Bug Summary

File:llvm/lib/Frontend/OpenMP/OMPContext.cpp
Warning:line 268, column 11
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name OMPContext.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Frontend/OpenMP -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Frontend/OpenMP -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp

1//===- OMPContext.cpp ------ Collection of helpers for OpenMP contexts ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file implements helper functions and classes to deal with OpenMP
11/// contexts as used by `[begin/end] declare variant` and `metadirective`.
12///
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Frontend/OpenMP/OMPContext.h"
16#include "llvm/ADT/SetOperations.h"
17#include "llvm/ADT/StringSwitch.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/raw_ostream.h"
20
21#define DEBUG_TYPE"openmp-ir-builder" "openmp-ir-builder"
22
23using namespace llvm;
24using namespace omp;
25
26OMPContext::OMPContext(bool IsDeviceCompilation, Triple TargetTriple) {
27 // Add the appropriate device kind trait based on the triple and the
28 // IsDeviceCompilation flag.
29 ActiveTraits.insert(IsDeviceCompilation ? TraitProperty::device_kind_nohost
30 : TraitProperty::device_kind_host);
31 switch (TargetTriple.getArch()) {
32 case Triple::arm:
33 case Triple::armeb:
34 case Triple::aarch64:
35 case Triple::aarch64_be:
36 case Triple::aarch64_32:
37 case Triple::mips:
38 case Triple::mipsel:
39 case Triple::mips64:
40 case Triple::mips64el:
41 case Triple::ppc:
42 case Triple::ppc64:
43 case Triple::ppc64le:
44 case Triple::x86:
45 case Triple::x86_64:
46 ActiveTraits.insert(TraitProperty::device_kind_cpu);
47 break;
48 case Triple::amdgcn:
49 case Triple::nvptx:
50 case Triple::nvptx64:
51 ActiveTraits.insert(TraitProperty::device_kind_gpu);
52 break;
53 default:
54 break;
55 }
56
57 // Add the appropriate device architecture trait based on the triple.
58#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
59 if (TraitSelector::TraitSelectorEnum == TraitSelector::device_arch) \
60 if (TargetTriple.getArch() == TargetTriple.getArchTypeForLLVMName(Str)) \
61 ActiveTraits.insert(TraitProperty::Enum);
62#include "llvm/Frontend/OpenMP/OMPKinds.def"
63
64 // TODO: What exactly do we want to see as device ISA trait?
65 // The discussion on the list did not seem to have come to an agreed
66 // upon solution.
67
68 // LLVM is the "OpenMP vendor" but we could also interpret vendor as the
69 // target vendor.
70 ActiveTraits.insert(TraitProperty::implementation_vendor_llvm);
71
72 // The user condition true is accepted but not false.
73 ActiveTraits.insert(TraitProperty::user_condition_true);
74
75 // This is for sure some device.
76 ActiveTraits.insert(TraitProperty::device_kind_any);
77
78 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (auto &Property : ActiveTraits) dbgs() << "\t "
<< getOpenMPContextTraitPropertyFullName(Property) <<
"\n"; }; } } while (false)
79 dbgs() << "[" << DEBUG_TYPEdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (auto &Property : ActiveTraits) dbgs() << "\t "
<< getOpenMPContextTraitPropertyFullName(Property) <<
"\n"; }; } } while (false)
80 << "] New OpenMP context with the following properties:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (auto &Property : ActiveTraits) dbgs() << "\t "
<< getOpenMPContextTraitPropertyFullName(Property) <<
"\n"; }; } } while (false)
81 for (auto &Property : ActiveTraits)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (auto &Property : ActiveTraits) dbgs() << "\t "
<< getOpenMPContextTraitPropertyFullName(Property) <<
"\n"; }; } } while (false)
82 dbgs() << "\t " << getOpenMPContextTraitPropertyFullName(Property)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (auto &Property : ActiveTraits) dbgs() << "\t "
<< getOpenMPContextTraitPropertyFullName(Property) <<
"\n"; }; } } while (false)
83 << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (auto &Property : ActiveTraits) dbgs() << "\t "
<< getOpenMPContextTraitPropertyFullName(Property) <<
"\n"; }; } } while (false)
84 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (auto &Property : ActiveTraits) dbgs() << "\t "
<< getOpenMPContextTraitPropertyFullName(Property) <<
"\n"; }; } } while (false)
;
85}
86
87/// Return true if \p C0 is a subset of \p C1. Note that both arrays are
88/// expected to be sorted.
89template <typename T> static bool isSubset(ArrayRef<T> C0, ArrayRef<T> C1) {
90#ifdef EXPENSIVE_CHECKS
91 assert(std::is_sorted(C0.begin(), C0.end()) &&((std::is_sorted(C0.begin(), C0.end()) && std::is_sorted
(C1.begin(), C1.end()) && "Expected sorted arrays!") ?
static_cast<void> (0) : __assert_fail ("std::is_sorted(C0.begin(), C0.end()) && std::is_sorted(C1.begin(), C1.end()) && \"Expected sorted arrays!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 92, __PRETTY_FUNCTION__))
92 std::is_sorted(C1.begin(), C1.end()) && "Expected sorted arrays!")((std::is_sorted(C0.begin(), C0.end()) && std::is_sorted
(C1.begin(), C1.end()) && "Expected sorted arrays!") ?
static_cast<void> (0) : __assert_fail ("std::is_sorted(C0.begin(), C0.end()) && std::is_sorted(C1.begin(), C1.end()) && \"Expected sorted arrays!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 92, __PRETTY_FUNCTION__))
;
93#endif
94 if (C0.size() > C1.size())
95 return false;
96 auto It0 = C0.begin(), End0 = C0.end();
97 auto It1 = C1.begin(), End1 = C1.end();
98 while (It0 != End0) {
99 if (It1 == End1)
100 return false;
101 if (*It0 == *It1) {
102 ++It0;
103 ++It1;
104 continue;
105 }
106 ++It0;
107 }
108 return true;
109}
110
111/// Return true if \p C0 is a strict subset of \p C1. Note that both arrays are
112/// expected to be sorted.
113template <typename T>
114static bool isStrictSubset(ArrayRef<T> C0, ArrayRef<T> C1) {
115 if (C0.size() >= C1.size())
116 return false;
117 return isSubset<T>(C0, C1);
118}
119
120static bool isStrictSubset(const VariantMatchInfo &VMI0,
121 const VariantMatchInfo &VMI1) {
122 // If all required traits are a strict subset and the ordered vectors storing
123 // the construct traits, we say it is a strict subset. Note that the latter
124 // relation is not required to be strict.
125 return set_is_strict_subset(VMI0.RequiredTraits, VMI1.RequiredTraits) &&
126 isSubset<TraitProperty>(VMI0.ConstructTraits, VMI1.ConstructTraits);
127}
128
129static int isVariantApplicableInContextHelper(
130 const VariantMatchInfo &VMI, const OMPContext &Ctx,
131 SmallVectorImpl<unsigned> *ConstructMatches) {
132
133 for (TraitProperty Property : VMI.RequiredTraits) {
134
135 bool IsActiveTrait = Ctx.ActiveTraits.count(Property);
136 if (!IsActiveTrait) {
137 LLVM_DEBUG(dbgs() << "[" << DEBUG_TYPE << "] Property "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property) << " was not in the OpenMP context.\n"; } } while
(false)
138 << getOpenMPContextTraitPropertyName(Property)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property) << " was not in the OpenMP context.\n"; } } while
(false)
139 << " was not in the OpenMP context.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property) << " was not in the OpenMP context.\n"; } } while
(false)
;
140 return false;
141 }
142 }
143
144 // We could use isSubset here but we also want to record the match locations.
145 unsigned ConstructIdx = 0, NoConstructTraits = Ctx.ConstructTraits.size();
146 for (TraitProperty Property : VMI.ConstructTraits) {
5
Assuming '__begin1' is equal to '__end1'
147 assert(getOpenMPContextTraitSetForProperty(Property) ==((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Variant context is ill-formed!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Variant context is ill-formed!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 149, __PRETTY_FUNCTION__))
148 TraitSet::construct &&((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Variant context is ill-formed!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Variant context is ill-formed!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 149, __PRETTY_FUNCTION__))
149 "Variant context is ill-formed!")((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Variant context is ill-formed!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Variant context is ill-formed!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 149, __PRETTY_FUNCTION__))
;
150
151 // Verify the nesting.
152 bool FoundInOrder = false;
153 while (!FoundInOrder && ConstructIdx != NoConstructTraits)
154 FoundInOrder = (Ctx.ConstructTraits[ConstructIdx++] == Property);
155 if (ConstructMatches)
156 ConstructMatches->push_back(ConstructIdx - 1);
157
158 if (!FoundInOrder) {
159 LLVM_DEBUG(dbgs() << "[" << DEBUG_TYPE << "] Construct property "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Construct property " << getOpenMPContextTraitPropertyName
(Property) << " was not nested properly.\n"; } } while (
false)
160 << getOpenMPContextTraitPropertyName(Property)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Construct property " << getOpenMPContextTraitPropertyName
(Property) << " was not nested properly.\n"; } } while (
false)
161 << " was not nested properly.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Construct property " << getOpenMPContextTraitPropertyName
(Property) << " was not nested properly.\n"; } } while (
false)
;
162 return false;
163 }
164
165 // TODO: Verify SIMD
166 }
167
168 assert(isSubset<TraitProperty>(VMI.ConstructTraits, Ctx.ConstructTraits) &&((isSubset<TraitProperty>(VMI.ConstructTraits, Ctx.ConstructTraits
) && "Broken invariant!") ? static_cast<void> (
0) : __assert_fail ("isSubset<TraitProperty>(VMI.ConstructTraits, Ctx.ConstructTraits) && \"Broken invariant!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 169, __PRETTY_FUNCTION__))
6
Assuming the condition is true
7
'?' condition is true
169 "Broken invariant!")((isSubset<TraitProperty>(VMI.ConstructTraits, Ctx.ConstructTraits
) && "Broken invariant!") ? static_cast<void> (
0) : __assert_fail ("isSubset<TraitProperty>(VMI.ConstructTraits, Ctx.ConstructTraits) && \"Broken invariant!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 169, __PRETTY_FUNCTION__))
;
170 return true;
8
Returning the value 1, which participates in a condition later
171}
172
173bool llvm::omp::isVariantApplicableInContext(const VariantMatchInfo &VMI,
174 const OMPContext &Ctx) {
175 return isVariantApplicableInContextHelper(VMI, Ctx, nullptr);
176}
177
178static APInt getVariantMatchScore(const VariantMatchInfo &VMI,
179 const OMPContext &Ctx,
180 SmallVectorImpl<unsigned> &ConstructMatches) {
181 APInt Score(64, 1);
182
183 unsigned NoConstructTraits = VMI.ConstructTraits.size();
184 for (TraitProperty Property : VMI.RequiredTraits) {
185 // If there is a user score attached, use it.
186 if (VMI.ScoreMap.count(Property)) {
187 const APInt &UserScore = VMI.ScoreMap.lookup(Property);
188 assert(UserScore.uge(0) && "Expect non-negative user scores!")((UserScore.uge(0) && "Expect non-negative user scores!"
) ? static_cast<void> (0) : __assert_fail ("UserScore.uge(0) && \"Expect non-negative user scores!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 188, __PRETTY_FUNCTION__))
;
189 Score += UserScore.getZExtValue();
190 continue;
191 }
192
193 switch (getOpenMPContextTraitSetForProperty(Property)) {
194 case TraitSet::construct:
195 // We handle the construct traits later via the VMI.ConstructTraits
196 // container.
197 continue;
198 case TraitSet::implementation:
199 // No effect on the score (implementation defined).
200 continue;
201 case TraitSet::user:
202 // No effect on the score.
203 continue;
204 case TraitSet::device:
205 // Handled separately below.
206 break;
207 case TraitSet::invalid:
208 llvm_unreachable("Unknown trait set is not to be used!")::llvm::llvm_unreachable_internal("Unknown trait set is not to be used!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 208)
;
209 }
210
211 // device={kind(any)} is "as if" no kind selector was specified.
212 if (Property == TraitProperty::device_kind_any)
213 continue;
214
215 switch (getOpenMPContextTraitSelectorForProperty(Property)) {
216 case TraitSelector::device_kind:
217 Score += (1ULL << (NoConstructTraits + 0));
218 continue;
219 case TraitSelector::device_arch:
220 Score += (1ULL << (NoConstructTraits + 1));
221 continue;
222 case TraitSelector::device_isa:
223 Score += (1ULL << (NoConstructTraits + 2));
224 continue;
225 default:
226 continue;
227 }
228 }
229
230 unsigned ConstructIdx = 0;
231 assert(NoConstructTraits == ConstructMatches.size() &&((NoConstructTraits == ConstructMatches.size() && "Mismatch in the construct traits!"
