Bug Summary

File:build/source/llvm/lib/CodeGen/ModuloSchedule.cpp
Warning:line 520, column 13
Value stored to 'NewReg' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ModuloSchedule.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/CodeGen -I /build/source/llvm/lib/CodeGen -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/CodeGen/ModuloSchedule.cpp
1//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/CodeGen/ModuloSchedule.h"
10#include "llvm/ADT/StringExtras.h"
11#include "llvm/Analysis/MemoryLocation.h"
12#include "llvm/CodeGen/LiveIntervals.h"
13#include "llvm/CodeGen/MachineInstrBuilder.h"
14#include "llvm/CodeGen/MachineLoopInfo.h"
15#include "llvm/CodeGen/MachineRegisterInfo.h"
16#include "llvm/InitializePasses.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/raw_ostream.h"
21
22#define DEBUG_TYPE"pipeliner" "pipeliner"
23using namespace llvm;
24
25void ModuloSchedule::print(raw_ostream &OS) {
26 for (MachineInstr *MI : ScheduledInstrs)
27 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
28}
29
30//===----------------------------------------------------------------------===//
31// ModuloScheduleExpander implementation
32//===----------------------------------------------------------------------===//
33
34/// Return the register values for the operands of a Phi instruction.
35/// This function assume the instruction is a Phi.
36static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
37 unsigned &InitVal, unsigned &LoopVal) {
38 assert(Phi.isPHI() && "Expecting a Phi.")(static_cast <bool> (Phi.isPHI() && "Expecting a Phi."
) ? void (0) : __assert_fail ("Phi.isPHI() && \"Expecting a Phi.\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 38, __extension__ __PRETTY_FUNCTION__
))
;
39
40 InitVal = 0;
41 LoopVal = 0;
42 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
43 if (Phi.getOperand(i + 1).getMBB() != Loop)
44 InitVal = Phi.getOperand(i).getReg();
45 else
46 LoopVal = Phi.getOperand(i).getReg();
47
48 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.")(static_cast <bool> (InitVal != 0 && LoopVal !=
0 && "Unexpected Phi structure.") ? void (0) : __assert_fail
("InitVal != 0 && LoopVal != 0 && \"Unexpected Phi structure.\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 48, __extension__ __PRETTY_FUNCTION__
))
;
49}
50
51/// Return the Phi register value that comes from the incoming block.
52static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
53 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
54 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
55 return Phi.getOperand(i).getReg();
56 return 0;
57}
58
59/// Return the Phi register value that comes the loop block.
60static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
61 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
62 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
63 return Phi.getOperand(i).getReg();
64 return 0;
65}
66
67void ModuloScheduleExpander::expand() {
68 BB = Schedule.getLoop()->getTopBlock();
69 Preheader = *BB->pred_begin();
70 if (Preheader == BB)
71 Preheader = *std::next(BB->pred_begin());
72
73 // Iterate over the definitions in each instruction, and compute the
74 // stage difference for each use. Keep the maximum value.
75 for (MachineInstr *MI : Schedule.getInstructions()) {
76 int DefStage = Schedule.getStage(MI);
77 for (const MachineOperand &Op : MI->operands()) {
78 if (!Op.isReg() || !Op.isDef())
79 continue;
80
81 Register Reg = Op.getReg();
82 unsigned MaxDiff = 0;
83 bool PhiIsSwapped = false;
84 for (MachineOperand &UseOp : MRI.use_operands(Reg)) {
85 MachineInstr *UseMI = UseOp.getParent();
86 int UseStage = Schedule.getStage(UseMI);
87 unsigned Diff = 0;
88 if (UseStage != -1 && UseStage >= DefStage)
89 Diff = UseStage - DefStage;
90 if (MI->isPHI()) {
91 if (isLoopCarried(*MI))
92 ++Diff;
93 else
94 PhiIsSwapped = true;
95 }
96 MaxDiff = std::max(Diff, MaxDiff);
97 }
98 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
99 }
100 }
101
102 generatePipelinedLoop();
103}
104
105void ModuloScheduleExpander::generatePipelinedLoop() {
106 LoopInfo = TII->analyzeLoopForPipelining(BB);
107 assert(LoopInfo && "Must be able to analyze loop!")(static_cast <bool> (LoopInfo && "Must be able to analyze loop!"
) ? void (0) : __assert_fail ("LoopInfo && \"Must be able to analyze loop!\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 107, __extension__ __PRETTY_FUNCTION__
))
;
108
109 // Create a new basic block for the kernel and add it to the CFG.
110 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
111
112 unsigned MaxStageCount = Schedule.getNumStages() - 1;
113
114 // Remember the registers that are used in different stages. The index is
115 // the iteration, or stage, that the instruction is scheduled in. This is
116 // a map between register names in the original block and the names created
117 // in each stage of the pipelined loop.
118 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
119
120 // The renaming destination by Phis for the registers across stages.
121 // This map is updated during Phis generation to point to the most recent
122 // renaming destination.
123 ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2];
124
125 InstrMapTy InstrMap;
126
127 SmallVector<MachineBasicBlock *, 4> PrologBBs;
128
129 // Generate the prolog instructions that set up the pipeline.
130 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
131 MF.insert(BB->getIterator(), KernelBB);
132
133 // Rearrange the instructions to generate the new, pipelined loop,
134 // and update register names as needed.
135 for (MachineInstr *CI : Schedule.getInstructions()) {
136 if (CI->isPHI())
137 continue;
138 unsigned StageNum = Schedule.getStage(CI);
139 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
140 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
141 KernelBB->push_back(NewMI);
142 InstrMap[NewMI] = CI;
143 }
144
145 // Copy any terminator instructions to the new kernel, and update
146 // names as needed.
147 for (MachineInstr &MI : BB->terminators()) {
148 MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
149 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
150 KernelBB->push_back(NewMI);
151 InstrMap[NewMI] = &MI;
152 }
153
154 NewKernel = KernelBB;
155 KernelBB->transferSuccessors(BB);
156 KernelBB->replaceSuccessor(BB, KernelBB);
157
158 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
159 InstrMap, MaxStageCount, MaxStageCount, false);
160 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi,
161 InstrMap, MaxStageCount, MaxStageCount, false);
162
163 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "New block\n"; KernelBB->
dump();; } } while (false)
;
164
165 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
166 // Generate the epilog instructions to complete the pipeline.
167 generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs,
168 PrologBBs);
169
170 // We need this step because the register allocation doesn't handle some
171 // situations well, so we insert copies to help out.
172 splitLifetimes(KernelBB, EpilogBBs);
173
174 // Remove dead instructions due to loop induction variables.
175 removeDeadInstructions(KernelBB, EpilogBBs);
176
177 // Add branches between prolog and epilog blocks.
178 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
179
180 delete[] VRMap;
181 delete[] VRMapPhi;
182}
183
184void ModuloScheduleExpander::cleanup() {
185 // Remove the original loop since it's no longer referenced.
186 for (auto &I : *BB)
187 LIS.RemoveMachineInstrFromMaps(I);
188 BB->clear();
189 BB->eraseFromParent();
190}
191
192/// Generate the pipeline prolog code.
193void ModuloScheduleExpander::generateProlog(unsigned LastStage,
194 MachineBasicBlock *KernelBB,
195 ValueMapTy *VRMap,
196 MBBVectorTy &PrologBBs) {
197 MachineBasicBlock *PredBB = Preheader;
198 InstrMapTy InstrMap;
199
200 // Generate a basic block for each stage, not including the last stage,
201 // which will be generated in the kernel. Each basic block may contain
202 // instructions from multiple stages/iterations.
203 for (unsigned i = 0; i < LastStage; ++i) {
204 // Create and insert the prolog basic block prior to the original loop
205 // basic block. The original loop is removed later.
206 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
207 PrologBBs.push_back(NewBB);
208 MF.insert(BB->getIterator(), NewBB);
209 NewBB->transferSuccessors(PredBB);
210 PredBB->addSuccessor(NewBB);
211 PredBB = NewBB;
212
213 // Generate instructions for each appropriate stage. Process instructions
214 // in original program order.
215 for (int StageNum = i; StageNum >= 0; --StageNum) {
216 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
217 BBE = BB->getFirstTerminator();
218 BBI != BBE; ++BBI) {
219 if (Schedule.getStage(&*BBI) == StageNum) {
220 if (BBI->isPHI())
221 continue;
222 MachineInstr *NewMI =
223 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
224 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
225 NewBB->push_back(NewMI);
226 InstrMap[NewMI] = &*BBI;
227 }
228 }
229 }
230 rewritePhiValues(NewBB, i, VRMap, InstrMap);
231 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
232 dbgs() << "prolog:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
233 NewBB->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
234 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
;
235 }
236
237 PredBB->replaceSuccessor(BB, KernelBB);
238
239 // Check if we need to remove the branch from the preheader to the original
240 // loop, and replace it with a branch to the new loop.
241 unsigned numBranches = TII->removeBranch(*Preheader);
242 if (numBranches) {
243 SmallVector<MachineOperand, 0> Cond;
244 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
245 }
246}
247
248/// Generate the pipeline epilog code. The epilog code finishes the iterations
249/// that were started in either the prolog or the kernel. We create a basic
250/// block for each stage that needs to complete.
251void ModuloScheduleExpander::generateEpilog(
252 unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB,
253 ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs,
254 MBBVectorTy &PrologBBs) {
255 // We need to change the branch from the kernel to the first epilog block, so
256 // this call to analyze branch uses the kernel rather than the original BB.
257 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
258 SmallVector<MachineOperand, 4> Cond;
259 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
260 assert(!checkBranch && "generateEpilog must be able to analyze the branch")(static_cast <bool> (!checkBranch && "generateEpilog must be able to analyze the branch"
) ? void (0) : __assert_fail ("!checkBranch && \"generateEpilog must be able to analyze the branch\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 260, __extension__ __PRETTY_FUNCTION__
))
;
261 if (checkBranch)
262 return;
263
264 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
265 if (*LoopExitI == KernelBB)
266 ++LoopExitI;
267 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor")(static_cast <bool> (LoopExitI != KernelBB->succ_end
() && "Expecting a successor") ? void (0) : __assert_fail
("LoopExitI != KernelBB->succ_end() && \"Expecting a successor\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 267, __extension__ __PRETTY_FUNCTION__
))
;
268 MachineBasicBlock *LoopExitBB = *LoopExitI;
269
270 MachineBasicBlock *PredBB = KernelBB;
271 MachineBasicBlock *EpilogStart = LoopExitBB;
272 InstrMapTy InstrMap;
273
274 // Generate a basic block for each stage, not including the last stage,
275 // which was generated for the kernel. Each basic block may contain
276 // instructions from multiple stages/iterations.
277 int EpilogStage = LastStage + 1;
278 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
279 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
280 EpilogBBs.push_back(NewBB);
281 MF.insert(BB->getIterator(), NewBB);
282
283 PredBB->replaceSuccessor(LoopExitBB, NewBB);
284 NewBB->addSuccessor(LoopExitBB);
285
286 if (EpilogStart == LoopExitBB)
287 EpilogStart = NewBB;
288
289 // Add instructions to the epilog depending on the current block.
