Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Target/Mips/MipsLegalizerInfo.cpp
Warning:line 360, column 25
The result of the left shift is undefined due to shifting by '4294967295', which is greater or equal to the width of type 'int'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name MipsLegalizerInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/Mips -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Target/Mips -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Target/Mips/MipsLegalizerInfo.cpp

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Target/Mips/MipsLegalizerInfo.cpp

1//===- MipsLegalizerInfo.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the targeting of the Machinelegalizer class for Mips.
10/// \todo This should be generated by TableGen.
11//===----------------------------------------------------------------------===//
12
13#include "MipsLegalizerInfo.h"
14#include "MipsTargetMachine.h"
15#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
17#include "llvm/IR/IntrinsicsMips.h"
18
19using namespace llvm;
20
21struct TypesAndMemOps {
22 LLT ValTy;
23 LLT PtrTy;
24 unsigned MemSize;
25 bool SystemSupportsUnalignedAccess;
26};
27
28// Assumes power of 2 memory size. Subtargets that have only naturally-aligned
29// memory access need to perform additional legalization here.
30static bool isUnalignedMemmoryAccess(uint64_t MemSize, uint64_t AlignInBits) {
31 assert(isPowerOf2_64(MemSize) && "Expected power of 2 memory size")(static_cast <bool> (isPowerOf2_64(MemSize) && "Expected power of 2 memory size"
) ? void (0) : __assert_fail ("isPowerOf2_64(MemSize) && \"Expected power of 2 memory size\""
, "llvm/lib/Target/Mips/MipsLegalizerInfo.cpp", 31, __extension__
__PRETTY_FUNCTION__))
;
32 assert(isPowerOf2_64(AlignInBits) && "Expected power of 2 align")(static_cast <bool> (isPowerOf2_64(AlignInBits) &&
"Expected power of 2 align") ? void (0) : __assert_fail ("isPowerOf2_64(AlignInBits) && \"Expected power of 2 align\""
, "llvm/lib/Target/Mips/MipsLegalizerInfo.cpp", 32, __extension__
__PRETTY_FUNCTION__))
;
33 if (MemSize > AlignInBits)
34 return true;
35 return false;
36}
37
38static bool
39CheckTy0Ty1MemSizeAlign(const LegalityQuery &Query,
40 std::initializer_list<TypesAndMemOps> SupportedValues) {
41 unsigned QueryMemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
42
43 // Non power of two memory access is never legal.
44 if (!isPowerOf2_64(QueryMemSize))
45 return false;
46
47 for (auto &Val : SupportedValues) {
48 if (Val.ValTy != Query.Types[0])
49 continue;
50 if (Val.PtrTy != Query.Types[1])
51 continue;
52 if (Val.MemSize != QueryMemSize)
53 continue;
54 if (!Val.SystemSupportsUnalignedAccess &&
55 isUnalignedMemmoryAccess(QueryMemSize, Query.MMODescrs[0].AlignInBits))
56 return false;
57 return true;
58 }
59 return false;
60}
61
62static bool CheckTyN(unsigned N, const LegalityQuery &Query,
63 std::initializer_list<LLT> SupportedValues) {
64 return llvm::is_contained(SupportedValues, Query.Types[N]);
65}
66
67MipsLegalizerInfo::MipsLegalizerInfo(const MipsSubtarget &ST) {
68 using namespace TargetOpcode;
69
70 const LLT s1 = LLT::scalar(1);
71 const LLT s8 = LLT::scalar(8);
72 const LLT s16 = LLT::scalar(16);
73 const LLT s32 = LLT::scalar(32);
74 const LLT s64 = LLT::scalar(64);
75 const LLT v16s8 = LLT::fixed_vector(16, 8);
76 const LLT v8s16 = LLT::fixed_vector(8, 16);
77 const LLT v4s32 = LLT::fixed_vector(4, 32);
78 const LLT v2s64 = LLT::fixed_vector(2, 64);
79 const LLT p0 = LLT::pointer(0, 32);
80
81 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
82 .legalIf([=, &ST](const LegalityQuery &Query) {
83 if (CheckTyN(0, Query, {s32}))
84 return true;
85 if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
86 return true;
87 return false;
88 })
89 .clampScalar(0, s32, s32);
90
91 getActionDefinitionsBuilder({G_UADDO, G_UADDE, G_USUBO, G_USUBE, G_UMULO})
92 .lowerFor({{s32, s1}});
93
94 getActionDefinitionsBuilder(G_UMULH)
95 .legalFor({s32})
96 .maxScalar(0, s32);
97
98 // MIPS32r6 does not have alignment restrictions for memory access.
99 // For MIPS32r5 and older memory access must be naturally-aligned i.e. aligned
100 // to at least a multiple of its own size. There is however a two instruction
101 // combination that performs 4 byte unaligned access (lwr/lwl and swl/swr)
102 // therefore 4 byte load and store are legal and will use NoAlignRequirements.
103 bool NoAlignRequirements = true;
104
105 getActionDefinitionsBuilder({G_LOAD, G_STORE})
106 .legalIf([=, &ST](const LegalityQuery &Query) {
107 if (CheckTy0Ty1MemSizeAlign(
108 Query, {{s32, p0, 8, NoAlignRequirements},
109 {s32, p0, 16, ST.systemSupportsUnalignedAccess()},
110 {s32, p0, 32, NoAlignRequirements},
111 {p0, p0, 32, NoAlignRequirements},
112 {s64, p0, 64, ST.systemSupportsUnalignedAccess()}}))
113 return true;
114 if (ST.hasMSA() && CheckTy0Ty1MemSizeAlign(
115 Query, {{v16s8, p0, 128, NoAlignRequirements},
116 {v8s16, p0, 128, NoAlignRequirements},
117 {v4s32, p0, 128, NoAlignRequirements},
118 {v2s64, p0, 128, NoAlignRequirements}}))
119 return true;
120 return false;
121 })
122 // Custom lower scalar memory access, up to 8 bytes, for:
123 // - non-power-of-2 MemSizes
124 // - unaligned 2 or 8 byte MemSizes for MIPS32r5 and older
125 .customIf([=, &ST](const LegalityQuery &Query) {
126 if (!Query.Types[0].isScalar() || Query.Types[1] != p0 ||
127 Query.Types[0] == s1)
128 return false;
129
130 unsigned Size = Query.Types[0].getSizeInBits();
131 unsigned QueryMemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
132 assert(QueryMemSize <= Size && "Scalar can't hold MemSize")(static_cast <bool> (QueryMemSize <= Size &&
"Scalar can't hold MemSize") ? void (0) : __assert_fail ("QueryMemSize <= Size && \"Scalar can't hold MemSize\""
, "llvm/lib/Target/Mips/MipsLegalizerInfo.cpp", 132, __extension__
__PRETTY_FUNCTION__))
;
133
134 if (Size > 64 || QueryMemSize > 64)
135 return false;
136
137 if (!isPowerOf2_64(Query.MMODescrs[0].MemoryTy.getSizeInBits()))
138 return true;
139
140 if (!ST.systemSupportsUnalignedAccess() &&
141 isUnalignedMemmoryAccess(QueryMemSize,
142 Query.MMODescrs[0].AlignInBits)) {
143 assert(QueryMemSize != 32 && "4 byte load and store are legal")(static_cast <bool> (QueryMemSize != 32 && "4 byte load and store are legal"
) ? void (0) : __assert_fail ("QueryMemSize != 32 && \"4 byte load and store are legal\""
, "llvm/lib/Target/Mips/MipsLegalizerInfo.cpp", 143, __extension__
__PRETTY_FUNCTION__))
;
144 return true;
145 }
146
147 return false;
148 })
149 .minScalar(0, s32)
150 .lower();
151
152 getActionDefinitionsBuilder(G_IMPLICIT_DEF)