) ? static_cast<void> (0) : __assert_fail ("NoConstructTraits == ConstructMatches.size() && \"Mismatch in the construct traits!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 232, __PRETTY_FUNCTION__))
232 "Mismatch in the construct traits!")((NoConstructTraits == ConstructMatches.size() && "Mismatch in the construct traits!"
) ? static_cast<void> (0) : __assert_fail ("NoConstructTraits == ConstructMatches.size() && \"Mismatch in the construct traits!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 232, __PRETTY_FUNCTION__))
;
233 for (TraitProperty Property : VMI.ConstructTraits) {
234 assert(getOpenMPContextTraitSetForProperty(Property) ==((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Ill-formed variant match info!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Ill-formed variant match info!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 236, __PRETTY_FUNCTION__))
235 TraitSet::construct &&((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Ill-formed variant match info!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Ill-formed variant match info!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 236, __PRETTY_FUNCTION__))
236 "Ill-formed variant match info!")((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Ill-formed variant match info!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Ill-formed variant match info!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 236, __PRETTY_FUNCTION__))
;
237 (void)Property;
238 // ConstructMatches is the position p - 1 and we need 2^(p-1).
239 Score += (1ULL << ConstructMatches[ConstructIdx++]);
240 }
241
242 LLVM_DEBUG(dbgs() << "[" << DEBUG_TYPE << "] Variant has a score of " << Scoredo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Variant has a score of " << Score <<
"\n"; } } while (false)
243 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Variant has a score of " << Score <<
"\n"; } } while (false)
;
244 return Score;
245}
246
247int llvm::omp::getBestVariantMatchForContext(
248 const SmallVectorImpl<VariantMatchInfo> &VMIs, const OMPContext &Ctx) {
249
250 APInt BestScore(64, 0);
251 int BestVMIIdx = -1;
252 const VariantMatchInfo *BestVMI = nullptr;
1
'BestVMI' initialized to a null pointer value
253
254 for (unsigned u = 0, e = VMIs.size(); u < e; ++u) {
2
Assuming 'u' is < 'e'
3
Loop condition is true. Entering loop body
255 const VariantMatchInfo &VMI = VMIs[u];
256
257 SmallVector<unsigned, 8> ConstructMatches;
258 // If the variant is not applicable its not the best.
259 if (!isVariantApplicableInContextHelper(VMI, Ctx, &ConstructMatches))
4
Calling 'isVariantApplicableInContextHelper'
9
Returning from 'isVariantApplicableInContextHelper'
10
Taking false branch
260 continue;
261 // Check if its clearly not the best.
262 APInt Score = getVariantMatchScore(VMI, Ctx, ConstructMatches);
263 if (Score.ult(BestScore))
11
Calling 'APInt::ult'
14
Returning from 'APInt::ult'
15
Taking false branch
264 continue;
265 // Equal score need subset checks.
266 if (Score.eq(BestScore)) {
16
Calling 'APInt::eq'
28
Returning from 'APInt::eq'
29
Taking true branch
267 // Strict subset are never best.
268 if (isStrictSubset(VMI, *BestVMI))
30
Forming reference to null pointer
269 continue;
270 // Same score and the current best is no strict subset so we keep it.
271 if (!isStrictSubset(*BestVMI, VMI))
272 continue;
273 }
274 // New best found.
275 BestVMI = &VMI;
276 BestVMIIdx = u;
277 BestScore = Score;
278 }
279
280 return BestVMIIdx;
281}
282
283TraitSet llvm::omp::getOpenMPContextTraitSetKind(StringRef S) {
284 return StringSwitch<TraitSet>(S)
285#define OMP_TRAIT_SET(Enum, Str) .Case(Str, TraitSet::Enum)
286#include "llvm/Frontend/OpenMP/OMPKinds.def"
287 .Default(TraitSet::invalid);
288}
289
290TraitSet
291llvm::omp::getOpenMPContextTraitSetForSelector(TraitSelector Selector) {
292 switch (Selector) {
293#define OMP_TRAIT_SELECTOR(Enum, TraitSetEnum, Str, ReqProp) \
294 case TraitSelector::Enum: \
295 return TraitSet::TraitSetEnum;
296#include "llvm/Frontend/OpenMP/OMPKinds.def"
297 }
298 llvm_unreachable("Unknown trait selector!")::llvm::llvm_unreachable_internal("Unknown trait selector!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 298)
;
299}
300TraitSet
301llvm::omp::getOpenMPContextTraitSetForProperty(TraitProperty Property) {
302 switch (Property) {
303#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
304 case TraitProperty::Enum: \
305 return TraitSet::TraitSetEnum;
306#include "llvm/Frontend/OpenMP/OMPKinds.def"
307 }
308 llvm_unreachable("Unknown trait set!")::llvm::llvm_unreachable_internal("Unknown trait set!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 308)
;
309}
310StringRef llvm::omp::getOpenMPContextTraitSetName(TraitSet Kind) {
311 switch (Kind) {
312#define OMP_TRAIT_SET(Enum, Str) \
313 case TraitSet::Enum: \
314 return Str;
315#include "llvm/Frontend/OpenMP/OMPKinds.def"
316 }
317 llvm_unreachable("Unknown trait set!")::llvm::llvm_unreachable_internal("Unknown trait set!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 317)
;
318}
319
320TraitSelector llvm::omp::getOpenMPContextTraitSelectorKind(StringRef S) {
321 return StringSwitch<TraitSelector>(S)
322#define OMP_TRAIT_SELECTOR(Enum, TraitSetEnum, Str, ReqProp) \
323 .Case(Str, TraitSelector::Enum)
324#include "llvm/Frontend/OpenMP/OMPKinds.def"
325 .Default(TraitSelector::invalid);
326}
327TraitSelector
328llvm::omp::getOpenMPContextTraitSelectorForProperty(TraitProperty Property) {
329 switch (Property) {
330#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
331 case TraitProperty::Enum: \
332 return TraitSelector::TraitSelectorEnum;
333#include "llvm/Frontend/OpenMP/OMPKinds.def"
334 }
335 llvm_unreachable("Unknown trait set!")::llvm::llvm_unreachable_internal("Unknown trait set!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 335)
;
336}
337StringRef llvm::omp::getOpenMPContextTraitSelectorName(TraitSelector Kind) {
338 switch (Kind) {
339#define OMP_TRAIT_SELECTOR(Enum, TraitSetEnum, Str, ReqProp) \
340 case TraitSelector::Enum: \
341 return Str;
342#include "llvm/Frontend/OpenMP/OMPKinds.def"
343 }
344 llvm_unreachable("Unknown trait selector!")::llvm::llvm_unreachable_internal("Unknown trait selector!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 344)
;
345}
346
347TraitProperty llvm::omp::getOpenMPContextTraitPropertyKind(TraitSet Set,
348 StringRef S) {
349#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
350 if (Set == TraitSet::TraitSetEnum && Str == S) \
351 return TraitProperty::Enum;
352#include "llvm/Frontend/OpenMP/OMPKinds.def"
353 return TraitProperty::invalid;
354}
355TraitProperty
356llvm::omp::getOpenMPContextTraitPropertyForSelector(TraitSelector Selector) {
357 return StringSwitch<TraitProperty>(
358 getOpenMPContextTraitSelectorName(Selector))
359#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
360 .Case(Str, Selector == TraitSelector::TraitSelectorEnum \
361 ? TraitProperty::Enum \
362 : TraitProperty::invalid)
363#include "llvm/Frontend/OpenMP/OMPKinds.def"
364 .Default(TraitProperty::invalid);
365}
366StringRef llvm::omp::getOpenMPContextTraitPropertyName(TraitProperty Kind) {
367 switch (Kind) {
368#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
369 case TraitProperty::Enum: \
370 return Str;
371#include "llvm/Frontend/OpenMP/OMPKinds.def"
372 }
373 llvm_unreachable("Unknown trait property!")::llvm::llvm_unreachable_internal("Unknown trait property!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 373)
;
374}
375StringRef llvm::omp::getOpenMPContextTraitPropertyFullName(TraitProperty Kind) {
376 switch (Kind) {
377#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
378 case TraitProperty::Enum: \
379 return "(" #TraitSetEnum "," #TraitSelectorEnum "," Str ")";
380#include "llvm/Frontend/OpenMP/OMPKinds.def"
381 }
382 llvm_unreachable("Unknown trait property!")::llvm::llvm_unreachable_internal("Unknown trait property!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 382)
;
383}
384
385bool llvm::omp::isValidTraitSelectorForTraitSet(TraitSelector Selector,
386 TraitSet Set,
387 bool &AllowsTraitScore,
388 bool &RequiresProperty) {
389 AllowsTraitScore = Set != TraitSet::construct && Set != TraitSet::device;
390 switch (Selector) {
391#define OMP_TRAIT_SELECTOR(Enum, TraitSetEnum, Str, ReqProp) \
392 case TraitSelector::Enum: \
393 RequiresProperty = ReqProp; \
394 return Set == TraitSet::TraitSetEnum;
395#include "llvm/Frontend/OpenMP/OMPKinds.def"
396 }
397 llvm_unreachable("Unknown trait selector!")::llvm::llvm_unreachable_internal("Unknown trait selector!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 397)
;
398}
399
400bool llvm::omp::isValidTraitPropertyForTraitSetAndSelector(
401 TraitProperty Property, TraitSelector Selector, TraitSet Set) {
402 switch (Property) {
403#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
404 case TraitProperty::Enum: \
405 return Set == TraitSet::TraitSetEnum && \
406 Selector == TraitSelector::TraitSelectorEnum;
407#include "llvm/Frontend/OpenMP/OMPKinds.def"
408 }
409 llvm_unreachable("Unknown trait property!")::llvm::llvm_unreachable_internal("Unknown trait property!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 409)
;
410}
411
412std::string llvm::omp::listOpenMPContextTraitSets() {
413 std::string S;
414#define OMP_TRAIT_SET(Enum, Str) \
415 if (StringRef(Str) != "invalid") \
416 S.append("'").append(Str).append("'").append(" ");
417#include "llvm/Frontend/OpenMP/OMPKinds.def"
418 S.pop_back();
419 return S;
420}
421
422std::string llvm::omp::listOpenMPContextTraitSelectors(TraitSet Set) {
423 std::string S;
424#define OMP_TRAIT_SELECTOR(Enum, TraitSetEnum, Str, ReqProp) \
425 if (TraitSet::TraitSetEnum == Set && StringRef(Str) != "Invalid") \
426 S.append("'").append(Str).append("'").append(" ");
427#include "llvm/Frontend/OpenMP/OMPKinds.def"
428 S.pop_back();
429 return S;
430}
431
432std::string
433llvm::omp::listOpenMPContextTraitProperties(TraitSet Set,
434 TraitSelector Selector) {
435 std::string S;
436#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
437 if (TraitSet::TraitSetEnum == Set && \
438 TraitSelector::TraitSelectorEnum == Selector && \
439 StringRef(Str) != "invalid") \
440 S.append("'").append(Str).append("'").append(" ");
441#include "llvm/Frontend/OpenMP/OMPKinds.def"
442 S.pop_back();
443 return S;
444}

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <string>
24
25namespace llvm {
26class FoldingSetNodeID;
27class StringRef;
28class hash_code;
29class raw_ostream;
30
31template <typename T> class SmallVectorImpl;
32template <typename T> class ArrayRef;
33template <typename T> class Optional;
34
35class APInt;
36
37inline APInt operator-(APInt);
38
39//===----------------------------------------------------------------------===//
40// APInt Class
41//===----------------------------------------------------------------------===//
42
43/// Class for arbitrary precision integers.
44///
45/// APInt is a functional replacement for common case unsigned integer type like
46/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49/// and methods to manipulate integer values of any bit-width. It supports both
50/// the typical integer arithmetic and comparison operations as well as bitwise
51/// manipulation.
52///
53/// The class has several invariants worth noting:
54/// * All bit, byte, and word positions are zero-based.
55/// * Once the bit width is set, it doesn't change except by the Truncate,
56/// SignExtend, or ZeroExtend operations.
57/// * All binary operators must be on APInt instances of the same bit width.
58/// Attempting to use these operators on instances with different bit
59/// widths will yield an assertion.
