Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
Warning:line 1688, column 7
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name MemorySanitizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/Instrumentation -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Instrumentation -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
1//===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// The algorithm of the tool is similar to Memcheck
14/// (http://goo.gl/QKbem). We associate a few shadow bits with every
15/// byte of the application memory, poison the shadow of the malloc-ed
16/// or alloca-ed memory, load the shadow bits on every memory read,
17/// propagate the shadow bits through some of the arithmetic
18/// instruction (including MOV), store the shadow bits on every memory
19/// write, report a bug on some other instructions (e.g. JMP) if the
20/// associated shadow is poisoned.
21///
22/// But there are differences too. The first and the major one:
23/// compiler instrumentation instead of binary instrumentation. This
24/// gives us much better register allocation, possible compiler
25/// optimizations and a fast start-up. But this brings the major issue
26/// as well: msan needs to see all program events, including system
27/// calls and reads/writes in system libraries, so we either need to
28/// compile *everything* with msan or use a binary translation
29/// component (e.g. DynamoRIO) to instrument pre-built libraries.
30/// Another difference from Memcheck is that we use 8 shadow bits per
31/// byte of application memory and use a direct shadow mapping. This
32/// greatly simplifies the instrumentation code and avoids races on
33/// shadow updates (Memcheck is single-threaded so races are not a
34/// concern there. Memcheck uses 2 shadow bits per byte with a slow
35/// path storage that uses 8 bits per byte).
36///
37/// The default value of shadow is 0, which means "clean" (not poisoned).
38///
39/// Every module initializer should call __msan_init to ensure that the
40/// shadow memory is ready. On error, __msan_warning is called. Since
41/// parameters and return values may be passed via registers, we have a
42/// specialized thread-local shadow for return values
43/// (__msan_retval_tls) and parameters (__msan_param_tls).
44///
45/// Origin tracking.
46///
47/// MemorySanitizer can track origins (allocation points) of all uninitialized
48/// values. This behavior is controlled with a flag (msan-track-origins) and is
49/// disabled by default.
50///
51/// Origins are 4-byte values created and interpreted by the runtime library.
52/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53/// of application memory. Propagation of origins is basically a bunch of
54/// "select" instructions that pick the origin of a dirty argument, if an
55/// instruction has one.
56///
57/// Every 4 aligned, consecutive bytes of application memory have one origin
58/// value associated with them. If these bytes contain uninitialized data
59/// coming from 2 different allocations, the last store wins. Because of this,
60/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61/// practice.
62///
63/// Origins are meaningless for fully initialized values, so MemorySanitizer
64/// avoids storing origin to memory when a fully initialized value is stored.
65/// This way it avoids needless overwriting origin of the 4-byte region on
66/// a short (i.e. 1 byte) clean store, and it is also good for performance.
67///
68/// Atomic handling.
69///
70/// Ideally, every atomic store of application value should update the
71/// corresponding shadow location in an atomic way. Unfortunately, atomic store
72/// of two disjoint locations can not be done without severe slowdown.
73///
74/// Therefore, we implement an approximation that may err on the safe side.
75/// In this implementation, every atomically accessed location in the program
76/// may only change from (partially) uninitialized to fully initialized, but
77/// not the other way around. We load the shadow _after_ the application load,
78/// and we store the shadow _before_ the app store. Also, we always store clean
79/// shadow (if the application store is atomic). This way, if the store-load
80/// pair constitutes a happens-before arc, shadow store and load are correctly
81/// ordered such that the load will get either the value that was stored, or
82/// some later value (which is always clean).
83///
84/// This does not work very well with Compare-And-Swap (CAS) and
85/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86/// must store the new shadow before the app operation, and load the shadow
87/// after the app operation. Computers don't work this way. Current
88/// implementation ignores the load aspect of CAS/RMW, always returning a clean
89/// value. It implements the store part as a simple atomic store by storing a
90/// clean shadow.
91///
92/// Instrumenting inline assembly.
93///
94/// For inline assembly code LLVM has little idea about which memory locations
95/// become initialized depending on the arguments. It can be possible to figure
96/// out which arguments are meant to point to inputs and outputs, but the
97/// actual semantics can be only visible at runtime. In the Linux kernel it's
98/// also possible that the arguments only indicate the offset for a base taken
99/// from a segment register, so it's dangerous to treat any asm() arguments as
100/// pointers. We take a conservative approach generating calls to
101/// __msan_instrument_asm_store(ptr, size)
102/// , which defer the memory unpoisoning to the runtime library.
103/// The latter can perform more complex address checks to figure out whether
104/// it's safe to touch the shadow memory.
105/// Like with atomic operations, we call __msan_instrument_asm_store() before
106/// the assembly call, so that changes to the shadow memory will be seen by
107/// other threads together with main memory initialization.
108///
109/// KernelMemorySanitizer (KMSAN) implementation.
110///
111/// The major differences between KMSAN and MSan instrumentation are:
112/// - KMSAN always tracks the origins and implies msan-keep-going=true;
113/// - KMSAN allocates shadow and origin memory for each page separately, so
114/// there are no explicit accesses to shadow and origin in the
115/// instrumentation.
116/// Shadow and origin values for a particular X-byte memory location
117/// (X=1,2,4,8) are accessed through pointers obtained via the
118/// __msan_metadata_ptr_for_load_X(ptr)
119/// __msan_metadata_ptr_for_store_X(ptr)
120/// functions. The corresponding functions check that the X-byte accesses
121/// are possible and returns the pointers to shadow and origin memory.
122/// Arbitrary sized accesses are handled with:
123/// __msan_metadata_ptr_for_load_n(ptr, size)
124/// __msan_metadata_ptr_for_store_n(ptr, size);
125/// - TLS variables are stored in a single per-task struct. A call to a
126/// function __msan_get_context_state() returning a pointer to that struct
127/// is inserted into every instrumented function before the entry block;
128/// - __msan_warning() takes a 32-bit origin parameter;
129/// - local variables are poisoned with __msan_poison_alloca() upon function
130/// entry and unpoisoned with __msan_unpoison_alloca() before leaving the
131/// function;
132/// - the pass doesn't declare any global variables or add global constructors
133/// to the translation unit.
134///
135/// Also, KMSAN currently ignores uninitialized memory passed into inline asm
136/// calls, making sure we're on the safe side wrt. possible false positives.
137///
138/// KernelMemorySanitizer only supports X86_64 at the moment.
139///
140//
141// FIXME: This sanitizer does not yet handle scalable vectors
142//
143//===----------------------------------------------------------------------===//
144
145#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
146#include "llvm/ADT/APInt.h"
147#include "llvm/ADT/ArrayRef.h"
148#include "llvm/ADT/DepthFirstIterator.h"
149#include "llvm/ADT/SmallSet.h"
150#include "llvm/ADT/SmallString.h"
151#include "llvm/ADT/SmallVector.h"
152#include "llvm/ADT/StringExtras.h"
153#include "llvm/ADT/StringRef.h"
154#include "llvm/ADT/Triple.h"
155#include "llvm/Analysis/TargetLibraryInfo.h"
156#include "llvm/Analysis/ValueTracking.h"
157#include "llvm/IR/Argument.h"
158#include "llvm/IR/Attributes.h"
159#include "llvm/IR/BasicBlock.h"
160#include "llvm/IR/CallingConv.h"
161#include "llvm/IR/Constant.h"
162#include "llvm/IR/Constants.h"
163#include "llvm/IR/DataLayout.h"
164#include "llvm/IR/DerivedTypes.h"
165#include "llvm/IR/Function.h"
166#include "llvm/IR/GlobalValue.h"
167#include "llvm/IR/GlobalVariable.h"
168#include "llvm/IR/IRBuilder.h"
169#include "llvm/IR/InlineAsm.h"
170#include "llvm/IR/InstVisitor.h"
171#include "llvm/IR/InstrTypes.h"
172#include "llvm/IR/Instruction.h"
173#include "llvm/IR/Instructions.h"
174#include "llvm/IR/IntrinsicInst.h"
175#include "llvm/IR/Intrinsics.h"
176#include "llvm/IR/IntrinsicsX86.h"
177#include "llvm/IR/MDBuilder.h"
178#include "llvm/IR/Module.h"
179#include "llvm/IR/Type.h"
180#include "llvm/IR/Value.h"
181#include "llvm/IR/ValueMap.h"
182#include "llvm/InitializePasses.h"
183#include "llvm/Pass.h"
184#include "llvm/Support/Alignment.h"
185#include "llvm/Support/AtomicOrdering.h"
186#include "llvm/Support/Casting.h"
187#include "llvm/Support/CommandLine.h"
188#include "llvm/Support/Debug.h"
189#include "llvm/Support/ErrorHandling.h"
190#include "llvm/Support/MathExtras.h"
191#include "llvm/Support/raw_ostream.h"
192#include "llvm/Transforms/Utils/BasicBlockUtils.h"
193#include "llvm/Transforms/Utils/Local.h"
194#include "llvm/Transforms/Utils/ModuleUtils.h"
195#include <algorithm>
196#include <cassert>
197#include <cstddef>
198#include <cstdint>
199#include <memory>
200#include <string>
201#include <tuple>
202
203using namespace llvm;
204
205#define DEBUG_TYPE"msan" "msan"
206
207static const unsigned kOriginSize = 4;
208static const Align kMinOriginAlignment = Align(4);
209static const Align kShadowTLSAlignment = Align(8);
210
211// These constants must be kept in sync with the ones in msan.h.
212static const unsigned kParamTLSSize = 800;
213static const unsigned kRetvalTLSSize = 800;
214
215// Accesses sizes are powers of two: 1, 2, 4, 8.
216static const size_t kNumberOfAccessSizes = 4;
217
218/// Track origins of uninitialized values.
219///
220/// Adds a section to MemorySanitizer report that points to the allocation
221/// (stack or heap) the uninitialized bits came from originally.
222static cl::opt<int> ClTrackOrigins("msan-track-origins",
223 cl::desc("Track origins (allocation sites) of poisoned memory"),
224 cl::Hidden, cl::init(0));
225
226static cl::opt<bool> ClKeepGoing("msan-keep-going",
227 cl::desc("keep going after reporting a UMR"),
228 cl::Hidden, cl::init(false));
229
230static cl::opt<bool> ClPoisonStack("msan-poison-stack",
231 cl::desc("poison uninitialized stack variables"),
232 cl::Hidden, cl::init(true));
233
234static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
235 cl::desc("poison uninitialized stack variables with a call"),
236 cl::Hidden, cl::init(false));
237
238static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
239 cl::desc("poison uninitialized stack variables with the given pattern"),
240 cl::Hidden, cl::init(0xff));
241
242static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
243 cl::desc("poison undef temps"),
244 cl::Hidden, cl::init(true));
245
246static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
247 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
248 cl::Hidden, cl::init(true));
249
250static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
251 cl::desc("exact handling of relational integer ICmp"),
252 cl::Hidden, cl::init(false));
253
254static cl::opt<bool> ClHandleLifetimeIntrinsics(
255 "msan-handle-lifetime-intrinsics",
256 cl::desc(
257 "when possible, poison scoped variables at the beginning of the scope "
258 "(slower, but more precise)"),
259 cl::Hidden, cl::init(true));
260
261// When compiling the Linux kernel, we sometimes see false positives related to
262// MSan being unable to understand that inline assembly calls may initialize
263// local variables.
264// This flag makes the compiler conservatively unpoison every memory location
265// passed into an assembly call. Note that this may cause false positives.
266// Because it's impossible to figure out the array sizes, we can only unpoison
267// the first sizeof(type) bytes for each type* pointer.
268// The instrumentation is only enabled in KMSAN builds, and only if
269// -msan-handle-asm-conservative is on. This is done because we may want to
270// quickly disable assembly instrumentation when it breaks.
271static cl::opt<bool> ClHandleAsmConservative(
272 "msan-handle-asm-conservative",
273 cl::desc("conservative handling of inline assembly"), cl::Hidden,
274 cl::init(true));
275
276// This flag controls whether we check the shadow of the address
277// operand of load or store. Such bugs are very rare, since load from
278// a garbage address typically results in SEGV, but still happen
279// (e.g. only lower bits of address are garbage, or the access happens
280// early at program startup where malloc-ed memory is more likely to
281// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
282static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
283 cl::desc("report accesses through a pointer which has poisoned shadow"),
284 cl::Hidden, cl::init(true));
285
286static cl::opt<bool> ClEagerChecks(
287 "msan-eager-checks",
288 cl::desc("check arguments and return values at function call boundaries"),
289 cl::Hidden, cl::init(false));
290
291static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
292 cl::desc("print out instructions with default strict semantics"),
293 cl::Hidden, cl::init(false));
294
295static cl::opt<int> ClInstrumentationWithCallThreshold(
296 "msan-instrumentation-with-call-threshold",
297 cl::desc(
298 "If the function being instrumented requires more than "
299 "this number of checks and origin stores, use callbacks instead of "
300 "inline checks (-1 means never use callbacks)."),
301 cl::Hidden, cl::init(3500));
302
303static cl::opt<bool>
304 ClEnableKmsan("msan-kernel",
305 cl::desc("Enable KernelMemorySanitizer instrumentation"),
306 cl::Hidden, cl::init(false));
307
308static cl::opt<bool>
309 ClDisableChecks("msan-disable-checks",
310 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden,
311 cl::init(false));
312
313// This is an experiment to enable handling of cases where shadow is a non-zero
314// compile-time constant. For some unexplainable reason they were silently
315// ignored in the instrumentation.
316static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
317 cl::desc("Insert checks for constant shadow values"),
318 cl::Hidden, cl::init(false));
319
320// This is off by default because of a bug in gold:
321// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
322static cl::opt<bool> ClWithComdat("msan-with-comdat",
323 cl::desc("Place MSan constructors in comdat sections"),
324 cl::Hidden, cl::init(false));
325
326// These options allow to specify custom memory map parameters
327// See MemoryMapParams for details.
328static cl::opt<uint64_t> ClAndMask("msan-and-mask",
329 cl::desc("Define custom MSan AndMask"),
330 cl::Hidden, cl::init(0));
331
332static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
333 cl::desc("Define custom MSan XorMask"),
334 cl::Hidden, cl::init(0));
335
336static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
337 cl::desc("Define custom MSan ShadowBase"),
338 cl::Hidden, cl::init(0));
339
340static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
341 cl::desc("Define custom MSan OriginBase"),
342 cl::Hidden, cl::init(0));
343
344const char kMsanModuleCtorName[] = "msan.module_ctor";
345const char kMsanInitName[] = "__msan_init";
346
347namespace {
348
349// Memory map parameters used in application-to-shadow address calculation.
350// Offset = (Addr & ~AndMask) ^ XorMask
351// Shadow = ShadowBase + Offset
352// Origin = OriginBase + Offset
353struct MemoryMapParams {
354 uint64_t AndMask;
355 uint64_t XorMask;
356 uint64_t ShadowBase;
357 uint64_t OriginBase;
358};
359
360struct PlatformMemoryMapParams {
361 const MemoryMapParams *bits32;
362 const MemoryMapParams *bits64;
363};
364
365} // end anonymous namespace
366
367// i386 Linux
368static const MemoryMapParams Linux_I386_MemoryMapParams = {
369 0x000080000000, // AndMask
370 0, // XorMask (not used)
371 0, // ShadowBase (not used)
372 0x000040000000, // OriginBase
373};
374
375// x86_64 Linux
376static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
377#ifdef MSAN_LINUX_X86_64_OLD_MAPPING
378 0x400000000000, // AndMask
379 0, // XorMask (not used)
380 0, // ShadowBase (not used)
381 0x200000000000, // OriginBase
382#else
383 0, // AndMask (not used)
384 0x500000000000, // XorMask
385 0, // ShadowBase (not used)
386 0x100000000000, // OriginBase
387#endif
388};
389
390// mips64 Linux
391static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
392 0, // AndMask (not used)
393 0x008000000000, // XorMask
394 0, // ShadowBase (not used)
395 0x002000000000, // OriginBase
396};
397
398// ppc64 Linux
399static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
400 0xE00000000000, // AndMask
401 0x100000000000, // XorMask
402 0x080000000000, // ShadowBase
403 0x1C0000000000, // OriginBase
404};
405
406// s390x Linux
407static const MemoryMapParams Linux_S390X_MemoryMapParams = {
408 0xC00000000000, // AndMask
409 0, // XorMask (not used)
410 0x080000000000, // ShadowBase
411 0x1C0000000000, // OriginBase
412};
413
414// aarch64 Linux
415static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
416 0, // AndMask (not used)
417 0x06000000000, // XorMask
418 0, // ShadowBase (not used)
419 0x01000000000, // OriginBase
420};
421
422// i386 FreeBSD
423static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
424 0x000180000000, // AndMask
425 0x000040000000, // XorMask
426 0x000020000000, // ShadowBase
427 0x000700000000, // OriginBase
428};
429
430// x86_64 FreeBSD
431static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
432 0xc00000000000, // AndMask
433 0x200000000000, // XorMask
434 0x100000000000, // ShadowBase
435 0x380000000000, // OriginBase
436};
437
438// x86_64 NetBSD
439static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
440 0, // AndMask
441 0x500000000000, // XorMask
442 0, // ShadowBase
443 0x100000000000, // OriginBase
444};
445
446static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
447 &Linux_I386_MemoryMapParams,
448 &Linux_X86_64_MemoryMapParams,
449};
450
451static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
452 nullptr,
453 &Linux_MIPS64_MemoryMapParams,
454};
455
456static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
457 nullptr,
458 &Linux_PowerPC64_MemoryMapParams,
459};
460
461static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = {
462 nullptr,
463 &Linux_S390X_MemoryMapParams,
464};
465
466static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
467 nullptr,
468 &Linux_AArch64_MemoryMapParams,
469};
470
471static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
472 &FreeBSD_I386_MemoryMapParams,
473 &FreeBSD_X86_64_MemoryMapParams,
474};
475
476static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
477 nullptr,
478 &NetBSD_X86_64_MemoryMapParams,
479};
480
481namespace {
482
483/// Instrument functions of a module to detect uninitialized reads.
484///
485/// Instantiating MemorySanitizer inserts the msan runtime library API function
486/// declarations into the module if they don't exist already. Instantiating
487/// ensures the __msan_init function is in the list of global constructors for
488/// the module.
489class MemorySanitizer {
490public:
491 MemorySanitizer(Module &M, MemorySanitizerOptions Options)
492 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
493 Recover(Options.Recover), EagerChecks(Options.EagerChecks) {
494 initializeModule(M);
495 }
496
497 // MSan cannot be moved or copied because of MapParams.
498 MemorySanitizer(MemorySanitizer &&) = delete;
499 MemorySanitizer &operator=(MemorySanitizer &&) = delete;
500 MemorySanitizer(const MemorySanitizer &) = delete;
501 MemorySanitizer &operator=(const MemorySanitizer &) = delete;
502
503 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
504
505private:
506 friend struct MemorySanitizerVisitor;
507 friend struct VarArgAMD64Helper;
508 friend struct VarArgMIPS64Helper;
509 friend struct VarArgAArch64Helper;
510 friend struct VarArgPowerPC64Helper;
511 friend struct VarArgSystemZHelper;
512
513 void initializeModule(Module &M);
514 void initializeCallbacks(Module &M);
515 void createKernelApi(Module &M);
516 void createUserspaceApi(Module &M);
517
518 /// True if we're compiling the Linux kernel.
519 bool CompileKernel;
520 /// Track origins (allocation points) of uninitialized values.
521 int TrackOrigins;
522 bool Recover;
523 bool EagerChecks;
524
525 LLVMContext *C;
526 Type *IntptrTy;
527 Type *OriginTy;
528
529 // XxxTLS variables represent the per-thread state in MSan and per-task state
530 // in KMSAN.
531 // For the userspace these point to thread-local globals. In the kernel land
532 // they point to the members of a per-task struct obtained via a call to
533 // __msan_get_context_state().
534
535 /// Thread-local shadow storage for function parameters.
536 Value *ParamTLS;
537
538 /// Thread-local origin storage for function parameters.
539 Value *ParamOriginTLS;
540
541 /// Thread-local shadow storage for function return value.
542 Value *RetvalTLS;
543
544 /// Thread-local origin storage for function return value.
545 Value *RetvalOriginTLS;
546
547 /// Thread-local shadow storage for in-register va_arg function
548 /// parameters (x86_64-specific).
549 Value *VAArgTLS;
550
551 /// Thread-local shadow storage for in-register va_arg function
552 /// parameters (x86_64-specific).
553 Value *VAArgOriginTLS;
554
555 /// Thread-local shadow storage for va_arg overflow area
556 /// (x86_64-specific).
557 Value *VAArgOverflowSizeTLS;
558
559 /// Are the instrumentation callbacks set up?
560 bool CallbacksInitialized = false;
561
562 /// The run-time callback to print a warning.
563 FunctionCallee WarningFn;
564
565 // These arrays are indexed by log2(AccessSize).
566 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
567 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
568
569 /// Run-time helper that generates a new origin value for a stack
570 /// allocation.
571 FunctionCallee MsanSetAllocaOrigin4Fn;
572
573 /// Run-time helper that poisons stack on function entry.
574 FunctionCallee MsanPoisonStackFn;
575
576 /// Run-time helper that records a store (or any event) of an
577 /// uninitialized value and returns an updated origin id encoding this info.
578 FunctionCallee MsanChainOriginFn;
579
580 /// Run-time helper that paints an origin over a region.
581 FunctionCallee MsanSetOriginFn;
582
583 /// MSan runtime replacements for memmove, memcpy and memset.
584 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
585
586 /// KMSAN callback for task-local function argument shadow.
587 StructType *MsanContextStateTy;
588 FunctionCallee MsanGetContextStateFn;
589
590 /// Functions for poisoning/unpoisoning local variables
591 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
592
593 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
594 /// pointers.
595 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
596 FunctionCallee MsanMetadataPtrForLoad_1_8[4];
597 FunctionCallee MsanMetadataPtrForStore_1_8[4];
598 FunctionCallee MsanInstrumentAsmStoreFn;
599
600 /// Helper to choose between different MsanMetadataPtrXxx().
601 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
602
603 /// Memory map parameters used in application-to-shadow calculation.
604 const MemoryMapParams *MapParams;
605
606 /// Custom memory map parameters used when -msan-shadow-base or
607 // -msan-origin-base is provided.
608 MemoryMapParams CustomMapParams;
609
610 MDNode *ColdCallWeights;
611
612 /// Branch weights for origin store.
613 MDNode *OriginStoreWeights;
614};
615
616void insertModuleCtor(Module &M) {
617 getOrCreateSanitizerCtorAndInitFunctions(
618 M, kMsanModuleCtorName, kMsanInitName,
619 /*InitArgTypes=*/{},
620 /*InitArgs=*/{},
621 // This callback is invoked when the functions are created the first
622 // time. Hook them into the global ctors list in that case:
623 [&](Function *Ctor, FunctionCallee) {
624 if (!ClWithComdat) {
625 appendToGlobalCtors(M, Ctor, 0);
626 return;
627 }
628 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
629 Ctor->setComdat(MsanCtorComdat);
630 appendToGlobalCtors(M, Ctor, 0, Ctor);
631 });
632}
633
634/// A legacy function pass for msan instrumentation.
635///
636/// Instruments functions to detect uninitialized reads.
637struct MemorySanitizerLegacyPass : public FunctionPass {
638 // Pass identification, replacement for typeid.
639 static char ID;
640
641 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
642 : FunctionPass(ID), Options(Options) {
643 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
644 }
645 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
646
647 void getAnalysisUsage(AnalysisUsage &AU) const override {
648 AU.addRequired<TargetLibraryInfoWrapperPass>();
649 }
650
651 bool runOnFunction(Function &F) override {
652 return MSan->sanitizeFunction(
653 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
654 }
655 bool doInitialization(Module &M) override;
656
657 Optional<MemorySanitizer> MSan;
658 MemorySanitizerOptions Options;
659};
660
661template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
662 return (Opt.getNumOccurrences() > 0) ? Opt : Default;
663}
664
665} // end anonymous namespace
666
667MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K,
668 bool EagerChecks)
669 : Kernel(getOptOrDefault(ClEnableKmsan, K)),
670 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
671 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)),
672 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {}
673
674PreservedAnalyses MemorySanitizerPass::run(Function &F,
675 FunctionAnalysisManager &FAM) {
676 MemorySanitizer Msan(*F.getParent(), Options);
677 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
678 return PreservedAnalyses::none();
679 return PreservedAnalyses::all();
680}
681
682PreservedAnalyses
683ModuleMemorySanitizerPass::run(Module &M, ModuleAnalysisManager &AM) {
684 if (Options.Kernel)
685 return PreservedAnalyses::all();
686 insertModuleCtor(M);
687 return PreservedAnalyses::none();
688}
689
690void MemorySanitizerPass::printPipeline(
691 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
692 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline(
693 OS, MapClassName2PassName);
694 OS << "<";
695 if (Options.Recover)
696 OS << "recover;";
697 if (Options.Kernel)
698 OS << "kernel;";
699 if (Options.EagerChecks)
700 OS << "eager-checks;";
701 OS << "track-origins=" << Options.TrackOrigins;
702 OS << ">";
703}
704
705char MemorySanitizerLegacyPass::ID = 0;
706
707INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",static void *initializeMemorySanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
708 "MemorySanitizer: detects uninitialized reads.", false,static void *initializeMemorySanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
709 false)static void *initializeMemorySanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
710INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
711INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",PassInfo *PI = new PassInfo( "MemorySanitizer: detects uninitialized reads."
, "msan", &MemorySanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<MemorySanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeMemorySanitizerLegacyPassPassFlag; void
llvm::initializeMemorySanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeMemorySanitizerLegacyPassPassFlag
, initializeMemorySanitizerLegacyPassPassOnce, std::ref(Registry
)); }
712 "MemorySanitizer: detects uninitialized reads.", false,PassInfo *PI = new PassInfo( "MemorySanitizer: detects uninitialized reads."
, "msan", &MemorySanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<MemorySanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeMemorySanitizerLegacyPassPassFlag; void
llvm::initializeMemorySanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeMemorySanitizerLegacyPassPassFlag
, initializeMemorySanitizerLegacyPassPassOnce, std::ref(Registry
)); }
713 false)PassInfo *PI = new PassInfo( "MemorySanitizer: detects uninitialized reads."
