Bug Summary

File:include/llvm/Support/Error.h
Warning:line 201, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name MetadataLoader.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/Bitcode/Reader -I /build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/Bitcode/Reader -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp

1//===- MetadataLoader.cpp - Internal BitcodeReader implementation ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MetadataLoader.h"
11#include "ValueList.h"
12
13#include "llvm/ADT/APFloat.h"
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallString.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/Bitcode/BitcodeReader.h"
26#include "llvm/Bitcode/BitstreamReader.h"
27#include "llvm/Bitcode/LLVMBitCodes.h"
28#include "llvm/IR/Argument.h"
29#include "llvm/IR/Attributes.h"
30#include "llvm/IR/AutoUpgrade.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/Comdat.h"
34#include "llvm/IR/Constant.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DebugInfo.h"
37#include "llvm/IR/DebugInfoMetadata.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/DiagnosticPrinter.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GVMaterializer.h"
43#include "llvm/IR/GlobalAlias.h"
44#include "llvm/IR/GlobalIFunc.h"
45#include "llvm/IR/GlobalIndirectSymbol.h"
46#include "llvm/IR/GlobalObject.h"
47#include "llvm/IR/GlobalValue.h"
48#include "llvm/IR/GlobalVariable.h"
49#include "llvm/IR/InlineAsm.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
54#include "llvm/IR/Intrinsics.h"
55#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Module.h"
57#include "llvm/IR/ModuleSummaryIndex.h"
58#include "llvm/IR/OperandTraits.h"
59#include "llvm/IR/TrackingMDRef.h"
60#include "llvm/IR/Type.h"
61#include "llvm/IR/ValueHandle.h"
62#include "llvm/Support/AtomicOrdering.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/Debug.h"
67#include "llvm/Support/Error.h"
68#include "llvm/Support/ErrorHandling.h"
69#include "llvm/Support/ManagedStatic.h"
70#include "llvm/Support/MemoryBuffer.h"
71#include "llvm/Support/raw_ostream.h"
72#include <algorithm>
73#include <cassert>
74#include <cstddef>
75#include <cstdint>
76#include <deque>
77#include <limits>
78#include <map>
79#include <memory>
80#include <string>
81#include <system_error>
82#include <tuple>
83#include <utility>
84#include <vector>
85
86using namespace llvm;
87
88#define DEBUG_TYPE"bitcode-reader" "bitcode-reader"
89
90STATISTIC(NumMDStringLoaded, "Number of MDStrings loaded")static llvm::Statistic NumMDStringLoaded = {"bitcode-reader",
"NumMDStringLoaded", "Number of MDStrings loaded", {0}, {false
}}
;
91STATISTIC(NumMDNodeTemporary, "Number of MDNode::Temporary created")static llvm::Statistic NumMDNodeTemporary = {"bitcode-reader"
, "NumMDNodeTemporary", "Number of MDNode::Temporary created"
, {0}, {false}}
;
92STATISTIC(NumMDRecordLoaded, "Number of Metadata records loaded")static llvm::Statistic NumMDRecordLoaded = {"bitcode-reader",
"NumMDRecordLoaded", "Number of Metadata records loaded", {0
}, {false}}
;
93
94/// Flag whether we need to import full type definitions for ThinLTO.
95/// Currently needed for Darwin and LLDB.
96static cl::opt<bool> ImportFullTypeDefinitions(
97 "import-full-type-definitions", cl::init(false), cl::Hidden,
98 cl::desc("Import full type definitions for ThinLTO."));
99
100static cl::opt<bool> DisableLazyLoading(
101 "disable-ondemand-mds-loading", cl::init(false), cl::Hidden,
102 cl::desc("Force disable the lazy-loading on-demand of metadata when "
103 "loading bitcode for importing."));
104
105namespace {
106
107static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
108
109class BitcodeReaderMetadataList {
110 /// Array of metadata references.
111 ///
112 /// Don't use std::vector here. Some versions of libc++ copy (instead of
113 /// move) on resize, and TrackingMDRef is very expensive to copy.
114 SmallVector<TrackingMDRef, 1> MetadataPtrs;
115
116 /// The set of indices in MetadataPtrs above of forward references that were
117 /// generated.
118 SmallDenseSet<unsigned, 1> ForwardReference;
119
120 /// The set of indices in MetadataPtrs above of Metadata that need to be
121 /// resolved.
122 SmallDenseSet<unsigned, 1> UnresolvedNodes;
123
124 /// Structures for resolving old type refs.
125 struct {
126 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
127 SmallDenseMap<MDString *, DICompositeType *, 1> Final;
128 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
129 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
130 } OldTypeRefs;
131
132 LLVMContext &Context;
133
134public:
135 BitcodeReaderMetadataList(LLVMContext &C) : Context(C) {}
136
137 // vector compatibility methods
138 unsigned size() const { return MetadataPtrs.size(); }
139 void resize(unsigned N) { MetadataPtrs.resize(N); }
140 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
141 void clear() { MetadataPtrs.clear(); }
142 Metadata *back() const { return MetadataPtrs.back(); }
143 void pop_back() { MetadataPtrs.pop_back(); }
144 bool empty() const { return MetadataPtrs.empty(); }
145
146 Metadata *operator[](unsigned i) const {
147 assert(i < MetadataPtrs.size())((i < MetadataPtrs.size()) ? static_cast<void> (0) :
__assert_fail ("i < MetadataPtrs.size()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 147, __PRETTY_FUNCTION__))
;
148 return MetadataPtrs[i];
149 }
150
151 Metadata *lookup(unsigned I) const {
152 if (I < MetadataPtrs.size())
153 return MetadataPtrs[I];
154 return nullptr;
155 }
156
157 void shrinkTo(unsigned N) {
158 assert(N <= size() && "Invalid shrinkTo request!")((N <= size() && "Invalid shrinkTo request!") ? static_cast
<void> (0) : __assert_fail ("N <= size() && \"Invalid shrinkTo request!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 158, __PRETTY_FUNCTION__))
;
159 assert(ForwardReference.empty() && "Unexpected forward refs")((ForwardReference.empty() && "Unexpected forward refs"
) ? static_cast<void> (0) : __assert_fail ("ForwardReference.empty() && \"Unexpected forward refs\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 159, __PRETTY_FUNCTION__))
;
160 assert(UnresolvedNodes.empty() && "Unexpected unresolved node")((UnresolvedNodes.empty() && "Unexpected unresolved node"
) ? static_cast<void> (0) : __assert_fail ("UnresolvedNodes.empty() && \"Unexpected unresolved node\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 160, __PRETTY_FUNCTION__))
;
161 MetadataPtrs.resize(N);
162 }
163
164 /// Return the given metadata, creating a replaceable forward reference if
165 /// necessary.
166 Metadata *getMetadataFwdRef(unsigned Idx);
167
168 /// Return the given metadata only if it is fully resolved.
169 ///
170 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
171 /// would give \c false.
172 Metadata *getMetadataIfResolved(unsigned Idx);
173
174 MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
175 void assignValue(Metadata *MD, unsigned Idx);
176 void tryToResolveCycles();
177 bool hasFwdRefs() const { return !ForwardReference.empty(); }
178 int getNextFwdRef() {
179 assert(hasFwdRefs())((hasFwdRefs()) ? static_cast<void> (0) : __assert_fail
("hasFwdRefs()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 179, __PRETTY_FUNCTION__))
;
180 return *ForwardReference.begin();
181 }
182
183 /// Upgrade a type that had an MDString reference.
184 void addTypeRef(MDString &UUID, DICompositeType &CT);
185
186 /// Upgrade a type that had an MDString reference.
187 Metadata *upgradeTypeRef(Metadata *MaybeUUID);
188
189 /// Upgrade a type ref array that may have MDString references.
190 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
191
192private:
193 Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
194};
195
196void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
197 if (auto *MDN = dyn_cast<MDNode>(MD))
198 if (!MDN->isResolved())
199 UnresolvedNodes.insert(Idx);
200
201 if (Idx == size()) {
202 push_back(MD);
203 return;
204 }
205
206 if (Idx >= size())
207 resize(Idx + 1);
208
209 TrackingMDRef &OldMD = MetadataPtrs[Idx];
210 if (!OldMD) {
211 OldMD.reset(MD);
212 return;
213 }
214
215 // If there was a forward reference to this value, replace it.
216 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
217 PrevMD->replaceAllUsesWith(MD);
218 ForwardReference.erase(Idx);
219}
220
221Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
222 if (Idx >= size())
223 resize(Idx + 1);
224
225 if (Metadata *MD = MetadataPtrs[Idx])
226 return MD;
227
228 // Track forward refs to be resolved later.
229 ForwardReference.insert(Idx);
230
231 // Create and return a placeholder, which will later be RAUW'd.
232 ++NumMDNodeTemporary;
233 Metadata *MD = MDNode::getTemporary(Context, None).release();
234 MetadataPtrs[Idx].reset(MD);
235 return MD;
236}
237
238Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
239 Metadata *MD = lookup(Idx);
240 if (auto *N = dyn_cast_or_null<MDNode>(MD))
241 if (!N->isResolved())
242 return nullptr;
243 return MD;
244}
245
246MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
247 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
248}
249
250void BitcodeReaderMetadataList::tryToResolveCycles() {
251 if (!ForwardReference.empty())
252 // Still forward references... can't resolve cycles.
253 return;
254
255 // Give up on finding a full definition for any forward decls that remain.
256 for (const auto &Ref : OldTypeRefs.FwdDecls)
257 OldTypeRefs.Final.insert(Ref);
258 OldTypeRefs.FwdDecls.clear();
259
260 // Upgrade from old type ref arrays. In strange cases, this could add to
261 // OldTypeRefs.Unknown.
262 for (const auto &Array : OldTypeRefs.Arrays)
263 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
264 OldTypeRefs.Arrays.clear();
265
266 // Replace old string-based type refs with the resolved node, if possible.
267 // If we haven't seen the node, leave it to the verifier to complain about
268 // the invalid string reference.
269 for (const auto &Ref : OldTypeRefs.Unknown) {
270 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
271 Ref.second->replaceAllUsesWith(CT);
272 else
273 Ref.second->replaceAllUsesWith(Ref.first);
274 }
275 OldTypeRefs.Unknown.clear();
276
277 if (UnresolvedNodes.empty())
278 // Nothing to do.
279 return;
280
281 // Resolve any cycles.
282 for (unsigned I : UnresolvedNodes) {
283 auto &MD = MetadataPtrs[I];
284 auto *N = dyn_cast_or_null<MDNode>(MD);
285 if (!N)
286 continue;
287
288 assert(!N->isTemporary() && "Unexpected forward reference")((!N->isTemporary() && "Unexpected forward reference"
) ? static_cast<void> (0) : __assert_fail ("!N->isTemporary() && \"Unexpected forward reference\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 288, __PRETTY_FUNCTION__))
;
289 N->resolveCycles();
290 }
291
292 // Make sure we return early again until there's another unresolved ref.
293 UnresolvedNodes.clear();
294}
295
296void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
297 DICompositeType &CT) {
298 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID")((CT.getRawIdentifier() == &UUID && "Mismatched UUID"
) ? static_cast<void> (0) : __assert_fail ("CT.getRawIdentifier() == &UUID && \"Mismatched UUID\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 298, __PRETTY_FUNCTION__))
;
299 if (CT.isForwardDecl())
300 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
301 else
302 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
303}
304
305Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
306 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
307 if (LLVM_LIKELY(!UUID)__builtin_expect((bool)(!UUID), true))
308 return MaybeUUID;
309
310 if (auto *CT = OldTypeRefs.Final.lookup(UUID))
311 return CT;
312
313 auto &Ref = OldTypeRefs.Unknown[UUID];
314 if (!Ref)
315 Ref = MDNode::getTemporary(Context, None);
316 return Ref.get();
317}
318
319Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
320 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
321 if (!Tuple || Tuple->isDistinct())
322 return MaybeTuple;
323
324 // Look through the array immediately if possible.
325 if (!Tuple->isTemporary())
326 return resolveTypeRefArray(Tuple);
327
328 // Create and return a placeholder to use for now. Eventually
329 // resolveTypeRefArrays() will be resolve this forward reference.
330 OldTypeRefs.Arrays.emplace_back(
331 std::piecewise_construct, std::forward_as_tuple(Tuple),
332 std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
333 return OldTypeRefs.Arrays.back().second.get();
334}
335
336Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
337 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
338 if (!Tuple || Tuple->isDistinct())
339 return MaybeTuple;
340
341 // Look through the DITypeRefArray, upgrading each DITypeRef.
342 SmallVector<Metadata *, 32> Ops;
343 Ops.reserve(Tuple->getNumOperands());
344 for (Metadata *MD : Tuple->operands())
345 Ops.push_back(upgradeTypeRef(MD));
346
347 return MDTuple::get(Context, Ops);
348}
349
350namespace {
351
352class PlaceholderQueue {
353 // Placeholders would thrash around when moved, so store in a std::deque
354 // instead of some sort of vector.
355 std::deque<DistinctMDOperandPlaceholder> PHs;
356
357public:
358 ~PlaceholderQueue() {
359 assert(empty() && "PlaceholderQueue hasn't been flushed before being destroyed")((empty() && "PlaceholderQueue hasn't been flushed before being destroyed"
) ? static_cast<void> (0) : __assert_fail ("empty() && \"PlaceholderQueue hasn't been flushed before being destroyed\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 359, __PRETTY_FUNCTION__))
;
360 }
361 bool empty() { return PHs.empty(); }
362 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
363 void flush(BitcodeReaderMetadataList &MetadataList);
364
365 /// Return the list of temporaries nodes in the queue, these need to be
366 /// loaded before we can flush the queue.
367 void getTemporaries(BitcodeReaderMetadataList &MetadataList,
368 DenseSet<unsigned> &Temporaries) {
369 for (auto &PH : PHs) {
370 auto ID = PH.getID();
371 auto *MD = MetadataList.lookup(ID);
372 if (!MD) {
373 Temporaries.insert(ID);
374 continue;
375 }
376 auto *N = dyn_cast_or_null<MDNode>(MD);
377 if (N && N->isTemporary())
378 Temporaries.insert(ID);
379 }
380 }
381};
382
383} // end anonymous namespace
384
385DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
386 PHs.emplace_back(ID);
387 return PHs.back();
388}
389
390void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
391 while (!PHs.empty()) {
392 auto *MD = MetadataList.lookup(PHs.front().getID());
393 assert(MD && "Flushing placeholder on unassigned MD")((MD && "Flushing placeholder on unassigned MD") ? static_cast
<void> (0) : __assert_fail ("MD && \"Flushing placeholder on unassigned MD\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 393, __PRETTY_FUNCTION__))
;
394#ifndef NDEBUG
395 if (auto *MDN = dyn_cast<MDNode>(MD))
396 assert(MDN->isResolved() &&((MDN->isResolved() && "Flushing Placeholder while cycles aren't resolved"
) ? static_cast<void> (0) : __assert_fail ("MDN->isResolved() && \"Flushing Placeholder while cycles aren't resolved\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 397, __PRETTY_FUNCTION__))
397 "Flushing Placeholder while cycles aren't resolved")((MDN->isResolved() && "Flushing Placeholder while cycles aren't resolved"
) ? static_cast<void> (0) : __assert_fail ("MDN->isResolved() && \"Flushing Placeholder while cycles aren't resolved\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 397, __PRETTY_FUNCTION__))
;
398#endif
399 PHs.front().replaceUseWith(MD);
400 PHs.pop_front();
401 }
402}
403
404} // anonynous namespace
405
406static Error error(const Twine &Message) {
407 return make_error<StringError>(
5
Calling 'make_error<llvm::StringError, const llvm::Twine &, std::error_code>'
408 Message, make_error_code(BitcodeError::CorruptedBitcode));
409}
410
411class MetadataLoader::MetadataLoaderImpl {
412 BitcodeReaderMetadataList MetadataList;
413 BitcodeReaderValueList &ValueList;
414 BitstreamCursor &Stream;
415 LLVMContext &Context;
416 Module &TheModule;
417 std::function<Type *(unsigned)> getTypeByID;
418
419 /// Cursor associated with the lazy-loading of Metadata. This is the easy way
420 /// to keep around the right "context" (Abbrev list) to be able to jump in
421 /// the middle of the metadata block and load any record.
422 BitstreamCursor IndexCursor;
423
424 /// Index that keeps track of MDString values.
425 std::vector<StringRef> MDStringRef;
426
427 /// On-demand loading of a single MDString. Requires the index above to be
428 /// populated.
429 MDString *lazyLoadOneMDString(unsigned Idx);
430
431 /// Index that keeps track of where to find a metadata record in the stream.
432 std::vector<uint64_t> GlobalMetadataBitPosIndex;
433
434 /// Populate the index above to enable lazily loading of metadata, and load
435 /// the named metadata as well as the transitively referenced global
436 /// Metadata.
437 Expected<bool> lazyLoadModuleMetadataBlock();
438
439 /// On-demand loading of a single metadata. Requires the index above to be
440 /// populated.
441 void lazyLoadOneMetadata(unsigned Idx, PlaceholderQueue &Placeholders);
442
443 // Keep mapping of seens pair of old-style CU <-> SP, and update pointers to
444 // point from SP to CU after a block is completly parsed.
445 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
446
447 /// Functions that need to be matched with subprograms when upgrading old
448 /// metadata.
449 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
450
451 // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
452 DenseMap<unsigned, unsigned> MDKindMap;
453
454 bool StripTBAA = false;
455 bool HasSeenOldLoopTags = false;
456 bool NeedUpgradeToDIGlobalVariableExpression = false;
457 bool NeedDeclareExpressionUpgrade = false;
458
459 /// True if metadata is being parsed for a module being ThinLTO imported.
460 bool IsImporting = false;
461
462 Error parseOneMetadata(SmallVectorImpl<uint64_t> &Record, unsigned Code,
463 PlaceholderQueue &Placeholders, StringRef Blob,
464 unsigned &NextMetadataNo);
465 Error parseMetadataStrings(ArrayRef<uint64_t> Record, StringRef Blob,
466 function_ref<void(StringRef)> CallBack);
467 Error parseGlobalObjectAttachment(GlobalObject &GO,
468 ArrayRef<uint64_t> Record);
469 Error parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
470
471 void resolveForwardRefsAndPlaceholders(PlaceholderQueue &Placeholders);
472
473 /// Upgrade old-style CU <-> SP pointers to point from SP to CU.
474 void upgradeCUSubprograms() {
475 for (auto CU_SP : CUSubprograms)
476 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
477 for (auto &Op : SPs->operands())
478 if (auto *SP = dyn_cast_or_null<DISubprogram>(Op))
479 SP->replaceUnit(CU_SP.first);
480 CUSubprograms.clear();
481 }
482
483 /// Upgrade old-style bare DIGlobalVariables to DIGlobalVariableExpressions.
484 void upgradeCUVariables() {
485 if (!NeedUpgradeToDIGlobalVariableExpression)
486 return;
487
488 // Upgrade list of variables attached to the CUs.
489 if (NamedMDNode *CUNodes = TheModule.getNamedMetadata("llvm.dbg.cu"))
490 for (unsigned I = 0, E = CUNodes->getNumOperands(); I != E; ++I) {
491 auto *CU = cast<DICompileUnit>(CUNodes->getOperand(I));
492 if (auto *GVs = dyn_cast_or_null<MDTuple>(CU->getRawGlobalVariables()))
493 for (unsigned I = 0; I < GVs->getNumOperands(); I++)
494 if (auto *GV =
495 dyn_cast_or_null<DIGlobalVariable>(GVs->getOperand(I))) {
496 auto *DGVE = DIGlobalVariableExpression::getDistinct(
497 Context, GV, DIExpression::get(Context, {}));
498 GVs->replaceOperandWith(I, DGVE);
499 }
500 }
501
502 // Upgrade variables attached to globals.
503 for (auto &GV : TheModule.globals()) {
504 SmallVector<MDNode *, 1> MDs;
505 GV.getMetadata(LLVMContext::MD_dbg, MDs);
506 GV.eraseMetadata(LLVMContext::MD_dbg);
507 for (auto *MD : MDs)
508 if (auto *DGV = dyn_cast_or_null<DIGlobalVariable>(MD)) {
509 auto *DGVE = DIGlobalVariableExpression::getDistinct(
510 Context, DGV, DIExpression::get(Context, {}));
511 GV.addMetadata(LLVMContext::MD_dbg, *DGVE);
512 } else
513 GV.addMetadata(LLVMContext::MD_dbg, *MD);
514 }
515 }
516
517 /// Remove a leading DW_OP_deref from DIExpressions in a dbg.declare that
518 /// describes a function argument.
519 void upgradeDeclareExpressions(Function &F) {
520 if (!NeedDeclareExpressionUpgrade)
521 return;
522
523 for (auto &BB : F)
524 for (auto &I : BB)
525 if (auto *DDI = dyn_cast<DbgDeclareInst>(&I))
526 if (auto *DIExpr = DDI->getExpression())
527 if (DIExpr->startsWithDeref() &&
528 dyn_cast_or_null<Argument>(DDI->getAddress())) {
529 SmallVector<uint64_t, 8> Ops;
530 Ops.append(std::next(DIExpr->elements_begin()),
531 DIExpr->elements_end());
532 auto *E = DIExpression::get(Context, Ops);
533 DDI->setOperand(2, MetadataAsValue::get(Context, E));
534 }
535 }
536
537 /// Upgrade the expression from previous versions.