60/// * The value is stored canonically as an unsigned value. For operations
61/// where it makes a difference, there are both signed and unsigned variants
62/// of the operation. For example, sdiv and udiv. However, because the bit
63/// widths must be the same, operations such as Mul and Add produce the same
64/// results regardless of whether the values are interpreted as signed or
65/// not.
66/// * In general, the class tries to follow the style of computation that LLVM
67/// uses in its IR. This simplifies its use for LLVM.
68///
69class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
70public:
71 typedef uint64_t WordType;
72
73 /// This enum is used to hold the constants we needed for APInt.
74 enum : unsigned {
75 /// Byte size of a word.
76 APINT_WORD_SIZE = sizeof(WordType),
77 /// Bits in a word.
78 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
79 };
80
81 enum class Rounding {
82 DOWN,
83 TOWARD_ZERO,
84 UP,
85 };
86
87 static const WordType WORDTYPE_MAX = ~WordType(0);
88
89private:
90 /// This union is used to store the integer value. When the
91 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
92 union {
93 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
94 uint64_t *pVal; ///< Used to store the >64 bits integer value.
95 } U;
96
97 unsigned BitWidth; ///< The number of bits in this APInt.
98
99 friend struct DenseMapAPIntKeyInfo;
100
101 friend class APSInt;
102
103 /// Fast internal constructor
104 ///
105 /// This constructor is used only internally for speed of construction of
106 /// temporaries. It is unsafe for general use so it is not public.
107 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
108 U.pVal = val;
109 }
110
111 /// Determine if this APInt just has one word to store value.
112 ///
113 /// \returns true if the number of bits <= 64, false otherwise.
114 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
21
Returning the value 1, which participates in a condition later
115
116 /// Determine which word a bit is in.
117 ///
118 /// \returns the word position for the specified bit position.
119 static unsigned whichWord(unsigned bitPosition) {
120 return bitPosition / APINT_BITS_PER_WORD;
121 }
122
123 /// Determine which bit in a word a bit is in.
124 ///
125 /// \returns the bit position in a word for the specified bit position
126 /// in the APInt.
127 static unsigned whichBit(unsigned bitPosition) {
128 return bitPosition % APINT_BITS_PER_WORD;
129 }
130
131 /// Get a single bit mask.
132 ///
133 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
134 /// This method generates and returns a uint64_t (word) mask for a single
135 /// bit at a specific bit position. This is used to mask the bit in the
136 /// corresponding word.
137 static uint64_t maskBit(unsigned bitPosition) {
138 return 1ULL << whichBit(bitPosition);
139 }
140
141 /// Clear unused high order bits
142 ///
143 /// This method is used internally to clear the top "N" bits in the high order
144 /// word that are not used by the APInt. This is needed after the most
145 /// significant word is assigned a value to ensure that those bits are
146 /// zero'd out.
147 APInt &clearUnusedBits() {
148 // Compute how many bits are used in the final word
149 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
150
151 // Mask out the high bits.
152 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
153 if (isSingleWord())
154 U.VAL &= mask;
155 else
156 U.pVal[getNumWords() - 1] &= mask;
157 return *this;
158 }
159
160 /// Get the word corresponding to a bit position
161 /// \returns the corresponding word for the specified bit position.
162 uint64_t getWord(unsigned bitPosition) const {
163 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
164 }
165
166 /// Utility method to change the bit width of this APInt to new bit width,
167 /// allocating and/or deallocating as necessary. There is no guarantee on the
168 /// value of any bits upon return. Caller should populate the bits after.
169 void reallocate(unsigned NewBitWidth);
170
171 /// Convert a char array into an APInt
172 ///
173 /// \param radix 2, 8, 10, 16, or 36
174 /// Converts a string into a number. The string must be non-empty
175 /// and well-formed as a number of the given base. The bit-width
176 /// must be sufficient to hold the result.
177 ///
178 /// This is used by the constructors that take string arguments.
179 ///
180 /// StringRef::getAsInteger is superficially similar but (1) does
181 /// not assume that the string is well-formed and (2) grows the
182 /// result to hold the input.
183 void fromString(unsigned numBits, StringRef str, uint8_t radix);
184
185 /// An internal division function for dividing APInts.
186 ///
187 /// This is used by the toString method to divide by the radix. It simply
188 /// provides a more convenient form of divide for internal use since KnuthDiv
189 /// has specific constraints on its inputs. If those constraints are not met
190 /// then it provides a simpler form of divide.
191 static void divide(const WordType *LHS, unsigned lhsWords,
192 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
193 WordType *Remainder);
194
195 /// out-of-line slow case for inline constructor
196 void initSlowCase(uint64_t val, bool isSigned);
197
198 /// shared code between two array constructors
199 void initFromArray(ArrayRef<uint64_t> array);
200
201 /// out-of-line slow case for inline copy constructor
202 void initSlowCase(const APInt &that);
203
204 /// out-of-line slow case for shl
205 void shlSlowCase(unsigned ShiftAmt);
206
207 /// out-of-line slow case for lshr.
208 void lshrSlowCase(unsigned ShiftAmt);
209
210 /// out-of-line slow case for ashr.
211 void ashrSlowCase(unsigned ShiftAmt);
212
213 /// out-of-line slow case for operator=
214 void AssignSlowCase(const APInt &RHS);
215
216 /// out-of-line slow case for operator==
217 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
218
219 /// out-of-line slow case for countLeadingZeros
220 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
221
222 /// out-of-line slow case for countLeadingOnes.
223 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
224
225 /// out-of-line slow case for countTrailingZeros.
226 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
227
228 /// out-of-line slow case for countTrailingOnes
229 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
230
231 /// out-of-line slow case for countPopulation
232 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
233
234 /// out-of-line slow case for intersects.
235 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
236
237 /// out-of-line slow case for isSubsetOf.
238 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
239
240 /// out-of-line slow case for setBits.
241 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
242
243 /// out-of-line slow case for flipAllBits.
244 void flipAllBitsSlowCase();
245
246 /// out-of-line slow case for operator&=.
247 void AndAssignSlowCase(const APInt& RHS);
248
249 /// out-of-line slow case for operator|=.
250 void OrAssignSlowCase(const APInt& RHS);
251
252 /// out-of-line slow case for operator^=.
253 void XorAssignSlowCase(const APInt& RHS);
254
255 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
256 /// to, or greater than RHS.
257 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
258
259 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
260 /// to, or greater than RHS.
261 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
262
263public:
264 /// \name Constructors
265 /// @{
266
267 /// Create a new APInt of numBits width, initialized as val.
268 ///
269 /// If isSigned is true then val is treated as if it were a signed value
270 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
271 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
272 /// the range of val are zero filled).
273 ///
274 /// \param numBits the bit width of the constructed APInt
275 /// \param val the initial value of the APInt
276 /// \param isSigned how to treat signedness of val
277 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
278 : BitWidth(numBits) {
279 assert(BitWidth && "bitwidth too small")((BitWidth && "bitwidth too small") ? static_cast<
void> (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 279, __PRETTY_FUNCTION__))
;
280 if (isSingleWord()) {
281 U.VAL = val;
282 clearUnusedBits();
283 } else {
284 initSlowCase(val, isSigned);
285 }
286 }
287
288 /// Construct an APInt of numBits width, initialized as bigVal[].
289 ///
290 /// Note that bigVal.size() can be smaller or larger than the corresponding
291 /// bit width but any extraneous bits will be dropped.
292 ///
293 /// \param numBits the bit width of the constructed APInt
294 /// \param bigVal a sequence of words to form the initial value of the APInt
295 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
296
297 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
298 /// deprecated because this constructor is prone to ambiguity with the
299 /// APInt(unsigned, uint64_t, bool) constructor.
300 ///
301 /// If this overload is ever deleted, care should be taken to prevent calls
302 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
303 /// constructor.
304 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
305
306 /// Construct an APInt from a string representation.
307 ///
308 /// This constructor interprets the string \p str in the given radix. The
309 /// interpretation stops when the first character that is not suitable for the
310 /// radix is encountered, or the end of the string. Acceptable radix values
311 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
312 /// string to require more bits than numBits.
313 ///
314 /// \param numBits the bit width of the constructed APInt
315 /// \param str the string to be interpreted
316 /// \param radix the radix to use for the conversion
317 APInt(unsigned numBits, StringRef str, uint8_t radix);
318
319 /// Simply makes *this a copy of that.
320 /// Copy Constructor.
321 APInt(const APInt &that) : BitWidth(that.BitWidth) {
322 if (isSingleWord())
323 U.VAL = that.U.VAL;
324 else
325 initSlowCase(that);
326 }
327
328 /// Move Constructor.
329 APInt(APInt &&that) : BitWidth(that.BitWidth) {
330 memcpy(&U, &that.U, sizeof(U));
331 that.BitWidth = 0;
332 }
333
334 /// Destructor.
335 ~APInt() {
336 if (needsCleanup())
337 delete[] U.pVal;
338 }
339
340 /// Default constructor that creates an uninteresting APInt
341 /// representing a 1-bit zero value.
342 ///
343 /// This is useful for object deserialization (pair this with the static
344 /// method Read).
345 explicit APInt() : BitWidth(1) { U.VAL = 0; }
346
347 /// Returns whether this instance allocated memory.
348 bool needsCleanup() const { return !isSingleWord(); }
349
350 /// Used to insert APInt objects, or objects that contain APInt objects, into
351 /// FoldingSets.
352 void Profile(FoldingSetNodeID &id) const;
353
354 /// @}
355 /// \name Value Tests
356 /// @{
357
358 /// Determine sign of this APInt.
359 ///
360 /// This tests the high bit of this APInt to determine if it is set.
361 ///
362 /// \returns true if this APInt is negative, false otherwise
363 bool isNegative() const { return (*this)[BitWidth - 1]; }
364
365 /// Determine if this APInt Value is non-negative (>= 0)
366 ///
367 /// This tests the high bit of the APInt to determine if it is unset.
368 bool isNonNegative() const { return !isNegative(); }
369
370 /// Determine if sign bit of this APInt is set.
371 ///
372 /// This tests the high bit of this APInt to determine if it is set.
373 ///
374 /// \returns true if this APInt has its sign bit set, false otherwise.
375 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
376
377 /// Determine if sign bit of this APInt is clear.
378 ///
379 /// This tests the high bit of this APInt to determine if it is clear.
380 ///
381 /// \returns true if this APInt has its sign bit clear, false otherwise.
382 bool isSignBitClear() const { return !isSignBitSet(); }
383
384 /// Determine if this APInt Value is positive.
385 ///
386 /// This tests if the value of this APInt is positive (> 0). Note
387 /// that 0 is not a positive value.
388 ///
389 /// \returns true if this APInt is positive.
390 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
391
392 /// Determine if this APInt Value is non-positive (<= 0).
393 ///
394 /// \returns true if this APInt is non-positive.
395 bool isNonPositive() const { return !isStrictlyPositive(); }
396
397 /// Determine if all bits are set
398 ///
399 /// This checks to see if the value has all bits of the APInt are set or not.
400 bool isAllOnesValue() const {
401 if (isSingleWord())
402 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
403 return countTrailingOnesSlowCase() == BitWidth;
404 }
405
406 /// Determine if all bits are clear
407 ///
408 /// This checks to see if the value has all bits of the APInt are clear or
409 /// not.
410 bool isNullValue() const { return !*this; }
411
412 /// Determine if this is a value of 1.
413 ///
414 /// This checks to see if the value of this APInt is one.
415 bool isOneValue() const {
416 if (isSingleWord())
417 return U.VAL == 1;
418 return countLeadingZerosSlowCase() == BitWidth - 1;
419 }
420
421 /// Determine if this is the largest unsigned value.
422 ///
423 /// This checks to see if the value of this APInt is the maximum unsigned
424 /// value for the APInt's bit width.
425 bool isMaxValue() const { return isAllOnesValue(); }
426
427 /// Determine if this is the largest signed value.
428 ///
429 /// This checks to see if the value of this APInt is the maximum signed
430 /// value for the APInt's bit width.
431 bool isMaxSignedValue() const {
432 if (isSingleWord())
433 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
434 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
435 }
436
437 /// Determine if this is the smallest unsigned value.
438 ///
439 /// This checks to see if the value of this APInt is the minimum unsigned
440 /// value for the APInt's bit width.
441 bool isMinValue() const { return isNullValue(); }
442
443 /// Determine if this is the smallest signed value.
444 ///
445 /// This checks to see if the value of this APInt is the minimum signed
446 /// value for the APInt's bit width.
447 bool isMinSignedValue() const {
448 if (isSingleWord())
449 return U.VAL == (WordType(1) << (BitWidth - 1));
450 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
451 }
452
453 /// Check if this APInt has an N-bits unsigned integer value.
