Bug Summary

File:build/source/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
Warning:line 1927, column 7
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name MemorySanitizer.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/Instrumentation -I /build/source/llvm/lib/Transforms/Instrumentation -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
1//===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// The algorithm of the tool is similar to Memcheck
14/// (http://goo.gl/QKbem). We associate a few shadow bits with every
15/// byte of the application memory, poison the shadow of the malloc-ed
16/// or alloca-ed memory, load the shadow bits on every memory read,
17/// propagate the shadow bits through some of the arithmetic
18/// instruction (including MOV), store the shadow bits on every memory
19/// write, report a bug on some other instructions (e.g. JMP) if the
20/// associated shadow is poisoned.
21///
22/// But there are differences too. The first and the major one:
23/// compiler instrumentation instead of binary instrumentation. This
24/// gives us much better register allocation, possible compiler
25/// optimizations and a fast start-up. But this brings the major issue
26/// as well: msan needs to see all program events, including system
27/// calls and reads/writes in system libraries, so we either need to
28/// compile *everything* with msan or use a binary translation
29/// component (e.g. DynamoRIO) to instrument pre-built libraries.
30/// Another difference from Memcheck is that we use 8 shadow bits per
31/// byte of application memory and use a direct shadow mapping. This
32/// greatly simplifies the instrumentation code and avoids races on
33/// shadow updates (Memcheck is single-threaded so races are not a
34/// concern there. Memcheck uses 2 shadow bits per byte with a slow
35/// path storage that uses 8 bits per byte).
36///
37/// The default value of shadow is 0, which means "clean" (not poisoned).
38///
39/// Every module initializer should call __msan_init to ensure that the
40/// shadow memory is ready. On error, __msan_warning is called. Since
41/// parameters and return values may be passed via registers, we have a
42/// specialized thread-local shadow for return values
43/// (__msan_retval_tls) and parameters (__msan_param_tls).
44///
45/// Origin tracking.
46///
47/// MemorySanitizer can track origins (allocation points) of all uninitialized
48/// values. This behavior is controlled with a flag (msan-track-origins) and is
49/// disabled by default.
50///
51/// Origins are 4-byte values created and interpreted by the runtime library.
52/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53/// of application memory. Propagation of origins is basically a bunch of
54/// "select" instructions that pick the origin of a dirty argument, if an
55/// instruction has one.
56///
57/// Every 4 aligned, consecutive bytes of application memory have one origin
58/// value associated with them. If these bytes contain uninitialized data
59/// coming from 2 different allocations, the last store wins. Because of this,
60/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61/// practice.
62///
63/// Origins are meaningless for fully initialized values, so MemorySanitizer
64/// avoids storing origin to memory when a fully initialized value is stored.
65/// This way it avoids needless overwriting origin of the 4-byte region on
66/// a short (i.e. 1 byte) clean store, and it is also good for performance.
67///
68/// Atomic handling.
69///
70/// Ideally, every atomic store of application value should update the
71/// corresponding shadow location in an atomic way. Unfortunately, atomic store
72/// of two disjoint locations can not be done without severe slowdown.
73///
74/// Therefore, we implement an approximation that may err on the safe side.
75/// In this implementation, every atomically accessed location in the program
76/// may only change from (partially) uninitialized to fully initialized, but
77/// not the other way around. We load the shadow _after_ the application load,
78/// and we store the shadow _before_ the app store. Also, we always store clean
79/// shadow (if the application store is atomic). This way, if the store-load
80/// pair constitutes a happens-before arc, shadow store and load are correctly
81/// ordered such that the load will get either the value that was stored, or
82/// some later value (which is always clean).
83///
84/// This does not work very well with Compare-And-Swap (CAS) and
85/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86/// must store the new shadow before the app operation, and load the shadow
87/// after the app operation. Computers don't work this way. Current
88/// implementation ignores the load aspect of CAS/RMW, always returning a clean
89/// value. It implements the store part as a simple atomic store by storing a
90/// clean shadow.
91///
92/// Instrumenting inline assembly.
93///
94/// For inline assembly code LLVM has little idea about which memory locations
95/// become initialized depending on the arguments. It can be possible to figure
96/// out which arguments are meant to point to inputs and outputs, but the
97/// actual semantics can be only visible at runtime. In the Linux kernel it's
98/// also possible that the arguments only indicate the offset for a base taken
99/// from a segment register, so it's dangerous to treat any asm() arguments as
100/// pointers. We take a conservative approach generating calls to
101/// __msan_instrument_asm_store(ptr, size)
102/// , which defer the memory unpoisoning to the runtime library.
103/// The latter can perform more complex address checks to figure out whether
104/// it's safe to touch the shadow memory.
105/// Like with atomic operations, we call __msan_instrument_asm_store() before
106/// the assembly call, so that changes to the shadow memory will be seen by
107/// other threads together with main memory initialization.
108///
109/// KernelMemorySanitizer (KMSAN) implementation.
110///
111/// The major differences between KMSAN and MSan instrumentation are:
112/// - KMSAN always tracks the origins and implies msan-keep-going=true;
113/// - KMSAN allocates shadow and origin memory for each page separately, so
114/// there are no explicit accesses to shadow and origin in the
115/// instrumentation.
116/// Shadow and origin values for a particular X-byte memory location
117/// (X=1,2,4,8) are accessed through pointers obtained via the
118/// __msan_metadata_ptr_for_load_X(ptr)
119/// __msan_metadata_ptr_for_store_X(ptr)
120/// functions. The corresponding functions check that the X-byte accesses
121/// are possible and returns the pointers to shadow and origin memory.
122/// Arbitrary sized accesses are handled with:
123/// __msan_metadata_ptr_for_load_n(ptr, size)
124/// __msan_metadata_ptr_for_store_n(ptr, size);
125/// Note that the sanitizer code has to deal with how shadow/origin pairs
126/// returned by the these functions are represented in different ABIs. In
127/// the X86_64 ABI they are returned in RDX:RAX, and in the SystemZ ABI they
128/// are written to memory pointed to by a hidden parameter.
129/// - TLS variables are stored in a single per-task struct. A call to a
130/// function __msan_get_context_state() returning a pointer to that struct
131/// is inserted into every instrumented function before the entry block;
132/// - __msan_warning() takes a 32-bit origin parameter;
133/// - local variables are poisoned with __msan_poison_alloca() upon function
134/// entry and unpoisoned with __msan_unpoison_alloca() before leaving the
135/// function;
136/// - the pass doesn't declare any global variables or add global constructors
137/// to the translation unit.
138///
139/// Also, KMSAN currently ignores uninitialized memory passed into inline asm
140/// calls, making sure we're on the safe side wrt. possible false positives.
141///
142/// KernelMemorySanitizer only supports X86_64 and SystemZ at the moment.
143///
144//
145// FIXME: This sanitizer does not yet handle scalable vectors
146//
147//===----------------------------------------------------------------------===//
148
149#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
150#include "llvm/ADT/APInt.h"
151#include "llvm/ADT/ArrayRef.h"
152#include "llvm/ADT/DenseMap.h"
153#include "llvm/ADT/DepthFirstIterator.h"
154#include "llvm/ADT/SetVector.h"
155#include "llvm/ADT/SmallString.h"
156#include "llvm/ADT/SmallVector.h"
157#include "llvm/ADT/StringExtras.h"
158#include "llvm/ADT/StringRef.h"
159#include "llvm/Analysis/GlobalsModRef.h"
160#include "llvm/Analysis/TargetLibraryInfo.h"
161#include "llvm/Analysis/ValueTracking.h"
162#include "llvm/IR/Argument.h"
163#include "llvm/IR/Attributes.h"
164#include "llvm/IR/BasicBlock.h"
165#include "llvm/IR/CallingConv.h"
166#include "llvm/IR/Constant.h"
167#include "llvm/IR/Constants.h"
168#include "llvm/IR/DataLayout.h"
169#include "llvm/IR/DerivedTypes.h"
170#include "llvm/IR/Function.h"
171#include "llvm/IR/GlobalValue.h"
172#include "llvm/IR/GlobalVariable.h"
173#include "llvm/IR/IRBuilder.h"
174#include "llvm/IR/InlineAsm.h"
175#include "llvm/IR/InstVisitor.h"
176#include "llvm/IR/InstrTypes.h"
177#include "llvm/IR/Instruction.h"
178#include "llvm/IR/Instructions.h"
179#include "llvm/IR/IntrinsicInst.h"
180#include "llvm/IR/Intrinsics.h"
181#include "llvm/IR/IntrinsicsX86.h"
182#include "llvm/IR/MDBuilder.h"
183#include "llvm/IR/Module.h"
184#include "llvm/IR/Type.h"
185#include "llvm/IR/Value.h"
186#include "llvm/IR/ValueMap.h"
187#include "llvm/Support/Alignment.h"
188#include "llvm/Support/AtomicOrdering.h"
189#include "llvm/Support/Casting.h"
190#include "llvm/Support/CommandLine.h"
191#include "llvm/Support/Debug.h"
192#include "llvm/Support/DebugCounter.h"
193#include "llvm/Support/ErrorHandling.h"
194#include "llvm/Support/MathExtras.h"
195#include "llvm/Support/raw_ostream.h"
196#include "llvm/TargetParser/Triple.h"
197#include "llvm/Transforms/Utils/BasicBlockUtils.h"
198#include "llvm/Transforms/Utils/Local.h"
199#include "llvm/Transforms/Utils/ModuleUtils.h"
200#include <algorithm>
201#include <cassert>
202#include <cstddef>
203#include <cstdint>
204#include <memory>
205#include <string>
206#include <tuple>
207
208using namespace llvm;
209
210#define DEBUG_TYPE"msan" "msan"
211
212DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check",static const unsigned DebugInsertCheck = DebugCounter::registerCounter
("msan-insert-check", "Controls which checks to insert")
213 "Controls which checks to insert")static const unsigned DebugInsertCheck = DebugCounter::registerCounter
("msan-insert-check", "Controls which checks to insert")
;
214
215static const unsigned kOriginSize = 4;
216static const Align kMinOriginAlignment = Align(4);
217static const Align kShadowTLSAlignment = Align(8);
218
219// These constants must be kept in sync with the ones in msan.h.
220static const unsigned kParamTLSSize = 800;
221static const unsigned kRetvalTLSSize = 800;
222
223// Accesses sizes are powers of two: 1, 2, 4, 8.
224static const size_t kNumberOfAccessSizes = 4;
225
226/// Track origins of uninitialized values.
227///
228/// Adds a section to MemorySanitizer report that points to the allocation
229/// (stack or heap) the uninitialized bits came from originally.
230static cl::opt<int> ClTrackOrigins(
231 "msan-track-origins",
232 cl::desc("Track origins (allocation sites) of poisoned memory"), cl::Hidden,
233 cl::init(0));
234
235static cl::opt<bool> ClKeepGoing("msan-keep-going",
236 cl::desc("keep going after reporting a UMR"),
237 cl::Hidden, cl::init(false));
238
239static cl::opt<bool>
240 ClPoisonStack("msan-poison-stack",
241 cl::desc("poison uninitialized stack variables"), cl::Hidden,
242 cl::init(true));
243
244static cl::opt<bool> ClPoisonStackWithCall(
245 "msan-poison-stack-with-call",
246 cl::desc("poison uninitialized stack variables with a call"), cl::Hidden,
247 cl::init(false));
248
249static cl::opt<int> ClPoisonStackPattern(
250 "msan-poison-stack-pattern",
251 cl::desc("poison uninitialized stack variables with the given pattern"),
252 cl::Hidden, cl::init(0xff));
253
254static cl::opt<bool>
255 ClPrintStackNames("msan-print-stack-names",
256 cl::desc("Print name of local stack variable"),
257 cl::Hidden, cl::init(true));
258
259static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
260 cl::desc("poison undef temps"), cl::Hidden,
261 cl::init(true));
262
263static cl::opt<bool>
264 ClHandleICmp("msan-handle-icmp",
265 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
266 cl::Hidden, cl::init(true));
267
268static cl::opt<bool>
269 ClHandleICmpExact("msan-handle-icmp-exact",
270 cl::desc("exact handling of relational integer ICmp"),
271 cl::Hidden, cl::init(false));
272
273static cl::opt<bool> ClHandleLifetimeIntrinsics(
274 "msan-handle-lifetime-intrinsics",
275 cl::desc(
276 "when possible, poison scoped variables at the beginning of the scope "
277 "(slower, but more precise)"),
278 cl::Hidden, cl::init(true));
279
280// When compiling the Linux kernel, we sometimes see false positives related to
281// MSan being unable to understand that inline assembly calls may initialize
282// local variables.
283// This flag makes the compiler conservatively unpoison every memory location
284// passed into an assembly call. Note that this may cause false positives.
285// Because it's impossible to figure out the array sizes, we can only unpoison
286// the first sizeof(type) bytes for each type* pointer.
287// The instrumentation is only enabled in KMSAN builds, and only if
288// -msan-handle-asm-conservative is on. This is done because we may want to
289// quickly disable assembly instrumentation when it breaks.
290static cl::opt<bool> ClHandleAsmConservative(
291 "msan-handle-asm-conservative",
292 cl::desc("conservative handling of inline assembly"), cl::Hidden,
293 cl::init(true));
294
295// This flag controls whether we check the shadow of the address
296// operand of load or store. Such bugs are very rare, since load from
297// a garbage address typically results in SEGV, but still happen
298// (e.g. only lower bits of address are garbage, or the access happens
299// early at program startup where malloc-ed memory is more likely to
300// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
301static cl::opt<bool> ClCheckAccessAddress(
302 "msan-check-access-address",
303 cl::desc("report accesses through a pointer which has poisoned shadow"),
304 cl::Hidden, cl::init(true));
305
306static cl::opt<bool> ClEagerChecks(
307 "msan-eager-checks",
308 cl::desc("check arguments and return values at function call boundaries"),
309 cl::Hidden, cl::init(false));
310
311static cl::opt<bool> ClDumpStrictInstructions(
312 "msan-dump-strict-instructions",
313 cl::desc("print out instructions with default strict semantics"),
314 cl::Hidden, cl::init(false));
315
316static cl::opt<int> ClInstrumentationWithCallThreshold(
317 "msan-instrumentation-with-call-threshold",
318 cl::desc(
319 "If the function being instrumented requires more than "
320 "this number of checks and origin stores, use callbacks instead of "
321 "inline checks (-1 means never use callbacks)."),
322 cl::Hidden, cl::init(3500));
323
324static cl::opt<bool>
325 ClEnableKmsan("msan-kernel",
326 cl::desc("Enable KernelMemorySanitizer instrumentation"),
327 cl::Hidden, cl::init(false));
328
329static cl::opt<bool>
330 ClDisableChecks("msan-disable-checks",
331 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden,
332 cl::init(false));
333
334static cl::opt<bool>
335 ClCheckConstantShadow("msan-check-constant-shadow",
336 cl::desc("Insert checks for constant shadow values"),
337 cl::Hidden, cl::init(true));
338
339// This is off by default because of a bug in gold:
340// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
341static cl::opt<bool>
342 ClWithComdat("msan-with-comdat",
343 cl::desc("Place MSan constructors in comdat sections"),
344 cl::Hidden, cl::init(false));
345
346// These options allow to specify custom memory map parameters
347// See MemoryMapParams for details.
348static cl::opt<uint64_t> ClAndMask("msan-and-mask",
349 cl::desc("Define custom MSan AndMask"),
350 cl::Hidden, cl::init(0));
351
352static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
353 cl::desc("Define custom MSan XorMask"),
354 cl::Hidden, cl::init(0));
355
356static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
357 cl::desc("Define custom MSan ShadowBase"),
358 cl::Hidden, cl::init(0));
359
360static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
361 cl::desc("Define custom MSan OriginBase"),
362 cl::Hidden, cl::init(0));
363
364static cl::opt<int>
365 ClDisambiguateWarning("msan-disambiguate-warning-threshold",
366 cl::desc("Define threshold for number of checks per "
367 "debug location to force origin update."),
368 cl::Hidden, cl::init(3));
369
370const char kMsanModuleCtorName[] = "msan.module_ctor";
371const char kMsanInitName[] = "__msan_init";
372
373namespace {
374
375// Memory map parameters used in application-to-shadow address calculation.
376// Offset = (Addr & ~AndMask) ^ XorMask
377// Shadow = ShadowBase + Offset
378// Origin = OriginBase + Offset
379struct MemoryMapParams {
380 uint64_t AndMask;
381 uint64_t XorMask;
382 uint64_t ShadowBase;
383 uint64_t OriginBase;
384};
385
386struct PlatformMemoryMapParams {
387 const MemoryMapParams *bits32;
388 const MemoryMapParams *bits64;
389};
390
391} // end anonymous namespace
392
393// i386 Linux
394static const MemoryMapParams Linux_I386_MemoryMapParams = {
395 0x000080000000, // AndMask
396 0, // XorMask (not used)
397 0, // ShadowBase (not used)
398 0x000040000000, // OriginBase
399};
400
401// x86_64 Linux
402static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
403 0, // AndMask (not used)
404 0x500000000000, // XorMask
405 0, // ShadowBase (not used)
406 0x100000000000, // OriginBase
407};
408
409// mips64 Linux
410static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
411 0, // AndMask (not used)
412 0x008000000000, // XorMask
413 0, // ShadowBase (not used)
414 0x002000000000, // OriginBase
415};
416
417// ppc64 Linux
418static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
419 0xE00000000000, // AndMask
420 0x100000000000, // XorMask
421 0x080000000000, // ShadowBase
422 0x1C0000000000, // OriginBase
423};
424
425// s390x Linux
426static const MemoryMapParams Linux_S390X_MemoryMapParams = {
427 0xC00000000000, // AndMask
428 0, // XorMask (not used)
429 0x080000000000, // ShadowBase
430 0x1C0000000000, // OriginBase
431};
432
433// aarch64 Linux
434static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
435 0, // AndMask (not used)
436 0x0B00000000000, // XorMask
437 0, // ShadowBase (not used)
438 0x0200000000000, // OriginBase
439};
440
441// aarch64 FreeBSD
442static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = {
443 0x1800000000000, // AndMask
444 0x0400000000000, // XorMask
445 0x0200000000000, // ShadowBase
446 0x0700000000000, // OriginBase
447};
448
449// i386 FreeBSD
450static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
451 0x000180000000, // AndMask
452 0x000040000000, // XorMask
453 0x000020000000, // ShadowBase
454 0x000700000000, // OriginBase
455};
456
457// x86_64 FreeBSD
458static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
459 0xc00000000000, // AndMask
460 0x200000000000, // XorMask
461 0x100000000000, // ShadowBase
462 0x380000000000, // OriginBase
463};
464
465// x86_64 NetBSD
466static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
467 0, // AndMask
468 0x500000000000, // XorMask
469 0, // ShadowBase
470 0x100000000000, // OriginBase
471};
472
473static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
474 &Linux_I386_MemoryMapParams,
475 &Linux_X86_64_MemoryMapParams,
476};
477
478static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
479 nullptr,
480 &Linux_MIPS64_MemoryMapParams,
481};
482
483static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
484 nullptr,
485 &Linux_PowerPC64_MemoryMapParams,
486};
487
488static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = {
489 nullptr,
490 &Linux_S390X_MemoryMapParams,
491};
492
493static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
494 nullptr,
495 &Linux_AArch64_MemoryMapParams,
496};
497
498static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = {
499 nullptr,
500 &FreeBSD_AArch64_MemoryMapParams,
501};
502
503static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
504 &FreeBSD_I386_MemoryMapParams,
505 &FreeBSD_X86_64_MemoryMapParams,
506};
507
508static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
509 nullptr,
510 &NetBSD_X86_64_MemoryMapParams,
511};
512
513namespace {
514
515/// Instrument functions of a module to detect uninitialized reads.
516///
517/// Instantiating MemorySanitizer inserts the msan runtime library API function
518/// declarations into the module if they don't exist already. Instantiating
519/// ensures the __msan_init function is in the list of global constructors for
520/// the module.
521class MemorySanitizer {
522public:
523 MemorySanitizer(Module &M, MemorySanitizerOptions Options)
524 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
525 Recover(Options.Recover), EagerChecks(Options.EagerChecks) {
526 initializeModule(M);
527 }
528
529 // MSan cannot be moved or copied because of MapParams.
530 MemorySanitizer(MemorySanitizer &&) = delete;
531 MemorySanitizer &operator=(MemorySanitizer &&) = delete;
532 MemorySanitizer(const MemorySanitizer &) = delete;
533 MemorySanitizer &operator=(const MemorySanitizer &) = delete;
534
535 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
536
537private:
538 friend struct MemorySanitizerVisitor;
539 friend struct VarArgAMD64Helper;
540 friend struct VarArgMIPS64Helper;
541 friend struct VarArgAArch64Helper;
542 friend struct VarArgPowerPC64Helper;
543 friend struct VarArgSystemZHelper;
544
545 void initializeModule(Module &M);
546 void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI);
547 void createKernelApi(Module &M, const TargetLibraryInfo &TLI);
548 void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI);
549
550 template <typename... ArgsTy>
551 FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name,
552 ArgsTy... Args);
553
554 /// True if we're compiling the Linux kernel.
555 bool CompileKernel;
556 /// Track origins (allocation points) of uninitialized values.
557 int TrackOrigins;
558 bool Recover;
559 bool EagerChecks;
560
561 Triple TargetTriple;
562 LLVMContext *C;
563 Type *IntptrTy;
564 Type *OriginTy;
565
566 // XxxTLS variables represent the per-thread state in MSan and per-task state
567 // in KMSAN.
568 // For the userspace these point to thread-local globals. In the kernel land
569 // they point to the members of a per-task struct obtained via a call to
570 // __msan_get_context_state().
571
572 /// Thread-local shadow storage for function parameters.
573 Value *ParamTLS;
574
575 /// Thread-local origin storage for function parameters.
576 Value *ParamOriginTLS;
577
578 /// Thread-local shadow storage for function return value.
579 Value *RetvalTLS;
580
581 /// Thread-local origin storage for function return value.
582 Value *RetvalOriginTLS;
583
584 /// Thread-local shadow storage for in-register va_arg function
585 /// parameters (x86_64-specific).
586 Value *VAArgTLS;
587
588 /// Thread-local shadow storage for in-register va_arg function
589 /// parameters (x86_64-specific).
590 Value *VAArgOriginTLS;
591
592 /// Thread-local shadow storage for va_arg overflow area
593 /// (x86_64-specific).
594 Value *VAArgOverflowSizeTLS;
595
596 /// Are the instrumentation callbacks set up?
597 bool CallbacksInitialized = false;
598
599 /// The run-time callback to print a warning.
600 FunctionCallee WarningFn;
601
602 // These arrays are indexed by log2(AccessSize).
603 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
604 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
605
606 /// Run-time helper that generates a new origin value for a stack
607 /// allocation.
608 FunctionCallee MsanSetAllocaOriginWithDescriptionFn;
609 // No description version
610 FunctionCallee MsanSetAllocaOriginNoDescriptionFn;
611
612 /// Run-time helper that poisons stack on function entry.
613 FunctionCallee MsanPoisonStackFn;
614
615 /// Run-time helper that records a store (or any event) of an
616 /// uninitialized value and returns an updated origin id encoding this info.
617 FunctionCallee MsanChainOriginFn;
618
619 /// Run-time helper that paints an origin over a region.
620 FunctionCallee MsanSetOriginFn;
621
622 /// MSan runtime replacements for memmove, memcpy and memset.
623 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
624
625 /// KMSAN callback for task-local function argument shadow.
626 StructType *MsanContextStateTy;
627 FunctionCallee MsanGetContextStateFn;
628
629 /// Functions for poisoning/unpoisoning local variables
630 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
631
632 /// Pair of shadow/origin pointers.
633 Type *MsanMetadata;
634
635 /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata.
636 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
637 FunctionCallee MsanMetadataPtrForLoad_1_8[4];
638 FunctionCallee MsanMetadataPtrForStore_1_8[4];
639 FunctionCallee MsanInstrumentAsmStoreFn;
640
641 /// Storage for return values of the MsanMetadataPtrXxx functions.
642 Value *MsanMetadataAlloca;
643
644 /// Helper to choose between different MsanMetadataPtrXxx().
645 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
646
647 /// Memory map parameters used in application-to-shadow calculation.
648 const MemoryMapParams *MapParams;
649
650 /// Custom memory map parameters used when -msan-shadow-base or
651 // -msan-origin-base is provided.
652 MemoryMapParams CustomMapParams;
653
654 MDNode *ColdCallWeights;
655
656 /// Branch weights for origin store.
657 MDNode *OriginStoreWeights;
658};
659
660void insertModuleCtor(Module &M) {
661 getOrCreateSanitizerCtorAndInitFunctions(
662 M, kMsanModuleCtorName, kMsanInitName,
663 /*InitArgTypes=*/{},
664 /*InitArgs=*/{},
665 // This callback is invoked when the functions are created the first
666 // time. Hook them into the global ctors list in that case:
667 [&](Function *Ctor, FunctionCallee) {
668 if (!ClWithComdat) {
669 appendToGlobalCtors(M, Ctor, 0);
670 return;
671 }
672 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
673 Ctor->setComdat(MsanCtorComdat);
674 appendToGlobalCtors(M, Ctor, 0, Ctor);
675 });
676}
677
678template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
679 return (Opt.getNumOccurrences() > 0) ? Opt : Default;
680}
681
682} // end anonymous namespace
683
684MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K,
685 bool EagerChecks)
686 : Kernel(getOptOrDefault(ClEnableKmsan, K)),
687 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
688 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)),
689 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {}
690
691PreservedAnalyses MemorySanitizerPass::run(Module &M,
692 ModuleAnalysisManager &AM) {
693 bool Modified = false;
694 if (!Options.Kernel) {
695 insertModuleCtor(M);
696 Modified = true;
697 }
698
699 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
700 for (Function &F : M) {
701 if (F.empty())
702 continue;
703 MemorySanitizer Msan(*F.getParent(), Options);
704 Modified |=
705 Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F));
706 }
707
708 if (!Modified)
709 return PreservedAnalyses::all();
710
711 PreservedAnalyses PA = PreservedAnalyses::none();
712 // GlobalsAA is considered stateless and does not get invalidated unless
713 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
714 // make changes that require GlobalsAA to be invalidated.
715 PA.abandon<GlobalsAA>();
716 return PA;
717}
718
719void MemorySanitizerPass::printPipeline(
720 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
721 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline(
722 OS, MapClassName2PassName);
723 OS << '<';
724 if (Options.Recover)
725 OS << "recover;";
726 if (Options.Kernel)
727 OS << "kernel;";
728 if (Options.EagerChecks)
729 OS << "eager-checks;";
730 OS << "track-origins=" << Options.TrackOrigins;
731 OS << '>';
732}
733
734/// Create a non-const global initialized with the given string.
735///
736/// Creates a writable global for Str so that we can pass it to the
737/// run-time lib. Runtime uses first 4 bytes of the string to store the
738/// frame ID, so the string needs to be mutable.
739static GlobalVariable *createPrivateConstGlobalForString(Module &M,
740 StringRef Str) {
741 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
742 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true,
743 GlobalValue::PrivateLinkage, StrConst, "");
744}
745
746template <typename... ArgsTy>
747FunctionCallee
748MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name,
749 ArgsTy... Args) {
750 if (TargetTriple.getArch() == Triple::systemz) {
751 // SystemZ ABI: shadow/origin pair is returned via a hidden parameter.
752 return M.getOrInsertFunction(Name, Type::getVoidTy(*C),
753 PointerType::get(MsanMetadata, 0),
754 std::forward<ArgsTy>(Args)...);
755 }
756
757 return M.getOrInsertFunction(Name, MsanMetadata,
758 std::forward<ArgsTy>(Args)...);
759}
760
761/// Create KMSAN API callbacks.
762void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) {
763 IRBuilder<> IRB(*C);
764
765 // These will be initialized in insertKmsanPrologue().
766 RetvalTLS = nullptr;
767 RetvalOriginTLS = nullptr;
768 ParamTLS = nullptr;
769 ParamOriginTLS = nullptr;
770 VAArgTLS = nullptr;
771 VAArgOriginTLS = nullptr;
772 VAArgOverflowSizeTLS = nullptr;
773
774 WarningFn = M.getOrInsertFunction("__msan_warning",
775 TLI.getAttrList(C, {0}, /*Signed=*/false),
776 IRB.getVoidTy(), IRB.getInt32Ty());
777
778 // Requests the per-task context state (kmsan_context_state*) from the
779 // runtime library.
780 MsanContextStateTy = StructType::get(
781 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
782 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
783 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
784 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
785 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
786 OriginTy);
787 MsanGetContextStateFn = M.getOrInsertFunction(
788 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
789
790 MsanMetadata = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
791 PointerType::get(IRB.getInt32Ty(), 0));
792
793 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
794 std::string name_load =
795 "__msan_metadata_ptr_for_load_" + std::to_string(size);
796 std::string name_store =
797 "__msan_metadata_ptr_for_store_" + std::to_string(size);
798 MsanMetadataPtrForLoad_1_8[ind] = getOrInsertMsanMetadataFunction(
799 M, name_load, PointerType::get(IRB.getInt8Ty(), 0));
800 MsanMetadataPtrForStore_1_8[ind] = getOrInsertMsanMetadataFunction(
801 M, name_store, PointerType::get(IRB.getInt8Ty(), 0));
802 }
803
804 MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction(
805 M, "__msan_metadata_ptr_for_load_n", PointerType::get(IRB.getInt8Ty(), 0),
806 IRB.getInt64Ty());
807 MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction(
808 M, "__msan_metadata_ptr_for_store_n",
809 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
810
811 // Functions for poisoning and unpoisoning memory.
