,
2010/// and replace the old version. This function generates a prolog
2011/// that contains the initial iterations in the pipeline, and kernel
2012/// loop, and the epilogue that contains the code for the final
2013/// iterations.
2014void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2015 // Create a new basic block for the kernel and add it to the CFG.
2016 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2017
2018 unsigned MaxStageCount = Schedule.getMaxStageCount();
2019
2020 // Remember the registers that are used in different stages. The index is
2021 // the iteration, or stage, that the instruction is scheduled in. This is
2022 // a map between register names in the original block and the names created
2023 // in each stage of the pipelined loop.
2024 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2025 InstrMapTy InstrMap;
2026
2027 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2028 // Generate the prolog instructions that set up the pipeline.
2029 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2030 MF.insert(BB->getIterator(), KernelBB);
2031
2032 // Rearrange the instructions to generate the new, pipelined loop,
2033 // and update register names as needed.
2034 for (int Cycle = Schedule.getFirstCycle(),
2035 LastCycle = Schedule.getFinalCycle();
2036 Cycle <= LastCycle; ++Cycle) {
2037 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2038 // This inner loop schedules each instruction in the cycle.
2039 for (SUnit *CI : CycleInstrs) {
2040 if (CI->getInstr()->isPHI())
2041 continue;
2042 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2043 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2044 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2045 KernelBB->push_back(NewMI);
2046 InstrMap[NewMI] = CI->getInstr();
2047 }
2048 }
2049
2050 // Copy any terminator instructions to the new kernel, and update
2051 // names as needed.
2052 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2053 E = BB->instr_end();
2054 I != E; ++I) {
2055 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2056 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2057 KernelBB->push_back(NewMI);
2058 InstrMap[NewMI] = &*I;
2059 }
2060
2061 KernelBB->transferSuccessors(BB);
2062 KernelBB->replaceSuccessor(BB, KernelBB);
2063
2064 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2065 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2066 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2067 InstrMap, MaxStageCount, MaxStageCount, false);
2068
2069 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "New block\n"; KernelBB->
dump();; } } while (false)
;
2070
2071 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2072 // Generate the epilog instructions to complete the pipeline.
2073 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2074 PrologBBs);
2075
2076 // We need this step because the register allocation doesn't handle some
2077 // situations well, so we insert copies to help out.
2078 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2079
2080 // Remove dead instructions due to loop induction variables.
2081 removeDeadInstructions(KernelBB, EpilogBBs);
2082
2083 // Add branches between prolog and epilog blocks.
2084 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2085
2086 // Remove the original loop since it's no longer referenced.
2087 for (auto &I : *BB)
2088 LIS.RemoveMachineInstrFromMaps(I);
2089 BB->clear();
2090 BB->eraseFromParent();
2091
2092 delete[] VRMap;
2093}
2094
2095/// Generate the pipeline prolog code.
2096void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2097 MachineBasicBlock *KernelBB,
2098 ValueMapTy *VRMap,
2099 MBBVectorTy &PrologBBs) {
2100 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
2101 assert(PreheaderBB != nullptr &&((PreheaderBB != nullptr && "Need to add code to handle loops w/o preheader"
) ? static_cast<void> (0) : __assert_fail ("PreheaderBB != nullptr && \"Need to add code to handle loops w/o preheader\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 2102, __PRETTY_FUNCTION__))
2102 "Need to add code to handle loops w/o preheader")((PreheaderBB != nullptr && "Need to add code to handle loops w/o preheader"
) ? static_cast<void> (0) : __assert_fail ("PreheaderBB != nullptr && \"Need to add code to handle loops w/o preheader\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 2102, __PRETTY_FUNCTION__))
;
2103 MachineBasicBlock *PredBB = PreheaderBB;
2104 InstrMapTy InstrMap;
2105
2106 // Generate a basic block for each stage, not including the last stage,
2107 // which will be generated in the kernel. Each basic block may contain
2108 // instructions from multiple stages/iterations.
2109 for (unsigned i = 0; i < LastStage; ++i) {
2110 // Create and insert the prolog basic block prior to the original loop
2111 // basic block. The original loop is removed later.
2112 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2113 PrologBBs.push_back(NewBB);
2114 MF.insert(BB->getIterator(), NewBB);
2115 NewBB->transferSuccessors(PredBB);
2116 PredBB->addSuccessor(NewBB);
2117 PredBB = NewBB;
2118
2119 // Generate instructions for each appropriate stage. Process instructions
2120 // in original program order.
2121 for (int StageNum = i; StageNum >= 0; --StageNum) {
2122 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2123 BBE = BB->getFirstTerminator();
2124 BBI != BBE; ++BBI) {
2125 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2126 if (BBI->isPHI())
2127 continue;
2128 MachineInstr *NewMI =
2129 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2130 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2131 VRMap);
2132 NewBB->push_back(NewMI);
2133 InstrMap[NewMI] = &*BBI;
2134 }
2135 }
2136 }
2137 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2138 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
2139 dbgs() << "prolog:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
2140 NewBB->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
2141 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
;
2142 }
2143
2144 PredBB->replaceSuccessor(BB, KernelBB);
2145
2146 // Check if we need to remove the branch from the preheader to the original
2147 // loop, and replace it with a branch to the new loop.
2148 unsigned numBranches = TII->removeBranch(*PreheaderBB);
2149 if (numBranches) {
2150 SmallVector<MachineOperand, 0> Cond;
2151 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
2152 }
2153}
2154
2155/// Generate the pipeline epilog code. The epilog code finishes the iterations
2156/// that were started in either the prolog or the kernel. We create a basic
2157/// block for each stage that needs to complete.
2158void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2159 MachineBasicBlock *KernelBB,
2160 ValueMapTy *VRMap,
2161 MBBVectorTy &EpilogBBs,
2162 MBBVectorTy &PrologBBs) {
2163 // We need to change the branch from the kernel to the first epilog block, so
2164 // this call to analyze branch uses the kernel rather than the original BB.
2165 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2166 SmallVector<MachineOperand, 4> Cond;
2167 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2168 assert(!checkBranch && "generateEpilog must be able to analyze the branch")((!checkBranch && "generateEpilog must be able to analyze the branch"
) ? static_cast<void> (0) : __assert_fail ("!checkBranch && \"generateEpilog must be able to analyze the branch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 2168, __PRETTY_FUNCTION__))
;
2169 if (checkBranch)
2170 return;
2171
2172 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2173 if (*LoopExitI == KernelBB)
2174 ++LoopExitI;
2175 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor")((LoopExitI != KernelBB->succ_end() && "Expecting a successor"
) ? static_cast<void> (0) : __assert_fail ("LoopExitI != KernelBB->succ_end() && \"Expecting a successor\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 2175, __PRETTY_FUNCTION__))
;
2176 MachineBasicBlock *LoopExitBB = *LoopExitI;
2177
2178 MachineBasicBlock *PredBB = KernelBB;
2179 MachineBasicBlock *EpilogStart = LoopExitBB;
2180 InstrMapTy InstrMap;
2181
2182 // Generate a basic block for each stage, not including the last stage,
2183 // which was generated for the kernel. Each basic block may contain
2184 // instructions from multiple stages/iterations.
2185 int EpilogStage = LastStage + 1;
2186 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2187 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2188 EpilogBBs.push_back(NewBB);
2189 MF.insert(BB->getIterator(), NewBB);
2190
2191 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2192 NewBB->addSuccessor(LoopExitBB);
2193
2194 if (EpilogStart == LoopExitBB)
2195 EpilogStart = NewBB;
2196
2197 // Add instructions to the epilog depending on the current block.
2198 // Process instructions in original program order.
2199 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2200 for (auto &BBI : *BB) {
2201 if (BBI.isPHI())
2202 continue;
2203 MachineInstr *In = &BBI;
2204 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2205 // Instructions with memoperands in the epilog are updated with
2206 // conservative values.
2207 MachineInstr *NewMI = cloneInstr(In, UINT_MAX(2147483647 *2U +1U), 0);
2208 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2209 NewBB->push_back(NewMI);
2210 InstrMap[NewMI] = In;
2211 }
2212 }
2213 }
2214 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2215 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2216 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2217 InstrMap, LastStage, EpilogStage, i == 1);
2218 PredBB = NewBB;
2219
2220 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
2221 dbgs() << "epilog:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
2222 NewBB->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
2223 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
;
2224 }
2225
2226 // Fix any Phi nodes in the loop exit block.
2227 for (MachineInstr &MI : *LoopExitBB) {
2228 if (!MI.isPHI())
2229 break;
2230 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2231 MachineOperand &MO = MI.getOperand(i);
2232 if (MO.getMBB() == BB)
2233 MO.setMBB(PredBB);
2234 }
2235 }
2236
2237 // Create a branch to the new epilog from the kernel.
2238 // Remove the original branch and add a new branch to the epilog.
2239 TII->removeBranch(*KernelBB);
2240 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
2241 // Add a branch to the loop exit.
2242 if (EpilogBBs.size() > 0) {
2243 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2244 SmallVector<MachineOperand, 4> Cond1;
2245 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
2246 }
2247}
2248
2249/// Replace all uses of FromReg that appear outside the specified
2250/// basic block with ToReg.
2251static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2252 MachineBasicBlock *MBB,
2253 MachineRegisterInfo &MRI,
2254 LiveIntervals &LIS) {
2255 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2256 E = MRI.use_end();
2257 I != E;) {
2258 MachineOperand &O = *I;
2259 ++I;
2260 if (O.getParent()->getParent() != MBB)
2261 O.setReg(ToReg);
2262 }
2263 if (!LIS.hasInterval(ToReg))
2264 LIS.createEmptyInterval(ToReg);
2265}
2266
2267/// Return true if the register has a use that occurs outside the
2268/// specified loop.
