Bug Summary

File:llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
Warning:line 750, column 29
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name MemCpyOptimizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2021-01-16-002530-32805-1 -x c++ /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp

/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp

1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs various transformations related to eliminating memcpy
10// calls, or transforming sets of stores into memset's.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/None.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/iterator_range.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/AssumptionCache.h"
23#include "llvm/Analysis/GlobalsModRef.h"
24#include "llvm/Analysis/Loads.h"
25#include "llvm/Analysis/MemoryDependenceAnalysis.h"
26#include "llvm/Analysis/MemoryLocation.h"
27#include "llvm/Analysis/MemorySSA.h"
28#include "llvm/Analysis/MemorySSAUpdater.h"
29#include "llvm/Analysis/TargetLibraryInfo.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/IR/Argument.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GetElementPtrTypeIterator.h"
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/IRBuilder.h"
41#include "llvm/IR/InstrTypes.h"
42#include "llvm/IR/Instruction.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/Operator.h"
49#include "llvm/IR/PassManager.h"
50#include "llvm/IR/Type.h"
51#include "llvm/IR/User.h"
52#include "llvm/IR/Value.h"
53#include "llvm/InitializePasses.h"
54#include "llvm/Pass.h"
55#include "llvm/Support/Casting.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/Transforms/Scalar.h"
60#include "llvm/Transforms/Utils/Local.h"
61#include <algorithm>
62#include <cassert>
63#include <cstdint>
64#include <utility>
65
66using namespace llvm;
67
68#define DEBUG_TYPE"memcpyopt" "memcpyopt"
69
70static cl::opt<bool>
71 EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(false), cl::Hidden,
72 cl::desc("Use MemorySSA-backed MemCpyOpt."));
73
74STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted")static llvm::Statistic NumMemCpyInstr = {"memcpyopt", "NumMemCpyInstr"
, "Number of memcpy instructions deleted"}
;
75STATISTIC(NumMemSetInfer, "Number of memsets inferred")static llvm::Statistic NumMemSetInfer = {"memcpyopt", "NumMemSetInfer"
, "Number of memsets inferred"}
;
76STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy")static llvm::Statistic NumMoveToCpy = {"memcpyopt", "NumMoveToCpy"
, "Number of memmoves converted to memcpy"}
;
77STATISTIC(NumCpyToSet, "Number of memcpys converted to memset")static llvm::Statistic NumCpyToSet = {"memcpyopt", "NumCpyToSet"
, "Number of memcpys converted to memset"}
;
78STATISTIC(NumCallSlot, "Number of call slot optimizations performed")static llvm::Statistic NumCallSlot = {"memcpyopt", "NumCallSlot"
, "Number of call slot optimizations performed"}
;
79
80namespace {
81
82/// Represents a range of memset'd bytes with the ByteVal value.
83/// This allows us to analyze stores like:
84/// store 0 -> P+1
85/// store 0 -> P+0
86/// store 0 -> P+3
87/// store 0 -> P+2
88/// which sometimes happens with stores to arrays of structs etc. When we see
89/// the first store, we make a range [1, 2). The second store extends the range
90/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
91/// two ranges into [0, 3) which is memset'able.
92struct MemsetRange {
93 // Start/End - A semi range that describes the span that this range covers.
94 // The range is closed at the start and open at the end: [Start, End).
95 int64_t Start, End;
96
97 /// StartPtr - The getelementptr instruction that points to the start of the
98 /// range.
99 Value *StartPtr;
100
101 /// Alignment - The known alignment of the first store.
102 unsigned Alignment;
103
104 /// TheStores - The actual stores that make up this range.
105 SmallVector<Instruction*, 16> TheStores;
106
107 bool isProfitableToUseMemset(const DataLayout &DL) const;
108};
109
110} // end anonymous namespace
111
112bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
113 // If we found more than 4 stores to merge or 16 bytes, use memset.
114 if (TheStores.size() >= 4 || End-Start >= 16) return true;
115
116 // If there is nothing to merge, don't do anything.
117 if (TheStores.size() < 2) return false;
118
119 // If any of the stores are a memset, then it is always good to extend the
120 // memset.
121 for (Instruction *SI : TheStores)
122 if (!isa<StoreInst>(SI))
123 return true;
124
125 // Assume that the code generator is capable of merging pairs of stores
126 // together if it wants to.
127 if (TheStores.size() == 2) return false;
128
129 // If we have fewer than 8 stores, it can still be worthwhile to do this.
130 // For example, merging 4 i8 stores into an i32 store is useful almost always.
131 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
132 // memset will be split into 2 32-bit stores anyway) and doing so can
133 // pessimize the llvm optimizer.
134 //
135 // Since we don't have perfect knowledge here, make some assumptions: assume
136 // the maximum GPR width is the same size as the largest legal integer
137 // size. If so, check to see whether we will end up actually reducing the
138 // number of stores used.
139 unsigned Bytes = unsigned(End-Start);
140 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
141 if (MaxIntSize == 0)
142 MaxIntSize = 1;
143 unsigned NumPointerStores = Bytes / MaxIntSize;
144
145 // Assume the remaining bytes if any are done a byte at a time.
146 unsigned NumByteStores = Bytes % MaxIntSize;
147
148 // If we will reduce the # stores (according to this heuristic), do the
149 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
150 // etc.
151 return TheStores.size() > NumPointerStores+NumByteStores;
152}
153
154namespace {
155
156class MemsetRanges {
157 using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
158
159 /// A sorted list of the memset ranges.
160 SmallVector<MemsetRange, 8> Ranges;
161
162 const DataLayout &DL;
163
164public:
165 MemsetRanges(const DataLayout &DL) : DL(DL) {}
166
167 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
168
169 const_iterator begin() const { return Ranges.begin(); }
170 const_iterator end() const { return Ranges.end(); }
171 bool empty() const { return Ranges.empty(); }
172
173 void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
174 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
175 addStore(OffsetFromFirst, SI);
176 else
177 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
178 }
179
180 void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
181 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
182
183 addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(),
184 SI->getAlign().value(), SI);
185 }
186
187 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
188 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
189 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
190 }
191
192 void addRange(int64_t Start, int64_t Size, Value *Ptr,
193 unsigned Alignment, Instruction *Inst);
194};
195
196} // end anonymous namespace
197
198/// Add a new store to the MemsetRanges data structure. This adds a
199/// new range for the specified store at the specified offset, merging into
200/// existing ranges as appropriate.
201void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
202 unsigned Alignment, Instruction *Inst) {
203 int64_t End = Start+Size;
204
205 range_iterator I = partition_point(
206 Ranges, [=](const MemsetRange &O) { return O.End < Start; });
207
208 // We now know that I == E, in which case we didn't find anything to merge
209 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
210 // to insert a new range. Handle this now.
211 if (I == Ranges.end() || End < I->Start) {
212 MemsetRange &R = *Ranges.insert(I, MemsetRange());
213 R.Start = Start;
214 R.End = End;
215 R.StartPtr = Ptr;
216 R.Alignment = Alignment;
217 R.TheStores.push_back(Inst);
218 return;
219 }
220
221 // This store overlaps with I, add it.
222 I->TheStores.push_back(Inst);
223
224 // At this point, we may have an interval that completely contains our store.
225 // If so, just add it to the interval and return.
226 if (I->Start <= Start && I->End >= End)
227 return;
228
229 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
230 // but is not entirely contained within the range.
231
232 // See if the range extends the start of the range. In this case, it couldn't
233 // possibly cause it to join the prior range, because otherwise we would have
234 // stopped on *it*.
235 if (Start < I->Start) {
236 I->Start = Start;
237 I->StartPtr = Ptr;
238 I->Alignment = Alignment;
239 }
240
241 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
242 // is in or right at the end of I), and that End >= I->Start. Extend I out to
243 // End.
244 if (End > I->End) {
245 I->End = End;
246 range_iterator NextI = I;
247 while (++NextI != Ranges.end() && End >= NextI->Start) {
248 // Merge the range in.
249 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
250 if (NextI->End > I->End)
251 I->End = NextI->End;
252 Ranges.erase(NextI);
253 NextI = I;
254 }
255 }
256}
257
258//===----------------------------------------------------------------------===//
259// MemCpyOptLegacyPass Pass
260//===----------------------------------------------------------------------===//
261
262namespace {
263
264class MemCpyOptLegacyPass : public FunctionPass {
265 MemCpyOptPass Impl;
266
267public:
268 static char ID; // Pass identification, replacement for typeid
269
270 MemCpyOptLegacyPass() : FunctionPass(ID) {
271 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
272 }
273
274 bool runOnFunction(Function &F) override;
275
276private:
277 // This transformation requires dominator postdominator info
278 void getAnalysisUsage(AnalysisUsage &AU) const override {
279 AU.setPreservesCFG();
280 AU.addRequired<AssumptionCacheTracker>();
281 AU.addRequired<DominatorTreeWrapperPass>();
282 AU.addPreserved<DominatorTreeWrapperPass>();
283 AU.addPreserved<GlobalsAAWrapperPass>();
284 AU.addRequired<TargetLibraryInfoWrapperPass>();
285 if (!EnableMemorySSA)
286 AU.addRequired<MemoryDependenceWrapperPass>();
287 AU.addPreserved<MemoryDependenceWrapperPass>();
288 AU.addRequired<AAResultsWrapperPass>();
289 AU.addPreserved<AAResultsWrapperPass>();
290 if (EnableMemorySSA)
291 AU.addRequired<MemorySSAWrapperPass>();
292 AU.addPreserved<MemorySSAWrapperPass>();
293 }
294};
295
296} // end anonymous namespace
297
298char MemCpyOptLegacyPass::ID = 0;
299
300/// The public interface to this file...
301FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
302
303INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",static void *initializeMemCpyOptLegacyPassPassOnce(PassRegistry
&Registry) {
304 false, false)static void *initializeMemCpyOptLegacyPassPassOnce(PassRegistry
&Registry) {
305INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
306INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
307INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)initializeMemoryDependenceWrapperPassPass(Registry);
308INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
309INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
310INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry);
311INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",PassInfo *PI = new PassInfo( "MemCpy Optimization", "memcpyopt"
, &MemCpyOptLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MemCpyOptLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMemCpyOptLegacyPassPassFlag
; void llvm::initializeMemCpyOptLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeMemCpyOptLegacyPassPassFlag
, initializeMemCpyOptLegacyPassPassOnce, std::ref(Registry));
}
312 false, false)PassInfo *PI = new PassInfo( "MemCpy Optimization", "memcpyopt"
, &MemCpyOptLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MemCpyOptLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMemCpyOptLegacyPassPassFlag
; void llvm::initializeMemCpyOptLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeMemCpyOptLegacyPassPassFlag
, initializeMemCpyOptLegacyPassPassOnce, std::ref(Registry));
}
313
314// Check that V is either not accessible by the caller, or unwinding cannot
315// occur between Start and End.
316static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
317 Instruction *End) {
318 assert(Start->getParent() == End->getParent() && "Must be in same block")((Start->getParent() == End->getParent() && "Must be in same block"
) ? static_cast<void> (0) : __assert_fail ("Start->getParent() == End->getParent() && \"Must be in same block\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp"
, 318, __PRETTY_FUNCTION__))
;
319 if (!Start->getFunction()->doesNotThrow() &&
320 !isa<AllocaInst>(getUnderlyingObject(V))) {
321 for (const Instruction &I :
322 make_range(Start->getIterator(), End->getIterator())) {
323 if (I.mayThrow())
324 return true;
325 }
326 }
327 return false;
328}
329
330void MemCpyOptPass::eraseInstruction(Instruction *I) {
331 if (MSSAU)
332 MSSAU->removeMemoryAccess(I);
333 if (MD)
334 MD->removeInstruction(I);
335 I->eraseFromParent();
336}
337
338// Check for mod or ref of Loc between Start and End, excluding both boundaries.
339// Start and End must be in the same block
340static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc,
341 const MemoryUseOrDef *Start,
342 const MemoryUseOrDef *End) {
343 assert(Start->getBlock() == End->getBlock() && "Only local supported")((Start->getBlock() == End->getBlock() && "Only local supported"
) ? static_cast<void> (0) : __assert_fail ("Start->getBlock() == End->getBlock() && \"Only local supported\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp"
, 343, __PRETTY_FUNCTION__))
;
344 for (const MemoryAccess &MA :
345 make_range(++Start->getIterator(), End->getIterator())) {
346 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(),
347 Loc)))
348 return true;
349 }
350 return false;
351}
352
353// Check for mod of Loc between Start and End, excluding both boundaries.
354// Start and End can be in different blocks.
355static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc,
356 const MemoryUseOrDef *Start,
357 const MemoryUseOrDef *End) {
358 // TODO: Only walk until we hit Start.
359 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
360 End->getDefiningAccess(), Loc);
361 return !MSSA->dominates(Clobber, Start);
362}
363
364/// When scanning forward over instructions, we look for some other patterns to
365/// fold away. In particular, this looks for stores to neighboring locations of
366/// memory. If it sees enough consecutive ones, it attempts to merge them
367/// together into a memcpy/memset.
368Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
369 Value *StartPtr,
370 Value *ByteVal) {
371 const DataLayout &DL = StartInst->getModule()->getDataLayout();
372
373 // Okay, so we now have a single store that can be splatable. Scan to find
374 // all subsequent stores of the same value to offset from the same pointer.
375 // Join these together into ranges, so we can decide whether contiguous blocks
376 // are stored.
377 MemsetRanges Ranges(DL);
378
379 BasicBlock::iterator BI(StartInst);
380
381 // Keeps track of the last memory use or def before the insertion point for
382 // the new memset. The new MemoryDef for the inserted memsets will be inserted
383 // after MemInsertPoint. It points to either LastMemDef or to the last user
384 // before the insertion point of the memset, if there are any such users.
385 MemoryUseOrDef *MemInsertPoint = nullptr;
386 // Keeps track of the last MemoryDef between StartInst and the insertion point
387 // for the new memset. This will become the defining access of the inserted
388 // memsets.
389 MemoryDef *LastMemDef = nullptr;
390 for (++BI; !BI->isTerminator(); ++BI) {
391 if (MSSAU) {
392 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
393 MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
394 if (CurrentAcc) {
395 MemInsertPoint = CurrentAcc;
396 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
397 LastMemDef = CurrentDef;
398 }
399 }
400
401 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
402 // If the instruction is readnone, ignore it, otherwise bail out. We
403 // don't even allow readonly here because we don't want something like:
404 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
405 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
406 break;
407 continue;
408 }
409
410 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
411 // If this is a store, see if we can merge it in.
412 if (!NextStore->isSimple()) break;
413
414 Value *StoredVal = NextStore->getValueOperand();
415
416 // Don't convert stores of non-integral pointer types to memsets (which
417 // stores integers).
418 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
419 break;
420
421 // Check to see if this stored value is of the same byte-splattable value.
422 Value *StoredByte = isBytewiseValue(StoredVal, DL);
423 if (isa<UndefValue>(ByteVal) && StoredByte)
424 ByteVal = StoredByte;
425 if (ByteVal != StoredByte)
426 break;
427
428 // Check to see if this store is to a constant offset from the start ptr.
429 Optional<int64_t> Offset =
430 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
431 if (!Offset)
432 break;
433
434 Ranges.addStore(*Offset, NextStore);
435 } else {
436 MemSetInst *MSI = cast<MemSetInst>(BI);
437
438 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
439 !isa<ConstantInt>(MSI->getLength()))
440 break;
441
442 // Check to see if this store is to a constant offset from the start ptr.
443 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
444 if (!Offset)
445 break;
446
447 Ranges.addMemSet(*Offset, MSI);
448 }
449 }
450
451 // If we have no ranges, then we just had a single store with nothing that
452 // could be merged in. This is a very common case of course.
453 if (Ranges.empty())
454 return nullptr;
455
456 // If we had at least one store that could be merged in, add the starting
457 // store as well. We try to avoid this unless there is at least something
458 // interesting as a small compile-time optimization.
459 Ranges.addInst(0, StartInst);
460
461 // If we create any memsets, we put it right before the first instruction that
462 // isn't part of the memset block. This ensure that the memset is dominated
463 // by any addressing instruction needed by the start of the block.
464 IRBuilder<> Builder(&*BI);
465
466 // Now that we have full information about ranges, loop over the ranges and
467 // emit memset's for anything big enough to be worthwhile.
468 Instruction *AMemSet = nullptr;
469 for (const MemsetRange &Range : Ranges) {
470 if (Range.TheStores.size() == 1) continue;
471
472 // If it is profitable to lower this range to memset, do so now.
473 if (!Range.isProfitableToUseMemset(DL))
474 continue;
475
476 // Otherwise, we do want to transform this! Create a new memset.
477 // Get the starting pointer of the block.
478 StartPtr = Range.StartPtr;
479
480 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
481 MaybeAlign(Range.Alignment));
482 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Replace stores:\n"; for (Instruction
*SI : Range.TheStores) dbgs() << *SI << '\n'; dbgs
() << "With: " << *AMemSet << '\n'; } } while
(false)
483 : Range.TheStores) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Replace stores:\n"; for (Instruction
*SI : Range.TheStores) dbgs() << *SI << '\n'; dbgs
() << "With: " << *AMemSet << '\n'; } } while
(false)
484 << *SI << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Replace stores:\n"; for (Instruction
*SI : Range.TheStores) dbgs() << *SI << '\n'; dbgs
() << "With: " << *AMemSet << '\n'; } } while
(false)
485 dbgs() << "With: " << *AMemSet << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Replace stores:\n"; for (Instruction
*SI : Range.TheStores) dbgs() << *SI << '\n'; dbgs
() << "With: " << *AMemSet << '\n'; } } while
(false)
;
486 if (!Range.TheStores.empty())
487 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
488
489 if (MSSAU) {
490 assert(LastMemDef && MemInsertPoint &&((LastMemDef && MemInsertPoint && "Both LastMemDef and MemInsertPoint need to be set"
) ? static_cast<void> (0) : __assert_fail ("LastMemDef && MemInsertPoint && \"Both LastMemDef and MemInsertPoint need to be set\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp"
, 491, __PRETTY_FUNCTION__))
491 "Both LastMemDef and MemInsertPoint need to be set")((LastMemDef && MemInsertPoint && "Both LastMemDef and MemInsertPoint need to be set"
) ? static_cast<void> (0) : __assert_fail ("LastMemDef && MemInsertPoint && \"Both LastMemDef and MemInsertPoint need to be set\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp"
, 491, __PRETTY_FUNCTION__))
;
492 auto *NewDef =
493 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
494 ? MSSAU->createMemoryAccessBefore(
495 AMemSet, LastMemDef, MemInsertPoint)
496 : MSSAU->createMemoryAccessAfter(
497 AMemSet, LastMemDef, MemInsertPoint));
498 MSSAU->insertDef(NewDef, /*RenameUses=*/true);
499 LastMemDef = NewDef;
500 MemInsertPoint = NewDef;
501 }
502
503 // Zap all the stores.
504 for (Instruction *SI : Range.TheStores)
505 eraseInstruction(SI);
506
507 ++NumMemSetInfer;
508 }
509
510 return AMemSet;
511}
512
513// This method try to lift a store instruction before position P.
514// It will lift the store and its argument + that anything that
515// may alias with these.
516// The method returns true if it was successful.
517bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
518 // If the store alias this position, early bail out.
519 MemoryLocation StoreLoc = MemoryLocation::get(SI);
520 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
521 return false;
522
523 // Keep track of the arguments of all instruction we plan to lift
524 // so we can make sure to lift them as well if appropriate.
525 DenseSet<Instruction*> Args;
526 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
527 if (Ptr->getParent() == SI->getParent())
528 Args.insert(Ptr);
529
530 // Instruction to lift before P.
531 SmallVector<Instruction *, 8> ToLift{SI};
532
533 // Memory locations of lifted instructions.
534 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
535
536 // Lifted calls.
537 SmallVector<const CallBase *, 8> Calls;
538
539 const MemoryLocation LoadLoc = MemoryLocation::get(LI);
540
541 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
542 auto *C = &*I;
543
544 // Make sure hoisting does not perform a store that was not guaranteed to
545 // happen.
546 if (!isGuaranteedToTransferExecutionToSuccessor(C))
547 return false;
548
549 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
550
551 bool NeedLift = false;
552 if (Args.erase(C))
553 NeedLift = true;
554 else if (MayAlias) {
555 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
556 return isModOrRefSet(AA->getModRefInfo(C, ML));
557 });
558
559 if (!NeedLift)
560 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
561 return isModOrRefSet(AA->getModRefInfo(C, Call));
562 });
563 }
564
565 if (!NeedLift)
566 continue;
567
568 if (MayAlias) {
569 // Since LI is implicitly moved downwards past the lifted instructions,
570 // none of them may modify its source.
571 if (isModSet(AA->getModRefInfo(C, LoadLoc)))
572 return false;
573 else if (const auto *Call = dyn_cast<CallBase>(C)) {
574 // If we can't lift this before P, it's game over.
575 if (isModOrRefSet(AA->getModRefInfo(P, Call)))
576 return false;
577
578 Calls.push_back(Call);
579 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
580 // If we can't lift this before P, it's game over.
581 auto ML = MemoryLocation::get(C);
582 if (isModOrRefSet(AA->getModRefInfo(P, ML)))
583 return false;
584
585 MemLocs.push_back(ML);
586 } else
587 // We don't know how to lift this instruction.
588 return false;
589 }
590
591 ToLift.push_back(C);
592 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
593 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
594 if (A->getParent() == SI->getParent()) {
595 // Cannot hoist user of P above P
596 if(A == P) return false;
597 Args.insert(A);
598 }
599 }
600 }
601
602 // Find MSSA insertion point. Normally P will always have a corresponding
603 // memory access before which we can insert. However, with non-standard AA
604 // pipelines, there may be a mismatch between AA and MSSA, in which case we
605 // will scan for a memory access before P. In either case, we know for sure
606 // that at least the load will have a memory access.