812 MsanPoisonAllocaFn =
813 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
814 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
815 MsanUnpoisonAllocaFn = M.getOrInsertFunction(
816 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
817}
818
819static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
820 return M.getOrInsertGlobal(Name, Ty, [&] {
821 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
822 nullptr, Name, nullptr,
823 GlobalVariable::InitialExecTLSModel);
824 });
825}
826
827/// Insert declarations for userspace-specific functions and globals.
828void MemorySanitizer::createUserspaceApi(Module &M, const TargetLibraryInfo &TLI) {
829 IRBuilder<> IRB(*C);
830
831 // Create the callback.
832 // FIXME: this function should have "Cold" calling conv,
833 // which is not yet implemented.
834 if (TrackOrigins) {
835 StringRef WarningFnName = Recover ? "__msan_warning_with_origin"
836 : "__msan_warning_with_origin_noreturn";
837 WarningFn = M.getOrInsertFunction(WarningFnName,
838 TLI.getAttrList(C, {0}, /*Signed=*/false),
839 IRB.getVoidTy(), IRB.getInt32Ty());
840 } else {
841 StringRef WarningFnName =
842 Recover ? "__msan_warning" : "__msan_warning_noreturn";
843 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
844 }
845
846 // Create the global TLS variables.
847 RetvalTLS =
848 getOrInsertGlobal(M, "__msan_retval_tls",
849 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
850
851 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
852
853 ParamTLS =
854 getOrInsertGlobal(M, "__msan_param_tls",
855 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
856
857 ParamOriginTLS =
858 getOrInsertGlobal(M, "__msan_param_origin_tls",
859 ArrayType::get(OriginTy, kParamTLSSize / 4));
860
861 VAArgTLS =
862 getOrInsertGlobal(M, "__msan_va_arg_tls",
863 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
864
865 VAArgOriginTLS =
866 getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
867 ArrayType::get(OriginTy, kParamTLSSize / 4));
868
869 VAArgOverflowSizeTLS =
870 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
871
872 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
873 AccessSizeIndex++) {
874 unsigned AccessSize = 1 << AccessSizeIndex;
875 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
876 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
877 FunctionName, TLI.getAttrList(C, {0, 1}, /*Signed=*/false),
878 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty());
879
880 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
881 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
882 FunctionName, TLI.getAttrList(C, {0, 2}, /*Signed=*/false),
883 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(),
884 IRB.getInt32Ty());
885 }
886
887 MsanSetAllocaOriginWithDescriptionFn = M.getOrInsertFunction(
888 "__msan_set_alloca_origin_with_descr", IRB.getVoidTy(),
889 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
890 MsanSetAllocaOriginNoDescriptionFn = M.getOrInsertFunction(
891 "__msan_set_alloca_origin_no_descr", IRB.getVoidTy(), IRB.getInt8PtrTy(),
892 IntptrTy, IRB.getInt8PtrTy());
893 MsanPoisonStackFn = M.getOrInsertFunction(
894 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
895}
896
897/// Insert extern declaration of runtime-provided functions and globals.
898void MemorySanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo &TLI) {
899 // Only do this once.
900 if (CallbacksInitialized)
901 return;
902
903 IRBuilder<> IRB(*C);
904 // Initialize callbacks that are common for kernel and userspace
905 // instrumentation.
906 MsanChainOriginFn = M.getOrInsertFunction(
907 "__msan_chain_origin",
908 TLI.getAttrList(C, {0}, /*Signed=*/false, /*Ret=*/true), IRB.getInt32Ty(),
909 IRB.getInt32Ty());
910 MsanSetOriginFn = M.getOrInsertFunction(
911 "__msan_set_origin", TLI.getAttrList(C, {2}, /*Signed=*/false),
912 IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty());
913 MemmoveFn =
914 M.getOrInsertFunction("__msan_memmove", IRB.getInt8PtrTy(),
915 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
916 MemcpyFn =
917 M.getOrInsertFunction("__msan_memcpy", IRB.getInt8PtrTy(),
918 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
919 MemsetFn = M.getOrInsertFunction(
920 "__msan_memset", TLI.getAttrList(C, {1}, /*Signed=*/true),
921 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
922
923 MsanInstrumentAsmStoreFn =
924 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
925 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
926
927 if (CompileKernel) {
928 createKernelApi(M, TLI);
929 } else {
930 createUserspaceApi(M, TLI);
931 }
932 CallbacksInitialized = true;
933}
934
935FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
936 int size) {
937 FunctionCallee *Fns =
938 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
939 switch (size) {
940 case 1:
941 return Fns[0];
942 case 2:
943 return Fns[1];
944 case 4:
945 return Fns[2];
946 case 8:
947 return Fns[3];
948 default:
949 return nullptr;
950 }
951}
952
953/// Module-level initialization.
954///
955/// inserts a call to __msan_init to the module's constructor list.
956void MemorySanitizer::initializeModule(Module &M) {
957 auto &DL = M.getDataLayout();
958
959 TargetTriple = Triple(M.getTargetTriple());
960
961 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
962 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
963 // Check the overrides first
964 if (ShadowPassed || OriginPassed) {
965 CustomMapParams.AndMask = ClAndMask;
966 CustomMapParams.XorMask = ClXorMask;
967 CustomMapParams.ShadowBase = ClShadowBase;
968 CustomMapParams.OriginBase = ClOriginBase;
969 MapParams = &CustomMapParams;
970 } else {
971 switch (TargetTriple.getOS()) {
972 case Triple::FreeBSD:
973 switch (TargetTriple.getArch()) {
974 case Triple::aarch64:
975 MapParams = FreeBSD_ARM_MemoryMapParams.bits64;
976 break;
977 case Triple::x86_64:
978 MapParams = FreeBSD_X86_MemoryMapParams.bits64;
979 break;
980 case Triple::x86:
981 MapParams = FreeBSD_X86_MemoryMapParams.bits32;
982 break;
983 default:
984 report_fatal_error("unsupported architecture");
985 }
986 break;
987 case Triple::NetBSD:
988 switch (TargetTriple.getArch()) {
989 case Triple::x86_64:
990 MapParams = NetBSD_X86_MemoryMapParams.bits64;
991 break;
992 default:
993 report_fatal_error("unsupported architecture");
994 }
995 break;
996 case Triple::Linux:
997 switch (TargetTriple.getArch()) {
998 case Triple::x86_64:
999 MapParams = Linux_X86_MemoryMapParams.bits64;
1000 break;
1001 case Triple::x86:
1002 MapParams = Linux_X86_MemoryMapParams.bits32;
1003 break;
1004 case Triple::mips64:
1005 case Triple::mips64el:
1006 MapParams = Linux_MIPS_MemoryMapParams.bits64;
1007 break;
1008 case Triple::ppc64:
1009 case Triple::ppc64le:
1010 MapParams = Linux_PowerPC_MemoryMapParams.bits64;
1011 break;
1012 case Triple::systemz:
1013 MapParams = Linux_S390_MemoryMapParams.bits64;
1014 break;
1015 case Triple::aarch64:
1016 case Triple::aarch64_be:
1017 MapParams = Linux_ARM_MemoryMapParams.bits64;
1018 break;
1019 default:
1020 report_fatal_error("unsupported architecture");
1021 }
1022 break;
1023 default:
1024 report_fatal_error("unsupported operating system");
1025 }
1026 }
1027
1028 C = &(M.getContext());
1029 IRBuilder<> IRB(*C);
1030 IntptrTy = IRB.getIntPtrTy(DL);
1031 OriginTy = IRB.getInt32Ty();
1032
1033 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
1034 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
1035
1036 if (!CompileKernel) {
1037 if (TrackOrigins)
1038 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
1039 return new GlobalVariable(
1040 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
1041 IRB.getInt32(TrackOrigins), "__msan_track_origins");
1042 });
1043
1044 if (Recover)
1045 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
1046 return new GlobalVariable(M, IRB.getInt32Ty(), true,
1047 GlobalValue::WeakODRLinkage,
1048 IRB.getInt32(Recover), "__msan_keep_going");
1049 });
1050 }
1051}
1052
1053namespace {
1054
1055/// A helper class that handles instrumentation of VarArg
1056/// functions on a particular platform.
1057///
1058/// Implementations are expected to insert the instrumentation
1059/// necessary to propagate argument shadow through VarArg function
1060/// calls. Visit* methods are called during an InstVisitor pass over
1061/// the function, and should avoid creating new basic blocks. A new
1062/// instance of this class is created for each instrumented function.
1063struct VarArgHelper {
1064 virtual ~VarArgHelper() = default;
1065
1066 /// Visit a CallBase.
1067 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0;
1068
1069 /// Visit a va_start call.
1070 virtual void visitVAStartInst(VAStartInst &I) = 0;
1071
1072 /// Visit a va_copy call.
1073 virtual void visitVACopyInst(VACopyInst &I) = 0;
1074
1075 /// Finalize function instrumentation.
1076 ///
1077 /// This method is called after visiting all interesting (see above)
1078 /// instructions in a function.
1079 virtual void finalizeInstrumentation() = 0;
1080};
1081
1082struct MemorySanitizerVisitor;
1083
1084} // end anonymous namespace
1085
1086static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1087 MemorySanitizerVisitor &Visitor);
1088
1089static unsigned TypeSizeToSizeIndex(TypeSize TS) {
1090 if (TS.isScalable())
1091 // Scalable types unconditionally take slowpaths.
1092 return kNumberOfAccessSizes;
1093 unsigned TypeSizeFixed = TS.getFixedValue();
1094 if (TypeSizeFixed <= 8)
1095 return 0;
1096 return Log2_32_Ceil((TypeSizeFixed + 7) / 8);
1097}
1098
1099namespace {
1100
1101/// Helper class to attach debug information of the given instruction onto new
1102/// instructions inserted after.
1103class NextNodeIRBuilder : public IRBuilder<> {
1104public:
1105 explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) {
1106 SetCurrentDebugLocation(IP->getDebugLoc());
1107 }
1108};
1109
1110/// This class does all the work for a given function. Store and Load
1111/// instructions store and load corresponding shadow and origin
1112/// values. Most instructions propagate shadow from arguments to their
1113/// return values. Certain instructions (most importantly, BranchInst)
1114/// test their argument shadow and print reports (with a runtime call) if it's
1115/// non-zero.
1116struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1117 Function &F;
1118 MemorySanitizer &MS;
1119 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1120 ValueMap<Value *, Value *> ShadowMap, OriginMap;
1121 std::unique_ptr<VarArgHelper> VAHelper;
1122 const TargetLibraryInfo *TLI;
1123 Instruction *FnPrologueEnd;
1124
1125 // The following flags disable parts of MSan instrumentation based on
1126 // exclusion list contents and command-line options.
1127 bool InsertChecks;
1128 bool PropagateShadow;
1129 bool PoisonStack;
1130 bool PoisonUndef;
1131
1132 struct ShadowOriginAndInsertPoint {
1133 Value *Shadow;
1134 Value *Origin;
1135 Instruction *OrigIns;
1136
1137 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1138 : Shadow(S), Origin(O), OrigIns(I) {}
1139 };
1140 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1141 DenseMap<const DILocation *, int> LazyWarningDebugLocationCount;
1142 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1143 SmallSetVector<AllocaInst *, 16> AllocaSet;
1144 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1145 SmallVector<StoreInst *, 16> StoreList;
1146 int64_t SplittableBlocksCount = 0;
1147
1148 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1149 const TargetLibraryInfo &TLI)
1150 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1151 bool SanitizeFunction =
1152 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks;
1153 InsertChecks = SanitizeFunction;
1154 PropagateShadow = SanitizeFunction;
1155 PoisonStack = SanitizeFunction && ClPoisonStack;
1156 PoisonUndef = SanitizeFunction && ClPoisonUndef;
1157
1158 // In the presence of unreachable blocks, we may see Phi nodes with
1159 // incoming nodes from such blocks. Since InstVisitor skips unreachable
1160 // blocks, such nodes will not have any shadow value associated with them.
1161 // It's easier to remove unreachable blocks than deal with missing shadow.
1162 removeUnreachableBlocks(F);
1163
1164 MS.initializeCallbacks(*F.getParent(), TLI);
1165 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI())
1166 .CreateIntrinsic(Intrinsic::donothing, {}, {});
1167
1168 if (MS.CompileKernel) {
1169 IRBuilder<> IRB(FnPrologueEnd);
1170 insertKmsanPrologue(IRB);
1171 }
1172
1173 LLVM_DEBUG(if (!InsertChecks) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { if (!InsertChecks) dbgs() << "MemorySanitizer is not inserting checks into '"
<< F.getName() << "'\n"; } } while (false)
1174 << "MemorySanitizer is not inserting checks into '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { if (!InsertChecks) dbgs() << "MemorySanitizer is not inserting checks into '"
<< F.getName() << "'\n"; } } while (false)
1175 << F.getName() << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { if (!InsertChecks) dbgs() << "MemorySanitizer is not inserting checks into '"
<< F.getName() << "'\n"; } } while (false)
;
1176 }
1177
1178 bool instrumentWithCalls(Value *V) {
1179 // Constants likely will be eliminated by follow-up passes.
1180 if (isa<Constant>(V))
1181 return false;
1182
1183 ++SplittableBlocksCount;
1184 return ClInstrumentationWithCallThreshold >= 0 &&
1185 SplittableBlocksCount > ClInstrumentationWithCallThreshold;
1186 }
1187
1188 bool isInPrologue(Instruction &I) {
1189 return I.getParent() == FnPrologueEnd->getParent() &&
1190 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd));
1191 }
1192
1193 // Creates a new origin and records the stack trace. In general we can call
1194 // this function for any origin manipulation we like. However it will cost
1195 // runtime resources. So use this wisely only if it can provide additional
1196 // information helpful to a user.
1197 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1198 if (MS.TrackOrigins <= 1)
1199 return V;
1200 return IRB.CreateCall(MS.MsanChainOriginFn, V);
1201 }
1202
1203 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1204 const DataLayout &DL = F.getParent()->getDataLayout();
1205 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1206 if (IntptrSize == kOriginSize)
1207 return Origin;
1208 assert(IntptrSize == kOriginSize * 2)(static_cast <bool> (IntptrSize == kOriginSize * 2) ? void
(0) : __assert_fail ("IntptrSize == kOriginSize * 2", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1208, __extension__ __PRETTY_FUNCTION__))
;
1209 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1210 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1211 }
1212
1213 /// Fill memory range with the given origin value.
1214 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1215 TypeSize TS, Align Alignment) {
1216 const DataLayout &DL = F.getParent()->getDataLayout();
1217 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy);
1218 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1219 assert(IntptrAlignment >= kMinOriginAlignment)(static_cast <bool> (IntptrAlignment >= kMinOriginAlignment
) ? void (0) : __assert_fail ("IntptrAlignment >= kMinOriginAlignment"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1219
, __extension__ __PRETTY_FUNCTION__))
;
1220 assert(IntptrSize >= kOriginSize)(static_cast <bool> (IntptrSize >= kOriginSize) ? void
(0) : __assert_fail ("IntptrSize >= kOriginSize", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1220, __extension__ __PRETTY_FUNCTION__))
;
1221
1222 // Note: The loop based formation works for fixed length vectors too,
1223 // however we prefer to unroll and specialize alignment below.
1224 if (TS.isScalable()) {
1225 Value *Size = IRB.CreateTypeSize(IRB.getInt32Ty(), TS);
1226 Value *RoundUp = IRB.CreateAdd(Size, IRB.getInt32(kOriginSize - 1));
1227 Value *End = IRB.CreateUDiv(RoundUp, IRB.getInt32(kOriginSize));
1228 auto [InsertPt, Index] =
1229 SplitBlockAndInsertSimpleForLoop(End, &*IRB.GetInsertPoint());
1230 IRB.SetInsertPoint(InsertPt);
1231
1232 Value *GEP = IRB.CreateGEP(MS.OriginTy, OriginPtr, Index);
1233 IRB.CreateAlignedStore(Origin, GEP, kMinOriginAlignment);
1234 return;
1235 }
1236
1237 unsigned Size = TS.getFixedValue();
1238
1239 unsigned Ofs = 0;
1240 Align CurrentAlignment = Alignment;
1241 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1242 Value *IntptrOrigin = originToIntptr(IRB, Origin);
1243 Value *IntptrOriginPtr =
1244 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
1245 for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1246 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1247 : IntptrOriginPtr;
1248 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1249 Ofs += IntptrSize / kOriginSize;
1250 CurrentAlignment = IntptrAlignment;
1251 }
1252 }
1253
1254 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1255 Value *GEP =
1256 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1257 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1258 CurrentAlignment = kMinOriginAlignment;
1259 }
1260 }
1261
1262 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1263 Value *OriginPtr, Align Alignment) {
1264 const DataLayout &DL = F.getParent()->getDataLayout();
1265 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1266 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType());
1267 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1268 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1269 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) {
1270 // Origin is not needed: value is initialized or const shadow is
1271 // ignored.
1272 return;
1273 }
1274 if (llvm::isKnownNonZero(ConvertedShadow, DL)) {
1275 // Copy origin as the value is definitely uninitialized.
1276 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1277 OriginAlignment);
1278 return;
1279 }
1280 // Fallback to runtime check, which still can be optimized out later.
1281 }
1282
1283 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1284 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1285 if (instrumentWithCalls(ConvertedShadow) &&
1286 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1287 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1288 Value *ConvertedShadow2 =
1289 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1290 CallBase *CB = IRB.CreateCall(
1291 Fn, {ConvertedShadow2,
1292 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin});
1293 CB->addParamAttr(0, Attribute::ZExt);
1294 CB->addParamAttr(2, Attribute::ZExt);
1295 } else {
1296 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1297 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1298 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1299 IRBuilder<> IRBNew(CheckTerm);
1300 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1301 OriginAlignment);
1302 }
1303 }
1304
1305 void materializeStores() {
1306 for (StoreInst *SI : StoreList) {
1307 IRBuilder<> IRB(SI);
1308 Value *Val = SI->getValueOperand();
1309 Value *Addr = SI->getPointerOperand();
1310 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1311 Value *ShadowPtr, *OriginPtr;
1312 Type *ShadowTy = Shadow->getType();
1313 const Align Alignment = SI->getAlign();
1314 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1315 std::tie(ShadowPtr, OriginPtr) =
1316 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1317
1318 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1319 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " STORE: " << *NewSI <<
"\n"; } } while (false)
;
1320 (void)NewSI;
1321
1322 if (SI->isAtomic())
1323 SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1324
1325 if (MS.TrackOrigins && !SI->isAtomic())
1326 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1327 OriginAlignment);
1328 }
1329 }
1330
1331 // Returns true if Debug Location curresponds to multiple warnings.
1332 bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) {
1333 if (MS.TrackOrigins < 2)
1334 return false;
1335
1336 if (LazyWarningDebugLocationCount.empty())
1337 for (const auto &I : InstrumentationList)
1338 ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()];
1339
1340 return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning;
1341 }
1342
1343 /// Helper function to insert a warning at IRB's current insert point.
1344 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1345 if (!Origin)
1346 Origin = (Value *)IRB.getInt32(0);
1347 assert(Origin->getType()->isIntegerTy())(static_cast <bool> (Origin->getType()->isIntegerTy
()) ? void (0) : __assert_fail ("Origin->getType()->isIntegerTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1347
, __extension__ __PRETTY_FUNCTION__))
;
1348
1349 if (shouldDisambiguateWarningLocation(IRB.getCurrentDebugLocation())) {
1350 // Try to create additional origin with debug info of the last origin
1351 // instruction. It may provide additional information to the user.
1352 if (Instruction *OI = dyn_cast_or_null<Instruction>(Origin)) {
1353 assert(MS.TrackOrigins)(static_cast <bool> (MS.TrackOrigins) ? void (0) : __assert_fail
("MS.TrackOrigins", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1353, __extension__ __PRETTY_FUNCTION__))
;
1354 auto NewDebugLoc = OI->getDebugLoc();
1355 // Origin update with missing or the same debug location provides no
1356 // additional value.
1357 if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) {
1358 // Insert update just before the check, so we call runtime only just
1359 // before the report.
1360 IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint());
1361 IRBOrigin.SetCurrentDebugLocation(NewDebugLoc);
1362 Origin = updateOrigin(Origin, IRBOrigin);
1363 }
1364 }
1365 }
1366
1367 if (MS.CompileKernel || MS.TrackOrigins)
1368 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge();
1369 else
1370 IRB.CreateCall(MS.WarningFn)->setCannotMerge();
1371 // FIXME: Insert UnreachableInst if !MS.Recover?
1372 // This may invalidate some of the following checks and needs to be done
1373 // at the very end.
1374 }
1375
1376 void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow,
1377 Value *Origin) {
1378 const DataLayout &DL = F.getParent()->getDataLayout();
1379 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1380 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1381 if (instrumentWithCalls(ConvertedShadow) &&
1382 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1383 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1384 Value *ConvertedShadow2 =
1385 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1386 CallBase *CB = IRB.CreateCall(
1387 Fn, {ConvertedShadow2,
1388 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)});
1389 CB->addParamAttr(0, Attribute::ZExt);
1390 CB->addParamAttr(1, Attribute::ZExt);
1391 } else {
1392 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1393 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1394 Cmp, &*IRB.GetInsertPoint(),
1395 /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1396
1397 IRB.SetInsertPoint(CheckTerm);
1398 insertWarningFn(IRB, Origin);
1399 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " CHECK: " << *Cmp <<
"\n"; } } while (false)
;
1400 }
1401 }
1402
1403 void materializeInstructionChecks(
1404 ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) {
1405 const DataLayout &DL = F.getParent()->getDataLayout();
1406 // Disable combining in some cases. TrackOrigins checks each shadow to pick
1407 // correct origin.
1408 bool Combine = !MS.TrackOrigins;
1409 Instruction *Instruction = InstructionChecks.front().OrigIns;
1410 Value *Shadow = nullptr;
1411 for (const auto &ShadowData : InstructionChecks) {
1412 assert(ShadowData.OrigIns == Instruction)(static_cast <bool> (ShadowData.OrigIns == Instruction)
? void (0) : __assert_fail ("ShadowData.OrigIns == Instruction"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1412
, __extension__ __PRETTY_FUNCTION__))
;
1413 IRBuilder<> IRB(Instruction);
1414
1415 Value *ConvertedShadow = ShadowData.Shadow;
1416
1417 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1418 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) {
1419 // Skip, value is initialized or const shadow is ignored.
1420 continue;
1421 }
1422 if (llvm::isKnownNonZero(ConvertedShadow, DL)) {
1423 // Report as the value is definitely uninitialized.
1424 insertWarningFn(IRB, ShadowData.Origin);
1425 if (!MS.Recover)
1426 return; // Always fail and stop here, not need to check the rest.
1427 // Skip entire instruction,
1428 continue;
1429 }
1430 // Fallback to runtime check, which still can be optimized out later.
1431 }
1432
1433 if (!Combine) {
1434 materializeOneCheck(IRB, ConvertedShadow, ShadowData.Origin);
1435 continue;
1436 }
1437
1438 if (!Shadow) {
1439 Shadow = ConvertedShadow;
1440 continue;
1441 }
1442
1443 Shadow = convertToBool(Shadow, IRB, "_mscmp");
1444 ConvertedShadow = convertToBool(ConvertedShadow, IRB, "_mscmp");
1445 Shadow = IRB.CreateOr(Shadow, ConvertedShadow, "_msor");
1446 }
1447
1448 if (Shadow) {
1449 assert(Combine)(static_cast <bool> (Combine) ? void (0) : __assert_fail
("Combine", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1449, __extension__ __PRETTY_FUNCTION__))
;
1450 IRBuilder<> IRB(Instruction);
1451 materializeOneCheck(IRB, Shadow, nullptr);
1452 }
1453 }
1454
1455 void materializeChecks() {
1456 llvm::stable_sort(InstrumentationList,
1457 [](const ShadowOriginAndInsertPoint &L,
1458 const ShadowOriginAndInsertPoint &R) {
1459 return L.OrigIns < R.OrigIns;
1460 });
1461
1462 for (auto I = InstrumentationList.begin();
1463 I != InstrumentationList.end();) {
1464 auto J =
1465 std::find_if(I + 1, InstrumentationList.end(),
1466 [L = I->OrigIns](const ShadowOriginAndInsertPoint &R) {
1467 return L != R.OrigIns;
1468 });
1469 // Process all checks of instruction at once.
1470 materializeInstructionChecks(ArrayRef<ShadowOriginAndInsertPoint>(I, J));
1471 I = J;
1472 }
1473
1474 LLVM_DEBUG(dbgs() << "DONE:\n" << F)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "DONE:\n" << F; } } while (
false)
;
1475 }
1476
1477 // Returns the last instruction in the new prologue
1478 void insertKmsanPrologue(IRBuilder<> &IRB) {
1479 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1480 Constant *Zero = IRB.getInt32(0);
1481 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1482 {Zero, IRB.getInt32(0)}, "param_shadow");
1483 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1484 {Zero, IRB.getInt32(1)}, "retval_shadow");
1485 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1486 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1487 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1488 {Zero, IRB.getInt32(3)}, "va_arg_origin");
1489 MS.VAArgOverflowSizeTLS =
1490 IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1491 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1492 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1493 {Zero, IRB.getInt32(5)}, "param_origin");
1494 MS.RetvalOriginTLS =
1495 IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1496 {Zero, IRB.getInt32(6)}, "retval_origin");
1497 if (MS.TargetTriple.getArch() == Triple::systemz)
1498 MS.MsanMetadataAlloca = IRB.CreateAlloca(MS.MsanMetadata, 0u);
1499 }
1500
1501 /// Add MemorySanitizer instrumentation to a function.
1502 bool runOnFunction() {
1503 // Iterate all BBs in depth-first order and create shadow instructions
1504 // for all instructions (where applicable).
1505 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1506 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent()))
1507 visit(*BB);
1508
1509 // Finalize PHI nodes.
1510 for (PHINode *PN : ShadowPHINodes) {
1511 PHINode *PNS = cast<PHINode>(getShadow(PN));
1512 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1513 size_t NumValues = PN->getNumIncomingValues();
1514 for (size_t v = 0; v < NumValues; v++) {
1515 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1516 if (PNO)
1517 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1518 }
1519 }
1520
1521 VAHelper->finalizeInstrumentation();
1522
1523 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1524 // instrumenting only allocas.
1525 if (InstrumentLifetimeStart) {
1526 for (auto Item : LifetimeStartList) {
1527 instrumentAlloca(*Item.second, Item.first);
1528 AllocaSet.remove(Item.second);
1529 }
1530 }
1531 // Poison the allocas for which we didn't instrument the corresponding
1532 // lifetime intrinsics.
1533 for (AllocaInst *AI : AllocaSet)
1534 instrumentAlloca(*AI);
1535
1536 // Insert shadow value checks.
1537 materializeChecks();
1538
1539 // Delayed instrumentation of StoreInst.
1540 // This may not add new address checks.
1541 materializeStores();
1542
1543 return true;
1544 }
1545
1546 /// Compute the shadow type that corresponds to a given Value.
1547 Type *getShadowTy(Value *V) { return getShadowTy(V->getType()); }
1548
1549 /// Compute the shadow type that corresponds to a given Type.
1550 Type *getShadowTy(Type *OrigTy) {
1551 if (!OrigTy->isSized()) {
1552 return nullptr;
1553 }
1554 // For integer type, shadow is the same as the original type.
1555 // This may return weird-sized types like i1.
1556 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1557 return IT;
1558 const DataLayout &DL = F.getParent()->getDataLayout();
1559 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1560 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1561 return VectorType::get(IntegerType::get(*MS.C, EltSize),
1562 VT->getElementCount());
1563 }
1564 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1565 return ArrayType::get(getShadowTy(AT->getElementType()),
1566 AT->getNumElements());
1567 }
1568 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1569 SmallVector<Type *, 4> Elements;
1570 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1571 Elements.push_back(getShadowTy(ST->getElementType(i)));
1572 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1573 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "getShadowTy: " << *ST <<
" ===> " << *Res << "\n"; } } while (false)
;
1574 return Res;
1575 }
1576 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1577 return IntegerType::get(*MS.C, TypeSize);
1578 }
1579
1580 /// Extract combined shadow of struct elements as a bool
1581 Value *collapseStructShadow(StructType *Struct, Value *Shadow,
1582 IRBuilder<> &IRB) {
1583 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0);
1584 Value *Aggregator = FalseVal;
1585
1586 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) {
1587 // Combine by ORing together each element's bool shadow
1588 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1589 Value *ShadowBool = convertToBool(ShadowItem, IRB);
1590
1591 if (Aggregator != FalseVal)
1592 Aggregator = IRB.CreateOr(Aggregator, ShadowBool);
1593 else
1594 Aggregator = ShadowBool;
1595 }
1596
1597 return Aggregator;
1598 }
1599
1600 // Extract combined shadow of array elements
1601 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow,
1602 IRBuilder<> &IRB) {
1603 if (!Array->getNumElements())
1604 return IRB.getIntN(/* width */ 1, /* value */ 0);
1605
1606 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1607 Value *Aggregator = convertShadowToScalar(FirstItem, IRB);
1608
1609 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) {
1610 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1611 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1612 Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1613 }
1614 return Aggregator;
1615 }
1616
1617 /// Convert a shadow value to it's flattened variant. The resulting
1618 /// shadow may not necessarily have the same bit width as the input
1619 /// value, but it will always be comparable to zero.