290 // Process instructions in original program order.
291 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
292 for (auto &BBI : *BB) {
293 if (BBI.isPHI())
294 continue;
295 MachineInstr *In = &BBI;
296 if ((unsigned)Schedule.getStage(In) == StageNum) {
297 // Instructions with memoperands in the epilog are updated with
298 // conservative values.
299 MachineInstr *NewMI = cloneInstr(In, UINT_MAX(2147483647 *2U +1U), 0);
300 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
301 NewBB->push_back(NewMI);
302 InstrMap[NewMI] = In;
303 }
304 }
305 }
306 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
307 InstrMap, LastStage, EpilogStage, i == 1);
308 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi,
309 InstrMap, LastStage, EpilogStage, i == 1);
310 PredBB = NewBB;
311
312 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
313 dbgs() << "epilog:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
314 NewBB->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
315 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
;
316 }
317
318 // Fix any Phi nodes in the loop exit block.
319 LoopExitBB->replacePhiUsesWith(BB, PredBB);
320
321 // Create a branch to the new epilog from the kernel.
322 // Remove the original branch and add a new branch to the epilog.
323 TII->removeBranch(*KernelBB);
324 assert((OrigBB == TBB || OrigBB == FBB) &&(static_cast <bool> ((OrigBB == TBB || OrigBB == FBB) &&
"Unable to determine looping branch direction") ? void (0) :
__assert_fail ("(OrigBB == TBB || OrigBB == FBB) && \"Unable to determine looping branch direction\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 325, __extension__ __PRETTY_FUNCTION__
))
325 "Unable to determine looping branch direction")(static_cast <bool> ((OrigBB == TBB || OrigBB == FBB) &&
"Unable to determine looping branch direction") ? void (0) :
__assert_fail ("(OrigBB == TBB || OrigBB == FBB) && \"Unable to determine looping branch direction\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 325, __extension__ __PRETTY_FUNCTION__
))
;
326 if (OrigBB != TBB)
327 TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc());
328 else
329 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
330 // Add a branch to the loop exit.
331 if (EpilogBBs.size() > 0) {
332 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
333 SmallVector<MachineOperand, 4> Cond1;
334 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
335 }
336}
337
338/// Replace all uses of FromReg that appear outside the specified
339/// basic block with ToReg.
340static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
341 MachineBasicBlock *MBB,
342 MachineRegisterInfo &MRI,
343 LiveIntervals &LIS) {
344 for (MachineOperand &O :
345 llvm::make_early_inc_range(MRI.use_operands(FromReg)))
346 if (O.getParent()->getParent() != MBB)
347 O.setReg(ToReg);
348 if (!LIS.hasInterval(ToReg))
349 LIS.createEmptyInterval(ToReg);
350}
351
352/// Return true if the register has a use that occurs outside the
353/// specified loop.
354static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
355 MachineRegisterInfo &MRI) {
356 for (const MachineOperand &MO : MRI.use_operands(Reg))
357 if (MO.getParent()->getParent() != BB)
358 return true;
359 return false;
360}
361
362/// Generate Phis for the specific block in the generated pipelined code.
363/// This function looks at the Phis from the original code to guide the
364/// creation of new Phis.
365void ModuloScheduleExpander::generateExistingPhis(
366 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
367 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
368 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
369 // Compute the stage number for the initial value of the Phi, which
370 // comes from the prolog. The prolog to use depends on to which kernel/
371 // epilog that we're adding the Phi.
372 unsigned PrologStage = 0;
373 unsigned PrevStage = 0;
374 bool InKernel = (LastStageNum == CurStageNum);
375 if (InKernel) {
376 PrologStage = LastStageNum - 1;
377 PrevStage = CurStageNum;
378 } else {
379 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
380 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
381 }
382
383 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
384 BBE = BB->getFirstNonPHI();
385 BBI != BBE; ++BBI) {
386 Register Def = BBI->getOperand(0).getReg();
387
388 unsigned InitVal = 0;
389 unsigned LoopVal = 0;
390 getPhiRegs(*BBI, BB, InitVal, LoopVal);
391
392 unsigned PhiOp1 = 0;
393 // The Phi value from the loop body typically is defined in the loop, but
394 // not always. So, we need to check if the value is defined in the loop.
395 unsigned PhiOp2 = LoopVal;
396 if (VRMap[LastStageNum].count(LoopVal))
397 PhiOp2 = VRMap[LastStageNum][LoopVal];
398
399 int StageScheduled = Schedule.getStage(&*BBI);
400 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
401 unsigned NumStages = getStagesForReg(Def, CurStageNum);
402 if (NumStages == 0) {
403 // We don't need to generate a Phi anymore, but we need to rename any uses
404 // of the Phi value.
405 unsigned NewReg = VRMap[PrevStage][LoopVal];
406 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
407 InitVal, NewReg);
408 if (VRMap[CurStageNum].count(LoopVal))
409 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
410 }
411 // Adjust the number of Phis needed depending on the number of prologs left,
412 // and the distance from where the Phi is first scheduled. The number of
413 // Phis cannot exceed the number of prolog stages. Each stage can
414 // potentially define two values.
415 unsigned MaxPhis = PrologStage + 2;
416 if (!InKernel && (int)PrologStage <= LoopValStage)
417 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
418 unsigned NumPhis = std::min(NumStages, MaxPhis);
419
420 unsigned NewReg = 0;
421 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
422 // In the epilog, we may need to look back one stage to get the correct
423 // Phi name, because the epilog and prolog blocks execute the same stage.
424 // The correct name is from the previous block only when the Phi has
425 // been completely scheduled prior to the epilog, and Phi value is not
426 // needed in multiple stages.
427 int StageDiff = 0;
428 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
429 NumPhis == 1)
430 StageDiff = 1;
431 // Adjust the computations below when the phi and the loop definition
432 // are scheduled in different stages.
433 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
434 StageDiff = StageScheduled - LoopValStage;
435 for (unsigned np = 0; np < NumPhis; ++np) {
436 // If the Phi hasn't been scheduled, then use the initial Phi operand
437 // value. Otherwise, use the scheduled version of the instruction. This
438 // is a little complicated when a Phi references another Phi.
439 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
440 PhiOp1 = InitVal;
441 // Check if the Phi has already been scheduled in a prolog stage.
442 else if (PrologStage >= AccessStage + StageDiff + np &&
443 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
444 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
445 // Check if the Phi has already been scheduled, but the loop instruction
446 // is either another Phi, or doesn't occur in the loop.
447 else if (PrologStage >= AccessStage + StageDiff + np) {
448 // If the Phi references another Phi, we need to examine the other
449 // Phi to get the correct value.
450 PhiOp1 = LoopVal;
451 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
452 int Indirects = 1;
453 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
454 int PhiStage = Schedule.getStage(InstOp1);
455 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
456 PhiOp1 = getInitPhiReg(*InstOp1, BB);
457 else
458 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
459 InstOp1 = MRI.getVRegDef(PhiOp1);
460 int PhiOpStage = Schedule.getStage(InstOp1);
461 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
462 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
463 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
464 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
465 break;
466 }
467 ++Indirects;
468 }
469 } else
470 PhiOp1 = InitVal;
471 // If this references a generated Phi in the kernel, get the Phi operand
472 // from the incoming block.
473 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
474 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
475 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
476
477 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
478 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
479 // In the epilog, a map lookup is needed to get the value from the kernel,
480 // or previous epilog block. How is does this depends on if the
481 // instruction is scheduled in the previous block.
482 if (!InKernel) {
483 int StageDiffAdj = 0;
484 if (LoopValStage != -1 && StageScheduled > LoopValStage)
485 StageDiffAdj = StageScheduled - LoopValStage;
486 // Use the loop value defined in the kernel, unless the kernel
487 // contains the last definition of the Phi.
488 if (np == 0 && PrevStage == LastStageNum &&
489 (StageScheduled != 0 || LoopValStage != 0) &&
490 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
491 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
492 // Use the value defined by the Phi. We add one because we switch
493 // from looking at the loop value to the Phi definition.
494 else if (np > 0 && PrevStage == LastStageNum &&
495 VRMap[PrevStage - np + 1].count(Def))
496 PhiOp2 = VRMap[PrevStage - np + 1][Def];
497 // Use the loop value defined in the kernel.
498 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
499 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
500 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
501 // Use the value defined by the Phi, unless we're generating the first
502 // epilog and the Phi refers to a Phi in a different stage.
503 else if (VRMap[PrevStage - np].count(Def) &&
504 (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
505 (LoopValStage == StageScheduled)))
506 PhiOp2 = VRMap[PrevStage - np][Def];
507 }
508
509 // Check if we can reuse an existing Phi. This occurs when a Phi
510 // references another Phi, and the other Phi is scheduled in an
511 // earlier stage. We can try to reuse an existing Phi up until the last
512 // stage of the current Phi.
513 if (LoopDefIsPhi) {
514 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
515 int LVNumStages = getStagesForPhi(LoopVal);
516 int StageDiff = (StageScheduled - LoopValStage);
517 LVNumStages -= StageDiff;
518 // Make sure the loop value Phi has been processed already.
519 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
520 NewReg = PhiOp2;
Value stored to 'NewReg' is never read
521 unsigned ReuseStage = CurStageNum;
522 if (isLoopCarried(*PhiInst))
523 ReuseStage -= LVNumStages;
524 // Check if the Phi to reuse has been generated yet. If not, then
525 // there is nothing to reuse.
526 if (VRMap[ReuseStage - np].count(LoopVal)) {
527 NewReg = VRMap[ReuseStage - np][LoopVal];
528
529 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
530 Def, NewReg);
531 // Update the map with the new Phi name.
532 VRMap[CurStageNum - np][Def] = NewReg;
533 PhiOp2 = NewReg;
534 if (VRMap[LastStageNum - np - 1].count(LoopVal))
535 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
536
537 if (IsLast && np == NumPhis - 1)
538 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
539 continue;
540 }
541 }
542 }
543 if (InKernel && StageDiff > 0 &&
544 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
545 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
546 }
547
548 const TargetRegisterClass *RC = MRI.getRegClass(Def);
549 NewReg = MRI.createVirtualRegister(RC);
550
551 MachineInstrBuilder NewPhi =
552 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
553 TII->get(TargetOpcode::PHI), NewReg);
554 NewPhi.addReg(PhiOp1).addMBB(BB1);
555 NewPhi.addReg(PhiOp2).addMBB(BB2);
556 if (np == 0)
557 InstrMap[NewPhi] = &*BBI;
558
559 // We define the Phis after creating the new pipelined code, so
560 // we need to rename the Phi values in scheduled instructions.
561
562 unsigned PrevReg = 0;
563 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
564 PrevReg = VRMap[PrevStage - np][LoopVal];
565 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
566 NewReg, PrevReg);
567 // If the Phi has been scheduled, use the new name for rewriting.