607 // TODO: Simplify this once P will be determined by MSSA, in which case the
608 // discrepancy can no longer occur.
609 MemoryUseOrDef *MemInsertPoint = nullptr;
610 if (MSSAU) {
611 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
612 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
613 } else {
614 const Instruction *ConstP = P;
615 for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
616 ++LI->getReverseIterator())) {
617 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
618 MemInsertPoint = MA;
619 break;
620 }
621 }
622 }
623 }
624
625 // We made it, we need to lift.
626 for (auto *I : llvm::reverse(ToLift)) {
627 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Lifting " << *I <<
" before " << *P << "\n"; } } while (false)
;
628 I->moveBefore(P);
629 if (MSSAU) {
630 assert(MemInsertPoint && "Must have found insert point")((MemInsertPoint && "Must have found insert point") ?
static_cast<void> (0) : __assert_fail ("MemInsertPoint && \"Must have found insert point\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp"
, 630, __PRETTY_FUNCTION__))
;
631 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
632 MSSAU->moveAfter(MA, MemInsertPoint);
633 MemInsertPoint = MA;
634 }
635 }
636 }
637
638 return true;
639}
640
641bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
642 if (!SI->isSimple()) return false;
23
Calling 'StoreInst::isSimple'
27
Returning from 'StoreInst::isSimple'
28
Taking false branch
643
644 // Avoid merging nontemporal stores since the resulting
645 // memcpy/memset would not be able to preserve the nontemporal hint.
646 // In theory we could teach how to propagate the !nontemporal metadata to
647 // memset calls. However, that change would force the backend to
648 // conservatively expand !nontemporal memset calls back to sequences of
649 // store instructions (effectively undoing the merging).
650 if (SI->getMetadata(LLVMContext::MD_nontemporal))
29
Calling 'Instruction::getMetadata'
33
Returning from 'Instruction::getMetadata'
34
Taking false branch
651 return false;
652
653 const DataLayout &DL = SI->getModule()->getDataLayout();
654
655 Value *StoredVal = SI->getValueOperand();
656
657 // Not all the transforms below are correct for non-integral pointers, bail
658 // until we've audited the individual pieces.
659 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
35
Calling 'DataLayout::isNonIntegralPointerType'
38
Returning from 'DataLayout::isNonIntegralPointerType'
39
Taking false branch
660 return false;
661
662 // Load to store forwarding can be interpreted as memcpy.
663 if (LoadInst *LI
40.1
'LI' is non-null
40.1
'LI' is non-null
40.1
'LI' is non-null
40.1
'LI' is non-null
40.1
'LI' is non-null
40.1
'LI' is non-null
= dyn_cast<LoadInst>(StoredVal)) {
40
Assuming 'StoredVal' is a 'LoadInst'
41
Taking true branch
664 if (LI->isSimple() && LI->hasOneUse() &&
42
Calling 'LoadInst::isSimple'
46
Returning from 'LoadInst::isSimple'
47
Calling 'Value::hasOneUse'
51
Returning from 'Value::hasOneUse'
52
Assuming the condition is true
54
Taking true branch
665 LI->getParent() == SI->getParent()) {
53
Assuming the condition is true
666
667 auto *T = LI->getType();
668 if (T->isAggregateType()) {
55
Calling 'Type::isAggregateType'
59
Returning from 'Type::isAggregateType'
60
Taking false branch
669 MemoryLocation LoadLoc = MemoryLocation::get(LI);
670
671 // We use alias analysis to check if an instruction may store to
672 // the memory we load from in between the load and the store. If
673 // such an instruction is found, we try to promote there instead
674 // of at the store position.
675 // TODO: Can use MSSA for this.
676 Instruction *P = SI;
677 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
678 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
679 P = &I;
680 break;
681 }
682 }
683
684 // We found an instruction that may write to the loaded memory.
685 // We can try to promote at this position instead of the store
686 // position if nothing alias the store memory after this and the store
687 // destination is not in the range.
688 if (P && P != SI) {
689 if (!moveUp(SI, P, LI))
690 P = nullptr;
691 }
692
693 // If a valid insertion position is found, then we can promote
694 // the load/store pair to a memcpy.
695 if (P) {
696 // If we load from memory that may alias the memory we store to,
697 // memmove must be used to preserve semantic. If not, memcpy can
698 // be used.
699 bool UseMemMove = false;
700 if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc))
701 UseMemMove = true;
702
703 uint64_t Size = DL.getTypeStoreSize(T);
704
705 IRBuilder<> Builder(P);
706 Instruction *M;
707 if (UseMemMove)
708 M = Builder.CreateMemMove(
709 SI->getPointerOperand(), SI->getAlign(),
710 LI->getPointerOperand(), LI->getAlign(), Size);
711 else
712 M = Builder.CreateMemCpy(
713 SI->getPointerOperand(), SI->getAlign(),
714 LI->getPointerOperand(), LI->getAlign(), Size);
715
716 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Promoting " << *LI <<
" to " << *SI << " => " << *M << "\n"
; } } while (false)
717 << *M << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Promoting " << *LI <<
" to " << *SI << " => " << *M << "\n"
; } } while (false)
;
718
719 if (MSSAU) {
720 auto *LastDef =
721 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
722 auto *NewAccess =
723 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
724 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
725 }
726
727 eraseInstruction(SI);
728 eraseInstruction(LI);
729 ++NumMemCpyInstr;
730
731 // Make sure we do not invalidate the iterator.
732 BBI = M->getIterator();
733 return true;
734 }
735 }
736
737 // Detect cases where we're performing call slot forwarding, but
738 // happen to be using a load-store pair to implement it, rather than
739 // a memcpy.
740 CallInst *C = nullptr;
741 if (EnableMemorySSA) {
61
Assuming the condition is false
62
Taking false branch
742 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
743 MSSA->getWalker()->getClobberingMemoryAccess(LI))) {
744 // The load most post-dom the call. Limit to the same block for now.
745 // TODO: Support non-local call-slot optimization?
746 if (LoadClobber->getBlock() == SI->getParent())
747 C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
748 }
749 } else {
750 MemDepResult ldep = MD->getDependency(LI);
63
Called C++ object pointer is null
751 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
752 C = dyn_cast<CallInst>(ldep.getInst());
753 }
754
755 if (C) {
756 // Check that nothing touches the dest of the "copy" between
757 // the call and the store.
758 MemoryLocation StoreLoc = MemoryLocation::get(SI);
759 if (EnableMemorySSA) {
760 if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C),
761 MSSA->getMemoryAccess(SI)))
762 C = nullptr;
763 } else {
764 for (BasicBlock::iterator I = --SI->getIterator(),
765 E = C->getIterator();
766 I != E; --I) {
767 if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) {
768 C = nullptr;
769 break;
770 }
771 }
772 }
773 }
774
775 if (C) {
776 bool changed = performCallSlotOptzn(
777 LI, SI, SI->getPointerOperand()->stripPointerCasts(),
778 LI->getPointerOperand()->stripPointerCasts(),
779 DL.getTypeStoreSize(SI->getOperand(0)->getType()),
780 commonAlignment(SI->getAlign(), LI->getAlign()), C);
781 if (changed) {
782 eraseInstruction(SI);
783 eraseInstruction(LI);
784 ++NumMemCpyInstr;
785 return true;
786 }
787 }
788 }
789 }
790
791 // There are two cases that are interesting for this code to handle: memcpy
792 // and memset. Right now we only handle memset.
793
794 // Ensure that the value being stored is something that can be memset'able a
795 // byte at a time like "0" or "-1" or any width, as well as things like
796 // 0xA0A0A0A0 and 0.0.
797 auto *V = SI->getOperand(0);
798 if (Value *ByteVal = isBytewiseValue(V, DL)) {
799 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
800 ByteVal)) {
801 BBI = I->getIterator(); // Don't invalidate iterator.
802 return true;
803 }
804
805 // If we have an aggregate, we try to promote it to memset regardless
806 // of opportunity for merging as it can expose optimization opportunities
807 // in subsequent passes.
808 auto *T = V->getType();
809 if (T->isAggregateType()) {
810 uint64_t Size = DL.getTypeStoreSize(T);
811 IRBuilder<> Builder(SI);
812 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
813 SI->getAlign());
814
815 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Promoting " << *SI <<
" to " << *M << "\n"; } } while (false)
;
816
817 if (MSSAU) {
818 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)))((isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess
(SI))) ? static_cast<void> (0) : __assert_fail ("isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI))"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp"
, 818, __PRETTY_FUNCTION__))
;
819 auto *LastDef =
820 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
821 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
822 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
823 }
824
825 eraseInstruction(SI);
826 NumMemSetInfer++;
827
828 // Make sure we do not invalidate the iterator.
829 BBI = M->getIterator();
830 return true;
831 }
832 }
833
834 return false;
835}
836
837bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
838 // See if there is another memset or store neighboring this memset which
839 // allows us to widen out the memset to do a single larger store.
840 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
841 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
842 MSI->getValue())) {
843 BBI = I->getIterator(); // Don't invalidate iterator.
844 return true;
845 }
846 return false;
847}
848
849/// Takes a memcpy and a call that it depends on,
850/// and checks for the possibility of a call slot optimization by having
851/// the call write its result directly into the destination of the memcpy.
852bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
853 Instruction *cpyStore, Value *cpyDest,
854 Value *cpySrc, uint64_t cpyLen,
855 Align cpyAlign, CallInst *C) {
856 // The general transformation to keep in mind is
857 //
858 // call @func(..., src, ...)
859 // memcpy(dest, src, ...)
860 //
861 // ->
862 //
863 // memcpy(dest, src, ...)
864 // call @func(..., dest, ...)
865 //
866 // Since moving the memcpy is technically awkward, we additionally check that
867 // src only holds uninitialized values at the moment of the call, meaning that
868 // the memcpy can be discarded rather than moved.
869
870 // Lifetime marks shouldn't be operated on.
871 if (Function *F = C->getCalledFunction())
872 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
873 return false;
874
875 // Require that src be an alloca. This simplifies the reasoning considerably.
876 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
877 if (!srcAlloca)
878 return false;
879
880 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
881 if (!srcArraySize)
882 return false;
883
884 const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
885 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
886 srcArraySize->getZExtValue();
887
888 if (cpyLen < srcSize)
889 return false;
890
891 // Check that accessing the first srcSize bytes of dest will not cause a
892 // trap. Otherwise the transform is invalid since it might cause a trap
893 // to occur earlier than it otherwise would.
894 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpyLen),
895 DL, C, DT))
896 return false;
897
898 // Make sure that nothing can observe cpyDest being written early. There are
899 // a number of cases to consider:
900 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of
901 // the transform.
902 // 2. C itself may not access cpyDest (prior to the transform). This is
903 // checked further below.
904 // 3. If cpyDest is accessible to the caller of this function (potentially
905 // captured and not based on an alloca), we need to ensure that we cannot
906 // unwind between C and cpyStore. This is checked here.
907 // 4. If cpyDest is potentially captured, there may be accesses to it from
908 // another thread. In this case, we need to check that cpyStore is
909 // guaranteed to be executed if C is. As it is a non-atomic access, it
910 // renders accesses from other threads undefined.
911 // TODO: This is currently not checked.
912 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore))
913 return false;
914
915 // Check that dest points to memory that is at least as aligned as src.
916 Align srcAlign = srcAlloca->getAlign();
917 bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
918 // If dest is not aligned enough and we can't increase its alignment then
919 // bail out.
920 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
921 return false;
922
923 // Check that src is not accessed except via the call and the memcpy. This
924 // guarantees that it holds only undefined values when passed in (so the final
925 // memcpy can be dropped), that it is not read or written between the call and
926 // the memcpy, and that writing beyond the end of it is undefined.
927 SmallVector<User *, 8> srcUseList(srcAlloca->users());
928 while (!srcUseList.empty()) {
929 User *U = srcUseList.pop_back_val();
930
931 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
932 for (User *UU : U->users())
933 srcUseList.push_back(UU);
934 continue;
935 }
936 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
937 if (!G->hasAllZeroIndices())
938 return false;
939
940 for (User *UU : U->users())
941 srcUseList.push_back(UU);
942 continue;
943 }
944 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
945 if (IT->isLifetimeStartOrEnd())
946 continue;
947
948 if (U != C && U != cpyLoad)
949 return false;
950 }
951
952 // Check that src isn't captured by the called function since the
953 // transformation can cause aliasing issues in that case.
954 for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
955 if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
956 return false;
957
958 // Since we're changing the parameter to the callsite, we need to make sure
959 // that what would be the new parameter dominates the callsite.
960 if (!DT->dominates(cpyDest, C)) {
961 // Support moving a constant index GEP before the call.
962 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
963 if (GEP && GEP->hasAllConstantIndices() &&
964 DT->dominates(GEP->getPointerOperand(), C))
965 GEP->moveBefore(C);
966 else
967 return false;
968 }
969
970 // In addition to knowing that the call does not access src in some
971 // unexpected manner, for example via a global, which we deduce from
972 // the use analysis, we also need to know that it does not sneakily
973 // access dest. We rely on AA to figure this out for us.
974 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
975 // If necessary, perform additional analysis.
976 if (isModOrRefSet(MR))
977 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
978 if (isModOrRefSet(MR))
979 return false;
980
981 // We can't create address space casts here because we don't know if they're
982 // safe for the target.
983 if (cpySrc->getType()->getPointerAddressSpace() !=
984 cpyDest->getType()->getPointerAddressSpace())
985 return false;
986 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
987 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
988 cpySrc->getType()->getPointerAddressSpace() !=
989 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
990 return false;
991
992 // All the checks have passed, so do the transformation.
993 bool changedArgument = false;
994 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
995 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
996 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
997 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
998 cpyDest->getName(), C);
999 changedArgument = true;
1000 if (C->getArgOperand(ArgI)->getType() == Dest->getType())
1001 C->setArgOperand(ArgI, Dest);
1002 else
1003 C->setArgOperand(ArgI, CastInst::CreatePointerCast(
1004 Dest, C->getArgOperand(ArgI)->getType(),
1005 Dest->getName(), C));
1006 }
1007
1008 if (!changedArgument)
1009 return false;
1010
1011 // If the destination wasn't sufficiently aligned then increase its alignment.
1012 if (!isDestSufficientlyAligned) {
1013 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!")((isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"
) ? static_cast<void> (0) : __assert_fail ("isa<AllocaInst>(cpyDest) && \"Can only increase alloca alignment!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp"
, 1013, __PRETTY_FUNCTION__))
;
1014 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1015 }
1016
1017 // Drop any cached information about the call, because we may have changed
1018 // its dependence information by changing its parameter.
1019 if (MD)
1020 MD->removeInstruction(C);
1021
1022 // Update AA metadata
1023 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
1024 // handled here, but combineMetadata doesn't support them yet
1025 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1026 LLVMContext::MD_noalias,
1027 LLVMContext::MD_invariant_group,
1028 LLVMContext::MD_access_group};
1029 combineMetadata(C, cpyLoad, KnownIDs, true);
1030
1031 ++NumCallSlot;
1032 return true;
1033}
1034
1035/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1036/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1037bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1038 MemCpyInst *MDep) {
1039 // We can only transforms memcpy's where the dest of one is the source of the
1040 // other.
1041 if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1042 return false;
1043
1044 // If dep instruction is reading from our current input, then it is a noop
1045 // transfer and substituting the input won't change this instruction. Just
1046 // ignore the input and let someone else zap MDep. This handles cases like:
1047 // memcpy(a <- a)
1048 // memcpy(b <- a)
1049 if (M->getSource() == MDep->getSource())
1050 return false;
1051
1052 // Second, the length of the memcpy's must be the same, or the preceding one
1053 // must be larger than the following one.
1054 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1055 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1056 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1057 return false;
1058
1059 // Verify that the copied-from memory doesn't change in between the two
1060 // transfers. For example, in:
1061 // memcpy(a <- b)
1062 // *b = 42;
1063 // memcpy(c <- a)
1064 // It would be invalid to transform the second memcpy into memcpy(c <- b).
1065 //
1066 // TODO: If the code between M and MDep is transparent to the destination "c",
1067 // then we could still perform the xform by moving M up to the first memcpy.
1068 if (EnableMemorySSA) {
1069 // TODO: It would be sufficient to check the MDep source up to the memcpy
1070 // size of M, rather than MDep.
1071 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1072 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
1073 return false;
1074 } else {
1075 // NOTE: This is conservative, it will stop on any read from the source loc,
1076 // not just the defining memcpy.
1077 MemDepResult SourceDep =
1078 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
1079 M->getIterator(), M->getParent());
1080 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1081 return false;
1082 }
1083
1084 // If the dest of the second might alias the source of the first, then the
1085 // source and dest might overlap. We still want to eliminate the intermediate
1086 // value, but we have to generate a memmove instead of memcpy.
1087 bool UseMemMove = false;
1088 if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1089 MemoryLocation::getForSource(MDep)))
1090 UseMemMove = true;
1091
1092 // If all checks passed, then we can transform M.
1093 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
<< *MDep << '\n' << *M << '\n'; } } while
(false)
1094 << *MDep << '\n' << *M << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
<< *MDep << '\n' << *M << '\n'; } } while
(false)
;
1095
1096 // TODO: Is this worth it if we're creating a less aligned memcpy? For
1097 // example we could be moving from movaps -> movq on x86.
1098 IRBuilder<> Builder(M);
1099 Instruction *NewM;
1100 if (UseMemMove)
1101 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1102 MDep->getRawSource(), MDep->getSourceAlign(),
1103 M->getLength(), M->isVolatile());
1104 else
1105 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1106 MDep->getRawSource(), MDep->getSourceAlign(),
1107 M->getLength(), M->isVolatile());
1108
1109 if (MSSAU) {
1110 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)))((isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess
(M))) ? static_cast<void> (0) : __assert_fail ("isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp"
, 1110, __PRETTY_FUNCTION__))
;
1111 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1112 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1113 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1114 }
1115
1116 // Remove the instruction we're replacing.
1117 eraseInstruction(M);
1118 ++NumMemCpyInstr;
1119 return true;
1120}
1121
1122/// We've found that the (upward scanning) memory dependence of \p MemCpy is
1123/// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
1124/// weren't copied over by \p MemCpy.
1125///
1126/// In other words, transform:
1127/// \code
1128/// memset(dst, c, dst_size);
1129/// memcpy(dst, src, src_size);
1130/// \endcode
1131/// into:
1132/// \code
1133/// memcpy(dst, src, src_size);
1134/// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1135/// \endcode
1136bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1137 MemSetInst *MemSet) {
1138 // We can only transform memset/memcpy with the same destination.
1139 if (MemSet->getDest() != MemCpy->getDest())
1140 return false;
1141
1142 // Check that src and dst of the memcpy aren't the same. While memcpy
1143 // operands cannot partially overlap, exact equality is allowed.
1144 if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(),
1145 LocationSize::precise(1)),
1146 MemoryLocation(MemCpy->getDest(),
1147 LocationSize::precise(1))))
1148 return false;
1149
1150 if (EnableMemorySSA) {
1151 // We know that dst up to src_size is not written. We now need to make sure
1152 // that dst up to dst_size is not accessed. (If we did not move the memset,
1153 // checking for reads would be sufficient.)
1154 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet),
1155 MSSA->getMemoryAccess(MemSet),
1156 MSSA->getMemoryAccess(MemCpy))) {
1157 return false;
1158 }
1159 } else {
1160 // We have already checked that dst up to src_size is not accessed. We
1161 // need to make sure that there are no accesses up to dst_size either.
1162 MemDepResult DstDepInfo = MD->getPointerDependencyFrom(
1163 MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(),
1164 MemCpy->getParent());
1165 if (DstDepInfo.getInst() != MemSet)
1166 return false;
1167 }
1168
1169 // Use the same i8* dest as the memcpy, killing the memset dest if different.
1170 Value *Dest = MemCpy->getRawDest();
1171 Value *DestSize = MemSet->getLength();
1172 Value *SrcSize = MemCpy->getLength();
1173
1174 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1175 return false;
1176
1177 // By default, create an unaligned memset.
1178 unsigned Align = 1;
1179 // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1180 // of the sum.
1181 const unsigned DestAlign =
1182 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1183 if (DestAlign > 1)
1184 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1185 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1186
1187 IRBuilder<> Builder(MemCpy);
1188
1189 // If the sizes have different types, zext the smaller one.
1190 if (DestSize->getType() != SrcSize->getType()) {
1191 if (DestSize->getType()->getIntegerBitWidth() >
1192 SrcSize->getType()->getIntegerBitWidth())
1193 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1194 else
1195 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1196 }
1197
1198 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1199 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1200 Value *MemsetLen = Builder.CreateSelect(
1201 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1202 Instruction *NewMemSet = Builder.CreateMemSet(
1203 Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
1204 SrcSize),
1205 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1206
1207 if (MSSAU) {
1208 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&((isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess
(MemCpy)) && "MemCpy must be a MemoryDef") ? static_cast
<void> (0) : __assert_fail ("isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && \"MemCpy must be a MemoryDef\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp"
, 1209, __PRETTY_FUNCTION__))
1209 "MemCpy must be a MemoryDef")((isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess
(MemCpy)) && "MemCpy must be a MemoryDef") ? static_cast
<void> (0) : __assert_fail ("isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && \"MemCpy must be a MemoryDef\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp"
, 1209, __PRETTY_FUNCTION__))
;
1210 // The new memset is inserted after the memcpy, but it is known that its
1211 // defining access is the memset about to be removed which immediately
1212 // precedes the memcpy.
1213 auto *LastDef =
1214 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1215 auto *NewAccess = MSSAU->createMemoryAccessBefore(
1216 NewMemSet, LastDef->getDefiningAccess(), LastDef);
1217 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1218 }
1219
1220 eraseInstruction(MemSet);
1221 return true;
1222}
1223
1224/// Determine whether the instruction has undefined content for the given Size,
1225/// either because it was freshly alloca'd or started its lifetime.