, "msan", &MemorySanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<MemorySanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeMemorySanitizerLegacyPassPassFlag; void
llvm::initializeMemorySanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeMemorySanitizerLegacyPassPassFlag
, initializeMemorySanitizerLegacyPassPassOnce, std::ref(Registry
)); }
714
715FunctionPass *
716llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
717 return new MemorySanitizerLegacyPass(Options);
718}
719
720/// Create a non-const global initialized with the given string.
721///
722/// Creates a writable global for Str so that we can pass it to the
723/// run-time lib. Runtime uses first 4 bytes of the string to store the
724/// frame ID, so the string needs to be mutable.
725static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
726 StringRef Str) {
727 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
728 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
729 GlobalValue::PrivateLinkage, StrConst, "");
730}
731
732/// Create KMSAN API callbacks.
733void MemorySanitizer::createKernelApi(Module &M) {
734 IRBuilder<> IRB(*C);
735
736 // These will be initialized in insertKmsanPrologue().
737 RetvalTLS = nullptr;
738 RetvalOriginTLS = nullptr;
739 ParamTLS = nullptr;
740 ParamOriginTLS = nullptr;
741 VAArgTLS = nullptr;
742 VAArgOriginTLS = nullptr;
743 VAArgOverflowSizeTLS = nullptr;
744
745 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
746 IRB.getInt32Ty());
747 // Requests the per-task context state (kmsan_context_state*) from the
748 // runtime library.
749 MsanContextStateTy = StructType::get(
750 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
751 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
752 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
753 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
754 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
755 OriginTy);
756 MsanGetContextStateFn = M.getOrInsertFunction(
757 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
758
759 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
760 PointerType::get(IRB.getInt32Ty(), 0));
761
762 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
763 std::string name_load =
764 "__msan_metadata_ptr_for_load_" + std::to_string(size);
765 std::string name_store =
766 "__msan_metadata_ptr_for_store_" + std::to_string(size);
767 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
768 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
769 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
770 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
771 }
772
773 MsanMetadataPtrForLoadN = M.getOrInsertFunction(
774 "__msan_metadata_ptr_for_load_n", RetTy,
775 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
776 MsanMetadataPtrForStoreN = M.getOrInsertFunction(
777 "__msan_metadata_ptr_for_store_n", RetTy,
778 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
779
780 // Functions for poisoning and unpoisoning memory.
781 MsanPoisonAllocaFn =
782 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
783 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
784 MsanUnpoisonAllocaFn = M.getOrInsertFunction(
785 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
786}
787
788static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
789 return M.getOrInsertGlobal(Name, Ty, [&] {
790 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
791 nullptr, Name, nullptr,
792 GlobalVariable::InitialExecTLSModel);
793 });
794}
795
796/// Insert declarations for userspace-specific functions and globals.
797void MemorySanitizer::createUserspaceApi(Module &M) {
798 IRBuilder<> IRB(*C);
799
800 // Create the callback.
801 // FIXME: this function should have "Cold" calling conv,
802 // which is not yet implemented.
803 StringRef WarningFnName = Recover ? "__msan_warning_with_origin"
804 : "__msan_warning_with_origin_noreturn";
805 WarningFn =
806 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty());
807
808 // Create the global TLS variables.
809 RetvalTLS =
810 getOrInsertGlobal(M, "__msan_retval_tls",
811 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
812
813 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
814
815 ParamTLS =
816 getOrInsertGlobal(M, "__msan_param_tls",
817 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
818
819 ParamOriginTLS =
820 getOrInsertGlobal(M, "__msan_param_origin_tls",
821 ArrayType::get(OriginTy, kParamTLSSize / 4));
822
823 VAArgTLS =
824 getOrInsertGlobal(M, "__msan_va_arg_tls",
825 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
826
827 VAArgOriginTLS =
828 getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
829 ArrayType::get(OriginTy, kParamTLSSize / 4));
830
831 VAArgOverflowSizeTLS =
832 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
833
834 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
835 AccessSizeIndex++) {
836 unsigned AccessSize = 1 << AccessSizeIndex;
837 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
838 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs;
839 MaybeWarningFnAttrs.push_back(std::make_pair(
840 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt)));
841 MaybeWarningFnAttrs.push_back(std::make_pair(
842 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt)));
843 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
844 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs),
845 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty());
846
847 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
848 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs;
849 MaybeStoreOriginFnAttrs.push_back(std::make_pair(
850 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt)));
851 MaybeStoreOriginFnAttrs.push_back(std::make_pair(
852 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt)));
853 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
854 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs),
855 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(),
856 IRB.getInt32Ty());
857 }
858
859 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
860 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
861 IRB.getInt8PtrTy(), IntptrTy);
862 MsanPoisonStackFn =
863 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
864 IRB.getInt8PtrTy(), IntptrTy);
865}
866
867/// Insert extern declaration of runtime-provided functions and globals.
868void MemorySanitizer::initializeCallbacks(Module &M) {
869 // Only do this once.
870 if (CallbacksInitialized)
871 return;
872
873 IRBuilder<> IRB(*C);
874 // Initialize callbacks that are common for kernel and userspace
875 // instrumentation.
876 MsanChainOriginFn = M.getOrInsertFunction(
877 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
878 MsanSetOriginFn =
879 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(),
880 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty());
881 MemmoveFn = M.getOrInsertFunction(
882 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
883 IRB.getInt8PtrTy(), IntptrTy);
884 MemcpyFn = M.getOrInsertFunction(
885 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
886 IntptrTy);
887 MemsetFn = M.getOrInsertFunction(
888 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
889 IntptrTy);
890
891 MsanInstrumentAsmStoreFn =
892 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
893 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
894
895 if (CompileKernel) {
896 createKernelApi(M);
897 } else {
898 createUserspaceApi(M);
899 }
900 CallbacksInitialized = true;
901}
902
903FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
904 int size) {
905 FunctionCallee *Fns =
906 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
907 switch (size) {
908 case 1:
909 return Fns[0];
910 case 2:
911 return Fns[1];
912 case 4:
913 return Fns[2];
914 case 8:
915 return Fns[3];
916 default:
917 return nullptr;
918 }
919}
920
921/// Module-level initialization.
922///
923/// inserts a call to __msan_init to the module's constructor list.
924void MemorySanitizer::initializeModule(Module &M) {
925 auto &DL = M.getDataLayout();
926
927 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
928 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
929 // Check the overrides first
930 if (ShadowPassed || OriginPassed) {
931 CustomMapParams.AndMask = ClAndMask;
932 CustomMapParams.XorMask = ClXorMask;
933 CustomMapParams.ShadowBase = ClShadowBase;
934 CustomMapParams.OriginBase = ClOriginBase;
935 MapParams = &CustomMapParams;
936 } else {
937 Triple TargetTriple(M.getTargetTriple());
938 switch (TargetTriple.getOS()) {
939 case Triple::FreeBSD:
940 switch (TargetTriple.getArch()) {
941 case Triple::x86_64:
942 MapParams = FreeBSD_X86_MemoryMapParams.bits64;
943 break;
944 case Triple::x86:
945 MapParams = FreeBSD_X86_MemoryMapParams.bits32;
946 break;
947 default:
948 report_fatal_error("unsupported architecture");
949 }
950 break;
951 case Triple::NetBSD:
952 switch (TargetTriple.getArch()) {
953 case Triple::x86_64:
954 MapParams = NetBSD_X86_MemoryMapParams.bits64;
955 break;
956 default:
957 report_fatal_error("unsupported architecture");
958 }
959 break;
960 case Triple::Linux:
961 switch (TargetTriple.getArch()) {
962 case Triple::x86_64:
963 MapParams = Linux_X86_MemoryMapParams.bits64;
964 break;
965 case Triple::x86:
966 MapParams = Linux_X86_MemoryMapParams.bits32;
967 break;
968 case Triple::mips64:
969 case Triple::mips64el:
970 MapParams = Linux_MIPS_MemoryMapParams.bits64;
971 break;
972 case Triple::ppc64:
973 case Triple::ppc64le:
974 MapParams = Linux_PowerPC_MemoryMapParams.bits64;
975 break;
976 case Triple::systemz:
977 MapParams = Linux_S390_MemoryMapParams.bits64;
978 break;
979 case Triple::aarch64:
980 case Triple::aarch64_be:
981 MapParams = Linux_ARM_MemoryMapParams.bits64;
982 break;
983 default:
984 report_fatal_error("unsupported architecture");
985 }
986 break;
987 default:
988 report_fatal_error("unsupported operating system");
989 }
990 }
991
992 C = &(M.getContext());
993 IRBuilder<> IRB(*C);
994 IntptrTy = IRB.getIntPtrTy(DL);
995 OriginTy = IRB.getInt32Ty();
996
997 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
998 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
999
1000 if (!CompileKernel) {
1001 if (TrackOrigins)
1002 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
1003 return new GlobalVariable(
1004 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
1005 IRB.getInt32(TrackOrigins), "__msan_track_origins");
1006 });
1007
1008 if (Recover)
1009 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
1010 return new GlobalVariable(M, IRB.getInt32Ty(), true,
1011 GlobalValue::WeakODRLinkage,
1012 IRB.getInt32(Recover), "__msan_keep_going");
1013 });
1014}
1015}
1016
1017bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
1018 if (!Options.Kernel)
1019 insertModuleCtor(M);
1020 MSan.emplace(M, Options);
1021 return true;
1022}
1023
1024namespace {
1025
1026/// A helper class that handles instrumentation of VarArg
1027/// functions on a particular platform.
1028///
1029/// Implementations are expected to insert the instrumentation
1030/// necessary to propagate argument shadow through VarArg function
1031/// calls. Visit* methods are called during an InstVisitor pass over
1032/// the function, and should avoid creating new basic blocks. A new
1033/// instance of this class is created for each instrumented function.
1034struct VarArgHelper {
1035 virtual ~VarArgHelper() = default;
1036
1037 /// Visit a CallBase.
1038 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0;
1039
1040 /// Visit a va_start call.
1041 virtual void visitVAStartInst(VAStartInst &I) = 0;
1042
1043 /// Visit a va_copy call.
1044 virtual void visitVACopyInst(VACopyInst &I) = 0;
1045
1046 /// Finalize function instrumentation.
1047 ///
1048 /// This method is called after visiting all interesting (see above)
1049 /// instructions in a function.
1050 virtual void finalizeInstrumentation() = 0;
1051};
1052
1053struct MemorySanitizerVisitor;
1054
1055} // end anonymous namespace
1056
1057static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1058 MemorySanitizerVisitor &Visitor);
1059
1060static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
1061 if (TypeSize <= 8) return 0;
1062 return Log2_32_Ceil((TypeSize + 7) / 8);
1063}
1064
1065namespace {
1066
1067/// This class does all the work for a given function. Store and Load
1068/// instructions store and load corresponding shadow and origin
1069/// values. Most instructions propagate shadow from arguments to their
1070/// return values. Certain instructions (most importantly, BranchInst)
1071/// test their argument shadow and print reports (with a runtime call) if it's
1072/// non-zero.
1073struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1074 Function &F;
1075 MemorySanitizer &MS;
1076 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1077 ValueMap<Value*, Value*> ShadowMap, OriginMap;
1078 std::unique_ptr<VarArgHelper> VAHelper;
1079 const TargetLibraryInfo *TLI;
1080 Instruction *FnPrologueEnd;
1081
1082 // The following flags disable parts of MSan instrumentation based on
1083 // exclusion list contents and command-line options.
1084 bool InsertChecks;
1085 bool PropagateShadow;
1086 bool PoisonStack;
1087 bool PoisonUndef;
1088
1089 struct ShadowOriginAndInsertPoint {
1090 Value *Shadow;
1091 Value *Origin;
1092 Instruction *OrigIns;
1093
1094 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1095 : Shadow(S), Origin(O), OrigIns(I) {}
1096 };
1097 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1098 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1099 SmallSet<AllocaInst *, 16> AllocaSet;
1100 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1101 SmallVector<StoreInst *, 16> StoreList;
1102
1103 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1104 const TargetLibraryInfo &TLI)
1105 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1106 bool SanitizeFunction =
1107 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks;
1108 InsertChecks = SanitizeFunction;
1109 PropagateShadow = SanitizeFunction;
1110 PoisonStack = SanitizeFunction && ClPoisonStack;
1111 PoisonUndef = SanitizeFunction && ClPoisonUndef;
1112
1113 // In the presence of unreachable blocks, we may see Phi nodes with
1114 // incoming nodes from such blocks. Since InstVisitor skips unreachable
1115 // blocks, such nodes will not have any shadow value associated with them.
1116 // It's easier to remove unreachable blocks than deal with missing shadow.
1117 removeUnreachableBlocks(F);
1118
1119 MS.initializeCallbacks(*F.getParent());
1120 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI())
1121 .CreateIntrinsic(Intrinsic::donothing, {}, {});
1122
1123 if (MS.CompileKernel) {
1124 IRBuilder<> IRB(FnPrologueEnd);
1125 insertKmsanPrologue(IRB);
1126 }
1127
1128 LLVM_DEBUG(if (!InsertChecks) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { if (!InsertChecks) dbgs() << "MemorySanitizer is not inserting checks into '"
<< F.getName() << "'\n"; } } while (false)
1129 << "MemorySanitizer is not inserting checks into '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { if (!InsertChecks) dbgs() << "MemorySanitizer is not inserting checks into '"
<< F.getName() << "'\n"; } } while (false)
1130 << F.getName() << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { if (!InsertChecks) dbgs() << "MemorySanitizer is not inserting checks into '"
<< F.getName() << "'\n"; } } while (false)
;
1131 }
1132
1133 bool isInPrologue(Instruction &I) {
1134 return I.getParent() == FnPrologueEnd->getParent() &&
1135 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd));
1136 }
1137
1138 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1139 if (MS.TrackOrigins <= 1) return V;
1140 return IRB.CreateCall(MS.MsanChainOriginFn, V);
1141 }
1142
1143 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1144 const DataLayout &DL = F.getParent()->getDataLayout();
1145 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1146 if (IntptrSize == kOriginSize) return Origin;
1147 assert(IntptrSize == kOriginSize * 2)(static_cast <bool> (IntptrSize == kOriginSize * 2) ? void
(0) : __assert_fail ("IntptrSize == kOriginSize * 2", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1147, __extension__ __PRETTY_FUNCTION__))
;
1148 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1149 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1150 }
1151
1152 /// Fill memory range with the given origin value.
1153 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1154 unsigned Size, Align Alignment) {
1155 const DataLayout &DL = F.getParent()->getDataLayout();
1156 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy);
1157 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1158 assert(IntptrAlignment >= kMinOriginAlignment)(static_cast <bool> (IntptrAlignment >= kMinOriginAlignment
) ? void (0) : __assert_fail ("IntptrAlignment >= kMinOriginAlignment"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1158
, __extension__ __PRETTY_FUNCTION__))
;
1159 assert(IntptrSize >= kOriginSize)(static_cast <bool> (IntptrSize >= kOriginSize) ? void
(0) : __assert_fail ("IntptrSize >= kOriginSize", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1159, __extension__ __PRETTY_FUNCTION__))
;
1160
1161 unsigned Ofs = 0;
1162 Align CurrentAlignment = Alignment;
1163 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1164 Value *IntptrOrigin = originToIntptr(IRB, Origin);
1165 Value *IntptrOriginPtr =
1166 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
1167 for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1168 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1169 : IntptrOriginPtr;
1170 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1171 Ofs += IntptrSize / kOriginSize;
1172 CurrentAlignment = IntptrAlignment;
1173 }
1174 }
1175
1176 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1177 Value *GEP =
1178 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1179 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1180 CurrentAlignment = kMinOriginAlignment;
1181 }
1182 }
1183
1184 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1185 Value *OriginPtr, Align Alignment, bool AsCall) {
1186 const DataLayout &DL = F.getParent()->getDataLayout();
1187 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1188 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
1189 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1190 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1191 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
1192 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1193 OriginAlignment);
1194 return;
1195 }
1196
1197 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1198 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1199 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1200 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1201 Value *ConvertedShadow2 =
1202 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1203 CallBase *CB = IRB.CreateCall(
1204 Fn, {ConvertedShadow2,
1205 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin});
1206 CB->addParamAttr(0, Attribute::ZExt);
1207 CB->addParamAttr(2, Attribute::ZExt);
1208 } else {
1209 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1210 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1211 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1212 IRBuilder<> IRBNew(CheckTerm);
1213 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1214 OriginAlignment);
1215 }
1216 }
1217
1218 void materializeStores(bool InstrumentWithCalls) {
1219 for (StoreInst *SI : StoreList) {
1220 IRBuilder<> IRB(SI);
1221 Value *Val = SI->getValueOperand();
1222 Value *Addr = SI->getPointerOperand();
1223 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1224 Value *ShadowPtr, *OriginPtr;
1225 Type *ShadowTy = Shadow->getType();
1226 const Align Alignment = SI->getAlign();
1227 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1228 std::tie(ShadowPtr, OriginPtr) =
1229 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1230
1231 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1232 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " STORE: " << *NewSI <<
"\n"; } } while (false)
;
1233 (void)NewSI;
1234
1235 if (SI->isAtomic())
1236 SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1237
1238 if (MS.TrackOrigins && !SI->isAtomic())
1239 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1240 OriginAlignment, InstrumentWithCalls);
1241 }
1242 }
1243
1244 /// Helper function to insert a warning at IRB's current insert point.
1245 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1246 if (!Origin)
1247 Origin = (Value *)IRB.getInt32(0);
1248 assert(Origin->getType()->isIntegerTy())(static_cast <bool> (Origin->getType()->isIntegerTy
()) ? void (0) : __assert_fail ("Origin->getType()->isIntegerTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1248
, __extension__ __PRETTY_FUNCTION__))
;
1249 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge();
1250 // FIXME: Insert UnreachableInst if !MS.Recover?
1251 // This may invalidate some of the following checks and needs to be done
1252 // at the very end.
1253 }
1254
1255 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
1256 bool AsCall) {
1257 IRBuilder<> IRB(OrigIns);
1258 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " SHAD0 : " << *Shadow <<
"\n"; } } while (false)
;
1259 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1260 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " SHAD1 : " << *ConvertedShadow
<< "\n"; } } while (false)
;
1261
1262 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1263 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
1264 insertWarningFn(IRB, Origin);
1265 }
1266 return;
1267 }
1268
1269 const DataLayout &DL = OrigIns->getModule()->getDataLayout();
1270
1271 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1272 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1273 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1274 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1275 Value *ConvertedShadow2 =
1276 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1277 CallBase *CB = IRB.CreateCall(
1278 Fn, {ConvertedShadow2,
1279 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)});
1280 CB->addParamAttr(0, Attribute::ZExt);
1281 CB->addParamAttr(1, Attribute::ZExt);
1282 } else {
1283 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1284 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1285 Cmp, OrigIns,
1286 /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1287
1288 IRB.SetInsertPoint(CheckTerm);
1289 insertWarningFn(IRB, Origin);
1290 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " CHECK: " << *Cmp <<
"\n"; } } while (false)
;
1291 }
1292 }
1293
1294 void materializeChecks(bool InstrumentWithCalls) {
1295 for (const auto &ShadowData : InstrumentationList) {
1296 Instruction *OrigIns = ShadowData.OrigIns;
1297 Value *Shadow = ShadowData.Shadow;
1298 Value *Origin = ShadowData.Origin;
1299 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
1300 }
1301 LLVM_DEBUG(dbgs() << "DONE:\n" << F)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "DONE:\n" << F; } } while (
false)
;
1302 }
1303
1304 // Returns the last instruction in the new prologue
1305 void insertKmsanPrologue(IRBuilder<> &IRB) {
1306 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1307 Constant *Zero = IRB.getInt32(0);
1308 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1309 {Zero, IRB.getInt32(0)}, "param_shadow");
1310 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1311 {Zero, IRB.getInt32(1)}, "retval_shadow");
1312 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1313 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1314 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1315 {Zero, IRB.getInt32(3)}, "va_arg_origin");
1316 MS.VAArgOverflowSizeTLS =
1317 IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1318 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1319 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1320 {Zero, IRB.getInt32(5)}, "param_origin");
1321 MS.RetvalOriginTLS =
1322 IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1323 {Zero, IRB.getInt32(6)}, "retval_origin");
1324 }
1325
1326 /// Add MemorySanitizer instrumentation to a function.
1327 bool runOnFunction() {
1328 // Iterate all BBs in depth-first order and create shadow instructions
1329 // for all instructions (where applicable).
1330 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1331 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent()))
1332 visit(*BB);
1333
1334 // Finalize PHI nodes.
1335 for (PHINode *PN : ShadowPHINodes) {
1336 PHINode *PNS = cast<PHINode>(getShadow(PN));
1337 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1338 size_t NumValues = PN->getNumIncomingValues();
1339 for (size_t v = 0; v < NumValues; v++) {
1340 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1341 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1342 }
1343 }
1344
1345 VAHelper->finalizeInstrumentation();
1346
1347 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1348 // instrumenting only allocas.
1349 if (InstrumentLifetimeStart) {
1350 for (auto Item : LifetimeStartList) {
1351 instrumentAlloca(*Item.second, Item.first);
1352 AllocaSet.erase(Item.second);
1353 }
1354 }
1355 // Poison the allocas for which we didn't instrument the corresponding
1356 // lifetime intrinsics.
1357 for (AllocaInst *AI : AllocaSet)
1358 instrumentAlloca(*AI);
1359
1360 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
1361 InstrumentationList.size() + StoreList.size() >
1362 (unsigned)ClInstrumentationWithCallThreshold;
1363
1364 // Insert shadow value checks.
1365 materializeChecks(InstrumentWithCalls);
1366
1367 // Delayed instrumentation of StoreInst.
1368 // This may not add new address checks.
1369 materializeStores(InstrumentWithCalls);
1370
1371 return true;
1372 }
1373
1374 /// Compute the shadow type that corresponds to a given Value.
1375 Type *getShadowTy(Value *V) {
1376 return getShadowTy(V->getType());
1377 }
1378
1379 /// Compute the shadow type that corresponds to a given Type.
1380 Type *getShadowTy(Type *OrigTy) {
1381 if (!OrigTy->isSized()) {
1382 return nullptr;
1383 }
1384 // For integer type, shadow is the same as the original type.
1385 // This may return weird-sized types like i1.
1386 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1387 return IT;
1388 const DataLayout &DL = F.getParent()->getDataLayout();
1389 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1390 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1391 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize),
1392 cast<FixedVectorType>(VT)->getNumElements());
1393 }
1394 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1395 return ArrayType::get(getShadowTy(AT->getElementType()),
1396 AT->getNumElements());
1397 }
1398 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1399 SmallVector<Type*, 4> Elements;
1400 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1401 Elements.push_back(getShadowTy(ST->getElementType(i)));
1402 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1403 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "getShadowTy: " << *ST <<
" ===> " << *Res << "\n"; } } while (false)
;
1404 return Res;
1405 }
1406 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1407 return IntegerType::get(*MS.C, TypeSize);
1408 }
1409
1410 /// Flatten a vector type.
1411 Type *getShadowTyNoVec(Type *ty) {
1412 if (VectorType *vt = dyn_cast<VectorType>(ty))
1413 return IntegerType::get(*MS.C,
1414 vt->getPrimitiveSizeInBits().getFixedSize());
1415 return ty;
1416 }
1417
1418 /// Extract combined shadow of struct elements as a bool
1419 Value *collapseStructShadow(StructType *Struct, Value *Shadow,
1420 IRBuilder<> &IRB) {
1421 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0);
1422 Value *Aggregator = FalseVal;
1423
1424 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) {
1425 // Combine by ORing together each element's bool shadow
1426 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1427 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1428 Value *ShadowBool = convertToBool(ShadowInner, IRB);
1429
1430 if (Aggregator != FalseVal)
1431 Aggregator = IRB.CreateOr(Aggregator, ShadowBool);
1432 else
1433 Aggregator = ShadowBool;
1434 }
1435
1436 return Aggregator;
1437 }
1438
1439 // Extract combined shadow of array elements
1440 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow,
1441 IRBuilder<> &IRB) {
1442 if (!Array->getNumElements())
1443 return IRB.getIntN(/* width */ 1, /* value */ 0);
1444
1445 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1446 Value *Aggregator = convertShadowToScalar(FirstItem, IRB);
1447
1448 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) {
1449 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1450 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1451 Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1452 }
1453 return Aggregator;
1454 }
1455
1456 /// Convert a shadow value to it's flattened variant. The resulting
1457 /// shadow may not necessarily have the same bit width as the input
1458 /// value, but it will always be comparable to zero.
1459 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) {
1460 if (StructType *Struct = dyn_cast<StructType>(V->getType()))
1461 return collapseStructShadow(Struct, V, IRB);
1462 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType()))
1463 return collapseArrayShadow(Array, V, IRB);
1464 Type *Ty = V->getType();
1465 Type *NoVecTy = getShadowTyNoVec(Ty);
1466 if (Ty == NoVecTy) return V;
1467 return IRB.CreateBitCast(V, NoVecTy);
1468 }
1469
1470 // Convert a scalar value to an i1 by comparing with 0
1471 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") {
1472 Type *VTy = V->getType();
1473 assert(VTy->isIntegerTy())(static_cast <bool> (VTy->isIntegerTy()) ? void (0) :
__assert_fail ("VTy->isIntegerTy()", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1473, __extension__ __PRETTY_FUNCTION__))
;
1474 if (VTy->getIntegerBitWidth() == 1)
1475 // Just converting a bool to a bool, so do nothing.
1476 return V;
1477 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name);
1478 }
1479
1480 /// Compute the integer shadow offset that corresponds to a given
1481 /// application address.
1482 ///
1483 /// Offset = (Addr & ~AndMask) ^ XorMask
1484 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1485 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
1486
1487 uint64_t AndMask = MS.MapParams->AndMask;
1488 if (AndMask)
1489 OffsetLong =
1490 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
1491
1492 uint64_t XorMask = MS.MapParams->XorMask;
1493 if (XorMask)
1494 OffsetLong =
1495 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
1496 return OffsetLong;
1497 }
1498
1499 /// Compute the shadow and origin addresses corresponding to a given
1500 /// application address.