538 Error upgradeDIExpression(uint64_t FromVersion,
539 MutableArrayRef<uint64_t> &Expr,
540 SmallVectorImpl<uint64_t> &Buffer) {
541 auto N = Expr.size();
542 switch (FromVersion) {
543 default:
544 return error("Invalid record");
545 case 0:
546 if (N >= 3 && Expr[N - 3] == dwarf::DW_OP_bit_piece)
547 Expr[N - 3] = dwarf::DW_OP_LLVM_fragment;
548 LLVM_FALLTHROUGH[[clang::fallthrough]];
549 case 1:
550 // Move DW_OP_deref to the end.
551 if (N && Expr[0] == dwarf::DW_OP_deref) {
552 auto End = Expr.end();
553 if (Expr.size() >= 3 &&
554 *std::prev(End, 3) == dwarf::DW_OP_LLVM_fragment)
555 End = std::prev(End, 3);
556 std::move(std::next(Expr.begin()), End, Expr.begin());
557 *std::prev(End) = dwarf::DW_OP_deref;
558 }
559 NeedDeclareExpressionUpgrade = true;
560 LLVM_FALLTHROUGH[[clang::fallthrough]];
561 case 2: {
562 // Change DW_OP_plus to DW_OP_plus_uconst.
563 // Change DW_OP_minus to DW_OP_uconst, DW_OP_minus
564 auto SubExpr = ArrayRef<uint64_t>(Expr);
565 while (!SubExpr.empty()) {
566 // Skip past other operators with their operands
567 // for this version of the IR, obtained from
568 // from historic DIExpression::ExprOperand::getSize().
569 size_t HistoricSize;
570 switch (SubExpr.front()) {
571 default:
572 HistoricSize = 1;
573 break;
574 case dwarf::DW_OP_constu:
575 case dwarf::DW_OP_minus:
576 case dwarf::DW_OP_plus:
577 HistoricSize = 2;
578 break;
579 case dwarf::DW_OP_LLVM_fragment:
580 HistoricSize = 3;
581 break;
582 }
583
584 // If the expression is malformed, make sure we don't
585 // copy more elements than we should.
586 HistoricSize = std::min(SubExpr.size(), HistoricSize);
587 ArrayRef<uint64_t> Args = SubExpr.slice(1, HistoricSize-1);
588
589 switch (SubExpr.front()) {
590 case dwarf::DW_OP_plus:
591 Buffer.push_back(dwarf::DW_OP_plus_uconst);
592 Buffer.append(Args.begin(), Args.end());
593 break;
594 case dwarf::DW_OP_minus:
595 Buffer.push_back(dwarf::DW_OP_constu);
596 Buffer.append(Args.begin(), Args.end());
597 Buffer.push_back(dwarf::DW_OP_minus);
598 break;
599 default:
600 Buffer.push_back(*SubExpr.begin());
601 Buffer.append(Args.begin(), Args.end());
602 break;
603 }
604
605 // Continue with remaining elements.
606 SubExpr = SubExpr.slice(HistoricSize);
607 }
608 Expr = MutableArrayRef<uint64_t>(Buffer);
609 LLVM_FALLTHROUGH[[clang::fallthrough]];
610 }
611 case 3:
612 // Up-to-date!
613 break;
614 }
615
616 return Error::success();
617 }
618
619 void upgradeDebugInfo() {
620 upgradeCUSubprograms();
621 upgradeCUVariables();
622 }
623
624public:
625 MetadataLoaderImpl(BitstreamCursor &Stream, Module &TheModule,
626 BitcodeReaderValueList &ValueList,
627 std::function<Type *(unsigned)> getTypeByID,
628 bool IsImporting)
629 : MetadataList(TheModule.getContext()), ValueList(ValueList),
630 Stream(Stream), Context(TheModule.getContext()), TheModule(TheModule),
631 getTypeByID(std::move(getTypeByID)), IsImporting(IsImporting) {}
632
633 Error parseMetadata(bool ModuleLevel);
634
635 bool hasFwdRefs() const { return MetadataList.hasFwdRefs(); }
636
637 Metadata *getMetadataFwdRefOrLoad(unsigned ID) {
638 if (ID < MDStringRef.size())
639 return lazyLoadOneMDString(ID);
640 if (auto *MD = MetadataList.lookup(ID))
641 return MD;
642 // If lazy-loading is enabled, we try recursively to load the operand
643 // instead of creating a temporary.
644 if (ID < (MDStringRef.size() + GlobalMetadataBitPosIndex.size())) {
645 PlaceholderQueue Placeholders;
646 lazyLoadOneMetadata(ID, Placeholders);
647 resolveForwardRefsAndPlaceholders(Placeholders);
648 return MetadataList.lookup(ID);
649 }
650 return MetadataList.getMetadataFwdRef(ID);
651 }
652
653 DISubprogram *lookupSubprogramForFunction(Function *F) {
654 return FunctionsWithSPs.lookup(F);
655 }
656
657 bool hasSeenOldLoopTags() { return HasSeenOldLoopTags; }
658
659 Error parseMetadataAttachment(
660 Function &F, const SmallVectorImpl<Instruction *> &InstructionList);
661
662 Error parseMetadataKinds();
663
664 void setStripTBAA(bool Value) { StripTBAA = Value; }
665 bool isStrippingTBAA() { return StripTBAA; }
666
667 unsigned size() const { return MetadataList.size(); }
668 void shrinkTo(unsigned N) { MetadataList.shrinkTo(N); }
669 void upgradeDebugIntrinsics(Function &F) { upgradeDeclareExpressions(F); }
670};
671
672Expected<bool>
673MetadataLoader::MetadataLoaderImpl::lazyLoadModuleMetadataBlock() {
674 IndexCursor = Stream;
675 SmallVector<uint64_t, 64> Record;
676 // Get the abbrevs, and preload record positions to make them lazy-loadable.
677 while (true) {
678 BitstreamEntry Entry = IndexCursor.advanceSkippingSubblocks(
679 BitstreamCursor::AF_DontPopBlockAtEnd);
680 switch (Entry.Kind) {
681 case BitstreamEntry::SubBlock: // Handled for us already.
682 case BitstreamEntry::Error:
683 return error("Malformed block");
684 case BitstreamEntry::EndBlock: {
685 return true;
686 }
687 case BitstreamEntry::Record: {
688 // The interesting case.
689 ++NumMDRecordLoaded;
690 uint64_t CurrentPos = IndexCursor.GetCurrentBitNo();
691 auto Code = IndexCursor.skipRecord(Entry.ID);
692 switch (Code) {
693 case bitc::METADATA_STRINGS: {
694 // Rewind and parse the strings.
695 IndexCursor.JumpToBit(CurrentPos);
696 StringRef Blob;
697 Record.clear();
698 IndexCursor.readRecord(Entry.ID, Record, &Blob);
699 unsigned NumStrings = Record[0];
700 MDStringRef.reserve(NumStrings);
701 auto IndexNextMDString = [&](StringRef Str) {
702 MDStringRef.push_back(Str);
703 };
704 if (auto Err = parseMetadataStrings(Record, Blob, IndexNextMDString))
705 return std::move(Err);
706 break;
707 }
708 case bitc::METADATA_INDEX_OFFSET: {
709 // This is the offset to the index, when we see this we skip all the
710 // records and load only an index to these.
711 IndexCursor.JumpToBit(CurrentPos);
712 Record.clear();
713 IndexCursor.readRecord(Entry.ID, Record);
714 if (Record.size() != 2)
715 return error("Invalid record");
716 auto Offset = Record[0] + (Record[1] << 32);
717 auto BeginPos = IndexCursor.GetCurrentBitNo();
718 IndexCursor.JumpToBit(BeginPos + Offset);
719 Entry = IndexCursor.advanceSkippingSubblocks(
720 BitstreamCursor::AF_DontPopBlockAtEnd);
721 assert(Entry.Kind == BitstreamEntry::Record &&((Entry.Kind == BitstreamEntry::Record && "Corrupted bitcode: Expected `Record` when trying to find the "
"Metadata index") ? static_cast<void> (0) : __assert_fail
("Entry.Kind == BitstreamEntry::Record && \"Corrupted bitcode: Expected `Record` when trying to find the \" \"Metadata index\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 723, __PRETTY_FUNCTION__))
722 "Corrupted bitcode: Expected `Record` when trying to find the "((Entry.Kind == BitstreamEntry::Record && "Corrupted bitcode: Expected `Record` when trying to find the "
"Metadata index") ? static_cast<void> (0) : __assert_fail
("Entry.Kind == BitstreamEntry::Record && \"Corrupted bitcode: Expected `Record` when trying to find the \" \"Metadata index\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 723, __PRETTY_FUNCTION__))
723 "Metadata index")((Entry.Kind == BitstreamEntry::Record && "Corrupted bitcode: Expected `Record` when trying to find the "
"Metadata index") ? static_cast<void> (0) : __assert_fail
("Entry.Kind == BitstreamEntry::Record && \"Corrupted bitcode: Expected `Record` when trying to find the \" \"Metadata index\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 723, __PRETTY_FUNCTION__))
;
724 Record.clear();
725 auto Code = IndexCursor.readRecord(Entry.ID, Record);
726 (void)Code;
727 assert(Code == bitc::METADATA_INDEX && "Corrupted bitcode: Expected "((Code == bitc::METADATA_INDEX && "Corrupted bitcode: Expected "
"`METADATA_INDEX` when trying " "to find the Metadata index"
) ? static_cast<void> (0) : __assert_fail ("Code == bitc::METADATA_INDEX && \"Corrupted bitcode: Expected \" \"`METADATA_INDEX` when trying \" \"to find the Metadata index\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 729, __PRETTY_FUNCTION__))
728 "`METADATA_INDEX` when trying "((Code == bitc::METADATA_INDEX && "Corrupted bitcode: Expected "
"`METADATA_INDEX` when trying " "to find the Metadata index"
) ? static_cast<void> (0) : __assert_fail ("Code == bitc::METADATA_INDEX && \"Corrupted bitcode: Expected \" \"`METADATA_INDEX` when trying \" \"to find the Metadata index\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 729, __PRETTY_FUNCTION__))
729 "to find the Metadata index")((Code == bitc::METADATA_INDEX && "Corrupted bitcode: Expected "
"`METADATA_INDEX` when trying " "to find the Metadata index"
) ? static_cast<void> (0) : __assert_fail ("Code == bitc::METADATA_INDEX && \"Corrupted bitcode: Expected \" \"`METADATA_INDEX` when trying \" \"to find the Metadata index\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 729, __PRETTY_FUNCTION__))
;
730
731 // Delta unpack
732 auto CurrentValue = BeginPos;
733 GlobalMetadataBitPosIndex.reserve(Record.size());
734 for (auto &Elt : Record) {
735 CurrentValue += Elt;
736 GlobalMetadataBitPosIndex.push_back(CurrentValue);
737 }
738 break;
739 }
740 case bitc::METADATA_INDEX:
741 // We don't expect to get there, the Index is loaded when we encounter
742 // the offset.
743 return error("Corrupted Metadata block");
744 case bitc::METADATA_NAME: {
745 // Named metadata need to be materialized now and aren't deferred.
746 IndexCursor.JumpToBit(CurrentPos);
747 Record.clear();
748 unsigned Code = IndexCursor.readRecord(Entry.ID, Record);
749 assert(Code == bitc::METADATA_NAME)((Code == bitc::METADATA_NAME) ? static_cast<void> (0) :
__assert_fail ("Code == bitc::METADATA_NAME", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 749, __PRETTY_FUNCTION__))
;
750
751 // Read name of the named metadata.
752 SmallString<8> Name(Record.begin(), Record.end());
753 Code = IndexCursor.ReadCode();
754
755 // Named Metadata comes in two parts, we expect the name to be followed
756 // by the node
757 Record.clear();
758 unsigned NextBitCode = IndexCursor.readRecord(Code, Record);
759 assert(NextBitCode == bitc::METADATA_NAMED_NODE)((NextBitCode == bitc::METADATA_NAMED_NODE) ? static_cast<
void> (0) : __assert_fail ("NextBitCode == bitc::METADATA_NAMED_NODE"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 759, __PRETTY_FUNCTION__))
;
760 (void)NextBitCode;
761
762 // Read named metadata elements.
763 unsigned Size = Record.size();
764 NamedMDNode *NMD = TheModule.getOrInsertNamedMetadata(Name);
765 for (unsigned i = 0; i != Size; ++i) {
766 // FIXME: We could use a placeholder here, however NamedMDNode are
767 // taking MDNode as operand and not using the Metadata infrastructure.
768 // It is acknowledged by 'TODO: Inherit from Metadata' in the
769 // NamedMDNode class definition.
770 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
771 assert(MD && "Invalid metadata: expect fwd ref to MDNode")((MD && "Invalid metadata: expect fwd ref to MDNode")
? static_cast<void> (0) : __assert_fail ("MD && \"Invalid metadata: expect fwd ref to MDNode\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 771, __PRETTY_FUNCTION__))
;
772 NMD->addOperand(MD);
773 }
774 break;
775 }
776 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
777 // FIXME: we need to do this early because we don't materialize global
778 // value explicitly.
779 IndexCursor.JumpToBit(CurrentPos);
780 Record.clear();
781 IndexCursor.readRecord(Entry.ID, Record);
782 if (Record.size() % 2 == 0)
783 return error("Invalid record");
784 unsigned ValueID = Record[0];
785 if (ValueID >= ValueList.size())
786 return error("Invalid record");
787 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
788 if (Error Err = parseGlobalObjectAttachment(
789 *GO, ArrayRef<uint64_t>(Record).slice(1)))
790 return std::move(Err);
791 break;
792 }
793 case bitc::METADATA_KIND:
794 case bitc::METADATA_STRING_OLD:
795 case bitc::METADATA_OLD_FN_NODE:
796 case bitc::METADATA_OLD_NODE:
797 case bitc::METADATA_VALUE:
798 case bitc::METADATA_DISTINCT_NODE:
799 case bitc::METADATA_NODE:
800 case bitc::METADATA_LOCATION:
801 case bitc::METADATA_GENERIC_DEBUG:
802 case bitc::METADATA_SUBRANGE:
803 case bitc::METADATA_ENUMERATOR:
804 case bitc::METADATA_BASIC_TYPE:
805 case bitc::METADATA_DERIVED_TYPE:
806 case bitc::METADATA_COMPOSITE_TYPE:
807 case bitc::METADATA_SUBROUTINE_TYPE:
808 case bitc::METADATA_MODULE:
809 case bitc::METADATA_FILE:
810 case bitc::METADATA_COMPILE_UNIT:
811 case bitc::METADATA_SUBPROGRAM:
812 case bitc::METADATA_LEXICAL_BLOCK:
813 case bitc::METADATA_LEXICAL_BLOCK_FILE:
814 case bitc::METADATA_NAMESPACE:
815 case bitc::METADATA_MACRO:
816 case bitc::METADATA_MACRO_FILE:
817 case bitc::METADATA_TEMPLATE_TYPE:
818 case bitc::METADATA_TEMPLATE_VALUE:
819 case bitc::METADATA_GLOBAL_VAR:
820 case bitc::METADATA_LOCAL_VAR:
821 case bitc::METADATA_LABEL:
822 case bitc::METADATA_EXPRESSION:
823 case bitc::METADATA_OBJC_PROPERTY:
824 case bitc::METADATA_IMPORTED_ENTITY:
825 case bitc::METADATA_GLOBAL_VAR_EXPR:
826 // We don't expect to see any of these, if we see one, give up on
827 // lazy-loading and fallback.
828 MDStringRef.clear();
829 GlobalMetadataBitPosIndex.clear();
830 return false;
831 }
832 break;
833 }
834 }
835 }
836}
837
838/// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
839/// module level metadata.
840Error MetadataLoader::MetadataLoaderImpl::parseMetadata(bool ModuleLevel) {
841 if (!ModuleLevel && MetadataList.hasFwdRefs())
842 return error("Invalid metadata: fwd refs into function blocks");
843
844 // Record the entry position so that we can jump back here and efficiently
845 // skip the whole block in case we lazy-load.
846 auto EntryPos = Stream.GetCurrentBitNo();
847
848 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
849 return error("Invalid record");
850
851 SmallVector<uint64_t, 64> Record;
852 PlaceholderQueue Placeholders;
853
854 // We lazy-load module-level metadata: we build an index for each record, and
855 // then load individual record as needed, starting with the named metadata.
856 if (ModuleLevel && IsImporting && MetadataList.empty() &&
857 !DisableLazyLoading) {
858 auto SuccessOrErr = lazyLoadModuleMetadataBlock();
859 if (!SuccessOrErr)
860 return SuccessOrErr.takeError();
861 if (SuccessOrErr.get()) {
862 // An index was successfully created and we will be able to load metadata
863 // on-demand.
864 MetadataList.resize(MDStringRef.size() +
865 GlobalMetadataBitPosIndex.size());
866
867 // Reading the named metadata created forward references and/or
868 // placeholders, that we flush here.
869 resolveForwardRefsAndPlaceholders(Placeholders);
870 upgradeDebugInfo();
871 // Return at the beginning of the block, since it is easy to skip it
872 // entirely from there.
873 Stream.ReadBlockEnd(); // Pop the abbrev block context.
874 Stream.JumpToBit(EntryPos);
875 if (Stream.SkipBlock())
876 return error("Invalid record");
877 return Error::success();
878 }
879 // Couldn't load an index, fallback to loading all the block "old-style".
880 }
881
882 unsigned NextMetadataNo = MetadataList.size();
883
884 // Read all the records.
885 while (true) {
886 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
887
888 switch (Entry.Kind) {
889 case BitstreamEntry::SubBlock: // Handled for us already.
890 case BitstreamEntry::Error:
891 return error("Malformed block");
892 case BitstreamEntry::EndBlock:
893 resolveForwardRefsAndPlaceholders(Placeholders);
894 upgradeDebugInfo();
895 return Error::success();
896 case BitstreamEntry::Record:
897 // The interesting case.
898 break;
899 }
900
901 // Read a record.
902 Record.clear();
903 StringRef Blob;
904 ++NumMDRecordLoaded;
905 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
906 if (Error Err =
907 parseOneMetadata(Record, Code, Placeholders, Blob, NextMetadataNo))
908 return Err;
909 }
910}
911
912MDString *MetadataLoader::MetadataLoaderImpl::lazyLoadOneMDString(unsigned ID) {
913 ++NumMDStringLoaded;
914 if (Metadata *MD = MetadataList.lookup(ID))
915 return cast<MDString>(MD);
916 auto MDS = MDString::get(Context, MDStringRef[ID]);
917 MetadataList.assignValue(MDS, ID);
918 return MDS;
919}
920
921void MetadataLoader::MetadataLoaderImpl::lazyLoadOneMetadata(
922 unsigned ID, PlaceholderQueue &Placeholders) {
923 assert(ID < (MDStringRef.size()) + GlobalMetadataBitPosIndex.size())((ID < (MDStringRef.size()) + GlobalMetadataBitPosIndex.size
()) ? static_cast<void> (0) : __assert_fail ("ID < (MDStringRef.size()) + GlobalMetadataBitPosIndex.size()"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 923, __PRETTY_FUNCTION__))
;
924 assert(ID >= MDStringRef.size() && "Unexpected lazy-loading of MDString")((ID >= MDStringRef.size() && "Unexpected lazy-loading of MDString"
) ? static_cast<void> (0) : __assert_fail ("ID >= MDStringRef.size() && \"Unexpected lazy-loading of MDString\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 924, __PRETTY_FUNCTION__))
;
925 // Lookup first if the metadata hasn't already been loaded.
926 if (auto *MD = MetadataList.lookup(ID)) {
927 auto *N = dyn_cast_or_null<MDNode>(MD);
928 if (!N->isTemporary())
929 return;
930 }
931 SmallVector<uint64_t, 64> Record;
932 StringRef Blob;
933 IndexCursor.JumpToBit(GlobalMetadataBitPosIndex[ID - MDStringRef.size()]);
934 auto Entry = IndexCursor.advanceSkippingSubblocks();
935 ++NumMDRecordLoaded;
936 unsigned Code = IndexCursor.readRecord(Entry.ID, Record, &Blob);
937 if (Error Err = parseOneMetadata(Record, Code, Placeholders, Blob, ID))
938 report_fatal_error("Can't lazyload MD");
939}
940
941/// Ensure that all forward-references and placeholders are resolved.
942/// Iteratively lazy-loading metadata on-demand if needed.
943void MetadataLoader::MetadataLoaderImpl::resolveForwardRefsAndPlaceholders(
944 PlaceholderQueue &Placeholders) {
945 DenseSet<unsigned> Temporaries;
946 while (1) {
947 // Populate Temporaries with the placeholders that haven't been loaded yet.
