Bug Summary

File:llvm/lib/Target/Mips/MipsConstantIslandPass.cpp
Warning:line 1644, column 11
Value stored to 'J' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name MipsConstantIslandPass.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/Mips -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/Mips -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/Mips -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/Mips -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp
1//===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass is used to make Pc relative loads of constants.
10// For now, only Mips16 will use this.
11//
12// Loading constants inline is expensive on Mips16 and it's in general better
13// to place the constant nearby in code space and then it can be loaded with a
14// simple 16 bit load instruction.
15//
16// The constants can be not just numbers but addresses of functions and labels.
17// This can be particularly helpful in static relocation mode for embedded
18// non-linux targets.
19//
20//===----------------------------------------------------------------------===//
21
22#include "Mips.h"
23#include "Mips16InstrInfo.h"
24#include "MipsMachineFunction.h"
25#include "MipsSubtarget.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/CodeGen/MachineBasicBlock.h"
32#include "llvm/CodeGen/MachineConstantPool.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineOperand.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/Config/llvm-config.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/Type.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Format.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52#include <algorithm>
53#include <cassert>
54#include <cstdint>
55#include <iterator>
56#include <vector>
57
58using namespace llvm;
59
60#define DEBUG_TYPE"mips-constant-islands" "mips-constant-islands"
61
62STATISTIC(NumCPEs, "Number of constpool entries")static llvm::Statistic NumCPEs = {"mips-constant-islands", "NumCPEs"
, "Number of constpool entries"}
;
63STATISTIC(NumSplit, "Number of uncond branches inserted")static llvm::Statistic NumSplit = {"mips-constant-islands", "NumSplit"
, "Number of uncond branches inserted"}
;
64STATISTIC(NumCBrFixed, "Number of cond branches fixed")static llvm::Statistic NumCBrFixed = {"mips-constant-islands"
, "NumCBrFixed", "Number of cond branches fixed"}
;
65STATISTIC(NumUBrFixed, "Number of uncond branches fixed")static llvm::Statistic NumUBrFixed = {"mips-constant-islands"
, "NumUBrFixed", "Number of uncond branches fixed"}
;
66
67// FIXME: This option should be removed once it has received sufficient testing.
68static cl::opt<bool>
69AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
70 cl::desc("Align constant islands in code"));
71
72// Rather than do make check tests with huge amounts of code, we force
73// the test to use this amount.
74static cl::opt<int> ConstantIslandsSmallOffset(
75 "mips-constant-islands-small-offset",
76 cl::init(0),
77 cl::desc("Make small offsets be this amount for testing purposes"),
78 cl::Hidden);
79
80// For testing purposes we tell it to not use relaxed load forms so that it
81// will split blocks.
82static cl::opt<bool> NoLoadRelaxation(
83 "mips-constant-islands-no-load-relaxation",
84 cl::init(false),
85 cl::desc("Don't relax loads to long loads - for testing purposes"),
86 cl::Hidden);
87
88static unsigned int branchTargetOperand(MachineInstr *MI) {
89 switch (MI->getOpcode()) {
90 case Mips::Bimm16:
91 case Mips::BimmX16:
92 case Mips::Bteqz16:
93 case Mips::BteqzX16:
94 case Mips::Btnez16:
95 case Mips::BtnezX16:
96 case Mips::JalB16:
97 return 0;
98 case Mips::BeqzRxImm16:
99 case Mips::BeqzRxImmX16:
100 case Mips::BnezRxImm16:
101 case Mips::BnezRxImmX16:
102 return 1;
103 }
104 llvm_unreachable("Unknown branch type")__builtin_unreachable();
105}
106
107static unsigned int longformBranchOpcode(unsigned int Opcode) {
108 switch (Opcode) {
109 case Mips::Bimm16:
110 case Mips::BimmX16:
111 return Mips::BimmX16;
112 case Mips::Bteqz16:
113 case Mips::BteqzX16:
114 return Mips::BteqzX16;
115 case Mips::Btnez16:
116 case Mips::BtnezX16:
117 return Mips::BtnezX16;
118 case Mips::JalB16:
119 return Mips::JalB16;
120 case Mips::BeqzRxImm16:
121 case Mips::BeqzRxImmX16:
122 return Mips::BeqzRxImmX16;
123 case Mips::BnezRxImm16:
124 case Mips::BnezRxImmX16:
125 return Mips::BnezRxImmX16;
126 }
127 llvm_unreachable("Unknown branch type")__builtin_unreachable();
128}
129
130// FIXME: need to go through this whole constant islands port and check
131// the math for branch ranges and clean this up and make some functions
132// to calculate things that are done many times identically.
133// Need to refactor some of the code to call this routine.
134static unsigned int branchMaxOffsets(unsigned int Opcode) {
135 unsigned Bits, Scale;
136 switch (Opcode) {
137 case Mips::Bimm16:
138 Bits = 11;
139 Scale = 2;
140 break;
141 case Mips::BimmX16:
142 Bits = 16;
143 Scale = 2;
144 break;
145 case Mips::BeqzRxImm16:
146 Bits = 8;
147 Scale = 2;
148 break;
149 case Mips::BeqzRxImmX16:
150 Bits = 16;
151 Scale = 2;
152 break;
153 case Mips::BnezRxImm16:
154 Bits = 8;
155 Scale = 2;
156 break;
157 case Mips::BnezRxImmX16:
158 Bits = 16;
159 Scale = 2;
160 break;
161 case Mips::Bteqz16:
162 Bits = 8;
163 Scale = 2;
164 break;
165 case Mips::BteqzX16:
166 Bits = 16;
167 Scale = 2;
168 break;
169 case Mips::Btnez16:
170 Bits = 8;
171 Scale = 2;
172 break;
173 case Mips::BtnezX16:
174 Bits = 16;
175 Scale = 2;
176 break;
177 default:
178 llvm_unreachable("Unknown branch type")__builtin_unreachable();
179 }
180 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
181 return MaxOffs;
182}
183
184namespace {
185
186 using Iter = MachineBasicBlock::iterator;
187 using ReverseIter = MachineBasicBlock::reverse_iterator;
188
189 /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
190 /// requires constant pool entries to be scattered among the instructions
191 /// inside a function. To do this, it completely ignores the normal LLVM
192 /// constant pool; instead, it places constants wherever it feels like with
193 /// special instructions.
194 ///
195 /// The terminology used in this pass includes:
196 /// Islands - Clumps of constants placed in the function.
197 /// Water - Potential places where an island could be formed.
198 /// CPE - A constant pool entry that has been placed somewhere, which
199 /// tracks a list of users.
200
201 class MipsConstantIslands : public MachineFunctionPass {
202 /// BasicBlockInfo - Information about the offset and size of a single
203 /// basic block.
204 struct BasicBlockInfo {
205 /// Offset - Distance from the beginning of the function to the beginning
206 /// of this basic block.
207 ///
208 /// Offsets are computed assuming worst case padding before an aligned
209 /// block. This means that subtracting basic block offsets always gives a
210 /// conservative estimate of the real distance which may be smaller.
211 ///
212 /// Because worst case padding is used, the computed offset of an aligned
213 /// block may not actually be aligned.
214 unsigned Offset = 0;
215
216 /// Size - Size of the basic block in bytes. If the block contains
217 /// inline assembly, this is a worst case estimate.
218 ///
219 /// The size does not include any alignment padding whether from the
220 /// beginning of the block, or from an aligned jump table at the end.
