Bug Summary

File:tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp
Warning:line 5040, column 17
1st function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ObjectFileMachO.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D HAVE_ROUND -D LLDB_CONFIGURATION_RELEASE -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/source/Plugins/ObjectFile/Mach-O -I /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Plugins/ObjectFile/Mach-O -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/include -I /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -I /usr/include/python2.7 -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/../clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/. -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -Wno-deprecated-declarations -Wno-unknown-pragmas -Wno-strict-aliasing -Wno-deprecated-register -Wno-vla-extension -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/source/Plugins/ObjectFile/Mach-O -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp -faddrsig
1//===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10// C Includes
11// C++ Includes
12// Other libraries and framework includes
13#include "llvm/ADT/StringRef.h"
14
15// Project includes
16#include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
17#include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
18#include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
19#include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
20#include "lldb/Core/Debugger.h"
21#include "lldb/Core/FileSpecList.h"
22#include "lldb/Core/Module.h"
23#include "lldb/Core/ModuleSpec.h"
24#include "lldb/Core/PluginManager.h"
25#include "lldb/Core/RangeMap.h"
26#include "lldb/Core/Section.h"
27#include "lldb/Core/StreamFile.h"
28#include "lldb/Host/Host.h"
29#include "lldb/Symbol/DWARFCallFrameInfo.h"
30#include "lldb/Symbol/ObjectFile.h"
31#include "lldb/Target/DynamicLoader.h"
32#include "lldb/Target/MemoryRegionInfo.h"
33#include "lldb/Target/Platform.h"
34#include "lldb/Target/Process.h"
35#include "lldb/Target/SectionLoadList.h"
36#include "lldb/Target/Target.h"
37#include "lldb/Target/Thread.h"
38#include "lldb/Target/ThreadList.h"
39#include "lldb/Utility/ArchSpec.h"
40#include "lldb/Utility/DataBuffer.h"
41#include "lldb/Utility/FileSpec.h"
42#include "lldb/Utility/Log.h"
43#include "lldb/Utility/RegisterValue.h"
44#include "lldb/Utility/Status.h"
45#include "lldb/Utility/StreamString.h"
46#include "lldb/Utility/Timer.h"
47#include "lldb/Utility/UUID.h"
48
49#include "lldb/Host/SafeMachO.h"
50
51#include "llvm/Support/MemoryBuffer.h"
52
53#include "ObjectFileMachO.h"
54
55#if defined(__APPLE__) && \
56 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
57// GetLLDBSharedCacheUUID() needs to call dlsym()
58#include <dlfcn.h>
59#endif
60
61#ifndef __APPLE__
62#include "Utility/UuidCompatibility.h"
63#else
64#include <uuid/uuid.h>
65#endif
66
67#define THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull 0xfffffffffffffffeull
68using namespace lldb;
69using namespace lldb_private;
70using namespace llvm::MachO;
71
72// Some structure definitions needed for parsing the dyld shared cache files
73// found on iOS devices.
74
75struct lldb_copy_dyld_cache_header_v1 {
76 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc.
77 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
78 uint32_t mappingCount; // number of dyld_cache_mapping_info entries
79 uint32_t imagesOffset;
80 uint32_t imagesCount;
81 uint64_t dyldBaseAddress;
82 uint64_t codeSignatureOffset;
83 uint64_t codeSignatureSize;
84 uint64_t slideInfoOffset;
85 uint64_t slideInfoSize;
86 uint64_t localSymbolsOffset;
87 uint64_t localSymbolsSize;
88 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
89 // and later
90};
91
92struct lldb_copy_dyld_cache_mapping_info {
93 uint64_t address;
94 uint64_t size;
95 uint64_t fileOffset;
96 uint32_t maxProt;
97 uint32_t initProt;
98};
99
100struct lldb_copy_dyld_cache_local_symbols_info {
101 uint32_t nlistOffset;
102 uint32_t nlistCount;
103 uint32_t stringsOffset;
104 uint32_t stringsSize;
105 uint32_t entriesOffset;
106 uint32_t entriesCount;
107};
108struct lldb_copy_dyld_cache_local_symbols_entry {
109 uint32_t dylibOffset;
110 uint32_t nlistStartIndex;
111 uint32_t nlistCount;
112};
113
114class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
115public:
116 RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
117 const DataExtractor &data)
118 : RegisterContextDarwin_x86_64(thread, 0) {
119 SetRegisterDataFrom_LC_THREAD(data);
120 }
121
122 void InvalidateAllRegisters() override {
123 // Do nothing... registers are always valid...
124 }
125
126 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
127 lldb::offset_t offset = 0;
128 SetError(GPRRegSet, Read, -1);
129 SetError(FPURegSet, Read, -1);
130 SetError(EXCRegSet, Read, -1);
131 bool done = false;
132
133 while (!done) {
134 int flavor = data.GetU32(&offset);
135 if (flavor == 0)
136 done = true;
137 else {
138 uint32_t i;
139 uint32_t count = data.GetU32(&offset);
140 switch (flavor) {
141 case GPRRegSet:
142 for (i = 0; i < count; ++i)
143 (&gpr.rax)[i] = data.GetU64(&offset);
144 SetError(GPRRegSet, Read, 0);
145 done = true;
146
147 break;
148 case FPURegSet:
149 // TODO: fill in FPU regs....
150 // SetError (FPURegSet, Read, -1);
151 done = true;
152
153 break;
154 case EXCRegSet:
155 exc.trapno = data.GetU32(&offset);
156 exc.err = data.GetU32(&offset);
157 exc.faultvaddr = data.GetU64(&offset);
158 SetError(EXCRegSet, Read, 0);
159 done = true;
160 break;
161 case 7:
162 case 8:
163 case 9:
164 // fancy flavors that encapsulate of the above flavors...
165 break;
166
167 default:
168 done = true;
169 break;
170 }
171 }
172 }
173 }
174
175 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
176 const char *alt_name, size_t reg_byte_size,
177 Stream &data) {
178 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
179 if (reg_info == NULL__null)
180 reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
181 if (reg_info) {
182 lldb_private::RegisterValue reg_value;
183 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
184 if (reg_info->byte_size >= reg_byte_size)
185 data.Write(reg_value.GetBytes(), reg_byte_size);
186 else {
187 data.Write(reg_value.GetBytes(), reg_info->byte_size);
188 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
189 ++i)
190 data.PutChar(0);
191 }
192 return reg_byte_size;
193 }
194 }
195 // Just write zeros if all else fails
196 for (size_t i = 0; i < reg_byte_size; ++i)
197 data.PutChar(0);
198 return reg_byte_size;
199 }
200
201 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
202 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
203 if (reg_ctx_sp) {
204 RegisterContext *reg_ctx = reg_ctx_sp.get();
205
206 data.PutHex32(GPRRegSet); // Flavor
207 data.PutHex32(GPRWordCount);
208 WriteRegister(reg_ctx, "rax", NULL__null, 8, data);
209 WriteRegister(reg_ctx, "rbx", NULL__null, 8, data);
210 WriteRegister(reg_ctx, "rcx", NULL__null, 8, data);
211 WriteRegister(reg_ctx, "rdx", NULL__null, 8, data);
212 WriteRegister(reg_ctx, "rdi", NULL__null, 8, data);
213 WriteRegister(reg_ctx, "rsi", NULL__null, 8, data);
214 WriteRegister(reg_ctx, "rbp", NULL__null, 8, data);
215 WriteRegister(reg_ctx, "rsp", NULL__null, 8, data);
216 WriteRegister(reg_ctx, "r8", NULL__null, 8, data);
217 WriteRegister(reg_ctx, "r9", NULL__null, 8, data);
218 WriteRegister(reg_ctx, "r10", NULL__null, 8, data);
219 WriteRegister(reg_ctx, "r11", NULL__null, 8, data);
220 WriteRegister(reg_ctx, "r12", NULL__null, 8, data);
221 WriteRegister(reg_ctx, "r13", NULL__null, 8, data);
222 WriteRegister(reg_ctx, "r14", NULL__null, 8, data);
223 WriteRegister(reg_ctx, "r15", NULL__null, 8, data);
224 WriteRegister(reg_ctx, "rip", NULL__null, 8, data);
225 WriteRegister(reg_ctx, "rflags", NULL__null, 8, data);
226 WriteRegister(reg_ctx, "cs", NULL__null, 8, data);
227 WriteRegister(reg_ctx, "fs", NULL__null, 8, data);
228 WriteRegister(reg_ctx, "gs", NULL__null, 8, data);
229
230 // // Write out the FPU registers
231 // const size_t fpu_byte_size = sizeof(FPU);
232 // size_t bytes_written = 0;
233 // data.PutHex32 (FPURegSet);
234 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
235 // bytes_written += data.PutHex32(0); // uint32_t pad[0]
236 // bytes_written += data.PutHex32(0); // uint32_t pad[1]
237 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
238 // data); // uint16_t fcw; // "fctrl"
239 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
240 // data); // uint16_t fsw; // "fstat"
241 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
242 // data); // uint8_t ftw; // "ftag"
243 // bytes_written += data.PutHex8 (0); // uint8_t pad1;
244 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
245 // data); // uint16_t fop; // "fop"
246 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
247 // data); // uint32_t ip; // "fioff"
248 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
249 // data); // uint16_t cs; // "fiseg"
250 // bytes_written += data.PutHex16 (0); // uint16_t pad2;
251 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
252 // data); // uint32_t dp; // "fooff"
253 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
254 // data); // uint16_t ds; // "foseg"
255 // bytes_written += data.PutHex16 (0); // uint16_t pad3;
256 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
257 // data); // uint32_t mxcsr;
258 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
259 // 4, data);// uint32_t mxcsrmask;
260 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
261 // sizeof(MMSReg), data);
262 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
263 // sizeof(MMSReg), data);
264 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
265 // sizeof(MMSReg), data);
266 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
267 // sizeof(MMSReg), data);
268 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
269 // sizeof(MMSReg), data);
270 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
271 // sizeof(MMSReg), data);
272 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
273 // sizeof(MMSReg), data);
274 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
275 // sizeof(MMSReg), data);
276 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
277 // sizeof(XMMReg), data);
278 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
279 // sizeof(XMMReg), data);
280 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
281 // sizeof(XMMReg), data);
282 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
283 // sizeof(XMMReg), data);
284 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
285 // sizeof(XMMReg), data);
286 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
287 // sizeof(XMMReg), data);
288 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
289 // sizeof(XMMReg), data);
290 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
291 // sizeof(XMMReg), data);
292 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
293 // sizeof(XMMReg), data);
294 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
295 // sizeof(XMMReg), data);
296 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
297 // sizeof(XMMReg), data);
298 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
299 // sizeof(XMMReg), data);
300 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
301 // sizeof(XMMReg), data);
302 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
303 // sizeof(XMMReg), data);
304 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
305 // sizeof(XMMReg), data);
306 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
307 // sizeof(XMMReg), data);
308 //
309 // // Fill rest with zeros
310 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
311 // i)
312 // data.PutChar(0);
313
314 // Write out the EXC registers
315 data.PutHex32(EXCRegSet);
316 data.PutHex32(EXCWordCount);
317 WriteRegister(reg_ctx, "trapno", NULL__null, 4, data);
318 WriteRegister(reg_ctx, "err", NULL__null, 4, data);
319 WriteRegister(reg_ctx, "faultvaddr", NULL__null, 8, data);
320 return true;
321 }
322 return false;
323 }
324
325protected:
326 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
327
328 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
329
330 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
331
332 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
333 return 0;
334 }
335
336 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
337 return 0;
338 }
339
340 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
341 return 0;
342 }
343};
344
345class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
346public:
347 RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
348 const DataExtractor &data)
349 : RegisterContextDarwin_i386(thread, 0) {
350 SetRegisterDataFrom_LC_THREAD(data);
351 }
352
353 void InvalidateAllRegisters() override {
354 // Do nothing... registers are always valid...
355 }
356
357 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
358 lldb::offset_t offset = 0;
359 SetError(GPRRegSet, Read, -1);
360 SetError(FPURegSet, Read, -1);
361 SetError(EXCRegSet, Read, -1);
362 bool done = false;
363
364 while (!done) {
365 int flavor = data.GetU32(&offset);
366 if (flavor == 0)
367 done = true;
368 else {
369 uint32_t i;
370 uint32_t count = data.GetU32(&offset);
371 switch (flavor) {
372 case GPRRegSet:
373 for (i = 0; i < count; ++i)
374 (&gpr.eax)[i] = data.GetU32(&offset);
375 SetError(GPRRegSet, Read, 0);
376 done = true;
377
378 break;
379 case FPURegSet:
380 // TODO: fill in FPU regs....
381 // SetError (FPURegSet, Read, -1);
382 done = true;
383
384 break;
385 case EXCRegSet:
386 exc.trapno = data.GetU32(&offset);
387 exc.err = data.GetU32(&offset);
388 exc.faultvaddr = data.GetU32(&offset);
389 SetError(EXCRegSet, Read, 0);
390 done = true;
391 break;
392 case 7:
393 case 8:
394 case 9:
395 // fancy flavors that encapsulate of the above flavors...
396 break;
397
398 default:
399 done = true;
400 break;
401 }
402 }
403 }
404 }
405
406 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
407 const char *alt_name, size_t reg_byte_size,
408 Stream &data) {
409 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
410 if (reg_info == NULL__null)
411 reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
412 if (reg_info) {
413 lldb_private::RegisterValue reg_value;
414 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
415 if (reg_info->byte_size >= reg_byte_size)
416 data.Write(reg_value.GetBytes(), reg_byte_size);
417 else {
418 data.Write(reg_value.GetBytes(), reg_info->byte_size);
419 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
420 ++i)
421 data.PutChar(0);
422 }
423 return reg_byte_size;
424 }
425 }
426 // Just write zeros if all else fails
427 for (size_t i = 0; i < reg_byte_size; ++i)
428 data.PutChar(0);
429 return reg_byte_size;
430 }
431
432 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
433 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
434 if (reg_ctx_sp) {
435 RegisterContext *reg_ctx = reg_ctx_sp.get();
436
437 data.PutHex32(GPRRegSet); // Flavor
438 data.PutHex32(GPRWordCount);
439 WriteRegister(reg_ctx, "eax", NULL__null, 4, data);
440 WriteRegister(reg_ctx, "ebx", NULL__null, 4, data);
441 WriteRegister(reg_ctx, "ecx", NULL__null, 4, data);
442 WriteRegister(reg_ctx, "edx", NULL__null, 4, data);
443 WriteRegister(reg_ctx, "edi", NULL__null, 4, data);
444 WriteRegister(reg_ctx, "esi", NULL__null, 4, data);
445 WriteRegister(reg_ctx, "ebp", NULL__null, 4, data);
446 WriteRegister(reg_ctx, "esp", NULL__null, 4, data);
447 WriteRegister(reg_ctx, "ss", NULL__null, 4, data);
448 WriteRegister(reg_ctx, "eflags", NULL__null, 4, data);
449 WriteRegister(reg_ctx, "eip", NULL__null, 4, data);
450 WriteRegister(reg_ctx, "cs", NULL__null, 4, data);
451 WriteRegister(reg_ctx, "ds", NULL__null, 4, data);
452 WriteRegister(reg_ctx, "es", NULL__null, 4, data);
453 WriteRegister(reg_ctx, "fs", NULL__null, 4, data);
454 WriteRegister(reg_ctx, "gs", NULL__null, 4, data);
455
456 // Write out the EXC registers
457 data.PutHex32(EXCRegSet);
458 data.PutHex32(EXCWordCount);
459 WriteRegister(reg_ctx, "trapno", NULL__null, 4, data);
460 WriteRegister(reg_ctx, "err", NULL__null, 4, data);
461 WriteRegister(reg_ctx, "faultvaddr", NULL__null, 4, data);
462 return true;
463 }
464 return false;
465 }
466
467protected:
468 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
469
470 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
471
472 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
473
474 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
475 return 0;
476 }
477
478 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
479 return 0;
480 }
481
482 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
483 return 0;
484 }
485};
486
487class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
488public:
489 RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
490 const DataExtractor &data)
491 : RegisterContextDarwin_arm(thread, 0) {
492 SetRegisterDataFrom_LC_THREAD(data);
493 }
494
495 void InvalidateAllRegisters() override {
496 // Do nothing... registers are always valid...
497 }
498
499 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
500 lldb::offset_t offset = 0;
501 SetError(GPRRegSet, Read, -1);
502 SetError(FPURegSet, Read, -1);
503 SetError(EXCRegSet, Read, -1);
504 bool done = false;
505
506 while (!done) {
507 int flavor = data.GetU32(&offset);
508 uint32_t count = data.GetU32(&offset);
509 lldb::offset_t next_thread_state = offset + (count * 4);
510 switch (flavor) {
511 case GPRAltRegSet:
512 case GPRRegSet:
513 for (uint32_t i = 0; i < count; ++i) {
514 gpr.r[i] = data.GetU32(&offset);
515 }
516
517 // Note that gpr.cpsr is also copied by the above loop; this loop
518 // technically extends one element past the end of the gpr.r[] array.
519
520 SetError(GPRRegSet, Read, 0);
521 offset = next_thread_state;
522 break;
523
524 case FPURegSet: {
525 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
526 const int fpu_reg_buf_size = sizeof(fpu.floats);
527 if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
528 fpu_reg_buf) == fpu_reg_buf_size) {
529 offset += fpu_reg_buf_size;
530 fpu.fpscr = data.GetU32(&offset);
531 SetError(FPURegSet, Read, 0);
532 } else {
533 done = true;
534 }
535 }
536 offset = next_thread_state;
537 break;
538
539 case EXCRegSet:
540 if (count == 3) {
541 exc.exception = data.GetU32(&offset);
542 exc.fsr = data.GetU32(&offset);
543 exc.far = data.GetU32(&offset);
544 SetError(EXCRegSet, Read, 0);
545 }
546 done = true;
547 offset = next_thread_state;
548 break;
549
550 // Unknown register set flavor, stop trying to parse.
551 default:
552 done = true;
553 }
554 }
555 }
556
557 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
558 const char *alt_name, size_t reg_byte_size,
559 Stream &data) {
560 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
561 if (reg_info == NULL__null)
562 reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
563 if (reg_info) {
564 lldb_private::RegisterValue reg_value;
565 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
566 if (reg_info->byte_size >= reg_byte_size)
567 data.Write(reg_value.GetBytes(), reg_byte_size);
568 else {
569 data.Write(reg_value.GetBytes(), reg_info->byte_size);
570 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
571 ++i)
572 data.PutChar(0);
573 }
574 return reg_byte_size;
575 }
576 }
577 // Just write zeros if all else fails
578 for (size_t i = 0; i < reg_byte_size; ++i)
579 data.PutChar(0);
580 return reg_byte_size;
581 }
582
583 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
584 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
585 if (reg_ctx_sp) {
586 RegisterContext *reg_ctx = reg_ctx_sp.get();
587
588 data.PutHex32(GPRRegSet); // Flavor
589 data.PutHex32(GPRWordCount);
590 WriteRegister(reg_ctx, "r0", NULL__null, 4, data);
591 WriteRegister(reg_ctx, "r1", NULL__null, 4, data);
592 WriteRegister(reg_ctx, "r2", NULL__null, 4, data);
593 WriteRegister(reg_ctx, "r3", NULL__null, 4, data);
594 WriteRegister(reg_ctx, "r4", NULL__null, 4, data);
595 WriteRegister(reg_ctx, "r5", NULL__null, 4, data);
596 WriteRegister(reg_ctx, "r6", NULL__null, 4, data);
597 WriteRegister(reg_ctx, "r7", NULL__null, 4, data);
598 WriteRegister(reg_ctx, "r8", NULL__null, 4, data);
599 WriteRegister(reg_ctx, "r9", NULL__null, 4, data);
600 WriteRegister(reg_ctx, "r10", NULL__null, 4, data);
601 WriteRegister(reg_ctx, "r11", NULL__null, 4, data);
602 WriteRegister(reg_ctx, "r12", NULL__null, 4, data);
603 WriteRegister(reg_ctx, "sp", NULL__null, 4, data);
604 WriteRegister(reg_ctx, "lr", NULL__null, 4, data);
605 WriteRegister(reg_ctx, "pc", NULL__null, 4, data);
606 WriteRegister(reg_ctx, "cpsr", NULL__null, 4, data);
607
608 // Write out the EXC registers
609 // data.PutHex32 (EXCRegSet);
610 // data.PutHex32 (EXCWordCount);
611 // WriteRegister (reg_ctx, "exception", NULL, 4, data);
612 // WriteRegister (reg_ctx, "fsr", NULL, 4, data);
613 // WriteRegister (reg_ctx, "far", NULL, 4, data);
614 return true;
615 }
616 return false;
617 }
618
619protected:
620 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
621
622 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
623
624 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
625
626 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
627
628 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
629 return 0;
630 }
631
632 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
633 return 0;
634 }
635
636 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
637 return 0;
638 }
639
640 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
641 return -1;
642 }
643};
644
645class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
646public:
647 RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
648 const DataExtractor &data)
649 : RegisterContextDarwin_arm64(thread, 0) {
650 SetRegisterDataFrom_LC_THREAD(data);
651 }
652
653 void InvalidateAllRegisters() override {
654 // Do nothing... registers are always valid...