1501 ///
1502 /// Shadow = ShadowBase + Offset
1503 /// Origin = (OriginBase + Offset) & ~3ULL
1504 std::pair<Value *, Value *>
1505 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1506 MaybeAlign Alignment) {
1507 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1508 Value *ShadowLong = ShadowOffset;
1509 uint64_t ShadowBase = MS.MapParams->ShadowBase;
1510 if (ShadowBase != 0) {
1511 ShadowLong =
1512 IRB.CreateAdd(ShadowLong,
1513 ConstantInt::get(MS.IntptrTy, ShadowBase));
1514 }
1515 Value *ShadowPtr =
1516 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1517 Value *OriginPtr = nullptr;
1518 if (MS.TrackOrigins) {
1519 Value *OriginLong = ShadowOffset;
1520 uint64_t OriginBase = MS.MapParams->OriginBase;
1521 if (OriginBase != 0)
1522 OriginLong = IRB.CreateAdd(OriginLong,
1523 ConstantInt::get(MS.IntptrTy, OriginBase));
1524 if (!Alignment || *Alignment < kMinOriginAlignment) {
1525 uint64_t Mask = kMinOriginAlignment.value() - 1;
1526 OriginLong =
1527 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
1528 }
1529 OriginPtr =
1530 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
1531 }
1532 return std::make_pair(ShadowPtr, OriginPtr);
1533 }
1534
1535 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr,
1536 IRBuilder<> &IRB,
1537 Type *ShadowTy,
1538 bool isStore) {
1539 Value *ShadowOriginPtrs;
1540 const DataLayout &DL = F.getParent()->getDataLayout();
1541 int Size = DL.getTypeStoreSize(ShadowTy);
1542
1543 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1544 Value *AddrCast =
1545 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
1546 if (Getter) {
1547 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
1548 } else {
1549 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1550 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
1551 : MS.MsanMetadataPtrForLoadN,
1552 {AddrCast, SizeVal});
1553 }
1554 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1555 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
1556 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1557
1558 return std::make_pair(ShadowPtr, OriginPtr);
1559 }
1560
1561 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1562 Type *ShadowTy,
1563 MaybeAlign Alignment,
1564 bool isStore) {
1565 if (MS.CompileKernel)
1566 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore);
1567 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1568 }
1569
1570 /// Compute the shadow address for a given function argument.
1571 ///
1572 /// Shadow = ParamTLS+ArgOffset.
1573 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
1574 int ArgOffset) {
1575 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1576 if (ArgOffset)
1577 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1578 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1579 "_msarg");
1580 }
1581
1582 /// Compute the origin address for a given function argument.
1583 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1584 int ArgOffset) {
1585 if (!MS.TrackOrigins)
1586 return nullptr;
1587 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1588 if (ArgOffset)
1589 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1590 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1591 "_msarg_o");
1592 }
1593
1594 /// Compute the shadow address for a retval.
1595 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1596 return IRB.CreatePointerCast(MS.RetvalTLS,
1597 PointerType::get(getShadowTy(A), 0),
1598 "_msret");
1599 }
1600
1601 /// Compute the origin address for a retval.
1602 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1603 // We keep a single origin for the entire retval. Might be too optimistic.
1604 return MS.RetvalOriginTLS;
1605 }
1606
1607 /// Set SV to be the shadow value for V.
1608 void setShadow(Value *V, Value *SV) {
1609 assert(!ShadowMap.count(V) && "Values may only have one shadow")(static_cast <bool> (!ShadowMap.count(V) && "Values may only have one shadow"
) ? void (0) : __assert_fail ("!ShadowMap.count(V) && \"Values may only have one shadow\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1609
, __extension__ __PRETTY_FUNCTION__))
;
1610 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1611 }
1612
1613 /// Set Origin to be the origin value for V.
1614 void setOrigin(Value *V, Value *Origin) {
1615 if (!MS.TrackOrigins) return;
1616 assert(!OriginMap.count(V) && "Values may only have one origin")(static_cast <bool> (!OriginMap.count(V) && "Values may only have one origin"
) ? void (0) : __assert_fail ("!OriginMap.count(V) && \"Values may only have one origin\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1616
, __extension__ __PRETTY_FUNCTION__))
;
1617 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "ORIGIN: " << *V << " ==> "
<< *Origin << "\n"; } } while (false)
;
1618 OriginMap[V] = Origin;
1619 }
1620
1621 Constant *getCleanShadow(Type *OrigTy) {
1622 Type *ShadowTy = getShadowTy(OrigTy);
14
Value assigned to 'DebugFlag', which participates in a condition later
1623 if (!ShadowTy)
15
Assuming 'ShadowTy' is null
16
Taking true branch
1624 return nullptr;
1625 return Constant::getNullValue(ShadowTy);
1626 }
1627
1628 /// Create a clean shadow value for a given value.
1629 ///
1630 /// Clean shadow (all zeroes) means all bits of the value are defined
1631 /// (initialized).
1632 Constant *getCleanShadow(Value *V) {
1633 return getCleanShadow(V->getType());
13
Calling 'MemorySanitizerVisitor::getCleanShadow'
17
Returning from 'MemorySanitizerVisitor::getCleanShadow'
1634 }
1635
1636 /// Create a dirty shadow of a given shadow type.
1637 Constant *getPoisonedShadow(Type *ShadowTy) {
1638 assert(ShadowTy)(static_cast <bool> (ShadowTy) ? void (0) : __assert_fail
("ShadowTy", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1638, __extension__ __PRETTY_FUNCTION__))
;
1639 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1640 return Constant::getAllOnesValue(ShadowTy);
1641 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1642 SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1643 getPoisonedShadow(AT->getElementType()));
1644 return ConstantArray::get(AT, Vals);
1645 }
1646 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1647 SmallVector<Constant *, 4> Vals;
1648 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1649 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1650 return ConstantStruct::get(ST, Vals);
1651 }
1652 llvm_unreachable("Unexpected shadow type")::llvm::llvm_unreachable_internal("Unexpected shadow type", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1652)
;
1653 }
1654
1655 /// Create a dirty shadow for a given value.
1656 Constant *getPoisonedShadow(Value *V) {
1657 Type *ShadowTy = getShadowTy(V);
1658 if (!ShadowTy)
1659 return nullptr;
1660 return getPoisonedShadow(ShadowTy);
1661 }
1662
1663 /// Create a clean (zero) origin.
1664 Value *getCleanOrigin() {
1665 return Constant::getNullValue(MS.OriginTy);
1666 }
1667
1668 /// Get the shadow value for a given Value.
1669 ///
1670 /// This function either returns the value set earlier with setShadow,
1671 /// or extracts if from ParamTLS (for function arguments).
1672 Value *getShadow(Value *V) {
1673 if (Instruction *I
8.1
'I' is null
= dyn_cast<Instruction>(V)) {
8
Assuming 'V' is not a 'Instruction'
9
Taking false branch
1674 if (!PropagateShadow || I->getMetadata("nosanitize"))
1675 return getCleanShadow(V);
1676 // For instructions the shadow is already stored in the map.
1677 Value *Shadow = ShadowMap[V];
1678 if (!Shadow) {
1679 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "No shadow: " << *V <<
"\n" << *(I->getParent()); } } while (false)
;
1680 (void)I;
1681 assert(Shadow && "No shadow for a value")(static_cast <bool> (Shadow && "No shadow for a value"
) ? void (0) : __assert_fail ("Shadow && \"No shadow for a value\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1681
, __extension__ __PRETTY_FUNCTION__))
;
1682 }
1683 return Shadow;
1684 }
1685 if (UndefValue *U
10.1
'U' is non-null
= dyn_cast<UndefValue>(V)) {
10
Assuming 'V' is a 'UndefValue'
1686 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V)
11
Assuming field 'PropagateShadow' is false
19
'AllOnes' initialized to a null pointer value
1687 : getCleanShadow(V);
12
Calling 'MemorySanitizerVisitor::getCleanShadow'
18
Returning from 'MemorySanitizerVisitor::getCleanShadow'
1688 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "Undef: " << *U << " ==> "
<< *AllOnes << "\n"; } } while (false)
;
20
Assuming 'DebugFlag' is true
21
Assuming the condition is true
22
Taking true branch
23
Forming reference to null pointer
1689 (void)U;
1690 return AllOnes;
1691 }
1692 if (Argument *A = dyn_cast<Argument>(V)) {
1693 // For arguments we compute the shadow on demand and store it in the map.
1694 Value *&ShadowPtr = ShadowMap[V];
1695 if (ShadowPtr)
1696 return ShadowPtr;
1697 Function *F = A->getParent();
1698 IRBuilder<> EntryIRB(FnPrologueEnd);
1699 unsigned ArgOffset = 0;
1700 const DataLayout &DL = F->getParent()->getDataLayout();
1701 for (auto &FArg : F->args()) {
1702 if (!FArg.getType()->isSized()) {
1703 LLVM_DEBUG(dbgs() << "Arg is not sized\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "Arg is not sized\n"; } } while (
false)
;
1704 continue;
1705 }
1706
1707 unsigned Size = FArg.hasByValAttr()
1708 ? DL.getTypeAllocSize(FArg.getParamByValType())
1709 : DL.getTypeAllocSize(FArg.getType());
1710
1711 if (A == &FArg) {
1712 bool Overflow = ArgOffset + Size > kParamTLSSize;
1713 if (FArg.hasByValAttr()) {
1714 // ByVal pointer itself has clean shadow. We copy the actual
1715 // argument shadow to the underlying memory.
1716 // Figure out maximal valid memcpy alignment.
1717 const Align ArgAlign = DL.getValueOrABITypeAlignment(
1718 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType());
1719 Value *CpShadowPtr, *CpOriginPtr;
1720 std::tie(CpShadowPtr, CpOriginPtr) =
1721 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1722 /*isStore*/ true);
1723 if (!PropagateShadow || Overflow) {
1724 // ParamTLS overflow.
1725 EntryIRB.CreateMemSet(
1726 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1727 Size, ArgAlign);
1728 } else {
1729 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1730 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1731 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1732 CopyAlign, Size);
1733 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " ByValCpy: " << *Cpy <<
"\n"; } } while (false)
;
1734 (void)Cpy;
1735
1736 if (MS.TrackOrigins) {
1737 Value *OriginPtr =
1738 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1739 // FIXME: OriginSize should be:
1740 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment)
1741 unsigned OriginSize = alignTo(Size, kMinOriginAlignment);
1742 EntryIRB.CreateMemCpy(
1743 CpOriginPtr,
1744 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr,
1745 /* by origin_tls[ArgOffset] */ kMinOriginAlignment,
1746 OriginSize);
1747 }
1748 }
1749 }
1750
1751 if (!PropagateShadow || Overflow || FArg.hasByValAttr() ||
1752 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) {
1753 ShadowPtr = getCleanShadow(V);
1754 setOrigin(A, getCleanOrigin());
1755 } else {
1756 // Shadow over TLS
1757 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1758 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
1759 kShadowTLSAlignment);
1760 if (MS.TrackOrigins) {
1761 Value *OriginPtr =
1762 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1763 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
1764 }
1765 }
1766 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " ARG: " << FArg <<
" ==> " << *ShadowPtr << "\n"; } } while (false
)
1767 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " ARG: " << FArg <<
" ==> " << *ShadowPtr << "\n"; } } while (false
)
;
1768 break;
1769 }
1770
1771 ArgOffset += alignTo(Size, kShadowTLSAlignment);
1772 }
1773 assert(ShadowPtr && "Could not find shadow for an argument")(static_cast <bool> (ShadowPtr && "Could not find shadow for an argument"
) ? void (0) : __assert_fail ("ShadowPtr && \"Could not find shadow for an argument\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1773
, __extension__ __PRETTY_FUNCTION__))
;
1774 return ShadowPtr;
1775 }
1776 // For everything else the shadow is zero.
1777 return getCleanShadow(V);
1778 }
1779
1780 /// Get the shadow for i-th argument of the instruction I.
1781 Value *getShadow(Instruction *I, int i) {
1782 return getShadow(I->getOperand(i));
1783 }
1784
1785 /// Get the origin for a value.
1786 Value *getOrigin(Value *V) {
1787 if (!MS.TrackOrigins) return nullptr;
1788 if (!PropagateShadow) return getCleanOrigin();
1789 if (isa<Constant>(V)) return getCleanOrigin();
1790 assert((isa<Instruction>(V) || isa<Argument>(V)) &&(static_cast <bool> ((isa<Instruction>(V) || isa<
Argument>(V)) && "Unexpected value type in getOrigin()"
) ? void (0) : __assert_fail ("(isa<Instruction>(V) || isa<Argument>(V)) && \"Unexpected value type in getOrigin()\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1791
, __extension__ __PRETTY_FUNCTION__))
1791 "Unexpected value type in getOrigin()")(static_cast <bool> ((isa<Instruction>(V) || isa<
Argument>(V)) && "Unexpected value type in getOrigin()"
) ? void (0) : __assert_fail ("(isa<Instruction>(V) || isa<Argument>(V)) && \"Unexpected value type in getOrigin()\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1791
, __extension__ __PRETTY_FUNCTION__))
;
1792 if (Instruction *I = dyn_cast<Instruction>(V)) {
1793 if (I->getMetadata("nosanitize"))
1794 return getCleanOrigin();
1795 }
1796 Value *Origin = OriginMap[V];
1797 assert(Origin && "Missing origin")(static_cast <bool> (Origin && "Missing origin"
) ? void (0) : __assert_fail ("Origin && \"Missing origin\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1797
, __extension__ __PRETTY_FUNCTION__))
;
1798 return Origin;
1799 }
1800
1801 /// Get the origin for i-th argument of the instruction I.
1802 Value *getOrigin(Instruction *I, int i) {
1803 return getOrigin(I->getOperand(i));
1804 }
1805
1806 /// Remember the place where a shadow check should be inserted.
1807 ///
1808 /// This location will be later instrumented with a check that will print a
1809 /// UMR warning in runtime if the shadow value is not 0.
1810 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1811 assert(Shadow)(static_cast <bool> (Shadow) ? void (0) : __assert_fail
("Shadow", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1811, __extension__ __PRETTY_FUNCTION__))
;
1812 if (!InsertChecks) return;
1813#ifndef NDEBUG
1814 Type *ShadowTy = Shadow->getType();
1815 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) ||(static_cast <bool> ((isa<IntegerType>(ShadowTy) ||
isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy
) || isa<ArrayType>(ShadowTy)) && "Can only insert checks for integer, vector, and aggregate shadow "
"types") ? void (0) : __assert_fail ("(isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && \"Can only insert checks for integer, vector, and aggregate shadow \" \"types\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1818
, __extension__ __PRETTY_FUNCTION__))
1816 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) &&(static_cast <bool> ((isa<IntegerType>(ShadowTy) ||
isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy
) || isa<ArrayType>(ShadowTy)) && "Can only insert checks for integer, vector, and aggregate shadow "
"types") ? void (0) : __assert_fail ("(isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && \"Can only insert checks for integer, vector, and aggregate shadow \" \"types\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1818
, __extension__ __PRETTY_FUNCTION__))
1817 "Can only insert checks for integer, vector, and aggregate shadow "(static_cast <bool> ((isa<IntegerType>(ShadowTy) ||
isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy
) || isa<ArrayType>(ShadowTy)) && "Can only insert checks for integer, vector, and aggregate shadow "
"types") ? void (0) : __assert_fail ("(isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && \"Can only insert checks for integer, vector, and aggregate shadow \" \"types\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1818
, __extension__ __PRETTY_FUNCTION__))
1818 "types")(static_cast <bool> ((isa<IntegerType>(ShadowTy) ||
isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy
) || isa<ArrayType>(ShadowTy)) && "Can only insert checks for integer, vector, and aggregate shadow "
"types") ? void (0) : __assert_fail ("(isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && \"Can only insert checks for integer, vector, and aggregate shadow \" \"types\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1818
, __extension__ __PRETTY_FUNCTION__))
;
1819#endif
1820 InstrumentationList.push_back(
1821 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1822 }
1823
1824 /// Remember the place where a shadow check should be inserted.
1825 ///
1826 /// This location will be later instrumented with a check that will print a
1827 /// UMR warning in runtime if the value is not fully defined.
1828 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1829 assert(Val)(static_cast <bool> (Val) ? void (0) : __assert_fail ("Val"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1829
, __extension__ __PRETTY_FUNCTION__))
;
1830 Value *Shadow, *Origin;
1831 if (ClCheckConstantShadow) {
1832 Shadow = getShadow(Val);
1833 if (!Shadow) return;
1834 Origin = getOrigin(Val);
1835 } else {
1836 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1837 if (!Shadow) return;
1838 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1839 }
1840 insertShadowCheck(Shadow, Origin, OrigIns);
1841 }
1842
1843 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1844 switch (a) {
1845 case AtomicOrdering::NotAtomic:
1846 return AtomicOrdering::NotAtomic;
1847 case AtomicOrdering::Unordered:
1848 case AtomicOrdering::Monotonic:
1849 case AtomicOrdering::Release:
1850 return AtomicOrdering::Release;
1851 case AtomicOrdering::Acquire:
1852 case AtomicOrdering::AcquireRelease:
1853 return AtomicOrdering::AcquireRelease;
1854 case AtomicOrdering::SequentiallyConsistent:
1855 return AtomicOrdering::SequentiallyConsistent;
1856 }
1857 llvm_unreachable("Unknown ordering")::llvm::llvm_unreachable_internal("Unknown ordering", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1857)
;
1858 }
1859
1860 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
1861 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
1862 uint32_t OrderingTable[NumOrderings] = {};
1863
1864 OrderingTable[(int)AtomicOrderingCABI::relaxed] =
1865 OrderingTable[(int)AtomicOrderingCABI::release] =
1866 (int)AtomicOrderingCABI::release;
1867 OrderingTable[(int)AtomicOrderingCABI::consume] =
1868 OrderingTable[(int)AtomicOrderingCABI::acquire] =
1869 OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
1870 (int)AtomicOrderingCABI::acq_rel;
1871 OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
1872 (int)AtomicOrderingCABI::seq_cst;
1873
1874 return ConstantDataVector::get(IRB.getContext(),
1875 makeArrayRef(OrderingTable, NumOrderings));
1876 }
1877
1878 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1879 switch (a) {
1880 case AtomicOrdering::NotAtomic:
1881 return AtomicOrdering::NotAtomic;
1882 case AtomicOrdering::Unordered:
1883 case AtomicOrdering::Monotonic:
1884 case AtomicOrdering::Acquire:
1885 return AtomicOrdering::Acquire;
1886 case AtomicOrdering::Release:
1887 case AtomicOrdering::AcquireRelease:
1888 return AtomicOrdering::AcquireRelease;
1889 case AtomicOrdering::SequentiallyConsistent:
1890 return AtomicOrdering::SequentiallyConsistent;
1891 }
1892 llvm_unreachable("Unknown ordering")::llvm::llvm_unreachable_internal("Unknown ordering", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1892)
;
1893 }
1894
1895 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
1896 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
1897 uint32_t OrderingTable[NumOrderings] = {};
1898
1899 OrderingTable[(int)AtomicOrderingCABI::relaxed] =
1900 OrderingTable[(int)AtomicOrderingCABI::acquire] =
1901 OrderingTable[(int)AtomicOrderingCABI::consume] =
1902 (int)AtomicOrderingCABI::acquire;
1903 OrderingTable[(int)AtomicOrderingCABI::release] =
1904 OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
1905 (int)AtomicOrderingCABI::acq_rel;
1906 OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
1907 (int)AtomicOrderingCABI::seq_cst;
1908
1909 return ConstantDataVector::get(IRB.getContext(),
1910 makeArrayRef(OrderingTable, NumOrderings));
1911 }
1912
1913 // ------------------- Visitors.
1914 using InstVisitor<MemorySanitizerVisitor>::visit;
1915 void visit(Instruction &I) {
1916 if (I.getMetadata("nosanitize"))
1917 return;
1918 // Don't want to visit if we're in the prologue
1919 if (isInPrologue(I))
1920 return;
1921 InstVisitor<MemorySanitizerVisitor>::visit(I);
1922 }
1923
1924 /// Instrument LoadInst
1925 ///
1926 /// Loads the corresponding shadow and (optionally) origin.
1927 /// Optionally, checks that the load address is fully defined.
1928 void visitLoadInst(LoadInst &I) {
1929 assert(I.getType()->isSized() && "Load type must have size")(static_cast <bool> (I.getType()->isSized() &&
"Load type must have size") ? void (0) : __assert_fail ("I.getType()->isSized() && \"Load type must have size\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1929
, __extension__ __PRETTY_FUNCTION__))
;
1930 assert(!I.getMetadata("nosanitize"))(static_cast <bool> (!I.getMetadata("nosanitize")) ? void
(0) : __assert_fail ("!I.getMetadata(\"nosanitize\")", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1930, __extension__ __PRETTY_FUNCTION__))
;
1931 IRBuilder<> IRB(I.getNextNode());
1932 Type *ShadowTy = getShadowTy(&I);
1933 Value *Addr = I.getPointerOperand();
1934 Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
1935 const Align Alignment = assumeAligned(I.getAlignment());
1936 if (PropagateShadow) {
1937 std::tie(ShadowPtr, OriginPtr) =
1938 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
1939 setShadow(&I,
1940 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
1941 } else {
1942 setShadow(&I, getCleanShadow(&I));
1943 }
1944
1945 if (ClCheckAccessAddress)
1946 insertShadowCheck(I.getPointerOperand(), &I);
1947
1948 if (I.isAtomic())
1949 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1950
1951 if (MS.TrackOrigins) {
1952 if (PropagateShadow) {
1953 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1954 setOrigin(
1955 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
1956 } else {
1957 setOrigin(&I, getCleanOrigin());
1958 }
1959 }
1960 }
1961
1962 /// Instrument StoreInst
1963 ///
1964 /// Stores the corresponding shadow and (optionally) origin.
1965 /// Optionally, checks that the store address is fully defined.
1966 void visitStoreInst(StoreInst &I) {
1967 StoreList.push_back(&I);
1968 if (ClCheckAccessAddress)
1969 insertShadowCheck(I.getPointerOperand(), &I);
1970 }
1971
1972 void handleCASOrRMW(Instruction &I) {
1973 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))(static_cast <bool> (isa<AtomicRMWInst>(I) || isa
<AtomicCmpXchgInst>(I)) ? void (0) : __assert_fail ("isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1973
, __extension__ __PRETTY_FUNCTION__))
;
1974
1975 IRBuilder<> IRB(&I);
1976 Value *Addr = I.getOperand(0);
1977 Value *Val = I.getOperand(1);
1978 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1),
1979 /*isStore*/ true)
1980 .first;
1981
1982 if (ClCheckAccessAddress)
1983 insertShadowCheck(Addr, &I);
1984
1985 // Only test the conditional argument of cmpxchg instruction.
1986 // The other argument can potentially be uninitialized, but we can not
1987 // detect this situation reliably without possible false positives.
1988 if (isa<AtomicCmpXchgInst>(I))
1989 insertShadowCheck(Val, &I);
1990
1991 IRB.CreateStore(getCleanShadow(Val), ShadowPtr);
1992
1993 setShadow(&I, getCleanShadow(&I));
1994 setOrigin(&I, getCleanOrigin());
1995 }
1996
1997 void visitAtomicRMWInst(AtomicRMWInst &I) {
1998 handleCASOrRMW(I);
1999 I.setOrdering(addReleaseOrdering(I.getOrdering()));
2000 }
2001
2002 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2003 handleCASOrRMW(I);
2004 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2005 }
2006
2007 // Vector manipulation.
2008 void visitExtractElementInst(ExtractElementInst &I) {
2009 insertShadowCheck(I.getOperand(1), &I);
2010 IRBuilder<> IRB(&I);
2011 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
2012 "_msprop"));
2013 setOrigin(&I, getOrigin(&I, 0));
2014 }
2015
2016 void visitInsertElementInst(InsertElementInst &I) {
2017 insertShadowCheck(I.getOperand(2), &I);
2018 IRBuilder<> IRB(&I);
2019 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
2020 I.getOperand(2), "_msprop"));
2021 setOriginForNaryOp(I);
2022 }
2023
2024 void visitShuffleVectorInst(ShuffleVectorInst &I) {
2025 IRBuilder<> IRB(&I);
2026 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
2027 I.getShuffleMask(), "_msprop"));
2028 setOriginForNaryOp(I);
2029 }
2030
2031 // Casts.
2032 void visitSExtInst(SExtInst &I) {
2033 IRBuilder<> IRB(&I);
2034 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
2035 setOrigin(&I, getOrigin(&I, 0));
2036 }
2037
2038 void visitZExtInst(ZExtInst &I) {
2039 IRBuilder<> IRB(&I);
2040 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
2041 setOrigin(&I, getOrigin(&I, 0));
2042 }
2043
2044 void visitTruncInst(TruncInst &I) {
2045 IRBuilder<> IRB(&I);
2046 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
2047 setOrigin(&I, getOrigin(&I, 0));
2048 }
2049
2050 void visitBitCastInst(BitCastInst &I) {
2051 // Special case: if this is the bitcast (there is exactly 1 allowed) between
2052 // a musttail call and a ret, don't instrument. New instructions are not
2053 // allowed after a musttail call.
2054 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
2055 if (CI->isMustTailCall())
2056 return;
2057 IRBuilder<> IRB(&I);
2058 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
2059 setOrigin(&I, getOrigin(&I, 0));
2060 }
2061
2062 void visitPtrToIntInst(PtrToIntInst &I) {
2063 IRBuilder<> IRB(&I);
2064 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2065 "_msprop_ptrtoint"));
2066 setOrigin(&I, getOrigin(&I, 0));
2067 }
2068
2069 void visitIntToPtrInst(IntToPtrInst &I) {
2070 IRBuilder<> IRB(&I);
2071 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2072 "_msprop_inttoptr"));
2073 setOrigin(&I, getOrigin(&I, 0));
2074 }
2075
2076 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
2077 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
2078 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
2079 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
2080 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
2081 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
2082
2083 /// Propagate shadow for bitwise AND.
2084 ///
2085 /// This code is exact, i.e. if, for example, a bit in the left argument
2086 /// is defined and 0, then neither the value not definedness of the
2087 /// corresponding bit in B don't affect the resulting shadow.
