Bug Summary

File:include/llvm/Support/Error.h
Warning:line 201, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Object.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/llvm-objcopy -I /build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-objcopy -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/llvm-objcopy -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-objcopy/Object.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-objcopy/Object.cpp

1//===- Object.cpp ---------------------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "Object.h"
11#include "llvm-objcopy.h"
12#include "llvm/ADT/ArrayRef.h"
13#include "llvm/ADT/STLExtras.h"
14#include "llvm/ADT/StringRef.h"
15#include "llvm/ADT/Twine.h"
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/BinaryFormat/ELF.h"
18#include "llvm/MC/MCTargetOptions.h"
19#include "llvm/Object/ELFObjectFile.h"
20#include "llvm/Support/Compression.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/FileOutputBuffer.h"
23#include "llvm/Support/Path.h"
24#include <algorithm>
25#include <cstddef>
26#include <cstdint>
27#include <iterator>
28#include <utility>
29#include <vector>
30
31namespace llvm {
32namespace objcopy {
33namespace elf {
34
35using namespace object;
36using namespace ELF;
37
38template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
39 uint8_t *B = Buf.getBufferStart();
40 B += Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
41 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
42 Phdr.p_type = Seg.Type;
43 Phdr.p_flags = Seg.Flags;
44 Phdr.p_offset = Seg.Offset;
45 Phdr.p_vaddr = Seg.VAddr;
46 Phdr.p_paddr = Seg.PAddr;
47 Phdr.p_filesz = Seg.FileSize;
48 Phdr.p_memsz = Seg.MemSize;
49 Phdr.p_align = Seg.Align;
50}
51
52void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
53void SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {}
54void SectionBase::initialize(SectionTableRef SecTable) {}
55void SectionBase::finalize() {}
56void SectionBase::markSymbols() {}
57
58template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
59 uint8_t *B = Buf.getBufferStart();
60 B += Sec.HeaderOffset;
61 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
62 Shdr.sh_name = Sec.NameIndex;
63 Shdr.sh_type = Sec.Type;
64 Shdr.sh_flags = Sec.Flags;
65 Shdr.sh_addr = Sec.Addr;
66 Shdr.sh_offset = Sec.Offset;
67 Shdr.sh_size = Sec.Size;
68 Shdr.sh_link = Sec.Link;
69 Shdr.sh_info = Sec.Info;
70 Shdr.sh_addralign = Sec.Align;
71 Shdr.sh_entsize = Sec.EntrySize;
72}
73
74SectionVisitor::~SectionVisitor() {}
75
76void BinarySectionWriter::visit(const SectionIndexSection &Sec) {
77 error("Cannot write symbol section index table '" + Sec.Name + "' ");
78}
79
80void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
81 error("Cannot write symbol table '" + Sec.Name + "' out to binary");
82}
83
84void BinarySectionWriter::visit(const RelocationSection &Sec) {
85 error("Cannot write relocation section '" + Sec.Name + "' out to binary");
86}
87
88void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
89 error("Cannot write '" + Sec.Name + "' out to binary");
90}
91
92void BinarySectionWriter::visit(const GroupSection &Sec) {
93 error("Cannot write '" + Sec.Name + "' out to binary");
94}
95
96void SectionWriter::visit(const Section &Sec) {
97 if (Sec.Type == SHT_NOBITS)
98 return;
99 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
100 std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), Buf);
101}
102
103void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }
104
105void SectionWriter::visit(const OwnedDataSection &Sec) {
106 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
107 std::copy(std::begin(Sec.Data), std::end(Sec.Data), Buf);
108}
109
110static const std::vector<uint8_t> ZlibGnuMagic = {'Z', 'L', 'I', 'B'};
111
112static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
113 return Data.size() > ZlibGnuMagic.size() &&
114 std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
115}
116
117template <class ELFT>
118static std::tuple<uint64_t, uint64_t>
119getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
120 const bool IsGnuDebug = isDataGnuCompressed(Data);
121 const uint64_t DecompressedSize =
122 IsGnuDebug
123 ? support::endian::read64be(reinterpret_cast<const uint64_t *>(
124 Data.data() + ZlibGnuMagic.size()))
125 : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
126 const uint64_t DecompressedAlign =
127 IsGnuDebug ? 1
128 : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
129 ->ch_addralign;
130
131 return std::make_tuple(DecompressedSize, DecompressedAlign);
132}
133
134template <class ELFT>
135void ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
136 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
137
138 if (!zlib::isAvailable()) {
139 std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
140 return;
141 }
142
143 const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
144 ? (ZlibGnuMagic.size() + sizeof(Sec.Size))
145 : sizeof(Elf_Chdr_Impl<ELFT>);
146
147 StringRef CompressedContent(
148 reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
149 Sec.OriginalData.size() - DataOffset);
150
151 SmallVector<char, 128> DecompressedContent;
152 if (Error E = zlib::uncompress(CompressedContent, DecompressedContent,
153 static_cast<size_t>(Sec.Size)))
154 reportError(Sec.Name, std::move(E));
155
156 std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
157}
158
159void BinarySectionWriter::visit(const DecompressedSection &Sec) {
160 error("Cannot write compressed section '" + Sec.Name + "' ");
161}
162
163void DecompressedSection::accept(SectionVisitor &Visitor) const {
164 Visitor.visit(*this);
165}
166
167void OwnedDataSection::accept(SectionVisitor &Visitor) const {
168 Visitor.visit(*this);
169}
170
171void BinarySectionWriter::visit(const CompressedSection &Sec) {
172 error("Cannot write compressed section '" + Sec.Name + "' ");
173}
174
175template <class ELFT>
176void ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
177 uint8_t *Buf = Out.getBufferStart();
178 Buf += Sec.Offset;
179
180 if (Sec.CompressionType == DebugCompressionType::None) {
181 std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
182 return;
183 }
184
185 if (Sec.CompressionType == DebugCompressionType::GNU) {
186 const char *Magic = "ZLIB";
187 memcpy(Buf, Magic, strlen(Magic));
188 Buf += strlen(Magic);
189 const uint64_t DecompressedSize =
190 support::endian::read64be(&Sec.DecompressedSize);
191 memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
192 Buf += sizeof(DecompressedSize);
193 } else {
194 Elf_Chdr_Impl<ELFT> Chdr;
195 Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
196 Chdr.ch_size = Sec.DecompressedSize;
197 Chdr.ch_addralign = Sec.DecompressedAlign;
198 memcpy(Buf, &Chdr, sizeof(Chdr));
199 Buf += sizeof(Chdr);
200 }
201
202 std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
203}
204
205CompressedSection::CompressedSection(const SectionBase &Sec,
206 DebugCompressionType CompressionType)
207 : SectionBase(Sec), CompressionType(CompressionType),
208 DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
209
210 if (!zlib::isAvailable()) {
211 CompressionType = DebugCompressionType::None;
212 return;
213 }
214
215 if (Error E = zlib::compress(
216 StringRef(reinterpret_cast<const char *>(OriginalData.data()),
217 OriginalData.size()),
218 CompressedData))
219 reportError(Name, std::move(E));
220
221 size_t ChdrSize;
222 if (CompressionType == DebugCompressionType::GNU) {
223 Name = ".z" + Sec.Name.substr(1);
224 ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
225 } else {
226 Flags |= ELF::SHF_COMPRESSED;
227 ChdrSize =
228 std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
229 sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
230 std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
231 sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
232 }
233 Size = ChdrSize + CompressedData.size();
234 Align = 8;
235}
236
237CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
238 uint64_t DecompressedSize,
239 uint64_t DecompressedAlign)
240 : CompressionType(DebugCompressionType::None),
241 DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
242 OriginalData = CompressedData;
243}
244
245void CompressedSection::accept(SectionVisitor &Visitor) const {
246 Visitor.visit(*this);
247}
248
249void StringTableSection::addString(StringRef Name) {
250 StrTabBuilder.add(Name);
251 Size = StrTabBuilder.getSize();
252}
253
254uint32_t StringTableSection::findIndex(StringRef Name) const {
255 return StrTabBuilder.getOffset(Name);
256}
257
258void StringTableSection::finalize() { StrTabBuilder.finalize(); }
259
260void SectionWriter::visit(const StringTableSection &Sec) {
261 Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
262}
263
264void StringTableSection::accept(SectionVisitor &Visitor) const {
265 Visitor.visit(*this);
266}
267
268template <class ELFT>
269void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
270 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
271 auto *IndexesBuffer = reinterpret_cast<Elf_Word *>(Buf);
272 std::copy(std::begin(Sec.Indexes), std::end(Sec.Indexes), IndexesBuffer);
273}
274
275void SectionIndexSection::initialize(SectionTableRef SecTable) {
276 Size = 0;
277 setSymTab(SecTable.getSectionOfType<SymbolTableSection>(
278 Link,
279 "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
280 "Link field value " + Twine(Link) + " in section " + Name +
281 " is not a symbol table"));
282 Symbols->setShndxTable(this);
283}
284
285void SectionIndexSection::finalize() { Link = Symbols->Index; }
286
287void SectionIndexSection::accept(SectionVisitor &Visitor) const {
288 Visitor.visit(*this);
289}
290
291static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
292 switch (Index) {
293 case SHN_ABS:
294 case SHN_COMMON:
295 return true;
296 }
297 if (Machine == EM_HEXAGON) {
298 switch (Index) {
299 case SHN_HEXAGON_SCOMMON:
300 case SHN_HEXAGON_SCOMMON_2:
301 case SHN_HEXAGON_SCOMMON_4:
302 case SHN_HEXAGON_SCOMMON_8:
303 return true;
304 }
305 }
306 return false;
307}
308
309// Large indexes force us to clarify exactly what this function should do. This
310// function should return the value that will appear in st_shndx when written
311// out.
312uint16_t Symbol::getShndx() const {
313 if (DefinedIn != nullptr) {
314 if (DefinedIn->Index >= SHN_LORESERVE)
315 return SHN_XINDEX;
316 return DefinedIn->Index;
317 }
318 switch (ShndxType) {
319 // This means that we don't have a defined section but we do need to
320 // output a legitimate section index.
321 case SYMBOL_SIMPLE_INDEX:
322 return SHN_UNDEF;
323 case SYMBOL_ABS:
324 case SYMBOL_COMMON:
325 case SYMBOL_HEXAGON_SCOMMON:
326 case SYMBOL_HEXAGON_SCOMMON_2:
327 case SYMBOL_HEXAGON_SCOMMON_4:
328 case SYMBOL_HEXAGON_SCOMMON_8:
329 case SYMBOL_XINDEX:
330 return static_cast<uint16_t>(ShndxType);
331 }
332 llvm_unreachable("Symbol with invalid ShndxType encountered")::llvm::llvm_unreachable_internal("Symbol with invalid ShndxType encountered"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-objcopy/Object.cpp"
, 332)
;
333}
334
335void SymbolTableSection::assignIndices() {
336 uint32_t Index = 0;
337 for (auto &Sym : Symbols)
338 Sym->Index = Index++;
339}
340
341void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
342 SectionBase *DefinedIn, uint64_t Value,
343 uint8_t Visibility, uint16_t Shndx,
344 uint64_t Size) {
345 Symbol Sym;
346 Sym.Name = Name.str();
347 Sym.Binding = Bind;
348 Sym.Type = Type;
349 Sym.DefinedIn = DefinedIn;
350 if (DefinedIn != nullptr)
351 DefinedIn->HasSymbol = true;
352 if (DefinedIn == nullptr) {
353 if (Shndx >= SHN_LORESERVE)
354 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
355 else
356 Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
357 }
358 Sym.Value = Value;
359 Sym.Visibility = Visibility;
360 Sym.Size = Size;
361 Sym.Index = Symbols.size();
362 Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
363 Size += this->EntrySize;
364}
365
366void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
367 if (SectionIndexTable == Sec)
368 SectionIndexTable = nullptr;
369 if (SymbolNames == Sec) {
370 error("String table " + SymbolNames->Name +
371 " cannot be removed because it is referenced by the symbol table " +
372 this->Name);
373 }
374 removeSymbols([Sec](const Symbol &Sym) { return Sym.DefinedIn == Sec; });
375}
376
377void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
378 std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
379 [Callable](SymPtr &Sym) { Callable(*Sym); });
380 std::stable_partition(
381 std::begin(Symbols), std::end(Symbols),
382 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
383 assignIndices();
384}
385
386void SymbolTableSection::removeSymbols(
387 function_ref<bool(const Symbol &)> ToRemove) {
388 Symbols.erase(
389 std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
390 [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
391 std::end(Symbols));
392 Size = Symbols.size() * EntrySize;
393 assignIndices();
394}
395
396void SymbolTableSection::initialize(SectionTableRef SecTable) {
397 Size = 0;
398 setStrTab(SecTable.getSectionOfType<StringTableSection>(
399 Link,
400 "Symbol table has link index of " + Twine(Link) +
401 " which is not a valid index",
402 "Symbol table has link index of " + Twine(Link) +
403 " which is not a string table"));
404}
405
406void SymbolTableSection::finalize() {
407 // Make sure SymbolNames is finalized before getting name indexes.
408 SymbolNames->finalize();
409
410 uint32_t MaxLocalIndex = 0;
411 for (auto &Sym : Symbols) {
412 Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
413 if (Sym->Binding == STB_LOCAL)
414 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
415 }
416 // Now we need to set the Link and Info fields.
417 Link = SymbolNames->Index;
418 Info = MaxLocalIndex + 1;
419}
420
421void SymbolTableSection::prepareForLayout() {
422 // Add all potential section indexes before file layout so that the section
423 // index section has the approprite size.
424 if (SectionIndexTable != nullptr) {
425 for (const auto &Sym : Symbols) {
426 if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
427 SectionIndexTable->addIndex(Sym->DefinedIn->Index);
428 else
429 SectionIndexTable->addIndex(SHN_UNDEF);
430 }
431 }
432 // Add all of our strings to SymbolNames so that SymbolNames has the right
433 // size before layout is decided.
434 for (auto &Sym : Symbols)
435 SymbolNames->addString(Sym->Name);
436}
437
438const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
439 if (Symbols.size() <= Index)
440 error("Invalid symbol index: " + Twine(Index));
441 return Symbols[Index].get();
442}
443
444Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) {
445 return const_cast<Symbol *>(
446 static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index));
447}
448
449template <class ELFT>
450void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
451 uint8_t *Buf = Out.getBufferStart();
452 Buf += Sec.Offset;
453 Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Buf);
454 // Loop though symbols setting each entry of the symbol table.
455 for (auto &Symbol : Sec.Symbols) {
456 Sym->st_name = Symbol->NameIndex;
457 Sym->st_value = Symbol->Value;
458 Sym->st_size = Symbol->Size;
459 Sym->st_other = Symbol->Visibility;
460 Sym->setBinding(Symbol->Binding);
461 Sym->setType(Symbol->Type);
462 Sym->st_shndx = Symbol->getShndx();
463 ++Sym;
464 }
465}
466
467void SymbolTableSection::accept(SectionVisitor &Visitor) const {
468 Visitor.visit(*this);
469}
470
471template <class SymTabType>
472void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
473 const SectionBase *Sec) {
474 if (Symbols == Sec) {
475 error("Symbol table " + Symbols->Name +
476 " cannot be removed because it is "
477 "referenced by the relocation "
478 "section " +
479 this->Name);
480 }
481}
482
483template <class SymTabType>
484void RelocSectionWithSymtabBase<SymTabType>::initialize(
485 SectionTableRef SecTable) {
486 if (Link != SHN_UNDEF)
487 setSymTab(SecTable.getSectionOfType<SymTabType>(
488 Link,
489 "Link field value " + Twine(Link) + " in section " + Name +
490 " is invalid",
491 "Link field value " + Twine(Link) + " in section " + Name +
492 " is not a symbol table"));
493
494 if (Info != SHN_UNDEF)
495 setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
496 " in section " + Name +
497 " is invalid"));
498 else
499 setSection(nullptr);
500}
501
502template <class SymTabType>
503void RelocSectionWithSymtabBase<SymTabType>::finalize() {
504 this->Link = Symbols ? Symbols->Index : 0;
505
506 if (SecToApplyRel != nullptr)
507 this->Info = SecToApplyRel->Index;
508}
509
510template <class ELFT>
511static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
512
513template <class ELFT>
514static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
515 Rela.r_addend = Addend;
516}
517
518template <class RelRange, class T>
519static void writeRel(const RelRange &Relocations, T *Buf) {
520 for (const auto &Reloc : Relocations) {
521 Buf->r_offset = Reloc.Offset;
522 setAddend(*Buf, Reloc.Addend);
523 Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
524 ++Buf;
525 }
526}
527
528template <class ELFT>
529void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
530 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
531 if (Sec.Type == SHT_REL)
532 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
533 else
534 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
535}
536
537void RelocationSection::accept(SectionVisitor &Visitor) const {
538 Visitor.visit(*this);
539}
540
541void RelocationSection::removeSymbols(
542 function_ref<bool(const Symbol &)> ToRemove) {
543 for (const Relocation &Reloc : Relocations)
544 if (ToRemove(*Reloc.RelocSymbol))
545 error("not stripping symbol '" + Reloc.RelocSymbol->Name +
546 "' because it is named in a relocation");
547}
548
549void RelocationSection::markSymbols() {
550 for (const Relocation &Reloc : Relocations)
551 Reloc.RelocSymbol->Referenced = true;
552}
553
554void SectionWriter::visit(const DynamicRelocationSection &Sec) {
555 std::copy(std::begin(Sec.Contents), std::end(Sec.Contents),
556 Out.getBufferStart() + Sec.Offset);
557}
558
559void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
560 Visitor.visit(*this);
561}
562
563void Section::removeSectionReferences(const SectionBase *Sec) {
564 if (LinkSection == Sec) {
565 error("Section " + LinkSection->Name +
566 " cannot be removed because it is "
567 "referenced by the section " +
568 this->Name);
569 }
570}
571
572void GroupSection::finalize() {
573 this->Info = Sym->Index;
574 this->Link = SymTab->Index;
575}
576
577void GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
578 if (ToRemove(*Sym)) {
579 error("Symbol " + Sym->Name +
580 " cannot be removed because it is "
581 "referenced by the section " +
582 this->Name + "[" + Twine(this->Index) + "]");
583 }
584}
585
586void GroupSection::markSymbols() {
587 if (Sym)
588 Sym->Referenced = true;
589}
590
591void Section::initialize(SectionTableRef SecTable) {
592 if (Link != ELF::SHN_UNDEF) {
593 LinkSection =
594 SecTable.getSection(Link, "Link field value " + Twine(Link) +
595 " in section " + Name + " is invalid");
596 if (LinkSection->Type == ELF::SHT_SYMTAB)
597 LinkSection = nullptr;
598 }
599}
600
601void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
602
603void GnuDebugLinkSection::init(StringRef File, StringRef Data) {
604 FileName = sys::path::filename(File);
605 // The format for the .gnu_debuglink starts with the file name and is
606 // followed by a null terminator and then the CRC32 of the file. The CRC32
607 // should be 4 byte aligned. So we add the FileName size, a 1 for the null
608 // byte, and then finally push the size to alignment and add 4.
609 Size = alignTo(FileName.size() + 1, 4) + 4;
610 // The CRC32 will only be aligned if we align the whole section.
611 Align = 4;
612 Type = ELF::SHT_PROGBITS;
613 Name = ".gnu_debuglink";
614 // For sections not found in segments, OriginalOffset is only used to
615 // establish the order that sections should go in. By using the maximum
616 // possible offset we cause this section to wind up at the end.
617 OriginalOffset = std::numeric_limits<uint64_t>::max();
618 JamCRC crc;
619 crc.update(ArrayRef<char>(Data.data(), Data.size()));
620 // The CRC32 value needs to be complemented because the JamCRC dosn't
621 // finalize the CRC32 value. It also dosn't negate the initial CRC32 value
622 // but it starts by default at 0xFFFFFFFF which is the complement of zero.
623 CRC32 = ~crc.getCRC();
624}
625
626GnuDebugLinkSection::GnuDebugLinkSection(StringRef File) : FileName(File) {
627 // Read in the file to compute the CRC of it.