655 }
656
657 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
658 lldb::offset_t offset = 0;
659 SetError(GPRRegSet, Read, -1);
660 SetError(FPURegSet, Read, -1);
661 SetError(EXCRegSet, Read, -1);
662 bool done = false;
663 while (!done) {
664 int flavor = data.GetU32(&offset);
665 uint32_t count = data.GetU32(&offset);
666 lldb::offset_t next_thread_state = offset + (count * 4);
667 switch (flavor) {
668 case GPRRegSet:
669 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
670 // 32-bit register)
671 if (count >= (33 * 2) + 1) {
672 for (uint32_t i = 0; i < 29; ++i)
673 gpr.x[i] = data.GetU64(&offset);
674 gpr.fp = data.GetU64(&offset);
675 gpr.lr = data.GetU64(&offset);
676 gpr.sp = data.GetU64(&offset);
677 gpr.pc = data.GetU64(&offset);
678 gpr.cpsr = data.GetU32(&offset);
679 SetError(GPRRegSet, Read, 0);
680 }
681 offset = next_thread_state;
682 break;
683 case FPURegSet: {
684 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
685 const int fpu_reg_buf_size = sizeof(fpu);
686 if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
687 data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
688 fpu_reg_buf) == fpu_reg_buf_size) {
689 SetError(FPURegSet, Read, 0);
690 } else {
691 done = true;
692 }
693 }
694 offset = next_thread_state;
695 break;
696 case EXCRegSet:
697 if (count == 4) {
698 exc.far = data.GetU64(&offset);
699 exc.esr = data.GetU32(&offset);
700 exc.exception = data.GetU32(&offset);
701 SetError(EXCRegSet, Read, 0);
702 }
703 offset = next_thread_state;
704 break;
705 default:
706 done = true;
707 break;
708 }
709 }
710 }
711
712 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
713 const char *alt_name, size_t reg_byte_size,
714 Stream &data) {
715 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
716 if (reg_info == NULL__null)
717 reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
718 if (reg_info) {
719 lldb_private::RegisterValue reg_value;
720 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
721 if (reg_info->byte_size >= reg_byte_size)
722 data.Write(reg_value.GetBytes(), reg_byte_size);
723 else {
724 data.Write(reg_value.GetBytes(), reg_info->byte_size);
725 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
726 ++i)
727 data.PutChar(0);
728 }
729 return reg_byte_size;
730 }
731 }
732 // Just write zeros if all else fails
733 for (size_t i = 0; i < reg_byte_size; ++i)
734 data.PutChar(0);
735 return reg_byte_size;
736 }
737
738 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
739 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
740 if (reg_ctx_sp) {
741 RegisterContext *reg_ctx = reg_ctx_sp.get();
742
743 data.PutHex32(GPRRegSet); // Flavor
744 data.PutHex32(GPRWordCount);
745 WriteRegister(reg_ctx, "x0", NULL__null, 8, data);
746 WriteRegister(reg_ctx, "x1", NULL__null, 8, data);
747 WriteRegister(reg_ctx, "x2", NULL__null, 8, data);
748 WriteRegister(reg_ctx, "x3", NULL__null, 8, data);
749 WriteRegister(reg_ctx, "x4", NULL__null, 8, data);
750 WriteRegister(reg_ctx, "x5", NULL__null, 8, data);
751 WriteRegister(reg_ctx, "x6", NULL__null, 8, data);
752 WriteRegister(reg_ctx, "x7", NULL__null, 8, data);
753 WriteRegister(reg_ctx, "x8", NULL__null, 8, data);
754 WriteRegister(reg_ctx, "x9", NULL__null, 8, data);
755 WriteRegister(reg_ctx, "x10", NULL__null, 8, data);
756 WriteRegister(reg_ctx, "x11", NULL__null, 8, data);
757 WriteRegister(reg_ctx, "x12", NULL__null, 8, data);
758 WriteRegister(reg_ctx, "x13", NULL__null, 8, data);
759 WriteRegister(reg_ctx, "x14", NULL__null, 8, data);
760 WriteRegister(reg_ctx, "x15", NULL__null, 8, data);
761 WriteRegister(reg_ctx, "x16", NULL__null, 8, data);
762 WriteRegister(reg_ctx, "x17", NULL__null, 8, data);
763 WriteRegister(reg_ctx, "x18", NULL__null, 8, data);
764 WriteRegister(reg_ctx, "x19", NULL__null, 8, data);
765 WriteRegister(reg_ctx, "x20", NULL__null, 8, data);
766 WriteRegister(reg_ctx, "x21", NULL__null, 8, data);
767 WriteRegister(reg_ctx, "x22", NULL__null, 8, data);
768 WriteRegister(reg_ctx, "x23", NULL__null, 8, data);
769 WriteRegister(reg_ctx, "x24", NULL__null, 8, data);
770 WriteRegister(reg_ctx, "x25", NULL__null, 8, data);
771 WriteRegister(reg_ctx, "x26", NULL__null, 8, data);
772 WriteRegister(reg_ctx, "x27", NULL__null, 8, data);
773 WriteRegister(reg_ctx, "x28", NULL__null, 8, data);
774 WriteRegister(reg_ctx, "fp", NULL__null, 8, data);
775 WriteRegister(reg_ctx, "lr", NULL__null, 8, data);
776 WriteRegister(reg_ctx, "sp", NULL__null, 8, data);
777 WriteRegister(reg_ctx, "pc", NULL__null, 8, data);
778 WriteRegister(reg_ctx, "cpsr", NULL__null, 4, data);
779
780 // Write out the EXC registers
781 // data.PutHex32 (EXCRegSet);
782 // data.PutHex32 (EXCWordCount);
783 // WriteRegister (reg_ctx, "far", NULL, 8, data);
784 // WriteRegister (reg_ctx, "esr", NULL, 4, data);
785 // WriteRegister (reg_ctx, "exception", NULL, 4, data);
786 return true;
787 }
788 return false;
789 }
790
791protected:
792 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
793
794 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
795
796 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
797
798 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
799
800 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
801 return 0;
802 }
803
804 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
805 return 0;
806 }
807
808 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
809 return 0;
810 }
811
812 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
813 return -1;
814 }
815};
816
817static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
818 switch (magic) {
819 case MH_MAGIC:
820 case MH_CIGAM:
821 return sizeof(struct mach_header);
822
823 case MH_MAGIC_64:
824 case MH_CIGAM_64:
825 return sizeof(struct mach_header_64);
826 break;
827
828 default:
829 break;
830 }
831 return 0;
832}
833
834#define MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008 0x0008
835
836void ObjectFileMachO::Initialize() {
837 PluginManager::RegisterPlugin(
838 GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
839 CreateMemoryInstance, GetModuleSpecifications, SaveCore);
840}
841
842void ObjectFileMachO::Terminate() {
843 PluginManager::UnregisterPlugin(CreateInstance);
844}
845
846lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
847 static ConstString g_name("mach-o");
848 return g_name;
849}
850
851const char *ObjectFileMachO::GetPluginDescriptionStatic() {
852 return "Mach-o object file reader (32 and 64 bit)";
853}
854
855ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
856 DataBufferSP &data_sp,
857 lldb::offset_t data_offset,
858 const FileSpec *file,
859 lldb::offset_t file_offset,
860 lldb::offset_t length) {
861 if (!data_sp) {
862 data_sp = MapFileData(*file, length, file_offset);
863 if (!data_sp)
864 return nullptr;
865 data_offset = 0;
866 }
867
868 if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
869 return nullptr;
870
871 // Update the data to contain the entire file if it doesn't already
872 if (data_sp->GetByteSize() < length) {
873 data_sp = MapFileData(*file, length, file_offset);
874 if (!data_sp)
875 return nullptr;
876 data_offset = 0;
877 }
878 auto objfile_ap = llvm::make_unique<ObjectFileMachO>(
879 module_sp, data_sp, data_offset, file, file_offset, length);
880 if (!objfile_ap || !objfile_ap->ParseHeader())
881 return nullptr;
882
883 return objfile_ap.release();
884}
885
886ObjectFile *ObjectFileMachO::CreateMemoryInstance(
887 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
888 const ProcessSP &process_sp, lldb::addr_t header_addr) {
889 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
890 std::unique_ptr<ObjectFile> objfile_ap(
891 new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
892 if (objfile_ap.get() && objfile_ap->ParseHeader())
893 return objfile_ap.release();
894 }
895 return NULL__null;
896}
897
898size_t ObjectFileMachO::GetModuleSpecifications(
899 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
900 lldb::offset_t data_offset, lldb::offset_t file_offset,
901 lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
902 const size_t initial_count = specs.GetSize();
903
904 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
905 DataExtractor data;
906 data.SetData(data_sp);
907 llvm::MachO::mach_header header;
908 if (ParseHeader(data, &data_offset, header)) {
909 size_t header_and_load_cmds =
910 header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
911 if (header_and_load_cmds >= data_sp->GetByteSize()) {
912 data_sp = MapFileData(file, header_and_load_cmds, file_offset);
913 data.SetData(data_sp);
914 data_offset = MachHeaderSizeFromMagic(header.magic);
915 }
916 if (data_sp) {
917 ModuleSpec spec;
918 spec.GetFileSpec() = file;
919 spec.SetObjectOffset(file_offset);
920 spec.SetObjectSize(length);
921
922 if (GetArchitecture(header, data, data_offset,
923 spec.GetArchitecture())) {
924 if (spec.GetArchitecture().IsValid()) {
925 GetUUID(header, data, data_offset, spec.GetUUID());
926 specs.Append(spec);
927 }
928 }
929 }
930 }
931 }
932 return specs.GetSize() - initial_count;
933}
934
935const ConstString &ObjectFileMachO::GetSegmentNameTEXT() {
936 static ConstString g_segment_name_TEXT("__TEXT");
937 return g_segment_name_TEXT;
938}
939
940const ConstString &ObjectFileMachO::GetSegmentNameDATA() {
941 static ConstString g_segment_name_DATA("__DATA");
942 return g_segment_name_DATA;
943}
944
945const ConstString &ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
946 static ConstString g_segment_name("__DATA_DIRTY");
947 return g_segment_name;
948}
949
950const ConstString &ObjectFileMachO::GetSegmentNameDATA_CONST() {
951 static ConstString g_segment_name("__DATA_CONST");
952 return g_segment_name;
953}
954
955const ConstString &ObjectFileMachO::GetSegmentNameOBJC() {
956 static ConstString g_segment_name_OBJC("__OBJC");
957 return g_segment_name_OBJC;
958}
959
960const ConstString &ObjectFileMachO::GetSegmentNameLINKEDIT() {
961 static ConstString g_section_name_LINKEDIT("__LINKEDIT");
962 return g_section_name_LINKEDIT;
963}
964
965const ConstString &ObjectFileMachO::GetSectionNameEHFrame() {
966 static ConstString g_section_name_eh_frame("__eh_frame");
967 return g_section_name_eh_frame;
968}
969
970bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
971 lldb::addr_t data_offset,
972 lldb::addr_t data_length) {
973 DataExtractor data;
974 data.SetData(data_sp, data_offset, data_length);
975 lldb::offset_t offset = 0;
976 uint32_t magic = data.GetU32(&offset);
977 return MachHeaderSizeFromMagic(magic) != 0;
978}
979
980ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
981 DataBufferSP &data_sp,
982 lldb::offset_t data_offset,
983 const FileSpec *file,
984 lldb::offset_t file_offset,
985 lldb::offset_t length)
986 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
987 m_mach_segments(), m_mach_sections(), m_entry_point_address(),
988 m_thread_context_offsets(), m_thread_context_offsets_valid(false),
989 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
990 ::memset(&m_header, 0, sizeof(m_header));
991 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
992}
993
994ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
995 lldb::DataBufferSP &header_data_sp,
996 const lldb::ProcessSP &process_sp,
997 lldb::addr_t header_addr)
998 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
999 m_mach_segments(), m_mach_sections(), m_entry_point_address(),
1000 m_thread_context_offsets(), m_thread_context_offsets_valid(false),
1001 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
1002 ::memset(&m_header, 0, sizeof(m_header));
1003 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1004}
1005
1006bool ObjectFileMachO::ParseHeader(DataExtractor &data,
1007 lldb::offset_t *data_offset_ptr,
1008 llvm::MachO::mach_header &header) {
1009 data.SetByteOrder(endian::InlHostByteOrder());
1010 // Leave magic in the original byte order
1011 header.magic = data.GetU32(data_offset_ptr);
1012 bool can_parse = false;
1013 bool is_64_bit = false;
1014 switch (header.magic) {
1015 case MH_MAGIC:
1016 data.SetByteOrder(endian::InlHostByteOrder());
1017 data.SetAddressByteSize(4);
1018 can_parse = true;
1019 break;
1020
1021 case MH_MAGIC_64:
1022 data.SetByteOrder(endian::InlHostByteOrder());
1023 data.SetAddressByteSize(8);
1024 can_parse = true;
1025 is_64_bit = true;
1026 break;
1027
1028 case MH_CIGAM:
1029 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1030 ? eByteOrderLittle
1031 : eByteOrderBig);
1032 data.SetAddressByteSize(4);
1033 can_parse = true;
1034 break;
1035
1036 case MH_CIGAM_64:
1037 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1038 ? eByteOrderLittle
1039 : eByteOrderBig);
1040 data.SetAddressByteSize(8);
1041 is_64_bit = true;
1042 can_parse = true;
1043 break;
1044
1045 default:
1046 break;
1047 }
1048
1049 if (can_parse) {
1050 data.GetU32(data_offset_ptr, &header.cputype, 6);
1051 if (is_64_bit)
1052 *data_offset_ptr += 4;
1053 return true;
1054 } else {
1055 memset(&header, 0, sizeof(header));
1056 }
1057 return false;
1058}
1059
1060bool ObjectFileMachO::ParseHeader() {
1061 ModuleSP module_sp(GetModule());
1062 if (module_sp) {
1063 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1064 bool can_parse = false;
1065 lldb::offset_t offset = 0;
1066 m_data.SetByteOrder(endian::InlHostByteOrder());
1067 // Leave magic in the original byte order
1068 m_header.magic = m_data.GetU32(&offset);
1069 switch (m_header.magic) {
1070 case MH_MAGIC:
1071 m_data.SetByteOrder(endian::InlHostByteOrder());
1072 m_data.SetAddressByteSize(4);
1073 can_parse = true;
1074 break;
1075
1076 case MH_MAGIC_64:
1077 m_data.SetByteOrder(endian::InlHostByteOrder());
1078 m_data.SetAddressByteSize(8);
1079 can_parse = true;
1080 break;
1081
1082 case MH_CIGAM:
1083 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1084 ? eByteOrderLittle
1085 : eByteOrderBig);
1086 m_data.SetAddressByteSize(4);
1087 can_parse = true;
1088 break;
1089
1090 case MH_CIGAM_64:
1091 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1092 ? eByteOrderLittle
1093 : eByteOrderBig);
1094 m_data.SetAddressByteSize(8);
1095 can_parse = true;
1096 break;
1097
1098 default:
1099 break;
1100 }
1101
1102 if (can_parse) {
1103 m_data.GetU32(&offset, &m_header.cputype, 6);
1104
1105 ArchSpec mach_arch;
1106
1107 if (GetArchitecture(mach_arch)) {
1108 // Check if the module has a required architecture
1109 const ArchSpec &module_arch = module_sp->GetArchitecture();
1110 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1111 return false;
1112
1113 if (SetModulesArchitecture(mach_arch)) {
1114 const size_t header_and_lc_size =
1115 m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1116 if (m_data.GetByteSize() < header_and_lc_size) {
1117 DataBufferSP data_sp;
1118 ProcessSP process_sp(m_process_wp.lock());
1119 if (process_sp) {
1120 data_sp =
1121 ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1122 } else {
1123 // Read in all only the load command data from the file on disk
1124 data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1125 if (data_sp->GetByteSize() != header_and_lc_size)
1126 return false;
1127 }
1128 if (data_sp)
1129 m_data.SetData(data_sp);
1130 }
1131 }
1132 return true;
1133 }
1134 } else {
1135 memset(&m_header, 0, sizeof(struct mach_header));
1136 }
1137 }
1138 return false;
1139}
1140
1141ByteOrder ObjectFileMachO::GetByteOrder() const {
1142 return m_data.GetByteOrder();
1143}
1144
1145bool ObjectFileMachO::IsExecutable() const {
1146 return m_header.filetype == MH_EXECUTE;
1147}
1148
1149uint32_t ObjectFileMachO::GetAddressByteSize() const {
1150 return m_data.GetAddressByteSize();
1151}
1152
1153AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1154 Symtab *symtab = GetSymtab();
1155 if (symtab) {
1156 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1157 if (symbol) {
1158 if (symbol->ValueIsAddress()) {
1159 SectionSP section_sp(symbol->GetAddressRef().GetSection());
1160 if (section_sp) {
1161 const lldb::SectionType section_type = section_sp->GetType();
1162 switch (section_type) {
1163 case eSectionTypeInvalid:
1164 return AddressClass::eUnknown;
1165
1166 case eSectionTypeCode:
1167 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1168 // For ARM we have a bit in the n_desc field of the symbol that
1169 // tells us ARM/Thumb which is bit 0x0008.
1170 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008)
1171 return AddressClass::eCodeAlternateISA;
1172 }
1173 return AddressClass::eCode;
1174
1175 case eSectionTypeContainer:
1176 return AddressClass::eUnknown;
1177
1178 case eSectionTypeData:
1179 case eSectionTypeDataCString:
1180 case eSectionTypeDataCStringPointers:
1181 case eSectionTypeDataSymbolAddress:
1182 case eSectionTypeData4:
1183 case eSectionTypeData8:
1184 case eSectionTypeData16:
1185 case eSectionTypeDataPointers:
1186 case eSectionTypeZeroFill:
1187 case eSectionTypeDataObjCMessageRefs:
1188 case eSectionTypeDataObjCCFStrings:
1189 case eSectionTypeGoSymtab:
1190 return AddressClass::eData;
1191
1192 case eSectionTypeDebug:
1193 case eSectionTypeDWARFDebugAbbrev:
1194 case eSectionTypeDWARFDebugAddr:
1195 case eSectionTypeDWARFDebugAranges:
1196 case eSectionTypeDWARFDebugCuIndex:
1197 case eSectionTypeDWARFDebugFrame:
1198 case eSectionTypeDWARFDebugInfo:
1199 case eSectionTypeDWARFDebugLine:
1200 case eSectionTypeDWARFDebugLineStr:
1201 case eSectionTypeDWARFDebugLoc:
1202 case eSectionTypeDWARFDebugLocLists:
1203 case eSectionTypeDWARFDebugMacInfo:
1204 case eSectionTypeDWARFDebugMacro:
1205 case eSectionTypeDWARFDebugNames:
1206 case eSectionTypeDWARFDebugPubNames:
1207 case eSectionTypeDWARFDebugPubTypes:
1208 case eSectionTypeDWARFDebugRanges:
1209 case eSectionTypeDWARFDebugRngLists:
1210 case eSectionTypeDWARFDebugStr:
1211 case eSectionTypeDWARFDebugStrOffsets:
1212 case eSectionTypeDWARFDebugTypes:
1213 case eSectionTypeDWARFAppleNames:
1214 case eSectionTypeDWARFAppleTypes:
1215 case eSectionTypeDWARFAppleNamespaces:
1216 case eSectionTypeDWARFAppleObjC:
1217 case eSectionTypeDWARFGNUDebugAltLink:
1218 return AddressClass::eDebug;
1219
1220 case eSectionTypeEHFrame:
1221 case eSectionTypeARMexidx:
1222 case eSectionTypeARMextab:
1223 case eSectionTypeCompactUnwind:
1224 return AddressClass::eRuntime;
1225
1226 case eSectionTypeAbsoluteAddress:
1227 case eSectionTypeELFSymbolTable:
1228 case eSectionTypeELFDynamicSymbols:
1229 case eSectionTypeELFRelocationEntries:
1230 case eSectionTypeELFDynamicLinkInfo:
1231 case eSectionTypeOther:
1232 return AddressClass::eUnknown;
1233 }
1234 }
1235 }
1236
1237 const SymbolType symbol_type = symbol->GetType();
1238 switch (symbol_type) {
1239 case eSymbolTypeAny:
1240 return AddressClass::eUnknown;
1241 case eSymbolTypeAbsolute:
1242 return AddressClass::eUnknown;
1243
1244 case eSymbolTypeCode:
1245 case eSymbolTypeTrampoline:
1246 case eSymbolTypeResolver:
1247 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1248 // For ARM we have a bit in the n_desc field of the symbol that tells
1249 // us ARM/Thumb which is bit 0x0008.
1250 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008)
1251 return AddressClass::eCodeAlternateISA;
1252 }
1253 return AddressClass::eCode;
1254
1255 case eSymbolTypeData:
1256 return AddressClass::eData;
1257 case eSymbolTypeRuntime:
1258 return AddressClass::eRuntime;
1259 case eSymbolTypeException:
1260 return AddressClass::eRuntime;
1261 case eSymbolTypeSourceFile:
1262 return AddressClass::eDebug;
1263 case eSymbolTypeHeaderFile:
1264 return AddressClass::eDebug;
1265 case eSymbolTypeObjectFile:
1266 return AddressClass::eDebug;
1267 case eSymbolTypeCommonBlock:
1268 return AddressClass::eDebug;
1269 case eSymbolTypeBlock:
1270 return AddressClass::eDebug;
1271 case eSymbolTypeLocal:
1272 return AddressClass::eData;
1273 case eSymbolTypeParam:
1274 return AddressClass::eData;
1275 case eSymbolTypeVariable:
1276 return AddressClass::eData;
1277 case eSymbolTypeVariableType:
1278 return AddressClass::eDebug;
1279 case eSymbolTypeLineEntry:
1280 return AddressClass::eDebug;
1281 case eSymbolTypeLineHeader:
1282 return AddressClass::eDebug;
1283 case eSymbolTypeScopeBegin:
1284 return AddressClass::eDebug;
1285 case eSymbolTypeScopeEnd:
1286 return AddressClass::eDebug;
1287 case eSymbolTypeAdditional:
1288 return AddressClass::eUnknown;
1289 case eSymbolTypeCompiler:
1290 return AddressClass::eDebug;
1291 case eSymbolTypeInstrumentation:
1292 return AddressClass::eDebug;
1293 case eSymbolTypeUndefined:
1294 return AddressClass::eUnknown;
1295 case eSymbolTypeObjCClass:
1296 return AddressClass::eRuntime;
1297 case eSymbolTypeObjCMetaClass:
1298 return AddressClass::eRuntime;
1299 case eSymbolTypeObjCIVar:
1300 return AddressClass::eRuntime;
1301 case eSymbolTypeReExported:
1302 return AddressClass::eRuntime;
1303 }
1304 }
1305 }
1306 return AddressClass::eUnknown;
1307}
1308
1309Symtab *ObjectFileMachO::GetSymtab() {
1310 ModuleSP module_sp(GetModule());
1311 if (module_sp) {
1312 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1313 if (m_symtab_ap.get() == NULL__null) {
1314 m_symtab_ap.reset(new Symtab(this));
1315 std::lock_guard<std::recursive_mutex> symtab_guard(
1316 m_symtab_ap->GetMutex());
1317 ParseSymtab();
1318 m_symtab_ap->Finalize();
1319 }
1320 }
1321 return m_symtab_ap.get();
1322}
1323
1324bool ObjectFileMachO::IsStripped() {
1325 if (m_dysymtab.cmd == 0) {
1326 ModuleSP module_sp(GetModule());
1327 if (module_sp) {
1328 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1329 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1330 const lldb::offset_t load_cmd_offset = offset;
1331
1332 load_command lc;
1333 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
1334 break;
1335 if (lc.cmd == LC_DYSYMTAB) {
1336 m_dysymtab.cmd = lc.cmd;
1337 m_dysymtab.cmdsize = lc.cmdsize;
1338 if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1339 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1340 NULL__null) {
1341 // Clear m_dysymtab if we were unable to read all items from the
1342 // load command
1343 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1344 }
1345 }
1346 offset = load_cmd_offset + lc.cmdsize;
1347 }
1348 }
1349 }
1350 if (m_dysymtab.cmd)
1351 return m_dysymtab.nlocalsym <= 1;
1352 return false;
1353}
1354
1355ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1356 EncryptedFileRanges result;
1357 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1358
1359 encryption_info_command encryption_cmd;
1360 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1361 const lldb::offset_t load_cmd_offset = offset;
1362 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL__null)
1363 break;
1364
1365 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1366 // 3 fields we care about, so treat them the same.
1367 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1368 encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1369 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1370 if (encryption_cmd.cryptid != 0) {
1371 EncryptedFileRanges::Entry entry;
1372 entry.SetRangeBase(encryption_cmd.cryptoff);
1373 entry.SetByteSize(encryption_cmd.cryptsize);
1374 result.Append(entry);
1375 }
1376 }
1377 }
1378 offset = load_cmd_offset + encryption_cmd.cmdsize;
1379 }
1380
1381 return result;
1382}
1383
1384void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1385 uint32_t cmd_idx) {
1386 if (m_length == 0 || seg_cmd.filesize == 0)
1387 return;
1388
1389 if (seg_cmd.fileoff > m_length) {
1390 // We have a load command that says it extends past the end of the file.