948 Placeholders.getTemporaries(MetadataList, Temporaries);
949
950 // If we don't have any temporary, or FwdReference, we're done!
951 if (Temporaries.empty() && !MetadataList.hasFwdRefs())
952 break;
953
954 // First, load all the temporaries. This can add new placeholders or
955 // forward references.
956 for (auto ID : Temporaries)
957 lazyLoadOneMetadata(ID, Placeholders);
958 Temporaries.clear();
959
960 // Second, load the forward-references. This can also add new placeholders
961 // or forward references.
962 while (MetadataList.hasFwdRefs())
963 lazyLoadOneMetadata(MetadataList.getNextFwdRef(), Placeholders);
964 }
965 // At this point we don't have any forward reference remaining, or temporary
966 // that haven't been loaded. We can safely drop RAUW support and mark cycles
967 // as resolved.
968 MetadataList.tryToResolveCycles();
969
970 // Finally, everything is in place, we can replace the placeholders operands
971 // with the final node they refer to.
972 Placeholders.flush(MetadataList);
973}
974
975Error MetadataLoader::MetadataLoaderImpl::parseOneMetadata(
976 SmallVectorImpl<uint64_t> &Record, unsigned Code,
977 PlaceholderQueue &Placeholders, StringRef Blob, unsigned &NextMetadataNo) {
978
979 bool IsDistinct = false;
980 auto getMD = [&](unsigned ID) -> Metadata * {
981 if (ID < MDStringRef.size())
982 return lazyLoadOneMDString(ID);
983 if (!IsDistinct) {
984 if (auto *MD = MetadataList.lookup(ID))
985 return MD;
986 // If lazy-loading is enabled, we try recursively to load the operand
987 // instead of creating a temporary.
988 if (ID < (MDStringRef.size() + GlobalMetadataBitPosIndex.size())) {
989 // Create a temporary for the node that is referencing the operand we
990 // will lazy-load. It is needed before recursing in case there are
991 // uniquing cycles.
992 MetadataList.getMetadataFwdRef(NextMetadataNo);
993 lazyLoadOneMetadata(ID, Placeholders);
994 return MetadataList.lookup(ID);
995 }
996 // Return a temporary.
997 return MetadataList.getMetadataFwdRef(ID);
998 }
999 if (auto *MD = MetadataList.getMetadataIfResolved(ID))
1000 return MD;
1001 return &Placeholders.getPlaceholderOp(ID);
1002 };
1003 auto getMDOrNull = [&](unsigned ID) -> Metadata * {
1004 if (ID)
1005 return getMD(ID - 1);
1006 return nullptr;
1007 };
1008 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
1009 if (ID)
1010 return MetadataList.getMetadataFwdRef(ID - 1);
1011 return nullptr;
1012 };
1013 auto getMDString = [&](unsigned ID) -> MDString * {
1014 // This requires that the ID is not really a forward reference. In
1015 // particular, the MDString must already have been resolved.
1016 auto MDS = getMDOrNull(ID);
1017 return cast_or_null<MDString>(MDS);
1018 };
1019
1020 // Support for old type refs.
1021 auto getDITypeRefOrNull = [&](unsigned ID) {
1022 return MetadataList.upgradeTypeRef(getMDOrNull(ID));
1023 };
1024
1025#define GET_OR_DISTINCT(CLASS, ARGS) \
1026 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1027
1028 switch (Code) {
1029 default: // Default behavior: ignore.
1030 break;
1031 case bitc::METADATA_NAME: {
1032 // Read name of the named metadata.
1033 SmallString<8> Name(Record.begin(), Record.end());
1034 Record.clear();
1035 Code = Stream.ReadCode();
1036
1037 ++NumMDRecordLoaded;
1038 unsigned NextBitCode = Stream.readRecord(Code, Record);
1039 if (NextBitCode != bitc::METADATA_NAMED_NODE)
1040 return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1041
1042 // Read named metadata elements.
1043 unsigned Size = Record.size();
1044 NamedMDNode *NMD = TheModule.getOrInsertNamedMetadata(Name);
1045 for (unsigned i = 0; i != Size; ++i) {
1046 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
1047 if (!MD)
1048 return error("Invalid named metadata: expect fwd ref to MDNode");
1049 NMD->addOperand(MD);
1050 }
1051 break;
1052 }
1053 case bitc::METADATA_OLD_FN_NODE: {
1054 // FIXME: Remove in 4.0.
1055 // This is a LocalAsMetadata record, the only type of function-local
1056 // metadata.
1057 if (Record.size() % 2 == 1)
1058 return error("Invalid record");
1059
1060 // If this isn't a LocalAsMetadata record, we're dropping it. This used
1061 // to be legal, but there's no upgrade path.
1062 auto dropRecord = [&] {
1063 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo);
1064 NextMetadataNo++;
1065 };
1066 if (Record.size() != 2) {
1067 dropRecord();
1068 break;
1069 }
1070
1071 Type *Ty = getTypeByID(Record[0]);
1072 if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1073 dropRecord();
1074 break;
1075 }
1076
1077 MetadataList.assignValue(
1078 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1079 NextMetadataNo);
1080 NextMetadataNo++;
1081 break;
1082 }
1083 case bitc::METADATA_OLD_NODE: {
1084 // FIXME: Remove in 4.0.
1085 if (Record.size() % 2 == 1)
1086 return error("Invalid record");
1087
1088 unsigned Size = Record.size();
1089 SmallVector<Metadata *, 8> Elts;
1090 for (unsigned i = 0; i != Size; i += 2) {
1091 Type *Ty = getTypeByID(Record[i]);
1092 if (!Ty)
1093 return error("Invalid record");
1094 if (Ty->isMetadataTy())
1095 Elts.push_back(getMD(Record[i + 1]));
1096 else if (!Ty->isVoidTy()) {
1097 auto *MD =
1098 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1099 assert(isa<ConstantAsMetadata>(MD) &&((isa<ConstantAsMetadata>(MD) && "Expected non-function-local metadata"
) ? static_cast<void> (0) : __assert_fail ("isa<ConstantAsMetadata>(MD) && \"Expected non-function-local metadata\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 1100, __PRETTY_FUNCTION__))
1100 "Expected non-function-local metadata")((isa<ConstantAsMetadata>(MD) && "Expected non-function-local metadata"
) ? static_cast<void> (0) : __assert_fail ("isa<ConstantAsMetadata>(MD) && \"Expected non-function-local metadata\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 1100, __PRETTY_FUNCTION__))
;
1101 Elts.push_back(MD);
1102 } else
1103 Elts.push_back(nullptr);
1104 }
1105 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo);
1106 NextMetadataNo++;
1107 break;
1108 }
1109 case bitc::METADATA_VALUE: {
1110 if (Record.size() != 2)
1111 return error("Invalid record");
1112
1113 Type *Ty = getTypeByID(Record[0]);
1114 if (Ty->isMetadataTy() || Ty->isVoidTy())
1115 return error("Invalid record");
1116
1117 MetadataList.assignValue(
1118 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1119 NextMetadataNo);
1120 NextMetadataNo++;
1121 break;
1122 }
1123 case bitc::METADATA_DISTINCT_NODE:
1124 IsDistinct = true;
1125 LLVM_FALLTHROUGH[[clang::fallthrough]];
1126 case bitc::METADATA_NODE: {
1127 SmallVector<Metadata *, 8> Elts;
1128 Elts.reserve(Record.size());
1129 for (unsigned ID : Record)
1130 Elts.push_back(getMDOrNull(ID));
1131 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
1132 : MDNode::get(Context, Elts),
1133 NextMetadataNo);
1134 NextMetadataNo++;
1135 break;
1136 }
1137 case bitc::METADATA_LOCATION: {
1138 if (Record.size() != 5 && Record.size() != 6)
1139 return error("Invalid record");
1140
1141 IsDistinct = Record[0];
1142 unsigned Line = Record[1];
1143 unsigned Column = Record[2];
1144 Metadata *Scope = getMD(Record[3]);
1145 Metadata *InlinedAt = getMDOrNull(Record[4]);
1146 bool ImplicitCode = Record.size() == 6 && Record[5];
1147 MetadataList.assignValue(
1148 GET_OR_DISTINCT(DILocation, (Context, Line, Column, Scope, InlinedAt,
1149 ImplicitCode)),
1150 NextMetadataNo);
1151 NextMetadataNo++;
1152 break;
1153 }
1154 case bitc::METADATA_GENERIC_DEBUG: {
1155 if (Record.size() < 4)
1156 return error("Invalid record");
1157
1158 IsDistinct = Record[0];
1159 unsigned Tag = Record[1];
1160 unsigned Version = Record[2];
1161
1162 if (Tag >= 1u << 16 || Version != 0)
1163 return error("Invalid record");
1164
1165 auto *Header = getMDString(Record[3]);
1166 SmallVector<Metadata *, 8> DwarfOps;
1167 for (unsigned I = 4, E = Record.size(); I != E; ++I)
1168 DwarfOps.push_back(getMDOrNull(Record[I]));
1169 MetadataList.assignValue(
1170 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
1171 NextMetadataNo);
1172 NextMetadataNo++;
1173 break;
1174 }
1175 case bitc::METADATA_SUBRANGE: {
1176 Metadata *Val = nullptr;
1177 // Operand 'count' is interpreted as:
1178 // - Signed integer (version 0)
1179 // - Metadata node (version 1)
1180 switch (Record[0] >> 1) {
1181 case 0:
1182 Val = GET_OR_DISTINCT(DISubrange,
1183 (Context, Record[1], unrotateSign(Record.back())));
1184 break;
1185 case 1:
1186 Val = GET_OR_DISTINCT(DISubrange, (Context, getMDOrNull(Record[1]),
1187 unrotateSign(Record.back())));
1188 break;
1189 default:
1190 return error("Invalid record: Unsupported version of DISubrange");
1191 }
1192
1193 MetadataList.assignValue(Val, NextMetadataNo);
1194 IsDistinct = Record[0] & 1;
1195 NextMetadataNo++;
1196 break;
1197 }
1198 case bitc::METADATA_ENUMERATOR: {
1199 if (Record.size() != 3)
1200 return error("Invalid record");
1201
1202 IsDistinct = Record[0] & 1;
1203 bool IsUnsigned = Record[0] & 2;
1204 MetadataList.assignValue(
1205 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
1206 IsUnsigned, getMDString(Record[2]))),
1207 NextMetadataNo);
1208 NextMetadataNo++;
1209 break;
1210 }
1211 case bitc::METADATA_BASIC_TYPE: {
1212 if (Record.size() < 6 || Record.size() > 7)
1213 return error("Invalid record");
1214
1215 IsDistinct = Record[0];
1216 DINode::DIFlags Flags = (Record.size() > 6) ?
1217 static_cast<DINode::DIFlags>(Record[6]) : DINode::FlagZero;
1218
1219 MetadataList.assignValue(
1220 GET_OR_DISTINCT(DIBasicType,
1221 (Context, Record[1], getMDString(Record[2]), Record[3],
1222 Record[4], Record[5], Flags)),
1223 NextMetadataNo);
1224 NextMetadataNo++;
1225 break;
1226 }
1227 case bitc::METADATA_DERIVED_TYPE: {
1228 if (Record.size() < 12 || Record.size() > 13)
1229 return error("Invalid record");
1230
1231 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1232 // that there is no DWARF address space associated with DIDerivedType.
1233 Optional<unsigned> DWARFAddressSpace;
1234 if (Record.size() > 12 && Record[12])
1235 DWARFAddressSpace = Record[12] - 1;
1236
1237 IsDistinct = Record[0];
1238 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
1239 MetadataList.assignValue(
1240 GET_OR_DISTINCT(DIDerivedType,
1241 (Context, Record[1], getMDString(Record[2]),
1242 getMDOrNull(Record[3]), Record[4],
1243 getDITypeRefOrNull(Record[5]),
1244 getDITypeRefOrNull(Record[6]), Record[7], Record[8],
1245 Record[9], DWARFAddressSpace, Flags,
1246 getDITypeRefOrNull(Record[11]))),
1247 NextMetadataNo);
1248 NextMetadataNo++;
1249 break;
1250 }
1251 case bitc::METADATA_COMPOSITE_TYPE: {
1252 if (Record.size() < 16 || Record.size() > 17)
1253 return error("Invalid record");
1254
1255 // If we have a UUID and this is not a forward declaration, lookup the
1256 // mapping.
1257 IsDistinct = Record[0] & 0x1;
1258 bool IsNotUsedInTypeRef = Record[0] >= 2;
1259 unsigned Tag = Record[1];
1260 MDString *Name = getMDString(Record[2]);
1261 Metadata *File = getMDOrNull(Record[3]);
1262 unsigned Line = Record[4];
1263 Metadata *Scope = getDITypeRefOrNull(Record[5]);
1264 Metadata *BaseType = nullptr;
1265 uint64_t SizeInBits = Record[7];
1266 if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max())
1267 return error("Alignment value is too large");
1268 uint32_t AlignInBits = Record[8];
1269 uint64_t OffsetInBits = 0;
1270 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
1271 Metadata *Elements = nullptr;
1272 unsigned RuntimeLang = Record[12];
1273 Metadata *VTableHolder = nullptr;
1274 Metadata *TemplateParams = nullptr;
1275 Metadata *Discriminator = nullptr;
1276 auto *Identifier = getMDString(Record[15]);
1277 // If this module is being parsed so that it can be ThinLTO imported
1278 // into another module, composite types only need to be imported
1279 // as type declarations (unless full type definitions requested).
1280 // Create type declarations up front to save memory. Also, buildODRType
1281 // handles the case where this is type ODRed with a definition needed
1282 // by the importing module, in which case the existing definition is
1283 // used.
1284 if (IsImporting && !ImportFullTypeDefinitions && Identifier &&
1285 (Tag == dwarf::DW_TAG_enumeration_type ||
1286 Tag == dwarf::DW_TAG_class_type ||
1287 Tag == dwarf::DW_TAG_structure_type ||
1288 Tag == dwarf::DW_TAG_union_type)) {
1289 Flags = Flags | DINode::FlagFwdDecl;
1290 } else {
1291 BaseType = getDITypeRefOrNull(Record[6]);
1292 OffsetInBits = Record[9];
1293 Elements = getMDOrNull(Record[11]);
1294 VTableHolder = getDITypeRefOrNull(Record[13]);
1295 TemplateParams = getMDOrNull(Record[14]);
1296 if (Record.size() > 16)
1297 Discriminator = getMDOrNull(Record[16]);
1298 }
1299 DICompositeType *CT = nullptr;
1300 if (Identifier)
1301 CT = DICompositeType::buildODRType(
1302 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
1303 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
1304 VTableHolder, TemplateParams, Discriminator);
1305
1306 // Create a node if we didn't get a lazy ODR type.
1307 if (!CT)
1308 CT = GET_OR_DISTINCT(DICompositeType,
1309 (Context, Tag, Name, File, Line, Scope, BaseType,
1310 SizeInBits, AlignInBits, OffsetInBits, Flags,
1311 Elements, RuntimeLang, VTableHolder, TemplateParams,
1312 Identifier, Discriminator));
1313 if (!IsNotUsedInTypeRef && Identifier)
1314 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
1315
1316 MetadataList.assignValue(CT, NextMetadataNo);
1317 NextMetadataNo++;
1318 break;
1319 }
1320 case bitc::METADATA_SUBROUTINE_TYPE: {
1321 if (Record.size() < 3 || Record.size() > 4)
1322 return error("Invalid record");
1323 bool IsOldTypeRefArray = Record[0] < 2;
1324 unsigned CC = (Record.size() > 3) ? Record[3] : 0;
1325
1326 IsDistinct = Record[0] & 0x1;
1327 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]);
1328 Metadata *Types = getMDOrNull(Record[2]);
1329 if (LLVM_UNLIKELY(IsOldTypeRefArray)__builtin_expect((bool)(IsOldTypeRefArray), false))
1330 Types = MetadataList.upgradeTypeRefArray(Types);
1331
1332 MetadataList.assignValue(
1333 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)),
1334 NextMetadataNo);
1335 NextMetadataNo++;
1336 break;
1337 }
1338
1339 case bitc::METADATA_MODULE: {
1340 if (Record.size() != 6)
1341 return error("Invalid record");
1342
1343 IsDistinct = Record[0];
1344 MetadataList.assignValue(
1345 GET_OR_DISTINCT(DIModule,
1346 (Context, getMDOrNull(Record[1]),
1347 getMDString(Record[2]), getMDString(Record[3]),
1348 getMDString(Record[4]), getMDString(Record[5]))),
1349 NextMetadataNo);
1350 NextMetadataNo++;
1351 break;
1352 }
1353
1354 case bitc::METADATA_FILE: {
1355 if (Record.size() != 3 && Record.size() != 5 && Record.size() != 6)
1356 return error("Invalid record");
1357
1358 IsDistinct = Record[0];
1359 Optional<DIFile::ChecksumInfo<MDString *>> Checksum;
1360 // The BitcodeWriter writes null bytes into Record[3:4] when the Checksum
1361 // is not present. This matches up with the old internal representation,
1362 // and the old encoding for CSK_None in the ChecksumKind. The new
1363 // representation reserves the value 0 in the ChecksumKind to continue to
1364 // encode None in a backwards-compatible way.
1365 if (Record.size() > 4 && Record[3] && Record[4])
1366 Checksum.emplace(static_cast<DIFile::ChecksumKind>(Record[3]),
1367 getMDString(Record[4]));
1368 MetadataList.assignValue(
1369 GET_OR_DISTINCT(
1370 DIFile,
1371 (Context, getMDString(Record[1]), getMDString(Record[2]), Checksum,
1372 Record.size() > 5 ? Optional<MDString *>(getMDString(Record[5]))
1373 : None)),
1374 NextMetadataNo);
1375 NextMetadataNo++;
1376 break;
1377 }
1378 case bitc::METADATA_COMPILE_UNIT: {
1379 if (Record.size() < 14 || Record.size() > 19)
1380 return error("Invalid record");
1381
1382 // Ignore Record[0], which indicates whether this compile unit is
1383 // distinct. It's always distinct.
1384 IsDistinct = true;
1385 auto *CU = DICompileUnit::getDistinct(
1386 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
1387 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
1388 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
1389 getMDOrNull(Record[12]), getMDOrNull(Record[13]),
1390 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
1391 Record.size() <= 14 ? 0 : Record[14],
1392 Record.size() <= 16 ? true : Record[16],
1393 Record.size() <= 17 ? false : Record[17],
1394 Record.size() <= 18 ? 0 : Record[18],
1395 Record.size() <= 19 ? 0 : Record[19]);
1396
1397 MetadataList.assignValue(CU, NextMetadataNo);
1398 NextMetadataNo++;
1399
1400 // Move the Upgrade the list of subprograms.
1401 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
1402 CUSubprograms.push_back({CU, SPs});
1403 break;
1404 }
1405 case bitc::METADATA_SUBPROGRAM: {
1406 if (Record.size() < 18 || Record.size() > 21)
1407 return error("Invalid record");
1408
1409 bool HasSPFlags = Record[0] & 4;
1410 DISubprogram::DISPFlags SPFlags =
1411 HasSPFlags
1412 ? static_cast<DISubprogram::DISPFlags>(Record[9])
1413 : DISubprogram::toSPFlags(
1414 /*IsLocalToUnit=*/Record[7], /*IsDefinition=*/Record[8],
1415 /*IsOptimized=*/Record[14], /*Virtuality=*/Record[11]);
1416
1417 // All definitions should be distinct.
1418 IsDistinct = (Record[0] & 1) || (SPFlags & DISubprogram::SPFlagDefinition);
1419 // Version 1 has a Function as Record[15].
1420 // Version 2 has removed Record[15].
1421 // Version 3 has the Unit as Record[15].
1422 // Version 4 added thisAdjustment.
1423 // Version 5 repacked flags into DISPFlags, changing many element numbers.
1424 bool HasUnit = Record[0] & 2;
1425 if (!HasSPFlags && HasUnit && Record.size() < 19)
1426 return error("Invalid record");
1427 if (HasSPFlags && !HasUnit)
1428 return error("Invalid record");
1429 // Accommodate older formats.