2088 void visitAnd(BinaryOperator &I) {
2089 IRBuilder<> IRB(&I);
2090 // "And" of 0 and a poisoned value results in unpoisoned value.
2091 // 1&1 => 1; 0&1 => 0; p&1 => p;
2092 // 1&0 => 0; 0&0 => 0; p&0 => 0;
2093 // 1&p => p; 0&p => 0; p&p => p;
2094 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
2095 Value *S1 = getShadow(&I, 0);
2096 Value *S2 = getShadow(&I, 1);
2097 Value *V1 = I.getOperand(0);
2098 Value *V2 = I.getOperand(1);
2099 if (V1->getType() != S1->getType()) {
2100 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2101 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2102 }
2103 Value *S1S2 = IRB.CreateAnd(S1, S2);
2104 Value *V1S2 = IRB.CreateAnd(V1, S2);
2105 Value *S1V2 = IRB.CreateAnd(S1, V2);
2106 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2107 setOriginForNaryOp(I);
2108 }
2109
2110 void visitOr(BinaryOperator &I) {
2111 IRBuilder<> IRB(&I);
2112 // "Or" of 1 and a poisoned value results in unpoisoned value.
2113 // 1|1 => 1; 0|1 => 1; p|1 => 1;
2114 // 1|0 => 1; 0|0 => 0; p|0 => p;
2115 // 1|p => 1; 0|p => p; p|p => p;
2116 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
2117 Value *S1 = getShadow(&I, 0);
2118 Value *S2 = getShadow(&I, 1);
2119 Value *V1 = IRB.CreateNot(I.getOperand(0));
2120 Value *V2 = IRB.CreateNot(I.getOperand(1));
2121 if (V1->getType() != S1->getType()) {
2122 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2123 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2124 }
2125 Value *S1S2 = IRB.CreateAnd(S1, S2);
2126 Value *V1S2 = IRB.CreateAnd(V1, S2);
2127 Value *S1V2 = IRB.CreateAnd(S1, V2);
2128 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2129 setOriginForNaryOp(I);
2130 }
2131
2132 /// Default propagation of shadow and/or origin.
2133 ///
2134 /// This class implements the general case of shadow propagation, used in all
2135 /// cases where we don't know and/or don't care about what the operation
2136 /// actually does. It converts all input shadow values to a common type
2137 /// (extending or truncating as necessary), and bitwise OR's them.
2138 ///
2139 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
2140 /// fully initialized), and less prone to false positives.
2141 ///
2142 /// This class also implements the general case of origin propagation. For a
2143 /// Nary operation, result origin is set to the origin of an argument that is
2144 /// not entirely initialized. If there is more than one such arguments, the
2145 /// rightmost of them is picked. It does not matter which one is picked if all
2146 /// arguments are initialized.
2147 template <bool CombineShadow>
2148 class Combiner {
2149 Value *Shadow = nullptr;
2150 Value *Origin = nullptr;
2151 IRBuilder<> &IRB;
2152 MemorySanitizerVisitor *MSV;
2153
2154 public:
2155 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
2156 : IRB(IRB), MSV(MSV) {}
2157
2158 /// Add a pair of shadow and origin values to the mix.
2159 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2160 if (CombineShadow) {
2161 assert(OpShadow)(static_cast <bool> (OpShadow) ? void (0) : __assert_fail
("OpShadow", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2161, __extension__ __PRETTY_FUNCTION__))
;
2162 if (!Shadow)
2163 Shadow = OpShadow;
2164 else {
2165 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2166 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2167 }
2168 }
2169
2170 if (MSV->MS.TrackOrigins) {
2171 assert(OpOrigin)(static_cast <bool> (OpOrigin) ? void (0) : __assert_fail
("OpOrigin", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2171, __extension__ __PRETTY_FUNCTION__))
;
2172 if (!Origin) {
2173 Origin = OpOrigin;
2174 } else {
2175 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2176 // No point in adding something that might result in 0 origin value.
2177 if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2178 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB);
2179 Value *Cond =
2180 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
2181 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2182 }
2183 }
2184 }
2185 return *this;
2186 }
2187
2188 /// Add an application value to the mix.
2189 Combiner &Add(Value *V) {
2190 Value *OpShadow = MSV->getShadow(V);
2191 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2192 return Add(OpShadow, OpOrigin);
2193 }
2194
2195 /// Set the current combined values as the given instruction's shadow
2196 /// and origin.
2197 void Done(Instruction *I) {
2198 if (CombineShadow) {
2199 assert(Shadow)(static_cast <bool> (Shadow) ? void (0) : __assert_fail
("Shadow", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2199, __extension__ __PRETTY_FUNCTION__))
;
2200 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2201 MSV->setShadow(I, Shadow);
2202 }
2203 if (MSV->MS.TrackOrigins) {
2204 assert(Origin)(static_cast <bool> (Origin) ? void (0) : __assert_fail
("Origin", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2204, __extension__ __PRETTY_FUNCTION__))
;
2205 MSV->setOrigin(I, Origin);
2206 }
2207 }
2208 };
2209
2210 using ShadowAndOriginCombiner = Combiner<true>;
2211 using OriginCombiner = Combiner<false>;
2212
2213 /// Propagate origin for arbitrary operation.
2214 void setOriginForNaryOp(Instruction &I) {
2215 if (!MS.TrackOrigins) return;
2216 IRBuilder<> IRB(&I);
2217 OriginCombiner OC(this, IRB);
2218 for (Use &Op : I.operands())
2219 OC.Add(Op.get());
2220 OC.Done(&I);
2221 }
2222
2223 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2224 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&(static_cast <bool> (!(Ty->isVectorTy() && Ty
->getScalarType()->isPointerTy()) && "Vector of pointers is not a valid shadow type"
) ? void (0) : __assert_fail ("!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && \"Vector of pointers is not a valid shadow type\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2225
, __extension__ __PRETTY_FUNCTION__))
2225 "Vector of pointers is not a valid shadow type")(static_cast <bool> (!(Ty->isVectorTy() && Ty
->getScalarType()->isPointerTy()) && "Vector of pointers is not a valid shadow type"
) ? void (0) : __assert_fail ("!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && \"Vector of pointers is not a valid shadow type\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2225
, __extension__ __PRETTY_FUNCTION__))
;
2226 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() *
2227 Ty->getScalarSizeInBits()
2228 : Ty->getPrimitiveSizeInBits();
2229 }
2230
2231 /// Cast between two shadow types, extending or truncating as
2232 /// necessary.
2233 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2234 bool Signed = false) {
2235 Type *srcTy = V->getType();
2236 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2237 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2238 if (srcSizeInBits > 1 && dstSizeInBits == 1)
2239 return IRB.CreateICmpNE(V, getCleanShadow(V));
2240
2241 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2242 return IRB.CreateIntCast(V, dstTy, Signed);
2243 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2244 cast<FixedVectorType>(dstTy)->getNumElements() ==
2245 cast<FixedVectorType>(srcTy)->getNumElements())
2246 return IRB.CreateIntCast(V, dstTy, Signed);
2247 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2248 Value *V2 =
2249 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2250 return IRB.CreateBitCast(V2, dstTy);
2251 // TODO: handle struct types.
2252 }
2253
2254 /// Cast an application value to the type of its own shadow.
2255 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2256 Type *ShadowTy = getShadowTy(V);
2257 if (V->getType() == ShadowTy)
2258 return V;
2259 if (V->getType()->isPtrOrPtrVectorTy())
2260 return IRB.CreatePtrToInt(V, ShadowTy);
2261 else
2262 return IRB.CreateBitCast(V, ShadowTy);
2263 }
2264
2265 /// Propagate shadow for arbitrary operation.
2266 void handleShadowOr(Instruction &I) {
2267 IRBuilder<> IRB(&I);
2268 ShadowAndOriginCombiner SC(this, IRB);
2269 for (Use &Op : I.operands())
2270 SC.Add(Op.get());
2271 SC.Done(&I);
2272 }
2273
2274 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2275
2276 // Handle multiplication by constant.
2277 //
2278 // Handle a special case of multiplication by constant that may have one or
2279 // more zeros in the lower bits. This makes corresponding number of lower bits
2280 // of the result zero as well. We model it by shifting the other operand
2281 // shadow left by the required number of bits. Effectively, we transform
2282 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2283 // We use multiplication by 2**N instead of shift to cover the case of
2284 // multiplication by 0, which may occur in some elements of a vector operand.
2285 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2286 Value *OtherArg) {
2287 Constant *ShadowMul;
2288 Type *Ty = ConstArg->getType();
2289 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2290 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements();
2291 Type *EltTy = VTy->getElementType();
2292 SmallVector<Constant *, 16> Elements;
2293 for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2294 if (ConstantInt *Elt =
2295 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2296 const APInt &V = Elt->getValue();
2297 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2298 Elements.push_back(ConstantInt::get(EltTy, V2));
2299 } else {
2300 Elements.push_back(ConstantInt::get(EltTy, 1));
2301 }
2302 }
2303 ShadowMul = ConstantVector::get(Elements);
2304 } else {
2305 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2306 const APInt &V = Elt->getValue();
2307 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2308 ShadowMul = ConstantInt::get(Ty, V2);
2309 } else {
2310 ShadowMul = ConstantInt::get(Ty, 1);
2311 }
2312 }
2313
2314 IRBuilder<> IRB(&I);
2315 setShadow(&I,
2316 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2317 setOrigin(&I, getOrigin(OtherArg));
2318 }
2319
2320 void visitMul(BinaryOperator &I) {
2321 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2322 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2323 if (constOp0 && !constOp1)
2324 handleMulByConstant(I, constOp0, I.getOperand(1));
2325 else if (constOp1 && !constOp0)
2326 handleMulByConstant(I, constOp1, I.getOperand(0));
2327 else
2328 handleShadowOr(I);
2329 }
2330
2331 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2332 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2333 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2334 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2335 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2336 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2337
2338 void handleIntegerDiv(Instruction &I) {
2339 IRBuilder<> IRB(&I);
2340 // Strict on the second argument.
2341 insertShadowCheck(I.getOperand(1), &I);
2342 setShadow(&I, getShadow(&I, 0));
2343 setOrigin(&I, getOrigin(&I, 0));
2344 }
2345
2346 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2347 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2348 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2349 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2350
2351 // Floating point division is side-effect free. We can not require that the
2352 // divisor is fully initialized and must propagate shadow. See PR37523.
2353 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2354 void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2355
2356 /// Instrument == and != comparisons.
2357 ///
2358 /// Sometimes the comparison result is known even if some of the bits of the
2359 /// arguments are not.
2360 void handleEqualityComparison(ICmpInst &I) {
2361 IRBuilder<> IRB(&I);
2362 Value *A = I.getOperand(0);
2363 Value *B = I.getOperand(1);
2364 Value *Sa = getShadow(A);
2365 Value *Sb = getShadow(B);
2366
2367 // Get rid of pointers and vectors of pointers.
2368 // For ints (and vectors of ints), types of A and Sa match,
2369 // and this is a no-op.
2370 A = IRB.CreatePointerCast(A, Sa->getType());
2371 B = IRB.CreatePointerCast(B, Sb->getType());
2372
2373 // A == B <==> (C = A^B) == 0
2374 // A != B <==> (C = A^B) != 0
2375 // Sc = Sa | Sb
2376 Value *C = IRB.CreateXor(A, B);
2377 Value *Sc = IRB.CreateOr(Sa, Sb);
2378 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2379 // Result is defined if one of the following is true
2380 // * there is a defined 1 bit in C
2381 // * C is fully defined
2382 // Si = !(C & ~Sc) && Sc
2383 Value *Zero = Constant::getNullValue(Sc->getType());
2384 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2385 Value *Si =
2386 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
2387 IRB.CreateICmpEQ(
2388 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
2389 Si->setName("_msprop_icmp");
2390 setShadow(&I, Si);
2391 setOriginForNaryOp(I);
2392 }
2393
2394 /// Build the lowest possible value of V, taking into account V's
2395 /// uninitialized bits.
2396 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2397 bool isSigned) {
2398 if (isSigned) {
2399 // Split shadow into sign bit and other bits.
2400 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2401 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2402 // Maximise the undefined shadow bit, minimize other undefined bits.
2403 return
2404 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
2405 } else {
2406 // Minimize undefined bits.
2407 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
2408 }
2409 }
2410
2411 /// Build the highest possible value of V, taking into account V's
2412 /// uninitialized bits.
2413 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2414 bool isSigned) {
2415 if (isSigned) {
2416 // Split shadow into sign bit and other bits.
2417 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2418 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2419 // Minimise the undefined shadow bit, maximise other undefined bits.
2420 return
2421 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
2422 } else {
2423 // Maximize undefined bits.
2424 return IRB.CreateOr(A, Sa);
2425 }
2426 }
2427
2428 /// Instrument relational comparisons.
2429 ///
2430 /// This function does exact shadow propagation for all relational
2431 /// comparisons of integers, pointers and vectors of those.
2432 /// FIXME: output seems suboptimal when one of the operands is a constant
2433 void handleRelationalComparisonExact(ICmpInst &I) {
2434 IRBuilder<> IRB(&I);
2435 Value *A = I.getOperand(0);
2436 Value *B = I.getOperand(1);
2437 Value *Sa = getShadow(A);
2438 Value *Sb = getShadow(B);
2439
2440 // Get rid of pointers and vectors of pointers.
2441 // For ints (and vectors of ints), types of A and Sa match,
2442 // and this is a no-op.
2443 A = IRB.CreatePointerCast(A, Sa->getType());
2444 B = IRB.CreatePointerCast(B, Sb->getType());
2445
2446 // Let [a0, a1] be the interval of possible values of A, taking into account
2447 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2448 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2449 bool IsSigned = I.isSigned();
2450 Value *S1 = IRB.CreateICmp(I.getPredicate(),
2451 getLowestPossibleValue(IRB, A, Sa, IsSigned),
2452 getHighestPossibleValue(IRB, B, Sb, IsSigned));
2453 Value *S2 = IRB.CreateICmp(I.getPredicate(),
2454 getHighestPossibleValue(IRB, A, Sa, IsSigned),
2455 getLowestPossibleValue(IRB, B, Sb, IsSigned));
2456 Value *Si = IRB.CreateXor(S1, S2);
2457 setShadow(&I, Si);
2458 setOriginForNaryOp(I);
2459 }
2460
2461 /// Instrument signed relational comparisons.
2462 ///
2463 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2464 /// bit of the shadow. Everything else is delegated to handleShadowOr().
2465 void handleSignedRelationalComparison(ICmpInst &I) {
2466 Constant *constOp;
2467 Value *op = nullptr;
2468 CmpInst::Predicate pre;
2469 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2470 op = I.getOperand(0);
2471 pre = I.getPredicate();
2472 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2473 op = I.getOperand(1);
2474 pre = I.getSwappedPredicate();
2475 } else {
2476 handleShadowOr(I);
2477 return;
2478 }
2479
2480 if ((constOp->isNullValue() &&
2481 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2482 (constOp->isAllOnesValue() &&
2483 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2484 IRBuilder<> IRB(&I);
2485 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2486 "_msprop_icmp_s");
2487 setShadow(&I, Shadow);
2488 setOrigin(&I, getOrigin(op));
2489 } else {
2490 handleShadowOr(I);
2491 }
2492 }
2493
2494 void visitICmpInst(ICmpInst &I) {
2495 if (!ClHandleICmp) {
2496 handleShadowOr(I);
2497 return;
2498 }
2499 if (I.isEquality()) {
2500 handleEqualityComparison(I);
2501 return;
2502 }
2503
2504 assert(I.isRelational())(static_cast <bool> (I.isRelational()) ? void (0) : __assert_fail
("I.isRelational()", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2504, __extension__ __PRETTY_FUNCTION__))
;
2505 if (ClHandleICmpExact) {
2506 handleRelationalComparisonExact(I);
2507 return;
2508 }
2509 if (I.isSigned()) {
2510 handleSignedRelationalComparison(I);
2511 return;
2512 }
2513
2514 assert(I.isUnsigned())(static_cast <bool> (I.isUnsigned()) ? void (0) : __assert_fail
("I.isUnsigned()", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2514, __extension__ __PRETTY_FUNCTION__))
;
2515 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2516 handleRelationalComparisonExact(I);
2517 return;
2518 }
2519
2520 handleShadowOr(I);
2521 }
2522
2523 void visitFCmpInst(FCmpInst &I) {
2524 handleShadowOr(I);
2525 }
2526
2527 void handleShift(BinaryOperator &I) {
2528 IRBuilder<> IRB(&I);
2529 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2530 // Otherwise perform the same shift on S1.
2531 Value *S1 = getShadow(&I, 0);
2532 Value *S2 = getShadow(&I, 1);
2533 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
2534 S2->getType());
2535 Value *V2 = I.getOperand(1);
2536 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2537 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2538 setOriginForNaryOp(I);
2539 }
2540
2541 void visitShl(BinaryOperator &I) { handleShift(I); }
2542 void visitAShr(BinaryOperator &I) { handleShift(I); }
2543 void visitLShr(BinaryOperator &I) { handleShift(I); }
2544
2545 void handleFunnelShift(IntrinsicInst &I) {
2546 IRBuilder<> IRB(&I);
2547 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2548 // Otherwise perform the same shift on S0 and S1.
2549 Value *S0 = getShadow(&I, 0);
2550 Value *S1 = getShadow(&I, 1);
2551 Value *S2 = getShadow(&I, 2);
2552 Value *S2Conv =
2553 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType());
2554 Value *V2 = I.getOperand(2);
2555 Function *Intrin = Intrinsic::getDeclaration(
2556 I.getModule(), I.getIntrinsicID(), S2Conv->getType());
2557 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2});
2558 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2559 setOriginForNaryOp(I);
2560 }
2561
2562 /// Instrument llvm.memmove
2563 ///
2564 /// At this point we don't know if llvm.memmove will be inlined or not.
2565 /// If we don't instrument it and it gets inlined,
2566 /// our interceptor will not kick in and we will lose the memmove.
2567 /// If we instrument the call here, but it does not get inlined,
2568 /// we will memove the shadow twice: which is bad in case
2569 /// of overlapping regions. So, we simply lower the intrinsic to a call.
2570 ///
2571 /// Similar situation exists for memcpy and memset.
2572 void visitMemMoveInst(MemMoveInst &I) {
2573 getShadow(I.getArgOperand(1)); // Ensure shadow initialized
2574 IRBuilder<> IRB(&I);
2575 IRB.CreateCall(
2576 MS.MemmoveFn,
2577 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2578 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2579 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2580 I.eraseFromParent();
2581 }
2582
2583 // Similar to memmove: avoid copying shadow twice.
2584 // This is somewhat unfortunate as it may slowdown small constant memcpys.
2585 // FIXME: consider doing manual inline for small constant sizes and proper
2586 // alignment.
2587 void visitMemCpyInst(MemCpyInst &I) {
2588 getShadow(I.getArgOperand(1)); // Ensure shadow initialized
2589 IRBuilder<> IRB(&I);
2590 IRB.CreateCall(
2591 MS.MemcpyFn,
2592 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2593 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2594 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2595 I.eraseFromParent();
2596 }
2597
2598 // Same as memcpy.
2599 void visitMemSetInst(MemSetInst &I) {
2600 IRBuilder<> IRB(&I);
2601 IRB.CreateCall(
2602 MS.MemsetFn,
2603 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2604 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2605 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2606 I.eraseFromParent();
2607 }
2608
2609 void visitVAStartInst(VAStartInst &I) {
2610 VAHelper->visitVAStartInst(I);
2611 }
2612
2613 void visitVACopyInst(VACopyInst &I) {
2614 VAHelper->visitVACopyInst(I);
2615 }
2616
2617 /// Handle vector store-like intrinsics.
2618 ///
2619 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2620 /// has 1 pointer argument and 1 vector argument, returns void.
2621 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2622 IRBuilder<> IRB(&I);
2623 Value* Addr = I.getArgOperand(0);
2624 Value *Shadow = getShadow(&I, 1);
2625 Value *ShadowPtr, *OriginPtr;
2626
2627 // We don't know the pointer alignment (could be unaligned SSE store!).
2628 // Have to assume to worst case.
2629 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2630 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true);
2631 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1));
2632
2633 if (ClCheckAccessAddress)
2634 insertShadowCheck(Addr, &I);
2635
2636 // FIXME: factor out common code from materializeStores
2637 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2638 return true;
2639 }
2640
2641 /// Handle vector load-like intrinsics.
2642 ///
2643 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2644 /// has 1 pointer argument, returns a vector.
2645 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2646 IRBuilder<> IRB(&I);
2647 Value *Addr = I.getArgOperand(0);
2648
2649 Type *ShadowTy = getShadowTy(&I);
2650 Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2651 if (PropagateShadow) {
2652 // We don't know the pointer alignment (could be unaligned SSE load!).
2653 // Have to assume to worst case.
2654 const Align Alignment = Align(1);
2655 std::tie(ShadowPtr, OriginPtr) =
2656 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2657 setShadow(&I,
2658 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2659 } else {
2660 setShadow(&I, getCleanShadow(&I));
2661 }
2662
2663 if (ClCheckAccessAddress)
2664 insertShadowCheck(Addr, &I);
2665
2666 if (MS.TrackOrigins) {
2667 if (PropagateShadow)
2668 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2669 else
2670 setOrigin(&I, getCleanOrigin());
2671 }
2672 return true;
2673 }
2674
2675 /// Handle (SIMD arithmetic)-like intrinsics.
2676 ///
2677 /// Instrument intrinsics with any number of arguments of the same type,
2678 /// equal to the return type. The type should be simple (no aggregates or
2679 /// pointers; vectors are fine).
2680 /// Caller guarantees that this intrinsic does not access memory.
2681 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2682 Type *RetTy = I.getType();
2683 if (!(RetTy->isIntOrIntVectorTy() ||
2684 RetTy->isFPOrFPVectorTy() ||
2685 RetTy->isX86_MMXTy()))
2686 return false;
2687
2688 unsigned NumArgOperands = I.arg_size();
2689 for (unsigned i = 0; i < NumArgOperands; ++i) {
2690 Type *Ty = I.getArgOperand(i)->getType();
2691 if (Ty != RetTy)
2692 return false;
2693 }
2694
2695 IRBuilder<> IRB(&I);
2696 ShadowAndOriginCombiner SC(this, IRB);
2697 for (unsigned i = 0; i < NumArgOperands; ++i)
2698 SC.Add(I.getArgOperand(i));
2699 SC.Done(&I);
2700
2701 return true;
2702 }
2703
2704 /// Heuristically instrument unknown intrinsics.
2705 ///
2706 /// The main purpose of this code is to do something reasonable with all
2707 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2708 /// We recognize several classes of intrinsics by their argument types and
2709 /// ModRefBehaviour and apply special instrumentation when we are reasonably
2710 /// sure that we know what the intrinsic does.
2711 ///
2712 /// We special-case intrinsics where this approach fails. See llvm.bswap
2713 /// handling as an example of that.
2714 bool handleUnknownIntrinsic(IntrinsicInst &I) {
2715 unsigned NumArgOperands = I.arg_size();
2716 if (NumArgOperands == 0)
2717 return false;
2718
2719 if (NumArgOperands == 2 &&
2720 I.getArgOperand(0)->getType()->isPointerTy() &&
2721 I.getArgOperand(1)->getType()->isVectorTy() &&
2722 I.getType()->isVoidTy() &&
2723 !I.onlyReadsMemory()) {
2724 // This looks like a vector store.
2725 return handleVectorStoreIntrinsic(I);
2726 }
2727
2728 if (NumArgOperands == 1 &&
2729 I.getArgOperand(0)->getType()->isPointerTy() &&
2730 I.getType()->isVectorTy() &&
2731 I.onlyReadsMemory()) {
2732 // This looks like a vector load.
2733 return handleVectorLoadIntrinsic(I);
2734 }
2735
2736 if (I.doesNotAccessMemory())
2737 if (maybeHandleSimpleNomemIntrinsic(I))
2738 return true;
2739
2740 // FIXME: detect and handle SSE maskstore/maskload
2741 return false;
2742 }
2743
2744 void handleInvariantGroup(IntrinsicInst &I) {
2745 setShadow(&I, getShadow(&I, 0));
2746 setOrigin(&I, getOrigin(&I, 0));
2747 }
2748
2749 void handleLifetimeStart(IntrinsicInst &I) {
2750 if (!PoisonStack)
2751 return;
2752 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1));
2753 if (!AI)
2754 InstrumentLifetimeStart = false;
2755 LifetimeStartList.push_back(std::make_pair(&I, AI));
2756 }
2757
2758 void handleBswap(IntrinsicInst &I) {
2759 IRBuilder<> IRB(&I);
2760 Value *Op = I.getArgOperand(0);
2761 Type *OpType = Op->getType();
2762 Function *BswapFunc = Intrinsic::getDeclaration(
2763 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2764 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2765 setOrigin(&I, getOrigin(Op));
2766 }
2767
2768 // Instrument vector convert intrinsic.
2769 //
2770 // This function instruments intrinsics like cvtsi2ss:
2771 // %Out = int_xxx_cvtyyy(%ConvertOp)
2772 // or
2773 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2774 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2775 // number \p Out elements, and (if has 2 arguments) copies the rest of the
2776 // elements from \p CopyOp.
2777 // In most cases conversion involves floating-point value which may trigger a
2778 // hardware exception when not fully initialized. For this reason we require
2779 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2780 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2781 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2782 // return a fully initialized value.