1391 // This is likely a corrupt file. We don't have any way to return an error
1392 // condition here (this method was likely invoked from something like
1393 // ObjectFile::GetSectionList()), so we just null out the section contents,
1394 // and dump a message to stdout. The most common case here is core file
1395 // debugging with a truncated file.
1396 const char *lc_segment_name =
1397 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1398 GetModule()->ReportWarning(
1399 "load command %u %s has a fileoff (0x%" PRIx64"l" "x"
1400 ") that extends beyond the end of the file (0x%" PRIx64"l" "x"
1401 "), ignoring this section",
1402 cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1403
1404 seg_cmd.fileoff = 0;
1405 seg_cmd.filesize = 0;
1406 }
1407
1408 if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1409 // We have a load command that says it extends past the end of the file.
1410 // This is likely a corrupt file. We don't have any way to return an error
1411 // condition here (this method was likely invoked from something like
1412 // ObjectFile::GetSectionList()), so we just null out the section contents,
1413 // and dump a message to stdout. The most common case here is core file
1414 // debugging with a truncated file.
1415 const char *lc_segment_name =
1416 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1417 GetModule()->ReportWarning(
1418 "load command %u %s has a fileoff + filesize (0x%" PRIx64"l" "x"
1419 ") that extends beyond the end of the file (0x%" PRIx64"l" "x"
1420 "), the segment will be truncated to match",
1421 cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1422
1423 // Truncate the length
1424 seg_cmd.filesize = m_length - seg_cmd.fileoff;
1425 }
1426}
1427
1428static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1429 uint32_t result = 0;
1430 if (seg_cmd.initprot & VM_PROT_READ)
1431 result |= ePermissionsReadable;
1432 if (seg_cmd.initprot & VM_PROT_WRITE)
1433 result |= ePermissionsWritable;
1434 if (seg_cmd.initprot & VM_PROT_EXECUTE)
1435 result |= ePermissionsExecutable;
1436 return result;
1437}
1438
1439static lldb::SectionType GetSectionType(uint32_t flags,
1440 ConstString section_name) {
1441
1442 if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1443 return eSectionTypeCode;
1444
1445 uint32_t mach_sect_type = flags & SECTION_TYPE;
1446 static ConstString g_sect_name_objc_data("__objc_data");
1447 static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1448 static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1449 static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1450 static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1451 static ConstString g_sect_name_objc_const("__objc_const");
1452 static ConstString g_sect_name_objc_classlist("__objc_classlist");
1453 static ConstString g_sect_name_cfstring("__cfstring");
1454
1455 static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1456 static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1457 static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1458 static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1459 static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1460 static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1461 static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1462 static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1463 static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1464 static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1465 static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1466 static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1467 static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1468 static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1469 static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1470 static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1471 static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1472 static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1473 static ConstString g_sect_name_eh_frame("__eh_frame");
1474 static ConstString g_sect_name_compact_unwind("__unwind_info");
1475 static ConstString g_sect_name_text("__text");
1476 static ConstString g_sect_name_data("__data");
1477 static ConstString g_sect_name_go_symtab("__gosymtab");
1478
1479 if (section_name == g_sect_name_dwarf_debug_abbrev)
1480 return eSectionTypeDWARFDebugAbbrev;
1481 if (section_name == g_sect_name_dwarf_debug_aranges)
1482 return eSectionTypeDWARFDebugAranges;
1483 if (section_name == g_sect_name_dwarf_debug_frame)
1484 return eSectionTypeDWARFDebugFrame;
1485 if (section_name == g_sect_name_dwarf_debug_info)
1486 return eSectionTypeDWARFDebugInfo;
1487 if (section_name == g_sect_name_dwarf_debug_line)
1488 return eSectionTypeDWARFDebugLine;
1489 if (section_name == g_sect_name_dwarf_debug_loc)
1490 return eSectionTypeDWARFDebugLoc;
1491 if (section_name == g_sect_name_dwarf_debug_loclists)
1492 return eSectionTypeDWARFDebugLocLists;
1493 if (section_name == g_sect_name_dwarf_debug_macinfo)
1494 return eSectionTypeDWARFDebugMacInfo;
1495 if (section_name == g_sect_name_dwarf_debug_names)
1496 return eSectionTypeDWARFDebugNames;
1497 if (section_name == g_sect_name_dwarf_debug_pubnames)
1498 return eSectionTypeDWARFDebugPubNames;
1499 if (section_name == g_sect_name_dwarf_debug_pubtypes)
1500 return eSectionTypeDWARFDebugPubTypes;
1501 if (section_name == g_sect_name_dwarf_debug_ranges)
1502 return eSectionTypeDWARFDebugRanges;
1503 if (section_name == g_sect_name_dwarf_debug_str)
1504 return eSectionTypeDWARFDebugStr;
1505 if (section_name == g_sect_name_dwarf_debug_types)
1506 return eSectionTypeDWARFDebugTypes;
1507 if (section_name == g_sect_name_dwarf_apple_names)
1508 return eSectionTypeDWARFAppleNames;
1509 if (section_name == g_sect_name_dwarf_apple_types)
1510 return eSectionTypeDWARFAppleTypes;
1511 if (section_name == g_sect_name_dwarf_apple_namespaces)
1512 return eSectionTypeDWARFAppleNamespaces;
1513 if (section_name == g_sect_name_dwarf_apple_objc)
1514 return eSectionTypeDWARFAppleObjC;
1515 if (section_name == g_sect_name_objc_selrefs)
1516 return eSectionTypeDataCStringPointers;
1517 if (section_name == g_sect_name_objc_msgrefs)
1518 return eSectionTypeDataObjCMessageRefs;
1519 if (section_name == g_sect_name_eh_frame)
1520 return eSectionTypeEHFrame;
1521 if (section_name == g_sect_name_compact_unwind)
1522 return eSectionTypeCompactUnwind;
1523 if (section_name == g_sect_name_cfstring)
1524 return eSectionTypeDataObjCCFStrings;
1525 if (section_name == g_sect_name_go_symtab)
1526 return eSectionTypeGoSymtab;
1527 if (section_name == g_sect_name_objc_data ||
1528 section_name == g_sect_name_objc_classrefs ||
1529 section_name == g_sect_name_objc_superrefs ||
1530 section_name == g_sect_name_objc_const ||
1531 section_name == g_sect_name_objc_classlist) {
1532 return eSectionTypeDataPointers;
1533 }
1534
1535 switch (mach_sect_type) {
1536 // TODO: categorize sections by other flags for regular sections
1537 case S_REGULAR:
1538 if (section_name == g_sect_name_text)
1539 return eSectionTypeCode;
1540 if (section_name == g_sect_name_data)
1541 return eSectionTypeData;
1542 return eSectionTypeOther;
1543 case S_ZEROFILL:
1544 return eSectionTypeZeroFill;
1545 case S_CSTRING_LITERALS: // section with only literal C strings
1546 return eSectionTypeDataCString;
1547 case S_4BYTE_LITERALS: // section with only 4 byte literals
1548 return eSectionTypeData4;
1549 case S_8BYTE_LITERALS: // section with only 8 byte literals
1550 return eSectionTypeData8;
1551 case S_LITERAL_POINTERS: // section with only pointers to literals
1552 return eSectionTypeDataPointers;
1553 case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1554 return eSectionTypeDataPointers;
1555 case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1556 return eSectionTypeDataPointers;
1557 case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1558 // the reserved2 field
1559 return eSectionTypeCode;
1560 case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1561 // initialization
1562 return eSectionTypeDataPointers;
1563 case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1564 // termination
1565 return eSectionTypeDataPointers;
1566 case S_COALESCED:
1567 return eSectionTypeOther;
1568 case S_GB_ZEROFILL:
1569 return eSectionTypeZeroFill;
1570 case S_INTERPOSING: // section with only pairs of function pointers for
1571 // interposing
1572 return eSectionTypeCode;
1573 case S_16BYTE_LITERALS: // section with only 16 byte literals
1574 return eSectionTypeData16;
1575 case S_DTRACE_DOF:
1576 return eSectionTypeDebug;
1577 case S_LAZY_DYLIB_SYMBOL_POINTERS:
1578 return eSectionTypeDataPointers;
1579 default:
1580 return eSectionTypeOther;
1581 }
1582}
1583
1584struct ObjectFileMachO::SegmentParsingContext {
1585 const EncryptedFileRanges EncryptedRanges;
1586 lldb_private::SectionList &UnifiedList;
1587 uint32_t NextSegmentIdx = 0;
1588 uint32_t NextSectionIdx = 0;
1589 bool FileAddressesChanged = false;
1590
1591 SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1592 lldb_private::SectionList &UnifiedList)
1593 : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1594};
1595
1596void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1597 lldb::offset_t offset,
1598 uint32_t cmd_idx,
1599 SegmentParsingContext &context) {
1600 segment_command_64 load_cmd;
1601 memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1602
1603 if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1604 return;
1605
1606 ModuleSP module_sp = GetModule();
1607 const bool is_core = GetType() == eTypeCoreFile;
1608 const bool is_dsym = (m_header.filetype == MH_DSYM);
1609 bool add_section = true;
1610 bool add_to_unified = true;
1611 ConstString const_segname(
1612 load_cmd.segname,
1613 std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname)));
1614
1615 SectionSP unified_section_sp(
1616 context.UnifiedList.FindSectionByName(const_segname));
1617 if (is_dsym && unified_section_sp) {
1618 if (const_segname == GetSegmentNameLINKEDIT()) {
1619 // We need to keep the __LINKEDIT segment private to this object file
1620 // only
1621 add_to_unified = false;
1622 } else {
1623 // This is the dSYM file and this section has already been created by the
1624 // object file, no need to create it.
1625 add_section = false;
1626 }
1627 }
1628 load_cmd.vmaddr = m_data.GetAddress(&offset);
1629 load_cmd.vmsize = m_data.GetAddress(&offset);
1630 load_cmd.fileoff = m_data.GetAddress(&offset);
1631 load_cmd.filesize = m_data.GetAddress(&offset);
1632 if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1633 return;
1634
1635 SanitizeSegmentCommand(load_cmd, cmd_idx);
1636
1637 const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1638 const bool segment_is_encrypted =
1639 (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1640
1641 // Keep a list of mach segments around in case we need to get at data that
1642 // isn't stored in the abstracted Sections.
1643 m_mach_segments.push_back(load_cmd);
1644
1645 // Use a segment ID of the segment index shifted left by 8 so they never
1646 // conflict with any of the sections.
1647 SectionSP segment_sp;
1648 if (add_section && (const_segname || is_core)) {
1649 segment_sp.reset(new Section(
1650 module_sp, // Module to which this section belongs
1651 this, // Object file to which this sections belongs
1652 ++context.NextSegmentIdx
1653 << 8, // Section ID is the 1 based segment index
1654 // shifted right by 8 bits as not to collide with any of the 256
1655 // section IDs that are possible
1656 const_segname, // Name of this section
1657 eSectionTypeContainer, // This section is a container of other
1658 // sections.
1659 load_cmd.vmaddr, // File VM address == addresses as they are
1660 // found in the object file
1661 load_cmd.vmsize, // VM size in bytes of this section
1662 load_cmd.fileoff, // Offset to the data for this section in
1663 // the file
1664 load_cmd.filesize, // Size in bytes of this section as found
1665 // in the file
1666 0, // Segments have no alignment information
1667 load_cmd.flags)); // Flags for this section
1668
1669 segment_sp->SetIsEncrypted(segment_is_encrypted);
1670 m_sections_ap->AddSection(segment_sp);
1671 segment_sp->SetPermissions(segment_permissions);
1672 if (add_to_unified)
1673 context.UnifiedList.AddSection(segment_sp);
1674 } else if (unified_section_sp) {
1675 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1676 // Check to see if the module was read from memory?
1677 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) {
1678 // We have a module that is in memory and needs to have its file
1679 // address adjusted. We need to do this because when we load a file
1680 // from memory, its addresses will be slid already, yet the addresses
1681 // in the new symbol file will still be unslid. Since everything is
1682 // stored as section offset, this shouldn't cause any problems.
1683
1684 // Make sure we've parsed the symbol table from the ObjectFile before
1685 // we go around changing its Sections.
1686 module_sp->GetObjectFile()->GetSymtab();
1687 // eh_frame would present the same problems but we parse that on a per-
1688 // function basis as-needed so it's more difficult to remove its use of
1689 // the Sections. Realistically, the environments where this code path
1690 // will be taken will not have eh_frame sections.
1691
1692 unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1693
1694 // Notify the module that the section addresses have been changed once
1695 // we're done so any file-address caches can be updated.
1696 context.FileAddressesChanged = true;
1697 }
1698 }
1699 m_sections_ap->AddSection(unified_section_sp);
1700 }
1701
1702 struct section_64 sect64;
1703 ::memset(&sect64, 0, sizeof(sect64));
1704 // Push a section into our mach sections for the section at index zero
1705 // (NO_SECT) if we don't have any mach sections yet...
1706 if (m_mach_sections.empty())
1707 m_mach_sections.push_back(sect64);
1708 uint32_t segment_sect_idx;
1709 const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1710
1711 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1712 for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1713 ++segment_sect_idx) {
1714 if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1715 sizeof(sect64.sectname)) == NULL__null)
1716 break;
1717 if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1718 sizeof(sect64.segname)) == NULL__null)
1719 break;
1720 sect64.addr = m_data.GetAddress(&offset);
1721 sect64.size = m_data.GetAddress(&offset);
1722
1723 if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL__null)
1724 break;
1725
1726 // Keep a list of mach sections around in case we need to get at data that
1727 // isn't stored in the abstracted Sections.
1728 m_mach_sections.push_back(sect64);
1729
1730 if (add_section) {
1731 ConstString section_name(
1732 sect64.sectname,
1733 std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname)));
1734 if (!const_segname) {
1735 // We have a segment with no name so we need to conjure up segments
1736 // that correspond to the section's segname if there isn't already such
1737 // a section. If there is such a section, we resize the section so that
1738 // it spans all sections. We also mark these sections as fake so
1739 // address matches don't hit if they land in the gaps between the child
1740 // sections.
1741 const_segname.SetTrimmedCStringWithLength(sect64.segname,
1742 sizeof(sect64.segname));
1743 segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1744 if (segment_sp.get()) {
1745 Section *segment = segment_sp.get();
1746 // Grow the section size as needed.
1747 const lldb::addr_t sect64_min_addr = sect64.addr;
1748 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1749 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1750 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1751 const lldb::addr_t curr_seg_max_addr =
1752 curr_seg_min_addr + curr_seg_byte_size;
1753 if (sect64_min_addr >= curr_seg_min_addr) {
1754 const lldb::addr_t new_seg_byte_size =
1755 sect64_max_addr - curr_seg_min_addr;
1756 // Only grow the section size if needed
1757 if (new_seg_byte_size > curr_seg_byte_size)
1758 segment->SetByteSize(new_seg_byte_size);
1759 } else {
1760 // We need to change the base address of the segment and adjust the
1761 // child section offsets for all existing children.
1762 const lldb::addr_t slide_amount =
1763 sect64_min_addr - curr_seg_min_addr;
1764 segment->Slide(slide_amount, false);
1765 segment->GetChildren().Slide(-slide_amount, false);
1766 segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1767 }
1768
1769 // Grow the section size as needed.
1770 if (sect64.offset) {
1771 const lldb::addr_t segment_min_file_offset =
1772 segment->GetFileOffset();
1773 const lldb::addr_t segment_max_file_offset =
1774 segment_min_file_offset + segment->GetFileSize();
1775
1776 const lldb::addr_t section_min_file_offset = sect64.offset;
1777 const lldb::addr_t section_max_file_offset =
1778 section_min_file_offset + sect64.size;
1779 const lldb::addr_t new_file_offset =
1780 std::min(section_min_file_offset, segment_min_file_offset);
1781 const lldb::addr_t new_file_size =
1782 std::max(section_max_file_offset, segment_max_file_offset) -
1783 new_file_offset;
1784 segment->SetFileOffset(new_file_offset);
1785 segment->SetFileSize(new_file_size);
1786 }
1787 } else {
1788 // Create a fake section for the section's named segment
1789 segment_sp.reset(new Section(
1790 segment_sp, // Parent section
1791 module_sp, // Module to which this section belongs
1792 this, // Object file to which this section belongs
1793 ++context.NextSegmentIdx
1794 << 8, // Section ID is the 1 based segment index
1795 // shifted right by 8 bits as not to
1796 // collide with any of the 256 section IDs
1797 // that are possible
1798 const_segname, // Name of this section
1799 eSectionTypeContainer, // This section is a container of
1800 // other sections.
1801 sect64.addr, // File VM address == addresses as they are
1802 // found in the object file
1803 sect64.size, // VM size in bytes of this section
1804 sect64.offset, // Offset to the data for this section in
1805 // the file
1806 sect64.offset ? sect64.size : 0, // Size in bytes of
1807 // this section as
1808 // found in the file
1809 sect64.align,
1810 load_cmd.flags)); // Flags for this section
1811 segment_sp->SetIsFake(true);
1812 segment_sp->SetPermissions(segment_permissions);
1813 m_sections_ap->AddSection(segment_sp);
1814 if (add_to_unified)
1815 context.UnifiedList.AddSection(segment_sp);
1816 segment_sp->SetIsEncrypted(segment_is_encrypted);
1817 }
1818 }
1819 assert(segment_sp.get())((segment_sp.get()) ? static_cast<void> (0) : __assert_fail
("segment_sp.get()", "/build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 1819, __PRETTY_FUNCTION__))
;
1820
1821 lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1822
1823 SectionSP section_sp(new Section(
1824 segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1825 sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1826 sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1827 sect64.flags));
1828 // Set the section to be encrypted to match the segment
1829
1830 bool section_is_encrypted = false;
1831 if (!segment_is_encrypted && load_cmd.filesize != 0)
1832 section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1833 sect64.offset) != NULL__null;
1834
1835 section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1836 section_sp->SetPermissions(segment_permissions);
1837 segment_sp->GetChildren().AddSection(section_sp);
1838
1839 if (segment_sp->IsFake()) {
1840 segment_sp.reset();
1841 const_segname.Clear();
1842 }
1843 }
1844 }
1845 if (segment_sp && is_dsym) {
1846 if (first_segment_sectID <= context.NextSectionIdx) {
1847 lldb::user_id_t sect_uid;
1848 for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1849 ++sect_uid) {
1850 SectionSP curr_section_sp(
1851 segment_sp->GetChildren().FindSectionByID(sect_uid));
1852 SectionSP next_section_sp;
1853 if (sect_uid + 1 <= context.NextSectionIdx)
1854 next_section_sp =
1855 segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1856
1857 if (curr_section_sp.get()) {
1858 if (curr_section_sp->GetByteSize() == 0) {
1859 if (next_section_sp.get() != NULL__null)
1860 curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1861 curr_section_sp->GetFileAddress());
1862 else
1863 curr_section_sp->SetByteSize(load_cmd.vmsize);
1864 }
1865 }
1866 }
1867 }
1868 }
1869}
1870
1871void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1872 lldb::offset_t offset) {
1873 m_dysymtab.cmd = load_cmd.cmd;
1874 m_dysymtab.cmdsize = load_cmd.cmdsize;
1875 m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1876 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1877}
1878
1879void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1880 if (m_sections_ap)
1881 return;
1882
1883 m_sections_ap.reset(new SectionList());
1884
1885 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1886 // bool dump_sections = false;
1887 ModuleSP module_sp(GetModule());
1888
1889 offset = MachHeaderSizeFromMagic(m_header.magic);
1890
1891 SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1892 struct load_command load_cmd;
1893 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1894 const lldb::offset_t load_cmd_offset = offset;
1895 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL__null)
1896 break;
1897
1898 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1899 ProcessSegmentCommand(load_cmd, offset, i, context);
1900 else if (load_cmd.cmd == LC_DYSYMTAB)
1901 ProcessDysymtabCommand(load_cmd, offset);
1902
1903 offset = load_cmd_offset + load_cmd.cmdsize;
1904 }
1905
1906 if (context.FileAddressesChanged && module_sp)
1907 module_sp->SectionFileAddressesChanged();
1908}
1909
1910class MachSymtabSectionInfo {
1911public:
1912 MachSymtabSectionInfo(SectionList *section_list)
1913 : m_section_list(section_list), m_section_infos() {
1914 // Get the number of sections down to a depth of 1 to include all segments
1915 // and their sections, but no other sections that may be added for debug
1916 // map or
1917 m_section_infos.resize(section_list->GetNumSections(1));
1918 }
1919
1920 SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1921 if (n_sect == 0)
1922 return SectionSP();
1923 if (n_sect < m_section_infos.size()) {
1924 if (!m_section_infos[n_sect].section_sp) {
1925 SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1926 m_section_infos[n_sect].section_sp = section_sp;
1927 if (section_sp) {
1928 m_section_infos[n_sect].vm_range.SetBaseAddress(
1929 section_sp->GetFileAddress());
1930 m_section_infos[n_sect].vm_range.SetByteSize(
1931 section_sp->GetByteSize());
1932 } else {
1933 Host::SystemLog(Host::eSystemLogError,
1934 "error: unable to find section for section %u\n",
1935 n_sect);
1936 }
1937 }
1938 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1939 // Symbol is in section.
1940 return m_section_infos[n_sect].section_sp;
1941 } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1942 m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1943 file_addr) {
1944 // Symbol is in section with zero size, but has the same start address
1945 // as the section. This can happen with linker symbols (symbols that
1946 // start with the letter 'l' or 'L'.