628 auto DebugOrErr = MemoryBuffer::getFile(File);
629 if (!DebugOrErr)
630 error("'" + File + "': " + DebugOrErr.getError().message());
631 auto Debug = std::move(*DebugOrErr);
632 init(File, Debug->getBuffer());
633}
634
635template <class ELFT>
636void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
637 auto Buf = Out.getBufferStart() + Sec.Offset;
638 char *File = reinterpret_cast<char *>(Buf);
639 Elf_Word *CRC =
640 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
641 *CRC = Sec.CRC32;
642 std::copy(std::begin(Sec.FileName), std::end(Sec.FileName), File);
643}
644
645void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
646 Visitor.visit(*this);
647}
648
649template <class ELFT>
650void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
651 ELF::Elf32_Word *Buf =
652 reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
653 *Buf++ = Sec.FlagWord;
654 for (const auto *S : Sec.GroupMembers)
655 support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
656}
657
658void GroupSection::accept(SectionVisitor &Visitor) const {
659 Visitor.visit(*this);
660}
661
662// Returns true IFF a section is wholly inside the range of a segment
663static bool sectionWithinSegment(const SectionBase &Section,
664 const Segment &Segment) {
665 // If a section is empty it should be treated like it has a size of 1. This is
666 // to clarify the case when an empty section lies on a boundary between two
667 // segments and ensures that the section "belongs" to the second segment and
668 // not the first.
669 uint64_t SecSize = Section.Size ? Section.Size : 1;
670 return Segment.Offset <= Section.OriginalOffset &&
671 Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
672}
673
674// Returns true IFF a segment's original offset is inside of another segment's
675// range.
676static bool segmentOverlapsSegment(const Segment &Child,
677 const Segment &Parent) {
678
679 return Parent.OriginalOffset <= Child.OriginalOffset &&
680 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
681}
682
683static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
684 // Any segment without a parent segment should come before a segment
685 // that has a parent segment.
686 if (A->OriginalOffset < B->OriginalOffset)
687 return true;
688 if (A->OriginalOffset > B->OriginalOffset)
689 return false;
690 return A->Index < B->Index;
691}
692
693static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
694 if (A->PAddr < B->PAddr)
695 return true;
696 if (A->PAddr > B->PAddr)
697 return false;
698 return A->Index < B->Index;
699}
700
701template <class ELFT> void BinaryELFBuilder<ELFT>::initFileHeader() {
702 Obj->Flags = 0x0;
703 Obj->Type = ET_REL;
704 Obj->Entry = 0x0;
705 Obj->Machine = EMachine;
706 Obj->Version = 1;
707}
708
709template <class ELFT> void BinaryELFBuilder<ELFT>::initHeaderSegment() {
710 Obj->ElfHdrSegment.Index = 0;
711}
712
713template <class ELFT> StringTableSection *BinaryELFBuilder<ELFT>::addStrTab() {
714 auto &StrTab = Obj->addSection<StringTableSection>();
715 StrTab.Name = ".strtab";
716
717 Obj->SectionNames = &StrTab;
718 return &StrTab;
719}
720
721template <class ELFT>
722SymbolTableSection *
723BinaryELFBuilder<ELFT>::addSymTab(StringTableSection *StrTab) {
724 auto &SymTab = Obj->addSection<SymbolTableSection>();
725
726 SymTab.Name = ".symtab";
727 SymTab.Link = StrTab->Index;
728 // TODO: Factor out dependence on ElfType here.
729 SymTab.EntrySize = sizeof(Elf_Sym);
730
731 // The symbol table always needs a null symbol
732 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
733
734 Obj->SymbolTable = &SymTab;
735 return &SymTab;
736}
737
738template <class ELFT>
739void BinaryELFBuilder<ELFT>::addData(SymbolTableSection *SymTab) {
740 auto Data = ArrayRef<uint8_t>(
741 reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
742 MemBuf->getBufferSize());
743 auto &DataSection = Obj->addSection<Section>(Data);
744 DataSection.Name = ".data";
745 DataSection.Type = ELF::SHT_PROGBITS;
746 DataSection.Size = Data.size();
747 DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
748
749 std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
750 std::replace_if(std::begin(SanitizedFilename), std::end(SanitizedFilename),
751 [](char c) { return !isalnum(c); }, '_');
752 Twine Prefix = Twine("_binary_") + SanitizedFilename;
753
754 SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
755 /*Value=*/0, STV_DEFAULT, 0, 0);
756 SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
757 /*Value=*/DataSection.Size, STV_DEFAULT, 0, 0);
758 SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
759 /*Value=*/DataSection.Size, STV_DEFAULT, SHN_ABS, 0);
760}
761
762template <class ELFT> void BinaryELFBuilder<ELFT>::initSections() {
763 for (auto &Section : Obj->sections()) {
764 Section.initialize(Obj->sections());
765 }
766}
767
768template <class ELFT> std::unique_ptr<Object> BinaryELFBuilder<ELFT>::build() {
769 initFileHeader();
770 initHeaderSegment();
771 StringTableSection *StrTab = addStrTab();
772 SymbolTableSection *SymTab = addSymTab(StrTab);
773 initSections();
774 addData(SymTab);
775
776 return std::move(Obj);
777}
778
779template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
780 for (auto &Parent : Obj.segments()) {
781 // Every segment will overlap with itself but we don't want a segment to
782 // be it's own parent so we avoid that situation.
783 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
784 // We want a canonical "most parental" segment but this requires
785 // inspecting the ParentSegment.
786 if (compareSegmentsByOffset(&Parent, &Child))
787 if (Child.ParentSegment == nullptr ||
788 compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
789 Child.ParentSegment = &Parent;
790 }
791 }
792 }
793}
794
795template <class ELFT> void ELFBuilder<ELFT>::readProgramHeaders() {
796 uint32_t Index = 0;
797 for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
798 ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
799 (size_t)Phdr.p_filesz};
800 Segment &Seg = Obj.addSegment(Data);
801 Seg.Type = Phdr.p_type;
802 Seg.Flags = Phdr.p_flags;
803 Seg.OriginalOffset = Phdr.p_offset;
804 Seg.Offset = Phdr.p_offset;
805 Seg.VAddr = Phdr.p_vaddr;
806 Seg.PAddr = Phdr.p_paddr;
807 Seg.FileSize = Phdr.p_filesz;
808 Seg.MemSize = Phdr.p_memsz;
809 Seg.Align = Phdr.p_align;
810 Seg.Index = Index++;
811 for (auto &Section : Obj.sections()) {
812 if (sectionWithinSegment(Section, Seg)) {
813 Seg.addSection(&Section);
814 if (!Section.ParentSegment ||
815 Section.ParentSegment->Offset > Seg.Offset) {
816 Section.ParentSegment = &Seg;
817 }
818 }
819 }
820 }
821
822 auto &ElfHdr = Obj.ElfHdrSegment;
823 ElfHdr.Index = Index++;
824
825 const auto &Ehdr = *ElfFile.getHeader();
826 auto &PrHdr = Obj.ProgramHdrSegment;
827 PrHdr.Type = PT_PHDR;
828 PrHdr.Flags = 0;
829 // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
830 // Whereas this works automatically for ElfHdr, here OriginalOffset is
831 // always non-zero and to ensure the equation we assign the same value to
832 // VAddr as well.
833 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = Ehdr.e_phoff;
834 PrHdr.PAddr = 0;
835 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
836 // The spec requires us to naturally align all the fields.
837 PrHdr.Align = sizeof(Elf_Addr);
838 PrHdr.Index = Index++;
839
840 // Now we do an O(n^2) loop through the segments in order to match up
841 // segments.
842 for (auto &Child : Obj.segments())
843 setParentSegment(Child);
844 setParentSegment(ElfHdr);
845 setParentSegment(PrHdr);
846}
847
848template <class ELFT>
849void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
850 auto SecTable = Obj.sections();
851 auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
852 GroupSec->Link,
853 "Link field value " + Twine(GroupSec->Link) + " in section " +
854 GroupSec->Name + " is invalid",
855 "Link field value " + Twine(GroupSec->Link) + " in section " +
856 GroupSec->Name + " is not a symbol table");
857 auto Sym = SymTab->getSymbolByIndex(GroupSec->Info);
858 if (!Sym)
859 error("Info field value " + Twine(GroupSec->Info) + " in section " +
860 GroupSec->Name + " is not a valid symbol index");
861 GroupSec->setSymTab(SymTab);
862 GroupSec->setSymbol(Sym);
863 if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
864 GroupSec->Contents.empty())
865 error("The content of the section " + GroupSec->Name + " is malformed");
866 const ELF::Elf32_Word *Word =
867 reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
868 const ELF::Elf32_Word *End =
869 Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
870 GroupSec->setFlagWord(*Word++);
871 for (; Word != End; ++Word) {
872 uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
873 GroupSec->addMember(SecTable.getSection(
874 Index, "Group member index " + Twine(Index) + " in section " +
875 GroupSec->Name + " is invalid"));
876 }
877}
878
879template <class ELFT>
880void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
881 const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
882 StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
1
Calling 'ELFFile::getStringTableForSymtab'
883 ArrayRef<Elf_Word> ShndxData;
884
885 auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr));
886 for (const auto &Sym : Symbols) {
887 SectionBase *DefSection = nullptr;
888 StringRef Name = unwrapOrError(Sym.getName(StrTabData));
889
890 if (Sym.st_shndx == SHN_XINDEX) {
891 if (SymTab->getShndxTable() == nullptr)
892 error("Symbol '" + Name +
893 "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists.");
894 if (ShndxData.data() == nullptr) {
895 const Elf_Shdr &ShndxSec =
896 *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index));
897 ShndxData = unwrapOrError(
898 ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec));
899 if (ShndxData.size() != Symbols.size())
900 error("Symbol section index table does not have the same number of "
901 "entries as the symbol table.");
902 }
903 Elf_Word Index = ShndxData[&Sym - Symbols.begin()];
904 DefSection = Obj.sections().getSection(
905 Index,
906 "Symbol '" + Name + "' has invalid section index " + Twine(Index));
907 } else if (Sym.st_shndx >= SHN_LORESERVE) {
908 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
909 error(
910 "Symbol '" + Name +
911 "' has unsupported value greater than or equal to SHN_LORESERVE: " +
912 Twine(Sym.st_shndx));
913 }
914 } else if (Sym.st_shndx != SHN_UNDEF) {
915 DefSection = Obj.sections().getSection(
916 Sym.st_shndx, "Symbol '" + Name +
917 "' is defined has invalid section index " +
918 Twine(Sym.st_shndx));
919 }
920
921 SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
922 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
923 }
924}
925
926template <class ELFT>
927static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
928
929template <class ELFT>
930static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
931 ToSet = Rela.r_addend;
932}
933
934template <class T>
935static void initRelocations(RelocationSection *Relocs,
936 SymbolTableSection *SymbolTable, T RelRange) {
937 for (const auto &Rel : RelRange) {
938 Relocation ToAdd;
939 ToAdd.Offset = Rel.r_offset;
940 getAddend(ToAdd.Addend, Rel);
941 ToAdd.Type = Rel.getType(false);
942 ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
943 Relocs->addRelocation(ToAdd);
944 }
945}
946
947SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) {
948 if (Index == SHN_UNDEF || Index > Sections.size())
949 error(ErrMsg);
950 return Sections[Index - 1].get();
951}
952
953template <class T>
954T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg,
955 Twine TypeErrMsg) {
956 if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
957 return Sec;
958 error(TypeErrMsg);
959}
960
961template <class ELFT>
962SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
963 ArrayRef<uint8_t> Data;
964 switch (Shdr.sh_type) {
965 case SHT_REL:
966 case SHT_RELA:
967 if (Shdr.sh_flags & SHF_ALLOC) {
968 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
969 return Obj.addSection<DynamicRelocationSection>(Data);
970 }
971 return Obj.addSection<RelocationSection>();
972 case SHT_STRTAB:
973 // If a string table is allocated we don't want to mess with it. That would
974 // mean altering the memory image. There are no special link types or
975 // anything so we can just use a Section.
976 if (Shdr.sh_flags & SHF_ALLOC) {
977 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
978 return Obj.addSection<Section>(Data);
979 }
980 return Obj.addSection<StringTableSection>();
981 case SHT_HASH:
982 case SHT_GNU_HASH:
983 // Hash tables should refer to SHT_DYNSYM which we're not going to change.
984 // Because of this we don't need to mess with the hash tables either.
985 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
986 return Obj.addSection<Section>(Data);
987 case SHT_GROUP:
988 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
989 return Obj.addSection<GroupSection>(Data);
990 case SHT_DYNSYM:
991 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
992 return Obj.addSection<DynamicSymbolTableSection>(Data);
993 case SHT_DYNAMIC:
994 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
995 return Obj.addSection<DynamicSection>(Data);
996 case SHT_SYMTAB: {
997 auto &SymTab = Obj.addSection<SymbolTableSection>();
998 Obj.SymbolTable = &SymTab;
999 return SymTab;
1000 }
1001 case SHT_SYMTAB_SHNDX: {
1002 auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1003 Obj.SectionIndexTable = &ShndxSection;
1004 return ShndxSection;
1005 }
1006 case SHT_NOBITS:
1007 return Obj.addSection<Section>(Data);
1008 default: {
1009 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1010
1011 if (isDataGnuCompressed(Data) || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
1012 uint64_t DecompressedSize, DecompressedAlign;
1013 std::tie(DecompressedSize, DecompressedAlign) =
1014 getDecompressedSizeAndAlignment<ELFT>(Data);
1015 return Obj.addSection<CompressedSection>(Data, DecompressedSize,
1016 DecompressedAlign);
1017 }
1018
1019 return Obj.addSection<Section>(Data);
1020 }
1021 }
1022}
1023
1024template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
1025 uint32_t Index = 0;
1026 for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
1027 if (Index == 0) {
1028 ++Index;
1029 continue;
1030 }
1031 auto &Sec = makeSection(Shdr);
1032 Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
1033 Sec.Type = Shdr.sh_type;
1034 Sec.Flags = Shdr.sh_flags;
1035 Sec.Addr = Shdr.sh_addr;
1036 Sec.Offset = Shdr.sh_offset;
1037 Sec.OriginalOffset = Shdr.sh_offset;
1038 Sec.Size = Shdr.sh_size;
1039 Sec.Link = Shdr.sh_link;
1040 Sec.Info = Shdr.sh_info;
1041 Sec.Align = Shdr.sh_addralign;
1042 Sec.EntrySize = Shdr.sh_entsize;
1043 Sec.Index = Index++;
1044 Sec.OriginalData =
1045 ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
1046 (Shdr.sh_type == SHT_NOBITS) ? 0 : Shdr.sh_size);
1047 }
1048
1049 // If a section index table exists we'll need to initialize it before we
1050 // initialize the symbol table because the symbol table might need to
1051 // reference it.
1052 if (Obj.SectionIndexTable)
1053 Obj.SectionIndexTable->initialize(Obj.sections());
1054
1055 // Now that all of the sections have been added we can fill out some extra
1056 // details about symbol tables. We need the symbol table filled out before
1057 // any relocations.
1058 if (Obj.SymbolTable) {
1059 Obj.SymbolTable->initialize(Obj.sections());
1060 initSymbolTable(Obj.SymbolTable);
1061 }
1062
1063 // Now that all sections and symbols have been added we can add
1064 // relocations that reference symbols and set the link and info fields for
1065 // relocation sections.
1066 for (auto &Section : Obj.sections()) {
1067 if (&Section == Obj.SymbolTable)
1068 continue;
1069 Section.initialize(Obj.sections());
1070 if (auto RelSec = dyn_cast<RelocationSection>(&Section)) {
1071 auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
1072 if (RelSec->Type == SHT_REL)
1073 initRelocations(RelSec, Obj.SymbolTable,
1074 unwrapOrError(ElfFile.rels(Shdr)));
1075 else
1076 initRelocations(RelSec, Obj.SymbolTable,
1077 unwrapOrError(ElfFile.relas(Shdr)));
1078 } else if (auto GroupSec = dyn_cast<GroupSection>(&Section)) {
1079 initGroupSection(GroupSec);
1080 }
1081 }
1082}
1083
1084template <class ELFT> void ELFBuilder<ELFT>::build() {
1085 const auto &Ehdr = *ElfFile.getHeader();
1086
1087 Obj.Type = Ehdr.e_type;
1088 Obj.Machine = Ehdr.e_machine;
1089 Obj.Version = Ehdr.e_version;
1090 Obj.Entry = Ehdr.e_entry;
1091 Obj.Flags = Ehdr.e_flags;
1092
1093 readSectionHeaders();
1094 readProgramHeaders();
1095
1096 uint32_t ShstrIndex = Ehdr.e_shstrndx;
1097 if (ShstrIndex == SHN_XINDEX)
1098 ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link;
1099
1100 Obj.SectionNames =
1101 Obj.sections().template getSectionOfType<StringTableSection>(
1102 ShstrIndex,
1103 "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) +
1104 " in elf header " + " is invalid",
1105 "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) +
1106 " in elf header " + " is not a string table");
1107}
1108
1109// A generic size function which computes sizes of any random access range.
1110template <class R> size_t size(R &&Range) {
1111 return static_cast<size_t>(std::end(Range) - std::begin(Range));
1112}
1113
1114Writer::~Writer() {}
1115
1116Reader::~Reader() {}
1117
1118std::unique_ptr<Object> BinaryReader::create() const {
1119 if (MInfo.Is64Bit)
1120 return MInfo.IsLittleEndian
1121 ? BinaryELFBuilder<ELF64LE>(MInfo.EMachine, MemBuf).build()
1122 : BinaryELFBuilder<ELF64BE>(MInfo.EMachine, MemBuf).build();
1123 else
1124 return MInfo.IsLittleEndian
1125 ? BinaryELFBuilder<ELF32LE>(MInfo.EMachine, MemBuf).build()
1126 : BinaryELFBuilder<ELF32BE>(MInfo.EMachine, MemBuf).build();
1127}
1128
1129std::unique_ptr<Object> ELFReader::create() const {
1130 auto Obj = llvm::make_unique<Object>();
1131 if (auto *o = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1132 ELFBuilder<ELF32LE> Builder(*o, *Obj);
1133 Builder.build();
1134 return Obj;
1135 } else if (auto *o = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
1136 ELFBuilder<ELF64LE> Builder(*o, *Obj);
1137 Builder.build();
1138 return Obj;
1139 } else if (auto *o = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
1140 ELFBuilder<ELF32BE> Builder(*o, *Obj);
1141 Builder.build();
1142 return Obj;
1143 } else if (auto *o = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
1144 ELFBuilder<ELF64BE> Builder(*o, *Obj);
1145 Builder.build();
1146 return Obj;
1147 }
1148 error("Invalid file type");
1149}
1150
1151template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
1152 uint8_t *B = Buf.getBufferStart();
1153 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(B);
1154 std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
1155 Ehdr.e_ident[EI_MAG0] = 0x7f;
1156 Ehdr.e_ident[EI_MAG1] = 'E';
1157 Ehdr.e_ident[EI_MAG2] = 'L';
1158 Ehdr.e_ident[EI_MAG3] = 'F';
1159 Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
1160 Ehdr.e_ident[EI_DATA] =
1161 ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
1162 Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
1163 Ehdr.e_ident[EI_OSABI] = ELFOSABI_NONE;
1164 Ehdr.e_ident[EI_ABIVERSION] = 0;
1165
1166 Ehdr.e_type = Obj.Type;
1167 Ehdr.e_machine = Obj.Machine;
1168 Ehdr.e_version = Obj.Version;
1169 Ehdr.e_entry = Obj.Entry;
1170 // We have to use the fully-qualified name llvm::size
1171 // since some compilers complain on ambiguous resolution.
1172 Ehdr.e_phnum = llvm::size(Obj.segments());
1173 Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
1174 Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
1175 Ehdr.e_flags = Obj.Flags;
1176 Ehdr.e_ehsize = sizeof(Elf_Ehdr);
1177 if (WriteSectionHeaders && size(Obj.sections()) != 0) {
1178 Ehdr.e_shentsize = sizeof(Elf_Shdr);
1179 Ehdr.e_shoff = Obj.SHOffset;
1180 // """
1181 // If the number of sections is greater than or equal to
1182 // SHN_LORESERVE (0xff00), this member has the value zero and the actual
1183 // number of section header table entries is contained in the sh_size field
1184 // of the section header at index 0.