2269static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2270 MachineRegisterInfo &MRI) {
2271 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2272 E = MRI.use_end();
2273 I != E; ++I)
2274 if (I->getParent()->getParent() != BB)
2275 return true;
2276 return false;
2277}
2278
2279/// Generate Phis for the specific block in the generated pipelined code.
2280/// This function looks at the Phis from the original code to guide the
2281/// creation of new Phis.
2282void SwingSchedulerDAG::generateExistingPhis(
2283 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2284 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2285 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2286 bool IsLast) {
2287 // Compute the stage number for the initial value of the Phi, which
2288 // comes from the prolog. The prolog to use depends on to which kernel/
2289 // epilog that we're adding the Phi.
2290 unsigned PrologStage = 0;
2291 unsigned PrevStage = 0;
2292 bool InKernel = (LastStageNum == CurStageNum);
2293 if (InKernel) {
2294 PrologStage = LastStageNum - 1;
2295 PrevStage = CurStageNum;
2296 } else {
2297 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2298 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2299 }
2300
2301 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2302 BBE = BB->getFirstNonPHI();
2303 BBI != BBE; ++BBI) {
2304 unsigned Def = BBI->getOperand(0).getReg();
2305
2306 unsigned InitVal = 0;
2307 unsigned LoopVal = 0;
2308 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2309
2310 unsigned PhiOp1 = 0;
2311 // The Phi value from the loop body typically is defined in the loop, but
2312 // not always. So, we need to check if the value is defined in the loop.
2313 unsigned PhiOp2 = LoopVal;
2314 if (VRMap[LastStageNum].count(LoopVal))
2315 PhiOp2 = VRMap[LastStageNum][LoopVal];
2316
2317 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2318 int LoopValStage =
2319 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2320 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2321 if (NumStages == 0) {
2322 // We don't need to generate a Phi anymore, but we need to rename any uses
2323 // of the Phi value.
2324 unsigned NewReg = VRMap[PrevStage][LoopVal];
2325 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2326 Def, InitVal, NewReg);
2327 if (VRMap[CurStageNum].count(LoopVal))
2328 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2329 }
2330 // Adjust the number of Phis needed depending on the number of prologs left,
2331 // and the distance from where the Phi is first scheduled. The number of
2332 // Phis cannot exceed the number of prolog stages. Each stage can
2333 // potentially define two values.
2334 unsigned MaxPhis = PrologStage + 2;
2335 if (!InKernel && (int)PrologStage <= LoopValStage)
2336 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
2337 unsigned NumPhis = std::min(NumStages, MaxPhis);
2338
2339 unsigned NewReg = 0;
2340 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2341 // In the epilog, we may need to look back one stage to get the correct
2342 // Phi name because the epilog and prolog blocks execute the same stage.
2343 // The correct name is from the previous block only when the Phi has
2344 // been completely scheduled prior to the epilog, and Phi value is not
2345 // needed in multiple stages.
2346 int StageDiff = 0;
2347 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2348 NumPhis == 1)
2349 StageDiff = 1;
2350 // Adjust the computations below when the phi and the loop definition
2351 // are scheduled in different stages.
2352 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2353 StageDiff = StageScheduled - LoopValStage;
2354 for (unsigned np = 0; np < NumPhis; ++np) {
2355 // If the Phi hasn't been scheduled, then use the initial Phi operand
2356 // value. Otherwise, use the scheduled version of the instruction. This
2357 // is a little complicated when a Phi references another Phi.
2358 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2359 PhiOp1 = InitVal;
2360 // Check if the Phi has already been scheduled in a prolog stage.
2361 else if (PrologStage >= AccessStage + StageDiff + np &&
2362 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2363 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2364 // Check if the Phi has already been scheduled, but the loop instruction
2365 // is either another Phi, or doesn't occur in the loop.
2366 else if (PrologStage >= AccessStage + StageDiff + np) {
2367 // If the Phi references another Phi, we need to examine the other
2368 // Phi to get the correct value.
2369 PhiOp1 = LoopVal;
2370 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2371 int Indirects = 1;
2372 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2373 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2374 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2375 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2376 else
2377 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2378 InstOp1 = MRI.getVRegDef(PhiOp1);
2379 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2380 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2381 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2382 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2383 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2384 break;
2385 }
2386 ++Indirects;
2387 }
2388 } else
2389 PhiOp1 = InitVal;
2390 // If this references a generated Phi in the kernel, get the Phi operand
2391 // from the incoming block.
2392 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2393 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2394 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2395
2396 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2397 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2398 // In the epilog, a map lookup is needed to get the value from the kernel,
2399 // or previous epilog block. How is does this depends on if the
2400 // instruction is scheduled in the previous block.
2401 if (!InKernel) {
2402 int StageDiffAdj = 0;
2403 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2404 StageDiffAdj = StageScheduled - LoopValStage;
2405 // Use the loop value defined in the kernel, unless the kernel
2406 // contains the last definition of the Phi.
2407 if (np == 0 && PrevStage == LastStageNum &&
2408 (StageScheduled != 0 || LoopValStage != 0) &&
2409 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2410 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2411 // Use the value defined by the Phi. We add one because we switch
2412 // from looking at the loop value to the Phi definition.
2413 else if (np > 0 && PrevStage == LastStageNum &&
2414 VRMap[PrevStage - np + 1].count(Def))
2415 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2416 // Use the loop value defined in the kernel.
2417 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
2418 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2419 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2420 // Use the value defined by the Phi, unless we're generating the first
2421 // epilog and the Phi refers to a Phi in a different stage.
2422 else if (VRMap[PrevStage - np].count(Def) &&
2423 (!LoopDefIsPhi || PrevStage != LastStageNum))
2424 PhiOp2 = VRMap[PrevStage - np][Def];
2425 }
2426
2427 // Check if we can reuse an existing Phi. This occurs when a Phi
2428 // references another Phi, and the other Phi is scheduled in an
2429 // earlier stage. We can try to reuse an existing Phi up until the last
2430 // stage of the current Phi.
2431 if (LoopDefIsPhi) {
2432 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
2433 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2434 int StageDiff = (StageScheduled - LoopValStage);
2435 LVNumStages -= StageDiff;
2436 // Make sure the loop value Phi has been processed already.
2437 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
2438 NewReg = PhiOp2;
Value stored to 'NewReg' is never read
2439 unsigned ReuseStage = CurStageNum;
2440 if (Schedule.isLoopCarried(this, *PhiInst))
2441 ReuseStage -= LVNumStages;
2442 // Check if the Phi to reuse has been generated yet. If not, then
2443 // there is nothing to reuse.
2444 if (VRMap[ReuseStage - np].count(LoopVal)) {
2445 NewReg = VRMap[ReuseStage - np][LoopVal];
2446
2447 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2448 &*BBI, Def, NewReg);
2449 // Update the map with the new Phi name.
2450 VRMap[CurStageNum - np][Def] = NewReg;
2451 PhiOp2 = NewReg;
2452 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2453 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2454
2455 if (IsLast && np == NumPhis - 1)
2456 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2457 continue;
2458 }
2459 }
2460 }
2461 if (InKernel && StageDiff > 0 &&
2462 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2463 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2464 }
2465
2466 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2467 NewReg = MRI.createVirtualRegister(RC);
2468
2469 MachineInstrBuilder NewPhi =
2470 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2471 TII->get(TargetOpcode::PHI), NewReg);
2472 NewPhi.addReg(PhiOp1).addMBB(BB1);
2473 NewPhi.addReg(PhiOp2).addMBB(BB2);
2474 if (np == 0)
2475 InstrMap[NewPhi] = &*BBI;
2476
2477 // We define the Phis after creating the new pipelined code, so
2478 // we need to rename the Phi values in scheduled instructions.
2479
2480 unsigned PrevReg = 0;
2481 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2482 PrevReg = VRMap[PrevStage - np][LoopVal];
2483 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2484 Def, NewReg, PrevReg);
2485 // If the Phi has been scheduled, use the new name for rewriting.
2486 if (VRMap[CurStageNum - np].count(Def)) {
2487 unsigned R = VRMap[CurStageNum - np][Def];
2488 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2489 R, NewReg);
2490 }
2491
2492 // Check if we need to rename any uses that occurs after the loop. The
2493 // register to replace depends on whether the Phi is scheduled in the
2494 // epilog.
2495 if (IsLast && np == NumPhis - 1)
2496 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2497
2498 // In the kernel, a dependent Phi uses the value from this Phi.
2499 if (InKernel)
2500 PhiOp2 = NewReg;
2501
2502 // Update the map with the new Phi name.
2503 VRMap[CurStageNum - np][Def] = NewReg;
2504 }
2505
2506 while (NumPhis++ < NumStages) {
2507 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2508 &*BBI, Def, NewReg, 0);
2509 }
2510
2511 // Check if we need to rename a Phi that has been eliminated due to
2512 // scheduling.
2513 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2514 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2515 }
2516}
2517
2518/// Generate Phis for the specified block in the generated pipelined code.
2519/// These are new Phis needed because the definition is scheduled after the
2520/// use in the pipelined sequence.
2521void SwingSchedulerDAG::generatePhis(
2522 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2523 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2524 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2525 bool IsLast) {
2526 // Compute the stage number that contains the initial Phi value, and
2527 // the Phi from the previous stage.
2528 unsigned PrologStage = 0;
2529 unsigned PrevStage = 0;
2530 unsigned StageDiff = CurStageNum - LastStageNum;
2531 bool InKernel = (StageDiff == 0);
2532 if (InKernel) {
2533 PrologStage = LastStageNum - 1;
2534 PrevStage = CurStageNum;
2535 } else {
2536 PrologStage = LastStageNum - StageDiff;
2537 PrevStage = LastStageNum + StageDiff - 1;
2538 }
2539
2540 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2541 BBE = BB->instr_end();
2542 BBI != BBE; ++BBI) {
2543 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2544 MachineOperand &MO = BBI->getOperand(i);
2545 if (!MO.isReg() || !MO.isDef() ||
2546 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2547 continue;
2548
2549 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2550 assert(StageScheduled != -1 && "Expecting scheduled instruction.")((StageScheduled != -1 && "Expecting scheduled instruction."