1947 return m_section_infos[n_sect].section_sp;
1948 }
1949 }
1950 return m_section_list->FindSectionContainingFileAddress(file_addr);
1951 }
1952
1953protected:
1954 struct SectionInfo {
1955 SectionInfo() : vm_range(), section_sp() {}
1956
1957 VMRange vm_range;
1958 SectionSP section_sp;
1959 };
1960 SectionList *m_section_list;
1961 std::vector<SectionInfo> m_section_infos;
1962};
1963
1964struct TrieEntry {
1965 TrieEntry()
1966 : name(), address(LLDB_INVALID_ADDRESS(18446744073709551615UL)), flags(0), other(0),
1967 import_name() {}
1968
1969 void Clear() {
1970 name.Clear();
1971 address = LLDB_INVALID_ADDRESS(18446744073709551615UL);
1972 flags = 0;
1973 other = 0;
1974 import_name.Clear();
1975 }
1976
1977 void Dump() const {
1978 printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1979 static_cast<unsigned long long>(address),
1980 static_cast<unsigned long long>(flags),
1981 static_cast<unsigned long long>(other), name.GetCString());
1982 if (import_name)
1983 printf(" -> \"%s\"\n", import_name.GetCString());
1984 else
1985 printf("\n");
1986 }
1987 ConstString name;
1988 uint64_t address;
1989 uint64_t flags;
1990 uint64_t other;
1991 ConstString import_name;
1992};
1993
1994struct TrieEntryWithOffset {
1995 lldb::offset_t nodeOffset;
1996 TrieEntry entry;
1997
1998 TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1999
2000 void Dump(uint32_t idx) const {
2001 printf("[%3u] 0x%16.16llx: ", idx,
2002 static_cast<unsigned long long>(nodeOffset));
2003 entry.Dump();
2004 }
2005
2006 bool operator<(const TrieEntryWithOffset &other) const {
2007 return (nodeOffset < other.nodeOffset);
2008 }
2009};
2010
2011static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2012 const bool is_arm,
2013 std::vector<llvm::StringRef> &nameSlices,
2014 std::set<lldb::addr_t> &resolver_addresses,
2015 std::vector<TrieEntryWithOffset> &output) {
2016 if (!data.ValidOffset(offset))
2017 return true;
2018
2019 const uint64_t terminalSize = data.GetULEB128(&offset);
2020 lldb::offset_t children_offset = offset + terminalSize;
2021 if (terminalSize != 0) {
2022 TrieEntryWithOffset e(offset);
2023 e.entry.flags = data.GetULEB128(&offset);
2024 const char *import_name = NULL__null;
2025 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2026 e.entry.address = 0;
2027 e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2028 import_name = data.GetCStr(&offset);
2029 } else {
2030 e.entry.address = data.GetULEB128(&offset);
2031 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2032 e.entry.other = data.GetULEB128(&offset);
2033 uint64_t resolver_addr = e.entry.other;
2034 if (is_arm)
2035 resolver_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
2036 resolver_addresses.insert(resolver_addr);
2037 } else
2038 e.entry.other = 0;
2039 }
2040 // Only add symbols that are reexport symbols with a valid import name
2041 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
2042 import_name[0]) {
2043 std::string name;
2044 if (!nameSlices.empty()) {
2045 for (auto name_slice : nameSlices)
2046 name.append(name_slice.data(), name_slice.size());
2047 }
2048 if (name.size() > 1) {
2049 // Skip the leading '_'
2050 e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2051 }
2052 if (import_name) {
2053 // Skip the leading '_'
2054 e.entry.import_name.SetCString(import_name + 1);
2055 }
2056 output.push_back(e);
2057 }
2058 }
2059
2060 const uint8_t childrenCount = data.GetU8(&children_offset);
2061 for (uint8_t i = 0; i < childrenCount; ++i) {
2062 const char *cstr = data.GetCStr(&children_offset);
2063 if (cstr)
2064 nameSlices.push_back(llvm::StringRef(cstr));
2065 else
2066 return false; // Corrupt data
2067 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2068 if (childNodeOffset) {
2069 if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
2070 resolver_addresses, output)) {
2071 return false;
2072 }
2073 }
2074 nameSlices.pop_back();
2075 }
2076 return true;
2077}
2078
2079// Read the UUID out of a dyld_shared_cache file on-disk.
2080UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2081 const ByteOrder byte_order,
2082 const uint32_t addr_byte_size) {
2083 UUID dsc_uuid;
2084 DataBufferSP DscData = MapFileData(
2085 dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2086 if (!DscData)
2087 return dsc_uuid;
2088 DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2089
2090 char version_str[7];
2091 lldb::offset_t offset = 0;
2092 memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2093 version_str[6] = '\0';
2094 if (strcmp(version_str, "dyld_v") == 0) {
2095 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid)__builtin_offsetof(struct lldb_copy_dyld_cache_header_v1, uuid
)
;
2096 dsc_uuid = UUID::fromOptionalData(
2097 dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2098 }
2099 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS(1u << 20)));
2100 if (log && dsc_uuid.IsValid()) {
2101 log->Printf("Shared cache %s has UUID %s", dyld_shared_cache.GetPath().c_str(),
2102 dsc_uuid.GetAsString().c_str());
2103 }
2104 return dsc_uuid;
2105}
2106
2107size_t ObjectFileMachO::ParseSymtab() {
2108 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION__PRETTY_FUNCTION__);
2109 Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2110 m_file.GetFilename().AsCString(""));
2111 ModuleSP module_sp(GetModule());
2112 if (!module_sp)
2113 return 0;
2114
2115 struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2116 struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2117 struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2118 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2119 FunctionStarts function_starts;
2120 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2121 uint32_t i;
2122 FileSpecList dylib_files;
2123 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS(1u << 20)));
2124 static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2125 static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2126 static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2127
2128 for (i = 0; i < m_header.ncmds; ++i) {
2129 const lldb::offset_t cmd_offset = offset;
2130 // Read in the load command and load command size
2131 struct load_command lc;
2132 if (m_data.GetU32(&offset, &lc, 2) == NULL__null)
2133 break;
2134 // Watch for the symbol table load command
2135 switch (lc.cmd) {
2136 case LC_SYMTAB:
2137 symtab_load_command.cmd = lc.cmd;
2138 symtab_load_command.cmdsize = lc.cmdsize;
2139 // Read in the rest of the symtab load command
2140 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2141 0) // fill in symoff, nsyms, stroff, strsize fields
2142 return 0;
2143 if (symtab_load_command.symoff == 0) {
2144 if (log)
2145 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2146 return 0;
2147 }
2148
2149 if (symtab_load_command.stroff == 0) {
2150 if (log)
2151 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2152 return 0;
2153 }
2154
2155 if (symtab_load_command.nsyms == 0) {
2156 if (log)
2157 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2158 return 0;
2159 }
2160
2161 if (symtab_load_command.strsize == 0) {
2162 if (log)
2163 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2164 return 0;
2165 }
2166 break;
2167
2168 case LC_DYLD_INFO:
2169 case LC_DYLD_INFO_ONLY:
2170 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2171 dyld_info.cmd = lc.cmd;
2172 dyld_info.cmdsize = lc.cmdsize;
2173 } else {
2174 memset(&dyld_info, 0, sizeof(dyld_info));
2175 }
2176 break;
2177
2178 case LC_LOAD_DYLIB:
2179 case LC_LOAD_WEAK_DYLIB:
2180 case LC_REEXPORT_DYLIB:
2181 case LC_LOADFVMLIB:
2182 case LC_LOAD_UPWARD_DYLIB: {
2183 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2184 const char *path = m_data.PeekCStr(name_offset);
2185 if (path) {
2186 FileSpec file_spec(path, false);
2187 // Strip the path if there is @rpath, @executable, etc so we just use
2188 // the basename
2189 if (path[0] == '@')
2190 file_spec.GetDirectory().Clear();
2191
2192 if (lc.cmd == LC_REEXPORT_DYLIB) {
2193 m_reexported_dylibs.AppendIfUnique(file_spec);
2194 }
2195
2196 dylib_files.Append(file_spec);
2197 }
2198 } break;
2199
2200 case LC_FUNCTION_STARTS:
2201 function_starts_load_command.cmd = lc.cmd;
2202 function_starts_load_command.cmdsize = lc.cmdsize;
2203 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2204 NULL__null) // fill in symoff, nsyms, stroff, strsize fields
2205 memset(&function_starts_load_command, 0,
2206 sizeof(function_starts_load_command));
2207 break;
2208
2209 default:
2210 break;
2211 }
2212 offset = cmd_offset + lc.cmdsize;
2213 }
2214
2215 if (symtab_load_command.cmd) {
2216 Symtab *symtab = m_symtab_ap.get();
2217 SectionList *section_list = GetSectionList();
2218 if (section_list == NULL__null)
2219 return 0;
2220
2221 const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2222 const ByteOrder byte_order = m_data.GetByteOrder();
2223 bool bit_width_32 = addr_byte_size == 4;
2224 const size_t nlist_byte_size =
2225 bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2226
2227 DataExtractor nlist_data(NULL__null, 0, byte_order, addr_byte_size);
2228 DataExtractor strtab_data(NULL__null, 0, byte_order, addr_byte_size);
2229 DataExtractor function_starts_data(NULL__null, 0, byte_order, addr_byte_size);
2230 DataExtractor indirect_symbol_index_data(NULL__null, 0, byte_order,
2231 addr_byte_size);
2232 DataExtractor dyld_trie_data(NULL__null, 0, byte_order, addr_byte_size);
2233
2234 const addr_t nlist_data_byte_size =
2235 symtab_load_command.nsyms * nlist_byte_size;
2236 const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2237 addr_t strtab_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
2238
2239 ProcessSP process_sp(m_process_wp.lock());
2240 Process *process = process_sp.get();
2241
2242 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2243
2244 if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2245 Target &target = process->GetTarget();
2246
2247 memory_module_load_level = target.GetMemoryModuleLoadLevel();
2248
2249 SectionSP linkedit_section_sp(
2250 section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2251 // Reading mach file from memory in a process or core file...
2252
2253 if (linkedit_section_sp) {
2254 addr_t linkedit_load_addr =
2255 linkedit_section_sp->GetLoadBaseAddress(&target);
2256 if (linkedit_load_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
2257 // We might be trying to access the symbol table before the
2258 // __LINKEDIT's load address has been set in the target. We can't
2259 // fail to read the symbol table, so calculate the right address
2260 // manually
2261 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2262 m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2263 }
2264
2265 const addr_t linkedit_file_offset =
2266 linkedit_section_sp->GetFileOffset();
2267 const addr_t symoff_addr = linkedit_load_addr +
2268 symtab_load_command.symoff -
2269 linkedit_file_offset;
2270 strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2271 linkedit_file_offset;
2272
2273 bool data_was_read = false;
2274
2275#if defined(__APPLE__) && \
2276 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2277 if (m_header.flags & 0x80000000u &&
2278 process->GetAddressByteSize() == sizeof(void *)) {
2279 // This mach-o memory file is in the dyld shared cache. If this
2280 // program is not remote and this is iOS, then this process will
2281 // share the same shared cache as the process we are debugging and we
2282 // can read the entire __LINKEDIT from the address space in this
2283 // process. This is a needed optimization that is used for local iOS
2284 // debugging only since all shared libraries in the shared cache do
2285 // not have corresponding files that exist in the file system of the
2286 // device. They have been combined into a single file. This means we
2287 // always have to load these files from memory. All of the symbol and
2288 // string tables from all of the __LINKEDIT sections from the shared
2289 // libraries in the shared cache have been merged into a single large
2290 // symbol and string table. Reading all of this symbol and string
2291 // table data across can slow down debug launch times, so we optimize
2292 // this by reading the memory for the __LINKEDIT section from this
2293 // process.
2294
2295 UUID lldb_shared_cache;
2296 addr_t lldb_shared_cache_addr;
2297 GetLLDBSharedCacheUUID (lldb_shared_cache_addr, lldb_shared_cache);
2298 UUID process_shared_cache;
2299 addr_t process_shared_cache_addr;
2300 GetProcessSharedCacheUUID(process, process_shared_cache_addr, process_shared_cache);
2301 bool use_lldb_cache = true;
2302 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2303 (lldb_shared_cache != process_shared_cache
2304 || process_shared_cache_addr != lldb_shared_cache_addr)) {
2305 use_lldb_cache = false;
2306 }
2307
2308 PlatformSP platform_sp(target.GetPlatform());
2309 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2310 data_was_read = true;
2311 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2312 eByteOrderLittle);
2313 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2314 eByteOrderLittle);
2315 if (function_starts_load_command.cmd) {
2316 const addr_t func_start_addr =
2317 linkedit_load_addr + function_starts_load_command.dataoff -
2318 linkedit_file_offset;
2319 function_starts_data.SetData(
2320 (void *)func_start_addr,
2321 function_starts_load_command.datasize, eByteOrderLittle);
2322 }
2323 }
2324 }
2325#endif
2326
2327 if (!data_was_read) {
2328 // Always load dyld - the dynamic linker - from memory if we didn't
2329 // find a binary anywhere else. lldb will not register
2330 // dylib/framework/bundle loads/unloads if we don't have the dyld
2331 // symbols, we force dyld to load from memory despite the user's
2332 // target.memory-module-load-level setting.
2333 if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2334 m_header.filetype == llvm::MachO::MH_DYLINKER) {
2335 DataBufferSP nlist_data_sp(
2336 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2337 if (nlist_data_sp)
2338 nlist_data.SetData(nlist_data_sp, 0,
2339 nlist_data_sp->GetByteSize());
2340 if (m_dysymtab.nindirectsyms != 0) {
2341 const addr_t indirect_syms_addr = linkedit_load_addr +
2342 m_dysymtab.indirectsymoff -
2343 linkedit_file_offset;
2344 DataBufferSP indirect_syms_data_sp(
2345 ReadMemory(process_sp, indirect_syms_addr,
2346 m_dysymtab.nindirectsyms * 4));
2347 if (indirect_syms_data_sp)
2348 indirect_symbol_index_data.SetData(
2349 indirect_syms_data_sp, 0,
2350 indirect_syms_data_sp->GetByteSize());
2351 // If this binary is outside the shared cache,
2352 // cache the string table.
2353 // Binaries in the shared cache all share a giant string table, and
2354 // we can't share the string tables across multiple ObjectFileMachO's,
2355 // so we'd end up re-reading this mega-strtab for every binary
2356 // in the shared cache - it would be a big perf problem.
2357 // For binaries outside the shared cache, it's faster to read the
2358 // entire strtab at once instead of piece-by-piece as we process
2359 // the nlist records.
2360 if ((m_header.flags & 0x80000000u) == 0) {
2361 DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr,
2362 strtab_data_byte_size));
2363 if (strtab_data_sp) {
2364 strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize());
2365 }
2366 }
2367 }
2368 }
2369 if (memory_module_load_level >=
2370 eMemoryModuleLoadLevelPartial) {
2371 if (function_starts_load_command.cmd) {
2372 const addr_t func_start_addr =
2373 linkedit_load_addr + function_starts_load_command.dataoff -
2374 linkedit_file_offset;
2375 DataBufferSP func_start_data_sp(
2376 ReadMemory(process_sp, func_start_addr,
2377 function_starts_load_command.datasize));
2378 if (func_start_data_sp)
2379 function_starts_data.SetData(func_start_data_sp, 0,
2380 func_start_data_sp->GetByteSize());
2381 }
2382 }
2383 }
2384 }
2385 } else {
2386 nlist_data.SetData(m_data, symtab_load_command.symoff,
2387 nlist_data_byte_size);
2388 strtab_data.SetData(m_data, symtab_load_command.stroff,
2389 strtab_data_byte_size);
2390
2391 if (dyld_info.export_size > 0) {
2392 dyld_trie_data.SetData(m_data, dyld_info.export_off,
2393 dyld_info.export_size);
2394 }
2395
2396 if (m_dysymtab.nindirectsyms != 0) {
2397 indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2398 m_dysymtab.nindirectsyms * 4);
2399 }
2400 if (function_starts_load_command.cmd) {
2401 function_starts_data.SetData(m_data,
2402 function_starts_load_command.dataoff,
2403 function_starts_load_command.datasize);
2404 }
2405 }
2406
2407 if (nlist_data.GetByteSize() == 0 &&
2408 memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2409 if (log)
2410 module_sp->LogMessage(log, "failed to read nlist data");
2411 return 0;
2412 }
2413
2414 const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2415 if (!have_strtab_data) {
2416 if (process) {
2417 if (strtab_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
2418 if (log)
2419 module_sp->LogMessage(log, "failed to locate the strtab in memory");
2420 return 0;
2421 }
2422 } else {
2423 if (log)
2424 module_sp->LogMessage(log, "failed to read strtab data");
2425 return 0;
2426 }
2427 }
2428
2429 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT();
2430 const ConstString &g_segment_name_DATA = GetSegmentNameDATA();
2431 const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2432 const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2433 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC();
2434 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame();
2435 SectionSP text_section_sp(
2436 section_list->FindSectionByName(g_segment_name_TEXT));
2437 SectionSP data_section_sp(
2438 section_list->FindSectionByName(g_segment_name_DATA));
2439 SectionSP data_dirty_section_sp(
2440 section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2441 SectionSP data_const_section_sp(
2442 section_list->FindSectionByName(g_segment_name_DATA_CONST));
2443 SectionSP objc_section_sp(
2444 section_list->FindSectionByName(g_segment_name_OBJC));
2445 SectionSP eh_frame_section_sp;
2446 if (text_section_sp.get())
2447 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2448 g_section_name_eh_frame);
2449 else
2450 eh_frame_section_sp =
2451 section_list->FindSectionByName(g_section_name_eh_frame);
2452
2453 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2454
2455 // lldb works best if it knows the start address of all functions in a
2456 // module. Linker symbols or debug info are normally the best source of
2457 // information for start addr / size but they may be stripped in a released
2458 // binary. Two additional sources of information exist in Mach-O binaries:
2459 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2460 // function's start address in the
2461 // binary, relative to the text section.
2462 // eh_frame - the eh_frame FDEs have the start addr & size of
2463 // each function
2464 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2465 // all modern binaries.
2466 // Binaries built to run on older releases may need to use eh_frame
2467 // information.
2468
2469 if (text_section_sp && function_starts_data.GetByteSize()) {
2470 FunctionStarts::Entry function_start_entry;
2471 function_start_entry.data = false;
2472 lldb::offset_t function_start_offset = 0;
2473 function_start_entry.addr = text_section_sp->GetFileAddress();
2474 uint64_t delta;
2475 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2476 0) {
2477 // Now append the current entry
2478 function_start_entry.addr += delta;
2479 function_starts.Append(function_start_entry);
2480 }
2481 } else {
2482 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2483 // load command claiming an eh_frame but it doesn't actually have the
2484 // eh_frame content. And if we have a dSYM, we don't need to do any of
2485 // this fill-in-the-missing-symbols works anyway - the debug info should
2486 // give us all the functions in the module.
2487 if (text_section_sp.get() && eh_frame_section_sp.get() &&
2488 m_type != eTypeDebugInfo) {
2489 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2490 DWARFCallFrameInfo::EH);
2491 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2492 eh_frame.GetFunctionAddressAndSizeVector(functions);
2493 addr_t text_base_addr = text_section_sp->GetFileAddress();
2494 size_t count = functions.GetSize();
2495 for (size_t i = 0; i < count; ++i) {
2496 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2497 functions.GetEntryAtIndex(i);
2498 if (func) {
2499 FunctionStarts::Entry function_start_entry;
2500 function_start_entry.addr = func->base - text_base_addr;
2501 function_starts.Append(function_start_entry);
2502 }
2503 }
2504 }
2505 }
2506
2507 const size_t function_starts_count = function_starts.GetSize();
2508
2509 // For user process binaries (executables, dylibs, frameworks, bundles), if
2510 // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2511 // going to assume the binary has been stripped. Don't allow assembly
2512 // language instruction emulation because we don't know proper function
2513 // start boundaries.
2514 //
2515 // For all other types of binaries (kernels, stand-alone bare board
2516 // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2517 // sections - we should not make any assumptions about them based on that.
2518 if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2519 m_allow_assembly_emulation_unwind_plans = false;
2520 Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2521 LIBLLDB_LOG_SYMBOLS(1u << 20) | LIBLLDB_LOG_UNWIND(1u << 15)));
2522
2523 if (unwind_or_symbol_log)
2524 module_sp->LogMessage(
2525 unwind_or_symbol_log,
2526 "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2527 }
2528
2529 const user_id_t TEXT_eh_frame_sectID =
2530 eh_frame_section_sp.get() ? eh_frame_section_sp->GetID()
2531 : static_cast<user_id_t>(NO_SECT);
2532
2533 lldb::offset_t nlist_data_offset = 0;
2534
2535 uint32_t N_SO_index = UINT32_MAX(4294967295U);
2536
2537 MachSymtabSectionInfo section_info(section_list);
2538 std::vector<uint32_t> N_FUN_indexes;
2539 std::vector<uint32_t> N_NSYM_indexes;
2540 std::vector<uint32_t> N_INCL_indexes;
2541 std::vector<uint32_t> N_BRAC_indexes;
2542 std::vector<uint32_t> N_COMM_indexes;
2543 typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2544 typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2545 typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap;
2546 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2547 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2548 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2549 // Any symbols that get merged into another will get an entry in this map
2550 // so we know
2551 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2552 uint32_t nlist_idx = 0;
2553 Symbol *symbol_ptr = NULL__null;
2554
2555 uint32_t sym_idx = 0;
2556 Symbol *sym = NULL__null;
2557 size_t num_syms = 0;
2558 std::string memory_symbol_name;
2559 uint32_t unmapped_local_symbols_found = 0;
2560
2561 std::vector<TrieEntryWithOffset> trie_entries;
2562 std::set<lldb::addr_t> resolver_addresses;
2563
2564 if (dyld_trie_data.GetByteSize() > 0) {
2565 std::vector<llvm::StringRef> nameSlices;
2566 ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices,
2567 resolver_addresses, trie_entries);
2568
2569 ConstString text_segment_name("__TEXT");
2570 SectionSP text_segment_sp =
2571 GetSectionList()->FindSectionByName(text_segment_name);
2572 if (text_segment_sp) {
2573 const lldb::addr_t text_segment_file_addr =
2574 text_segment_sp->GetFileAddress();
2575 if (text_segment_file_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
2576 for (auto &e : trie_entries)
2577 e.entry.address += text_segment_file_addr;
2578 }
2579 }
2580 }
2581
2582 typedef std::set<ConstString> IndirectSymbols;
2583 IndirectSymbols indirect_symbol_names;
2584
2585#if defined(__APPLE__) && \
2586 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2587
2588 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2589 // optimized by moving LOCAL symbols out of the memory mapped portion of
2590 // the DSC. The symbol information has all been retained, but it isn't
2591 // available in the normal nlist data. However, there *are* duplicate
2592 // entries of *some*
2593 // LOCAL symbols in the normal nlist data. To handle this situation
2594 // correctly, we must first attempt
2595 // to parse any DSC unmapped symbol information. If we find any, we set a
2596 // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2597
2598 if (m_header.flags & 0x80000000u) {
2599 // Before we can start mapping the DSC, we need to make certain the
2600 // target process is actually using the cache we can find.
2601
2602 // Next we need to determine the correct path for the dyld shared cache.
2603
2604 ArchSpec header_arch;
2605 GetArchitecture(header_arch);
2606 char dsc_path[PATH_MAX4096];
2607 char dsc_path_development[PATH_MAX4096];
2608
2609 snprintf(
2610 dsc_path, sizeof(dsc_path), "%s%s%s",
2611 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2612 */
2613 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2614 header_arch.GetArchitectureName());
2615
2616 snprintf(
2617 dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2618 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2619 */
2620 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2621 header_arch.GetArchitectureName(), ".development");
2622
2623 FileSpec dsc_nondevelopment_filespec(dsc_path, false);
2624 FileSpec dsc_development_filespec(dsc_path_development, false);
2625 FileSpec dsc_filespec;
2626
2627 UUID dsc_uuid;
2628 UUID process_shared_cache_uuid;
2629 addr_t process_shared_cache_base_addr;
2630
2631 if (process) {
2632 GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, process_shared_cache_uuid);
2633 }
2634
2635 // First see if we can find an exact match for the inferior process
2636 // shared cache UUID in the development or non-development shared caches
2637 // on disk.