1185 // """
1186 auto Shnum = size(Obj.sections()) + 1;
1187 if (Shnum >= SHN_LORESERVE)
1188 Ehdr.e_shnum = 0;
1189 else
1190 Ehdr.e_shnum = Shnum;
1191 // """
1192 // If the section name string table section index is greater than or equal
1193 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
1194 // and the actual index of the section name string table section is
1195 // contained in the sh_link field of the section header at index 0.
1196 // """
1197 if (Obj.SectionNames->Index >= SHN_LORESERVE)
1198 Ehdr.e_shstrndx = SHN_XINDEX;
1199 else
1200 Ehdr.e_shstrndx = Obj.SectionNames->Index;
1201 } else {
1202 Ehdr.e_shentsize = 0;
1203 Ehdr.e_shoff = 0;
1204 Ehdr.e_shnum = 0;
1205 Ehdr.e_shstrndx = 0;
1206 }
1207}
1208
1209template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
1210 for (auto &Seg : Obj.segments())
1211 writePhdr(Seg);
1212}
1213
1214template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
1215 uint8_t *B = Buf.getBufferStart() + Obj.SHOffset;
1216 // This reference serves to write the dummy section header at the begining
1217 // of the file. It is not used for anything else
1218 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
1219 Shdr.sh_name = 0;
1220 Shdr.sh_type = SHT_NULL;
1221 Shdr.sh_flags = 0;
1222 Shdr.sh_addr = 0;
1223 Shdr.sh_offset = 0;
1224 // See writeEhdr for why we do this.
1225 uint64_t Shnum = size(Obj.sections()) + 1;
1226 if (Shnum >= SHN_LORESERVE)
1227 Shdr.sh_size = Shnum;
1228 else
1229 Shdr.sh_size = 0;
1230 // See writeEhdr for why we do this.
1231 if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
1232 Shdr.sh_link = Obj.SectionNames->Index;
1233 else
1234 Shdr.sh_link = 0;
1235 Shdr.sh_info = 0;
1236 Shdr.sh_addralign = 0;
1237 Shdr.sh_entsize = 0;
1238
1239 for (auto &Sec : Obj.sections())
1240 writeShdr(Sec);
1241}
1242
1243template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
1244 for (auto &Sec : Obj.sections())
1245 Sec.accept(*SecWriter);
1246}
1247
1248void Object::removeSections(std::function<bool(const SectionBase &)> ToRemove) {
1249
1250 auto Iter = std::stable_partition(
1251 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
1252 if (ToRemove(*Sec))
1253 return false;
1254 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
1255 if (auto ToRelSec = RelSec->getSection())
1256 return !ToRemove(*ToRelSec);
1257 }
1258 return true;
1259 });
1260 if (SymbolTable != nullptr && ToRemove(*SymbolTable))
1261 SymbolTable = nullptr;
1262 if (SectionNames != nullptr && ToRemove(*SectionNames))
1263 SectionNames = nullptr;
1264 if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
1265 SectionIndexTable = nullptr;
1266 // Now make sure there are no remaining references to the sections that will
1267 // be removed. Sometimes it is impossible to remove a reference so we emit
1268 // an error here instead.
1269 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
1270 for (auto &Segment : Segments)
1271 Segment->removeSection(RemoveSec.get());
1272 for (auto &KeepSec : make_range(std::begin(Sections), Iter))
1273 KeepSec->removeSectionReferences(RemoveSec.get());
1274 }
1275 // Now finally get rid of them all togethor.
1276 Sections.erase(Iter, std::end(Sections));
1277}
1278
1279void Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
1280 if (!SymbolTable)
1281 return;
1282
1283 for (const SecPtr &Sec : Sections)
1284 Sec->removeSymbols(ToRemove);
1285}
1286
1287void Object::sortSections() {
1288 // Put all sections in offset order. Maintain the ordering as closely as
1289 // possible while meeting that demand however.
1290 auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
1291 return A->OriginalOffset < B->OriginalOffset;
1292 };
1293 std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
1294 CompareSections);
1295}
1296
1297static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
1298 // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
1299 if (Align == 0)
1300 Align = 1;
1301 auto Diff =
1302 static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
1303 // We only want to add to Offset, however, so if Diff < 0 we can add Align and
1304 // (Offset + Diff) & -Align == Addr & -Align will still hold.
1305 if (Diff < 0)
1306 Diff += Align;
1307 return Offset + Diff;
1308}
1309
1310// Orders segments such that if x = y->ParentSegment then y comes before x.
1311static void OrderSegments(std::vector<Segment *> &Segments) {
1312 std::stable_sort(std::begin(Segments), std::end(Segments),
1313 compareSegmentsByOffset);
1314}
1315
1316// This function finds a consistent layout for a list of segments starting from
1317// an Offset. It assumes that Segments have been sorted by OrderSegments and
1318// returns an Offset one past the end of the last segment.
1319static uint64_t LayoutSegments(std::vector<Segment *> &Segments,
1320 uint64_t Offset) {
1321 assert(std::is_sorted(std::begin(Segments), std::end(Segments),((std::is_sorted(std::begin(Segments), std::end(Segments), compareSegmentsByOffset
)) ? static_cast<void> (0) : __assert_fail ("std::is_sorted(std::begin(Segments), std::end(Segments), compareSegmentsByOffset)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-objcopy/Object.cpp"
, 1322, __PRETTY_FUNCTION__))
1322 compareSegmentsByOffset))((std::is_sorted(std::begin(Segments), std::end(Segments), compareSegmentsByOffset
)) ? static_cast<void> (0) : __assert_fail ("std::is_sorted(std::begin(Segments), std::end(Segments), compareSegmentsByOffset)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-objcopy/Object.cpp"
, 1322, __PRETTY_FUNCTION__))
;
1323 // The only way a segment should move is if a section was between two
1324 // segments and that section was removed. If that section isn't in a segment
1325 // then it's acceptable, but not ideal, to simply move it to after the
1326 // segments. So we can simply layout segments one after the other accounting
1327 // for alignment.
1328 for (auto &Segment : Segments) {
1329 // We assume that segments have been ordered by OriginalOffset and Index
1330 // such that a parent segment will always come before a child segment in
1331 // OrderedSegments. This means that the Offset of the ParentSegment should
1332 // already be set and we can set our offset relative to it.
1333 if (Segment->ParentSegment != nullptr) {
1334 auto Parent = Segment->ParentSegment;
1335 Segment->Offset =
1336 Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
1337 } else {
1338 Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align);
1339 Segment->Offset = Offset;
1340 }
1341 Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
1342 }
1343 return Offset;
1344}
1345
1346// This function finds a consistent layout for a list of sections. It assumes
1347// that the ->ParentSegment of each section has already been laid out. The
1348// supplied starting Offset is used for the starting offset of any section that
1349// does not have a ParentSegment. It returns either the offset given if all
1350// sections had a ParentSegment or an offset one past the last section if there
1351// was a section that didn't have a ParentSegment.
1352template <class Range>
1353static uint64_t LayoutSections(Range Sections, uint64_t Offset) {
1354 // Now the offset of every segment has been set we can assign the offsets
1355 // of each section. For sections that are covered by a segment we should use
1356 // the segment's original offset and the section's original offset to compute
1357 // the offset from the start of the segment. Using the offset from the start
1358 // of the segment we can assign a new offset to the section. For sections not
1359 // covered by segments we can just bump Offset to the next valid location.
1360 uint32_t Index = 1;
1361 for (auto &Section : Sections) {
1362 Section.Index = Index++;
1363 if (Section.ParentSegment != nullptr) {
1364 auto Segment = *Section.ParentSegment;
1365 Section.Offset =
1366 Segment.Offset + (Section.OriginalOffset - Segment.OriginalOffset);
1367 } else {
1368 Offset = alignTo(Offset, Section.Align == 0 ? 1 : Section.Align);
1369 Section.Offset = Offset;
1370 if (Section.Type != SHT_NOBITS)
1371 Offset += Section.Size;
1372 }
1373 }
1374 return Offset;
1375}
1376
1377template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
1378 auto &ElfHdr = Obj.ElfHdrSegment;
1379 ElfHdr.Type = PT_PHDR;
1380 ElfHdr.Flags = 0;
1381 ElfHdr.OriginalOffset = ElfHdr.Offset = 0;
1382 ElfHdr.VAddr = 0;
1383 ElfHdr.PAddr = 0;
1384 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
1385 ElfHdr.Align = 0;
1386}
1387
1388template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
1389 // We need a temporary list of segments that has a special order to it
1390 // so that we know that anytime ->ParentSegment is set that segment has
1391 // already had its offset properly set.
1392 std::vector<Segment *> OrderedSegments;
1393 for (auto &Segment : Obj.segments())
1394 OrderedSegments.push_back(&Segment);
1395 OrderedSegments.push_back(&Obj.ElfHdrSegment);
1396 OrderedSegments.push_back(&Obj.ProgramHdrSegment);
1397 OrderSegments(OrderedSegments);
1398 // Offset is used as the start offset of the first segment to be laid out.
1399 // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
1400 // we start at offset 0.
1401 uint64_t Offset = 0;
1402 Offset = LayoutSegments(OrderedSegments, Offset);
1403 Offset = LayoutSections(Obj.sections(), Offset);
1404 // If we need to write the section header table out then we need to align the
1405 // Offset so that SHOffset is valid.
1406 if (WriteSectionHeaders)
1407 Offset = alignTo(Offset, sizeof(Elf_Addr));
1408 Obj.SHOffset = Offset;
1409}
1410
1411template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
1412 // We already have the section header offset so we can calculate the total
1413 // size by just adding up the size of each section header.
1414 auto NullSectionSize = WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
1415 return Obj.SHOffset + size(Obj.sections()) * sizeof(Elf_Shdr) +
1416 NullSectionSize;
1417}
1418
1419template <class ELFT> void ELFWriter<ELFT>::write() {
1420 writeEhdr();
1421 writePhdrs();
1422 writeSectionData();
1423 if (WriteSectionHeaders)
1424 writeShdrs();
1425 if (auto E = Buf.commit())
1426 reportError(Buf.getName(), errorToErrorCode(std::move(E)));
1427}
1428
1429template <class ELFT> void ELFWriter<ELFT>::finalize() {
1430 // It could happen that SectionNames has been removed and yet the user wants
1431 // a section header table output. We need to throw an error if a user tries
1432 // to do that.
1433 if (Obj.SectionNames == nullptr && WriteSectionHeaders)
1434 error("Cannot write section header table because section header string "
1435 "table was removed.");
1436
1437 Obj.sortSections();
1438
1439 // We need to assign indexes before we perform layout because we need to know
1440 // if we need large indexes or not. We can assign indexes first and check as
1441 // we go to see if we will actully need large indexes.
1442 bool NeedsLargeIndexes = false;
1443 if (size(Obj.sections()) >= SHN_LORESERVE) {
1444 auto Sections = Obj.sections();
1445 NeedsLargeIndexes =
1446 std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(),
1447 [](const SectionBase &Sec) { return Sec.HasSymbol; });
1448 // TODO: handle case where only one section needs the large index table but
1449 // only needs it because the large index table hasn't been removed yet.
1450 }
1451
1452 if (NeedsLargeIndexes) {
1453 // This means we definitely need to have a section index table but if we
1454 // already have one then we should use it instead of making a new one.
1455 if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
1456 // Addition of a section to the end does not invalidate the indexes of
1457 // other sections and assigns the correct index to the new section.
1458 auto &Shndx = Obj.addSection<SectionIndexSection>();
1459 Obj.SymbolTable->setShndxTable(&Shndx);
1460 Shndx.setSymTab(Obj.SymbolTable);
1461 }
1462 } else {
1463 // Since we don't need SectionIndexTable we should remove it and all
1464 // references to it.
1465 if (Obj.SectionIndexTable != nullptr) {
1466 Obj.removeSections([this](const SectionBase &Sec) {
1467 return &Sec == Obj.SectionIndexTable;
1468 });
1469 }
1470 }
1471
1472 // Make sure we add the names of all the sections. Importantly this must be
1473 // done after we decide to add or remove SectionIndexes.
1474 if (Obj.SectionNames != nullptr)
1475 for (const auto &Section : Obj.sections()) {
1476 Obj.SectionNames->addString(Section.Name);
1477 }
1478
1479 initEhdrSegment();
1480 // Before we can prepare for layout the indexes need to be finalized.
1481 uint64_t Index = 0;
1482 for (auto &Sec : Obj.sections())
1483 Sec.Index = Index++;
1484
1485 // The symbol table does not update all other sections on update. For
1486 // instance, symbol names are not added as new symbols are added. This means
1487 // that some sections, like .strtab, don't yet have their final size.
1488 if (Obj.SymbolTable != nullptr)
1489 Obj.SymbolTable->prepareForLayout();
1490
1491 assignOffsets();
1492
1493 // Finalize SectionNames first so that we can assign name indexes.
1494 if (Obj.SectionNames != nullptr)
1495 Obj.SectionNames->finalize();
1496 // Finally now that all offsets and indexes have been set we can finalize any
1497 // remaining issues.
1498 uint64_t Offset = Obj.SHOffset + sizeof(Elf_Shdr);
1499 for (auto &Section : Obj.sections()) {
1500 Section.HeaderOffset = Offset;
1501 Offset += sizeof(Elf_Shdr);
1502 if (WriteSectionHeaders)
1503 Section.NameIndex = Obj.SectionNames->findIndex(Section.Name);
1504 Section.finalize();
1505 }
1506
1507 Buf.allocate(totalSize());
1508 SecWriter = llvm::make_unique<ELFSectionWriter<ELFT>>(Buf);
1509}
1510
1511void BinaryWriter::write() {
1512 for (auto &Section : Obj.sections()) {
1513 if ((Section.Flags & SHF_ALLOC) == 0)
1514 continue;
1515 Section.accept(*SecWriter);
1516 }
1517 if (auto E = Buf.commit())
1518 reportError(Buf.getName(), errorToErrorCode(std::move(E)));
1519}
1520
1521void BinaryWriter::finalize() {
1522 // TODO: Create a filter range to construct OrderedSegments from so that this
1523 // code can be deduped with assignOffsets above. This should also solve the
1524 // todo below for LayoutSections.
1525 // We need a temporary list of segments that has a special order to it
1526 // so that we know that anytime ->ParentSegment is set that segment has
1527 // already had it's offset properly set. We only want to consider the segments
1528 // that will affect layout of allocated sections so we only add those.
1529 std::vector<Segment *> OrderedSegments;
1530 for (auto &Section : Obj.sections()) {
1531 if ((Section.Flags & SHF_ALLOC) != 0 && Section.ParentSegment != nullptr) {
1532 OrderedSegments.push_back(Section.ParentSegment);
1533 }
1534 }
1535
1536 // For binary output, we're going to use physical addresses instead of
1537 // virtual addresses, since a binary output is used for cases like ROM
1538 // loading and physical addresses are intended for ROM loading.
1539 // However, if no segment has a physical address, we'll fallback to using
1540 // virtual addresses for all.
1541 if (std::all_of(std::begin(OrderedSegments), std::end(OrderedSegments),
1542 [](const Segment *Segment) { return Segment->PAddr == 0; }))
1543 for (const auto &Segment : OrderedSegments)
1544 Segment->PAddr = Segment->VAddr;
1545
1546 std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments),
1547 compareSegmentsByPAddr);
1548
1549 // Because we add a ParentSegment for each section we might have duplicate
1550 // segments in OrderedSegments. If there were duplicates then LayoutSegments
1551 // would do very strange things.
1552 auto End =
1553 std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
1554 OrderedSegments.erase(End, std::end(OrderedSegments));
1555
1556 uint64_t Offset = 0;
1557
1558 // Modify the first segment so that there is no gap at the start. This allows
1559 // our layout algorithm to proceed as expected while not out writing out the
1560 // gap at the start.
1561 if (!OrderedSegments.empty()) {
1562 auto Seg = OrderedSegments[0];
1563 auto Sec = Seg->firstSection();
1564 auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
1565 Seg->OriginalOffset += Diff;
1566 // The size needs to be shrunk as well.
1567 Seg->FileSize -= Diff;
1568 // The PAddr needs to be increased to remove the gap before the first
1569 // section.
1570 Seg->PAddr += Diff;
1571 uint64_t LowestPAddr = Seg->PAddr;
1572 for (auto &Segment : OrderedSegments) {
1573 Segment->Offset = Segment->PAddr - LowestPAddr;
1574 Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
1575 }
1576 }
1577
1578 // TODO: generalize LayoutSections to take a range. Pass a special range
1579 // constructed from an iterator that skips values for which a predicate does
1580 // not hold. Then pass such a range to LayoutSections instead of constructing
1581 // AllocatedSections here.
1582 std::vector<SectionBase *> AllocatedSections;
1583 for (auto &Section : Obj.sections()) {
1584 if ((Section.Flags & SHF_ALLOC) == 0)
1585 continue;
1586 AllocatedSections.push_back(&Section);
1587 }
1588 LayoutSections(make_pointee_range(AllocatedSections), Offset);
1589
1590 // Now that every section has been laid out we just need to compute the total
1591 // file size. This might not be the same as the offset returned by
1592 // LayoutSections, because we want to truncate the last segment to the end of
1593 // its last section, to match GNU objcopy's behaviour.
1594 TotalSize = 0;
1595 for (const auto &Section : AllocatedSections) {
1596 if (Section->Type != SHT_NOBITS)
1597 TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
1598 }
1599
1600 Buf.allocate(TotalSize);
1601 SecWriter = llvm::make_unique<BinarySectionWriter>(Buf);
1602}
1603
1604template class BinaryELFBuilder<ELF64LE>;
1605template class BinaryELFBuilder<ELF64BE>;
1606template class BinaryELFBuilder<ELF32LE>;
1607template class BinaryELFBuilder<ELF32BE>;
1608
1609template class ELFBuilder<ELF64LE>;
1610template class ELFBuilder<ELF64BE>;
1611template class ELFBuilder<ELF32LE>;
1612template class ELFBuilder<ELF32BE>;
1613
1614template class ELFWriter<ELF64LE>;
1615template class ELFWriter<ELF64BE>;
1616template class ELFWriter<ELF32LE>;
1617template class ELFWriter<ELF32BE>;
1618
1619} // end namespace elf
1620} // end namespace objcopy
1621} // end namespace llvm

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Object/ELF.h

1//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the ELFFile template class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_OBJECT_ELF_H
15#define LLVM_OBJECT_ELF_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/BinaryFormat/ELF.h"
21#include "llvm/Object/ELFTypes.h"
22#include "llvm/Object/Error.h"
23#include "llvm/Support/Endian.h"
24#include "llvm/Support/Error.h"
25#include <cassert>
26#include <cstddef>
27#include <cstdint>
28#include <limits>
29#include <utility>
30
31namespace llvm {
32namespace object {
33
34StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type);
35uint32_t getELFRelrRelocationType(uint32_t Machine);
36StringRef getELFSectionTypeName(uint32_t Machine, uint32_t Type);
37
38// Subclasses of ELFFile may need this for template instantiation
39inline std::pair<unsigned char, unsigned char>
40getElfArchType(StringRef Object) {
41 if (Object.size() < ELF::EI_NIDENT)
42 return std::make_pair((uint8_t)ELF::ELFCLASSNONE,
43 (uint8_t)ELF::ELFDATANONE);
44 return std::make_pair((uint8_t)Object[ELF::EI_CLASS],
45 (uint8_t)Object[ELF::EI_DATA]);
46}
47
48static inline Error createError(StringRef Err) {
49 return make_error<StringError>(Err, object_error::parse_failed);
9
Calling 'make_error<llvm::StringError, llvm::StringRef &, llvm::object::object_error>'
50}
51
52template <class ELFT>
53class ELFFile {
54public:
55 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword;
56 using uintX_t = typename ELFT::uint;
57 using Elf_Ehdr = typename ELFT::Ehdr;
58 using Elf_Shdr = typename ELFT::Shdr;
59 using Elf_Sym = typename ELFT::Sym;
60 using Elf_Dyn = typename ELFT::Dyn;
61 using Elf_Phdr = typename ELFT::Phdr;
62 using Elf_Rel = typename ELFT::Rel;
63 using Elf_Rela = typename ELFT::Rela;
64 using Elf_Relr = typename ELFT::Relr;
65 using Elf_Verdef = typename ELFT::Verdef;
66 using Elf_Verdaux = typename ELFT::Verdaux;
67 using Elf_Verneed = typename ELFT::Verneed;
68 using Elf_Vernaux = typename ELFT::Vernaux;
69 using Elf_Versym = typename ELFT::Versym;
70 using Elf_Hash = typename ELFT::Hash;
71 using Elf_GnuHash = typename ELFT::GnuHash;
72 using Elf_Nhdr = typename ELFT::Nhdr;
73 using Elf_Note = typename ELFT::Note;
74 using Elf_Note_Iterator = typename ELFT::NoteIterator;
75 using Elf_Dyn_Range = typename ELFT::DynRange;
76 using Elf_Shdr_Range = typename ELFT::ShdrRange;
77 using Elf_Sym_Range = typename ELFT::SymRange;
78 using Elf_Rel_Range = typename ELFT::RelRange;
79 using Elf_Rela_Range = typename ELFT::RelaRange;
80 using Elf_Relr_Range = typename ELFT::RelrRange;
81 using Elf_Phdr_Range = typename ELFT::PhdrRange;
82
83 const uint8_t *base() const {
84 return reinterpret_cast<const uint8_t *>(Buf.data());
85 }
86
87 size_t getBufSize() const { return Buf.size(); }
88
89private:
90 StringRef Buf;
91
92 ELFFile(StringRef Object);
93
94public:
95 const Elf_Ehdr *getHeader() const {
96 return reinterpret_cast<const Elf_Ehdr *>(base());
97 }
98
99 template <typename T>
100 Expected<const T *> getEntry(uint32_t Section, uint32_t Entry) const;
101 template <typename T>
102 Expected<const T *> getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
103
104 Expected<StringRef> getStringTable(const Elf_Shdr *Section) const;
105 Expected<StringRef> getStringTableForSymtab(const Elf_Shdr &Section) const;
106 Expected<StringRef> getStringTableForSymtab(const Elf_Shdr &Section,
107 Elf_Shdr_Range Sections) const;
108
109 Expected<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section) const;
110 Expected<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section,
111 Elf_Shdr_Range Sections) const;
112
113 StringRef getRelocationTypeName(uint32_t Type) const;
114 void getRelocationTypeName(uint32_t Type,
115 SmallVectorImpl<char> &Result) const;
116 uint32_t getRelrRelocationType() const;
117
118 const char *getDynamicTagAsString(unsigned Arch, uint64_t Type) const;
119 const char *getDynamicTagAsString(uint64_t Type) const;
120
121 /// Get the symbol for a given relocation.