) ? static_cast<void> (0) : __assert_fail ("StageScheduled != -1 && \"Expecting scheduled instruction.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 2550, __PRETTY_FUNCTION__))
;
2551 unsigned Def = MO.getReg();
2552 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2553 // An instruction scheduled in stage 0 and is used after the loop
2554 // requires a phi in the epilog for the last definition from either
2555 // the kernel or prolog.
2556 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2557 hasUseAfterLoop(Def, BB, MRI))
2558 NumPhis = 1;
2559 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2560 continue;
2561
2562 unsigned PhiOp2 = VRMap[PrevStage][Def];
2563 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2564 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2565 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2566 // The number of Phis can't exceed the number of prolog stages. The
2567 // prolog stage number is zero based.
2568 if (NumPhis > PrologStage + 1 - StageScheduled)
2569 NumPhis = PrologStage + 1 - StageScheduled;
2570 for (unsigned np = 0; np < NumPhis; ++np) {
2571 unsigned PhiOp1 = VRMap[PrologStage][Def];
2572 if (np <= PrologStage)
2573 PhiOp1 = VRMap[PrologStage - np][Def];
2574 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2575 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2576 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2577 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2578 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2579 }
2580 if (!InKernel)
2581 PhiOp2 = VRMap[PrevStage - np][Def];
2582
2583 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2584 unsigned NewReg = MRI.createVirtualRegister(RC);
2585
2586 MachineInstrBuilder NewPhi =
2587 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2588 TII->get(TargetOpcode::PHI), NewReg);
2589 NewPhi.addReg(PhiOp1).addMBB(BB1);
2590 NewPhi.addReg(PhiOp2).addMBB(BB2);
2591 if (np == 0)
2592 InstrMap[NewPhi] = &*BBI;
2593
2594 // Rewrite uses and update the map. The actions depend upon whether
2595 // we generating code for the kernel or epilog blocks.
2596 if (InKernel) {
2597 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2598 &*BBI, PhiOp1, NewReg);
2599 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2600 &*BBI, PhiOp2, NewReg);
2601
2602 PhiOp2 = NewReg;
2603 VRMap[PrevStage - np - 1][Def] = NewReg;
2604 } else {
2605 VRMap[CurStageNum - np][Def] = NewReg;
2606 if (np == NumPhis - 1)
2607 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2608 &*BBI, Def, NewReg);
2609 }
2610 if (IsLast && np == NumPhis - 1)
2611 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2612 }
2613 }
2614 }
2615}
2616
2617/// Remove instructions that generate values with no uses.
2618/// Typically, these are induction variable operations that generate values
2619/// used in the loop itself. A dead instruction has a definition with
2620/// no uses, or uses that occur in the original loop only.
2621void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2622 MBBVectorTy &EpilogBBs) {
2623 // For each epilog block, check that the value defined by each instruction
2624 // is used. If not, delete it.
2625 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2626 MBE = EpilogBBs.rend();
2627 MBB != MBE; ++MBB)
2628 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2629 ME = (*MBB)->instr_rend();
2630 MI != ME;) {
2631 // From DeadMachineInstructionElem. Don't delete inline assembly.
2632 if (MI->isInlineAsm()) {
2633 ++MI;
2634 continue;
2635 }
2636 bool SawStore = false;
2637 // Check if it's safe to remove the instruction due to side effects.
2638 // We can, and want to, remove Phis here.
2639 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2640 ++MI;
2641 continue;
2642 }
2643 bool used = true;
2644 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2645 MOE = MI->operands_end();
2646 MOI != MOE; ++MOI) {
2647 if (!MOI->isReg() || !MOI->isDef())
2648 continue;
2649 unsigned reg = MOI->getReg();
2650 // Assume physical registers are used, unless they are marked dead.
2651 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
2652 used = !MOI->isDead();
2653 if (used)
2654 break;
2655 continue;
2656 }
2657 unsigned realUses = 0;
2658 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2659 EI = MRI.use_end();
2660 UI != EI; ++UI) {
2661 // Check if there are any uses that occur only in the original
2662 // loop. If so, that's not a real use.
2663 if (UI->getParent()->getParent() != BB) {
2664 realUses++;
2665 used = true;
2666 break;
2667 }
2668 }
2669 if (realUses > 0)
2670 break;
2671 used = false;
2672 }
2673 if (!used) {
2674 LIS.RemoveMachineInstrFromMaps(*MI);
2675 MI++->eraseFromParent();
2676 continue;
2677 }
2678 ++MI;
2679 }
2680 // In the kernel block, check if we can remove a Phi that generates a value
2681 // used in an instruction removed in the epilog block.
2682 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2683 BBE = KernelBB->getFirstNonPHI();
2684 BBI != BBE;) {
2685 MachineInstr *MI = &*BBI;
2686 ++BBI;
2687 unsigned reg = MI->getOperand(0).getReg();
2688 if (MRI.use_begin(reg) == MRI.use_end()) {
2689 LIS.RemoveMachineInstrFromMaps(*MI);
2690 MI->eraseFromParent();
2691 }
2692 }
2693}
2694
2695/// For loop carried definitions, we split the lifetime of a virtual register
2696/// that has uses past the definition in the next iteration. A copy with a new
2697/// virtual register is inserted before the definition, which helps with
2698/// generating a better register assignment.
2699///
2700/// v1 = phi(a, v2) v1 = phi(a, v2)
2701/// v2 = phi(b, v3) v2 = phi(b, v3)
2702/// v3 = .. v4 = copy v1
2703/// .. = V1 v3 = ..
2704/// .. = v4
2705void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2706 MBBVectorTy &EpilogBBs,
2707 SMSchedule &Schedule) {
2708 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2709 for (auto &PHI : KernelBB->phis()) {
2710 unsigned Def = PHI.getOperand(0).getReg();
2711 // Check for any Phi definition that used as an operand of another Phi
2712 // in the same block.
2713 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2714 E = MRI.use_instr_end();
2715 I != E; ++I) {
2716 if (I->isPHI() && I->getParent() == KernelBB) {
2717 // Get the loop carried definition.
2718 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
2719 if (!LCDef)
2720 continue;
2721 MachineInstr *MI = MRI.getVRegDef(LCDef);
2722 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2723 continue;
2724 // Search through the rest of the block looking for uses of the Phi
2725 // definition. If one occurs, then split the lifetime.
2726 unsigned SplitReg = 0;
2727 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2728 KernelBB->instr_end()))
2729 if (BBJ.readsRegister(Def)) {
2730 // We split the lifetime when we find the first use.
2731 if (SplitReg == 0) {
2732 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2733 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2734 TII->get(TargetOpcode::COPY), SplitReg)
2735 .addReg(Def);
2736 }
2737 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2738 }
2739 if (!SplitReg)
2740 continue;
2741 // Search through each of the epilog blocks for any uses to be renamed.
2742 for (auto &Epilog : EpilogBBs)
2743 for (auto &I : *Epilog)
2744 if (I.readsRegister(Def))
2745 I.substituteRegister(Def, SplitReg, 0, *TRI);
2746 break;
2747 }
2748 }
2749 }
2750}
2751
2752/// Remove the incoming block from the Phis in a basic block.
2753static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2754 for (MachineInstr &MI : *BB) {
2755 if (!MI.isPHI())
2756 break;
2757 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2758 if (MI.getOperand(i + 1).getMBB() == Incoming) {
2759 MI.RemoveOperand(i + 1);
2760 MI.RemoveOperand(i);
2761 break;
2762 }
2763 }
2764}
2765
2766/// Create branches from each prolog basic block to the appropriate epilog
2767/// block. These edges are needed if the loop ends before reaching the
2768/// kernel.
2769void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
2770 MachineBasicBlock *KernelBB,
2771 MBBVectorTy &EpilogBBs,
2772 SMSchedule &Schedule, ValueMapTy *VRMap) {
2773 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch")((PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"
) ? static_cast<void> (0) : __assert_fail ("PrologBBs.size() == EpilogBBs.size() && \"Prolog/Epilog mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 2773, __PRETTY_FUNCTION__))
;
2774 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2775 MachineInstr *Cmp = Pass.LI.LoopCompare;
2776 MachineBasicBlock *LastPro = KernelBB;
2777 MachineBasicBlock *LastEpi = KernelBB;
2778
2779 // Start from the blocks connected to the kernel and work "out"
2780 // to the first prolog and the last epilog blocks.
2781 SmallVector<MachineInstr *, 4> PrevInsts;
2782 unsigned MaxIter = PrologBBs.size() - 1;
2783 unsigned LC = UINT_MAX(2147483647 *2U +1U);
2784 unsigned LCMin = UINT_MAX(2147483647 *2U +1U);
2785 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
2786 // Add branches to the prolog that go to the corresponding
2787 // epilog, and the fall-thru prolog/kernel block.
2788 MachineBasicBlock *Prolog = PrologBBs[j];
2789 MachineBasicBlock *Epilog = EpilogBBs[i];
2790 // We've executed one iteration, so decrement the loop count and check for
2791 // the loop end.
2792 SmallVector<MachineOperand, 4> Cond;
2793 // Check if the LOOP0 has already been removed. If so, then there is no need
2794 // to reduce the trip count.
2795 if (LC != 0)
2796 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
2797 MaxIter);
2798
2799 // Record the value of the first trip count, which is used to determine if
2800 // branches and blocks can be removed for constant trip counts.