454 bool isIntN(unsigned N) const {
455 assert(N && "N == 0 ???")((N && "N == 0 ???") ? static_cast<void> (0) : __assert_fail
("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 455, __PRETTY_FUNCTION__))
;
456 return getActiveBits() <= N;
457 }
458
459 /// Check if this APInt has an N-bits signed integer value.
460 bool isSignedIntN(unsigned N) const {
461 assert(N && "N == 0 ???")((N && "N == 0 ???") ? static_cast<void> (0) : __assert_fail
("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 461, __PRETTY_FUNCTION__))
;
462 return getMinSignedBits() <= N;
463 }
464
465 /// Check if this APInt's value is a power of two greater than zero.
466 ///
467 /// \returns true if the argument APInt value is a power of two > 0.
468 bool isPowerOf2() const {
469 if (isSingleWord())
470 return isPowerOf2_64(U.VAL);
471 return countPopulationSlowCase() == 1;
472 }
473
474 /// Check if the APInt's value is returned by getSignMask.
475 ///
476 /// \returns true if this is the value returned by getSignMask.
477 bool isSignMask() const { return isMinSignedValue(); }
478
479 /// Convert APInt to a boolean value.
480 ///
481 /// This converts the APInt to a boolean value as a test against zero.
482 bool getBoolValue() const { return !!*this; }
483
484 /// If this value is smaller than the specified limit, return it, otherwise
485 /// return the limit value. This causes the value to saturate to the limit.
486 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
487 return ugt(Limit) ? Limit : getZExtValue();
488 }
489
490 /// Check if the APInt consists of a repeated bit pattern.
491 ///
492 /// e.g. 0x01010101 satisfies isSplat(8).
493 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
494 /// width without remainder.
495 bool isSplat(unsigned SplatSizeInBits) const;
496
497 /// \returns true if this APInt value is a sequence of \param numBits ones
498 /// starting at the least significant bit with the remainder zero.
499 bool isMask(unsigned numBits) const {
500 assert(numBits != 0 && "numBits must be non-zero")((numBits != 0 && "numBits must be non-zero") ? static_cast
<void> (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 500, __PRETTY_FUNCTION__))
;
501 assert(numBits <= BitWidth && "numBits out of range")((numBits <= BitWidth && "numBits out of range") ?
static_cast<void> (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 501, __PRETTY_FUNCTION__))
;
502 if (isSingleWord())
503 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
504 unsigned Ones = countTrailingOnesSlowCase();
505 return (numBits == Ones) &&
506 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
507 }
508
509 /// \returns true if this APInt is a non-empty sequence of ones starting at
510 /// the least significant bit with the remainder zero.
511 /// Ex. isMask(0x0000FFFFU) == true.
512 bool isMask() const {
513 if (isSingleWord())
514 return isMask_64(U.VAL);
515 unsigned Ones = countTrailingOnesSlowCase();
516 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
517 }
518
519 /// Return true if this APInt value contains a sequence of ones with
520 /// the remainder zero.
521 bool isShiftedMask() const {
522 if (isSingleWord())
523 return isShiftedMask_64(U.VAL);
524 unsigned Ones = countPopulationSlowCase();
525 unsigned LeadZ = countLeadingZerosSlowCase();
526 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
527 }
528
529 /// @}
530 /// \name Value Generators
531 /// @{
532
533 /// Gets maximum unsigned value of APInt for specific bit width.
534 static APInt getMaxValue(unsigned numBits) {
535 return getAllOnesValue(numBits);
536 }
537
538 /// Gets maximum signed value of APInt for a specific bit width.
539 static APInt getSignedMaxValue(unsigned numBits) {
540 APInt API = getAllOnesValue(numBits);
541 API.clearBit(numBits - 1);
542 return API;
543 }
544
545 /// Gets minimum unsigned value of APInt for a specific bit width.
546 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
547
548 /// Gets minimum signed value of APInt for a specific bit width.
549 static APInt getSignedMinValue(unsigned numBits) {
550 APInt API(numBits, 0);
551 API.setBit(numBits - 1);
552 return API;
553 }
554
555 /// Get the SignMask for a specific bit width.
556 ///
557 /// This is just a wrapper function of getSignedMinValue(), and it helps code
558 /// readability when we want to get a SignMask.
559 static APInt getSignMask(unsigned BitWidth) {
560 return getSignedMinValue(BitWidth);
561 }
562
563 /// Get the all-ones value.
564 ///
565 /// \returns the all-ones value for an APInt of the specified bit-width.
566 static APInt getAllOnesValue(unsigned numBits) {
567 return APInt(numBits, WORDTYPE_MAX, true);
568 }
569
570 /// Get the '0' value.
571 ///
572 /// \returns the '0' value for an APInt of the specified bit-width.
573 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
574
575 /// Compute an APInt containing numBits highbits from this APInt.
576 ///
577 /// Get an APInt with the same BitWidth as this APInt, just zero mask
578 /// the low bits and right shift to the least significant bit.
579 ///
580 /// \returns the high "numBits" bits of this APInt.
581 APInt getHiBits(unsigned numBits) const;
582
583 /// Compute an APInt containing numBits lowbits from this APInt.
584 ///
585 /// Get an APInt with the same BitWidth as this APInt, just zero mask
586 /// the high bits.
587 ///
588 /// \returns the low "numBits" bits of this APInt.
589 APInt getLoBits(unsigned numBits) const;
590
591 /// Return an APInt with exactly one bit set in the result.
592 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
593 APInt Res(numBits, 0);
594 Res.setBit(BitNo);
595 return Res;
596 }
597
598 /// Get a value with a block of bits set.
599 ///
600 /// Constructs an APInt value that has a contiguous range of bits set. The
601 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
602 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
603 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
604 /// \p hiBit.
605 ///
606 /// \param numBits the intended bit width of the result
607 /// \param loBit the index of the lowest bit set.
608 /// \param hiBit the index of the highest bit set.
609 ///
610 /// \returns An APInt value with the requested bits set.
611 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
612 assert(loBit <= hiBit && "loBit greater than hiBit")((loBit <= hiBit && "loBit greater than hiBit") ? static_cast
<void> (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 612, __PRETTY_FUNCTION__))
;
613 APInt Res(numBits, 0);
614 Res.setBits(loBit, hiBit);
615 return Res;
616 }
617
618 /// Wrap version of getBitsSet.
619 /// If \p hiBit is no less than \p loBit, this is same with getBitsSet.
620 /// If \p hiBit is less than \p loBit, the set bits "wrap". For example, with
621 /// parameters (32, 28, 4), you would get 0xF000000F.
622 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
623 unsigned hiBit) {
624 APInt Res(numBits, 0);
625 Res.setBitsWithWrap(loBit, hiBit);
626 return Res;
627 }
628
629 /// Get a value with upper bits starting at loBit set.
630 ///
631 /// Constructs an APInt value that has a contiguous range of bits set. The
632 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
633 /// bits will be zero. For example, with parameters(32, 12) you would get
634 /// 0xFFFFF000.
635 ///
636 /// \param numBits the intended bit width of the result
637 /// \param loBit the index of the lowest bit to set.
638 ///
639 /// \returns An APInt value with the requested bits set.
640 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
641 APInt Res(numBits, 0);
642 Res.setBitsFrom(loBit);
643 return Res;
644 }
645
646 /// Get a value with high bits set
647 ///
648 /// Constructs an APInt value that has the top hiBitsSet bits set.
649 ///
650 /// \param numBits the bitwidth of the result
651 /// \param hiBitsSet the number of high-order bits set in the result.
652 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
653 APInt Res(numBits, 0);
654 Res.setHighBits(hiBitsSet);
655 return Res;
656 }
657
658 /// Get a value with low bits set
659 ///
660 /// Constructs an APInt value that has the bottom loBitsSet bits set.
661 ///
662 /// \param numBits the bitwidth of the result
663 /// \param loBitsSet the number of low-order bits set in the result.
664 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
665 APInt Res(numBits, 0);
666 Res.setLowBits(loBitsSet);
667 return Res;
668 }
669
670 /// Return a value containing V broadcasted over NewLen bits.
671 static APInt getSplat(unsigned NewLen, const APInt &V);
672
673 /// Determine if two APInts have the same value, after zero-extending
674 /// one of them (if needed!) to ensure that the bit-widths match.
675 static bool isSameValue(const APInt &I1, const APInt &I2) {
676 if (I1.getBitWidth() == I2.getBitWidth())
677 return I1 == I2;
678
679 if (I1.getBitWidth() > I2.getBitWidth())
680 return I1 == I2.zext(I1.getBitWidth());
681
682 return I1.zext(I2.getBitWidth()) == I2;
683 }
684
685 /// Overload to compute a hash_code for an APInt value.
686 friend hash_code hash_value(const APInt &Arg);
687
688 /// This function returns a pointer to the internal storage of the APInt.
689 /// This is useful for writing out the APInt in binary form without any
690 /// conversions.
691 const uint64_t *getRawData() const {
692 if (isSingleWord())
693 return &U.VAL;
694 return &U.pVal[0];
695 }
696
697 /// @}
698 /// \name Unary Operators
699 /// @{
700
701 /// Postfix increment operator.
702 ///
703 /// Increments *this by 1.
704 ///
705 /// \returns a new APInt value representing the original value of *this.
706 const APInt operator++(int) {
707 APInt API(*this);
708 ++(*this);
709 return API;
710 }
711
712 /// Prefix increment operator.
713 ///
714 /// \returns *this incremented by one
715 APInt &operator++();
716
717 /// Postfix decrement operator.
718 ///
719 /// Decrements *this by 1.
720 ///
721 /// \returns a new APInt value representing the original value of *this.
722 const APInt operator--(int) {
723 APInt API(*this);
724 --(*this);
725 return API;
726 }
727
728 /// Prefix decrement operator.
729 ///
730 /// \returns *this decremented by one.
731 APInt &operator--();
732
733 /// Logical negation operator.
734 ///
735 /// Performs logical negation operation on this APInt.
736 ///
737 /// \returns true if *this is zero, false otherwise.
738 bool operator!() const {
739 if (isSingleWord())
740 return U.VAL == 0;
741 return countLeadingZerosSlowCase() == BitWidth;
742 }
743
744 /// @}
745 /// \name Assignment Operators
746 /// @{
747
748 /// Copy assignment operator.
749 ///
750 /// \returns *this after assignment of RHS.
751 APInt &operator=(const APInt &RHS) {
752 // If the bitwidths are the same, we can avoid mucking with memory
753 if (isSingleWord() && RHS.isSingleWord()) {
754 U.VAL = RHS.U.VAL;
755 BitWidth = RHS.BitWidth;
756 return clearUnusedBits();
757 }
758
759 AssignSlowCase(RHS);
760 return *this;
761 }
762
763 /// Move assignment operator.
764 APInt &operator=(APInt &&that) {
765#ifdef _MSC_VER
766 // The MSVC std::shuffle implementation still does self-assignment.
767 if (this == &that)
768 return *this;
769#endif
770 assert(this != &that && "Self-move not supported")((this != &that && "Self-move not supported") ? static_cast
<void> (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 770, __PRETTY_FUNCTION__))
;
771 if (!isSingleWord())
772 delete[] U.pVal;
773
774 // Use memcpy so that type based alias analysis sees both VAL and pVal
775 // as modified.
776 memcpy(&U, &that.U, sizeof(U));
777
778 BitWidth = that.BitWidth;
779 that.BitWidth = 0;
780
781 return *this;
782 }
783
784 /// Assignment operator.
785 ///
786 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
787 /// the bit width, the excess bits are truncated. If the bit width is larger
788 /// than 64, the value is zero filled in the unspecified high order bits.
789 ///
790 /// \returns *this after assignment of RHS value.
791 APInt &operator=(uint64_t RHS) {
792 if (isSingleWord()) {
793 U.VAL = RHS;
794 clearUnusedBits();
795 } else {
796 U.pVal[0] = RHS;
797 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
798 }
799 return *this;
800 }
801
802 /// Bitwise AND assignment operator.
803 ///
804 /// Performs a bitwise AND operation on this APInt and RHS. The result is
805 /// assigned to *this.
806 ///
807 /// \returns *this after ANDing with RHS.
808 APInt &operator&=(const APInt &RHS) {
809 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 809, __PRETTY_FUNCTION__))
;
810 if (isSingleWord())
811 U.VAL &= RHS.U.VAL;
812 else
813 AndAssignSlowCase(RHS);
814 return *this;
815 }
816
817 /// Bitwise AND assignment operator.