568 if (VRMap[CurStageNum - np].count(Def)) {
569 unsigned R = VRMap[CurStageNum - np][Def];
570 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
571 NewReg);
572 }
573
574 // Check if we need to rename any uses that occurs after the loop. The
575 // register to replace depends on whether the Phi is scheduled in the
576 // epilog.
577 if (IsLast && np == NumPhis - 1)
578 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
579
580 // In the kernel, a dependent Phi uses the value from this Phi.
581 if (InKernel)
582 PhiOp2 = NewReg;
583
584 // Update the map with the new Phi name.
585 VRMap[CurStageNum - np][Def] = NewReg;
586 }
587
588 while (NumPhis++ < NumStages) {
589 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
590 NewReg, 0);
591 }
592
593 // Check if we need to rename a Phi that has been eliminated due to
594 // scheduling.
595 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
596 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
597 }
598}
599
600/// Generate Phis for the specified block in the generated pipelined code.
601/// These are new Phis needed because the definition is scheduled after the
602/// use in the pipelined sequence.
603void ModuloScheduleExpander::generatePhis(
604 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
605 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi,
606 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
607 bool IsLast) {
608 // Compute the stage number that contains the initial Phi value, and
609 // the Phi from the previous stage.
610 unsigned PrologStage = 0;
611 unsigned PrevStage = 0;
612 unsigned StageDiff = CurStageNum - LastStageNum;
613 bool InKernel = (StageDiff == 0);
614 if (InKernel) {
615 PrologStage = LastStageNum - 1;
616 PrevStage = CurStageNum;
617 } else {
618 PrologStage = LastStageNum - StageDiff;
619 PrevStage = LastStageNum + StageDiff - 1;
620 }
621
622 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
623 BBE = BB->instr_end();
624 BBI != BBE; ++BBI) {
625 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
626 MachineOperand &MO = BBI->getOperand(i);
627 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
628 continue;
629
630 int StageScheduled = Schedule.getStage(&*BBI);
631 assert(StageScheduled != -1 && "Expecting scheduled instruction.")(static_cast <bool> (StageScheduled != -1 && "Expecting scheduled instruction."
) ? void (0) : __assert_fail ("StageScheduled != -1 && \"Expecting scheduled instruction.\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 631, __extension__ __PRETTY_FUNCTION__
))
;
632 Register Def = MO.getReg();
633 unsigned NumPhis = getStagesForReg(Def, CurStageNum);
634 // An instruction scheduled in stage 0 and is used after the loop
635 // requires a phi in the epilog for the last definition from either
636 // the kernel or prolog.
637 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
638 hasUseAfterLoop(Def, BB, MRI))
639 NumPhis = 1;
640 if (!InKernel && (unsigned)StageScheduled > PrologStage)
641 continue;
642
643 unsigned PhiOp2;
644 if (InKernel) {
645 PhiOp2 = VRMap[PrevStage][Def];
646 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
647 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
648 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
649 }
650 // The number of Phis can't exceed the number of prolog stages. The
651 // prolog stage number is zero based.
652 if (NumPhis > PrologStage + 1 - StageScheduled)
653 NumPhis = PrologStage + 1 - StageScheduled;
654 for (unsigned np = 0; np < NumPhis; ++np) {
655 // Example for
656 // Org:
657 // %Org = ... (Scheduled at Stage#0, NumPhi = 2)
658 //
659 // Prolog0 (Stage0):
660 // %Clone0 = ...
661 // Prolog1 (Stage1):
662 // %Clone1 = ...
663 // Kernel (Stage2):
664 // %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel
665 // %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel
666 // %Clone2 = ...
667 // Epilog0 (Stage3):
668 // %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel
669 // %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel
670 // Epilog1 (Stage4):
671 // %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0
672 //
673 // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2}
674 // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0}
675 // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2}
676
677 unsigned PhiOp1 = VRMap[PrologStage][Def];
678 if (np <= PrologStage)
679 PhiOp1 = VRMap[PrologStage - np][Def];
680 if (!InKernel) {
681 if (PrevStage == LastStageNum && np == 0)
682 PhiOp2 = VRMap[LastStageNum][Def];
683 else
684 PhiOp2 = VRMapPhi[PrevStage - np][Def];
685 }
686
687 const TargetRegisterClass *RC = MRI.getRegClass(Def);
688 Register NewReg = MRI.createVirtualRegister(RC);
689
690 MachineInstrBuilder NewPhi =
691 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
692 TII->get(TargetOpcode::PHI), NewReg);
693 NewPhi.addReg(PhiOp1).addMBB(BB1);
694 NewPhi.addReg(PhiOp2).addMBB(BB2);
695 if (np == 0)
696 InstrMap[NewPhi] = &*BBI;
697
698 // Rewrite uses and update the map. The actions depend upon whether
699 // we generating code for the kernel or epilog blocks.
700 if (InKernel) {
701 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
702 NewReg);
703 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
704 NewReg);
705
706 PhiOp2 = NewReg;
707 VRMapPhi[PrevStage - np - 1][Def] = NewReg;
708 } else {
709 VRMapPhi[CurStageNum - np][Def] = NewReg;
710 if (np == NumPhis - 1)
711 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
712 NewReg);
713 }
714 if (IsLast && np == NumPhis - 1)
715 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
716 }
717 }
718 }
719}
720
721/// Remove instructions that generate values with no uses.
722/// Typically, these are induction variable operations that generate values
723/// used in the loop itself. A dead instruction has a definition with
724/// no uses, or uses that occur in the original loop only.
725void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
726 MBBVectorTy &EpilogBBs) {
727 // For each epilog block, check that the value defined by each instruction
728 // is used. If not, delete it.
729 for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs))
730 for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(),
731 ME = MBB->instr_rend();
732 MI != ME;) {
733 // From DeadMachineInstructionElem. Don't delete inline assembly.
734 if (MI->isInlineAsm()) {
735 ++MI;
736 continue;
737 }
738 bool SawStore = false;
739 // Check if it's safe to remove the instruction due to side effects.
740 // We can, and want to, remove Phis here.
741 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
742 ++MI;
743 continue;
744 }
745 bool used = true;
746 for (const MachineOperand &MO : MI->operands()) {
747 if (!MO.isReg() || !MO.isDef())
748 continue;
749 Register reg = MO.getReg();
750 // Assume physical registers are used, unless they are marked dead.
751 if (reg.isPhysical()) {
752 used = !MO.isDead();
753 if (used)
754 break;
755 continue;
756 }
757 unsigned realUses = 0;
758 for (const MachineOperand &U : MRI.use_operands(reg)) {
759 // Check if there are any uses that occur only in the original
760 // loop. If so, that's not a real use.
761 if (U.getParent()->getParent() != BB) {
762 realUses++;
763 used = true;
764 break;
765 }
766 }
767 if (realUses > 0)
768 break;
769 used = false;
770 }
771 if (!used) {
772 LIS.RemoveMachineInstrFromMaps(*MI);
773 MI++->eraseFromParent();
774 continue;
775 }
776 ++MI;
777 }
778 // In the kernel block, check if we can remove a Phi that generates a value
779 // used in an instruction removed in the epilog block.
780 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
781 Register reg = MI.getOperand(0).getReg();
782 if (MRI.use_begin(reg) == MRI.use_end()) {
783 LIS.RemoveMachineInstrFromMaps(MI);
784 MI.eraseFromParent();
785 }
786 }
787}
788
789/// For loop carried definitions, we split the lifetime of a virtual register
790/// that has uses past the definition in the next iteration. A copy with a new
791/// virtual register is inserted before the definition, which helps with
792/// generating a better register assignment.
793///
794/// v1 = phi(a, v2) v1 = phi(a, v2)
795/// v2 = phi(b, v3) v2 = phi(b, v3)
796/// v3 = .. v4 = copy v1
797/// .. = V1 v3 = ..
798/// .. = v4
799void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
800 MBBVectorTy &EpilogBBs) {
801 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
802 for (auto &PHI : KernelBB->phis()) {
803 Register Def = PHI.getOperand(0).getReg();
804 // Check for any Phi definition that used as an operand of another Phi
805 // in the same block.
806 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
807 E = MRI.use_instr_end();
808 I != E; ++I) {
809 if (I->isPHI() && I->getParent() == KernelBB) {
810 // Get the loop carried definition.
811 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
812 if (!LCDef)
813 continue;
814 MachineInstr *MI = MRI.getVRegDef(LCDef);
815 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
816 continue;
817 // Search through the rest of the block looking for uses of the Phi
818 // definition. If one occurs, then split the lifetime.
819 unsigned SplitReg = 0;
820 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
821 KernelBB->instr_end()))
822 if (BBJ.readsRegister(Def)) {
823 // We split the lifetime when we find the first use.
824 if (SplitReg == 0) {
825 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
826 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
827 TII->get(TargetOpcode::COPY), SplitReg)
828 .addReg(Def);
829 }
830 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
831 }
832 if (!SplitReg)
833 continue;
834 // Search through each of the epilog blocks for any uses to be renamed.
835 for (auto &Epilog : EpilogBBs)
836 for (auto &I : *Epilog)
837 if (I.readsRegister(Def))
838 I.substituteRegister(Def, SplitReg, 0, *TRI);
839 break;
840 }
841 }
842 }
843}
844
845/// Remove the incoming block from the Phis in a basic block.
846static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
847 for (MachineInstr &MI : *BB) {
848 if (!MI.isPHI())
849 break;
850 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
851 if (MI.getOperand(i + 1).getMBB() == Incoming) {
852 MI.removeOperand(i + 1);
853 MI.removeOperand(i);
854 break;
855 }
856 }
857}
858
859/// Create branches from each prolog basic block to the appropriate epilog
860/// block. These edges are needed if the loop ends before reaching the
861/// kernel.
862void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
863 MBBVectorTy &PrologBBs,
864 MachineBasicBlock *KernelBB,
865 MBBVectorTy &EpilogBBs,
866 ValueMapTy *VRMap) {
867 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch")(static_cast <bool> (PrologBBs.size() == EpilogBBs.size
() && "Prolog/Epilog mismatch") ? void (0) : __assert_fail
("PrologBBs.size() == EpilogBBs.size() && \"Prolog/Epilog mismatch\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 867, __extension__ __PRETTY_FUNCTION__
))
;
868 MachineBasicBlock *LastPro = KernelBB;
869 MachineBasicBlock *LastEpi = KernelBB;
870
871 // Start from the blocks connected to the kernel and work "out"
872 // to the first prolog and the last epilog blocks.
873 SmallVector<MachineInstr *, 4> PrevInsts;
874 unsigned MaxIter = PrologBBs.size() - 1;
875 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
876 // Add branches to the prolog that go to the corresponding
877 // epilog, and the fall-thru prolog/kernel block.
878 MachineBasicBlock *Prolog = PrologBBs[j];
879 MachineBasicBlock *Epilog = EpilogBBs[i];
880
881 SmallVector<MachineOperand, 4> Cond;
882 std::optional<bool> StaticallyGreater =
883 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
884 unsigned numAdded = 0;
885 if (!StaticallyGreater) {
886 Prolog->addSuccessor(Epilog);
887 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
888 } else if (*StaticallyGreater == false) {
889 Prolog->addSuccessor(Epilog);
890 Prolog->removeSuccessor(LastPro);
891 LastEpi->removeSuccessor(Epilog);
892 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
893 removePhis(Epilog, LastEpi);
894 // Remove the blocks that are no longer referenced.