2801 if (LCMin == UINT_MAX(2147483647 *2U +1U))
2802 LCMin = LC;
2803
2804 unsigned numAdded = 0;
2805 if (TargetRegisterInfo::isVirtualRegister(LC)) {
2806 Prolog->addSuccessor(Epilog);
2807 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
2808 } else if (j >= LCMin) {
2809 Prolog->addSuccessor(Epilog);
2810 Prolog->removeSuccessor(LastPro);
2811 LastEpi->removeSuccessor(Epilog);
2812 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
2813 removePhis(Epilog, LastEpi);
2814 // Remove the blocks that are no longer referenced.
2815 if (LastPro != LastEpi) {
2816 LastEpi->clear();
2817 LastEpi->eraseFromParent();
2818 }
2819 LastPro->clear();
2820 LastPro->eraseFromParent();
2821 } else {
2822 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
2823 removePhis(Epilog, Prolog);
2824 }
2825 LastPro = Prolog;
2826 LastEpi = Epilog;
2827 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
2828 E = Prolog->instr_rend();
2829 I != E && numAdded > 0; ++I, --numAdded)
2830 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
2831 }
2832}
2833
2834/// Return true if we can compute the amount the instruction changes
2835/// during each iteration. Set Delta to the amount of the change.
2836bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2837 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2838 const MachineOperand *BaseOp;
2839 int64_t Offset;
2840 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
2841 return false;
2842
2843 if (!BaseOp->isReg())
2844 return false;
2845
2846 unsigned BaseReg = BaseOp->getReg();
2847
2848 MachineRegisterInfo &MRI = MF.getRegInfo();
2849 // Check if there is a Phi. If so, get the definition in the loop.
2850 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2851 if (BaseDef && BaseDef->isPHI()) {
2852 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2853 BaseDef = MRI.getVRegDef(BaseReg);
2854 }
2855 if (!BaseDef)
2856 return false;
2857
2858 int D = 0;
2859 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2860 return false;
2861
2862 Delta = D;
2863 return true;
2864}
2865
2866/// Update the memory operand with a new offset when the pipeliner
2867/// generates a new copy of the instruction that refers to a
2868/// different memory location.
2869void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
2870 MachineInstr &OldMI, unsigned Num) {
2871 if (Num == 0)
2872 return;
2873 // If the instruction has memory operands, then adjust the offset
2874 // when the instruction appears in different stages.
2875 if (NewMI.memoperands_empty())
2876 return;
2877 SmallVector<MachineMemOperand *, 2> NewMMOs;
2878 for (MachineMemOperand *MMO : NewMI.memoperands()) {
2879 // TODO: Figure out whether isAtomic is really necessary (see D57601).
2880 if (MMO->isVolatile() || MMO->isAtomic() ||
2881 (MMO->isInvariant() && MMO->isDereferenceable()) ||
2882 (!MMO->getValue())) {
2883 NewMMOs.push_back(MMO);
2884 continue;
2885 }
2886 unsigned Delta;
2887 if (Num != UINT_MAX(2147483647 *2U +1U) && computeDelta(OldMI, Delta)) {
2888 int64_t AdjOffset = Delta * Num;
2889 NewMMOs.push_back(
2890 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
2891 } else {
2892 NewMMOs.push_back(
2893 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
2894 }
2895 }
2896 NewMI.setMemRefs(MF, NewMMOs);
2897}
2898
2899/// Clone the instruction for the new pipelined loop and update the
2900/// memory operands, if needed.
2901MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
2902 unsigned CurStageNum,
2903 unsigned InstStageNum) {
2904 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2905 // Check for tied operands in inline asm instructions. This should be handled
2906 // elsewhere, but I'm not sure of the best solution.
2907 if (OldMI->isInlineAsm())
2908 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
2909 const auto &MO = OldMI->getOperand(i);
2910 if (MO.isReg() && MO.isUse())
2911 break;
2912 unsigned UseIdx;
2913 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
2914 NewMI->tieOperands(i, UseIdx);
2915 }
2916 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
2917 return NewMI;
2918}
2919
2920/// Clone the instruction for the new pipelined loop. If needed, this
2921/// function updates the instruction using the values saved in the
2922/// InstrChanges structure.
2923MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
2924 unsigned CurStageNum,
2925 unsigned InstStageNum,
2926 SMSchedule &Schedule) {
2927 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2928 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2929 InstrChanges.find(getSUnit(OldMI));
2930 if (It != InstrChanges.end()) {
2931 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2932 unsigned BasePos, OffsetPos;
2933 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
2934 return nullptr;
2935 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
2936 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
2937 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
2938 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
2939 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2940 }
2941 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
2942 return NewMI;
2943}
2944
2945/// Update the machine instruction with new virtual registers. This
2946/// function may change the defintions and/or uses.
2947void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
2948 unsigned CurStageNum,
2949 unsigned InstrStageNum,
2950 SMSchedule &Schedule,
2951 ValueMapTy *VRMap) {
2952 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
2953 MachineOperand &MO = NewMI->getOperand(i);
2954 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2955 continue;
2956 unsigned reg = MO.getReg();
2957 if (MO.isDef()) {
2958 // Create a new virtual register for the definition.
2959 const TargetRegisterClass *RC = MRI.getRegClass(reg);
2960 unsigned NewReg = MRI.createVirtualRegister(RC);
2961 MO.setReg(NewReg);
2962 VRMap[CurStageNum][reg] = NewReg;
2963 if (LastDef)
2964 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
2965 } else if (MO.isUse()) {
2966 MachineInstr *Def = MRI.getVRegDef(reg);
2967 // Compute the stage that contains the last definition for instruction.
2968 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
2969 unsigned StageNum = CurStageNum;
2970 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
2971 // Compute the difference in stages between the defintion and the use.
2972 unsigned StageDiff = (InstrStageNum - DefStageNum);
2973 // Make an adjustment to get the last definition.
2974 StageNum -= StageDiff;
2975 }
2976 if (VRMap[StageNum].count(reg))
2977 MO.setReg(VRMap[StageNum][reg]);
2978 }
2979 }
2980}
2981
2982/// Return the instruction in the loop that defines the register.
2983/// If the definition is a Phi, then follow the Phi operand to
2984/// the instruction in the loop.
2985MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
2986 SmallPtrSet<MachineInstr *, 8> Visited;
2987 MachineInstr *Def = MRI.getVRegDef(Reg);
2988 while (Def->isPHI()) {
2989 if (!Visited.insert(Def).second)
2990 break;
2991 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2992 if (Def->getOperand(i + 1).getMBB() == BB) {
2993 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2994 break;
2995 }
2996 }
2997 return Def;
2998}
2999
3000/// Return the new name for the value from the previous stage.
3001unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3002 unsigned LoopVal, unsigned LoopStage,
3003 ValueMapTy *VRMap,
3004 MachineBasicBlock *BB) {
3005 unsigned PrevVal = 0;
3006 if (StageNum > PhiStage) {
3007 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3008 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3009 // The name is defined in the previous stage.
3010 PrevVal = VRMap[StageNum - 1][LoopVal];
3011 else if (VRMap[StageNum].count(LoopVal))
3012 // The previous name is defined in the current stage when the instruction
3013 // order is swapped.
3014 PrevVal = VRMap[StageNum][LoopVal];
3015 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
3016 // The loop value hasn't yet been scheduled.
3017 PrevVal = LoopVal;
3018 else if (StageNum == PhiStage + 1)
3019 // The loop value is another phi, which has not been scheduled.
3020 PrevVal = getInitPhiReg(*LoopInst, BB);
3021 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3022 // The loop value is another phi, which has been scheduled.
3023 PrevVal =
3024 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3025 LoopStage, VRMap, BB);
3026 }
3027 return PrevVal;
3028}
3029
3030/// Rewrite the Phi values in the specified block to use the mappings
3031/// from the initial operand. Once the Phi is scheduled, we switch
3032/// to using the loop value instead of the Phi value, so those names
3033/// do not need to be rewritten.
3034void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3035 unsigned StageNum,
3036 SMSchedule &Schedule,
3037 ValueMapTy *VRMap,
3038 InstrMapTy &InstrMap) {
3039 for (auto &PHI : BB->phis()) {
3040 unsigned InitVal = 0;
3041 unsigned LoopVal = 0;
3042 getPhiRegs(PHI, BB, InitVal, LoopVal);
3043 unsigned PhiDef = PHI.getOperand(0).getReg();
3044
3045 unsigned PhiStage =
3046 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3047 unsigned LoopStage =
3048 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3049 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3050 if (NumPhis > StageNum)
3051 NumPhis = StageNum;
3052 for (unsigned np = 0; np <= NumPhis; ++np) {
3053 unsigned NewVal =
3054 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3055 if (!NewVal)
3056 NewVal = InitVal;
3057 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
3058 PhiDef, NewVal);
3059 }
3060 }
3061}
3062
3063/// Rewrite a previously scheduled instruction to use the register value
3064/// from the new instruction. Make sure the instruction occurs in the
3065/// basic block, and we don't change the uses in the new instruction.
3066void SwingSchedulerDAG::rewriteScheduledInstr(
3067 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3068 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3069 unsigned NewReg, unsigned PrevReg) {
3070 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3071 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3072 // Rewrite uses that have been scheduled already to use the new
3073 // Phi register.
3074 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3075 EI = MRI.use_end();
3076 UI != EI;) {
3077 MachineOperand &UseOp = *UI;
3078 MachineInstr *UseMI = UseOp.getParent();
3079 ++UI;
3080 if (UseMI->getParent() != BB)
3081 continue;
3082 if (UseMI->isPHI()) {
3083 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3084 continue;
3085 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3086 continue;
3087 }
3088 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3089 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.")((OrigInstr != InstrMap.end() && "Instruction not scheduled."