221 unsigned Size = 0;
222
223 BasicBlockInfo() = default;
224
225 unsigned postOffset() const { return Offset + Size; }
226 };
227
228 std::vector<BasicBlockInfo> BBInfo;
229
230 /// WaterList - A sorted list of basic blocks where islands could be placed
231 /// (i.e. blocks that don't fall through to the following block, due
232 /// to a return, unreachable, or unconditional branch).
233 std::vector<MachineBasicBlock*> WaterList;
234
235 /// NewWaterList - The subset of WaterList that was created since the
236 /// previous iteration by inserting unconditional branches.
237 SmallSet<MachineBasicBlock*, 4> NewWaterList;
238
239 using water_iterator = std::vector<MachineBasicBlock *>::iterator;
240
241 /// CPUser - One user of a constant pool, keeping the machine instruction
242 /// pointer, the constant pool being referenced, and the max displacement
243 /// allowed from the instruction to the CP. The HighWaterMark records the
244 /// highest basic block where a new CPEntry can be placed. To ensure this
245 /// pass terminates, the CP entries are initially placed at the end of the
246 /// function and then move monotonically to lower addresses. The
247 /// exception to this rule is when the current CP entry for a particular
248 /// CPUser is out of range, but there is another CP entry for the same
249 /// constant value in range. We want to use the existing in-range CP
250 /// entry, but if it later moves out of range, the search for new water
251 /// should resume where it left off. The HighWaterMark is used to record
252 /// that point.
253 struct CPUser {
254 MachineInstr *MI;
255 MachineInstr *CPEMI;
256 MachineBasicBlock *HighWaterMark;
257
258 private:
259 unsigned MaxDisp;
260 unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
261 // with different displacements
262 unsigned LongFormOpcode;
263
264 public:
265 bool NegOk;
266
267 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
268 bool neg,
269 unsigned longformmaxdisp, unsigned longformopcode)
270 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
271 LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
272 NegOk(neg){
273 HighWaterMark = CPEMI->getParent();
274 }
275
276 /// getMaxDisp - Returns the maximum displacement supported by MI.
277 unsigned getMaxDisp() const {
278 unsigned xMaxDisp = ConstantIslandsSmallOffset?
279 ConstantIslandsSmallOffset: MaxDisp;
280 return xMaxDisp;
281 }
282
283 void setMaxDisp(unsigned val) {
284 MaxDisp = val;
285 }
286
287 unsigned getLongFormMaxDisp() const {
288 return LongFormMaxDisp;
289 }
290
291 unsigned getLongFormOpcode() const {
292 return LongFormOpcode;
293 }
294 };
295
296 /// CPUsers - Keep track of all of the machine instructions that use various
297 /// constant pools and their max displacement.
298 std::vector<CPUser> CPUsers;
299
300 /// CPEntry - One per constant pool entry, keeping the machine instruction
301 /// pointer, the constpool index, and the number of CPUser's which
302 /// reference this entry.
303 struct CPEntry {
304 MachineInstr *CPEMI;
305 unsigned CPI;
306 unsigned RefCount;
307
308 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
309 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
310 };
311
312 /// CPEntries - Keep track of all of the constant pool entry machine
313 /// instructions. For each original constpool index (i.e. those that
314 /// existed upon entry to this pass), it keeps a vector of entries.
315 /// Original elements are cloned as we go along; the clones are
316 /// put in the vector of the original element, but have distinct CPIs.
317 std::vector<std::vector<CPEntry>> CPEntries;
318
319 /// ImmBranch - One per immediate branch, keeping the machine instruction
320 /// pointer, conditional or unconditional, the max displacement,
321 /// and (if isCond is true) the corresponding unconditional branch
322 /// opcode.
323 struct ImmBranch {
324 MachineInstr *MI;
325 unsigned MaxDisp : 31;
326 bool isCond : 1;
327 int UncondBr;
328
329 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
330 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
331 };
332
333 /// ImmBranches - Keep track of all the immediate branch instructions.
334 ///
335 std::vector<ImmBranch> ImmBranches;
336
337 /// HasFarJump - True if any far jump instruction has been emitted during
338 /// the branch fix up pass.
339 bool HasFarJump;
340
341 const MipsSubtarget *STI = nullptr;
342 const Mips16InstrInfo *TII;
343 MipsFunctionInfo *MFI;
344 MachineFunction *MF = nullptr;
345 MachineConstantPool *MCP = nullptr;
346
347 unsigned PICLabelUId;
348 bool PrescannedForConstants = false;
349
350 void initPICLabelUId(unsigned UId) {
351 PICLabelUId = UId;
352 }
353
354 unsigned createPICLabelUId() {
355 return PICLabelUId++;
356 }
357
358 public:
359 static char ID;
360
361 MipsConstantIslands() : MachineFunctionPass(ID) {}
362
363 StringRef getPassName() const override { return "Mips Constant Islands"; }
364
365 bool runOnMachineFunction(MachineFunction &F) override;
366
367 MachineFunctionProperties getRequiredProperties() const override {
368 return MachineFunctionProperties().set(
369 MachineFunctionProperties::Property::NoVRegs);
370 }
371
372 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
373 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
374 Align getCPEAlign(const MachineInstr &CPEMI);
375 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
376 unsigned getOffsetOf(MachineInstr *MI) const;
377 unsigned getUserOffset(CPUser&) const;
378 void dumpBBs();
379
380 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
381 unsigned Disp, bool NegativeOK);
382 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
383 const CPUser &U);
384
385 void computeBlockSize(MachineBasicBlock *MBB);
386 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
387 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
388 void adjustBBOffsetsAfter(MachineBasicBlock *BB);
389 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
390 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
391 int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
392 bool findAvailableWater(CPUser&U, unsigned UserOffset,
393 water_iterator &WaterIter);
394 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
395 MachineBasicBlock *&NewMBB);
396 bool handleConstantPoolUser(unsigned CPUserIndex);
397 void removeDeadCPEMI(MachineInstr *CPEMI);
398 bool removeUnusedCPEntries();
399 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
400 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
401 bool DoDump = false);
402 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
403 CPUser &U, unsigned &Growth);
404 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
405 bool fixupImmediateBr(ImmBranch &Br);
406 bool fixupConditionalBr(ImmBranch &Br);
407 bool fixupUnconditionalBr(ImmBranch &Br);
408
409 void prescanForConstants();
410 };
411
412} // end anonymous namespace
413
414char MipsConstantIslands::ID = 0;
415
416bool MipsConstantIslands::isOffsetInRange
417 (unsigned UserOffset, unsigned TrialOffset,
418 const CPUser &U) {
419 return isOffsetInRange(UserOffset, TrialOffset,
420 U.getMaxDisp(), U.NegOk);
421}
422
423#if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP)
424/// print block size and offset information - debugging
425LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void MipsConstantIslands::dumpBBs() {
426 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
427 const BasicBlockInfo &BBI = BBInfo[J];
428 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
429 << format(" size=%#x\n", BBInfo[J].Size);
430 }
431}
432#endif
433
434bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
435 // The intention is for this to be a mips16 only pass for now
436 // FIXME:
437 MF = &mf;
438 MCP = mf.getConstantPool();
439 STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
440 LLVM_DEBUG(dbgs() << "constant island machine function "do { } while (false)
441 << "\n")do { } while (false);
442 if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
443 return false;
444 }
445 TII = (const Mips16InstrInfo *)STI->getInstrInfo();
446 MFI = MF->getInfo<MipsFunctionInfo>();
447 LLVM_DEBUG(dbgs() << "constant island processing "do { } while (false)
448 << "\n")do { } while (false);
449 //
450 // will need to make predermination if there is any constants we need to
451 // put in constant islands. TBD.