2638 if (process_shared_cache_uuid.IsValid()) {
2639 if (dsc_development_filespec.Exists()) {
2640 UUID dsc_development_uuid = GetSharedCacheUUID(
2641 dsc_development_filespec, byte_order, addr_byte_size);
2642 if (dsc_development_uuid.IsValid() &&
2643 dsc_development_uuid == process_shared_cache_uuid) {
2644 dsc_filespec = dsc_development_filespec;
2645 dsc_uuid = dsc_development_uuid;
2646 }
2647 }
2648 if (!dsc_uuid.IsValid() && dsc_nondevelopment_filespec.Exists()) {
2649 UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2650 dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2651 if (dsc_nondevelopment_uuid.IsValid() &&
2652 dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2653 dsc_filespec = dsc_nondevelopment_filespec;
2654 dsc_uuid = dsc_nondevelopment_uuid;
2655 }
2656 }
2657 }
2658
2659 // Failing a UUID match, prefer the development dyld_shared cache if both
2660 // are present.
2661 if (!dsc_filespec.Exists()) {
2662 if (dsc_development_filespec.Exists()) {
2663 dsc_filespec = dsc_development_filespec;
2664 } else {
2665 dsc_filespec = dsc_nondevelopment_filespec;
2666 }
2667 }
2668
2669 /* The dyld_cache_header has a pointer to the
2670 dyld_cache_local_symbols_info structure (localSymbolsOffset).
2671 The dyld_cache_local_symbols_info structure gives us three things:
2672 1. The start and count of the nlist records in the dyld_shared_cache
2673 file
2674 2. The start and size of the strings for these nlist records
2675 3. The start and count of dyld_cache_local_symbols_entry entries
2676
2677 There is one dyld_cache_local_symbols_entry per dylib/framework in the
2678 dyld shared cache.
2679 The "dylibOffset" field is the Mach-O header of this dylib/framework in
2680 the dyld shared cache.
2681 The dyld_cache_local_symbols_entry also lists the start of this
2682 dylib/framework's nlist records
2683 and the count of how many nlist records there are for this
2684 dylib/framework.
2685 */
2686
2687 // Process the dyld shared cache header to find the unmapped symbols
2688
2689 DataBufferSP dsc_data_sp = MapFileData(
2690 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2691 if (!dsc_uuid.IsValid()) {
2692 dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2693 }
2694 if (dsc_data_sp) {
2695 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2696
2697 bool uuid_match = true;
2698 if (dsc_uuid.IsValid() && process) {
2699 if (process_shared_cache_uuid.IsValid() &&
2700 dsc_uuid != process_shared_cache_uuid) {
2701 // The on-disk dyld_shared_cache file is not the same as the one in
2702 // this process' memory, don't use it.
2703 uuid_match = false;
2704 ModuleSP module_sp(GetModule());
2705 if (module_sp)
2706 module_sp->ReportWarning("process shared cache does not match "
2707 "on-disk dyld_shared_cache file, some "
2708 "symbol names will be missing.");
2709 }
2710 }
2711
2712 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset)__builtin_offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset
)
;
2713
2714 uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2715
2716 // If the mappingOffset points to a location inside the header, we've
2717 // opened an old dyld shared cache, and should not proceed further.
2718 if (uuid_match &&
2719 mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2720
2721 DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2722 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2723 mappingOffset);
2724
2725 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2726 byte_order, addr_byte_size);
2727 offset = 0;
2728
2729 // The File addresses (from the in-memory Mach-O load commands) for
2730 // the shared libraries in the shared library cache need to be
2731 // adjusted by an offset to match up with the dylibOffset identifying
2732 // field in the dyld_cache_local_symbol_entry's. This offset is
2733 // recorded in mapping_offset_value.
2734 const uint64_t mapping_offset_value =
2735 dsc_mapping_info_data.GetU64(&offset);
2736
2737 offset = offsetof(struct lldb_copy_dyld_cache_header_v1,__builtin_offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset
)
2738 localSymbolsOffset)__builtin_offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset
)
;
2739 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2740 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2741
2742 if (localSymbolsOffset && localSymbolsSize) {
2743 // Map the local symbols
2744 DataBufferSP dsc_local_symbols_data_sp =
2745 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2746
2747 if (dsc_local_symbols_data_sp) {
2748 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2749 byte_order, addr_byte_size);
2750
2751 offset = 0;
2752
2753 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
2754 typedef std::map<uint32_t, ConstString> SymbolIndexToName;
2755 UndefinedNameToDescMap undefined_name_to_desc;
2756 SymbolIndexToName reexport_shlib_needs_fixup;
2757
2758 // Read the local_symbols_infos struct in one shot
2759 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2760 dsc_local_symbols_data.GetU32(&offset,
2761 &local_symbols_info.nlistOffset, 6);
2762
2763 SectionSP text_section_sp(
2764 section_list->FindSectionByName(GetSegmentNameTEXT()));
2765
2766 uint32_t header_file_offset =
2767 (text_section_sp->GetFileAddress() - mapping_offset_value);
2768
2769 offset = local_symbols_info.entriesOffset;
2770 for (uint32_t entry_index = 0;
2771 entry_index < local_symbols_info.entriesCount;
2772 entry_index++) {
2773 struct lldb_copy_dyld_cache_local_symbols_entry
2774 local_symbols_entry;
2775 local_symbols_entry.dylibOffset =
2776 dsc_local_symbols_data.GetU32(&offset);
2777 local_symbols_entry.nlistStartIndex =
2778 dsc_local_symbols_data.GetU32(&offset);
2779 local_symbols_entry.nlistCount =
2780 dsc_local_symbols_data.GetU32(&offset);
2781
2782 if (header_file_offset == local_symbols_entry.dylibOffset) {
2783 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2784
2785 // The normal nlist code cannot correctly size the Symbols
2786 // array, we need to allocate it here.
2787 sym = symtab->Resize(
2788 symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2789 unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2790 num_syms = symtab->GetNumSymbols();
2791
2792 nlist_data_offset =
2793 local_symbols_info.nlistOffset +
2794 (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2795 uint32_t string_table_offset =
2796 local_symbols_info.stringsOffset;
2797
2798 for (uint32_t nlist_index = 0;
2799 nlist_index < local_symbols_entry.nlistCount;
2800 nlist_index++) {
2801 /////////////////////////////
2802 {
2803 struct nlist_64 nlist;
2804 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(
2805 nlist_data_offset, nlist_byte_size))
2806 break;
2807
2808 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(
2809 &nlist_data_offset);
2810 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked(
2811 &nlist_data_offset);
2812 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked(
2813 &nlist_data_offset);
2814 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked(
2815 &nlist_data_offset);
2816 nlist.n_value =
2817 dsc_local_symbols_data.GetAddress_unchecked(
2818 &nlist_data_offset);
2819
2820 SymbolType type = eSymbolTypeInvalid;
2821 const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2822 string_table_offset + nlist.n_strx);
2823
2824 if (symbol_name == NULL__null) {
2825 // No symbol should be NULL, even the symbols with no
2826 // string values should have an offset zero which
2827 // points to an empty C-string
2828 Host::SystemLog(
2829 Host::eSystemLogError,
2830 "error: DSC unmapped local symbol[%u] has invalid "
2831 "string table offset 0x%x in %s, ignoring symbol\n",
2832 entry_index, nlist.n_strx,
2833 module_sp->GetFileSpec().GetPath().c_str());
2834 continue;
2835 }
2836 if (symbol_name[0] == '\0')
2837 symbol_name = NULL__null;
2838
2839 const char *symbol_name_non_abi_mangled = NULL__null;
2840
2841 SectionSP symbol_section;
2842 uint32_t symbol_byte_size = 0;
2843 bool add_nlist = true;
2844 bool is_debug = ((nlist.n_type & N_STAB) != 0);
2845 bool demangled_is_synthesized = false;
2846 bool is_gsym = false;
2847 bool set_value = true;
2848
2849 assert(sym_idx < num_syms)((sym_idx < num_syms) ? static_cast<void> (0) : __assert_fail
("sym_idx < num_syms", "/build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 2849, __PRETTY_FUNCTION__))
;
2850
2851 sym[sym_idx].SetDebug(is_debug);
2852
2853 if (is_debug) {
2854 switch (nlist.n_type) {
2855 case N_GSYM:
2856 // global symbol: name,,NO_SECT,type,0
2857 // Sometimes the N_GSYM value contains the address.
2858
2859 // FIXME: In the .o files, we have a GSYM and a debug
2860 // symbol for all the ObjC data. They
2861 // have the same address, but we want to ensure that
2862 // we always find only the real symbol, 'cause we
2863 // don't currently correctly attribute the
2864 // GSYM one to the ObjCClass/Ivar/MetaClass
2865 // symbol type. This is a temporary hack to make
2866 // sure the ObjectiveC symbols get treated correctly.
2867 // To do this right, we should coalesce all the GSYM
2868 // & global symbols that have the same address.
2869
2870 is_gsym = true;
2871 sym[sym_idx].SetExternal(true);
2872
2873 if (symbol_name && symbol_name[0] == '_' &&
2874 symbol_name[1] == 'O') {
2875 llvm::StringRef symbol_name_ref(symbol_name);
2876 if (symbol_name_ref.startswith(
2877 g_objc_v2_prefix_class)) {
2878 symbol_name_non_abi_mangled = symbol_name + 1;
2879 symbol_name =
2880 symbol_name + g_objc_v2_prefix_class.size();
2881 type = eSymbolTypeObjCClass;
2882 demangled_is_synthesized = true;
2883
2884 } else if (symbol_name_ref.startswith(
2885 g_objc_v2_prefix_metaclass)) {
2886 symbol_name_non_abi_mangled = symbol_name + 1;
2887 symbol_name = symbol_name +
2888 g_objc_v2_prefix_metaclass.size();
2889 type = eSymbolTypeObjCMetaClass;
2890 demangled_is_synthesized = true;
2891 } else if (symbol_name_ref.startswith(
2892 g_objc_v2_prefix_ivar)) {
2893 symbol_name_non_abi_mangled = symbol_name + 1;
2894 symbol_name =
2895 symbol_name + g_objc_v2_prefix_ivar.size();
2896 type = eSymbolTypeObjCIVar;
2897 demangled_is_synthesized = true;
2898 }
2899 } else {
2900 if (nlist.n_value != 0)
2901 symbol_section = section_info.GetSection(
2902 nlist.n_sect, nlist.n_value);
2903 type = eSymbolTypeData;
2904 }
2905 break;
2906
2907 case N_FNAME:
2908 // procedure name (f77 kludge): name,,NO_SECT,0,0
2909 type = eSymbolTypeCompiler;
2910 break;
2911
2912 case N_FUN:
2913 // procedure: name,,n_sect,linenumber,address
2914 if (symbol_name) {
2915 type = eSymbolTypeCode;
2916 symbol_section = section_info.GetSection(
2917 nlist.n_sect, nlist.n_value);
2918
2919 N_FUN_addr_to_sym_idx.insert(
2920 std::make_pair(nlist.n_value, sym_idx));
2921 // We use the current number of symbols in the
2922 // symbol table in lieu of using nlist_idx in case
2923 // we ever start trimming entries out
2924 N_FUN_indexes.push_back(sym_idx);
2925 } else {
2926 type = eSymbolTypeCompiler;
2927
2928 if (!N_FUN_indexes.empty()) {
2929 // Copy the size of the function into the
2930 // original
2931 // STAB entry so we don't have
2932 // to hunt for it later
2933 symtab->SymbolAtIndex(N_FUN_indexes.back())
2934 ->SetByteSize(nlist.n_value);
2935 N_FUN_indexes.pop_back();
2936 // We don't really need the end function STAB as
2937 // it contains the size which we already placed
2938 // with the original symbol, so don't add it if
2939 // we want a minimal symbol table
2940 add_nlist = false;
2941 }
2942 }
2943 break;
2944
2945 case N_STSYM:
2946 // static symbol: name,,n_sect,type,address
2947 N_STSYM_addr_to_sym_idx.insert(
2948 std::make_pair(nlist.n_value, sym_idx));
2949 symbol_section = section_info.GetSection(
2950 nlist.n_sect, nlist.n_value);
2951 if (symbol_name && symbol_name[0]) {
2952 type = ObjectFile::GetSymbolTypeFromName(
2953 symbol_name + 1, eSymbolTypeData);
2954 }
2955 break;
2956
2957 case N_LCSYM:
2958 // .lcomm symbol: name,,n_sect,type,address
2959 symbol_section = section_info.GetSection(
2960 nlist.n_sect, nlist.n_value);
2961 type = eSymbolTypeCommonBlock;
2962 break;
2963
2964 case N_BNSYM:
2965 // We use the current number of symbols in the symbol
2966 // table in lieu of using nlist_idx in case we ever
2967 // start trimming entries out Skip these if we want
2968 // minimal symbol tables
2969 add_nlist = false;
2970 break;
2971
2972 case N_ENSYM:
2973 // Set the size of the N_BNSYM to the terminating
2974 // index of this N_ENSYM so that we can always skip
2975 // the entire symbol if we need to navigate more
2976 // quickly at the source level when parsing STABS
2977 // Skip these if we want minimal symbol tables
2978 add_nlist = false;
2979 break;
2980
2981 case N_OPT:
2982 // emitted with gcc2_compiled and in gcc source
2983 type = eSymbolTypeCompiler;
2984 break;
2985
2986 case N_RSYM:
2987 // register sym: name,,NO_SECT,type,register
2988 type = eSymbolTypeVariable;
2989 break;
2990
2991 case N_SLINE:
2992 // src line: 0,,n_sect,linenumber,address
2993 symbol_section = section_info.GetSection(
2994 nlist.n_sect, nlist.n_value);
2995 type = eSymbolTypeLineEntry;
2996 break;
2997
2998 case N_SSYM:
2999 // structure elt: name,,NO_SECT,type,struct_offset
3000 type = eSymbolTypeVariableType;
3001 break;
3002
3003 case N_SO:
3004 // source file name
3005 type = eSymbolTypeSourceFile;
3006 if (symbol_name == NULL__null) {
3007 add_nlist = false;
3008 if (N_SO_index != UINT32_MAX(4294967295U)) {
3009 // Set the size of the N_SO to the terminating
3010 // index of this N_SO so that we can always skip
3011 // the entire N_SO if we need to navigate more
3012 // quickly at the source level when parsing STABS
3013 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3014 symbol_ptr->SetByteSize(sym_idx);
3015 symbol_ptr->SetSizeIsSibling(true);
3016 }
3017 N_NSYM_indexes.clear();
3018 N_INCL_indexes.clear();
3019 N_BRAC_indexes.clear();
3020 N_COMM_indexes.clear();
3021 N_FUN_indexes.clear();
3022 N_SO_index = UINT32_MAX(4294967295U);
3023 } else {
3024 // We use the current number of symbols in the
3025 // symbol table in lieu of using nlist_idx in case
3026 // we ever start trimming entries out
3027 const bool N_SO_has_full_path =
3028 symbol_name[0] == '/';
3029 if (N_SO_has_full_path) {
3030 if ((N_SO_index == sym_idx - 1) &&
3031 ((sym_idx - 1) < num_syms)) {
3032 // We have two consecutive N_SO entries where
3033 // the first contains a directory and the
3034 // second contains a full path.
3035 sym[sym_idx - 1].GetMangled().SetValue(
3036 ConstString(symbol_name), false);
3037 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3038 add_nlist = false;
3039 } else {
3040 // This is the first entry in a N_SO that
3041 // contains a directory or
3042 // a full path to the source file
3043 N_SO_index = sym_idx;
3044 }
3045 } else if ((N_SO_index == sym_idx - 1) &&
3046 ((sym_idx - 1) < num_syms)) {
3047 // This is usually the second N_SO entry that
3048 // contains just the filename, so here we combine
3049 // it with the first one if we are minimizing the
3050 // symbol table
3051 const char *so_path =
3052 sym[sym_idx - 1]
3053 .GetMangled()
3054 .GetDemangledName(
3055 lldb::eLanguageTypeUnknown)
3056 .AsCString();
3057 if (so_path && so_path[0]) {
3058 std::string full_so_path(so_path);
3059 const size_t double_slash_pos =
3060 full_so_path.find("//");
3061 if (double_slash_pos != std::string::npos) {
3062 // The linker has been generating bad N_SO
3063 // entries with doubled up paths
3064 // in the format "%s%s" where the first
3065 // string in the DW_AT_comp_dir, and the
3066 // second is the directory for the source
3067 // file so you end up with a path that looks
3068 // like "/tmp/src//tmp/src/"
3069 FileSpec so_dir(so_path, false);
3070 if (!so_dir.Exists()) {
3071 so_dir.SetFile(
3072 &full_so_path[double_slash_pos + 1],
3073 false);
3074 if (so_dir.Exists()) {
3075 // Trim off the incorrect path
3076 full_so_path.erase(0,
3077 double_slash_pos + 1);
3078 }
3079 }
3080 }
3081 if (*full_so_path.rbegin() != '/')
3082 full_so_path += '/';
3083 full_so_path += symbol_name;
3084 sym[sym_idx - 1].GetMangled().SetValue(
3085 ConstString(full_so_path.c_str()), false);
3086 add_nlist = false;
3087 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3088 }
3089 } else {
3090 // This could be a relative path to a N_SO
3091 N_SO_index = sym_idx;
3092 }
3093 }
3094 break;
3095
3096 case N_OSO:
3097 // object file name: name,,0,0,st_mtime
3098 type = eSymbolTypeObjectFile;
3099 break;
3100
3101 case N_LSYM:
3102 // local sym: name,,NO_SECT,type,offset
3103 type = eSymbolTypeLocal;
3104 break;
3105
3106 //----------------------------------------------------------------------
3107 // INCL scopes
3108 //----------------------------------------------------------------------
3109 case N_BINCL:
3110 // include file beginning: name,,NO_SECT,0,sum We use
3111 // the current number of symbols in the symbol table
3112 // in lieu of using nlist_idx in case we ever start
3113 // trimming entries out
3114 N_INCL_indexes.push_back(sym_idx);
3115 type = eSymbolTypeScopeBegin;
3116 break;
3117
3118 case N_EINCL:
3119 // include file end: name,,NO_SECT,0,0
3120 // Set the size of the N_BINCL to the terminating
3121 // index of this N_EINCL so that we can always skip
3122 // the entire symbol if we need to navigate more
3123 // quickly at the source level when parsing STABS
3124 if (!N_INCL_indexes.empty()) {
3125 symbol_ptr =
3126 symtab->SymbolAtIndex(N_INCL_indexes.back());
3127 symbol_ptr->SetByteSize(sym_idx + 1);
3128 symbol_ptr->SetSizeIsSibling(true);
3129 N_INCL_indexes.pop_back();
3130 }
3131 type = eSymbolTypeScopeEnd;
3132 break;
3133
3134 case N_SOL:
3135 // #included file name: name,,n_sect,0,address
3136 type = eSymbolTypeHeaderFile;
3137
3138 // We currently don't use the header files on darwin
3139 add_nlist = false;
3140 break;
3141
3142 case N_PARAMS:
3143 // compiler parameters: name,,NO_SECT,0,0
3144 type = eSymbolTypeCompiler;
3145 break;
3146
3147 case N_VERSION:
3148 // compiler version: name,,NO_SECT,0,0
3149 type = eSymbolTypeCompiler;
3150 break;
3151
3152 case N_OLEVEL:
3153 // compiler -O level: name,,NO_SECT,0,0
3154 type = eSymbolTypeCompiler;
3155 break;
3156
3157 case N_PSYM:
3158 // parameter: name,,NO_SECT,type,offset
3159 type = eSymbolTypeVariable;
3160 break;
3161
3162 case N_ENTRY:
3163 // alternate entry: name,,n_sect,linenumber,address
3164 symbol_section = section_info.GetSection(
3165 nlist.n_sect, nlist.n_value);
3166 type = eSymbolTypeLineEntry;
3167 break;
3168
3169 //----------------------------------------------------------------------
3170 // Left and Right Braces
3171 //----------------------------------------------------------------------
3172 case N_LBRAC:
3173 // left bracket: 0,,NO_SECT,nesting level,address We
3174 // use the current number of symbols in the symbol
3175 // table in lieu of using nlist_idx in case we ever
3176 // start trimming entries out
3177 symbol_section = section_info.GetSection(
3178 nlist.n_sect, nlist.n_value);
3179 N_BRAC_indexes.push_back(sym_idx);
3180 type = eSymbolTypeScopeBegin;
3181 break;
3182
3183 case N_RBRAC:
3184 // right bracket: 0,,NO_SECT,nesting level,address
3185 // Set the size of the N_LBRAC to the terminating
3186 // index of this N_RBRAC so that we can always skip
3187 // the entire symbol if we need to navigate more
3188 // quickly at the source level when parsing STABS
3189 symbol_section = section_info.GetSection(
3190 nlist.n_sect, nlist.n_value);
3191 if (!N_BRAC_indexes.empty()) {
3192 symbol_ptr =
3193 symtab->SymbolAtIndex(N_BRAC_indexes.back());
3194 symbol_ptr->SetByteSize(sym_idx + 1);
3195 symbol_ptr->SetSizeIsSibling(true);
3196 N_BRAC_indexes.pop_back();
3197 }
3198 type = eSymbolTypeScopeEnd;
3199 break;
3200
3201 case N_EXCL:
3202 // deleted include file: name,,NO_SECT,0,sum
3203 type = eSymbolTypeHeaderFile;
3204 break;
3205
3206 //----------------------------------------------------------------------
3207 // COMM scopes
3208 //----------------------------------------------------------------------
3209 case N_BCOMM:
3210 // begin common: name,,NO_SECT,0,0
3211 // We use the current number of symbols in the symbol
3212 // table in lieu of using nlist_idx in case we ever
3213 // start trimming entries out
3214 type = eSymbolTypeScopeBegin;
3215 N_COMM_indexes.push_back(sym_idx);
3216 break;
3217
3218 case N_ECOML:
3219 // end common (local name): 0,,n_sect,0,address
3220 symbol_section = section_info.GetSection(
3221 nlist.n_sect, nlist.n_value);
3222 // Fall through
3223
3224 case N_ECOMM:
3225 // end common: name,,n_sect,0,0
3226 // Set the size of the N_BCOMM to the terminating
3227 // index of this N_ECOMM/N_ECOML so that we can
3228 // always skip the entire symbol if we need to
3229 // navigate more quickly at the source level when
3230 // parsing STABS
3231 if (!N_COMM_indexes.empty()) {
3232 symbol_ptr =
3233 symtab->SymbolAtIndex(N_COMM_indexes.back());
3234 symbol_ptr->SetByteSize(sym_idx + 1);
3235 symbol_ptr->SetSizeIsSibling(true);
3236 N_COMM_indexes.pop_back();
3237 }
3238 type = eSymbolTypeScopeEnd;
3239 break;
3240
3241 case N_LENG:
3242 // second stab entry with length information
3243 type = eSymbolTypeAdditional;
3244 break;
3245
3246 default:
3247 break;
3248 }
3249 } else {
3250 // uint8_t n_pext = N_PEXT & nlist.n_type;
3251 uint8_t n_type = N_TYPE & nlist.n_type;
3252 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3253
3254 switch (n_type) {
3255 case N_INDR: {
3256 const char *reexport_name_cstr =
3257 strtab_data.PeekCStr(nlist.n_value);
3258 if (reexport_name_cstr && reexport_name_cstr[0]) {
3259 type = eSymbolTypeReExported;
3260 ConstString reexport_name(
3261 reexport_name_cstr +
3262 ((reexport_name_cstr[0] == '_') ? 1 : 0));
3263 sym[sym_idx].SetReExportedSymbolName(reexport_name);
3264 set_value = false;
3265 reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3266 indirect_symbol_names.insert(
3267 ConstString(symbol_name +
3268 ((symbol_name[0] == '_') ? 1 : 0)));
3269 } else
3270 type = eSymbolTypeUndefined;
3271 } break;
3272
3273 case N_UNDF:
3274 if (symbol_name && symbol_name[0]) {
3275 ConstString undefined_name(
3276 symbol_name +
3277 ((symbol_name[0] == '_') ? 1 : 0));
3278 undefined_name_to_desc[undefined_name] =
3279 nlist.n_desc;
3280 }
3281 // Fall through
3282 case N_PBUD:
3283 type = eSymbolTypeUndefined;
3284 break;
3285
3286 case N_ABS:
3287 type = eSymbolTypeAbsolute;
3288 break;
3289
3290 case N_SECT: {
3291 symbol_section = section_info.GetSection(
3292 nlist.n_sect, nlist.n_value);
3293
3294 if (symbol_section == NULL__null) {
3295 // TODO: warn about this?