) ? static_cast<void> (0) : __assert_fail ("OrigInstr != InstrMap.end() && \"Instruction not scheduled.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 3089, __PRETTY_FUNCTION__))
;
3090 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3091 int StageSched = Schedule.stageScheduled(OrigMISU);
3092 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3093 unsigned ReplaceReg = 0;
3094 // This is the stage for the scheduled instruction.
3095 if (StagePhi == StageSched && Phi->isPHI()) {
3096 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3097 if (PrevReg && InProlog)
3098 ReplaceReg = PrevReg;
3099 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3100 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3101 ReplaceReg = PrevReg;
3102 else
3103 ReplaceReg = NewReg;
3104 }
3105 // The scheduled instruction occurs before the scheduled Phi, and the
3106 // Phi is not loop carried.
3107 if (!InProlog && StagePhi + 1 == StageSched &&
3108 !Schedule.isLoopCarried(this, *Phi))
3109 ReplaceReg = NewReg;
3110 if (StagePhi > StageSched && Phi->isPHI())
3111 ReplaceReg = NewReg;
3112 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3113 ReplaceReg = NewReg;
3114 if (ReplaceReg) {
3115 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3116 UseOp.setReg(ReplaceReg);
3117 }
3118 }
3119}
3120
3121/// Check if we can change the instruction to use an offset value from the
3122/// previous iteration. If so, return true and set the base and offset values
3123/// so that we can rewrite the load, if necessary.
3124/// v1 = Phi(v0, v3)
3125/// v2 = load v1, 0
3126/// v3 = post_store v1, 4, x
3127/// This function enables the load to be rewritten as v2 = load v3, 4.
3128bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3129 unsigned &BasePos,
3130 unsigned &OffsetPos,
3131 unsigned &NewBase,
3132 int64_t &Offset) {
3133 // Get the load instruction.
3134 if (TII->isPostIncrement(*MI))
3135 return false;
3136 unsigned BasePosLd, OffsetPosLd;
3137 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
3138 return false;
3139 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3140
3141 // Look for the Phi instruction.
3142 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
3143 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3144 if (!Phi || !Phi->isPHI())
3145 return false;
3146 // Get the register defined in the loop block.
3147 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3148 if (!PrevReg)
3149 return false;
3150
3151 // Check for the post-increment load/store instruction.
3152 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3153 if (!PrevDef || PrevDef == MI)
3154 return false;
3155
3156 if (!TII->isPostIncrement(*PrevDef))
3157 return false;
3158
3159 unsigned BasePos1 = 0, OffsetPos1 = 0;
3160 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
3161 return false;
3162
3163 // Make sure that the instructions do not access the same memory location in
3164 // the next iteration.
3165 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3166 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3167 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3168 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3169 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3170 MF.DeleteMachineInstr(NewMI);
3171 if (!Disjoint)
3172 return false;
3173
3174 // Set the return value once we determine that we return true.
3175 BasePos = BasePosLd;
3176 OffsetPos = OffsetPosLd;
3177 NewBase = PrevReg;
3178 Offset = StoreOffset;
3179 return true;
3180}
3181
3182/// Apply changes to the instruction if needed. The changes are need
3183/// to improve the scheduling and depend up on the final schedule.
3184void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3185 SMSchedule &Schedule) {
3186 SUnit *SU = getSUnit(MI);
3187 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3188 InstrChanges.find(SU);
3189 if (It != InstrChanges.end()) {
3190 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3191 unsigned BasePos, OffsetPos;
3192 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3193 return;
3194 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3195 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3196 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3197 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3198 int BaseStageNum = Schedule.stageScheduled(SU);
3199 int BaseCycleNum = Schedule.cycleScheduled(SU);
3200 if (BaseStageNum < DefStageNum) {
3201 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3202 int OffsetDiff = DefStageNum - BaseStageNum;
3203 if (DefCycleNum < BaseCycleNum) {
3204 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3205 if (OffsetDiff > 0)
3206 --OffsetDiff;
3207 }
3208 int64_t NewOffset =
3209 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3210 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3211 SU->setInstr(NewMI);
3212 MISUnitMap[NewMI] = SU;
3213 NewMIs.insert(NewMI);
3214 }
3215 }
3216}
3217
3218/// Return true for an order or output dependence that is loop carried
3219/// potentially. A dependence is loop carried if the destination defines a valu
3220/// that may be used or defined by the source in a subsequent iteration.
3221bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3222 bool isSucc) {
3223 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3224 Dep.isArtificial())
3225 return false;
3226
3227 if (!SwpPruneLoopCarried)
3228 return true;
3229
3230 if (Dep.getKind() == SDep::Output)
3231 return true;
3232
3233 MachineInstr *SI = Source->getInstr();
3234 MachineInstr *DI = Dep.getSUnit()->getInstr();
3235 if (!isSucc)
3236 std::swap(SI, DI);
3237 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.")((SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."
) ? static_cast<void> (0) : __assert_fail ("SI != nullptr && DI != nullptr && \"Expecting SUnit with an MI.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 3237, __PRETTY_FUNCTION__))
;
3238
3239 // Assume ordered loads and stores may have a loop carried dependence.
3240 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3241 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3242 return true;
3243
3244 // Only chain dependences between a load and store can be loop carried.
3245 if (!DI->mayStore() || !SI->mayLoad())
3246 return false;
3247
3248 unsigned DeltaS, DeltaD;
3249 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3250 return true;
3251
3252 const MachineOperand *BaseOpS, *BaseOpD;
3253 int64_t OffsetS, OffsetD;
3254 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3255 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) ||
3256 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI))
3257 return true;
3258
3259 if (!BaseOpS->isIdenticalTo(*BaseOpD))
3260 return true;
3261
3262 // Check that the base register is incremented by a constant value for each
3263 // iteration.
3264 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
3265 if (!Def || !Def->isPHI())
3266 return true;
3267 unsigned InitVal = 0;
3268 unsigned LoopVal = 0;
3269 getPhiRegs(*Def, BB, InitVal, LoopVal);
3270 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
3271 int D = 0;
3272 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
3273 return true;
3274
3275 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3276 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3277
3278 // This is the main test, which checks the offset values and the loop
3279 // increment value to determine if the accesses may be loop carried.
3280 if (AccessSizeS == MemoryLocation::UnknownSize ||
3281 AccessSizeD == MemoryLocation::UnknownSize)
3282 return true;
3283
3284 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
3285 return true;
3286
3287 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
3288}
3289
3290void SwingSchedulerDAG::postprocessDAG() {
3291 for (auto &M : Mutations)
3292 M->apply(this);
3293}
3294
3295/// Try to schedule the node at the specified StartCycle and continue
3296/// until the node is schedule or the EndCycle is reached. This function
3297/// returns true if the node is scheduled. This routine may search either
3298/// forward or backward for a place to insert the instruction based upon
3299/// the relative values of StartCycle and EndCycle.
3300bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3301 bool forward = true;
3302 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to insert node between "
<< StartCycle << " and " << EndCycle <<
" II: " << II << "\n"; }; } } while (false)
3303 dbgs() << "Trying to insert node between " << StartCycle << " and "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to insert node between "
<< StartCycle << " and " << EndCycle <<
" II: " << II << "\n"; }; } } while (false)
3304 << EndCycle << " II: " << II << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to insert node between "
<< StartCycle << " and " << EndCycle <<
" II: " << II << "\n"; }; } } while (false)
3305 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to insert node between "
<< StartCycle << " and " << EndCycle <<
" II: " << II << "\n"; }; } } while (false)
;
3306 if (StartCycle > EndCycle)
3307 forward = false;
3308
3309 // The terminating condition depends on the direction.
3310 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3311 for (int curCycle = StartCycle; curCycle != termCycle;
3312 forward ? ++curCycle : --curCycle) {
3313
3314 // Add the already scheduled instructions at the specified cycle to the
3315 // DFA.
3316 ProcItinResources.clearResources();
3317 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3318 checkCycle <= LastCycle; checkCycle += II) {
3319 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3320
3321 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3322 E = cycleInstrs.end();
3323 I != E; ++I) {
3324 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3325 continue;
3326 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&((ProcItinResources.canReserveResources(*(*I)->getInstr())
&& "These instructions have already been scheduled."
) ? static_cast<void> (0) : __assert_fail ("ProcItinResources.canReserveResources(*(*I)->getInstr()) && \"These instructions have already been scheduled.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 3327, __PRETTY_FUNCTION__))
3327 "These instructions have already been scheduled.")((ProcItinResources.canReserveResources(*(*I)->getInstr())
&& "These instructions have already been scheduled."
) ? static_cast<void> (0) : __assert_fail ("ProcItinResources.canReserveResources(*(*I)->getInstr()) && \"These instructions have already been scheduled.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 3327, __PRETTY_FUNCTION__))
;
3328 ProcItinResources.reserveResources(*(*I)->getInstr());
3329 }
3330 }
3331 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3332 ProcItinResources.canReserveResources(*SU->getInstr())) {
3333 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
3334 dbgs() << "\tinsert at cycle " << curCycle << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
3335 SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
3336 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
;
3337
3338 ScheduledInstrs[curCycle].push_back(SU);
3339 InstrToCycle.insert(std::make_pair(SU, curCycle));
3340 if (curCycle > LastCycle)
3341 LastCycle = curCycle;
3342 if (curCycle < FirstCycle)
3343 FirstCycle = curCycle;
3344 return true;
3345 }
3346 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
3347 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
3348 SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
3349 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
;
3350 }
3351 return false;
3352}
3353
3354// Return the cycle of the earliest scheduled instruction in the chain.