153 .legalFor({s32, s64});
154
155 getActionDefinitionsBuilder(G_UNMERGE_VALUES)
156 .legalFor({{s32, s64}});
157
158 getActionDefinitionsBuilder(G_MERGE_VALUES)
159 .legalFor({{s64, s32}});
160
161 getActionDefinitionsBuilder({G_ZEXTLOAD, G_SEXTLOAD})
162 .legalForTypesWithMemDesc({{s32, p0, s8, 8},
163 {s32, p0, s16, 8}})
164 .clampScalar(0, s32, s32);
165
166 getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
167 .legalIf([](const LegalityQuery &Query) { return false; })
168 .maxScalar(0, s32);
169
170 getActionDefinitionsBuilder(G_TRUNC)
171 .legalIf([](const LegalityQuery &Query) { return false; })
172 .maxScalar(1, s32);
173
174 getActionDefinitionsBuilder(G_SELECT)
175 .legalForCartesianProduct({p0, s32, s64}, {s32})
176 .minScalar(0, s32)
177 .minScalar(1, s32);
178
179 getActionDefinitionsBuilder(G_BRCOND)
180 .legalFor({s32})
181 .minScalar(0, s32);
182
183 getActionDefinitionsBuilder(G_BRJT)
184 .legalFor({{p0, s32}});
185
186 getActionDefinitionsBuilder(G_BRINDIRECT)
187 .legalFor({p0});
188
189 getActionDefinitionsBuilder(G_PHI)
190 .legalFor({p0, s32, s64})
191 .minScalar(0, s32);
192
193 getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
194 .legalFor({s32})
195 .clampScalar(0, s32, s32);
196
197 getActionDefinitionsBuilder({G_SDIV, G_SREM, G_UDIV, G_UREM})
198 .legalIf([=, &ST](const LegalityQuery &Query) {
199 if (CheckTyN(0, Query, {s32}))
200 return true;
201 if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
202 return true;
203 return false;
204 })
205 .minScalar(0, s32)
206 .libcallFor({s64});
207
208 getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
209 .legalFor({{s32, s32}})
210 .clampScalar(1, s32, s32)
211 .clampScalar(0, s32, s32);
212
213 getActionDefinitionsBuilder(G_ICMP)
214 .legalForCartesianProduct({s32}, {s32, p0})
215 .clampScalar(1, s32, s32)
216 .minScalar(0, s32);
217
218 getActionDefinitionsBuilder(G_CONSTANT)
219 .legalFor({s32})
220 .clampScalar(0, s32, s32);
221
222 getActionDefinitionsBuilder({G_PTR_ADD, G_INTTOPTR})
223 .legalFor({{p0, s32}});
224
225 getActionDefinitionsBuilder(G_PTRTOINT)
226 .legalFor({{s32, p0}});
227
228 getActionDefinitionsBuilder(G_FRAME_INDEX)
229 .legalFor({p0});
230
231 getActionDefinitionsBuilder({G_GLOBAL_VALUE, G_JUMP_TABLE})
232 .legalFor({p0});
233
234 getActionDefinitionsBuilder(G_DYN_STACKALLOC)
235 .lowerFor({{p0, s32}});
236
237 getActionDefinitionsBuilder(G_VASTART)
238 .legalFor({p0});
239
240 getActionDefinitionsBuilder(G_BSWAP)
241 .legalIf([=, &ST](const LegalityQuery &Query) {
242 if (ST.hasMips32r2() && CheckTyN(0, Query, {s32}))
243 return true;
244 return false;
245 })
246 .lowerIf([=, &ST](const LegalityQuery &Query) {
247 if (!ST.hasMips32r2() && CheckTyN(0, Query, {s32}))
248 return true;
249 return false;
250 })
251 .maxScalar(0, s32);
252
253 getActionDefinitionsBuilder(G_BITREVERSE)
254 .lowerFor({s32})
255 .maxScalar(0, s32);
256
257 getActionDefinitionsBuilder(G_CTLZ)
258 .legalFor({{s32, s32}})
259 .maxScalar(0, s32)
260 .maxScalar(1, s32);
261 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
262 .lowerFor({{s32, s32}});
263
264 getActionDefinitionsBuilder(G_CTTZ)
265 .lowerFor({{s32, s32}})
266 .maxScalar(0, s32)
267 .maxScalar(1, s32);
268 getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF)
269 .lowerFor({{s32, s32}, {s64, s64}});
270
271 getActionDefinitionsBuilder(G_CTPOP)
272 .lowerFor({{s32, s32}})
273 .clampScalar(0, s32, s32)
274 .clampScalar(1, s32, s32);
275
276 // FP instructions
277 getActionDefinitionsBuilder(G_FCONSTANT)
278 .legalFor({s32, s64});
279
280 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FABS, G_FSQRT})
281 .legalIf([=, &ST](const LegalityQuery &Query) {
282 if (CheckTyN(0, Query, {s32, s64}))
283 return true;
284 if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
285 return true;
286 return false;
287 });
288
289 getActionDefinitionsBuilder(G_FCMP)
290 .legalFor({{s32, s32}, {s32, s64}})
291 .minScalar(0, s32);
292
293 getActionDefinitionsBuilder({G_FCEIL, G_FFLOOR})
294 .libcallFor({s32, s64});
295
296 getActionDefinitionsBuilder(G_FPEXT)
297 .legalFor({{s64, s32}});
298
299 getActionDefinitionsBuilder(G_FPTRUNC)
300 .legalFor({{s32, s64}});
301
302 // FP to int conversion instructions
303 getActionDefinitionsBuilder(G_FPTOSI)
304 .legalForCartesianProduct({s32}, {s64, s32})
305 .libcallForCartesianProduct({s64}, {s64, s32})
306 .minScalar(0, s32);
307
308 getActionDefinitionsBuilder(G_FPTOUI)
309 .libcallForCartesianProduct({s64}, {s64, s32})
310 .lowerForCartesianProduct({s32}, {s64, s32})
311 .minScalar(0, s32);
312
313 // Int to FP conversion instructions
314 getActionDefinitionsBuilder(G_SITOFP)
315 .legalForCartesianProduct({s64, s32}, {s32})
316 .libcallForCartesianProduct({s64, s32}, {s64})
317 .minScalar(1, s32);
318
319 getActionDefinitionsBuilder(G_UITOFP)
320 .libcallForCartesianProduct({s64, s32}, {s64})
321 .customForCartesianProduct({s64, s32}, {s32})
322 .minScalar(1, s32);
323
324 getActionDefinitionsBuilder(G_SEXT_INREG).lower();
325
326 getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
327
328 getLegacyLegalizerInfo().computeTables();
329 verify(*ST.getInstrInfo());
330}
331
332bool MipsLegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
333 MachineInstr &MI) const {
334 using namespace TargetOpcode;
335
336 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
337 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
338
339 const LLT s32 = LLT::scalar(32);
340 const LLT s64 = LLT::scalar(64);
341
342 switch (MI.getOpcode()) {
1
Control jumps to 'case G_STORE:' at line 344
343 case G_LOAD:
344 case G_STORE: {
345 unsigned MemSize = (**MI.memoperands_begin()).getSize();
346 Register Val = MI.getOperand(0).getReg();
347 unsigned Size = MRI.getType(Val).getSizeInBits();
348
349 MachineMemOperand *MMOBase = *MI.memoperands_begin();
350
351 assert(MemSize <= 8 && "MemSize is too large")(static_cast <bool> (MemSize <= 8 && "MemSize is too large"
) ? void (0) : __assert_fail ("MemSize <= 8 && \"MemSize is too large\""
, "llvm/lib/Target/Mips/MipsLegalizerInfo.cpp", 351, __extension__
__PRETTY_FUNCTION__))
;
2
Assuming 'MemSize' is <= 8
3
'?' condition is true
352 assert(Size <= 64 && "Scalar size is too large")(static_cast <bool> (Size <= 64 && "Scalar size is too large"
) ? void (0) : __assert_fail ("Size <= 64 && \"Scalar size is too large\""
, "llvm/lib/Target/Mips/MipsLegalizerInfo.cpp", 352, __extension__
__PRETTY_FUNCTION__))
;
4
Assuming 'Size' is <= 64
5
'?' condition is true
353
354 // Split MemSize into two, P2HalfMemSize is largest power of two smaller
355 // then MemSize. e.g. 8 = 4 + 4 , 6 = 4 + 2, 3 = 2 + 1.