1226static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1227 if (isa<AllocaInst>(I))
1228 return true;
1229
1230 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1231 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1232 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1233 if (LTSize->getZExtValue() >= Size->getZExtValue())
1234 return true;
1235
1236 return false;
1237}
1238
1239static bool hasUndefContentsMSSA(MemorySSA *MSSA, AliasAnalysis *AA, Value *V,
1240 MemoryDef *Def, ConstantInt *Size) {
1241 if (MSSA->isLiveOnEntryDef(Def))
1242 return isa<AllocaInst>(getUnderlyingObject(V));
1243
1244 if (IntrinsicInst *II =
1245 dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1246 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1247 ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0));
1248 if (AA->isMustAlias(V, II->getArgOperand(1)) &&
1249 LTSize->getZExtValue() >= Size->getZExtValue())
1250 return true;
1251 }
1252 }
1253
1254 return false;
1255}
1256
1257/// Transform memcpy to memset when its source was just memset.
1258/// In other words, turn:
1259/// \code
1260/// memset(dst1, c, dst1_size);
1261/// memcpy(dst2, dst1, dst2_size);
1262/// \endcode
1263/// into:
1264/// \code
1265/// memset(dst1, c, dst1_size);
1266/// memset(dst2, c, dst2_size);
1267/// \endcode
1268/// When dst2_size <= dst1_size.
1269///
1270/// The \p MemCpy must have a Constant length.
1271bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1272 MemSetInst *MemSet) {
1273 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1274 // memcpying from the same address. Otherwise it is hard to reason about.
1275 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1276 return false;
1277
1278 // A known memset size is required.
1279 ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1280 if (!MemSetSize)
1281 return false;
1282
1283 // Make sure the memcpy doesn't read any more than what the memset wrote.
1284 // Don't worry about sizes larger than i64.
1285 ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1286 if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1287 // If the memcpy is larger than the memset, but the memory was undef prior
1288 // to the memset, we can just ignore the tail. Technically we're only
1289 // interested in the bytes from MemSetSize..CopySize here, but as we can't
1290 // easily represent this location, we use the full 0..CopySize range.
1291 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1292 bool CanReduceSize = false;
1293 if (EnableMemorySSA) {
1294 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
1295 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1296 MemSetAccess->getDefiningAccess(), MemCpyLoc);
1297 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1298 if (hasUndefContentsMSSA(MSSA, AA, MemCpy->getSource(), MD, CopySize))
1299 CanReduceSize = true;
1300 } else {
1301 MemDepResult DepInfo = MD->getPointerDependencyFrom(
1302 MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1303 if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1304 CanReduceSize = true;
1305 }
1306
1307 if (!CanReduceSize)
1308 return false;
1309 CopySize = MemSetSize;
1310 }
1311
1312 IRBuilder<> Builder(MemCpy);
1313 Instruction *NewM =
1314 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1315 CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1316 if (MSSAU) {
1317 auto *LastDef =
1318 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1319 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1320 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1321 }
1322
1323 return true;
1324}
1325
1326/// Perform simplification of memcpy's. If we have memcpy A
1327/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1328/// B to be a memcpy from X to Z (or potentially a memmove, depending on
1329/// circumstances). This allows later passes to remove the first memcpy
1330/// altogether.
1331bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1332 // We can only optimize non-volatile memcpy's.
1333 if (M->isVolatile()) return false;
1334
1335 // If the source and destination of the memcpy are the same, then zap it.
1336 if (M->getSource() == M->getDest()) {
1337 ++BBI;
1338 eraseInstruction(M);
1339 return true;
1340 }
1341
1342 // If copying from a constant, try to turn the memcpy into a memset.
1343 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1344 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1345 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1346 M->getModule()->getDataLayout())) {
1347 IRBuilder<> Builder(M);
1348 Instruction *NewM =
1349 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1350 MaybeAlign(M->getDestAlignment()), false);
1351 if (MSSAU) {
1352 auto *LastDef =
1353 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1354 auto *NewAccess =
1355 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1356 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1357 }
1358
1359 eraseInstruction(M);
1360 ++NumCpyToSet;
1361 return true;
1362 }
1363
1364 if (EnableMemorySSA) {
1365 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1366 MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA);
1367 MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1368 const MemoryAccess *DestClobber =
1369 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc);
1370
1371 // Try to turn a partially redundant memset + memcpy into
1372 // memcpy + smaller memset. We don't need the memcpy size for this.
1373 // The memcpy most post-dom the memset, so limit this to the same basic
1374 // block. A non-local generalization is likely not worthwhile.
1375 if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1376 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1377 if (DestClobber->getBlock() == M->getParent())
1378 if (processMemSetMemCpyDependence(M, MDep))
1379 return true;
1380
1381 // The optimizations after this point require the memcpy size.
1382 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1383 if (!CopySize) return false;
1384
1385 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1386 AnyClobber, MemoryLocation::getForSource(M));
1387
1388 // There are four possible optimizations we can do for memcpy:
1389 // a) memcpy-memcpy xform which exposes redundance for DSE.
1390 // b) call-memcpy xform for return slot optimization.
1391 // c) memcpy from freshly alloca'd space or space that has just started
1392 // its lifetime copies undefined data, and we can therefore eliminate
1393 // the memcpy in favor of the data that was already at the destination.
1394 // d) memcpy from a just-memset'd source can be turned into memset.
1395 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1396 if (Instruction *MI = MD->getMemoryInst()) {
1397 if (auto *C = dyn_cast<CallInst>(MI)) {
1398 // The memcpy must post-dom the call. Limit to the same block for now.
1399 // Additionally, we need to ensure that there are no accesses to dest
1400 // between the call and the memcpy. Accesses to src will be checked
1401 // by performCallSlotOptzn().
1402 // TODO: Support non-local call-slot optimization?
1403 if (C->getParent() == M->getParent() &&
1404 !accessedBetween(*AA, DestLoc, MD, MA)) {
1405 // FIXME: Can we pass in either of dest/src alignment here instead
1406 // of conservatively taking the minimum?
1407 Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1408 M->getSourceAlign().valueOrOne());
1409 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1410 CopySize->getZExtValue(), Alignment, C)) {
1411 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Performed call slot optimization:\n"
<< " call: " << *C << "\n" << " memcpy: "
<< *M << "\n"; } } while (false)
1412 << " call: " << *C << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Performed call slot optimization:\n"
<< " call: " << *C << "\n" << " memcpy: "
<< *M << "\n"; } } while (false)
1413 << " memcpy: " << *M << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Performed call slot optimization:\n"
<< " call: " << *C << "\n" << " memcpy: "
<< *M << "\n"; } } while (false)
;
1414 eraseInstruction(M);
1415 ++NumMemCpyInstr;
1416 return true;
1417 }
1418 }
1419 }
1420 if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1421 return processMemCpyMemCpyDependence(M, MDep);
1422 if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1423 if (performMemCpyToMemSetOptzn(M, MDep)) {
1424 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Converted memcpy to memset\n"
; } } while (false)
;
1425 eraseInstruction(M);
1426 ++NumCpyToSet;
1427 return true;
1428 }
1429 }
1430 }
1431
1432 if (hasUndefContentsMSSA(MSSA, AA, M->getSource(), MD, CopySize)) {
1433 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "Removed memcpy from undef\n"
; } } while (false)
;
1434 eraseInstruction(M);
1435 ++NumMemCpyInstr;
1436 return true;
1437 }
1438 }
1439 } else {
1440 MemDepResult DepInfo = MD->getDependency(M);
1441
1442 // Try to turn a partially redundant memset + memcpy into
1443 // memcpy + smaller memset. We don't need the memcpy size for this.
1444 if (DepInfo.isClobber())
1445 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1446 if (processMemSetMemCpyDependence(M, MDep))
1447 return true;
1448
1449 // The optimizations after this point require the memcpy size.
1450 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1451 if (!CopySize) return false;
1452
1453 // There are four possible optimizations we can do for memcpy:
1454 // a) memcpy-memcpy xform which exposes redundance for DSE.
1455 // b) call-memcpy xform for return slot optimization.
1456 // c) memcpy from freshly alloca'd space or space that has just started
1457 // its lifetime copies undefined data, and we can therefore eliminate
1458 // the memcpy in favor of the data that was already at the destination.
1459 // d) memcpy from a just-memset'd source can be turned into memset.
1460 if (DepInfo.isClobber()) {
1461 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1462 // FIXME: Can we pass in either of dest/src alignment here instead
1463 // of conservatively taking the minimum?
1464 Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1465 M->getSourceAlign().valueOrOne());
1466 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1467 CopySize->getZExtValue(), Alignment, C)) {
1468 eraseInstruction(M);
1469 ++NumMemCpyInstr;
1470 return true;
1471 }
1472 }
1473 }
1474
1475 MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1476 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1477 SrcLoc, true, M->getIterator(), M->getParent());
1478
1479 if (SrcDepInfo.isClobber()) {
1480 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1481 return processMemCpyMemCpyDependence(M, MDep);
1482 } else if (SrcDepInfo.isDef()) {
1483 if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1484 eraseInstruction(M);
1485 ++NumMemCpyInstr;
1486 return true;
1487 }
1488 }
1489
1490 if (SrcDepInfo.isClobber())
1491 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1492 if (performMemCpyToMemSetOptzn(M, MDep)) {
1493 eraseInstruction(M);
1494 ++NumCpyToSet;
1495 return true;
1496 }
1497 }
1498
1499 return false;
1500}
1501
1502/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1503/// not to alias.
1504bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1505 if (!TLI->has(LibFunc_memmove))
1506 return false;
1507
1508 // See if the pointers alias.
1509 if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1510 MemoryLocation::getForSource(M)))
1511 return false;
1512
1513 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *Mdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: "
<< *M << "\n"; } } while (false)
1514 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: "
<< *M << "\n"; } } while (false)
;
1515
1516 // If not, then we know we can transform this.
1517 Type *ArgTys[3] = { M->getRawDest()->getType(),
1518 M->getRawSource()->getType(),
1519 M->getLength()->getType() };
1520 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1521 Intrinsic::memcpy, ArgTys));
1522
1523 // For MemorySSA nothing really changes (except that memcpy may imply stricter
1524 // aliasing guarantees).
1525
1526 // MemDep may have over conservative information about this instruction, just
1527 // conservatively flush it from the cache.
1528 if (MD)
1529 MD->removeInstruction(M);
1530
1531 ++NumMoveToCpy;
1532 return true;
1533}
1534
1535/// This is called on every byval argument in call sites.
1536bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1537 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1538 // Find out what feeds this byval argument.
1539 Value *ByValArg = CB.getArgOperand(ArgNo);
1540 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1541 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1542 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1543 MemCpyInst *MDep = nullptr;
1544 if (EnableMemorySSA) {
1545 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1546 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1547 CallAccess->getDefiningAccess(), Loc);
1548 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1549 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1550 } else {
1551 MemDepResult DepInfo = MD->getPointerDependencyFrom(
1552 Loc, true, CB.getIterator(), CB.getParent());
1553 if (!DepInfo.isClobber())
1554 return false;
1555 MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1556 }
1557
1558 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
1559 // a memcpy, see if we can byval from the source of the memcpy instead of the
1560 // result.
1561 if (!MDep || MDep->isVolatile() ||
1562 ByValArg->stripPointerCasts() != MDep->getDest())
1563 return false;
1564
1565 // The length of the memcpy must be larger or equal to the size of the byval.
1566 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1567 if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1568 return false;
1569
1570 // Get the alignment of the byval. If the call doesn't specify the alignment,
1571 // then it is some target specific value that we can't know.
1572 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1573 if (!ByValAlign) return false;
1574
1575 // If it is greater than the memcpy, then we check to see if we can force the
1576 // source of the memcpy to the alignment we need. If we fail, we bail out.
1577 MaybeAlign MemDepAlign = MDep->getSourceAlign();
1578 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1579 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1580 DT) < *ByValAlign)
1581 return false;
1582
1583 // The address space of the memcpy source must match the byval argument
1584 if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1585 ByValArg->getType()->getPointerAddressSpace())
1586 return false;
1587
1588 // Verify that the copied-from memory doesn't change in between the memcpy and
1589 // the byval call.
1590 // memcpy(a <- b)
1591 // *b = 42;
1592 // foo(*a)
1593 // It would be invalid to transform the second memcpy into foo(*b).
1594 if (EnableMemorySSA) {
1595 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1596 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
1597 return false;
1598 } else {
1599 // NOTE: This is conservative, it will stop on any read from the source loc,
1600 // not just the defining memcpy.
1601 MemDepResult SourceDep = MD->getPointerDependencyFrom(
1602 MemoryLocation::getForSource(MDep), false,
1603 CB.getIterator(), MDep->getParent());
1604 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1605 return false;
1606 }
1607
1608 Value *TmpCast = MDep->getSource();
1609 if (MDep->getSource()->getType() != ByValArg->getType()) {
1610 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1611 "tmpcast", &CB);
1612 // Set the tmpcast's DebugLoc to MDep's
1613 TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1614 TmpCast = TmpBitCast;
1615 }
1616
1617 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
<< " " << *MDep << "\n" << " " <<
CB << "\n"; } } while (false)
1618 << " " << *MDep << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
<< " " << *MDep << "\n" << " " <<
CB << "\n"; } } while (false)
1619 << " " << CB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memcpyopt")) { dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
<< " " << *MDep << "\n" << " " <<
CB << "\n"; } } while (false)
;
1620
1621 // Otherwise we're good! Update the byval argument.
1622 CB.setArgOperand(ArgNo, TmpCast);
1623 ++NumMemCpyInstr;
1624 return true;
1625}
1626
1627/// Executes one iteration of MemCpyOptPass.
1628bool MemCpyOptPass::iterateOnFunction(Function &F) {
1629 bool MadeChange = false;
1630
1631 // Walk all instruction in the function.
1632 for (BasicBlock &BB : F) {
1633 // Skip unreachable blocks. For example processStore assumes that an
1634 // instruction in a BB can't be dominated by a later instruction in the
1635 // same BB (which is a scenario that can happen for an unreachable BB that
1636 // has itself as a predecessor).
1637 if (!DT->isReachableFromEntry(&BB))
17
Assuming the condition is false
18
Taking false branch
1638 continue;
1639
1640 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
19
Loop condition is true. Entering loop body
1641 // Avoid invalidating the iterator.
1642 Instruction *I = &*BI++;
1643
1644 bool RepeatInstruction = false;
1645
1646 if (StoreInst *SI
20.1
'SI' is non-null
20.1
'SI' is non-null
20.1
'SI' is non-null
20.1
'SI' is non-null
20.1
'SI' is non-null
20.1
'SI' is non-null
= dyn_cast<StoreInst>(I))
20
Assuming 'I' is a 'StoreInst'
21
Taking true branch
1647 MadeChange |= processStore(SI, BI);
22
Calling 'MemCpyOptPass::processStore'
1648 else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1649 RepeatInstruction = processMemSet(M, BI);
1650 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1651 RepeatInstruction = processMemCpy(M, BI);
1652 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1653 RepeatInstruction = processMemMove(M);
1654 else if (auto *CB = dyn_cast<CallBase>(I)) {
1655 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1656 if (CB->isByValArgument(i))
1657 MadeChange |= processByValArgument(*CB, i);
1658 }
1659
1660 // Reprocess the instruction if desired.
1661 if (RepeatInstruction) {
1662 if (BI != BB.begin())
1663 --BI;
1664 MadeChange = true;
1665 }
1666 }
1667 }
1668
1669 return MadeChange;
1670}
1671
1672PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1673 auto *MD = !EnableMemorySSA ? &AM.getResult<MemoryDependenceAnalysis>(F)
1674 : AM.getCachedResult<MemoryDependenceAnalysis>(F);
1675 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1676 auto *AA = &AM.getResult<AAManager>(F);
1677 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1678 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1679 auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F)
1680 : AM.getCachedResult<MemorySSAAnalysis>(F);
1681
1682 bool MadeChange =
1683 runImpl(F, MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr);
1684 if (!MadeChange)
1685 return PreservedAnalyses::all();
1686
1687 PreservedAnalyses PA;
1688 PA.preserveSet<CFGAnalyses>();
1689 PA.preserve<GlobalsAA>();
1690 if (MD)
1691 PA.preserve<MemoryDependenceAnalysis>();
1692 if (MSSA)
1693 PA.preserve<MemorySSAAnalysis>();
1694 return PA;
1695}
1696
1697bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_,
1698 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
1699 AssumptionCache *AC_, DominatorTree *DT_,
1700 MemorySSA *MSSA_) {
1701 bool MadeChange = false;
1702 MD = MD_;
12
Null pointer value stored to field 'MD'
1703 TLI = TLI_;
1704 AA = AA_;
1705 AC = AC_;
1706 DT = DT_;
1707 MSSA = MSSA_;
1708 MemorySSAUpdater MSSAU_(MSSA_);
1709 MSSAU = MSSA_
12.1
'MSSA_' is null
12.1
'MSSA_' is null
12.1
'MSSA_' is null
12.1
'MSSA_' is null
12.1
'MSSA_' is null
12.1
'MSSA_' is null
? &MSSAU_ : nullptr;
13
'?' condition is false
1710 // If we don't have at least memset and memcpy, there is little point of doing
1711 // anything here. These are required by a freestanding implementation, so if
1712 // even they are disabled, there is no point in trying hard.
1713 if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
14
Taking false branch
1714 return false;
1715
1716 while (true) {
15
Loop condition is true. Entering loop body
1717 if (!iterateOnFunction(F))
16
Calling 'MemCpyOptPass::iterateOnFunction'
1718 break;
1719 MadeChange = true;
1720 }
1721
1722 if (MSSA_ && VerifyMemorySSA)
1723 MSSA_->verifyMemorySSA();
1724
1725 MD = nullptr;
1726 return MadeChange;
1727}
1728
1729/// This is the main transformation entry point for a function.
1730bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1731 if (skipFunction(F))
1
Assuming the condition is false
2
Taking false branch
1732 return false;
1733
1734 auto *MDWP = !EnableMemorySSA
3
Assuming the condition is false
4
'?' condition is false
1735 ? &getAnalysis<MemoryDependenceWrapperPass>()
1736 : getAnalysisIfAvailable<MemoryDependenceWrapperPass>();
1737 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1738 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1739 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1740 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1741 auto *MSSAWP = EnableMemorySSA
5
Assuming the condition is false
6
'?' condition is false
1742 ? &getAnalysis<MemorySSAWrapperPass>()
1743 : getAnalysisIfAvailable<MemorySSAWrapperPass>();
1744
1745 return Impl.runImpl(F, MDWP ? & MDWP->getMemDep() : nullptr, TLI, AA, AC, DT,
7
Assuming 'MDWP' is null
8
'?' condition is false
10
Passing null pointer value via 2nd parameter 'MD_'
11
Calling 'MemCpyOptPass::runImpl'
1746 MSSAWP
8.1
'MSSAWP' is null
8.1
'MSSAWP' is null
8.1
'MSSAWP' is null
8.1
'MSSAWP' is null
8.1
'MSSAWP' is null
8.1
'MSSAWP' is null
? &MSSAWP->getMSSA() : nullptr)
;
9
'?' condition is false
1747}

/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/OperandTraits.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Use.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/ErrorHandling.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <iterator>
48
49namespace llvm {
50
51class APInt;
52class ConstantInt;
53class DataLayout;
54class LLVMContext;
55
56//===----------------------------------------------------------------------===//
57// AllocaInst Class
58//===----------------------------------------------------------------------===//
59
60/// an instruction to allocate memory on the stack
61class AllocaInst : public UnaryInstruction {
62 Type *AllocatedType;
63
64 using AlignmentField = AlignmentBitfieldElementT<0>;
65 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
66 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
67 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
68 SwiftErrorField>(),
69 "Bitfields must be contiguous");
70
71protected:
72 // Note: Instruction needs to be a friend here to call cloneImpl.
73 friend class Instruction;
74
75 AllocaInst *cloneImpl() const;
76
77public:
78 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79 const Twine &Name, Instruction *InsertBefore);
80 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
81 const Twine &Name, BasicBlock *InsertAtEnd);
82
83 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
84 Instruction *InsertBefore);
85 AllocaInst(Type *Ty, unsigned AddrSpace,
86 const Twine &Name, BasicBlock *InsertAtEnd);
87
88 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89 const Twine &Name = "", Instruction *InsertBefore = nullptr);
90 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
91 const Twine &Name, BasicBlock *InsertAtEnd);
92
93 /// Return true if there is an allocation size parameter to the allocation
94 /// instruction that is not 1.
95 bool isArrayAllocation() const;
96
97 /// Get the number of elements allocated. For a simple allocation of a single
98 /// element, this will return a constant 1 value.
99 const Value *getArraySize() const { return getOperand(0); }
100 Value *getArraySize() { return getOperand(0); }
101
102 /// Overload to return most specific pointer type.
103 PointerType *getType() const {
104 return cast<PointerType>(Instruction::getType());
105 }
106
107 /// Get allocation size in bits. Returns None if size can't be determined,
108 /// e.g. in case of a VLA.
109 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
110
111 /// Return the type that is being allocated by the instruction.
112 Type *getAllocatedType() const { return AllocatedType; }
113 /// for use only in special circumstances that need to generically
114 /// transform a whole instruction (eg: IR linking and vectorization).
115 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
116
117 /// Return the alignment of the memory that is being allocated by the
118 /// instruction.
119 Align getAlign() const {
120 return Align(1ULL << getSubclassData<AlignmentField>());
121 }
122
123 void setAlignment(Align Align) {
124 setSubclassData<AlignmentField>(Log2(Align));
125 }
126
127 // FIXME: Remove this one transition to Align is over.