122 Expected<const Elf_Sym *> getRelocationSymbol(const Elf_Rel *Rel,
123 const Elf_Shdr *SymTab) const;
124
125 static Expected<ELFFile> create(StringRef Object);
126
127 bool isMipsELF64() const {
128 return getHeader()->e_machine == ELF::EM_MIPS &&
129 getHeader()->getFileClass() == ELF::ELFCLASS64;
130 }
131
132 bool isMips64EL() const {
133 return isMipsELF64() &&
134 getHeader()->getDataEncoding() == ELF::ELFDATA2LSB;
135 }
136
137 Expected<Elf_Shdr_Range> sections() const;
138
139 Expected<Elf_Dyn_Range> dynamicEntries() const;
140
141 Expected<const uint8_t *> toMappedAddr(uint64_t VAddr) const;
142
143 Expected<Elf_Sym_Range> symbols(const Elf_Shdr *Sec) const {
144 if (!Sec)
145 return makeArrayRef<Elf_Sym>(nullptr, nullptr);
146 return getSectionContentsAsArray<Elf_Sym>(Sec);
147 }
148
149 Expected<Elf_Rela_Range> relas(const Elf_Shdr *Sec) const {
150 return getSectionContentsAsArray<Elf_Rela>(Sec);
151 }
152
153 Expected<Elf_Rel_Range> rels(const Elf_Shdr *Sec) const {
154 return getSectionContentsAsArray<Elf_Rel>(Sec);
155 }
156
157 Expected<Elf_Relr_Range> relrs(const Elf_Shdr *Sec) const {
158 return getSectionContentsAsArray<Elf_Relr>(Sec);
159 }
160
161 Expected<std::vector<Elf_Rela>> decode_relrs(Elf_Relr_Range relrs) const;
162
163 Expected<std::vector<Elf_Rela>> android_relas(const Elf_Shdr *Sec) const;
164
165 /// Iterate over program header table.
166 Expected<Elf_Phdr_Range> program_headers() const {
167 if (getHeader()->e_phnum && getHeader()->e_phentsize != sizeof(Elf_Phdr))
168 return createError("invalid e_phentsize");
169 if (getHeader()->e_phoff +
170 (getHeader()->e_phnum * getHeader()->e_phentsize) >
171 getBufSize())
172 return createError("program headers longer than binary");
173 auto *Begin =
174 reinterpret_cast<const Elf_Phdr *>(base() + getHeader()->e_phoff);
175 return makeArrayRef(Begin, Begin + getHeader()->e_phnum);
176 }
177
178 /// Get an iterator over notes in a program header.
179 ///
180 /// The program header must be of type \c PT_NOTE.
181 ///
182 /// \param Phdr the program header to iterate over.
183 /// \param Err [out] an error to support fallible iteration, which should
184 /// be checked after iteration ends.
185 Elf_Note_Iterator notes_begin(const Elf_Phdr &Phdr, Error &Err) const {
186 if (Phdr.p_type != ELF::PT_NOTE) {
187 Err = createError("attempt to iterate notes of non-note program header");
188 return Elf_Note_Iterator(Err);
189 }
190 if (Phdr.p_offset + Phdr.p_filesz > getBufSize()) {
191 Err = createError("invalid program header offset/size");
192 return Elf_Note_Iterator(Err);
193 }
194 return Elf_Note_Iterator(base() + Phdr.p_offset, Phdr.p_filesz, Err);
195 }
196
197 /// Get an iterator over notes in a section.
198 ///
199 /// The section must be of type \c SHT_NOTE.
200 ///
201 /// \param Shdr the section to iterate over.
202 /// \param Err [out] an error to support fallible iteration, which should
203 /// be checked after iteration ends.
204 Elf_Note_Iterator notes_begin(const Elf_Shdr &Shdr, Error &Err) const {
205 if (Shdr.sh_type != ELF::SHT_NOTE) {
206 Err = createError("attempt to iterate notes of non-note section");
207 return Elf_Note_Iterator(Err);
208 }
209 if (Shdr.sh_offset + Shdr.sh_size > getBufSize()) {
210 Err = createError("invalid section offset/size");
211 return Elf_Note_Iterator(Err);
212 }
213 return Elf_Note_Iterator(base() + Shdr.sh_offset, Shdr.sh_size, Err);
214 }
215
216 /// Get the end iterator for notes.
217 Elf_Note_Iterator notes_end() const {
218 return Elf_Note_Iterator();
219 }
220
221 /// Get an iterator range over notes of a program header.
222 ///
223 /// The program header must be of type \c PT_NOTE.
224 ///
225 /// \param Phdr the program header to iterate over.
226 /// \param Err [out] an error to support fallible iteration, which should
227 /// be checked after iteration ends.
228 iterator_range<Elf_Note_Iterator> notes(const Elf_Phdr &Phdr,
229 Error &Err) const {
230 return make_range(notes_begin(Phdr, Err), notes_end());
231 }
232
233 /// Get an iterator range over notes of a section.
234 ///
235 /// The section must be of type \c SHT_NOTE.
236 ///
237 /// \param Shdr the section to iterate over.
238 /// \param Err [out] an error to support fallible iteration, which should
239 /// be checked after iteration ends.
240 iterator_range<Elf_Note_Iterator> notes(const Elf_Shdr &Shdr,
241 Error &Err) const {
242 return make_range(notes_begin(Shdr, Err), notes_end());
243 }
244
245 Expected<StringRef> getSectionStringTable(Elf_Shdr_Range Sections) const;
246 Expected<uint32_t> getSectionIndex(const Elf_Sym *Sym, Elf_Sym_Range Syms,
247 ArrayRef<Elf_Word> ShndxTable) const;
248 Expected<const Elf_Shdr *> getSection(const Elf_Sym *Sym,
249 const Elf_Shdr *SymTab,
250 ArrayRef<Elf_Word> ShndxTable) const;
251 Expected<const Elf_Shdr *> getSection(const Elf_Sym *Sym,
252 Elf_Sym_Range Symtab,
253 ArrayRef<Elf_Word> ShndxTable) const;
254 Expected<const Elf_Shdr *> getSection(uint32_t Index) const;
255 Expected<const Elf_Shdr *> getSection(const StringRef SectionName) const;
256
257 Expected<const Elf_Sym *> getSymbol(const Elf_Shdr *Sec,
258 uint32_t Index) const;
259
260 Expected<StringRef> getSectionName(const Elf_Shdr *Section) const;
261 Expected<StringRef> getSectionName(const Elf_Shdr *Section,
262 StringRef DotShstrtab) const;
263 template <typename T>
264 Expected<ArrayRef<T>> getSectionContentsAsArray(const Elf_Shdr *Sec) const;
265 Expected<ArrayRef<uint8_t>> getSectionContents(const Elf_Shdr *Sec) const;
266};
267
268using ELF32LEFile = ELFFile<ELF32LE>;
269using ELF64LEFile = ELFFile<ELF64LE>;
270using ELF32BEFile = ELFFile<ELF32BE>;
271using ELF64BEFile = ELFFile<ELF64BE>;
272
273template <class ELFT>
274inline Expected<const typename ELFT::Shdr *>
275getSection(typename ELFT::ShdrRange Sections, uint32_t Index) {
276 if (Index >= Sections.size())
6
Assuming the condition is true
7
Taking true branch
277 return createError("invalid section index");
8
Calling 'createError'
278 return &Sections[Index];
279}
280
281template <class ELFT>
282inline Expected<uint32_t>
283getExtendedSymbolTableIndex(const typename ELFT::Sym *Sym,
284 const typename ELFT::Sym *FirstSym,
285 ArrayRef<typename ELFT::Word> ShndxTable) {
286 assert(Sym->st_shndx == ELF::SHN_XINDEX)((Sym->st_shndx == ELF::SHN_XINDEX) ? static_cast<void>
(0) : __assert_fail ("Sym->st_shndx == ELF::SHN_XINDEX", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Object/ELF.h"
, 286, __PRETTY_FUNCTION__))
;
287 unsigned Index = Sym - FirstSym;
288 if (Index >= ShndxTable.size())
289 return createError("index past the end of the symbol table");
290
291 // The size of the table was checked in getSHNDXTable.
292 return ShndxTable[Index];
293}
294
295template <class ELFT>
296Expected<uint32_t>
297ELFFile<ELFT>::getSectionIndex(const Elf_Sym *Sym, Elf_Sym_Range Syms,
298 ArrayRef<Elf_Word> ShndxTable) const {
299 uint32_t Index = Sym->st_shndx;
300 if (Index == ELF::SHN_XINDEX) {
301 auto ErrorOrIndex = getExtendedSymbolTableIndex<ELFT>(
302 Sym, Syms.begin(), ShndxTable);
303 if (!ErrorOrIndex)
304 return ErrorOrIndex.takeError();
305 return *ErrorOrIndex;
306 }
307 if (Index == ELF::SHN_UNDEF || Index >= ELF::SHN_LORESERVE)
308 return 0;
309 return Index;
310}
311
312template <class ELFT>
313Expected<const typename ELFT::Shdr *>
314ELFFile<ELFT>::getSection(const Elf_Sym *Sym, const Elf_Shdr *SymTab,
315 ArrayRef<Elf_Word> ShndxTable) const {
316 auto SymsOrErr = symbols(SymTab);
317 if (!SymsOrErr)
318 return SymsOrErr.takeError();
319 return getSection(Sym, *SymsOrErr, ShndxTable);
320}
321
322template <class ELFT>
323Expected<const typename ELFT::Shdr *>
324ELFFile<ELFT>::getSection(const Elf_Sym *Sym, Elf_Sym_Range Symbols,
325 ArrayRef<Elf_Word> ShndxTable) const {
326 auto IndexOrErr = getSectionIndex(Sym, Symbols, ShndxTable);
327 if (!IndexOrErr)
328 return IndexOrErr.takeError();
329 uint32_t Index = *IndexOrErr;
330 if (Index == 0)
331 return nullptr;
332 return getSection(Index);
333}
334
335template <class ELFT>
336inline Expected<const typename ELFT::Sym *>
337getSymbol(typename ELFT::SymRange Symbols, uint32_t Index) {
338 if (Index >= Symbols.size())
339 return createError("invalid symbol index");
340 return &Symbols[Index];
341}
342
343template <class ELFT>
344Expected<const typename ELFT::Sym *>
345ELFFile<ELFT>::getSymbol(const Elf_Shdr *Sec, uint32_t Index) const {
346 auto SymtabOrErr = symbols(Sec);
347 if (!SymtabOrErr)
348 return SymtabOrErr.takeError();
349 return object::getSymbol<ELFT>(*SymtabOrErr, Index);
350}
351
352template <class ELFT>
353template <typename T>
354Expected<ArrayRef<T>>
355ELFFile<ELFT>::getSectionContentsAsArray(const Elf_Shdr *Sec) const {
356 if (Sec->sh_entsize != sizeof(T) && sizeof(T) != 1)
357 return createError("invalid sh_entsize");
358
359 uintX_t Offset = Sec->sh_offset;
360 uintX_t Size = Sec->sh_size;
361
362 if (Size % sizeof(T))
363 return createError("size is not a multiple of sh_entsize");
364 if ((std::numeric_limits<uintX_t>::max() - Offset < Size) ||
365 Offset + Size > Buf.size())
366 return createError("invalid section offset");
367
368 if (Offset % alignof(T))
369 return createError("unaligned data");
370
371 const T *Start = reinterpret_cast<const T *>(base() + Offset);
372 return makeArrayRef(Start, Size / sizeof(T));
373}
374
375template <class ELFT>
376Expected<ArrayRef<uint8_t>>
377ELFFile<ELFT>::getSectionContents(const Elf_Shdr *Sec) const {
378 return getSectionContentsAsArray<uint8_t>(Sec);
379}
380
381template <class ELFT>
382StringRef ELFFile<ELFT>::getRelocationTypeName(uint32_t Type) const {
383 return getELFRelocationTypeName(getHeader()->e_machine, Type);
384}
385
386template <class ELFT>
387void ELFFile<ELFT>::getRelocationTypeName(uint32_t Type,
388 SmallVectorImpl<char> &Result) const {
389 if (!isMipsELF64()) {
390 StringRef Name = getRelocationTypeName(Type);
391 Result.append(Name.begin(), Name.end());
392 } else {
393 // The Mips N64 ABI allows up to three operations to be specified per
394 // relocation record. Unfortunately there's no easy way to test for the
395 // presence of N64 ELFs as they have no special flag that identifies them
396 // as being N64. We can safely assume at the moment that all Mips
397 // ELFCLASS64 ELFs are N64. New Mips64 ABIs should provide enough
398 // information to disambiguate between old vs new ABIs.
399 uint8_t Type1 = (Type >> 0) & 0xFF;
400 uint8_t Type2 = (Type >> 8) & 0xFF;
401 uint8_t Type3 = (Type >> 16) & 0xFF;
402
403 // Concat all three relocation type names.
404 StringRef Name = getRelocationTypeName(Type1);
405 Result.append(Name.begin(), Name.end());
406
407 Name = getRelocationTypeName(Type2);
408 Result.append(1, '/');
409 Result.append(Name.begin(), Name.end());
410
411 Name = getRelocationTypeName(Type3);
412 Result.append(1, '/');
413 Result.append(Name.begin(), Name.end());
414 }
415}
416
417template <class ELFT>
418uint32_t ELFFile<ELFT>::getRelrRelocationType() const {
419 return getELFRelrRelocationType(getHeader()->e_machine);
420}
421
422template <class ELFT>
423Expected<const typename ELFT::Sym *>
424ELFFile<ELFT>::getRelocationSymbol(const Elf_Rel *Rel,
425 const Elf_Shdr *SymTab) const {
426 uint32_t Index = Rel->getSymbol(isMips64EL());
427 if (Index == 0)
428 return nullptr;
429 return getEntry<Elf_Sym>(SymTab, Index);
430}
431
432template <class ELFT>
433Expected<StringRef>
434ELFFile<ELFT>::getSectionStringTable(Elf_Shdr_Range Sections) const {
435 uint32_t Index = getHeader()->e_shstrndx;
436 if (Index == ELF::SHN_XINDEX)
437 Index = Sections[0].sh_link;
438
439 if (!Index) // no section string table.
440 return "";
441 if (Index >= Sections.size())
442 return createError("invalid section index");
443 return getStringTable(&Sections[Index]);
444}
445
446template <class ELFT> ELFFile<ELFT>::ELFFile(StringRef Object) : Buf(Object) {}
447
448template <class ELFT>
449Expected<ELFFile<ELFT>> ELFFile<ELFT>::create(StringRef Object) {
450 if (sizeof(Elf_Ehdr) > Object.size())
451 return createError("Invalid buffer");
452 return ELFFile(Object);
453}
454
455template <class ELFT>
456Expected<typename ELFT::ShdrRange> ELFFile<ELFT>::sections() const {
457 const uintX_t SectionTableOffset = getHeader()->e_shoff;
458 if (SectionTableOffset == 0)
459 return ArrayRef<Elf_Shdr>();
460
461 if (getHeader()->e_shentsize != sizeof(Elf_Shdr))
462 return createError(
463 "invalid section header entry size (e_shentsize) in ELF header");
464
465 const uint64_t FileSize = Buf.size();
466
467 if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
468 return createError("section header table goes past the end of the file");
469
470 // Invalid address alignment of section headers
471 if (SectionTableOffset & (alignof(Elf_Shdr) - 1))
472 return createError("invalid alignment of section headers");
473
474 const Elf_Shdr *First =
475 reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
476
477 uintX_t NumSections = getHeader()->e_shnum;
478 if (NumSections == 0)
479 NumSections = First->sh_size;
480
481 if (NumSections > UINT64_MAX(18446744073709551615UL) / sizeof(Elf_Shdr))
482 return createError("section table goes past the end of file");
483
484 const uint64_t SectionTableSize = NumSections * sizeof(Elf_Shdr);
485
486 // Section table goes past end of file!