1430 bool HasFn = false;
1431 bool HasThisAdj = true;
1432 bool HasThrownTypes = true;
1433 unsigned OffsetA = 0;
1434 unsigned OffsetB = 0;
1435 if (!HasSPFlags) {
1436 OffsetA = 2;
1437 OffsetB = 2;
1438 if (Record.size() >= 19) {
1439 HasFn = !HasUnit;
1440 OffsetB++;
1441 }
1442 HasThisAdj = Record.size() >= 20;
1443 HasThrownTypes = Record.size() >= 21;
1444 }
1445 Metadata *CUorFn = getMDOrNull(Record[12 + OffsetB]);
1446 DISubprogram *SP = GET_OR_DISTINCT(
1447 DISubprogram,
1448 (Context,
1449 getDITypeRefOrNull(Record[1]), // scope
1450 getMDString(Record[2]), // name
1451 getMDString(Record[3]), // linkageName
1452 getMDOrNull(Record[4]), // file
1453 Record[5], // line
1454 getMDOrNull(Record[6]), // type
1455 Record[7 + OffsetA], // scopeLine
1456 getDITypeRefOrNull(Record[8 + OffsetA]), // containingType
1457 Record[10 + OffsetA], // virtualIndex
1458 HasThisAdj ? Record[16 + OffsetB] : 0, // thisAdjustment
1459 static_cast<DINode::DIFlags>(Record[11 + OffsetA]),// flags
1460 SPFlags, // SPFlags
1461 HasUnit ? CUorFn : nullptr, // unit
1462 getMDOrNull(Record[13 + OffsetB]), // templateParams
1463 getMDOrNull(Record[14 + OffsetB]), // declaration
1464 getMDOrNull(Record[15 + OffsetB]), // retainedNodes
1465 HasThrownTypes ? getMDOrNull(Record[17 + OffsetB])
1466 : nullptr // thrownTypes
1467 ));
1468 MetadataList.assignValue(SP, NextMetadataNo);
1469 NextMetadataNo++;
1470
1471 // Upgrade sp->function mapping to function->sp mapping.
1472 if (HasFn) {
1473 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
1474 if (auto *F = dyn_cast<Function>(CMD->getValue())) {
1475 if (F->isMaterializable())
1476 // Defer until materialized; unmaterialized functions may not have
1477 // metadata.
1478 FunctionsWithSPs[F] = SP;
1479 else if (!F->empty())
1480 F->setSubprogram(SP);
1481 }
1482 }
1483 break;
1484 }
1485 case bitc::METADATA_LEXICAL_BLOCK: {
1486 if (Record.size() != 5)
1487 return error("Invalid record");
1488
1489 IsDistinct = Record[0];
1490 MetadataList.assignValue(
1491 GET_OR_DISTINCT(DILexicalBlock,
1492 (Context, getMDOrNull(Record[1]),
1493 getMDOrNull(Record[2]), Record[3], Record[4])),
1494 NextMetadataNo);
1495 NextMetadataNo++;
1496 break;
1497 }
1498 case bitc::METADATA_LEXICAL_BLOCK_FILE: {
1499 if (Record.size() != 4)
1500 return error("Invalid record");
1501
1502 IsDistinct = Record[0];
1503 MetadataList.assignValue(
1504 GET_OR_DISTINCT(DILexicalBlockFile,
1505 (Context, getMDOrNull(Record[1]),
1506 getMDOrNull(Record[2]), Record[3])),
1507 NextMetadataNo);
1508 NextMetadataNo++;
1509 break;
1510 }
1511 case bitc::METADATA_NAMESPACE: {
1512 // Newer versions of DINamespace dropped file and line.
1513 MDString *Name;
1514 if (Record.size() == 3)
1515 Name = getMDString(Record[2]);
1516 else if (Record.size() == 5)
1517 Name = getMDString(Record[3]);
1518 else
1519 return error("Invalid record");
1520
1521 IsDistinct = Record[0] & 1;
1522 bool ExportSymbols = Record[0] & 2;
1523 MetadataList.assignValue(
1524 GET_OR_DISTINCT(DINamespace,
1525 (Context, getMDOrNull(Record[1]), Name, ExportSymbols)),
1526 NextMetadataNo);
1527 NextMetadataNo++;
1528 break;
1529 }
1530 case bitc::METADATA_MACRO: {
1531 if (Record.size() != 5)
1532 return error("Invalid record");
1533
1534 IsDistinct = Record[0];
1535 MetadataList.assignValue(
1536 GET_OR_DISTINCT(DIMacro,
1537 (Context, Record[1], Record[2], getMDString(Record[3]),
1538 getMDString(Record[4]))),
1539 NextMetadataNo);
1540 NextMetadataNo++;
1541 break;
1542 }
1543 case bitc::METADATA_MACRO_FILE: {
1544 if (Record.size() != 5)
1545 return error("Invalid record");
1546
1547 IsDistinct = Record[0];
1548 MetadataList.assignValue(
1549 GET_OR_DISTINCT(DIMacroFile,
1550 (Context, Record[1], Record[2], getMDOrNull(Record[3]),
1551 getMDOrNull(Record[4]))),
1552 NextMetadataNo);
1553 NextMetadataNo++;
1554 break;
1555 }
1556 case bitc::METADATA_TEMPLATE_TYPE: {
1557 if (Record.size() != 3)
1558 return error("Invalid record");
1559
1560 IsDistinct = Record[0];
1561 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
1562 (Context, getMDString(Record[1]),
1563 getDITypeRefOrNull(Record[2]))),
1564 NextMetadataNo);
1565 NextMetadataNo++;
1566 break;
1567 }
1568 case bitc::METADATA_TEMPLATE_VALUE: {
1569 if (Record.size() != 5)
1570 return error("Invalid record");
1571
1572 IsDistinct = Record[0];
1573 MetadataList.assignValue(
1574 GET_OR_DISTINCT(DITemplateValueParameter,
1575 (Context, Record[1], getMDString(Record[2]),
1576 getDITypeRefOrNull(Record[3]),
1577 getMDOrNull(Record[4]))),
1578 NextMetadataNo);
1579 NextMetadataNo++;
1580 break;
1581 }
1582 case bitc::METADATA_GLOBAL_VAR: {
1583 if (Record.size() < 11 || Record.size() > 13)
1584 return error("Invalid record");
1585
1586 IsDistinct = Record[0] & 1;
1587 unsigned Version = Record[0] >> 1;
1588
1589 if (Version == 2) {
1590 MetadataList.assignValue(
1591 GET_OR_DISTINCT(
1592 DIGlobalVariable,
1593 (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
1594 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
1595 getDITypeRefOrNull(Record[6]), Record[7], Record[8],
1596 getMDOrNull(Record[9]), getMDOrNull(Record[10]), Record[11])),
1597 NextMetadataNo);
1598
1599 NextMetadataNo++;
1600 } else if (Version == 1) {
1601 // No upgrade necessary. A null field will be introduced to indicate
1602 // that no parameter information is available.
1603 MetadataList.assignValue(
1604 GET_OR_DISTINCT(DIGlobalVariable,
1605 (Context, getMDOrNull(Record[1]),
1606 getMDString(Record[2]), getMDString(Record[3]),
1607 getMDOrNull(Record[4]), Record[5],
1608 getDITypeRefOrNull(Record[6]), Record[7], Record[8],
1609 getMDOrNull(Record[10]), nullptr, Record[11])),
1610 NextMetadataNo);
1611
1612 NextMetadataNo++;
1613 } else if (Version == 0) {
1614 // Upgrade old metadata, which stored a global variable reference or a
1615 // ConstantInt here.
1616 NeedUpgradeToDIGlobalVariableExpression = true;
1617 Metadata *Expr = getMDOrNull(Record[9]);
1618 uint32_t AlignInBits = 0;
1619 if (Record.size() > 11) {
1620 if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max())
1621 return error("Alignment value is too large");
1622 AlignInBits = Record[11];
1623 }
1624 GlobalVariable *Attach = nullptr;
1625 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) {
1626 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) {
1627 Attach = GV;
1628 Expr = nullptr;
1629 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) {
1630 Expr = DIExpression::get(Context,
1631 {dwarf::DW_OP_constu, CI->getZExtValue(),
1632 dwarf::DW_OP_stack_value});
1633 } else {
1634 Expr = nullptr;
1635 }
1636 }
1637 DIGlobalVariable *DGV = GET_OR_DISTINCT(
1638 DIGlobalVariable,
1639 (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
1640 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
1641 getDITypeRefOrNull(Record[6]), Record[7], Record[8],
1642 getMDOrNull(Record[10]), nullptr, AlignInBits));
1643
1644 DIGlobalVariableExpression *DGVE = nullptr;
1645 if (Attach || Expr)
1646 DGVE = DIGlobalVariableExpression::getDistinct(
1647 Context, DGV, Expr ? Expr : DIExpression::get(Context, {}));
1648 if (Attach)
1649 Attach->addDebugInfo(DGVE);
1650
1651 auto *MDNode = Expr ? cast<Metadata>(DGVE) : cast<Metadata>(DGV);
1652 MetadataList.assignValue(MDNode, NextMetadataNo);
1653 NextMetadataNo++;
1654 } else
1655 return error("Invalid record");
1656
1657 break;
1658 }
1659 case bitc::METADATA_LOCAL_VAR: {
1660 // 10th field is for the obseleted 'inlinedAt:' field.
1661 if (Record.size() < 8 || Record.size() > 10)
1662 return error("Invalid record");
1663
1664 IsDistinct = Record[0] & 1;
1665 bool HasAlignment = Record[0] & 2;
1666 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
1667 // DW_TAG_arg_variable, if we have alignment flag encoded it means, that
1668 // this is newer version of record which doesn't have artificial tag.
1669 bool HasTag = !HasAlignment && Record.size() > 8;
1670 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]);
1671 uint32_t AlignInBits = 0;
1672 if (HasAlignment) {
1673 if (Record[8 + HasTag] > (uint64_t)std::numeric_limits<uint32_t>::max())
1674 return error("Alignment value is too large");
1675 AlignInBits = Record[8 + HasTag];
1676 }
1677 MetadataList.assignValue(
1678 GET_OR_DISTINCT(DILocalVariable,
1679 (Context, getMDOrNull(Record[1 + HasTag]),
1680 getMDString(Record[2 + HasTag]),
1681 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
1682 getDITypeRefOrNull(Record[5 + HasTag]),
1683 Record[6 + HasTag], Flags, AlignInBits)),
1684 NextMetadataNo);
1685 NextMetadataNo++;
1686 break;
1687 }
1688 case bitc::METADATA_LABEL: {
1689 if (Record.size() != 5)
1690 return error("Invalid record");
1691
1692 IsDistinct = Record[0] & 1;
1693 MetadataList.assignValue(
1694 GET_OR_DISTINCT(DILabel,
1695 (Context, getMDOrNull(Record[1]),
1696 getMDString(Record[2]),
1697 getMDOrNull(Record[3]), Record[4])),
1698 NextMetadataNo);
1699 NextMetadataNo++;
1700 break;
1701 }
1702 case bitc::METADATA_EXPRESSION: {
1703 if (Record.size() < 1)
1704 return error("Invalid record");
1705
1706 IsDistinct = Record[0] & 1;
1707 uint64_t Version = Record[0] >> 1;
1708 auto Elts = MutableArrayRef<uint64_t>(Record).slice(1);
1709
1710 SmallVector<uint64_t, 6> Buffer;
1711 if (Error Err = upgradeDIExpression(Version, Elts, Buffer))
1712 return Err;
1713
1714 MetadataList.assignValue(
1715 GET_OR_DISTINCT(DIExpression, (Context, Elts)), NextMetadataNo);
1716 NextMetadataNo++;
1717 break;
1718 }
1719 case bitc::METADATA_GLOBAL_VAR_EXPR: {
1720 if (Record.size() != 3)
1721 return error("Invalid record");
1722
1723 IsDistinct = Record[0];
1724 Metadata *Expr = getMDOrNull(Record[2]);
1725 if (!Expr)
1726 Expr = DIExpression::get(Context, {});
1727 MetadataList.assignValue(
1728 GET_OR_DISTINCT(DIGlobalVariableExpression,
1729 (Context, getMDOrNull(Record[1]), Expr)),
1730 NextMetadataNo);
1731 NextMetadataNo++;
1732 break;
1733 }
1734 case bitc::METADATA_OBJC_PROPERTY: {
1735 if (Record.size() != 8)
1736 return error("Invalid record");
1737
1738 IsDistinct = Record[0];
1739 MetadataList.assignValue(
1740 GET_OR_DISTINCT(DIObjCProperty,
1741 (Context, getMDString(Record[1]),
1742 getMDOrNull(Record[2]), Record[3],
1743 getMDString(Record[4]), getMDString(Record[5]),
1744 Record[6], getDITypeRefOrNull(Record[7]))),
1745 NextMetadataNo);
1746 NextMetadataNo++;
1747 break;
1748 }
1749 case bitc::METADATA_IMPORTED_ENTITY: {
1750 if (Record.size() != 6 && Record.size() != 7)
1751 return error("Invalid record");
1752
1753 IsDistinct = Record[0];
1754 bool HasFile = (Record.size() == 7);
1755 MetadataList.assignValue(
1756 GET_OR_DISTINCT(DIImportedEntity,
1757 (Context, Record[1], getMDOrNull(Record[2]),
1758 getDITypeRefOrNull(Record[3]),
1759 HasFile ? getMDOrNull(Record[6]) : nullptr,
1760 HasFile ? Record[4] : 0, getMDString(Record[5]))),
1761 NextMetadataNo);
1762 NextMetadataNo++;
1763 break;
1764 }
1765 case bitc::METADATA_STRING_OLD: {
1766 std::string String(Record.begin(), Record.end());
1767
1768 // Test for upgrading !llvm.loop.
1769 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
1770 ++NumMDStringLoaded;
1771 Metadata *MD = MDString::get(Context, String);
1772 MetadataList.assignValue(MD, NextMetadataNo);
1773 NextMetadataNo++;
1774 break;
1775 }
1776 case bitc::METADATA_STRINGS: {
1777 auto CreateNextMDString = [&](StringRef Str) {
1778 ++NumMDStringLoaded;
1779 MetadataList.assignValue(MDString::get(Context, Str), NextMetadataNo);
1780 NextMetadataNo++;
1781 };
1782 if (Error Err = parseMetadataStrings(Record, Blob, CreateNextMDString))
1783 return Err;
1784 break;
1785 }
1786 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
1787 if (Record.size() % 2 == 0)
1788 return error("Invalid record");
1789 unsigned ValueID = Record[0];
1790 if (ValueID >= ValueList.size())
1791 return error("Invalid record");
1792 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
1793 if (Error Err = parseGlobalObjectAttachment(
1794 *GO, ArrayRef<uint64_t>(Record).slice(1)))
1795 return Err;
1796 break;
1797 }
1798 case bitc::METADATA_KIND: {
1799 // Support older bitcode files that had METADATA_KIND records in a
1800 // block with METADATA_BLOCK_ID.
1801 if (Error Err = parseMetadataKindRecord(Record))
1802 return Err;
1803 break;
1804 }
1805 }
1806 return Error::success();
1807#undef GET_OR_DISTINCT
1808}
1809
1810Error MetadataLoader::MetadataLoaderImpl::parseMetadataStrings(
1811 ArrayRef<uint64_t> Record, StringRef Blob,
1812 function_ref<void(StringRef)> CallBack) {
1813 // All the MDStrings in the block are emitted together in a single
1814 // record. The strings are concatenated and stored in a blob along with
1815 // their sizes.
1816 if (Record.size() != 2)
1817 return error("Invalid record: metadata strings layout");
1818
1819 unsigned NumStrings = Record[0];
1820 unsigned StringsOffset = Record[1];
1821 if (!NumStrings)
1822 return error("Invalid record: metadata strings with no strings");
1823 if (StringsOffset > Blob.size())
1824 return error("Invalid record: metadata strings corrupt offset");
1825
1826 StringRef Lengths = Blob.slice(0, StringsOffset);
1827 SimpleBitstreamCursor R(Lengths);
1828
1829 StringRef Strings = Blob.drop_front(StringsOffset);
1830 do {
1831 if (R.AtEndOfStream())
1832 return error("Invalid record: metadata strings bad length");
1833
1834 unsigned Size = R.ReadVBR(6);
1835 if (Strings.size() < Size)
1836 return error("Invalid record: metadata strings truncated chars");
1837
1838 CallBack(Strings.slice(0, Size));
1839 Strings = Strings.drop_front(Size);
1840 } while (--NumStrings);
1841
1842 return Error::success();
1843}
1844
1845Error MetadataLoader::MetadataLoaderImpl::parseGlobalObjectAttachment(
1846 GlobalObject &GO, ArrayRef<uint64_t> Record) {
1847 assert(Record.size() % 2 == 0)((Record.size() % 2 == 0) ? static_cast<void> (0) : __assert_fail
("Record.size() % 2 == 0", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 1847, __PRETTY_FUNCTION__))
;
1848 for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
1849 auto K = MDKindMap.find(Record[I]);
1850 if (K == MDKindMap.end())
1851 return error("Invalid ID");
1852 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
1853 if (!MD)
1854 return error("Invalid metadata attachment: expect fwd ref to MDNode");
1855 GO.addMetadata(K->second, *MD);
1856 }
1857 return Error::success();
1858}
1859
1860/// Parse metadata attachments.
1861Error MetadataLoader::MetadataLoaderImpl::parseMetadataAttachment(
1862 Function &F, const SmallVectorImpl<Instruction *> &InstructionList) {
1863 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2
Assuming the condition is true
3
Taking true branch
1864 return error("Invalid record");
4
Calling 'error'
1865
1866 SmallVector<uint64_t, 64> Record;
1867 PlaceholderQueue Placeholders;
1868
1869 while (true) {
1870 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1871
1872 switch (Entry.Kind) {
1873 case BitstreamEntry::SubBlock: // Handled for us already.
1874 case BitstreamEntry::Error:
1875 return error("Malformed block");
1876 case BitstreamEntry::EndBlock:
1877 resolveForwardRefsAndPlaceholders(Placeholders);
1878 return Error::success();
1879 case BitstreamEntry::Record:
1880 // The interesting case.
1881 break;
1882 }
1883
1884 // Read a metadata attachment record.
1885 Record.clear();
1886 ++NumMDRecordLoaded;
1887 switch (Stream.readRecord(Entry.ID, Record)) {
1888 default: // Default behavior: ignore.
1889 break;
1890 case bitc::METADATA_ATTACHMENT: {
1891 unsigned RecordLength = Record.size();
1892 if (Record.empty())
1893 return error("Invalid record");
1894 if (RecordLength % 2 == 0) {
1895 // A function attachment.
1896 if (Error Err = parseGlobalObjectAttachment(F, Record))
1897 return Err;
1898 continue;
1899 }
1900
1901 // An instruction attachment.
1902 Instruction *Inst = InstructionList[Record[0]];
1903 for (unsigned i = 1; i != RecordLength; i = i + 2) {
1904 unsigned Kind = Record[i];
1905 DenseMap<unsigned, unsigned>::iterator I = MDKindMap.find(Kind);
1906 if (I == MDKindMap.end())
1907 return error("Invalid ID");
1908 if (I->second == LLVMContext::MD_tbaa && StripTBAA)
1909 continue;
1910
1911 auto Idx = Record[i + 1];
1912 if (Idx < (MDStringRef.size() + GlobalMetadataBitPosIndex.size()) &&
1913 !MetadataList.lookup(Idx)) {
1914 // Load the attachment if it is in the lazy-loadable range and hasn't
1915 // been loaded yet.
1916 lazyLoadOneMetadata(Idx, Placeholders);
1917 resolveForwardRefsAndPlaceholders(Placeholders);
1918 }
1919
1920 Metadata *Node = MetadataList.getMetadataFwdRef(Idx);
1921 if (isa<LocalAsMetadata>(Node))
1922 // Drop the attachment. This used to be legal, but there's no
1923 // upgrade path.
1924 break;
1925 MDNode *MD = dyn_cast_or_null<MDNode>(Node);
1926 if (!MD)
1927 return error("Invalid metadata attachment");
1928
1929 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
1930 MD = upgradeInstructionLoopAttachment(*MD);
1931
1932 if (I->second == LLVMContext::MD_tbaa) {
1933 assert(!MD->isTemporary() && "should load MDs before attachments")((!MD->isTemporary() && "should load MDs before attachments"
) ? static_cast<void> (0) : __assert_fail ("!MD->isTemporary() && \"should load MDs before attachments\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Bitcode/Reader/MetadataLoader.cpp"
, 1933, __PRETTY_FUNCTION__))
;
1934 MD = UpgradeTBAANode(*MD);
1935 }
1936 Inst->setMetadata(I->second, MD);
1937 }
1938 break;
1939 }
1940 }
1941 }
1942}
1943
1944/// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1945Error MetadataLoader::MetadataLoaderImpl::parseMetadataKindRecord(
1946 SmallVectorImpl<uint64_t> &Record) {
1947 if (Record.size() < 2)
1948 return error("Invalid record");
1949
1950 unsigned Kind = Record[0];
1951 SmallString<8> Name(Record.begin() + 1, Record.end());
1952
1953 unsigned NewKind = TheModule.getMDKindID(Name.str());
1954 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1955 return error("Conflicting METADATA_KIND records");
1956 return Error::success();
1957}
1958
1959/// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
1960Error MetadataLoader::MetadataLoaderImpl::parseMetadataKinds() {
1961 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
1962 return error("Invalid record");
1963
1964 SmallVector<uint64_t, 64> Record;
1965
1966 // Read all the records.
1967 while (true) {
1968 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1969
1970 switch (Entry.Kind) {
1971 case BitstreamEntry::SubBlock: // Handled for us already.
1972 case BitstreamEntry::Error:
1973 return error("Malformed block");
1974 case BitstreamEntry::EndBlock:
1975 return Error::success();
1976 case BitstreamEntry::Record:
1977 // The interesting case.
1978 break;
1979 }
1980
1981 // Read a record.