128 unsigned getAlignment() const { return getAlign().value(); }
129
130 /// Return true if this alloca is in the entry block of the function and is a
131 /// constant size. If so, the code generator will fold it into the
132 /// prolog/epilog code, so it is basically free.
133 bool isStaticAlloca() const;
134
135 /// Return true if this alloca is used as an inalloca argument to a call. Such
136 /// allocas are never considered static even if they are in the entry block.
137 bool isUsedWithInAlloca() const {
138 return getSubclassData<UsedWithInAllocaField>();
139 }
140
141 /// Specify whether this alloca is used to represent the arguments to a call.
142 void setUsedWithInAlloca(bool V) {
143 setSubclassData<UsedWithInAllocaField>(V);
144 }
145
146 /// Return true if this alloca is used as a swifterror argument to a call.
147 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
148 /// Specify whether this alloca is used to represent a swifterror.
149 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 template <typename Bitfield>
163 void setSubclassData(typename Bitfield::Type Value) {
164 Instruction::setSubclassData<Bitfield>(Value);
165 }
166};
167
168//===----------------------------------------------------------------------===//
169// LoadInst Class
170//===----------------------------------------------------------------------===//
171
172/// An instruction for reading from memory. This uses the SubclassData field in
173/// Value to store whether or not the load is volatile.
174class LoadInst : public UnaryInstruction {
175 using VolatileField = BoolBitfieldElementT<0>;
176 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
177 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
178 static_assert(
179 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180 "Bitfields must be contiguous");
181
182 void AssertOK();
183
184protected:
185 // Note: Instruction needs to be a friend here to call cloneImpl.
186 friend class Instruction;
187
188 LoadInst *cloneImpl() const;
189
190public:
191 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
192 Instruction *InsertBefore);
193 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 Instruction *InsertBefore);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197 BasicBlock *InsertAtEnd);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 Align Align, Instruction *InsertBefore = nullptr);
200 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 Align Align, BasicBlock *InsertAtEnd);
202 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, AtomicOrdering Order,
204 SyncScope::ID SSID = SyncScope::System,
205 Instruction *InsertBefore = nullptr);
206 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
208 BasicBlock *InsertAtEnd);
209
210 /// Return true if this is a load from a volatile memory location.
211 bool isVolatile() const { return getSubclassData<VolatileField>(); }
212
213 /// Specify whether this is a volatile load or not.
214 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
215
216 /// Return the alignment of the access that is being performed.
217 /// FIXME: Remove this function once transition to Align is over.
218 /// Use getAlign() instead.
219 unsigned getAlignment() const { return getAlign().value(); }
220
221 /// Return the alignment of the access that is being performed.
222 Align getAlign() const {
223 return Align(1ULL << (getSubclassData<AlignmentField>()));
224 }
225
226 void setAlignment(Align Align) {
227 setSubclassData<AlignmentField>(Log2(Align));
228 }
229
230 /// Returns the ordering constraint of this load instruction.
231 AtomicOrdering getOrdering() const {
232 return getSubclassData<OrderingField>();
233 }
234 /// Sets the ordering constraint of this load instruction. May not be Release
235 /// or AcquireRelease.
236 void setOrdering(AtomicOrdering Ordering) {
237 setSubclassData<OrderingField>(Ordering);
238 }
239
240 /// Returns the synchronization scope ID of this load instruction.
241 SyncScope::ID getSyncScopeID() const {
242 return SSID;
243 }
244
245 /// Sets the synchronization scope ID of this load instruction.
246 void setSyncScopeID(SyncScope::ID SSID) {
247 this->SSID = SSID;
248 }
249
250 /// Sets the ordering constraint and the synchronization scope ID of this load
251 /// instruction.
252 void setAtomic(AtomicOrdering Ordering,
253 SyncScope::ID SSID = SyncScope::System) {
254 setOrdering(Ordering);
255 setSyncScopeID(SSID);
256 }
257
258 bool isSimple() const { return !isAtomic() && !isVolatile(); }
43
Assuming the condition is true
44
Assuming the condition is true
45
Returning the value 1, which participates in a condition later
259
260 bool isUnordered() const {
261 return (getOrdering() == AtomicOrdering::NotAtomic ||
262 getOrdering() == AtomicOrdering::Unordered) &&
263 !isVolatile();
264 }
265
266 Value *getPointerOperand() { return getOperand(0); }
267 const Value *getPointerOperand() const { return getOperand(0); }
268 static unsigned getPointerOperandIndex() { return 0U; }
269 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
270
271 /// Returns the address space of the pointer operand.
272 unsigned getPointerAddressSpace() const {
273 return getPointerOperandType()->getPointerAddressSpace();
274 }
275
276 // Methods for support type inquiry through isa, cast, and dyn_cast:
277 static bool classof(const Instruction *I) {
278 return I->getOpcode() == Instruction::Load;
279 }
280 static bool classof(const Value *V) {
281 return isa<Instruction>(V) && classof(cast<Instruction>(V));
282 }
283
284private:
285 // Shadow Instruction::setInstructionSubclassData with a private forwarding
286 // method so that subclasses cannot accidentally use it.
287 template <typename Bitfield>
288 void setSubclassData(typename Bitfield::Type Value) {
289 Instruction::setSubclassData<Bitfield>(Value);
290 }
291
292 /// The synchronization scope ID of this load instruction. Not quite enough
293 /// room in SubClassData for everything, so synchronization scope ID gets its
294 /// own field.
295 SyncScope::ID SSID;
296};
297
298//===----------------------------------------------------------------------===//
299// StoreInst Class
300//===----------------------------------------------------------------------===//
301
302/// An instruction for storing to memory.
303class StoreInst : public Instruction {
304 using VolatileField = BoolBitfieldElementT<0>;
305 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
306 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
307 static_assert(
308 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
309 "Bitfields must be contiguous");
310
311 void AssertOK();
312
313protected:
314 // Note: Instruction needs to be a friend here to call cloneImpl.
315 friend class Instruction;
316
317 StoreInst *cloneImpl() const;
318
319public:
320 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
321 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
322 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325 Instruction *InsertBefore = nullptr);
326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327 BasicBlock *InsertAtEnd);
328 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
329 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
330 Instruction *InsertBefore = nullptr);
331 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
332 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
333
334 // allocate space for exactly two operands
335 void *operator new(size_t s) {
336 return User::operator new(s, 2);
337 }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
24
Assuming the condition is true
25
Assuming the condition is true
26
Returning the value 1, which participates in a condition later
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t s) {
466 return User::operator new(s, 0);
467 }
468
469 /// Returns the ordering constraint of this fence instruction.
470 AtomicOrdering getOrdering() const {
471 return getSubclassData<OrderingField>();
472 }
473
474 /// Sets the ordering constraint of this fence instruction. May only be
475 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
476 void setOrdering(AtomicOrdering Ordering) {
477 setSubclassData<OrderingField>(Ordering);
478 }
479
480 /// Returns the synchronization scope ID of this fence instruction.
481 SyncScope::ID getSyncScopeID() const {
482 return SSID;
483 }
484
485 /// Sets the synchronization scope ID of this fence instruction.
486 void setSyncScopeID(SyncScope::ID SSID) {
487 this->SSID = SSID;
488 }
489
490 // Methods for support type inquiry through isa, cast, and dyn_cast:
491 static bool classof(const Instruction *I) {
492 return I->getOpcode() == Instruction::Fence;
493 }
494 static bool classof(const Value *V) {
495 return isa<Instruction>(V) && classof(cast<Instruction>(V));
496 }
497
498private:
499 // Shadow Instruction::setInstructionSubclassData with a private forwarding
500 // method so that subclasses cannot accidentally use it.
501 template <typename Bitfield>
502 void setSubclassData(typename Bitfield::Type Value) {
503 Instruction::setSubclassData<Bitfield>(Value);
504 }
505
506 /// The synchronization scope ID of this fence instruction. Not quite enough
507 /// room in SubClassData for everything, so synchronization scope ID gets its
508 /// own field.
509 SyncScope::ID SSID;
510};
511
512//===----------------------------------------------------------------------===//
513// AtomicCmpXchgInst Class
514//===----------------------------------------------------------------------===//
515
516/// An instruction that atomically checks whether a
517/// specified value is in a memory location, and, if it is, stores a new value
518/// there. The value returned by this instruction is a pair containing the
519/// original value as first element, and an i1 indicating success (true) or
520/// failure (false) as second element.
521///
522class AtomicCmpXchgInst : public Instruction {
523 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
524 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
525 SyncScope::ID SSID);
526
527 template <unsigned Offset>
528 using AtomicOrderingBitfieldElement =
529 typename Bitfield::Element<AtomicOrdering, Offset, 3,
530 AtomicOrdering::LAST>;
531
532protected:
533 // Note: Instruction needs to be a friend here to call cloneImpl.
534 friend class Instruction;
535
536 AtomicCmpXchgInst *cloneImpl() const;
537
538public:
539 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
540 AtomicOrdering SuccessOrdering,
541 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
542 Instruction *InsertBefore = nullptr);
543 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
544 AtomicOrdering SuccessOrdering,
545 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
546 BasicBlock *InsertAtEnd);
547
548 // allocate space for exactly three operands
549 void *operator new(size_t s) {
550 return User::operator new(s, 3);
551 }
552
553 using VolatileField = BoolBitfieldElementT<0>;
554 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
555 using SuccessOrderingField =
556 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
557 using FailureOrderingField =
558 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
559 using AlignmentField =
560 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
561 static_assert(
562 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
563 FailureOrderingField, AlignmentField>(),
564 "Bitfields must be contiguous");
565
566 /// Return the alignment of the memory that is being allocated by the
567 /// instruction.
568 Align getAlign() const {
569 return Align(1ULL << getSubclassData<AlignmentField>());
570 }
571
572 void setAlignment(Align Align) {
573 setSubclassData<AlignmentField>(Log2(Align));
574 }
575
576 /// Return true if this is a cmpxchg from a volatile memory
577 /// location.
578 ///
579 bool isVolatile() const { return getSubclassData<VolatileField>(); }
580
581 /// Specify whether this is a volatile cmpxchg.
582 ///
583 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
584
585 /// Return true if this cmpxchg may spuriously fail.
586 bool isWeak() const { return getSubclassData<WeakField>(); }
587
588 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
589
590 /// Transparently provide more efficient getOperand methods.
591 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
592
593 /// Returns the success ordering constraint of this cmpxchg instruction.
594 AtomicOrdering getSuccessOrdering() const {
595 return getSubclassData<SuccessOrderingField>();
596 }
597
598 /// Sets the success ordering constraint of this cmpxchg instruction.
599 void setSuccessOrdering(AtomicOrdering Ordering) {
600 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
601 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
;
602 setSubclassData<SuccessOrderingField>(Ordering);
603 }
604
605 /// Returns the failure ordering constraint of this cmpxchg instruction.
606 AtomicOrdering getFailureOrdering() const {
607 return getSubclassData<FailureOrderingField>();
608 }
609
610 /// Sets the failure ordering constraint of this cmpxchg instruction.
611 void setFailureOrdering(AtomicOrdering Ordering) {
612 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
613 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
;
614 setSubclassData<FailureOrderingField>(Ordering);
615 }
616
617 /// Returns the synchronization scope ID of this cmpxchg instruction.
618 SyncScope::ID getSyncScopeID() const {
619 return SSID;
620 }
621
622 /// Sets the synchronization scope ID of this cmpxchg instruction.
623 void setSyncScopeID(SyncScope::ID SSID) {
624 this->SSID = SSID;
625 }
626
627 Value *getPointerOperand() { return getOperand(0); }
628 const Value *getPointerOperand() const { return getOperand(0); }
629 static unsigned getPointerOperandIndex() { return 0U; }
630
631 Value *getCompareOperand() { return getOperand(1); }
632 const Value *getCompareOperand() const { return getOperand(1); }
633
634 Value *getNewValOperand() { return getOperand(2); }
635 const Value *getNewValOperand() const { return getOperand(2); }
636
637 /// Returns the address space of the pointer operand.
638 unsigned getPointerAddressSpace() const {
639 return getPointerOperand()->getType()->getPointerAddressSpace();
640 }
641
642 /// Returns the strongest permitted ordering on failure, given the
643 /// desired ordering on success.
644 ///
645 /// If the comparison in a cmpxchg operation fails, there is no atomic store
646 /// so release semantics cannot be provided. So this function drops explicit
647 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
648 /// operation would remain SequentiallyConsistent.
649 static AtomicOrdering
650 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
651 switch (SuccessOrdering) {
652 default:
653 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 653)
;
654 case AtomicOrdering::Release:
655 case AtomicOrdering::Monotonic:
656 return AtomicOrdering::Monotonic;
657 case AtomicOrdering::AcquireRelease:
658 case AtomicOrdering::Acquire:
659 return AtomicOrdering::Acquire;
660 case AtomicOrdering::SequentiallyConsistent:
661 return AtomicOrdering::SequentiallyConsistent;
662 }
663 }
664
665 // Methods for support type inquiry through isa, cast, and dyn_cast:
666 static bool classof(const Instruction *I) {
667 return I->getOpcode() == Instruction::AtomicCmpXchg;
668 }
669 static bool classof(const Value *V) {
670 return isa<Instruction>(V) && classof(cast<Instruction>(V));
671 }
672
673private:
674 // Shadow Instruction::setInstructionSubclassData with a private forwarding
675 // method so that subclasses cannot accidentally use it.
676 template <typename Bitfield>
677 void setSubclassData(typename Bitfield::Type Value) {
678 Instruction::setSubclassData<Bitfield>(Value);
679 }
680
681 /// The synchronization scope ID of this cmpxchg instruction. Not quite
682 /// enough room in SubClassData for everything, so synchronization scope ID
683 /// gets its own field.
684 SyncScope::ID SSID;
685};
686
687template <>
688struct OperandTraits<AtomicCmpXchgInst> :
689 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
690};
691
692DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
693
694//===----------------------------------------------------------------------===//
695// AtomicRMWInst Class
696//===----------------------------------------------------------------------===//
697
698/// an instruction that atomically reads a memory location,
699/// combines it with another value, and then stores the result back. Returns
700/// the old value.
701///
702class AtomicRMWInst : public Instruction {
703protected:
704 // Note: Instruction needs to be a friend here to call cloneImpl.
705 friend class Instruction;
706
707 AtomicRMWInst *cloneImpl() const;
708
709public:
710 /// This enumeration lists the possible modifications atomicrmw can make. In
711 /// the descriptions, 'p' is the pointer to the instruction's memory location,
712 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
713 /// instruction. These instructions always return 'old'.
714 enum BinOp : unsigned {
715 /// *p = v
716 Xchg,
717 /// *p = old + v
718 Add,
719 /// *p = old - v
720 Sub,
721 /// *p = old & v
722 And,
723 /// *p = ~(old & v)
724 Nand,
725 /// *p = old | v
726 Or,
727 /// *p = old ^ v
728 Xor,
729 /// *p = old >signed v ? old : v
730 Max,
731 /// *p = old <signed v ? old : v
732 Min,
733 /// *p = old >unsigned v ? old : v
734 UMax,
735 /// *p = old <unsigned v ? old : v
736 UMin,
737
738 /// *p = old + v
739 FAdd,
740
741 /// *p = old - v
742 FSub,
743
744 FIRST_BINOP = Xchg,
745 LAST_BINOP = FSub,
746 BAD_BINOP
747 };
748
749private:
750 template <unsigned Offset>
751 using AtomicOrderingBitfieldElement =
752 typename Bitfield::Element<AtomicOrdering, Offset, 3,
753 AtomicOrdering::LAST>;
754
755 template <unsigned Offset>
756 using BinOpBitfieldElement =
757 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
758
759public:
760 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
761 AtomicOrdering Ordering, SyncScope::ID SSID,
762 Instruction *InsertBefore = nullptr);
763 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
764 AtomicOrdering Ordering, SyncScope::ID SSID,
765 BasicBlock *InsertAtEnd);
766
767 // allocate space for exactly two operands
768 void *operator new(size_t s) {
769 return User::operator new(s, 2);
770 }
771
772 using VolatileField = BoolBitfieldElementT<0>;
773 using AtomicOrderingField =
774 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
775 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
776 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
777 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
778 OperationField, AlignmentField>(),
779 "Bitfields must be contiguous");
780
781 BinOp getOperation() const { return getSubclassData<OperationField>(); }
782
783 static StringRef getOperationName(BinOp Op);
784
785 static bool isFPOperation(BinOp Op) {
786 switch (Op) {
787 case AtomicRMWInst::FAdd:
788 case AtomicRMWInst::FSub:
789 return true;
790 default:
791 return false;
792 }
793 }
794
795 void setOperation(BinOp Operation) {
796 setSubclassData<OperationField>(Operation);
797 }
798
799 /// Return the alignment of the memory that is being allocated by the
800 /// instruction.
801 Align getAlign() const {
802 return Align(1ULL << getSubclassData<AlignmentField>());
803 }
804
805 void setAlignment(Align Align) {
806 setSubclassData<AlignmentField>(Log2(Align));
807 }
808
809 /// Return true if this is a RMW on a volatile memory location.
810 ///
811 bool isVolatile() const { return getSubclassData<VolatileField>(); }
812
813 /// Specify whether this is a volatile RMW or not.
814 ///
815 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
816
817 /// Transparently provide more efficient getOperand methods.
818 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
819
820 /// Returns the ordering constraint of this rmw instruction.
821 AtomicOrdering getOrdering() const {
822 return getSubclassData<AtomicOrderingField>();
823 }
824
825 /// Sets the ordering constraint of this rmw instruction.
826 void setOrdering(AtomicOrdering Ordering) {
827 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
828 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
;
829 setSubclassData<AtomicOrderingField>(Ordering);
830 }
831
832 /// Returns the synchronization scope ID of this rmw instruction.
833 SyncScope::ID getSyncScopeID() const {
834 return SSID;
835 }
836
837 /// Sets the synchronization scope ID of this rmw instruction.
838 void setSyncScopeID(SyncScope::ID SSID) {
839 this->SSID = SSID;
840 }
841
842 Value *getPointerOperand() { return getOperand(0); }
843 const Value *getPointerOperand() const { return getOperand(0); }
844 static unsigned getPointerOperandIndex() { return 0U; }
845
846 Value *getValOperand() { return getOperand(1); }
847 const Value *getValOperand() const { return getOperand(1); }
848
849 /// Returns the address space of the pointer operand.
850 unsigned getPointerAddressSpace() const {
851 return getPointerOperand()->getType()->getPointerAddressSpace();
852 }
853
854 bool isFloatingPointOperation() const {
855 return isFPOperation(getOperation());
856 }
857
858 // Methods for support type inquiry through isa, cast, and dyn_cast:
859 static bool classof(const Instruction *I) {
860 return I->getOpcode() == Instruction::AtomicRMW;
861 }
862 static bool classof(const Value *V) {
863 return isa<Instruction>(V) && classof(cast<Instruction>(V));
864 }
865
866private:
867 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
868 AtomicOrdering Ordering, SyncScope::ID SSID);
869
870 // Shadow Instruction::setInstructionSubclassData with a private forwarding
871 // method so that subclasses cannot accidentally use it.
872 template <typename Bitfield>
873 void setSubclassData(typename Bitfield::Type Value) {
874 Instruction::setSubclassData<Bitfield>(Value);
875 }
876
877 /// The synchronization scope ID of this rmw instruction. Not quite enough
878 /// room in SubClassData for everything, so synchronization scope ID gets its
879 /// own field.
880 SyncScope::ID SSID;
881};
882
883template <>
884struct OperandTraits<AtomicRMWInst>
885 : public FixedNumOperandTraits<AtomicRMWInst,2> {
886};
887
888DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
889
890//===----------------------------------------------------------------------===//
891// GetElementPtrInst Class
892//===----------------------------------------------------------------------===//
893
894// checkGEPType - Simple wrapper function to give a better assertion failure
895// message on bad indexes for a gep instruction.
896//
897inline Type *checkGEPType(Type *Ty) {
898 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 898, __PRETTY_FUNCTION__))
;
899 return Ty;
900}
901
902/// an instruction for type-safe pointer arithmetic to
903/// access elements of arrays and structs
904///
905class GetElementPtrInst : public Instruction {
906 Type *SourceElementType;
907 Type *ResultElementType;
908
909 GetElementPtrInst(const GetElementPtrInst &GEPI);
910
911 /// Constructors - Create a getelementptr instruction with a base pointer an
912 /// list of indices. The first ctor can optionally insert before an existing
913 /// instruction, the second appends the new instruction to the specified
914 /// BasicBlock.
915 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
916 ArrayRef<Value *> IdxList, unsigned Values,
917 const Twine &NameStr, Instruction *InsertBefore);
918 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
919 ArrayRef<Value *> IdxList, unsigned Values,
920 const Twine &NameStr, BasicBlock *InsertAtEnd);
921
922 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
923
924protected:
925 // Note: Instruction needs to be a friend here to call cloneImpl.
926 friend class Instruction;
927
928 GetElementPtrInst *cloneImpl() const;
929
930public:
931 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
932 ArrayRef<Value *> IdxList,
933 const Twine &NameStr = "",
934 Instruction *InsertBefore = nullptr) {
935 unsigned Values = 1 + unsigned(IdxList.size());
936 if (!PointeeType)
937 PointeeType =
938 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
939 else
940 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
941 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
942 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
;
943 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
944 NameStr, InsertBefore);
945 }
946
947 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
948 ArrayRef<Value *> IdxList,
949 const Twine &NameStr,
950 BasicBlock *InsertAtEnd) {
951 unsigned Values = 1 + unsigned(IdxList.size());
952 if (!PointeeType)
953 PointeeType =
954 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
955 else
956 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
957 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
958 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
;
959 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
960 NameStr, InsertAtEnd);
961 }
962
963 /// Create an "inbounds" getelementptr. See the documentation for the
964 /// "inbounds" flag in LangRef.html for details.