895 if (LastPro != LastEpi) {
896 LastEpi->clear();
897 LastEpi->eraseFromParent();
898 }
899 if (LastPro == KernelBB) {
900 LoopInfo->disposed();
901 NewKernel = nullptr;
902 }
903 LastPro->clear();
904 LastPro->eraseFromParent();
905 } else {
906 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
907 removePhis(Epilog, Prolog);
908 }
909 LastPro = Prolog;
910 LastEpi = Epilog;
911 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
912 E = Prolog->instr_rend();
913 I != E && numAdded > 0; ++I, --numAdded)
914 updateInstruction(&*I, false, j, 0, VRMap);
915 }
916
917 if (NewKernel) {
918 LoopInfo->setPreheader(PrologBBs[MaxIter]);
919 LoopInfo->adjustTripCount(-(MaxIter + 1));
920 }
921}
922
923/// Return true if we can compute the amount the instruction changes
924/// during each iteration. Set Delta to the amount of the change.
925bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
926 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
927 const MachineOperand *BaseOp;
928 int64_t Offset;
929 bool OffsetIsScalable;
930 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
931 return false;
932
933 // FIXME: This algorithm assumes instructions have fixed-size offsets.
934 if (OffsetIsScalable)
935 return false;
936
937 if (!BaseOp->isReg())
938 return false;
939
940 Register BaseReg = BaseOp->getReg();
941
942 MachineRegisterInfo &MRI = MF.getRegInfo();
943 // Check if there is a Phi. If so, get the definition in the loop.
944 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
945 if (BaseDef && BaseDef->isPHI()) {
946 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
947 BaseDef = MRI.getVRegDef(BaseReg);
948 }
949 if (!BaseDef)
950 return false;
951
952 int D = 0;
953 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
954 return false;
955
956 Delta = D;
957 return true;
958}
959
960/// Update the memory operand with a new offset when the pipeliner
961/// generates a new copy of the instruction that refers to a
962/// different memory location.
963void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
964 MachineInstr &OldMI,
965 unsigned Num) {
966 if (Num == 0)
967 return;
968 // If the instruction has memory operands, then adjust the offset
969 // when the instruction appears in different stages.
970 if (NewMI.memoperands_empty())
971 return;
972 SmallVector<MachineMemOperand *, 2> NewMMOs;
973 for (MachineMemOperand *MMO : NewMI.memoperands()) {
974 // TODO: Figure out whether isAtomic is really necessary (see D57601).
975 if (MMO->isVolatile() || MMO->isAtomic() ||
976 (MMO->isInvariant() && MMO->isDereferenceable()) ||
977 (!MMO->getValue())) {
978 NewMMOs.push_back(MMO);
979 continue;
980 }
981 unsigned Delta;
982 if (Num != UINT_MAX(2147483647 *2U +1U) && computeDelta(OldMI, Delta)) {
983 int64_t AdjOffset = Delta * Num;
984 NewMMOs.push_back(
985 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
986 } else {
987 NewMMOs.push_back(
988 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
989 }
990 }
991 NewMI.setMemRefs(MF, NewMMOs);
992}
993
994/// Clone the instruction for the new pipelined loop and update the
995/// memory operands, if needed.
996MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
997 unsigned CurStageNum,
998 unsigned InstStageNum) {
999 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1000 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1001 return NewMI;
1002}
1003
1004/// Clone the instruction for the new pipelined loop. If needed, this
1005/// function updates the instruction using the values saved in the
1006/// InstrChanges structure.
1007MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1008 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1009 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1010 auto It = InstrChanges.find(OldMI);
1011 if (It != InstrChanges.end()) {
1012 std::pair<unsigned, int64_t> RegAndOffset = It->second;
1013 unsigned BasePos, OffsetPos;
1014 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1015 return nullptr;
1016 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1017 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1018 if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1019 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1020 NewMI->getOperand(OffsetPos).setImm(NewOffset);
1021 }
1022 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1023 return NewMI;
1024}
1025
1026/// Update the machine instruction with new virtual registers. This
1027/// function may change the definitions and/or uses.
1028void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1029 bool LastDef,
1030 unsigned CurStageNum,
1031 unsigned InstrStageNum,
1032 ValueMapTy *VRMap) {
1033 for (MachineOperand &MO : NewMI->operands()) {
1034 if (!MO.isReg() || !MO.getReg().isVirtual())
1035 continue;
1036 Register reg = MO.getReg();
1037 if (MO.isDef()) {
1038 // Create a new virtual register for the definition.
1039 const TargetRegisterClass *RC = MRI.getRegClass(reg);
1040 Register NewReg = MRI.createVirtualRegister(RC);
1041 MO.setReg(NewReg);
1042 VRMap[CurStageNum][reg] = NewReg;
1043 if (LastDef)
1044 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1045 } else if (MO.isUse()) {
1046 MachineInstr *Def = MRI.getVRegDef(reg);
1047 // Compute the stage that contains the last definition for instruction.
1048 int DefStageNum = Schedule.getStage(Def);
1049 unsigned StageNum = CurStageNum;
1050 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1051 // Compute the difference in stages between the defintion and the use.
1052 unsigned StageDiff = (InstrStageNum - DefStageNum);
1053 // Make an adjustment to get the last definition.
1054 StageNum -= StageDiff;
1055 }
1056 if (VRMap[StageNum].count(reg))
1057 MO.setReg(VRMap[StageNum][reg]);
1058 }
1059 }
1060}
1061
1062/// Return the instruction in the loop that defines the register.
1063/// If the definition is a Phi, then follow the Phi operand to
1064/// the instruction in the loop.
1065MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1066 SmallPtrSet<MachineInstr *, 8> Visited;
1067 MachineInstr *Def = MRI.getVRegDef(Reg);
1068 while (Def->isPHI()) {
1069 if (!Visited.insert(Def).second)
1070 break;
1071 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1072 if (Def->getOperand(i + 1).getMBB() == BB) {
1073 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1074 break;
1075 }
1076 }
1077 return Def;
1078}
1079
1080/// Return the new name for the value from the previous stage.
1081unsigned ModuloScheduleExpander::getPrevMapVal(
1082 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1083 ValueMapTy *VRMap, MachineBasicBlock *BB) {
1084 unsigned PrevVal = 0;
1085 if (StageNum > PhiStage) {
1086 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1087 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1088 // The name is defined in the previous stage.
1089 PrevVal = VRMap[StageNum - 1][LoopVal];
1090 else if (VRMap[StageNum].count(LoopVal))
1091 // The previous name is defined in the current stage when the instruction
1092 // order is swapped.
1093 PrevVal = VRMap[StageNum][LoopVal];
1094 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1095 // The loop value hasn't yet been scheduled.
1096 PrevVal = LoopVal;
1097 else if (StageNum == PhiStage + 1)
1098 // The loop value is another phi, which has not been scheduled.
1099 PrevVal = getInitPhiReg(*LoopInst, BB);
1100 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1101 // The loop value is another phi, which has been scheduled.
1102 PrevVal =
1103 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1104 LoopStage, VRMap, BB);
1105 }
1106 return PrevVal;
1107}
1108
1109/// Rewrite the Phi values in the specified block to use the mappings
1110/// from the initial operand. Once the Phi is scheduled, we switch
1111/// to using the loop value instead of the Phi value, so those names
1112/// do not need to be rewritten.
1113void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1114 unsigned StageNum,
1115 ValueMapTy *VRMap,
1116 InstrMapTy &InstrMap) {
1117 for (auto &PHI : BB->phis()) {
1118 unsigned InitVal = 0;
1119 unsigned LoopVal = 0;
1120 getPhiRegs(PHI, BB, InitVal, LoopVal);
1121 Register PhiDef = PHI.getOperand(0).getReg();
1122
1123 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1124 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1125 unsigned NumPhis = getStagesForPhi(PhiDef);
1126 if (NumPhis > StageNum)
1127 NumPhis = StageNum;
1128 for (unsigned np = 0; np <= NumPhis; ++np) {
1129 unsigned NewVal =
1130 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1131 if (!NewVal)
1132 NewVal = InitVal;
1133 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1134 NewVal);
1135 }
1136 }
1137}
1138
1139/// Rewrite a previously scheduled instruction to use the register value
1140/// from the new instruction. Make sure the instruction occurs in the
1141/// basic block, and we don't change the uses in the new instruction.
1142void ModuloScheduleExpander::rewriteScheduledInstr(
1143 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1144 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1145 unsigned PrevReg) {
1146 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1147 int StagePhi = Schedule.getStage(Phi) + PhiNum;
1148 // Rewrite uses that have been scheduled already to use the new
1149 // Phi register.
1150 for (MachineOperand &UseOp :
1151 llvm::make_early_inc_range(MRI.use_operands(OldReg))) {
1152 MachineInstr *UseMI = UseOp.getParent();
1153 if (UseMI->getParent() != BB)
1154 continue;
1155 if (UseMI->isPHI()) {
1156 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1157 continue;
1158 if (getLoopPhiReg(*UseMI, BB) != OldReg)
1159 continue;
1160 }
1161 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1162 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.")(static_cast <bool> (OrigInstr != InstrMap.end() &&
"Instruction not scheduled.") ? void (0) : __assert_fail ("OrigInstr != InstrMap.end() && \"Instruction not scheduled.\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1162, __extension__ __PRETTY_FUNCTION__
))
;
1163 MachineInstr *OrigMI = OrigInstr->second;
1164 int StageSched = Schedule.getStage(OrigMI);
1165 int CycleSched = Schedule.getCycle(OrigMI);
1166 unsigned ReplaceReg = 0;
1167 // This is the stage for the scheduled instruction.
1168 if (StagePhi == StageSched && Phi->isPHI()) {
1169 int CyclePhi = Schedule.getCycle(Phi);
1170 if (PrevReg && InProlog)
1171 ReplaceReg = PrevReg;
1172 else if (PrevReg && !isLoopCarried(*Phi) &&
1173 (CyclePhi <= CycleSched || OrigMI->isPHI()))
1174 ReplaceReg = PrevReg;
1175 else
1176 ReplaceReg = NewReg;
1177 }
1178 // The scheduled instruction occurs before the scheduled Phi, and the
1179 // Phi is not loop carried.