1982 Record.clear();
1983 ++NumMDRecordLoaded;
1984 unsigned Code = Stream.readRecord(Entry.ID, Record);
1985 switch (Code) {
1986 default: // Default behavior: ignore.
1987 break;
1988 case bitc::METADATA_KIND: {
1989 if (Error Err = parseMetadataKindRecord(Record))
1990 return Err;
1991 break;
1992 }
1993 }
1994 }
1995}
1996
1997MetadataLoader &MetadataLoader::operator=(MetadataLoader &&RHS) {
1998 Pimpl = std::move(RHS.Pimpl);
1999 return *this;
2000}
2001MetadataLoader::MetadataLoader(MetadataLoader &&RHS)
2002 : Pimpl(std::move(RHS.Pimpl)) {}
2003
2004MetadataLoader::~MetadataLoader() = default;
2005MetadataLoader::MetadataLoader(BitstreamCursor &Stream, Module &TheModule,
2006 BitcodeReaderValueList &ValueList,
2007 bool IsImporting,
2008 std::function<Type *(unsigned)> getTypeByID)
2009 : Pimpl(llvm::make_unique<MetadataLoaderImpl>(
2010 Stream, TheModule, ValueList, std::move(getTypeByID), IsImporting)) {}
2011
2012Error MetadataLoader::parseMetadata(bool ModuleLevel) {
2013 return Pimpl->parseMetadata(ModuleLevel);
2014}
2015
2016bool MetadataLoader::hasFwdRefs() const { return Pimpl->hasFwdRefs(); }
2017
2018/// Return the given metadata, creating a replaceable forward reference if
2019/// necessary.
2020Metadata *MetadataLoader::getMetadataFwdRefOrLoad(unsigned Idx) {
2021 return Pimpl->getMetadataFwdRefOrLoad(Idx);
2022}
2023
2024DISubprogram *MetadataLoader::lookupSubprogramForFunction(Function *F) {
2025 return Pimpl->lookupSubprogramForFunction(F);
2026}
2027
2028Error MetadataLoader::parseMetadataAttachment(
2029 Function &F, const SmallVectorImpl<Instruction *> &InstructionList) {
2030 return Pimpl->parseMetadataAttachment(F, InstructionList);
1
Calling 'MetadataLoaderImpl::parseMetadataAttachment'
2031}
2032
2033Error MetadataLoader::parseMetadataKinds() {
2034 return Pimpl->parseMetadataKinds();
2035}
2036
2037void MetadataLoader::setStripTBAA(bool StripTBAA) {
2038 return Pimpl->setStripTBAA(StripTBAA);
2039}
2040
2041bool MetadataLoader::isStrippingTBAA() { return Pimpl->isStrippingTBAA(); }
2042
2043unsigned MetadataLoader::size() const { return Pimpl->size(); }
2044void MetadataLoader::shrinkTo(unsigned N) { return Pimpl->shrinkTo(N); }
2045
2046void MetadataLoader::upgradeDebugIntrinsics(Function &F) {
2047 return Pimpl->upgradeDebugIntrinsics(F);
2048}

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm-c/Error.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Config/abi-breaking.h"
23#include "llvm/Support/AlignOf.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/ErrorOr.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <cstdlib>
34#include <functional>
35#include <memory>
36#include <new>
37#include <string>
38#include <system_error>
39#include <type_traits>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class ErrorSuccess;
46
47/// Base class for error info classes. Do not extend this directly: Extend
48/// the ErrorInfo template subclass instead.
49class ErrorInfoBase {
50public:
51 virtual ~ErrorInfoBase() = default;
52
53 /// Print an error message to an output stream.
54 virtual void log(raw_ostream &OS) const = 0;
55
56 /// Return the error message as a string.
57 virtual std::string message() const {
58 std::string Msg;
59 raw_string_ostream OS(Msg);
60 log(OS);
61 return OS.str();
62 }
63
64 /// Convert this error to a std::error_code.
65 ///
66 /// This is a temporary crutch to enable interaction with code still
67 /// using std::error_code. It will be removed in the future.
68 virtual std::error_code convertToErrorCode() const = 0;
69
70 // Returns the class ID for this type.
71 static const void *classID() { return &ID; }
72
73 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
74 virtual const void *dynamicClassID() const = 0;
75
76 // Check whether this instance is a subclass of the class identified by
77 // ClassID.
78 virtual bool isA(const void *const ClassID) const {
79 return ClassID == classID();
80 }
81
82 // Check whether this instance is a subclass of ErrorInfoT.
83 template <typename ErrorInfoT> bool isA() const {
84 return isA(ErrorInfoT::classID());
85 }
86
87private:
88 virtual void anchor();
89
90 static char ID;
91};
92
93/// Lightweight error class with error context and mandatory checking.
94///
95/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
96/// are represented by setting the pointer to a ErrorInfoBase subclass
97/// instance containing information describing the failure. Success is
98/// represented by a null pointer value.
99///
100/// Instances of Error also contains a 'Checked' flag, which must be set
101/// before the destructor is called, otherwise the destructor will trigger a
102/// runtime error. This enforces at runtime the requirement that all Error
103/// instances be checked or returned to the caller.
104///
105/// There are two ways to set the checked flag, depending on what state the
106/// Error instance is in. For Error instances indicating success, it
107/// is sufficient to invoke the boolean conversion operator. E.g.:
108///
109/// @code{.cpp}
110/// Error foo(<...>);
111///
112/// if (auto E = foo(<...>))
113/// return E; // <- Return E if it is in the error state.
114/// // We have verified that E was in the success state. It can now be safely
115/// // destroyed.
116/// @endcode
117///
118/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
119/// without testing the return value will raise a runtime error, even if foo
120/// returns success.
121///
122/// For Error instances representing failure, you must use either the
123/// handleErrors or handleAllErrors function with a typed handler. E.g.:
124///
125/// @code{.cpp}
126/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
127/// // Custom error info.
128/// };
129///
130/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
131///
132/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
133/// auto NewE =
134/// handleErrors(E,
135/// [](const MyErrorInfo &M) {
136/// // Deal with the error.
137/// },
138/// [](std::unique_ptr<OtherError> M) -> Error {
139/// if (canHandle(*M)) {
140/// // handle error.
141/// return Error::success();
142/// }
143/// // Couldn't handle this error instance. Pass it up the stack.
144/// return Error(std::move(M));
145/// );
146/// // Note - we must check or return NewE in case any of the handlers
147/// // returned a new error.
148/// @endcode
149///
150/// The handleAllErrors function is identical to handleErrors, except
151/// that it has a void return type, and requires all errors to be handled and
152/// no new errors be returned. It prevents errors (assuming they can all be
153/// handled) from having to be bubbled all the way to the top-level.
154///
155/// *All* Error instances must be checked before destruction, even if
156/// they're moved-assigned or constructed from Success values that have already
157/// been checked. This enforces checking through all levels of the call stack.
158class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
159 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
160 // pointers out of this class to add to the error list.
161 friend class ErrorList;
162 friend class FileError;
163
164 // handleErrors needs to be able to set the Checked flag.
165 template <typename... HandlerTs>
166 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
167
168 // Expected<T> needs to be able to steal the payload when constructed from an
169 // error.
170 template <typename T> friend class Expected;
171
172 // wrap needs to be able to steal the payload.
173 friend LLVMErrorRef wrap(Error);
174
175protected:
176 /// Create a success value. Prefer using 'Error::success()' for readability
177 Error() {
178 setPtr(nullptr);
179 setChecked(false);
180 }
181
182public:
183 /// Create a success value.
184 static ErrorSuccess success();
185
186 // Errors are not copy-constructable.
187 Error(const Error &Other) = delete;
188
189 /// Move-construct an error value. The newly constructed error is considered
190 /// unchecked, even if the source error had been checked. The original error
191 /// becomes a checked Success value, regardless of its original state.
192 Error(Error &&Other) {
193 setChecked(true);
194 *this = std::move(Other);
195 }
196
197 /// Create an error value. Prefer using the 'make_error' function, but
198 /// this constructor can be useful when "re-throwing" errors from handlers.
199 Error(std::unique_ptr<ErrorInfoBase> Payload) {
200 setPtr(Payload.release());
201 setChecked(false);
10
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
202 }
203
204 // Errors are not copy-assignable.
205 Error &operator=(const Error &Other) = delete;
206
207 /// Move-assign an error value. The current error must represent success, you
208 /// you cannot overwrite an unhandled error. The current error is then
209 /// considered unchecked. The source error becomes a checked success value,
210 /// regardless of its original state.
211 Error &operator=(Error &&Other) {
212 // Don't allow overwriting of unchecked values.
213 assertIsChecked();
214 setPtr(Other.getPtr());
215
216 // This Error is unchecked, even if the source error was checked.
217 setChecked(false);
218
219 // Null out Other's payload and set its checked bit.
220 Other.setPtr(nullptr);
221 Other.setChecked(true);
222
223 return *this;
224 }
225
226 /// Destroy a Error. Fails with a call to abort() if the error is
227 /// unchecked.
228 ~Error() {
229 assertIsChecked();
230 delete getPtr();
231 }
232
233 /// Bool conversion. Returns true if this Error is in a failure state,
234 /// and false if it is in an accept state. If the error is in a Success state
235 /// it will be considered checked.
236 explicit operator bool() {
237 setChecked(getPtr() == nullptr);
238 return getPtr() != nullptr;
239 }
240
241 /// Check whether one error is a subclass of another.
242 template <typename ErrT> bool isA() const {
243 return getPtr() && getPtr()->isA(ErrT::classID());
244 }
245
246 /// Returns the dynamic class id of this error, or null if this is a success
247 /// value.
248 const void* dynamicClassID() const {
249 if (!getPtr())
250 return nullptr;
251 return getPtr()->dynamicClassID();
252 }
253
254private:
255#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
256 // assertIsChecked() happens very frequently, but under normal circumstances
257 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
258 // of debug prints can cause the function to be too large for inlining. So
259 // it's important that we define this function out of line so that it can't be
260 // inlined.
261 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
262 void fatalUncheckedError() const;
263#endif
264
265 void assertIsChecked() {
266#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
267 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
268 fatalUncheckedError();
269#endif
270 }
271
272 ErrorInfoBase *getPtr() const {
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298 Payload = reinterpret_cast<ErrorInfoBase*>(
299 (reinterpret_cast<uintptr_t>(Payload) &
300 ~static_cast<uintptr_t>(0x1)) |
301 (V ? 0 : 1));
302 }
303
304 std::unique_ptr<ErrorInfoBase> takePayload() {
305 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
306 setPtr(nullptr);
307 setChecked(true);
308 return Tmp;
309 }
310
311 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
312 if (auto P = E.getPtr())
313 P->log(OS);
314 else
315 OS << "success";
316 return OS;
317 }
318
319 ErrorInfoBase *Payload = nullptr;
320};
321
322/// Subclass of Error for the sole purpose of identifying the success path in
323/// the type system. This allows to catch invalid conversion to Expected<T> at
324/// compile time.
325class ErrorSuccess final : public Error {};
326
327inline ErrorSuccess Error::success() { return ErrorSuccess(); }
328
329/// Make a Error instance representing failure using the given error info
330/// type.
331template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
332 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
6
Calling 'make_unique<llvm::StringError, const llvm::Twine &, std::error_code>'
8
Returned allocated memory
9
Calling constructor for 'Error'
333}
334
335/// Base class for user error types. Users should declare their error types
336/// like:
337///
338/// class MyError : public ErrorInfo<MyError> {
339/// ....
340/// };
341///
342/// This class provides an implementation of the ErrorInfoBase::kind
343/// method, which is used by the Error RTTI system.
344template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
345class ErrorInfo : public ParentErrT {
346public:
347 using ParentErrT::ParentErrT; // inherit constructors
348
349 static const void *classID() { return &ThisErrT::ID; }
350
351 const void *dynamicClassID() const override { return &ThisErrT::ID; }
352
353 bool isA(const void *const ClassID) const override {
354 return ClassID == classID() || ParentErrT::isA(ClassID);
355 }
356};
357
358/// Special ErrorInfo subclass representing a list of ErrorInfos.
359/// Instances of this class are constructed by joinError.
360class ErrorList final : public ErrorInfo<ErrorList> {
361 // handleErrors needs to be able to iterate the payload list of an
362 // ErrorList.
363 template <typename... HandlerTs>
364 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
365
366 // joinErrors is implemented in terms of join.
367 friend Error joinErrors(Error, Error);
368
369public:
370 void log(raw_ostream &OS) const override {
371 OS << "Multiple errors:\n";
372 for (auto &ErrPayload : Payloads) {
373 ErrPayload->log(OS);
374 OS << "\n";
375 }
376 }
377
378 std::error_code convertToErrorCode() const override;
379
380 // Used by ErrorInfo::classID.
381 static char ID;
382
383private:
384 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
385 std::unique_ptr<ErrorInfoBase> Payload2) {
386 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
387 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
;
388 Payloads.push_back(std::move(Payload1));
389 Payloads.push_back(std::move(Payload2));
390 }
391
392 static Error join(Error E1, Error E2) {
393 if (!E1)
394 return E2;
395 if (!E2)
396 return E1;
397 if (E1.isA<ErrorList>()) {
398 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
399 if (E2.isA<ErrorList>()) {
400 auto E2Payload = E2.takePayload();
401 auto &E2List = static_cast<ErrorList &>(*E2Payload);
402 for (auto &Payload : E2List.Payloads)
403 E1List.Payloads.push_back(std::move(Payload));
404 } else
405 E1List.Payloads.push_back(E2.takePayload());
406
407 return E1;
408 }
409 if (E2.isA<ErrorList>()) {
410 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
411 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
412 return E2;
413 }
414 return Error(std::unique_ptr<ErrorList>(
415 new ErrorList(E1.takePayload(), E2.takePayload())));
416 }
417
418 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
419};
420
421/// Concatenate errors. The resulting Error is unchecked, and contains the
422/// ErrorInfo(s), if any, contained in E1, followed by the
423/// ErrorInfo(s), if any, contained in E2.
424inline Error joinErrors(Error E1, Error E2) {
425 return ErrorList::join(std::move(E1), std::move(E2));
426}
427
428/// Tagged union holding either a T or a Error.
429///
430/// This class parallels ErrorOr, but replaces error_code with Error. Since
431/// Error cannot be copied, this class replaces getError() with
432/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
433/// error class type.
434template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
435 template <class T1> friend class ExpectedAsOutParameter;
436 template <class OtherT> friend class Expected;
437
438 static const bool isRef = std::is_reference<T>::value;
439
440 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
441
442 using error_type = std::unique_ptr<ErrorInfoBase>;
443
444public:
445 using storage_type = typename std::conditional<isRef, wrap, T>::type;
446 using value_type = T;
447
448private:
449 using reference = typename std::remove_reference<T>::type &;
450 using const_reference = const typename std::remove_reference<T>::type &;
451 using pointer = typename std::remove_reference<T>::type *;
452 using const_pointer = const typename std::remove_reference<T>::type *;
453
454public:
455 /// Create an Expected<T> error value from the given Error.
456 Expected(Error Err)
457 : HasError(true)
458#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
459 // Expected is unchecked upon construction in Debug builds.
460 , Unchecked(true)
461#endif
462 {
463 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 463, __PRETTY_FUNCTION__))
;
464 new (getErrorStorage()) error_type(Err.takePayload());
465 }
466
467 /// Forbid to convert from Error::success() implicitly, this avoids having
468 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
469 /// but triggers the assertion above.
470 Expected(ErrorSuccess) = delete;
471
472 /// Create an Expected<T> success value from the given OtherT value, which
473 /// must be convertible to T.
474 template <typename OtherT>
475 Expected(OtherT &&Val,
476 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
477 * = nullptr)
478 : HasError(false)
479#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
480 // Expected is unchecked upon construction in Debug builds.
481 , Unchecked(true)
482#endif
483 {
484 new (getStorage()) storage_type(std::forward<OtherT>(Val));
485 }
486
487 /// Move construct an Expected<T> value.
488 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
489
490 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
491 /// must be convertible to T.
492 template <class OtherT>
493 Expected(Expected<OtherT> &&Other,
494 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
495 * = nullptr) {
496 moveConstruct(std::move(Other));
497 }
498
499 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
500 /// isn't convertible to T.
501 template <class OtherT>
502 explicit Expected(
503 Expected<OtherT> &&Other,
504 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
505 nullptr) {
506 moveConstruct(std::move(Other));
507 }
508
509 /// Move-assign from another Expected<T>.
510 Expected &operator=(Expected &&Other) {
511 moveAssign(std::move(Other));
512 return *this;
513 }
514
515 /// Destroy an Expected<T>.
516 ~Expected() {
517 assertIsChecked();
518 if (!HasError)
519 getStorage()->~storage_type();
520 else
521 getErrorStorage()->~error_type();
522 }
523
524 /// Return false if there is an error.
525 explicit operator bool() {
526#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
527 Unchecked = HasError;
528#endif
529 return !HasError;
530 }
531
532 /// Returns a reference to the stored T value.
533 reference get() {
534 assertIsChecked();
535 return *getStorage();
536 }
537
538 /// Returns a const reference to the stored T value.
539 const_reference get() const {
540 assertIsChecked();
541 return const_cast<Expected<T> *>(this)->get();
542 }
543
544 /// Check that this Expected<T> is an error of type ErrT.
545 template <typename ErrT> bool errorIsA() const {
546 return HasError && (*getErrorStorage())->template isA<ErrT>();
547 }
548
549 /// Take ownership of the stored error.
550 /// After calling this the Expected<T> is in an indeterminate state that can
551 /// only be safely destructed. No further calls (beside the destructor) should
552 /// be made on the Expected<T> vaule.
553 Error takeError() {
554#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
555 Unchecked = false;
556#endif
557 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
558 }
559
560 /// Returns a pointer to the stored T value.
561 pointer operator->() {
562 assertIsChecked();
563 return toPointer(getStorage());
564 }
565
566 /// Returns a const pointer to the stored T value.
567 const_pointer operator->() const {
568 assertIsChecked();
569 return toPointer(getStorage());
570 }
571
572 /// Returns a reference to the stored T value.
573 reference operator*() {
574 assertIsChecked();
575 return *getStorage();
576 }
577
578 /// Returns a const reference to the stored T value.
579 const_reference operator*() const {
580 assertIsChecked();
581 return *getStorage();
582 }
583
584private:
585 template <class T1>
586 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
587 return &a == &b;
588 }
589
590 template <class T1, class T2>
591 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
592 return false;
593 }
594
595 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
596 HasError = Other.HasError;
597#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
598 Unchecked = true;
599 Other.Unchecked = false;
600#endif
601
602 if (!HasError)
603 new (getStorage()) storage_type(std::move(*Other.getStorage()));
604 else
605 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
606 }
607
608 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
609 assertIsChecked();
610
611 if (compareThisIfSameType(*this, Other))
612 return;
613
614 this->~Expected();
615 new (this) Expected(std::move(Other));
616 }
617
618 pointer toPointer(pointer Val) { return Val; }
619
620 const_pointer toPointer(const_pointer Val) const { return Val; }
621
622 pointer toPointer(wrap *Val) { return &Val->get(); }
623
624 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
625
626 storage_type *getStorage() {
627 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 627, __PRETTY_FUNCTION__))
;
628 return reinterpret_cast<storage_type *>(TStorage.buffer);
629 }
630
631 const storage_type *getStorage() const {
632 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 632, __PRETTY_FUNCTION__))
;
633 return reinterpret_cast<const storage_type *>(TStorage.buffer);
634 }
635
636 error_type *getErrorStorage() {
637 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 637, __PRETTY_FUNCTION__))
;
638 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
639 }
640
641 const error_type *getErrorStorage() const {
642 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 642, __PRETTY_FUNCTION__))
;
643 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
644 }
645
646 // Used by ExpectedAsOutParameter to reset the checked flag.
647 void setUnchecked() {
648#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
649 Unchecked = true;
650#endif
651 }
652
653#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
654 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
655 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
656 void fatalUncheckedExpected() const {
657 dbgs() << "Expected<T> must be checked before access or destruction.\n";
658 if (HasError) {
659 dbgs() << "Unchecked Expected<T> contained error:\n";
660 (*getErrorStorage())->log(dbgs());
661 } else
662 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
663 "values in success mode must still be checked prior to being "
664 "destroyed).\n";
665 abort();
666 }
667#endif
668
669 void assertIsChecked() {
670#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
671 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
672 fatalUncheckedExpected();
673#endif
674 }
675
676 union {
677 AlignedCharArrayUnion<storage_type> TStorage;
678 AlignedCharArrayUnion<error_type> ErrorStorage;
679 };
680 bool HasError : 1;
681#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
682 bool Unchecked : 1;
683#endif
684};
685
686/// Report a serious error, calling any installed error handler. See
687/// ErrorHandling.h.
688LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
689 bool gen_crash_diag = true);
690
691/// Report a fatal error if Err is a failure value.
692///
693/// This function can be used to wrap calls to fallible functions ONLY when it
694/// is known that the Error will always be a success value. E.g.