452 //
453 if (!PrescannedForConstants) prescanForConstants();
454
455 HasFarJump = false;
456 // This pass invalidates liveness information when it splits basic blocks.
457 MF->getRegInfo().invalidateLiveness();
458
459 // Renumber all of the machine basic blocks in the function, guaranteeing that
460 // the numbers agree with the position of the block in the function.
461 MF->RenumberBlocks();
462
463 bool MadeChange = false;
464
465 // Perform the initial placement of the constant pool entries. To start with,
466 // we put them all at the end of the function.
467 std::vector<MachineInstr*> CPEMIs;
468 if (!MCP->isEmpty())
469 doInitialPlacement(CPEMIs);
470
471 /// The next UID to take is the first unused one.
472 initPICLabelUId(CPEMIs.size());
473
474 // Do the initial scan of the function, building up information about the
475 // sizes of each block, the location of all the water, and finding all of the
476 // constant pool users.
477 initializeFunctionInfo(CPEMIs);
478 CPEMIs.clear();
479 LLVM_DEBUG(dumpBBs())do { } while (false);
480
481 /// Remove dead constant pool entries.
482 MadeChange |= removeUnusedCPEntries();
483
484 // Iteratively place constant pool entries and fix up branches until there
485 // is no change.
486 unsigned NoCPIters = 0, NoBRIters = 0;
487 (void)NoBRIters;
488 while (true) {
489 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n')do { } while (false);
490 bool CPChange = false;
491 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
492 CPChange |= handleConstantPoolUser(i);
493 if (CPChange && ++NoCPIters > 30)
494 report_fatal_error("Constant Island pass failed to converge!");
495 LLVM_DEBUG(dumpBBs())do { } while (false);
496
497 // Clear NewWaterList now. If we split a block for branches, it should
498 // appear as "new water" for the next iteration of constant pool placement.
499 NewWaterList.clear();
500
501 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n')do { } while (false);
502 bool BRChange = false;
503 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
504 BRChange |= fixupImmediateBr(ImmBranches[i]);
505 if (BRChange && ++NoBRIters > 30)
506 report_fatal_error("Branch Fix Up pass failed to converge!");
507 LLVM_DEBUG(dumpBBs())do { } while (false);
508 if (!CPChange && !BRChange)
509 break;
510 MadeChange = true;
511 }
512
513 LLVM_DEBUG(dbgs() << '\n'; dumpBBs())do { } while (false);
514
515 BBInfo.clear();
516 WaterList.clear();
517 CPUsers.clear();
518 CPEntries.clear();
519 ImmBranches.clear();
520 return MadeChange;
521}
522
523/// doInitialPlacement - Perform the initial placement of the constant pool
524/// entries. To start with, we put them all at the end of the function.
525void
526MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
527 // Create the basic block to hold the CPE's.
528 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
529 MF->push_back(BB);
530
531 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
532 const Align MaxAlign = MCP->getConstantPoolAlign();
533
534 // Mark the basic block as required by the const-pool.
535 // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
536 BB->setAlignment(AlignConstantIslands ? MaxAlign : Align(4));
537
538 // The function needs to be as aligned as the basic blocks. The linker may
539 // move functions around based on their alignment.
540 MF->ensureAlignment(BB->getAlignment());
541
542 // Order the entries in BB by descending alignment. That ensures correct
543 // alignment of all entries as long as BB is sufficiently aligned. Keep
544 // track of the insertion point for each alignment. We are going to bucket
545 // sort the entries as they are created.
546 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1,
547 BB->end());
548
549 // Add all of the constants from the constant pool to the end block, use an
550 // identity mapping of CPI's to CPE's.
551 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
552
553 const DataLayout &TD = MF->getDataLayout();
554 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
555 unsigned Size = CPs[i].getSizeInBytes(TD);
556 assert(Size >= 4 && "Too small constant pool entry")(static_cast<void> (0));
557 Align Alignment = CPs[i].getAlign();
558 // Verify that all constant pool entries are a multiple of their alignment.
559 // If not, we would have to pad them out so that instructions stay aligned.
560 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!")(static_cast<void> (0));
561
562 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
563 unsigned LogAlign = Log2(Alignment);
564 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
565
566 MachineInstr *CPEMI =
567 BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
568 .addImm(i).addConstantPoolIndex(i).addImm(Size);
569
570 CPEMIs.push_back(CPEMI);
571
572 // Ensure that future entries with higher alignment get inserted before
573 // CPEMI. This is bucket sort with iterators.
574 for (unsigned a = LogAlign + 1; a <= Log2(MaxAlign); ++a)
575 if (InsPoint[a] == InsAt)
576 InsPoint[a] = CPEMI;
577 // Add a new CPEntry, but no corresponding CPUser yet.
578 CPEntries.emplace_back(1, CPEntry(CPEMI, i));
579 ++NumCPEs;
580 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "do { } while (false)
581 << Size << ", align = " << Alignment.value() << '\n')do { } while (false);
582 }
583 LLVM_DEBUG(BB->dump())do { } while (false);
584}
585
586/// BBHasFallthrough - Return true if the specified basic block can fallthrough
587/// into the block immediately after it.
588static bool BBHasFallthrough(MachineBasicBlock *MBB) {
589 // Get the next machine basic block in the function.
590 MachineFunction::iterator MBBI = MBB->getIterator();
591 // Can't fall off end of function.
592 if (std::next(MBBI) == MBB->getParent()->end())
593 return false;
594
595 MachineBasicBlock *NextBB = &*std::next(MBBI);
596 return llvm::is_contained(MBB->successors(), NextBB);
597}
598
599/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
600/// look up the corresponding CPEntry.
601MipsConstantIslands::CPEntry
602*MipsConstantIslands::findConstPoolEntry(unsigned CPI,
603 const MachineInstr *CPEMI) {
604 std::vector<CPEntry> &CPEs = CPEntries[CPI];
605 // Number of entries per constpool index should be small, just do a
606 // linear search.
607 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
608 if (CPEs[i].CPEMI == CPEMI)
609 return &CPEs[i];
610 }
611 return nullptr;
612}
613
614/// getCPEAlign - Returns the required alignment of the constant pool entry
615/// represented by CPEMI. Alignment is measured in log2(bytes) units.
616Align MipsConstantIslands::getCPEAlign(const MachineInstr &CPEMI) {
617 assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY)(static_cast<void> (0));
618
619 // Everything is 4-byte aligned unless AlignConstantIslands is set.
620 if (!AlignConstantIslands)
621 return Align(4);
622
623 unsigned CPI = CPEMI.getOperand(1).getIndex();
624 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.")(static_cast<void> (0));
625 return MCP->getConstants()[CPI].getAlign();
626}
627
628/// initializeFunctionInfo - Do the initial scan of the function, building up
629/// information about the sizes of each block, the location of all the water,
630/// and finding all of the constant pool users.
631void MipsConstantIslands::
632initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
633 BBInfo.clear();
634 BBInfo.resize(MF->getNumBlockIDs());
635
636 // First thing, compute the size of all basic blocks, and see if the function
637 // has any inline assembly in it. If so, we have to be conservative about
638 // alignment assumptions, as we don't know for sure the size of any
639 // instructions in the inline assembly.
640 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
641 computeBlockSize(&*I);
642
643 // Compute block offsets.
644 adjustBBOffsetsAfter(&MF->front());
645
646 // Now go back through the instructions and build up our data structures.
647 for (MachineBasicBlock &MBB : *MF) {
648 // If this block doesn't fall through into the next MBB, then this is
649 // 'water' that a constant pool island could be placed.