1180 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1181 ReplaceReg = NewReg;
1182 if (StagePhi > StageSched && Phi->isPHI())
1183 ReplaceReg = NewReg;
1184 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1185 ReplaceReg = NewReg;
1186 if (ReplaceReg) {
1187 const TargetRegisterClass *NRC =
1188 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1189 if (NRC)
1190 UseOp.setReg(ReplaceReg);
1191 else {
1192 Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
1193 BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY),
1194 SplitReg)
1195 .addReg(ReplaceReg);
1196 UseOp.setReg(SplitReg);
1197 }
1198 }
1199 }
1200}
1201
1202bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1203 if (!Phi.isPHI())
1204 return false;
1205 int DefCycle = Schedule.getCycle(&Phi);
1206 int DefStage = Schedule.getStage(&Phi);
1207
1208 unsigned InitVal = 0;
1209 unsigned LoopVal = 0;
1210 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1211 MachineInstr *Use = MRI.getVRegDef(LoopVal);
1212 if (!Use || Use->isPHI())
1213 return true;
1214 int LoopCycle = Schedule.getCycle(Use);
1215 int LoopStage = Schedule.getStage(Use);
1216 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1217}
1218
1219//===----------------------------------------------------------------------===//
1220// PeelingModuloScheduleExpander implementation
1221//===----------------------------------------------------------------------===//
1222// This is a reimplementation of ModuloScheduleExpander that works by creating
1223// a fully correct steady-state kernel and peeling off the prolog and epilogs.
1224//===----------------------------------------------------------------------===//
1225
1226namespace {
1227// Remove any dead phis in MBB. Dead phis either have only one block as input
1228// (in which case they are the identity) or have no uses.
1229void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1230 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1231 bool Changed = true;
1232 while (Changed) {
1233 Changed = false;
1234 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
1235 assert(MI.isPHI())(static_cast <bool> (MI.isPHI()) ? void (0) : __assert_fail
("MI.isPHI()", "llvm/lib/CodeGen/ModuloSchedule.cpp", 1235, __extension__
__PRETTY_FUNCTION__))
;
1236 if (MRI.use_empty(MI.getOperand(0).getReg())) {
1237 if (LIS)
1238 LIS->RemoveMachineInstrFromMaps(MI);
1239 MI.eraseFromParent();
1240 Changed = true;
1241 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1242 const TargetRegisterClass *ConstrainRegClass =
1243 MRI.constrainRegClass(MI.getOperand(1).getReg(),
1244 MRI.getRegClass(MI.getOperand(0).getReg()));
1245 assert(ConstrainRegClass &&(static_cast <bool> (ConstrainRegClass && "Expected a valid constrained register class!"
) ? void (0) : __assert_fail ("ConstrainRegClass && \"Expected a valid constrained register class!\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1246, __extension__ __PRETTY_FUNCTION__
))
1246 "Expected a valid constrained register class!")(static_cast <bool> (ConstrainRegClass && "Expected a valid constrained register class!"
) ? void (0) : __assert_fail ("ConstrainRegClass && \"Expected a valid constrained register class!\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1246, __extension__ __PRETTY_FUNCTION__
))
;
1247 (void)ConstrainRegClass;
1248 MRI.replaceRegWith(MI.getOperand(0).getReg(),
1249 MI.getOperand(1).getReg());
1250 if (LIS)
1251 LIS->RemoveMachineInstrFromMaps(MI);
1252 MI.eraseFromParent();
1253 Changed = true;
1254 }
1255 }
1256 }
1257}
1258
1259/// Rewrites the kernel block in-place to adhere to the given schedule.
1260/// KernelRewriter holds all of the state required to perform the rewriting.
1261class KernelRewriter {
1262 ModuloSchedule &S;
1263 MachineBasicBlock *BB;
1264 MachineBasicBlock *PreheaderBB, *ExitBB;
1265 MachineRegisterInfo &MRI;
1266 const TargetInstrInfo *TII;
1267 LiveIntervals *LIS;
1268
1269 // Map from register class to canonical undef register for that class.
1270 DenseMap<const TargetRegisterClass *, Register> Undefs;
1271 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1272 // this map is only used when InitReg is non-undef.
1273 DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1274 // Map from LoopReg to phi register where the InitReg is undef.
1275 DenseMap<Register, Register> UndefPhis;
1276
1277 // Reg is used by MI. Return the new register MI should use to adhere to the
1278 // schedule. Insert phis as necessary.
1279 Register remapUse(Register Reg, MachineInstr &MI);
1280 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1281 // If InitReg is not given it is chosen arbitrarily. It will either be undef
1282 // or will be chosen so as to share another phi.
1283 Register phi(Register LoopReg, std::optional<Register> InitReg = {},
1284 const TargetRegisterClass *RC = nullptr);
1285 // Create an undef register of the given register class.
1286 Register undef(const TargetRegisterClass *RC);
1287
1288public:
1289 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1290 LiveIntervals *LIS = nullptr);
1291 void rewrite();
1292};
1293} // namespace
1294
1295KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1296 MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1297 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1298 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1299 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1300 PreheaderBB = *BB->pred_begin();
1301 if (PreheaderBB == BB)
1302 PreheaderBB = *std::next(BB->pred_begin());
1303}
1304
1305void KernelRewriter::rewrite() {
1306 // Rearrange the loop to be in schedule order. Note that the schedule may
1307 // contain instructions that are not owned by the loop block (InstrChanges and
1308 // friends), so we gracefully handle unowned instructions and delete any
1309 // instructions that weren't in the schedule.
1310 auto InsertPt = BB->getFirstTerminator();
1311 MachineInstr *FirstMI = nullptr;
1312 for (MachineInstr *MI : S.getInstructions()) {
1313 if (MI->isPHI())
1314 continue;
1315 if (MI->getParent())
1316 MI->removeFromParent();
1317 BB->insert(InsertPt, MI);
1318 if (!FirstMI)
1319 FirstMI = MI;
1320 }
1321 assert(FirstMI && "Failed to find first MI in schedule")(static_cast <bool> (FirstMI && "Failed to find first MI in schedule"
) ? void (0) : __assert_fail ("FirstMI && \"Failed to find first MI in schedule\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1321, __extension__ __PRETTY_FUNCTION__
))
;
1322
1323 // At this point all of the scheduled instructions are between FirstMI
1324 // and the end of the block. Kill from the first non-phi to FirstMI.
1325 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1326 if (LIS)
1327 LIS->RemoveMachineInstrFromMaps(*I);
1328 (I++)->eraseFromParent();
1329 }
1330
1331 // Now remap every instruction in the loop.
1332 for (MachineInstr &MI : *BB) {
1333 if (MI.isPHI() || MI.isTerminator())
1334 continue;
1335 for (MachineOperand &MO : MI.uses()) {
1336 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1337 continue;
1338 Register Reg = remapUse(MO.getReg(), MI);
1339 MO.setReg(Reg);
1340 }
1341 }
1342 EliminateDeadPhis(BB, MRI, LIS);
1343
1344 // Ensure a phi exists for all instructions that are either referenced by
1345 // an illegal phi or by an instruction outside the loop. This allows us to
1346 // treat remaps of these values the same as "normal" values that come from
1347 // loop-carried phis.
1348 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1349 if (MI->isPHI()) {
1350 Register R = MI->getOperand(0).getReg();
1351 phi(R);
1352 continue;
1353 }
1354
1355 for (MachineOperand &Def : MI->defs()) {
1356 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1357 if (MI.getParent() != BB) {
1358 phi(Def.getReg());
1359 break;
1360 }
1361 }
1362 }
1363 }
1364}
1365
1366Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1367 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1368 if (!Producer)
1369 return Reg;
1370
1371 int ConsumerStage = S.getStage(&MI);
1372 if (!Producer->isPHI()) {
1373 // Non-phi producers are simple to remap. Insert as many phis as the
1374 // difference between the consumer and producer stages.
1375 if (Producer->getParent() != BB)
1376 // Producer was not inside the loop. Use the register as-is.
1377 return Reg;
1378 int ProducerStage = S.getStage(Producer);
1379 assert(ConsumerStage != -1 &&(static_cast <bool> (ConsumerStage != -1 && "In-loop consumer should always be scheduled!"
) ? void (0) : __assert_fail ("ConsumerStage != -1 && \"In-loop consumer should always be scheduled!\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1380, __extension__ __PRETTY_FUNCTION__
))
1380 "In-loop consumer should always be scheduled!")(static_cast <bool> (ConsumerStage != -1 && "In-loop consumer should always be scheduled!"
) ? void (0) : __assert_fail ("ConsumerStage != -1 && \"In-loop consumer should always be scheduled!\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1380, __extension__ __PRETTY_FUNCTION__
))
;
1381 assert(ConsumerStage >= ProducerStage)(static_cast <bool> (ConsumerStage >= ProducerStage)
? void (0) : __assert_fail ("ConsumerStage >= ProducerStage"
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1381, __extension__ __PRETTY_FUNCTION__
))
;
1382 unsigned StageDiff = ConsumerStage - ProducerStage;
1383
1384 for (unsigned I = 0; I < StageDiff; ++I)
1385 Reg = phi(Reg);
1386 return Reg;
1387 }
1388
1389 // First, dive through the phi chain to find the defaults for the generated
1390 // phis.
1391 SmallVector<std::optional<Register>, 4> Defaults;
1392 Register LoopReg = Reg;
1393 auto LoopProducer = Producer;
1394 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1395 LoopReg = getLoopPhiReg(*LoopProducer, BB);
1396 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1397 LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1398 assert(LoopProducer)(static_cast <bool> (LoopProducer) ? void (0) : __assert_fail
("LoopProducer", "llvm/lib/CodeGen/ModuloSchedule.cpp", 1398
, __extension__ __PRETTY_FUNCTION__))
;
1399 }
1400 int LoopProducerStage = S.getStage(LoopProducer);
1401
1402 std::optional<Register> IllegalPhiDefault;
1403
1404 if (LoopProducerStage == -1) {
1405 // Do nothing.
1406 } else if (LoopProducerStage > ConsumerStage) {
1407 // This schedule is only representable if ProducerStage == ConsumerStage+1.
1408 // In addition, Consumer's cycle must be scheduled after Producer in the
1409 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1410 // functions.
1411#ifndef NDEBUG // Silence unused variables in non-asserts mode.
1412 int LoopProducerCycle = S.getCycle(LoopProducer);
1413 int ConsumerCycle = S.getCycle(&MI);
1414#endif
1415 assert(LoopProducerCycle <= ConsumerCycle)(static_cast <bool> (LoopProducerCycle <= ConsumerCycle
) ? void (0) : __assert_fail ("LoopProducerCycle <= ConsumerCycle"
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1415, __extension__ __PRETTY_FUNCTION__
))
;
1416 assert(LoopProducerStage == ConsumerStage + 1)(static_cast <bool> (LoopProducerStage == ConsumerStage
+ 1) ? void (0) : __assert_fail ("LoopProducerStage == ConsumerStage + 1"
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1416, __extension__ __PRETTY_FUNCTION__
))
;
1417 // Peel off the first phi from Defaults and insert a phi between producer
1418 // and consumer. This phi will not be at the front of the block so we
1419 // consider it illegal. It will only exist during the rewrite process; it
1420 // needs to exist while we peel off prologs because these could take the
1421 // default value. After that we can replace all uses with the loop producer
1422 // value.