695///
696/// @code{.cpp}
697/// // foo only attempts the fallible operation if DoFallibleOperation is
698/// // true. If DoFallibleOperation is false then foo always returns
699/// // Error::success().
700/// Error foo(bool DoFallibleOperation);
701///
702/// cantFail(foo(false));
703/// @endcode
704inline void cantFail(Error Err, const char *Msg = nullptr) {
705 if (Err) {
706 if (!Msg)
707 Msg = "Failure value returned from cantFail wrapped call";
708 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 708)
;
709 }
710}
711
712/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
713/// returns the contained value.
714///
715/// This function can be used to wrap calls to fallible functions ONLY when it
716/// is known that the Error will always be a success value. E.g.
717///
718/// @code{.cpp}
719/// // foo only attempts the fallible operation if DoFallibleOperation is
720/// // true. If DoFallibleOperation is false then foo always returns an int.
721/// Expected<int> foo(bool DoFallibleOperation);
722///
723/// int X = cantFail(foo(false));
724/// @endcode
725template <typename T>
726T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
727 if (ValOrErr)
728 return std::move(*ValOrErr);
729 else {
730 if (!Msg)
731 Msg = "Failure value returned from cantFail wrapped call";
732 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 732)
;
733 }
734}
735
736/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
737/// returns the contained reference.
738///
739/// This function can be used to wrap calls to fallible functions ONLY when it
740/// is known that the Error will always be a success value. E.g.
741///
742/// @code{.cpp}
743/// // foo only attempts the fallible operation if DoFallibleOperation is
744/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
745/// Expected<Bar&> foo(bool DoFallibleOperation);
746///
747/// Bar &X = cantFail(foo(false));
748/// @endcode
749template <typename T>
750T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
751 if (ValOrErr)
752 return *ValOrErr;
753 else {
754 if (!Msg)
755 Msg = "Failure value returned from cantFail wrapped call";
756 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 756)
;
757 }
758}
759
760/// Helper for testing applicability of, and applying, handlers for
761/// ErrorInfo types.
762template <typename HandlerT>
763class ErrorHandlerTraits
764 : public ErrorHandlerTraits<decltype(
765 &std::remove_reference<HandlerT>::type::operator())> {};
766
767// Specialization functions of the form 'Error (const ErrT&)'.
768template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
769public:
770 static bool appliesTo(const ErrorInfoBase &E) {
771 return E.template isA<ErrT>();
772 }
773
774 template <typename HandlerT>
775 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
776 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 776, __PRETTY_FUNCTION__))
;
777 return H(static_cast<ErrT &>(*E));
778 }
779};
780
781// Specialization functions of the form 'void (const ErrT&)'.
782template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 790, __PRETTY_FUNCTION__))
;
791 H(static_cast<ErrT &>(*E));
792 return Error::success();
793 }
794};
795
796/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 806, __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 return H(std::move(SubE));
809 }
810};
811
812/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
813template <typename ErrT>
814class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
815public:
816 static bool appliesTo(const ErrorInfoBase &E) {
817 return E.template isA<ErrT>();
818 }
819
820 template <typename HandlerT>
821 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
822 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 822, __PRETTY_FUNCTION__))
;
823 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
824 H(std::move(SubE));
825 return Error::success();
826 }
827};
828
829// Specialization for member functions of the form 'RetT (const ErrT&)'.
830template <typename C, typename RetT, typename ErrT>
831class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
832 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
833
834// Specialization for member functions of the form 'RetT (const ErrT&) const'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
837 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
838
839// Specialization for member functions of the form 'RetT (const ErrT&)'.
840template <typename C, typename RetT, typename ErrT>
841class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
842 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
843
844// Specialization for member functions of the form 'RetT (const ErrT&) const'.
845template <typename C, typename RetT, typename ErrT>
846class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
847 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
848
849/// Specialization for member functions of the form
850/// 'RetT (std::unique_ptr<ErrT>)'.
851template <typename C, typename RetT, typename ErrT>
852class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
853 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
854
855/// Specialization for member functions of the form
856/// 'RetT (std::unique_ptr<ErrT>) const'.
857template <typename C, typename RetT, typename ErrT>
858class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
859 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
860
861inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
862 return Error(std::move(Payload));
863}
864
865template <typename HandlerT, typename... HandlerTs>
866Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
867 HandlerT &&Handler, HandlerTs &&... Handlers) {
868 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
869 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
870 std::move(Payload));
871 return handleErrorImpl(std::move(Payload),
872 std::forward<HandlerTs>(Handlers)...);
873}
874
875/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
876/// unhandled errors (or Errors returned by handlers) are re-concatenated and
877/// returned.
878/// Because this function returns an error, its result must also be checked
879/// or returned. If you intend to handle all errors use handleAllErrors
880/// (which returns void, and will abort() on unhandled errors) instead.
881template <typename... HandlerTs>
882Error handleErrors(Error E, HandlerTs &&... Hs) {
883 if (!E)
884 return Error::success();
885
886 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
887
888 if (Payload->isA<ErrorList>()) {
889 ErrorList &List = static_cast<ErrorList &>(*Payload);
890 Error R;
891 for (auto &P : List.Payloads)
892 R = ErrorList::join(
893 std::move(R),
894 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
895 return R;
896 }
897
898 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
899}
900
901/// Behaves the same as handleErrors, except that by contract all errors
902/// *must* be handled by the given handlers (i.e. there must be no remaining
903/// errors after running the handlers, or llvm_unreachable is called).
904template <typename... HandlerTs>
905void handleAllErrors(Error E, HandlerTs &&... Handlers) {
906 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
907}
908
909/// Check that E is a non-error, then drop it.
910/// If E is an error, llvm_unreachable will be called.
911inline void handleAllErrors(Error E) {
912 cantFail(std::move(E));
913}
914
915/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
916///
917/// If the incoming value is a success value it is returned unmodified. If it
918/// is a failure value then it the contained error is passed to handleErrors.
919/// If handleErrors is able to handle the error then the RecoveryPath functor
920/// is called to supply the final result. If handleErrors is not able to
921/// handle all errors then the unhandled errors are returned.
922///
923/// This utility enables the follow pattern:
924///
925/// @code{.cpp}
926/// enum FooStrategy { Aggressive, Conservative };
927/// Expected<Foo> foo(FooStrategy S);
928///
929/// auto ResultOrErr =
930/// handleExpected(
931/// foo(Aggressive),
932/// []() { return foo(Conservative); },
933/// [](AggressiveStrategyError&) {
934/// // Implicitly conusme this - we'll recover by using a conservative
935/// // strategy.
936/// });
937///
938/// @endcode
939template <typename T, typename RecoveryFtor, typename... HandlerTs>
940Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
941 HandlerTs &&... Handlers) {
942 if (ValOrErr)
943 return ValOrErr;
944
945 if (auto Err = handleErrors(ValOrErr.takeError(),
946 std::forward<HandlerTs>(Handlers)...))
947 return std::move(Err);
948
949 return RecoveryPath();
950}
951
952/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
953/// will be printed before the first one is logged. A newline will be printed
954/// after each error.
955///
956/// This function is compatible with the helpers from Support/WithColor.h. You
957/// can pass any of them as the OS. Please consider using them instead of
958/// including 'error: ' in the ErrorBanner.
959///
960/// This is useful in the base level of your program to allow clean termination
961/// (allowing clean deallocation of resources, etc.), while reporting error
962/// information to the user.
963void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
964
965/// Write all error messages (if any) in E to a string. The newline character
966/// is used to separate error messages.
967inline std::string toString(Error E) {
968 SmallVector<std::string, 2> Errors;
969 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
970 Errors.push_back(EI.message());
971 });
972 return join(Errors.begin(), Errors.end(), "\n");
973}
974
975/// Consume a Error without doing anything. This method should be used
976/// only where an error can be considered a reasonable and expected return
977/// value.
978///
979/// Uses of this method are potentially indicative of design problems: If it's
980/// legitimate to do nothing while processing an "error", the error-producer
981/// might be more clearly refactored to return an Optional<T>.
982inline void consumeError(Error Err) {
983 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
984}
985
986/// Helper for converting an Error to a bool.
987///
988/// This method returns true if Err is in an error state, or false if it is
989/// in a success state. Puts Err in a checked state in both cases (unlike
990/// Error::operator bool(), which only does this for success states).
991inline bool errorToBool(Error Err) {
992 bool IsError = static_cast<bool>(Err);
993 if (IsError)
994 consumeError(std::move(Err));
995 return IsError;
996}
997
998/// Helper for Errors used as out-parameters.
999///
1000/// This helper is for use with the Error-as-out-parameter idiom, where an error
1001/// is passed to a function or method by reference, rather than being returned.
1002/// In such cases it is helpful to set the checked bit on entry to the function
1003/// so that the error can be written to (unchecked Errors abort on assignment)
1004/// and clear the checked bit on exit so that clients cannot accidentally forget
1005/// to check the result. This helper performs these actions automatically using
1006/// RAII:
1007///
1008/// @code{.cpp}
1009/// Result foo(Error &Err) {
1010/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1011/// // <body of foo>
1012/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1013/// }
1014/// @endcode
1015///
1016/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1017/// used with optional Errors (Error pointers that are allowed to be null). If
1018/// ErrorAsOutParameter took an Error reference, an instance would have to be
1019/// created inside every condition that verified that Error was non-null. By
1020/// taking an Error pointer we can just create one instance at the top of the
1021/// function.
1022class ErrorAsOutParameter {
1023public:
1024 ErrorAsOutParameter(Error *Err) : Err(Err) {
1025 // Raise the checked bit if Err is success.
1026 if (Err)
1027 (void)!!*Err;
1028 }
1029
1030 ~ErrorAsOutParameter() {
1031 // Clear the checked bit.
1032 if (Err && !*Err)
1033 *Err = Error::success();
1034 }
1035
1036private:
1037 Error *Err;
1038};
1039
1040/// Helper for Expected<T>s used as out-parameters.
1041///
1042/// See ErrorAsOutParameter.
1043template <typename T>
1044class ExpectedAsOutParameter {
1045public:
1046 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1047 : ValOrErr(ValOrErr) {
1048 if (ValOrErr)
1049 (void)!!*ValOrErr;
1050 }
1051
1052 ~ExpectedAsOutParameter() {
1053 if (ValOrErr)
1054 ValOrErr->setUnchecked();
1055 }
1056
1057private:
1058 Expected<T> *ValOrErr;
1059};
1060
1061/// This class wraps a std::error_code in a Error.
1062///
1063/// This is useful if you're writing an interface that returns a Error
1064/// (or Expected) and you want to call code that still returns
1065/// std::error_codes.
1066class ECError : public ErrorInfo<ECError> {
1067 friend Error errorCodeToError(std::error_code);
1068
1069public:
1070 void setErrorCode(std::error_code EC) { this->EC = EC; }
1071 std::error_code convertToErrorCode() const override { return EC; }
1072 void log(raw_ostream &OS) const override { OS << EC.message(); }
1073
1074 // Used by ErrorInfo::classID.
1075 static char ID;
1076
1077protected:
1078 ECError() = default;
1079 ECError(std::error_code EC) : EC(EC) {}
1080
1081 std::error_code EC;
1082};
1083
1084/// The value returned by this function can be returned from convertToErrorCode
1085/// for Error values where no sensible translation to std::error_code exists.
1086/// It should only be used in this situation, and should never be used where a
1087/// sensible conversion to std::error_code is available, as attempts to convert
1088/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1089///error to try to convert such a value).
1090std::error_code inconvertibleErrorCode();
1091
1092/// Helper for converting an std::error_code to a Error.
1093Error errorCodeToError(std::error_code EC);
1094
1095/// Helper for converting an ECError to a std::error_code.
1096///
1097/// This method requires that Err be Error() or an ECError, otherwise it
1098/// will trigger a call to abort().
1099std::error_code errorToErrorCode(Error Err);
1100
1101/// Convert an ErrorOr<T> to an Expected<T>.
1102template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1103 if (auto EC = EO.getError())
1104 return errorCodeToError(EC);
1105 return std::move(*EO);
1106}
1107
1108/// Convert an Expected<T> to an ErrorOr<T>.
1109template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1110 if (auto Err = E.takeError())
1111 return errorToErrorCode(std::move(Err));
1112 return std::move(*E);
1113}
1114
1115/// This class wraps a string in an Error.
1116///
1117/// StringError is useful in cases where the client is not expected to be able
1118/// to consume the specific error message programmatically (for example, if the
1119/// error message is to be presented to the user).
1120///
1121/// StringError can also be used when additional information is to be printed
1122/// along with a error_code message. Depending on the constructor called, this
1123/// class can either display:
1124/// 1. the error_code message (ECError behavior)
1125/// 2. a string
1126/// 3. the error_code message and a string
1127///
1128/// These behaviors are useful when subtyping is required; for example, when a
1129/// specific library needs an explicit error type. In the example below,
1130/// PDBError is derived from StringError:
1131///
1132/// @code{.cpp}
1133/// Expected<int> foo() {
1134/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1135/// "Additional information");
1136/// }
1137/// @endcode
1138///
1139class StringError : public ErrorInfo<StringError> {
1140public:
1141 static char ID;
1142
1143 // Prints EC + S and converts to EC
1144 StringError(std::error_code EC, const Twine &S = Twine());
1145
1146 // Prints S and converts to EC
1147 StringError(const Twine &S, std::error_code EC);
1148
1149 void log(raw_ostream &OS) const override;
1150 std::error_code convertToErrorCode() const override;
1151
1152 const std::string &getMessage() const { return Msg; }
1153
1154private:
1155 std::string Msg;
1156 std::error_code EC;
1157 const bool PrintMsgOnly = false;
1158};
1159
1160/// Create formatted StringError object.
1161template <typename... Ts>
1162Error createStringError(std::error_code EC, char const *Fmt,
1163 const Ts &... Vals) {
1164 std::string Buffer;
1165 raw_string_ostream Stream(Buffer);
1166 Stream << format(Fmt, Vals...);
1167 return make_error<StringError>(Stream.str(), EC);
1168}
1169
1170Error createStringError(std::error_code EC, char const *Msg);
1171
1172/// This class wraps a filename and another Error.
1173///
1174/// In some cases, an error needs to live along a 'source' name, in order to
1175/// show more detailed information to the user.
1176class FileError final : public ErrorInfo<FileError> {
1177
1178 friend Error createFileError(std::string, Error);
1179
1180public:
1181 void log(raw_ostream &OS) const override {
1182 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1182, __PRETTY_FUNCTION__))
;
1183 OS << "'" << FileName << "': ";
1184 Err->log(OS);
1185 }
1186
1187 Error takeError() { return Error(std::move(Err)); }
1188
1189 std::error_code convertToErrorCode() const override;
1190
1191 // Used by ErrorInfo::classID.
1192 static char ID;
1193
1194private:
1195 FileError(std::string F, std::unique_ptr<ErrorInfoBase> E) {
1196 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1196, __PRETTY_FUNCTION__))
;
1197 assert(!F.empty() &&((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1198, __PRETTY_FUNCTION__))
1198 "The file name provided to FileError must not be empty.")((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1198, __PRETTY_FUNCTION__))
;
1199 FileName = F;
1200 Err = std::move(E);
1201 }
1202
1203 static Error build(std::string F, Error E) {
1204 return Error(std::unique_ptr<FileError>(new FileError(F, E.takePayload())));
1205 }
1206
1207 std::string FileName;
1208 std::unique_ptr<ErrorInfoBase> Err;
1209};
1210
1211/// Concatenate a source file path and/or name with an Error. The resulting
1212/// Error is unchecked.
1213inline Error createFileError(std::string F, Error E) {
1214 return FileError::build(F, std::move(E));
1215}
1216
1217Error createFileError(std::string F, ErrorSuccess) = delete;
1218
1219/// Helper for check-and-exit error handling.
1220///
1221/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1222///
1223class ExitOnError {
1224public:
1225 /// Create an error on exit helper.
1226 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1227 : Banner(std::move(Banner)),
1228 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1229
1230 /// Set the banner string for any errors caught by operator().
1231 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1232
1233 /// Set the exit-code mapper function.
1234 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1235 this->GetExitCode = std::move(GetExitCode);
1236 }
1237
1238 /// Check Err. If it's in a failure state log the error(s) and exit.
1239 void operator()(Error Err) const { checkError(std::move(Err)); }
1240
1241 /// Check E. If it's in a success state then return the contained value. If
1242 /// it's in a failure state log the error(s) and exit.
1243 template <typename T> T operator()(Expected<T> &&E) const {
1244 checkError(E.takeError());
1245 return std::move(*E);
1246 }
1247
1248 /// Check E. If it's in a success state then return the contained reference. If
1249 /// it's in a failure state log the error(s) and exit.
1250 template <typename T> T& operator()(Expected<T&> &&E) const {
1251 checkError(E.takeError());
1252 return *E;
1253 }
1254
1255private:
1256 void checkError(Error Err) const {
1257 if (Err) {
1258 int ExitCode = GetExitCode(Err);
1259 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1260 exit(ExitCode);
1261 }
1262 }
1263
1264 std::string Banner;
1265 std::function<int(const Error &)> GetExitCode;
1266};
1267
1268/// Conversion from Error to LLVMErrorRef for C error bindings.
1269inline LLVMErrorRef wrap(Error Err) {
1270 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1271}
1272
1273/// Conversion from LLVMErrorRef to Error for C error bindings.
1274inline Error unwrap(LLVMErrorRef ErrRef) {
1275 return Error(std::unique_ptr<ErrorInfoBase>(
1276 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1277}
1278
1279} // end namespace llvm
1280
1281#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Config/abi-breaking.h"
25#include "llvm/Support/ErrorHandling.h"
26#include <algorithm>
27#include <cassert>
28#include <cstddef>
29#include <cstdint>
30#include <cstdlib>
31#include <functional>
32#include <initializer_list>
33#include <iterator>
34#include <limits>
35#include <memory>
36#include <tuple>
37#include <type_traits>
38#include <utility>
39
40#ifdef EXPENSIVE_CHECKS
41#include <random> // for std::mt19937
42#endif
43
44namespace llvm {
45
46// Only used by compiler if both template types are the same. Useful when
47// using SFINAE to test for the existence of member functions.
48template <typename T, T> struct SameType;
49
50namespace detail {
51
52template <typename RangeT>
53using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
54
55template <typename RangeT>
56using ValueOfRange = typename std::remove_reference<decltype(
57 *std::begin(std::declval<RangeT &>()))>::type;
58
59} // end namespace detail
60
61//===----------------------------------------------------------------------===//
62// Extra additions to <type_traits>
63//===----------------------------------------------------------------------===//
64
65template <typename T>
66struct negation : std::integral_constant<bool, !bool(T::value)> {};
67
68template <typename...> struct conjunction : std::true_type {};
69template <typename B1> struct conjunction<B1> : B1 {};
70template <typename B1, typename... Bn>
71struct conjunction<B1, Bn...>
72 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
73
74template <typename T> struct make_const_ptr {
75 using type =
76 typename std::add_pointer<typename std::add_const<T>::type>::type;
77};
78//===----------------------------------------------------------------------===//
79// Extra additions to <functional>
80//===----------------------------------------------------------------------===//
81
82template <class Ty> struct identity {
83 using argument_type = Ty;
84
85 Ty &operator()(Ty &self) const {
86 return self;
87 }
88 const Ty &operator()(const Ty &self) const {
89 return self;
90 }
91};
92
93template <class Ty> struct less_ptr {
94 bool operator()(const Ty* left, const Ty* right) const {
95 return *left < *right;
96 }
97};
98
99template <class Ty> struct greater_ptr {
100 bool operator()(const Ty* left, const Ty* right) const {
101 return *right < *left;
102 }
103};
104
105/// An efficient, type-erasing, non-owning reference to a callable. This is
106/// intended for use as the type of a function parameter that is not used
107/// after the function in question returns.
108///
109/// This class does not own the callable, so it is not in general safe to store
110/// a function_ref.