650 if (!BBHasFallthrough(&MBB))
651 WaterList.push_back(&MBB);
652 for (MachineInstr &MI : MBB) {
653 if (MI.isDebugInstr())
654 continue;
655
656 int Opc = MI.getOpcode();
657 if (MI.isBranch()) {
658 bool isCond = false;
659 unsigned Bits = 0;
660 unsigned Scale = 1;
661 int UOpc = Opc;
662 switch (Opc) {
663 default:
664 continue; // Ignore other branches for now
665 case Mips::Bimm16:
666 Bits = 11;
667 Scale = 2;
668 isCond = false;
669 break;
670 case Mips::BimmX16:
671 Bits = 16;
672 Scale = 2;
673 isCond = false;
674 break;
675 case Mips::BeqzRxImm16:
676 UOpc=Mips::Bimm16;
677 Bits = 8;
678 Scale = 2;
679 isCond = true;
680 break;
681 case Mips::BeqzRxImmX16:
682 UOpc=Mips::Bimm16;
683 Bits = 16;
684 Scale = 2;
685 isCond = true;
686 break;
687 case Mips::BnezRxImm16:
688 UOpc=Mips::Bimm16;
689 Bits = 8;
690 Scale = 2;
691 isCond = true;
692 break;
693 case Mips::BnezRxImmX16:
694 UOpc=Mips::Bimm16;
695 Bits = 16;
696 Scale = 2;
697 isCond = true;
698 break;
699 case Mips::Bteqz16:
700 UOpc=Mips::Bimm16;
701 Bits = 8;
702 Scale = 2;
703 isCond = true;
704 break;
705 case Mips::BteqzX16:
706 UOpc=Mips::Bimm16;
707 Bits = 16;
708 Scale = 2;
709 isCond = true;
710 break;
711 case Mips::Btnez16:
712 UOpc=Mips::Bimm16;
713 Bits = 8;
714 Scale = 2;
715 isCond = true;
716 break;
717 case Mips::BtnezX16:
718 UOpc=Mips::Bimm16;
719 Bits = 16;
720 Scale = 2;
721 isCond = true;
722 break;
723 }
724 // Record this immediate branch.
725 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
726 ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
727 }
728
729 if (Opc == Mips::CONSTPOOL_ENTRY)
730 continue;
731
732 // Scan the instructions for constant pool operands.
733 for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
734 if (MI.getOperand(op).isCPI()) {
735 // We found one. The addressing mode tells us the max displacement
736 // from the PC that this instruction permits.
737
738 // Basic size info comes from the TSFlags field.
739 unsigned Bits = 0;
740 unsigned Scale = 1;
741 bool NegOk = false;
742 unsigned LongFormBits = 0;
743 unsigned LongFormScale = 0;
744 unsigned LongFormOpcode = 0;
745 switch (Opc) {
746 default:
747 llvm_unreachable("Unknown addressing mode for CP reference!")__builtin_unreachable();
748 case Mips::LwRxPcTcp16:
749 Bits = 8;
750 Scale = 4;
751 LongFormOpcode = Mips::LwRxPcTcpX16;
752 LongFormBits = 14;
753 LongFormScale = 1;
754 break;
755 case Mips::LwRxPcTcpX16:
756 Bits = 14;
757 Scale = 1;
758 NegOk = true;
759 break;
760 }
761 // Remember that this is a user of a CP entry.
762 unsigned CPI = MI.getOperand(op).getIndex();
763 MachineInstr *CPEMI = CPEMIs[CPI];
764 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
765 unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
766 CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
767 LongFormOpcode));
768
769 // Increment corresponding CPEntry reference count.
770 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
771 assert(CPE && "Cannot find a corresponding CPEntry!")(static_cast<void> (0));
772 CPE->RefCount++;
773
774 // Instructions can only use one CP entry, don't bother scanning the
775 // rest of the operands.
776 break;
777 }
778 }
779 }
780}
781
782/// computeBlockSize - Compute the size and some alignment information for MBB.
783/// This function updates BBInfo directly.
784void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
785 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
786 BBI.Size = 0;
787
788 for (const MachineInstr &MI : *MBB)
789 BBI.Size += TII->getInstSizeInBytes(MI);
790}
791
792/// getOffsetOf - Return the current offset of the specified machine instruction
793/// from the start of the function. This offset changes as stuff is moved
794/// around inside the function.
795unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
796 MachineBasicBlock *MBB = MI->getParent();
797
798 // The offset is composed of two things: the sum of the sizes of all MBB's
799 // before this instruction's block, and the offset from the start of the block
800 // it is in.
801 unsigned Offset = BBInfo[MBB->getNumber()].Offset;
802
803 // Sum instructions before MI in MBB.
804 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
805 assert(I != MBB->end() && "Didn't find MI in its own basic block?")(static_cast<void> (0));
806 Offset += TII->getInstSizeInBytes(*I);
807 }
808 return Offset;
809}
810
811/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
812/// ID.
813static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
814 const MachineBasicBlock *RHS) {
815 return LHS->getNumber() < RHS->getNumber();
816}
817
818/// updateForInsertedWaterBlock - When a block is newly inserted into the
819/// machine function, it upsets all of the block numbers. Renumber the blocks
820/// and update the arrays that parallel this numbering.
821void MipsConstantIslands::updateForInsertedWaterBlock
822 (MachineBasicBlock *NewBB) {
823 // Renumber the MBB's to keep them consecutive.
824 NewBB->getParent()->RenumberBlocks(NewBB);
825
826 // Insert an entry into BBInfo to align it properly with the (newly
827 // renumbered) block numbers.
828 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
829
830 // Next, update WaterList. Specifically, we need to add NewMBB as having
831 // available water after it.
832 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
833 WaterList.insert(IP, NewBB);
834}
835
836unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
837 return getOffsetOf(U.MI);
838}
839
840/// Split the basic block containing MI into two blocks, which are joined by
841/// an unconditional branch. Update data structures and renumber blocks to
842/// account for this change and returns the newly created block.
843MachineBasicBlock *
844MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
845 MachineBasicBlock *OrigBB = MI.getParent();
846
847 // Create a new MBB for the code after the OrigBB.
848 MachineBasicBlock *NewBB =
849 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
850 MachineFunction::iterator MBBI = ++OrigBB->getIterator();
851 MF->insert(MBBI, NewBB);
852
853 // Splice the instructions starting with MI over to NewBB.
854 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
855
856 // Add an unconditional branch from OrigBB to NewBB.
857 // Note the new unconditional branch is not being recorded.
858 // There doesn't seem to be meaningful DebugInfo available; this doesn't
859 // correspond to anything in the source.
860 BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
861 ++NumSplit;
862
863 // Update the CFG. All succs of OrigBB are now succs of NewBB.
864 NewBB->transferSuccessors(OrigBB);
865
866 // OrigBB branches to NewBB.
867 OrigBB->addSuccessor(NewBB);
868
869 // Update internal data structures to account for the newly inserted MBB.
870 // This is almost the same as updateForInsertedWaterBlock, except that
871 // the Water goes after OrigBB, not NewBB.
872 MF->RenumberBlocks(NewBB);
873
874 // Insert an entry into BBInfo to align it properly with the (newly
875 // renumbered) block numbers.
876 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
877
878 // Next, update WaterList. Specifically, we need to add OrigMBB as having
879 // available water after it (but not if it's already there, which happens
880 // when splitting before a conditional branch that is followed by an
881 // unconditional branch - in that case we want to insert NewBB).