1620 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) {
1621 if (StructType *Struct = dyn_cast<StructType>(V->getType()))
1622 return collapseStructShadow(Struct, V, IRB);
1623 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType()))
1624 return collapseArrayShadow(Array, V, IRB);
1625 if (isa<VectorType>(V->getType())) {
1626 if (isa<ScalableVectorType>(V->getType()))
1627 return convertShadowToScalar(IRB.CreateOrReduce(V), IRB);
1628 unsigned BitWidth =
1629 V->getType()->getPrimitiveSizeInBits().getFixedValue();
1630 return IRB.CreateBitCast(V, IntegerType::get(*MS.C, BitWidth));
1631 }
1632 return V;
1633 }
1634
1635 // Convert a scalar value to an i1 by comparing with 0
1636 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") {
1637 Type *VTy = V->getType();
1638 if (!VTy->isIntegerTy())
1639 return convertToBool(convertShadowToScalar(V, IRB), IRB, name);
1640 if (VTy->getIntegerBitWidth() == 1)
1641 // Just converting a bool to a bool, so do nothing.
1642 return V;
1643 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name);
1644 }
1645
1646 Type *ptrToIntPtrType(Type *PtrTy) const {
1647 if (VectorType *VectTy = dyn_cast<VectorType>(PtrTy)) {
1648 return VectorType::get(ptrToIntPtrType(VectTy->getElementType()),
1649 VectTy->getElementCount());
1650 }
1651 assert(PtrTy->isIntOrPtrTy())(static_cast <bool> (PtrTy->isIntOrPtrTy()) ? void (
0) : __assert_fail ("PtrTy->isIntOrPtrTy()", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1651, __extension__ __PRETTY_FUNCTION__))
;
1652 return MS.IntptrTy;
1653 }
1654
1655 Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const {
1656 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) {
1657 return VectorType::get(
1658 getPtrToShadowPtrType(VectTy->getElementType(), ShadowTy),
1659 VectTy->getElementCount());
1660 }
1661 assert(IntPtrTy == MS.IntptrTy)(static_cast <bool> (IntPtrTy == MS.IntptrTy) ? void (0
) : __assert_fail ("IntPtrTy == MS.IntptrTy", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1661, __extension__ __PRETTY_FUNCTION__))
;
1662 return ShadowTy->getPointerTo();
1663 }
1664
1665 Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const {
1666 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) {
1667 return ConstantVector::getSplat(
1668 VectTy->getElementCount(), constToIntPtr(VectTy->getElementType(), C));
1669 }
1670 assert(IntPtrTy == MS.IntptrTy)(static_cast <bool> (IntPtrTy == MS.IntptrTy) ? void (0
) : __assert_fail ("IntPtrTy == MS.IntptrTy", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1670, __extension__ __PRETTY_FUNCTION__))
;
1671 return ConstantInt::get(MS.IntptrTy, C);
1672 }
1673
1674 /// Compute the integer shadow offset that corresponds to a given
1675 /// application address.
1676 ///
1677 /// Offset = (Addr & ~AndMask) ^ XorMask
1678 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1679 /// a single pointee.
1680 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1681 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1682 Type *IntptrTy = ptrToIntPtrType(Addr->getType());
1683 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1684
1685 if (uint64_t AndMask = MS.MapParams->AndMask)
1686 OffsetLong = IRB.CreateAnd(OffsetLong, constToIntPtr(IntptrTy, ~AndMask));
1687
1688 if (uint64_t XorMask = MS.MapParams->XorMask)
1689 OffsetLong = IRB.CreateXor(OffsetLong, constToIntPtr(IntptrTy, XorMask));
1690 return OffsetLong;
1691 }
1692
1693 /// Compute the shadow and origin addresses corresponding to a given
1694 /// application address.
1695 ///
1696 /// Shadow = ShadowBase + Offset
1697 /// Origin = (OriginBase + Offset) & ~3ULL
1698 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1699 /// a single pointee.
1700 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1701 std::pair<Value *, Value *>
1702 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1703 MaybeAlign Alignment) {
1704 Type *IntptrTy = ptrToIntPtrType(Addr->getType());
1705 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1706 Value *ShadowLong = ShadowOffset;
1707 if (uint64_t ShadowBase = MS.MapParams->ShadowBase) {
1708 ShadowLong =
1709 IRB.CreateAdd(ShadowLong, constToIntPtr(IntptrTy, ShadowBase));
1710 }
1711 Value *ShadowPtr = IRB.CreateIntToPtr(
1712 ShadowLong, getPtrToShadowPtrType(IntptrTy, ShadowTy));
1713
1714 Value *OriginPtr = nullptr;
1715 if (MS.TrackOrigins) {
1716 Value *OriginLong = ShadowOffset;
1717 uint64_t OriginBase = MS.MapParams->OriginBase;
1718 if (OriginBase != 0)
1719 OriginLong =
1720 IRB.CreateAdd(OriginLong, constToIntPtr(IntptrTy, OriginBase));
1721 if (!Alignment || *Alignment < kMinOriginAlignment) {
1722 uint64_t Mask = kMinOriginAlignment.value() - 1;
1723 OriginLong = IRB.CreateAnd(OriginLong, constToIntPtr(IntptrTy, ~Mask));
1724 }
1725 OriginPtr = IRB.CreateIntToPtr(
1726 OriginLong, getPtrToShadowPtrType(IntptrTy, MS.OriginTy));
1727 }
1728 return std::make_pair(ShadowPtr, OriginPtr);
1729 }
1730
1731 template <typename... ArgsTy>
1732 Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee,
1733 ArgsTy... Args) {
1734 if (MS.TargetTriple.getArch() == Triple::systemz) {
1735 IRB.CreateCall(Callee,
1736 {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...});
1737 return IRB.CreateLoad(MS.MsanMetadata, MS.MsanMetadataAlloca);
1738 }
1739
1740 return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...});
1741 }
1742
1743 std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr,
1744 IRBuilder<> &IRB,
1745 Type *ShadowTy,
1746 bool isStore) {
1747 Value *ShadowOriginPtrs;
1748 const DataLayout &DL = F.getParent()->getDataLayout();
1749 TypeSize Size = DL.getTypeStoreSize(ShadowTy);
1750
1751 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1752 Value *AddrCast =
1753 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
1754 if (Getter) {
1755 ShadowOriginPtrs = createMetadataCall(IRB, Getter, AddrCast);
1756 } else {
1757 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1758 ShadowOriginPtrs = createMetadataCall(
1759 IRB,
1760 isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN,
1761 AddrCast, SizeVal);
1762 }
1763 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1764 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
1765 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1766
1767 return std::make_pair(ShadowPtr, OriginPtr);
1768 }
1769
1770 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1771 /// a single pointee.
1772 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1773 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr,
1774 IRBuilder<> &IRB,
1775 Type *ShadowTy,
1776 bool isStore) {
1777 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType());
1778 if (!VectTy) {
1779 assert(Addr->getType()->isPointerTy())(static_cast <bool> (Addr->getType()->isPointerTy
()) ? void (0) : __assert_fail ("Addr->getType()->isPointerTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1779
, __extension__ __PRETTY_FUNCTION__))
;
1780 return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore);
1781 }
1782
1783 // TODO: Support callbacs with vectors of addresses.
1784 unsigned NumElements = cast<FixedVectorType>(VectTy)->getNumElements();
1785 Value *ShadowPtrs = ConstantInt::getNullValue(
1786 FixedVectorType::get(ShadowTy->getPointerTo(), NumElements));
1787 Value *OriginPtrs = nullptr;
1788 if (MS.TrackOrigins)
1789 OriginPtrs = ConstantInt::getNullValue(
1790 FixedVectorType::get(MS.OriginTy->getPointerTo(), NumElements));
1791 for (unsigned i = 0; i < NumElements; ++i) {
1792 Value *OneAddr =
1793 IRB.CreateExtractElement(Addr, ConstantInt::get(IRB.getInt32Ty(), i));
1794 auto [ShadowPtr, OriginPtr] =
1795 getShadowOriginPtrKernelNoVec(OneAddr, IRB, ShadowTy, isStore);
1796
1797 ShadowPtrs = IRB.CreateInsertElement(
1798 ShadowPtrs, ShadowPtr, ConstantInt::get(IRB.getInt32Ty(), i));
1799 if (MS.TrackOrigins)
1800 OriginPtrs = IRB.CreateInsertElement(
1801 OriginPtrs, OriginPtr, ConstantInt::get(IRB.getInt32Ty(), i));
1802 }
1803 return {ShadowPtrs, OriginPtrs};
1804 }
1805
1806 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1807 Type *ShadowTy,
1808 MaybeAlign Alignment,
1809 bool isStore) {
1810 if (MS.CompileKernel)
1811 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore);
1812 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1813 }
1814
1815 /// Compute the shadow address for a given function argument.
1816 ///
1817 /// Shadow = ParamTLS+ArgOffset.
1818 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, int ArgOffset) {
1819 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1820 if (ArgOffset)
1821 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1822 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1823 "_msarg");
1824 }
1825
1826 /// Compute the origin address for a given function argument.
1827 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, int ArgOffset) {
1828 if (!MS.TrackOrigins)
1829 return nullptr;
1830 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1831 if (ArgOffset)
1832 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1833 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1834 "_msarg_o");
1835 }
1836
1837 /// Compute the shadow address for a retval.
1838 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1839 return IRB.CreatePointerCast(MS.RetvalTLS,
1840 PointerType::get(getShadowTy(A), 0), "_msret");
1841 }
1842
1843 /// Compute the origin address for a retval.
1844 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1845 // We keep a single origin for the entire retval. Might be too optimistic.
1846 return MS.RetvalOriginTLS;
1847 }
1848
1849 /// Set SV to be the shadow value for V.
1850 void setShadow(Value *V, Value *SV) {
1851 assert(!ShadowMap.count(V) && "Values may only have one shadow")(static_cast <bool> (!ShadowMap.count(V) && "Values may only have one shadow"
) ? void (0) : __assert_fail ("!ShadowMap.count(V) && \"Values may only have one shadow\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1851
, __extension__ __PRETTY_FUNCTION__))
;
1852 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1853 }
1854
1855 /// Set Origin to be the origin value for V.
1856 void setOrigin(Value *V, Value *Origin) {
1857 if (!MS.TrackOrigins)
1858 return;
1859 assert(!OriginMap.count(V) && "Values may only have one origin")(static_cast <bool> (!OriginMap.count(V) && "Values may only have one origin"
) ? void (0) : __assert_fail ("!OriginMap.count(V) && \"Values may only have one origin\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1859
, __extension__ __PRETTY_FUNCTION__))
;
1860 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "ORIGIN: " << *V << " ==> "
<< *Origin << "\n"; } } while (false)
;
1861 OriginMap[V] = Origin;
1862 }
1863
1864 Constant *getCleanShadow(Type *OrigTy) {
1865 Type *ShadowTy = getShadowTy(OrigTy);
15
Value assigned to 'DebugFlag', which participates in a condition later
1866 if (!ShadowTy)
16
Assuming 'ShadowTy' is null
17
Taking true branch
1867 return nullptr;
1868 return Constant::getNullValue(ShadowTy);
1869 }
1870
1871 /// Create a clean shadow value for a given value.
1872 ///
1873 /// Clean shadow (all zeroes) means all bits of the value are defined
1874 /// (initialized).
1875 Constant *getCleanShadow(Value *V) { return getCleanShadow(V->getType()); }
14
Calling 'MemorySanitizerVisitor::getCleanShadow'
18
Returning from 'MemorySanitizerVisitor::getCleanShadow'
1876
1877 /// Create a dirty shadow of a given shadow type.
1878 Constant *getPoisonedShadow(Type *ShadowTy) {
1879 assert(ShadowTy)(static_cast <bool> (ShadowTy) ? void (0) : __assert_fail
("ShadowTy", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1879, __extension__ __PRETTY_FUNCTION__))
;
1880 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1881 return Constant::getAllOnesValue(ShadowTy);
1882 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1883 SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1884 getPoisonedShadow(AT->getElementType()));
1885 return ConstantArray::get(AT, Vals);
1886 }
1887 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1888 SmallVector<Constant *, 4> Vals;
1889 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1890 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1891 return ConstantStruct::get(ST, Vals);
1892 }
1893 llvm_unreachable("Unexpected shadow type")::llvm::llvm_unreachable_internal("Unexpected shadow type", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 1893)
;
1894 }
1895
1896 /// Create a dirty shadow for a given value.
1897 Constant *getPoisonedShadow(Value *V) {
1898 Type *ShadowTy = getShadowTy(V);
1899 if (!ShadowTy)
1900 return nullptr;
1901 return getPoisonedShadow(ShadowTy);
1902 }
1903
1904 /// Create a clean (zero) origin.
1905 Value *getCleanOrigin() { return Constant::getNullValue(MS.OriginTy); }
1906
1907 /// Get the shadow value for a given Value.
1908 ///
1909 /// This function either returns the value set earlier with setShadow,
1910 /// or extracts if from ParamTLS (for function arguments).
1911 Value *getShadow(Value *V) {
1912 if (Instruction *I
9.1
'I' is null
= dyn_cast<Instruction>(V)) {
9
Assuming 'V' is not a 'CastReturnType'
10
Taking false branch
1913 if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize))
1914 return getCleanShadow(V);
1915 // For instructions the shadow is already stored in the map.
1916 Value *Shadow = ShadowMap[V];
1917 if (!Shadow) {
1918 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "No shadow: " << *V <<
"\n" << *(I->getParent()); } } while (false)
;
1919 (void)I;
1920 assert(Shadow && "No shadow for a value")(static_cast <bool> (Shadow && "No shadow for a value"
) ? void (0) : __assert_fail ("Shadow && \"No shadow for a value\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 1920
, __extension__ __PRETTY_FUNCTION__))
;
1921 }
1922 return Shadow;
1923 }
1924 if (UndefValue *U
11.1
'U' is non-null
= dyn_cast<UndefValue>(V)) {
11
Assuming 'V' is a 'CastReturnType'
1925 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V)
12
Assuming field 'PropagateShadow' is false
20
'AllOnes' initialized to a null pointer value
1926 : getCleanShadow(V);
13
Calling 'MemorySanitizerVisitor::getCleanShadow'
19
Returning from 'MemorySanitizerVisitor::getCleanShadow'
1927 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "Undef: " << *U << " ==> "
<< *AllOnes << "\n"; } } while (false)
;
21
Assuming 'DebugFlag' is true
22
Assuming the condition is true
23
Taking true branch
24
Forming reference to null pointer
1928 (void)U;
1929 return AllOnes;
1930 }
1931 if (Argument *A = dyn_cast<Argument>(V)) {
1932 // For arguments we compute the shadow on demand and store it in the map.
1933 Value *&ShadowPtr = ShadowMap[V];
1934 if (ShadowPtr)
1935 return ShadowPtr;
1936 Function *F = A->getParent();
1937 IRBuilder<> EntryIRB(FnPrologueEnd);
1938 unsigned ArgOffset = 0;
1939 const DataLayout &DL = F->getParent()->getDataLayout();
1940 for (auto &FArg : F->args()) {
1941 if (!FArg.getType()->isSized()) {
1942 LLVM_DEBUG(dbgs() << "Arg is not sized\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "Arg is not sized\n"; } } while (
false)
;
1943 continue;
1944 }
1945
1946 unsigned Size = FArg.hasByValAttr()
1947 ? DL.getTypeAllocSize(FArg.getParamByValType())
1948 : DL.getTypeAllocSize(FArg.getType());
1949
1950 if (A == &FArg) {
1951 bool Overflow = ArgOffset + Size > kParamTLSSize;
1952 if (FArg.hasByValAttr()) {
1953 // ByVal pointer itself has clean shadow. We copy the actual
1954 // argument shadow to the underlying memory.
1955 // Figure out maximal valid memcpy alignment.
1956 const Align ArgAlign = DL.getValueOrABITypeAlignment(
1957 FArg.getParamAlign(), FArg.getParamByValType());
1958 Value *CpShadowPtr, *CpOriginPtr;
1959 std::tie(CpShadowPtr, CpOriginPtr) =
1960 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1961 /*isStore*/ true);
1962 if (!PropagateShadow || Overflow) {
1963 // ParamTLS overflow.
1964 EntryIRB.CreateMemSet(
1965 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1966 Size, ArgAlign);
1967 } else {
1968 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1969 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1970 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1971 CopyAlign, Size);
1972 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " ByValCpy: " << *Cpy <<
"\n"; } } while (false)
;
1973 (void)Cpy;
1974
1975 if (MS.TrackOrigins) {
1976 Value *OriginPtr =
1977 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1978 // FIXME: OriginSize should be:
1979 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment)
1980 unsigned OriginSize = alignTo(Size, kMinOriginAlignment);
1981 EntryIRB.CreateMemCpy(
1982 CpOriginPtr,
1983 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr,
1984 /* by origin_tls[ArgOffset] */ kMinOriginAlignment,
1985 OriginSize);
1986 }
1987 }
1988 }
1989
1990 if (!PropagateShadow || Overflow || FArg.hasByValAttr() ||
1991 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) {
1992 ShadowPtr = getCleanShadow(V);
1993 setOrigin(A, getCleanOrigin());
1994 } else {
1995 // Shadow over TLS
1996 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1997 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
1998 kShadowTLSAlignment);
1999 if (MS.TrackOrigins) {
2000 Value *OriginPtr =
2001 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
2002 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
2003 }
2004 }
2005 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " ARG: " << FArg <<
" ==> " << *ShadowPtr << "\n"; } } while (false
)
2006 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " ARG: " << FArg <<
" ==> " << *ShadowPtr << "\n"; } } while (false
)
;
2007 break;
2008 }
2009
2010 ArgOffset += alignTo(Size, kShadowTLSAlignment);
2011 }
2012 assert(ShadowPtr && "Could not find shadow for an argument")(static_cast <bool> (ShadowPtr && "Could not find shadow for an argument"
) ? void (0) : __assert_fail ("ShadowPtr && \"Could not find shadow for an argument\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2012
, __extension__ __PRETTY_FUNCTION__))
;
2013 return ShadowPtr;
2014 }
2015 // For everything else the shadow is zero.
2016 return getCleanShadow(V);
2017 }
2018
2019 /// Get the shadow for i-th argument of the instruction I.
2020 Value *getShadow(Instruction *I, int i) {
2021 return getShadow(I->getOperand(i));
2022 }
2023
2024 /// Get the origin for a value.
2025 Value *getOrigin(Value *V) {
2026 if (!MS.TrackOrigins)
2027 return nullptr;
2028 if (!PropagateShadow || isa<Constant>(V) || isa<InlineAsm>(V))
2029 return getCleanOrigin();
2030 assert((isa<Instruction>(V) || isa<Argument>(V)) &&(static_cast <bool> ((isa<Instruction>(V) || isa<
Argument>(V)) && "Unexpected value type in getOrigin()"
) ? void (0) : __assert_fail ("(isa<Instruction>(V) || isa<Argument>(V)) && \"Unexpected value type in getOrigin()\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2031
, __extension__ __PRETTY_FUNCTION__))
2031 "Unexpected value type in getOrigin()")(static_cast <bool> ((isa<Instruction>(V) || isa<
Argument>(V)) && "Unexpected value type in getOrigin()"
) ? void (0) : __assert_fail ("(isa<Instruction>(V) || isa<Argument>(V)) && \"Unexpected value type in getOrigin()\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2031
, __extension__ __PRETTY_FUNCTION__))
;
2032 if (Instruction *I = dyn_cast<Instruction>(V)) {
2033 if (I->getMetadata(LLVMContext::MD_nosanitize))
2034 return getCleanOrigin();
2035 }
2036 Value *Origin = OriginMap[V];
2037 assert(Origin && "Missing origin")(static_cast <bool> (Origin && "Missing origin"
) ? void (0) : __assert_fail ("Origin && \"Missing origin\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2037
, __extension__ __PRETTY_FUNCTION__))
;
2038 return Origin;
2039 }
2040
2041 /// Get the origin for i-th argument of the instruction I.
2042 Value *getOrigin(Instruction *I, int i) {
2043 return getOrigin(I->getOperand(i));
2044 }
2045
2046 /// Remember the place where a shadow check should be inserted.
2047 ///
2048 /// This location will be later instrumented with a check that will print a
2049 /// UMR warning in runtime if the shadow value is not 0.
2050 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
2051 assert(Shadow)(static_cast <bool> (Shadow) ? void (0) : __assert_fail
("Shadow", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2051, __extension__ __PRETTY_FUNCTION__))
;
2052 if (!InsertChecks)
2053 return;
2054
2055 if (!DebugCounter::shouldExecute(DebugInsertCheck)) {
2056 LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "Skipping check of " << *Shadow
<< " before " << *OrigIns << "\n"; } } while
(false)
2057 << *OrigIns << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "Skipping check of " << *Shadow
<< " before " << *OrigIns << "\n"; } } while
(false)
;
2058 return;
2059 }
2060#ifndef NDEBUG
2061 Type *ShadowTy = Shadow->getType();
2062 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) ||(static_cast <bool> ((isa<IntegerType>(ShadowTy) ||
isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy
) || isa<ArrayType>(ShadowTy)) && "Can only insert checks for integer, vector, and aggregate shadow "
"types") ? void (0) : __assert_fail ("(isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && \"Can only insert checks for integer, vector, and aggregate shadow \" \"types\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2065
, __extension__ __PRETTY_FUNCTION__))
2063 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) &&(static_cast <bool> ((isa<IntegerType>(ShadowTy) ||
isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy
) || isa<ArrayType>(ShadowTy)) && "Can only insert checks for integer, vector, and aggregate shadow "
"types") ? void (0) : __assert_fail ("(isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && \"Can only insert checks for integer, vector, and aggregate shadow \" \"types\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2065
, __extension__ __PRETTY_FUNCTION__))
2064 "Can only insert checks for integer, vector, and aggregate shadow "(static_cast <bool> ((isa<IntegerType>(ShadowTy) ||
isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy
) || isa<ArrayType>(ShadowTy)) && "Can only insert checks for integer, vector, and aggregate shadow "
"types") ? void (0) : __assert_fail ("(isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && \"Can only insert checks for integer, vector, and aggregate shadow \" \"types\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2065
, __extension__ __PRETTY_FUNCTION__))
2065 "types")(static_cast <bool> ((isa<IntegerType>(ShadowTy) ||
isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy
) || isa<ArrayType>(ShadowTy)) && "Can only insert checks for integer, vector, and aggregate shadow "
"types") ? void (0) : __assert_fail ("(isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && \"Can only insert checks for integer, vector, and aggregate shadow \" \"types\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2065
, __extension__ __PRETTY_FUNCTION__))
;
2066#endif
2067 InstrumentationList.push_back(
2068 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
2069 }
2070
2071 /// Remember the place where a shadow check should be inserted.
2072 ///
2073 /// This location will be later instrumented with a check that will print a
2074 /// UMR warning in runtime if the value is not fully defined.
2075 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
2076 assert(Val)(static_cast <bool> (Val) ? void (0) : __assert_fail ("Val"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2076
, __extension__ __PRETTY_FUNCTION__))
;
2077 Value *Shadow, *Origin;
2078 if (ClCheckConstantShadow) {
2079 Shadow = getShadow(Val);
2080 if (!Shadow)
2081 return;
2082 Origin = getOrigin(Val);
2083 } else {
2084 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
2085 if (!Shadow)
2086 return;
2087 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
2088 }
2089 insertShadowCheck(Shadow, Origin, OrigIns);
2090 }
2091
2092 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
2093 switch (a) {
2094 case AtomicOrdering::NotAtomic:
2095 return AtomicOrdering::NotAtomic;
2096 case AtomicOrdering::Unordered:
2097 case AtomicOrdering::Monotonic:
2098 case AtomicOrdering::Release:
2099 return AtomicOrdering::Release;
2100 case AtomicOrdering::Acquire:
2101 case AtomicOrdering::AcquireRelease:
2102 return AtomicOrdering::AcquireRelease;
2103 case AtomicOrdering::SequentiallyConsistent:
2104 return AtomicOrdering::SequentiallyConsistent;
2105 }
2106 llvm_unreachable("Unknown ordering")::llvm::llvm_unreachable_internal("Unknown ordering", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2106)
;
2107 }
2108
2109 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
2110 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
2111 uint32_t OrderingTable[NumOrderings] = {};
2112
2113 OrderingTable[(int)AtomicOrderingCABI::relaxed] =
2114 OrderingTable[(int)AtomicOrderingCABI::release] =
2115 (int)AtomicOrderingCABI::release;
2116 OrderingTable[(int)AtomicOrderingCABI::consume] =
2117 OrderingTable[(int)AtomicOrderingCABI::acquire] =
2118 OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
2119 (int)AtomicOrderingCABI::acq_rel;
2120 OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
2121 (int)AtomicOrderingCABI::seq_cst;
2122
2123 return ConstantDataVector::get(IRB.getContext(),
2124 ArrayRef(OrderingTable, NumOrderings));
2125 }
2126
2127 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
2128 switch (a) {
2129 case AtomicOrdering::NotAtomic:
2130 return AtomicOrdering::NotAtomic;
2131 case AtomicOrdering::Unordered:
2132 case AtomicOrdering::Monotonic:
2133 case AtomicOrdering::Acquire:
2134 return AtomicOrdering::Acquire;
2135 case AtomicOrdering::Release:
2136 case AtomicOrdering::AcquireRelease:
2137 return AtomicOrdering::AcquireRelease;
2138 case AtomicOrdering::SequentiallyConsistent:
2139 return AtomicOrdering::SequentiallyConsistent;
2140 }
2141 llvm_unreachable("Unknown ordering")::llvm::llvm_unreachable_internal("Unknown ordering", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2141)
;
2142 }
2143
2144 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
2145 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
2146 uint32_t OrderingTable[NumOrderings] = {};
2147
2148 OrderingTable[(int)AtomicOrderingCABI::relaxed] =
2149 OrderingTable[(int)AtomicOrderingCABI::acquire] =
2150 OrderingTable[(int)AtomicOrderingCABI::consume] =
2151 (int)AtomicOrderingCABI::acquire;
2152 OrderingTable[(int)AtomicOrderingCABI::release] =
2153 OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
2154 (int)AtomicOrderingCABI::acq_rel;
2155 OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
2156 (int)AtomicOrderingCABI::seq_cst;
2157
2158 return ConstantDataVector::get(IRB.getContext(),
2159 ArrayRef(OrderingTable, NumOrderings));
2160 }
2161
2162 // ------------------- Visitors.
2163 using InstVisitor<MemorySanitizerVisitor>::visit;
2164 void visit(Instruction &I) {
2165 if (I.getMetadata(LLVMContext::MD_nosanitize))
2166 return;
2167 // Don't want to visit if we're in the prologue
2168 if (isInPrologue(I))
2169 return;
2170 InstVisitor<MemorySanitizerVisitor>::visit(I);
2171 }
2172
2173 /// Instrument LoadInst
2174 ///
2175 /// Loads the corresponding shadow and (optionally) origin.
2176 /// Optionally, checks that the load address is fully defined.
2177 void visitLoadInst(LoadInst &I) {
2178 assert(I.getType()->isSized() && "Load type must have size")(static_cast <bool> (I.getType()->isSized() &&
"Load type must have size") ? void (0) : __assert_fail ("I.getType()->isSized() && \"Load type must have size\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2178
, __extension__ __PRETTY_FUNCTION__))
;
2179 assert(!I.getMetadata(LLVMContext::MD_nosanitize))(static_cast <bool> (!I.getMetadata(LLVMContext::MD_nosanitize
)) ? void (0) : __assert_fail ("!I.getMetadata(LLVMContext::MD_nosanitize)"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2179
, __extension__ __PRETTY_FUNCTION__))
;
2180 NextNodeIRBuilder IRB(&I);
2181 Type *ShadowTy = getShadowTy(&I);
2182 Value *Addr = I.getPointerOperand();
2183 Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2184 const Align Alignment = I.getAlign();
2185 if (PropagateShadow) {
2186 std::tie(ShadowPtr, OriginPtr) =
2187 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2188 setShadow(&I,
2189 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2190 } else {
2191 setShadow(&I, getCleanShadow(&I));
2192 }
2193
2194 if (ClCheckAccessAddress)
2195 insertShadowCheck(I.getPointerOperand(), &I);
2196
2197 if (I.isAtomic())
2198 I.setOrdering(addAcquireOrdering(I.getOrdering()));
2199
2200 if (MS.TrackOrigins) {
2201 if (PropagateShadow) {
2202 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
2203 setOrigin(
2204 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
2205 } else {
2206 setOrigin(&I, getCleanOrigin());
2207 }
2208 }
2209 }
2210
2211 /// Instrument StoreInst
2212 ///
2213 /// Stores the corresponding shadow and (optionally) origin.
2214 /// Optionally, checks that the store address is fully defined.
2215 void visitStoreInst(StoreInst &I) {
2216 StoreList.push_back(&I);
2217 if (ClCheckAccessAddress)
2218 insertShadowCheck(I.getPointerOperand(), &I);
2219 }
2220
2221 void handleCASOrRMW(Instruction &I) {
2222 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))(static_cast <bool> (isa<AtomicRMWInst>(I) || isa
<AtomicCmpXchgInst>(I)) ? void (0) : __assert_fail ("isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2222
, __extension__ __PRETTY_FUNCTION__))
;
2223
2224 IRBuilder<> IRB(&I);
2225 Value *Addr = I.getOperand(0);
2226 Value *Val = I.getOperand(1);
2227 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, getShadowTy(Val), Align(1),
2228 /*isStore*/ true)
2229 .first;
2230
2231 if (ClCheckAccessAddress)
2232 insertShadowCheck(Addr, &I);
2233
2234 // Only test the conditional argument of cmpxchg instruction.
2235 // The other argument can potentially be uninitialized, but we can not
2236 // detect this situation reliably without possible false positives.