356 unsigned P2HalfMemSize, RemMemSize;
357 if (isPowerOf2_64(MemSize)) {
6
Taking false branch
358 P2HalfMemSize = RemMemSize = MemSize / 2;
359 } else {
360 P2HalfMemSize = 1 << Log2_32(MemSize);
7
Calling 'Log2_32'
9
Returning from 'Log2_32'
10
The result of the left shift is undefined due to shifting by '4294967295', which is greater or equal to the width of type 'int'
361 RemMemSize = MemSize - P2HalfMemSize;
362 }
363
364 Register BaseAddr = MI.getOperand(1).getReg();
365 LLT PtrTy = MRI.getType(BaseAddr);
366 MachineFunction &MF = MIRBuilder.getMF();
367
368 auto P2HalfMemOp = MF.getMachineMemOperand(MMOBase, 0, P2HalfMemSize);
369 auto RemMemOp = MF.getMachineMemOperand(MMOBase, P2HalfMemSize, RemMemSize);
370
371 if (MI.getOpcode() == G_STORE) {
372 // Widen Val to s32 or s64 in order to create legal G_LSHR or G_UNMERGE.
373 if (Size < 32)
374 Val = MIRBuilder.buildAnyExt(s32, Val).getReg(0);
375 if (Size > 32 && Size < 64)
376 Val = MIRBuilder.buildAnyExt(s64, Val).getReg(0);
377
378 auto C_P2HalfMemSize = MIRBuilder.buildConstant(s32, P2HalfMemSize);
379 auto Addr = MIRBuilder.buildPtrAdd(PtrTy, BaseAddr, C_P2HalfMemSize);
380
381 if (MI.getOpcode() == G_STORE && MemSize <= 4) {
382 MIRBuilder.buildStore(Val, BaseAddr, *P2HalfMemOp);
383 auto C_P2Half_InBits = MIRBuilder.buildConstant(s32, P2HalfMemSize * 8);
384 auto Shift = MIRBuilder.buildLShr(s32, Val, C_P2Half_InBits);
385 MIRBuilder.buildStore(Shift, Addr, *RemMemOp);
386 } else {
387 auto Unmerge = MIRBuilder.buildUnmerge(s32, Val);
388 MIRBuilder.buildStore(Unmerge.getReg(0), BaseAddr, *P2HalfMemOp);
389 MIRBuilder.buildStore(Unmerge.getReg(1), Addr, *RemMemOp);
390 }
391 }
392
393 if (MI.getOpcode() == G_LOAD) {
394
395 if (MemSize <= 4) {
396 // This is anyextending load, use 4 byte lwr/lwl.
397 auto *Load4MMO = MF.getMachineMemOperand(MMOBase, 0, 4);
398
399 if (Size == 32)
400 MIRBuilder.buildLoad(Val, BaseAddr, *Load4MMO);
401 else {
402 auto Load = MIRBuilder.buildLoad(s32, BaseAddr, *Load4MMO);
403 MIRBuilder.buildTrunc(Val, Load.getReg(0));
404 }
405
406 } else {
407 auto C_P2HalfMemSize = MIRBuilder.buildConstant(s32, P2HalfMemSize);
408 auto Addr = MIRBuilder.buildPtrAdd(PtrTy, BaseAddr, C_P2HalfMemSize);
409
410 auto Load_P2Half = MIRBuilder.buildLoad(s32, BaseAddr, *P2HalfMemOp);
411 auto Load_Rem = MIRBuilder.buildLoad(s32, Addr, *RemMemOp);
412
413 if (Size == 64)
414 MIRBuilder.buildMerge(Val, {Load_P2Half, Load_Rem});
415 else {
416 auto Merge = MIRBuilder.buildMerge(s64, {Load_P2Half, Load_Rem});
417 MIRBuilder.buildTrunc(Val, Merge);
418 }
419 }
420 }
421 MI.eraseFromParent();
422 break;
423 }
424 case G_UITOFP: {
425 Register Dst = MI.getOperand(0).getReg();
426 Register Src = MI.getOperand(1).getReg();
427 LLT DstTy = MRI.getType(Dst);
428 LLT SrcTy = MRI.getType(Src);
429
430 if (SrcTy != s32)
431 return false;
432 if (DstTy != s32 && DstTy != s64)
433 return false;
434
435 // Let 0xABCDEFGH be given unsigned in MI.getOperand(1). First let's convert
436 // unsigned to double. Mantissa has 52 bits so we use following trick:
437 // First make floating point bit mask 0x43300000ABCDEFGH.
438 // Mask represents 2^52 * 0x1.00000ABCDEFGH i.e. 0x100000ABCDEFGH.0 .
439 // Next, subtract 2^52 * 0x1.0000000000000 i.e. 0x10000000000000.0 from it.
440 // Done. Trunc double to float if needed.
441
442 auto C_HiMask = MIRBuilder.buildConstant(s32, UINT32_C(0x43300000)0x43300000U);
443 auto Bitcast = MIRBuilder.buildMerge(s64, {Src, C_HiMask.getReg(0)});
444
445 MachineInstrBuilder TwoP52FP = MIRBuilder.buildFConstant(
446 s64, BitsToDouble(UINT64_C(0x4330000000000000)0x4330000000000000UL));
447
448 if (DstTy == s64)
449 MIRBuilder.buildFSub(Dst, Bitcast, TwoP52FP);
450 else {
451 MachineInstrBuilder ResF64 = MIRBuilder.buildFSub(s64, Bitcast, TwoP52FP);
452 MIRBuilder.buildFPTrunc(Dst, ResF64);
453 }
454
455 MI.eraseFromParent();
456 break;
457 }
458 default:
459 return false;
460 }
461
462 return true;
463}
464
465static bool SelectMSA3OpIntrinsic(MachineInstr &MI, unsigned Opcode,
466 MachineIRBuilder &MIRBuilder,
467 const MipsSubtarget &ST) {
468 assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.")(static_cast <bool> (ST.hasMSA() && "MSA intrinsic not supported on target without MSA."
) ? void (0) : __assert_fail ("ST.hasMSA() && \"MSA intrinsic not supported on target without MSA.\""
, "llvm/lib/Target/Mips/MipsLegalizerInfo.cpp", 468, __extension__
__PRETTY_FUNCTION__))
;
469 if (!MIRBuilder.buildInstr(Opcode)
470 .add(MI.getOperand(0))
471 .add(MI.getOperand(2))
472 .add(MI.getOperand(3))
473 .constrainAllUses(MIRBuilder.getTII(), *ST.getRegisterInfo(),
474 *ST.getRegBankInfo()))
475 return false;
476 MI.eraseFromParent();
477 return true;
478}
479
480static bool MSA3OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode,
481 MachineIRBuilder &MIRBuilder,
482 const MipsSubtarget &ST) {
483 assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.")(static_cast <bool> (ST.hasMSA() && "MSA intrinsic not supported on target without MSA."
) ? void (0) : __assert_fail ("ST.hasMSA() && \"MSA intrinsic not supported on target without MSA.\""
, "llvm/lib/Target/Mips/MipsLegalizerInfo.cpp", 483, __extension__
__PRETTY_FUNCTION__))
;
484 MIRBuilder.buildInstr(Opcode)
485 .add(MI.getOperand(0))
486 .add(MI.getOperand(2))
487 .add(MI.getOperand(3));
488 MI.eraseFromParent();
489 return true;
490}
491
492static bool MSA2OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode,
493 MachineIRBuilder &MIRBuilder,
494 const MipsSubtarget &ST) {
495 assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.")(static_cast <bool> (ST.hasMSA() && "MSA intrinsic not supported on target without MSA."