1423 IllegalPhiDefault = Defaults.front();
1424 Defaults.erase(Defaults.begin());
1425 } else {
1426 assert(ConsumerStage >= LoopProducerStage)(static_cast <bool> (ConsumerStage >= LoopProducerStage
) ? void (0) : __assert_fail ("ConsumerStage >= LoopProducerStage"
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1426, __extension__ __PRETTY_FUNCTION__
))
;
1427 int StageDiff = ConsumerStage - LoopProducerStage;
1428 if (StageDiff > 0) {
1429 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " -- padding defaults array from "
<< Defaults.size() << " to " << (Defaults.
size() + StageDiff) << "\n"; } } while (false)
1430 << " to " << (Defaults.size() + StageDiff) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " -- padding defaults array from "
<< Defaults.size() << " to " << (Defaults.
size() + StageDiff) << "\n"; } } while (false)
;
1431 // If we need more phis than we have defaults for, pad out with undefs for
1432 // the earliest phis, which are at the end of the defaults chain (the
1433 // chain is in reverse order).
1434 Defaults.resize(Defaults.size() + StageDiff,
1435 Defaults.empty() ? std::optional<Register>()
1436 : Defaults.back());
1437 }
1438 }
1439
1440 // Now we know the number of stages to jump back, insert the phi chain.
1441 auto DefaultI = Defaults.rbegin();
1442 while (DefaultI != Defaults.rend())
1443 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1444
1445 if (IllegalPhiDefault) {
1446 // The consumer optionally consumes LoopProducer in the same iteration
1447 // (because the producer is scheduled at an earlier cycle than the consumer)
1448 // or the initial value. To facilitate this we create an illegal block here
1449 // by embedding a phi in the middle of the block. We will fix this up
1450 // immediately prior to pruning.
1451 auto RC = MRI.getRegClass(Reg);
1452 Register R = MRI.createVirtualRegister(RC);
1453 MachineInstr *IllegalPhi =
1454 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1455 .addReg(*IllegalPhiDefault)
1456 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1457 .addReg(LoopReg)
1458 .addMBB(BB); // Block choice is arbitrary and has no effect.
1459 // Illegal phi should belong to the producer stage so that it can be
1460 // filtered correctly during peeling.
1461 S.setStage(IllegalPhi, LoopProducerStage);
1462 return R;
1463 }
1464
1465 return LoopReg;
1466}
1467
1468Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg,
1469 const TargetRegisterClass *RC) {
1470 // If the init register is not undef, try and find an existing phi.
1471 if (InitReg) {
1472 auto I = Phis.find({LoopReg, *InitReg});
1473 if (I != Phis.end())
1474 return I->second;
1475 } else {
1476 for (auto &KV : Phis) {
1477 if (KV.first.first == LoopReg)
1478 return KV.second;
1479 }
1480 }
1481
1482 // InitReg is either undef or no existing phi takes InitReg as input. Try and
1483 // find a phi that takes undef as input.
1484 auto I = UndefPhis.find(LoopReg);
1485 if (I != UndefPhis.end()) {
1486 Register R = I->second;
1487 if (!InitReg)
1488 // Found a phi taking undef as input, and this input is undef so return
1489 // without any more changes.
1490 return R;
1491 // Found a phi taking undef as input, so rewrite it to take InitReg.
1492 MachineInstr *MI = MRI.getVRegDef(R);
1493 MI->getOperand(1).setReg(*InitReg);
1494 Phis.insert({{LoopReg, *InitReg}, R});
1495 const TargetRegisterClass *ConstrainRegClass =
1496 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1497 assert(ConstrainRegClass && "Expected a valid constrained register class!")(static_cast <bool> (ConstrainRegClass && "Expected a valid constrained register class!"
) ? void (0) : __assert_fail ("ConstrainRegClass && \"Expected a valid constrained register class!\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1497, __extension__ __PRETTY_FUNCTION__
))
;
1498 (void)ConstrainRegClass;
1499 UndefPhis.erase(I);
1500 return R;
1501 }
1502
1503 // Failed to find any existing phi to reuse, so create a new one.
1504 if (!RC)
1505 RC = MRI.getRegClass(LoopReg);
1506 Register R = MRI.createVirtualRegister(RC);
1507 if (InitReg) {
1508 const TargetRegisterClass *ConstrainRegClass =
1509 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1510 assert(ConstrainRegClass && "Expected a valid constrained register class!")(static_cast <bool> (ConstrainRegClass && "Expected a valid constrained register class!"
) ? void (0) : __assert_fail ("ConstrainRegClass && \"Expected a valid constrained register class!\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1510, __extension__ __PRETTY_FUNCTION__
))
;
1511 (void)ConstrainRegClass;
1512 }
1513 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1514 .addReg(InitReg ? *InitReg : undef(RC))
1515 .addMBB(PreheaderBB)
1516 .addReg(LoopReg)
1517 .addMBB(BB);
1518 if (!InitReg)
1519 UndefPhis[LoopReg] = R;
1520 else
1521 Phis[{LoopReg, *InitReg}] = R;
1522 return R;
1523}
1524
1525Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1526 Register &R = Undefs[RC];
1527 if (R == 0) {
1528 // Create an IMPLICIT_DEF that defines this register if we need it.
1529 // All uses of this should be removed by the time we have finished unrolling
1530 // prologs and epilogs.
1531 R = MRI.createVirtualRegister(RC);
1532 auto *InsertBB = &PreheaderBB->getParent()->front();
1533 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1534 TII->get(TargetOpcode::IMPLICIT_DEF), R);
1535 }
1536 return R;
1537}
1538
1539namespace {
1540/// Describes an operand in the kernel of a pipelined loop. Characteristics of
1541/// the operand are discovered, such as how many in-loop PHIs it has to jump
1542/// through and defaults for these phis.
1543class KernelOperandInfo {
1544 MachineBasicBlock *BB;
1545 MachineRegisterInfo &MRI;
1546 SmallVector<Register, 4> PhiDefaults;
1547 MachineOperand *Source;
1548 MachineOperand *Target;
1549
1550public:
1551 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1552 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1553 : MRI(MRI) {
1554 Source = MO;
1555 BB = MO->getParent()->getParent();
1556 while (isRegInLoop(MO)) {
1557 MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1558 if (MI->isFullCopy()) {
1559 MO = &MI->getOperand(1);
1560 continue;
1561 }
1562 if (!MI->isPHI())
1563 break;
1564 // If this is an illegal phi, don't count it in distance.
1565 if (IllegalPhis.count(MI)) {
1566 MO = &MI->getOperand(3);
1567 continue;
1568 }
1569
1570 Register Default = getInitPhiReg(*MI, BB);
1571 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1572 : &MI->getOperand(3);
1573 PhiDefaults.push_back(Default);
1574 }
1575 Target = MO;
1576 }
1577
1578 bool operator==(const KernelOperandInfo &Other) const {
1579 return PhiDefaults.size() == Other.PhiDefaults.size();
1580 }
1581
1582 void print(raw_ostream &OS) const {
1583 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1584 << *Source->getParent();
1585 }
1586
1587private:
1588 bool isRegInLoop(MachineOperand *MO) {
1589 return MO->isReg() && MO->getReg().isVirtual() &&
1590 MRI.getVRegDef(MO->getReg())->getParent() == BB;
1591 }
1592};
1593} // namespace
1594
1595MachineBasicBlock *
1596PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1597 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1598 if (LPD == LPD_Front)
1599 PeeledFront.push_back(NewBB);
1600 else
1601 PeeledBack.push_front(NewBB);
1602 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1603 ++I, ++NI) {
1604 CanonicalMIs[&*I] = &*I;
1605 CanonicalMIs[&*NI] = &*I;
1606 BlockMIs[{NewBB, &*I}] = &*NI;
1607 BlockMIs[{BB, &*I}] = &*I;
1608 }
1609 return NewBB;
1610}
1611
1612void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1613 int MinStage) {
1614 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1615 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1616 MachineInstr *MI = &*I++;
1617 int Stage = getStage(MI);
1618 if (Stage == -1 || Stage >= MinStage)
1619 continue;
1620
1621 for (MachineOperand &DefMO : MI->defs()) {
1622 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1623 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1624 // Only PHIs can use values from this block by construction.
1625 // Match with the equivalent PHI in B.
1626 assert(UseMI.isPHI())(static_cast <bool> (UseMI.isPHI()) ? void (0) : __assert_fail
("UseMI.isPHI()", "llvm/lib/CodeGen/ModuloSchedule.cpp", 1626
, __extension__ __PRETTY_FUNCTION__))
;
1627 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1628 MI->getParent());
1629 Subs.emplace_back(&UseMI, Reg);
1630 }
1631 for (auto &Sub : Subs)
1632 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1633 *MRI.getTargetRegisterInfo());
1634 }
1635 if (LIS)
1636 LIS->RemoveMachineInstrFromMaps(*MI);
1637 MI->eraseFromParent();
1638 }
1639}
1640
1641void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1642 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1643 auto InsertPt = DestBB->getFirstNonPHI();
1644 DenseMap<Register, Register> Remaps;
1645 for (MachineInstr &MI : llvm::make_early_inc_range(
1646 llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) {
1647 if (MI.isPHI()) {
1648 // This is an illegal PHI. If we move any instructions using an illegal
1649 // PHI, we need to create a legal Phi.
1650 if (getStage(&MI) != Stage) {
1651 // The legal Phi is not necessary if the illegal phi's stage
1652 // is being moved.
1653 Register PhiR = MI.getOperand(0).getReg();
1654 auto RC = MRI.getRegClass(PhiR);
1655 Register NR = MRI.createVirtualRegister(RC);
1656 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1657 DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1658 .addReg(PhiR)
1659 .addMBB(SourceBB);
1660 BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI;
1661 CanonicalMIs[NI] = CanonicalMIs[&MI];
1662 Remaps[PhiR] = NR;
1663 }
1664 }
1665 if (getStage(&MI) != Stage)
1666 continue;
1667 MI.removeFromParent();
1668 DestBB->insert(InsertPt, &MI);
1669 auto *KernelMI = CanonicalMIs[&MI];
1670 BlockMIs[{DestBB, KernelMI}] = &MI;
1671 BlockMIs.erase({SourceBB, KernelMI});
1672 }
1673 SmallVector<MachineInstr *, 4> PhiToDelete;
1674 for (MachineInstr &MI : DestBB->phis()) {
1675 assert(MI.getNumOperands() == 3)(static_cast <bool> (MI.getNumOperands() == 3) ? void (
0) : __assert_fail ("MI.getNumOperands() == 3", "llvm/lib/CodeGen/ModuloSchedule.cpp"
, 1675, __extension__ __PRETTY_FUNCTION__))
;
1676 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1677 // If the instruction referenced by the phi is moved inside the block
1678 // we don't need the phi anymore.
1679 if (getStage(Def) == Stage) {
1680 Register PhiReg = MI.getOperand(0).getReg();
1681 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1)(static_cast <bool> (Def->findRegisterDefOperandIdx(
MI.getOperand(1).getReg()) != -1) ? void (0) : __assert_fail (
"Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1"
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1681, __extension__ __PRETTY_FUNCTION__
))
;
1682 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1683 MI.getOperand(0).setReg(PhiReg);
1684 PhiToDelete.push_back(&MI);
1685 }
1686 }
1687 for (auto *P : PhiToDelete)
1688 P->eraseFromParent();
1689 InsertPt = DestBB->getFirstNonPHI();
1690 // Helper to clone Phi instructions into the destination block. We clone Phi
1691 // greedily to avoid combinatorial explosion of Phi instructions.