3296 add_nlist = false;
3297 break;
3298 }
3299
3300 if (TEXT_eh_frame_sectID == nlist.n_sect) {
3301 type = eSymbolTypeException;
3302 } else {
3303 uint32_t section_type =
3304 symbol_section->Get() & SECTION_TYPE;
3305
3306 switch (section_type) {
3307 case S_CSTRING_LITERALS:
3308 type = eSymbolTypeData;
3309 break; // section with only literal C strings
3310 case S_4BYTE_LITERALS:
3311 type = eSymbolTypeData;
3312 break; // section with only 4 byte literals
3313 case S_8BYTE_LITERALS:
3314 type = eSymbolTypeData;
3315 break; // section with only 8 byte literals
3316 case S_LITERAL_POINTERS:
3317 type = eSymbolTypeTrampoline;
3318 break; // section with only pointers to literals
3319 case S_NON_LAZY_SYMBOL_POINTERS:
3320 type = eSymbolTypeTrampoline;
3321 break; // section with only non-lazy symbol
3322 // pointers
3323 case S_LAZY_SYMBOL_POINTERS:
3324 type = eSymbolTypeTrampoline;
3325 break; // section with only lazy symbol pointers
3326 case S_SYMBOL_STUBS:
3327 type = eSymbolTypeTrampoline;
3328 break; // section with only symbol stubs, byte
3329 // size of stub in the reserved2 field
3330 case S_MOD_INIT_FUNC_POINTERS:
3331 type = eSymbolTypeCode;
3332 break; // section with only function pointers for
3333 // initialization
3334 case S_MOD_TERM_FUNC_POINTERS:
3335 type = eSymbolTypeCode;
3336 break; // section with only function pointers for
3337 // termination
3338 case S_INTERPOSING:
3339 type = eSymbolTypeTrampoline;
3340 break; // section with only pairs of function
3341 // pointers for interposing
3342 case S_16BYTE_LITERALS:
3343 type = eSymbolTypeData;
3344 break; // section with only 16 byte literals
3345 case S_DTRACE_DOF:
3346 type = eSymbolTypeInstrumentation;
3347 break;
3348 case S_LAZY_DYLIB_SYMBOL_POINTERS:
3349 type = eSymbolTypeTrampoline;
3350 break;
3351 default:
3352 switch (symbol_section->GetType()) {
3353 case lldb::eSectionTypeCode:
3354 type = eSymbolTypeCode;
3355 break;
3356 case eSectionTypeData:
3357 case eSectionTypeDataCString: // Inlined C string
3358 // data
3359 case eSectionTypeDataCStringPointers: // Pointers
3360 // to C
3361 // string
3362 // data
3363 case eSectionTypeDataSymbolAddress: // Address of
3364 // a symbol in
3365 // the symbol
3366 // table
3367 case eSectionTypeData4:
3368 case eSectionTypeData8:
3369 case eSectionTypeData16:
3370 type = eSymbolTypeData;
3371 break;
3372 default:
3373 break;
3374 }
3375 break;
3376 }
3377
3378 if (type == eSymbolTypeInvalid) {
3379 const char *symbol_sect_name =
3380 symbol_section->GetName().AsCString();
3381 if (symbol_section->IsDescendant(
3382 text_section_sp.get())) {
3383 if (symbol_section->IsClear(
3384 S_ATTR_PURE_INSTRUCTIONS |
3385 S_ATTR_SELF_MODIFYING_CODE |
3386 S_ATTR_SOME_INSTRUCTIONS))
3387 type = eSymbolTypeData;
3388 else
3389 type = eSymbolTypeCode;
3390 } else if (symbol_section->IsDescendant(
3391 data_section_sp.get()) ||
3392 symbol_section->IsDescendant(
3393 data_dirty_section_sp.get()) ||
3394 symbol_section->IsDescendant(
3395 data_const_section_sp.get())) {
3396 if (symbol_sect_name &&
3397 ::strstr(symbol_sect_name, "__objc") ==
3398 symbol_sect_name) {
3399 type = eSymbolTypeRuntime;
3400
3401 if (symbol_name) {
3402 llvm::StringRef symbol_name_ref(
3403 symbol_name);
3404 if (symbol_name_ref.startswith("_OBJC_")) {
3405 static const llvm::StringRef
3406 g_objc_v2_prefix_class(
3407 "_OBJC_CLASS_$_");
3408 static const llvm::StringRef
3409 g_objc_v2_prefix_metaclass(
3410 "_OBJC_METACLASS_$_");
3411 static const llvm::StringRef
3412 g_objc_v2_prefix_ivar(
3413 "_OBJC_IVAR_$_");
3414 if (symbol_name_ref.startswith(
3415 g_objc_v2_prefix_class)) {
3416 symbol_name_non_abi_mangled =
3417 symbol_name + 1;
3418 symbol_name =
3419 symbol_name +
3420 g_objc_v2_prefix_class.size();
3421 type = eSymbolTypeObjCClass;
3422 demangled_is_synthesized = true;
3423 } else if (
3424 symbol_name_ref.startswith(
3425 g_objc_v2_prefix_metaclass)) {
3426 symbol_name_non_abi_mangled =
3427 symbol_name + 1;
3428 symbol_name =
3429 symbol_name +
3430 g_objc_v2_prefix_metaclass.size();
3431 type = eSymbolTypeObjCMetaClass;
3432 demangled_is_synthesized = true;
3433 } else if (symbol_name_ref.startswith(
3434 g_objc_v2_prefix_ivar)) {
3435 symbol_name_non_abi_mangled =
3436 symbol_name + 1;
3437 symbol_name =
3438 symbol_name +
3439 g_objc_v2_prefix_ivar.size();
3440 type = eSymbolTypeObjCIVar;
3441 demangled_is_synthesized = true;
3442 }
3443 }
3444 }
3445 } else if (symbol_sect_name &&
3446 ::strstr(symbol_sect_name,
3447 "__gcc_except_tab") ==
3448 symbol_sect_name) {
3449 type = eSymbolTypeException;
3450 } else {
3451 type = eSymbolTypeData;
3452 }
3453 } else if (symbol_sect_name &&
3454 ::strstr(symbol_sect_name,
3455 "__IMPORT") ==
3456 symbol_sect_name) {
3457 type = eSymbolTypeTrampoline;
3458 } else if (symbol_section->IsDescendant(
3459 objc_section_sp.get())) {
3460 type = eSymbolTypeRuntime;
3461 if (symbol_name && symbol_name[0] == '.') {
3462 llvm::StringRef symbol_name_ref(symbol_name);
3463 static const llvm::StringRef
3464 g_objc_v1_prefix_class(
3465 ".objc_class_name_");
3466 if (symbol_name_ref.startswith(
3467 g_objc_v1_prefix_class)) {
3468 symbol_name_non_abi_mangled = symbol_name;
3469 symbol_name = symbol_name +
3470 g_objc_v1_prefix_class.size();
3471 type = eSymbolTypeObjCClass;
3472 demangled_is_synthesized = true;
3473 }
3474 }
3475 }
3476 }
3477 }
3478 } break;
3479 }
3480 }
3481
3482 if (add_nlist) {
3483 uint64_t symbol_value = nlist.n_value;
3484 if (symbol_name_non_abi_mangled) {
3485 sym[sym_idx].GetMangled().SetMangledName(
3486 ConstString(symbol_name_non_abi_mangled));
3487 sym[sym_idx].GetMangled().SetDemangledName(
3488 ConstString(symbol_name));
3489 } else {
3490 bool symbol_name_is_mangled = false;
3491
3492 if (symbol_name && symbol_name[0] == '_') {
3493 symbol_name_is_mangled = symbol_name[1] == '_';
3494 symbol_name++; // Skip the leading underscore
3495 }
3496
3497 if (symbol_name) {
3498 ConstString const_symbol_name(symbol_name);
3499 sym[sym_idx].GetMangled().SetValue(
3500 const_symbol_name, symbol_name_is_mangled);
3501 if (is_gsym && is_debug) {
3502 const char *gsym_name =
3503 sym[sym_idx]
3504 .GetMangled()
3505 .GetName(lldb::eLanguageTypeUnknown,
3506 Mangled::ePreferMangled)
3507 .GetCString();
3508 if (gsym_name)
3509 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3510 }
3511 }
3512 }
3513 if (symbol_section) {
3514 const addr_t section_file_addr =
3515 symbol_section->GetFileAddress();
3516 if (symbol_byte_size == 0 &&
3517 function_starts_count > 0) {
3518 addr_t symbol_lookup_file_addr = nlist.n_value;
3519 // Do an exact address match for non-ARM addresses,
3520 // else get the closest since the symbol might be a
3521 // thumb symbol which has an address with bit zero
3522 // set
3523 FunctionStarts::Entry *func_start_entry =
3524 function_starts.FindEntry(
3525 symbol_lookup_file_addr, !is_arm);
3526 if (is_arm && func_start_entry) {
3527 // Verify that the function start address is the
3528 // symbol address (ARM) or the symbol address + 1
3529 // (thumb)
3530 if (func_start_entry->addr !=
3531 symbol_lookup_file_addr &&
3532 func_start_entry->addr !=
3533 (symbol_lookup_file_addr + 1)) {
3534 // Not the right entry, NULL it out...
3535 func_start_entry = NULL__null;
3536 }
3537 }
3538 if (func_start_entry) {
3539 func_start_entry->data = true;
3540
3541 addr_t symbol_file_addr = func_start_entry->addr;
3542 uint32_t symbol_flags = 0;
3543 if (is_arm) {
3544 if (symbol_file_addr & 1)
3545 symbol_flags =
3546 MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008;
3547 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
3548 }
3549
3550 const FunctionStarts::Entry
3551 *next_func_start_entry =
3552 function_starts.FindNextEntry(
3553 func_start_entry);
3554 const addr_t section_end_file_addr =
3555 section_file_addr +
3556 symbol_section->GetByteSize();
3557 if (next_func_start_entry) {
3558 addr_t next_symbol_file_addr =
3559 next_func_start_entry->addr;
3560 // Be sure the clear the Thumb address bit when
3561 // we calculate the size from the current and
3562 // next address
3563 if (is_arm)
3564 next_symbol_file_addr &=
3565 THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
3566 symbol_byte_size = std::min<lldb::addr_t>(
3567 next_symbol_file_addr - symbol_file_addr,
3568 section_end_file_addr - symbol_file_addr);
3569 } else {
3570 symbol_byte_size =
3571 section_end_file_addr - symbol_file_addr;
3572 }
3573 }
3574 }
3575 symbol_value -= section_file_addr;
3576 }
3577
3578 if (is_debug == false) {
3579 if (type == eSymbolTypeCode) {
3580 // See if we can find a N_FUN entry for any code
3581 // symbols. If we do find a match, and the name
3582 // matches, then we can merge the two into just the
3583 // function symbol to avoid duplicate entries in
3584 // the symbol table
3585 std::pair<ValueToSymbolIndexMap::const_iterator,
3586 ValueToSymbolIndexMap::const_iterator>
3587 range;
3588 range = N_FUN_addr_to_sym_idx.equal_range(
3589 nlist.n_value);
3590 if (range.first != range.second) {
3591 bool found_it = false;
3592 for (ValueToSymbolIndexMap::const_iterator pos =
3593 range.first;
3594 pos != range.second; ++pos) {
3595 if (sym[sym_idx].GetMangled().GetName(
3596 lldb::eLanguageTypeUnknown,
3597 Mangled::ePreferMangled) ==
3598 sym[pos->second].GetMangled().GetName(
3599 lldb::eLanguageTypeUnknown,
3600 Mangled::ePreferMangled)) {
3601 m_nlist_idx_to_sym_idx[nlist_idx] =
3602 pos->second;
3603 // We just need the flags from the linker
3604 // symbol, so put these flags
3605 // into the N_FUN flags to avoid duplicate
3606 // symbols in the symbol table
3607 sym[pos->second].SetExternal(
3608 sym[sym_idx].IsExternal());
3609 sym[pos->second].SetFlags(nlist.n_type << 16 |
3610 nlist.n_desc);
3611 if (resolver_addresses.find(nlist.n_value) !=
3612 resolver_addresses.end())
3613 sym[pos->second].SetType(
3614 eSymbolTypeResolver);
3615 sym[sym_idx].Clear();
3616 found_it = true;
3617 break;
3618 }
3619 }
3620 if (found_it)
3621 continue;
3622 } else {
3623 if (resolver_addresses.find(nlist.n_value) !=
3624 resolver_addresses.end())
3625 type = eSymbolTypeResolver;
3626 }
3627 } else if (type == eSymbolTypeData ||
3628 type == eSymbolTypeObjCClass ||
3629 type == eSymbolTypeObjCMetaClass ||
3630 type == eSymbolTypeObjCIVar) {
3631 // See if we can find a N_STSYM entry for any data
3632 // symbols. If we do find a match, and the name
3633 // matches, then we can merge the two into just the
3634 // Static symbol to avoid duplicate entries in the
3635 // symbol table
3636 std::pair<ValueToSymbolIndexMap::const_iterator,
3637 ValueToSymbolIndexMap::const_iterator>
3638 range;
3639 range = N_STSYM_addr_to_sym_idx.equal_range(
3640 nlist.n_value);
3641 if (range.first != range.second) {
3642 bool found_it = false;
3643 for (ValueToSymbolIndexMap::const_iterator pos =
3644 range.first;
3645 pos != range.second; ++pos) {
3646 if (sym[sym_idx].GetMangled().GetName(
3647 lldb::eLanguageTypeUnknown,
3648 Mangled::ePreferMangled) ==
3649 sym[pos->second].GetMangled().GetName(
3650 lldb::eLanguageTypeUnknown,
3651 Mangled::ePreferMangled)) {
3652 m_nlist_idx_to_sym_idx[nlist_idx] =
3653 pos->second;
3654 // We just need the flags from the linker
3655 // symbol, so put these flags
3656 // into the N_STSYM flags to avoid duplicate
3657 // symbols in the symbol table
3658 sym[pos->second].SetExternal(
3659 sym[sym_idx].IsExternal());
3660 sym[pos->second].SetFlags(nlist.n_type << 16 |
3661 nlist.n_desc);
3662 sym[sym_idx].Clear();
3663 found_it = true;
3664 break;
3665 }
3666 }
3667 if (found_it)
3668 continue;
3669 } else {
3670 const char *gsym_name =
3671 sym[sym_idx]
3672 .GetMangled()
3673 .GetName(lldb::eLanguageTypeUnknown,
3674 Mangled::ePreferMangled)
3675 .GetCString();
3676 if (gsym_name) {
3677 // Combine N_GSYM stab entries with the non
3678 // stab symbol
3679 ConstNameToSymbolIndexMap::const_iterator pos =
3680 N_GSYM_name_to_sym_idx.find(gsym_name);
3681 if (pos != N_GSYM_name_to_sym_idx.end()) {
3682 const uint32_t GSYM_sym_idx = pos->second;
3683 m_nlist_idx_to_sym_idx[nlist_idx] =
3684 GSYM_sym_idx;
3685 // Copy the address, because often the N_GSYM
3686 // address has an invalid address of zero
3687 // when the global is a common symbol
3688 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3689 symbol_section);
3690 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3691 symbol_value);
3692 // We just need the flags from the linker
3693 // symbol, so put these flags
3694 // into the N_GSYM flags to avoid duplicate
3695 // symbols in the symbol table
3696 sym[GSYM_sym_idx].SetFlags(
3697 nlist.n_type << 16 | nlist.n_desc);
3698 sym[sym_idx].Clear();
3699 continue;
3700 }
3701 }
3702 }
3703 }
3704 }
3705
3706 sym[sym_idx].SetID(nlist_idx);
3707 sym[sym_idx].SetType(type);
3708 if (set_value) {
3709 sym[sym_idx].GetAddressRef().SetSection(
3710 symbol_section);
3711 sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3712 }
3713 sym[sym_idx].SetFlags(nlist.n_type << 16 |
3714 nlist.n_desc);
3715
3716 if (symbol_byte_size > 0)
3717 sym[sym_idx].SetByteSize(symbol_byte_size);
3718
3719 if (demangled_is_synthesized)
3720 sym[sym_idx].SetDemangledNameIsSynthesized(true);
3721 ++sym_idx;
3722 } else {
3723 sym[sym_idx].Clear();
3724 }
3725 }
3726 /////////////////////////////
3727 }
3728 break; // No more entries to consider
3729 }
3730 }
3731
3732 for (const auto &pos : reexport_shlib_needs_fixup) {
3733 const auto undef_pos = undefined_name_to_desc.find(pos.second);
3734 if (undef_pos != undefined_name_to_desc.end()) {
3735 const uint8_t dylib_ordinal =
3736 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3737 if (dylib_ordinal > 0 &&
3738 dylib_ordinal < dylib_files.GetSize())
3739 sym[pos.first].SetReExportedSymbolSharedLibrary(
3740 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3741 }
3742 }
3743 }
3744 }
3745 }
3746 }
3747 }
3748
3749 // Must reset this in case it was mutated above!
3750 nlist_data_offset = 0;
3751#endif
3752
3753 if (nlist_data.GetByteSize() > 0) {
3754
3755 // If the sym array was not created while parsing the DSC unmapped
3756 // symbols, create it now.
3757 if (sym == NULL__null) {
3758 sym = symtab->Resize(symtab_load_command.nsyms +
3759 m_dysymtab.nindirectsyms);
3760 num_syms = symtab->GetNumSymbols();
3761 }
3762
3763 if (unmapped_local_symbols_found) {
3764 assert(m_dysymtab.ilocalsym == 0)((m_dysymtab.ilocalsym == 0) ? static_cast<void> (0) : __assert_fail
("m_dysymtab.ilocalsym == 0", "/build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 3764, __PRETTY_FUNCTION__))
;
3765 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3766 nlist_idx = m_dysymtab.nlocalsym;
3767 } else {
3768 nlist_idx = 0;
3769 }
3770
3771 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
3772 typedef std::map<uint32_t, ConstString> SymbolIndexToName;
3773 UndefinedNameToDescMap undefined_name_to_desc;
3774 SymbolIndexToName reexport_shlib_needs_fixup;
3775 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
3776 struct nlist_64 nlist;
3777 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset,
3778 nlist_byte_size))
3779 break;
3780
3781 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
3782 nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
3783 nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
3784 nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
3785 nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
3786
3787 SymbolType type = eSymbolTypeInvalid;
3788 const char *symbol_name = NULL__null;
3789
3790 if (have_strtab_data) {
3791 symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3792
3793 if (symbol_name == NULL__null) {
3794 // No symbol should be NULL, even the symbols with no string values
3795 // should have an offset zero which points to an empty C-string
3796 Host::SystemLog(Host::eSystemLogError,
3797 "error: symbol[%u] has invalid string table offset "
3798 "0x%x in %s, ignoring symbol\n",
3799 nlist_idx, nlist.n_strx,
3800 module_sp->GetFileSpec().GetPath().c_str());
3801 continue;
3802 }
3803 if (symbol_name[0] == '\0')
3804 symbol_name = NULL__null;
3805 } else {
3806 const addr_t str_addr = strtab_addr + nlist.n_strx;
3807 Status str_error;
3808 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3809 str_error))
3810 symbol_name = memory_symbol_name.c_str();
3811 }
3812 const char *symbol_name_non_abi_mangled = NULL__null;
3813
3814 SectionSP symbol_section;
3815 lldb::addr_t symbol_byte_size = 0;
3816 bool add_nlist = true;
3817 bool is_gsym = false;
3818 bool is_debug = ((nlist.n_type & N_STAB) != 0);
3819 bool demangled_is_synthesized = false;
3820 bool set_value = true;
3821 assert(sym_idx < num_syms)((sym_idx < num_syms) ? static_cast<void> (0) : __assert_fail
("sym_idx < num_syms", "/build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 3821, __PRETTY_FUNCTION__))
;
3822
3823 sym[sym_idx].SetDebug(is_debug);
3824
3825 if (is_debug) {
3826 switch (nlist.n_type) {
3827 case N_GSYM:
3828 // global symbol: name,,NO_SECT,type,0
3829 // Sometimes the N_GSYM value contains the address.
3830
3831 // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3832 // the ObjC data. They
3833 // have the same address, but we want to ensure that we always find
3834 // only the real symbol, 'cause we don't currently correctly
3835 // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3836 // type. This is a temporary hack to make sure the ObjectiveC
3837 // symbols get treated correctly. To do this right, we should
3838 // coalesce all the GSYM & global symbols that have the same
3839 // address.