) ? void (0) : __assert_fail ("ST.hasMSA() && \"MSA intrinsic not supported on target without MSA.\""
, "llvm/lib/Target/Mips/MipsLegalizerInfo.cpp", 495, __extension__
__PRETTY_FUNCTION__))
;
496 MIRBuilder.buildInstr(Opcode)
497 .add(MI.getOperand(0))
498 .add(MI.getOperand(2));
499 MI.eraseFromParent();
500 return true;
501}
502
503bool MipsLegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
504 MachineInstr &MI) const {
505 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
506 const MipsSubtarget &ST =
507 static_cast<const MipsSubtarget &>(MI.getMF()->getSubtarget());
508 const MipsInstrInfo &TII = *ST.getInstrInfo();
509 const MipsRegisterInfo &TRI = *ST.getRegisterInfo();
510 const RegisterBankInfo &RBI = *ST.getRegBankInfo();
511
512 switch (MI.getIntrinsicID()) {
513 case Intrinsic::trap: {
514 MachineInstr *Trap = MIRBuilder.buildInstr(Mips::TRAP);
515 MI.eraseFromParent();
516 return constrainSelectedInstRegOperands(*Trap, TII, TRI, RBI);
517 }
518 case Intrinsic::vacopy: {
519 MachinePointerInfo MPO;
520 LLT PtrTy = LLT::pointer(0, 32);
521 auto Tmp =
522 MIRBuilder.buildLoad(PtrTy, MI.getOperand(2),
523 *MI.getMF()->getMachineMemOperand(
524 MPO, MachineMemOperand::MOLoad, PtrTy, Align(4)));
525 MIRBuilder.buildStore(Tmp, MI.getOperand(1),
526 *MI.getMF()->getMachineMemOperand(
527 MPO, MachineMemOperand::MOStore, PtrTy, Align(4)));
528 MI.eraseFromParent();
529 return true;
530 }
531 case Intrinsic::mips_addv_b:
532 case Intrinsic::mips_addv_h:
533 case Intrinsic::mips_addv_w:
534 case Intrinsic::mips_addv_d:
535 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_ADD, MIRBuilder, ST);
536 case Intrinsic::mips_addvi_b:
537 return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_B, MIRBuilder, ST);
538 case Intrinsic::mips_addvi_h:
539 return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_H, MIRBuilder, ST);
540 case Intrinsic::mips_addvi_w:
541 return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_W, MIRBuilder, ST);
542 case Intrinsic::mips_addvi_d:
543 return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_D, MIRBuilder, ST);
544 case Intrinsic::mips_subv_b:
545 case Intrinsic::mips_subv_h:
546 case Intrinsic::mips_subv_w:
547 case Intrinsic::mips_subv_d:
548 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SUB, MIRBuilder, ST);
549 case Intrinsic::mips_subvi_b:
550 return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_B, MIRBuilder, ST);
551 case Intrinsic::mips_subvi_h:
552 return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_H, MIRBuilder, ST);
553 case Intrinsic::mips_subvi_w:
554 return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_W, MIRBuilder, ST);
555 case Intrinsic::mips_subvi_d:
556 return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_D, MIRBuilder, ST);
557 case Intrinsic::mips_mulv_b:
558 case Intrinsic::mips_mulv_h:
559 case Intrinsic::mips_mulv_w:
560 case Intrinsic::mips_mulv_d:
561 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_MUL, MIRBuilder, ST);
562 case Intrinsic::mips_div_s_b:
563 case Intrinsic::mips_div_s_h:
564 case Intrinsic::mips_div_s_w:
565 case Intrinsic::mips_div_s_d:
566 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SDIV, MIRBuilder, ST);
567 case Intrinsic::mips_mod_s_b:
568 case Intrinsic::mips_mod_s_h:
569 case Intrinsic::mips_mod_s_w:
570 case Intrinsic::mips_mod_s_d:
571 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SREM, MIRBuilder, ST);
572 case Intrinsic::mips_div_u_b:
573 case Intrinsic::mips_div_u_h:
574 case Intrinsic::mips_div_u_w:
575 case Intrinsic::mips_div_u_d:
576 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_UDIV, MIRBuilder, ST);
577 case Intrinsic::mips_mod_u_b:
578 case Intrinsic::mips_mod_u_h:
579 case Intrinsic::mips_mod_u_w:
580 case Intrinsic::mips_mod_u_d:
581 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_UREM, MIRBuilder, ST);
582 case Intrinsic::mips_fadd_w:
583 case Intrinsic::mips_fadd_d:
584 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FADD, MIRBuilder, ST);
585 case Intrinsic::mips_fsub_w:
586 case Intrinsic::mips_fsub_d:
587 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FSUB, MIRBuilder, ST);
588 case Intrinsic::mips_fmul_w:
589 case Intrinsic::mips_fmul_d:
590 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FMUL, MIRBuilder, ST);
591 case Intrinsic::mips_fdiv_w:
592 case Intrinsic::mips_fdiv_d:
593 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FDIV, MIRBuilder, ST);
594 case Intrinsic::mips_fmax_a_w:
595 return SelectMSA3OpIntrinsic(MI, Mips::FMAX_A_W, MIRBuilder, ST);
596 case Intrinsic::mips_fmax_a_d:
597 return SelectMSA3OpIntrinsic(MI, Mips::FMAX_A_D, MIRBuilder, ST);
598 case Intrinsic::mips_fsqrt_w:
599 return MSA2OpIntrinsicToGeneric(MI, TargetOpcode::G_FSQRT, MIRBuilder, ST);
600 case Intrinsic::mips_fsqrt_d:
601 return MSA2OpIntrinsicToGeneric(MI, TargetOpcode::G_FSQRT, MIRBuilder, ST);
602 default:
603 break;
604 }
605 return true;
606}

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include/llvm/Support/MathExtras.h

1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some functions that are useful for math stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
15
16#include "llvm/Support/Compiler.h"
17#include <cassert>
18#include <climits>
19#include <cmath>
20#include <cstdint>
21#include <cstring>
22#include <limits>
23#include <type_traits>
24
25#ifdef __ANDROID_NDK__
26#include <android/api-level.h>
27#endif
28
29#ifdef _MSC_VER
30// Declare these intrinsics manually rather including intrin.h. It's very
31// expensive, and MathExtras.h is popular.
32// #include <intrin.h>
33extern "C" {
34unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
38}
39#endif
40
41namespace llvm {
42
43/// The behavior an operation has on an input of 0.
44enum ZeroBehavior {
45 /// The returned value is undefined.
46 ZB_Undefined,
47 /// The returned value is numeric_limits<T>::max()
48 ZB_Max,
49 /// The returned value is numeric_limits<T>::digits
50 ZB_Width
51};
52
53/// Mathematical constants.
54namespace numbers {
55// TODO: Track C++20 std::numbers.
56// TODO: Favor using the hexadecimal FP constants (requires C++17).
57constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
58 egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
59 ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
60 ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
61 log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0)
62 log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
63 pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
64 inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
65 sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
66 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
67 sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
68 inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
69 sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
70 inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1)
71 phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
72constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
73 egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
74 ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
75 ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
76 log2ef = 1.44269504F, // (0x1.715476P+0)
77 log10ef = .434294482F, // (0x1.bcb7b2P-2)
78 pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
79 inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
80 sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
81 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
82 sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
83 inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1)
84 sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
85 inv_sqrt3f = .577350269F, // (0x1.279a74P-1)
86 phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
87} // namespace numbers
88
89namespace detail {
90template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
91 static unsigned count(T Val, ZeroBehavior) {
92 if (!Val)
93 return std::numeric_limits<T>::digits;
94 if (Val & 0x1)
95 return 0;
96
97 // Bisection method.