3355int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3356 SmallPtrSet<SUnit *, 8> Visited;
3357 SmallVector<SDep, 8> Worklist;
3358 Worklist.push_back(Dep);
3359 int EarlyCycle = INT_MAX2147483647;
3360 while (!Worklist.empty()) {
3361 const SDep &Cur = Worklist.pop_back_val();
3362 SUnit *PrevSU = Cur.getSUnit();
3363 if (Visited.count(PrevSU))
3364 continue;
3365 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3366 if (it == InstrToCycle.end())
3367 continue;
3368 EarlyCycle = std::min(EarlyCycle, it->second);
3369 for (const auto &PI : PrevSU->Preds)
3370 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3371 Worklist.push_back(PI);
3372 Visited.insert(PrevSU);
3373 }
3374 return EarlyCycle;
3375}
3376
3377// Return the cycle of the latest scheduled instruction in the chain.
3378int SMSchedule::latestCycleInChain(const SDep &Dep) {
3379 SmallPtrSet<SUnit *, 8> Visited;
3380 SmallVector<SDep, 8> Worklist;
3381 Worklist.push_back(Dep);
3382 int LateCycle = INT_MIN(-2147483647 -1);
3383 while (!Worklist.empty()) {
3384 const SDep &Cur = Worklist.pop_back_val();
3385 SUnit *SuccSU = Cur.getSUnit();
3386 if (Visited.count(SuccSU))
3387 continue;
3388 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3389 if (it == InstrToCycle.end())
3390 continue;
3391 LateCycle = std::max(LateCycle, it->second);
3392 for (const auto &SI : SuccSU->Succs)
3393 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3394 Worklist.push_back(SI);
3395 Visited.insert(SuccSU);
3396 }
3397 return LateCycle;
3398}
3399
3400/// If an instruction has a use that spans multiple iterations, then
3401/// return true. These instructions are characterized by having a back-ege
3402/// to a Phi, which contains a reference to another Phi.
3403static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3404 for (auto &P : SU->Preds)
3405 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3406 for (auto &S : P.getSUnit()->Succs)
3407 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
3408 return P.getSUnit();
3409 return nullptr;
3410}
3411
3412/// Compute the scheduling start slot for the instruction. The start slot
3413/// depends on any predecessor or successor nodes scheduled already.
3414void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3415 int *MinEnd, int *MaxStart, int II,
3416 SwingSchedulerDAG *DAG) {
3417 // Iterate over each instruction that has been scheduled already. The start
3418 // slot computation depends on whether the previously scheduled instruction
3419 // is a predecessor or successor of the specified instruction.
3420 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3421
3422 // Iterate over each instruction in the current cycle.
3423 for (SUnit *I : getInstructions(cycle)) {
3424 // Because we're processing a DAG for the dependences, we recognize
3425 // the back-edge in recurrences by anti dependences.
3426 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3427 const SDep &Dep = SU->Preds[i];
3428 if (Dep.getSUnit() == I) {
3429 if (!DAG->isBackedge(SU, Dep)) {
3430 int EarlyStart = cycle + Dep.getLatency() -
3431 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3432 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3433 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
3434 int End = earliestCycleInChain(Dep) + (II - 1);
3435 *MinEnd = std::min(*MinEnd, End);
3436 }
3437 } else {
3438 int LateStart = cycle - Dep.getLatency() +
3439 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3440 *MinLateStart = std::min(*MinLateStart, LateStart);
3441 }
3442 }
3443 // For instruction that requires multiple iterations, make sure that
3444 // the dependent instruction is not scheduled past the definition.
3445 SUnit *BE = multipleIterations(I, DAG);
3446 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3447 !SU->isPred(I))
3448 *MinLateStart = std::min(*MinLateStart, cycle);
3449 }
3450 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
3451 if (SU->Succs[i].getSUnit() == I) {
3452 const SDep &Dep = SU->Succs[i];
3453 if (!DAG->isBackedge(SU, Dep)) {
3454 int LateStart = cycle - Dep.getLatency() +
3455 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3456 *MinLateStart = std::min(*MinLateStart, LateStart);
3457 if (DAG->isLoopCarriedDep(SU, Dep)) {
3458 int Start = latestCycleInChain(Dep) + 1 - II;
3459 *MaxStart = std::max(*MaxStart, Start);
3460 }
3461 } else {
3462 int EarlyStart = cycle + Dep.getLatency() -
3463 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3464 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3465 }
3466 }
3467 }
3468 }
3469 }
3470}
3471
3472/// Order the instructions within a cycle so that the definitions occur
3473/// before the uses. Returns true if the instruction is added to the start
3474/// of the list, or false if added to the end.
3475void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3476 std::deque<SUnit *> &Insts) {
3477 MachineInstr *MI = SU->getInstr();
3478 bool OrderBeforeUse = false;
3479 bool OrderAfterDef = false;
3480 bool OrderBeforeDef = false;
3481 unsigned MoveDef = 0;
3482 unsigned MoveUse = 0;
3483 int StageInst1 = stageScheduled(SU);
3484
3485 unsigned Pos = 0;
3486 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3487 ++I, ++Pos) {
3488 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3489 MachineOperand &MO = MI->getOperand(i);
3490 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3491 continue;
3492
3493 unsigned Reg = MO.getReg();
3494 unsigned BasePos, OffsetPos;
3495 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3496 if (MI->getOperand(BasePos).getReg() == Reg)
3497 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3498 Reg = NewReg;
3499 bool Reads, Writes;
3500 std::tie(Reads, Writes) =
3501 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3502 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3503 OrderBeforeUse = true;
3504 if (MoveUse == 0)
3505 MoveUse = Pos;
3506 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3507 // Add the instruction after the scheduled instruction.
3508 OrderAfterDef = true;
3509 MoveDef = Pos;
3510 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3511 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3512 OrderBeforeUse = true;
3513 if (MoveUse == 0)
3514 MoveUse = Pos;
3515 } else {
3516 OrderAfterDef = true;
3517 MoveDef = Pos;
3518 }
3519 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3520 OrderBeforeUse = true;
3521 if (MoveUse == 0)
3522 MoveUse = Pos;
3523 if (MoveUse != 0) {
3524 OrderAfterDef = true;
3525 MoveDef = Pos - 1;
3526 }
3527 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3528 // Add the instruction before the scheduled instruction.
3529 OrderBeforeUse = true;
3530 if (MoveUse == 0)
3531 MoveUse = Pos;
3532 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3533 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3534 if (MoveUse == 0) {
3535 OrderBeforeDef = true;
3536 MoveUse = Pos;
3537 }
3538 }
3539 }
3540 // Check for order dependences between instructions. Make sure the source
3541 // is ordered before the destination.
3542 for (auto &S : SU->Succs) {
3543 if (S.getSUnit() != *I)
3544 continue;
3545 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3546 OrderBeforeUse = true;
3547 if (Pos < MoveUse)
3548 MoveUse = Pos;
3549 }
3550 }
3551 for (auto &P : SU->Preds) {
3552 if (P.getSUnit() != *I)
3553 continue;
3554 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3555 OrderAfterDef = true;
3556 MoveDef = Pos;
3557 }
3558 }
3559 }
3560
3561 // A circular dependence.
3562 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3563 OrderBeforeUse = false;
3564
3565 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3566 // to a loop-carried dependence.
3567 if (OrderBeforeDef)
3568 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3569
3570 // The uncommon case when the instruction order needs to be updated because
3571 // there is both a use and def.
3572 if (OrderBeforeUse && OrderAfterDef) {
3573 SUnit *UseSU = Insts.at(MoveUse);
3574 SUnit *DefSU = Insts.at(MoveDef);
3575 if (MoveUse > MoveDef) {
3576 Insts.erase(Insts.begin() + MoveUse);
3577 Insts.erase(Insts.begin() + MoveDef);
3578 } else {
3579 Insts.erase(Insts.begin() + MoveDef);
3580 Insts.erase(Insts.begin() + MoveUse);
3581 }
3582 orderDependence(SSD, UseSU, Insts);
3583 orderDependence(SSD, SU, Insts);
3584 orderDependence(SSD, DefSU, Insts);
3585 return;
3586 }
3587 // Put the new instruction first if there is a use in the list. Otherwise,
3588 // put it at the end of the list.
3589 if (OrderBeforeUse)
3590 Insts.push_front(SU);
3591 else
3592 Insts.push_back(SU);
3593}
3594
3595/// Return true if the scheduled Phi has a loop carried operand.
3596bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3597 if (!Phi.isPHI())
3598 return false;
3599 assert(Phi.isPHI() && "Expecting a Phi.")((Phi.isPHI() && "Expecting a Phi.") ? static_cast<
void> (0) : __assert_fail ("Phi.isPHI() && \"Expecting a Phi.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 3599, __PRETTY_FUNCTION__))
;
3600 SUnit *DefSU = SSD->getSUnit(&Phi);
3601 unsigned DefCycle = cycleScheduled(DefSU);
3602 int DefStage = stageScheduled(DefSU);
3603
3604 unsigned InitVal = 0;
3605 unsigned LoopVal = 0;
3606 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3607 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3608 if (!UseSU)
3609 return true;
3610 if (UseSU->getInstr()->isPHI())
3611 return true;
3612 unsigned LoopCycle = cycleScheduled(UseSU);
3613 int LoopStage = stageScheduled(UseSU);
3614 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
3615}
3616
3617/// Return true if the instruction is a definition that is loop carried
3618/// and defines the use on the next iteration.
3619/// v1 = phi(v2, v3)
3620/// (Def) v3 = op v1
3621/// (MO) = v1
3622/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3623/// register.
3624bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3625 MachineInstr *Def, MachineOperand &MO) {
3626 if (!MO.isReg())
3627 return false;
3628 if (Def->isPHI())
3629 return false;
3630 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3631 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3632 return false;
3633 if (!isLoopCarried(SSD, *Phi))
3634 return false;
3635 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3636 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3637 MachineOperand &DMO = Def->getOperand(i);
3638 if (!DMO.isReg() || !DMO.isDef())
3639 continue;
3640 if (DMO.getReg() == LoopReg)
3641 return true;
3642 }
3643 return false;
3644}
3645
3646// Check if the generated schedule is valid. This function checks if
3647// an instruction that uses a physical register is scheduled in a
3648// different stage than the definition. The pipeliner does not handle
3649// physical register values that may cross a basic block boundary.