1692 auto clonePhi = [&](MachineInstr *Phi) {
1693 MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1694 DestBB->insert(InsertPt, NewMI);
1695 Register OrigR = Phi->getOperand(0).getReg();
1696 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1697 NewMI->getOperand(0).setReg(R);
1698 NewMI->getOperand(1).setReg(OrigR);
1699 NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1700 Remaps[OrigR] = R;
1701 CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1702 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1703 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1704 return R;
1705 };
1706 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1707 for (MachineOperand &MO : I->uses()) {
1708 if (!MO.isReg())
1709 continue;
1710 if (Remaps.count(MO.getReg()))
1711 MO.setReg(Remaps[MO.getReg()]);
1712 else {
1713 // If we are using a phi from the source block we need to add a new phi
1714 // pointing to the old one.
1715 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1716 if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1717 Register R = clonePhi(Use);
1718 MO.setReg(R);
1719 }
1720 }
1721 }
1722 }
1723}
1724
1725Register
1726PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1727 MachineInstr *Phi) {
1728 unsigned distance = PhiNodeLoopIteration[Phi];
1729 MachineInstr *CanonicalUse = CanonicalPhi;
1730 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1731 for (unsigned I = 0; I < distance; ++I) {
1732 assert(CanonicalUse->isPHI())(static_cast <bool> (CanonicalUse->isPHI()) ? void (
0) : __assert_fail ("CanonicalUse->isPHI()", "llvm/lib/CodeGen/ModuloSchedule.cpp"
, 1732, __extension__ __PRETTY_FUNCTION__))
;
1733 assert(CanonicalUse->getNumOperands() == 5)(static_cast <bool> (CanonicalUse->getNumOperands() ==
5) ? void (0) : __assert_fail ("CanonicalUse->getNumOperands() == 5"
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1733, __extension__ __PRETTY_FUNCTION__
))
;
1734 unsigned LoopRegIdx = 3, InitRegIdx = 1;
1735 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1736 std::swap(LoopRegIdx, InitRegIdx);
1737 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1738 CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1739 }
1740 return CanonicalUseReg;
1741}
1742
1743void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1744 BitVector LS(Schedule.getNumStages(), true);
1745 BitVector AS(Schedule.getNumStages(), true);
1746 LiveStages[BB] = LS;
1747 AvailableStages[BB] = AS;
1748
1749 // Peel out the prologs.
1750 LS.reset();
1751 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1752 LS[I] = true;
1753 Prologs.push_back(peelKernel(LPD_Front));
1754 LiveStages[Prologs.back()] = LS;
1755 AvailableStages[Prologs.back()] = LS;
1756 }
1757
1758 // Create a block that will end up as the new loop exiting block (dominated by
1759 // all prologs and epilogs). It will only contain PHIs, in the same order as
1760 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1761 // that the exiting block is a (sub) clone of BB. This in turn gives us the
1762 // property that any value deffed in BB but used outside of BB is used by a
1763 // PHI in the exiting block.
1764 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1765 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1766 // Push out the epilogs, again in reverse order.
1767 // We can't assume anything about the minumum loop trip count at this point,
1768 // so emit a fairly complex epilog.
1769
1770 // We first peel number of stages minus one epilogue. Then we remove dead
1771 // stages and reorder instructions based on their stage. If we have 3 stages
1772 // we generate first:
1773 // E0[3, 2, 1]
1774 // E1[3', 2']
1775 // E2[3'']
1776 // And then we move instructions based on their stages to have:
1777 // E0[3]
1778 // E1[2, 3']
1779 // E2[1, 2', 3'']
1780 // The transformation is legal because we only move instructions past
1781 // instructions of a previous loop iteration.
1782 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1783 Epilogs.push_back(peelKernel(LPD_Back));
1784 MachineBasicBlock *B = Epilogs.back();
1785 filterInstructions(B, Schedule.getNumStages() - I);
1786 // Keep track at which iteration each phi belongs to. We need it to know
1787 // what version of the variable to use during prologue/epilogue stitching.
1788 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1789 for (MachineInstr &Phi : B->phis())
1790 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
1791 }
1792 for (size_t I = 0; I < Epilogs.size(); I++) {
1793 LS.reset();
1794 for (size_t J = I; J < Epilogs.size(); J++) {
1795 int Iteration = J;
1796 unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1797 // Move stage one block at a time so that Phi nodes are updated correctly.
1798 for (size_t K = Iteration; K > I; K--)
1799 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1800 LS[Stage] = true;
1801 }
1802 LiveStages[Epilogs[I]] = LS;
1803 AvailableStages[Epilogs[I]] = AS;
1804 }
1805
1806 // Now we've defined all the prolog and epilog blocks as a fallthrough
1807 // sequence, add the edges that will be followed if the loop trip count is
1808 // lower than the number of stages (connecting prologs directly with epilogs).
1809 auto PI = Prologs.begin();
1810 auto EI = Epilogs.begin();
1811 assert(Prologs.size() == Epilogs.size())(static_cast <bool> (Prologs.size() == Epilogs.size()) ?
void (0) : __assert_fail ("Prologs.size() == Epilogs.size()"
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1811, __extension__ __PRETTY_FUNCTION__
))
;
1812 for (; PI != Prologs.end(); ++PI, ++EI) {
1813 MachineBasicBlock *Pred = *(*EI)->pred_begin();
1814 (*PI)->addSuccessor(*EI);
1815 for (MachineInstr &MI : (*EI)->phis()) {
1816 Register Reg = MI.getOperand(1).getReg();
1817 MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1818 if (Use && Use->getParent() == Pred) {
1819 MachineInstr *CanonicalUse = CanonicalMIs[Use];
1820 if (CanonicalUse->isPHI()) {
1821 // If the use comes from a phi we need to skip as many phi as the
1822 // distance between the epilogue and the kernel. Trace through the phi
1823 // chain to find the right value.
1824 Reg = getPhiCanonicalReg(CanonicalUse, Use);
1825 }
1826 Reg = getEquivalentRegisterIn(Reg, *PI);
1827 }
1828 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1829 MI.addOperand(MachineOperand::CreateMBB(*PI));
1830 }
1831 }
1832
1833 // Create a list of all blocks in order.
1834 SmallVector<MachineBasicBlock *, 8> Blocks;
1835 llvm::copy(PeeledFront, std::back_inserter(Blocks));
1836 Blocks.push_back(BB);
1837 llvm::copy(PeeledBack, std::back_inserter(Blocks));
1838
1839 // Iterate in reverse order over all instructions, remapping as we go.
1840 for (MachineBasicBlock *B : reverse(Blocks)) {
1841 for (auto I = B->instr_rbegin();
1842 I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1843 MachineBasicBlock::reverse_instr_iterator MI = I++;
1844 rewriteUsesOf(&*MI);
1845 }
1846 }
1847 for (auto *MI : IllegalPhisToDelete) {
1848 if (LIS)
1849 LIS->RemoveMachineInstrFromMaps(*MI);
1850 MI->eraseFromParent();
1851 }
1852 IllegalPhisToDelete.clear();
1853
1854 // Now all remapping has been done, we're free to optimize the generated code.
1855 for (MachineBasicBlock *B : reverse(Blocks))
1856 EliminateDeadPhis(B, MRI, LIS);
1857 EliminateDeadPhis(ExitingBB, MRI, LIS);
1858}
1859
1860MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1861 MachineFunction &MF = *BB->getParent();
1862 MachineBasicBlock *Exit = *BB->succ_begin();
1863 if (Exit == BB)
1864 Exit = *std::next(BB->succ_begin());
1865
1866 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1867 MF.insert(std::next(BB->getIterator()), NewBB);
1868
1869 // Clone all phis in BB into NewBB and rewrite.
1870 for (MachineInstr &MI : BB->phis()) {
1871 auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1872 Register OldR = MI.getOperand(3).getReg();
1873 Register R = MRI.createVirtualRegister(RC);
1874 SmallVector<MachineInstr *, 4> Uses;
1875 for (MachineInstr &Use : MRI.use_instructions(OldR))
1876 if (Use.getParent() != BB)
1877 Uses.push_back(&Use);
1878 for (MachineInstr *Use : Uses)
1879 Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1880 *MRI.getTargetRegisterInfo());
1881 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1882 .addReg(OldR)
1883 .addMBB(BB);
1884 BlockMIs[{NewBB, &MI}] = NI;
1885 CanonicalMIs[NI] = &MI;
1886 }
1887 BB->replaceSuccessor(Exit, NewBB);
1888 Exit->replacePhiUsesWith(BB, NewBB);
1889 NewBB->addSuccessor(Exit);
1890
1891 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1892 SmallVector<MachineOperand, 4> Cond;
1893 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1894 (void)CanAnalyzeBr;
1895 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!")(static_cast <bool> (CanAnalyzeBr && "Must be able to analyze the loop branch!"
) ? void (0) : __assert_fail ("CanAnalyzeBr && \"Must be able to analyze the loop branch!\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 1895, __extension__ __PRETTY_FUNCTION__
))
;
1896 TII->removeBranch(*BB);
1897 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1898 Cond, DebugLoc());
1899 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1900 return NewBB;
1901}
1902
1903Register
1904PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1905 MachineBasicBlock *BB) {
1906 MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1907 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1908 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1909}
1910
1911void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1912 if (MI->isPHI()) {
1913 // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1914 // and it is produced by this block.
1915 Register PhiR = MI->getOperand(0).getReg();
1916 Register R = MI->getOperand(3).getReg();
1917 int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1918 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1919 R = MI->getOperand(1).getReg();
1920 MRI.setRegClass(R, MRI.getRegClass(PhiR));
1921 MRI.replaceRegWith(PhiR, R);
1922 // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1923 // later to figure out how to remap registers.
1924 MI->getOperand(0).setReg(PhiR);
1925 IllegalPhisToDelete.push_back(MI);
1926 return;
1927 }
1928
1929 int Stage = getStage(MI);
1930 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1931 LiveStages[MI->getParent()].test(Stage))
1932 // Instruction is live, no rewriting to do.
1933 return;
1934
1935 for (MachineOperand &DefMO : MI->defs()) {
1936 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1937 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1938 // Only PHIs can use values from this block by construction.
1939 // Match with the equivalent PHI in B.
1940 assert(UseMI.isPHI())(static_cast <bool> (UseMI.isPHI()) ? void (0) : __assert_fail
("UseMI.isPHI()", "llvm/lib/CodeGen/ModuloSchedule.cpp", 1940
, __extension__ __PRETTY_FUNCTION__))
;
1941 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1942 MI->getParent());
1943 Subs.emplace_back(&UseMI, Reg);
1944 }
1945 for (auto &Sub : Subs)
1946 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1947 *MRI.getTargetRegisterInfo());
1948 }
1949 if (LIS)
1950 LIS->RemoveMachineInstrFromMaps(*MI);
1951 MI->eraseFromParent();
1952}
1953
1954void PeelingModuloScheduleExpander::fixupBranches() {
1955 // Work outwards from the kernel.