487 if (SectionTableOffset + SectionTableSize > FileSize)
488 return createError("section table goes past the end of file");
489
490 return makeArrayRef(First, NumSections);
491}
492
493template <class ELFT>
494template <typename T>
495Expected<const T *> ELFFile<ELFT>::getEntry(uint32_t Section,
496 uint32_t Entry) const {
497 auto SecOrErr = getSection(Section);
498 if (!SecOrErr)
499 return SecOrErr.takeError();
500 return getEntry<T>(*SecOrErr, Entry);
501}
502
503template <class ELFT>
504template <typename T>
505Expected<const T *> ELFFile<ELFT>::getEntry(const Elf_Shdr *Section,
506 uint32_t Entry) const {
507 if (sizeof(T) != Section->sh_entsize)
508 return createError("invalid sh_entsize");
509 size_t Pos = Section->sh_offset + Entry * sizeof(T);
510 if (Pos + sizeof(T) > Buf.size())
511 return createError("invalid section offset");
512 return reinterpret_cast<const T *>(base() + Pos);
513}
514
515template <class ELFT>
516Expected<const typename ELFT::Shdr *>
517ELFFile<ELFT>::getSection(uint32_t Index) const {
518 auto TableOrErr = sections();
519 if (!TableOrErr)
520 return TableOrErr.takeError();
521 return object::getSection<ELFT>(*TableOrErr, Index);
522}
523
524template <class ELFT>
525Expected<const typename ELFT::Shdr *>
526ELFFile<ELFT>::getSection(const StringRef SectionName) const {
527 auto TableOrErr = sections();
528 if (!TableOrErr)
529 return TableOrErr.takeError();
530 for (auto &Sec : *TableOrErr) {
531 auto SecNameOrErr = getSectionName(&Sec);
532 if (!SecNameOrErr)
533 return SecNameOrErr.takeError();
534 if (*SecNameOrErr == SectionName)
535 return &Sec;
536 }
537 return createError("invalid section name");
538}
539
540template <class ELFT>
541Expected<StringRef>
542ELFFile<ELFT>::getStringTable(const Elf_Shdr *Section) const {
543 if (Section->sh_type != ELF::SHT_STRTAB)
544 return createError("invalid sh_type for string table, expected SHT_STRTAB");
545 auto V = getSectionContentsAsArray<char>(Section);
546 if (!V)
547 return V.takeError();
548 ArrayRef<char> Data = *V;
549 if (Data.empty())
550 return createError("empty string table");
551 if (Data.back() != '\0')
552 return createError("string table non-null terminated");
553 return StringRef(Data.begin(), Data.size());
554}
555
556template <class ELFT>
557Expected<ArrayRef<typename ELFT::Word>>
558ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section) const {
559 auto SectionsOrErr = sections();
560 if (!SectionsOrErr)
561 return SectionsOrErr.takeError();
562 return getSHNDXTable(Section, *SectionsOrErr);
563}
564
565template <class ELFT>
566Expected<ArrayRef<typename ELFT::Word>>
567ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section,
568 Elf_Shdr_Range Sections) const {
569 assert(Section.sh_type == ELF::SHT_SYMTAB_SHNDX)((Section.sh_type == ELF::SHT_SYMTAB_SHNDX) ? static_cast<
void> (0) : __assert_fail ("Section.sh_type == ELF::SHT_SYMTAB_SHNDX"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Object/ELF.h"
, 569, __PRETTY_FUNCTION__))
;
570 auto VOrErr = getSectionContentsAsArray<Elf_Word>(&Section);
571 if (!VOrErr)
572 return VOrErr.takeError();
573 ArrayRef<Elf_Word> V = *VOrErr;
574 auto SymTableOrErr = object::getSection<ELFT>(Sections, Section.sh_link);
575 if (!SymTableOrErr)
576 return SymTableOrErr.takeError();
577 const Elf_Shdr &SymTable = **SymTableOrErr;
578 if (SymTable.sh_type != ELF::SHT_SYMTAB &&
579 SymTable.sh_type != ELF::SHT_DYNSYM)
580 return createError("invalid sh_type");
581 if (V.size() != (SymTable.sh_size / sizeof(Elf_Sym)))
582 return createError("invalid section contents size");
583 return V;
584}
585
586template <class ELFT>
587Expected<StringRef>
588ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec) const {
589 auto SectionsOrErr = sections();
590 if (!SectionsOrErr)
2
Taking false branch
591 return SectionsOrErr.takeError();
592 return getStringTableForSymtab(Sec, *SectionsOrErr);
3
Calling 'ELFFile::getStringTableForSymtab'
593}
594
595template <class ELFT>
596Expected<StringRef>
597ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec,
598 Elf_Shdr_Range Sections) const {
599
600 if (Sec.sh_type != ELF::SHT_SYMTAB && Sec.sh_type != ELF::SHT_DYNSYM)
4
Assuming the condition is false
601 return createError(
602 "invalid sh_type for symbol table, expected SHT_SYMTAB or SHT_DYNSYM");
603 auto SectionOrErr = object::getSection<ELFT>(Sections, Sec.sh_link);
5
Calling 'getSection<llvm::object::ELFType<llvm::support::big, false>>'
604 if (!SectionOrErr)
605 return SectionOrErr.takeError();
606 return getStringTable(*SectionOrErr);
607}
608
609template <class ELFT>
610Expected<StringRef>
611ELFFile<ELFT>::getSectionName(const Elf_Shdr *Section) const {
612 auto SectionsOrErr = sections();
613 if (!SectionsOrErr)
614 return SectionsOrErr.takeError();
615 auto Table = getSectionStringTable(*SectionsOrErr);
616 if (!Table)
617 return Table.takeError();
618 return getSectionName(Section, *Table);
619}
620
621template <class ELFT>
622Expected<StringRef> ELFFile<ELFT>::getSectionName(const Elf_Shdr *Section,
623 StringRef DotShstrtab) const {
624 uint32_t Offset = Section->sh_name;
625 if (Offset == 0)
626 return StringRef();
627 if (Offset >= DotShstrtab.size())
628 return createError("invalid string offset");
629 return StringRef(DotShstrtab.data() + Offset);
630}
631
632/// This function returns the hash value for a symbol in the .dynsym section
633/// Name of the API remains consistent as specified in the libelf
634/// REF : http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash
635inline unsigned hashSysV(StringRef SymbolName) {
636 unsigned h = 0, g;
637 for (char C : SymbolName) {
638 h = (h << 4) + C;
639 g = h & 0xf0000000L;
640 if (g != 0)
641 h ^= g >> 24;
642 h &= ~g;
643 }
644 return h;
645}
646
647} // end namespace object
648} // end namespace llvm
649
650#endif // LLVM_OBJECT_ELF_H

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm-c/Error.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Config/abi-breaking.h"
23#include "llvm/Support/AlignOf.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/ErrorOr.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <cstdlib>
34#include <functional>
35#include <memory>
36#include <new>
37#include <string>
38#include <system_error>
39#include <type_traits>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class ErrorSuccess;
46
47/// Base class for error info classes. Do not extend this directly: Extend
48/// the ErrorInfo template subclass instead.
49class ErrorInfoBase {
50public:
51 virtual ~ErrorInfoBase() = default;
52
53 /// Print an error message to an output stream.
54 virtual void log(raw_ostream &OS) const = 0;
55
56 /// Return the error message as a string.
57 virtual std::string message() const {
58 std::string Msg;
59 raw_string_ostream OS(Msg);
60 log(OS);
61 return OS.str();
62 }
63
64 /// Convert this error to a std::error_code.
65 ///
66 /// This is a temporary crutch to enable interaction with code still
67 /// using std::error_code. It will be removed in the future.
68 virtual std::error_code convertToErrorCode() const = 0;
69
70 // Returns the class ID for this type.
71 static const void *classID() { return &ID; }
72
73 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
74 virtual const void *dynamicClassID() const = 0;
75
76 // Check whether this instance is a subclass of the class identified by
77 // ClassID.
78 virtual bool isA(const void *const ClassID) const {
79 return ClassID == classID();
80 }
81
82 // Check whether this instance is a subclass of ErrorInfoT.
83 template <typename ErrorInfoT> bool isA() const {
84 return isA(ErrorInfoT::classID());
85 }
86
87private:
88 virtual void anchor();
89
90 static char ID;
91};
92
93/// Lightweight error class with error context and mandatory checking.
94///
95/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
96/// are represented by setting the pointer to a ErrorInfoBase subclass
97/// instance containing information describing the failure. Success is
98/// represented by a null pointer value.
99///
100/// Instances of Error also contains a 'Checked' flag, which must be set
101/// before the destructor is called, otherwise the destructor will trigger a
102/// runtime error. This enforces at runtime the requirement that all Error
103/// instances be checked or returned to the caller.
104///
105/// There are two ways to set the checked flag, depending on what state the
106/// Error instance is in. For Error instances indicating success, it
107/// is sufficient to invoke the boolean conversion operator. E.g.:
108///
109/// @code{.cpp}
110/// Error foo(<...>);
111///
112/// if (auto E = foo(<...>))
113/// return E; // <- Return E if it is in the error state.
114/// // We have verified that E was in the success state. It can now be safely
115/// // destroyed.
116/// @endcode
117///
118/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
119/// without testing the return value will raise a runtime error, even if foo
120/// returns success.
121///
122/// For Error instances representing failure, you must use either the
123/// handleErrors or handleAllErrors function with a typed handler. E.g.:
124///
125/// @code{.cpp}
126/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
127/// // Custom error info.
128/// };
129///
130/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
131///
132/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
133/// auto NewE =
134/// handleErrors(E,
135/// [](const MyErrorInfo &M) {
136/// // Deal with the error.
137/// },
138/// [](std::unique_ptr<OtherError> M) -> Error {
139/// if (canHandle(*M)) {
140/// // handle error.
141/// return Error::success();
142/// }
143/// // Couldn't handle this error instance. Pass it up the stack.
144/// return Error(std::move(M));
145/// );
146/// // Note - we must check or return NewE in case any of the handlers
147/// // returned a new error.
148/// @endcode
149///
150/// The handleAllErrors function is identical to handleErrors, except
151/// that it has a void return type, and requires all errors to be handled and
152/// no new errors be returned. It prevents errors (assuming they can all be
153/// handled) from having to be bubbled all the way to the top-level.
154///
155/// *All* Error instances must be checked before destruction, even if
156/// they're moved-assigned or constructed from Success values that have already
157/// been checked. This enforces checking through all levels of the call stack.
158class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
159 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
160 // pointers out of this class to add to the error list.
161 friend class ErrorList;
162 friend class FileError;
163
164 // handleErrors needs to be able to set the Checked flag.
165 template <typename... HandlerTs>
166 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
167
168 // Expected<T> needs to be able to steal the payload when constructed from an
169 // error.
170 template <typename T> friend class Expected;
171
172 // wrap needs to be able to steal the payload.
173 friend LLVMErrorRef wrap(Error);
174
175protected:
176 /// Create a success value. Prefer using 'Error::success()' for readability
177 Error() {
178 setPtr(nullptr);
179 setChecked(false);
180 }
181
182public:
183 /// Create a success value.
184 static ErrorSuccess success();
185
186 // Errors are not copy-constructable.
187 Error(const Error &Other) = delete;
188
189 /// Move-construct an error value. The newly constructed error is considered
190 /// unchecked, even if the source error had been checked. The original error
191 /// becomes a checked Success value, regardless of its original state.
192 Error(Error &&Other) {
193 setChecked(true);
194 *this = std::move(Other);
195 }
196
197 /// Create an error value. Prefer using the 'make_error' function, but
198 /// this constructor can be useful when "re-throwing" errors from handlers.
199 Error(std::unique_ptr<ErrorInfoBase> Payload) {
200 setPtr(Payload.release());
201 setChecked(false);
14
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
202 }
203
204 // Errors are not copy-assignable.
205 Error &operator=(const Error &Other) = delete;
206
207 /// Move-assign an error value. The current error must represent success, you
208 /// you cannot overwrite an unhandled error. The current error is then
209 /// considered unchecked. The source error becomes a checked success value,
210 /// regardless of its original state.
211 Error &operator=(Error &&Other) {
212 // Don't allow overwriting of unchecked values.
213 assertIsChecked();
214 setPtr(Other.getPtr());
215
216 // This Error is unchecked, even if the source error was checked.
217 setChecked(false);
218
219 // Null out Other's payload and set its checked bit.
220 Other.setPtr(nullptr);
221 Other.setChecked(true);
222
223 return *this;
224 }
225
226 /// Destroy a Error. Fails with a call to abort() if the error is
227 /// unchecked.
228 ~Error() {
229 assertIsChecked();
230 delete getPtr();
231 }
232
233 /// Bool conversion. Returns true if this Error is in a failure state,
234 /// and false if it is in an accept state. If the error is in a Success state
235 /// it will be considered checked.
236 explicit operator bool() {
237 setChecked(getPtr() == nullptr);
238 return getPtr() != nullptr;
239 }
240
241 /// Check whether one error is a subclass of another.
242 template <typename ErrT> bool isA() const {
243 return getPtr() && getPtr()->isA(ErrT::classID());
244 }
245
246 /// Returns the dynamic class id of this error, or null if this is a success
247 /// value.
248 const void* dynamicClassID() const {
249 if (!getPtr())
250 return nullptr;
251 return getPtr()->dynamicClassID();
252 }
253
254private:
255#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
256 // assertIsChecked() happens very frequently, but under normal circumstances
257 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
258 // of debug prints can cause the function to be too large for inlining. So
259 // it's important that we define this function out of line so that it can't be
260 // inlined.
261 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
262 void fatalUncheckedError() const;
263#endif
264
265 void assertIsChecked() {
266#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
267 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
268 fatalUncheckedError();
269#endif
270 }
271
272 ErrorInfoBase *getPtr() const {
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298 Payload = reinterpret_cast<ErrorInfoBase*>(
299 (reinterpret_cast<uintptr_t>(Payload) &
300 ~static_cast<uintptr_t>(0x1)) |
301 (V ? 0 : 1));
302 }
303
304 std::unique_ptr<ErrorInfoBase> takePayload() {
305 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
306 setPtr(nullptr);
307 setChecked(true);
308 return Tmp;
309 }
310
311 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
312 if (auto P = E.getPtr())
313 P->log(OS);
314 else
315 OS << "success";
316 return OS;
317 }
318
319 ErrorInfoBase *Payload = nullptr;
320};
321
322/// Subclass of Error for the sole purpose of identifying the success path in
323/// the type system. This allows to catch invalid conversion to Expected<T> at
324/// compile time.
325class ErrorSuccess final : public Error {};
326
327inline ErrorSuccess Error::success() { return ErrorSuccess(); }
328
329/// Make a Error instance representing failure using the given error info
330/// type.
331template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
332 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
10
Calling 'make_unique<llvm::StringError, llvm::StringRef &, llvm::object::object_error>'
12
Returned allocated memory
13
Calling constructor for 'Error'
333}
334
335/// Base class for user error types. Users should declare their error types
336/// like:
337///
338/// class MyError : public ErrorInfo<MyError> {
339/// ....
340/// };
341///
342/// This class provides an implementation of the ErrorInfoBase::kind
343/// method, which is used by the Error RTTI system.
344template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
345class ErrorInfo : public ParentErrT {
346public:
347 using ParentErrT::ParentErrT; // inherit constructors
348
349 static const void *classID() { return &ThisErrT::ID; }
350
351 const void *dynamicClassID() const override { return &ThisErrT::ID; }
352
353 bool isA(const void *const ClassID) const override {
354 return ClassID == classID() || ParentErrT::isA(ClassID);
355 }
356};
357
358/// Special ErrorInfo subclass representing a list of ErrorInfos.
359/// Instances of this class are constructed by joinError.
360class ErrorList final : public ErrorInfo<ErrorList> {
361 // handleErrors needs to be able to iterate the payload list of an
362 // ErrorList.
363 template <typename... HandlerTs>
364 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
365
366 // joinErrors is implemented in terms of join.
367 friend Error joinErrors(Error, Error);
368
369public:
370 void log(raw_ostream &OS) const override {
371 OS << "Multiple errors:\n";
372 for (auto &ErrPayload : Payloads) {
373 ErrPayload->log(OS);
374 OS << "\n";
375 }
376 }
377
378 std::error_code convertToErrorCode() const override;
379
380 // Used by ErrorInfo::classID.
381 static char ID;
382
383private:
384 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
385 std::unique_ptr<ErrorInfoBase> Payload2) {
386 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
387 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
;
388 Payloads.push_back(std::move(Payload1));
389 Payloads.push_back(std::move(Payload2));
390 }
391
392 static Error join(Error E1, Error E2) {
393 if (!E1)
394 return E2;
395 if (!E2)
396 return E1;
397 if (E1.isA<ErrorList>()) {
398 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
399 if (E2.isA<ErrorList>()) {
400 auto E2Payload = E2.takePayload();
401 auto &E2List = static_cast<ErrorList &>(*E2Payload);
402 for (auto &Payload : E2List.Payloads)
403 E1List.Payloads.push_back(std::move(Payload));
404 } else
405 E1List.Payloads.push_back(E2.takePayload());
406
407 return E1;
408 }
409 if (E2.isA<ErrorList>()) {
410 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
411 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
412 return E2;
413 }
414 return Error(std::unique_ptr<ErrorList>(
415 new ErrorList(E1.takePayload(), E2.takePayload())));
416 }
417
418 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
419};
420
421/// Concatenate errors. The resulting Error is unchecked, and contains the
422/// ErrorInfo(s), if any, contained in E1, followed by the
423/// ErrorInfo(s), if any, contained in E2.
424inline Error joinErrors(Error E1, Error E2) {
425 return ErrorList::join(std::move(E1), std::move(E2));
426}
427
428/// Tagged union holding either a T or a Error.
429///
430/// This class parallels ErrorOr, but replaces error_code with Error. Since
431/// Error cannot be copied, this class replaces getError() with
432/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
433/// error class type.
434template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
435 template <class T1> friend class ExpectedAsOutParameter;
436 template <class OtherT> friend class Expected;
437
438 static const bool isRef = std::is_reference<T>::value;
439
440 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
441
442 using error_type = std::unique_ptr<ErrorInfoBase>;
443
444public:
445 using storage_type = typename std::conditional<isRef, wrap, T>::type;
446 using value_type = T;
447
448private:
449 using reference = typename std::remove_reference<T>::type &;
450 using const_reference = const typename std::remove_reference<T>::type &;
451 using pointer = typename std::remove_reference<T>::type *;
452 using const_pointer = const typename std::remove_reference<T>::type *;
453
454public:
455 /// Create an Expected<T> error value from the given Error.
456 Expected(Error Err)
457 : HasError(true)
458#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
459 // Expected is unchecked upon construction in Debug builds.
460 , Unchecked(true)
461#endif
462 {
463 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 463, __PRETTY_FUNCTION__))
;
464 new (getErrorStorage()) error_type(Err.takePayload());
465 }
466
467 /// Forbid to convert from Error::success() implicitly, this avoids having
468 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
469 /// but triggers the assertion above.
470 Expected(ErrorSuccess) = delete;
471
472 /// Create an Expected<T> success value from the given OtherT value, which
473 /// must be convertible to T.
474 template <typename OtherT>
475 Expected(OtherT &&Val,
476 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
477 * = nullptr)
478 : HasError(false)
479#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
480 // Expected is unchecked upon construction in Debug builds.
481 , Unchecked(true)
482#endif
483 {
484 new (getStorage()) storage_type(std::forward<OtherT>(Val));
485 }
486
487 /// Move construct an Expected<T> value.
488 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
489
490 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
491 /// must be convertible to T.
492 template <class OtherT>
493 Expected(Expected<OtherT> &&Other,
494 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
495 * = nullptr) {
496 moveConstruct(std::move(Other));
497 }
498
499 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
500 /// isn't convertible to T.
501 template <class OtherT>
502 explicit Expected(
503 Expected<OtherT> &&Other,
504 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
505 nullptr) {
506 moveConstruct(std::move(Other));
507 }
508
509 /// Move-assign from another Expected<T>.
510 Expected &operator=(Expected &&Other) {
511 moveAssign(std::move(Other));
512 return *this;
513 }
514
515 /// Destroy an Expected<T>.
516 ~Expected() {
517 assertIsChecked();
518 if (!HasError)
519 getStorage()->~storage_type();
520 else
521 getErrorStorage()->~error_type();
522 }
523
524 /// Return false if there is an error.
525 explicit operator bool() {
526#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
527 Unchecked = HasError;
528#endif
529 return !HasError;
530 }
531
532 /// Returns a reference to the stored T value.
533 reference get() {
534 assertIsChecked();
535 return *getStorage();
536 }
537
538 /// Returns a const reference to the stored T value.
539 const_reference get() const {
540 assertIsChecked();
541 return const_cast<Expected<T> *>(this)->get();
542 }
543
544 /// Check that this Expected<T> is an error of type ErrT.
545 template <typename ErrT> bool errorIsA() const {
546 return HasError && (*getErrorStorage())->template isA<ErrT>();
547 }
548
549 /// Take ownership of the stored error.
550 /// After calling this the Expected<T> is in an indeterminate state that can
551 /// only be safely destructed. No further calls (beside the destructor) should
552 /// be made on the Expected<T> vaule.
553 Error takeError() {
554#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
555 Unchecked = false;
556#endif
557 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
558 }
559
560 /// Returns a pointer to the stored T value.
561 pointer operator->() {
562 assertIsChecked();
563 return toPointer(getStorage());
564 }
565
566 /// Returns a const pointer to the stored T value.
567 const_pointer operator->() const {
568 assertIsChecked();
569 return toPointer(getStorage());
570 }
571
572 /// Returns a reference to the stored T value.
573 reference operator*() {
574 assertIsChecked();
575 return *getStorage();
576 }
577
578 /// Returns a const reference to the stored T value.