2237 if (isa<AtomicCmpXchgInst>(I))
2238 insertShadowCheck(Val, &I);
2239
2240 IRB.CreateStore(getCleanShadow(Val), ShadowPtr);
2241
2242 setShadow(&I, getCleanShadow(&I));
2243 setOrigin(&I, getCleanOrigin());
2244 }
2245
2246 void visitAtomicRMWInst(AtomicRMWInst &I) {
2247 handleCASOrRMW(I);
2248 I.setOrdering(addReleaseOrdering(I.getOrdering()));
2249 }
2250
2251 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2252 handleCASOrRMW(I);
2253 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2254 }
2255
2256 // Vector manipulation.
2257 void visitExtractElementInst(ExtractElementInst &I) {
2258 insertShadowCheck(I.getOperand(1), &I);
2259 IRBuilder<> IRB(&I);
2260 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
2261 "_msprop"));
2262 setOrigin(&I, getOrigin(&I, 0));
2263 }
2264
2265 void visitInsertElementInst(InsertElementInst &I) {
2266 insertShadowCheck(I.getOperand(2), &I);
2267 IRBuilder<> IRB(&I);
2268 auto *Shadow0 = getShadow(&I, 0);
2269 auto *Shadow1 = getShadow(&I, 1);
2270 setShadow(&I, IRB.CreateInsertElement(Shadow0, Shadow1, I.getOperand(2),
2271 "_msprop"));
2272 setOriginForNaryOp(I);
2273 }
2274
2275 void visitShuffleVectorInst(ShuffleVectorInst &I) {
2276 IRBuilder<> IRB(&I);
2277 auto *Shadow0 = getShadow(&I, 0);
2278 auto *Shadow1 = getShadow(&I, 1);
2279 setShadow(&I, IRB.CreateShuffleVector(Shadow0, Shadow1, I.getShuffleMask(),
2280 "_msprop"));
2281 setOriginForNaryOp(I);
2282 }
2283
2284 // Casts.
2285 void visitSExtInst(SExtInst &I) {
2286 IRBuilder<> IRB(&I);
2287 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
2288 setOrigin(&I, getOrigin(&I, 0));
2289 }
2290
2291 void visitZExtInst(ZExtInst &I) {
2292 IRBuilder<> IRB(&I);
2293 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
2294 setOrigin(&I, getOrigin(&I, 0));
2295 }
2296
2297 void visitTruncInst(TruncInst &I) {
2298 IRBuilder<> IRB(&I);
2299 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
2300 setOrigin(&I, getOrigin(&I, 0));
2301 }
2302
2303 void visitBitCastInst(BitCastInst &I) {
2304 // Special case: if this is the bitcast (there is exactly 1 allowed) between
2305 // a musttail call and a ret, don't instrument. New instructions are not
2306 // allowed after a musttail call.
2307 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
2308 if (CI->isMustTailCall())
2309 return;
2310 IRBuilder<> IRB(&I);
2311 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
2312 setOrigin(&I, getOrigin(&I, 0));
2313 }
2314
2315 void visitPtrToIntInst(PtrToIntInst &I) {
2316 IRBuilder<> IRB(&I);
2317 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2318 "_msprop_ptrtoint"));
2319 setOrigin(&I, getOrigin(&I, 0));
2320 }
2321
2322 void visitIntToPtrInst(IntToPtrInst &I) {
2323 IRBuilder<> IRB(&I);
2324 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2325 "_msprop_inttoptr"));
2326 setOrigin(&I, getOrigin(&I, 0));
2327 }
2328
2329 void visitFPToSIInst(CastInst &I) { handleShadowOr(I); }
2330 void visitFPToUIInst(CastInst &I) { handleShadowOr(I); }
2331 void visitSIToFPInst(CastInst &I) { handleShadowOr(I); }
2332 void visitUIToFPInst(CastInst &I) { handleShadowOr(I); }
2333 void visitFPExtInst(CastInst &I) { handleShadowOr(I); }
2334 void visitFPTruncInst(CastInst &I) { handleShadowOr(I); }
2335
2336 /// Propagate shadow for bitwise AND.
2337 ///
2338 /// This code is exact, i.e. if, for example, a bit in the left argument
2339 /// is defined and 0, then neither the value not definedness of the
2340 /// corresponding bit in B don't affect the resulting shadow.
2341 void visitAnd(BinaryOperator &I) {
2342 IRBuilder<> IRB(&I);
2343 // "And" of 0 and a poisoned value results in unpoisoned value.
2344 // 1&1 => 1; 0&1 => 0; p&1 => p;
2345 // 1&0 => 0; 0&0 => 0; p&0 => 0;
2346 // 1&p => p; 0&p => 0; p&p => p;
2347 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
2348 Value *S1 = getShadow(&I, 0);
2349 Value *S2 = getShadow(&I, 1);
2350 Value *V1 = I.getOperand(0);
2351 Value *V2 = I.getOperand(1);
2352 if (V1->getType() != S1->getType()) {
2353 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2354 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2355 }
2356 Value *S1S2 = IRB.CreateAnd(S1, S2);
2357 Value *V1S2 = IRB.CreateAnd(V1, S2);
2358 Value *S1V2 = IRB.CreateAnd(S1, V2);
2359 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2360 setOriginForNaryOp(I);
2361 }
2362
2363 void visitOr(BinaryOperator &I) {
2364 IRBuilder<> IRB(&I);
2365 // "Or" of 1 and a poisoned value results in unpoisoned value.
2366 // 1|1 => 1; 0|1 => 1; p|1 => 1;
2367 // 1|0 => 1; 0|0 => 0; p|0 => p;
2368 // 1|p => 1; 0|p => p; p|p => p;
2369 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
2370 Value *S1 = getShadow(&I, 0);
2371 Value *S2 = getShadow(&I, 1);
2372 Value *V1 = IRB.CreateNot(I.getOperand(0));
2373 Value *V2 = IRB.CreateNot(I.getOperand(1));
2374 if (V1->getType() != S1->getType()) {
2375 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2376 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2377 }
2378 Value *S1S2 = IRB.CreateAnd(S1, S2);
2379 Value *V1S2 = IRB.CreateAnd(V1, S2);
2380 Value *S1V2 = IRB.CreateAnd(S1, V2);
2381 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2382 setOriginForNaryOp(I);
2383 }
2384
2385 /// Default propagation of shadow and/or origin.
2386 ///
2387 /// This class implements the general case of shadow propagation, used in all
2388 /// cases where we don't know and/or don't care about what the operation
2389 /// actually does. It converts all input shadow values to a common type
2390 /// (extending or truncating as necessary), and bitwise OR's them.
2391 ///
2392 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
2393 /// fully initialized), and less prone to false positives.
2394 ///
2395 /// This class also implements the general case of origin propagation. For a
2396 /// Nary operation, result origin is set to the origin of an argument that is
2397 /// not entirely initialized. If there is more than one such arguments, the
2398 /// rightmost of them is picked. It does not matter which one is picked if all
2399 /// arguments are initialized.
2400 template <bool CombineShadow> class Combiner {
2401 Value *Shadow = nullptr;
2402 Value *Origin = nullptr;
2403 IRBuilder<> &IRB;
2404 MemorySanitizerVisitor *MSV;
2405
2406 public:
2407 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
2408 : IRB(IRB), MSV(MSV) {}
2409
2410 /// Add a pair of shadow and origin values to the mix.
2411 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2412 if (CombineShadow) {
2413 assert(OpShadow)(static_cast <bool> (OpShadow) ? void (0) : __assert_fail
("OpShadow", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2413, __extension__ __PRETTY_FUNCTION__))
;
2414 if (!Shadow)
2415 Shadow = OpShadow;
2416 else {
2417 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2418 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2419 }
2420 }
2421
2422 if (MSV->MS.TrackOrigins) {
2423 assert(OpOrigin)(static_cast <bool> (OpOrigin) ? void (0) : __assert_fail
("OpOrigin", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2423, __extension__ __PRETTY_FUNCTION__))
;
2424 if (!Origin) {
2425 Origin = OpOrigin;
2426 } else {
2427 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2428 // No point in adding something that might result in 0 origin value.
2429 if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2430 Value *Cond = MSV->convertToBool(OpShadow, IRB);
2431 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2432 }
2433 }
2434 }
2435 return *this;
2436 }
2437
2438 /// Add an application value to the mix.
2439 Combiner &Add(Value *V) {
2440 Value *OpShadow = MSV->getShadow(V);
2441 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2442 return Add(OpShadow, OpOrigin);
2443 }
2444
2445 /// Set the current combined values as the given instruction's shadow
2446 /// and origin.
2447 void Done(Instruction *I) {
2448 if (CombineShadow) {
2449 assert(Shadow)(static_cast <bool> (Shadow) ? void (0) : __assert_fail
("Shadow", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2449, __extension__ __PRETTY_FUNCTION__))
;
2450 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2451 MSV->setShadow(I, Shadow);
2452 }
2453 if (MSV->MS.TrackOrigins) {
2454 assert(Origin)(static_cast <bool> (Origin) ? void (0) : __assert_fail
("Origin", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2454, __extension__ __PRETTY_FUNCTION__))
;
2455 MSV->setOrigin(I, Origin);
2456 }
2457 }
2458 };
2459
2460 using ShadowAndOriginCombiner = Combiner<true>;
2461 using OriginCombiner = Combiner<false>;
2462
2463 /// Propagate origin for arbitrary operation.
2464 void setOriginForNaryOp(Instruction &I) {
2465 if (!MS.TrackOrigins)
2466 return;
2467 IRBuilder<> IRB(&I);
2468 OriginCombiner OC(this, IRB);
2469 for (Use &Op : I.operands())
2470 OC.Add(Op.get());
2471 OC.Done(&I);
2472 }
2473
2474 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2475 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&(static_cast <bool> (!(Ty->isVectorTy() && Ty
->getScalarType()->isPointerTy()) && "Vector of pointers is not a valid shadow type"
) ? void (0) : __assert_fail ("!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && \"Vector of pointers is not a valid shadow type\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2476
, __extension__ __PRETTY_FUNCTION__))
2476 "Vector of pointers is not a valid shadow type")(static_cast <bool> (!(Ty->isVectorTy() && Ty
->getScalarType()->isPointerTy()) && "Vector of pointers is not a valid shadow type"
) ? void (0) : __assert_fail ("!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && \"Vector of pointers is not a valid shadow type\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 2476
, __extension__ __PRETTY_FUNCTION__))
;
2477 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() *
2478 Ty->getScalarSizeInBits()
2479 : Ty->getPrimitiveSizeInBits();
2480 }
2481
2482 /// Cast between two shadow types, extending or truncating as
2483 /// necessary.
2484 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2485 bool Signed = false) {
2486 Type *srcTy = V->getType();
2487 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2488 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2489 if (srcSizeInBits > 1 && dstSizeInBits == 1)
2490 return IRB.CreateICmpNE(V, getCleanShadow(V));
2491
2492 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2493 return IRB.CreateIntCast(V, dstTy, Signed);
2494 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2495 cast<VectorType>(dstTy)->getElementCount() ==
2496 cast<VectorType>(srcTy)->getElementCount())
2497 return IRB.CreateIntCast(V, dstTy, Signed);
2498 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2499 Value *V2 =
2500 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2501 return IRB.CreateBitCast(V2, dstTy);
2502 // TODO: handle struct types.
2503 }
2504
2505 /// Cast an application value to the type of its own shadow.
2506 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2507 Type *ShadowTy = getShadowTy(V);
2508 if (V->getType() == ShadowTy)
2509 return V;
2510 if (V->getType()->isPtrOrPtrVectorTy())
2511 return IRB.CreatePtrToInt(V, ShadowTy);
2512 else
2513 return IRB.CreateBitCast(V, ShadowTy);
2514 }
2515
2516 /// Propagate shadow for arbitrary operation.
2517 void handleShadowOr(Instruction &I) {
2518 IRBuilder<> IRB(&I);
2519 ShadowAndOriginCombiner SC(this, IRB);
2520 for (Use &Op : I.operands())
2521 SC.Add(Op.get());
2522 SC.Done(&I);
2523 }
2524
2525 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2526
2527 // Handle multiplication by constant.
2528 //
2529 // Handle a special case of multiplication by constant that may have one or
2530 // more zeros in the lower bits. This makes corresponding number of lower bits
2531 // of the result zero as well. We model it by shifting the other operand
2532 // shadow left by the required number of bits. Effectively, we transform
2533 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2534 // We use multiplication by 2**N instead of shift to cover the case of
2535 // multiplication by 0, which may occur in some elements of a vector operand.
2536 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2537 Value *OtherArg) {
2538 Constant *ShadowMul;
2539 Type *Ty = ConstArg->getType();
2540 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2541 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements();
2542 Type *EltTy = VTy->getElementType();
2543 SmallVector<Constant *, 16> Elements;
2544 for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2545 if (ConstantInt *Elt =
2546 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2547 const APInt &V = Elt->getValue();
2548 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero();
2549 Elements.push_back(ConstantInt::get(EltTy, V2));
2550 } else {
2551 Elements.push_back(ConstantInt::get(EltTy, 1));
2552 }
2553 }
2554 ShadowMul = ConstantVector::get(Elements);
2555 } else {
2556 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2557 const APInt &V = Elt->getValue();
2558 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero();
2559 ShadowMul = ConstantInt::get(Ty, V2);
2560 } else {
2561 ShadowMul = ConstantInt::get(Ty, 1);
2562 }
2563 }
2564
2565 IRBuilder<> IRB(&I);
2566 setShadow(&I,
2567 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2568 setOrigin(&I, getOrigin(OtherArg));
2569 }
2570
2571 void visitMul(BinaryOperator &I) {
2572 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2573 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2574 if (constOp0 && !constOp1)
2575 handleMulByConstant(I, constOp0, I.getOperand(1));
2576 else if (constOp1 && !constOp0)
2577 handleMulByConstant(I, constOp1, I.getOperand(0));
2578 else
2579 handleShadowOr(I);
2580 }
2581
2582 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2583 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2584 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2585 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2586 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2587 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2588
2589 void handleIntegerDiv(Instruction &I) {
2590 IRBuilder<> IRB(&I);
2591 // Strict on the second argument.
2592 insertShadowCheck(I.getOperand(1), &I);
2593 setShadow(&I, getShadow(&I, 0));
2594 setOrigin(&I, getOrigin(&I, 0));
2595 }
2596
2597 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2598 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2599 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2600 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2601
2602 // Floating point division is side-effect free. We can not require that the
2603 // divisor is fully initialized and must propagate shadow. See PR37523.
2604 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2605 void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2606
2607 /// Instrument == and != comparisons.
2608 ///
2609 /// Sometimes the comparison result is known even if some of the bits of the
2610 /// arguments are not.
2611 void handleEqualityComparison(ICmpInst &I) {
2612 IRBuilder<> IRB(&I);
2613 Value *A = I.getOperand(0);
2614 Value *B = I.getOperand(1);
2615 Value *Sa = getShadow(A);
2616 Value *Sb = getShadow(B);
2617
2618 // Get rid of pointers and vectors of pointers.
2619 // For ints (and vectors of ints), types of A and Sa match,
2620 // and this is a no-op.
2621 A = IRB.CreatePointerCast(A, Sa->getType());
2622 B = IRB.CreatePointerCast(B, Sb->getType());
2623
2624 // A == B <==> (C = A^B) == 0
2625 // A != B <==> (C = A^B) != 0
2626 // Sc = Sa | Sb
2627 Value *C = IRB.CreateXor(A, B);
2628 Value *Sc = IRB.CreateOr(Sa, Sb);
2629 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2630 // Result is defined if one of the following is true
2631 // * there is a defined 1 bit in C
2632 // * C is fully defined
2633 // Si = !(C & ~Sc) && Sc
2634 Value *Zero = Constant::getNullValue(Sc->getType());
2635 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2636 Value *LHS = IRB.CreateICmpNE(Sc, Zero);
2637 Value *RHS =
2638 IRB.CreateICmpEQ(IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero);
2639 Value *Si = IRB.CreateAnd(LHS, RHS);
2640 Si->setName("_msprop_icmp");
2641 setShadow(&I, Si);
2642 setOriginForNaryOp(I);
2643 }
2644
2645 /// Build the lowest possible value of V, taking into account V's
2646 /// uninitialized bits.
2647 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2648 bool isSigned) {
2649 if (isSigned) {
2650 // Split shadow into sign bit and other bits.
2651 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2652 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2653 // Maximise the undefined shadow bit, minimize other undefined bits.
2654 return IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)),
2655 SaSignBit);
2656 } else {
2657 // Minimize undefined bits.
2658 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
2659 }
2660 }
2661
2662 /// Build the highest possible value of V, taking into account V's
2663 /// uninitialized bits.
2664 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2665 bool isSigned) {
2666 if (isSigned) {
2667 // Split shadow into sign bit and other bits.
2668 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2669 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2670 // Minimise the undefined shadow bit, maximise other undefined bits.
2671 return IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)),
2672 SaOtherBits);
2673 } else {
2674 // Maximize undefined bits.
2675 return IRB.CreateOr(A, Sa);
2676 }
2677 }
2678
2679 /// Instrument relational comparisons.
2680 ///
2681 /// This function does exact shadow propagation for all relational
2682 /// comparisons of integers, pointers and vectors of those.
2683 /// FIXME: output seems suboptimal when one of the operands is a constant
2684 void handleRelationalComparisonExact(ICmpInst &I) {
2685 IRBuilder<> IRB(&I);
2686 Value *A = I.getOperand(0);
2687 Value *B = I.getOperand(1);
2688 Value *Sa = getShadow(A);
2689 Value *Sb = getShadow(B);
2690
2691 // Get rid of pointers and vectors of pointers.
2692 // For ints (and vectors of ints), types of A and Sa match,
2693 // and this is a no-op.
2694 A = IRB.CreatePointerCast(A, Sa->getType());
2695 B = IRB.CreatePointerCast(B, Sb->getType());
2696
2697 // Let [a0, a1] be the interval of possible values of A, taking into account
2698 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2699 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2700 bool IsSigned = I.isSigned();
2701 Value *S1 = IRB.CreateICmp(I.getPredicate(),
2702 getLowestPossibleValue(IRB, A, Sa, IsSigned),
2703 getHighestPossibleValue(IRB, B, Sb, IsSigned));
2704 Value *S2 = IRB.CreateICmp(I.getPredicate(),
2705 getHighestPossibleValue(IRB, A, Sa, IsSigned),
2706 getLowestPossibleValue(IRB, B, Sb, IsSigned));
2707 Value *Si = IRB.CreateXor(S1, S2);
2708 setShadow(&I, Si);
2709 setOriginForNaryOp(I);
2710 }
2711
2712 /// Instrument signed relational comparisons.
2713 ///
2714 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2715 /// bit of the shadow. Everything else is delegated to handleShadowOr().
2716 void handleSignedRelationalComparison(ICmpInst &I) {
2717 Constant *constOp;
2718 Value *op = nullptr;
2719 CmpInst::Predicate pre;
2720 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2721 op = I.getOperand(0);
2722 pre = I.getPredicate();
2723 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2724 op = I.getOperand(1);
2725 pre = I.getSwappedPredicate();
2726 } else {
2727 handleShadowOr(I);
2728 return;
2729 }
2730
2731 if ((constOp->isNullValue() &&
2732 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2733 (constOp->isAllOnesValue() &&
2734 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2735 IRBuilder<> IRB(&I);
2736 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2737 "_msprop_icmp_s");
2738 setShadow(&I, Shadow);
2739 setOrigin(&I, getOrigin(op));
2740 } else {
2741 handleShadowOr(I);
2742 }
2743 }
2744
2745 void visitICmpInst(ICmpInst &I) {
2746 if (!ClHandleICmp) {
2747 handleShadowOr(I);
2748 return;
2749 }
2750 if (I.isEquality()) {
2751 handleEqualityComparison(I);
2752 return;
2753 }
2754
2755 assert(I.isRelational())(static_cast <bool> (I.isRelational()) ? void (0) : __assert_fail
("I.isRelational()", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2755, __extension__ __PRETTY_FUNCTION__))
;
2756 if (ClHandleICmpExact) {
2757 handleRelationalComparisonExact(I);
2758 return;
2759 }
2760 if (I.isSigned()) {
2761 handleSignedRelationalComparison(I);
2762 return;
2763 }
2764
2765 assert(I.isUnsigned())(static_cast <bool> (I.isUnsigned()) ? void (0) : __assert_fail
("I.isUnsigned()", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 2765, __extension__ __PRETTY_FUNCTION__))
;
2766 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2767 handleRelationalComparisonExact(I);
2768 return;
2769 }
2770
2771 handleShadowOr(I);
2772 }
2773
2774 void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); }
2775
2776 void handleShift(BinaryOperator &I) {
2777 IRBuilder<> IRB(&I);
2778 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2779 // Otherwise perform the same shift on S1.
2780 Value *S1 = getShadow(&I, 0);
2781 Value *S2 = getShadow(&I, 1);
2782 Value *S2Conv =
2783 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType());
2784 Value *V2 = I.getOperand(1);
2785 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2786 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2787 setOriginForNaryOp(I);
2788 }
2789
2790 void visitShl(BinaryOperator &I) { handleShift(I); }
2791 void visitAShr(BinaryOperator &I) { handleShift(I); }
2792 void visitLShr(BinaryOperator &I) { handleShift(I); }
2793
2794 void handleFunnelShift(IntrinsicInst &I) {
2795 IRBuilder<> IRB(&I);
2796 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2797 // Otherwise perform the same shift on S0 and S1.
2798 Value *S0 = getShadow(&I, 0);
2799 Value *S1 = getShadow(&I, 1);
2800 Value *S2 = getShadow(&I, 2);
2801 Value *S2Conv =
2802 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType());
2803 Value *V2 = I.getOperand(2);
2804 Function *Intrin = Intrinsic::getDeclaration(
2805 I.getModule(), I.getIntrinsicID(), S2Conv->getType());
2806 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2});
2807 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2808 setOriginForNaryOp(I);
2809 }
2810
2811 /// Instrument llvm.memmove
2812 ///
2813 /// At this point we don't know if llvm.memmove will be inlined or not.
2814 /// If we don't instrument it and it gets inlined,
2815 /// our interceptor will not kick in and we will lose the memmove.
2816 /// If we instrument the call here, but it does not get inlined,
2817 /// we will memove the shadow twice: which is bad in case
2818 /// of overlapping regions. So, we simply lower the intrinsic to a call.
2819 ///
2820 /// Similar situation exists for memcpy and memset.
2821 void visitMemMoveInst(MemMoveInst &I) {
2822 getShadow(I.getArgOperand(1)); // Ensure shadow initialized
2823 IRBuilder<> IRB(&I);
2824 IRB.CreateCall(
2825 MS.MemmoveFn,
2826 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2827 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2828 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2829 I.eraseFromParent();
2830 }
2831
2832 /// Instrument memcpy
2833 ///
2834 /// Similar to memmove: avoid copying shadow twice. This is somewhat
2835 /// unfortunate as it may slowdown small constant memcpys.
2836 /// FIXME: consider doing manual inline for small constant sizes and proper
2837 /// alignment.
2838 ///
2839 /// Note: This also handles memcpy.inline, which promises no calls to external
2840 /// functions as an optimization. However, with instrumentation enabled this
2841 /// is difficult to promise; additionally, we know that the MSan runtime
2842 /// exists and provides __msan_memcpy(). Therefore, we assume that with
2843 /// instrumentation it's safe to turn memcpy.inline into a call to
2844 /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy()
2845 /// itself, instrumentation should be disabled with the no_sanitize attribute.
2846 void visitMemCpyInst(MemCpyInst &I) {
2847 getShadow(I.getArgOperand(1)); // Ensure shadow initialized
2848 IRBuilder<> IRB(&I);
2849 IRB.CreateCall(
2850 MS.MemcpyFn,
2851 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2852 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2853 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2854 I.eraseFromParent();
2855 }
2856
2857 // Same as memcpy.
2858 void visitMemSetInst(MemSetInst &I) {
2859 IRBuilder<> IRB(&I);
2860 IRB.CreateCall(
2861 MS.MemsetFn,
2862 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2863 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2864 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2865 I.eraseFromParent();
2866 }
2867
2868 void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); }
2869
2870 void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); }
2871
2872 /// Handle vector store-like intrinsics.
2873 ///
2874 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2875 /// has 1 pointer argument and 1 vector argument, returns void.
2876 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2877 IRBuilder<> IRB(&I);
2878 Value *Addr = I.getArgOperand(0);
2879 Value *Shadow = getShadow(&I, 1);
2880 Value *ShadowPtr, *OriginPtr;
2881
2882 // We don't know the pointer alignment (could be unaligned SSE store!).
2883 // Have to assume to worst case.
2884 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2885 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true);
2886 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1));
2887
2888 if (ClCheckAccessAddress)
2889 insertShadowCheck(Addr, &I);
2890
2891 // FIXME: factor out common code from materializeStores
2892 if (MS.TrackOrigins)
2893 IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2894 return true;
2895 }
2896
2897 /// Handle vector load-like intrinsics.
2898 ///
2899 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2900 /// has 1 pointer argument, returns a vector.
2901 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2902 IRBuilder<> IRB(&I);
2903 Value *Addr = I.getArgOperand(0);
2904
2905 Type *ShadowTy = getShadowTy(&I);
2906 Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2907 if (PropagateShadow) {
2908 // We don't know the pointer alignment (could be unaligned SSE load!).
2909 // Have to assume to worst case.
2910 const Align Alignment = Align(1);
2911 std::tie(ShadowPtr, OriginPtr) =
2912 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2913 setShadow(&I,
2914 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2915 } else {
2916 setShadow(&I, getCleanShadow(&I));
2917 }
2918
2919 if (ClCheckAccessAddress)
2920 insertShadowCheck(Addr, &I);
2921
2922 if (MS.TrackOrigins) {
2923 if (PropagateShadow)
2924 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2925 else
2926 setOrigin(&I, getCleanOrigin());
2927 }
2928 return true;
2929 }
2930
2931 /// Handle (SIMD arithmetic)-like intrinsics.
2932 ///
2933 /// Instrument intrinsics with any number of arguments of the same type,
2934 /// equal to the return type. The type should be simple (no aggregates or
2935 /// pointers; vectors are fine).
2936 /// Caller guarantees that this intrinsic does not access memory.
2937 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2938 Type *RetTy = I.getType();
2939 if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy() ||
2940 RetTy->isX86_MMXTy()))
2941 return false;
2942
2943 unsigned NumArgOperands = I.arg_size();
2944 for (unsigned i = 0; i < NumArgOperands; ++i) {
2945 Type *Ty = I.getArgOperand(i)->getType();
2946 if (Ty != RetTy)
2947 return false;
2948 }
2949
2950 IRBuilder<> IRB(&I);
2951 ShadowAndOriginCombiner SC(this, IRB);
2952 for (unsigned i = 0; i < NumArgOperands; ++i)
2953 SC.Add(I.getArgOperand(i));
2954 SC.Done(&I);
2955
2956 return true;
2957 }
2958
2959 /// Heuristically instrument unknown intrinsics.
2960 ///
2961 /// The main purpose of this code is to do something reasonable with all
2962 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2963 /// We recognize several classes of intrinsics by their argument types and
2964 /// ModRefBehaviour and apply special instrumentation when we are reasonably
2965 /// sure that we know what the intrinsic does.
2966 ///
2967 /// We special-case intrinsics where this approach fails. See llvm.bswap
2968 /// handling as an example of that.
2969 bool handleUnknownIntrinsic(IntrinsicInst &I) {
2970 unsigned NumArgOperands = I.arg_size();
2971 if (NumArgOperands == 0)
2972 return false;
2973
2974 if (NumArgOperands == 2 && I.getArgOperand(0)->getType()->isPointerTy() &&
2975 I.getArgOperand(1)->getType()->isVectorTy() &&
2976 I.getType()->isVoidTy() && !I.onlyReadsMemory()) {
2977 // This looks like a vector store.
2978 return handleVectorStoreIntrinsic(I);
2979 }
2980
2981 if (NumArgOperands == 1 && I.getArgOperand(0)->getType()->isPointerTy() &&
2982 I.getType()->isVectorTy() && I.onlyReadsMemory()) {
2983 // This looks like a vector load.
2984 return handleVectorLoadIntrinsic(I);
2985 }
2986
2987 if (I.doesNotAccessMemory())
2988 if (maybeHandleSimpleNomemIntrinsic(I))
2989 return true;
2990
2991 // FIXME: detect and handle SSE maskstore/maskload
2992 return false;
2993 }
2994
2995 void handleInvariantGroup(IntrinsicInst &I) {
2996 setShadow(&I, getShadow(&I, 0));
2997 setOrigin(&I, getOrigin(&I, 0));
2998 }
2999
3000 void handleLifetimeStart(IntrinsicInst &I) {
3001 if (!PoisonStack)
3002 return;
3003 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1));
3004 if (!AI)
3005 InstrumentLifetimeStart = false;
3006 LifetimeStartList.push_back(std::make_pair(&I, AI));
3007 }
3008
3009 void handleBswap(IntrinsicInst &I) {
3010 IRBuilder<> IRB(&I);
3011 Value *Op = I.getArgOperand(0);
3012 Type *OpType = Op->getType();
3013 Function *BswapFunc = Intrinsic::getDeclaration(
3014 F.getParent(), Intrinsic::bswap, ArrayRef(&OpType, 1));
3015 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
3016 setOrigin(&I, getOrigin(Op));
3017 }
3018
3019 void handleCountZeroes(IntrinsicInst &I) {
3020 IRBuilder<> IRB(&I);
3021 Value *Src = I.getArgOperand(0);
3022
3023 // Set the Output shadow based on input Shadow
3024 Value *BoolShadow = IRB.CreateIsNotNull(getShadow(Src), "_mscz_bs");
3025
3026 // If zero poison is requested, mix in with the shadow
3027 Constant *IsZeroPoison = cast<Constant>(I.getOperand(1));
3028 if (!IsZeroPoison->isZeroValue()) {
3029 Value *BoolZeroPoison = IRB.CreateIsNull(Src, "_mscz_bzp");
3030 BoolShadow = IRB.CreateOr(BoolShadow, BoolZeroPoison, "_mscz_bs");
3031 }
3032
3033 Value *OutputShadow =
3034 IRB.CreateSExt(BoolShadow, getShadowTy(Src), "_mscz_os");
3035
3036 setShadow(&I, OutputShadow);
3037 setOriginForNaryOp(I);
3038 }
3039
3040 // Instrument vector convert intrinsic.