3840 is_gsym = true;
3841 sym[sym_idx].SetExternal(true);
3842
3843 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3844 llvm::StringRef symbol_name_ref(symbol_name);
3845 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3846 symbol_name_non_abi_mangled = symbol_name + 1;
3847 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3848 type = eSymbolTypeObjCClass;
3849 demangled_is_synthesized = true;
3850
3851 } else if (symbol_name_ref.startswith(
3852 g_objc_v2_prefix_metaclass)) {
3853 symbol_name_non_abi_mangled = symbol_name + 1;
3854 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3855 type = eSymbolTypeObjCMetaClass;
3856 demangled_is_synthesized = true;
3857 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3858 symbol_name_non_abi_mangled = symbol_name + 1;
3859 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3860 type = eSymbolTypeObjCIVar;
3861 demangled_is_synthesized = true;
3862 }
3863 } else {
3864 if (nlist.n_value != 0)
3865 symbol_section =
3866 section_info.GetSection(nlist.n_sect, nlist.n_value);
3867 type = eSymbolTypeData;
3868 }
3869 break;
3870
3871 case N_FNAME:
3872 // procedure name (f77 kludge): name,,NO_SECT,0,0
3873 type = eSymbolTypeCompiler;
3874 break;
3875
3876 case N_FUN:
3877 // procedure: name,,n_sect,linenumber,address
3878 if (symbol_name) {
3879 type = eSymbolTypeCode;
3880 symbol_section =
3881 section_info.GetSection(nlist.n_sect, nlist.n_value);
3882
3883 N_FUN_addr_to_sym_idx.insert(
3884 std::make_pair(nlist.n_value, sym_idx));
3885 // We use the current number of symbols in the symbol table in
3886 // lieu of using nlist_idx in case we ever start trimming entries
3887 // out
3888 N_FUN_indexes.push_back(sym_idx);
3889 } else {
3890 type = eSymbolTypeCompiler;
3891
3892 if (!N_FUN_indexes.empty()) {
3893 // Copy the size of the function into the original STAB entry
3894 // so we don't have to hunt for it later
3895 symtab->SymbolAtIndex(N_FUN_indexes.back())
3896 ->SetByteSize(nlist.n_value);
3897 N_FUN_indexes.pop_back();
3898 // We don't really need the end function STAB as it contains
3899 // the size which we already placed with the original symbol,
3900 // so don't add it if we want a minimal symbol table
3901 add_nlist = false;
3902 }
3903 }
3904 break;
3905
3906 case N_STSYM:
3907 // static symbol: name,,n_sect,type,address
3908 N_STSYM_addr_to_sym_idx.insert(
3909 std::make_pair(nlist.n_value, sym_idx));
3910 symbol_section =
3911 section_info.GetSection(nlist.n_sect, nlist.n_value);
3912 if (symbol_name && symbol_name[0]) {
3913 type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3914 eSymbolTypeData);
3915 }
3916 break;
3917
3918 case N_LCSYM:
3919 // .lcomm symbol: name,,n_sect,type,address
3920 symbol_section =
3921 section_info.GetSection(nlist.n_sect, nlist.n_value);
3922 type = eSymbolTypeCommonBlock;
3923 break;
3924
3925 case N_BNSYM:
3926 // We use the current number of symbols in the symbol table in lieu
3927 // of using nlist_idx in case we ever start trimming entries out
3928 // Skip these if we want minimal symbol tables
3929 add_nlist = false;
3930 break;
3931
3932 case N_ENSYM:
3933 // Set the size of the N_BNSYM to the terminating index of this
3934 // N_ENSYM so that we can always skip the entire symbol if we need
3935 // to navigate more quickly at the source level when parsing STABS
3936 // Skip these if we want minimal symbol tables
3937 add_nlist = false;
3938 break;
3939
3940 case N_OPT:
3941 // emitted with gcc2_compiled and in gcc source
3942 type = eSymbolTypeCompiler;
3943 break;
3944
3945 case N_RSYM:
3946 // register sym: name,,NO_SECT,type,register
3947 type = eSymbolTypeVariable;
3948 break;
3949
3950 case N_SLINE:
3951 // src line: 0,,n_sect,linenumber,address
3952 symbol_section =
3953 section_info.GetSection(nlist.n_sect, nlist.n_value);
3954 type = eSymbolTypeLineEntry;
3955 break;
3956
3957 case N_SSYM:
3958 // structure elt: name,,NO_SECT,type,struct_offset
3959 type = eSymbolTypeVariableType;
3960 break;
3961
3962 case N_SO:
3963 // source file name
3964 type = eSymbolTypeSourceFile;
3965 if (symbol_name == NULL__null) {
3966 add_nlist = false;
3967 if (N_SO_index != UINT32_MAX(4294967295U)) {
3968 // Set the size of the N_SO to the terminating index of this
3969 // N_SO so that we can always skip the entire N_SO if we need
3970 // to navigate more quickly at the source level when parsing
3971 // STABS
3972 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3973 symbol_ptr->SetByteSize(sym_idx);
3974 symbol_ptr->SetSizeIsSibling(true);
3975 }
3976 N_NSYM_indexes.clear();
3977 N_INCL_indexes.clear();
3978 N_BRAC_indexes.clear();
3979 N_COMM_indexes.clear();
3980 N_FUN_indexes.clear();
3981 N_SO_index = UINT32_MAX(4294967295U);
3982 } else {
3983 // We use the current number of symbols in the symbol table in
3984 // lieu of using nlist_idx in case we ever start trimming entries
3985 // out
3986 const bool N_SO_has_full_path = symbol_name[0] == '/';
3987 if (N_SO_has_full_path) {
3988 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3989 // We have two consecutive N_SO entries where the first
3990 // contains a directory and the second contains a full path.
3991 sym[sym_idx - 1].GetMangled().SetValue(
3992 ConstString(symbol_name), false);
3993 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3994 add_nlist = false;
3995 } else {
3996 // This is the first entry in a N_SO that contains a
3997 // directory or a full path to the source file
3998 N_SO_index = sym_idx;
3999 }
4000 } else if ((N_SO_index == sym_idx - 1) &&
4001 ((sym_idx - 1) < num_syms)) {
4002 // This is usually the second N_SO entry that contains just the
4003 // filename, so here we combine it with the first one if we are
4004 // minimizing the symbol table
4005 const char *so_path =
4006 sym[sym_idx - 1]
4007 .GetMangled()
4008 .GetDemangledName(lldb::eLanguageTypeUnknown)
4009 .AsCString();
4010 if (so_path && so_path[0]) {
4011 std::string full_so_path(so_path);
4012 const size_t double_slash_pos = full_so_path.find("//");
4013 if (double_slash_pos != std::string::npos) {
4014 // The linker has been generating bad N_SO entries with
4015 // doubled up paths in the format "%s%s" where the first
4016 // string in the DW_AT_comp_dir, and the second is the
4017 // directory for the source file so you end up with a path
4018 // that looks like "/tmp/src//tmp/src/"
4019 FileSpec so_dir(so_path, false);
4020 if (!so_dir.Exists()) {
4021 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false,
4022 FileSpec::Style::native);
4023 if (so_dir.Exists()) {
4024 // Trim off the incorrect path
4025 full_so_path.erase(0, double_slash_pos + 1);
4026 }
4027 }
4028 }
4029 if (*full_so_path.rbegin() != '/')
4030 full_so_path += '/';
4031 full_so_path += symbol_name;
4032 sym[sym_idx - 1].GetMangled().SetValue(
4033 ConstString(full_so_path.c_str()), false);
4034 add_nlist = false;
4035 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4036 }
4037 } else {
4038 // This could be a relative path to a N_SO
4039 N_SO_index = sym_idx;
4040 }
4041 }
4042 break;
4043
4044 case N_OSO:
4045 // object file name: name,,0,0,st_mtime
4046 type = eSymbolTypeObjectFile;
4047 break;
4048
4049 case N_LSYM:
4050 // local sym: name,,NO_SECT,type,offset
4051 type = eSymbolTypeLocal;
4052 break;
4053
4054 //----------------------------------------------------------------------
4055 // INCL scopes
4056 //----------------------------------------------------------------------
4057 case N_BINCL:
4058 // include file beginning: name,,NO_SECT,0,sum We use the current
4059 // number of symbols in the symbol table in lieu of using nlist_idx
4060 // in case we ever start trimming entries out
4061 N_INCL_indexes.push_back(sym_idx);
4062 type = eSymbolTypeScopeBegin;
4063 break;
4064
4065 case N_EINCL:
4066 // include file end: name,,NO_SECT,0,0
4067 // Set the size of the N_BINCL to the terminating index of this
4068 // N_EINCL so that we can always skip the entire symbol if we need
4069 // to navigate more quickly at the source level when parsing STABS
4070 if (!N_INCL_indexes.empty()) {
4071 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4072 symbol_ptr->SetByteSize(sym_idx + 1);
4073 symbol_ptr->SetSizeIsSibling(true);
4074 N_INCL_indexes.pop_back();
4075 }
4076 type = eSymbolTypeScopeEnd;
4077 break;
4078
4079 case N_SOL:
4080 // #included file name: name,,n_sect,0,address
4081 type = eSymbolTypeHeaderFile;
4082
4083 // We currently don't use the header files on darwin
4084 add_nlist = false;
4085 break;
4086
4087 case N_PARAMS:
4088 // compiler parameters: name,,NO_SECT,0,0
4089 type = eSymbolTypeCompiler;
4090 break;
4091
4092 case N_VERSION:
4093 // compiler version: name,,NO_SECT,0,0
4094 type = eSymbolTypeCompiler;
4095 break;
4096
4097 case N_OLEVEL:
4098 // compiler -O level: name,,NO_SECT,0,0
4099 type = eSymbolTypeCompiler;
4100 break;
4101
4102 case N_PSYM:
4103 // parameter: name,,NO_SECT,type,offset
4104 type = eSymbolTypeVariable;
4105 break;
4106
4107 case N_ENTRY:
4108 // alternate entry: name,,n_sect,linenumber,address
4109 symbol_section =
4110 section_info.GetSection(nlist.n_sect, nlist.n_value);
4111 type = eSymbolTypeLineEntry;
4112 break;
4113
4114 //----------------------------------------------------------------------
4115 // Left and Right Braces
4116 //----------------------------------------------------------------------
4117 case N_LBRAC:
4118 // left bracket: 0,,NO_SECT,nesting level,address We use the
4119 // current number of symbols in the symbol table in lieu of using
4120 // nlist_idx in case we ever start trimming entries out
4121 symbol_section =
4122 section_info.GetSection(nlist.n_sect, nlist.n_value);
4123 N_BRAC_indexes.push_back(sym_idx);
4124 type = eSymbolTypeScopeBegin;
4125 break;
4126
4127 case N_RBRAC:
4128 // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4129 // the N_LBRAC to the terminating index of this N_RBRAC so that we
4130 // can always skip the entire symbol if we need to navigate more
4131 // quickly at the source level when parsing STABS
4132 symbol_section =
4133 section_info.GetSection(nlist.n_sect, nlist.n_value);
4134 if (!N_BRAC_indexes.empty()) {
4135 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4136 symbol_ptr->SetByteSize(sym_idx + 1);
4137 symbol_ptr->SetSizeIsSibling(true);
4138 N_BRAC_indexes.pop_back();
4139 }
4140 type = eSymbolTypeScopeEnd;
4141 break;
4142
4143 case N_EXCL:
4144 // deleted include file: name,,NO_SECT,0,sum
4145 type = eSymbolTypeHeaderFile;
4146 break;
4147
4148 //----------------------------------------------------------------------
4149 // COMM scopes
4150 //----------------------------------------------------------------------
4151 case N_BCOMM:
4152 // begin common: name,,NO_SECT,0,0
4153 // We use the current number of symbols in the symbol table in lieu
4154 // of using nlist_idx in case we ever start trimming entries out
4155 type = eSymbolTypeScopeBegin;
4156 N_COMM_indexes.push_back(sym_idx);
4157 break;
4158
4159 case N_ECOML:
4160 // end common (local name): 0,,n_sect,0,address
4161 symbol_section =
4162 section_info.GetSection(nlist.n_sect, nlist.n_value);
4163 LLVM_FALLTHROUGH[[clang::fallthrough]];
4164
4165 case N_ECOMM:
4166 // end common: name,,n_sect,0,0
4167 // Set the size of the N_BCOMM to the terminating index of this
4168 // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4169 // we need to navigate more quickly at the source level when
4170 // parsing STABS
4171 if (!N_COMM_indexes.empty()) {
4172 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4173 symbol_ptr->SetByteSize(sym_idx + 1);
4174 symbol_ptr->SetSizeIsSibling(true);
4175 N_COMM_indexes.pop_back();
4176 }
4177 type = eSymbolTypeScopeEnd;
4178 break;
4179
4180 case N_LENG:
4181 // second stab entry with length information
4182 type = eSymbolTypeAdditional;
4183 break;
4184
4185 default:
4186 break;
4187 }
4188 } else {
4189 // uint8_t n_pext = N_PEXT & nlist.n_type;
4190 uint8_t n_type = N_TYPE & nlist.n_type;
4191 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4192
4193 switch (n_type) {
4194 case N_INDR: {
4195 const char *reexport_name_cstr =
4196 strtab_data.PeekCStr(nlist.n_value);
4197 if (reexport_name_cstr && reexport_name_cstr[0]) {
4198 type = eSymbolTypeReExported;
4199 ConstString reexport_name(
4200 reexport_name_cstr +
4201 ((reexport_name_cstr[0] == '_') ? 1 : 0));
4202 sym[sym_idx].SetReExportedSymbolName(reexport_name);
4203 set_value = false;
4204 reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4205 indirect_symbol_names.insert(
4206 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4207 } else
4208 type = eSymbolTypeUndefined;
4209 } break;
4210
4211 case N_UNDF:
4212 if (symbol_name && symbol_name[0]) {
4213 ConstString undefined_name(symbol_name +
4214 ((symbol_name[0] == '_') ? 1 : 0));
4215 undefined_name_to_desc[undefined_name] = nlist.n_desc;
4216 }
4217 LLVM_FALLTHROUGH[[clang::fallthrough]];
4218
4219 case N_PBUD:
4220 type = eSymbolTypeUndefined;
4221 break;
4222
4223 case N_ABS:
4224 type = eSymbolTypeAbsolute;
4225 break;
4226
4227 case N_SECT: {
4228 symbol_section =
4229 section_info.GetSection(nlist.n_sect, nlist.n_value);
4230
4231 if (!symbol_section) {
4232 // TODO: warn about this?
4233 add_nlist = false;
4234 break;
4235 }
4236
4237 if (TEXT_eh_frame_sectID == nlist.n_sect) {
4238 type = eSymbolTypeException;
4239 } else {
4240 uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4241
4242 switch (section_type) {
4243 case S_CSTRING_LITERALS:
4244 type = eSymbolTypeData;
4245 break; // section with only literal C strings
4246 case S_4BYTE_LITERALS:
4247 type = eSymbolTypeData;
4248 break; // section with only 4 byte literals
4249 case S_8BYTE_LITERALS:
4250 type = eSymbolTypeData;
4251 break; // section with only 8 byte literals
4252 case S_LITERAL_POINTERS:
4253 type = eSymbolTypeTrampoline;
4254 break; // section with only pointers to literals
4255 case S_NON_LAZY_SYMBOL_POINTERS:
4256 type = eSymbolTypeTrampoline;
4257 break; // section with only non-lazy symbol pointers
4258 case S_LAZY_SYMBOL_POINTERS:
4259 type = eSymbolTypeTrampoline;
4260 break; // section with only lazy symbol pointers
4261 case S_SYMBOL_STUBS:
4262 type = eSymbolTypeTrampoline;
4263 break; // section with only symbol stubs, byte size of stub in
4264 // the reserved2 field
4265 case S_MOD_INIT_FUNC_POINTERS:
4266 type = eSymbolTypeCode;
4267 break; // section with only function pointers for initialization
4268 case S_MOD_TERM_FUNC_POINTERS:
4269 type = eSymbolTypeCode;
4270 break; // section with only function pointers for termination
4271 case S_INTERPOSING:
4272 type = eSymbolTypeTrampoline;
4273 break; // section with only pairs of function pointers for
4274 // interposing
4275 case S_16BYTE_LITERALS:
4276 type = eSymbolTypeData;
4277 break; // section with only 16 byte literals
4278 case S_DTRACE_DOF:
4279 type = eSymbolTypeInstrumentation;
4280 break;
4281 case S_LAZY_DYLIB_SYMBOL_POINTERS:
4282 type = eSymbolTypeTrampoline;
4283 break;
4284 default:
4285 switch (symbol_section->GetType()) {
4286 case lldb::eSectionTypeCode:
4287 type = eSymbolTypeCode;
4288 break;
4289 case eSectionTypeData:
4290 case eSectionTypeDataCString: // Inlined C string data
4291 case eSectionTypeDataCStringPointers: // Pointers to C string
4292 // data
4293 case eSectionTypeDataSymbolAddress: // Address of a symbol in
4294 // the symbol table
4295 case eSectionTypeData4:
4296 case eSectionTypeData8:
4297 case eSectionTypeData16:
4298 type = eSymbolTypeData;
4299 break;
4300 default:
4301 break;
4302 }
4303 break;
4304 }
4305
4306 if (type == eSymbolTypeInvalid) {
4307 const char *symbol_sect_name =
4308 symbol_section->GetName().AsCString();
4309 if (symbol_section->IsDescendant(text_section_sp.get())) {
4310 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4311 S_ATTR_SELF_MODIFYING_CODE |
4312 S_ATTR_SOME_INSTRUCTIONS))
4313 type = eSymbolTypeData;
4314 else
4315 type = eSymbolTypeCode;
4316 } else if (symbol_section->IsDescendant(
4317 data_section_sp.get()) ||
4318 symbol_section->IsDescendant(
4319 data_dirty_section_sp.get()) ||
4320 symbol_section->IsDescendant(
4321 data_const_section_sp.get())) {
4322 if (symbol_sect_name &&
4323 ::strstr(symbol_sect_name, "__objc") ==
4324 symbol_sect_name) {
4325 type = eSymbolTypeRuntime;
4326
4327 if (symbol_name) {
4328 llvm::StringRef symbol_name_ref(symbol_name);
4329 if (symbol_name_ref.startswith("_OBJC_")) {
4330 static const llvm::StringRef g_objc_v2_prefix_class(
4331 "_OBJC_CLASS_$_");
4332 static const llvm::StringRef g_objc_v2_prefix_metaclass(
4333 "_OBJC_METACLASS_$_");
4334 static const llvm::StringRef g_objc_v2_prefix_ivar(
4335 "_OBJC_IVAR_$_");
4336 if (symbol_name_ref.startswith(
4337 g_objc_v2_prefix_class)) {
4338 symbol_name_non_abi_mangled = symbol_name + 1;
4339 symbol_name =
4340 symbol_name + g_objc_v2_prefix_class.size();
4341 type = eSymbolTypeObjCClass;
4342 demangled_is_synthesized = true;
4343 } else if (symbol_name_ref.startswith(
4344 g_objc_v2_prefix_metaclass)) {
4345 symbol_name_non_abi_mangled = symbol_name + 1;
4346 symbol_name =
4347 symbol_name + g_objc_v2_prefix_metaclass.size();
4348 type = eSymbolTypeObjCMetaClass;
4349 demangled_is_synthesized = true;
4350 } else if (symbol_name_ref.startswith(
4351 g_objc_v2_prefix_ivar)) {
4352 symbol_name_non_abi_mangled = symbol_name + 1;
4353 symbol_name =
4354 symbol_name + g_objc_v2_prefix_ivar.size();
4355 type = eSymbolTypeObjCIVar;
4356 demangled_is_synthesized = true;
4357 }
4358 }
4359 }
4360 } else if (symbol_sect_name &&
4361 ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4362 symbol_sect_name) {
4363 type = eSymbolTypeException;
4364 } else {
4365 type = eSymbolTypeData;
4366 }
4367 } else if (symbol_sect_name &&
4368 ::strstr(symbol_sect_name, "__IMPORT") ==
4369 symbol_sect_name) {
4370 type = eSymbolTypeTrampoline;
4371 } else if (symbol_section->IsDescendant(
4372 objc_section_sp.get())) {
4373 type = eSymbolTypeRuntime;
4374 if (symbol_name && symbol_name[0] == '.') {
4375 llvm::StringRef symbol_name_ref(symbol_name);
4376 static const llvm::StringRef g_objc_v1_prefix_class(
4377 ".objc_class_name_");
4378 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4379 symbol_name_non_abi_mangled = symbol_name;
4380 symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4381 type = eSymbolTypeObjCClass;
4382 demangled_is_synthesized = true;
4383 }
4384 }
4385 }
4386 }
4387 }
4388 } break;
4389 }
4390 }
4391
4392 if (add_nlist) {
4393 uint64_t symbol_value = nlist.n_value;
4394
4395 if (symbol_name_non_abi_mangled) {
4396 sym[sym_idx].GetMangled().SetMangledName(
4397 ConstString(symbol_name_non_abi_mangled));
4398 sym[sym_idx].GetMangled().SetDemangledName(
4399 ConstString(symbol_name));
4400 } else {
4401 bool symbol_name_is_mangled = false;
4402
4403 if (symbol_name && symbol_name[0] == '_') {
4404 symbol_name_is_mangled = symbol_name[1] == '_';
4405 symbol_name++; // Skip the leading underscore
4406 }
4407
4408 if (symbol_name) {
4409 ConstString const_symbol_name(symbol_name);
4410 sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4411 symbol_name_is_mangled);
4412 }
4413 }
4414
4415 if (is_gsym) {
4416 const char *gsym_name = sym[sym_idx]
4417 .GetMangled()
4418 .GetName(lldb::eLanguageTypeUnknown,
4419 Mangled::ePreferMangled)
4420 .GetCString();
4421 if (gsym_name)
4422 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4423 }
4424
4425 if (symbol_section) {
4426 const addr_t section_file_addr = symbol_section->GetFileAddress();
4427 if (symbol_byte_size == 0 && function_starts_count > 0) {
4428 addr_t symbol_lookup_file_addr = nlist.n_value;
4429 // Do an exact address match for non-ARM addresses, else get the
4430 // closest since the symbol might be a thumb symbol which has an
4431 // address with bit zero set
4432 FunctionStarts::Entry *func_start_entry =
4433 function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4434 if (is_arm && func_start_entry) {
4435 // Verify that the function start address is the symbol address
4436 // (ARM) or the symbol address + 1 (thumb)
4437 if (func_start_entry->addr != symbol_lookup_file_addr &&
4438 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4439 // Not the right entry, NULL it out...