965 static GetElementPtrInst *CreateInBounds(Value *Ptr,
966 ArrayRef<Value *> IdxList,
967 const Twine &NameStr = "",
968 Instruction *InsertBefore = nullptr){
969 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
970 }
971
972 static GetElementPtrInst *
973 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
974 const Twine &NameStr = "",
975 Instruction *InsertBefore = nullptr) {
976 GetElementPtrInst *GEP =
977 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
978 GEP->setIsInBounds(true);
979 return GEP;
980 }
981
982 static GetElementPtrInst *CreateInBounds(Value *Ptr,
983 ArrayRef<Value *> IdxList,
984 const Twine &NameStr,
985 BasicBlock *InsertAtEnd) {
986 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
987 }
988
989 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
990 ArrayRef<Value *> IdxList,
991 const Twine &NameStr,
992 BasicBlock *InsertAtEnd) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 /// Transparently provide more efficient getOperand methods.
1000 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1001
1002 Type *getSourceElementType() const { return SourceElementType; }
1003
1004 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1005 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1006
1007 Type *getResultElementType() const {
1008 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
1009 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
;
1010 return ResultElementType;
1011 }
1012
1013 /// Returns the address space of this instruction's pointer type.
1014 unsigned getAddressSpace() const {
1015 // Note that this is always the same as the pointer operand's address space
1016 // and that is cheaper to compute, so cheat here.
1017 return getPointerAddressSpace();
1018 }
1019
1020 /// Returns the result type of a getelementptr with the given source
1021 /// element type and indexes.
1022 ///
1023 /// Null is returned if the indices are invalid for the specified
1024 /// source element type.
1025 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1026 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1027 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1028
1029 /// Return the type of the element at the given index of an indexable
1030 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1031 ///
1032 /// Returns null if the type can't be indexed, or the given index is not
1033 /// legal for the given type.
1034 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1035 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1036
1037 inline op_iterator idx_begin() { return op_begin()+1; }
1038 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1039 inline op_iterator idx_end() { return op_end(); }
1040 inline const_op_iterator idx_end() const { return op_end(); }
1041
1042 inline iterator_range<op_iterator> indices() {
1043 return make_range(idx_begin(), idx_end());
1044 }
1045
1046 inline iterator_range<const_op_iterator> indices() const {
1047 return make_range(idx_begin(), idx_end());
1048 }
1049
1050 Value *getPointerOperand() {
1051 return getOperand(0);
1052 }
1053 const Value *getPointerOperand() const {
1054 return getOperand(0);
1055 }
1056 static unsigned getPointerOperandIndex() {
1057 return 0U; // get index for modifying correct operand.
1058 }
1059
1060 /// Method to return the pointer operand as a
1061 /// PointerType.
1062 Type *getPointerOperandType() const {
1063 return getPointerOperand()->getType();
1064 }
1065
1066 /// Returns the address space of the pointer operand.
1067 unsigned getPointerAddressSpace() const {
1068 return getPointerOperandType()->getPointerAddressSpace();
1069 }
1070
1071 /// Returns the pointer type returned by the GEP
1072 /// instruction, which may be a vector of pointers.
1073 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1074 ArrayRef<Value *> IdxList) {
1075 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1076 Ptr->getType()->getPointerAddressSpace());
1077 // Vector GEP
1078 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1079 ElementCount EltCount = PtrVTy->getElementCount();
1080 return VectorType::get(PtrTy, EltCount);
1081 }
1082 for (Value *Index : IdxList)
1083 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1084 ElementCount EltCount = IndexVTy->getElementCount();
1085 return VectorType::get(PtrTy, EltCount);
1086 }
1087 // Scalar GEP
1088 return PtrTy;
1089 }
1090
1091 unsigned getNumIndices() const { // Note: always non-negative
1092 return getNumOperands() - 1;
1093 }
1094
1095 bool hasIndices() const {
1096 return getNumOperands() > 1;
1097 }
1098
1099 /// Return true if all of the indices of this GEP are
1100 /// zeros. If so, the result pointer and the first operand have the same
1101 /// value, just potentially different types.
1102 bool hasAllZeroIndices() const;
1103
1104 /// Return true if all of the indices of this GEP are
1105 /// constant integers. If so, the result pointer and the first operand have
1106 /// a constant offset between them.
1107 bool hasAllConstantIndices() const;
1108
1109 /// Set or clear the inbounds flag on this GEP instruction.
1110 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1111 void setIsInBounds(bool b = true);
1112
1113 /// Determine whether the GEP has the inbounds flag.
1114 bool isInBounds() const;
1115
1116 /// Accumulate the constant address offset of this GEP if possible.
1117 ///
1118 /// This routine accepts an APInt into which it will accumulate the constant
1119 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1120 /// all-constant, it returns false and the value of the offset APInt is
1121 /// undefined (it is *not* preserved!). The APInt passed into this routine
1122 /// must be at least as wide as the IntPtr type for the address space of
1123 /// the base GEP pointer.
1124 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1125
1126 // Methods for support type inquiry through isa, cast, and dyn_cast:
1127 static bool classof(const Instruction *I) {
1128 return (I->getOpcode() == Instruction::GetElementPtr);
1129 }
1130 static bool classof(const Value *V) {
1131 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1132 }
1133};
1134
1135template <>
1136struct OperandTraits<GetElementPtrInst> :
1137 public VariadicOperandTraits<GetElementPtrInst, 1> {
1138};
1139
1140GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1141 ArrayRef<Value *> IdxList, unsigned Values,
1142 const Twine &NameStr,
1143 Instruction *InsertBefore)
1144 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1145 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1146 Values, InsertBefore),
1147 SourceElementType(PointeeType),
1148 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1149 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
1150 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
;
1151 init(Ptr, IdxList, NameStr);
1152}
1153
1154GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1155 ArrayRef<Value *> IdxList, unsigned Values,
1156 const Twine &NameStr,
1157 BasicBlock *InsertAtEnd)
1158 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1159 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1160 Values, InsertAtEnd),
1161 SourceElementType(PointeeType),
1162 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1163 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
1164 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
;
1165 init(Ptr, IdxList, NameStr);
1166}
1167
1168DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1169
1170//===----------------------------------------------------------------------===//
1171// ICmpInst Class
1172//===----------------------------------------------------------------------===//
1173
1174/// This instruction compares its operands according to the predicate given
1175/// to the constructor. It only operates on integers or pointers. The operands
1176/// must be identical types.
1177/// Represent an integer comparison operator.
1178class ICmpInst: public CmpInst {
1179 void AssertOK() {
1180 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
1181 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
;
1182 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
1183 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
;
1184 // Check that the operands are the right type
1185 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1186 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1187 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
;
1188 }
1189
1190protected:
1191 // Note: Instruction needs to be a friend here to call cloneImpl.
1192 friend class Instruction;
1193
1194 /// Clone an identical ICmpInst
1195 ICmpInst *cloneImpl() const;
1196
1197public:
1198 /// Constructor with insert-before-instruction semantics.
1199 ICmpInst(
1200 Instruction *InsertBefore, ///< Where to insert
1201 Predicate pred, ///< The predicate to use for the comparison
1202 Value *LHS, ///< The left-hand-side of the expression
1203 Value *RHS, ///< The right-hand-side of the expression
1204 const Twine &NameStr = "" ///< Name of the instruction
1205 ) : CmpInst(makeCmpResultType(LHS->getType()),
1206 Instruction::ICmp, pred, LHS, RHS, NameStr,
1207 InsertBefore) {
1208#ifndef NDEBUG
1209 AssertOK();
1210#endif
1211 }
1212
1213 /// Constructor with insert-at-end semantics.
1214 ICmpInst(
1215 BasicBlock &InsertAtEnd, ///< Block to insert into.
1216 Predicate pred, ///< The predicate to use for the comparison
1217 Value *LHS, ///< The left-hand-side of the expression
1218 Value *RHS, ///< The right-hand-side of the expression
1219 const Twine &NameStr = "" ///< Name of the instruction
1220 ) : CmpInst(makeCmpResultType(LHS->getType()),
1221 Instruction::ICmp, pred, LHS, RHS, NameStr,
1222 &InsertAtEnd) {
1223#ifndef NDEBUG
1224 AssertOK();
1225#endif
1226 }
1227
1228 /// Constructor with no-insertion semantics
1229 ICmpInst(
1230 Predicate pred, ///< The predicate to use for the comparison
1231 Value *LHS, ///< The left-hand-side of the expression
1232 Value *RHS, ///< The right-hand-side of the expression
1233 const Twine &NameStr = "" ///< Name of the instruction
1234 ) : CmpInst(makeCmpResultType(LHS->getType()),
1235 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1236#ifndef NDEBUG
1237 AssertOK();
1238#endif
1239 }
1240
1241 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1242 /// @returns the predicate that would be the result if the operand were
1243 /// regarded as signed.
1244 /// Return the signed version of the predicate
1245 Predicate getSignedPredicate() const {
1246 return getSignedPredicate(getPredicate());
1247 }
1248
1249 /// This is a static version that you can use without an instruction.
1250 /// Return the signed version of the predicate.
1251 static Predicate getSignedPredicate(Predicate pred);
1252
1253 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1254 /// @returns the predicate that would be the result if the operand were
1255 /// regarded as unsigned.
1256 /// Return the unsigned version of the predicate
1257 Predicate getUnsignedPredicate() const {
1258 return getUnsignedPredicate(getPredicate());
1259 }
1260
1261 /// This is a static version that you can use without an instruction.
1262 /// Return the unsigned version of the predicate.
1263 static Predicate getUnsignedPredicate(Predicate pred);
1264
1265 /// Return true if this predicate is either EQ or NE. This also
1266 /// tests for commutativity.
1267 static bool isEquality(Predicate P) {
1268 return P == ICMP_EQ || P == ICMP_NE;
1269 }
1270
1271 /// Return true if this predicate is either EQ or NE. This also
1272 /// tests for commutativity.
1273 bool isEquality() const {
1274 return isEquality(getPredicate());
1275 }
1276
1277 /// @returns true if the predicate of this ICmpInst is commutative
1278 /// Determine if this relation is commutative.
1279 bool isCommutative() const { return isEquality(); }
1280
1281 /// Return true if the predicate is relational (not EQ or NE).
1282 ///
1283 bool isRelational() const {
1284 return !isEquality();
1285 }
1286
1287 /// Return true if the predicate is relational (not EQ or NE).
1288 ///
1289 static bool isRelational(Predicate P) {
1290 return !isEquality(P);
1291 }
1292
1293 /// Return true if the predicate is SGT or UGT.
1294 ///
1295 static bool isGT(Predicate P) {
1296 return P == ICMP_SGT || P == ICMP_UGT;
1297 }
1298
1299 /// Return true if the predicate is SLT or ULT.
1300 ///
1301 static bool isLT(Predicate P) {
1302 return P == ICMP_SLT || P == ICMP_ULT;
1303 }
1304
1305 /// Return true if the predicate is SGE or UGE.
1306 ///
1307 static bool isGE(Predicate P) {
1308 return P == ICMP_SGE || P == ICMP_UGE;
1309 }
1310
1311 /// Return true if the predicate is SLE or ULE.
1312 ///
1313 static bool isLE(Predicate P) {
1314 return P == ICMP_SLE || P == ICMP_ULE;
1315 }
1316
1317 /// Exchange the two operands to this instruction in such a way that it does
1318 /// not modify the semantics of the instruction. The predicate value may be
1319 /// changed to retain the same result if the predicate is order dependent
1320 /// (e.g. ult).
1321 /// Swap operands and adjust predicate.
1322 void swapOperands() {
1323 setPredicate(getSwappedPredicate());
1324 Op<0>().swap(Op<1>());
1325 }
1326
1327 // Methods for support type inquiry through isa, cast, and dyn_cast:
1328 static bool classof(const Instruction *I) {
1329 return I->getOpcode() == Instruction::ICmp;
1330 }
1331 static bool classof(const Value *V) {
1332 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1333 }
1334};
1335
1336//===----------------------------------------------------------------------===//
1337// FCmpInst Class
1338//===----------------------------------------------------------------------===//
1339
1340/// This instruction compares its operands according to the predicate given
1341/// to the constructor. It only operates on floating point values or packed
1342/// vectors of floating point values. The operands must be identical types.
1343/// Represents a floating point comparison operator.
1344class FCmpInst: public CmpInst {
1345 void AssertOK() {
1346 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1346, __PRETTY_FUNCTION__))
;
1347 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1348, __PRETTY_FUNCTION__))
1348 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1348, __PRETTY_FUNCTION__))
;
1349 // Check that the operands are the right type
1350 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1351, __PRETTY_FUNCTION__))
1351 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1351, __PRETTY_FUNCTION__))
;
1352 }
1353
1354protected:
1355 // Note: Instruction needs to be a friend here to call cloneImpl.
1356 friend class Instruction;
1357
1358 /// Clone an identical FCmpInst
1359 FCmpInst *cloneImpl() const;
1360
1361public:
1362 /// Constructor with insert-before-instruction semantics.
1363 FCmpInst(
1364 Instruction *InsertBefore, ///< Where to insert
1365 Predicate pred, ///< The predicate to use for the comparison
1366 Value *LHS, ///< The left-hand-side of the expression
1367 Value *RHS, ///< The right-hand-side of the expression
1368 const Twine &NameStr = "" ///< Name of the instruction
1369 ) : CmpInst(makeCmpResultType(LHS->getType()),
1370 Instruction::FCmp, pred, LHS, RHS, NameStr,
1371 InsertBefore) {
1372 AssertOK();
1373 }
1374
1375 /// Constructor with insert-at-end semantics.
1376 FCmpInst(
1377 BasicBlock &InsertAtEnd, ///< Block to insert into.
1378 Predicate pred, ///< The predicate to use for the comparison
1379 Value *LHS, ///< The left-hand-side of the expression
1380 Value *RHS, ///< The right-hand-side of the expression
1381 const Twine &NameStr = "" ///< Name of the instruction
1382 ) : CmpInst(makeCmpResultType(LHS->getType()),
1383 Instruction::FCmp, pred, LHS, RHS, NameStr,
1384 &InsertAtEnd) {
1385 AssertOK();
1386 }
1387
1388 /// Constructor with no-insertion semantics
1389 FCmpInst(
1390 Predicate Pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "", ///< Name of the instruction
1394 Instruction *FlagsSource = nullptr
1395 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1396 RHS, NameStr, nullptr, FlagsSource) {
1397 AssertOK();
1398 }
1399
1400 /// @returns true if the predicate of this instruction is EQ or NE.
1401 /// Determine if this is an equality predicate.
1402 static bool isEquality(Predicate Pred) {
1403 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1404 Pred == FCMP_UNE;
1405 }
1406
1407 /// @returns true if the predicate of this instruction is EQ or NE.
1408 /// Determine if this is an equality predicate.
1409 bool isEquality() const { return isEquality(getPredicate()); }
1410
1411 /// @returns true if the predicate of this instruction is commutative.
1412 /// Determine if this is a commutative predicate.
1413 bool isCommutative() const {
1414 return isEquality() ||
1415 getPredicate() == FCMP_FALSE ||
1416 getPredicate() == FCMP_TRUE ||
1417 getPredicate() == FCMP_ORD ||
1418 getPredicate() == FCMP_UNO;
1419 }
1420
1421 /// @returns true if the predicate is relational (not EQ or NE).
1422 /// Determine if this a relational predicate.
1423 bool isRelational() const { return !isEquality(); }
1424
1425 /// Exchange the two operands to this instruction in such a way that it does
1426 /// not modify the semantics of the instruction. The predicate value may be
1427 /// changed to retain the same result if the predicate is order dependent
1428 /// (e.g. ult).
1429 /// Swap operands and adjust predicate.
1430 void swapOperands() {
1431 setPredicate(getSwappedPredicate());
1432 Op<0>().swap(Op<1>());
1433 }
1434
1435 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1436 static bool classof(const Instruction *I) {
1437 return I->getOpcode() == Instruction::FCmp;
1438 }
1439 static bool classof(const Value *V) {
1440 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1441 }
1442};
1443
1444//===----------------------------------------------------------------------===//
1445/// This class represents a function call, abstracting a target
1446/// machine's calling convention. This class uses low bit of the SubClassData
1447/// field to indicate whether or not this is a tail call. The rest of the bits
1448/// hold the calling convention of the call.
1449///
1450class CallInst : public CallBase {
1451 CallInst(const CallInst &CI);
1452
1453 /// Construct a CallInst given a range of arguments.
1454 /// Construct a CallInst from a range of arguments
1455 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1456 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1457 Instruction *InsertBefore);
1458
1459 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1460 const Twine &NameStr, Instruction *InsertBefore)
1461 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1462
1463 /// Construct a CallInst given a range of arguments.
1464 /// Construct a CallInst from a range of arguments
1465 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1467 BasicBlock *InsertAtEnd);
1468
1469 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1470 Instruction *InsertBefore);
1471
1472 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1473 BasicBlock *InsertAtEnd);
1474
1475 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1476 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1477 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1478
1479 /// Compute the number of operands to allocate.
1480 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1481 // We need one operand for the called function, plus the input operand
1482 // counts provided.
1483 return 1 + NumArgs + NumBundleInputs;
1484 }
1485
1486protected:
1487 // Note: Instruction needs to be a friend here to call cloneImpl.
1488 friend class Instruction;
1489
1490 CallInst *cloneImpl() const;
1491
1492public:
1493 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1494 Instruction *InsertBefore = nullptr) {
1495 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1496 }
1497
1498 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1499 const Twine &NameStr,
1500 Instruction *InsertBefore = nullptr) {
1501 return new (ComputeNumOperands(Args.size()))
1502 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1503 }
1504
1505 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1506 ArrayRef<OperandBundleDef> Bundles = None,
1507 const Twine &NameStr = "",
1508 Instruction *InsertBefore = nullptr) {
1509 const int NumOperands =
1510 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1511 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1512
1513 return new (NumOperands, DescriptorBytes)
1514 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1515 }
1516
1517 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1518 BasicBlock *InsertAtEnd) {
1519 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1520 }
1521
1522 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1523 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1524 return new (ComputeNumOperands(Args.size()))
1525 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1526 }
1527
1528 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1529 ArrayRef<OperandBundleDef> Bundles,
1530 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1531 const int NumOperands =
1532 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1533 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1534
1535 return new (NumOperands, DescriptorBytes)
1536 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1537 }
1538
1539 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1540 Instruction *InsertBefore = nullptr) {
1541 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1542 InsertBefore);
1543 }
1544
1545 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1546 ArrayRef<OperandBundleDef> Bundles = None,
1547 const Twine &NameStr = "",
1548 Instruction *InsertBefore = nullptr) {
1549 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1550 NameStr, InsertBefore);
1551 }
1552
1553 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1554 const Twine &NameStr,
1555 Instruction *InsertBefore = nullptr) {
1556 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1557 InsertBefore);
1558 }
1559
1560 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1561 BasicBlock *InsertAtEnd) {
1562 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1563 InsertAtEnd);
1564 }
1565
1566 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1567 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1568 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1569 InsertAtEnd);
1570 }
1571
1572 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1573 ArrayRef<OperandBundleDef> Bundles,
1574 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1575 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1576 NameStr, InsertAtEnd);
1577 }
1578
1579 /// Create a clone of \p CI with a different set of operand bundles and
1580 /// insert it before \p InsertPt.
1581 ///
1582 /// The returned call instruction is identical \p CI in every way except that
1583 /// the operand bundles for the new instruction are set to the operand bundles
1584 /// in \p Bundles.
1585 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1586 Instruction *InsertPt = nullptr);
1587
1588 /// Create a clone of \p CI with a different set of operand bundles and
1589 /// insert it before \p InsertPt.
1590 ///
1591 /// The returned call instruction is identical \p CI in every way except that
1592 /// the operand bundle for the new instruction is set to the operand bundle
1593 /// in \p Bundle.
1594 static CallInst *CreateWithReplacedBundle(CallInst *CI,
1595 OperandBundleDef Bundle,
1596 Instruction *InsertPt = nullptr);
1597
1598 /// Generate the IR for a call to malloc:
1599 /// 1. Compute the malloc call's argument as the specified type's size,
1600 /// possibly multiplied by the array size if the array size is not
1601 /// constant 1.
1602 /// 2. Call malloc with that argument.
1603 /// 3. Bitcast the result of the malloc call to the specified type.
1604 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1605 Type *AllocTy, Value *AllocSize,
1606 Value *ArraySize = nullptr,
1607 Function *MallocF = nullptr,
1608 const Twine &Name = "");
1609 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1610 Type *AllocTy, Value *AllocSize,
1611 Value *ArraySize = nullptr,
1612 Function *MallocF = nullptr,
1613 const Twine &Name = "");
1614 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1615 Type *AllocTy, Value *AllocSize,
1616 Value *ArraySize = nullptr,
1617 ArrayRef<OperandBundleDef> Bundles = None,
1618 Function *MallocF = nullptr,
1619 const Twine &Name = "");
1620 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1621 Type *AllocTy, Value *AllocSize,
1622 Value *ArraySize = nullptr,
1623 ArrayRef<OperandBundleDef> Bundles = None,
1624 Function *MallocF = nullptr,
1625 const Twine &Name = "");
1626 /// Generate the IR for a call to the builtin free function.
1627 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1628 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1629 static Instruction *CreateFree(Value *Source,
1630 ArrayRef<OperandBundleDef> Bundles,
1631 Instruction *InsertBefore);
1632 static Instruction *CreateFree(Value *Source,
1633 ArrayRef<OperandBundleDef> Bundles,
1634 BasicBlock *InsertAtEnd);
1635
1636 // Note that 'musttail' implies 'tail'.