882 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
883 MachineBasicBlock* WaterBB = *IP;
884 if (WaterBB == OrigBB)
885 WaterList.insert(std::next(IP), NewBB);
886 else
887 WaterList.insert(IP, OrigBB);
888 NewWaterList.insert(OrigBB);
889
890 // Figure out how large the OrigBB is. As the first half of the original
891 // block, it cannot contain a tablejump. The size includes
892 // the new jump we added. (It should be possible to do this without
893 // recounting everything, but it's very confusing, and this is rarely
894 // executed.)
895 computeBlockSize(OrigBB);
896
897 // Figure out how large the NewMBB is. As the second half of the original
898 // block, it may contain a tablejump.
899 computeBlockSize(NewBB);
900
901 // All BBOffsets following these blocks must be modified.
902 adjustBBOffsetsAfter(OrigBB);
903
904 return NewBB;
905}
906
907/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
908/// reference) is within MaxDisp of TrialOffset (a proposed location of a
909/// constant pool entry).
910bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
911 unsigned TrialOffset, unsigned MaxDisp,
912 bool NegativeOK) {
913 if (UserOffset <= TrialOffset) {
914 // User before the Trial.
915 if (TrialOffset - UserOffset <= MaxDisp)
916 return true;
917 } else if (NegativeOK) {
918 if (UserOffset - TrialOffset <= MaxDisp)
919 return true;
920 }
921 return false;
922}
923
924/// isWaterInRange - Returns true if a CPE placed after the specified
925/// Water (a basic block) will be in range for the specific MI.
926///
927/// Compute how much the function will grow by inserting a CPE after Water.
928bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
929 MachineBasicBlock* Water, CPUser &U,
930 unsigned &Growth) {
931 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset();
932 unsigned NextBlockOffset;
933 Align NextBlockAlignment;
934 MachineFunction::const_iterator NextBlock = ++Water->getIterator();
935 if (NextBlock == MF->end()) {
936 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
937 NextBlockAlignment = Align(1);
938 } else {
939 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
940 NextBlockAlignment = NextBlock->getAlignment();
941 }
942 unsigned Size = U.CPEMI->getOperand(2).getImm();
943 unsigned CPEEnd = CPEOffset + Size;
944
945 // The CPE may be able to hide in the alignment padding before the next
946 // block. It may also cause more padding to be required if it is more aligned
947 // that the next block.
948 if (CPEEnd > NextBlockOffset) {
949 Growth = CPEEnd - NextBlockOffset;
950 // Compute the padding that would go at the end of the CPE to align the next
951 // block.
952 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
953
954 // If the CPE is to be inserted before the instruction, that will raise
955 // the offset of the instruction. Also account for unknown alignment padding
956 // in blocks between CPE and the user.
957 if (CPEOffset < UserOffset)
958 UserOffset += Growth;
959 } else
960 // CPE fits in existing padding.
961 Growth = 0;
962
963 return isOffsetInRange(UserOffset, CPEOffset, U);
964}
965
966/// isCPEntryInRange - Returns true if the distance between specific MI and
967/// specific ConstPool entry instruction can fit in MI's displacement field.
968bool MipsConstantIslands::isCPEntryInRange
969 (MachineInstr *MI, unsigned UserOffset,
970 MachineInstr *CPEMI, unsigned MaxDisp,
971 bool NegOk, bool DoDump) {
972 unsigned CPEOffset = getOffsetOf(CPEMI);
973
974 if (DoDump) {
975 LLVM_DEBUG({do { } while (false)
976 unsigned Block = MI->getParent()->getNumber();do { } while (false)
977 const BasicBlockInfo &BBI = BBInfo[Block];do { } while (false)
978 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()do { } while (false)
979 << " max delta=" << MaxDispdo { } while (false)
980 << format(" insn address=%#x", UserOffset) << " in "do { } while (false)
981 << printMBBReference(*MI->getParent()) << ": "do { } while (false)
982 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MIdo { } while (false)
983 << format("CPE address=%#x offset=%+d: ", CPEOffset,do { } while (false)
984 int(CPEOffset - UserOffset));do { } while (false)
985 })do { } while (false);
986 }
987
988 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
989}
990
991#ifndef NDEBUG1
992/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
993/// unconditionally branches to its only successor.
994static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
995 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
996 return false;
997 MachineBasicBlock *Succ = *MBB->succ_begin();
998 MachineBasicBlock *Pred = *MBB->pred_begin();
999 MachineInstr *PredMI = &Pred->back();
1000 if (PredMI->getOpcode() == Mips::Bimm16)
1001 return PredMI->getOperand(0).getMBB() == Succ;
1002 return false;
1003}
1004#endif
1005
1006void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1007 unsigned BBNum = BB->getNumber();
1008 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1009 // Get the offset and known bits at the end of the layout predecessor.
1010 // Include the alignment of the current block.
1011 unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1012 BBInfo[i].Offset = Offset;
1013 }
1014}
1015
1016/// decrementCPEReferenceCount - find the constant pool entry with index CPI
1017/// and instruction CPEMI, and decrement its refcount. If the refcount
1018/// becomes 0 remove the entry and instruction. Returns true if we removed
1019/// the entry, false if we didn't.
1020bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1021 MachineInstr *CPEMI) {
1022 // Find the old entry. Eliminate it if it is no longer used.
1023 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1024 assert(CPE && "Unexpected!")(static_cast<void> (0));
1025 if (--CPE->RefCount == 0) {
1026 removeDeadCPEMI(CPEMI);
1027 CPE->CPEMI = nullptr;
1028 --NumCPEs;
1029 return true;
1030 }
1031 return false;
1032}
1033
1034/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1035/// if not, see if an in-range clone of the CPE is in range, and if so,
1036/// change the data structures so the user references the clone. Returns:
1037/// 0 = no existing entry found
1038/// 1 = entry found, and there were no code insertions or deletions
1039/// 2 = entry found, and there were code insertions or deletions
1040int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1041{
1042 MachineInstr *UserMI = U.MI;
1043 MachineInstr *CPEMI = U.CPEMI;
1044
1045 // Check to see if the CPE is already in-range.
1046 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1047 true)) {
1048 LLVM_DEBUG(dbgs() << "In range\n")do { } while (false);
1049 return 1;
1050 }
1051
1052 // No. Look for previously created clones of the CPE that are in range.
1053 unsigned CPI = CPEMI->getOperand(1).getIndex();
1054 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1055 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1056 // We already tried this one
1057 if (CPEs[i].CPEMI == CPEMI)
1058 continue;
1059 // Removing CPEs can leave empty entries, skip
1060 if (CPEs[i].CPEMI == nullptr)
1061 continue;
1062 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1063 U.NegOk)) {
1064 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"do { } while (false)
1065 << CPEs[i].CPI << "\n")do { } while (false);
1066 // Point the CPUser node to the replacement
1067 U.CPEMI = CPEs[i].CPEMI;
1068 // Change the CPI in the instruction operand to refer to the clone.
1069 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1070 if (UserMI->getOperand(j).isCPI()) {
1071 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1072 break;
1073 }
1074 // Adjust the refcount of the clone...
1075 CPEs[i].RefCount++;
1076 // ...and the original. If we didn't remove the old entry, none of the
1077 // addresses changed, so we don't need another pass.
1078 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1079 }
1080 }
1081 return 0;
1082}
1083
1084/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1085/// This version checks if the longer form of the instruction can be used to
1086/// to satisfy things.