3041 //
3042 // This function instruments intrinsics like cvtsi2ss:
3043 // %Out = int_xxx_cvtyyy(%ConvertOp)
3044 // or
3045 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
3046 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
3047 // number \p Out elements, and (if has 2 arguments) copies the rest of the
3048 // elements from \p CopyOp.
3049 // In most cases conversion involves floating-point value which may trigger a
3050 // hardware exception when not fully initialized. For this reason we require
3051 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
3052 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
3053 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
3054 // return a fully initialized value.
3055 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements,
3056 bool HasRoundingMode = false) {
3057 IRBuilder<> IRB(&I);
3058 Value *CopyOp, *ConvertOp;
3059
3060 assert((!HasRoundingMode ||(static_cast <bool> ((!HasRoundingMode || isa<ConstantInt
>(I.getArgOperand(I.arg_size() - 1))) && "Invalid rounding mode"
) ? void (0) : __assert_fail ("(!HasRoundingMode || isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && \"Invalid rounding mode\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3062
, __extension__ __PRETTY_FUNCTION__))
3061 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) &&(static_cast <bool> ((!HasRoundingMode || isa<ConstantInt
>(I.getArgOperand(I.arg_size() - 1))) && "Invalid rounding mode"
) ? void (0) : __assert_fail ("(!HasRoundingMode || isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && \"Invalid rounding mode\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3062
, __extension__ __PRETTY_FUNCTION__))
3062 "Invalid rounding mode")(static_cast <bool> ((!HasRoundingMode || isa<ConstantInt
>(I.getArgOperand(I.arg_size() - 1))) && "Invalid rounding mode"
) ? void (0) : __assert_fail ("(!HasRoundingMode || isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && \"Invalid rounding mode\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3062
, __extension__ __PRETTY_FUNCTION__))
;
3063
3064 switch (I.arg_size() - HasRoundingMode) {
3065 case 2:
3066 CopyOp = I.getArgOperand(0);
3067 ConvertOp = I.getArgOperand(1);
3068 break;
3069 case 1:
3070 ConvertOp = I.getArgOperand(0);
3071 CopyOp = nullptr;
3072 break;
3073 default:
3074 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.")::llvm::llvm_unreachable_internal("Cvt intrinsic with unsupported number of arguments."
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3074
)
;
3075 }
3076
3077 // The first *NumUsedElements* elements of ConvertOp are converted to the
3078 // same number of output elements. The rest of the output is copied from
3079 // CopyOp, or (if not available) filled with zeroes.
3080 // Combine shadow for elements of ConvertOp that are used in this operation,
3081 // and insert a check.
3082 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
3083 // int->any conversion.
3084 Value *ConvertShadow = getShadow(ConvertOp);
3085 Value *AggShadow = nullptr;
3086 if (ConvertOp->getType()->isVectorTy()) {
3087 AggShadow = IRB.CreateExtractElement(
3088 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
3089 for (int i = 1; i < NumUsedElements; ++i) {
3090 Value *MoreShadow = IRB.CreateExtractElement(
3091 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
3092 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
3093 }
3094 } else {
3095 AggShadow = ConvertShadow;
3096 }
3097 assert(AggShadow->getType()->isIntegerTy())(static_cast <bool> (AggShadow->getType()->isIntegerTy
()) ? void (0) : __assert_fail ("AggShadow->getType()->isIntegerTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3097
, __extension__ __PRETTY_FUNCTION__))
;
3098 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
3099
3100 // Build result shadow by zero-filling parts of CopyOp shadow that come from
3101 // ConvertOp.
3102 if (CopyOp) {
3103 assert(CopyOp->getType() == I.getType())(static_cast <bool> (CopyOp->getType() == I.getType(
)) ? void (0) : __assert_fail ("CopyOp->getType() == I.getType()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3103
, __extension__ __PRETTY_FUNCTION__))
;
3104 assert(CopyOp->getType()->isVectorTy())(static_cast <bool> (CopyOp->getType()->isVectorTy
()) ? void (0) : __assert_fail ("CopyOp->getType()->isVectorTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3104
, __extension__ __PRETTY_FUNCTION__))
;
3105 Value *ResultShadow = getShadow(CopyOp);
3106 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType();
3107 for (int i = 0; i < NumUsedElements; ++i) {
3108 ResultShadow = IRB.CreateInsertElement(
3109 ResultShadow, ConstantInt::getNullValue(EltTy),
3110 ConstantInt::get(IRB.getInt32Ty(), i));
3111 }
3112 setShadow(&I, ResultShadow);
3113 setOrigin(&I, getOrigin(CopyOp));
3114 } else {
3115 setShadow(&I, getCleanShadow(&I));
3116 setOrigin(&I, getCleanOrigin());
3117 }
3118 }
3119
3120 // Given a scalar or vector, extract lower 64 bits (or less), and return all
3121 // zeroes if it is zero, and all ones otherwise.
3122 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
3123 if (S->getType()->isVectorTy())
3124 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
3125 assert(S->getType()->getPrimitiveSizeInBits() <= 64)(static_cast <bool> (S->getType()->getPrimitiveSizeInBits
() <= 64) ? void (0) : __assert_fail ("S->getType()->getPrimitiveSizeInBits() <= 64"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3125
, __extension__ __PRETTY_FUNCTION__))
;
3126 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
3127 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
3128 }
3129
3130 // Given a vector, extract its first element, and return all
3131 // zeroes if it is zero, and all ones otherwise.
3132 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
3133 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
3134 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
3135 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
3136 }
3137
3138 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
3139 Type *T = S->getType();
3140 assert(T->isVectorTy())(static_cast <bool> (T->isVectorTy()) ? void (0) : __assert_fail
("T->isVectorTy()", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 3140, __extension__ __PRETTY_FUNCTION__))
;
3141 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
3142 return IRB.CreateSExt(S2, T);
3143 }
3144
3145 // Instrument vector shift intrinsic.
3146 //
3147 // This function instruments intrinsics like int_x86_avx2_psll_w.
3148 // Intrinsic shifts %In by %ShiftSize bits.
3149 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
3150 // size, and the rest is ignored. Behavior is defined even if shift size is
3151 // greater than register (or field) width.
3152 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
3153 assert(I.arg_size() == 2)(static_cast <bool> (I.arg_size() == 2) ? void (0) : __assert_fail
("I.arg_size() == 2", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 3153, __extension__ __PRETTY_FUNCTION__))
;
3154 IRBuilder<> IRB(&I);
3155 // If any of the S2 bits are poisoned, the whole thing is poisoned.
3156 // Otherwise perform the same shift on S1.
3157 Value *S1 = getShadow(&I, 0);
3158 Value *S2 = getShadow(&I, 1);
3159 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
3160 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
3161 Value *V1 = I.getOperand(0);
3162 Value *V2 = I.getOperand(1);
3163 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
3164 {IRB.CreateBitCast(S1, V1->getType()), V2});
3165 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
3166 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
3167 setOriginForNaryOp(I);
3168 }
3169
3170 // Get an X86_MMX-sized vector type.
3171 Type *getMMXVectorTy(unsigned EltSizeInBits) {
3172 const unsigned X86_MMXSizeInBits = 64;
3173 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&(static_cast <bool> (EltSizeInBits != 0 && (X86_MMXSizeInBits
% EltSizeInBits) == 0 && "Illegal MMX vector element size"
) ? void (0) : __assert_fail ("EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && \"Illegal MMX vector element size\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3174
, __extension__ __PRETTY_FUNCTION__))
3174 "Illegal MMX vector element size")(static_cast <bool> (EltSizeInBits != 0 && (X86_MMXSizeInBits
% EltSizeInBits) == 0 && "Illegal MMX vector element size"
) ? void (0) : __assert_fail ("EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && \"Illegal MMX vector element size\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3174
, __extension__ __PRETTY_FUNCTION__))
;
3175 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
3176 X86_MMXSizeInBits / EltSizeInBits);
3177 }
3178
3179 // Returns a signed counterpart for an (un)signed-saturate-and-pack
3180 // intrinsic.
3181 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
3182 switch (id) {
3183 case Intrinsic::x86_sse2_packsswb_128:
3184 case Intrinsic::x86_sse2_packuswb_128:
3185 return Intrinsic::x86_sse2_packsswb_128;
3186
3187 case Intrinsic::x86_sse2_packssdw_128:
3188 case Intrinsic::x86_sse41_packusdw:
3189 return Intrinsic::x86_sse2_packssdw_128;
3190
3191 case Intrinsic::x86_avx2_packsswb:
3192 case Intrinsic::x86_avx2_packuswb:
3193 return Intrinsic::x86_avx2_packsswb;
3194
3195 case Intrinsic::x86_avx2_packssdw:
3196 case Intrinsic::x86_avx2_packusdw:
3197 return Intrinsic::x86_avx2_packssdw;
3198
3199 case Intrinsic::x86_mmx_packsswb:
3200 case Intrinsic::x86_mmx_packuswb:
3201 return Intrinsic::x86_mmx_packsswb;
3202
3203 case Intrinsic::x86_mmx_packssdw:
3204 return Intrinsic::x86_mmx_packssdw;
3205 default:
3206 llvm_unreachable("unexpected intrinsic id")::llvm::llvm_unreachable_internal("unexpected intrinsic id", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 3206)
;
3207 }
3208 }
3209
3210 // Instrument vector pack intrinsic.
3211 //
3212 // This function instruments intrinsics like x86_mmx_packsswb, that
3213 // packs elements of 2 input vectors into half as many bits with saturation.
3214 // Shadow is propagated with the signed variant of the same intrinsic applied
3215 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
3216 // EltSizeInBits is used only for x86mmx arguments.
3217 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
3218 assert(I.arg_size() == 2)(static_cast <bool> (I.arg_size() == 2) ? void (0) : __assert_fail
("I.arg_size() == 2", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 3218, __extension__ __PRETTY_FUNCTION__))
;
3219 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
3220 IRBuilder<> IRB(&I);
3221 Value *S1 = getShadow(&I, 0);
3222 Value *S2 = getShadow(&I, 1);
3223 assert(isX86_MMX || S1->getType()->isVectorTy())(static_cast <bool> (isX86_MMX || S1->getType()->
isVectorTy()) ? void (0) : __assert_fail ("isX86_MMX || S1->getType()->isVectorTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3223
, __extension__ __PRETTY_FUNCTION__))
;
3224
3225 // SExt and ICmpNE below must apply to individual elements of input vectors.
3226 // In case of x86mmx arguments, cast them to appropriate vector types and
3227 // back.
3228 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
3229 if (isX86_MMX) {
3230 S1 = IRB.CreateBitCast(S1, T);
3231 S2 = IRB.CreateBitCast(S2, T);
3232 }
3233 Value *S1_ext =
3234 IRB.CreateSExt(IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
3235 Value *S2_ext =
3236 IRB.CreateSExt(IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
3237 if (isX86_MMX) {
3238 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
3239 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
3240 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
3241 }
3242
3243 Function *ShadowFn = Intrinsic::getDeclaration(
3244 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
3245
3246 Value *S =
3247 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
3248 if (isX86_MMX)
3249 S = IRB.CreateBitCast(S, getShadowTy(&I));
3250 setShadow(&I, S);
3251 setOriginForNaryOp(I);
3252 }
3253
3254 // Instrument sum-of-absolute-differences intrinsic.
3255 void handleVectorSadIntrinsic(IntrinsicInst &I) {
3256 const unsigned SignificantBitsPerResultElement = 16;
3257 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
3258 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
3259 unsigned ZeroBitsPerResultElement =
3260 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
3261
3262 IRBuilder<> IRB(&I);
3263 auto *Shadow0 = getShadow(&I, 0);
3264 auto *Shadow1 = getShadow(&I, 1);
3265 Value *S = IRB.CreateOr(Shadow0, Shadow1);
3266 S = IRB.CreateBitCast(S, ResTy);
3267 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
3268 ResTy);
3269 S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
3270 S = IRB.CreateBitCast(S, getShadowTy(&I));
3271 setShadow(&I, S);
3272 setOriginForNaryOp(I);
3273 }
3274
3275 // Instrument multiply-add intrinsic.
3276 void handleVectorPmaddIntrinsic(IntrinsicInst &I,
3277 unsigned EltSizeInBits = 0) {
3278 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
3279 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
3280 IRBuilder<> IRB(&I);
3281 auto *Shadow0 = getShadow(&I, 0);
3282 auto *Shadow1 = getShadow(&I, 1);
3283 Value *S = IRB.CreateOr(Shadow0, Shadow1);
3284 S = IRB.CreateBitCast(S, ResTy);
3285 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
3286 ResTy);
3287 S = IRB.CreateBitCast(S, getShadowTy(&I));
3288 setShadow(&I, S);
3289 setOriginForNaryOp(I);
3290 }
3291
3292 // Instrument compare-packed intrinsic.
3293 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
3294 // all-ones shadow.
3295 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
3296 IRBuilder<> IRB(&I);
3297 Type *ResTy = getShadowTy(&I);
3298 auto *Shadow0 = getShadow(&I, 0);
3299 auto *Shadow1 = getShadow(&I, 1);
3300 Value *S0 = IRB.CreateOr(Shadow0, Shadow1);
3301 Value *S = IRB.CreateSExt(
3302 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
3303 setShadow(&I, S);
3304 setOriginForNaryOp(I);
3305 }
3306
3307 // Instrument compare-scalar intrinsic.
3308 // This handles both cmp* intrinsics which return the result in the first
3309 // element of a vector, and comi* which return the result as i32.
3310 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
3311 IRBuilder<> IRB(&I);
3312 auto *Shadow0 = getShadow(&I, 0);
3313 auto *Shadow1 = getShadow(&I, 1);
3314 Value *S0 = IRB.CreateOr(Shadow0, Shadow1);
3315 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
3316 setShadow(&I, S);
3317 setOriginForNaryOp(I);
3318 }
3319
3320 // Instrument generic vector reduction intrinsics
3321 // by ORing together all their fields.
3322 void handleVectorReduceIntrinsic(IntrinsicInst &I) {
3323 IRBuilder<> IRB(&I);
3324 Value *S = IRB.CreateOrReduce(getShadow(&I, 0));
3325 setShadow(&I, S);
3326 setOrigin(&I, getOrigin(&I, 0));
3327 }
3328
3329 // Instrument vector.reduce.or intrinsic.
3330 // Valid (non-poisoned) set bits in the operand pull low the
3331 // corresponding shadow bits.
3332 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) {
3333 IRBuilder<> IRB(&I);
3334 Value *OperandShadow = getShadow(&I, 0);
3335 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0));
3336 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow);
3337 // Bit N is clean if any field's bit N is 1 and unpoison
3338 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison);
3339 // Otherwise, it is clean if every field's bit N is unpoison
3340 Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3341 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3342
3343 setShadow(&I, S);
3344 setOrigin(&I, getOrigin(&I, 0));
3345 }
3346
3347 // Instrument vector.reduce.and intrinsic.
3348 // Valid (non-poisoned) unset bits in the operand pull down the
3349 // corresponding shadow bits.
3350 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) {
3351 IRBuilder<> IRB(&I);
3352 Value *OperandShadow = getShadow(&I, 0);
3353 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow);
3354 // Bit N is clean if any field's bit N is 0 and unpoison
3355 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison);
3356 // Otherwise, it is clean if every field's bit N is unpoison
3357 Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3358 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3359
3360 setShadow(&I, S);
3361 setOrigin(&I, getOrigin(&I, 0));
3362 }
3363
3364 void handleStmxcsr(IntrinsicInst &I) {
3365 IRBuilder<> IRB(&I);
3366 Value *Addr = I.getArgOperand(0);
3367 Type *Ty = IRB.getInt32Ty();
3368 Value *ShadowPtr =
3369 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first;
3370
3371 IRB.CreateStore(getCleanShadow(Ty),
3372 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
3373
3374 if (ClCheckAccessAddress)
3375 insertShadowCheck(Addr, &I);
3376 }
3377
3378 void handleLdmxcsr(IntrinsicInst &I) {
3379 if (!InsertChecks)
3380 return;
3381
3382 IRBuilder<> IRB(&I);
3383 Value *Addr = I.getArgOperand(0);
3384 Type *Ty = IRB.getInt32Ty();
3385 const Align Alignment = Align(1);
3386 Value *ShadowPtr, *OriginPtr;
3387 std::tie(ShadowPtr, OriginPtr) =
3388 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
3389
3390 if (ClCheckAccessAddress)
3391 insertShadowCheck(Addr, &I);
3392
3393 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
3394 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
3395 : getCleanOrigin();
3396 insertShadowCheck(Shadow, Origin, &I);
3397 }
3398
3399 void handleMaskedExpandLoad(IntrinsicInst &I) {
3400 IRBuilder<> IRB(&I);
3401 Value *Ptr = I.getArgOperand(0);
3402 Value *Mask = I.getArgOperand(1);
3403 Value *PassThru = I.getArgOperand(2);
3404
3405 if (ClCheckAccessAddress) {
3406 insertShadowCheck(Ptr, &I);
3407 insertShadowCheck(Mask, &I);
3408 }
3409
3410 if (!PropagateShadow) {
3411 setShadow(&I, getCleanShadow(&I));
3412 setOrigin(&I, getCleanOrigin());
3413 return;
3414 }
3415
3416 Type *ShadowTy = getShadowTy(&I);
3417 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType();
3418 auto [ShadowPtr, OriginPtr] =
3419 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, {}, /*isStore*/ false);
3420
3421 Value *Shadow = IRB.CreateMaskedExpandLoad(
3422 ShadowTy, ShadowPtr, Mask, getShadow(PassThru), "_msmaskedexpload");
3423
3424 setShadow(&I, Shadow);
3425
3426 // TODO: Store origins.
3427 setOrigin(&I, getCleanOrigin());
3428 }
3429
3430 void handleMaskedCompressStore(IntrinsicInst &I) {
3431 IRBuilder<> IRB(&I);
3432 Value *Values = I.getArgOperand(0);
3433 Value *Ptr = I.getArgOperand(1);
3434 Value *Mask = I.getArgOperand(2);
3435
3436 if (ClCheckAccessAddress) {
3437 insertShadowCheck(Ptr, &I);
3438 insertShadowCheck(Mask, &I);
3439 }
3440
3441 Value *Shadow = getShadow(Values);
3442 Type *ElementShadowTy =
3443 getShadowTy(cast<VectorType>(Values->getType())->getElementType());
3444 auto [ShadowPtr, OriginPtrs] =
3445 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, {}, /*isStore*/ true);
3446
3447 IRB.CreateMaskedCompressStore(Shadow, ShadowPtr, Mask);
3448
3449 // TODO: Store origins.
3450 }
3451
3452 void handleMaskedGather(IntrinsicInst &I) {
3453 IRBuilder<> IRB(&I);
3454 Value *Ptrs = I.getArgOperand(0);
3455 const Align Alignment(
3456 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3457 Value *Mask = I.getArgOperand(2);
3458 Value *PassThru = I.getArgOperand(3);
3459
3460 Type *PtrsShadowTy = getShadowTy(Ptrs);
3461 if (ClCheckAccessAddress) {
3462 insertShadowCheck(Mask, &I);
3463 Value *MaskedPtrShadow = IRB.CreateSelect(
3464 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)),
3465 "_msmaskedptrs");
3466 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I);
3467 }
3468
3469 if (!PropagateShadow) {
3470 setShadow(&I, getCleanShadow(&I));
3471 setOrigin(&I, getCleanOrigin());
3472 return;
3473 }
3474
3475 Type *ShadowTy = getShadowTy(&I);
3476 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType();
3477 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr(
3478 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ false);
3479
3480 Value *Shadow =
3481 IRB.CreateMaskedGather(ShadowTy, ShadowPtrs, Alignment, Mask,
3482 getShadow(PassThru), "_msmaskedgather");
3483
3484 setShadow(&I, Shadow);
3485
3486 // TODO: Store origins.
3487 setOrigin(&I, getCleanOrigin());
3488 }
3489
3490 void handleMaskedScatter(IntrinsicInst &I) {
3491 IRBuilder<> IRB(&I);
3492 Value *Values = I.getArgOperand(0);
3493 Value *Ptrs = I.getArgOperand(1);
3494 const Align Alignment(
3495 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3496 Value *Mask = I.getArgOperand(3);
3497
3498 Type *PtrsShadowTy = getShadowTy(Ptrs);
3499 if (ClCheckAccessAddress) {
3500 insertShadowCheck(Mask, &I);
3501 Value *MaskedPtrShadow = IRB.CreateSelect(
3502 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)),
3503 "_msmaskedptrs");
3504 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I);
3505 }
3506
3507 Value *Shadow = getShadow(Values);
3508 Type *ElementShadowTy =
3509 getShadowTy(cast<VectorType>(Values->getType())->getElementType());
3510 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr(
3511 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ true);
3512
3513 IRB.CreateMaskedScatter(Shadow, ShadowPtrs, Alignment, Mask);
3514
3515 // TODO: Store origin.
3516 }
3517
3518 void handleMaskedStore(IntrinsicInst &I) {
3519 IRBuilder<> IRB(&I);
3520 Value *V = I.getArgOperand(0);
3521 Value *Ptr = I.getArgOperand(1);
3522 const Align Alignment(
3523 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3524 Value *Mask = I.getArgOperand(3);
3525 Value *Shadow = getShadow(V);
3526
3527 if (ClCheckAccessAddress) {
3528 insertShadowCheck(Ptr, &I);
3529 insertShadowCheck(Mask, &I);
3530 }
3531
3532 Value *ShadowPtr;
3533 Value *OriginPtr;
3534 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
3535 Ptr, IRB, Shadow->getType(), Alignment, /*isStore*/ true);
3536
3537 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask);
3538
3539 if (!MS.TrackOrigins)
3540 return;
3541
3542 auto &DL = F.getParent()->getDataLayout();
3543 paintOrigin(IRB, getOrigin(V), OriginPtr,
3544 DL.getTypeStoreSize(Shadow->getType()),
3545 std::max(Alignment, kMinOriginAlignment));
3546 }
3547
3548 void handleMaskedLoad(IntrinsicInst &I) {
3549 IRBuilder<> IRB(&I);
3550 Value *Ptr = I.getArgOperand(0);
3551 const Align Alignment(
3552 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3553 Value *Mask = I.getArgOperand(2);
3554 Value *PassThru = I.getArgOperand(3);
3555
3556 if (ClCheckAccessAddress) {
3557 insertShadowCheck(Ptr, &I);
3558 insertShadowCheck(Mask, &I);
3559 }
3560
3561 if (!PropagateShadow) {
3562 setShadow(&I, getCleanShadow(&I));
3563 setOrigin(&I, getCleanOrigin());
3564 return;
3565 }
3566
3567 Type *ShadowTy = getShadowTy(&I);
3568 Value *ShadowPtr, *OriginPtr;
3569 std::tie(ShadowPtr, OriginPtr) =
3570 getShadowOriginPtr(Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false);
3571 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask,
3572 getShadow(PassThru), "_msmaskedld"));
3573
3574 if (!MS.TrackOrigins)
3575 return;
3576
3577 // Choose between PassThru's and the loaded value's origins.
3578 Value *MaskedPassThruShadow = IRB.CreateAnd(
3579 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
3580
3581 Value *NotNull = convertToBool(MaskedPassThruShadow, IRB, "_mscmp");
3582
3583 Value *PtrOrigin = IRB.CreateLoad(MS.OriginTy, OriginPtr);
3584 Value *Origin = IRB.CreateSelect(NotNull, getOrigin(PassThru), PtrOrigin);
3585
3586 setOrigin(&I, Origin);
3587 }
3588
3589 // Instrument BMI / BMI2 intrinsics.
3590 // All of these intrinsics are Z = I(X, Y)
3591 // where the types of all operands and the result match, and are either i32 or
3592 // i64. The following instrumentation happens to work for all of them:
3593 // Sz = I(Sx, Y) | (sext (Sy != 0))
3594 void handleBmiIntrinsic(IntrinsicInst &I) {
3595 IRBuilder<> IRB(&I);
3596 Type *ShadowTy = getShadowTy(&I);
3597
3598 // If any bit of the mask operand is poisoned, then the whole thing is.
3599 Value *SMask = getShadow(&I, 1);
3600 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
3601 ShadowTy);
3602 // Apply the same intrinsic to the shadow of the first operand.
3603 Value *S = IRB.CreateCall(I.getCalledFunction(),
3604 {getShadow(&I, 0), I.getOperand(1)});
3605 S = IRB.CreateOr(SMask, S);
3606 setShadow(&I, S);
3607 setOriginForNaryOp(I);
3608 }
3609
3610 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) {
3611 SmallVector<int, 8> Mask;
3612 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) {
3613 Mask.append(2, X);
3614 }
3615 return Mask;
3616 }
3617
3618 // Instrument pclmul intrinsics.
3619 // These intrinsics operate either on odd or on even elements of the input
3620 // vectors, depending on the constant in the 3rd argument, ignoring the rest.
3621 // Replace the unused elements with copies of the used ones, ex:
3622 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case)
3623 // or
3624 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case)
3625 // and then apply the usual shadow combining logic.
3626 void handlePclmulIntrinsic(IntrinsicInst &I) {
3627 IRBuilder<> IRB(&I);
3628 unsigned Width =
3629 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3630 assert(isa<ConstantInt>(I.getArgOperand(2)) &&(static_cast <bool> (isa<ConstantInt>(I.getArgOperand
(2)) && "pclmul 3rd operand must be a constant") ? void
(0) : __assert_fail ("isa<ConstantInt>(I.getArgOperand(2)) && \"pclmul 3rd operand must be a constant\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3631
, __extension__ __PRETTY_FUNCTION__))
3631 "pclmul 3rd operand must be a constant")(static_cast <bool> (isa<ConstantInt>(I.getArgOperand
(2)) && "pclmul 3rd operand must be a constant") ? void
(0) : __assert_fail ("isa<ConstantInt>(I.getArgOperand(2)) && \"pclmul 3rd operand must be a constant\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3631
, __extension__ __PRETTY_FUNCTION__))
;
3632 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3633 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0),
3634 getPclmulMask(Width, Imm & 0x01));
3635 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1),
3636 getPclmulMask(Width, Imm & 0x10));
3637 ShadowAndOriginCombiner SOC(this, IRB);
3638 SOC.Add(Shuf0, getOrigin(&I, 0));
3639 SOC.Add(Shuf1, getOrigin(&I, 1));
3640 SOC.Done(&I);
3641 }
3642
3643 // Instrument _mm_*_sd|ss intrinsics
3644 void handleUnarySdSsIntrinsic(IntrinsicInst &I) {
3645 IRBuilder<> IRB(&I);
3646 unsigned Width =
3647 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3648 Value *First = getShadow(&I, 0);
3649 Value *Second = getShadow(&I, 1);
3650 // First element of second operand, remaining elements of first operand
3651 SmallVector<int, 16> Mask;
3652 Mask.push_back(Width);
3653 for (unsigned i = 1; i < Width; i++)
3654 Mask.push_back(i);
3655 Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask);
3656
3657 setShadow(&I, Shadow);
3658 setOriginForNaryOp(I);
3659 }
3660
3661 void handleVtestIntrinsic(IntrinsicInst &I) {
3662 IRBuilder<> IRB(&I);
3663 Value *Shadow0 = getShadow(&I, 0);
3664 Value *Shadow1 = getShadow(&I, 1);
3665 Value *Or = IRB.CreateOr(Shadow0, Shadow1);
3666 Value *NZ = IRB.CreateICmpNE(Or, Constant::getNullValue(Or->getType()));
3667 Value *Scalar = convertShadowToScalar(NZ, IRB);
3668 Value *Shadow = IRB.CreateZExt(Scalar, getShadowTy(&I));
3669
3670 setShadow(&I, Shadow);
3671 setOriginForNaryOp(I);
3672 }
3673
3674 void handleBinarySdSsIntrinsic(IntrinsicInst &I) {
3675 IRBuilder<> IRB(&I);
3676 unsigned Width =
3677 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3678 Value *First = getShadow(&I, 0);
3679 Value *Second = getShadow(&I, 1);
3680 Value *OrShadow = IRB.CreateOr(First, Second);
3681 // First element of both OR'd together, remaining elements of first operand
3682 SmallVector<int, 16> Mask;
3683 Mask.push_back(Width);
3684 for (unsigned i = 1; i < Width; i++)
3685 Mask.push_back(i);
3686 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask);
3687
3688 setShadow(&I, Shadow);
3689 setOriginForNaryOp(I);
3690 }
3691
3692 // Instrument abs intrinsic.
3693 // handleUnknownIntrinsic can't handle it because of the last
3694 // is_int_min_poison argument which does not match the result type.