98 unsigned ZeroBits = 0;
99 T Shift = std::numeric_limits<T>::digits >> 1;
100 T Mask = std::numeric_limits<T>::max() >> Shift;
101 while (Shift) {
102 if ((Val & Mask) == 0) {
103 Val >>= Shift;
104 ZeroBits |= Shift;
105 }
106 Shift >>= 1;
107 Mask >>= Shift;
108 }
109 return ZeroBits;
110 }
111};
112
113#if defined(__GNUC__4) || defined(_MSC_VER)
114template <typename T> struct TrailingZerosCounter<T, 4> {
115 static unsigned count(T Val, ZeroBehavior ZB) {
116 if (ZB != ZB_Undefined && Val == 0)
117 return 32;
118
119#if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4)
120 return __builtin_ctz(Val);
121#elif defined(_MSC_VER)
122 unsigned long Index;
123 _BitScanForward(&Index, Val);
124 return Index;
125#endif
126 }
127};
128
129#if !defined(_MSC_VER) || defined(_M_X64)
130template <typename T> struct TrailingZerosCounter<T, 8> {
131 static unsigned count(T Val, ZeroBehavior ZB) {
132 if (ZB != ZB_Undefined && Val == 0)
133 return 64;
134
135#if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4)
136 return __builtin_ctzll(Val);
137#elif defined(_MSC_VER)
138 unsigned long Index;
139 _BitScanForward64(&Index, Val);
140 return Index;
141#endif
142 }
143};
144#endif
145#endif
146} // namespace detail
147
148/// Count number of 0's from the least significant bit to the most
149/// stopping at the first 1.
150///
151/// Only unsigned integral types are allowed.
152///
153/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
154/// valid arguments.
155template <typename T>
156unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
157 static_assert(std::numeric_limits<T>::is_integer &&
158 !std::numeric_limits<T>::is_signed,
159 "Only unsigned integral types are allowed.");
160 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
161}
162
163namespace detail {
164template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
165 static unsigned count(T Val, ZeroBehavior) {
166 if (!Val)
167 return std::numeric_limits<T>::digits;
168
169 // Bisection method.
170 unsigned ZeroBits = 0;
171 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
172 T Tmp = Val >> Shift;
173 if (Tmp)
174 Val = Tmp;
175 else
176 ZeroBits |= Shift;
177 }
178 return ZeroBits;
179 }
180};
181
182#if defined(__GNUC__4) || defined(_MSC_VER)
183template <typename T> struct LeadingZerosCounter<T, 4> {
184 static unsigned count(T Val, ZeroBehavior ZB) {
185 if (ZB != ZB_Undefined && Val == 0)
186 return 32;
187
188#if __has_builtin(__builtin_clz)1 || defined(__GNUC__4)
189 return __builtin_clz(Val);
190#elif defined(_MSC_VER)
191 unsigned long Index;
192 _BitScanReverse(&Index, Val);
193 return Index ^ 31;
194#endif
195 }
196};
197
198#if !defined(_MSC_VER) || defined(_M_X64)
199template <typename T> struct LeadingZerosCounter<T, 8> {
200 static unsigned count(T Val, ZeroBehavior ZB) {
201 if (ZB != ZB_Undefined && Val == 0)
202 return 64;
203
204#if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4)
205 return __builtin_clzll(Val);
206#elif defined(_MSC_VER)
207 unsigned long Index;
208 _BitScanReverse64(&Index, Val);
209 return Index ^ 63;
210#endif
211 }
212};
213#endif
214#endif
215} // namespace detail
216
217/// Count number of 0's from the most significant bit to the least
218/// stopping at the first 1.
219///
220/// Only unsigned integral types are allowed.
221///
222/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
223/// valid arguments.
224template <typename T>
225unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
226 static_assert(std::numeric_limits<T>::is_integer &&
227 !std::numeric_limits<T>::is_signed,
228 "Only unsigned integral types are allowed.");
229 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
230}
231
232/// Get the index of the first set bit starting from the least
233/// significant bit.
234///
235/// Only unsigned integral types are allowed.
236///
237/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
238/// valid arguments.
239template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
240 if (ZB == ZB_Max && Val == 0)
241 return std::numeric_limits<T>::max();
242
243 return countTrailingZeros(Val, ZB_Undefined);
244}
245
246/// Create a bitmask with the N right-most bits set to 1, and all other
247/// bits set to 0. Only unsigned types are allowed.
248template <typename T> T maskTrailingOnes(unsigned N) {
249 static_assert(std::is_unsigned<T>::value, "Invalid type!");
250 const unsigned Bits = CHAR_BIT8 * sizeof(T);
251 assert(N <= Bits && "Invalid bit index")(static_cast <bool> (N <= Bits && "Invalid bit index"
) ? void (0) : __assert_fail ("N <= Bits && \"Invalid bit index\""
, "llvm/include/llvm/Support/MathExtras.h", 251, __extension__
__PRETTY_FUNCTION__))
;
252 return N == 0 ? 0 : (T(-1) >> (Bits - N));
253}
254
255/// Create a bitmask with the N left-most bits set to 1, and all other
256/// bits set to 0. Only unsigned types are allowed.
257template <typename T> T maskLeadingOnes(unsigned N) {
258 return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
259}
260
261/// Create a bitmask with the N right-most bits set to 0, and all other
262/// bits set to 1. Only unsigned types are allowed.
263template <typename T> T maskTrailingZeros(unsigned N) {
264 return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
265}
266
267/// Create a bitmask with the N left-most bits set to 0, and all other
268/// bits set to 1. Only unsigned types are allowed.
269template <typename T> T maskLeadingZeros(unsigned N) {
270 return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
271}
272
273/// Get the index of the last set bit starting from the least
274/// significant bit.
275///
276/// Only unsigned integral types are allowed.
277///
278/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
279/// valid arguments.
280template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
281 if (ZB == ZB_Max && Val == 0)
282 return std::numeric_limits<T>::max();
283
284 // Use ^ instead of - because both gcc and llvm can remove the associated ^
285 // in the __builtin_clz intrinsic on x86.
286 return countLeadingZeros(Val, ZB_Undefined) ^
287 (std::numeric_limits<T>::digits - 1);
288}
289
290/// Macro compressed bit reversal table for 256 bits.
291///
292/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
293static const unsigned char BitReverseTable256[256] = {
294#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
295#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
296#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
297 R6(0), R6(2), R6(1), R6(3)
298#undef R2
299#undef R4
300#undef R6
301};
302
303/// Reverse the bits in \p Val.
304template <typename T>
305T reverseBits(T Val) {
306 unsigned char in[sizeof(Val)];
307 unsigned char out[sizeof(Val)];
308 std::memcpy(in, &Val, sizeof(Val));
309 for (unsigned i = 0; i < sizeof(Val); ++i)
310 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
311 std::memcpy(&Val, out, sizeof(Val));
312 return Val;
313}
314
315#if __has_builtin(__builtin_bitreverse8)1
316template<>
317inline uint8_t reverseBits<uint8_t>(uint8_t Val) {
318 return __builtin_bitreverse8(Val);
319}
320#endif
321
322#if __has_builtin(__builtin_bitreverse16)1
323template<>
324inline uint16_t reverseBits<uint16_t>(uint16_t Val) {
325 return __builtin_bitreverse16(Val);
326}
327#endif
328
329#if __has_builtin(__builtin_bitreverse32)1
330template<>
331inline uint32_t reverseBits<uint32_t>(uint32_t Val) {
332 return __builtin_bitreverse32(Val);
333}
334#endif
335
336#if __has_builtin(__builtin_bitreverse64)1
337template<>
338inline uint64_t reverseBits<uint64_t>(uint64_t Val) {
339 return __builtin_bitreverse64(Val);
340}
341#endif
342
343// NOTE: The following support functions use the _32/_64 extensions instead of
344// type overloading so that signed and unsigned integers can be used without
345// ambiguity.
346
347/// Return the high 32 bits of a 64 bit value.