1087/// if not, see if an in-range clone of the CPE is in range, and if so,
1088/// change the data structures so the user references the clone. Returns:
1089/// 0 = no existing entry found
1090/// 1 = entry found, and there were no code insertions or deletions
1091/// 2 = entry found, and there were code insertions or deletions
1092int MipsConstantIslands::findLongFormInRangeCPEntry
1093 (CPUser& U, unsigned UserOffset)
1094{
1095 MachineInstr *UserMI = U.MI;
1096 MachineInstr *CPEMI = U.CPEMI;
1097
1098 // Check to see if the CPE is already in-range.
1099 if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1100 U.getLongFormMaxDisp(), U.NegOk,
1101 true)) {
1102 LLVM_DEBUG(dbgs() << "In range\n")do { } while (false);
1103 UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1104 U.setMaxDisp(U.getLongFormMaxDisp());
1105 return 2; // instruction is longer length now
1106 }
1107
1108 // No. Look for previously created clones of the CPE that are in range.
1109 unsigned CPI = CPEMI->getOperand(1).getIndex();
1110 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1111 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1112 // We already tried this one
1113 if (CPEs[i].CPEMI == CPEMI)
1114 continue;
1115 // Removing CPEs can leave empty entries, skip
1116 if (CPEs[i].CPEMI == nullptr)
1117 continue;
1118 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1119 U.getLongFormMaxDisp(), U.NegOk)) {
1120 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"do { } while (false)
1121 << CPEs[i].CPI << "\n")do { } while (false);
1122 // Point the CPUser node to the replacement
1123 U.CPEMI = CPEs[i].CPEMI;
1124 // Change the CPI in the instruction operand to refer to the clone.
1125 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1126 if (UserMI->getOperand(j).isCPI()) {
1127 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1128 break;
1129 }
1130 // Adjust the refcount of the clone...
1131 CPEs[i].RefCount++;
1132 // ...and the original. If we didn't remove the old entry, none of the
1133 // addresses changed, so we don't need another pass.
1134 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1135 }
1136 }
1137 return 0;
1138}
1139
1140/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1141/// the specific unconditional branch instruction.
1142static inline unsigned getUnconditionalBrDisp(int Opc) {
1143 switch (Opc) {
1144 case Mips::Bimm16:
1145 return ((1<<10)-1)*2;
1146 case Mips::BimmX16:
1147 return ((1<<16)-1)*2;
1148 default:
1149 break;
1150 }
1151 return ((1<<16)-1)*2;
1152}
1153
1154/// findAvailableWater - Look for an existing entry in the WaterList in which
1155/// we can place the CPE referenced from U so it's within range of U's MI.
1156/// Returns true if found, false if not. If it returns true, WaterIter
1157/// is set to the WaterList entry.
1158/// To ensure that this pass
1159/// terminates, the CPE location for a particular CPUser is only allowed to
1160/// move to a lower address, so search backward from the end of the list and
1161/// prefer the first water that is in range.
1162bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1163 water_iterator &WaterIter) {
1164 if (WaterList.empty())
1165 return false;
1166
1167 unsigned BestGrowth = ~0u;
1168 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1169 --IP) {
1170 MachineBasicBlock* WaterBB = *IP;
1171 // Check if water is in range and is either at a lower address than the
1172 // current "high water mark" or a new water block that was created since
1173 // the previous iteration by inserting an unconditional branch. In the
1174 // latter case, we want to allow resetting the high water mark back to
1175 // this new water since we haven't seen it before. Inserting branches
1176 // should be relatively uncommon and when it does happen, we want to be
1177 // sure to take advantage of it for all the CPEs near that block, so that
1178 // we don't insert more branches than necessary.
1179 unsigned Growth;
1180 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1181 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1182 NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1183 // This is the least amount of required padding seen so far.
1184 BestGrowth = Growth;
1185 WaterIter = IP;
1186 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)do { } while (false)
1187 << " Growth=" << Growth << '\n')do { } while (false);
1188
1189 // Keep looking unless it is perfect.
1190 if (BestGrowth == 0)
1191 return true;
1192 }
1193 if (IP == B)
1194 break;
1195 }
1196 return BestGrowth != ~0u;
1197}
1198
1199/// createNewWater - No existing WaterList entry will work for
1200/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1201/// block is used if in range, and the conditional branch munged so control
1202/// flow is correct. Otherwise the block is split to create a hole with an
1203/// unconditional branch around it. In either case NewMBB is set to a
1204/// block following which the new island can be inserted (the WaterList
1205/// is not adjusted).
1206void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1207 unsigned UserOffset,
1208 MachineBasicBlock *&NewMBB) {
1209 CPUser &U = CPUsers[CPUserIndex];
1210 MachineInstr *UserMI = U.MI;
1211 MachineInstr *CPEMI = U.CPEMI;
1212 MachineBasicBlock *UserMBB = UserMI->getParent();
1213 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1214
1215 // If the block does not end in an unconditional branch already, and if the
1216 // end of the block is within range, make new water there.
1217 if (BBHasFallthrough(UserMBB)) {
1218 // Size of branch to insert.
1219 unsigned Delta = 2;
1220 // Compute the offset where the CPE will begin.
1221 unsigned CPEOffset = UserBBI.postOffset() + Delta;
1222
1223 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1224 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)do { } while (false)
1225 << format(", expected CPE offset %#x\n", CPEOffset))do { } while (false);
1226 NewMBB = &*++UserMBB->getIterator();
1227 // Add an unconditional branch from UserMBB to fallthrough block. Record
1228 // it for branch lengthening; this new branch will not get out of range,
1229 // but if the preceding conditional branch is out of range, the targets
1230 // will be exchanged, and the altered branch may be out of range, so the
1231 // machinery has to know about it.
1232 int UncondBr = Mips::Bimm16;
1233 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1234 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1235 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1236 MaxDisp, false, UncondBr));
1237 BBInfo[UserMBB->getNumber()].Size += Delta;
1238 adjustBBOffsetsAfter(UserMBB);
1239 return;
1240 }
1241 }
1242
1243 // What a big block. Find a place within the block to split it.
1244
1245 // Try to split the block so it's fully aligned. Compute the latest split
1246 // point where we can add a 4-byte branch instruction, and then align to
1247 // Align which is the largest possible alignment in the function.
1248 const Align Align = MF->getAlignment();
1249 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1250 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",do { } while (false)
1251 BaseInsertOffset))do { } while (false);
1252
1253 // The 4 in the following is for the unconditional branch we'll be inserting
1254 // Alignment of the island is handled
1255 // inside isOffsetInRange.
1256 BaseInsertOffset -= 4;
1257
1258 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)do { } while (false)
1259 << " la=" << Log2(Align) << '\n')do { } while (false);
1260
1261 // This could point off the end of the block if we've already got constant
1262 // pool entries following this block; only the last one is in the water list.
1263 // Back past any possible branches (allow for a conditional and a maximally
1264 // long unconditional).
1265 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1266 BaseInsertOffset = UserBBI.postOffset() - 8;
1267 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset))do { } while (false);
1268 }
1269 unsigned EndInsertOffset = BaseInsertOffset + 4 +
1270 CPEMI->getOperand(2).getImm();
1271 MachineBasicBlock::iterator MI = UserMI;
1272 ++MI;
1273 unsigned CPUIndex = CPUserIndex+1;
1274 unsigned NumCPUsers = CPUsers.size();
1275 //MachineInstr *LastIT = 0;
1276 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1277 Offset < BaseInsertOffset;
1278 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1279 assert(MI != UserMBB->end() && "Fell off end of block")(static_cast<void> (0));
1280 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1281 CPUser &U = CPUsers[CPUIndex];
1282 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1283 // Shift intertion point by one unit of alignment so it is within reach.