1637 enum TailCallKind : unsigned {
1638 TCK_None = 0,
1639 TCK_Tail = 1,
1640 TCK_MustTail = 2,
1641 TCK_NoTail = 3,
1642 TCK_LAST = TCK_NoTail
1643 };
1644
1645 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1646 static_assert(
1647 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1648 "Bitfields must be contiguous");
1649
1650 TailCallKind getTailCallKind() const {
1651 return getSubclassData<TailCallKindField>();
1652 }
1653
1654 bool isTailCall() const {
1655 TailCallKind Kind = getTailCallKind();
1656 return Kind == TCK_Tail || Kind == TCK_MustTail;
1657 }
1658
1659 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1660
1661 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1662
1663 void setTailCallKind(TailCallKind TCK) {
1664 setSubclassData<TailCallKindField>(TCK);
1665 }
1666
1667 void setTailCall(bool IsTc = true) {
1668 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1669 }
1670
1671 /// Return true if the call can return twice
1672 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1673 void setCanReturnTwice() {
1674 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1675 }
1676
1677 // Methods for support type inquiry through isa, cast, and dyn_cast:
1678 static bool classof(const Instruction *I) {
1679 return I->getOpcode() == Instruction::Call;
1680 }
1681 static bool classof(const Value *V) {
1682 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1683 }
1684
1685 /// Updates profile metadata by scaling it by \p S / \p T.
1686 void updateProfWeight(uint64_t S, uint64_t T);
1687
1688private:
1689 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1690 // method so that subclasses cannot accidentally use it.
1691 template <typename Bitfield>
1692 void setSubclassData(typename Bitfield::Type Value) {
1693 Instruction::setSubclassData<Bitfield>(Value);
1694 }
1695};
1696
1697CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1698 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1699 BasicBlock *InsertAtEnd)
1700 : CallBase(Ty->getReturnType(), Instruction::Call,
1701 OperandTraits<CallBase>::op_end(this) -
1702 (Args.size() + CountBundleInputs(Bundles) + 1),
1703 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1704 InsertAtEnd) {
1705 init(Ty, Func, Args, Bundles, NameStr);
1706}
1707
1708CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1709 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1710 Instruction *InsertBefore)
1711 : CallBase(Ty->getReturnType(), Instruction::Call,
1712 OperandTraits<CallBase>::op_end(this) -
1713 (Args.size() + CountBundleInputs(Bundles) + 1),
1714 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1715 InsertBefore) {
1716 init(Ty, Func, Args, Bundles, NameStr);
1717}
1718
1719//===----------------------------------------------------------------------===//
1720// SelectInst Class
1721//===----------------------------------------------------------------------===//
1722
1723/// This class represents the LLVM 'select' instruction.
1724///
1725class SelectInst : public Instruction {
1726 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1727 Instruction *InsertBefore)
1728 : Instruction(S1->getType(), Instruction::Select,
1729 &Op<0>(), 3, InsertBefore) {
1730 init(C, S1, S2);
1731 setName(NameStr);
1732 }
1733
1734 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1735 BasicBlock *InsertAtEnd)
1736 : Instruction(S1->getType(), Instruction::Select,
1737 &Op<0>(), 3, InsertAtEnd) {
1738 init(C, S1, S2);
1739 setName(NameStr);
1740 }
1741
1742 void init(Value *C, Value *S1, Value *S2) {
1743 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1743, __PRETTY_FUNCTION__))
;
1744 Op<0>() = C;
1745 Op<1>() = S1;
1746 Op<2>() = S2;
1747 }
1748
1749protected:
1750 // Note: Instruction needs to be a friend here to call cloneImpl.
1751 friend class Instruction;
1752
1753 SelectInst *cloneImpl() const;
1754
1755public:
1756 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757 const Twine &NameStr = "",
1758 Instruction *InsertBefore = nullptr,
1759 Instruction *MDFrom = nullptr) {
1760 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1761 if (MDFrom)
1762 Sel->copyMetadata(*MDFrom);
1763 return Sel;
1764 }
1765
1766 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1767 const Twine &NameStr,
1768 BasicBlock *InsertAtEnd) {
1769 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1770 }
1771
1772 const Value *getCondition() const { return Op<0>(); }
1773 const Value *getTrueValue() const { return Op<1>(); }
1774 const Value *getFalseValue() const { return Op<2>(); }
1775 Value *getCondition() { return Op<0>(); }
1776 Value *getTrueValue() { return Op<1>(); }
1777 Value *getFalseValue() { return Op<2>(); }
1778
1779 void setCondition(Value *V) { Op<0>() = V; }
1780 void setTrueValue(Value *V) { Op<1>() = V; }
1781 void setFalseValue(Value *V) { Op<2>() = V; }
1782
1783 /// Swap the true and false values of the select instruction.
1784 /// This doesn't swap prof metadata.
1785 void swapValues() { Op<1>().swap(Op<2>()); }
1786
1787 /// Return a string if the specified operands are invalid
1788 /// for a select operation, otherwise return null.
1789 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1790
1791 /// Transparently provide more efficient getOperand methods.
1792 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1793
1794 OtherOps getOpcode() const {
1795 return static_cast<OtherOps>(Instruction::getOpcode());
1796 }
1797
1798 // Methods for support type inquiry through isa, cast, and dyn_cast:
1799 static bool classof(const Instruction *I) {
1800 return I->getOpcode() == Instruction::Select;
1801 }
1802 static bool classof(const Value *V) {
1803 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1804 }
1805};
1806
1807template <>
1808struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1809};
1810
1811DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1812
1813//===----------------------------------------------------------------------===//
1814// VAArgInst Class
1815//===----------------------------------------------------------------------===//
1816
1817/// This class represents the va_arg llvm instruction, which returns
1818/// an argument of the specified type given a va_list and increments that list
1819///
1820class VAArgInst : public UnaryInstruction {
1821protected:
1822 // Note: Instruction needs to be a friend here to call cloneImpl.
1823 friend class Instruction;
1824
1825 VAArgInst *cloneImpl() const;
1826
1827public:
1828 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1829 Instruction *InsertBefore = nullptr)
1830 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1831 setName(NameStr);
1832 }
1833
1834 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1835 BasicBlock *InsertAtEnd)
1836 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1837 setName(NameStr);
1838 }
1839
1840 Value *getPointerOperand() { return getOperand(0); }
1841 const Value *getPointerOperand() const { return getOperand(0); }
1842 static unsigned getPointerOperandIndex() { return 0U; }
1843
1844 // Methods for support type inquiry through isa, cast, and dyn_cast:
1845 static bool classof(const Instruction *I) {
1846 return I->getOpcode() == VAArg;
1847 }
1848 static bool classof(const Value *V) {
1849 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1850 }
1851};
1852
1853//===----------------------------------------------------------------------===//
1854// ExtractElementInst Class
1855//===----------------------------------------------------------------------===//
1856
1857/// This instruction extracts a single (scalar)
1858/// element from a VectorType value
1859///
1860class ExtractElementInst : public Instruction {
1861 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1862 Instruction *InsertBefore = nullptr);
1863 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1864 BasicBlock *InsertAtEnd);
1865
1866protected:
1867 // Note: Instruction needs to be a friend here to call cloneImpl.
1868 friend class Instruction;
1869
1870 ExtractElementInst *cloneImpl() const;
1871
1872public:
1873 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1874 const Twine &NameStr = "",
1875 Instruction *InsertBefore = nullptr) {
1876 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1877 }
1878
1879 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1880 const Twine &NameStr,
1881 BasicBlock *InsertAtEnd) {
1882 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1883 }
1884
1885 /// Return true if an extractelement instruction can be
1886 /// formed with the specified operands.
1887 static bool isValidOperands(const Value *Vec, const Value *Idx);
1888
1889 Value *getVectorOperand() { return Op<0>(); }
1890 Value *getIndexOperand() { return Op<1>(); }
1891 const Value *getVectorOperand() const { return Op<0>(); }
1892 const Value *getIndexOperand() const { return Op<1>(); }
1893
1894 VectorType *getVectorOperandType() const {
1895 return cast<VectorType>(getVectorOperand()->getType());
1896 }
1897
1898 /// Transparently provide more efficient getOperand methods.
1899 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1900
1901 // Methods for support type inquiry through isa, cast, and dyn_cast:
1902 static bool classof(const Instruction *I) {
1903 return I->getOpcode() == Instruction::ExtractElement;
1904 }
1905 static bool classof(const Value *V) {
1906 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1907 }
1908};
1909
1910template <>
1911struct OperandTraits<ExtractElementInst> :
1912 public FixedNumOperandTraits<ExtractElementInst, 2> {
1913};
1914
1915DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1916
1917//===----------------------------------------------------------------------===//
1918// InsertElementInst Class
1919//===----------------------------------------------------------------------===//
1920
1921/// This instruction inserts a single (scalar)
1922/// element into a VectorType value
1923///
1924class InsertElementInst : public Instruction {
1925 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1926 const Twine &NameStr = "",
1927 Instruction *InsertBefore = nullptr);
1928 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1929 BasicBlock *InsertAtEnd);
1930
1931protected:
1932 // Note: Instruction needs to be a friend here to call cloneImpl.
1933 friend class Instruction;
1934
1935 InsertElementInst *cloneImpl() const;
1936
1937public:
1938 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1939 const Twine &NameStr = "",
1940 Instruction *InsertBefore = nullptr) {
1941 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1942 }
1943
1944 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1945 const Twine &NameStr,
1946 BasicBlock *InsertAtEnd) {
1947 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1948 }
1949
1950 /// Return true if an insertelement instruction can be
1951 /// formed with the specified operands.
1952 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1953 const Value *Idx);
1954
1955 /// Overload to return most specific vector type.
1956 ///
1957 VectorType *getType() const {
1958 return cast<VectorType>(Instruction::getType());
1959 }
1960
1961 /// Transparently provide more efficient getOperand methods.
1962 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1963
1964 // Methods for support type inquiry through isa, cast, and dyn_cast:
1965 static bool classof(const Instruction *I) {
1966 return I->getOpcode() == Instruction::InsertElement;
1967 }
1968 static bool classof(const Value *V) {
1969 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1970 }
1971};
1972
1973template <>
1974struct OperandTraits<InsertElementInst> :
1975 public FixedNumOperandTraits<InsertElementInst, 3> {
1976};
1977
1978DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1979
1980//===----------------------------------------------------------------------===//
1981// ShuffleVectorInst Class
1982//===----------------------------------------------------------------------===//
1983
1984constexpr int UndefMaskElem = -1;
1985
1986/// This instruction constructs a fixed permutation of two
1987/// input vectors.
1988///
1989/// For each element of the result vector, the shuffle mask selects an element
1990/// from one of the input vectors to copy to the result. Non-negative elements
1991/// in the mask represent an index into the concatenated pair of input vectors.
1992/// UndefMaskElem (-1) specifies that the result element is undefined.
1993///
1994/// For scalable vectors, all the elements of the mask must be 0 or -1. This
1995/// requirement may be relaxed in the future.
1996class ShuffleVectorInst : public Instruction {
1997 SmallVector<int, 4> ShuffleMask;
1998 Constant *ShuffleMaskForBitcode;
1999
2000protected:
2001 // Note: Instruction needs to be a friend here to call cloneImpl.
2002 friend class Instruction;
2003
2004 ShuffleVectorInst *cloneImpl() const;
2005
2006public:
2007 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2008 const Twine &NameStr = "",
2009 Instruction *InsertBefor = nullptr);
2010 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2011 const Twine &NameStr, BasicBlock *InsertAtEnd);
2012 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2013 const Twine &NameStr = "",
2014 Instruction *InsertBefor = nullptr);
2015 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2016 const Twine &NameStr, BasicBlock *InsertAtEnd);
2017
2018 void *operator new(size_t s) { return User::operator new(s, 2); }
2019
2020 /// Swap the operands and adjust the mask to preserve the semantics
2021 /// of the instruction.
2022 void commute();
2023
2024 /// Return true if a shufflevector instruction can be
2025 /// formed with the specified operands.
2026 static bool isValidOperands(const Value *V1, const Value *V2,
2027 const Value *Mask);
2028 static bool isValidOperands(const Value *V1, const Value *V2,
2029 ArrayRef<int> Mask);
2030
2031 /// Overload to return most specific vector type.
2032 ///
2033 VectorType *getType() const {
2034 return cast<VectorType>(Instruction::getType());
2035 }
2036
2037 /// Transparently provide more efficient getOperand methods.
2038 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2039
2040 /// Return the shuffle mask value of this instruction for the given element
2041 /// index. Return UndefMaskElem if the element is undef.
2042 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2043
2044 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2045 /// elements of the mask are returned as UndefMaskElem.
2046 static void getShuffleMask(const Constant *Mask,
2047 SmallVectorImpl<int> &Result);
2048
2049 /// Return the mask for this instruction as a vector of integers. Undefined
2050 /// elements of the mask are returned as UndefMaskElem.
2051 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2052 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2053 }
2054
2055 /// Return the mask for this instruction, for use in bitcode.
2056 ///
2057 /// TODO: This is temporary until we decide a new bitcode encoding for
2058 /// shufflevector.
2059 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2060
2061 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2062 Type *ResultTy);
2063
2064 void setShuffleMask(ArrayRef<int> Mask);
2065
2066 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2067
2068 /// Return true if this shuffle returns a vector with a different number of
2069 /// elements than its source vectors.
2070 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2071 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2072 bool changesLength() const {
2073 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2074 ->getElementCount()
2075 .getKnownMinValue();
2076 unsigned NumMaskElts = ShuffleMask.size();
2077 return NumSourceElts != NumMaskElts;
2078 }
2079
2080 /// Return true if this shuffle returns a vector with a greater number of
2081 /// elements than its source vectors.
2082 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2083 bool increasesLength() const {
2084 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2085 ->getElementCount()
2086 .getKnownMinValue();
2087 unsigned NumMaskElts = ShuffleMask.size();
2088 return NumSourceElts < NumMaskElts;
2089 }
2090
2091 /// Return true if this shuffle mask chooses elements from exactly one source
2092 /// vector.
2093 /// Example: <7,5,undef,7>
2094 /// This assumes that vector operands are the same length as the mask.
2095 static bool isSingleSourceMask(ArrayRef<int> Mask);
2096 static bool isSingleSourceMask(const Constant *Mask) {
2097 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2097, __PRETTY_FUNCTION__))
;
2098 SmallVector<int, 16> MaskAsInts;
2099 getShuffleMask(Mask, MaskAsInts);
2100 return isSingleSourceMask(MaskAsInts);
2101 }
2102
2103 /// Return true if this shuffle chooses elements from exactly one source
2104 /// vector without changing the length of that vector.
2105 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2106 /// TODO: Optionally allow length-changing shuffles.
2107 bool isSingleSource() const {
2108 return !changesLength() && isSingleSourceMask(ShuffleMask);
2109 }
2110
2111 /// Return true if this shuffle mask chooses elements from exactly one source
2112 /// vector without lane crossings. A shuffle using this mask is not
2113 /// necessarily a no-op because it may change the number of elements from its
2114 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2115 /// Example: <undef,undef,2,3>
2116 static bool isIdentityMask(ArrayRef<int> Mask);
2117 static bool isIdentityMask(const Constant *Mask) {
2118 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2118, __PRETTY_FUNCTION__))
;
2119 SmallVector<int, 16> MaskAsInts;
2120 getShuffleMask(Mask, MaskAsInts);
2121 return isIdentityMask(MaskAsInts);
2122 }
2123
2124 /// Return true if this shuffle chooses elements from exactly one source
2125 /// vector without lane crossings and does not change the number of elements
2126 /// from its input vectors.
2127 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2128 bool isIdentity() const {
2129 return !changesLength() && isIdentityMask(ShuffleMask);
2130 }
2131
2132 /// Return true if this shuffle lengthens exactly one source vector with
2133 /// undefs in the high elements.
2134 bool isIdentityWithPadding() const;
2135
2136 /// Return true if this shuffle extracts the first N elements of exactly one
2137 /// source vector.
2138 bool isIdentityWithExtract() const;
2139
2140 /// Return true if this shuffle concatenates its 2 source vectors. This
2141 /// returns false if either input is undefined. In that case, the shuffle is
2142 /// is better classified as an identity with padding operation.
2143 bool isConcat() const;
2144
2145 /// Return true if this shuffle mask chooses elements from its source vectors
2146 /// without lane crossings. A shuffle using this mask would be
2147 /// equivalent to a vector select with a constant condition operand.
2148 /// Example: <4,1,6,undef>
2149 /// This returns false if the mask does not choose from both input vectors.
2150 /// In that case, the shuffle is better classified as an identity shuffle.
2151 /// This assumes that vector operands are the same length as the mask
2152 /// (a length-changing shuffle can never be equivalent to a vector select).
2153 static bool isSelectMask(ArrayRef<int> Mask);
2154 static bool isSelectMask(const Constant *Mask) {
2155 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2155, __PRETTY_FUNCTION__))
;
2156 SmallVector<int, 16> MaskAsInts;
2157 getShuffleMask(Mask, MaskAsInts);
2158 return isSelectMask(MaskAsInts);
2159 }
2160
2161 /// Return true if this shuffle chooses elements from its source vectors
2162 /// without lane crossings and all operands have the same number of elements.
2163 /// In other words, this shuffle is equivalent to a vector select with a
2164 /// constant condition operand.
2165 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2166 /// This returns false if the mask does not choose from both input vectors.
2167 /// In that case, the shuffle is better classified as an identity shuffle.
2168 /// TODO: Optionally allow length-changing shuffles.
2169 bool isSelect() const {
2170 return !changesLength() && isSelectMask(ShuffleMask);
2171 }
2172
2173 /// Return true if this shuffle mask swaps the order of elements from exactly
2174 /// one source vector.
2175 /// Example: <7,6,undef,4>
2176 /// This assumes that vector operands are the same length as the mask.
2177 static bool isReverseMask(ArrayRef<int> Mask);
2178 static bool isReverseMask(const Constant *Mask) {
2179 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2179, __PRETTY_FUNCTION__))
;
2180 SmallVector<int, 16> MaskAsInts;
2181 getShuffleMask(Mask, MaskAsInts);
2182 return isReverseMask(MaskAsInts);
2183 }
2184
2185 /// Return true if this shuffle swaps the order of elements from exactly
2186 /// one source vector.
2187 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2188 /// TODO: Optionally allow length-changing shuffles.
2189 bool isReverse() const {
2190 return !changesLength() && isReverseMask(ShuffleMask);
2191 }
2192
2193 /// Return true if this shuffle mask chooses all elements with the same value
2194 /// as the first element of exactly one source vector.
2195 /// Example: <4,undef,undef,4>
2196 /// This assumes that vector operands are the same length as the mask.
2197 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2198 static bool isZeroEltSplatMask(const Constant *Mask) {
2199 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2199, __PRETTY_FUNCTION__))
;
2200 SmallVector<int, 16> MaskAsInts;
2201 getShuffleMask(Mask, MaskAsInts);
2202 return isZeroEltSplatMask(MaskAsInts);
2203 }
2204
2205 /// Return true if all elements of this shuffle are the same value as the
2206 /// first element of exactly one source vector without changing the length
2207 /// of that vector.
2208 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2209 /// TODO: Optionally allow length-changing shuffles.
2210 /// TODO: Optionally allow splats from other elements.
2211 bool isZeroEltSplat() const {
2212 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2213 }
2214
2215 /// Return true if this shuffle mask is a transpose mask.
2216 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2217 /// even- or odd-numbered vector elements from two n-dimensional source
2218 /// vectors and write each result into consecutive elements of an
2219 /// n-dimensional destination vector. Two shuffles are necessary to complete
2220 /// the transpose, one for the even elements and another for the odd elements.
2221 /// This description closely follows how the TRN1 and TRN2 AArch64
2222 /// instructions operate.
2223 ///
2224 /// For example, a simple 2x2 matrix can be transposed with:
2225 ///
2226 /// ; Original matrix
2227 /// m0 = < a, b >
2228 /// m1 = < c, d >
2229 ///
2230 /// ; Transposed matrix
2231 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2232 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2233 ///
2234 /// For matrices having greater than n columns, the resulting nx2 transposed
2235 /// matrix is stored in two result vectors such that one vector contains
2236 /// interleaved elements from all the even-numbered rows and the other vector
2237 /// contains interleaved elements from all the odd-numbered rows. For example,
2238 /// a 2x4 matrix can be transposed with:
2239 ///
2240 /// ; Original matrix
2241 /// m0 = < a, b, c, d >
2242 /// m1 = < e, f, g, h >
2243 ///
2244 /// ; Transposed matrix
2245 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2246 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2247 static bool isTransposeMask(ArrayRef<int> Mask);
2248 static bool isTransposeMask(const Constant *Mask) {
2249 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2249, __PRETTY_FUNCTION__))
;
2250 SmallVector<int, 16> MaskAsInts;
2251 getShuffleMask(Mask, MaskAsInts);
2252 return isTransposeMask(MaskAsInts);
2253 }
2254
2255 /// Return true if this shuffle transposes the elements of its inputs without
2256 /// changing the length of the vectors. This operation may also be known as a
2257 /// merge or interleave. See the description for isTransposeMask() for the
2258 /// exact specification.
2259 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2260 bool isTranspose() const {
2261 return !changesLength() && isTransposeMask(ShuffleMask);
2262 }
2263
2264 /// Return true if this shuffle mask is an extract subvector mask.
2265 /// A valid extract subvector mask returns a smaller vector from a single
2266 /// source operand. The base extraction index is returned as well.
2267 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2268 int &Index);
2269 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2270 int &Index) {
2271 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2271, __PRETTY_FUNCTION__))
;
2272 // Not possible to express a shuffle mask for a scalable vector for this
2273 // case.
2274 if (isa<ScalableVectorType>(Mask->getType()))
2275 return false;
2276 SmallVector<int, 16> MaskAsInts;
2277 getShuffleMask(Mask, MaskAsInts);
2278 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2279 }
2280
2281 /// Return true if this shuffle mask is an extract subvector mask.
2282 bool isExtractSubvectorMask(int &Index) const {
2283 // Not possible to express a shuffle mask for a scalable vector for this
2284 // case.