579 const_reference operator*() const {
580 assertIsChecked();
581 return *getStorage();
582 }
583
584private:
585 template <class T1>
586 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
587 return &a == &b;
588 }
589
590 template <class T1, class T2>
591 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
592 return false;
593 }
594
595 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
596 HasError = Other.HasError;
597#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
598 Unchecked = true;
599 Other.Unchecked = false;
600#endif
601
602 if (!HasError)
603 new (getStorage()) storage_type(std::move(*Other.getStorage()));
604 else
605 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
606 }
607
608 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
609 assertIsChecked();
610
611 if (compareThisIfSameType(*this, Other))
612 return;
613
614 this->~Expected();
615 new (this) Expected(std::move(Other));
616 }
617
618 pointer toPointer(pointer Val) { return Val; }
619
620 const_pointer toPointer(const_pointer Val) const { return Val; }
621
622 pointer toPointer(wrap *Val) { return &Val->get(); }
623
624 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
625
626 storage_type *getStorage() {
627 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 627, __PRETTY_FUNCTION__))
;
628 return reinterpret_cast<storage_type *>(TStorage.buffer);
629 }
630
631 const storage_type *getStorage() const {
632 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 632, __PRETTY_FUNCTION__))
;
633 return reinterpret_cast<const storage_type *>(TStorage.buffer);
634 }
635
636 error_type *getErrorStorage() {
637 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 637, __PRETTY_FUNCTION__))
;
638 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
639 }
640
641 const error_type *getErrorStorage() const {
642 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 642, __PRETTY_FUNCTION__))
;
643 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
644 }
645
646 // Used by ExpectedAsOutParameter to reset the checked flag.
647 void setUnchecked() {
648#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
649 Unchecked = true;
650#endif
651 }
652
653#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
654 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
655 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
656 void fatalUncheckedExpected() const {
657 dbgs() << "Expected<T> must be checked before access or destruction.\n";
658 if (HasError) {
659 dbgs() << "Unchecked Expected<T> contained error:\n";
660 (*getErrorStorage())->log(dbgs());
661 } else
662 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
663 "values in success mode must still be checked prior to being "
664 "destroyed).\n";
665 abort();
666 }
667#endif
668
669 void assertIsChecked() {
670#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
671 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
672 fatalUncheckedExpected();
673#endif
674 }
675
676 union {
677 AlignedCharArrayUnion<storage_type> TStorage;
678 AlignedCharArrayUnion<error_type> ErrorStorage;
679 };
680 bool HasError : 1;
681#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
682 bool Unchecked : 1;
683#endif
684};
685
686/// Report a serious error, calling any installed error handler. See
687/// ErrorHandling.h.
688LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
689 bool gen_crash_diag = true);
690
691/// Report a fatal error if Err is a failure value.
692///
693/// This function can be used to wrap calls to fallible functions ONLY when it
694/// is known that the Error will always be a success value. E.g.
695///
696/// @code{.cpp}
697/// // foo only attempts the fallible operation if DoFallibleOperation is
698/// // true. If DoFallibleOperation is false then foo always returns
699/// // Error::success().
700/// Error foo(bool DoFallibleOperation);
701///
702/// cantFail(foo(false));
703/// @endcode
704inline void cantFail(Error Err, const char *Msg = nullptr) {
705 if (Err) {
706 if (!Msg)
707 Msg = "Failure value returned from cantFail wrapped call";
708 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 708)
;
709 }
710}
711
712/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
713/// returns the contained value.
714///
715/// This function can be used to wrap calls to fallible functions ONLY when it
716/// is known that the Error will always be a success value. E.g.
717///
718/// @code{.cpp}
719/// // foo only attempts the fallible operation if DoFallibleOperation is
720/// // true. If DoFallibleOperation is false then foo always returns an int.
721/// Expected<int> foo(bool DoFallibleOperation);
722///
723/// int X = cantFail(foo(false));
724/// @endcode
725template <typename T>
726T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
727 if (ValOrErr)
728 return std::move(*ValOrErr);
729 else {
730 if (!Msg)
731 Msg = "Failure value returned from cantFail wrapped call";
732 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 732)
;
733 }
734}
735
736/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
737/// returns the contained reference.
738///
739/// This function can be used to wrap calls to fallible functions ONLY when it
740/// is known that the Error will always be a success value. E.g.
741///
742/// @code{.cpp}
743/// // foo only attempts the fallible operation if DoFallibleOperation is
744/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
745/// Expected<Bar&> foo(bool DoFallibleOperation);
746///
747/// Bar &X = cantFail(foo(false));
748/// @endcode
749template <typename T>
750T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
751 if (ValOrErr)
752 return *ValOrErr;
753 else {
754 if (!Msg)
755 Msg = "Failure value returned from cantFail wrapped call";
756 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 756)
;
757 }
758}
759
760/// Helper for testing applicability of, and applying, handlers for
761/// ErrorInfo types.
762template <typename HandlerT>
763class ErrorHandlerTraits
764 : public ErrorHandlerTraits<decltype(
765 &std::remove_reference<HandlerT>::type::operator())> {};
766
767// Specialization functions of the form 'Error (const ErrT&)'.
768template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
769public:
770 static bool appliesTo(const ErrorInfoBase &E) {
771 return E.template isA<ErrT>();
772 }
773
774 template <typename HandlerT>
775 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
776 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 776, __PRETTY_FUNCTION__))
;
777 return H(static_cast<ErrT &>(*E));
778 }
779};
780
781// Specialization functions of the form 'void (const ErrT&)'.
782template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 790, __PRETTY_FUNCTION__))
;
791 H(static_cast<ErrT &>(*E));
792 return Error::success();
793 }
794};
795
796/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 806, __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 return H(std::move(SubE));
809 }
810};
811
812/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
813template <typename ErrT>
814class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
815public:
816 static bool appliesTo(const ErrorInfoBase &E) {
817 return E.template isA<ErrT>();
818 }
819
820 template <typename HandlerT>
821 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
822 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 822, __PRETTY_FUNCTION__))
;
823 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
824 H(std::move(SubE));
825 return Error::success();
826 }
827};
828
829// Specialization for member functions of the form 'RetT (const ErrT&)'.
830template <typename C, typename RetT, typename ErrT>
831class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
832 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
833
834// Specialization for member functions of the form 'RetT (const ErrT&) const'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
837 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
838
839// Specialization for member functions of the form 'RetT (const ErrT&)'.
840template <typename C, typename RetT, typename ErrT>
841class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
842 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
843
844// Specialization for member functions of the form 'RetT (const ErrT&) const'.
845template <typename C, typename RetT, typename ErrT>
846class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
847 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
848
849/// Specialization for member functions of the form
850/// 'RetT (std::unique_ptr<ErrT>)'.
851template <typename C, typename RetT, typename ErrT>
852class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
853 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
854
855/// Specialization for member functions of the form
856/// 'RetT (std::unique_ptr<ErrT>) const'.
857template <typename C, typename RetT, typename ErrT>
858class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
859 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
860
861inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
862 return Error(std::move(Payload));
863}
864
865template <typename HandlerT, typename... HandlerTs>
866Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
867 HandlerT &&Handler, HandlerTs &&... Handlers) {
868 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
869 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
870 std::move(Payload));
871 return handleErrorImpl(std::move(Payload),
872 std::forward<HandlerTs>(Handlers)...);
873}
874
875/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
876/// unhandled errors (or Errors returned by handlers) are re-concatenated and
877/// returned.
878/// Because this function returns an error, its result must also be checked
879/// or returned. If you intend to handle all errors use handleAllErrors
880/// (which returns void, and will abort() on unhandled errors) instead.
881template <typename... HandlerTs>
882Error handleErrors(Error E, HandlerTs &&... Hs) {
883 if (!E)
884 return Error::success();
885
886 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
887
888 if (Payload->isA<ErrorList>()) {
889 ErrorList &List = static_cast<ErrorList &>(*Payload);
890 Error R;
891 for (auto &P : List.Payloads)
892 R = ErrorList::join(
893 std::move(R),
894 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
895 return R;
896 }
897
898 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
899}
900
901/// Behaves the same as handleErrors, except that by contract all errors
902/// *must* be handled by the given handlers (i.e. there must be no remaining
903/// errors after running the handlers, or llvm_unreachable is called).
904template <typename... HandlerTs>
905void handleAllErrors(Error E, HandlerTs &&... Handlers) {
906 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
907}
908
909/// Check that E is a non-error, then drop it.
910/// If E is an error, llvm_unreachable will be called.
911inline void handleAllErrors(Error E) {
912 cantFail(std::move(E));
913}
914
915/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
916///
917/// If the incoming value is a success value it is returned unmodified. If it
918/// is a failure value then it the contained error is passed to handleErrors.
919/// If handleErrors is able to handle the error then the RecoveryPath functor
920/// is called to supply the final result. If handleErrors is not able to
921/// handle all errors then the unhandled errors are returned.
922///
923/// This utility enables the follow pattern:
924///
925/// @code{.cpp}
926/// enum FooStrategy { Aggressive, Conservative };
927/// Expected<Foo> foo(FooStrategy S);
928///
929/// auto ResultOrErr =
930/// handleExpected(
931/// foo(Aggressive),
932/// []() { return foo(Conservative); },
933/// [](AggressiveStrategyError&) {
934/// // Implicitly conusme this - we'll recover by using a conservative
935/// // strategy.
936/// });
937///
938/// @endcode
939template <typename T, typename RecoveryFtor, typename... HandlerTs>
940Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
941 HandlerTs &&... Handlers) {
942 if (ValOrErr)
943 return ValOrErr;
944
945 if (auto Err = handleErrors(ValOrErr.takeError(),
946 std::forward<HandlerTs>(Handlers)...))
947 return std::move(Err);
948
949 return RecoveryPath();
950}
951
952/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
953/// will be printed before the first one is logged. A newline will be printed
954/// after each error.
955///
956/// This is useful in the base level of your program to allow clean termination
957/// (allowing clean deallocation of resources, etc.), while reporting error
958/// information to the user.
959void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner);
960
961/// Write all error messages (if any) in E to a string. The newline character
962/// is used to separate error messages.
963inline std::string toString(Error E) {
964 SmallVector<std::string, 2> Errors;
965 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
966 Errors.push_back(EI.message());
967 });
968 return join(Errors.begin(), Errors.end(), "\n");
969}
970
971/// Consume a Error without doing anything. This method should be used
972/// only where an error can be considered a reasonable and expected return
973/// value.
974///
975/// Uses of this method are potentially indicative of design problems: If it's
976/// legitimate to do nothing while processing an "error", the error-producer
977/// might be more clearly refactored to return an Optional<T>.
978inline void consumeError(Error Err) {
979 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
980}
981
982/// Helper for converting an Error to a bool.
983///
984/// This method returns true if Err is in an error state, or false if it is
985/// in a success state. Puts Err in a checked state in both cases (unlike
986/// Error::operator bool(), which only does this for success states).
987inline bool errorToBool(Error Err) {
988 bool IsError = static_cast<bool>(Err);
989 if (IsError)
990 consumeError(std::move(Err));
991 return IsError;
992}
993
994/// Helper for Errors used as out-parameters.
995///
996/// This helper is for use with the Error-as-out-parameter idiom, where an error
997/// is passed to a function or method by reference, rather than being returned.
998/// In such cases it is helpful to set the checked bit on entry to the function
999/// so that the error can be written to (unchecked Errors abort on assignment)
1000/// and clear the checked bit on exit so that clients cannot accidentally forget
1001/// to check the result. This helper performs these actions automatically using
1002/// RAII:
1003///
1004/// @code{.cpp}
1005/// Result foo(Error &Err) {
1006/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1007/// // <body of foo>
1008/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1009/// }
1010/// @endcode
1011///
1012/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1013/// used with optional Errors (Error pointers that are allowed to be null). If
1014/// ErrorAsOutParameter took an Error reference, an instance would have to be
1015/// created inside every condition that verified that Error was non-null. By
1016/// taking an Error pointer we can just create one instance at the top of the
1017/// function.
1018class ErrorAsOutParameter {
1019public:
1020 ErrorAsOutParameter(Error *Err) : Err(Err) {
1021 // Raise the checked bit if Err is success.
1022 if (Err)
1023 (void)!!*Err;
1024 }
1025
1026 ~ErrorAsOutParameter() {
1027 // Clear the checked bit.
1028 if (Err && !*Err)
1029 *Err = Error::success();
1030 }
1031
1032private:
1033 Error *Err;
1034};
1035
1036/// Helper for Expected<T>s used as out-parameters.
1037///
1038/// See ErrorAsOutParameter.
1039template <typename T>
1040class ExpectedAsOutParameter {
1041public:
1042 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1043 : ValOrErr(ValOrErr) {
1044 if (ValOrErr)
1045 (void)!!*ValOrErr;
1046 }
1047
1048 ~ExpectedAsOutParameter() {
1049 if (ValOrErr)
1050 ValOrErr->setUnchecked();
1051 }
1052
1053private:
1054 Expected<T> *ValOrErr;
1055};
1056
1057/// This class wraps a std::error_code in a Error.
1058///
1059/// This is useful if you're writing an interface that returns a Error
1060/// (or Expected) and you want to call code that still returns
1061/// std::error_codes.
1062class ECError : public ErrorInfo<ECError> {
1063 friend Error errorCodeToError(std::error_code);
1064
1065public:
1066 void setErrorCode(std::error_code EC) { this->EC = EC; }
1067 std::error_code convertToErrorCode() const override { return EC; }
1068 void log(raw_ostream &OS) const override { OS << EC.message(); }
1069
1070 // Used by ErrorInfo::classID.
1071 static char ID;
1072
1073protected:
1074 ECError() = default;
1075 ECError(std::error_code EC) : EC(EC) {}
1076
1077 std::error_code EC;
1078};
1079
1080/// The value returned by this function can be returned from convertToErrorCode
1081/// for Error values where no sensible translation to std::error_code exists.
1082/// It should only be used in this situation, and should never be used where a
1083/// sensible conversion to std::error_code is available, as attempts to convert
1084/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1085///error to try to convert such a value).
1086std::error_code inconvertibleErrorCode();
1087
1088/// Helper for converting an std::error_code to a Error.
1089Error errorCodeToError(std::error_code EC);
1090
1091/// Helper for converting an ECError to a std::error_code.
1092///
1093/// This method requires that Err be Error() or an ECError, otherwise it
1094/// will trigger a call to abort().
1095std::error_code errorToErrorCode(Error Err);
1096
1097/// Convert an ErrorOr<T> to an Expected<T>.
1098template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1099 if (auto EC = EO.getError())
1100 return errorCodeToError(EC);
1101 return std::move(*EO);
1102}
1103
1104/// Convert an Expected<T> to an ErrorOr<T>.
1105template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1106 if (auto Err = E.takeError())
1107 return errorToErrorCode(std::move(Err));
1108 return std::move(*E);
1109}
1110
1111/// This class wraps a string in an Error.
1112///
1113/// StringError is useful in cases where the client is not expected to be able
1114/// to consume the specific error message programmatically (for example, if the
1115/// error message is to be presented to the user).
1116///
1117/// StringError can also be used when additional information is to be printed
1118/// along with a error_code message. Depending on the constructor called, this
1119/// class can either display:
1120/// 1. the error_code message (ECError behavior)
1121/// 2. a string
1122/// 3. the error_code message and a string
1123///
1124/// These behaviors are useful when subtyping is required; for example, when a
1125/// specific library needs an explicit error type. In the example below,
1126/// PDBError is derived from StringError:
1127///
1128/// @code{.cpp}
1129/// Expected<int> foo() {
1130/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1131/// "Additional information");
1132/// }
1133/// @endcode
1134///
1135class StringError : public ErrorInfo<StringError> {
1136public:
1137 static char ID;
1138
1139 // Prints EC + S and converts to EC
1140 StringError(std::error_code EC, const Twine &S = Twine());
1141
1142 // Prints S and converts to EC
1143 StringError(const Twine &S, std::error_code EC);
1144
1145 void log(raw_ostream &OS) const override;
1146 std::error_code convertToErrorCode() const override;
1147
1148 const std::string &getMessage() const { return Msg; }
1149
1150private:
1151 std::string Msg;
1152 std::error_code EC;
1153 const bool PrintMsgOnly = false;
1154};
1155
1156/// Create formatted StringError object.
1157template <typename... Ts>
1158Error createStringError(std::error_code EC, char const *Fmt,
1159 const Ts &... Vals) {
1160 std::string Buffer;
1161 raw_string_ostream Stream(Buffer);
1162 Stream << format(Fmt, Vals...);
1163 return make_error<StringError>(Stream.str(), EC);
1164}
1165
1166Error createStringError(std::error_code EC, char const *Msg);
1167
1168/// This class wraps a filename and another Error.
1169///
1170/// In some cases, an error needs to live along a 'source' name, in order to
1171/// show more detailed information to the user.
1172class FileError final : public ErrorInfo<FileError> {
1173
1174 friend Error createFileError(std::string, Error);
1175
1176public:
1177 void log(raw_ostream &OS) const override {
1178 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1178, __PRETTY_FUNCTION__))
;
1179 OS << "'" << FileName << "': ";
1180 Err->log(OS);
1181 }
1182
1183 Error takeError() { return Error(std::move(Err)); }
1184
1185 std::error_code convertToErrorCode() const override;
1186
1187 // Used by ErrorInfo::classID.
1188 static char ID;
1189
1190private:
1191 FileError(std::string F, std::unique_ptr<ErrorInfoBase> E) {
1192 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1192, __PRETTY_FUNCTION__))
;
1193 assert(!F.empty() &&((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1194, __PRETTY_FUNCTION__))
1194 "The file name provided to FileError must not be empty.")((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1194, __PRETTY_FUNCTION__))
;
1195 FileName = F;
1196 Err = std::move(E);
1197 }
1198
1199 static Error build(std::string F, Error E) {
1200 return Error(std::unique_ptr<FileError>(new FileError(F, E.takePayload())));
1201 }
1202
1203 std::string FileName;
1204 std::unique_ptr<ErrorInfoBase> Err;
1205};
1206
1207/// Concatenate a source file path and/or name with an Error. The resulting
1208/// Error is unchecked.
1209inline Error createFileError(std::string F, Error E) {
1210 return FileError::build(F, std::move(E));
1211}
1212
1213Error createFileError(std::string F, ErrorSuccess) = delete;
1214
1215/// Helper for check-and-exit error handling.
1216///
1217/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1218///
1219class ExitOnError {
1220public:
1221 /// Create an error on exit helper.
1222 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1223 : Banner(std::move(Banner)),
1224 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1225
1226 /// Set the banner string for any errors caught by operator().
1227 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1228
1229 /// Set the exit-code mapper function.
1230 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1231 this->GetExitCode = std::move(GetExitCode);
1232 }
1233
1234 /// Check Err. If it's in a failure state log the error(s) and exit.
1235 void operator()(Error Err) const { checkError(std::move(Err)); }
1236
1237 /// Check E. If it's in a success state then return the contained value. If
1238 /// it's in a failure state log the error(s) and exit.
1239 template <typename T> T operator()(Expected<T> &&E) const {
1240 checkError(E.takeError());
1241 return std::move(*E);
1242 }
1243
1244 /// Check E. If it's in a success state then return the contained reference. If
1245 /// it's in a failure state log the error(s) and exit.
1246 template <typename T> T& operator()(Expected<T&> &&E) const {
1247 checkError(E.takeError());
1248 return *E;
1249 }
1250
1251private:
1252 void checkError(Error Err) const {
1253 if (Err) {
1254 int ExitCode = GetExitCode(Err);
1255 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1256 exit(ExitCode);
1257 }
1258 }
1259
1260 std::string Banner;
1261 std::function<int(const Error &)> GetExitCode;
1262};
1263
1264/// Conversion from Error to LLVMErrorRef for C error bindings.
1265inline LLVMErrorRef wrap(Error Err) {
1266 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1267}
1268
1269/// Conversion from LLVMErrorRef to Error for C error bindings.
1270inline Error unwrap(LLVMErrorRef ErrRef) {
1271 return Error(std::unique_ptr<ErrorInfoBase>(
1272 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1273}
1274
1275} // end namespace llvm
1276
1277#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Config/abi-breaking.h"
25#include "llvm/Support/ErrorHandling.h"
26#include <algorithm>
27#include <cassert>
28#include <cstddef>
29#include <cstdint>
30#include <cstdlib>
31#include <functional>
32#include <initializer_list>
33#include <iterator>
34#include <limits>
35#include <memory>
36#include <tuple>
37#include <type_traits>
38#include <utility>
39
40#ifdef EXPENSIVE_CHECKS
41#include <random> // for std::mt19937
42#endif
43
44namespace llvm {
45
46// Only used by compiler if both template types are the same. Useful when
47// using SFINAE to test for the existence of member functions.