2783 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements,
2784 bool HasRoundingMode = false) {
2785 IRBuilder<> IRB(&I);
2786 Value *CopyOp, *ConvertOp;
2787
2788 assert((!HasRoundingMode ||(static_cast <bool> ((!HasRoundingMode || isa<ConstantInt
>(I.getArgOperand(I.arg_size() - 1))) && "Invalid rounding mode"
) ? void (0) : __assert_fail ("(!HasRoundingMode || isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && \"Invalid rounding mode\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2790
, __extension__ __PRETTY_FUNCTION__))
2789 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) &&(static_cast <bool> ((!HasRoundingMode || isa<ConstantInt
>(I.getArgOperand(I.arg_size() - 1))) && "Invalid rounding mode"
) ? void (0) : __assert_fail ("(!HasRoundingMode || isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && \"Invalid rounding mode\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2790
, __extension__ __PRETTY_FUNCTION__))
2790 "Invalid rounding mode")(static_cast <bool> ((!HasRoundingMode || isa<ConstantInt
>(I.getArgOperand(I.arg_size() - 1))) && "Invalid rounding mode"
) ? void (0) : __assert_fail ("(!HasRoundingMode || isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && \"Invalid rounding mode\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2790
, __extension__ __PRETTY_FUNCTION__))
;
2791
2792 switch (I.arg_size() - HasRoundingMode) {
2793 case 2:
2794 CopyOp = I.getArgOperand(0);
2795 ConvertOp = I.getArgOperand(1);
2796 break;
2797 case 1:
2798 ConvertOp = I.getArgOperand(0);
2799 CopyOp = nullptr;
2800 break;
2801 default:
2802 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.")::llvm::llvm_unreachable_internal("Cvt intrinsic with unsupported number of arguments."
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2802
)
;
2803 }
2804
2805 // The first *NumUsedElements* elements of ConvertOp are converted to the
2806 // same number of output elements. The rest of the output is copied from
2807 // CopyOp, or (if not available) filled with zeroes.
2808 // Combine shadow for elements of ConvertOp that are used in this operation,
2809 // and insert a check.
2810 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2811 // int->any conversion.
2812 Value *ConvertShadow = getShadow(ConvertOp);
2813 Value *AggShadow = nullptr;
2814 if (ConvertOp->getType()->isVectorTy()) {
2815 AggShadow = IRB.CreateExtractElement(
2816 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2817 for (int i = 1; i < NumUsedElements; ++i) {
2818 Value *MoreShadow = IRB.CreateExtractElement(
2819 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2820 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2821 }
2822 } else {
2823 AggShadow = ConvertShadow;
2824 }
2825 assert(AggShadow->getType()->isIntegerTy())(static_cast <bool> (AggShadow->getType()->isIntegerTy
()) ? void (0) : __assert_fail ("AggShadow->getType()->isIntegerTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2825
, __extension__ __PRETTY_FUNCTION__))
;
2826 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2827
2828 // Build result shadow by zero-filling parts of CopyOp shadow that come from
2829 // ConvertOp.
2830 if (CopyOp) {
2831 assert(CopyOp->getType() == I.getType())(static_cast <bool> (CopyOp->getType() == I.getType(
)) ? void (0) : __assert_fail ("CopyOp->getType() == I.getType()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2831
, __extension__ __PRETTY_FUNCTION__))
;
2832 assert(CopyOp->getType()->isVectorTy())(static_cast <bool> (CopyOp->getType()->isVectorTy
()) ? void (0) : __assert_fail ("CopyOp->getType()->isVectorTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2832
, __extension__ __PRETTY_FUNCTION__))
;
2833 Value *ResultShadow = getShadow(CopyOp);
2834 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType();
2835 for (int i = 0; i < NumUsedElements; ++i) {
2836 ResultShadow = IRB.CreateInsertElement(
2837 ResultShadow, ConstantInt::getNullValue(EltTy),
2838 ConstantInt::get(IRB.getInt32Ty(), i));
2839 }
2840 setShadow(&I, ResultShadow);
2841 setOrigin(&I, getOrigin(CopyOp));
2842 } else {
2843 setShadow(&I, getCleanShadow(&I));
2844 setOrigin(&I, getCleanOrigin());
2845 }
2846 }
2847
2848 // Given a scalar or vector, extract lower 64 bits (or less), and return all
2849 // zeroes if it is zero, and all ones otherwise.
2850 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2851 if (S->getType()->isVectorTy())
2852 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2853 assert(S->getType()->getPrimitiveSizeInBits() <= 64)(static_cast <bool> (S->getType()->getPrimitiveSizeInBits
() <= 64) ? void (0) : __assert_fail ("S->getType()->getPrimitiveSizeInBits() <= 64"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2853
, __extension__ __PRETTY_FUNCTION__))
;
2854 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2855 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2856 }
2857
2858 // Given a vector, extract its first element, and return all
2859 // zeroes if it is zero, and all ones otherwise.
2860 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2861 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2862 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2863 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2864 }
2865
2866 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2867 Type *T = S->getType();
2868 assert(T->isVectorTy())(static_cast <bool> (T->isVectorTy()) ? void (0) : __assert_fail
("T->isVectorTy()", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2868, __extension__ __PRETTY_FUNCTION__))
;
2869 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2870 return IRB.CreateSExt(S2, T);
2871 }
2872
2873 // Instrument vector shift intrinsic.
2874 //
2875 // This function instruments intrinsics like int_x86_avx2_psll_w.
2876 // Intrinsic shifts %In by %ShiftSize bits.
2877 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2878 // size, and the rest is ignored. Behavior is defined even if shift size is
2879 // greater than register (or field) width.
2880 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2881 assert(I.arg_size() == 2)(static_cast <bool> (I.arg_size() == 2) ? void (0) : __assert_fail
("I.arg_size() == 2", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2881, __extension__ __PRETTY_FUNCTION__))
;
2882 IRBuilder<> IRB(&I);
2883 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2884 // Otherwise perform the same shift on S1.
2885 Value *S1 = getShadow(&I, 0);
2886 Value *S2 = getShadow(&I, 1);
2887 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2888 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2889 Value *V1 = I.getOperand(0);
2890 Value *V2 = I.getOperand(1);
2891 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2892 {IRB.CreateBitCast(S1, V1->getType()), V2});
2893 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2894 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2895 setOriginForNaryOp(I);
2896 }
2897
2898 // Get an X86_MMX-sized vector type.
2899 Type *getMMXVectorTy(unsigned EltSizeInBits) {
2900 const unsigned X86_MMXSizeInBits = 64;
2901 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&(static_cast <bool> (EltSizeInBits != 0 && (X86_MMXSizeInBits
% EltSizeInBits) == 0 && "Illegal MMX vector element size"
) ? void (0) : __assert_fail ("EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && \"Illegal MMX vector element size\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2902
, __extension__ __PRETTY_FUNCTION__))
2902 "Illegal MMX vector element size")(static_cast <bool> (EltSizeInBits != 0 && (X86_MMXSizeInBits
% EltSizeInBits) == 0 && "Illegal MMX vector element size"
) ? void (0) : __assert_fail ("EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && \"Illegal MMX vector element size\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2902
, __extension__ __PRETTY_FUNCTION__))
;
2903 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2904 X86_MMXSizeInBits / EltSizeInBits);
2905 }
2906
2907 // Returns a signed counterpart for an (un)signed-saturate-and-pack
2908 // intrinsic.
2909 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2910 switch (id) {
2911 case Intrinsic::x86_sse2_packsswb_128:
2912 case Intrinsic::x86_sse2_packuswb_128:
2913 return Intrinsic::x86_sse2_packsswb_128;
2914
2915 case Intrinsic::x86_sse2_packssdw_128:
2916 case Intrinsic::x86_sse41_packusdw:
2917 return Intrinsic::x86_sse2_packssdw_128;
2918
2919 case Intrinsic::x86_avx2_packsswb:
2920 case Intrinsic::x86_avx2_packuswb:
2921 return Intrinsic::x86_avx2_packsswb;
2922
2923 case Intrinsic::x86_avx2_packssdw:
2924 case Intrinsic::x86_avx2_packusdw:
2925 return Intrinsic::x86_avx2_packssdw;
2926
2927 case Intrinsic::x86_mmx_packsswb:
2928 case Intrinsic::x86_mmx_packuswb:
2929 return Intrinsic::x86_mmx_packsswb;
2930
2931 case Intrinsic::x86_mmx_packssdw:
2932 return Intrinsic::x86_mmx_packssdw;
2933 default:
2934 llvm_unreachable("unexpected intrinsic id")::llvm::llvm_unreachable_internal("unexpected intrinsic id", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2934)
;
2935 }
2936 }
2937
2938 // Instrument vector pack intrinsic.
2939 //
2940 // This function instruments intrinsics like x86_mmx_packsswb, that
2941 // packs elements of 2 input vectors into half as many bits with saturation.
2942 // Shadow is propagated with the signed variant of the same intrinsic applied
2943 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2944 // EltSizeInBits is used only for x86mmx arguments.
2945 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2946 assert(I.arg_size() == 2)(static_cast <bool> (I.arg_size() == 2) ? void (0) : __assert_fail
("I.arg_size() == 2", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2946, __extension__ __PRETTY_FUNCTION__))
;
2947 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2948 IRBuilder<> IRB(&I);
2949 Value *S1 = getShadow(&I, 0);
2950 Value *S2 = getShadow(&I, 1);
2951 assert(isX86_MMX || S1->getType()->isVectorTy())(static_cast <bool> (isX86_MMX || S1->getType()->
isVectorTy()) ? void (0) : __assert_fail ("isX86_MMX || S1->getType()->isVectorTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2951
, __extension__ __PRETTY_FUNCTION__))
;
2952
2953 // SExt and ICmpNE below must apply to individual elements of input vectors.
2954 // In case of x86mmx arguments, cast them to appropriate vector types and
2955 // back.
2956 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2957 if (isX86_MMX) {
2958 S1 = IRB.CreateBitCast(S1, T);
2959 S2 = IRB.CreateBitCast(S2, T);
2960 }
2961 Value *S1_ext = IRB.CreateSExt(
2962 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
2963 Value *S2_ext = IRB.CreateSExt(
2964 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
2965 if (isX86_MMX) {
2966 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2967 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2968 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2969 }
2970
2971 Function *ShadowFn = Intrinsic::getDeclaration(
2972 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2973
2974 Value *S =
2975 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2976 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2977 setShadow(&I, S);
2978 setOriginForNaryOp(I);
2979 }
2980
2981 // Instrument sum-of-absolute-differences intrinsic.
2982 void handleVectorSadIntrinsic(IntrinsicInst &I) {
2983 const unsigned SignificantBitsPerResultElement = 16;
2984 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2985 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2986 unsigned ZeroBitsPerResultElement =
2987 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2988
2989 IRBuilder<> IRB(&I);
2990 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2991 S = IRB.CreateBitCast(S, ResTy);
2992 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2993 ResTy);
2994 S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2995 S = IRB.CreateBitCast(S, getShadowTy(&I));
2996 setShadow(&I, S);
2997 setOriginForNaryOp(I);
2998 }
2999
3000 // Instrument multiply-add intrinsic.
3001 void handleVectorPmaddIntrinsic(IntrinsicInst &I,
3002 unsigned EltSizeInBits = 0) {
3003 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
3004 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
3005 IRBuilder<> IRB(&I);
3006 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
3007 S = IRB.CreateBitCast(S, ResTy);
3008 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
3009 ResTy);
3010 S = IRB.CreateBitCast(S, getShadowTy(&I));
3011 setShadow(&I, S);
3012 setOriginForNaryOp(I);
3013 }
3014
3015 // Instrument compare-packed intrinsic.
3016 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
3017 // all-ones shadow.
3018 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
3019 IRBuilder<> IRB(&I);
3020 Type *ResTy = getShadowTy(&I);
3021 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
3022 Value *S = IRB.CreateSExt(
3023 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
3024 setShadow(&I, S);
3025 setOriginForNaryOp(I);
3026 }
3027
3028 // Instrument compare-scalar intrinsic.
3029 // This handles both cmp* intrinsics which return the result in the first
3030 // element of a vector, and comi* which return the result as i32.
3031 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
3032 IRBuilder<> IRB(&I);
3033 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
3034 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
3035 setShadow(&I, S);
3036 setOriginForNaryOp(I);
3037 }
3038
3039 // Instrument generic vector reduction intrinsics
3040 // by ORing together all their fields.
3041 void handleVectorReduceIntrinsic(IntrinsicInst &I) {
3042 IRBuilder<> IRB(&I);
3043 Value *S = IRB.CreateOrReduce(getShadow(&I, 0));
3044 setShadow(&I, S);
3045 setOrigin(&I, getOrigin(&I, 0));
3046 }
3047
3048 // Instrument vector.reduce.or intrinsic.
3049 // Valid (non-poisoned) set bits in the operand pull low the
3050 // corresponding shadow bits.
3051 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) {
3052 IRBuilder<> IRB(&I);
3053 Value *OperandShadow = getShadow(&I, 0);
3054 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0));
3055 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow);
3056 // Bit N is clean if any field's bit N is 1 and unpoison
3057 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison);
3058 // Otherwise, it is clean if every field's bit N is unpoison
3059 Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3060 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3061
3062 setShadow(&I, S);
3063 setOrigin(&I, getOrigin(&I, 0));
3064 }
3065
3066 // Instrument vector.reduce.and intrinsic.
3067 // Valid (non-poisoned) unset bits in the operand pull down the
3068 // corresponding shadow bits.
3069 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) {
3070 IRBuilder<> IRB(&I);
3071 Value *OperandShadow = getShadow(&I, 0);
3072 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow);
3073 // Bit N is clean if any field's bit N is 0 and unpoison
3074 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison);
3075 // Otherwise, it is clean if every field's bit N is unpoison
3076 Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3077 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3078
3079 setShadow(&I, S);
3080 setOrigin(&I, getOrigin(&I, 0));
3081 }
3082
3083 void handleStmxcsr(IntrinsicInst &I) {
3084 IRBuilder<> IRB(&I);
3085 Value* Addr = I.getArgOperand(0);
3086 Type *Ty = IRB.getInt32Ty();
3087 Value *ShadowPtr =
3088 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first;
3089
3090 IRB.CreateStore(getCleanShadow(Ty),
3091 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
3092
3093 if (ClCheckAccessAddress)
3094 insertShadowCheck(Addr, &I);
3095 }
3096
3097 void handleLdmxcsr(IntrinsicInst &I) {
3098 if (!InsertChecks) return;
3099
3100 IRBuilder<> IRB(&I);
3101 Value *Addr = I.getArgOperand(0);
3102 Type *Ty = IRB.getInt32Ty();
3103 const Align Alignment = Align(1);
3104 Value *ShadowPtr, *OriginPtr;
3105 std::tie(ShadowPtr, OriginPtr) =
3106 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
3107
3108 if (ClCheckAccessAddress)
3109 insertShadowCheck(Addr, &I);
3110
3111 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
3112 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
3113 : getCleanOrigin();
3114 insertShadowCheck(Shadow, Origin, &I);
3115 }
3116
3117 void handleMaskedStore(IntrinsicInst &I) {
3118 IRBuilder<> IRB(&I);
3119 Value *V = I.getArgOperand(0);
3120 Value *Addr = I.getArgOperand(1);
3121 const Align Alignment(
3122 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3123 Value *Mask = I.getArgOperand(3);
3124 Value *Shadow = getShadow(V);
3125
3126 Value *ShadowPtr;
3127 Value *OriginPtr;
3128 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
3129 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true);
3130
3131 if (ClCheckAccessAddress) {
3132 insertShadowCheck(Addr, &I);
3133 // Uninitialized mask is kind of like uninitialized address, but not as
3134 // scary.
3135 insertShadowCheck(Mask, &I);
3136 }
3137
3138 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask);
3139
3140 if (MS.TrackOrigins) {
3141 auto &DL = F.getParent()->getDataLayout();
3142 paintOrigin(IRB, getOrigin(V), OriginPtr,
3143 DL.getTypeStoreSize(Shadow->getType()),
3144 std::max(Alignment, kMinOriginAlignment));
3145 }
3146 }
3147
3148 bool handleMaskedLoad(IntrinsicInst &I) {
3149 IRBuilder<> IRB(&I);
3150 Value *Addr = I.getArgOperand(0);
3151 const Align Alignment(
3152 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3153 Value *Mask = I.getArgOperand(2);
3154 Value *PassThru = I.getArgOperand(3);
3155
3156 Type *ShadowTy = getShadowTy(&I);
3157 Value *ShadowPtr, *OriginPtr;
3158 if (PropagateShadow) {
3159 std::tie(ShadowPtr, OriginPtr) =
3160 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
3161 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask,
3162 getShadow(PassThru), "_msmaskedld"));
3163 } else {
3164 setShadow(&I, getCleanShadow(&I));
3165 }
3166
3167 if (ClCheckAccessAddress) {
3168 insertShadowCheck(Addr, &I);
3169 insertShadowCheck(Mask, &I);
3170 }
3171
3172 if (MS.TrackOrigins) {
3173 if (PropagateShadow) {
3174 // Choose between PassThru's and the loaded value's origins.
3175 Value *MaskedPassThruShadow = IRB.CreateAnd(
3176 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
3177
3178 Value *Acc = IRB.CreateExtractElement(
3179 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
3180 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType())
3181 ->getNumElements();
3182 i < N; ++i) {
3183 Value *More = IRB.CreateExtractElement(
3184 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
3185 Acc = IRB.CreateOr(Acc, More);
3186 }
3187
3188 Value *Origin = IRB.CreateSelect(
3189 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
3190 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
3191
3192 setOrigin(&I, Origin);
3193 } else {
3194 setOrigin(&I, getCleanOrigin());
3195 }
3196 }
3197 return true;
3198 }
3199
3200 // Instrument BMI / BMI2 intrinsics.
3201 // All of these intrinsics are Z = I(X, Y)
3202 // where the types of all operands and the result match, and are either i32 or i64.
3203 // The following instrumentation happens to work for all of them:
3204 // Sz = I(Sx, Y) | (sext (Sy != 0))
3205 void handleBmiIntrinsic(IntrinsicInst &I) {
3206 IRBuilder<> IRB(&I);
3207 Type *ShadowTy = getShadowTy(&I);
3208
3209 // If any bit of the mask operand is poisoned, then the whole thing is.
3210 Value *SMask = getShadow(&I, 1);
3211 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
3212 ShadowTy);
3213 // Apply the same intrinsic to the shadow of the first operand.
3214 Value *S = IRB.CreateCall(I.getCalledFunction(),
3215 {getShadow(&I, 0), I.getOperand(1)});
3216 S = IRB.CreateOr(SMask, S);
3217 setShadow(&I, S);
3218 setOriginForNaryOp(I);
3219 }
3220
3221 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) {
3222 SmallVector<int, 8> Mask;
3223 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) {
3224 Mask.append(2, X);
3225 }
3226 return Mask;
3227 }
3228
3229 // Instrument pclmul intrinsics.
3230 // These intrinsics operate either on odd or on even elements of the input
3231 // vectors, depending on the constant in the 3rd argument, ignoring the rest.
3232 // Replace the unused elements with copies of the used ones, ex:
3233 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case)
3234 // or
3235 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case)
3236 // and then apply the usual shadow combining logic.
3237 void handlePclmulIntrinsic(IntrinsicInst &I) {
3238 IRBuilder<> IRB(&I);
3239 unsigned Width =
3240 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3241 assert(isa<ConstantInt>(I.getArgOperand(2)) &&(static_cast <bool> (isa<ConstantInt>(I.getArgOperand
(2)) && "pclmul 3rd operand must be a constant") ? void
(0) : __assert_fail ("isa<ConstantInt>(I.getArgOperand(2)) && \"pclmul 3rd operand must be a constant\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3242
, __extension__ __PRETTY_FUNCTION__))
3242 "pclmul 3rd operand must be a constant")(static_cast <bool> (isa<ConstantInt>(I.getArgOperand
(2)) && "pclmul 3rd operand must be a constant") ? void
(0) : __assert_fail ("isa<ConstantInt>(I.getArgOperand(2)) && \"pclmul 3rd operand must be a constant\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3242
, __extension__ __PRETTY_FUNCTION__))
;
3243 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3244 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0),
3245 getPclmulMask(Width, Imm & 0x01));
3246 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1),
3247 getPclmulMask(Width, Imm & 0x10));
3248 ShadowAndOriginCombiner SOC(this, IRB);
3249 SOC.Add(Shuf0, getOrigin(&I, 0));
3250 SOC.Add(Shuf1, getOrigin(&I, 1));
3251 SOC.Done(&I);
3252 }
3253
3254 // Instrument _mm_*_sd intrinsics
3255 void handleUnarySdIntrinsic(IntrinsicInst &I) {
3256 IRBuilder<> IRB(&I);
3257 Value *First = getShadow(&I, 0);
3258 Value *Second = getShadow(&I, 1);
3259 // High word of first operand, low word of second
3260 Value *Shadow =
3261 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1}));
3262
3263 setShadow(&I, Shadow);
3264 setOriginForNaryOp(I);
3265 }
3266
3267 void handleBinarySdIntrinsic(IntrinsicInst &I) {
3268 IRBuilder<> IRB(&I);
3269 Value *First = getShadow(&I, 0);
3270 Value *Second = getShadow(&I, 1);
3271 Value *OrShadow = IRB.CreateOr(First, Second);
3272 // High word of first operand, low word of both OR'd together
3273 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow,
3274 llvm::makeArrayRef<int>({2, 1}));
3275
3276 setShadow(&I, Shadow);
3277 setOriginForNaryOp(I);
3278 }
3279
3280 // Instrument abs intrinsic.
3281 // handleUnknownIntrinsic can't handle it because of the last
3282 // is_int_min_poison argument which does not match the result type.
3283 void handleAbsIntrinsic(IntrinsicInst &I) {
3284 assert(I.getType()->isIntOrIntVectorTy())(static_cast <bool> (I.getType()->isIntOrIntVectorTy
()) ? void (0) : __assert_fail ("I.getType()->isIntOrIntVectorTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3284
, __extension__ __PRETTY_FUNCTION__))
;
3285 assert(I.getArgOperand(0)->getType() == I.getType())(static_cast <bool> (I.getArgOperand(0)->getType() ==
I.getType()) ? void (0) : __assert_fail ("I.getArgOperand(0)->getType() == I.getType()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3285
, __extension__ __PRETTY_FUNCTION__))
;
3286
3287 // FIXME: Handle is_int_min_poison.