1284 BaseInsertOffset -= Align.value();
1285 EndInsertOffset -= Align.value();
1286 }
1287 // This is overly conservative, as we don't account for CPEMIs being
1288 // reused within the block, but it doesn't matter much. Also assume CPEs
1289 // are added in order with alignment padding. We may eventually be able
1290 // to pack the aligned CPEs better.
1291 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1292 CPUIndex++;
1293 }
1294 }
1295
1296 NewMBB = splitBlockBeforeInstr(*--MI);
1297}
1298
1299/// handleConstantPoolUser - Analyze the specified user, checking to see if it
1300/// is out-of-range. If so, pick up the constant pool value and move it some
1301/// place in-range. Return true if we changed any addresses (thus must run
1302/// another pass of branch lengthening), false otherwise.
1303bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1304 CPUser &U = CPUsers[CPUserIndex];
1305 MachineInstr *UserMI = U.MI;
1306 MachineInstr *CPEMI = U.CPEMI;
1307 unsigned CPI = CPEMI->getOperand(1).getIndex();
1308 unsigned Size = CPEMI->getOperand(2).getImm();
1309 // Compute this only once, it's expensive.
1310 unsigned UserOffset = getUserOffset(U);
1311
1312 // See if the current entry is within range, or there is a clone of it
1313 // in range.
1314 int result = findInRangeCPEntry(U, UserOffset);
1315 if (result==1) return false;
1316 else if (result==2) return true;
1317
1318 // Look for water where we can place this CPE.
1319 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1320 MachineBasicBlock *NewMBB;
1321 water_iterator IP;
1322 if (findAvailableWater(U, UserOffset, IP)) {
1323 LLVM_DEBUG(dbgs() << "Found water in range\n")do { } while (false);
1324 MachineBasicBlock *WaterBB = *IP;
1325
1326 // If the original WaterList entry was "new water" on this iteration,
1327 // propagate that to the new island. This is just keeping NewWaterList
1328 // updated to match the WaterList, which will be updated below.
1329 if (NewWaterList.erase(WaterBB))
1330 NewWaterList.insert(NewIsland);
1331
1332 // The new CPE goes before the following block (NewMBB).
1333 NewMBB = &*++WaterBB->getIterator();
1334 } else {
1335 // No water found.
1336 // we first see if a longer form of the instrucion could have reached
1337 // the constant. in that case we won't bother to split
1338 if (!NoLoadRelaxation) {
1339 result = findLongFormInRangeCPEntry(U, UserOffset);
1340 if (result != 0) return true;
1341 }
1342 LLVM_DEBUG(dbgs() << "No water found\n")do { } while (false);
1343 createNewWater(CPUserIndex, UserOffset, NewMBB);
1344
1345 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1346 // called while handling branches so that the water will be seen on the
1347 // next iteration for constant pools, but in this context, we don't want
1348 // it. Check for this so it will be removed from the WaterList.
1349 // Also remove any entry from NewWaterList.
1350 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1351 IP = llvm::find(WaterList, WaterBB);
1352 if (IP != WaterList.end())
1353 NewWaterList.erase(WaterBB);
1354
1355 // We are adding new water. Update NewWaterList.
1356 NewWaterList.insert(NewIsland);
1357 }
1358
1359 // Remove the original WaterList entry; we want subsequent insertions in
1360 // this vicinity to go after the one we're about to insert. This
1361 // considerably reduces the number of times we have to move the same CPE
1362 // more than once and is also important to ensure the algorithm terminates.
1363 if (IP != WaterList.end())
1364 WaterList.erase(IP);
1365
1366 // Okay, we know we can put an island before NewMBB now, do it!
1367 MF->insert(NewMBB->getIterator(), NewIsland);
1368
1369 // Update internal data structures to account for the newly inserted MBB.
1370 updateForInsertedWaterBlock(NewIsland);
1371
1372 // Decrement the old entry, and remove it if refcount becomes 0.
1373 decrementCPEReferenceCount(CPI, CPEMI);
1374
1375 // No existing clone of this CPE is within range.
1376 // We will be generating a new clone. Get a UID for it.
1377 unsigned ID = createPICLabelUId();
1378
1379 // Now that we have an island to add the CPE to, clone the original CPE and
1380 // add it to the island.
1381 U.HighWaterMark = NewIsland;
1382 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1383 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1384 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1385 ++NumCPEs;
1386
1387 // Mark the basic block as aligned as required by the const-pool entry.
1388 NewIsland->setAlignment(getCPEAlign(*U.CPEMI));
1389
1390 // Increase the size of the island block to account for the new entry.
1391 BBInfo[NewIsland->getNumber()].Size += Size;
1392 adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1393
1394 // Finally, change the CPI in the instruction operand to be ID.
1395 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1396 if (UserMI->getOperand(i).isCPI()) {
1397 UserMI->getOperand(i).setIndex(ID);
1398 break;
1399 }
1400
1401 LLVM_DEBUG(do { } while (false)
1402 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPIdo { } while (false)
1403 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset))do { } while (false);
1404
1405 return true;
1406}
1407
1408/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1409/// sizes and offsets of impacted basic blocks.
1410void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1411 MachineBasicBlock *CPEBB = CPEMI->getParent();
1412 unsigned Size = CPEMI->getOperand(2).getImm();
1413 CPEMI->eraseFromParent();
1414 BBInfo[CPEBB->getNumber()].Size -= Size;
1415 // All succeeding offsets have the current size value added in, fix this.
1416 if (CPEBB->empty()) {
1417 BBInfo[CPEBB->getNumber()].Size = 0;
1418
1419 // This block no longer needs to be aligned.
1420 CPEBB->setAlignment(Align(1));
1421 } else {
1422 // Entries are sorted by descending alignment, so realign from the front.
1423 CPEBB->setAlignment(getCPEAlign(*CPEBB->begin()));
1424 }
1425
1426 adjustBBOffsetsAfter(CPEBB);
1427 // An island has only one predecessor BB and one successor BB. Check if
1428 // this BB's predecessor jumps directly to this BB's successor. This
1429 // shouldn't happen currently.
1430 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?")(static_cast<void> (0));
1431 // FIXME: remove the empty blocks after all the work is done?
1432}
1433
1434/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1435/// are zero.
1436bool MipsConstantIslands::removeUnusedCPEntries() {
1437 unsigned MadeChange = false;
1438 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1439 std::vector<CPEntry> &CPEs = CPEntries[i];
1440 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1441 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1442 removeDeadCPEMI(CPEs[j].CPEMI);
1443 CPEs[j].CPEMI = nullptr;
1444 MadeChange = true;
1445 }
1446 }
1447 }
1448 return MadeChange;
1449}
1450
1451/// isBBInRange - Returns true if the distance between specific MI and
1452/// specific BB can fit in MI's displacement field.
1453bool MipsConstantIslands::isBBInRange
1454 (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1455 unsigned PCAdj = 4;
1456 unsigned BrOffset = getOffsetOf(MI) + PCAdj;
1457 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1458
1459 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)do { } while (false)
1460 << " from " << printMBBReference(*MI->getParent())do { } while (false)
1461 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)do { } while (false)
1462 << " to " << DestOffset << " offset "do { } while (false)
1463 << int(DestOffset - BrOffset) << "\t" << *MI)do { } while (false);
1464
1465 if (BrOffset <= DestOffset) {
1466 // Branch before the Dest.