111template<typename Fn> class function_ref;
112
113template<typename Ret, typename ...Params>
114class function_ref<Ret(Params...)> {
115 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
116 intptr_t callable;
117
118 template<typename Callable>
119 static Ret callback_fn(intptr_t callable, Params ...params) {
120 return (*reinterpret_cast<Callable*>(callable))(
121 std::forward<Params>(params)...);
122 }
123
124public:
125 function_ref() = default;
126 function_ref(std::nullptr_t) {}
127
128 template <typename Callable>
129 function_ref(Callable &&callable,
130 typename std::enable_if<
131 !std::is_same<typename std::remove_reference<Callable>::type,
132 function_ref>::value>::type * = nullptr)
133 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
134 callable(reinterpret_cast<intptr_t>(&callable)) {}
135
136 Ret operator()(Params ...params) const {
137 return callback(callable, std::forward<Params>(params)...);
138 }
139
140 operator bool() const { return callback; }
141};
142
143// deleter - Very very very simple method that is used to invoke operator
144// delete on something. It is used like this:
145//
146// for_each(V.begin(), B.end(), deleter<Interval>);
147template <class T>
148inline void deleter(T *Ptr) {
149 delete Ptr;
150}
151
152//===----------------------------------------------------------------------===//
153// Extra additions to <iterator>
154//===----------------------------------------------------------------------===//
155
156namespace adl_detail {
157
158using std::begin;
159
160template <typename ContainerTy>
161auto adl_begin(ContainerTy &&container)
162 -> decltype(begin(std::forward<ContainerTy>(container))) {
163 return begin(std::forward<ContainerTy>(container));
164}
165
166using std::end;
167
168template <typename ContainerTy>
169auto adl_end(ContainerTy &&container)
170 -> decltype(end(std::forward<ContainerTy>(container))) {
171 return end(std::forward<ContainerTy>(container));
172}
173
174using std::swap;
175
176template <typename T>
177void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
178 std::declval<T>()))) {
179 swap(std::forward<T>(lhs), std::forward<T>(rhs));
180}
181
182} // end namespace adl_detail
183
184template <typename ContainerTy>
185auto adl_begin(ContainerTy &&container)
186 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
187 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
188}
189
190template <typename ContainerTy>
191auto adl_end(ContainerTy &&container)
192 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
193 return adl_detail::adl_end(std::forward<ContainerTy>(container));
194}
195
196template <typename T>
197void adl_swap(T &&lhs, T &&rhs) noexcept(
198 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
199 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
200}
201
202/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
203template <typename T>
204constexpr bool empty(const T &RangeOrContainer) {
205 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
206}
207
208// mapped_iterator - This is a simple iterator adapter that causes a function to
209// be applied whenever operator* is invoked on the iterator.
210
211template <typename ItTy, typename FuncTy,
212 typename FuncReturnTy =
213 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
214class mapped_iterator
215 : public iterator_adaptor_base<
216 mapped_iterator<ItTy, FuncTy>, ItTy,
217 typename std::iterator_traits<ItTy>::iterator_category,
218 typename std::remove_reference<FuncReturnTy>::type> {
219public:
220 mapped_iterator(ItTy U, FuncTy F)
221 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
222
223 ItTy getCurrent() { return this->I; }
224
225 FuncReturnTy operator*() { return F(*this->I); }
226
227private:
228 FuncTy F;
229};
230
231// map_iterator - Provide a convenient way to create mapped_iterators, just like
232// make_pair is useful for creating pairs...
233template <class ItTy, class FuncTy>
234inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
235 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
236}
237
238/// Helper to determine if type T has a member called rbegin().
239template <typename Ty> class has_rbegin_impl {
240 using yes = char[1];
241 using no = char[2];
242
243 template <typename Inner>
244 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
245
246 template <typename>
247 static no& test(...);
248
249public:
250 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
251};
252
253/// Metafunction to determine if T& or T has a member called rbegin().
254template <typename Ty>
255struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
256};
257
258// Returns an iterator_range over the given container which iterates in reverse.
259// Note that the container must have rbegin()/rend() methods for this to work.
260template <typename ContainerTy>
261auto reverse(ContainerTy &&C,
262 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
263 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
264 return make_range(C.rbegin(), C.rend());
265}
266
267// Returns a std::reverse_iterator wrapped around the given iterator.
268template <typename IteratorTy>
269std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
270 return std::reverse_iterator<IteratorTy>(It);
271}
272
273// Returns an iterator_range over the given container which iterates in reverse.
274// Note that the container must have begin()/end() methods which return
275// bidirectional iterators for this to work.
276template <typename ContainerTy>
277auto reverse(
278 ContainerTy &&C,
279 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
280 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
281 llvm::make_reverse_iterator(std::begin(C)))) {
282 return make_range(llvm::make_reverse_iterator(std::end(C)),
283 llvm::make_reverse_iterator(std::begin(C)));
284}
285
286/// An iterator adaptor that filters the elements of given inner iterators.
287///
288/// The predicate parameter should be a callable object that accepts the wrapped
289/// iterator's reference type and returns a bool. When incrementing or
290/// decrementing the iterator, it will call the predicate on each element and
291/// skip any where it returns false.
292///
293/// \code
294/// int A[] = { 1, 2, 3, 4 };
295/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
296/// // R contains { 1, 3 }.
297/// \endcode
298///
299/// Note: filter_iterator_base implements support for forward iteration.
300/// filter_iterator_impl exists to provide support for bidirectional iteration,
301/// conditional on whether the wrapped iterator supports it.
302template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
303class filter_iterator_base
304 : public iterator_adaptor_base<
305 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
306 WrappedIteratorT,
307 typename std::common_type<
308 IterTag, typename std::iterator_traits<
309 WrappedIteratorT>::iterator_category>::type> {
310 using BaseT = iterator_adaptor_base<
311 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
312 WrappedIteratorT,
313 typename std::common_type<
314 IterTag, typename std::iterator_traits<
315 WrappedIteratorT>::iterator_category>::type>;
316
317protected:
318 WrappedIteratorT End;
319 PredicateT Pred;
320
321 void findNextValid() {
322 while (this->I != End && !Pred(*this->I))
323 BaseT::operator++();
324 }
325
326 // Construct the iterator. The begin iterator needs to know where the end
327 // is, so that it can properly stop when it gets there. The end iterator only
328 // needs the predicate to support bidirectional iteration.
329 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
330 PredicateT Pred)
331 : BaseT(Begin), End(End), Pred(Pred) {
332 findNextValid();
333 }
334
335public:
336 using BaseT::operator++;
337
338 filter_iterator_base &operator++() {
339 BaseT::operator++();
340 findNextValid();
341 return *this;
342 }
343};
344
345/// Specialization of filter_iterator_base for forward iteration only.
346template <typename WrappedIteratorT, typename PredicateT,
347 typename IterTag = std::forward_iterator_tag>
348class filter_iterator_impl
349 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
350 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
351
352public:
353 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
354 PredicateT Pred)
355 : BaseT(Begin, End, Pred) {}
356};
357
358/// Specialization of filter_iterator_base for bidirectional iteration.
359template <typename WrappedIteratorT, typename PredicateT>
360class filter_iterator_impl<WrappedIteratorT, PredicateT,
361 std::bidirectional_iterator_tag>
362 : public filter_iterator_base<WrappedIteratorT, PredicateT,
363 std::bidirectional_iterator_tag> {
364 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
365 std::bidirectional_iterator_tag>;
366 void findPrevValid() {
367 while (!this->Pred(*this->I))
368 BaseT::operator--();
369 }
370
371public:
372 using BaseT::operator--;
373
374 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
375 PredicateT Pred)
376 : BaseT(Begin, End, Pred) {}
377
378 filter_iterator_impl &operator--() {
379 BaseT::operator--();
380 findPrevValid();
381 return *this;
382 }
383};
384
385namespace detail {
386
387template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
388 using type = std::forward_iterator_tag;
389};
390
391template <> struct fwd_or_bidi_tag_impl<true> {
392 using type = std::bidirectional_iterator_tag;
393};
394
395/// Helper which sets its type member to forward_iterator_tag if the category
396/// of \p IterT does not derive from bidirectional_iterator_tag, and to
397/// bidirectional_iterator_tag otherwise.
398template <typename IterT> struct fwd_or_bidi_tag {
399 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
400 std::bidirectional_iterator_tag,
401 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
402};
403
404} // namespace detail
405
406/// Defines filter_iterator to a suitable specialization of
407/// filter_iterator_impl, based on the underlying iterator's category.
408template <typename WrappedIteratorT, typename PredicateT>
409using filter_iterator = filter_iterator_impl<
410 WrappedIteratorT, PredicateT,
411 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
412
413/// Convenience function that takes a range of elements and a predicate,
414/// and return a new filter_iterator range.
415///
416/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
417/// lifetime of that temporary is not kept by the returned range object, and the
418/// temporary is going to be dropped on the floor after the make_iterator_range
419/// full expression that contains this function call.
420template <typename RangeT, typename PredicateT>
421iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
422make_filter_range(RangeT &&Range, PredicateT Pred) {
423 using FilterIteratorT =
424 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
425 return make_range(
426 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
427 std::end(std::forward<RangeT>(Range)), Pred),
428 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
429 std::end(std::forward<RangeT>(Range)), Pred));
430}
431
432/// A pseudo-iterator adaptor that is designed to implement "early increment"
433/// style loops.
434///
435/// This is *not a normal iterator* and should almost never be used directly. It
436/// is intended primarily to be used with range based for loops and some range
437/// algorithms.
438///
439/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
440/// somewhere between them. The constraints of these iterators are:
441///
442/// - On construction or after being incremented, it is comparable and
443/// dereferencable. It is *not* incrementable.
444/// - After being dereferenced, it is neither comparable nor dereferencable, it
445/// is only incrementable.
446///
447/// This means you can only dereference the iterator once, and you can only
448/// increment it once between dereferences.
449template <typename WrappedIteratorT>
450class early_inc_iterator_impl
451 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
452 WrappedIteratorT, std::input_iterator_tag> {
453 using BaseT =
454 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
455 WrappedIteratorT, std::input_iterator_tag>;
456
457 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
458
459protected:
460#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
461 bool IsEarlyIncremented = false;
462#endif
463
464public:
465 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
466
467 using BaseT::operator*;
468 typename BaseT::reference operator*() {
469#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
470 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 470, __PRETTY_FUNCTION__))
;
471 IsEarlyIncremented = true;
472#endif
473 return *(this->I)++;
474 }
475
476 using BaseT::operator++;
477 early_inc_iterator_impl &operator++() {
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 479, __PRETTY_FUNCTION__))
;
480 IsEarlyIncremented = false;
481#endif
482 return *this;
483 }
484
485 using BaseT::operator==;
486 bool operator==(const early_inc_iterator_impl &RHS) const {
487#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
488 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 488, __PRETTY_FUNCTION__))
;
489#endif
490 return BaseT::operator==(RHS);
491 }
492};
493
494/// Make a range that does early increment to allow mutation of the underlying
495/// range without disrupting iteration.
496///
497/// The underlying iterator will be incremented immediately after it is
498/// dereferenced, allowing deletion of the current node or insertion of nodes to
499/// not disrupt iteration provided they do not invalidate the *next* iterator --
500/// the current iterator can be invalidated.
501///
502/// This requires a very exact pattern of use that is only really suitable to
503/// range based for loops and other range algorithms that explicitly guarantee
504/// to dereference exactly once each element, and to increment exactly once each
505/// element.
506template <typename RangeT>
507iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
508make_early_inc_range(RangeT &&Range) {
509 using EarlyIncIteratorT =
510 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
511 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
512 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
513}
514
515// forward declarations required by zip_shortest/zip_first/zip_longest
516template <typename R, typename UnaryPredicate>
517bool all_of(R &&range, UnaryPredicate P);
518template <typename R, typename UnaryPredicate>
519bool any_of(R &&range, UnaryPredicate P);
520
521template <size_t... I> struct index_sequence;
522
523template <class... Ts> struct index_sequence_for;
524
525namespace detail {
526
527using std::declval;
528
529// We have to alias this since inlining the actual type at the usage site
530// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
531template<typename... Iters> struct ZipTupleType {
532 using type = std::tuple<decltype(*declval<Iters>())...>;
533};
534
535template <typename ZipType, typename... Iters>
536using zip_traits = iterator_facade_base<
537 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
538 typename std::iterator_traits<
539 Iters>::iterator_category...>::type,
540 // ^ TODO: Implement random access methods.
541 typename ZipTupleType<Iters...>::type,
542 typename std::iterator_traits<typename std::tuple_element<
543 0, std::tuple<Iters...>>::type>::difference_type,
544 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
545 // inner iterators have the same difference_type. It would fail if, for
546 // instance, the second field's difference_type were non-numeric while the
547 // first is.
548 typename ZipTupleType<Iters...>::type *,
549 typename ZipTupleType<Iters...>::type>;
550
551template <typename ZipType, typename... Iters>
552struct zip_common : public zip_traits<ZipType, Iters...> {
553 using Base = zip_traits<ZipType, Iters...>;
554 using value_type = typename Base::value_type;
555
556 std::tuple<Iters...> iterators;
557
558protected:
559 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
560 return value_type(*std::get<Ns>(iterators)...);
561 }
562
563 template <size_t... Ns>
564 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
565 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
571 }
572
573public:
574 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
575
576 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
577
578 const value_type operator*() const {
579 return deref(index_sequence_for<Iters...>{});
580 }
581
582 ZipType &operator++() {
583 iterators = tup_inc(index_sequence_for<Iters...>{});
584 return *reinterpret_cast<ZipType *>(this);
585 }
586
587 ZipType &operator--() {
588 static_assert(Base::IsBidirectional,
589 "All inner iterators must be at least bidirectional.");
590 iterators = tup_dec(index_sequence_for<Iters...>{});
591 return *reinterpret_cast<ZipType *>(this);
592 }
593};
594
595template <typename... Iters>
596struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
597 using Base = zip_common<zip_first<Iters...>, Iters...>;
598
599 bool operator==(const zip_first<Iters...> &other) const {
600 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
601 }
602
603 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
604};
605
606template <typename... Iters>
607class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
608 template <size_t... Ns>
609 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
610 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
611 std::get<Ns>(other.iterators)...},
612 identity<bool>{});
613 }
614
615public:
616 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
617
618 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
619
620 bool operator==(const zip_shortest<Iters...> &other) const {
621 return !test(other, index_sequence_for<Iters...>{});
622 }
623};
624
625template <template <typename...> class ItType, typename... Args> class zippy {
626public:
627 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
628 using iterator_category = typename iterator::iterator_category;
629 using value_type = typename iterator::value_type;
630 using difference_type = typename iterator::difference_type;
631 using pointer = typename iterator::pointer;
632 using reference = typename iterator::reference;
633
634private:
635 std::tuple<Args...> ts;
636
637 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
638 return iterator(std::begin(std::get<Ns>(ts))...);
639 }
640 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
641 return iterator(std::end(std::get<Ns>(ts))...);
642 }
643
644public:
645 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
646
647 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
648 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
649};
650
651} // end namespace detail
652
653/// zip iterator for two or more iteratable types.
654template <typename T, typename U, typename... Args>
655detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
656 Args &&... args) {
657 return detail::zippy<detail::zip_shortest, T, U, Args...>(
658 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
659}
660
661/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
662/// be the shortest.
663template <typename T, typename U, typename... Args>
664detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
665 Args &&... args) {
666 return detail::zippy<detail::zip_first, T, U, Args...>(
667 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
668}
669
670namespace detail {
671template <typename Iter>
672static Iter next_or_end(const Iter &I, const Iter &End) {
673 if (I == End)
674 return End;
675 return std::next(I);
676}
677
678template <typename Iter>
679static auto deref_or_none(const Iter &I, const Iter &End)
680 -> llvm::Optional<typename std::remove_const<
681 typename std::remove_reference<decltype(*I)>::type>::type> {
682 if (I == End)
683 return None;
684 return *I;
685}
686
687template <typename Iter> struct ZipLongestItemType {
688 using type =
689 llvm::Optional<typename std::remove_const<typename std::remove_reference<
690 decltype(*std::declval<Iter>())>::type>::type>;
691};
692
693template <typename... Iters> struct ZipLongestTupleType {
694 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
695};
696
697template <typename... Iters>
698class zip_longest_iterator
699 : public iterator_facade_base<
700 zip_longest_iterator<Iters...>,
701 typename std::common_type<
702 std::forward_iterator_tag,
703 typename std::iterator_traits<Iters>::iterator_category...>::type,
704 typename ZipLongestTupleType<Iters...>::type,
705 typename std::iterator_traits<typename std::tuple_element<
706 0, std::tuple<Iters...>>::type>::difference_type,
707 typename ZipLongestTupleType<Iters...>::type *,
708 typename ZipLongestTupleType<Iters...>::type> {
709public:
710 using value_type = typename ZipLongestTupleType<Iters...>::type;
711
712private:
713 std::tuple<Iters...> iterators;
714 std::tuple<Iters...> end_iterators;
715
716 template <size_t... Ns>
717 bool test(const zip_longest_iterator<Iters...> &other,
718 index_sequence<Ns...>) const {
719 return llvm::any_of(
720 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
721 std::get<Ns>(other.iterators)...},
722 identity<bool>{});
723 }
724
725 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
726 return value_type(
727 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
728 }
729
730 template <size_t... Ns>
731 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
732 return std::tuple<Iters...>(
733 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
734 }
735
736public:
737 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
738 : iterators(std::forward<Iters>(ts.first)...),
739 end_iterators(std::forward<Iters>(ts.second)...) {}
740
741 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
742
743 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
744
745 zip_longest_iterator<Iters...> &operator++() {
746 iterators = tup_inc(index_sequence_for<Iters...>{});
747 return *this;
748 }
749
750 bool operator==(const zip_longest_iterator<Iters...> &other) const {
751 return !test(other, index_sequence_for<Iters...>{});
752 }
753};
754
755template <typename... Args> class zip_longest_range {
756public:
757 using iterator =
758 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
759 using iterator_category = typename iterator::iterator_category;
760 using value_type = typename iterator::value_type;
761 using difference_type = typename iterator::difference_type;
762 using pointer = typename iterator::pointer;
763 using reference = typename iterator::reference;
764
765private:
766 std::tuple<Args...> ts;
767
768 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
769 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
770 adl_end(std::get<Ns>(ts)))...);
771 }
772
773 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778public:
779 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
780
781 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
782 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
783};
784} // namespace detail
785
786/// Iterate over two or more iterators at the same time. Iteration continues
787/// until all iterators reach the end. The llvm::Optional only contains a value
788/// if the iterator has not reached the end.
789template <typename T, typename U, typename... Args>
790detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
791 Args &&... args) {
792 return detail::zip_longest_range<T, U, Args...>(
793 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
794}
795
796/// Iterator wrapper that concatenates sequences together.
797///
798/// This can concatenate different iterators, even with different types, into
799/// a single iterator provided the value types of all the concatenated
800/// iterators expose `reference` and `pointer` types that can be converted to
801/// `ValueT &` and `ValueT *` respectively. It doesn't support more
802/// interesting/customized pointer or reference types.
803///
804/// Currently this only supports forward or higher iterator categories as
805/// inputs and always exposes a forward iterator interface.
806template <typename ValueT, typename... IterTs>
807class concat_iterator
808 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
809 std::forward_iterator_tag, ValueT> {
810 using BaseT = typename concat_iterator::iterator_facade_base;
811
812 /// We store both the current and end iterators for each concatenated
813 /// sequence in a tuple of pairs.
814 ///
815 /// Note that something like iterator_range seems nice at first here, but the
816 /// range properties are of little benefit and end up getting in the way
817 /// because we need to do mutation on the current iterators.
818 std::tuple<IterTs...> Begins;
819 std::tuple<IterTs...> Ends;
820
821 /// Attempts to increment a specific iterator.
822 ///
823 /// Returns true if it was able to increment the iterator. Returns false if
824 /// the iterator is already at the end iterator.
825 template <size_t Index> bool incrementHelper() {
826 auto &Begin = std::get<Index>(Begins);
827 auto &End = std::get<Index>(Ends);
828 if (Begin == End)
829 return false;
830
831 ++Begin;
832 return true;
833 }
834
835 /// Increments the first non-end iterator.
836 ///
837 /// It is an error to call this with all iterators at the end.
838 template <size_t... Ns> void increment(index_sequence<Ns...>) {
839 // Build a sequence of functions to increment each iterator if possible.
840 bool (concat_iterator::*IncrementHelperFns[])() = {
841 &concat_iterator::incrementHelper<Ns>...};
842
843 // Loop over them, and stop as soon as we succeed at incrementing one.
844 for (auto &IncrementHelperFn : IncrementHelperFns)
845 if ((this->*IncrementHelperFn)())
846 return;
847
848 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 848)
;
849 }
850
851 /// Returns null if the specified iterator is at the end. Otherwise,
852 /// dereferences the iterator and returns the address of the resulting
853 /// reference.
854 template <size_t Index> ValueT *getHelper() const {
855 auto &Begin = std::get<Index>(Begins);
856 auto &End = std::get<Index>(Ends);
857 if (Begin == End)
858 return nullptr;
859
860 return &*Begin;
861 }
862
863 /// Finds the first non-end iterator, dereferences, and returns the resulting
864 /// reference.
865 ///
866 /// It is an error to call this with all iterators at the end.
867 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
868 // Build a sequence of functions to get from iterator if possible.
869 ValueT *(concat_iterator::*GetHelperFns[])() const = {
870 &concat_iterator::getHelper<Ns>...};
871
872 // Loop over them, and return the first result we find.
873 for (auto &GetHelperFn : GetHelperFns)
874 if (ValueT *P = (this->*GetHelperFn)())
875 return *P;
876
877 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 877)
;
878 }
879
880public:
881 /// Constructs an iterator from a squence of ranges.
882 ///
883 /// We need the full range to know how to switch between each of the
884 /// iterators.
885 template <typename... RangeTs>
886 explicit concat_iterator(RangeTs &&... Ranges)
887 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
888
889 using BaseT::operator++;
890
891 concat_iterator &operator++() {
892 increment(index_sequence_for<IterTs...>());
893 return *this;
894 }
895
896 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
897
898 bool operator==(const concat_iterator &RHS) const {
899 return Begins == RHS.Begins && Ends == RHS.Ends;
900 }
901};
902
903namespace detail {
904
905/// Helper to store a sequence of ranges being concatenated and access them.