48template <typename T, T> struct SameType;
49
50namespace detail {
51
52template <typename RangeT>
53using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
54
55template <typename RangeT>
56using ValueOfRange = typename std::remove_reference<decltype(
57 *std::begin(std::declval<RangeT &>()))>::type;
58
59} // end namespace detail
60
61//===----------------------------------------------------------------------===//
62// Extra additions to <type_traits>
63//===----------------------------------------------------------------------===//
64
65template <typename T>
66struct negation : std::integral_constant<bool, !bool(T::value)> {};
67
68template <typename...> struct conjunction : std::true_type {};
69template <typename B1> struct conjunction<B1> : B1 {};
70template <typename B1, typename... Bn>
71struct conjunction<B1, Bn...>
72 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
73
74//===----------------------------------------------------------------------===//
75// Extra additions to <functional>
76//===----------------------------------------------------------------------===//
77
78template <class Ty> struct identity {
79 using argument_type = Ty;
80
81 Ty &operator()(Ty &self) const {
82 return self;
83 }
84 const Ty &operator()(const Ty &self) const {
85 return self;
86 }
87};
88
89template <class Ty> struct less_ptr {
90 bool operator()(const Ty* left, const Ty* right) const {
91 return *left < *right;
92 }
93};
94
95template <class Ty> struct greater_ptr {
96 bool operator()(const Ty* left, const Ty* right) const {
97 return *right < *left;
98 }
99};
100
101/// An efficient, type-erasing, non-owning reference to a callable. This is
102/// intended for use as the type of a function parameter that is not used
103/// after the function in question returns.
104///
105/// This class does not own the callable, so it is not in general safe to store
106/// a function_ref.
107template<typename Fn> class function_ref;
108
109template<typename Ret, typename ...Params>
110class function_ref<Ret(Params...)> {
111 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
112 intptr_t callable;
113
114 template<typename Callable>
115 static Ret callback_fn(intptr_t callable, Params ...params) {
116 return (*reinterpret_cast<Callable*>(callable))(
117 std::forward<Params>(params)...);
118 }
119
120public:
121 function_ref() = default;
122 function_ref(std::nullptr_t) {}
123
124 template <typename Callable>
125 function_ref(Callable &&callable,
126 typename std::enable_if<
127 !std::is_same<typename std::remove_reference<Callable>::type,
128 function_ref>::value>::type * = nullptr)
129 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
130 callable(reinterpret_cast<intptr_t>(&callable)) {}
131
132 Ret operator()(Params ...params) const {
133 return callback(callable, std::forward<Params>(params)...);
134 }
135
136 operator bool() const { return callback; }
137};
138
139// deleter - Very very very simple method that is used to invoke operator
140// delete on something. It is used like this:
141//
142// for_each(V.begin(), B.end(), deleter<Interval>);
143template <class T>
144inline void deleter(T *Ptr) {
145 delete Ptr;
146}
147
148//===----------------------------------------------------------------------===//
149// Extra additions to <iterator>
150//===----------------------------------------------------------------------===//
151
152namespace adl_detail {
153
154using std::begin;
155
156template <typename ContainerTy>
157auto adl_begin(ContainerTy &&container)
158 -> decltype(begin(std::forward<ContainerTy>(container))) {
159 return begin(std::forward<ContainerTy>(container));
160}
161
162using std::end;
163
164template <typename ContainerTy>
165auto adl_end(ContainerTy &&container)
166 -> decltype(end(std::forward<ContainerTy>(container))) {
167 return end(std::forward<ContainerTy>(container));
168}
169
170using std::swap;
171
172template <typename T>
173void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
174 std::declval<T>()))) {
175 swap(std::forward<T>(lhs), std::forward<T>(rhs));
176}
177
178} // end namespace adl_detail
179
180template <typename ContainerTy>
181auto adl_begin(ContainerTy &&container)
182 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
183 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
184}
185
186template <typename ContainerTy>
187auto adl_end(ContainerTy &&container)
188 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
189 return adl_detail::adl_end(std::forward<ContainerTy>(container));
190}
191
192template <typename T>
193void adl_swap(T &&lhs, T &&rhs) noexcept(
194 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
195 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
196}
197
198// mapped_iterator - This is a simple iterator adapter that causes a function to
199// be applied whenever operator* is invoked on the iterator.
200
201template <typename ItTy, typename FuncTy,
202 typename FuncReturnTy =
203 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
204class mapped_iterator
205 : public iterator_adaptor_base<
206 mapped_iterator<ItTy, FuncTy>, ItTy,
207 typename std::iterator_traits<ItTy>::iterator_category,
208 typename std::remove_reference<FuncReturnTy>::type> {
209public:
210 mapped_iterator(ItTy U, FuncTy F)
211 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
212
213 ItTy getCurrent() { return this->I; }
214
215 FuncReturnTy operator*() { return F(*this->I); }
216
217private:
218 FuncTy F;
219};
220
221// map_iterator - Provide a convenient way to create mapped_iterators, just like
222// make_pair is useful for creating pairs...
223template <class ItTy, class FuncTy>
224inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
225 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
226}
227
228/// Helper to determine if type T has a member called rbegin().
229template <typename Ty> class has_rbegin_impl {
230 using yes = char[1];
231 using no = char[2];
232
233 template <typename Inner>
234 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
235
236 template <typename>
237 static no& test(...);
238
239public:
240 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
241};
242
243/// Metafunction to determine if T& or T has a member called rbegin().
244template <typename Ty>
245struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
246};
247
248// Returns an iterator_range over the given container which iterates in reverse.
249// Note that the container must have rbegin()/rend() methods for this to work.
250template <typename ContainerTy>
251auto reverse(ContainerTy &&C,
252 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
253 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
254 return make_range(C.rbegin(), C.rend());
255}
256
257// Returns a std::reverse_iterator wrapped around the given iterator.
258template <typename IteratorTy>
259std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
260 return std::reverse_iterator<IteratorTy>(It);
261}
262
263// Returns an iterator_range over the given container which iterates in reverse.
264// Note that the container must have begin()/end() methods which return
265// bidirectional iterators for this to work.
266template <typename ContainerTy>
267auto reverse(
268 ContainerTy &&C,
269 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
270 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
271 llvm::make_reverse_iterator(std::begin(C)))) {
272 return make_range(llvm::make_reverse_iterator(std::end(C)),
273 llvm::make_reverse_iterator(std::begin(C)));
274}
275
276/// An iterator adaptor that filters the elements of given inner iterators.
277///
278/// The predicate parameter should be a callable object that accepts the wrapped
279/// iterator's reference type and returns a bool. When incrementing or
280/// decrementing the iterator, it will call the predicate on each element and
281/// skip any where it returns false.
282///
283/// \code
284/// int A[] = { 1, 2, 3, 4 };
285/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
286/// // R contains { 1, 3 }.
287/// \endcode
288///
289/// Note: filter_iterator_base implements support for forward iteration.
290/// filter_iterator_impl exists to provide support for bidirectional iteration,
291/// conditional on whether the wrapped iterator supports it.
292template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
293class filter_iterator_base
294 : public iterator_adaptor_base<
295 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
296 WrappedIteratorT,
297 typename std::common_type<
298 IterTag, typename std::iterator_traits<
299 WrappedIteratorT>::iterator_category>::type> {
300 using BaseT = iterator_adaptor_base<
301 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
302 WrappedIteratorT,
303 typename std::common_type<
304 IterTag, typename std::iterator_traits<
305 WrappedIteratorT>::iterator_category>::type>;
306
307protected:
308 WrappedIteratorT End;
309 PredicateT Pred;
310
311 void findNextValid() {
312 while (this->I != End && !Pred(*this->I))
313 BaseT::operator++();
314 }
315
316 // Construct the iterator. The begin iterator needs to know where the end
317 // is, so that it can properly stop when it gets there. The end iterator only
318 // needs the predicate to support bidirectional iteration.
319 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
320 PredicateT Pred)
321 : BaseT(Begin), End(End), Pred(Pred) {
322 findNextValid();
323 }
324
325public:
326 using BaseT::operator++;
327
328 filter_iterator_base &operator++() {
329 BaseT::operator++();
330 findNextValid();
331 return *this;
332 }
333};
334
335/// Specialization of filter_iterator_base for forward iteration only.
336template <typename WrappedIteratorT, typename PredicateT,
337 typename IterTag = std::forward_iterator_tag>
338class filter_iterator_impl
339 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
340 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
341
342public:
343 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
344 PredicateT Pred)
345 : BaseT(Begin, End, Pred) {}
346};
347
348/// Specialization of filter_iterator_base for bidirectional iteration.
349template <typename WrappedIteratorT, typename PredicateT>
350class filter_iterator_impl<WrappedIteratorT, PredicateT,
351 std::bidirectional_iterator_tag>
352 : public filter_iterator_base<WrappedIteratorT, PredicateT,
353 std::bidirectional_iterator_tag> {
354 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
355 std::bidirectional_iterator_tag>;
356 void findPrevValid() {
357 while (!this->Pred(*this->I))
358 BaseT::operator--();
359 }
360
361public:
362 using BaseT::operator--;
363
364 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
365 PredicateT Pred)
366 : BaseT(Begin, End, Pred) {}
367
368 filter_iterator_impl &operator--() {
369 BaseT::operator--();
370 findPrevValid();
371 return *this;
372 }
373};
374
375namespace detail {
376
377template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
378 using type = std::forward_iterator_tag;
379};
380
381template <> struct fwd_or_bidi_tag_impl<true> {
382 using type = std::bidirectional_iterator_tag;
383};
384
385/// Helper which sets its type member to forward_iterator_tag if the category
386/// of \p IterT does not derive from bidirectional_iterator_tag, and to
387/// bidirectional_iterator_tag otherwise.
388template <typename IterT> struct fwd_or_bidi_tag {
389 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
390 std::bidirectional_iterator_tag,
391 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
392};
393
394} // namespace detail
395
396/// Defines filter_iterator to a suitable specialization of
397/// filter_iterator_impl, based on the underlying iterator's category.
398template <typename WrappedIteratorT, typename PredicateT>
399using filter_iterator = filter_iterator_impl<
400 WrappedIteratorT, PredicateT,
401 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
402
403/// Convenience function that takes a range of elements and a predicate,
404/// and return a new filter_iterator range.
405///
406/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
407/// lifetime of that temporary is not kept by the returned range object, and the
408/// temporary is going to be dropped on the floor after the make_iterator_range
409/// full expression that contains this function call.
410template <typename RangeT, typename PredicateT>
411iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
412make_filter_range(RangeT &&Range, PredicateT Pred) {
413 using FilterIteratorT =
414 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
415 return make_range(
416 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
417 std::end(std::forward<RangeT>(Range)), Pred),
418 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
419 std::end(std::forward<RangeT>(Range)), Pred));
420}
421
422/// A pseudo-iterator adaptor that is designed to implement "early increment"
423/// style loops.
424///
425/// This is *not a normal iterator* and should almost never be used directly. It
426/// is intended primarily to be used with range based for loops and some range
427/// algorithms.
428///
429/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
430/// somewhere between them. The constraints of these iterators are:
431///
432/// - On construction or after being incremented, it is comparable and
433/// dereferencable. It is *not* incrementable.
434/// - After being dereferenced, it is neither comparable nor dereferencable, it
435/// is only incrementable.
436///
437/// This means you can only dereference the iterator once, and you can only
438/// increment it once between dereferences.
439template <typename WrappedIteratorT>
440class early_inc_iterator_impl
441 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
442 WrappedIteratorT, std::input_iterator_tag> {
443 using BaseT =
444 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
445 WrappedIteratorT, std::input_iterator_tag>;
446
447 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
448
449protected:
450#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
451 bool IsEarlyIncremented = false;
452#endif
453
454public:
455 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
456
457 using BaseT::operator*;
458 typename BaseT::reference operator*() {
459#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
460 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 460, __PRETTY_FUNCTION__))
;
461 IsEarlyIncremented = true;
462#endif
463 return *(this->I)++;
464 }
465
466 using BaseT::operator++;
467 early_inc_iterator_impl &operator++() {
468#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
469 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 469, __PRETTY_FUNCTION__))
;
470 IsEarlyIncremented = false;
471#endif
472 return *this;
473 }
474
475 using BaseT::operator==;
476 bool operator==(const early_inc_iterator_impl &RHS) const {
477#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
478 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 478, __PRETTY_FUNCTION__))
;
479#endif
480 return BaseT::operator==(RHS);
481 }
482};
483
484/// Make a range that does early increment to allow mutation of the underlying
485/// range without disrupting iteration.
486///
487/// The underlying iterator will be incremented immediately after it is
488/// dereferenced, allowing deletion of the current node or insertion of nodes to
489/// not disrupt iteration provided they do not invalidate the *next* iterator --
490/// the current iterator can be invalidated.
491///
492/// This requires a very exact pattern of use that is only really suitable to
493/// range based for loops and other range algorithms that explicitly guarantee
494/// to dereference exactly once each element, and to increment exactly once each
495/// element.
496template <typename RangeT>
497iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
498make_early_inc_range(RangeT &&Range) {
499 using EarlyIncIteratorT =
500 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
501 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
502 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
503}
504
505// forward declarations required by zip_shortest/zip_first
506template <typename R, typename UnaryPredicate>
507bool all_of(R &&range, UnaryPredicate P);
508
509template <size_t... I> struct index_sequence;
510
511template <class... Ts> struct index_sequence_for;
512
513namespace detail {
514
515using std::declval;
516
517// We have to alias this since inlining the actual type at the usage site
518// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
519template<typename... Iters> struct ZipTupleType {
520 using type = std::tuple<decltype(*declval<Iters>())...>;
521};
522
523template <typename ZipType, typename... Iters>
524using zip_traits = iterator_facade_base<
525 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
526 typename std::iterator_traits<
527 Iters>::iterator_category...>::type,
528 // ^ TODO: Implement random access methods.
529 typename ZipTupleType<Iters...>::type,
530 typename std::iterator_traits<typename std::tuple_element<
531 0, std::tuple<Iters...>>::type>::difference_type,
532 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
533 // inner iterators have the same difference_type. It would fail if, for
534 // instance, the second field's difference_type were non-numeric while the
535 // first is.
536 typename ZipTupleType<Iters...>::type *,
537 typename ZipTupleType<Iters...>::type>;
538
539template <typename ZipType, typename... Iters>
540struct zip_common : public zip_traits<ZipType, Iters...> {
541 using Base = zip_traits<ZipType, Iters...>;
542 using value_type = typename Base::value_type;
543
544 std::tuple<Iters...> iterators;
545
546protected:
547 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
548 return value_type(*std::get<Ns>(iterators)...);
549 }
550
551 template <size_t... Ns>
552 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
553 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
554 }
555
556 template <size_t... Ns>
557 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
558 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
559 }
560
561public:
562 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
563
564 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
565
566 const value_type operator*() const {
567 return deref(index_sequence_for<Iters...>{});
568 }
569
570 ZipType &operator++() {
571 iterators = tup_inc(index_sequence_for<Iters...>{});
572 return *reinterpret_cast<ZipType *>(this);
573 }
574
575 ZipType &operator--() {
576 static_assert(Base::IsBidirectional,
577 "All inner iterators must be at least bidirectional.");
578 iterators = tup_dec(index_sequence_for<Iters...>{});
579 return *reinterpret_cast<ZipType *>(this);
580 }
581};
582
583template <typename... Iters>
584struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
585 using Base = zip_common<zip_first<Iters...>, Iters...>;
586
587 bool operator==(const zip_first<Iters...> &other) const {
588 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
589 }
590
591 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
592};
593
594template <typename... Iters>
595class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
596 template <size_t... Ns>
597 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
598 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
599 std::get<Ns>(other.iterators)...},
600 identity<bool>{});
601 }
602
603public:
604 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
605
606 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
607
608 bool operator==(const zip_shortest<Iters...> &other) const {
609 return !test(other, index_sequence_for<Iters...>{});
610 }
611};
612
613template <template <typename...> class ItType, typename... Args> class zippy {
614public:
615 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
616 using iterator_category = typename iterator::iterator_category;
617 using value_type = typename iterator::value_type;
618 using difference_type = typename iterator::difference_type;
619 using pointer = typename iterator::pointer;
620 using reference = typename iterator::reference;
621
622private:
623 std::tuple<Args...> ts;
624
625 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
626 return iterator(std::begin(std::get<Ns>(ts))...);
627 }
628 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
629 return iterator(std::end(std::get<Ns>(ts))...);
630 }
631
632public:
633 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
634
635 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
636 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
637};
638
639} // end namespace detail
640
641/// zip iterator for two or more iteratable types.
642template <typename T, typename U, typename... Args>
643detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
644 Args &&... args) {
645 return detail::zippy<detail::zip_shortest, T, U, Args...>(
646 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
647}
648
649/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
650/// be the shortest.
651template <typename T, typename U, typename... Args>
652detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
653 Args &&... args) {
654 return detail::zippy<detail::zip_first, T, U, Args...>(
655 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
656}
657
658/// Iterator wrapper that concatenates sequences together.
659///
660/// This can concatenate different iterators, even with different types, into
661/// a single iterator provided the value types of all the concatenated
662/// iterators expose `reference` and `pointer` types that can be converted to
663/// `ValueT &` and `ValueT *` respectively. It doesn't support more
664/// interesting/customized pointer or reference types.
665///
666/// Currently this only supports forward or higher iterator categories as
667/// inputs and always exposes a forward iterator interface.
668template <typename ValueT, typename... IterTs>
669class concat_iterator
670 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
671 std::forward_iterator_tag, ValueT> {
672 using BaseT = typename concat_iterator::iterator_facade_base;
673
674 /// We store both the current and end iterators for each concatenated
675 /// sequence in a tuple of pairs.
676 ///
677 /// Note that something like iterator_range seems nice at first here, but the
678 /// range properties are of little benefit and end up getting in the way
679 /// because we need to do mutation on the current iterators.
680 std::tuple<IterTs...> Begins;
681 std::tuple<IterTs...> Ends;
682
683 /// Attempts to increment a specific iterator.
684 ///
685 /// Returns true if it was able to increment the iterator. Returns false if
686 /// the iterator is already at the end iterator.
687 template <size_t Index> bool incrementHelper() {
688 auto &Begin = std::get<Index>(Begins);
689 auto &End = std::get<Index>(Ends);
690 if (Begin == End)
691 return false;
692
693 ++Begin;
694 return true;
695 }
696
697 /// Increments the first non-end iterator.
698 ///
699 /// It is an error to call this with all iterators at the end.
700 template <size_t... Ns> void increment(index_sequence<Ns...>) {
701 // Build a sequence of functions to increment each iterator if possible.
702 bool (concat_iterator::*IncrementHelperFns[])() = {
703 &concat_iterator::incrementHelper<Ns>...};
704
705 // Loop over them, and stop as soon as we succeed at incrementing one.
706 for (auto &IncrementHelperFn : IncrementHelperFns)
707 if ((this->*IncrementHelperFn)())
708 return;
709
710 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 710)
;
711 }
712
713 /// Returns null if the specified iterator is at the end. Otherwise,
714 /// dereferences the iterator and returns the address of the resulting
715 /// reference.
716 template <size_t Index> ValueT *getHelper() const {
717 auto &Begin = std::get<Index>(Begins);
718 auto &End = std::get<Index>(Ends);
719 if (Begin == End)
720 return nullptr;
721
722 return &*Begin;
723 }
724
725 /// Finds the first non-end iterator, dereferences, and returns the resulting
726 /// reference.
727 ///
728 /// It is an error to call this with all iterators at the end.
729 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
730 // Build a sequence of functions to get from iterator if possible.
731 ValueT *(concat_iterator::*GetHelperFns[])() const = {
732 &concat_iterator::getHelper<Ns>...};
733
734 // Loop over them, and return the first result we find.
735 for (auto &GetHelperFn : GetHelperFns)
736 if (ValueT *P = (this->*GetHelperFn)())
737 return *P;
738
739 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 739)
;
740 }
741
742public:
743 /// Constructs an iterator from a squence of ranges.