3695 void handleAbsIntrinsic(IntrinsicInst &I) {
3696 assert(I.getType()->isIntOrIntVectorTy())(static_cast <bool> (I.getType()->isIntOrIntVectorTy
()) ? void (0) : __assert_fail ("I.getType()->isIntOrIntVectorTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3696
, __extension__ __PRETTY_FUNCTION__))
;
3697 assert(I.getArgOperand(0)->getType() == I.getType())(static_cast <bool> (I.getArgOperand(0)->getType() ==
I.getType()) ? void (0) : __assert_fail ("I.getArgOperand(0)->getType() == I.getType()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 3697
, __extension__ __PRETTY_FUNCTION__))
;
3698
3699 // FIXME: Handle is_int_min_poison.
3700 IRBuilder<> IRB(&I);
3701 setShadow(&I, getShadow(&I, 0));
3702 setOrigin(&I, getOrigin(&I, 0));
3703 }
3704
3705 void handleIsFpClass(IntrinsicInst &I) {
3706 IRBuilder<> IRB(&I);
3707 Value *Shadow = getShadow(&I, 0);
3708 setShadow(&I, IRB.CreateICmpNE(Shadow, getCleanShadow(Shadow)));
3709 setOrigin(&I, getOrigin(&I, 0));
3710 }
3711
3712 void visitIntrinsicInst(IntrinsicInst &I) {
3713 switch (I.getIntrinsicID()) {
3714 case Intrinsic::abs:
3715 handleAbsIntrinsic(I);
3716 break;
3717 case Intrinsic::is_fpclass:
3718 handleIsFpClass(I);
3719 break;
3720 case Intrinsic::lifetime_start:
3721 handleLifetimeStart(I);
3722 break;
3723 case Intrinsic::launder_invariant_group:
3724 case Intrinsic::strip_invariant_group:
3725 handleInvariantGroup(I);
3726 break;
3727 case Intrinsic::bswap:
3728 handleBswap(I);
3729 break;
3730 case Intrinsic::ctlz:
3731 case Intrinsic::cttz:
3732 handleCountZeroes(I);
3733 break;
3734 case Intrinsic::masked_compressstore:
3735 handleMaskedCompressStore(I);
3736 break;
3737 case Intrinsic::masked_expandload:
3738 handleMaskedExpandLoad(I);
3739 break;
3740 case Intrinsic::masked_gather:
3741 handleMaskedGather(I);
3742 break;
3743 case Intrinsic::masked_scatter:
3744 handleMaskedScatter(I);
3745 break;
3746 case Intrinsic::masked_store:
3747 handleMaskedStore(I);
3748 break;
3749 case Intrinsic::masked_load:
3750 handleMaskedLoad(I);
3751 break;
3752 case Intrinsic::vector_reduce_and:
3753 handleVectorReduceAndIntrinsic(I);
3754 break;
3755 case Intrinsic::vector_reduce_or:
3756 handleVectorReduceOrIntrinsic(I);
3757 break;
3758 case Intrinsic::vector_reduce_add:
3759 case Intrinsic::vector_reduce_xor:
3760 case Intrinsic::vector_reduce_mul:
3761 handleVectorReduceIntrinsic(I);
3762 break;
3763 case Intrinsic::x86_sse_stmxcsr:
3764 handleStmxcsr(I);
3765 break;
3766 case Intrinsic::x86_sse_ldmxcsr:
3767 handleLdmxcsr(I);
3768 break;
3769 case Intrinsic::x86_avx512_vcvtsd2usi64:
3770 case Intrinsic::x86_avx512_vcvtsd2usi32:
3771 case Intrinsic::x86_avx512_vcvtss2usi64:
3772 case Intrinsic::x86_avx512_vcvtss2usi32:
3773 case Intrinsic::x86_avx512_cvttss2usi64:
3774 case Intrinsic::x86_avx512_cvttss2usi:
3775 case Intrinsic::x86_avx512_cvttsd2usi64:
3776 case Intrinsic::x86_avx512_cvttsd2usi:
3777 case Intrinsic::x86_avx512_cvtusi2ss:
3778 case Intrinsic::x86_avx512_cvtusi642sd:
3779 case Intrinsic::x86_avx512_cvtusi642ss:
3780 handleVectorConvertIntrinsic(I, 1, true);
3781 break;
3782 case Intrinsic::x86_sse2_cvtsd2si64:
3783 case Intrinsic::x86_sse2_cvtsd2si:
3784 case Intrinsic::x86_sse2_cvtsd2ss:
3785 case Intrinsic::x86_sse2_cvttsd2si64:
3786 case Intrinsic::x86_sse2_cvttsd2si:
3787 case Intrinsic::x86_sse_cvtss2si64:
3788 case Intrinsic::x86_sse_cvtss2si:
3789 case Intrinsic::x86_sse_cvttss2si64:
3790 case Intrinsic::x86_sse_cvttss2si:
3791 handleVectorConvertIntrinsic(I, 1);
3792 break;
3793 case Intrinsic::x86_sse_cvtps2pi:
3794 case Intrinsic::x86_sse_cvttps2pi:
3795 handleVectorConvertIntrinsic(I, 2);
3796 break;
3797
3798 case Intrinsic::x86_avx512_psll_w_512:
3799 case Intrinsic::x86_avx512_psll_d_512:
3800 case Intrinsic::x86_avx512_psll_q_512:
3801 case Intrinsic::x86_avx512_pslli_w_512:
3802 case Intrinsic::x86_avx512_pslli_d_512:
3803 case Intrinsic::x86_avx512_pslli_q_512:
3804 case Intrinsic::x86_avx512_psrl_w_512:
3805 case Intrinsic::x86_avx512_psrl_d_512:
3806 case Intrinsic::x86_avx512_psrl_q_512:
3807 case Intrinsic::x86_avx512_psra_w_512:
3808 case Intrinsic::x86_avx512_psra_d_512:
3809 case Intrinsic::x86_avx512_psra_q_512:
3810 case Intrinsic::x86_avx512_psrli_w_512:
3811 case Intrinsic::x86_avx512_psrli_d_512:
3812 case Intrinsic::x86_avx512_psrli_q_512:
3813 case Intrinsic::x86_avx512_psrai_w_512:
3814 case Intrinsic::x86_avx512_psrai_d_512:
3815 case Intrinsic::x86_avx512_psrai_q_512:
3816 case Intrinsic::x86_avx512_psra_q_256:
3817 case Intrinsic::x86_avx512_psra_q_128:
3818 case Intrinsic::x86_avx512_psrai_q_256:
3819 case Intrinsic::x86_avx512_psrai_q_128:
3820 case Intrinsic::x86_avx2_psll_w:
3821 case Intrinsic::x86_avx2_psll_d:
3822 case Intrinsic::x86_avx2_psll_q:
3823 case Intrinsic::x86_avx2_pslli_w:
3824 case Intrinsic::x86_avx2_pslli_d:
3825 case Intrinsic::x86_avx2_pslli_q:
3826 case Intrinsic::x86_avx2_psrl_w:
3827 case Intrinsic::x86_avx2_psrl_d:
3828 case Intrinsic::x86_avx2_psrl_q:
3829 case Intrinsic::x86_avx2_psra_w:
3830 case Intrinsic::x86_avx2_psra_d:
3831 case Intrinsic::x86_avx2_psrli_w:
3832 case Intrinsic::x86_avx2_psrli_d:
3833 case Intrinsic::x86_avx2_psrli_q:
3834 case Intrinsic::x86_avx2_psrai_w:
3835 case Intrinsic::x86_avx2_psrai_d:
3836 case Intrinsic::x86_sse2_psll_w:
3837 case Intrinsic::x86_sse2_psll_d:
3838 case Intrinsic::x86_sse2_psll_q:
3839 case Intrinsic::x86_sse2_pslli_w:
3840 case Intrinsic::x86_sse2_pslli_d:
3841 case Intrinsic::x86_sse2_pslli_q:
3842 case Intrinsic::x86_sse2_psrl_w:
3843 case Intrinsic::x86_sse2_psrl_d:
3844 case Intrinsic::x86_sse2_psrl_q:
3845 case Intrinsic::x86_sse2_psra_w:
3846 case Intrinsic::x86_sse2_psra_d:
3847 case Intrinsic::x86_sse2_psrli_w:
3848 case Intrinsic::x86_sse2_psrli_d:
3849 case Intrinsic::x86_sse2_psrli_q:
3850 case Intrinsic::x86_sse2_psrai_w:
3851 case Intrinsic::x86_sse2_psrai_d:
3852 case Intrinsic::x86_mmx_psll_w:
3853 case Intrinsic::x86_mmx_psll_d:
3854 case Intrinsic::x86_mmx_psll_q:
3855 case Intrinsic::x86_mmx_pslli_w:
3856 case Intrinsic::x86_mmx_pslli_d:
3857 case Intrinsic::x86_mmx_pslli_q:
3858 case Intrinsic::x86_mmx_psrl_w:
3859 case Intrinsic::x86_mmx_psrl_d:
3860 case Intrinsic::x86_mmx_psrl_q:
3861 case Intrinsic::x86_mmx_psra_w:
3862 case Intrinsic::x86_mmx_psra_d:
3863 case Intrinsic::x86_mmx_psrli_w:
3864 case Intrinsic::x86_mmx_psrli_d:
3865 case Intrinsic::x86_mmx_psrli_q:
3866 case Intrinsic::x86_mmx_psrai_w:
3867 case Intrinsic::x86_mmx_psrai_d:
3868 handleVectorShiftIntrinsic(I, /* Variable */ false);
3869 break;
3870 case Intrinsic::x86_avx2_psllv_d:
3871 case Intrinsic::x86_avx2_psllv_d_256:
3872 case Intrinsic::x86_avx512_psllv_d_512:
3873 case Intrinsic::x86_avx2_psllv_q:
3874 case Intrinsic::x86_avx2_psllv_q_256:
3875 case Intrinsic::x86_avx512_psllv_q_512:
3876 case Intrinsic::x86_avx2_psrlv_d:
3877 case Intrinsic::x86_avx2_psrlv_d_256:
3878 case Intrinsic::x86_avx512_psrlv_d_512:
3879 case Intrinsic::x86_avx2_psrlv_q:
3880 case Intrinsic::x86_avx2_psrlv_q_256:
3881 case Intrinsic::x86_avx512_psrlv_q_512:
3882 case Intrinsic::x86_avx2_psrav_d:
3883 case Intrinsic::x86_avx2_psrav_d_256:
3884 case Intrinsic::x86_avx512_psrav_d_512:
3885 case Intrinsic::x86_avx512_psrav_q_128:
3886 case Intrinsic::x86_avx512_psrav_q_256:
3887 case Intrinsic::x86_avx512_psrav_q_512:
3888 handleVectorShiftIntrinsic(I, /* Variable */ true);
3889 break;
3890
3891 case Intrinsic::x86_sse2_packsswb_128:
3892 case Intrinsic::x86_sse2_packssdw_128:
3893 case Intrinsic::x86_sse2_packuswb_128:
3894 case Intrinsic::x86_sse41_packusdw:
3895 case Intrinsic::x86_avx2_packsswb:
3896 case Intrinsic::x86_avx2_packssdw:
3897 case Intrinsic::x86_avx2_packuswb:
3898 case Intrinsic::x86_avx2_packusdw:
3899 handleVectorPackIntrinsic(I);
3900 break;
3901
3902 case Intrinsic::x86_mmx_packsswb:
3903 case Intrinsic::x86_mmx_packuswb:
3904 handleVectorPackIntrinsic(I, 16);
3905 break;
3906
3907 case Intrinsic::x86_mmx_packssdw:
3908 handleVectorPackIntrinsic(I, 32);
3909 break;
3910
3911 case Intrinsic::x86_mmx_psad_bw:
3912 case Intrinsic::x86_sse2_psad_bw:
3913 case Intrinsic::x86_avx2_psad_bw:
3914 handleVectorSadIntrinsic(I);
3915 break;
3916
3917 case Intrinsic::x86_sse2_pmadd_wd:
3918 case Intrinsic::x86_avx2_pmadd_wd:
3919 case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3920 case Intrinsic::x86_avx2_pmadd_ub_sw:
3921 handleVectorPmaddIntrinsic(I);
3922 break;
3923
3924 case Intrinsic::x86_ssse3_pmadd_ub_sw:
3925 handleVectorPmaddIntrinsic(I, 8);
3926 break;
3927
3928 case Intrinsic::x86_mmx_pmadd_wd:
3929 handleVectorPmaddIntrinsic(I, 16);
3930 break;
3931
3932 case Intrinsic::x86_sse_cmp_ss:
3933 case Intrinsic::x86_sse2_cmp_sd:
3934 case Intrinsic::x86_sse_comieq_ss:
3935 case Intrinsic::x86_sse_comilt_ss:
3936 case Intrinsic::x86_sse_comile_ss:
3937 case Intrinsic::x86_sse_comigt_ss:
3938 case Intrinsic::x86_sse_comige_ss:
3939 case Intrinsic::x86_sse_comineq_ss:
3940 case Intrinsic::x86_sse_ucomieq_ss:
3941 case Intrinsic::x86_sse_ucomilt_ss:
3942 case Intrinsic::x86_sse_ucomile_ss:
3943 case Intrinsic::x86_sse_ucomigt_ss:
3944 case Intrinsic::x86_sse_ucomige_ss:
3945 case Intrinsic::x86_sse_ucomineq_ss:
3946 case Intrinsic::x86_sse2_comieq_sd:
3947 case Intrinsic::x86_sse2_comilt_sd:
3948 case Intrinsic::x86_sse2_comile_sd:
3949 case Intrinsic::x86_sse2_comigt_sd:
3950 case Intrinsic::x86_sse2_comige_sd:
3951 case Intrinsic::x86_sse2_comineq_sd:
3952 case Intrinsic::x86_sse2_ucomieq_sd:
3953 case Intrinsic::x86_sse2_ucomilt_sd:
3954 case Intrinsic::x86_sse2_ucomile_sd:
3955 case Intrinsic::x86_sse2_ucomigt_sd:
3956 case Intrinsic::x86_sse2_ucomige_sd:
3957 case Intrinsic::x86_sse2_ucomineq_sd:
3958 handleVectorCompareScalarIntrinsic(I);
3959 break;
3960
3961 case Intrinsic::x86_avx_cmp_pd_256:
3962 case Intrinsic::x86_avx_cmp_ps_256:
3963 case Intrinsic::x86_sse2_cmp_pd:
3964 case Intrinsic::x86_sse_cmp_ps:
3965 handleVectorComparePackedIntrinsic(I);
3966 break;
3967
3968 case Intrinsic::x86_bmi_bextr_32:
3969 case Intrinsic::x86_bmi_bextr_64:
3970 case Intrinsic::x86_bmi_bzhi_32:
3971 case Intrinsic::x86_bmi_bzhi_64:
3972 case Intrinsic::x86_bmi_pdep_32:
3973 case Intrinsic::x86_bmi_pdep_64:
3974 case Intrinsic::x86_bmi_pext_32:
3975 case Intrinsic::x86_bmi_pext_64:
3976 handleBmiIntrinsic(I);
3977 break;
3978
3979 case Intrinsic::x86_pclmulqdq:
3980 case Intrinsic::x86_pclmulqdq_256:
3981 case Intrinsic::x86_pclmulqdq_512:
3982 handlePclmulIntrinsic(I);
3983 break;
3984
3985 case Intrinsic::x86_sse41_round_sd:
3986 case Intrinsic::x86_sse41_round_ss:
3987 handleUnarySdSsIntrinsic(I);
3988 break;
3989 case Intrinsic::x86_sse2_max_sd:
3990 case Intrinsic::x86_sse_max_ss:
3991 case Intrinsic::x86_sse2_min_sd:
3992 case Intrinsic::x86_sse_min_ss:
3993 handleBinarySdSsIntrinsic(I);
3994 break;
3995
3996 case Intrinsic::x86_avx_vtestc_pd:
3997 case Intrinsic::x86_avx_vtestc_pd_256:
3998 case Intrinsic::x86_avx_vtestc_ps:
3999 case Intrinsic::x86_avx_vtestc_ps_256:
4000 case Intrinsic::x86_avx_vtestnzc_pd:
4001 case Intrinsic::x86_avx_vtestnzc_pd_256:
4002 case Intrinsic::x86_avx_vtestnzc_ps:
4003 case Intrinsic::x86_avx_vtestnzc_ps_256:
4004 case Intrinsic::x86_avx_vtestz_pd:
4005 case Intrinsic::x86_avx_vtestz_pd_256:
4006 case Intrinsic::x86_avx_vtestz_ps:
4007 case Intrinsic::x86_avx_vtestz_ps_256:
4008 case Intrinsic::x86_avx_ptestc_256:
4009 case Intrinsic::x86_avx_ptestnzc_256:
4010 case Intrinsic::x86_avx_ptestz_256:
4011 case Intrinsic::x86_sse41_ptestc:
4012 case Intrinsic::x86_sse41_ptestnzc:
4013 case Intrinsic::x86_sse41_ptestz:
4014 handleVtestIntrinsic(I);
4015 break;
4016
4017 case Intrinsic::fshl:
4018 case Intrinsic::fshr:
4019 handleFunnelShift(I);
4020 break;
4021
4022 case Intrinsic::is_constant:
4023 // The result of llvm.is.constant() is always defined.
4024 setShadow(&I, getCleanShadow(&I));
4025 setOrigin(&I, getCleanOrigin());
4026 break;
4027
4028 default:
4029 if (!handleUnknownIntrinsic(I))
4030 visitInstruction(I);
4031 break;
4032 }
4033 }
4034
4035 void visitLibAtomicLoad(CallBase &CB) {
4036 // Since we use getNextNode here, we can't have CB terminate the BB.
4037 assert(isa<CallInst>(CB))(static_cast <bool> (isa<CallInst>(CB)) ? void (0
) : __assert_fail ("isa<CallInst>(CB)", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 4037, __extension__ __PRETTY_FUNCTION__))
;
4038
4039 IRBuilder<> IRB(&CB);
4040 Value *Size = CB.getArgOperand(0);
4041 Value *SrcPtr = CB.getArgOperand(1);
4042 Value *DstPtr = CB.getArgOperand(2);
4043 Value *Ordering = CB.getArgOperand(3);
4044 // Convert the call to have at least Acquire ordering to make sure
4045 // the shadow operations aren't reordered before it.
4046 Value *NewOrdering =
4047 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
4048 CB.setArgOperand(3, NewOrdering);
4049
4050 NextNodeIRBuilder NextIRB(&CB);
4051 Value *SrcShadowPtr, *SrcOriginPtr;
4052 std::tie(SrcShadowPtr, SrcOriginPtr) =
4053 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
4054 /*isStore*/ false);
4055 Value *DstShadowPtr =
4056 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
4057 /*isStore*/ true)
4058 .first;
4059
4060 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size);
4061 if (MS.TrackOrigins) {
4062 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr,
4063 kMinOriginAlignment);
4064 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB);
4065 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin});
4066 }
4067 }
4068
4069 void visitLibAtomicStore(CallBase &CB) {
4070 IRBuilder<> IRB(&CB);
4071 Value *Size = CB.getArgOperand(0);
4072 Value *DstPtr = CB.getArgOperand(2);
4073 Value *Ordering = CB.getArgOperand(3);
4074 // Convert the call to have at least Release ordering to make sure
4075 // the shadow operations aren't reordered after it.
4076 Value *NewOrdering =
4077 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
4078 CB.setArgOperand(3, NewOrdering);
4079
4080 Value *DstShadowPtr =
4081 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1),
4082 /*isStore*/ true)
4083 .first;
4084
4085 // Atomic store always paints clean shadow/origin. See file header.
4086 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size,
4087 Align(1));
4088 }
4089
4090 void visitCallBase(CallBase &CB) {
4091 assert(!CB.getMetadata(LLVMContext::MD_nosanitize))(static_cast <bool> (!CB.getMetadata(LLVMContext::MD_nosanitize
)) ? void (0) : __assert_fail ("!CB.getMetadata(LLVMContext::MD_nosanitize)"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4091
, __extension__ __PRETTY_FUNCTION__))
;
4092 if (CB.isInlineAsm()) {
4093 // For inline asm (either a call to asm function, or callbr instruction),
4094 // do the usual thing: check argument shadow and mark all outputs as
4095 // clean. Note that any side effects of the inline asm that are not
4096 // immediately visible in its constraints are not handled.
4097 if (ClHandleAsmConservative && MS.CompileKernel)
4098 visitAsmInstruction(CB);
4099 else
4100 visitInstruction(CB);
4101 return;
4102 }
4103 LibFunc LF;
4104 if (TLI->getLibFunc(CB, LF)) {
4105 // libatomic.a functions need to have special handling because there isn't
4106 // a good way to intercept them or compile the library with
4107 // instrumentation.
4108 switch (LF) {
4109 case LibFunc_atomic_load:
4110 if (!isa<CallInst>(CB)) {
4111 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load."
4112 "Ignoring!\n";
4113 break;
4114 }
4115 visitLibAtomicLoad(CB);
4116 return;
4117 case LibFunc_atomic_store:
4118 visitLibAtomicStore(CB);
4119 return;
4120 default:
4121 break;
4122 }
4123 }
4124
4125 if (auto *Call = dyn_cast<CallInst>(&CB)) {
4126 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere")(static_cast <bool> (!isa<IntrinsicInst>(Call) &&
"intrinsics are handled elsewhere") ? void (0) : __assert_fail
("!isa<IntrinsicInst>(Call) && \"intrinsics are handled elsewhere\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4126
, __extension__ __PRETTY_FUNCTION__))
;
4127
4128 // We are going to insert code that relies on the fact that the callee
4129 // will become a non-readonly function after it is instrumented by us. To
4130 // prevent this code from being optimized out, mark that function
4131 // non-readonly in advance.
4132 // TODO: We can likely do better than dropping memory() completely here.
4133 AttributeMask B;
4134 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable);
4135
4136 Call->removeFnAttrs(B);
4137 if (Function *Func = Call->getCalledFunction()) {
4138 Func->removeFnAttrs(B);
4139 }
4140
4141 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
4142 }
4143 IRBuilder<> IRB(&CB);
4144 bool MayCheckCall = MS.EagerChecks;
4145 if (Function *Func = CB.getCalledFunction()) {
4146 // __sanitizer_unaligned_{load,store} functions may be called by users
4147 // and always expects shadows in the TLS. So don't check them.
4148 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_");
4149 }
4150
4151 unsigned ArgOffset = 0;
4152 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " CallSite: " << CB <<
"\n"; } } while (false)
;
4153 for (const auto &[i, A] : llvm::enumerate(CB.args())) {
4154 if (!A->getType()->isSized()) {
4155 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "Arg " << i << " is not sized: "
<< CB << "\n"; } } while (false)
;
4156 continue;
4157 }
4158 unsigned Size = 0;
4159 const DataLayout &DL = F.getParent()->getDataLayout();
4160
4161 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal);
4162 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef);
4163 bool EagerCheck = MayCheckCall && !ByVal && NoUndef;
4164
4165 if (EagerCheck) {
4166 insertShadowCheck(A, &CB);
4167 Size = DL.getTypeAllocSize(A->getType());
4168 } else {
4169 Value *Store = nullptr;
4170 // Compute the Shadow for arg even if it is ByVal, because
4171 // in that case getShadow() will copy the actual arg shadow to
4172 // __msan_param_tls.
4173 Value *ArgShadow = getShadow(A);
4174 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
4175 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *Ado { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " Arg#" << i << ": "
<< *A << " Shadow: " << *ArgShadow <<
"\n"; } } while (false)
4176 << " Shadow: " << *ArgShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " Arg#" << i << ": "
<< *A << " Shadow: " << *ArgShadow <<
"\n"; } } while (false)
;
4177 if (ByVal) {
4178 // ByVal requires some special handling as it's too big for a single
4179 // load
4180 assert(A->getType()->isPointerTy() &&(static_cast <bool> (A->getType()->isPointerTy() &&
"ByVal argument is not a pointer!") ? void (0) : __assert_fail
("A->getType()->isPointerTy() && \"ByVal argument is not a pointer!\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4181
, __extension__ __PRETTY_FUNCTION__))
4181 "ByVal argument is not a pointer!")(static_cast <bool> (A->getType()->isPointerTy() &&
"ByVal argument is not a pointer!") ? void (0) : __assert_fail
("A->getType()->isPointerTy() && \"ByVal argument is not a pointer!\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4181
, __extension__ __PRETTY_FUNCTION__))
;
4182 Size = DL.getTypeAllocSize(CB.getParamByValType(i));
4183 if (ArgOffset + Size > kParamTLSSize)
4184 break;
4185 const MaybeAlign ParamAlignment(CB.getParamAlign(i));
4186 MaybeAlign Alignment = std::nullopt;
4187 if (ParamAlignment)
4188 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment);
4189 Value *AShadowPtr, *AOriginPtr;
4190 std::tie(AShadowPtr, AOriginPtr) =
4191 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
4192 /*isStore*/ false);
4193 if (!PropagateShadow) {
4194 Store = IRB.CreateMemSet(ArgShadowBase,
4195 Constant::getNullValue(IRB.getInt8Ty()),
4196 Size, Alignment);
4197 } else {
4198 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
4199 Alignment, Size);
4200 if (MS.TrackOrigins) {
4201 Value *ArgOriginBase = getOriginPtrForArgument(A, IRB, ArgOffset);
4202 // FIXME: OriginSize should be:
4203 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment)
4204 unsigned OriginSize = alignTo(Size, kMinOriginAlignment);
4205 IRB.CreateMemCpy(
4206 ArgOriginBase,
4207 /* by origin_tls[ArgOffset] */ kMinOriginAlignment,
4208 AOriginPtr,
4209 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize);
4210 }
4211 }
4212 } else {
4213 // Any other parameters mean we need bit-grained tracking of uninit
4214 // data
4215 Size = DL.getTypeAllocSize(A->getType());
4216 if (ArgOffset + Size > kParamTLSSize)
4217 break;
4218 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
4219 kShadowTLSAlignment);
4220 Constant *Cst = dyn_cast<Constant>(ArgShadow);
4221 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) {
4222 IRB.CreateStore(getOrigin(A),
4223 getOriginPtrForArgument(A, IRB, ArgOffset));
4224 }
4225 }
4226 (void)Store;
4227 assert(Store != nullptr)(static_cast <bool> (Store != nullptr) ? void (0) : __assert_fail
("Store != nullptr", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 4227, __extension__ __PRETTY_FUNCTION__))
;
4228 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " Param:" << *Store <<
"\n"; } } while (false)
;
4229 }
4230 assert(Size != 0)(static_cast <bool> (Size != 0) ? void (0) : __assert_fail
("Size != 0", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 4230, __extension__ __PRETTY_FUNCTION__))
;
4231 ArgOffset += alignTo(Size, kShadowTLSAlignment);
4232 }
4233 LLVM_DEBUG(dbgs() << " done with call args\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " done with call args\n"; } } while
(false)
;
4234
4235 FunctionType *FT = CB.getFunctionType();
4236 if (FT->isVarArg()) {
4237 VAHelper->visitCallBase(CB, IRB);
4238 }
4239
4240 // Now, get the shadow for the RetVal.
4241 if (!CB.getType()->isSized())
4242 return;
4243 // Don't emit the epilogue for musttail call returns.
4244 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
4245 return;
4246
4247 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) {
4248 setShadow(&CB, getCleanShadow(&CB));
4249 setOrigin(&CB, getCleanOrigin());
4250 return;
4251 }
4252
4253 IRBuilder<> IRBBefore(&CB);
4254 // Until we have full dynamic coverage, make sure the retval shadow is 0.
4255 Value *Base = getShadowPtrForRetval(&CB, IRBBefore);
4256 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base,
4257 kShadowTLSAlignment);
4258 BasicBlock::iterator NextInsn;
4259 if (isa<CallInst>(CB)) {
4260 NextInsn = ++CB.getIterator();
4261 assert(NextInsn != CB.getParent()->end())(static_cast <bool> (NextInsn != CB.getParent()->end
()) ? void (0) : __assert_fail ("NextInsn != CB.getParent()->end()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4261
, __extension__ __PRETTY_FUNCTION__))
;
4262 } else {
4263 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest();
4264 if (!NormalDest->getSinglePredecessor()) {
4265 // FIXME: this case is tricky, so we are just conservative here.
4266 // Perhaps we need to split the edge between this BB and NormalDest,
4267 // but a naive attempt to use SplitEdge leads to a crash.
4268 setShadow(&CB, getCleanShadow(&CB));
4269 setOrigin(&CB, getCleanOrigin());
4270 return;
4271 }
4272 // FIXME: NextInsn is likely in a basic block that has not been visited
4273 // yet. Anything inserted there will be instrumented by MSan later!
4274 NextInsn = NormalDest->getFirstInsertionPt();
4275 assert(NextInsn != NormalDest->end() &&(static_cast <bool> (NextInsn != NormalDest->end() &&
"Could not find insertion point for retval shadow load") ? void
(0) : __assert_fail ("NextInsn != NormalDest->end() && \"Could not find insertion point for retval shadow load\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4276
, __extension__ __PRETTY_FUNCTION__))
4276 "Could not find insertion point for retval shadow load")(static_cast <bool> (NextInsn != NormalDest->end() &&
"Could not find insertion point for retval shadow load") ? void
(0) : __assert_fail ("NextInsn != NormalDest->end() && \"Could not find insertion point for retval shadow load\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4276
, __extension__ __PRETTY_FUNCTION__))
;
4277 }
4278 IRBuilder<> IRBAfter(&*NextInsn);
4279 Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
4280 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter),
4281 kShadowTLSAlignment, "_msret");
4282 setShadow(&CB, RetvalShadow);
4283 if (MS.TrackOrigins)
4284 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy,
4285 getOriginPtrForRetval(IRBAfter)));
4286 }
4287
4288 bool isAMustTailRetVal(Value *RetVal) {
4289 if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
4290 RetVal = I->getOperand(0);
4291 }
4292 if (auto *I = dyn_cast<CallInst>(RetVal)) {
4293 return I->isMustTailCall();
4294 }
4295 return false;
4296 }
4297
4298 void visitReturnInst(ReturnInst &I) {
4299 IRBuilder<> IRB(&I);
4300 Value *RetVal = I.getReturnValue();
4301 if (!RetVal)
4302 return;
4303 // Don't emit the epilogue for musttail call returns.