348constexpr inline uint32_t Hi_32(uint64_t Value) {
349 return static_cast<uint32_t>(Value >> 32);
350}
351
352/// Return the low 32 bits of a 64 bit value.
353constexpr inline uint32_t Lo_32(uint64_t Value) {
354 return static_cast<uint32_t>(Value);
355}
356
357/// Make a 64-bit integer from a high / low pair of 32-bit integers.
358constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
359 return ((uint64_t)High << 32) | (uint64_t)Low;
360}
361
362/// Checks if an integer fits into the given bit width.
363template <unsigned N> constexpr inline bool isInt(int64_t x) {
364 return N >= 64 || (-(INT64_C(1)1L<<(N-1)) <= x && x < (INT64_C(1)1L<<(N-1)));
365}
366// Template specializations to get better code for common cases.
367template <> constexpr inline bool isInt<8>(int64_t x) {
368 return static_cast<int8_t>(x) == x;
369}
370template <> constexpr inline bool isInt<16>(int64_t x) {
371 return static_cast<int16_t>(x) == x;
372}
373template <> constexpr inline bool isInt<32>(int64_t x) {
374 return static_cast<int32_t>(x) == x;
375}
376
377/// Checks if a signed integer is an N bit number shifted left by S.
378template <unsigned N, unsigned S>
379constexpr inline bool isShiftedInt(int64_t x) {
380 static_assert(
381 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
382 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
383 return isInt<N + S>(x) && (x % (UINT64_C(1)1UL << S) == 0);
384}
385
386/// Checks if an unsigned integer fits into the given bit width.
387///
388/// This is written as two functions rather than as simply
389///
390/// return N >= 64 || X < (UINT64_C(1) << N);
391///
392/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
393/// left too many places.
394template <unsigned N>
395constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) {
396 static_assert(N > 0, "isUInt<0> doesn't make sense");
397 return X < (UINT64_C(1)1UL << (N));
398}
399template <unsigned N>
400constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) {
401 return true;
402}
403
404// Template specializations to get better code for common cases.
405template <> constexpr inline bool isUInt<8>(uint64_t x) {
406 return static_cast<uint8_t>(x) == x;
407}
408template <> constexpr inline bool isUInt<16>(uint64_t x) {
409 return static_cast<uint16_t>(x) == x;
410}
411template <> constexpr inline bool isUInt<32>(uint64_t x) {
412 return static_cast<uint32_t>(x) == x;
413}
414
415/// Checks if a unsigned integer is an N bit number shifted left by S.
416template <unsigned N, unsigned S>
417constexpr inline bool isShiftedUInt(uint64_t x) {
418 static_assert(
419 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
420 static_assert(N + S <= 64,
421 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
422 // Per the two static_asserts above, S must be strictly less than 64. So
423 // 1 << S is not undefined behavior.
424 return isUInt<N + S>(x) && (x % (UINT64_C(1)1UL << S) == 0);
425}
426
427/// Gets the maximum value for a N-bit unsigned integer.
428inline uint64_t maxUIntN(uint64_t N) {
429 assert(N > 0 && N <= 64 && "integer width out of range")(static_cast <bool> (N > 0 && N <= 64 &&
"integer width out of range") ? void (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "llvm/include/llvm/Support/MathExtras.h", 429, __extension__
__PRETTY_FUNCTION__))
;
430
431 // uint64_t(1) << 64 is undefined behavior, so we can't do
432 // (uint64_t(1) << N) - 1
433 // without checking first that N != 64. But this works and doesn't have a
434 // branch.
435 return UINT64_MAX(18446744073709551615UL) >> (64 - N);
436}
437
438/// Gets the minimum value for a N-bit signed integer.
439inline int64_t minIntN(int64_t N) {
440 assert(N > 0 && N <= 64 && "integer width out of range")(static_cast <bool> (N > 0 && N <= 64 &&
"integer width out of range") ? void (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "llvm/include/llvm/Support/MathExtras.h", 440, __extension__
__PRETTY_FUNCTION__))
;
441
442 return UINT64_C(1)1UL + ~(UINT64_C(1)1UL << (N - 1));
443}
444
445/// Gets the maximum value for a N-bit signed integer.
446inline int64_t maxIntN(int64_t N) {
447 assert(N > 0 && N <= 64 && "integer width out of range")(static_cast <bool> (N > 0 && N <= 64 &&
"integer width out of range") ? void (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "llvm/include/llvm/Support/MathExtras.h", 447, __extension__
__PRETTY_FUNCTION__))
;
448
449 // This relies on two's complement wraparound when N == 64, so we convert to
450 // int64_t only at the very end to avoid UB.
451 return (UINT64_C(1)1UL << (N - 1)) - 1;
452}
453
454/// Checks if an unsigned integer fits into the given (dynamic) bit width.
455inline bool isUIntN(unsigned N, uint64_t x) {
456 return N >= 64 || x <= maxUIntN(N);
457}
458
459/// Checks if an signed integer fits into the given (dynamic) bit width.
460inline bool isIntN(unsigned N, int64_t x) {
461 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
462}
463
464/// Return true if the argument is a non-empty sequence of ones starting at the
465/// least significant bit with the remainder zero (32 bit version).
466/// Ex. isMask_32(0x0000FFFFU) == true.
467constexpr inline bool isMask_32(uint32_t Value) {
468 return Value && ((Value + 1) & Value) == 0;
469}
470
471/// Return true if the argument is a non-empty sequence of ones starting at the
472/// least significant bit with the remainder zero (64 bit version).
473constexpr inline bool isMask_64(uint64_t Value) {
474 return Value && ((Value + 1) & Value) == 0;
475}
476
477/// Return true if the argument contains a non-empty sequence of ones with the
478/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
479constexpr inline bool isShiftedMask_32(uint32_t Value) {
480 return Value && isMask_32((Value - 1) | Value);
481}
482
483/// Return true if the argument contains a non-empty sequence of ones with the
484/// remainder zero (64 bit version.)
485constexpr inline bool isShiftedMask_64(uint64_t Value) {
486 return Value && isMask_64((Value - 1) | Value);
487}
488
489/// Return true if the argument is a power of two > 0.
490/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
491constexpr inline bool isPowerOf2_32(uint32_t Value) {
492 return Value && !(Value & (Value - 1));
493}
494
495/// Return true if the argument is a power of two > 0 (64 bit edition.)
496constexpr inline bool isPowerOf2_64(uint64_t Value) {
497 return Value && !(Value & (Value - 1));
498}
499
500/// Count the number of ones from the most significant bit to the first
501/// zero bit.
502///
503/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
504/// Only unsigned integral types are allowed.
505///
506/// \param ZB the behavior on an input of all ones. Only ZB_Width and
507/// ZB_Undefined are valid arguments.
508template <typename T>
509unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
510 static_assert(std::numeric_limits<T>::is_integer &&
511 !std::numeric_limits<T>::is_signed,
512 "Only unsigned integral types are allowed.");
513 return countLeadingZeros<T>(~Value, ZB);
514}
515
516/// Count the number of ones from the least significant bit to the first
517/// zero bit.
518///
519/// Ex. countTrailingOnes(0x00FF00FF) == 8.
520/// Only unsigned integral types are allowed.
521///
522/// \param ZB the behavior on an input of all ones. Only ZB_Width and
523/// ZB_Undefined are valid arguments.
524template <typename T>
525unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
526 static_assert(std::numeric_limits<T>::is_integer &&
527 !std::numeric_limits<T>::is_signed,
528 "Only unsigned integral types are allowed.");
529 return countTrailingZeros<T>(~Value, ZB);
530}
531
532namespace detail {
533template <typename T, std::size_t SizeOfT> struct PopulationCounter {
534 static unsigned count(T Value) {
535 // Generic version, forward to 32 bits.