2285 if (isa<ScalableVectorType>(getType()))
2286 return false;
2287
2288 int NumSrcElts =
2289 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2290 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2291 }
2292
2293 /// Change values in a shuffle permute mask assuming the two vector operands
2294 /// of length InVecNumElts have swapped position.
2295 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2296 unsigned InVecNumElts) {
2297 for (int &Idx : Mask) {
2298 if (Idx == -1)
2299 continue;
2300 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2301 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2302, __PRETTY_FUNCTION__))
2302 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2302, __PRETTY_FUNCTION__))
;
2303 }
2304 }
2305
2306 // Methods for support type inquiry through isa, cast, and dyn_cast:
2307 static bool classof(const Instruction *I) {
2308 return I->getOpcode() == Instruction::ShuffleVector;
2309 }
2310 static bool classof(const Value *V) {
2311 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2312 }
2313};
2314
2315template <>
2316struct OperandTraits<ShuffleVectorInst>
2317 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2318
2319DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2319, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2319, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2320
2321//===----------------------------------------------------------------------===//
2322// ExtractValueInst Class
2323//===----------------------------------------------------------------------===//
2324
2325/// This instruction extracts a struct member or array
2326/// element value from an aggregate value.
2327///
2328class ExtractValueInst : public UnaryInstruction {
2329 SmallVector<unsigned, 4> Indices;
2330
2331 ExtractValueInst(const ExtractValueInst &EVI);
2332
2333 /// Constructors - Create a extractvalue instruction with a base aggregate
2334 /// value and a list of indices. The first ctor can optionally insert before
2335 /// an existing instruction, the second appends the new instruction to the
2336 /// specified BasicBlock.
2337 inline ExtractValueInst(Value *Agg,
2338 ArrayRef<unsigned> Idxs,
2339 const Twine &NameStr,
2340 Instruction *InsertBefore);
2341 inline ExtractValueInst(Value *Agg,
2342 ArrayRef<unsigned> Idxs,
2343 const Twine &NameStr, BasicBlock *InsertAtEnd);
2344
2345 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2346
2347protected:
2348 // Note: Instruction needs to be a friend here to call cloneImpl.
2349 friend class Instruction;
2350
2351 ExtractValueInst *cloneImpl() const;
2352
2353public:
2354 static ExtractValueInst *Create(Value *Agg,
2355 ArrayRef<unsigned> Idxs,
2356 const Twine &NameStr = "",
2357 Instruction *InsertBefore = nullptr) {
2358 return new
2359 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2360 }
2361
2362 static ExtractValueInst *Create(Value *Agg,
2363 ArrayRef<unsigned> Idxs,
2364 const Twine &NameStr,
2365 BasicBlock *InsertAtEnd) {
2366 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2367 }
2368
2369 /// Returns the type of the element that would be extracted
2370 /// with an extractvalue instruction with the specified parameters.
2371 ///
2372 /// Null is returned if the indices are invalid for the specified type.
2373 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2374
2375 using idx_iterator = const unsigned*;
2376
2377 inline idx_iterator idx_begin() const { return Indices.begin(); }
2378 inline idx_iterator idx_end() const { return Indices.end(); }
2379 inline iterator_range<idx_iterator> indices() const {
2380 return make_range(idx_begin(), idx_end());
2381 }
2382
2383 Value *getAggregateOperand() {
2384 return getOperand(0);
2385 }
2386 const Value *getAggregateOperand() const {
2387 return getOperand(0);
2388 }
2389 static unsigned getAggregateOperandIndex() {
2390 return 0U; // get index for modifying correct operand
2391 }
2392
2393 ArrayRef<unsigned> getIndices() const {
2394 return Indices;
2395 }
2396
2397 unsigned getNumIndices() const {
2398 return (unsigned)Indices.size();
2399 }
2400
2401 bool hasIndices() const {
2402 return true;
2403 }
2404
2405 // Methods for support type inquiry through isa, cast, and dyn_cast:
2406 static bool classof(const Instruction *I) {
2407 return I->getOpcode() == Instruction::ExtractValue;
2408 }
2409 static bool classof(const Value *V) {
2410 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2411 }
2412};
2413
2414ExtractValueInst::ExtractValueInst(Value *Agg,
2415 ArrayRef<unsigned> Idxs,
2416 const Twine &NameStr,
2417 Instruction *InsertBefore)
2418 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2419 ExtractValue, Agg, InsertBefore) {
2420 init(Idxs, NameStr);
2421}
2422
2423ExtractValueInst::ExtractValueInst(Value *Agg,
2424 ArrayRef<unsigned> Idxs,
2425 const Twine &NameStr,
2426 BasicBlock *InsertAtEnd)
2427 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2428 ExtractValue, Agg, InsertAtEnd) {
2429 init(Idxs, NameStr);
2430}
2431
2432//===----------------------------------------------------------------------===//
2433// InsertValueInst Class
2434//===----------------------------------------------------------------------===//
2435
2436/// This instruction inserts a struct field of array element
2437/// value into an aggregate value.
2438///
2439class InsertValueInst : public Instruction {
2440 SmallVector<unsigned, 4> Indices;
2441
2442 InsertValueInst(const InsertValueInst &IVI);
2443
2444 /// Constructors - Create a insertvalue instruction with a base aggregate
2445 /// value, a value to insert, and a list of indices. The first ctor can
2446 /// optionally insert before an existing instruction, the second appends
2447 /// the new instruction to the specified BasicBlock.
2448 inline InsertValueInst(Value *Agg, Value *Val,
2449 ArrayRef<unsigned> Idxs,
2450 const Twine &NameStr,
2451 Instruction *InsertBefore);
2452 inline InsertValueInst(Value *Agg, Value *Val,
2453 ArrayRef<unsigned> Idxs,
2454 const Twine &NameStr, BasicBlock *InsertAtEnd);
2455
2456 /// Constructors - These two constructors are convenience methods because one
2457 /// and two index insertvalue instructions are so common.
2458 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2459 const Twine &NameStr = "",
2460 Instruction *InsertBefore = nullptr);
2461 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2462 BasicBlock *InsertAtEnd);
2463
2464 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2465 const Twine &NameStr);
2466
2467protected:
2468 // Note: Instruction needs to be a friend here to call cloneImpl.
2469 friend class Instruction;
2470
2471 InsertValueInst *cloneImpl() const;
2472
2473public:
2474 // allocate space for exactly two operands
2475 void *operator new(size_t s) {
2476 return User::operator new(s, 2);
2477 }
2478
2479 static InsertValueInst *Create(Value *Agg, Value *Val,
2480 ArrayRef<unsigned> Idxs,
2481 const Twine &NameStr = "",
2482 Instruction *InsertBefore = nullptr) {
2483 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2484 }
2485
2486 static InsertValueInst *Create(Value *Agg, Value *Val,
2487 ArrayRef<unsigned> Idxs,
2488 const Twine &NameStr,
2489 BasicBlock *InsertAtEnd) {
2490 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2491 }
2492
2493 /// Transparently provide more efficient getOperand methods.
2494 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2495
2496 using idx_iterator = const unsigned*;
2497
2498 inline idx_iterator idx_begin() const { return Indices.begin(); }
2499 inline idx_iterator idx_end() const { return Indices.end(); }
2500 inline iterator_range<idx_iterator> indices() const {
2501 return make_range(idx_begin(), idx_end());
2502 }
2503
2504 Value *getAggregateOperand() {
2505 return getOperand(0);
2506 }
2507 const Value *getAggregateOperand() const {
2508 return getOperand(0);
2509 }
2510 static unsigned getAggregateOperandIndex() {
2511 return 0U; // get index for modifying correct operand
2512 }
2513
2514 Value *getInsertedValueOperand() {
2515 return getOperand(1);
2516 }
2517 const Value *getInsertedValueOperand() const {
2518 return getOperand(1);
2519 }
2520 static unsigned getInsertedValueOperandIndex() {
2521 return 1U; // get index for modifying correct operand
2522 }
2523
2524 ArrayRef<unsigned> getIndices() const {
2525 return Indices;
2526 }
2527
2528 unsigned getNumIndices() const {
2529 return (unsigned)Indices.size();
2530 }
2531
2532 bool hasIndices() const {
2533 return true;
2534 }
2535
2536 // Methods for support type inquiry through isa, cast, and dyn_cast:
2537 static bool classof(const Instruction *I) {
2538 return I->getOpcode() == Instruction::InsertValue;
2539 }
2540 static bool classof(const Value *V) {
2541 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2542 }
2543};
2544
2545template <>
2546struct OperandTraits<InsertValueInst> :
2547 public FixedNumOperandTraits<InsertValueInst, 2> {
2548};
2549
2550InsertValueInst::InsertValueInst(Value *Agg,
2551 Value *Val,
2552 ArrayRef<unsigned> Idxs,
2553 const Twine &NameStr,
2554 Instruction *InsertBefore)
2555 : Instruction(Agg->getType(), InsertValue,
2556 OperandTraits<InsertValueInst>::op_begin(this),
2557 2, InsertBefore) {
2558 init(Agg, Val, Idxs, NameStr);
2559}
2560
2561InsertValueInst::InsertValueInst(Value *Agg,
2562 Value *Val,
2563 ArrayRef<unsigned> Idxs,
2564 const Twine &NameStr,
2565 BasicBlock *InsertAtEnd)
2566 : Instruction(Agg->getType(), InsertValue,
2567 OperandTraits<InsertValueInst>::op_begin(this),
2568 2, InsertAtEnd) {
2569 init(Agg, Val, Idxs, NameStr);
2570}
2571
2572DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2572, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2572, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2573
2574//===----------------------------------------------------------------------===//
2575// PHINode Class
2576//===----------------------------------------------------------------------===//
2577
2578// PHINode - The PHINode class is used to represent the magical mystical PHI
2579// node, that can not exist in nature, but can be synthesized in a computer
2580// scientist's overactive imagination.
2581//
2582class PHINode : public Instruction {
2583 /// The number of operands actually allocated. NumOperands is
2584 /// the number actually in use.
2585 unsigned ReservedSpace;
2586
2587 PHINode(const PHINode &PN);
2588
2589 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2590 const Twine &NameStr = "",
2591 Instruction *InsertBefore = nullptr)
2592 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2593 ReservedSpace(NumReservedValues) {
2594 setName(NameStr);
2595 allocHungoffUses(ReservedSpace);
2596 }
2597
2598 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2599 BasicBlock *InsertAtEnd)
2600 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2601 ReservedSpace(NumReservedValues) {
2602 setName(NameStr);
2603 allocHungoffUses(ReservedSpace);
2604 }
2605
2606protected:
2607 // Note: Instruction needs to be a friend here to call cloneImpl.
2608 friend class Instruction;
2609
2610 PHINode *cloneImpl() const;
2611
2612 // allocHungoffUses - this is more complicated than the generic
2613 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2614 // values and pointers to the incoming blocks, all in one allocation.
2615 void allocHungoffUses(unsigned N) {
2616 User::allocHungoffUses(N, /* IsPhi */ true);
2617 }
2618
2619public:
2620 /// Constructors - NumReservedValues is a hint for the number of incoming
2621 /// edges that this phi node will have (use 0 if you really have no idea).
2622 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2623 const Twine &NameStr = "",
2624 Instruction *InsertBefore = nullptr) {
2625 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2626 }
2627
2628 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2629 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2630 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2631 }
2632
2633 /// Provide fast operand accessors
2634 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2635
2636 // Block iterator interface. This provides access to the list of incoming
2637 // basic blocks, which parallels the list of incoming values.
2638
2639 using block_iterator = BasicBlock **;
2640 using const_block_iterator = BasicBlock * const *;
2641
2642 block_iterator block_begin() {
2643 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2644 }
2645
2646 const_block_iterator block_begin() const {
2647 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2648 }
2649
2650 block_iterator block_end() {
2651 return block_begin() + getNumOperands();
2652 }
2653
2654 const_block_iterator block_end() const {
2655 return block_begin() + getNumOperands();
2656 }
2657
2658 iterator_range<block_iterator> blocks() {
2659 return make_range(block_begin(), block_end());
2660 }
2661
2662 iterator_range<const_block_iterator> blocks() const {
2663 return make_range(block_begin(), block_end());
2664 }
2665
2666 op_range incoming_values() { return operands(); }
2667
2668 const_op_range incoming_values() const { return operands(); }
2669
2670 /// Return the number of incoming edges
2671 ///
2672 unsigned getNumIncomingValues() const { return getNumOperands(); }
2673
2674 /// Return incoming value number x
2675 ///
2676 Value *getIncomingValue(unsigned i) const {
2677 return getOperand(i);
2678 }
2679 void setIncomingValue(unsigned i, Value *V) {
2680 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2680, __PRETTY_FUNCTION__))
;
2681 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2682, __PRETTY_FUNCTION__))
2682 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2682, __PRETTY_FUNCTION__))
;
2683 setOperand(i, V);
2684 }
2685
2686 static unsigned getOperandNumForIncomingValue(unsigned i) {
2687 return i;
2688 }
2689
2690 static unsigned getIncomingValueNumForOperand(unsigned i) {
2691 return i;
2692 }
2693
2694 /// Return incoming basic block number @p i.
2695 ///
2696 BasicBlock *getIncomingBlock(unsigned i) const {
2697 return block_begin()[i];
2698 }
2699
2700 /// Return incoming basic block corresponding
2701 /// to an operand of the PHI.
2702 ///
2703 BasicBlock *getIncomingBlock(const Use &U) const {
2704 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2704, __PRETTY_FUNCTION__))
;
2705 return getIncomingBlock(unsigned(&U - op_begin()));
2706 }
2707
2708 /// Return incoming basic block corresponding
2709 /// to value use iterator.
2710 ///
2711 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2712 return getIncomingBlock(I.getUse());
2713 }
2714
2715 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2716 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2716, __PRETTY_FUNCTION__))
;
2717 block_begin()[i] = BB;
2718 }
2719
2720 /// Replace every incoming basic block \p Old to basic block \p New.
2721 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2722 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2722, __PRETTY_FUNCTION__))
;
2723 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2724 if (getIncomingBlock(Op) == Old)
2725 setIncomingBlock(Op, New);
2726 }
2727
2728 /// Add an incoming value to the end of the PHI list
2729 ///
2730 void addIncoming(Value *V, BasicBlock *BB) {
2731 if (getNumOperands() == ReservedSpace)
2732 growOperands(); // Get more space!
2733 // Initialize some new operands.
2734 setNumHungOffUseOperands(getNumOperands() + 1);
2735 setIncomingValue(getNumOperands() - 1, V);
2736 setIncomingBlock(getNumOperands() - 1, BB);
2737 }
2738
2739 /// Remove an incoming value. This is useful if a
2740 /// predecessor basic block is deleted. The value removed is returned.
2741 ///
2742 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2743 /// is true), the PHI node is destroyed and any uses of it are replaced with
2744 /// dummy values. The only time there should be zero incoming values to a PHI
2745 /// node is when the block is dead, so this strategy is sound.
2746 ///
2747 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2748
2749 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2750 int Idx = getBasicBlockIndex(BB);
2751 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2751, __PRETTY_FUNCTION__))
;
2752 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2753 }
2754
2755 /// Return the first index of the specified basic
2756 /// block in the value list for this PHI. Returns -1 if no instance.
2757 ///
2758 int getBasicBlockIndex(const BasicBlock *BB) const {
2759 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2760 if (block_begin()[i] == BB)
2761 return i;
2762 return -1;
2763 }
2764
2765 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2766 int Idx = getBasicBlockIndex(BB);
2767 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2767, __PRETTY_FUNCTION__))
;
2768 return getIncomingValue(Idx);
2769 }
2770
2771 /// Set every incoming value(s) for block \p BB to \p V.
2772 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2773 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2773, __PRETTY_FUNCTION__))
;
2774 bool Found = false;
2775 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2776 if (getIncomingBlock(Op) == BB) {
2777 Found = true;
2778 setIncomingValue(Op, V);
2779 }
2780 (void)Found;
2781 assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast
<void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2781, __PRETTY_FUNCTION__))
;
2782 }
2783
2784 /// If the specified PHI node always merges together the
2785 /// same value, return the value, otherwise return null.
2786 Value *hasConstantValue() const;
2787
2788 /// Whether the specified PHI node always merges
2789 /// together the same value, assuming undefs are equal to a unique
2790 /// non-undef value.
2791 bool hasConstantOrUndefValue() const;
2792
2793 /// If the PHI node is complete which means all of its parent's predecessors
2794 /// have incoming value in this PHI, return true, otherwise return false.
2795 bool isComplete() const {
2796 return llvm::all_of(predecessors(getParent()),
2797 [this](const BasicBlock *Pred) {
2798 return getBasicBlockIndex(Pred) >= 0;
2799 });
2800 }
2801
2802 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2803 static bool classof(const Instruction *I) {
2804 return I->getOpcode() == Instruction::PHI;
2805 }
2806 static bool classof(const Value *V) {
2807 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2808 }
2809
2810private:
2811 void growOperands();
2812};
2813
2814template <>
2815struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2816};
2817
2818DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2818, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2818, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2819
2820//===----------------------------------------------------------------------===//
2821// LandingPadInst Class
2822//===----------------------------------------------------------------------===//
2823
2824//===---------------------------------------------------------------------------
2825/// The landingpad instruction holds all of the information
2826/// necessary to generate correct exception handling. The landingpad instruction
2827/// cannot be moved from the top of a landing pad block, which itself is
2828/// accessible only from the 'unwind' edge of an invoke. This uses the
2829/// SubclassData field in Value to store whether or not the landingpad is a
2830/// cleanup.
2831///
2832class LandingPadInst : public Instruction {
2833 using CleanupField = BoolBitfieldElementT<0>;
2834
2835 /// The number of operands actually allocated. NumOperands is
2836 /// the number actually in use.
2837 unsigned ReservedSpace;
2838
2839 LandingPadInst(const LandingPadInst &LP);
2840
2841public:
2842 enum ClauseType { Catch, Filter };
2843
2844private:
2845 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2846 const Twine &NameStr, Instruction *InsertBefore);
2847 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2848 const Twine &NameStr, BasicBlock *InsertAtEnd);
2849
2850 // Allocate space for exactly zero operands.
2851 void *operator new(size_t s) {
2852 return User::operator new(s);
2853 }
2854
2855 void growOperands(unsigned Size);
2856 void init(unsigned NumReservedValues, const Twine &NameStr);
2857
2858protected:
2859 // Note: Instruction needs to be a friend here to call cloneImpl.
2860 friend class Instruction;
2861
2862 LandingPadInst *cloneImpl() const;
2863
2864public:
2865 /// Constructors - NumReservedClauses is a hint for the number of incoming
2866 /// clauses that this landingpad will have (use 0 if you really have no idea).
2867 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2868 const Twine &NameStr = "",
2869 Instruction *InsertBefore = nullptr);
2870 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2871 const Twine &NameStr, BasicBlock *InsertAtEnd);
2872
2873 /// Provide fast operand accessors
2874 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2875
2876 /// Return 'true' if this landingpad instruction is a
2877 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2878 /// doesn't catch the exception.
2879 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2880
2881 /// Indicate that this landingpad instruction is a cleanup.
2882 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2883
2884 /// Add a catch or filter clause to the landing pad.
2885 void addClause(Constant *ClauseVal);
2886
2887 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2888 /// determine what type of clause this is.
2889 Constant *getClause(unsigned Idx) const {
2890 return cast<Constant>(getOperandList()[Idx]);
2891 }
2892
2893 /// Return 'true' if the clause and index Idx is a catch clause.
2894 bool isCatch(unsigned Idx) const {
2895 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2896 }
2897
2898 /// Return 'true' if the clause and index Idx is a filter clause.
2899 bool isFilter(unsigned Idx) const {
2900 return isa<ArrayType>(getOperandList()[Idx]->getType());
2901 }
2902
2903 /// Get the number of clauses for this landing pad.
2904 unsigned getNumClauses() const { return getNumOperands(); }
2905
2906 /// Grow the size of the operand list to accommodate the new
2907 /// number of clauses.
2908 void reserveClauses(unsigned Size) { growOperands(Size); }
2909
2910 // Methods for support type inquiry through isa, cast, and dyn_cast:
2911 static bool classof(const Instruction *I) {
2912 return I->getOpcode() == Instruction::LandingPad;
2913 }
2914 static bool classof(const Value *V) {
2915 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2916 }
2917};
2918
2919template <>
2920struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2921};
2922
2923DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2923, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2923, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2924
2925//===----------------------------------------------------------------------===//
2926// ReturnInst Class
2927//===----------------------------------------------------------------------===//
2928
2929//===---------------------------------------------------------------------------
2930/// Return a value (possibly void), from a function. Execution
2931/// does not continue in this function any longer.
2932///
2933class ReturnInst : public Instruction {
2934 ReturnInst(const ReturnInst &RI);
2935
2936private:
2937 // ReturnInst constructors:
2938 // ReturnInst() - 'ret void' instruction
2939 // ReturnInst( null) - 'ret void' instruction
2940 // ReturnInst(Value* X) - 'ret X' instruction
2941 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2942 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2943 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2944 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2945 //
2946 // NOTE: If the Value* passed is of type void then the constructor behaves as
2947 // if it was passed NULL.
2948 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2949 Instruction *InsertBefore = nullptr);
2950 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2951 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2952
2953protected:
2954 // Note: Instruction needs to be a friend here to call cloneImpl.
2955 friend class Instruction;
2956
2957 ReturnInst *cloneImpl() const;
2958
2959public:
2960 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2961 Instruction *InsertBefore = nullptr) {
2962 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2963 }
2964
2965 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2966 BasicBlock *InsertAtEnd) {
2967 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2968 }
2969
2970 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2971 return new(0) ReturnInst(C, InsertAtEnd);
2972 }
2973
2974 /// Provide fast operand accessors
2975 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2976
2977 /// Convenience accessor. Returns null if there is no return value.