4304 if (isAMustTailRetVal(RetVal))
4305 return;
4306 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
4307 bool HasNoUndef = F.hasRetAttribute(Attribute::NoUndef);
4308 bool StoreShadow = !(MS.EagerChecks && HasNoUndef);
4309 // FIXME: Consider using SpecialCaseList to specify a list of functions that
4310 // must always return fully initialized values. For now, we hardcode "main".
4311 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main");
4312
4313 Value *Shadow = getShadow(RetVal);
4314 bool StoreOrigin = true;
4315 if (EagerCheck) {
4316 insertShadowCheck(RetVal, &I);
4317 Shadow = getCleanShadow(RetVal);
4318 StoreOrigin = false;
4319 }
4320
4321 // The caller may still expect information passed over TLS if we pass our
4322 // check
4323 if (StoreShadow) {
4324 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
4325 if (MS.TrackOrigins && StoreOrigin)
4326 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
4327 }
4328 }
4329
4330 void visitPHINode(PHINode &I) {
4331 IRBuilder<> IRB(&I);
4332 if (!PropagateShadow) {
4333 setShadow(&I, getCleanShadow(&I));
4334 setOrigin(&I, getCleanOrigin());
4335 return;
4336 }
4337
4338 ShadowPHINodes.push_back(&I);
4339 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
4340 "_msphi_s"));
4341 if (MS.TrackOrigins)
4342 setOrigin(
4343 &I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), "_msphi_o"));
4344 }
4345
4346 Value *getLocalVarIdptr(AllocaInst &I) {
4347 ConstantInt *IntConst =
4348 ConstantInt::get(Type::getInt32Ty((*F.getParent()).getContext()), 0);
4349 return new GlobalVariable(*F.getParent(), IntConst->getType(),
4350 /*isConstant=*/false, GlobalValue::PrivateLinkage,
4351 IntConst);
4352 }
4353
4354 Value *getLocalVarDescription(AllocaInst &I) {
4355 return createPrivateConstGlobalForString(*F.getParent(), I.getName());
4356 }
4357
4358 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
4359 if (PoisonStack && ClPoisonStackWithCall) {
4360 IRB.CreateCall(MS.MsanPoisonStackFn,
4361 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
4362 } else {
4363 Value *ShadowBase, *OriginBase;
4364 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr(
4365 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true);
4366
4367 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
4368 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign());
4369 }
4370
4371 if (PoisonStack && MS.TrackOrigins) {
4372 Value *Idptr = getLocalVarIdptr(I);
4373 if (ClPrintStackNames) {
4374 Value *Descr = getLocalVarDescription(I);
4375 IRB.CreateCall(MS.MsanSetAllocaOriginWithDescriptionFn,
4376 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
4377 IRB.CreatePointerCast(Idptr, IRB.getInt8PtrTy()),
4378 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
4379 } else {
4380 IRB.CreateCall(MS.MsanSetAllocaOriginNoDescriptionFn,
4381 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
4382 IRB.CreatePointerCast(Idptr, IRB.getInt8PtrTy())});
4383 }
4384 }
4385 }
4386
4387 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
4388 Value *Descr = getLocalVarDescription(I);
4389 if (PoisonStack) {
4390 IRB.CreateCall(MS.MsanPoisonAllocaFn,
4391 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
4392 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
4393 } else {
4394 IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
4395 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
4396 }
4397 }
4398
4399 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
4400 if (!InsPoint)
4401 InsPoint = &I;
4402 NextNodeIRBuilder IRB(InsPoint);
4403 const DataLayout &DL = F.getParent()->getDataLayout();
4404 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
4405 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
4406 if (I.isArrayAllocation())
4407 Len = IRB.CreateMul(Len,
4408 IRB.CreateZExtOrTrunc(I.getArraySize(), MS.IntptrTy));
4409
4410 if (MS.CompileKernel)
4411 poisonAllocaKmsan(I, IRB, Len);
4412 else
4413 poisonAllocaUserspace(I, IRB, Len);
4414 }
4415
4416 void visitAllocaInst(AllocaInst &I) {
4417 setShadow(&I, getCleanShadow(&I));
4418 setOrigin(&I, getCleanOrigin());
4419 // We'll get to this alloca later unless it's poisoned at the corresponding
4420 // llvm.lifetime.start.
4421 AllocaSet.insert(&I);
4422 }
4423
4424 void visitSelectInst(SelectInst &I) {
4425 IRBuilder<> IRB(&I);
4426 // a = select b, c, d
4427 Value *B = I.getCondition();
4428 Value *C = I.getTrueValue();
4429 Value *D = I.getFalseValue();
4430 Value *Sb = getShadow(B);
4431 Value *Sc = getShadow(C);
4432 Value *Sd = getShadow(D);
4433
4434 // Result shadow if condition shadow is 0.
4435 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
4436 Value *Sa1;
4437 if (I.getType()->isAggregateType()) {
4438 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
4439 // an extra "select". This results in much more compact IR.
4440 // Sa = select Sb, poisoned, (select b, Sc, Sd)
4441 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
4442 } else {
4443 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
4444 // If Sb (condition is poisoned), look for bits in c and d that are equal
4445 // and both unpoisoned.
4446 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
4447
4448 // Cast arguments to shadow-compatible type.
4449 C = CreateAppToShadowCast(IRB, C);
4450 D = CreateAppToShadowCast(IRB, D);
4451
4452 // Result shadow if condition shadow is 1.
4453 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
4454 }
4455 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
4456 setShadow(&I, Sa);
4457 if (MS.TrackOrigins) {
4458 // Origins are always i32, so any vector conditions must be flattened.
4459 // FIXME: consider tracking vector origins for app vectors?
4460 if (B->getType()->isVectorTy()) {
4461 B = convertToBool(B, IRB);
4462 Sb = convertToBool(Sb, IRB);
4463 }
4464 // a = select b, c, d
4465 // Oa = Sb ? Ob : (b ? Oc : Od)
4466 setOrigin(
4467 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
4468 IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
4469 getOrigin(I.getFalseValue()))));
4470 }
4471 }
4472
4473 void visitLandingPadInst(LandingPadInst &I) {
4474 // Do nothing.
4475 // See https://github.com/google/sanitizers/issues/504
4476 setShadow(&I, getCleanShadow(&I));
4477 setOrigin(&I, getCleanOrigin());
4478 }
4479
4480 void visitCatchSwitchInst(CatchSwitchInst &I) {
4481 setShadow(&I, getCleanShadow(&I));
4482 setOrigin(&I, getCleanOrigin());
4483 }
4484
4485 void visitFuncletPadInst(FuncletPadInst &I) {
4486 setShadow(&I, getCleanShadow(&I));
4487 setOrigin(&I, getCleanOrigin());
4488 }
4489
4490 void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); }
4491
4492 void visitExtractValueInst(ExtractValueInst &I) {
4493 IRBuilder<> IRB(&I);
4494 Value *Agg = I.getAggregateOperand();
4495 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "ExtractValue: " << I <<
"\n"; } } while (false)
;
4496 Value *AggShadow = getShadow(Agg);
4497 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " AggShadow: " << *AggShadow
<< "\n"; } } while (false)
;
4498 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
4499 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " ResShadow: " << *ResShadow
<< "\n"; } } while (false)
;
4500 setShadow(&I, ResShadow);
4501 setOriginForNaryOp(I);
4502 }
4503
4504 void visitInsertValueInst(InsertValueInst &I) {
4505 IRBuilder<> IRB(&I);
4506 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "InsertValue: " << I <<
"\n"; } } while (false)
;
4507 Value *AggShadow = getShadow(I.getAggregateOperand());
4508 Value *InsShadow = getShadow(I.getInsertedValueOperand());
4509 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " AggShadow: " << *AggShadow
<< "\n"; } } while (false)
;
4510 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " InsShadow: " << *InsShadow
<< "\n"; } } while (false)
;
4511 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
4512 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << " Res: " << *Res <<
"\n"; } } while (false)
;
4513 setShadow(&I, Res);
4514 setOriginForNaryOp(I);
4515 }
4516
4517 void dumpInst(Instruction &I) {
4518 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
4519 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
4520 } else {
4521 errs() << "ZZZ " << I.getOpcodeName() << "\n";
4522 }
4523 errs() << "QQQ " << I << "\n";
4524 }
4525
4526 void visitResumeInst(ResumeInst &I) {
4527 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "Resume: " << I << "\n"
; } } while (false)
;
4528 // Nothing to do here.
4529 }
4530
4531 void visitCleanupReturnInst(CleanupReturnInst &CRI) {
4532 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "CleanupReturn: " << CRI <<
"\n"; } } while (false)
;
4533 // Nothing to do here.
4534 }
4535
4536 void visitCatchReturnInst(CatchReturnInst &CRI) {
4537 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "CatchReturn: " << CRI <<
"\n"; } } while (false)
;
4538 // Nothing to do here.
4539 }
4540
4541 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I,
4542 IRBuilder<> &IRB, const DataLayout &DL,
4543 bool isOutput) {
4544 // For each assembly argument, we check its value for being initialized.
4545 // If the argument is a pointer, we assume it points to a single element
4546 // of the corresponding type (or to a 8-byte word, if the type is unsized).
4547 // Each such pointer is instrumented with a call to the runtime library.
4548 Type *OpType = Operand->getType();
4549 // Check the operand value itself.
4550 insertShadowCheck(Operand, &I);
4551 if (!OpType->isPointerTy() || !isOutput) {
4552 assert(!isOutput)(static_cast <bool> (!isOutput) ? void (0) : __assert_fail
("!isOutput", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 4552, __extension__ __PRETTY_FUNCTION__))
;
4553 return;
4554 }
4555 if (!ElemTy->isSized())
4556 return;
4557 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
4558 Value *SizeVal =
4559 IRB.CreateTypeSize(MS.IntptrTy, DL.getTypeStoreSize(ElemTy));
4560 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
4561 }
4562
4563 /// Get the number of output arguments returned by pointers.
4564 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
4565 int NumRetOutputs = 0;
4566 int NumOutputs = 0;
4567 Type *RetTy = cast<Value>(CB)->getType();
4568 if (!RetTy->isVoidTy()) {
4569 // Register outputs are returned via the CallInst return value.
4570 auto *ST = dyn_cast<StructType>(RetTy);
4571 if (ST)
4572 NumRetOutputs = ST->getNumElements();
4573 else
4574 NumRetOutputs = 1;
4575 }
4576 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
4577 for (const InlineAsm::ConstraintInfo &Info : Constraints) {
4578 switch (Info.Type) {
4579 case InlineAsm::isOutput:
4580 NumOutputs++;
4581 break;
4582 default:
4583 break;
4584 }
4585 }
4586 return NumOutputs - NumRetOutputs;
4587 }
4588
4589 void visitAsmInstruction(Instruction &I) {
4590 // Conservative inline assembly handling: check for poisoned shadow of
4591 // asm() arguments, then unpoison the result and all the memory locations
4592 // pointed to by those arguments.
4593 // An inline asm() statement in C++ contains lists of input and output
4594 // arguments used by the assembly code. These are mapped to operands of the
4595 // CallInst as follows:
4596 // - nR register outputs ("=r) are returned by value in a single structure
4597 // (SSA value of the CallInst);
4598 // - nO other outputs ("=m" and others) are returned by pointer as first
4599 // nO operands of the CallInst;
4600 // - nI inputs ("r", "m" and others) are passed to CallInst as the
4601 // remaining nI operands.
4602 // The total number of asm() arguments in the source is nR+nO+nI, and the
4603 // corresponding CallInst has nO+nI+1 operands (the last operand is the
4604 // function to be called).
4605 const DataLayout &DL = F.getParent()->getDataLayout();
4606 CallBase *CB = cast<CallBase>(&I);
4607 IRBuilder<> IRB(&I);
4608 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4609 int OutputArgs = getNumOutputArgs(IA, CB);
4610 // The last operand of a CallInst is the function itself.
4611 int NumOperands = CB->getNumOperands() - 1;
4612
4613 // Check input arguments. Doing so before unpoisoning output arguments, so
4614 // that we won't overwrite uninit values before checking them.
4615 for (int i = OutputArgs; i < NumOperands; i++) {
4616 Value *Operand = CB->getOperand(i);
4617 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL,
4618 /*isOutput*/ false);
4619 }
4620 // Unpoison output arguments. This must happen before the actual InlineAsm
4621 // call, so that the shadow for memory published in the asm() statement
4622 // remains valid.
4623 for (int i = 0; i < OutputArgs; i++) {
4624 Value *Operand = CB->getOperand(i);
4625 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL,
4626 /*isOutput*/ true);
4627 }
4628
4629 setShadow(&I, getCleanShadow(&I));
4630 setOrigin(&I, getCleanOrigin());
4631 }
4632
4633 void visitFreezeInst(FreezeInst &I) {
4634 // Freeze always returns a fully defined value.
4635 setShadow(&I, getCleanShadow(&I));
4636 setOrigin(&I, getCleanOrigin());
4637 }
4638
4639 void visitInstruction(Instruction &I) {
4640 // Everything else: stop propagating and check for poisoned shadow.
4641 if (ClDumpStrictInstructions)
4642 dumpInst(I);
4643 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("msan")) { dbgs() << "DEFAULT: " << I << "\n"
; } } while (false)
;
4644 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
4645 Value *Operand = I.getOperand(i);
4646 if (Operand->getType()->isSized())
4647 insertShadowCheck(Operand, &I);
4648 }
4649 setShadow(&I, getCleanShadow(&I));
4650 setOrigin(&I, getCleanOrigin());
4651 }
4652};
4653
4654/// AMD64-specific implementation of VarArgHelper.
4655struct VarArgAMD64Helper : public VarArgHelper {
4656 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
4657 // See a comment in visitCallBase for more details.
4658 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
4659 static const unsigned AMD64FpEndOffsetSSE = 176;
4660 // If SSE is disabled, fp_offset in va_list is zero.
4661 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
4662
4663 unsigned AMD64FpEndOffset;
4664 Function &F;
4665 MemorySanitizer &MS;
4666 MemorySanitizerVisitor &MSV;
4667 AllocaInst *VAArgTLSCopy = nullptr;
4668 AllocaInst *VAArgTLSOriginCopy = nullptr;
4669 Value *VAArgOverflowSize = nullptr;
4670
4671 SmallVector<CallInst *, 16> VAStartInstrumentationList;
4672
4673 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4674
4675 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
4676 MemorySanitizerVisitor &MSV)
4677 : F(F), MS(MS), MSV(MSV) {
4678 AMD64FpEndOffset = AMD64FpEndOffsetSSE;
4679 for (const auto &Attr : F.getAttributes().getFnAttrs()) {
4680 if (Attr.isStringAttribute() &&
4681 (Attr.getKindAsString() == "target-features")) {
4682 if (Attr.getValueAsString().contains("-sse"))
4683 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
4684 break;
4685 }
4686 }
4687 }
4688
4689 ArgKind classifyArgument(Value *arg) {
4690 // A very rough approximation of X86_64 argument classification rules.
4691 Type *T = arg->getType();
4692 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
4693 return AK_FloatingPoint;
4694 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4695 return AK_GeneralPurpose;
4696 if (T->isPointerTy())
4697 return AK_GeneralPurpose;
4698 return AK_Memory;
4699 }
4700
4701 // For VarArg functions, store the argument shadow in an ABI-specific format
4702 // that corresponds to va_list layout.
4703 // We do this because Clang lowers va_arg in the frontend, and this pass
4704 // only sees the low level code that deals with va_list internals.
4705 // A much easier alternative (provided that Clang emits va_arg instructions)
4706 // would have been to associate each live instance of va_list with a copy of
4707 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
4708 // order.
4709 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4710 unsigned GpOffset = 0;
4711 unsigned FpOffset = AMD64GpEndOffset;
4712 unsigned OverflowOffset = AMD64FpEndOffset;
4713 const DataLayout &DL = F.getParent()->getDataLayout();
4714 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
4715 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4716 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
4717 if (IsByVal) {
4718 // ByVal arguments always go to the overflow area.
4719 // Fixed arguments passed through the overflow area will be stepped
4720 // over by va_start, so don't count them towards the offset.
4721 if (IsFixed)
4722 continue;
4723 assert(A->getType()->isPointerTy())(static_cast <bool> (A->getType()->isPointerTy())
? void (0) : __assert_fail ("A->getType()->isPointerTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4723
, __extension__ __PRETTY_FUNCTION__))
;
4724 Type *RealTy = CB.getParamByValType(ArgNo);
4725 uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4726 Value *ShadowBase = getShadowPtrForVAArgument(
4727 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
4728 Value *OriginBase = nullptr;
4729 if (MS.TrackOrigins)
4730 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
4731 OverflowOffset += alignTo(ArgSize, 8);
4732 if (!ShadowBase)
4733 continue;
4734 Value *ShadowPtr, *OriginPtr;
4735 std::tie(ShadowPtr, OriginPtr) =
4736 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
4737 /*isStore*/ false);
4738
4739 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
4740 kShadowTLSAlignment, ArgSize);
4741 if (MS.TrackOrigins)
4742 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
4743 kShadowTLSAlignment, ArgSize);
4744 } else {
4745 ArgKind AK = classifyArgument(A);
4746 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
4747 AK = AK_Memory;
4748 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
4749 AK = AK_Memory;
4750 Value *ShadowBase, *OriginBase = nullptr;
4751 switch (AK) {
4752 case AK_GeneralPurpose:
4753 ShadowBase =
4754 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
4755 if (MS.TrackOrigins)
4756 OriginBase = getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
4757 GpOffset += 8;
4758 break;
4759 case AK_FloatingPoint:
4760 ShadowBase =
4761 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
4762 if (MS.TrackOrigins)
4763 OriginBase = getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
4764 FpOffset += 16;
4765 break;
4766 case AK_Memory:
4767 if (IsFixed)
4768 continue;
4769 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4770 ShadowBase =
4771 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
4772 if (MS.TrackOrigins)
4773 OriginBase =
4774 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
4775 OverflowOffset += alignTo(ArgSize, 8);
4776 }
4777 // Take fixed arguments into account for GpOffset and FpOffset,
4778 // but don't actually store shadows for them.
4779 // TODO(glider): don't call get*PtrForVAArgument() for them.
4780 if (IsFixed)
4781 continue;
4782 if (!ShadowBase)
4783 continue;
4784 Value *Shadow = MSV.getShadow(A);
4785 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
4786 if (MS.TrackOrigins) {
4787 Value *Origin = MSV.getOrigin(A);
4788 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType());
4789 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
4790 std::max(kShadowTLSAlignment, kMinOriginAlignment));
4791 }
4792 }
4793 }
4794 Constant *OverflowSize =
4795 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
4796 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4797 }
4798
4799 /// Compute the shadow address for a given va_arg.
4800 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4801 unsigned ArgOffset, unsigned ArgSize) {
4802 // Make sure we don't overflow __msan_va_arg_tls.
4803 if (ArgOffset + ArgSize > kParamTLSSize)
4804 return nullptr;
4805 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4806 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4807 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4808 "_msarg_va_s");
4809 }
4810
4811 /// Compute the origin address for a given va_arg.
4812 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
4813 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
4814 // getOriginPtrForVAArgument() is always called after
4815 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
4816 // overflow.
4817 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4818 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
4819 "_msarg_va_o");
4820 }
4821
4822 void unpoisonVAListTagForInst(IntrinsicInst &I) {
4823 IRBuilder<> IRB(&I);
4824 Value *VAListTag = I.getArgOperand(0);
4825 Value *ShadowPtr, *OriginPtr;
4826 const Align Alignment = Align(8);
4827 std::tie(ShadowPtr, OriginPtr) =
4828 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
4829 /*isStore*/ true);
4830
4831 // Unpoison the whole __va_list_tag.
4832 // FIXME: magic ABI constants.
4833 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4834 /* size */ 24, Alignment, false);
4835 // We shouldn't need to zero out the origins, as they're only checked for
4836 // nonzero shadow.
4837 }
4838
4839 void visitVAStartInst(VAStartInst &I) override {
4840 if (F.getCallingConv() == CallingConv::Win64)
4841 return;
4842 VAStartInstrumentationList.push_back(&I);
4843 unpoisonVAListTagForInst(I);
4844 }
4845
4846 void visitVACopyInst(VACopyInst &I) override {
4847 if (F.getCallingConv() == CallingConv::Win64)
4848 return;
4849 unpoisonVAListTagForInst(I);
4850 }
4851
4852 void finalizeInstrumentation() override {
4853 assert(!VAArgOverflowSize && !VAArgTLSCopy &&(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4854
, __extension__ __PRETTY_FUNCTION__))
4854 "finalizeInstrumentation called twice")(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 4854
, __extension__ __PRETTY_FUNCTION__))
;
4855 if (!VAStartInstrumentationList.empty()) {
4856 // If there is a va_start in this function, make a backup copy of
4857 // va_arg_tls somewhere in the function entry block.
4858 IRBuilder<> IRB(MSV.FnPrologueEnd);
4859 VAArgOverflowSize =
4860 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4861 Value *CopySize = IRB.CreateAdd(
4862 ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), VAArgOverflowSize);
4863 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4864 VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
4865 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
4866 CopySize, kShadowTLSAlignment, false);
4867
4868 Value *SrcSize = IRB.CreateBinaryIntrinsic(
4869 Intrinsic::umin, CopySize,
4870 ConstantInt::get(MS.IntptrTy, kParamTLSSize));
4871 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
4872 kShadowTLSAlignment, SrcSize);
4873 if (MS.TrackOrigins) {
4874 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4875 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment);
4876 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment,
4877 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize);
4878 }
4879 }
4880
4881 // Instrument va_start.
4882 // Copy va_list shadow from the backup copy of the TLS contents.
4883 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4884 CallInst *OrigInst = VAStartInstrumentationList[i];
4885 NextNodeIRBuilder IRB(OrigInst);
4886 Value *VAListTag = OrigInst->getArgOperand(0);
4887
4888 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4889 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
4890 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4891 ConstantInt::get(MS.IntptrTy, 16)),
4892 PointerType::get(RegSaveAreaPtrTy, 0));
4893 Value *RegSaveAreaPtr =
4894 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4895 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4896 const Align Alignment = Align(16);
4897 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4898 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4899 Alignment, /*isStore*/ true);
4900 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4901 AMD64FpEndOffset);
4902 if (MS.TrackOrigins)
4903 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
4904 Alignment, AMD64FpEndOffset);
4905 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4906 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
4907 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4908 ConstantInt::get(MS.IntptrTy, 8)),
4909 PointerType::get(OverflowArgAreaPtrTy, 0));
4910 Value *OverflowArgAreaPtr =
4911 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
4912 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
4913 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
4914 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
4915 Alignment, /*isStore*/ true);
4916 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
4917 AMD64FpEndOffset);
4918 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
4919 VAArgOverflowSize);
4920 if (MS.TrackOrigins) {
4921 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
4922 AMD64FpEndOffset);
4923 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
4924 VAArgOverflowSize);
4925 }
4926 }
4927 }
4928};
4929
4930/// MIPS64-specific implementation of VarArgHelper.
4931struct VarArgMIPS64Helper : public VarArgHelper {
4932 Function &F;
4933 MemorySanitizer &MS;
4934 MemorySanitizerVisitor &MSV;
4935 AllocaInst *VAArgTLSCopy = nullptr;
4936 Value *VAArgSize = nullptr;
4937
4938 SmallVector<CallInst *, 16> VAStartInstrumentationList;
4939
4940 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
4941 MemorySanitizerVisitor &MSV)
4942 : F(F), MS(MS), MSV(MSV) {}
4943
4944 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4945 unsigned VAArgOffset = 0;
4946 const DataLayout &DL = F.getParent()->getDataLayout();
4947 for (Value *A :
4948 llvm::drop_begin(CB.args(), CB.getFunctionType()->getNumParams())) {
4949 Triple TargetTriple(F.getParent()->getTargetTriple());
4950 Value *Base;
4951 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4952 if (TargetTriple.getArch() == Triple::mips64) {
4953 // Adjusting the shadow for argument with size < 8 to match the
4954 // placement of bits in big endian system
4955 if (ArgSize < 8)
4956 VAArgOffset += (8 - ArgSize);
4957 }
4958 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
4959 VAArgOffset += ArgSize;
4960 VAArgOffset = alignTo(VAArgOffset, 8);
4961 if (!Base)
4962 continue;
4963 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4964 }
4965
4966 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
4967 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4968 // a new class member i.e. it is the total size of all VarArgs.
4969 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4970 }
4971
4972 /// Compute the shadow address for a given va_arg.
4973 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4974 unsigned ArgOffset, unsigned ArgSize) {
4975 // Make sure we don't overflow __msan_va_arg_tls.
4976 if (ArgOffset + ArgSize > kParamTLSSize)
4977 return nullptr;
4978 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4979 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4980 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4981 "_msarg");
4982 }
4983
4984 void visitVAStartInst(VAStartInst &I) override {
4985 IRBuilder<> IRB(&I);
4986 VAStartInstrumentationList.push_back(&I);
4987 Value *VAListTag = I.getArgOperand(0);
4988 Value *ShadowPtr, *OriginPtr;
4989 const Align Alignment = Align(8);
4990 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4991 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4992 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4993 /* size */ 8, Alignment, false);
4994 }
4995
4996 void visitVACopyInst(VACopyInst &I) override {
4997 IRBuilder<> IRB(&I);
4998 VAStartInstrumentationList.push_back(&I);
4999 Value *VAListTag = I.getArgOperand(0);
5000 Value *ShadowPtr, *OriginPtr;
5001 const Align Alignment = Align(8);
5002 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
5003 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5004 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5005 /* size */ 8, Alignment, false);
5006 }
5007
5008 void finalizeInstrumentation() override {
5009 assert(!VAArgSize && !VAArgTLSCopy &&(static_cast <bool> (!VAArgSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5010
, __extension__ __PRETTY_FUNCTION__))
5010 "finalizeInstrumentation called twice")(static_cast <bool> (!VAArgSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5010
, __extension__ __PRETTY_FUNCTION__))
;
5011 IRBuilder<> IRB(MSV.FnPrologueEnd);
5012 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5013 Value *CopySize =
5014 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), VAArgSize);
5015
5016 if (!VAStartInstrumentationList.empty()) {
5017 // If there is a va_start in this function, make a backup copy of
5018 // va_arg_tls somewhere in the function entry block.
5019 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5020 VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
5021 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
5022 CopySize, kShadowTLSAlignment, false);
5023
5024 Value *SrcSize = IRB.CreateBinaryIntrinsic(
5025 Intrinsic::umin, CopySize,
5026 ConstantInt::get(MS.IntptrTy, kParamTLSSize));
5027 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
5028 kShadowTLSAlignment, SrcSize);
5029 }
5030
5031 // Instrument va_start.
5032 // Copy va_list shadow from the backup copy of the TLS contents.
5033 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
5034 CallInst *OrigInst = VAStartInstrumentationList[i];
5035 NextNodeIRBuilder IRB(OrigInst);
5036 Value *VAListTag = OrigInst->getArgOperand(0);
5037 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5038 Value *RegSaveAreaPtrPtr =
5039 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5040 PointerType::get(RegSaveAreaPtrTy, 0));
5041 Value *RegSaveAreaPtr =
5042 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
5043 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5044 const Align Alignment = Align(8);
5045 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5046 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5047 Alignment, /*isStore*/ true);
5048 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5049 CopySize);
5050 }
5051 }
5052};
5053
5054/// AArch64-specific implementation of VarArgHelper.
5055struct VarArgAArch64Helper : public VarArgHelper {
5056 static const unsigned kAArch64GrArgSize = 64;
5057 static const unsigned kAArch64VrArgSize = 128;
5058
5059 static const unsigned AArch64GrBegOffset = 0;
5060 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
5061 // Make VR space aligned to 16 bytes.
5062 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
5063 static const unsigned AArch64VrEndOffset =
5064 AArch64VrBegOffset + kAArch64VrArgSize;
5065 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
5066
5067 Function &F;
5068 MemorySanitizer &MS;
5069 MemorySanitizerVisitor &MSV;
5070 AllocaInst *VAArgTLSCopy = nullptr;
5071 Value *VAArgOverflowSize = nullptr;
5072
5073 SmallVector<CallInst *, 16> VAStartInstrumentationList;
5074
5075 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
5076
5077 VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
5078 MemorySanitizerVisitor &MSV)
5079 : F(F), MS(MS), MSV(MSV) {}
5080
5081 ArgKind classifyArgument(Value *arg) {
5082 Type *T = arg->getType();
5083 if (T->isFPOrFPVectorTy())
5084 return AK_FloatingPoint;
5085 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) ||
5086 (T->isPointerTy()))
5087 return AK_GeneralPurpose;
5088 return AK_Memory;
5089 }
5090
5091 // The instrumentation stores the argument shadow in a non ABI-specific
5092 // format because it does not know which argument is named (since Clang,
5093 // like x86_64 case, lowers the va_args in the frontend and this pass only
5094 // sees the low level code that deals with va_list internals).
5095 // The first seven GR registers are saved in the first 56 bytes of the
5096 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
5097 // the remaining arguments.
5098 // Using constant offset within the va_arg TLS array allows fast copy
5099 // in the finalize instrumentation.