818 ///
819 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
820 /// logically zero-extended or truncated to match the bit-width of
821 /// the LHS.
822 APInt &operator&=(uint64_t RHS) {
823 if (isSingleWord()) {
824 U.VAL &= RHS;
825 return *this;
826 }
827 U.pVal[0] &= RHS;
828 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
829 return *this;
830 }
831
832 /// Bitwise OR assignment operator.
833 ///
834 /// Performs a bitwise OR operation on this APInt and RHS. The result is
835 /// assigned *this;
836 ///
837 /// \returns *this after ORing with RHS.
838 APInt &operator|=(const APInt &RHS) {
839 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 839, __PRETTY_FUNCTION__))
;
840 if (isSingleWord())
841 U.VAL |= RHS.U.VAL;
842 else
843 OrAssignSlowCase(RHS);
844 return *this;
845 }
846
847 /// Bitwise OR assignment operator.
848 ///
849 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
850 /// logically zero-extended or truncated to match the bit-width of
851 /// the LHS.
852 APInt &operator|=(uint64_t RHS) {
853 if (isSingleWord()) {
854 U.VAL |= RHS;
855 clearUnusedBits();
856 } else {
857 U.pVal[0] |= RHS;
858 }
859 return *this;
860 }
861
862 /// Bitwise XOR assignment operator.
863 ///
864 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
865 /// assigned to *this.
866 ///
867 /// \returns *this after XORing with RHS.
868 APInt &operator^=(const APInt &RHS) {
869 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 869, __PRETTY_FUNCTION__))
;
870 if (isSingleWord())
871 U.VAL ^= RHS.U.VAL;
872 else
873 XorAssignSlowCase(RHS);
874 return *this;
875 }
876
877 /// Bitwise XOR assignment operator.
878 ///
879 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
880 /// logically zero-extended or truncated to match the bit-width of
881 /// the LHS.
882 APInt &operator^=(uint64_t RHS) {
883 if (isSingleWord()) {
884 U.VAL ^= RHS;
885 clearUnusedBits();
886 } else {
887 U.pVal[0] ^= RHS;
888 }
889 return *this;
890 }
891
892 /// Multiplication assignment operator.
893 ///
894 /// Multiplies this APInt by RHS and assigns the result to *this.
895 ///
896 /// \returns *this
897 APInt &operator*=(const APInt &RHS);
898 APInt &operator*=(uint64_t RHS);
899
900 /// Addition assignment operator.
901 ///
902 /// Adds RHS to *this and assigns the result to *this.
903 ///
904 /// \returns *this
905 APInt &operator+=(const APInt &RHS);
906 APInt &operator+=(uint64_t RHS);
907
908 /// Subtraction assignment operator.
909 ///
910 /// Subtracts RHS from *this and assigns the result to *this.
911 ///
912 /// \returns *this
913 APInt &operator-=(const APInt &RHS);
914 APInt &operator-=(uint64_t RHS);
915
916 /// Left-shift assignment function.
917 ///
918 /// Shifts *this left by shiftAmt and assigns the result to *this.
919 ///
920 /// \returns *this after shifting left by ShiftAmt
921 APInt &operator<<=(unsigned ShiftAmt) {
922 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 922, __PRETTY_FUNCTION__))
;
923 if (isSingleWord()) {
924 if (ShiftAmt == BitWidth)
925 U.VAL = 0;
926 else
927 U.VAL <<= ShiftAmt;
928 return clearUnusedBits();
929 }
930 shlSlowCase(ShiftAmt);
931 return *this;
932 }
933
934 /// Left-shift assignment function.
935 ///
936 /// Shifts *this left by shiftAmt and assigns the result to *this.
937 ///
938 /// \returns *this after shifting left by ShiftAmt
939 APInt &operator<<=(const APInt &ShiftAmt);
940
941 /// @}
942 /// \name Binary Operators
943 /// @{
944
945 /// Multiplication operator.
946 ///
947 /// Multiplies this APInt by RHS and returns the result.
948 APInt operator*(const APInt &RHS) const;
949
950 /// Left logical shift operator.
951 ///
952 /// Shifts this APInt left by \p Bits and returns the result.
953 APInt operator<<(unsigned Bits) const { return shl(Bits); }
954
955 /// Left logical shift operator.
956 ///
957 /// Shifts this APInt left by \p Bits and returns the result.
958 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
959
960 /// Arithmetic right-shift function.
961 ///
962 /// Arithmetic right-shift this APInt by shiftAmt.
963 APInt ashr(unsigned ShiftAmt) const {
964 APInt R(*this);
965 R.ashrInPlace(ShiftAmt);
966 return R;
967 }
968
969 /// Arithmetic right-shift this APInt by ShiftAmt in place.
970 void ashrInPlace(unsigned ShiftAmt) {
971 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 971, __PRETTY_FUNCTION__))
;
972 if (isSingleWord()) {
973 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
974 if (ShiftAmt == BitWidth)
975 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
976 else
977 U.VAL = SExtVAL >> ShiftAmt;
978 clearUnusedBits();
979 return;
980 }
981 ashrSlowCase(ShiftAmt);
982 }
983
984 /// Logical right-shift function.
985 ///
986 /// Logical right-shift this APInt by shiftAmt.
987 APInt lshr(unsigned shiftAmt) const {
988 APInt R(*this);
989 R.lshrInPlace(shiftAmt);
990 return R;
991 }
992
993 /// Logical right-shift this APInt by ShiftAmt in place.
994 void lshrInPlace(unsigned ShiftAmt) {
995 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 995, __PRETTY_FUNCTION__))
;
996 if (isSingleWord()) {
997 if (ShiftAmt == BitWidth)
998 U.VAL = 0;
999 else
1000 U.VAL >>= ShiftAmt;
1001 return;
1002 }
1003 lshrSlowCase(ShiftAmt);
1004 }
1005
1006 /// Left-shift function.
1007 ///
1008 /// Left-shift this APInt by shiftAmt.
1009 APInt shl(unsigned shiftAmt) const {
1010 APInt R(*this);
1011 R <<= shiftAmt;
1012 return R;
1013 }
1014
1015 /// Rotate left by rotateAmt.
1016 APInt rotl(unsigned rotateAmt) const;
1017
1018 /// Rotate right by rotateAmt.
1019 APInt rotr(unsigned rotateAmt) const;
1020
1021 /// Arithmetic right-shift function.
1022 ///
1023 /// Arithmetic right-shift this APInt by shiftAmt.
1024 APInt ashr(const APInt &ShiftAmt) const {
1025 APInt R(*this);
1026 R.ashrInPlace(ShiftAmt);
1027 return R;
1028 }
1029
1030 /// Arithmetic right-shift this APInt by shiftAmt in place.
1031 void ashrInPlace(const APInt &shiftAmt);
1032
1033 /// Logical right-shift function.
1034 ///
1035 /// Logical right-shift this APInt by shiftAmt.
1036 APInt lshr(const APInt &ShiftAmt) const {
1037 APInt R(*this);
1038 R.lshrInPlace(ShiftAmt);
1039 return R;
1040 }
1041
1042 /// Logical right-shift this APInt by ShiftAmt in place.
1043 void lshrInPlace(const APInt &ShiftAmt);
1044
1045 /// Left-shift function.
1046 ///
1047 /// Left-shift this APInt by shiftAmt.
1048 APInt shl(const APInt &ShiftAmt) const {
1049 APInt R(*this);
1050 R <<= ShiftAmt;
1051 return R;
1052 }
1053
1054 /// Rotate left by rotateAmt.
1055 APInt rotl(const APInt &rotateAmt) const;
1056
1057 /// Rotate right by rotateAmt.
1058 APInt rotr(const APInt &rotateAmt) const;
1059
1060 /// Unsigned division operation.
1061 ///
1062 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1063 /// RHS are treated as unsigned quantities for purposes of this division.
1064 ///
1065 /// \returns a new APInt value containing the division result, rounded towards
1066 /// zero.
1067 APInt udiv(const APInt &RHS) const;
1068 APInt udiv(uint64_t RHS) const;
1069
1070 /// Signed division function for APInt.
1071 ///
1072 /// Signed divide this APInt by APInt RHS.
1073 ///
1074 /// The result is rounded towards zero.
1075 APInt sdiv(const APInt &RHS) const;
1076 APInt sdiv(int64_t RHS) const;
1077
1078 /// Unsigned remainder operation.
1079 ///
1080 /// Perform an unsigned remainder operation on this APInt with RHS being the
1081 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1082 /// of this operation. Note that this is a true remainder operation and not a
1083 /// modulo operation because the sign follows the sign of the dividend which
1084 /// is *this.
1085 ///
1086 /// \returns a new APInt value containing the remainder result
1087 APInt urem(const APInt &RHS) const;
1088 uint64_t urem(uint64_t RHS) const;
1089
1090 /// Function for signed remainder operation.
1091 ///
1092 /// Signed remainder operation on APInt.
1093 APInt srem(const APInt &RHS) const;
1094 int64_t srem(int64_t RHS) const;
1095
1096 /// Dual division/remainder interface.
1097 ///
1098 /// Sometimes it is convenient to divide two APInt values and obtain both the
1099 /// quotient and remainder. This function does both operations in the same
1100 /// computation making it a little more efficient. The pair of input arguments
1101 /// may overlap with the pair of output arguments. It is safe to call
1102 /// udivrem(X, Y, X, Y), for example.
1103 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1104 APInt &Remainder);
1105 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1106 uint64_t &Remainder);
1107
1108 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1109 APInt &Remainder);
1110 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1111 int64_t &Remainder);
1112
1113 // Operations that return overflow indicators.
1114 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1115 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1116 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1117 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1118 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1119 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1120 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1121 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1122 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1123
1124 // Operations that saturate
1125 APInt sadd_sat(const APInt &RHS) const;
1126 APInt uadd_sat(const APInt &RHS) const;
1127 APInt ssub_sat(const APInt &RHS) const;
1128 APInt usub_sat(const APInt &RHS) const;
1129 APInt smul_sat(const APInt &RHS) const;
1130 APInt umul_sat(const APInt &RHS) const;
1131 APInt sshl_sat(const APInt &RHS) const;
1132 APInt ushl_sat(const APInt &RHS) const;
1133
1134 /// Array-indexing support.
1135 ///
1136 /// \returns the bit value at bitPosition
1137 bool operator[](unsigned bitPosition) const {
1138 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")((bitPosition < getBitWidth() && "Bit position out of bounds!"
) ? static_cast<void> (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1138, __PRETTY_FUNCTION__))
;
1139 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1140 }
1141
1142 /// @}
1143 /// \name Comparison Operators
1144 /// @{
1145
1146 /// Equality operator.
1147 ///
1148 /// Compares this APInt with RHS for the validity of the equality
1149 /// relationship.
1150 bool operator==(const APInt &RHS) const {
1151 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")((BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1151, __PRETTY_FUNCTION__))
;
18
Assuming 'BitWidth' is equal to 'RHS.BitWidth'
19
'?' condition is true
1152 if (isSingleWord())
20
Calling 'APInt::isSingleWord'
22
Returning from 'APInt::isSingleWord'
23
Taking true branch
1153 return U.VAL == RHS.U.VAL;
24
Assuming 'U.VAL' is equal to 'RHS.U.VAL'
25
Returning the value 1, which participates in a condition later
1154 return EqualSlowCase(RHS);
1155 }
1156
1157 /// Equality operator.
1158 ///
1159 /// Compares this APInt with a uint64_t for the validity of the equality
1160 /// relationship.
1161 ///
1162 /// \returns true if *this == Val
1163 bool operator==(uint64_t Val) const {
1164 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1165 }
1166
1167 /// Equality comparison.
1168 ///
1169 /// Compares this APInt with RHS for the validity of the equality
1170 /// relationship.
1171 ///
1172 /// \returns true if *this == Val
1173 bool eq(const APInt &RHS) const { return (*this) == RHS; }
17
Calling 'APInt::operator=='
26
Returning from 'APInt::operator=='
27
Returning the value 1, which participates in a condition later
1174
1175 /// Inequality operator.
1176 ///
1177 /// Compares this APInt with RHS for the validity of the inequality
1178 /// relationship.
1179 ///
1180 /// \returns true if *this != Val
1181 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1182
1183 /// Inequality operator.
1184 ///
1185 /// Compares this APInt with a uint64_t for the validity of the inequality
1186 /// relationship.
1187 ///
1188 /// \returns true if *this != Val
1189 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1190
1191 /// Inequality comparison
1192 ///
1193 /// Compares this APInt with RHS for the validity of the inequality
1194 /// relationship.