906///
907/// This is designed to facilitate providing actual storage when temporaries
908/// are passed into the constructor such that we can use it as part of range
909/// based for loops.
910template <typename ValueT, typename... RangeTs> class concat_range {
911public:
912 using iterator =
913 concat_iterator<ValueT,
914 decltype(std::begin(std::declval<RangeTs &>()))...>;
915
916private:
917 std::tuple<RangeTs...> Ranges;
918
919 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
920 return iterator(std::get<Ns>(Ranges)...);
921 }
922 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
923 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
924 std::end(std::get<Ns>(Ranges)))...);
925 }
926
927public:
928 concat_range(RangeTs &&... Ranges)
929 : Ranges(std::forward<RangeTs>(Ranges)...) {}
930
931 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
932 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
933};
934
935} // end namespace detail
936
937/// Concatenated range across two or more ranges.
938///
939/// The desired value type must be explicitly specified.
940template <typename ValueT, typename... RangeTs>
941detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
942 static_assert(sizeof...(RangeTs) > 1,
943 "Need more than one range to concatenate!");
944 return detail::concat_range<ValueT, RangeTs...>(
945 std::forward<RangeTs>(Ranges)...);
946}
947
948//===----------------------------------------------------------------------===//
949// Extra additions to <utility>
950//===----------------------------------------------------------------------===//
951
952/// Function object to check whether the first component of a std::pair
953/// compares less than the first component of another std::pair.
954struct less_first {
955 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
956 return lhs.first < rhs.first;
957 }
958};
959
960/// Function object to check whether the second component of a std::pair
961/// compares less than the second component of another std::pair.
962struct less_second {
963 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
964 return lhs.second < rhs.second;
965 }
966};
967
968/// \brief Function object to apply a binary function to the first component of
969/// a std::pair.
970template<typename FuncTy>
971struct on_first {
972 FuncTy func;
973
974 template <typename T>
975 auto operator()(const T &lhs, const T &rhs) const
976 -> decltype(func(lhs.first, rhs.first)) {
977 return func(lhs.first, rhs.first);
978 }
979};
980
981// A subset of N3658. More stuff can be added as-needed.
982
983/// Represents a compile-time sequence of integers.
984template <class T, T... I> struct integer_sequence {
985 using value_type = T;
986
987 static constexpr size_t size() { return sizeof...(I); }
988};
989
990/// Alias for the common case of a sequence of size_ts.
991template <size_t... I>
992struct index_sequence : integer_sequence<std::size_t, I...> {};
993
994template <std::size_t N, std::size_t... I>
995struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
996template <std::size_t... I>
997struct build_index_impl<0, I...> : index_sequence<I...> {};
998
999/// Creates a compile-time integer sequence for a parameter pack.
1000template <class... Ts>
1001struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1002
1003/// Utility type to build an inheritance chain that makes it easy to rank
1004/// overload candidates.
1005template <int N> struct rank : rank<N - 1> {};
1006template <> struct rank<0> {};
1007
1008/// traits class for checking whether type T is one of any of the given
1009/// types in the variadic list.
1010template <typename T, typename... Ts> struct is_one_of {
1011 static const bool value = false;
1012};
1013
1014template <typename T, typename U, typename... Ts>
1015struct is_one_of<T, U, Ts...> {
1016 static const bool value =
1017 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1018};
1019
1020/// traits class for checking whether type T is a base class for all
1021/// the given types in the variadic list.
1022template <typename T, typename... Ts> struct are_base_of {
1023 static const bool value = true;
1024};
1025
1026template <typename T, typename U, typename... Ts>
1027struct are_base_of<T, U, Ts...> {
1028 static const bool value =
1029 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1030};
1031
1032//===----------------------------------------------------------------------===//
1033// Extra additions for arrays
1034//===----------------------------------------------------------------------===//
1035
1036/// Find the length of an array.
1037template <class T, std::size_t N>
1038constexpr inline size_t array_lengthof(T (&)[N]) {
1039 return N;
1040}
1041
1042/// Adapt std::less<T> for array_pod_sort.
1043template<typename T>
1044inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1045 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1046 *reinterpret_cast<const T*>(P2)))
1047 return -1;
1048 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1049 *reinterpret_cast<const T*>(P1)))
1050 return 1;
1051 return 0;
1052}
1053
1054/// get_array_pod_sort_comparator - This is an internal helper function used to
1055/// get type deduction of T right.
1056template<typename T>
1057inline int (*get_array_pod_sort_comparator(const T &))
1058 (const void*, const void*) {
1059 return array_pod_sort_comparator<T>;
1060}
1061
1062/// array_pod_sort - This sorts an array with the specified start and end
1063/// extent. This is just like std::sort, except that it calls qsort instead of
1064/// using an inlined template. qsort is slightly slower than std::sort, but
1065/// most sorts are not performance critical in LLVM and std::sort has to be
1066/// template instantiated for each type, leading to significant measured code
1067/// bloat. This function should generally be used instead of std::sort where
1068/// possible.
1069///
1070/// This function assumes that you have simple POD-like types that can be
1071/// compared with std::less and can be moved with memcpy. If this isn't true,
1072/// you should use std::sort.
1073///
1074/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1075/// default to std::less.
1076template<class IteratorTy>
1077inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1078 // Don't inefficiently call qsort with one element or trigger undefined
1079 // behavior with an empty sequence.
1080 auto NElts = End - Start;
1081 if (NElts <= 1) return;
1082#ifdef EXPENSIVE_CHECKS
1083 std::mt19937 Generator(std::random_device{}());
1084 std::shuffle(Start, End, Generator);
1085#endif
1086 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1087}
1088
1089template <class IteratorTy>
1090inline void array_pod_sort(
1091 IteratorTy Start, IteratorTy End,
1092 int (*Compare)(
1093 const typename std::iterator_traits<IteratorTy>::value_type *,
1094 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1095 // Don't inefficiently call qsort with one element or trigger undefined
1096 // behavior with an empty sequence.
1097 auto NElts = End - Start;
1098 if (NElts <= 1) return;
1099#ifdef EXPENSIVE_CHECKS
1100 std::mt19937 Generator(std::random_device{}());
1101 std::shuffle(Start, End, Generator);
1102#endif
1103 qsort(&*Start, NElts, sizeof(*Start),
1104 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1105}
1106
1107// Provide wrappers to std::sort which shuffle the elements before sorting
1108// to help uncover non-deterministic behavior (PR35135).
1109template <typename IteratorTy>
1110inline void sort(IteratorTy Start, IteratorTy End) {
1111#ifdef EXPENSIVE_CHECKS
1112 std::mt19937 Generator(std::random_device{}());
1113 std::shuffle(Start, End, Generator);
1114#endif
1115 std::sort(Start, End);
1116}
1117
1118template <typename Container> inline void sort(Container &&C) {
1119 llvm::sort(adl_begin(C), adl_end(C));
1120}
1121
1122template <typename IteratorTy, typename Compare>
1123inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1124#ifdef EXPENSIVE_CHECKS
1125 std::mt19937 Generator(std::random_device{}());
1126 std::shuffle(Start, End, Generator);
1127#endif
1128 std::sort(Start, End, Comp);
1129}
1130
1131template <typename Container, typename Compare>
1132inline void sort(Container &&C, Compare Comp) {
1133 llvm::sort(adl_begin(C), adl_end(C), Comp);
1134}
1135
1136//===----------------------------------------------------------------------===//
1137// Extra additions to <algorithm>
1138//===----------------------------------------------------------------------===//
1139
1140/// For a container of pointers, deletes the pointers and then clears the
1141/// container.
1142template<typename Container>
1143void DeleteContainerPointers(Container &C) {
1144 for (auto V : C)
1145 delete V;
1146 C.clear();
1147}
1148
1149/// In a container of pairs (usually a map) whose second element is a pointer,
1150/// deletes the second elements and then clears the container.
1151template<typename Container>
1152void DeleteContainerSeconds(Container &C) {
1153 for (auto &V : C)
1154 delete V.second;
1155 C.clear();
1156}
1157
1158/// Get the size of a range. This is a wrapper function around std::distance
1159/// which is only enabled when the operation is O(1).
1160template <typename R>
1161auto size(R &&Range, typename std::enable_if<
1162 std::is_same<typename std::iterator_traits<decltype(
1163 Range.begin())>::iterator_category,
1164 std::random_access_iterator_tag>::value,
1165 void>::type * = nullptr)
1166 -> decltype(std::distance(Range.begin(), Range.end())) {
1167 return std::distance(Range.begin(), Range.end());
1168}
1169
1170/// Provide wrappers to std::for_each which take ranges instead of having to
1171/// pass begin/end explicitly.
1172template <typename R, typename UnaryPredicate>
1173UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1174 return std::for_each(adl_begin(Range), adl_end(Range), P);
1175}
1176
1177/// Provide wrappers to std::all_of which take ranges instead of having to pass
1178/// begin/end explicitly.
1179template <typename R, typename UnaryPredicate>
1180bool all_of(R &&Range, UnaryPredicate P) {
1181 return std::all_of(adl_begin(Range), adl_end(Range), P);
1182}
1183
1184/// Provide wrappers to std::any_of which take ranges instead of having to pass
1185/// begin/end explicitly.
1186template <typename R, typename UnaryPredicate>
1187bool any_of(R &&Range, UnaryPredicate P) {
1188 return std::any_of(adl_begin(Range), adl_end(Range), P);
1189}
1190
1191/// Provide wrappers to std::none_of which take ranges instead of having to pass
1192/// begin/end explicitly.
1193template <typename R, typename UnaryPredicate>
1194bool none_of(R &&Range, UnaryPredicate P) {
1195 return std::none_of(adl_begin(Range), adl_end(Range), P);
1196}
1197
1198/// Provide wrappers to std::find which take ranges instead of having to pass
1199/// begin/end explicitly.
1200template <typename R, typename T>
1201auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1202 return std::find(adl_begin(Range), adl_end(Range), Val);
1203}
1204
1205/// Provide wrappers to std::find_if which take ranges instead of having to pass
1206/// begin/end explicitly.
1207template <typename R, typename UnaryPredicate>
1208auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1209 return std::find_if(adl_begin(Range), adl_end(Range), P);
1210}
1211
1212template <typename R, typename UnaryPredicate>
1213auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217/// Provide wrappers to std::remove_if which take ranges instead of having to
1218/// pass begin/end explicitly.
1219template <typename R, typename UnaryPredicate>
1220auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1221 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1222}
1223
1224/// Provide wrappers to std::copy_if which take ranges instead of having to
1225/// pass begin/end explicitly.
1226template <typename R, typename OutputIt, typename UnaryPredicate>
1227OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1228 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1229}
1230
1231template <typename R, typename OutputIt>
1232OutputIt copy(R &&Range, OutputIt Out) {
1233 return std::copy(adl_begin(Range), adl_end(Range), Out);
1234}
1235
1236/// Wrapper function around std::find to detect if an element exists
1237/// in a container.
1238template <typename R, typename E>
1239bool is_contained(R &&Range, const E &Element) {
1240 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1241}
1242
1243/// Wrapper function around std::count to count the number of times an element
1244/// \p Element occurs in the given range \p Range.
1245template <typename R, typename E>
1246auto count(R &&Range, const E &Element) ->
1247 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1248 return std::count(adl_begin(Range), adl_end(Range), Element);
1249}
1250
1251/// Wrapper function around std::count_if to count the number of times an
1252/// element satisfying a given predicate occurs in a range.
1253template <typename R, typename UnaryPredicate>
1254auto count_if(R &&Range, UnaryPredicate P) ->
1255 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1256 return std::count_if(adl_begin(Range), adl_end(Range), P);
1257}
1258
1259/// Wrapper function around std::transform to apply a function to a range and
1260/// store the result elsewhere.
1261template <typename R, typename OutputIt, typename UnaryPredicate>
1262OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1263 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1264}
1265
1266/// Provide wrappers to std::partition which take ranges instead of having to
1267/// pass begin/end explicitly.
1268template <typename R, typename UnaryPredicate>
1269auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1270 return std::partition(adl_begin(Range), adl_end(Range), P);
1271}
1272
1273/// Provide wrappers to std::lower_bound which take ranges instead of having to
1274/// pass begin/end explicitly.
1275template <typename R, typename ForwardIt>
1276auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1277 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1278}
1279
1280template <typename R, typename ForwardIt, typename Compare>
1281auto lower_bound(R &&Range, ForwardIt I, Compare C)
1282 -> decltype(adl_begin(Range)) {
1283 return std::lower_bound(adl_begin(Range), adl_end(Range), I, C);
1284}
1285
1286/// Provide wrappers to std::upper_bound which take ranges instead of having to
1287/// pass begin/end explicitly.
1288template <typename R, typename ForwardIt>
1289auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1290 return std::upper_bound(adl_begin(Range), adl_end(Range), I);
1291}
1292
1293template <typename R, typename ForwardIt, typename Compare>
1294auto upper_bound(R &&Range, ForwardIt I, Compare C)
1295 -> decltype(adl_begin(Range)) {
1296 return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
1297}
1298/// Wrapper function around std::equal to detect if all elements
1299/// in a container are same.
1300template <typename R>
1301bool is_splat(R &&Range) {
1302 size_t range_size = size(Range);
1303 return range_size != 0 && (range_size == 1 ||
1304 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1305}
1306
1307/// Given a range of type R, iterate the entire range and return a
1308/// SmallVector with elements of the vector. This is useful, for example,
1309/// when you want to iterate a range and then sort the results.
1310template <unsigned Size, typename R>
1311SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1312to_vector(R &&Range) {
1313 return {adl_begin(Range), adl_end(Range)};
1314}
1315
1316/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1317/// `erase_if` which is equivalent to:
1318///
1319/// C.erase(remove_if(C, pred), C.end());
1320///
1321/// This version works for any container with an erase method call accepting
1322/// two iterators.
1323template <typename Container, typename UnaryPredicate>
1324void erase_if(Container &C, UnaryPredicate P) {
1325 C.erase(remove_if(C, P), C.end());
1326}
1327
1328//===----------------------------------------------------------------------===//
1329// Extra additions to <memory>
1330//===----------------------------------------------------------------------===//
1331
1332// Implement make_unique according to N3656.
1333
1334/// Constructs a `new T()` with the given args and returns a
1335/// `unique_ptr<T>` which owns the object.
1336///
1337/// Example:
1338///
1339/// auto p = make_unique<int>();
1340/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1341template <class T, class... Args>
1342typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1343make_unique(Args &&... args) {
1344 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
7
Memory is allocated
1345}
1346
1347/// Constructs a `new T[n]` with the given args and returns a
1348/// `unique_ptr<T[]>` which owns the object.
1349///
1350/// \param n size of the new array.
1351///
1352/// Example:
1353///
1354/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1355template <class T>
1356typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1357 std::unique_ptr<T>>::type
1358make_unique(size_t n) {
1359 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1360}
1361
1362/// This function isn't used and is only here to provide better compile errors.
1363template <class T, class... Args>
1364typename std::enable_if<std::extent<T>::value != 0>::type
1365make_unique(Args &&...) = delete;
1366
1367struct FreeDeleter {
1368 void operator()(void* v) {
1369 ::free(v);
1370 }
1371};
1372
1373template<typename First, typename Second>
1374struct pair_hash {
1375 size_t operator()(const std::pair<First, Second> &P) const {
1376 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1377 }
1378};
1379
1380/// A functor like C++14's std::less<void> in its absence.
1381struct less {
1382 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1383 return std::forward<A>(a) < std::forward<B>(b);
1384 }
1385};
1386
1387/// A functor like C++14's std::equal<void> in its absence.
1388struct equal {
1389 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1390 return std::forward<A>(a) == std::forward<B>(b);
1391 }
1392};
1393
1394/// Binary functor that adapts to any other binary functor after dereferencing
1395/// operands.
1396template <typename T> struct deref {
1397 T func;
1398
1399 // Could be further improved to cope with non-derivable functors and
1400 // non-binary functors (should be a variadic template member function
1401 // operator()).
1402 template <typename A, typename B>
1403 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1404 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1404, __PRETTY_FUNCTION__))
;
1405 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1405, __PRETTY_FUNCTION__))
;
1406 return func(*lhs, *rhs);
1407 }
1408};
1409
1410namespace detail {
1411
1412template <typename R> class enumerator_iter;
1413
1414template <typename R> struct result_pair {
1415 friend class enumerator_iter<R>;
1416
1417 result_pair() = default;
1418 result_pair(std::size_t Index, IterOfRange<R> Iter)
1419 : Index(Index), Iter(Iter) {}
1420
1421 result_pair<R> &operator=(const result_pair<R> &Other) {
1422 Index = Other.Index;
1423 Iter = Other.Iter;
1424 return *this;
1425 }
1426
1427 std::size_t index() const { return Index; }
1428 const ValueOfRange<R> &value() const { return *Iter; }
1429 ValueOfRange<R> &value() { return *Iter; }
1430
1431private:
1432 std::size_t Index = std::numeric_limits<std::size_t>::max();
1433 IterOfRange<R> Iter;
1434};
1435
1436template <typename R>
1437class enumerator_iter
1438 : public iterator_facade_base<
1439 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1440 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1441 typename std::iterator_traits<IterOfRange<R>>::pointer,
1442 typename std::iterator_traits<IterOfRange<R>>::reference> {
1443 using result_type = result_pair<R>;
1444
1445public:
1446 explicit enumerator_iter(IterOfRange<R> EndIter)
1447 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1448
1449 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1450 : Result(Index, Iter) {}
1451
1452 result_type &operator*() { return Result; }
1453 const result_type &operator*() const { return Result; }
1454
1455 enumerator_iter<R> &operator++() {
1456 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1456, __PRETTY_FUNCTION__))
;
1457 ++Result.Iter;
1458 ++Result.Index;
1459 return *this;
1460 }
1461
1462 bool operator==(const enumerator_iter<R> &RHS) const {
1463 // Don't compare indices here, only iterators. It's possible for an end
1464 // iterator to have different indices depending on whether it was created
1465 // by calling std::end() versus incrementing a valid iterator.
1466 return Result.Iter == RHS.Result.Iter;
1467 }
1468
1469 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1470 Result = Other.Result;
1471 return *this;
1472 }
1473
1474private:
1475 result_type Result;
1476};
1477
1478template <typename R> class enumerator {
1479public:
1480 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1481
1482 enumerator_iter<R> begin() {
1483 return enumerator_iter<R>(0, std::begin(TheRange));
1484 }
1485
1486 enumerator_iter<R> end() {
1487 return enumerator_iter<R>(std::end(TheRange));
1488 }
1489
1490private:
1491 R TheRange;
1492};
1493
1494} // end namespace detail
1495
1496/// Given an input range, returns a new range whose values are are pair (A,B)
1497/// such that A is the 0-based index of the item in the sequence, and B is
1498/// the value from the original sequence. Example:
1499///
1500/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1501/// for (auto X : enumerate(Items)) {
1502/// printf("Item %d - %c\n", X.index(), X.value());
1503/// }
1504///
1505/// Output:
1506/// Item 0 - A
1507/// Item 1 - B
1508/// Item 2 - C
1509/// Item 3 - D
1510///
1511template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1512 return detail::enumerator<R>(std::forward<R>(TheRange));
1513}
1514
1515namespace detail {
1516
1517template <typename F, typename Tuple, std::size_t... I>
1518auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1519 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1520 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1521}
1522
1523} // end namespace detail
1524
1525/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1526/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1527/// return the result.
1528template <typename F, typename Tuple>
1529auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1530 std::forward<F>(f), std::forward<Tuple>(t),
1531 build_index_impl<
1532 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1533 using Indices = build_index_impl<
1534 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1535
1536 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1537 Indices{});
1538}
1539
1540/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1541/// time. Not meant for use with random-access iterators.
1542template <typename IterTy>
1543bool hasNItems(
1544 IterTy &&Begin, IterTy &&End, unsigned N,
1545 typename std::enable_if<
1546 !std::is_same<
1547 typename std::iterator_traits<typename std::remove_reference<
1548 decltype(Begin)>::type>::iterator_category,
1549 std::random_access_iterator_tag>::value,
1550 void>::type * = nullptr) {
1551 for (; N; --N, ++Begin)
1552 if (Begin == End)
1553 return false; // Too few.
1554 return Begin == End;
1555}
1556
1557/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1558/// time. Not meant for use with random-access iterators.
1559template <typename IterTy>
1560bool hasNItemsOrMore(
1561 IterTy &&Begin, IterTy &&End, unsigned N,
1562 typename std::enable_if<
1563 !std::is_same<
1564 typename std::iterator_traits<typename std::remove_reference<
1565 decltype(Begin)>::type>::iterator_category,
1566 std::random_access_iterator_tag>::value,
1567 void>::type * = nullptr) {
1568 for (; N; --N, ++Begin)
1569 if (Begin == End)
1570 return false; // Too few.
1571 return true;
1572}
1573
1574} // end namespace llvm
1575
1576#endif // LLVM_ADT_STLEXTRAS_H