536 static_assert(SizeOfT <= 4, "Not implemented!");
537#if defined(__GNUC__4)
538 return __builtin_popcount(Value);
539#else
540 uint32_t v = Value;
541 v = v - ((v >> 1) & 0x55555555);
542 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
543 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
544#endif
545 }
546};
547
548template <typename T> struct PopulationCounter<T, 8> {
549 static unsigned count(T Value) {
550#if defined(__GNUC__4)
551 return __builtin_popcountll(Value);
552#else
553 uint64_t v = Value;
554 v = v - ((v >> 1) & 0x5555555555555555ULL);
555 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
556 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
557 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
558#endif
559 }
560};
561} // namespace detail
562
563/// Count the number of set bits in a value.
564/// Ex. countPopulation(0xF000F000) = 8
565/// Returns 0 if the word is zero.
566template <typename T>
567inline unsigned countPopulation(T Value) {
568 static_assert(std::numeric_limits<T>::is_integer &&
569 !std::numeric_limits<T>::is_signed,
570 "Only unsigned integral types are allowed.");
571 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
572}
573
574/// Return true if the argument contains a non-empty sequence of ones with the
575/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
576/// If true, \p MaskIdx will specify the index of the lowest set bit and \p
577/// MaskLen is updated to specify the length of the mask, else neither are
578/// updated.
579inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx,
580 unsigned &MaskLen) {
581 if (!isShiftedMask_32(Value))
582 return false;
583 MaskIdx = countTrailingZeros(Value);
584 MaskLen = countPopulation(Value);
585 return true;
586}
587
588/// Return true if the argument contains a non-empty sequence of ones with the
589/// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index
590/// of the lowest set bit and \p MaskLen is updated to specify the length of the
591/// mask, else neither are updated.
592inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx,
593 unsigned &MaskLen) {
594 if (!isShiftedMask_64(Value))
595 return false;
596 MaskIdx = countTrailingZeros(Value);
597 MaskLen = countPopulation(Value);
598 return true;
599}
600
601/// Compile time Log2.
602/// Valid only for positive powers of two.
603template <size_t kValue> constexpr inline size_t CTLog2() {
604 static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
605 "Value is not a valid power of 2");
606 return 1 + CTLog2<kValue / 2>();
607}
608
609template <> constexpr inline size_t CTLog2<1>() { return 0; }
610
611/// Return the log base 2 of the specified value.
612inline double Log2(double Value) {
613#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
614 return __builtin_log(Value) / __builtin_log(2.0);
615#else
616 return log2(Value);
617#endif
618}
619
620/// Return the floor log base 2 of the specified value, -1 if the value is zero.
621/// (32 bit edition.)
622/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
623inline unsigned Log2_32(uint32_t Value) {
624 return 31 - countLeadingZeros(Value);
8
Returning the value 4294967295
625}
626
627/// Return the floor log base 2 of the specified value, -1 if the value is zero.
628/// (64 bit edition.)
629inline unsigned Log2_64(uint64_t Value) {
630 return 63 - countLeadingZeros(Value);
631}
632
633/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
634/// (32 bit edition).
635/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
636inline unsigned Log2_32_Ceil(uint32_t Value) {
637 return 32 - countLeadingZeros(Value - 1);
638}
639
640/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
641/// (64 bit edition.)
642inline unsigned Log2_64_Ceil(uint64_t Value) {
643 return 64 - countLeadingZeros(Value - 1);
644}
645
646/// Return the greatest common divisor of the values using Euclid's algorithm.
647template <typename T>
648inline T greatestCommonDivisor(T A, T B) {
649 while (B) {
650 T Tmp = B;
651 B = A % B;
652 A = Tmp;
653 }
654 return A;
655}
656
657inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
658 return greatestCommonDivisor<uint64_t>(A, B);
659}
660
661/// This function takes a 64-bit integer and returns the bit equivalent double.
662inline double BitsToDouble(uint64_t Bits) {
663 double D;
664 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
665 memcpy(&D, &Bits, sizeof(Bits));
666 return D;
667}
668
669/// This function takes a 32-bit integer and returns the bit equivalent float.
670inline float BitsToFloat(uint32_t Bits) {
671 float F;
672 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
673 memcpy(&F, &Bits, sizeof(Bits));
674 return F;
675}
676
677/// This function takes a double and returns the bit equivalent 64-bit integer.
678/// Note that copying doubles around changes the bits of NaNs on some hosts,
679/// notably x86, so this routine cannot be used if these bits are needed.
680inline uint64_t DoubleToBits(double Double) {
681 uint64_t Bits;
682 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
683 memcpy(&Bits, &Double, sizeof(Double));
684 return Bits;
685}
686
687/// This function takes a float and returns the bit equivalent 32-bit integer.
688/// Note that copying floats around changes the bits of NaNs on some hosts,
689/// notably x86, so this routine cannot be used if these bits are needed.
690inline uint32_t FloatToBits(float Float) {
691 uint32_t Bits;
692 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
693 memcpy(&Bits, &Float, sizeof(Float));
694 return Bits;
695}
696
697/// A and B are either alignments or offsets. Return the minimum alignment that
698/// may be assumed after adding the two together.
699constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
700 // The largest power of 2 that divides both A and B.
701 //
702 // Replace "-Value" by "1+~Value" in the following commented code to avoid
703 // MSVC warning C4146
704 // return (A | B) & -(A | B);
705 return (A | B) & (1 + ~(A | B));
706}
707
708/// Returns the next power of two (in 64-bits) that is strictly greater than A.
709/// Returns zero on overflow.
710constexpr inline uint64_t NextPowerOf2(uint64_t A) {
711 A |= (A >> 1);
712 A |= (A >> 2);
713 A |= (A >> 4);
714 A |= (A >> 8);
715 A |= (A >> 16);
716 A |= (A >> 32);
717 return A + 1;
718}
719
720/// Returns the power of two which is less than or equal to the given value.
721/// Essentially, it is a floor operation across the domain of powers of two.
722inline uint64_t PowerOf2Floor(uint64_t A) {
723 if (!A) return 0;
724 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
725}
726
727/// Returns the power of two which is greater than or equal to the given value.
728/// Essentially, it is a ceil operation across the domain of powers of two.
729inline uint64_t PowerOf2Ceil(uint64_t A) {
730 if (!A)
731 return 0;
732 return NextPowerOf2(A - 1);
733}
734
735/// Returns the next integer (mod 2**64) that is greater than or equal to
736/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
737///
738/// If non-zero \p Skew is specified, the return value will be a minimal
739/// integer that is greater than or equal to \p Value and equal to
740/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
741/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
742///
743/// Examples:
744/// \code
745/// alignTo(5, 8) = 8
746/// alignTo(17, 8) = 24
747/// alignTo(~0LL, 8) = 0
748/// alignTo(321, 255) = 510
749///
750/// alignTo(5, 8, 7) = 7
751/// alignTo(17, 8, 1) = 17
752/// alignTo(~0LL, 8, 3) = 3
753/// alignTo(321, 255, 42) = 552
754/// \endcode
755inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
756 assert(Align != 0u && "Align can't be 0.")(static_cast <bool> (Align != 0u && "Align can't be 0."
) ? void (0) : __assert_fail ("Align != 0u && \"Align can't be 0.\""
, "llvm/include/llvm/Support/MathExtras.h", 756, __extension__
__PRETTY_FUNCTION__))
;
757 Skew %= Align;
758 return (Value + Align - 1 - Skew) / Align * Align + Skew;
759}
760
761/// Returns the next integer (mod 2**64) that is greater than or equal to
762/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
763template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
764 static_assert(Align != 0u, "Align must be non-zero");
765 return (Value + Align - 1) / Align * Align;
766}
767
768/// Returns the integer ceil(Numerator / Denominator).
769inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
770 return alignTo(Numerator, Denominator) / Denominator;
771}
772
773/// Returns the integer nearest(Numerator / Denominator).
774inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
775 return (Numerator + (Denominator / 2)) / Denominator;
776}
777
778/// Returns the largest uint64_t less than or equal to \p Value and is
779/// \p Skew mod \p Align. \p Align must be non-zero
780inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
781 assert(Align != 0u && "Align can't be 0.")(static_cast <bool> (Align != 0u && "Align can't be 0."