3288 IRBuilder<> IRB(&I);
3289 setShadow(&I, getShadow(&I, 0));
3290 setOrigin(&I, getOrigin(&I, 0));
3291 }
3292
3293 void visitIntrinsicInst(IntrinsicInst &I) {
3294 switch (I.getIntrinsicID()) {
3295 case Intrinsic::abs:
3296 handleAbsIntrinsic(I);
3297 break;
3298 case Intrinsic::lifetime_start:
3299 handleLifetimeStart(I);
3300 break;
3301 case Intrinsic::launder_invariant_group:
3302 case Intrinsic::strip_invariant_group:
3303 handleInvariantGroup(I);
3304 break;
3305 case Intrinsic::bswap:
3306 handleBswap(I);
3307 break;
3308 case Intrinsic::masked_store:
3309 handleMaskedStore(I);
3310 break;
3311 case Intrinsic::masked_load:
3312 handleMaskedLoad(I);
3313 break;
3314 case Intrinsic::vector_reduce_and:
3315 handleVectorReduceAndIntrinsic(I);
3316 break;
3317 case Intrinsic::vector_reduce_or:
3318 handleVectorReduceOrIntrinsic(I);
3319 break;
3320 case Intrinsic::vector_reduce_add:
3321 case Intrinsic::vector_reduce_xor:
3322 case Intrinsic::vector_reduce_mul:
3323 handleVectorReduceIntrinsic(I);
3324 break;
3325 case Intrinsic::x86_sse_stmxcsr:
3326 handleStmxcsr(I);
3327 break;
3328 case Intrinsic::x86_sse_ldmxcsr:
3329 handleLdmxcsr(I);
3330 break;
3331 case Intrinsic::x86_avx512_vcvtsd2usi64:
3332 case Intrinsic::x86_avx512_vcvtsd2usi32:
3333 case Intrinsic::x86_avx512_vcvtss2usi64:
3334 case Intrinsic::x86_avx512_vcvtss2usi32:
3335 case Intrinsic::x86_avx512_cvttss2usi64:
3336 case Intrinsic::x86_avx512_cvttss2usi:
3337 case Intrinsic::x86_avx512_cvttsd2usi64:
3338 case Intrinsic::x86_avx512_cvttsd2usi:
3339 case Intrinsic::x86_avx512_cvtusi2ss:
3340 case Intrinsic::x86_avx512_cvtusi642sd:
3341 case Intrinsic::x86_avx512_cvtusi642ss:
3342 handleVectorConvertIntrinsic(I, 1, true);
3343 break;
3344 case Intrinsic::x86_sse2_cvtsd2si64:
3345 case Intrinsic::x86_sse2_cvtsd2si:
3346 case Intrinsic::x86_sse2_cvtsd2ss:
3347 case Intrinsic::x86_sse2_cvttsd2si64:
3348 case Intrinsic::x86_sse2_cvttsd2si:
3349 case Intrinsic::x86_sse_cvtss2si64:
3350 case Intrinsic::x86_sse_cvtss2si:
3351 case Intrinsic::x86_sse_cvttss2si64:
3352 case Intrinsic::x86_sse_cvttss2si:
3353 handleVectorConvertIntrinsic(I, 1);
3354 break;
3355 case Intrinsic::x86_sse_cvtps2pi:
3356 case Intrinsic::x86_sse_cvttps2pi:
3357 handleVectorConvertIntrinsic(I, 2);
3358 break;
3359
3360 case Intrinsic::x86_avx512_psll_w_512:
3361 case Intrinsic::x86_avx512_psll_d_512:
3362 case Intrinsic::x86_avx512_psll_q_512:
3363 case Intrinsic::x86_avx512_pslli_w_512:
3364 case Intrinsic::x86_avx512_pslli_d_512:
3365 case Intrinsic::x86_avx512_pslli_q_512:
3366 case Intrinsic::x86_avx512_psrl_w_512:
3367 case Intrinsic::x86_avx512_psrl_d_512:
3368 case Intrinsic::x86_avx512_psrl_q_512:
3369 case Intrinsic::x86_avx512_psra_w_512:
3370 case Intrinsic::x86_avx512_psra_d_512:
3371 case Intrinsic::x86_avx512_psra_q_512:
3372 case Intrinsic::x86_avx512_psrli_w_512:
3373 case Intrinsic::x86_avx512_psrli_d_512:
3374 case Intrinsic::x86_avx512_psrli_q_512:
3375 case Intrinsic::x86_avx512_psrai_w_512:
3376 case Intrinsic::x86_avx512_psrai_d_512:
3377 case Intrinsic::x86_avx512_psrai_q_512:
3378 case Intrinsic::x86_avx512_psra_q_256:
3379 case Intrinsic::x86_avx512_psra_q_128:
3380 case Intrinsic::x86_avx512_psrai_q_256:
3381 case Intrinsic::x86_avx512_psrai_q_128:
3382 case Intrinsic::x86_avx2_psll_w:
3383 case Intrinsic::x86_avx2_psll_d:
3384 case Intrinsic::x86_avx2_psll_q:
3385 case Intrinsic::x86_avx2_pslli_w:
3386 case Intrinsic::x86_avx2_pslli_d:
3387 case Intrinsic::x86_avx2_pslli_q:
3388 case Intrinsic::x86_avx2_psrl_w:
3389 case Intrinsic::x86_avx2_psrl_d:
3390 case Intrinsic::x86_avx2_psrl_q:
3391 case Intrinsic::x86_avx2_psra_w:
3392 case Intrinsic::x86_avx2_psra_d:
3393 case Intrinsic::x86_avx2_psrli_w:
3394 case Intrinsic::x86_avx2_psrli_d:
3395 case Intrinsic::x86_avx2_psrli_q:
3396 case Intrinsic::x86_avx2_psrai_w:
3397 case Intrinsic::x86_avx2_psrai_d:
3398 case Intrinsic::x86_sse2_psll_w:
3399 case Intrinsic::x86_sse2_psll_d:
3400 case Intrinsic::x86_sse2_psll_q:
3401 case Intrinsic::x86_sse2_pslli_w:
3402 case Intrinsic::x86_sse2_pslli_d:
3403 case Intrinsic::x86_sse2_pslli_q:
3404 case Intrinsic::x86_sse2_psrl_w:
3405 case Intrinsic::x86_sse2_psrl_d:
3406 case Intrinsic::x86_sse2_psrl_q:
3407 case Intrinsic::x86_sse2_psra_w:
3408 case Intrinsic::x86_sse2_psra_d:
3409 case Intrinsic::x86_sse2_psrli_w:
3410 case Intrinsic::x86_sse2_psrli_d:
3411 case Intrinsic::x86_sse2_psrli_q:
3412 case Intrinsic::x86_sse2_psrai_w:
3413 case Intrinsic::x86_sse2_psrai_d:
3414 case Intrinsic::x86_mmx_psll_w:
3415 case Intrinsic::x86_mmx_psll_d:
3416 case Intrinsic::x86_mmx_psll_q:
3417 case Intrinsic::x86_mmx_pslli_w:
3418 case Intrinsic::x86_mmx_pslli_d:
3419 case Intrinsic::x86_mmx_pslli_q:
3420 case Intrinsic::x86_mmx_psrl_w:
3421 case Intrinsic::x86_mmx_psrl_d:
3422 case Intrinsic::x86_mmx_psrl_q:
3423 case Intrinsic::x86_mmx_psra_w:
3424 case Intrinsic::x86_mmx_psra_d:
3425 case Intrinsic::x86_mmx_psrli_w:
3426 case Intrinsic::x86_mmx_psrli_d:
3427 case Intrinsic::x86_mmx_psrli_q:
3428 case Intrinsic::x86_mmx_psrai_w:
3429 case Intrinsic::x86_mmx_psrai_d:
3430 handleVectorShiftIntrinsic(I, /* Variable */ false);
3431 break;
3432 case Intrinsic::x86_avx2_psllv_d:
3433 case Intrinsic::x86_avx2_psllv_d_256:
3434 case Intrinsic::x86_avx512_psllv_d_512:
3435 case Intrinsic::x86_avx2_psllv_q:
3436 case Intrinsic::x86_avx2_psllv_q_256:
3437 case Intrinsic::x86_avx512_psllv_q_512:
3438 case Intrinsic::x86_avx2_psrlv_d:
3439 case Intrinsic::x86_avx2_psrlv_d_256:
3440 case Intrinsic::x86_avx512_psrlv_d_512:
3441 case Intrinsic::x86_avx2_psrlv_q:
3442 case Intrinsic::x86_avx2_psrlv_q_256:
3443 case Intrinsic::x86_avx512_psrlv_q_512:
3444 case Intrinsic::x86_avx2_psrav_d:
3445 case Intrinsic::x86_avx2_psrav_d_256:
3446 case Intrinsic::x86_avx512_psrav_d_512:
3447 case Intrinsic::x86_avx512_psrav_q_128:
3448 case Intrinsic::x86_avx512_psrav_q_256:
3449 case Intrinsic::x86_avx512_psrav_q_512:
3450 handleVectorShiftIntrinsic(I, /* Variable */ true);
3451 break;
3452
3453 case Intrinsic::x86_sse2_packsswb_128:
3454 case Intrinsic::x86_sse2_packssdw_128:
3455 case Intrinsic::x86_sse2_packuswb_128:
3456 case Intrinsic::x86_sse41_packusdw:
3457 case Intrinsic::x86_avx2_packsswb:
3458 case Intrinsic::x86_avx2_packssdw:
3459 case Intrinsic::x86_avx2_packuswb:
3460 case Intrinsic::x86_avx2_packusdw:
3461 handleVectorPackIntrinsic(I);
3462 break;
3463
3464 case Intrinsic::x86_mmx_packsswb:
3465 case Intrinsic::x86_mmx_packuswb:
3466 handleVectorPackIntrinsic(I, 16);
3467 break;
3468
3469 case Intrinsic::x86_mmx_packssdw:
3470 handleVectorPackIntrinsic(I, 32);
3471 break;
3472
3473 case Intrinsic::x86_mmx_psad_bw:
3474 case Intrinsic::x86_sse2_psad_bw:
3475 case Intrinsic::x86_avx2_psad_bw:
3476 handleVectorSadIntrinsic(I);
3477 break;
3478
3479 case Intrinsic::x86_sse2_pmadd_wd:
3480 case Intrinsic::x86_avx2_pmadd_wd:
3481 case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3482 case Intrinsic::x86_avx2_pmadd_ub_sw:
3483 handleVectorPmaddIntrinsic(I);
3484 break;
3485
3486 case Intrinsic::x86_ssse3_pmadd_ub_sw:
3487 handleVectorPmaddIntrinsic(I, 8);
3488 break;
3489
3490 case Intrinsic::x86_mmx_pmadd_wd:
3491 handleVectorPmaddIntrinsic(I, 16);
3492 break;
3493
3494 case Intrinsic::x86_sse_cmp_ss:
3495 case Intrinsic::x86_sse2_cmp_sd:
3496 case Intrinsic::x86_sse_comieq_ss:
3497 case Intrinsic::x86_sse_comilt_ss:
3498 case Intrinsic::x86_sse_comile_ss:
3499 case Intrinsic::x86_sse_comigt_ss:
3500 case Intrinsic::x86_sse_comige_ss:
3501 case Intrinsic::x86_sse_comineq_ss:
3502 case Intrinsic::x86_sse_ucomieq_ss:
3503 case Intrinsic::x86_sse_ucomilt_ss:
3504 case Intrinsic::x86_sse_ucomile_ss:
3505 case Intrinsic::x86_sse_ucomigt_ss:
3506 case Intrinsic::x86_sse_ucomige_ss:
3507 case Intrinsic::x86_sse_ucomineq_ss:
3508 case Intrinsic::x86_sse2_comieq_sd:
3509 case Intrinsic::x86_sse2_comilt_sd:
3510 case Intrinsic::x86_sse2_comile_sd:
3511 case Intrinsic::x86_sse2_comigt_sd:
3512 case Intrinsic::x86_sse2_comige_sd:
3513 case Intrinsic::x86_sse2_comineq_sd:
3514 case Intrinsic::x86_sse2_ucomieq_sd:
3515 case Intrinsic::x86_sse2_ucomilt_sd:
3516 case Intrinsic::x86_sse2_ucomile_sd:
3517 case Intrinsic::x86_sse2_ucomigt_sd:
3518 case Intrinsic::x86_sse2_ucomige_sd:
3519 case Intrinsic::x86_sse2_ucomineq_sd:
3520 handleVectorCompareScalarIntrinsic(I);
3521 break;
3522
3523 case Intrinsic::x86_sse_cmp_ps:
3524 case Intrinsic::x86_sse2_cmp_pd:
3525 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
3526 // generates reasonably looking IR that fails in the backend with "Do not
3527 // know how to split the result of this operator!".
3528 handleVectorComparePackedIntrinsic(I);
3529 break;
3530
3531 case Intrinsic::x86_bmi_bextr_32:
3532 case Intrinsic::x86_bmi_bextr_64:
3533 case Intrinsic::x86_bmi_bzhi_32:
3534 case Intrinsic::x86_bmi_bzhi_64:
3535 case Intrinsic::x86_bmi_pdep_32:
3536 case Intrinsic::x86_bmi_pdep_64:
3537 case Intrinsic::x86_bmi_pext_32:
3538 case Intrinsic::x86_bmi_pext_64:
3539 handleBmiIntrinsic(I);
3540 break;
3541
3542 case Intrinsic::x86_pclmulqdq:
3543 case Intrinsic::x86_pclmulqdq_256:
3544 case Intrinsic::x86_pclmulqdq_512:
3545 handlePclmulIntrinsic(I);
3546 break;
3547
3548 case Intrinsic::x86_sse41_round_sd:
3549 handleUnarySdIntrinsic(I);
3550 break;
3551 case Intrinsic::x86_sse2_max_sd:
3552 case Intrinsic::x86_sse2_min_sd:
3553 handleBinarySdIntrinsic(I);
3554 break;
3555
3556 case Intrinsic::fshl:
3557 case Intrinsic::fshr:
3558 handleFunnelShift(I);
3559 break;
3560
3561 case Intrinsic::is_constant:
3562 // The result of llvm.is.constant() is always defined.
3563 setShadow(&I, getCleanShadow(&I));
3564 setOrigin(&I, getCleanOrigin());
3565 break;
3566
3567 default:
3568 if (!handleUnknownIntrinsic(I))
3569 visitInstruction(I);
3570 break;
3571 }
3572 }
3573
3574 void visitLibAtomicLoad(CallBase &CB) {
3575 // Since we use getNextNode here, we can't have CB terminate the BB.
3576 assert(isa<CallInst>(CB))(static_cast <bool> (isa<CallInst>(CB)) ? void (0
) : __assert_fail ("isa<CallInst>(CB)", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 3576, __extension__ __PRETTY_FUNCTION__))
;
3577
3578 IRBuilder<> IRB(&CB);
3579 Value *Size = CB.getArgOperand(0);
3580 Value *SrcPtr = CB.getArgOperand(1);
3581 Value *DstPtr = CB.getArgOperand(2);
3582 Value *Ordering = CB.getArgOperand(3);
3583 // Convert the call to have at least Acquire ordering to make sure
3584 // the shadow operations aren't reordered before it.
3585 Value *NewOrdering =
3586 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
3587 CB.setArgOperand(3, NewOrdering);
3588
3589 IRBuilder<> NextIRB(CB.getNextNode());
3590 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3591
3592 Value *SrcShadowPtr, *SrcOriginPtr;
3593 std::tie(SrcShadowPtr, SrcOriginPtr) =
3594 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
3595 /*isStore*/ false);
3596 Value *DstShadowPtr =
3597 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
3598 /*isStore*/ true)
3599 .first;
3600
3601 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size);
3602 if (MS.TrackOrigins) {
3603 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr,
3604 kMinOriginAlignment);
3605 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB);
3606 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin});
3607 }
3608 }
3609
3610 void visitLibAtomicStore(CallBase &CB) {
3611 IRBuilder<> IRB(&CB);
3612 Value *Size = CB.getArgOperand(0);
3613 Value *DstPtr = CB.getArgOperand(2);
3614 Value *Ordering = CB.getArgOperand(3);
3615 // Convert the call to have at least Release ordering to make sure
3616 // the shadow operations aren't reordered after it.
3617 Value *NewOrdering =
3618 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
3619 CB.setArgOperand(3, NewOrdering);
3620
3621 Value *DstShadowPtr =
3622 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1),
3623 /*isStore*/ true)
3624 .first;
3625
3626 // Atomic store always paints clean shadow/origin. See file header.
3627 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size,
3628 Align(1));
3629 }
3630
3631 void visitCallBase(CallBase &CB) {
3632 assert(!CB.getMetadata("nosanitize"))(static_cast <bool> (!CB.getMetadata("nosanitize")) ? void
(0) : __assert_fail ("!CB.getMetadata(\"nosanitize\")", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 3632, __extension__ __PRETTY_FUNCTION__))
;
3633 if (CB.isInlineAsm()) {
3634 // For inline asm (either a call to asm function, or callbr instruction),
3635 // do the usual thing: check argument shadow and mark all outputs as
3636 // clean. Note that any side effects of the inline asm that are not
3637 // immediately visible in its constraints are not handled.
3638 if (ClHandleAsmConservative && MS.CompileKernel)
3639 visitAsmInstruction(CB);
3640 else
3641 visitInstruction(CB);
3642 return;
3643 }
3644 LibFunc LF;
3645 if (TLI->getLibFunc(CB, LF)) {
3646 // libatomic.a functions need to have special handling because there isn't
3647 // a good way to intercept them or compile the library with
3648 // instrumentation.
3649 switch (LF) {
3650 case LibFunc_atomic_load:
3651 if (!isa<CallInst>(CB)) {
3652 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load."
3653 "Ignoring!\n";
3654 break;
3655 }
3656 visitLibAtomicLoad(CB);
3657 return;
3658 case LibFunc_atomic_store:
3659 visitLibAtomicStore(CB);
3660 return;
3661 default:
3662 break;
3663 }
3664 }
3665
3666 if (auto *Call = dyn_cast<CallInst>(&CB)) {
3667 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere")(static_cast <bool> (!isa<IntrinsicInst>(Call) &&
"intrinsics are handled elsewhere") ? void (0) : __assert_fail
("!isa<IntrinsicInst>(Call) && \"intrinsics are handled elsewhere\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3667
, __extension__ __PRETTY_FUNCTION__))
;
3668
3669 // We are going to insert code that relies on the fact that the callee
3670 // will become a non-readonly function after it is instrumented by us. To
3671 // prevent this code from being optimized out, mark that function
3672 // non-readonly in advance.
3673 AttributeMask B;
3674 B.addAttribute(Attribute::ReadOnly)
3675 .addAttribute(Attribute::ReadNone)
3676 .addAttribute(Attribute::WriteOnly)
3677 .addAttribute(Attribute::ArgMemOnly)
3678 .addAttribute(Attribute::Speculatable);
3679
3680 Call->removeFnAttrs(B);
3681 if (Function *Func = Call->getCalledFunction()) {
3682 Func->removeFnAttrs(B);
3683 }
3684
3685 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
3686 }
3687 IRBuilder<> IRB(&CB);
3688 bool MayCheckCall = MS.EagerChecks;
3689 if (Function *Func = CB.getCalledFunction()) {
3690 // __sanitizer_unaligned_{load,store} functions may be called by users
3691 // and always expects shadows in the TLS. So don't check them.
3692 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_");
3693 }
3694
3695 unsigned ArgOffset = 0;
3696 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " CallSite: " << CB <<
"\n"; } } while (false)
;
3697 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
3698 ++ArgIt) {
3699 Value *A = *ArgIt;
3700 unsigned i = ArgIt - CB.arg_begin();
3701 if (!A->getType()->isSized()) {
3702 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "Arg " << i << " is not sized: "
<< CB << "\n"; } } while (false)
;
3703 continue;
3704 }
3705 unsigned Size = 0;
3706 const DataLayout &DL = F.getParent()->getDataLayout();
3707
3708 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal);
3709 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef);
3710 bool EagerCheck = MayCheckCall && !ByVal && NoUndef;
3711
3712 if (EagerCheck) {
3713 insertShadowCheck(A, &CB);
3714 Size = DL.getTypeAllocSize(A->getType());
3715 } else {
3716 Value *Store = nullptr;
3717 // Compute the Shadow for arg even if it is ByVal, because
3718 // in that case getShadow() will copy the actual arg shadow to
3719 // __msan_param_tls.
3720 Value *ArgShadow = getShadow(A);
3721 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
3722 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *Ado { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " Arg#" << i << ": "
<< *A << " Shadow: " << *ArgShadow <<
"\n"; } } while (false)
3723 << " Shadow: " << *ArgShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " Arg#" << i << ": "
<< *A << " Shadow: " << *ArgShadow <<
"\n"; } } while (false)
;
3724 if (ByVal) {
3725 // ByVal requires some special handling as it's too big for a single
3726 // load
3727 assert(A->getType()->isPointerTy() &&(static_cast <bool> (A->getType()->isPointerTy() &&
"ByVal argument is not a pointer!") ? void (0) : __assert_fail
("A->getType()->isPointerTy() && \"ByVal argument is not a pointer!\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3728
, __extension__ __PRETTY_FUNCTION__))
3728 "ByVal argument is not a pointer!")(static_cast <bool> (A->getType()->isPointerTy() &&
"ByVal argument is not a pointer!") ? void (0) : __assert_fail
("A->getType()->isPointerTy() && \"ByVal argument is not a pointer!\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3728
, __extension__ __PRETTY_FUNCTION__))
;
3729 Size = DL.getTypeAllocSize(CB.getParamByValType(i));
3730 if (ArgOffset + Size > kParamTLSSize)
3731 break;
3732 const MaybeAlign ParamAlignment(CB.getParamAlign(i));
3733 MaybeAlign Alignment = llvm::None;
3734 if (ParamAlignment)
3735 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment);
3736 Value *AShadowPtr, *AOriginPtr;
3737 std::tie(AShadowPtr, AOriginPtr) =
3738 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
3739 /*isStore*/ false);
3740 if (!PropagateShadow) {
3741 Store = IRB.CreateMemSet(ArgShadowBase,
3742 Constant::getNullValue(IRB.getInt8Ty()),
3743 Size, Alignment);
3744 } else {
3745 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
3746 Alignment, Size);
3747 if (MS.TrackOrigins) {
3748 Value *ArgOriginBase = getOriginPtrForArgument(A, IRB, ArgOffset);
3749 // FIXME: OriginSize should be:
3750 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment)
3751 unsigned OriginSize = alignTo(Size, kMinOriginAlignment);
3752 IRB.CreateMemCpy(
3753 ArgOriginBase,
3754 /* by origin_tls[ArgOffset] */ kMinOriginAlignment,
3755 AOriginPtr,
3756 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize);
3757 }
3758 }
3759 } else {
3760 // Any other parameters mean we need bit-grained tracking of uninit
3761 // data
3762 Size = DL.getTypeAllocSize(A->getType());
3763 if (ArgOffset + Size > kParamTLSSize)
3764 break;
3765 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
3766 kShadowTLSAlignment);
3767 Constant *Cst = dyn_cast<Constant>(ArgShadow);
3768 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) {
3769 IRB.CreateStore(getOrigin(A),
3770 getOriginPtrForArgument(A, IRB, ArgOffset));
3771 }
3772 }
3773 (void)Store;
3774 assert(Store != nullptr)(static_cast <bool> (Store != nullptr) ? void (0) : __assert_fail
("Store != nullptr", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 3774, __extension__ __PRETTY_FUNCTION__))
;
3775 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " Param:" << *Store <<
"\n"; } } while (false)
;
3776 }
3777 assert(Size != 0)(static_cast <bool> (Size != 0) ? void (0) : __assert_fail
("Size != 0", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 3777, __extension__ __PRETTY_FUNCTION__))
;
3778 ArgOffset += alignTo(Size, kShadowTLSAlignment);
3779 }
3780 LLVM_DEBUG(dbgs() << " done with call args\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " done with call args\n"; } } while
(false)
;
3781
3782 FunctionType *FT = CB.getFunctionType();
3783 if (FT->isVarArg()) {
3784 VAHelper->visitCallBase(CB, IRB);
3785 }
3786
3787 // Now, get the shadow for the RetVal.
3788 if (!CB.getType()->isSized())
3789 return;
3790 // Don't emit the epilogue for musttail call returns.
3791 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
3792 return;
3793
3794 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) {
3795 setShadow(&CB, getCleanShadow(&CB));
3796 setOrigin(&CB, getCleanOrigin());
3797 return;
3798 }
3799
3800 IRBuilder<> IRBBefore(&CB);
3801 // Until we have full dynamic coverage, make sure the retval shadow is 0.
3802 Value *Base = getShadowPtrForRetval(&CB, IRBBefore);
3803 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base,
3804 kShadowTLSAlignment);
3805 BasicBlock::iterator NextInsn;
3806 if (isa<CallInst>(CB)) {
3807 NextInsn = ++CB.getIterator();
3808 assert(NextInsn != CB.getParent()->end())(static_cast <bool> (NextInsn != CB.getParent()->end
()) ? void (0) : __assert_fail ("NextInsn != CB.getParent()->end()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3808
, __extension__ __PRETTY_FUNCTION__))
;
3809 } else {
3810 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest();
3811 if (!NormalDest->getSinglePredecessor()) {
3812 // FIXME: this case is tricky, so we are just conservative here.
3813 // Perhaps we need to split the edge between this BB and NormalDest,
3814 // but a naive attempt to use SplitEdge leads to a crash.
3815 setShadow(&CB, getCleanShadow(&CB));
3816 setOrigin(&CB, getCleanOrigin());
3817 return;
3818 }
3819 // FIXME: NextInsn is likely in a basic block that has not been visited yet.
3820 // Anything inserted there will be instrumented by MSan later!
3821 NextInsn = NormalDest->getFirstInsertionPt();
3822 assert(NextInsn != NormalDest->end() &&(static_cast <bool> (NextInsn != NormalDest->end() &&
"Could not find insertion point for retval shadow load") ? void
(0) : __assert_fail ("NextInsn != NormalDest->end() && \"Could not find insertion point for retval shadow load\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3823
, __extension__ __PRETTY_FUNCTION__))
3823 "Could not find insertion point for retval shadow load")(static_cast <bool> (NextInsn != NormalDest->end() &&
"Could not find insertion point for retval shadow load") ? void
(0) : __assert_fail ("NextInsn != NormalDest->end() && \"Could not find insertion point for retval shadow load\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3823
, __extension__ __PRETTY_FUNCTION__))
;
3824 }
3825 IRBuilder<> IRBAfter(&*NextInsn);
3826 Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
3827 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter),
3828 kShadowTLSAlignment, "_msret");
3829 setShadow(&CB, RetvalShadow);
3830 if (MS.TrackOrigins)
3831 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy,
3832 getOriginPtrForRetval(IRBAfter)));
3833 }
3834
3835 bool isAMustTailRetVal(Value *RetVal) {
3836 if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
3837 RetVal = I->getOperand(0);
3838 }
3839 if (auto *I = dyn_cast<CallInst>(RetVal)) {
3840 return I->isMustTailCall();
3841 }
3842 return false;
3843 }
3844
3845 void visitReturnInst(ReturnInst &I) {
3846 IRBuilder<> IRB(&I);
3847 Value *RetVal = I.getReturnValue();
3848 if (!RetVal) return;
3849 // Don't emit the epilogue for musttail call returns.
3850 if (isAMustTailRetVal(RetVal)) return;
3851 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
3852 bool HasNoUndef =
3853 F.hasRetAttribute(Attribute::NoUndef);
3854 bool StoreShadow = !(MS.EagerChecks && HasNoUndef);
3855 // FIXME: Consider using SpecialCaseList to specify a list of functions that
3856 // must always return fully initialized values. For now, we hardcode "main".
3857 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main");
3858
3859 Value *Shadow = getShadow(RetVal);
3860 bool StoreOrigin = true;
3861 if (EagerCheck) {
3862 insertShadowCheck(RetVal, &I);
3863 Shadow = getCleanShadow(RetVal);
3864 StoreOrigin = false;
3865 }
3866
3867 // The caller may still expect information passed over TLS if we pass our
3868 // check
3869 if (StoreShadow) {
3870 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3871 if (MS.TrackOrigins && StoreOrigin)
3872 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
3873 }
3874 }
3875
3876 void visitPHINode(PHINode &I) {
3877 IRBuilder<> IRB(&I);
3878 if (!PropagateShadow) {
3879 setShadow(&I, getCleanShadow(&I));
3880 setOrigin(&I, getCleanOrigin());
3881 return;
3882 }
3883
3884 ShadowPHINodes.push_back(&I);
3885 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
3886 "_msphi_s"));
3887 if (MS.TrackOrigins)
3888 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
3889 "_msphi_o"));
3890 }
3891
3892 Value *getLocalVarDescription(AllocaInst &I) {
3893 SmallString<2048> StackDescriptionStorage;
3894 raw_svector_ostream StackDescription(StackDescriptionStorage);
3895 // We create a string with a description of the stack allocation and
3896 // pass it into __msan_set_alloca_origin.
3897 // It will be printed by the run-time if stack-originated UMR is found.
3898 // The first 4 bytes of the string are set to '----' and will be replaced
3899 // by __msan_va_arg_overflow_size_tls at the first call.
3900 StackDescription << "----" << I.getName() << "@" << F.getName();
3901 return createPrivateNonConstGlobalForString(*F.getParent(),
3902 StackDescription.str());
3903 }
3904
3905 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3906 if (PoisonStack && ClPoisonStackWithCall) {
3907 IRB.CreateCall(MS.MsanPoisonStackFn,
3908 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3909 } else {
3910 Value *ShadowBase, *OriginBase;
3911 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr(
3912 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true);
3913
3914 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
3915 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign());
3916 }
3917
3918 if (PoisonStack && MS.TrackOrigins) {
3919 Value *Descr = getLocalVarDescription(I);
3920 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
3921 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3922 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
3923 IRB.CreatePointerCast(&F, MS.IntptrTy)});
3924 }
3925 }
3926
3927 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3928 Value *Descr = getLocalVarDescription(I);
3929 if (PoisonStack) {
3930 IRB.CreateCall(MS.MsanPoisonAllocaFn,
3931 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3932 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
3933 } else {
3934 IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
3935 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3936 }
3937 }
3938
3939 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
3940 if (!InsPoint)
3941 InsPoint = &I;
3942 IRBuilder<> IRB(InsPoint->getNextNode());
3943 const DataLayout &DL = F.getParent()->getDataLayout();
3944 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
3945 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
3946 if (I.isArrayAllocation())
3947 Len = IRB.CreateMul(Len, I.getArraySize());
3948
3949 if (MS.CompileKernel)
3950 poisonAllocaKmsan(I, IRB, Len);
3951 else
3952 poisonAllocaUserspace(I, IRB, Len);
3953 }
3954
3955 void visitAllocaInst(AllocaInst &I) {
3956 setShadow(&I, getCleanShadow(&I));
3957 setOrigin(&I, getCleanOrigin());
3958 // We'll get to this alloca later unless it's poisoned at the corresponding
3959 // llvm.lifetime.start.