1467 if (DestOffset-BrOffset <= MaxDisp)
1468 return true;
1469 } else {
1470 if (BrOffset-DestOffset <= MaxDisp)
1471 return true;
1472 }
1473 return false;
1474}
1475
1476/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1477/// away to fit in its displacement field.
1478bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1479 MachineInstr *MI = Br.MI;
1480 unsigned TargetOperand = branchTargetOperand(MI);
1481 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1482
1483 // Check to see if the DestBB is already in-range.
1484 if (isBBInRange(MI, DestBB, Br.MaxDisp))
1485 return false;
1486
1487 if (!Br.isCond)
1488 return fixupUnconditionalBr(Br);
1489 return fixupConditionalBr(Br);
1490}
1491
1492/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1493/// too far away to fit in its displacement field. If the LR register has been
1494/// spilled in the epilogue, then we can use BL to implement a far jump.
1495/// Otherwise, add an intermediate branch instruction to a branch.
1496bool
1497MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1498 MachineInstr *MI = Br.MI;
1499 MachineBasicBlock *MBB = MI->getParent();
1500 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1501 // Use BL to implement far jump.
1502 unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1503 if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1504 Br.MaxDisp = BimmX16MaxDisp;
1505 MI->setDesc(TII->get(Mips::BimmX16));
1506 }
1507 else {
1508 // need to give the math a more careful look here
1509 // this is really a segment address and not
1510 // a PC relative address. FIXME. But I think that
1511 // just reducing the bits by 1 as I've done is correct.
1512 // The basic block we are branching too much be longword aligned.
1513 // we know that RA is saved because we always save it right now.
1514 // this requirement will be relaxed later but we also have an alternate
1515 // way to implement this that I will implement that does not need jal.
1516 // We should have a way to back out this alignment restriction
1517 // if we "can" later. but it is not harmful.
1518 //
1519 DestBB->setAlignment(Align(4));
1520 Br.MaxDisp = ((1<<24)-1) * 2;
1521 MI->setDesc(TII->get(Mips::JalB16));
1522 }
1523 BBInfo[MBB->getNumber()].Size += 2;
1524 adjustBBOffsetsAfter(MBB);
1525 HasFarJump = true;
1526 ++NumUBrFixed;
1527
1528 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI)do { } while (false);
1529
1530 return true;
1531}
1532
1533/// fixupConditionalBr - Fix up a conditional branch whose destination is too
1534/// far away to fit in its displacement field. It is converted to an inverse
1535/// conditional branch + an unconditional branch to the destination.
1536bool
1537MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1538 MachineInstr *MI = Br.MI;
1539 unsigned TargetOperand = branchTargetOperand(MI);
1540 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1541 unsigned Opcode = MI->getOpcode();
1542 unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1543 unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1544
1545 // Check to see if the DestBB is already in-range.
1546 if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1547 Br.MaxDisp = LongFormMaxOff;
1548 MI->setDesc(TII->get(LongFormOpcode));
1549 return true;
1550 }
1551
1552 // Add an unconditional branch to the destination and invert the branch
1553 // condition to jump over it:
1554 // bteqz L1
1555 // =>
1556 // bnez L2
1557 // b L1
1558 // L2:
1559
1560 // If the branch is at the end of its MBB and that has a fall-through block,
1561 // direct the updated conditional branch to the fall-through block. Otherwise,
1562 // split the MBB before the next instruction.
1563 MachineBasicBlock *MBB = MI->getParent();
1564 MachineInstr *BMI = &MBB->back();
1565 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1566 unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1567
1568 ++NumCBrFixed;
1569 if (BMI != MI) {
1570 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1571 BMI->isUnconditionalBranch()) {
1572 // Last MI in the BB is an unconditional branch. Can we simply invert the
1573 // condition and swap destinations:
1574 // beqz L1
1575 // b L2
1576 // =>
1577 // bnez L2
1578 // b L1
1579 unsigned BMITargetOperand = branchTargetOperand(BMI);
1580 MachineBasicBlock *NewDest =
1581 BMI->getOperand(BMITargetOperand).getMBB();
1582 if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1583 LLVM_DEBUG(do { } while (false)
1584 dbgs() << " Invert Bcc condition and swap its destination with "do { } while (false)
1585 << *BMI)do { } while (false);
1586 MI->setDesc(TII->get(OppositeBranchOpcode));
1587 BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1588 MI->getOperand(TargetOperand).setMBB(NewDest);
1589 return true;
1590 }
1591 }
1592 }
1593
1594 if (NeedSplit) {
1595 splitBlockBeforeInstr(*MI);
1596 // No need for the branch to the next block. We're adding an unconditional
1597 // branch to the destination.
1598 int delta = TII->getInstSizeInBytes(MBB->back());
1599 BBInfo[MBB->getNumber()].Size -= delta;
1600 MBB->back().eraseFromParent();
1601 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1602 }
1603 MachineBasicBlock *NextBB = &*++MBB->getIterator();
1604
1605 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)do { } while (false)
1606 << " also invert condition and change dest. to "do { } while (false)
1607 << printMBBReference(*NextBB) << "\n")do { } while (false);
1608
1609 // Insert a new conditional branch and a new unconditional branch.
1610 // Also update the ImmBranch as well as adding a new entry for the new branch.
1611 if (MI->getNumExplicitOperands() == 2) {
1612 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1613 .addReg(MI->getOperand(0).getReg())
1614 .addMBB(NextBB);
1615 } else {
1616 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1617 .addMBB(NextBB);
1618 }
1619 Br.MI = &MBB->back();
1620 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1621 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1622 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1623 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1624 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1625
1626 // Remove the old conditional branch. It may or may not still be in MBB.
1627 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1628 MI->eraseFromParent();
1629 adjustBBOffsetsAfter(MBB);
1630 return true;
1631}
1632
1633void MipsConstantIslands::prescanForConstants() {
1634 unsigned J = 0;
1635 (void)J;
1636 for (MachineFunction::iterator B =
1637 MF->begin(), E = MF->end(); B != E; ++B) {
1638 for (MachineBasicBlock::instr_iterator I =
1639 B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1640 switch(I->getDesc().getOpcode()) {
1641 case Mips::LwConstant32: {
1642 PrescannedForConstants = true;
1643 LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n")do { } while (false);
1644 J = I->getNumOperands();
Value stored to 'J' is never read
1645 LLVM_DEBUG(dbgs() << "num operands " << J << "\n")do { } while (false);
1646 MachineOperand& Literal = I->getOperand(1);
1647 if (Literal.isImm()) {
1648 int64_t V = Literal.getImm();
1649 LLVM_DEBUG(dbgs() << "literal " << V << "\n")do { } while (false);
1650 Type *Int32Ty =
1651 Type::getInt32Ty(MF->getFunction().getContext());
1652 const Constant *C = ConstantInt::get(Int32Ty, V);
1653 unsigned index = MCP->getConstantPoolIndex(C, Align(4));
1654 I->getOperand(2).ChangeToImmediate(index);
1655 LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n")do { } while (false);
1656 I->setDesc(TII->get(Mips::LwRxPcTcp16));
1657 I->RemoveOperand(1);
1658 I->RemoveOperand(1);
1659 I->addOperand(MachineOperand::CreateCPI(index, 0));
1660 I->addOperand(MachineOperand::CreateImm(4));
1661 }
1662 break;
1663 }
1664 default:
1665 break;
1666 }
1667 }
1668 }
1669}
1670
1671/// Returns a pass that converts branches to long branches.
1672FunctionPass *llvm::createMipsConstantIslandPass() {
1673 return new MipsConstantIslands();
1674}