1956 bool KernelDisposed = false;
1957 int TC = Schedule.getNumStages() - 1;
1958 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1959 ++PI, ++EI, --TC) {
1960 MachineBasicBlock *Prolog = *PI;
1961 MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1962 MachineBasicBlock *Epilog = *EI;
1963 SmallVector<MachineOperand, 4> Cond;
1964 TII->removeBranch(*Prolog);
1965 std::optional<bool> StaticallyGreater =
1966 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1967 if (!StaticallyGreater) {
1968 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Dynamic: TC > " <<
TC << "\n"; } } while (false)
;
1969 // Dynamically branch based on Cond.
1970 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1971 } else if (*StaticallyGreater == false) {
1972 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Static-false: TC > " <<
TC << "\n"; } } while (false)
;
1973 // Prolog never falls through; branch to epilog and orphan interior
1974 // blocks. Leave it to unreachable-block-elim to clean up.
1975 Prolog->removeSuccessor(Fallthrough);
1976 for (MachineInstr &P : Fallthrough->phis()) {
1977 P.removeOperand(2);
1978 P.removeOperand(1);
1979 }
1980 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1981 KernelDisposed = true;
1982 } else {
1983 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Static-true: TC > " <<
TC << "\n"; } } while (false)
;
1984 // Prolog always falls through; remove incoming values in epilog.
1985 Prolog->removeSuccessor(Epilog);
1986 for (MachineInstr &P : Epilog->phis()) {
1987 P.removeOperand(4);
1988 P.removeOperand(3);
1989 }
1990 }
1991 }
1992
1993 if (!KernelDisposed) {
1994 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1995 LoopInfo->setPreheader(Prologs.back());
1996 } else {
1997 LoopInfo->disposed();
1998 }
1999}
2000
2001void PeelingModuloScheduleExpander::rewriteKernel() {
2002 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2003 KR.rewrite();
2004}
2005
2006void PeelingModuloScheduleExpander::expand() {
2007 BB = Schedule.getLoop()->getTopBlock();
2008 Preheader = Schedule.getLoop()->getLoopPreheader();
2009 LLVM_DEBUG(Schedule.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { Schedule.dump(); } } while (false)
;
2010 LoopInfo = TII->analyzeLoopForPipelining(BB);
2011 assert(LoopInfo)(static_cast <bool> (LoopInfo) ? void (0) : __assert_fail
("LoopInfo", "llvm/lib/CodeGen/ModuloSchedule.cpp", 2011, __extension__
__PRETTY_FUNCTION__))
;
2012
2013 rewriteKernel();
2014 peelPrologAndEpilogs();
2015 fixupBranches();
2016}
2017
2018void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2019 BB = Schedule.getLoop()->getTopBlock();
2020 Preheader = Schedule.getLoop()->getLoopPreheader();
2021
2022 // Dump the schedule before we invalidate and remap all its instructions.
2023 // Stash it in a string so we can print it if we found an error.
2024 std::string ScheduleDump;
2025 raw_string_ostream OS(ScheduleDump);
2026 Schedule.print(OS);
2027 OS.flush();
2028
2029 // First, run the normal ModuleScheduleExpander. We don't support any
2030 // InstrChanges.
2031 assert(LIS && "Requires LiveIntervals!")(static_cast <bool> (LIS && "Requires LiveIntervals!"
) ? void (0) : __assert_fail ("LIS && \"Requires LiveIntervals!\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 2031, __extension__ __PRETTY_FUNCTION__
))
;
2032 ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2033 ModuloScheduleExpander::InstrChangesTy());
2034 MSE.expand();
2035 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2036 if (!ExpandedKernel) {
2037 // The expander optimized away the kernel. We can't do any useful checking.
2038 MSE.cleanup();
2039 return;
2040 }
2041 // Before running the KernelRewriter, re-add BB into the CFG.
2042 Preheader->addSuccessor(BB);
2043
2044 // Now run the new expansion algorithm.
2045 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2046 KR.rewrite();
2047 peelPrologAndEpilogs();
2048
2049 // Collect all illegal phis that the new algorithm created. We'll give these
2050 // to KernelOperandInfo.
2051 SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2052 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2053 if (NI->isPHI())
2054 IllegalPhis.insert(&*NI);
2055 }
2056
2057 // Co-iterate across both kernels. We expect them to be identical apart from
2058 // phis and full COPYs (we look through both).
2059 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2060 auto OI = ExpandedKernel->begin();
2061 auto NI = BB->begin();
2062 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2063 while (OI->isPHI() || OI->isFullCopy())
2064 ++OI;
2065 while (NI->isPHI() || NI->isFullCopy())
2066 ++NI;
2067 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!")(static_cast <bool> (OI->getOpcode() == NI->getOpcode
() && "Opcodes don't match?!") ? void (0) : __assert_fail
("OI->getOpcode() == NI->getOpcode() && \"Opcodes don't match?!\""
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 2067, __extension__ __PRETTY_FUNCTION__
))
;
2068 // Analyze every operand separately.
2069 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2070 OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2071 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2072 KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2073 }
2074
2075 bool Failed = false;
2076 for (auto &OldAndNew : KOIs) {
2077 if (OldAndNew.first == OldAndNew.second)
2078 continue;
2079 Failed = true;
2080 errs() << "Modulo kernel validation error: [\n";
2081 errs() << " [golden] ";
2082 OldAndNew.first.print(errs());
2083 errs() << " ";
2084 OldAndNew.second.print(errs());
2085 errs() << "]\n";
2086 }
2087
2088 if (Failed) {
2089 errs() << "Golden reference kernel:\n";
2090 ExpandedKernel->print(errs());
2091 errs() << "New kernel:\n";
2092 BB->print(errs());
2093 errs() << ScheduleDump;
2094 report_fatal_error(
2095 "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2096 }
2097
2098 // Cleanup by removing BB from the CFG again as the original
2099 // ModuloScheduleExpander intended.
2100 Preheader->removeSuccessor(BB);
2101 MSE.cleanup();
2102}
2103
2104//===----------------------------------------------------------------------===//
2105// ModuloScheduleTestPass implementation
2106//===----------------------------------------------------------------------===//
2107// This pass constructs a ModuloSchedule from its module and runs
2108// ModuloScheduleExpander.
2109//
2110// The module is expected to contain a single-block analyzable loop.
2111// The total order of instructions is taken from the loop as-is.
2112// Instructions are expected to be annotated with a PostInstrSymbol.
2113// This PostInstrSymbol must have the following format:
2114// "Stage=%d Cycle=%d".
2115//===----------------------------------------------------------------------===//
2116
2117namespace {
2118class ModuloScheduleTest : public MachineFunctionPass {
2119public:
2120 static char ID;
2121
2122 ModuloScheduleTest() : MachineFunctionPass(ID) {
2123 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2124 }
2125
2126 bool runOnMachineFunction(MachineFunction &MF) override;
2127 void runOnLoop(MachineFunction &MF, MachineLoop &L);
2128
2129 void getAnalysisUsage(AnalysisUsage &AU) const override {
2130 AU.addRequired<MachineLoopInfo>();
2131 AU.addRequired<LiveIntervals>();
2132 MachineFunctionPass::getAnalysisUsage(AU);
2133 }
2134};
2135} // namespace
2136
2137char ModuloScheduleTest::ID = 0;
2138
2139INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",static void *initializeModuloScheduleTestPassOnce(PassRegistry
&Registry) {
2140 "Modulo Schedule test pass", false, false)static void *initializeModuloScheduleTestPassOnce(PassRegistry
&Registry) {
2141INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry);
2142INITIALIZE_PASS_DEPENDENCY(LiveIntervals)initializeLiveIntervalsPass(Registry);
2143INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",PassInfo *PI = new PassInfo( "Modulo Schedule test pass", "modulo-schedule-test"
, &ModuloScheduleTest::ID, PassInfo::NormalCtor_t(callDefaultCtor
<ModuloScheduleTest>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeModuloScheduleTestPassFlag
; void llvm::initializeModuloScheduleTestPass(PassRegistry &
Registry) { llvm::call_once(InitializeModuloScheduleTestPassFlag
, initializeModuloScheduleTestPassOnce, std::ref(Registry)); }
2144 "Modulo Schedule test pass", false, false)PassInfo *PI = new PassInfo( "Modulo Schedule test pass", "modulo-schedule-test"
, &ModuloScheduleTest::ID, PassInfo::NormalCtor_t(callDefaultCtor
<ModuloScheduleTest>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeModuloScheduleTestPassFlag
; void llvm::initializeModuloScheduleTestPass(PassRegistry &
Registry) { llvm::call_once(InitializeModuloScheduleTestPassFlag
, initializeModuloScheduleTestPassOnce, std::ref(Registry)); }
2145
2146bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2147 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2148 for (auto *L : MLI) {
2149 if (L->getTopBlock() != L->getBottomBlock())
2150 continue;
2151 runOnLoop(MF, *L);
2152 return false;
2153 }
2154 return false;
2155}
2156
2157static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2158 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2159 std::pair<StringRef, StringRef> StageTokenAndValue =
2160 getToken(StageAndCycle.first, "-");
2161 std::pair<StringRef, StringRef> CycleTokenAndValue =
2162 getToken(StageAndCycle.second, "-");
2163 if (StageTokenAndValue.first != "Stage" ||
2164 CycleTokenAndValue.first != "_Cycle") {
2165 llvm_unreachable(::llvm::llvm_unreachable_internal("Bad post-instr symbol syntax: see comment in ModuloScheduleTest"
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 2166)
2166 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest")::llvm::llvm_unreachable_internal("Bad post-instr symbol syntax: see comment in ModuloScheduleTest"
, "llvm/lib/CodeGen/ModuloSchedule.cpp", 2166)
;
2167 return;
2168 }
2169
2170 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2171 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2172
2173 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2174}
2175
2176void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2177 LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2178 MachineBasicBlock *BB = L.getTopBlock();
2179 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2180
2181 DenseMap<MachineInstr *, int> Cycle, Stage;
2182 std::vector<MachineInstr *> Instrs;
2183 for (MachineInstr &MI : *BB) {
2184 if (MI.isTerminator())
2185 continue;
2186 Instrs.push_back(&MI);
2187 if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2188 dbgs() << "Parsing post-instr symbol for " << MI;
2189 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2190 }
2191 }
2192
2193 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2194 std::move(Stage));
2195 ModuloScheduleExpander MSE(
2196 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2197 MSE.expand();
2198 MSE.cleanup();
2199}
2200
2201//===----------------------------------------------------------------------===//
2202// ModuloScheduleTestAnnotater implementation
2203//===----------------------------------------------------------------------===//
2204
2205void ModuloScheduleTestAnnotater::annotate() {
2206 for (MachineInstr *MI : S.getInstructions()) {
2207 SmallVector<char, 16> SV;
2208 raw_svector_ostream OS(SV);
2209 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2210 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2211 MI->setPostInstrSymbol(MF, Sym);
2212 }
2213}