3960 AllocaSet.insert(&I);
3961 }
3962
3963 void visitSelectInst(SelectInst& I) {
3964 IRBuilder<> IRB(&I);
3965 // a = select b, c, d
3966 Value *B = I.getCondition();
3967 Value *C = I.getTrueValue();
3968 Value *D = I.getFalseValue();
3969 Value *Sb = getShadow(B);
3970 Value *Sc = getShadow(C);
3971 Value *Sd = getShadow(D);
3972
3973 // Result shadow if condition shadow is 0.
3974 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
3975 Value *Sa1;
3976 if (I.getType()->isAggregateType()) {
3977 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
3978 // an extra "select". This results in much more compact IR.
3979 // Sa = select Sb, poisoned, (select b, Sc, Sd)
3980 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
3981 } else {
3982 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
3983 // If Sb (condition is poisoned), look for bits in c and d that are equal
3984 // and both unpoisoned.
3985 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
3986
3987 // Cast arguments to shadow-compatible type.
3988 C = CreateAppToShadowCast(IRB, C);
3989 D = CreateAppToShadowCast(IRB, D);
3990
3991 // Result shadow if condition shadow is 1.
3992 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
3993 }
3994 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
3995 setShadow(&I, Sa);
3996 if (MS.TrackOrigins) {
3997 // Origins are always i32, so any vector conditions must be flattened.
3998 // FIXME: consider tracking vector origins for app vectors?
3999 if (B->getType()->isVectorTy()) {
4000 Type *FlatTy = getShadowTyNoVec(B->getType());
4001 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
4002 ConstantInt::getNullValue(FlatTy));
4003 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
4004 ConstantInt::getNullValue(FlatTy));
4005 }
4006 // a = select b, c, d
4007 // Oa = Sb ? Ob : (b ? Oc : Od)
4008 setOrigin(
4009 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
4010 IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
4011 getOrigin(I.getFalseValue()))));
4012 }
4013 }
4014
4015 void visitLandingPadInst(LandingPadInst &I) {
4016 // Do nothing.
4017 // See https://github.com/google/sanitizers/issues/504
4018 setShadow(&I, getCleanShadow(&I));
4019 setOrigin(&I, getCleanOrigin());
4020 }
4021
4022 void visitCatchSwitchInst(CatchSwitchInst &I) {
4023 setShadow(&I, getCleanShadow(&I));
4024 setOrigin(&I, getCleanOrigin());
4025 }
4026
4027 void visitFuncletPadInst(FuncletPadInst &I) {
4028 setShadow(&I, getCleanShadow(&I));
4029 setOrigin(&I, getCleanOrigin());
4030 }
4031
4032 void visitGetElementPtrInst(GetElementPtrInst &I) {
4033 handleShadowOr(I);
4034 }
4035
4036 void visitExtractValueInst(ExtractValueInst &I) {
4037 IRBuilder<> IRB(&I);
4038 Value *Agg = I.getAggregateOperand();
4039 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "ExtractValue: " << I <<
"\n"; } } while (false)
;
4040 Value *AggShadow = getShadow(Agg);
4041 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " AggShadow: " << *AggShadow
<< "\n"; } } while (false)
;
4042 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
4043 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " ResShadow: " << *ResShadow
<< "\n"; } } while (false)
;
4044 setShadow(&I, ResShadow);
4045 setOriginForNaryOp(I);
4046 }
4047
4048 void visitInsertValueInst(InsertValueInst &I) {
4049 IRBuilder<> IRB(&I);
4050 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "InsertValue: " << I <<
"\n"; } } while (false)
;
4051 Value *AggShadow = getShadow(I.getAggregateOperand());
4052 Value *InsShadow = getShadow(I.getInsertedValueOperand());
4053 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " AggShadow: " << *AggShadow
<< "\n"; } } while (false)
;
4054 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " InsShadow: " << *InsShadow
<< "\n"; } } while (false)
;
4055 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
4056 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " Res: " << *Res <<
"\n"; } } while (false)
;
4057 setShadow(&I, Res);
4058 setOriginForNaryOp(I);
4059 }
4060
4061 void dumpInst(Instruction &I) {
4062 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
4063 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
4064 } else {
4065 errs() << "ZZZ " << I.getOpcodeName() << "\n";
4066 }
4067 errs() << "QQQ " << I << "\n";
4068 }
4069
4070 void visitResumeInst(ResumeInst &I) {
4071 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "Resume: " << I << "\n"
; } } while (false)
;
4072 // Nothing to do here.
4073 }
4074
4075 void visitCleanupReturnInst(CleanupReturnInst &CRI) {
4076 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "CleanupReturn: " << CRI <<
"\n"; } } while (false)
;
4077 // Nothing to do here.
4078 }
4079
4080 void visitCatchReturnInst(CatchReturnInst &CRI) {
4081 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "CatchReturn: " << CRI <<
"\n"; } } while (false)
;
4082 // Nothing to do here.
4083 }
4084
4085 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I,
4086 IRBuilder<> &IRB, const DataLayout &DL,
4087 bool isOutput) {
4088 // For each assembly argument, we check its value for being initialized.
4089 // If the argument is a pointer, we assume it points to a single element
4090 // of the corresponding type (or to a 8-byte word, if the type is unsized).
4091 // Each such pointer is instrumented with a call to the runtime library.
4092 Type *OpType = Operand->getType();
4093 // Check the operand value itself.
4094 insertShadowCheck(Operand, &I);
4095 if (!OpType->isPointerTy() || !isOutput) {
4096 assert(!isOutput)(static_cast <bool> (!isOutput) ? void (0) : __assert_fail
("!isOutput", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 4096, __extension__ __PRETTY_FUNCTION__))
;
4097 return;
4098 }
4099 if (!ElemTy->isSized())
4100 return;
4101 int Size = DL.getTypeStoreSize(ElemTy);
4102 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
4103 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
4104 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
4105 }
4106
4107 /// Get the number of output arguments returned by pointers.
4108 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
4109 int NumRetOutputs = 0;
4110 int NumOutputs = 0;
4111 Type *RetTy = cast<Value>(CB)->getType();
4112 if (!RetTy->isVoidTy()) {
4113 // Register outputs are returned via the CallInst return value.
4114 auto *ST = dyn_cast<StructType>(RetTy);
4115 if (ST)
4116 NumRetOutputs = ST->getNumElements();
4117 else
4118 NumRetOutputs = 1;
4119 }
4120 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
4121 for (const InlineAsm::ConstraintInfo &Info : Constraints) {
4122 switch (Info.Type) {
4123 case InlineAsm::isOutput:
4124 NumOutputs++;
4125 break;
4126 default:
4127 break;
4128 }
4129 }
4130 return NumOutputs - NumRetOutputs;
4131 }
4132
4133 void visitAsmInstruction(Instruction &I) {
4134 // Conservative inline assembly handling: check for poisoned shadow of
4135 // asm() arguments, then unpoison the result and all the memory locations
4136 // pointed to by those arguments.
4137 // An inline asm() statement in C++ contains lists of input and output
4138 // arguments used by the assembly code. These are mapped to operands of the
4139 // CallInst as follows:
4140 // - nR register outputs ("=r) are returned by value in a single structure
4141 // (SSA value of the CallInst);
4142 // - nO other outputs ("=m" and others) are returned by pointer as first
4143 // nO operands of the CallInst;
4144 // - nI inputs ("r", "m" and others) are passed to CallInst as the
4145 // remaining nI operands.
4146 // The total number of asm() arguments in the source is nR+nO+nI, and the
4147 // corresponding CallInst has nO+nI+1 operands (the last operand is the
4148 // function to be called).
4149 const DataLayout &DL = F.getParent()->getDataLayout();
4150 CallBase *CB = cast<CallBase>(&I);
4151 IRBuilder<> IRB(&I);
4152 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4153 int OutputArgs = getNumOutputArgs(IA, CB);
4154 // The last operand of a CallInst is the function itself.
4155 int NumOperands = CB->getNumOperands() - 1;
4156
4157 // Check input arguments. Doing so before unpoisoning output arguments, so
4158 // that we won't overwrite uninit values before checking them.
4159 for (int i = OutputArgs; i < NumOperands; i++) {
4160 Value *Operand = CB->getOperand(i);
4161 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL,
4162 /*isOutput*/ false);
4163 }
4164 // Unpoison output arguments. This must happen before the actual InlineAsm
4165 // call, so that the shadow for memory published in the asm() statement
4166 // remains valid.
4167 for (int i = 0; i < OutputArgs; i++) {
4168 Value *Operand = CB->getOperand(i);
4169 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL,
4170 /*isOutput*/ true);
4171 }
4172
4173 setShadow(&I, getCleanShadow(&I));
4174 setOrigin(&I, getCleanOrigin());
4175 }
4176
4177 void visitFreezeInst(FreezeInst &I) {
4178 // Freeze always returns a fully defined value.
4179 setShadow(&I, getCleanShadow(&I));
4180 setOrigin(&I, getCleanOrigin());
4181 }
4182
4183 void visitInstruction(Instruction &I) {
4184 // Everything else: stop propagating and check for poisoned shadow.
4185 if (ClDumpStrictInstructions)
4186 dumpInst(I);
4187 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "DEFAULT: " << I << "\n"
; } } while (false)
;
4188 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
4189 Value *Operand = I.getOperand(i);
4190 if (Operand->getType()->isSized())
4191 insertShadowCheck(Operand, &I);
4192 }
4193 setShadow(&I, getCleanShadow(&I));
4194 setOrigin(&I, getCleanOrigin());
4195 }
4196};
4197
4198/// AMD64-specific implementation of VarArgHelper.
4199struct VarArgAMD64Helper : public VarArgHelper {
4200 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
4201 // See a comment in visitCallBase for more details.
4202 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
4203 static const unsigned AMD64FpEndOffsetSSE = 176;
4204 // If SSE is disabled, fp_offset in va_list is zero.
4205 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
4206
4207 unsigned AMD64FpEndOffset;
4208 Function &F;
4209 MemorySanitizer &MS;
4210 MemorySanitizerVisitor &MSV;
4211 Value *VAArgTLSCopy = nullptr;
4212 Value *VAArgTLSOriginCopy = nullptr;
4213 Value *VAArgOverflowSize = nullptr;
4214
4215 SmallVector<CallInst*, 16> VAStartInstrumentationList;
4216
4217 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4218
4219 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
4220 MemorySanitizerVisitor &MSV)
4221 : F(F), MS(MS), MSV(MSV) {
4222 AMD64FpEndOffset = AMD64FpEndOffsetSSE;
4223 for (const auto &Attr : F.getAttributes().getFnAttrs()) {
4224 if (Attr.isStringAttribute() &&
4225 (Attr.getKindAsString() == "target-features")) {
4226 if (Attr.getValueAsString().contains("-sse"))
4227 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
4228 break;
4229 }
4230 }
4231 }
4232
4233 ArgKind classifyArgument(Value* arg) {
4234 // A very rough approximation of X86_64 argument classification rules.
4235 Type *T = arg->getType();
4236 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
4237 return AK_FloatingPoint;
4238 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4239 return AK_GeneralPurpose;
4240 if (T->isPointerTy())
4241 return AK_GeneralPurpose;
4242 return AK_Memory;
4243 }
4244
4245 // For VarArg functions, store the argument shadow in an ABI-specific format
4246 // that corresponds to va_list layout.
4247 // We do this because Clang lowers va_arg in the frontend, and this pass
4248 // only sees the low level code that deals with va_list internals.
4249 // A much easier alternative (provided that Clang emits va_arg instructions)
4250 // would have been to associate each live instance of va_list with a copy of
4251 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
4252 // order.
4253 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4254 unsigned GpOffset = 0;
4255 unsigned FpOffset = AMD64GpEndOffset;
4256 unsigned OverflowOffset = AMD64FpEndOffset;
4257 const DataLayout &DL = F.getParent()->getDataLayout();
4258 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4259 ++ArgIt) {
4260 Value *A = *ArgIt;
4261 unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4262 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4263 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
4264 if (IsByVal) {
4265 // ByVal arguments always go to the overflow area.
4266 // Fixed arguments passed through the overflow area will be stepped
4267 // over by va_start, so don't count them towards the offset.
4268 if (IsFixed)
4269 continue;
4270 assert(A->getType()->isPointerTy())(static_cast <bool> (A->getType()->isPointerTy())
? void (0) : __assert_fail ("A->getType()->isPointerTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4270
, __extension__ __PRETTY_FUNCTION__))
;
4271 Type *RealTy = CB.getParamByValType(ArgNo);
4272 uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4273 Value *ShadowBase = getShadowPtrForVAArgument(
4274 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
4275 Value *OriginBase = nullptr;
4276 if (MS.TrackOrigins)
4277 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
4278 OverflowOffset += alignTo(ArgSize, 8);
4279 if (!ShadowBase)
4280 continue;
4281 Value *ShadowPtr, *OriginPtr;
4282 std::tie(ShadowPtr, OriginPtr) =
4283 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
4284 /*isStore*/ false);
4285
4286 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
4287 kShadowTLSAlignment, ArgSize);
4288 if (MS.TrackOrigins)
4289 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
4290 kShadowTLSAlignment, ArgSize);
4291 } else {
4292 ArgKind AK = classifyArgument(A);
4293 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
4294 AK = AK_Memory;
4295 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
4296 AK = AK_Memory;
4297 Value *ShadowBase, *OriginBase = nullptr;
4298 switch (AK) {
4299 case AK_GeneralPurpose:
4300 ShadowBase =
4301 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
4302 if (MS.TrackOrigins)
4303 OriginBase =
4304 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
4305 GpOffset += 8;
4306 break;
4307 case AK_FloatingPoint:
4308 ShadowBase =
4309 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
4310 if (MS.TrackOrigins)
4311 OriginBase =
4312 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
4313 FpOffset += 16;
4314 break;
4315 case AK_Memory:
4316 if (IsFixed)
4317 continue;
4318 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4319 ShadowBase =
4320 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
4321 if (MS.TrackOrigins)
4322 OriginBase =
4323 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
4324 OverflowOffset += alignTo(ArgSize, 8);
4325 }
4326 // Take fixed arguments into account for GpOffset and FpOffset,
4327 // but don't actually store shadows for them.
4328 // TODO(glider): don't call get*PtrForVAArgument() for them.
4329 if (IsFixed)
4330 continue;
4331 if (!ShadowBase)
4332 continue;
4333 Value *Shadow = MSV.getShadow(A);
4334 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
4335 if (MS.TrackOrigins) {
4336 Value *Origin = MSV.getOrigin(A);
4337 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
4338 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
4339 std::max(kShadowTLSAlignment, kMinOriginAlignment));
4340 }
4341 }
4342 }
4343 Constant *OverflowSize =
4344 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
4345 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4346 }
4347
4348 /// Compute the shadow address for a given va_arg.
4349 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4350 unsigned ArgOffset, unsigned ArgSize) {
4351 // Make sure we don't overflow __msan_va_arg_tls.
4352 if (ArgOffset + ArgSize > kParamTLSSize)
4353 return nullptr;
4354 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4355 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4356 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4357 "_msarg_va_s");
4358 }
4359
4360 /// Compute the origin address for a given va_arg.
4361 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
4362 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
4363 // getOriginPtrForVAArgument() is always called after
4364 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
4365 // overflow.
4366 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4367 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
4368 "_msarg_va_o");
4369 }
4370
4371 void unpoisonVAListTagForInst(IntrinsicInst &I) {
4372 IRBuilder<> IRB(&I);
4373 Value *VAListTag = I.getArgOperand(0);
4374 Value *ShadowPtr, *OriginPtr;
4375 const Align Alignment = Align(8);
4376 std::tie(ShadowPtr, OriginPtr) =
4377 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
4378 /*isStore*/ true);
4379
4380 // Unpoison the whole __va_list_tag.
4381 // FIXME: magic ABI constants.
4382 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4383 /* size */ 24, Alignment, false);
4384 // We shouldn't need to zero out the origins, as they're only checked for
4385 // nonzero shadow.
4386 }
4387
4388 void visitVAStartInst(VAStartInst &I) override {
4389 if (F.getCallingConv() == CallingConv::Win64)
4390 return;
4391 VAStartInstrumentationList.push_back(&I);
4392 unpoisonVAListTagForInst(I);
4393 }
4394
4395 void visitVACopyInst(VACopyInst &I) override {
4396 if (F.getCallingConv() == CallingConv::Win64) return;
4397 unpoisonVAListTagForInst(I);
4398 }
4399
4400 void finalizeInstrumentation() override {
4401 assert(!VAArgOverflowSize && !VAArgTLSCopy &&(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4402
, __extension__ __PRETTY_FUNCTION__))
4402 "finalizeInstrumentation called twice")(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4402
, __extension__ __PRETTY_FUNCTION__))
;
4403 if (!VAStartInstrumentationList.empty()) {
4404 // If there is a va_start in this function, make a backup copy of
4405 // va_arg_tls somewhere in the function entry block.
4406 IRBuilder<> IRB(MSV.FnPrologueEnd);
4407 VAArgOverflowSize =
4408 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4409 Value *CopySize =
4410 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
4411 VAArgOverflowSize);
4412 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4413 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4414 if (MS.TrackOrigins) {
4415 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4416 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
4417 Align(8), CopySize);
4418 }
4419 }
4420
4421 // Instrument va_start.
4422 // Copy va_list shadow from the backup copy of the TLS contents.
4423 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4424 CallInst *OrigInst = VAStartInstrumentationList[i];
4425 IRBuilder<> IRB(OrigInst->getNextNode());
4426 Value *VAListTag = OrigInst->getArgOperand(0);
4427
4428 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4429 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
4430 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4431 ConstantInt::get(MS.IntptrTy, 16)),
4432 PointerType::get(RegSaveAreaPtrTy, 0));
4433 Value *RegSaveAreaPtr =
4434 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4435 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4436 const Align Alignment = Align(16);
4437 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4438 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4439 Alignment, /*isStore*/ true);
4440 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4441 AMD64FpEndOffset);
4442 if (MS.TrackOrigins)
4443 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
4444 Alignment, AMD64FpEndOffset);
4445 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4446 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
4447 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4448 ConstantInt::get(MS.IntptrTy, 8)),
4449 PointerType::get(OverflowArgAreaPtrTy, 0));
4450 Value *OverflowArgAreaPtr =
4451 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
4452 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
4453 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
4454 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
4455 Alignment, /*isStore*/ true);
4456 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
4457 AMD64FpEndOffset);
4458 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
4459 VAArgOverflowSize);
4460 if (MS.TrackOrigins) {
4461 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
4462 AMD64FpEndOffset);
4463 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
4464 VAArgOverflowSize);
4465 }
4466 }
4467 }
4468};
4469
4470/// MIPS64-specific implementation of VarArgHelper.
4471struct VarArgMIPS64Helper : public VarArgHelper {
4472 Function &F;
4473 MemorySanitizer &MS;
4474 MemorySanitizerVisitor &MSV;
4475 Value *VAArgTLSCopy = nullptr;
4476 Value *VAArgSize = nullptr;
4477
4478 SmallVector<CallInst*, 16> VAStartInstrumentationList;
4479
4480 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
4481 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4482
4483 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4484 unsigned VAArgOffset = 0;
4485 const DataLayout &DL = F.getParent()->getDataLayout();
4486 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(),
2
Loop condition is true. Entering loop body
4487 End = CB.arg_end();
4488 ArgIt != End; ++ArgIt) {
1
Assuming 'ArgIt' is not equal to 'End'
4489 Triple TargetTriple(F.getParent()->getTargetTriple());
4490 Value *A = *ArgIt;
4491 Value *Base;
4492 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4493 if (TargetTriple.getArch() == Triple::mips64) {
3
Assuming the condition is false
4
Taking false branch
4494 // Adjusting the shadow for argument with size < 8 to match the placement
4495 // of bits in big endian system
4496 if (ArgSize < 8)
4497 VAArgOffset += (8 - ArgSize);
4498 }
4499 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
4500 VAArgOffset += ArgSize;
4501 VAArgOffset = alignTo(VAArgOffset, 8);
4502 if (!Base)
5
Assuming 'Base' is non-null
6
Taking false branch
4503 continue;
4504 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
7
Calling 'MemorySanitizerVisitor::getShadow'
4505 }
4506
4507 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
4508 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4509 // a new class member i.e. it is the total size of all VarArgs.
4510 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4511 }
4512
4513 /// Compute the shadow address for a given va_arg.
4514 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4515 unsigned ArgOffset, unsigned ArgSize) {
4516 // Make sure we don't overflow __msan_va_arg_tls.
4517 if (ArgOffset + ArgSize > kParamTLSSize)
4518 return nullptr;
4519 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4520 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4521 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4522 "_msarg");
4523 }
4524
4525 void visitVAStartInst(VAStartInst &I) override {
4526 IRBuilder<> IRB(&I);
4527 VAStartInstrumentationList.push_back(&I);
4528 Value *VAListTag = I.getArgOperand(0);
4529 Value *ShadowPtr, *OriginPtr;
4530 const Align Alignment = Align(8);
4531 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4532 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4533 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4534 /* size */ 8, Alignment, false);
4535 }
4536
4537 void visitVACopyInst(VACopyInst &I) override {
4538 IRBuilder<> IRB(&I);
4539 VAStartInstrumentationList.push_back(&I);
4540 Value *VAListTag = I.getArgOperand(0);
4541 Value *ShadowPtr, *OriginPtr;
4542 const Align Alignment = Align(8);
4543 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4544 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4545 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4546 /* size */ 8, Alignment, false);
4547 }
4548
4549 void finalizeInstrumentation() override {
4550 assert(!VAArgSize && !VAArgTLSCopy &&(static_cast <bool> (!VAArgSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4551
, __extension__ __PRETTY_FUNCTION__))
4551 "finalizeInstrumentation called twice")(static_cast <bool> (!VAArgSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4551
, __extension__ __PRETTY_FUNCTION__))
;
4552 IRBuilder<> IRB(MSV.FnPrologueEnd);
4553 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4554 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4555 VAArgSize);
4556
4557 if (!VAStartInstrumentationList.empty()) {
4558 // If there is a va_start in this function, make a backup copy of
4559 // va_arg_tls somewhere in the function entry block.
4560 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4561 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4562 }
4563
4564 // Instrument va_start.
4565 // Copy va_list shadow from the backup copy of the TLS contents.
4566 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4567 CallInst *OrigInst = VAStartInstrumentationList[i];
4568 IRBuilder<> IRB(OrigInst->getNextNode());
4569 Value *VAListTag = OrigInst->getArgOperand(0);
4570 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4571 Value *RegSaveAreaPtrPtr =
4572 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4573 PointerType::get(RegSaveAreaPtrTy, 0));
4574 Value *RegSaveAreaPtr =
4575 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4576 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4577 const Align Alignment = Align(8);
4578 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4579 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4580 Alignment, /*isStore*/ true);
4581 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4582 CopySize);
4583 }
4584 }
4585};
4586
4587/// AArch64-specific implementation of VarArgHelper.
4588struct VarArgAArch64Helper : public VarArgHelper {
4589 static const unsigned kAArch64GrArgSize = 64;
4590 static const unsigned kAArch64VrArgSize = 128;
4591
4592 static const unsigned AArch64GrBegOffset = 0;
4593 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
4594 // Make VR space aligned to 16 bytes.
4595 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
4596 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
4597 + kAArch64VrArgSize;
4598 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
4599
4600 Function &F;
4601 MemorySanitizer &MS;
4602 MemorySanitizerVisitor &MSV;
4603 Value *VAArgTLSCopy = nullptr;
4604 Value *VAArgOverflowSize = nullptr;
4605
4606 SmallVector<CallInst*, 16> VAStartInstrumentationList;
4607
4608 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4609
4610 VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
4611 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4612
4613 ArgKind classifyArgument(Value* arg) {
4614 Type *T = arg->getType();
4615 if (T->isFPOrFPVectorTy())
4616 return AK_FloatingPoint;
4617 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4618 || (T->isPointerTy()))
4619 return AK_GeneralPurpose;
4620 return AK_Memory;
4621 }
4622
4623 // The instrumentation stores the argument shadow in a non ABI-specific
4624 // format because it does not know which argument is named (since Clang,
4625 // like x86_64 case, lowers the va_args in the frontend and this pass only
4626 // sees the low level code that deals with va_list internals).
4627 // The first seven GR registers are saved in the first 56 bytes of the
4628 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
4629 // the remaining arguments.
4630 // Using constant offset within the va_arg TLS array allows fast copy
4631 // in the finalize instrumentation.
4632 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4633 unsigned GrOffset = AArch64GrBegOffset;
4634 unsigned VrOffset = AArch64VrBegOffset;
4635 unsigned OverflowOffset = AArch64VAEndOffset;
4636
4637 const DataLayout &DL = F.getParent()->getDataLayout();
4638 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4639 ++ArgIt) {
4640 Value *A = *ArgIt;
4641 unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4642 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4643 ArgKind AK = classifyArgument(A);
4644 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
4645 AK = AK_Memory;
4646 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
4647 AK = AK_Memory;
4648 Value *Base;
4649 switch (AK) {
4650 case AK_GeneralPurpose:
4651 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
4652 GrOffset += 8;
4653 break;
4654 case AK_FloatingPoint:
4655 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
4656 VrOffset += 16;
4657 break;
4658 case AK_Memory:
4659 // Don't count fixed arguments in the overflow area - va_start will
4660 // skip right over them.
4661 if (IsFixed)
4662 continue;
4663 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4664 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
4665 alignTo(ArgSize, 8));
4666 OverflowOffset += alignTo(ArgSize, 8);
4667 break;
4668 }
4669 // Count Gp/Vr fixed arguments to their respective offsets, but don't
4670 // bother to actually store a shadow.
4671 if (IsFixed)
4672 continue;
4673 if (!Base)
4674 continue;
4675 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4676 }
4677 Constant *OverflowSize =
4678 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
4679 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4680 }
4681
4682 /// Compute the shadow address for a given va_arg.