1195 ///
1196 /// \returns true if *this != Val
1197 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1198
1199 /// Unsigned less than comparison
1200 ///
1201 /// Regards both *this and RHS as unsigned quantities and compares them for
1202 /// the validity of the less-than relationship.
1203 ///
1204 /// \returns true if *this < RHS when both are considered unsigned.
1205 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
12
Assuming the condition is false
13
Returning zero, which participates in a condition later
1206
1207 /// Unsigned less than comparison
1208 ///
1209 /// Regards both *this as an unsigned quantity and compares it with RHS for
1210 /// the validity of the less-than relationship.
1211 ///
1212 /// \returns true if *this < RHS when considered unsigned.
1213 bool ult(uint64_t RHS) const {
1214 // Only need to check active bits if not a single word.
1215 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1216 }
1217
1218 /// Signed less than comparison
1219 ///
1220 /// Regards both *this and RHS as signed quantities and compares them for
1221 /// validity of the less-than relationship.
1222 ///
1223 /// \returns true if *this < RHS when both are considered signed.
1224 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1225
1226 /// Signed less than comparison
1227 ///
1228 /// Regards both *this as a signed quantity and compares it with RHS for
1229 /// the validity of the less-than relationship.
1230 ///
1231 /// \returns true if *this < RHS when considered signed.
1232 bool slt(int64_t RHS) const {
1233 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1234 : getSExtValue() < RHS;
1235 }
1236
1237 /// Unsigned less or equal comparison
1238 ///
1239 /// Regards both *this and RHS as unsigned quantities and compares them for
1240 /// validity of the less-or-equal relationship.
1241 ///
1242 /// \returns true if *this <= RHS when both are considered unsigned.
1243 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1244
1245 /// Unsigned less or equal comparison
1246 ///
1247 /// Regards both *this as an unsigned quantity and compares it with RHS for
1248 /// the validity of the less-or-equal relationship.
1249 ///
1250 /// \returns true if *this <= RHS when considered unsigned.
1251 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1252
1253 /// Signed less or equal comparison
1254 ///
1255 /// Regards both *this and RHS as signed quantities and compares them for
1256 /// validity of the less-or-equal relationship.
1257 ///
1258 /// \returns true if *this <= RHS when both are considered signed.
1259 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1260
1261 /// Signed less or equal comparison
1262 ///
1263 /// Regards both *this as a signed quantity and compares it with RHS for the
1264 /// validity of the less-or-equal relationship.
1265 ///
1266 /// \returns true if *this <= RHS when considered signed.
1267 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1268
1269 /// Unsigned greater than comparison
1270 ///
1271 /// Regards both *this and RHS as unsigned quantities and compares them for
1272 /// the validity of the greater-than relationship.
1273 ///
1274 /// \returns true if *this > RHS when both are considered unsigned.
1275 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1276
1277 /// Unsigned greater than comparison
1278 ///
1279 /// Regards both *this as an unsigned quantity and compares it with RHS for
1280 /// the validity of the greater-than relationship.
1281 ///
1282 /// \returns true if *this > RHS when considered unsigned.
1283 bool ugt(uint64_t RHS) const {
1284 // Only need to check active bits if not a single word.
1285 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1286 }
1287
1288 /// Signed greater than comparison
1289 ///
1290 /// Regards both *this and RHS as signed quantities and compares them for the
1291 /// validity of the greater-than relationship.
1292 ///
1293 /// \returns true if *this > RHS when both are considered signed.
1294 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1295
1296 /// Signed greater than comparison
1297 ///
1298 /// Regards both *this as a signed quantity and compares it with RHS for
1299 /// the validity of the greater-than relationship.
1300 ///
1301 /// \returns true if *this > RHS when considered signed.
1302 bool sgt(int64_t RHS) const {
1303 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1304 : getSExtValue() > RHS;
1305 }
1306
1307 /// Unsigned greater or equal comparison
1308 ///
1309 /// Regards both *this and RHS as unsigned quantities and compares them for
1310 /// validity of the greater-or-equal relationship.
1311 ///
1312 /// \returns true if *this >= RHS when both are considered unsigned.
1313 bool uge(const APInt &RHS) const { return !ult(RHS); }
1314
1315 /// Unsigned greater or equal comparison
1316 ///
1317 /// Regards both *this as an unsigned quantity and compares it with RHS for
1318 /// the validity of the greater-or-equal relationship.
1319 ///
1320 /// \returns true if *this >= RHS when considered unsigned.
1321 bool uge(uint64_t RHS) const { return !ult(RHS); }
1322
1323 /// Signed greater or equal comparison
1324 ///
1325 /// Regards both *this and RHS as signed quantities and compares them for
1326 /// validity of the greater-or-equal relationship.
1327 ///
1328 /// \returns true if *this >= RHS when both are considered signed.
1329 bool sge(const APInt &RHS) const { return !slt(RHS); }
1330
1331 /// Signed greater or equal comparison
1332 ///
1333 /// Regards both *this as a signed quantity and compares it with RHS for
1334 /// the validity of the greater-or-equal relationship.
1335 ///
1336 /// \returns true if *this >= RHS when considered signed.
1337 bool sge(int64_t RHS) const { return !slt(RHS); }
1338
1339 /// This operation tests if there are any pairs of corresponding bits
1340 /// between this APInt and RHS that are both set.
1341 bool intersects(const APInt &RHS) const {
1342 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1342, __PRETTY_FUNCTION__))
;
1343 if (isSingleWord())
1344 return (U.VAL & RHS.U.VAL) != 0;
1345 return intersectsSlowCase(RHS);
1346 }
1347
1348 /// This operation checks that all bits set in this APInt are also set in RHS.
1349 bool isSubsetOf(const APInt &RHS) const {
1350 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1350, __PRETTY_FUNCTION__))
;
1351 if (isSingleWord())
1352 return (U.VAL & ~RHS.U.VAL) == 0;
1353 return isSubsetOfSlowCase(RHS);
1354 }
1355
1356 /// @}
1357 /// \name Resizing Operators
1358 /// @{
1359
1360 /// Truncate to new width.
1361 ///
1362 /// Truncate the APInt to a specified width. It is an error to specify a width
1363 /// that is greater than or equal to the current width.
1364 APInt trunc(unsigned width) const;
1365
1366 /// Truncate to new width with unsigned saturation.
1367 ///
1368 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1369 /// the new bitwidth, then return truncated APInt. Else, return max value.
1370 APInt truncUSat(unsigned width) const;
1371
1372 /// Truncate to new width with signed saturation.
1373 ///
1374 /// If this APInt, treated as signed integer, can be losslessly truncated to
1375 /// the new bitwidth, then return truncated APInt. Else, return either
1376 /// signed min value if the APInt was negative, or signed max value.
1377 APInt truncSSat(unsigned width) const;
1378
1379 /// Sign extend to a new width.
1380 ///
1381 /// This operation sign extends the APInt to a new width. If the high order
1382 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1383 /// It is an error to specify a width that is less than or equal to the
1384 /// current width.
1385 APInt sext(unsigned width) const;
1386
1387 /// Zero extend to a new width.
1388 ///
1389 /// This operation zero extends the APInt to a new width. The high order bits
1390 /// are filled with 0 bits. It is an error to specify a width that is less
1391 /// than or equal to the current width.
1392 APInt zext(unsigned width) const;
1393
1394 /// Sign extend or truncate to width
1395 ///
1396 /// Make this APInt have the bit width given by \p width. The value is sign
1397 /// extended, truncated, or left alone to make it that width.
1398 APInt sextOrTrunc(unsigned width) const;
1399
1400 /// Zero extend or truncate to width
1401 ///
1402 /// Make this APInt have the bit width given by \p width. The value is zero
1403 /// extended, truncated, or left alone to make it that width.
1404 APInt zextOrTrunc(unsigned width) const;
1405
1406 /// Sign extend or truncate to width
1407 ///
1408 /// Make this APInt have the bit width given by \p width. The value is sign
1409 /// extended, or left alone to make it that width.
1410 APInt sextOrSelf(unsigned width) const;
1411
1412 /// Zero extend or truncate to width
1413 ///
1414 /// Make this APInt have the bit width given by \p width. The value is zero
1415 /// extended, or left alone to make it that width.
1416 APInt zextOrSelf(unsigned width) const;
1417
1418 /// @}
1419 /// \name Bit Manipulation Operators
1420 /// @{
1421
1422 /// Set every bit to 1.
1423 void setAllBits() {
1424 if (isSingleWord())
1425 U.VAL = WORDTYPE_MAX;
1426 else
1427 // Set all the bits in all the words.
1428 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1429 // Clear the unused ones
1430 clearUnusedBits();
1431 }
1432
1433 /// Set a given bit to 1.
1434 ///
1435 /// Set the given bit to 1 whose position is given as "bitPosition".
1436 void setBit(unsigned BitPosition) {
1437 assert(BitPosition < BitWidth && "BitPosition out of range")((BitPosition < BitWidth && "BitPosition out of range"
) ? static_cast<void> (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1437, __PRETTY_FUNCTION__))
;
1438 WordType Mask = maskBit(BitPosition);
1439 if (isSingleWord())
1440 U.VAL |= Mask;
1441 else
1442 U.pVal[whichWord(BitPosition)] |= Mask;
1443 }
1444
1445 /// Set the sign bit to 1.
1446 void setSignBit() {
1447 setBit(BitWidth - 1);
1448 }
1449
1450 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1451 /// This function handles "wrap" case when \p loBit > \p hiBit, and calls
1452 /// setBits when \p loBit <= \p hiBit.
1453 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1454 assert(hiBit <= BitWidth && "hiBit out of range")((hiBit <= BitWidth && "hiBit out of range") ? static_cast
<void> (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1454, __PRETTY_FUNCTION__))
;
1455 assert(loBit <= BitWidth && "loBit out of range")((loBit <= BitWidth && "loBit out of range") ? static_cast
<void> (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1455, __PRETTY_FUNCTION__))
;
1456 if (loBit <= hiBit) {
1457 setBits(loBit, hiBit);
1458 return;
1459 }
1460 setLowBits(hiBit);
1461 setHighBits(BitWidth - loBit);
1462 }
1463
1464 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1465 /// This function handles case when \p loBit <= \p hiBit.
1466 void setBits(unsigned loBit, unsigned hiBit) {
1467 assert(hiBit <= BitWidth && "hiBit out of range")((hiBit <= BitWidth && "hiBit out of range") ? static_cast
<void> (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1467, __PRETTY_FUNCTION__))
;
1468 assert(loBit <= BitWidth && "loBit out of range")((loBit <= BitWidth && "loBit out of range") ? static_cast
<void> (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1468, __PRETTY_FUNCTION__))
;
1469 assert(loBit <= hiBit && "loBit greater than hiBit")((loBit <= hiBit && "loBit greater than hiBit") ? static_cast
<void> (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1469, __PRETTY_FUNCTION__))
;
1470 if (loBit == hiBit)
1471 return;
1472 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1473 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1474 mask <<= loBit;
1475 if (isSingleWord())
1476 U.VAL |= mask;
1477 else
1478 U.pVal[0] |= mask;
1479 } else {
1480 setBitsSlowCase(loBit, hiBit);
1481 }
1482 }
1483
1484 /// Set the top bits starting from loBit.
1485 void setBitsFrom(unsigned loBit) {
1486 return setBits(loBit, BitWidth);
1487 }
1488
1489 /// Set the bottom loBits bits.
1490 void setLowBits(unsigned loBits) {
1491 return setBits(0, loBits);
1492 }
1493
1494 /// Set the top hiBits bits.
1495 void setHighBits(unsigned hiBits) {
1496 return setBits(BitWidth - hiBits, BitWidth);
1497 }
1498
1499 /// Set every bit to 0.
1500 void clearAllBits() {
1501 if (isSingleWord())
1502 U.VAL = 0;
1503 else
1504 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1505 }
1506
1507 /// Set a given bit to 0.
1508 ///
1509 /// Set the given bit to 0 whose position is given as "bitPosition".
1510 void clearBit(unsigned BitPosition) {
1511 assert(BitPosition < BitWidth && "BitPosition out of range")((BitPosition < BitWidth && "BitPosition out of range"
) ? static_cast<void> (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1511, __PRETTY_FUNCTION__))
;
1512 WordType Mask = ~maskBit(BitPosition);
1513 if (isSingleWord())
1514 U.VAL &= Mask;
1515 else
1516 U.pVal[whichWord(BitPosition)] &= Mask;
1517 }
1518
1519 /// Set bottom loBits bits to 0.