744 ///
745 /// We need the full range to know how to switch between each of the
746 /// iterators.
747 template <typename... RangeTs>
748 explicit concat_iterator(RangeTs &&... Ranges)
749 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
750
751 using BaseT::operator++;
752
753 concat_iterator &operator++() {
754 increment(index_sequence_for<IterTs...>());
755 return *this;
756 }
757
758 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
759
760 bool operator==(const concat_iterator &RHS) const {
761 return Begins == RHS.Begins && Ends == RHS.Ends;
762 }
763};
764
765namespace detail {
766
767/// Helper to store a sequence of ranges being concatenated and access them.
768///
769/// This is designed to facilitate providing actual storage when temporaries
770/// are passed into the constructor such that we can use it as part of range
771/// based for loops.
772template <typename ValueT, typename... RangeTs> class concat_range {
773public:
774 using iterator =
775 concat_iterator<ValueT,
776 decltype(std::begin(std::declval<RangeTs &>()))...>;
777
778private:
779 std::tuple<RangeTs...> Ranges;
780
781 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
782 return iterator(std::get<Ns>(Ranges)...);
783 }
784 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
785 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
786 std::end(std::get<Ns>(Ranges)))...);
787 }
788
789public:
790 concat_range(RangeTs &&... Ranges)
791 : Ranges(std::forward<RangeTs>(Ranges)...) {}
792
793 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
794 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
795};
796
797} // end namespace detail
798
799/// Concatenated range across two or more ranges.
800///
801/// The desired value type must be explicitly specified.
802template <typename ValueT, typename... RangeTs>
803detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
804 static_assert(sizeof...(RangeTs) > 1,
805 "Need more than one range to concatenate!");
806 return detail::concat_range<ValueT, RangeTs...>(
807 std::forward<RangeTs>(Ranges)...);
808}
809
810//===----------------------------------------------------------------------===//
811// Extra additions to <utility>
812//===----------------------------------------------------------------------===//
813
814/// Function object to check whether the first component of a std::pair
815/// compares less than the first component of another std::pair.
816struct less_first {
817 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
818 return lhs.first < rhs.first;
819 }
820};
821
822/// Function object to check whether the second component of a std::pair
823/// compares less than the second component of another std::pair.
824struct less_second {
825 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
826 return lhs.second < rhs.second;
827 }
828};
829
830/// \brief Function object to apply a binary function to the first component of
831/// a std::pair.
832template<typename FuncTy>
833struct on_first {
834 FuncTy func;
835
836 template <typename T>
837 auto operator()(const T &lhs, const T &rhs) const
838 -> decltype(func(lhs.first, rhs.first)) {
839 return func(lhs.first, rhs.first);
840 }
841};
842
843// A subset of N3658. More stuff can be added as-needed.
844
845/// Represents a compile-time sequence of integers.
846template <class T, T... I> struct integer_sequence {
847 using value_type = T;
848
849 static constexpr size_t size() { return sizeof...(I); }
850};
851
852/// Alias for the common case of a sequence of size_ts.
853template <size_t... I>
854struct index_sequence : integer_sequence<std::size_t, I...> {};
855
856template <std::size_t N, std::size_t... I>
857struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
858template <std::size_t... I>
859struct build_index_impl<0, I...> : index_sequence<I...> {};
860
861/// Creates a compile-time integer sequence for a parameter pack.
862template <class... Ts>
863struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
864
865/// Utility type to build an inheritance chain that makes it easy to rank
866/// overload candidates.
867template <int N> struct rank : rank<N - 1> {};
868template <> struct rank<0> {};
869
870/// traits class for checking whether type T is one of any of the given
871/// types in the variadic list.
872template <typename T, typename... Ts> struct is_one_of {
873 static const bool value = false;
874};
875
876template <typename T, typename U, typename... Ts>
877struct is_one_of<T, U, Ts...> {
878 static const bool value =
879 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
880};
881
882/// traits class for checking whether type T is a base class for all
883/// the given types in the variadic list.
884template <typename T, typename... Ts> struct are_base_of {
885 static const bool value = true;
886};
887
888template <typename T, typename U, typename... Ts>
889struct are_base_of<T, U, Ts...> {
890 static const bool value =
891 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
892};
893
894//===----------------------------------------------------------------------===//
895// Extra additions for arrays
896//===----------------------------------------------------------------------===//
897
898/// Find the length of an array.
899template <class T, std::size_t N>
900constexpr inline size_t array_lengthof(T (&)[N]) {
901 return N;
902}
903
904/// Adapt std::less<T> for array_pod_sort.
905template<typename T>
906inline int array_pod_sort_comparator(const void *P1, const void *P2) {
907 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
908 *reinterpret_cast<const T*>(P2)))
909 return -1;
910 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
911 *reinterpret_cast<const T*>(P1)))
912 return 1;
913 return 0;
914}
915
916/// get_array_pod_sort_comparator - This is an internal helper function used to
917/// get type deduction of T right.
918template<typename T>
919inline int (*get_array_pod_sort_comparator(const T &))
920 (const void*, const void*) {
921 return array_pod_sort_comparator<T>;
922}
923
924/// array_pod_sort - This sorts an array with the specified start and end
925/// extent. This is just like std::sort, except that it calls qsort instead of
926/// using an inlined template. qsort is slightly slower than std::sort, but
927/// most sorts are not performance critical in LLVM and std::sort has to be
928/// template instantiated for each type, leading to significant measured code
929/// bloat. This function should generally be used instead of std::sort where
930/// possible.
931///
932/// This function assumes that you have simple POD-like types that can be
933/// compared with std::less and can be moved with memcpy. If this isn't true,
934/// you should use std::sort.
935///
936/// NOTE: If qsort_r were portable, we could allow a custom comparator and
937/// default to std::less.
938template<class IteratorTy>
939inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
940 // Don't inefficiently call qsort with one element or trigger undefined
941 // behavior with an empty sequence.
942 auto NElts = End - Start;
943 if (NElts <= 1) return;
944#ifdef EXPENSIVE_CHECKS
945 std::mt19937 Generator(std::random_device{}());
946 std::shuffle(Start, End, Generator);
947#endif
948 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
949}
950
951template <class IteratorTy>
952inline void array_pod_sort(
953 IteratorTy Start, IteratorTy End,
954 int (*Compare)(
955 const typename std::iterator_traits<IteratorTy>::value_type *,
956 const typename std::iterator_traits<IteratorTy>::value_type *)) {
957 // Don't inefficiently call qsort with one element or trigger undefined
958 // behavior with an empty sequence.
959 auto NElts = End - Start;
960 if (NElts <= 1) return;
961#ifdef EXPENSIVE_CHECKS
962 std::mt19937 Generator(std::random_device{}());
963 std::shuffle(Start, End, Generator);
964#endif
965 qsort(&*Start, NElts, sizeof(*Start),
966 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
967}
968
969// Provide wrappers to std::sort which shuffle the elements before sorting
970// to help uncover non-deterministic behavior (PR35135).
971template <typename IteratorTy>
972inline void sort(IteratorTy Start, IteratorTy End) {
973#ifdef EXPENSIVE_CHECKS
974 std::mt19937 Generator(std::random_device{}());
975 std::shuffle(Start, End, Generator);
976#endif
977 std::sort(Start, End);
978}
979
980template <typename Container> inline void sort(Container &&C) {
981 llvm::sort(adl_begin(C), adl_end(C));
982}
983
984template <typename IteratorTy, typename Compare>
985inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
986#ifdef EXPENSIVE_CHECKS
987 std::mt19937 Generator(std::random_device{}());
988 std::shuffle(Start, End, Generator);
989#endif
990 std::sort(Start, End, Comp);
991}
992
993template <typename Container, typename Compare>
994inline void sort(Container &&C, Compare Comp) {
995 llvm::sort(adl_begin(C), adl_end(C), Comp);
996}
997
998//===----------------------------------------------------------------------===//
999// Extra additions to <algorithm>
1000//===----------------------------------------------------------------------===//
1001
1002/// For a container of pointers, deletes the pointers and then clears the
1003/// container.
1004template<typename Container>
1005void DeleteContainerPointers(Container &C) {
1006 for (auto V : C)
1007 delete V;
1008 C.clear();
1009}
1010
1011/// In a container of pairs (usually a map) whose second element is a pointer,
1012/// deletes the second elements and then clears the container.
1013template<typename Container>
1014void DeleteContainerSeconds(Container &C) {
1015 for (auto &V : C)
1016 delete V.second;
1017 C.clear();
1018}
1019
1020/// Get the size of a range. This is a wrapper function around std::distance
1021/// which is only enabled when the operation is O(1).
1022template <typename R>
1023auto size(R &&Range, typename std::enable_if<
1024 std::is_same<typename std::iterator_traits<decltype(
1025 Range.begin())>::iterator_category,
1026 std::random_access_iterator_tag>::value,
1027 void>::type * = nullptr)
1028 -> decltype(std::distance(Range.begin(), Range.end())) {
1029 return std::distance(Range.begin(), Range.end());
1030}
1031
1032/// Provide wrappers to std::for_each which take ranges instead of having to
1033/// pass begin/end explicitly.
1034template <typename R, typename UnaryPredicate>
1035UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1036 return std::for_each(adl_begin(Range), adl_end(Range), P);
1037}
1038
1039/// Provide wrappers to std::all_of which take ranges instead of having to pass
1040/// begin/end explicitly.
1041template <typename R, typename UnaryPredicate>
1042bool all_of(R &&Range, UnaryPredicate P) {
1043 return std::all_of(adl_begin(Range), adl_end(Range), P);
1044}
1045
1046/// Provide wrappers to std::any_of which take ranges instead of having to pass
1047/// begin/end explicitly.
1048template <typename R, typename UnaryPredicate>
1049bool any_of(R &&Range, UnaryPredicate P) {
1050 return std::any_of(adl_begin(Range), adl_end(Range), P);
1051}
1052
1053/// Provide wrappers to std::none_of which take ranges instead of having to pass
1054/// begin/end explicitly.
1055template <typename R, typename UnaryPredicate>
1056bool none_of(R &&Range, UnaryPredicate P) {
1057 return std::none_of(adl_begin(Range), adl_end(Range), P);
1058}
1059
1060/// Provide wrappers to std::find which take ranges instead of having to pass
1061/// begin/end explicitly.
1062template <typename R, typename T>
1063auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1064 return std::find(adl_begin(Range), adl_end(Range), Val);
1065}
1066
1067/// Provide wrappers to std::find_if which take ranges instead of having to pass
1068/// begin/end explicitly.
1069template <typename R, typename UnaryPredicate>
1070auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1071 return std::find_if(adl_begin(Range), adl_end(Range), P);
1072}
1073
1074template <typename R, typename UnaryPredicate>
1075auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1076 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1077}
1078
1079/// Provide wrappers to std::remove_if which take ranges instead of having to
1080/// pass begin/end explicitly.
1081template <typename R, typename UnaryPredicate>
1082auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1083 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1084}
1085
1086/// Provide wrappers to std::copy_if which take ranges instead of having to
1087/// pass begin/end explicitly.
1088template <typename R, typename OutputIt, typename UnaryPredicate>
1089OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1090 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1091}
1092
1093template <typename R, typename OutputIt>
1094OutputIt copy(R &&Range, OutputIt Out) {
1095 return std::copy(adl_begin(Range), adl_end(Range), Out);
1096}
1097
1098/// Wrapper function around std::find to detect if an element exists
1099/// in a container.
1100template <typename R, typename E>
1101bool is_contained(R &&Range, const E &Element) {
1102 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1103}
1104
1105/// Wrapper function around std::count to count the number of times an element
1106/// \p Element occurs in the given range \p Range.
1107template <typename R, typename E>
1108auto count(R &&Range, const E &Element) ->
1109 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1110 return std::count(adl_begin(Range), adl_end(Range), Element);
1111}
1112
1113/// Wrapper function around std::count_if to count the number of times an
1114/// element satisfying a given predicate occurs in a range.
1115template <typename R, typename UnaryPredicate>
1116auto count_if(R &&Range, UnaryPredicate P) ->
1117 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1118 return std::count_if(adl_begin(Range), adl_end(Range), P);
1119}
1120
1121/// Wrapper function around std::transform to apply a function to a range and
1122/// store the result elsewhere.
1123template <typename R, typename OutputIt, typename UnaryPredicate>
1124OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1125 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1126}
1127
1128/// Provide wrappers to std::partition which take ranges instead of having to
1129/// pass begin/end explicitly.
1130template <typename R, typename UnaryPredicate>
1131auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1132 return std::partition(adl_begin(Range), adl_end(Range), P);
1133}
1134
1135/// Provide wrappers to std::lower_bound which take ranges instead of having to
1136/// pass begin/end explicitly.
1137template <typename R, typename ForwardIt>
1138auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1139 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1140}
1141
1142template <typename R, typename ForwardIt, typename Compare>
1143auto lower_bound(R &&Range, ForwardIt I, Compare C)
1144 -> decltype(adl_begin(Range)) {
1145 return std::lower_bound(adl_begin(Range), adl_end(Range), I, C);
1146}
1147
1148/// Provide wrappers to std::upper_bound which take ranges instead of having to
1149/// pass begin/end explicitly.
1150template <typename R, typename ForwardIt>
1151auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1152 return std::upper_bound(adl_begin(Range), adl_end(Range), I);
1153}
1154
1155template <typename R, typename ForwardIt, typename Compare>
1156auto upper_bound(R &&Range, ForwardIt I, Compare C)
1157 -> decltype(adl_begin(Range)) {
1158 return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
1159}
1160/// Wrapper function around std::equal to detect if all elements
1161/// in a container are same.
1162template <typename R>
1163bool is_splat(R &&Range) {
1164 size_t range_size = size(Range);
1165 return range_size != 0 && (range_size == 1 ||
1166 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1167}
1168
1169/// Given a range of type R, iterate the entire range and return a
1170/// SmallVector with elements of the vector. This is useful, for example,
1171/// when you want to iterate a range and then sort the results.
1172template <unsigned Size, typename R>
1173SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1174to_vector(R &&Range) {
1175 return {adl_begin(Range), adl_end(Range)};
1176}
1177
1178/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1179/// `erase_if` which is equivalent to:
1180///
1181/// C.erase(remove_if(C, pred), C.end());
1182///
1183/// This version works for any container with an erase method call accepting
1184/// two iterators.
1185template <typename Container, typename UnaryPredicate>
1186void erase_if(Container &C, UnaryPredicate P) {
1187 C.erase(remove_if(C, P), C.end());
1188}
1189
1190//===----------------------------------------------------------------------===//
1191// Extra additions to <memory>
1192//===----------------------------------------------------------------------===//
1193
1194// Implement make_unique according to N3656.
1195
1196/// Constructs a `new T()` with the given args and returns a
1197/// `unique_ptr<T>` which owns the object.
1198///
1199/// Example:
1200///
1201/// auto p = make_unique<int>();
1202/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1203template <class T, class... Args>
1204typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1205make_unique(Args &&... args) {
1206 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
11
Memory is allocated
1207}
1208
1209/// Constructs a `new T[n]` with the given args and returns a
1210/// `unique_ptr<T[]>` which owns the object.
1211///
1212/// \param n size of the new array.
1213///
1214/// Example:
1215///
1216/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1217template <class T>
1218typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1219 std::unique_ptr<T>>::type
1220make_unique(size_t n) {
1221 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1222}
1223
1224/// This function isn't used and is only here to provide better compile errors.
1225template <class T, class... Args>
1226typename std::enable_if<std::extent<T>::value != 0>::type
1227make_unique(Args &&...) = delete;
1228
1229struct FreeDeleter {
1230 void operator()(void* v) {
1231 ::free(v);
1232 }
1233};
1234
1235template<typename First, typename Second>
1236struct pair_hash {
1237 size_t operator()(const std::pair<First, Second> &P) const {
1238 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1239 }
1240};
1241
1242/// A functor like C++14's std::less<void> in its absence.
1243struct less {
1244 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1245 return std::forward<A>(a) < std::forward<B>(b);
1246 }
1247};
1248
1249/// A functor like C++14's std::equal<void> in its absence.
1250struct equal {
1251 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1252 return std::forward<A>(a) == std::forward<B>(b);
1253 }
1254};
1255
1256/// Binary functor that adapts to any other binary functor after dereferencing
1257/// operands.
1258template <typename T> struct deref {
1259 T func;
1260
1261 // Could be further improved to cope with non-derivable functors and
1262 // non-binary functors (should be a variadic template member function
1263 // operator()).
1264 template <typename A, typename B>
1265 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1266 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 1266, __PRETTY_FUNCTION__))
;
1267 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 1267, __PRETTY_FUNCTION__))
;
1268 return func(*lhs, *rhs);
1269 }
1270};
1271
1272namespace detail {
1273
1274template <typename R> class enumerator_iter;
1275
1276template <typename R> struct result_pair {
1277 friend class enumerator_iter<R>;
1278
1279 result_pair() = default;
1280 result_pair(std::size_t Index, IterOfRange<R> Iter)
1281 : Index(Index), Iter(Iter) {}
1282
1283 result_pair<R> &operator=(const result_pair<R> &Other) {
1284 Index = Other.Index;
1285 Iter = Other.Iter;
1286 return *this;
1287 }
1288
1289 std::size_t index() const { return Index; }
1290 const ValueOfRange<R> &value() const { return *Iter; }
1291 ValueOfRange<R> &value() { return *Iter; }
1292
1293private:
1294 std::size_t Index = std::numeric_limits<std::size_t>::max();
1295 IterOfRange<R> Iter;
1296};
1297
1298template <typename R>
1299class enumerator_iter
1300 : public iterator_facade_base<
1301 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1302 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1303 typename std::iterator_traits<IterOfRange<R>>::pointer,
1304 typename std::iterator_traits<IterOfRange<R>>::reference> {
1305 using result_type = result_pair<R>;
1306
1307public:
1308 explicit enumerator_iter(IterOfRange<R> EndIter)
1309 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1310
1311 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1312 : Result(Index, Iter) {}
1313
1314 result_type &operator*() { return Result; }
1315 const result_type &operator*() const { return Result; }
1316
1317 enumerator_iter<R> &operator++() {
1318 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 1318, __PRETTY_FUNCTION__))
;
1319 ++Result.Iter;
1320 ++Result.Index;
1321 return *this;
1322 }
1323
1324 bool operator==(const enumerator_iter<R> &RHS) const {
1325 // Don't compare indices here, only iterators. It's possible for an end
1326 // iterator to have different indices depending on whether it was created
1327 // by calling std::end() versus incrementing a valid iterator.
1328 return Result.Iter == RHS.Result.Iter;
1329 }
1330
1331 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1332 Result = Other.Result;
1333 return *this;
1334 }
1335
1336private:
1337 result_type Result;
1338};
1339
1340template <typename R> class enumerator {
1341public:
1342 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1343
1344 enumerator_iter<R> begin() {
1345 return enumerator_iter<R>(0, std::begin(TheRange));
1346 }
1347
1348 enumerator_iter<R> end() {
1349 return enumerator_iter<R>(std::end(TheRange));
1350 }
1351
1352private:
1353 R TheRange;
1354};
1355
1356} // end namespace detail
1357
1358/// Given an input range, returns a new range whose values are are pair (A,B)
1359/// such that A is the 0-based index of the item in the sequence, and B is
1360/// the value from the original sequence. Example:
1361///
1362/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1363/// for (auto X : enumerate(Items)) {
1364/// printf("Item %d - %c\n", X.index(), X.value());
1365/// }
1366///
1367/// Output:
1368/// Item 0 - A
1369/// Item 1 - B
1370/// Item 2 - C
1371/// Item 3 - D
1372///
1373template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1374 return detail::enumerator<R>(std::forward<R>(TheRange));
1375}
1376
1377namespace detail {
1378
1379template <typename F, typename Tuple, std::size_t... I>
1380auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1381 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1382 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1383}
1384
1385} // end namespace detail
1386
1387/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1388/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1389/// return the result.
1390template <typename F, typename Tuple>
1391auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1392 std::forward<F>(f), std::forward<Tuple>(t),
1393 build_index_impl<
1394 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1395 using Indices = build_index_impl<
1396 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1397
1398 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1399 Indices{});
1400}
1401
1402} // end namespace llvm
1403
1404#endif // LLVM_ADT_STLEXTRAS_H