) ? void (0) : __assert_fail ("Align != 0u && \"Align can't be 0.\""
, "llvm/include/llvm/Support/MathExtras.h", 781, __extension__
__PRETTY_FUNCTION__))
;
782 Skew %= Align;
783 return (Value - Skew) / Align * Align + Skew;
784}
785
786/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
787/// Requires 0 < B <= 32.
788template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
789 static_assert(B > 0, "Bit width can't be 0.");
790 static_assert(B <= 32, "Bit width out of range.");
791 return int32_t(X << (32 - B)) >> (32 - B);
792}
793
794/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
795/// Requires 0 < B <= 32.
796inline int32_t SignExtend32(uint32_t X, unsigned B) {
797 assert(B > 0 && "Bit width can't be 0.")(static_cast <bool> (B > 0 && "Bit width can't be 0."
) ? void (0) : __assert_fail ("B > 0 && \"Bit width can't be 0.\""
, "llvm/include/llvm/Support/MathExtras.h", 797, __extension__
__PRETTY_FUNCTION__))
;
798 assert(B <= 32 && "Bit width out of range.")(static_cast <bool> (B <= 32 && "Bit width out of range."
) ? void (0) : __assert_fail ("B <= 32 && \"Bit width out of range.\""
, "llvm/include/llvm/Support/MathExtras.h", 798, __extension__
__PRETTY_FUNCTION__))
;
799 return int32_t(X << (32 - B)) >> (32 - B);
800}
801
802/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
803/// Requires 0 < B <= 64.
804template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
805 static_assert(B > 0, "Bit width can't be 0.");
806 static_assert(B <= 64, "Bit width out of range.");
807 return int64_t(x << (64 - B)) >> (64 - B);
808}
809
810/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
811/// Requires 0 < B <= 64.
812inline int64_t SignExtend64(uint64_t X, unsigned B) {
813 assert(B > 0 && "Bit width can't be 0.")(static_cast <bool> (B > 0 && "Bit width can't be 0."
) ? void (0) : __assert_fail ("B > 0 && \"Bit width can't be 0.\""
, "llvm/include/llvm/Support/MathExtras.h", 813, __extension__
__PRETTY_FUNCTION__))
;
814 assert(B <= 64 && "Bit width out of range.")(static_cast <bool> (B <= 64 && "Bit width out of range."
) ? void (0) : __assert_fail ("B <= 64 && \"Bit width out of range.\""
, "llvm/include/llvm/Support/MathExtras.h", 814, __extension__
__PRETTY_FUNCTION__))
;
815 return int64_t(X << (64 - B)) >> (64 - B);
816}
817
818/// Subtract two unsigned integers, X and Y, of type T and return the absolute
819/// value of the result.
820template <typename T>
821std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
822 return X > Y ? (X - Y) : (Y - X);
823}
824
825/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
826/// maximum representable value of T on overflow. ResultOverflowed indicates if
827/// the result is larger than the maximum representable value of type T.
828template <typename T>
829std::enable_if_t<std::is_unsigned<T>::value, T>
830SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
831 bool Dummy;
832 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
833 // Hacker's Delight, p. 29
834 T Z = X + Y;
835 Overflowed = (Z < X || Z < Y);
836 if (Overflowed)
837 return std::numeric_limits<T>::max();
838 else
839 return Z;
840}
841
842/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
843/// maximum representable value of T on overflow. ResultOverflowed indicates if
844/// the result is larger than the maximum representable value of type T.
845template <typename T>
846std::enable_if_t<std::is_unsigned<T>::value, T>
847SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
848 bool Dummy;
849 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
850
851 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
852 // because it fails for uint16_t (where multiplication can have undefined
853 // behavior due to promotion to int), and requires a division in addition
854 // to the multiplication.
855
856 Overflowed = false;
857
858 // Log2(Z) would be either Log2Z or Log2Z + 1.
859 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
860 // will necessarily be less than Log2Max as desired.
861 int Log2Z = Log2_64(X) + Log2_64(Y);
862 const T Max = std::numeric_limits<T>::max();
863 int Log2Max = Log2_64(Max);
864 if (Log2Z < Log2Max) {
865 return X * Y;
866 }
867 if (Log2Z > Log2Max) {
868 Overflowed = true;
869 return Max;
870 }
871
872 // We're going to use the top bit, and maybe overflow one
873 // bit past it. Multiply all but the bottom bit then add
874 // that on at the end.
875 T Z = (X >> 1) * Y;
876 if (Z & ~(Max >> 1)) {
877 Overflowed = true;
878 return Max;
879 }
880 Z <<= 1;
881 if (X & 1)
882 return SaturatingAdd(Z, Y, ResultOverflowed);
883
884 return Z;
885}
886
887/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
888/// the product. Clamp the result to the maximum representable value of T on
889/// overflow. ResultOverflowed indicates if the result is larger than the
890/// maximum representable value of type T.
891template <typename T>
892std::enable_if_t<std::is_unsigned<T>::value, T>
893SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
894 bool Dummy;
895 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
896
897 T Product = SaturatingMultiply(X, Y, &Overflowed);
898 if (Overflowed)
899 return Product;
900
901 return SaturatingAdd(A, Product, &Overflowed);
902}
903
904/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
905extern const float huge_valf;
906
907
908/// Add two signed integers, computing the two's complement truncated result,
909/// returning true if overflow occurred.
910template <typename T>
911std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
912#if __has_builtin(__builtin_add_overflow)1
913 return __builtin_add_overflow(X, Y, &Result);
914#else
915 // Perform the unsigned addition.
916 using U = std::make_unsigned_t<T>;
917 const U UX = static_cast<U>(X);
918 const U UY = static_cast<U>(Y);
919 const U UResult = UX + UY;
920
921 // Convert to signed.
922 Result = static_cast<T>(UResult);
923
924 // Adding two positive numbers should result in a positive number.
925 if (X > 0 && Y > 0)
926 return Result <= 0;
927 // Adding two negatives should result in a negative number.
928 if (X < 0 && Y < 0)
929 return Result >= 0;
930 return false;
931#endif
932}
933
934/// Subtract two signed integers, computing the two's complement truncated
935/// result, returning true if an overflow ocurred.
936template <typename T>
937std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
938#if __has_builtin(__builtin_sub_overflow)1
939 return __builtin_sub_overflow(X, Y, &Result);
940#else
941 // Perform the unsigned addition.
942 using U = std::make_unsigned_t<T>;
943 const U UX = static_cast<U>(X);
944 const U UY = static_cast<U>(Y);
945 const U UResult = UX - UY;
946
947 // Convert to signed.
948 Result = static_cast<T>(UResult);
949
950 // Subtracting a positive number from a negative results in a negative number.
951 if (X <= 0 && Y > 0)
952 return Result >= 0;
953 // Subtracting a negative number from a positive results in a positive number.
954 if (X >= 0 && Y < 0)
955 return Result <= 0;
956 return false;
957#endif
958}
959
960/// Multiply two signed integers, computing the two's complement truncated
961/// result, returning true if an overflow ocurred.
962template <typename T>
963std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
964 // Perform the unsigned multiplication on absolute values.
965 using U = std::make_unsigned_t<T>;
966 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
967 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
968 const U UResult = UX * UY;
969
970 // Convert to signed.
971 const bool IsNegative = (X < 0) ^ (Y < 0);
972 Result = IsNegative ? (0 - UResult) : UResult;
973
974 // If any of the args was 0, result is 0 and no overflow occurs.
975 if (UX == 0 || UY == 0)
976 return false;
977
978 // UX and UY are in [1, 2^n], where n is the number of digits.
979 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
980 // positive) divided by an argument compares to the other.
981 if (IsNegative)
982 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
983 else
984 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
985}
986
987} // End llvm namespace
988
989#endif