3650bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3651 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3652 SUnit &SU = SSD->SUnits[i];
3653 if (!SU.hasPhysRegDefs)
3654 continue;
3655 int StageDef = stageScheduled(&SU);
3656 assert(StageDef != -1 && "Instruction should have been scheduled.")((StageDef != -1 && "Instruction should have been scheduled."
) ? static_cast<void> (0) : __assert_fail ("StageDef != -1 && \"Instruction should have been scheduled.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 3656, __PRETTY_FUNCTION__))
;
3657 for (auto &SI : SU.Succs)
3658 if (SI.isAssignedRegDep())
3659 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
3660 if (stageScheduled(SI.getSUnit()) != StageDef)
3661 return false;
3662 }
3663 return true;
3664}
3665
3666/// A property of the node order in swing-modulo-scheduling is
3667/// that for nodes outside circuits the following holds:
3668/// none of them is scheduled after both a successor and a
3669/// predecessor.
3670/// The method below checks whether the property is met.
3671/// If not, debug information is printed and statistics information updated.
3672/// Note that we do not use an assert statement.
3673/// The reason is that although an invalid node oder may prevent
3674/// the pipeliner from finding a pipelined schedule for arbitrary II,
3675/// it does not lead to the generation of incorrect code.
3676void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3677
3678 // a sorted vector that maps each SUnit to its index in the NodeOrder
3679 typedef std::pair<SUnit *, unsigned> UnitIndex;
3680 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3681
3682 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3683 Indices.push_back(std::make_pair(NodeOrder[i], i));
3684
3685 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3686 return std::get<0>(i1) < std::get<0>(i2);
3687 };
3688
3689 // sort, so that we can perform a binary search
3690 llvm::sort(Indices, CompareKey);
3691
3692 bool Valid = true;
3693 (void)Valid;
3694 // for each SUnit in the NodeOrder, check whether
3695 // it appears after both a successor and a predecessor
3696 // of the SUnit. If this is the case, and the SUnit
3697 // is not part of circuit, then the NodeOrder is not
3698 // valid.
3699 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3700 SUnit *SU = NodeOrder[i];
3701 unsigned Index = i;
3702
3703 bool PredBefore = false;
3704 bool SuccBefore = false;
3705
3706 SUnit *Succ;
3707 SUnit *Pred;
3708 (void)Succ;
3709 (void)Pred;
3710
3711 for (SDep &PredEdge : SU->Preds) {
3712 SUnit *PredSU = PredEdge.getSUnit();
3713 unsigned PredIndex =
3714 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
3715 std::make_pair(PredSU, 0), CompareKey));
3716 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
3717 PredBefore = true;
3718 Pred = PredSU;
3719 break;
3720 }
3721 }
3722
3723 for (SDep &SuccEdge : SU->Succs) {
3724 SUnit *SuccSU = SuccEdge.getSUnit();
3725 unsigned SuccIndex =
3726 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
3727 std::make_pair(SuccSU, 0), CompareKey));
3728 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
3729 SuccBefore = true;
3730 Succ = SuccSU;
3731 break;
3732 }
3733 }
3734
3735 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
3736 // instructions in circuits are allowed to be scheduled
3737 // after both a successor and predecessor.
3738 bool InCircuit = std::any_of(
3739 Circuits.begin(), Circuits.end(),
3740 [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
3741 if (InCircuit)
3742 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "In a circuit, predecessor "
;; } } while (false)
;
3743 else {
3744 Valid = false;
3745 NumNodeOrderIssues++;
3746 LLVM_DEBUG(dbgs() << "Predecessor ";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Predecessor ";; } } while (
false)
;
3747 }
3748 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << Pred->NodeNum << " and successor "
<< Succ->NodeNum << " are scheduled before node "
<< SU->NodeNum << "\n";; } } while (false)
3749 << " are scheduled before node " << SU->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << Pred->NodeNum << " and successor "
<< Succ->NodeNum << " are scheduled before node "
<< SU->NodeNum << "\n";; } } while (false)
3750 << "\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << Pred->NodeNum << " and successor "
<< Succ->NodeNum << " are scheduled before node "
<< SU->NodeNum << "\n";; } } while (false)
;
3751 }
3752 }
3753
3754 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n"
; }; } } while (false)
3755 if (!Valid)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n"
; }; } } while (false)
3756 dbgs() << "Invalid node order found!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n"
; }; } } while (false)
3757 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n"
; }; } } while (false)
;
3758}
3759
3760/// Attempt to fix the degenerate cases when the instruction serialization
3761/// causes the register lifetimes to overlap. For example,
3762/// p' = store_pi(p, b)
3763/// = load p, offset
3764/// In this case p and p' overlap, which means that two registers are needed.
3765/// Instead, this function changes the load to use p' and updates the offset.
3766void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
3767 unsigned OverlapReg = 0;
3768 unsigned NewBaseReg = 0;
3769 for (SUnit *SU : Instrs) {
3770 MachineInstr *MI = SU->getInstr();
3771 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3772 const MachineOperand &MO = MI->getOperand(i);
3773 // Look for an instruction that uses p. The instruction occurs in the
3774 // same cycle but occurs later in the serialized order.
3775 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
3776 // Check that the instruction appears in the InstrChanges structure,
3777 // which contains instructions that can have the offset updated.
3778 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3779 InstrChanges.find(SU);
3780 if (It != InstrChanges.end()) {
3781 unsigned BasePos, OffsetPos;
3782 // Update the base register and adjust the offset.
3783 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
3784 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3785 NewMI->getOperand(BasePos).setReg(NewBaseReg);
3786 int64_t NewOffset =
3787 MI->getOperand(OffsetPos).getImm() - It->second.second;
3788 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3789 SU->setInstr(NewMI);
3790 MISUnitMap[NewMI] = SU;
3791 NewMIs.insert(NewMI);
3792 }
3793 }
3794 OverlapReg = 0;
3795 NewBaseReg = 0;
3796 break;
3797 }
3798 // Look for an instruction of the form p' = op(p), which uses and defines
3799 // two virtual registers that get allocated to the same physical register.
3800 unsigned TiedUseIdx = 0;
3801 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
3802 // OverlapReg is p in the example above.
3803 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
3804 // NewBaseReg is p' in the example above.
3805 NewBaseReg = MI->getOperand(i).getReg();
3806 break;
3807 }
3808 }
3809 }
3810}
3811
3812/// After the schedule has been formed, call this function to combine
3813/// the instructions from the different stages/cycles. That is, this
3814/// function creates a schedule that represents a single iteration.
3815void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3816 // Move all instructions to the first stage from later stages.
3817 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3818 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3819 ++stage) {
3820 std::deque<SUnit *> &cycleInstrs =
3821 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3822 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3823 E = cycleInstrs.rend();
3824 I != E; ++I)
3825 ScheduledInstrs[cycle].push_front(*I);
3826 }
3827 }
3828 // Iterate over the definitions in each instruction, and compute the
3829 // stage difference for each use. Keep the maximum value.
3830 for (auto &I : InstrToCycle) {
3831 int DefStage = stageScheduled(I.first);
3832 MachineInstr *MI = I.first->getInstr();
3833 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3834 MachineOperand &Op = MI->getOperand(i);
3835 if (!Op.isReg() || !Op.isDef())
3836 continue;
3837
3838 unsigned Reg = Op.getReg();
3839 unsigned MaxDiff = 0;
3840 bool PhiIsSwapped = false;
3841 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3842 EI = MRI.use_end();
3843 UI != EI; ++UI) {
3844 MachineOperand &UseOp = *UI;
3845 MachineInstr *UseMI = UseOp.getParent();
3846 SUnit *SUnitUse = SSD->getSUnit(UseMI);
3847 int UseStage = stageScheduled(SUnitUse);
3848 unsigned Diff = 0;
3849 if (UseStage != -1 && UseStage >= DefStage)
3850 Diff = UseStage - DefStage;
3851 if (MI->isPHI()) {
3852 if (isLoopCarried(SSD, *MI))
3853 ++Diff;
3854 else
3855 PhiIsSwapped = true;
3856 }
3857 MaxDiff = std::max(Diff, MaxDiff);
3858 }
3859 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3860 }
3861 }
3862
3863 // Erase all the elements in the later stages. Only one iteration should
3864 // remain in the scheduled list, and it contains all the instructions.
3865 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3866 ScheduledInstrs.erase(cycle);
3867
3868 // Change the registers in instruction as specified in the InstrChanges
3869 // map. We need to use the new registers to create the correct order.
3870 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3871 SUnit *SU = &SSD->SUnits[i];
3872 SSD->applyInstrChange(SU->getInstr(), *this);
3873 }
3874
3875 // Reorder the instructions in each cycle to fix and improve the
3876 // generated code.
3877 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3878 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3879 std::deque<SUnit *> newOrderPhi;
3880 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3881 SUnit *SU = cycleInstrs[i];
3882 if (SU->getInstr()->isPHI())
3883 newOrderPhi.push_back(SU);
3884 }
3885 std::deque<SUnit *> newOrderI;
3886 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3887 SUnit *SU = cycleInstrs[i];
3888 if (!SU->getInstr()->isPHI())
3889 orderDependence(SSD, SU, newOrderI);
3890 }
3891 // Replace the old order with the new order.
3892 cycleInstrs.swap(newOrderPhi);
3893 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
3894 SSD->fixupRegisterOverlaps(cycleInstrs);
3895 }
3896
3897 LLVM_DEBUG(dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dump();; } } while (false)
;
3898}
3899
3900void NodeSet::print(raw_ostream &os) const {
3901 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
3902 << " depth " << MaxDepth << " col " << Colocate << "\n";
3903 for (const auto &I : Nodes)
3904 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
3905 os << "\n";
3906}
3907
3908#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3909/// Print the schedule information to the given output.