2978 Value *getReturnValue() const {
2979 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2980 }
2981
2982 unsigned getNumSuccessors() const { return 0; }
2983
2984 // Methods for support type inquiry through isa, cast, and dyn_cast:
2985 static bool classof(const Instruction *I) {
2986 return (I->getOpcode() == Instruction::Ret);
2987 }
2988 static bool classof(const Value *V) {
2989 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2990 }
2991
2992private:
2993 BasicBlock *getSuccessor(unsigned idx) const {
2994 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2994)
;
2995 }
2996
2997 void setSuccessor(unsigned idx, BasicBlock *B) {
2998 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 2998)
;
2999 }
3000};
3001
3002template <>
3003struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3004};
3005
3006DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3006, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3006, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3007
3008//===----------------------------------------------------------------------===//
3009// BranchInst Class
3010//===----------------------------------------------------------------------===//
3011
3012//===---------------------------------------------------------------------------
3013/// Conditional or Unconditional Branch instruction.
3014///
3015class BranchInst : public Instruction {
3016 /// Ops list - Branches are strange. The operands are ordered:
3017 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3018 /// they don't have to check for cond/uncond branchness. These are mostly
3019 /// accessed relative from op_end().
3020 BranchInst(const BranchInst &BI);
3021 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3022 // BranchInst(BB *B) - 'br B'
3023 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3024 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3025 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3026 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3027 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3028 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3029 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3030 Instruction *InsertBefore = nullptr);
3031 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3032 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3033 BasicBlock *InsertAtEnd);
3034
3035 void AssertOK();
3036
3037protected:
3038 // Note: Instruction needs to be a friend here to call cloneImpl.
3039 friend class Instruction;
3040
3041 BranchInst *cloneImpl() const;
3042
3043public:
3044 /// Iterator type that casts an operand to a basic block.
3045 ///
3046 /// This only makes sense because the successors are stored as adjacent
3047 /// operands for branch instructions.
3048 struct succ_op_iterator
3049 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3050 std::random_access_iterator_tag, BasicBlock *,
3051 ptrdiff_t, BasicBlock *, BasicBlock *> {
3052 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3053
3054 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3055 BasicBlock *operator->() const { return operator*(); }
3056 };
3057
3058 /// The const version of `succ_op_iterator`.
3059 struct const_succ_op_iterator
3060 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3061 std::random_access_iterator_tag,
3062 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3063 const BasicBlock *> {
3064 explicit const_succ_op_iterator(const_value_op_iterator I)
3065 : iterator_adaptor_base(I) {}
3066
3067 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3068 const BasicBlock *operator->() const { return operator*(); }
3069 };
3070
3071 static BranchInst *Create(BasicBlock *IfTrue,
3072 Instruction *InsertBefore = nullptr) {
3073 return new(1) BranchInst(IfTrue, InsertBefore);
3074 }
3075
3076 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3077 Value *Cond, Instruction *InsertBefore = nullptr) {
3078 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3079 }
3080
3081 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3082 return new(1) BranchInst(IfTrue, InsertAtEnd);
3083 }
3084
3085 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3086 Value *Cond, BasicBlock *InsertAtEnd) {
3087 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3088 }
3089
3090 /// Transparently provide more efficient getOperand methods.
3091 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3092
3093 bool isUnconditional() const { return getNumOperands() == 1; }
3094 bool isConditional() const { return getNumOperands() == 3; }
3095
3096 Value *getCondition() const {
3097 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3097, __PRETTY_FUNCTION__))
;
3098 return Op<-3>();
3099 }
3100
3101 void setCondition(Value *V) {
3102 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3102, __PRETTY_FUNCTION__))
;
3103 Op<-3>() = V;
3104 }
3105
3106 unsigned getNumSuccessors() const { return 1+isConditional(); }
3107
3108 BasicBlock *getSuccessor(unsigned i) const {
3109 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3109, __PRETTY_FUNCTION__))
;
3110 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3111 }
3112
3113 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3114 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3114, __PRETTY_FUNCTION__))
;
3115 *(&Op<-1>() - idx) = NewSucc;
3116 }
3117
3118 /// Swap the successors of this branch instruction.
3119 ///
3120 /// Swaps the successors of the branch instruction. This also swaps any
3121 /// branch weight metadata associated with the instruction so that it
3122 /// continues to map correctly to each operand.
3123 void swapSuccessors();
3124
3125 iterator_range<succ_op_iterator> successors() {
3126 return make_range(
3127 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3128 succ_op_iterator(value_op_end()));
3129 }
3130
3131 iterator_range<const_succ_op_iterator> successors() const {
3132 return make_range(const_succ_op_iterator(
3133 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3134 const_succ_op_iterator(value_op_end()));
3135 }
3136
3137 // Methods for support type inquiry through isa, cast, and dyn_cast:
3138 static bool classof(const Instruction *I) {
3139 return (I->getOpcode() == Instruction::Br);
3140 }
3141 static bool classof(const Value *V) {
3142 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3143 }
3144};
3145
3146template <>
3147struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3148};
3149
3150DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3150, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst
*>(this))[i_nocapture].get()); } void BranchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3150, __PRETTY_FUNCTION__)); OperandTraits<BranchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst
::getNumOperands() const { return OperandTraits<BranchInst
>::operands(this); } template <int Idx_nocapture> Use
&BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3151
3152//===----------------------------------------------------------------------===//
3153// SwitchInst Class
3154//===----------------------------------------------------------------------===//
3155
3156//===---------------------------------------------------------------------------
3157/// Multiway switch
3158///
3159class SwitchInst : public Instruction {
3160 unsigned ReservedSpace;
3161
3162 // Operand[0] = Value to switch on
3163 // Operand[1] = Default basic block destination
3164 // Operand[2n ] = Value to match
3165 // Operand[2n+1] = BasicBlock to go to on match
3166 SwitchInst(const SwitchInst &SI);
3167
3168 /// Create a new switch instruction, specifying a value to switch on and a
3169 /// default destination. The number of additional cases can be specified here
3170 /// to make memory allocation more efficient. This constructor can also
3171 /// auto-insert before another instruction.
3172 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3173 Instruction *InsertBefore);
3174
3175 /// Create a new switch instruction, specifying a value to switch on and a
3176 /// default destination. The number of additional cases can be specified here
3177 /// to make memory allocation more efficient. This constructor also
3178 /// auto-inserts at the end of the specified BasicBlock.
3179 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3180 BasicBlock *InsertAtEnd);
3181
3182 // allocate space for exactly zero operands
3183 void *operator new(size_t s) {
3184 return User::operator new(s);
3185 }
3186
3187 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3188 void growOperands();
3189
3190protected:
3191 // Note: Instruction needs to be a friend here to call cloneImpl.
3192 friend class Instruction;
3193
3194 SwitchInst *cloneImpl() const;
3195
3196public:
3197 // -2
3198 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3199
3200 template <typename CaseHandleT> class CaseIteratorImpl;
3201
3202 /// A handle to a particular switch case. It exposes a convenient interface
3203 /// to both the case value and the successor block.
3204 ///
3205 /// We define this as a template and instantiate it to form both a const and
3206 /// non-const handle.
3207 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3208 class CaseHandleImpl {
3209 // Directly befriend both const and non-const iterators.
3210 friend class SwitchInst::CaseIteratorImpl<
3211 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3212
3213 protected:
3214 // Expose the switch type we're parameterized with to the iterator.
3215 using SwitchInstType = SwitchInstT;
3216
3217 SwitchInstT *SI;
3218 ptrdiff_t Index;
3219
3220 CaseHandleImpl() = default;
3221 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3222
3223 public:
3224 /// Resolves case value for current case.
3225 ConstantIntT *getCaseValue() const {
3226 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3227, __PRETTY_FUNCTION__))
3227 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3227, __PRETTY_FUNCTION__))
;
3228 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3229 }
3230
3231 /// Resolves successor for current case.
3232 BasicBlockT *getCaseSuccessor() const {
3233 assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3235, __PRETTY_FUNCTION__))
3234 (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3235, __PRETTY_FUNCTION__))
3235 "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3235, __PRETTY_FUNCTION__))
;
3236 return SI->getSuccessor(getSuccessorIndex());
3237 }
3238
3239 /// Returns number of current case.
3240 unsigned getCaseIndex() const { return Index; }
3241
3242 /// Returns successor index for current case successor.
3243 unsigned getSuccessorIndex() const {
3244 assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3246, __PRETTY_FUNCTION__))
3245 (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3246, __PRETTY_FUNCTION__))
3246 "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3246, __PRETTY_FUNCTION__))
;
3247 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3248 }
3249
3250 bool operator==(const CaseHandleImpl &RHS) const {
3251 assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast
<void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3251, __PRETTY_FUNCTION__))
;
3252 return Index == RHS.Index;
3253 }
3254 };
3255
3256 using ConstCaseHandle =
3257 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3258
3259 class CaseHandle
3260 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3261 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3262
3263 public:
3264 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3265
3266 /// Sets the new value for current case.
3267 void setValue(ConstantInt *V) {
3268 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3269, __PRETTY_FUNCTION__))
3269 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3269, __PRETTY_FUNCTION__))
;
3270 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3271 }
3272
3273 /// Sets the new successor for current case.
3274 void setSuccessor(BasicBlock *S) {
3275 SI->setSuccessor(getSuccessorIndex(), S);
3276 }
3277 };
3278
3279 template <typename CaseHandleT>
3280 class CaseIteratorImpl
3281 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3282 std::random_access_iterator_tag,
3283 CaseHandleT> {
3284 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3285
3286 CaseHandleT Case;
3287
3288 public:
3289 /// Default constructed iterator is in an invalid state until assigned to
3290 /// a case for a particular switch.
3291 CaseIteratorImpl() = default;
3292
3293 /// Initializes case iterator for given SwitchInst and for given
3294 /// case number.
3295 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3296
3297 /// Initializes case iterator for given SwitchInst and for given
3298 /// successor index.
3299 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3300 unsigned SuccessorIndex) {
3301 assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3302, __PRETTY_FUNCTION__))
3302 "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3302, __PRETTY_FUNCTION__))
;
3303 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3304 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3305 }
3306
3307 /// Support converting to the const variant. This will be a no-op for const
3308 /// variant.
3309 operator CaseIteratorImpl<ConstCaseHandle>() const {
3310 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3311 }
3312
3313 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3314 // Check index correctness after addition.
3315 // Note: Index == getNumCases() means end().
3316 assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3318, __PRETTY_FUNCTION__))
3317 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3318, __PRETTY_FUNCTION__))
3318 "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3318, __PRETTY_FUNCTION__))
;
3319 Case.Index += N;
3320 return *this;
3321 }
3322 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3323 // Check index correctness after subtraction.
3324 // Note: Case.Index == getNumCases() means end().
3325 assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3327, __PRETTY_FUNCTION__))
3326 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3327, __PRETTY_FUNCTION__))
3327 "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3327, __PRETTY_FUNCTION__))
;
3328 Case.Index -= N;
3329 return *this;
3330 }
3331 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3332 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3332, __PRETTY_FUNCTION__))
;
3333 return Case.Index - RHS.Case.Index;
3334 }
3335 bool operator==(const CaseIteratorImpl &RHS) const {
3336 return Case == RHS.Case;
3337 }
3338 bool operator<(const CaseIteratorImpl &RHS) const {
3339 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3339, __PRETTY_FUNCTION__))
;
3340 return Case.Index < RHS.Case.Index;
3341 }
3342 CaseHandleT &operator*() { return Case; }
3343 const CaseHandleT &operator*() const { return Case; }
3344 };
3345
3346 using CaseIt = CaseIteratorImpl<CaseHandle>;
3347 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3348
3349 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3350 unsigned NumCases,
3351 Instruction *InsertBefore = nullptr) {
3352 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3353 }
3354
3355 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3356 unsigned NumCases, BasicBlock *InsertAtEnd) {
3357 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3358 }
3359
3360 /// Provide fast operand accessors
3361 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3362
3363 // Accessor Methods for Switch stmt
3364 Value *getCondition() const { return getOperand(0); }
3365 void setCondition(Value *V) { setOperand(0, V); }
3366
3367 BasicBlock *getDefaultDest() const {
3368 return cast<BasicBlock>(getOperand(1));
3369 }
3370
3371 void setDefaultDest(BasicBlock *DefaultCase) {
3372 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3373 }
3374
3375 /// Return the number of 'cases' in this switch instruction, excluding the
3376 /// default case.
3377 unsigned getNumCases() const {
3378 return getNumOperands()/2 - 1;
3379 }
3380
3381 /// Returns a read/write iterator that points to the first case in the
3382 /// SwitchInst.
3383 CaseIt case_begin() {
3384 return CaseIt(this, 0);
3385 }
3386
3387 /// Returns a read-only iterator that points to the first case in the
3388 /// SwitchInst.
3389 ConstCaseIt case_begin() const {
3390 return ConstCaseIt(this, 0);
3391 }
3392
3393 /// Returns a read/write iterator that points one past the last in the
3394 /// SwitchInst.
3395 CaseIt case_end() {
3396 return CaseIt(this, getNumCases());
3397 }
3398
3399 /// Returns a read-only iterator that points one past the last in the
3400 /// SwitchInst.
3401 ConstCaseIt case_end() const {
3402 return ConstCaseIt(this, getNumCases());
3403 }
3404
3405 /// Iteration adapter for range-for loops.
3406 iterator_range<CaseIt> cases() {
3407 return make_range(case_begin(), case_end());
3408 }
3409
3410 /// Constant iteration adapter for range-for loops.
3411 iterator_range<ConstCaseIt> cases() const {
3412 return make_range(case_begin(), case_end());
3413 }
3414
3415 /// Returns an iterator that points to the default case.
3416 /// Note: this iterator allows to resolve successor only. Attempt
3417 /// to resolve case value causes an assertion.
3418 /// Also note, that increment and decrement also causes an assertion and
3419 /// makes iterator invalid.
3420 CaseIt case_default() {
3421 return CaseIt(this, DefaultPseudoIndex);
3422 }
3423 ConstCaseIt case_default() const {
3424 return ConstCaseIt(this, DefaultPseudoIndex);
3425 }
3426
3427 /// Search all of the case values for the specified constant. If it is
3428 /// explicitly handled, return the case iterator of it, otherwise return
3429 /// default case iterator to indicate that it is handled by the default
3430 /// handler.
3431 CaseIt findCaseValue(const ConstantInt *C) {
3432 CaseIt I = llvm::find_if(
3433 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3434 if (I != case_end())
3435 return I;
3436
3437 return case_default();
3438 }
3439 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3440 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3441 return Case.getCaseValue() == C;
3442 });
3443 if (I != case_end())
3444 return I;
3445
3446 return case_default();
3447 }
3448
3449 /// Finds the unique case value for a given successor. Returns null if the
3450 /// successor is not found, not unique, or is the default case.
3451 ConstantInt *findCaseDest(BasicBlock *BB) {
3452 if (BB == getDefaultDest())
3453 return nullptr;
3454
3455 ConstantInt *CI = nullptr;
3456 for (auto Case : cases()) {
3457 if (Case.getCaseSuccessor() != BB)
3458 continue;
3459
3460 if (CI)
3461 return nullptr; // Multiple cases lead to BB.
3462
3463 CI = Case.getCaseValue();
3464 }
3465
3466 return CI;
3467 }
3468
3469 /// Add an entry to the switch instruction.
3470 /// Note:
3471 /// This action invalidates case_end(). Old case_end() iterator will
3472 /// point to the added case.
3473 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3474
3475 /// This method removes the specified case and its successor from the switch
3476 /// instruction. Note that this operation may reorder the remaining cases at
3477 /// index idx and above.
3478 /// Note:
3479 /// This action invalidates iterators for all cases following the one removed,
3480 /// including the case_end() iterator. It returns an iterator for the next
3481 /// case.
3482 CaseIt removeCase(CaseIt I);
3483
3484 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3485 BasicBlock *getSuccessor(unsigned idx) const {
3486 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((idx < getNumSuccessors() &&"Successor idx out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3486, __PRETTY_FUNCTION__))
;
3487 return cast<BasicBlock>(getOperand(idx*2+1));
3488 }
3489 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3490 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((idx < getNumSuccessors() && "Successor # out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3490, __PRETTY_FUNCTION__))
;
3491 setOperand(idx * 2 + 1, NewSucc);
3492 }
3493
3494 // Methods for support type inquiry through isa, cast, and dyn_cast:
3495 static bool classof(const Instruction *I) {
3496 return I->getOpcode() == Instruction::Switch;
3497 }
3498 static bool classof(const Value *V) {
3499 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3500 }
3501};
3502
3503/// A wrapper class to simplify modification of SwitchInst cases along with
3504/// their prof branch_weights metadata.
3505class SwitchInstProfUpdateWrapper {
3506 SwitchInst &SI;
3507 Optional<SmallVector<uint32_t, 8> > Weights = None;
3508 bool Changed = false;
3509
3510protected:
3511 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3512
3513 MDNode *buildProfBranchWeightsMD();
3514
3515 void init();
3516
3517public:
3518 using CaseWeightOpt = Optional<uint32_t>;
3519 SwitchInst *operator->() { return &SI; }
3520 SwitchInst &operator*() { return SI; }
3521 operator SwitchInst *() { return &SI; }
3522
3523 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3524
3525 ~SwitchInstProfUpdateWrapper() {
3526 if (Changed)
3527 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3528 }
3529
3530 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3531 /// correspondent branch weight.
3532 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3533
3534 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3535 /// specified branch weight for the added case.
3536 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3537
3538 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3539 /// this object to not touch the underlying SwitchInst in destructor.
3540 SymbolTableList<Instruction>::iterator eraseFromParent();
3541
3542 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3543 CaseWeightOpt getSuccessorWeight(unsigned idx);
3544
3545 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3546};
3547
3548template <>
3549struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3550};
3551
3552DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3552, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SwitchInst>::op_begin(const_cast<SwitchInst
*>(this))[i_nocapture].get()); } void SwitchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/IR/Instructions.h"
, 3552, __PRETTY_FUNCTION__)); OperandTraits<SwitchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SwitchInst
::getNumOperands() const { return OperandTraits<SwitchInst
>::operands(this); } template <int Idx_nocapture> Use
&SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3553
3554//===----------------------------------------------------------------------===//
3555// IndirectBrInst Class
3556//===----------------------------------------------------------------------===//
3557
3558//===---------------------------------------------------------------------------
3559/// Indirect Branch Instruction.
3560///
3561class IndirectBrInst : public Instruction {
3562 unsigned ReservedSpace;
3563
3564 // Operand[0] = Address to jump to
3565 // Operand[n+1] = n-th destination
3566 IndirectBrInst(const IndirectBrInst &IBI);
3567
3568 /// Create a new indirectbr instruction, specifying an
3569 /// Address to jump to. The number of expected destinations can be specified
3570 /// here to make memory allocation more efficient. This constructor can also
3571 /// autoinsert before another instruction.
3572 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3573
3574 /// Create a new indirectbr instruction, specifying an
3575 /// Address to jump to. The number of expected destinations can be specified
3576 /// here to make memory allocation more efficient. This constructor also
3577 /// autoinserts at the end of the specified BasicBlock.
3578 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3579
3580 // allocate space for exactly zero operands
3581 void *operator new(size_t s) {
3582 return User::operator new(s);
3583 }
3584
3585 void init(Value *Address, unsigned NumDests);
3586 void growOperands();
3587
3588protected:
3589 // Note: Instruction needs to be a friend here to call cloneImpl.
3590 friend class Instruction;
3591
3592 IndirectBrInst *cloneImpl() const;
3593
3594public:
3595 /// Iterator type that casts an operand to a basic block.
3596 ///
3597 /// This only makes sense because the successors are stored as adjacent
3598 /// operands for indirectbr instructions.
3599 struct succ_op_iterator
3600 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3601 std::random_access_iterator_tag, BasicBlock *,
3602 ptrdiff_t, BasicBlock *, BasicBlock *> {
3603 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3604
3605 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3606 BasicBlock *operator->() const { return operator*(); }
3607 };
3608
3609 /// The const version of `succ_op_iterator`.
3610 struct const_succ_op_iterator
3611 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3612 std::random_access_iterator_tag,
3613 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3614 const BasicBlock *> {
3615 explicit const_succ_op_iterator(const_value_op_iterator I)
3616 : iterator_adaptor_base(I) {}
3617
3618 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3619 const BasicBlock *operator->() const { return operator*(); }
3620 };
3621
3622 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3623 Instruction *InsertBefore = nullptr) {
3624 return new IndirectBrInst(Address, NumDests, InsertBefore);
3625 }
3626
3627 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3628 BasicBlock *InsertAtEnd) {
3629 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3630 }
3631
3632 /// Provide fast operand accessors.
3633 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3634
3635 // Accessor Methods for IndirectBrInst instruction.
3636 Value *getAddress() { return getOperand(0); }
3637 const Value *getAddress() const { return getOperand(0); }
3638 void setAddress(Value *V) { setOperand(0, V); }
3639
3640 /// return the number of possible destinations in this
3641 /// indirectbr instruction.
3642 unsigned getNumDestinations() const { return getNumOperands()-1; }
3643
3644 /// Return the specified destination.
3645 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3646 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3647
3648 /// Add a destination.
3649 ///
3650 void addDestination(BasicBlock *Dest);
3651
3652 /// This method removes the specified successor from the
3653 /// indirectbr instruction.
3654 void removeDestination(unsigned i);
3655
3656 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3657 BasicBlock *getSuccessor(unsigned i) const {
3658 return cast<BasicBlock>(getOperand(i+1));
3659 }
3660 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3661 setOperand(i + 1, NewSucc);
3662 }
3663
3664 iterator_range<succ_op_iterator> successors() {
3665 return make_range(succ_op_iterator(std::next(value_op_begin())),
3666 succ_op_iterator(value_op_end()));
3667 }
3668
3669 iterator_range<const_succ_op_iterator> successors() const {