1520 void clearLowBits(unsigned loBits) {
1521 assert(loBits <= BitWidth && "More bits than bitwidth")((loBits <= BitWidth && "More bits than bitwidth")
? static_cast<void> (0) : __assert_fail ("loBits <= BitWidth && \"More bits than bitwidth\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1521, __PRETTY_FUNCTION__))
;
1522 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1523 *this &= Keep;
1524 }
1525
1526 /// Set the sign bit to 0.
1527 void clearSignBit() {
1528 clearBit(BitWidth - 1);
1529 }
1530
1531 /// Toggle every bit to its opposite value.
1532 void flipAllBits() {
1533 if (isSingleWord()) {
1534 U.VAL ^= WORDTYPE_MAX;
1535 clearUnusedBits();
1536 } else {
1537 flipAllBitsSlowCase();
1538 }
1539 }
1540
1541 /// Toggles a given bit to its opposite value.
1542 ///
1543 /// Toggle a given bit to its opposite value whose position is given
1544 /// as "bitPosition".
1545 void flipBit(unsigned bitPosition);
1546
1547 /// Negate this APInt in place.
1548 void negate() {
1549 flipAllBits();
1550 ++(*this);
1551 }
1552
1553 /// Insert the bits from a smaller APInt starting at bitPosition.
1554 void insertBits(const APInt &SubBits, unsigned bitPosition);
1555 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1556
1557 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1558 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1559 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1560
1561 /// @}
1562 /// \name Value Characterization Functions
1563 /// @{
1564
1565 /// Return the number of bits in the APInt.
1566 unsigned getBitWidth() const { return BitWidth; }
1567
1568 /// Get the number of words.
1569 ///
1570 /// Here one word's bitwidth equals to that of uint64_t.
1571 ///
1572 /// \returns the number of words to hold the integer value of this APInt.
1573 unsigned getNumWords() const { return getNumWords(BitWidth); }
1574
1575 /// Get the number of words.
1576 ///
1577 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1578 ///
1579 /// \returns the number of words to hold the integer value with a given bit
1580 /// width.
1581 static unsigned getNumWords(unsigned BitWidth) {
1582 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1583 }
1584
1585 /// Compute the number of active bits in the value
1586 ///
1587 /// This function returns the number of active bits which is defined as the
1588 /// bit width minus the number of leading zeros. This is used in several
1589 /// computations to see how "wide" the value is.
1590 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1591
1592 /// Compute the number of active words in the value of this APInt.
1593 ///
1594 /// This is used in conjunction with getActiveData to extract the raw value of
1595 /// the APInt.
1596 unsigned getActiveWords() const {
1597 unsigned numActiveBits = getActiveBits();
1598 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1599 }
1600
1601 /// Get the minimum bit size for this signed APInt
1602 ///
1603 /// Computes the minimum bit width for this APInt while considering it to be a
1604 /// signed (and probably negative) value. If the value is not negative, this
1605 /// function returns the same value as getActiveBits()+1. Otherwise, it
1606 /// returns the smallest bit width that will retain the negative value. For
1607 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1608 /// for -1, this function will always return 1.
1609 unsigned getMinSignedBits() const {
1610 if (isNegative())
1611 return BitWidth - countLeadingOnes() + 1;
1612 return getActiveBits() + 1;
1613 }
1614
1615 /// Get zero extended value
1616 ///
1617 /// This method attempts to return the value of this APInt as a zero extended
1618 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1619 /// uint64_t. Otherwise an assertion will result.
1620 uint64_t getZExtValue() const {
1621 if (isSingleWord())
1622 return U.VAL;
1623 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")((getActiveBits() <= 64 && "Too many bits for uint64_t"
) ? static_cast<void> (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1623, __PRETTY_FUNCTION__))
;
1624 return U.pVal[0];
1625 }
1626
1627 /// Get sign extended value
1628 ///
1629 /// This method attempts to return the value of this APInt as a sign extended
1630 /// int64_t. The bit width must be <= 64 or the value must fit within an
1631 /// int64_t. Otherwise an assertion will result.
1632 int64_t getSExtValue() const {
1633 if (isSingleWord())
1634 return SignExtend64(U.VAL, BitWidth);
1635 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")((getMinSignedBits() <= 64 && "Too many bits for int64_t"
) ? static_cast<void> (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/APInt.h"
, 1635, __PRETTY_FUNCTION__))
;
1636 return int64_t(U.pVal[0]);
1637 }
1638
1639 /// Get bits required for string value.
1640 ///
1641 /// This method determines how many bits are required to hold the APInt
1642 /// equivalent of the string given by \p str.
1643 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1644
1645 /// The APInt version of the countLeadingZeros functions in
1646 /// MathExtras.h.
1647 ///
1648 /// It counts the number of zeros from the most significant bit to the first
1649 /// one bit.
1650 ///
1651 /// \returns BitWidth if the value is zero, otherwise returns the number of
1652 /// zeros from the most significant bit to the first one bits.
1653 unsigned countLeadingZeros() const {
1654 if (isSingleWord()) {
1655 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1656 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1657 }
1658 return countLeadingZerosSlowCase();
1659 }
1660
1661 /// Count the number of leading one bits.
1662 ///
1663 /// This function is an APInt version of the countLeadingOnes
1664 /// functions in MathExtras.h. It counts the number of ones from the most
1665 /// significant bit to the first zero bit.
1666 ///
1667 /// \returns 0 if the high order bit is not set, otherwise returns the number
1668 /// of 1 bits from the most significant to the least
1669 unsigned countLeadingOnes() const {
1670 if (isSingleWord())
1671 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1672 return countLeadingOnesSlowCase();
1673 }
1674
1675 /// Computes the number of leading bits of this APInt that are equal to its
1676 /// sign bit.
1677 unsigned getNumSignBits() const {
1678 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1679 }
1680
1681 /// Count the number of trailing zero bits.
1682 ///
1683 /// This function is an APInt version of the countTrailingZeros
1684 /// functions in MathExtras.h. It counts the number of zeros from the least
1685 /// significant bit to the first set bit.
1686 ///
1687 /// \returns BitWidth if the value is zero, otherwise returns the number of
1688 /// zeros from the least significant bit to the first one bit.
1689 unsigned countTrailingZeros() const {
1690 if (isSingleWord())
1691 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1692 return countTrailingZerosSlowCase();
1693 }
1694
1695 /// Count the number of trailing one bits.
1696 ///
1697 /// This function is an APInt version of the countTrailingOnes
1698 /// functions in MathExtras.h. It counts the number of ones from the least
1699 /// significant bit to the first zero bit.
1700 ///
1701 /// \returns BitWidth if the value is all ones, otherwise returns the number
1702 /// of ones from the least significant bit to the first zero bit.
1703 unsigned countTrailingOnes() const {
1704 if (isSingleWord())
1705 return llvm::countTrailingOnes(U.VAL);
1706 return countTrailingOnesSlowCase();
1707 }
1708
1709 /// Count the number of bits set.
1710 ///
1711 /// This function is an APInt version of the countPopulation functions
1712 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1713 ///
1714 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1715 unsigned countPopulation() const {
1716 if (isSingleWord())
1717 return llvm::countPopulation(U.VAL);
1718 return countPopulationSlowCase();
1719 }
1720
1721 /// @}
1722 /// \name Conversion Functions
1723 /// @{
1724 void print(raw_ostream &OS, bool isSigned) const;
1725
1726 /// Converts an APInt to a string and append it to Str. Str is commonly a
1727 /// SmallString.
1728 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1729 bool formatAsCLiteral = false) const;
1730
1731 /// Considers the APInt to be unsigned and converts it into a string in the
1732 /// radix given. The radix can be 2, 8, 10 16, or 36.
1733 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1734 toString(Str, Radix, false, false);
1735 }
1736
1737 /// Considers the APInt to be signed and converts it into a string in the
1738 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1739 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1740 toString(Str, Radix, true, false);
1741 }
1742
1743 /// Return the APInt as a std::string.
1744 ///
1745 /// Note that this is an inefficient method. It is better to pass in a
1746 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1747 /// for the string.
1748 std::string toString(unsigned Radix, bool Signed) const;
1749
1750 /// \returns a byte-swapped representation of this APInt Value.
1751 APInt byteSwap() const;
1752
1753 /// \returns the value with the bit representation reversed of this APInt
1754 /// Value.
1755 APInt reverseBits() const;
1756
1757 /// Converts this APInt to a double value.
1758 double roundToDouble(bool isSigned) const;
1759
1760 /// Converts this unsigned APInt to a double value.
1761 double roundToDouble() const { return roundToDouble(false); }
1762
1763 /// Converts this signed APInt to a double value.
1764 double signedRoundToDouble() const { return roundToDouble(true); }
1765
1766 /// Converts APInt bits to a double
1767 ///
1768 /// The conversion does not do a translation from integer to double, it just
1769 /// re-interprets the bits as a double. Note that it is valid to do this on
1770 /// any bit width. Exactly 64 bits will be translated.
1771 double bitsToDouble() const {
1772 return BitsToDouble(getWord(0));
1773 }
1774
1775 /// Converts APInt bits to a float
1776 ///
1777 /// The conversion does not do a translation from integer to float, it just
1778 /// re-interprets the bits as a float. Note that it is valid to do this on
1779 /// any bit width. Exactly 32 bits will be translated.
1780 float bitsToFloat() const {
1781 return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1782 }
1783
1784 /// Converts a double to APInt bits.
1785 ///
1786 /// The conversion does not do a translation from double to integer, it just
1787 /// re-interprets the bits of the double.
1788 static APInt doubleToBits(double V) {
1789 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1790 }
1791
1792 /// Converts a float to APInt bits.
1793 ///
1794 /// The conversion does not do a translation from float to integer, it just
1795 /// re-interprets the bits of the float.
1796 static APInt floatToBits(float V) {
1797 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1798 }
1799
1800 /// @}
1801 /// \name Mathematics Operations
1802 /// @{
1803
1804 /// \returns the floor log base 2 of this APInt.
1805 unsigned logBase2() const { return getActiveBits() - 1; }
1806
1807 /// \returns the ceil log base 2 of this APInt.
1808 unsigned ceilLogBase2() const {
1809 APInt temp(*this);
1810 --temp;
1811 return temp.getActiveBits();
1812 }
1813
1814 /// \returns the nearest log base 2 of this APInt. Ties round up.
1815 ///
1816 /// NOTE: When we have a BitWidth of 1, we define:
1817 ///
1818 /// log2(0) = UINT32_MAX
1819 /// log2(1) = 0
1820 ///
1821 /// to get around any mathematical concerns resulting from
1822 /// referencing 2 in a space where 2 does no exist.
1823 unsigned nearestLogBase2() const {
1824 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1825 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1826 // UINT32_MAX.
1827 if (BitWidth == 1)
1828 return U.VAL - 1;
1829
1830 // Handle the zero case.
1831 if (isNullValue())
1832 return UINT32_MAX(4294967295U);
1833
1834 // The non-zero case is handled by computing:
1835 //
1836 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1837 //
1838 // where x[i] is referring to the value of the ith bit of x.
1839 unsigned lg = logBase2();
1840 return lg + unsigned((*this)[lg - 1]);
1841 }
1842
1843 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1844 /// otherwise
1845 int32_t exactLogBase2() const {
1846 if (!isPowerOf2())
1847 return -1;
1848 return logBase2();
1849 }
1850
1851 /// Compute the square root
1852 APInt sqrt() const;
1853
1854 /// Get the absolute value;
1855 ///
1856 /// If *this is < 0 then return -(*this), otherwise *this;
1857 APInt abs() const {
1858 if (isNegative())
1859 return -(*this);
1860 return *this;
1861 }
1862
1863 /// \returns the multiplicative inverse for a given modulo.
1864 APInt multiplicativeInverse(const APInt &modulo) const;
1865
1866 /// @}
1867 /// \name Support for division by constant
1868 /// @{
1869
1870 /// Calculate the magic number for signed division by a constant.
1871 struct ms;
1872 ms magic() const;
1873
1874 /// Calculate the magic number for unsigned division by a constant.
1875 struct mu;
1876 mu magicu(unsigned LeadingZeros = 0) const;
1877
1878 /// @}
1879 /// \name Building-block Operations for APInt and APFloat
1880 /// @{
1881
1882 // These building block operations operate on a representation of arbitrary
1883 // precision, two's-complement, bignum integer values. They should be
1884 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1885 // generally a pointer to the base of an array of integer parts, representing
1886 // an unsigned bignum, and a count of how many parts there are.
1887
1888 /// Sets the least significant part of a bignum to the input value, and zeroes
1889 /// out higher parts.