3910void SMSchedule::print(raw_ostream &os) const {
3911 // Iterate over each cycle.
3912 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3913 // Iterate over each instruction in the cycle.
3914 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3915 for (SUnit *CI : cycleInstrs->second) {
3916 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3917 os << "(" << CI->NodeNum << ") ";
3918 CI->getInstr()->print(os);
3919 os << "\n";
3920 }
3921 }
3922}
3923
3924/// Utility function used for debugging to print the schedule.
3925LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void SMSchedule::dump() const { print(dbgs()); }
3926LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void NodeSet::dump() const { print(dbgs()); }
3927
3928#endif
3929
3930void ResourceManager::initProcResourceVectors(
3931 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
3932 unsigned ProcResourceID = 0;
3933
3934 // We currently limit the resource kinds to 64 and below so that we can use
3935 // uint64_t for Masks
3936 assert(SM.getNumProcResourceKinds() < 64 &&((SM.getNumProcResourceKinds() < 64 && "Too many kinds of resources, unsupported"
) ? static_cast<void> (0) : __assert_fail ("SM.getNumProcResourceKinds() < 64 && \"Too many kinds of resources, unsupported\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 3937, __PRETTY_FUNCTION__))
3937 "Too many kinds of resources, unsupported")((SM.getNumProcResourceKinds() < 64 && "Too many kinds of resources, unsupported"
) ? static_cast<void> (0) : __assert_fail ("SM.getNumProcResourceKinds() < 64 && \"Too many kinds of resources, unsupported\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/CodeGen/MachinePipeliner.cpp"
, 3937, __PRETTY_FUNCTION__))
;
3938 // Create a unique bitmask for every processor resource unit.
3939 // Skip resource at index 0, since it always references 'InvalidUnit'.
3940 Masks.resize(SM.getNumProcResourceKinds());
3941 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3942 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3943 if (Desc.SubUnitsIdxBegin)
3944 continue;
3945 Masks[I] = 1ULL << ProcResourceID;
3946 ProcResourceID++;
3947 }
3948 // Create a unique bitmask for every processor resource group.
3949 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3950 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3951 if (!Desc.SubUnitsIdxBegin)
3952 continue;
3953 Masks[I] = 1ULL << ProcResourceID;
3954 for (unsigned U = 0; U < Desc.NumUnits; ++U)
3955 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3956 ProcResourceID++;
3957 }
3958 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "ProcResourceDesc:\n"; for
(unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E;
++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; }; } } while (false
)
3959 dbgs() << "ProcResourceDesc:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "ProcResourceDesc:\n"; for
(unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E;
++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; }; } } while (false
)
3960 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "ProcResourceDesc:\n"; for
(unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E;
++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; }; } } while (false
)
3961 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "ProcResourceDesc:\n"; for
(unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E;
++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; }; } } while (false
)
3962 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "ProcResourceDesc:\n"; for
(unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E;
++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; }; } } while (false
)
3963 ProcResource->Name, I, Masks[I], ProcResource->NumUnits);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "ProcResourceDesc:\n"; for
(unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E;
++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; }; } } while (false
)
3964 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "ProcResourceDesc:\n"; for
(unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E;
++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; }; } } while (false
)
3965 dbgs() << " -----------------\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "ProcResourceDesc:\n"; for
(unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E;
++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; }; } } while (false
)
3966 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "ProcResourceDesc:\n"; for
(unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E;
++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; }; } } while (false
)
;
3967}
3968
3969bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
3970
3971 LLVM_DEBUG({ dbgs() << "canReserveResources:\n"; })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "canReserveResources:\n"; }
; } } while (false)
;
3972 if (UseDFA)
3973 return DFAResources->canReserveResources(MID);
3974
3975 unsigned InsnClass = MID->getSchedClass();
3976 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3977 if (!SCDesc->isValid()) {
3978 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseduo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
3979 dbgs() << "No valid Schedule Class Desc for schedClass!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseduo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
3980 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseduo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
3981 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseduo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
;
3982 return true;
3983 }
3984
3985 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3986 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3987 for (; I != E; ++I) {
3988 if (!I->Cycles)
3989 continue;
3990 const MCProcResourceDesc *ProcResource =
3991 SM.getProcResource(I->ProcResourceIdx);
3992 unsigned NumUnits = ProcResource->NumUnits;
3993 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, I->ProcResourceIdx, ProcResourceCount
[I->ProcResourceIdx], NumUnits, I->Cycles); }; } } while
(false)
3994 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, I->ProcResourceIdx, ProcResourceCount
[I->ProcResourceIdx], NumUnits, I->Cycles); }; } } while
(false)
3995 ProcResource->Name, I->ProcResourceIdx,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, I->ProcResourceIdx, ProcResourceCount
[I->ProcResourceIdx], NumUnits, I->Cycles); }; } } while
(false)
3996 ProcResourceCount[I->ProcResourceIdx], NumUnits,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, I->ProcResourceIdx, ProcResourceCount
[I->ProcResourceIdx], NumUnits, I->Cycles); }; } } while
(false)
3997 I->Cycles);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, I->ProcResourceIdx, ProcResourceCount
[I->ProcResourceIdx], NumUnits, I->Cycles); }; } } while
(false)
3998 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, I->ProcResourceIdx, ProcResourceCount
[I->ProcResourceIdx], NumUnits, I->Cycles); }; } } while
(false)
;
3999 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
4000 return false;
4001 }
4002 LLVM_DEBUG(dbgs() << "return true\n\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "return true\n\n";; } } while
(false)
;
4003 return true;
4004}
4005
4006void ResourceManager::reserveResources(const MCInstrDesc *MID) {
4007 LLVM_DEBUG({ dbgs() << "reserveResources:\n"; })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "reserveResources:\n"; }; }
} while (false)
;
4008 if (UseDFA)
4009 return DFAResources->reserveResources(MID);
4010
4011 unsigned InsnClass = MID->getSchedClass();
4012 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
4013 if (!SCDesc->isValid()) {
4014 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseduo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
4015 dbgs() << "No valid Schedule Class Desc for schedClass!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseduo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
4016 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseduo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
4017 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseduo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
;
4018 return;
4019 }
4020 for (const MCWriteProcResEntry &PRE :
4021 make_range(STI->getWriteProcResBegin(SCDesc),
4022 STI->getWriteProcResEnd(SCDesc))) {
4023 if (!PRE.Cycles)
4024 continue;
4025 ++ProcResourceCount[PRE.ProcResourceIdx];
4026 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { const MCProcResourceDesc *ProcResource = SM
.getProcResource(PRE.ProcResourceIdx); dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, PRE.ProcResourceIdx, ProcResourceCount[PRE.ProcResourceIdx
], ProcResource->NumUnits, PRE.Cycles); }; } } while (false
)
4027 const MCProcResourceDesc *ProcResource =do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { const MCProcResourceDesc *ProcResource = SM
.getProcResource(PRE.ProcResourceIdx); dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, PRE.ProcResourceIdx, ProcResourceCount[PRE.ProcResourceIdx
], ProcResource->NumUnits, PRE.Cycles); }; } } while (false
)
4028 SM.getProcResource(PRE.ProcResourceIdx);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { const MCProcResourceDesc *ProcResource = SM
.getProcResource(PRE.ProcResourceIdx); dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, PRE.ProcResourceIdx, ProcResourceCount[PRE.ProcResourceIdx
], ProcResource->NumUnits, PRE.Cycles); }; } } while (false
)
4029 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { const MCProcResourceDesc *ProcResource = SM
.getProcResource(PRE.ProcResourceIdx); dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, PRE.ProcResourceIdx, ProcResourceCount[PRE.ProcResourceIdx
], ProcResource->NumUnits, PRE.Cycles); }; } } while (false
)
4030 ProcResource->Name, PRE.ProcResourceIdx,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { const MCProcResourceDesc *ProcResource = SM
.getProcResource(PRE.ProcResourceIdx); dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, PRE.ProcResourceIdx, ProcResourceCount[PRE.ProcResourceIdx
], ProcResource->NumUnits, PRE.Cycles); }; } } while (false
)
4031 ProcResourceCount[PRE.ProcResourceIdx],do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { const MCProcResourceDesc *ProcResource = SM
.getProcResource(PRE.ProcResourceIdx); dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, PRE.ProcResourceIdx, ProcResourceCount[PRE.ProcResourceIdx
], ProcResource->NumUnits, PRE.Cycles); }; } } while (false
)
4032 ProcResource->NumUnits, PRE.Cycles);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { const MCProcResourceDesc *ProcResource = SM
.getProcResource(PRE.ProcResourceIdx); dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, PRE.ProcResourceIdx, ProcResourceCount[PRE.ProcResourceIdx
], ProcResource->NumUnits, PRE.Cycles); }; } } while (false
)
4033 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { const MCProcResourceDesc *ProcResource = SM
.getProcResource(PRE.ProcResourceIdx); dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, PRE.ProcResourceIdx, ProcResourceCount[PRE.ProcResourceIdx
], ProcResource->NumUnits, PRE.Cycles); }; } } while (false
)
;
4034 }
4035 LLVM_DEBUG({ dbgs() << "reserveResources: done!\n\n"; })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "reserveResources: done!\n\n"
; }; } } while (false)
;
4036}
4037
4038bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
4039 return canReserveResources(&MI.getDesc());
4040}
4041
4042void ResourceManager::reserveResources(const MachineInstr &MI) {
4043 return reserveResources(&MI.getDesc());
4044}
4045
4046void ResourceManager::clearResources() {
4047 if (UseDFA)
4048 return DFAResources->clearResources();
4049 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
4050}
4051