5100 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5101 unsigned GrOffset = AArch64GrBegOffset;
5102 unsigned VrOffset = AArch64VrBegOffset;
5103 unsigned OverflowOffset = AArch64VAEndOffset;
5104
5105 const DataLayout &DL = F.getParent()->getDataLayout();
5106 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5107 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
1
Assuming the condition is false
5108 ArgKind AK = classifyArgument(A);
5109 if (AK
1.1
'AK' is not equal to AK_GeneralPurpose
== AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
5110 AK = AK_Memory;
5111 if (AK
1.2
'AK' is equal to AK_FloatingPoint
== AK_FloatingPoint && VrOffset
1.3
'VrOffset' is < 'AArch64VrEndOffset'
>= AArch64VrEndOffset)
2
Taking false branch
5112 AK = AK_Memory;
5113 Value *Base;
5114 switch (AK) {
3
Control jumps to 'case AK_FloatingPoint:' at line 5119
5115 case AK_GeneralPurpose:
5116 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
5117 GrOffset += 8;
5118 break;
5119 case AK_FloatingPoint:
5120 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
5121 VrOffset += 16;
5122 break;
5123 case AK_Memory:
5124 // Don't count fixed arguments in the overflow area - va_start will
5125 // skip right over them.
5126 if (IsFixed)
5127 continue;
5128 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
5129 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
5130 alignTo(ArgSize, 8));
5131 OverflowOffset += alignTo(ArgSize, 8);
5132 break;
5133 }
5134 // Count Gp/Vr fixed arguments to their respective offsets, but don't
5135 // bother to actually store a shadow.
5136 if (IsFixed
4.1
'IsFixed' is false
)
4
Execution continues on line 5136
5
Taking false branch
5137 continue;
5138 if (!Base)
6
Assuming 'Base' is non-null
7
Taking false branch
5139 continue;
5140 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
8
Calling 'MemorySanitizerVisitor::getShadow'
5141 }
5142 Constant *OverflowSize =
5143 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
5144 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5145 }
5146
5147 /// Compute the shadow address for a given va_arg.
5148 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
5149 unsigned ArgOffset, unsigned ArgSize) {
5150 // Make sure we don't overflow __msan_va_arg_tls.
5151 if (ArgOffset + ArgSize > kParamTLSSize)
5152 return nullptr;
5153 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5154 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5155 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
5156 "_msarg");
5157 }
5158
5159 void visitVAStartInst(VAStartInst &I) override {
5160 IRBuilder<> IRB(&I);
5161 VAStartInstrumentationList.push_back(&I);
5162 Value *VAListTag = I.getArgOperand(0);
5163 Value *ShadowPtr, *OriginPtr;
5164 const Align Alignment = Align(8);
5165 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
5166 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5167 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5168 /* size */ 32, Alignment, false);
5169 }
5170
5171 void visitVACopyInst(VACopyInst &I) override {
5172 IRBuilder<> IRB(&I);
5173 VAStartInstrumentationList.push_back(&I);
5174 Value *VAListTag = I.getArgOperand(0);
5175 Value *ShadowPtr, *OriginPtr;
5176 const Align Alignment = Align(8);
5177 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
5178 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5179 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5180 /* size */ 32, Alignment, false);
5181 }
5182
5183 // Retrieve a va_list field of 'void*' size.
5184 Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
5185 Value *SaveAreaPtrPtr = IRB.CreateIntToPtr(
5186 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5187 ConstantInt::get(MS.IntptrTy, offset)),
5188 Type::getInt64PtrTy(*MS.C));
5189 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
5190 }
5191
5192 // Retrieve a va_list field of 'int' size.
5193 Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
5194 Value *SaveAreaPtr = IRB.CreateIntToPtr(
5195 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5196 ConstantInt::get(MS.IntptrTy, offset)),
5197 Type::getInt32PtrTy(*MS.C));
5198 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
5199 return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
5200 }
5201
5202 void finalizeInstrumentation() override {
5203 assert(!VAArgOverflowSize && !VAArgTLSCopy &&(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5204
, __extension__ __PRETTY_FUNCTION__))
5204 "finalizeInstrumentation called twice")(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5204
, __extension__ __PRETTY_FUNCTION__))
;
5205 if (!VAStartInstrumentationList.empty()) {
5206 // If there is a va_start in this function, make a backup copy of
5207 // va_arg_tls somewhere in the function entry block.
5208 IRBuilder<> IRB(MSV.FnPrologueEnd);
5209 VAArgOverflowSize =
5210 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5211 Value *CopySize = IRB.CreateAdd(
5212 ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), VAArgOverflowSize);
5213 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5214 VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
5215 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
5216 CopySize, kShadowTLSAlignment, false);
5217
5218 Value *SrcSize = IRB.CreateBinaryIntrinsic(
5219 Intrinsic::umin, CopySize,
5220 ConstantInt::get(MS.IntptrTy, kParamTLSSize));
5221 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
5222 kShadowTLSAlignment, SrcSize);
5223 }
5224
5225 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
5226 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
5227
5228 // Instrument va_start, copy va_list shadow from the backup copy of
5229 // the TLS contents.
5230 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
5231 CallInst *OrigInst = VAStartInstrumentationList[i];
5232 NextNodeIRBuilder IRB(OrigInst);
5233
5234 Value *VAListTag = OrigInst->getArgOperand(0);
5235
5236 // The variadic ABI for AArch64 creates two areas to save the incoming
5237 // argument registers (one for 64-bit general register xn-x7 and another
5238 // for 128-bit FP/SIMD vn-v7).
5239 // We need then to propagate the shadow arguments on both regions
5240 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
5241 // The remaining arguments are saved on shadow for 'va::stack'.
5242 // One caveat is it requires only to propagate the non-named arguments,
5243 // however on the call site instrumentation 'all' the arguments are
5244 // saved. So to copy the shadow values from the va_arg TLS array
5245 // we need to adjust the offset for both GR and VR fields based on
5246 // the __{gr,vr}_offs value (since they are stores based on incoming
5247 // named arguments).
5248
5249 // Read the stack pointer from the va_list.
5250 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
5251
5252 // Read both the __gr_top and __gr_off and add them up.
5253 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
5254 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
5255
5256 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
5257
5258 // Read both the __vr_top and __vr_off and add them up.
5259 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
5260 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
5261
5262 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
5263
5264 // It does not know how many named arguments is being used and, on the
5265 // callsite all the arguments were saved. Since __gr_off is defined as
5266 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
5267 // argument by ignoring the bytes of shadow from named arguments.
5268 Value *GrRegSaveAreaShadowPtrOff =
5269 IRB.CreateAdd(GrArgSize, GrOffSaveArea);
5270
5271 Value *GrRegSaveAreaShadowPtr =
5272 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5273 Align(8), /*isStore*/ true)
5274 .first;
5275
5276 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
5277 GrRegSaveAreaShadowPtrOff);
5278 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
5279
5280 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8),
5281 GrCopySize);
5282
5283 // Again, but for FP/SIMD values.
5284 Value *VrRegSaveAreaShadowPtrOff =
5285 IRB.CreateAdd(VrArgSize, VrOffSaveArea);
5286
5287 Value *VrRegSaveAreaShadowPtr =
5288 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5289 Align(8), /*isStore*/ true)
5290 .first;
5291
5292 Value *VrSrcPtr = IRB.CreateInBoundsGEP(
5293 IRB.getInt8Ty(),
5294 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
5295 IRB.getInt32(AArch64VrBegOffset)),
5296 VrRegSaveAreaShadowPtrOff);
5297 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
5298
5299 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8),
5300 VrCopySize);
5301
5302 // And finally for remaining arguments.
5303 Value *StackSaveAreaShadowPtr =
5304 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
5305 Align(16), /*isStore*/ true)
5306 .first;
5307
5308 Value *StackSrcPtr = IRB.CreateInBoundsGEP(
5309 IRB.getInt8Ty(), VAArgTLSCopy, IRB.getInt32(AArch64VAEndOffset));
5310
5311 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr,
5312 Align(16), VAArgOverflowSize);
5313 }
5314 }
5315};
5316
5317/// PowerPC64-specific implementation of VarArgHelper.
5318struct VarArgPowerPC64Helper : public VarArgHelper {
5319 Function &F;
5320 MemorySanitizer &MS;
5321 MemorySanitizerVisitor &MSV;
5322 AllocaInst *VAArgTLSCopy = nullptr;
5323 Value *VAArgSize = nullptr;
5324
5325 SmallVector<CallInst *, 16> VAStartInstrumentationList;
5326
5327 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
5328 MemorySanitizerVisitor &MSV)
5329 : F(F), MS(MS), MSV(MSV) {}
5330
5331 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5332 // For PowerPC, we need to deal with alignment of stack arguments -
5333 // they are mostly aligned to 8 bytes, but vectors and i128 arrays
5334 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
5335 // For that reason, we compute current offset from stack pointer (which is
5336 // always properly aligned), and offset for the first vararg, then subtract
5337 // them.
5338 unsigned VAArgBase;
5339 Triple TargetTriple(F.getParent()->getTargetTriple());
5340 // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
5341 // and 32 bytes for ABIv2. This is usually determined by target
5342 // endianness, but in theory could be overridden by function attribute.
5343 if (TargetTriple.getArch() == Triple::ppc64)
5344 VAArgBase = 48;
5345 else
5346 VAArgBase = 32;
5347 unsigned VAArgOffset = VAArgBase;
5348 const DataLayout &DL = F.getParent()->getDataLayout();
5349 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5350 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5351 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
5352 if (IsByVal) {
5353 assert(A->getType()->isPointerTy())(static_cast <bool> (A->getType()->isPointerTy())
? void (0) : __assert_fail ("A->getType()->isPointerTy()"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5353
, __extension__ __PRETTY_FUNCTION__))
;
5354 Type *RealTy = CB.getParamByValType(ArgNo);
5355 uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
5356 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8));
5357 if (ArgAlign < 8)
5358 ArgAlign = Align(8);
5359 VAArgOffset = alignTo(VAArgOffset, ArgAlign);
5360 if (!IsFixed) {
5361 Value *Base = getShadowPtrForVAArgument(
5362 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
5363 if (Base) {
5364 Value *AShadowPtr, *AOriginPtr;
5365 std::tie(AShadowPtr, AOriginPtr) =
5366 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
5367 kShadowTLSAlignment, /*isStore*/ false);
5368
5369 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
5370 kShadowTLSAlignment, ArgSize);
5371 }
5372 }
5373 VAArgOffset += alignTo(ArgSize, Align(8));
5374 } else {
5375 Value *Base;
5376 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
5377 Align ArgAlign = Align(8);
5378 if (A->getType()->isArrayTy()) {
5379 // Arrays are aligned to element size, except for long double
5380 // arrays, which are aligned to 8 bytes.
5381 Type *ElementTy = A->getType()->getArrayElementType();
5382 if (!ElementTy->isPPC_FP128Ty())
5383 ArgAlign = Align(DL.getTypeAllocSize(ElementTy));
5384 } else if (A->getType()->isVectorTy()) {
5385 // Vectors are naturally aligned.
5386 ArgAlign = Align(ArgSize);
5387 }
5388 if (ArgAlign < 8)
5389 ArgAlign = Align(8);
5390 VAArgOffset = alignTo(VAArgOffset, ArgAlign);
5391 if (DL.isBigEndian()) {
5392 // Adjusting the shadow for argument with size < 8 to match the
5393 // placement of bits in big endian system
5394 if (ArgSize < 8)
5395 VAArgOffset += (8 - ArgSize);
5396 }
5397 if (!IsFixed) {
5398 Base = getShadowPtrForVAArgument(A->getType(), IRB,
5399 VAArgOffset - VAArgBase, ArgSize);
5400 if (Base)
5401 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
5402 }
5403 VAArgOffset += ArgSize;
5404 VAArgOffset = alignTo(VAArgOffset, Align(8));
5405 }
5406 if (IsFixed)
5407 VAArgBase = VAArgOffset;
5408 }
5409
5410 Constant *TotalVAArgSize =
5411 ConstantInt::get(IRB.getInt64Ty(), VAArgOffset - VAArgBase);
5412 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
5413 // a new class member i.e. it is the total size of all VarArgs.
5414 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
5415 }
5416
5417 /// Compute the shadow address for a given va_arg.
5418 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
5419 unsigned ArgOffset, unsigned ArgSize) {
5420 // Make sure we don't overflow __msan_va_arg_tls.
5421 if (ArgOffset + ArgSize > kParamTLSSize)
5422 return nullptr;
5423 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5424 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5425 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
5426 "_msarg");
5427 }
5428
5429 void visitVAStartInst(VAStartInst &I) override {
5430 IRBuilder<> IRB(&I);
5431 VAStartInstrumentationList.push_back(&I);
5432 Value *VAListTag = I.getArgOperand(0);
5433 Value *ShadowPtr, *OriginPtr;
5434 const Align Alignment = Align(8);
5435 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
5436 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5437 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5438 /* size */ 8, Alignment, false);
5439 }
5440
5441 void visitVACopyInst(VACopyInst &I) override {
5442 IRBuilder<> IRB(&I);
5443 Value *VAListTag = I.getArgOperand(0);
5444 Value *ShadowPtr, *OriginPtr;
5445 const Align Alignment = Align(8);
5446 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
5447 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5448 // Unpoison the whole __va_list_tag.
5449 // FIXME: magic ABI constants.
5450 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5451 /* size */ 8, Alignment, false);
5452 }
5453
5454 void finalizeInstrumentation() override {
5455 assert(!VAArgSize && !VAArgTLSCopy &&(static_cast <bool> (!VAArgSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5456
, __extension__ __PRETTY_FUNCTION__))
5456 "finalizeInstrumentation called twice")(static_cast <bool> (!VAArgSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5456
, __extension__ __PRETTY_FUNCTION__))
;
5457 IRBuilder<> IRB(MSV.FnPrologueEnd);
5458 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5459 Value *CopySize =
5460 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), VAArgSize);
5461
5462 if (!VAStartInstrumentationList.empty()) {
5463 // If there is a va_start in this function, make a backup copy of
5464 // va_arg_tls somewhere in the function entry block.
5465
5466 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5467 VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
5468 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
5469 CopySize, kShadowTLSAlignment, false);
5470
5471 Value *SrcSize = IRB.CreateBinaryIntrinsic(
5472 Intrinsic::umin, CopySize,
5473 ConstantInt::get(MS.IntptrTy, kParamTLSSize));
5474 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
5475 kShadowTLSAlignment, SrcSize);
5476 }
5477
5478 // Instrument va_start.
5479 // Copy va_list shadow from the backup copy of the TLS contents.
5480 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
5481 CallInst *OrigInst = VAStartInstrumentationList[i];
5482 NextNodeIRBuilder IRB(OrigInst);
5483 Value *VAListTag = OrigInst->getArgOperand(0);
5484 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5485 Value *RegSaveAreaPtrPtr =
5486 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5487 PointerType::get(RegSaveAreaPtrTy, 0));
5488 Value *RegSaveAreaPtr =
5489 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
5490 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5491 const Align Alignment = Align(8);
5492 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5493 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5494 Alignment, /*isStore*/ true);
5495 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5496 CopySize);
5497 }
5498 }
5499};
5500
5501/// SystemZ-specific implementation of VarArgHelper.
5502struct VarArgSystemZHelper : public VarArgHelper {
5503 static const unsigned SystemZGpOffset = 16;
5504 static const unsigned SystemZGpEndOffset = 56;
5505 static const unsigned SystemZFpOffset = 128;
5506 static const unsigned SystemZFpEndOffset = 160;
5507 static const unsigned SystemZMaxVrArgs = 8;
5508 static const unsigned SystemZRegSaveAreaSize = 160;
5509 static const unsigned SystemZOverflowOffset = 160;
5510 static const unsigned SystemZVAListTagSize = 32;
5511 static const unsigned SystemZOverflowArgAreaPtrOffset = 16;
5512 static const unsigned SystemZRegSaveAreaPtrOffset = 24;
5513
5514 Function &F;
5515 MemorySanitizer &MS;
5516 MemorySanitizerVisitor &MSV;
5517 bool IsSoftFloatABI;
5518 AllocaInst *VAArgTLSCopy = nullptr;
5519 AllocaInst *VAArgTLSOriginCopy = nullptr;
5520 Value *VAArgOverflowSize = nullptr;
5521
5522 SmallVector<CallInst *, 16> VAStartInstrumentationList;
5523
5524 enum class ArgKind {
5525 GeneralPurpose,
5526 FloatingPoint,
5527 Vector,
5528 Memory,
5529 Indirect,
5530 };
5531
5532 enum class ShadowExtension { None, Zero, Sign };
5533
5534 VarArgSystemZHelper(Function &F, MemorySanitizer &MS,
5535 MemorySanitizerVisitor &MSV)
5536 : F(F), MS(MS), MSV(MSV),
5537 IsSoftFloatABI(F.getFnAttribute("use-soft-float").getValueAsBool()) {}
5538
5539 ArgKind classifyArgument(Type *T) {
5540 // T is a SystemZABIInfo::classifyArgumentType() output, and there are
5541 // only a few possibilities of what it can be. In particular, enums, single
5542 // element structs and large types have already been taken care of.
5543
5544 // Some i128 and fp128 arguments are converted to pointers only in the
5545 // back end.
5546 if (T->isIntegerTy(128) || T->isFP128Ty())
5547 return ArgKind::Indirect;
5548 if (T->isFloatingPointTy())
5549 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint;
5550 if (T->isIntegerTy() || T->isPointerTy())
5551 return ArgKind::GeneralPurpose;
5552 if (T->isVectorTy())
5553 return ArgKind::Vector;
5554 return ArgKind::Memory;
5555 }
5556
5557 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) {
5558 // ABI says: "One of the simple integer types no more than 64 bits wide.
5559 // ... If such an argument is shorter than 64 bits, replace it by a full
5560 // 64-bit integer representing the same number, using sign or zero
5561 // extension". Shadow for an integer argument has the same type as the
5562 // argument itself, so it can be sign or zero extended as well.
5563 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt);
5564 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt);
5565 if (ZExt) {
5566 assert(!SExt)(static_cast <bool> (!SExt) ? void (0) : __assert_fail (
"!SExt", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 5566, __extension__ __PRETTY_FUNCTION__))
;
5567 return ShadowExtension::Zero;
5568 }
5569 if (SExt) {
5570 assert(!ZExt)(static_cast <bool> (!ZExt) ? void (0) : __assert_fail (
"!ZExt", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 5570, __extension__ __PRETTY_FUNCTION__))
;
5571 return ShadowExtension::Sign;
5572 }
5573 return ShadowExtension::None;
5574 }
5575
5576 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5577 unsigned GpOffset = SystemZGpOffset;
5578 unsigned FpOffset = SystemZFpOffset;
5579 unsigned VrIndex = 0;
5580 unsigned OverflowOffset = SystemZOverflowOffset;
5581 const DataLayout &DL = F.getParent()->getDataLayout();
5582 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5583 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5584 // SystemZABIInfo does not produce ByVal parameters.
5585 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal))(static_cast <bool> (!CB.paramHasAttr(ArgNo, Attribute::
ByVal)) ? void (0) : __assert_fail ("!CB.paramHasAttr(ArgNo, Attribute::ByVal)"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5585
, __extension__ __PRETTY_FUNCTION__))
;
5586 Type *T = A->getType();
5587 ArgKind AK = classifyArgument(T);
5588 if (AK == ArgKind::Indirect) {
5589 T = PointerType::get(T, 0);
5590 AK = ArgKind::GeneralPurpose;
5591 }
5592 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset)
5593 AK = ArgKind::Memory;
5594 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset)
5595 AK = ArgKind::Memory;
5596 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed))
5597 AK = ArgKind::Memory;
5598 Value *ShadowBase = nullptr;
5599 Value *OriginBase = nullptr;
5600 ShadowExtension SE = ShadowExtension::None;
5601 switch (AK) {
5602 case ArgKind::GeneralPurpose: {
5603 // Always keep track of GpOffset, but store shadow only for varargs.
5604 uint64_t ArgSize = 8;
5605 if (GpOffset + ArgSize <= kParamTLSSize) {
5606 if (!IsFixed) {
5607 SE = getShadowExtension(CB, ArgNo);
5608 uint64_t GapSize = 0;
5609 if (SE == ShadowExtension::None) {
5610 uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5611 assert(ArgAllocSize <= ArgSize)(static_cast <bool> (ArgAllocSize <= ArgSize) ? void
(0) : __assert_fail ("ArgAllocSize <= ArgSize", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 5611, __extension__ __PRETTY_FUNCTION__))
;
5612 GapSize = ArgSize - ArgAllocSize;
5613 }
5614 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize);
5615 if (MS.TrackOrigins)
5616 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize);
5617 }
5618 GpOffset += ArgSize;
5619 } else {
5620 GpOffset = kParamTLSSize;
5621 }
5622 break;
5623 }
5624 case ArgKind::FloatingPoint: {
5625 // Always keep track of FpOffset, but store shadow only for varargs.
5626 uint64_t ArgSize = 8;
5627 if (FpOffset + ArgSize <= kParamTLSSize) {
5628 if (!IsFixed) {
5629 // PoP says: "A short floating-point datum requires only the
5630 // left-most 32 bit positions of a floating-point register".
5631 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory,
5632 // don't extend shadow and don't mind the gap.
5633 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset);
5634 if (MS.TrackOrigins)
5635 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset);
5636 }
5637 FpOffset += ArgSize;
5638 } else {
5639 FpOffset = kParamTLSSize;
5640 }
5641 break;
5642 }
5643 case ArgKind::Vector: {
5644 // Keep track of VrIndex. No need to store shadow, since vector varargs
5645 // go through AK_Memory.
5646 assert(IsFixed)(static_cast <bool> (IsFixed) ? void (0) : __assert_fail
("IsFixed", "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp"
, 5646, __extension__ __PRETTY_FUNCTION__))
;
5647 VrIndex++;
5648 break;
5649 }
5650 case ArgKind::Memory: {
5651 // Keep track of OverflowOffset and store shadow only for varargs.
5652 // Ignore fixed args, since we need to copy only the vararg portion of
5653 // the overflow area shadow.
5654 if (!IsFixed) {
5655 uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5656 uint64_t ArgSize = alignTo(ArgAllocSize, 8);
5657 if (OverflowOffset + ArgSize <= kParamTLSSize) {
5658 SE = getShadowExtension(CB, ArgNo);
5659 uint64_t GapSize =
5660 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0;
5661 ShadowBase =
5662 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize);
5663 if (MS.TrackOrigins)
5664 OriginBase =
5665 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize);
5666 OverflowOffset += ArgSize;
5667 } else {
5668 OverflowOffset = kParamTLSSize;
5669 }
5670 }
5671 break;
5672 }
5673 case ArgKind::Indirect:
5674 llvm_unreachable("Indirect must be converted to GeneralPurpose")::llvm::llvm_unreachable_internal("Indirect must be converted to GeneralPurpose"
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5674
)
;
5675 }
5676 if (ShadowBase == nullptr)
5677 continue;
5678 Value *Shadow = MSV.getShadow(A);
5679 if (SE != ShadowExtension::None)
5680 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(),
5681 /*Signed*/ SE == ShadowExtension::Sign);
5682 ShadowBase = IRB.CreateIntToPtr(
5683 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s");
5684 IRB.CreateStore(Shadow, ShadowBase);
5685 if (MS.TrackOrigins) {
5686 Value *Origin = MSV.getOrigin(A);
5687 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType());
5688 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
5689 kMinOriginAlignment);
5690 }
5691 }
5692 Constant *OverflowSize = ConstantInt::get(
5693 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset);
5694 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5695 }
5696
5697 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) {
5698 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5699 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5700 }
5701
5702 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) {
5703 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
5704 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5705 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
5706 "_msarg_va_o");
5707 }
5708
5709 void unpoisonVAListTagForInst(IntrinsicInst &I) {
5710 IRBuilder<> IRB(&I);
5711 Value *VAListTag = I.getArgOperand(0);
5712 Value *ShadowPtr, *OriginPtr;
5713 const Align Alignment = Align(8);
5714 std::tie(ShadowPtr, OriginPtr) =
5715 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
5716 /*isStore*/ true);
5717 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5718 SystemZVAListTagSize, Alignment, false);
5719 }
5720
5721 void visitVAStartInst(VAStartInst &I) override {
5722 VAStartInstrumentationList.push_back(&I);
5723 unpoisonVAListTagForInst(I);
5724 }
5725
5726 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); }
5727
5728 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) {
5729 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5730 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
5731 IRB.CreateAdd(
5732 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5733 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)),
5734 PointerType::get(RegSaveAreaPtrTy, 0));
5735 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
5736 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5737 const Align Alignment = Align(8);
5738 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5739 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment,
5740 /*isStore*/ true);
5741 // TODO(iii): copy only fragments filled by visitCallBase()
5742 // TODO(iii): support packed-stack && !use-soft-float
5743 // For use-soft-float functions, it is enough to copy just the GPRs.
5744 unsigned RegSaveAreaSize =
5745 IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize;
5746 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5747 RegSaveAreaSize);
5748 if (MS.TrackOrigins)
5749 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
5750 Alignment, RegSaveAreaSize);
5751 }
5752
5753 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) {
5754 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5755 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
5756 IRB.CreateAdd(
5757 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5758 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)),
5759 PointerType::get(OverflowArgAreaPtrTy, 0));
5760 Value *OverflowArgAreaPtr =
5761 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
5762 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
5763 const Align Alignment = Align(8);
5764 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
5765 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
5766 Alignment, /*isStore*/ true);
5767 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
5768 SystemZOverflowOffset);
5769 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
5770 VAArgOverflowSize);
5771 if (MS.TrackOrigins) {
5772 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
5773 SystemZOverflowOffset);
5774 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
5775 VAArgOverflowSize);
5776 }
5777 }
5778
5779 void finalizeInstrumentation() override {
5780 assert(!VAArgOverflowSize && !VAArgTLSCopy &&(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5781
, __extension__ __PRETTY_FUNCTION__))
5781 "finalizeInstrumentation called twice")(static_cast <bool> (!VAArgOverflowSize && !VAArgTLSCopy
&& "finalizeInstrumentation called twice") ? void (0
) : __assert_fail ("!VAArgOverflowSize && !VAArgTLSCopy && \"finalizeInstrumentation called twice\""
, "llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp", 5781
, __extension__ __PRETTY_FUNCTION__))
;
5782 if (!VAStartInstrumentationList.empty()) {
5783 // If there is a va_start in this function, make a backup copy of
5784 // va_arg_tls somewhere in the function entry block.
5785 IRBuilder<> IRB(MSV.FnPrologueEnd);
5786 VAArgOverflowSize =
5787 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5788 Value *CopySize =
5789 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset),
5790 VAArgOverflowSize);
5791 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5792 VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
5793 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
5794 CopySize, kShadowTLSAlignment, false);
5795
5796 Value *SrcSize = IRB.CreateBinaryIntrinsic(
5797 Intrinsic::umin, CopySize,
5798 ConstantInt::get(MS.IntptrTy, kParamTLSSize));
5799 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
5800 kShadowTLSAlignment, SrcSize);
5801 if (MS.TrackOrigins) {
5802 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5803 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment);
5804 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment,
5805 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize);
5806 }
5807 }
5808
5809 // Instrument va_start.
5810 // Copy va_list shadow from the backup copy of the TLS contents.
5811 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size();
5812 VaStartNo < VaStartNum; VaStartNo++) {
5813 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo];
5814 NextNodeIRBuilder IRB(OrigInst);
5815 Value *VAListTag = OrigInst->getArgOperand(0);
5816 copyRegSaveArea(IRB, VAListTag);
5817 copyOverflowArea(IRB, VAListTag);
5818 }
5819 }
5820};
5821
5822/// A no-op implementation of VarArgHelper.
5823struct VarArgNoOpHelper : public VarArgHelper {
5824 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
5825 MemorySanitizerVisitor &MSV) {}
5826
5827 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {}
5828
5829 void visitVAStartInst(VAStartInst &I) override {}
5830
5831 void visitVACopyInst(VACopyInst &I) override {}
5832
5833 void finalizeInstrumentation() override {}
5834};
5835
5836} // end anonymous namespace
5837
5838static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
5839 MemorySanitizerVisitor &Visitor) {
5840 // VarArg handling is only implemented on AMD64. False positives are possible
5841 // on other platforms.
5842 Triple TargetTriple(Func.getParent()->getTargetTriple());
5843 if (TargetTriple.getArch() == Triple::x86_64)
5844 return new VarArgAMD64Helper(Func, Msan, Visitor);
5845 else if (TargetTriple.isMIPS64())
5846 return new VarArgMIPS64Helper(Func, Msan, Visitor);
5847 else if (TargetTriple.getArch() == Triple::aarch64)
5848 return new VarArgAArch64Helper(Func, Msan, Visitor);
5849 else if (TargetTriple.getArch() == Triple::ppc64 ||
5850 TargetTriple.getArch() == Triple::ppc64le)
5851 return new VarArgPowerPC64Helper(Func, Msan, Visitor);
5852 else if (TargetTriple.getArch() == Triple::systemz)
5853 return new VarArgSystemZHelper(Func, Msan, Visitor);
5854 else
5855 return new VarArgNoOpHelper(Func, Msan, Visitor);
5856}
5857
5858bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
5859 if (!CompileKernel && F.getName() == kMsanModuleCtorName)
5860 return false;
5861
5862 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
5863 return false;
5864
5865 MemorySanitizerVisitor Visitor(F, *this, TLI);
5866
5867 // Clear out memory attributes.
5868 AttributeMask B;
5869 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable);
5870 F.removeFnAttrs(B);
5871
5872 return Visitor.runOnFunction();
5873}