1890 static void tcSet(WordType *, WordType, unsigned);
1891
1892 /// Assign one bignum to another.
1893 static void tcAssign(WordType *, const WordType *, unsigned);
1894
1895 /// Returns true if a bignum is zero, false otherwise.
1896 static bool tcIsZero(const WordType *, unsigned);
1897
1898 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1899 static int tcExtractBit(const WordType *, unsigned bit);
1900
1901 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1902 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1903 /// significant bit of DST. All high bits above srcBITS in DST are
1904 /// zero-filled.
1905 static void tcExtract(WordType *, unsigned dstCount,
1906 const WordType *, unsigned srcBits,
1907 unsigned srcLSB);
1908
1909 /// Set the given bit of a bignum. Zero-based.
1910 static void tcSetBit(WordType *, unsigned bit);
1911
1912 /// Clear the given bit of a bignum. Zero-based.
1913 static void tcClearBit(WordType *, unsigned bit);
1914
1915 /// Returns the bit number of the least or most significant set bit of a
1916 /// number. If the input number has no bits set -1U is returned.
1917 static unsigned tcLSB(const WordType *, unsigned n);
1918 static unsigned tcMSB(const WordType *parts, unsigned n);
1919
1920 /// Negate a bignum in-place.
1921 static void tcNegate(WordType *, unsigned);
1922
1923 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1924 static WordType tcAdd(WordType *, const WordType *,
1925 WordType carry, unsigned);
1926 /// DST += RHS. Returns the carry flag.
1927 static WordType tcAddPart(WordType *, WordType, unsigned);
1928
1929 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1930 static WordType tcSubtract(WordType *, const WordType *,
1931 WordType carry, unsigned);
1932 /// DST -= RHS. Returns the carry flag.
1933 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1934
1935 /// DST += SRC * MULTIPLIER + PART if add is true
1936 /// DST = SRC * MULTIPLIER + PART if add is false
1937 ///
1938 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1939 /// start at the same point, i.e. DST == SRC.
1940 ///
1941 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1942 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1943 /// result, and if all of the omitted higher parts were zero return zero,
1944 /// otherwise overflow occurred and return one.
1945 static int tcMultiplyPart(WordType *dst, const WordType *src,
1946 WordType multiplier, WordType carry,
1947 unsigned srcParts, unsigned dstParts,
1948 bool add);
1949
1950 /// DST = LHS * RHS, where DST has the same width as the operands and is
1951 /// filled with the least significant parts of the result. Returns one if
1952 /// overflow occurred, otherwise zero. DST must be disjoint from both
1953 /// operands.
1954 static int tcMultiply(WordType *, const WordType *, const WordType *,
1955 unsigned);
1956
1957 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1958 /// operands. No overflow occurs. DST must be disjoint from both operands.
1959 static void tcFullMultiply(WordType *, const WordType *,
1960 const WordType *, unsigned, unsigned);
1961
1962 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1963 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1964 /// REMAINDER to the remainder, return zero. i.e.
1965 ///
1966 /// OLD_LHS = RHS * LHS + REMAINDER
1967 ///
1968 /// SCRATCH is a bignum of the same size as the operands and result for use by
1969 /// the routine; its contents need not be initialized and are destroyed. LHS,
1970 /// REMAINDER and SCRATCH must be distinct.
1971 static int tcDivide(WordType *lhs, const WordType *rhs,
1972 WordType *remainder, WordType *scratch,
1973 unsigned parts);
1974
1975 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1976 /// restrictions on Count.
1977 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1978
1979 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1980 /// restrictions on Count.
1981 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1982
1983 /// The obvious AND, OR and XOR and complement operations.
1984 static void tcAnd(WordType *, const WordType *, unsigned);
1985 static void tcOr(WordType *, const WordType *, unsigned);
1986 static void tcXor(WordType *, const WordType *, unsigned);
1987 static void tcComplement(WordType *, unsigned);
1988
1989 /// Comparison (unsigned) of two bignums.
1990 static int tcCompare(const WordType *, const WordType *, unsigned);
1991
1992 /// Increment a bignum in-place. Return the carry flag.
1993 static WordType tcIncrement(WordType *dst, unsigned parts) {
1994 return tcAddPart(dst, 1, parts);
1995 }
1996
1997 /// Decrement a bignum in-place. Return the borrow flag.
1998 static WordType tcDecrement(WordType *dst, unsigned parts) {
1999 return tcSubtractPart(dst, 1, parts);
2000 }
2001
2002 /// Set the least significant BITS and clear the rest.
2003 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
2004
2005 /// debug method
2006 void dump() const;
2007
2008 /// @}
2009};
2010
2011/// Magic data for optimising signed division by a constant.
2012struct APInt::ms {
2013 APInt m; ///< magic number
2014 unsigned s; ///< shift amount
2015};
2016
2017/// Magic data for optimising unsigned division by a constant.
2018struct APInt::mu {
2019 APInt m; ///< magic number
2020 bool a; ///< add indicator
2021 unsigned s; ///< shift amount
2022};
2023
2024inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2025
2026inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2027
2028/// Unary bitwise complement operator.
2029///
2030/// \returns an APInt that is the bitwise complement of \p v.
2031inline APInt operator~(APInt v) {
2032 v.flipAllBits();
2033 return v;
2034}
2035
2036inline APInt operator&(APInt a, const APInt &b) {
2037 a &= b;
2038 return a;
2039}
2040
2041inline APInt operator&(const APInt &a, APInt &&b) {
2042 b &= a;
2043 return std::move(b);
2044}
2045
2046inline APInt operator&(APInt a, uint64_t RHS) {
2047 a &= RHS;
2048 return a;
2049}
2050
2051inline APInt operator&(uint64_t LHS, APInt b) {
2052 b &= LHS;
2053 return b;
2054}
2055
2056inline APInt operator|(APInt a, const APInt &b) {
2057 a |= b;
2058 return a;
2059}
2060
2061inline APInt operator|(const APInt &a, APInt &&b) {
2062 b |= a;
2063 return std::move(b);
2064}
2065
2066inline APInt operator|(APInt a, uint64_t RHS) {
2067 a |= RHS;
2068 return a;
2069}
2070
2071inline APInt operator|(uint64_t LHS, APInt b) {
2072 b |= LHS;
2073 return b;
2074}
2075
2076inline APInt operator^(APInt a, const APInt &b) {
2077 a ^= b;
2078 return a;
2079}
2080
2081inline APInt operator^(const APInt &a, APInt &&b) {
2082 b ^= a;
2083 return std::move(b);
2084}
2085
2086inline APInt operator^(APInt a, uint64_t RHS) {
2087 a ^= RHS;
2088 return a;
2089}
2090
2091inline APInt operator^(uint64_t LHS, APInt b) {
2092 b ^= LHS;
2093 return b;
2094}
2095
2096inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2097 I.print(OS, true);
2098 return OS;
2099}
2100
2101inline APInt operator-(APInt v) {
2102 v.negate();
2103 return v;
2104}
2105
2106inline APInt operator+(APInt a, const APInt &b) {
2107 a += b;
2108 return a;
2109}
2110
2111inline APInt operator+(const APInt &a, APInt &&b) {
2112 b += a;
2113 return std::move(b);
2114}
2115
2116inline APInt operator+(APInt a, uint64_t RHS) {
2117 a += RHS;
2118 return a;
2119}
2120
2121inline APInt operator+(uint64_t LHS, APInt b) {
2122 b += LHS;
2123 return b;
2124}
2125
2126inline APInt operator-(APInt a, const APInt &b) {
2127 a -= b;
2128 return a;
2129}
2130
2131inline APInt operator-(const APInt &a, APInt &&b) {
2132 b.negate();
2133 b += a;
2134 return std::move(b);
2135}
2136
2137inline APInt operator-(APInt a, uint64_t RHS) {
2138 a -= RHS;
2139 return a;
2140}
2141
2142inline APInt operator-(uint64_t LHS, APInt b) {
2143 b.negate();
2144 b += LHS;
2145 return b;
2146}
2147
2148inline APInt operator*(APInt a, uint64_t RHS) {
2149 a *= RHS;
2150 return a;
2151}
2152
2153inline APInt operator*(uint64_t LHS, APInt b) {
2154 b *= LHS;
2155 return b;
2156}
2157
2158
2159namespace APIntOps {
2160
2161/// Determine the smaller of two APInts considered to be signed.
2162inline const APInt &smin(const APInt &A, const APInt &B) {
2163 return A.slt(B) ? A : B;
2164}
2165
2166/// Determine the larger of two APInts considered to be signed.
2167inline const APInt &smax(const APInt &A, const APInt &B) {
2168 return A.sgt(B) ? A : B;
2169}
2170
2171/// Determine the smaller of two APInts considered to be signed.
2172inline const APInt &umin(const APInt &A, const APInt &B) {
2173 return A.ult(B) ? A : B;
2174}
2175
2176/// Determine the larger of two APInts considered to be unsigned.
2177inline const APInt &umax(const APInt &A, const APInt &B) {
2178 return A.ugt(B) ? A : B;
2179}
2180
2181/// Compute GCD of two unsigned APInt values.
2182///
2183/// This function returns the greatest common divisor of the two APInt values
2184/// using Stein's algorithm.
2185///
2186/// \returns the greatest common divisor of A and B.
2187APInt GreatestCommonDivisor(APInt A, APInt B);
2188
2189/// Converts the given APInt to a double value.
2190///
2191/// Treats the APInt as an unsigned value for conversion purposes.
2192inline double RoundAPIntToDouble(const APInt &APIVal) {
2193 return APIVal.roundToDouble();
2194}
2195
2196/// Converts the given APInt to a double value.
2197///
2198/// Treats the APInt as a signed value for conversion purposes.
2199inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2200 return APIVal.signedRoundToDouble();
2201}
2202
2203/// Converts the given APInt to a float vlalue.
2204inline float RoundAPIntToFloat(const APInt &APIVal) {
2205 return float(RoundAPIntToDouble(APIVal));
2206}
2207
2208/// Converts the given APInt to a float value.
2209///
2210/// Treats the APInt as a signed value for conversion purposes.
2211inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2212 return float(APIVal.signedRoundToDouble());
2213}
2214
2215/// Converts the given double value into a APInt.
2216///
2217/// This function convert a double value to an APInt value.
2218APInt RoundDoubleToAPInt(double Double, unsigned width);
2219
2220/// Converts a float value into a APInt.
2221///
2222/// Converts a float value into an APInt value.
2223inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2224 return RoundDoubleToAPInt(double(Float), width);
2225}
2226
2227/// Return A unsign-divided by B, rounded by the given rounding mode.
2228APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2229
2230/// Return A sign-divided by B, rounded by the given rounding mode.
2231APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2232
2233/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2234/// (e.g. 32 for i32).
2235/// This function finds the smallest number n, such that
2236/// (a) n >= 0 and q(n) = 0, or
2237/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2238/// integers, belong to two different intervals [Rk, Rk+R),
2239/// where R = 2^BW, and k is an integer.
2240/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2241/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2242/// subtraction (treated as addition of negated numbers) would always
2243/// count as an overflow, but here we want to allow values to decrease
2244/// and increase as long as they are within the same interval.
2245/// Specifically, adding of two negative numbers should not cause an
2246/// overflow (as long as the magnitude does not exceed the bit width).
2247/// On the other hand, given a positive number, adding a negative
2248/// number to it can give a negative result, which would cause the
2249/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2250/// treated as a special case of an overflow.
2251///
2252/// This function returns None if after finding k that minimizes the
2253/// positive solution to q(n) = kR, both solutions are contained between
2254/// two consecutive integers.
2255///
2256/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2257/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2258/// virtue of *signed* overflow. This function will *not* find such an n,
2259/// however it may find a value of n satisfying the inequalities due to
2260/// an *unsigned* overflow (if the values are treated as unsigned).
2261/// To find a solution for a signed overflow, treat it as a problem of
2262/// finding an unsigned overflow with a range with of BW-1.
2263///
2264/// The returned value may have a different bit width from the input
2265/// coefficients.
2266Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2267 unsigned RangeWidth);
2268
2269/// Compare two values, and if they are different, return the position of the
2270/// most significant bit that is different in the values.
2271Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2272 const APInt &B);
2273
2274} // End of APIntOps namespace
2275
2276// See friend declaration above. This additional declaration is required in
2277// order to compile LLVM with IBM xlC compiler.
2278hash_code hash_value(const APInt &Arg);
2279
2280/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2281/// with the integer held in IntVal.
2282void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2283
2284/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2285/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2286void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes);
2287
2288} // namespace llvm
2289
2290#endif