4683 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4684 unsigned ArgOffset, unsigned ArgSize) {
4685 // Make sure we don't overflow __msan_va_arg_tls.
4686 if (ArgOffset + ArgSize > kParamTLSSize)
4687 return nullptr;
4688 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4689 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4690 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4691 "_msarg");
4692 }
4693
4694 void visitVAStartInst(VAStartInst &I) override {
4695 IRBuilder<> IRB(&I);
4696 VAStartInstrumentationList.push_back(&I);
4697 Value *VAListTag = I.getArgOperand(0);
4698 Value *ShadowPtr, *OriginPtr;
4699 const Align Alignment = Align(8);
4700 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4701 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4702 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4703 /* size */ 32, Alignment, false);
4704 }
4705
4706 void visitVACopyInst(VACopyInst &I) override {
4707 IRBuilder<> IRB(&I);
4708 VAStartInstrumentationList.push_back(&I);
4709 Value *VAListTag = I.getArgOperand(0);
4710 Value *ShadowPtr, *OriginPtr;
4711 const Align Alignment = Align(8);
4712 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4713 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4714 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4715 /* size */ 32, Alignment, false);
4716 }
4717
4718 // Retrieve a va_list field of 'void*' size.
4719 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4720 Value *SaveAreaPtrPtr =
4721 IRB.CreateIntToPtr(
4722 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4723 ConstantInt::get(MS.IntptrTy, offset)),
4724 Type::getInt64PtrTy(*MS.C));
4725 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
4726 }
4727
4728 // Retrieve a va_list field of 'int' size.
4729 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4730 Value *SaveAreaPtr =
4731 IRB.CreateIntToPtr(
4732 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4733 ConstantInt::get(MS.IntptrTy, offset)),
4734 Type::getInt32PtrTy(*MS.C));
4735 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
4736 return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
4737 }
4738
4739 void finalizeInstrumentation() override {
4740 assert(!VAArgOverflowSize && !VAArgTLSCopy &&(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4741
, __extension__ __PRETTY_FUNCTION__))
4741 "finalizeInstrumentation called twice")(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4741
, __extension__ __PRETTY_FUNCTION__))
;
4742 if (!VAStartInstrumentationList.empty()) {
4743 // If there is a va_start in this function, make a backup copy of
4744 // va_arg_tls somewhere in the function entry block.
4745 IRBuilder<> IRB(MSV.FnPrologueEnd);
4746 VAArgOverflowSize =
4747 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4748 Value *CopySize =
4749 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
4750 VAArgOverflowSize);
4751 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4752 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4753 }
4754
4755 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
4756 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
4757
4758 // Instrument va_start, copy va_list shadow from the backup copy of
4759 // the TLS contents.
4760 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4761 CallInst *OrigInst = VAStartInstrumentationList[i];
4762 IRBuilder<> IRB(OrigInst->getNextNode());
4763
4764 Value *VAListTag = OrigInst->getArgOperand(0);
4765
4766 // The variadic ABI for AArch64 creates two areas to save the incoming
4767 // argument registers (one for 64-bit general register xn-x7 and another
4768 // for 128-bit FP/SIMD vn-v7).
4769 // We need then to propagate the shadow arguments on both regions
4770 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
4771 // The remaining arguments are saved on shadow for 'va::stack'.
4772 // One caveat is it requires only to propagate the non-named arguments,
4773 // however on the call site instrumentation 'all' the arguments are
4774 // saved. So to copy the shadow values from the va_arg TLS array
4775 // we need to adjust the offset for both GR and VR fields based on
4776 // the __{gr,vr}_offs value (since they are stores based on incoming
4777 // named arguments).
4778
4779 // Read the stack pointer from the va_list.
4780 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
4781
4782 // Read both the __gr_top and __gr_off and add them up.
4783 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
4784 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
4785
4786 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
4787
4788 // Read both the __vr_top and __vr_off and add them up.
4789 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
4790 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
4791
4792 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
4793
4794 // It does not know how many named arguments is being used and, on the
4795 // callsite all the arguments were saved. Since __gr_off is defined as
4796 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
4797 // argument by ignoring the bytes of shadow from named arguments.
4798 Value *GrRegSaveAreaShadowPtrOff =
4799 IRB.CreateAdd(GrArgSize, GrOffSaveArea);
4800
4801 Value *GrRegSaveAreaShadowPtr =
4802 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4803 Align(8), /*isStore*/ true)
4804 .first;
4805
4806 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4807 GrRegSaveAreaShadowPtrOff);
4808 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
4809
4810 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8),
4811 GrCopySize);
4812
4813 // Again, but for FP/SIMD values.
4814 Value *VrRegSaveAreaShadowPtrOff =
4815 IRB.CreateAdd(VrArgSize, VrOffSaveArea);
4816
4817 Value *VrRegSaveAreaShadowPtr =
4818 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4819 Align(8), /*isStore*/ true)
4820 .first;
4821
4822 Value *VrSrcPtr = IRB.CreateInBoundsGEP(
4823 IRB.getInt8Ty(),
4824 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4825 IRB.getInt32(AArch64VrBegOffset)),
4826 VrRegSaveAreaShadowPtrOff);
4827 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
4828
4829 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8),
4830 VrCopySize);
4831
4832 // And finally for remaining arguments.
4833 Value *StackSaveAreaShadowPtr =
4834 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
4835 Align(16), /*isStore*/ true)
4836 .first;
4837
4838 Value *StackSrcPtr =
4839 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4840 IRB.getInt32(AArch64VAEndOffset));
4841
4842 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr,
4843 Align(16), VAArgOverflowSize);
4844 }
4845 }
4846};
4847
4848/// PowerPC64-specific implementation of VarArgHelper.
4849struct VarArgPowerPC64Helper : public VarArgHelper {
4850 Function &F;
4851 MemorySanitizer &MS;
4852 MemorySanitizerVisitor &MSV;
4853 Value *VAArgTLSCopy = nullptr;
4854 Value *VAArgSize = nullptr;
4855
4856 SmallVector<CallInst*, 16> VAStartInstrumentationList;
4857
4858 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
4859 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4860
4861 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4862 // For PowerPC, we need to deal with alignment of stack arguments -
4863 // they are mostly aligned to 8 bytes, but vectors and i128 arrays
4864 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
4865 // For that reason, we compute current offset from stack pointer (which is
4866 // always properly aligned), and offset for the first vararg, then subtract
4867 // them.
4868 unsigned VAArgBase;
4869 Triple TargetTriple(F.getParent()->getTargetTriple());
4870 // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
4871 // and 32 bytes for ABIv2. This is usually determined by target
4872 // endianness, but in theory could be overridden by function attribute.
4873 if (TargetTriple.getArch() == Triple::ppc64)
4874 VAArgBase = 48;
4875 else
4876 VAArgBase = 32;
4877 unsigned VAArgOffset = VAArgBase;
4878 const DataLayout &DL = F.getParent()->getDataLayout();
4879 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4880 ++ArgIt) {
4881 Value *A = *ArgIt;
4882 unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4883 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4884 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
4885 if (IsByVal) {
4886 assert(A->getType()->isPointerTy())(static_cast <bool> (A->getType()->isPointerTy())
? void (0) : __assert_fail ("A->getType()->isPointerTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4886
, __extension__ __PRETTY_FUNCTION__))
;
4887 Type *RealTy = CB.getParamByValType(ArgNo);
4888 uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4889 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo);
4890 if (!ArgAlign || *ArgAlign < Align(8))
4891 ArgAlign = Align(8);
4892 VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4893 if (!IsFixed) {
4894 Value *Base = getShadowPtrForVAArgument(
4895 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
4896 if (Base) {
4897 Value *AShadowPtr, *AOriginPtr;
4898 std::tie(AShadowPtr, AOriginPtr) =
4899 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
4900 kShadowTLSAlignment, /*isStore*/ false);
4901
4902 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
4903 kShadowTLSAlignment, ArgSize);
4904 }
4905 }
4906 VAArgOffset += alignTo(ArgSize, 8);
4907 } else {
4908 Value *Base;
4909 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4910 uint64_t ArgAlign = 8;
4911 if (A->getType()->isArrayTy()) {
4912 // Arrays are aligned to element size, except for long double
4913 // arrays, which are aligned to 8 bytes.
4914 Type *ElementTy = A->getType()->getArrayElementType();
4915 if (!ElementTy->isPPC_FP128Ty())
4916 ArgAlign = DL.getTypeAllocSize(ElementTy);
4917 } else if (A->getType()->isVectorTy()) {
4918 // Vectors are naturally aligned.
4919 ArgAlign = DL.getTypeAllocSize(A->getType());
4920 }
4921 if (ArgAlign < 8)
4922 ArgAlign = 8;
4923 VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4924 if (DL.isBigEndian()) {
4925 // Adjusting the shadow for argument with size < 8 to match the placement
4926 // of bits in big endian system
4927 if (ArgSize < 8)
4928 VAArgOffset += (8 - ArgSize);
4929 }
4930 if (!IsFixed) {
4931 Base = getShadowPtrForVAArgument(A->getType(), IRB,
4932 VAArgOffset - VAArgBase, ArgSize);
4933 if (Base)
4934 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4935 }
4936 VAArgOffset += ArgSize;
4937 VAArgOffset = alignTo(VAArgOffset, 8);
4938 }
4939 if (IsFixed)
4940 VAArgBase = VAArgOffset;
4941 }
4942
4943 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
4944 VAArgOffset - VAArgBase);
4945 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4946 // a new class member i.e. it is the total size of all VarArgs.
4947 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4948 }
4949
4950 /// Compute the shadow address for a given va_arg.
4951 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4952 unsigned ArgOffset, unsigned ArgSize) {
4953 // Make sure we don't overflow __msan_va_arg_tls.
4954 if (ArgOffset + ArgSize > kParamTLSSize)
4955 return nullptr;
4956 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4957 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4958 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4959 "_msarg");
4960 }
4961
4962 void visitVAStartInst(VAStartInst &I) override {
4963 IRBuilder<> IRB(&I);
4964 VAStartInstrumentationList.push_back(&I);
4965 Value *VAListTag = I.getArgOperand(0);
4966 Value *ShadowPtr, *OriginPtr;
4967 const Align Alignment = Align(8);
4968 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4969 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4970 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4971 /* size */ 8, Alignment, false);
4972 }
4973
4974 void visitVACopyInst(VACopyInst &I) override {
4975 IRBuilder<> IRB(&I);
4976 Value *VAListTag = I.getArgOperand(0);
4977 Value *ShadowPtr, *OriginPtr;
4978 const Align Alignment = Align(8);
4979 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4980 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4981 // Unpoison the whole __va_list_tag.
4982 // FIXME: magic ABI constants.
4983 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4984 /* size */ 8, Alignment, false);
4985 }
4986
4987 void finalizeInstrumentation() override {
4988 assert(!VAArgSize && !VAArgTLSCopy &&(static_cast <bool> (!VAArgSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4989
, __extension__ __PRETTY_FUNCTION__))
4989 "finalizeInstrumentation called twice")(static_cast <bool> (!VAArgSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4989
, __extension__ __PRETTY_FUNCTION__))
;
4990 IRBuilder<> IRB(MSV.FnPrologueEnd);
4991 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4992 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4993 VAArgSize);
4994
4995 if (!VAStartInstrumentationList.empty()) {
4996 // If there is a va_start in this function, make a backup copy of
4997 // va_arg_tls somewhere in the function entry block.
4998 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4999 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
5000 }
5001
5002 // Instrument va_start.
5003 // Copy va_list shadow from the backup copy of the TLS contents.
5004 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
5005 CallInst *OrigInst = VAStartInstrumentationList[i];
5006 IRBuilder<> IRB(OrigInst->getNextNode());
5007 Value *VAListTag = OrigInst->getArgOperand(0);
5008 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5009 Value *RegSaveAreaPtrPtr =
5010 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5011 PointerType::get(RegSaveAreaPtrTy, 0));
5012 Value *RegSaveAreaPtr =
5013 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
5014 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5015 const Align Alignment = Align(8);
5016 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5017 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5018 Alignment, /*isStore*/ true);
5019 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5020 CopySize);
5021 }
5022 }
5023};
5024
5025/// SystemZ-specific implementation of VarArgHelper.
5026struct VarArgSystemZHelper : public VarArgHelper {
5027 static const unsigned SystemZGpOffset = 16;
5028 static const unsigned SystemZGpEndOffset = 56;
5029 static const unsigned SystemZFpOffset = 128;
5030 static const unsigned SystemZFpEndOffset = 160;
5031 static const unsigned SystemZMaxVrArgs = 8;
5032 static const unsigned SystemZRegSaveAreaSize = 160;
5033 static const unsigned SystemZOverflowOffset = 160;
5034 static const unsigned SystemZVAListTagSize = 32;
5035 static const unsigned SystemZOverflowArgAreaPtrOffset = 16;
5036 static const unsigned SystemZRegSaveAreaPtrOffset = 24;
5037
5038 Function &F;
5039 MemorySanitizer &MS;
5040 MemorySanitizerVisitor &MSV;
5041 Value *VAArgTLSCopy = nullptr;
5042 Value *VAArgTLSOriginCopy = nullptr;
5043 Value *VAArgOverflowSize = nullptr;
5044
5045 SmallVector<CallInst *, 16> VAStartInstrumentationList;
5046
5047 enum class ArgKind {
5048 GeneralPurpose,
5049 FloatingPoint,
5050 Vector,
5051 Memory,
5052 Indirect,
5053 };
5054
5055 enum class ShadowExtension { None, Zero, Sign };
5056
5057 VarArgSystemZHelper(Function &F, MemorySanitizer &MS,
5058 MemorySanitizerVisitor &MSV)
5059 : F(F), MS(MS), MSV(MSV) {}
5060
5061 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) {
5062 // T is a SystemZABIInfo::classifyArgumentType() output, and there are
5063 // only a few possibilities of what it can be. In particular, enums, single
5064 // element structs and large types have already been taken care of.
5065
5066 // Some i128 and fp128 arguments are converted to pointers only in the
5067 // back end.
5068 if (T->isIntegerTy(128) || T->isFP128Ty())
5069 return ArgKind::Indirect;
5070 if (T->isFloatingPointTy())
5071 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint;
5072 if (T->isIntegerTy() || T->isPointerTy())
5073 return ArgKind::GeneralPurpose;
5074 if (T->isVectorTy())
5075 return ArgKind::Vector;
5076 return ArgKind::Memory;
5077 }
5078
5079 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) {
5080 // ABI says: "One of the simple integer types no more than 64 bits wide.
5081 // ... If such an argument is shorter than 64 bits, replace it by a full
5082 // 64-bit integer representing the same number, using sign or zero
5083 // extension". Shadow for an integer argument has the same type as the
5084 // argument itself, so it can be sign or zero extended as well.
5085 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt);
5086 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt);
5087 if (ZExt) {
5088 assert(!SExt)(static_cast <bool> (!SExt) ? void (0) : __assert_fail (
"!SExt", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 5088, __extension__ __PRETTY_FUNCTION__))
;
5089 return ShadowExtension::Zero;
5090 }
5091 if (SExt) {
5092 assert(!ZExt)(static_cast <bool> (!ZExt) ? void (0) : __assert_fail (
"!ZExt", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 5092, __extension__ __PRETTY_FUNCTION__))
;
5093 return ShadowExtension::Sign;
5094 }
5095 return ShadowExtension::None;
5096 }
5097
5098 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5099 bool IsSoftFloatABI = CB.getCalledFunction()
5100 ->getFnAttribute("use-soft-float")
5101 .getValueAsBool();
5102 unsigned GpOffset = SystemZGpOffset;
5103 unsigned FpOffset = SystemZFpOffset;
5104 unsigned VrIndex = 0;
5105 unsigned OverflowOffset = SystemZOverflowOffset;
5106 const DataLayout &DL = F.getParent()->getDataLayout();
5107 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
5108 ++ArgIt) {
5109 Value *A = *ArgIt;
5110 unsigned ArgNo = CB.getArgOperandNo(ArgIt);
5111 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5112 // SystemZABIInfo does not produce ByVal parameters.
5113 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal))(static_cast <bool> (!CB.paramHasAttr(ArgNo, Attribute::
ByVal)) ? void (0) : __assert_fail ("!CB.paramHasAttr(ArgNo, Attribute::ByVal)"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5113
, __extension__ __PRETTY_FUNCTION__))
;
5114 Type *T = A->getType();
5115 ArgKind AK = classifyArgument(T, IsSoftFloatABI);
5116 if (AK == ArgKind::Indirect) {
5117 T = PointerType::get(T, 0);
5118 AK = ArgKind::GeneralPurpose;
5119 }
5120 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset)
5121 AK = ArgKind::Memory;
5122 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset)
5123 AK = ArgKind::Memory;
5124 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed))
5125 AK = ArgKind::Memory;
5126 Value *ShadowBase = nullptr;
5127 Value *OriginBase = nullptr;
5128 ShadowExtension SE = ShadowExtension::None;
5129 switch (AK) {
5130 case ArgKind::GeneralPurpose: {
5131 // Always keep track of GpOffset, but store shadow only for varargs.
5132 uint64_t ArgSize = 8;
5133 if (GpOffset + ArgSize <= kParamTLSSize) {
5134 if (!IsFixed) {
5135 SE = getShadowExtension(CB, ArgNo);
5136 uint64_t GapSize = 0;
5137 if (SE == ShadowExtension::None) {
5138 uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5139 assert(ArgAllocSize <= ArgSize)(static_cast <bool> (ArgAllocSize <= ArgSize) ? void
(0) : __assert_fail ("ArgAllocSize <= ArgSize", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 5139, __extension__ __PRETTY_FUNCTION__))
;
5140 GapSize = ArgSize - ArgAllocSize;
5141 }
5142 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize);
5143 if (MS.TrackOrigins)
5144 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize);
5145 }
5146 GpOffset += ArgSize;
5147 } else {
5148 GpOffset = kParamTLSSize;
5149 }
5150 break;
5151 }
5152 case ArgKind::FloatingPoint: {
5153 // Always keep track of FpOffset, but store shadow only for varargs.
5154 uint64_t ArgSize = 8;
5155 if (FpOffset + ArgSize <= kParamTLSSize) {
5156 if (!IsFixed) {
5157 // PoP says: "A short floating-point datum requires only the
5158 // left-most 32 bit positions of a floating-point register".
5159 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory,
5160 // don't extend shadow and don't mind the gap.
5161 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset);
5162 if (MS.TrackOrigins)
5163 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset);
5164 }
5165 FpOffset += ArgSize;
5166 } else {
5167 FpOffset = kParamTLSSize;
5168 }
5169 break;
5170 }
5171 case ArgKind::Vector: {
5172 // Keep track of VrIndex. No need to store shadow, since vector varargs
5173 // go through AK_Memory.
5174 assert(IsFixed)(static_cast <bool> (IsFixed) ? void (0) : __assert_fail
("IsFixed", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 5174, __extension__ __PRETTY_FUNCTION__))
;
5175 VrIndex++;
5176 break;
5177 }
5178 case ArgKind::Memory: {
5179 // Keep track of OverflowOffset and store shadow only for varargs.
5180 // Ignore fixed args, since we need to copy only the vararg portion of
5181 // the overflow area shadow.
5182 if (!IsFixed) {
5183 uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5184 uint64_t ArgSize = alignTo(ArgAllocSize, 8);
5185 if (OverflowOffset + ArgSize <= kParamTLSSize) {
5186 SE = getShadowExtension(CB, ArgNo);
5187 uint64_t GapSize =
5188 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0;
5189 ShadowBase =
5190 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize);
5191 if (MS.TrackOrigins)
5192 OriginBase =
5193 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize);
5194 OverflowOffset += ArgSize;
5195 } else {
5196 OverflowOffset = kParamTLSSize;
5197 }
5198 }
5199 break;
5200 }
5201 case ArgKind::Indirect:
5202 llvm_unreachable("Indirect must be converted to GeneralPurpose")::llvm::llvm_unreachable_internal("Indirect must be converted to GeneralPurpose"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5202
)
;
5203 }
5204 if (ShadowBase == nullptr)
5205 continue;
5206 Value *Shadow = MSV.getShadow(A);
5207 if (SE != ShadowExtension::None)
5208 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(),
5209 /*Signed*/ SE == ShadowExtension::Sign);
5210 ShadowBase = IRB.CreateIntToPtr(
5211 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s");
5212 IRB.CreateStore(Shadow, ShadowBase);
5213 if (MS.TrackOrigins) {
5214 Value *Origin = MSV.getOrigin(A);
5215 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
5216 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
5217 kMinOriginAlignment);
5218 }
5219 }
5220 Constant *OverflowSize = ConstantInt::get(
5221 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset);
5222 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5223 }
5224
5225 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) {
5226 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5227 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5228 }
5229
5230 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) {
5231 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
5232 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5233 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
5234 "_msarg_va_o");
5235 }
5236
5237 void unpoisonVAListTagForInst(IntrinsicInst &I) {
5238 IRBuilder<> IRB(&I);
5239 Value *VAListTag = I.getArgOperand(0);
5240 Value *ShadowPtr, *OriginPtr;
5241 const Align Alignment = Align(8);
5242 std::tie(ShadowPtr, OriginPtr) =
5243 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
5244 /*isStore*/ true);
5245 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5246 SystemZVAListTagSize, Alignment, false);
5247 }
5248
5249 void visitVAStartInst(VAStartInst &I) override {
5250 VAStartInstrumentationList.push_back(&I);
5251 unpoisonVAListTagForInst(I);
5252 }
5253
5254 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); }
5255
5256 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) {
5257 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5258 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
5259 IRB.CreateAdd(
5260 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5261 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)),
5262 PointerType::get(RegSaveAreaPtrTy, 0));
5263 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
5264 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5265 const Align Alignment = Align(8);
5266 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5267 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment,
5268 /*isStore*/ true);
5269 // TODO(iii): copy only fragments filled by visitCallBase()
5270 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5271 SystemZRegSaveAreaSize);
5272 if (MS.TrackOrigins)
5273 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
5274 Alignment, SystemZRegSaveAreaSize);
5275 }
5276
5277 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) {
5278 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5279 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
5280 IRB.CreateAdd(
5281 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5282 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)),
5283 PointerType::get(OverflowArgAreaPtrTy, 0));
5284 Value *OverflowArgAreaPtr =
5285 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
5286 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
5287 const Align Alignment = Align(8);
5288 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
5289 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
5290 Alignment, /*isStore*/ true);
5291 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
5292 SystemZOverflowOffset);
5293 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
5294 VAArgOverflowSize);
5295 if (MS.TrackOrigins) {
5296 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
5297 SystemZOverflowOffset);
5298 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
5299 VAArgOverflowSize);
5300 }
5301 }
5302
5303 void finalizeInstrumentation() override {
5304 assert(!VAArgOverflowSize && !VAArgTLSCopy &&(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5305
, __extension__ __PRETTY_FUNCTION__))
5305 "finalizeInstrumentation called twice")(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5305
, __extension__ __PRETTY_FUNCTION__))
;
5306 if (!VAStartInstrumentationList.empty()) {
5307 // If there is a va_start in this function, make a backup copy of
5308 // va_arg_tls somewhere in the function entry block.
5309 IRBuilder<> IRB(MSV.FnPrologueEnd);
5310 VAArgOverflowSize =
5311 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5312 Value *CopySize =
5313 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset),
5314 VAArgOverflowSize);
5315 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5316 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
5317 if (MS.TrackOrigins) {
5318 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5319 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
5320 Align(8), CopySize);
5321 }
5322 }
5323
5324 // Instrument va_start.
5325 // Copy va_list shadow from the backup copy of the TLS contents.
5326 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size();
5327 VaStartNo < VaStartNum; VaStartNo++) {
5328 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo];
5329 IRBuilder<> IRB(OrigInst->getNextNode());
5330 Value *VAListTag = OrigInst->getArgOperand(0);
5331 copyRegSaveArea(IRB, VAListTag);
5332 copyOverflowArea(IRB, VAListTag);
5333 }
5334 }
5335};
5336
5337/// A no-op implementation of VarArgHelper.
5338struct VarArgNoOpHelper : public VarArgHelper {
5339 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
5340 MemorySanitizerVisitor &MSV) {}
5341
5342 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {}
5343
5344 void visitVAStartInst(VAStartInst &I) override {}
5345
5346 void visitVACopyInst(VACopyInst &I) override {}
5347
5348 void finalizeInstrumentation() override {}
5349};
5350
5351} // end anonymous namespace
5352
5353static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
5354 MemorySanitizerVisitor &Visitor) {
5355 // VarArg handling is only implemented on AMD64. False positives are possible
5356 // on other platforms.
5357 Triple TargetTriple(Func.getParent()->getTargetTriple());
5358 if (TargetTriple.getArch() == Triple::x86_64)
5359 return new VarArgAMD64Helper(Func, Msan, Visitor);
5360 else if (TargetTriple.isMIPS64())
5361 return new VarArgMIPS64Helper(Func, Msan, Visitor);
5362 else if (TargetTriple.getArch() == Triple::aarch64)
5363 return new VarArgAArch64Helper(Func, Msan, Visitor);
5364 else if (TargetTriple.getArch() == Triple::ppc64 ||
5365 TargetTriple.getArch() == Triple::ppc64le)
5366 return new VarArgPowerPC64Helper(Func, Msan, Visitor);
5367 else if (TargetTriple.getArch() == Triple::systemz)
5368 return new VarArgSystemZHelper(Func, Msan, Visitor);
5369 else
5370 return new VarArgNoOpHelper(Func, Msan, Visitor);
5371}
5372
5373bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
5374 if (!CompileKernel && F.getName() == kMsanModuleCtorName)
5375 return false;
5376
5377 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
5378 return false;
5379
5380 MemorySanitizerVisitor Visitor(F, *this, TLI);
5381
5382 // Clear out readonly/readnone attributes.
5383 AttributeMask B;
5384 B.addAttribute(Attribute::ReadOnly)
5385 .addAttribute(Attribute::ReadNone)
5386 .addAttribute(Attribute::WriteOnly)
5387 .addAttribute(Attribute::ArgMemOnly)
5388 .addAttribute(Attribute::Speculatable);
5389 F.removeFnAttrs(B);
5390
5391 return Visitor.runOnFunction();
5392}