4440 func_start_entry = NULL__null;
4441 }
4442 }
4443 if (func_start_entry) {
4444 func_start_entry->data = true;
4445
4446 addr_t symbol_file_addr = func_start_entry->addr;
4447 if (is_arm)
4448 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4449
4450 const FunctionStarts::Entry *next_func_start_entry =
4451 function_starts.FindNextEntry(func_start_entry);
4452 const addr_t section_end_file_addr =
4453 section_file_addr + symbol_section->GetByteSize();
4454 if (next_func_start_entry) {
4455 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4456 // Be sure the clear the Thumb address bit when we calculate
4457 // the size from the current and next address
4458 if (is_arm)
4459 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4460 symbol_byte_size = std::min<lldb::addr_t>(
4461 next_symbol_file_addr - symbol_file_addr,
4462 section_end_file_addr - symbol_file_addr);
4463 } else {
4464 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4465 }
4466 }
4467 }
4468 symbol_value -= section_file_addr;
4469 }
4470
4471 if (is_debug == false) {
4472 if (type == eSymbolTypeCode) {
4473 // See if we can find a N_FUN entry for any code symbols. If we
4474 // do find a match, and the name matches, then we can merge the
4475 // two into just the function symbol to avoid duplicate entries
4476 // in the symbol table
4477 std::pair<ValueToSymbolIndexMap::const_iterator,
4478 ValueToSymbolIndexMap::const_iterator>
4479 range;
4480 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4481 if (range.first != range.second) {
4482 bool found_it = false;
4483 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4484 pos != range.second; ++pos) {
4485 if (sym[sym_idx].GetMangled().GetName(
4486 lldb::eLanguageTypeUnknown,
4487 Mangled::ePreferMangled) ==
4488 sym[pos->second].GetMangled().GetName(
4489 lldb::eLanguageTypeUnknown,
4490 Mangled::ePreferMangled)) {
4491 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4492 // We just need the flags from the linker symbol, so put
4493 // these flags into the N_FUN flags to avoid duplicate
4494 // symbols in the symbol table
4495 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4496 sym[pos->second].SetFlags(nlist.n_type << 16 |
4497 nlist.n_desc);
4498 if (resolver_addresses.find(nlist.n_value) !=
4499 resolver_addresses.end())
4500 sym[pos->second].SetType(eSymbolTypeResolver);
4501 sym[sym_idx].Clear();
4502 found_it = true;
4503 break;
4504 }
4505 }
4506 if (found_it)
4507 continue;
4508 } else {
4509 if (resolver_addresses.find(nlist.n_value) !=
4510 resolver_addresses.end())
4511 type = eSymbolTypeResolver;
4512 }
4513 } else if (type == eSymbolTypeData ||
4514 type == eSymbolTypeObjCClass ||
4515 type == eSymbolTypeObjCMetaClass ||
4516 type == eSymbolTypeObjCIVar) {
4517 // See if we can find a N_STSYM entry for any data symbols. If we
4518 // do find a match, and the name matches, then we can merge the
4519 // two into just the Static symbol to avoid duplicate entries in
4520 // the symbol table
4521 std::pair<ValueToSymbolIndexMap::const_iterator,
4522 ValueToSymbolIndexMap::const_iterator>
4523 range;
4524 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4525 if (range.first != range.second) {
4526 bool found_it = false;
4527 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4528 pos != range.second; ++pos) {
4529 if (sym[sym_idx].GetMangled().GetName(
4530 lldb::eLanguageTypeUnknown,
4531 Mangled::ePreferMangled) ==
4532 sym[pos->second].GetMangled().GetName(
4533 lldb::eLanguageTypeUnknown,
4534 Mangled::ePreferMangled)) {
4535 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4536 // We just need the flags from the linker symbol, so put
4537 // these flags into the N_STSYM flags to avoid duplicate
4538 // symbols in the symbol table
4539 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4540 sym[pos->second].SetFlags(nlist.n_type << 16 |
4541 nlist.n_desc);
4542 sym[sym_idx].Clear();
4543 found_it = true;
4544 break;
4545 }
4546 }
4547 if (found_it)
4548 continue;
4549 } else {
4550 // Combine N_GSYM stab entries with the non stab symbol
4551 const char *gsym_name = sym[sym_idx]
4552 .GetMangled()
4553 .GetName(lldb::eLanguageTypeUnknown,
4554 Mangled::ePreferMangled)
4555 .GetCString();
4556 if (gsym_name) {
4557 ConstNameToSymbolIndexMap::const_iterator pos =
4558 N_GSYM_name_to_sym_idx.find(gsym_name);
4559 if (pos != N_GSYM_name_to_sym_idx.end()) {
4560 const uint32_t GSYM_sym_idx = pos->second;
4561 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4562 // Copy the address, because often the N_GSYM address has
4563 // an invalid address of zero when the global is a common
4564 // symbol
4565 sym[GSYM_sym_idx].GetAddressRef().SetSection(
4566 symbol_section);
4567 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4568 // We just need the flags from the linker symbol, so put
4569 // these flags into the N_GSYM flags to avoid duplicate
4570 // symbols in the symbol table
4571 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
4572 nlist.n_desc);
4573 sym[sym_idx].Clear();
4574 continue;
4575 }
4576 }
4577 }
4578 }
4579 }
4580
4581 sym[sym_idx].SetID(nlist_idx);
4582 sym[sym_idx].SetType(type);
4583 if (set_value) {
4584 sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4585 sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4586 }
4587 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4588
4589 if (symbol_byte_size > 0)
4590 sym[sym_idx].SetByteSize(symbol_byte_size);
4591
4592 if (demangled_is_synthesized)
4593 sym[sym_idx].SetDemangledNameIsSynthesized(true);
4594
4595 ++sym_idx;
4596 } else {
4597 sym[sym_idx].Clear();
4598 }
4599 }
4600
4601 for (const auto &pos : reexport_shlib_needs_fixup) {
4602 const auto undef_pos = undefined_name_to_desc.find(pos.second);
4603 if (undef_pos != undefined_name_to_desc.end()) {
4604 const uint8_t dylib_ordinal =
4605 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4606 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4607 sym[pos.first].SetReExportedSymbolSharedLibrary(
4608 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4609 }
4610 }
4611 }
4612
4613 uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4614
4615 if (function_starts_count > 0) {
4616 uint32_t num_synthetic_function_symbols = 0;
4617 for (i = 0; i < function_starts_count; ++i) {
4618 if (function_starts.GetEntryRef(i).data == false)
4619 ++num_synthetic_function_symbols;
4620 }
4621
4622 if (num_synthetic_function_symbols > 0) {
4623 if (num_syms < sym_idx + num_synthetic_function_symbols) {
4624 num_syms = sym_idx + num_synthetic_function_symbols;
4625 sym = symtab->Resize(num_syms);
4626 }
4627 for (i = 0; i < function_starts_count; ++i) {
4628 const FunctionStarts::Entry *func_start_entry =
4629 function_starts.GetEntryAtIndex(i);
4630 if (func_start_entry->data == false) {
4631 addr_t symbol_file_addr = func_start_entry->addr;
4632 uint32_t symbol_flags = 0;
4633 if (is_arm) {
4634 if (symbol_file_addr & 1)
4635 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008;
4636 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4637 }
4638 Address symbol_addr;
4639 if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4640 SectionSP symbol_section(symbol_addr.GetSection());
4641 uint32_t symbol_byte_size = 0;
4642 if (symbol_section) {
4643 const addr_t section_file_addr =
4644 symbol_section->GetFileAddress();
4645 const FunctionStarts::Entry *next_func_start_entry =
4646 function_starts.FindNextEntry(func_start_entry);
4647 const addr_t section_end_file_addr =
4648 section_file_addr + symbol_section->GetByteSize();
4649 if (next_func_start_entry) {
4650 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4651 if (is_arm)
4652 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4653 symbol_byte_size = std::min<lldb::addr_t>(
4654 next_symbol_file_addr - symbol_file_addr,
4655 section_end_file_addr - symbol_file_addr);
4656 } else {
4657 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4658 }
4659 sym[sym_idx].SetID(synthetic_sym_id++);
4660 sym[sym_idx].GetMangled().SetDemangledName(
4661 GetNextSyntheticSymbolName());
4662 sym[sym_idx].SetType(eSymbolTypeCode);
4663 sym[sym_idx].SetIsSynthetic(true);
4664 sym[sym_idx].GetAddressRef() = symbol_addr;
4665 if (symbol_flags)
4666 sym[sym_idx].SetFlags(symbol_flags);
4667 if (symbol_byte_size)
4668 sym[sym_idx].SetByteSize(symbol_byte_size);
4669 ++sym_idx;
4670 }
4671 }
4672 }
4673 }
4674 }
4675 }
4676
4677 // Trim our symbols down to just what we ended up with after removing any
4678 // symbols.
4679 if (sym_idx < num_syms) {
4680 num_syms = sym_idx;
4681 sym = symtab->Resize(num_syms);
4682 }
4683
4684 // Now synthesize indirect symbols
4685 if (m_dysymtab.nindirectsyms != 0) {
4686 if (indirect_symbol_index_data.GetByteSize()) {
4687 NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4688 m_nlist_idx_to_sym_idx.end();
4689
4690 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4691 ++sect_idx) {
4692 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4693 S_SYMBOL_STUBS) {
4694 uint32_t symbol_stub_byte_size =
4695 m_mach_sections[sect_idx].reserved2;
4696 if (symbol_stub_byte_size == 0)
4697 continue;
4698
4699 const uint32_t num_symbol_stubs =
4700 m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4701
4702 if (num_symbol_stubs == 0)
4703 continue;
4704
4705 const uint32_t symbol_stub_index_offset =
4706 m_mach_sections[sect_idx].reserved1;
4707 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs;
4708 ++stub_idx) {
4709 const uint32_t symbol_stub_index =
4710 symbol_stub_index_offset + stub_idx;
4711 const lldb::addr_t symbol_stub_addr =
4712 m_mach_sections[sect_idx].addr +
4713 (stub_idx * symbol_stub_byte_size);
4714 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4715 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4716 symbol_stub_offset, 4)) {
4717 const uint32_t stub_sym_id =
4718 indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4719 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4720 continue;
4721
4722 NListIndexToSymbolIndexMap::const_iterator index_pos =
4723 m_nlist_idx_to_sym_idx.find(stub_sym_id);
4724 Symbol *stub_symbol = NULL__null;
4725 if (index_pos != end_index_pos) {
4726 // We have a remapping from the original nlist index to a
4727 // current symbol index, so just look this up by index
4728 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4729 } else {
4730 // We need to lookup a symbol using the original nlist symbol
4731 // index since this index is coming from the S_SYMBOL_STUBS
4732 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4733 }
4734
4735 if (stub_symbol) {
4736 Address so_addr(symbol_stub_addr, section_list);
4737
4738 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4739 // Change the external symbol into a trampoline that makes
4740 // sense These symbols were N_UNDF N_EXT, and are useless
4741 // to us, so we can re-use them so we don't have to make up
4742 // a synthetic symbol for no good reason.
4743 if (resolver_addresses.find(symbol_stub_addr) ==
4744 resolver_addresses.end())
4745 stub_symbol->SetType(eSymbolTypeTrampoline);
4746 else
4747 stub_symbol->SetType(eSymbolTypeResolver);
4748 stub_symbol->SetExternal(false);
4749 stub_symbol->GetAddressRef() = so_addr;
4750 stub_symbol->SetByteSize(symbol_stub_byte_size);
4751 } else {
4752 // Make a synthetic symbol to describe the trampoline stub
4753 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4754 if (sym_idx >= num_syms) {
4755 sym = symtab->Resize(++num_syms);
4756 stub_symbol = NULL__null; // this pointer no longer valid
4757 }
4758 sym[sym_idx].SetID(synthetic_sym_id++);
4759 sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4760 if (resolver_addresses.find(symbol_stub_addr) ==
4761 resolver_addresses.end())
4762 sym[sym_idx].SetType(eSymbolTypeTrampoline);
4763 else
4764 sym[sym_idx].SetType(eSymbolTypeResolver);
4765 sym[sym_idx].SetIsSynthetic(true);
4766 sym[sym_idx].GetAddressRef() = so_addr;
4767 sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4768 ++sym_idx;
4769 }
4770 } else {
4771 if (log)
4772 log->Warning("symbol stub referencing symbol table symbol "
4773 "%u that isn't in our minimal symbol table, "
4774 "fix this!!!",
4775 stub_sym_id);
4776 }
4777 }
4778 }
4779 }
4780 }
4781 }
4782 }
4783
4784 if (!trie_entries.empty()) {
4785 for (const auto &e : trie_entries) {
4786 if (e.entry.import_name) {
4787 // Only add indirect symbols from the Trie entries if we didn't have
4788 // a N_INDR nlist entry for this already
4789 if (indirect_symbol_names.find(e.entry.name) ==
4790 indirect_symbol_names.end()) {
4791 // Make a synthetic symbol to describe re-exported symbol.
4792 if (sym_idx >= num_syms)
4793 sym = symtab->Resize(++num_syms);
4794 sym[sym_idx].SetID(synthetic_sym_id++);
4795 sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4796 sym[sym_idx].SetType(eSymbolTypeReExported);
4797 sym[sym_idx].SetIsSynthetic(true);
4798 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4799 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4800 sym[sym_idx].SetReExportedSymbolSharedLibrary(
4801 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4802 }
4803 ++sym_idx;
4804 }
4805 }
4806 }
4807 }
4808
4809 // StreamFile s(stdout, false);
4810 // s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4811 // symtab->Dump(&s, NULL, eSortOrderNone);
4812 // Set symbol byte sizes correctly since mach-o nlist entries don't have
4813 // sizes
4814 symtab->CalculateSymbolSizes();
4815
4816 // s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4817 // symtab->Dump(&s, NULL, eSortOrderNone);
4818
4819 return symtab->GetNumSymbols();
4820 }
4821 return 0;
4822}
4823
4824void ObjectFileMachO::Dump(Stream *s) {
4825 ModuleSP module_sp(GetModule());
4826 if (module_sp) {
1
Taking true branch
4827 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4828 s->Printf("%p: ", static_cast<void *>(this));
4829 s->Indent();
4830 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
2
Assuming the condition is true
4831 s->PutCString("ObjectFileMachO64");
4832 else
4833 s->PutCString("ObjectFileMachO32");
4834
4835 ArchSpec header_arch;
4836 GetArchitecture(header_arch);
3
Calling 'ObjectFileMachO::GetArchitecture'
4837
4838 *s << ", file = '" << m_file
4839 << "', triple = " << header_arch.GetTriple().getTriple() << "\n";
4840
4841 SectionList *sections = GetSectionList();
4842 if (sections)
4843 sections->Dump(s, NULL__null, true, UINT32_MAX(4294967295U));
4844
4845 if (m_symtab_ap.get())
4846 m_symtab_ap->Dump(s, NULL__null, eSortOrderNone);
4847 }
4848}
4849
4850bool ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4851 const lldb_private::DataExtractor &data,
4852 lldb::offset_t lc_offset,
4853 lldb_private::UUID &uuid) {
4854 uint32_t i;
4855 struct uuid_command load_cmd;
4856
4857 lldb::offset_t offset = lc_offset;
4858 for (i = 0; i < header.ncmds; ++i) {
4859 const lldb::offset_t cmd_offset = offset;
4860 if (data.GetU32(&offset, &load_cmd, 2) == NULL__null)
4861 break;
4862
4863 if (load_cmd.cmd == LC_UUID) {
4864 const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4865
4866 if (uuid_bytes) {
4867 // OpenCL on Mac OS X uses the same UUID for each of its object files.
4868 // We pretend these object files have no UUID to prevent crashing.
4869
4870 const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4871 0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4872 0xbb, 0x14, 0xf0, 0x0d};
4873
4874 if (!memcmp(uuid_bytes, opencl_uuid, 16))
4875 return false;
4876
4877 uuid = UUID::fromOptionalData(uuid_bytes, 16);
4878 return true;
4879 }
4880 return false;
4881 }
4882 offset = cmd_offset + load_cmd.cmdsize;
4883 }
4884 return false;
4885}
4886
4887static llvm::StringRef GetOSName(uint32_t cmd) {
4888 switch (cmd) {
4889 case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4890 return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4891 case llvm::MachO::LC_VERSION_MIN_MACOSX:
4892 return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4893 case llvm::MachO::LC_VERSION_MIN_TVOS:
4894 return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4895 case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4896 return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4897 default:
4898 llvm_unreachable("unexpected LC_VERSION load command")::llvm::llvm_unreachable_internal("unexpected LC_VERSION load command"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 4898)
;
4899 }
4900}
4901
4902namespace {
4903 struct OSEnv {
4904 llvm::StringRef os_type;
4905 llvm::StringRef environment;
4906 OSEnv(uint32_t cmd) {
4907 switch (cmd) {
4908 case PLATFORM_MACOS:
4909 os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4910 return;
4911 case PLATFORM_IOS:
4912 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4913 return;
4914 case PLATFORM_TVOS:
4915 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4916 return;
4917 case PLATFORM_WATCHOS:
4918 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4919 return;
4920// NEED_BRIDGEOS_TRIPLE case PLATFORM_BRIDGEOS:
4921// NEED_BRIDGEOS_TRIPLE os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4922// NEED_BRIDGEOS_TRIPLE return;
4923#if defined (PLATFORM_IOSSIMULATOR) && defined (PLATFORM_TVOSSIMULATOR) && defined (PLATFORM_WATCHOSSIMULATOR)
4924 case PLATFORM_IOSSIMULATOR:
4925 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4926 environment =
4927 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4928 return;
4929 case PLATFORM_TVOSSIMULATOR:
4930 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4931 environment =
4932 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4933 return;
4934 case PLATFORM_WATCHOSSIMULATOR:
4935 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4936 environment =
4937 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4938 return;
4939#endif
4940 default: {
4941 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS(1u << 20) |
4942 LIBLLDB_LOG_PROCESS(1u << 1)));
4943 if (log)
4944 log->Printf("unsupported platform in LC_BUILD_VERSION");
4945 }
4946 }
4947 }
4948 };
4949
4950 struct MinOS {
4951 uint32_t major_version, minor_version, patch_version;
4952 MinOS(uint32_t version)
4953 : major_version(version >> 16),
4954 minor_version((version >> 8) & 0xffu),
4955 patch_version(version & 0xffu) {}
4956 };
4957} // namespace
4958
4959bool ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header,
4960 const lldb_private::DataExtractor &data,
4961 lldb::offset_t lc_offset,
4962 ArchSpec &arch) {
4963 arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4964
4965 if (arch.IsValid()) {
6
Taking true branch
4966 llvm::Triple &triple = arch.GetTriple();
4967
4968 // Set OS to an unspecified unknown or a "*" so it can match any OS
4969 triple.setOS(llvm::Triple::UnknownOS);
4970 triple.setOSName(llvm::StringRef());
4971
4972 if (header.filetype == MH_PRELOAD) {
7
Assuming the condition is false
8
Taking false branch
4973 if (header.cputype == CPU_TYPE_ARM) {
4974 // If this is a 32-bit arm binary, and it's a standalone binary, force
4975 // the Vendor to Apple so we don't accidentally pick up the generic
4976 // armv7 ABI at runtime. Apple's armv7 ABI always uses r7 for the
4977 // frame pointer register; most other armv7 ABIs use a combination of
4978 // r7 and r11.
4979 triple.setVendor(llvm::Triple::Apple);
4980 } else {
4981 // Set vendor to an unspecified unknown or a "*" so it can match any
4982 // vendor This is required for correct behavior of EFI debugging on
4983 // x86_64
4984 triple.setVendor(llvm::Triple::UnknownVendor);
4985 triple.setVendorName(llvm::StringRef());
4986 }
4987 return true;
4988 } else {
4989 struct load_command load_cmd;
4990 llvm::SmallString<16> os_name;
4991 llvm::raw_svector_ostream os(os_name);
4992
4993 // See if there is an LC_VERSION_MIN_* load command that can give
4994 // us the OS type.
4995 lldb::offset_t offset = lc_offset;
4996 for (uint32_t i = 0; i < header.ncmds; ++i) {
9
Assuming the condition is true
10
Loop condition is true. Entering loop body
4997 const lldb::offset_t cmd_offset = offset;
4998 if (data.GetU32(&offset, &load_cmd, 2) == NULL__null)
11
Assuming the condition is true
12
Taking true branch
4999 break;
13
Execution continues on line 5028
5000
5001 struct version_min_command version_min;
5002 switch (load_cmd.cmd) {
5003 case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5004 case llvm::MachO::LC_VERSION_MIN_MACOSX:
5005 case llvm::MachO::LC_VERSION_MIN_TVOS:
5006 case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5007 if (load_cmd.cmdsize != sizeof(version_min))
5008 break;
5009 if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5010 data.GetByteOrder(), &version_min) == 0)
5011 break;
5012 MinOS min_os(version_min.version);
5013 os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5014 << min_os.minor_version << '.' << min_os.patch_version;
5015 triple.setOSName(os.str());
5016 return true;
5017 }
5018 default:
5019 break;
5020 }
5021
5022 offset = cmd_offset + load_cmd.cmdsize;
5023 }
5024
5025 // See if there is an LC_BUILD_VERSION load command that can give
5026 // us the OS type.
5027
5028 offset = lc_offset;
5029 for (uint32_t i = 0; i < header.ncmds; ++i) {
14
Assuming the condition is true
15
Loop condition is true. Entering loop body
5030 const lldb::offset_t cmd_offset = offset;
5031 if (data.GetU32(&offset, &load_cmd, 2) == NULL__null)
16
Assuming the condition is false
17
Taking false branch
5032 break;
5033
5034 if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
18
Assuming the condition is true
19
Taking true branch
5035 struct build_version_command build_version;
5036 if (load_cmd.cmdsize != sizeof(build_version))
20
Assuming the condition is false
21
Taking false branch
5037 if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5038 data.GetByteOrder(), &build_version) == 0)
5039 continue;
5040 MinOS min_os(build_version.minos);
22
1st function call argument is an uninitialized value
5041 OSEnv os_env(build_version.platform);
5042 if (os_env.os_type.empty())
5043 continue;
5044 os << os_env.os_type << min_os.major_version << '.'
5045 << min_os.minor_version << '.' << min_os.patch_version;
5046 triple.setOSName(os.str());
5047 if (!os_env.environment.empty())
5048 triple.setEnvironmentName(os_env.environment);
5049 return true;
5050 }
5051 offset = cmd_offset + load_cmd.cmdsize;
5052 }
5053
5054 if (header.filetype != MH_KEXT_BUNDLE) {
5055 // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5056 // so lets not say our Vendor is Apple, leave it as an unspecified
5057 // unknown
5058 triple.setVendor(llvm::Triple::UnknownVendor);
5059 triple.setVendorName(llvm::StringRef());
5060 }
5061 }
5062 }
5063 return arch.IsValid();
5064}
5065
5066bool ObjectFileMachO::GetUUID(lldb_private::UUID *uuid) {
5067 ModuleSP module_sp(GetModule());
5068 if (module_sp) {
5069 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5070 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5071 return GetUUID(m_header, m_data, offset, *uuid);
5072 }
5073 return false;
5074}
5075
5076uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5077 uint32_t count = 0;
5078 ModuleSP module_sp(GetModule());
5079 if (module_sp) {
5080 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5081 struct load_command load_cmd;
5082 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5083 std::vector<std::string> rpath_paths;
5084 std::vector<std::string> rpath_relative_paths;
5085 std::vector<std::string> at_exec_relative_paths;
5086 const bool resolve_path = false; // Don't resolve the dependent file paths
5087 // since they may not reside on this
5088 // system
5089 uint32_t i;
5090 for (i = 0; i < m_header.ncmds; ++i) {
5091 const uint32_t cmd_offset = offset;
5092 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL__null)
5093 break;
5094
5095 switch (load_cmd.cmd) {
5096 case LC_RPATH:
5097 case LC_LOAD_DYLIB:
5098 case LC_LOAD_WEAK_DYLIB:
5099 case LC_REEXPORT_DYLIB:
5100 case LC_LOAD_DYLINKER:
5101 case LC_LOADFVMLIB:
5102 case LC_LOAD_UPWARD_DYLIB: {
5103 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5104 const char *path = m_data.PeekCStr(name_offset);
5105 if (path) {
5106 if (load_cmd.cmd == LC_RPATH)
5107 rpath_paths.push_back(path);
5108 else {
5109 if (path[0] == '@') {
5110 if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5111 rpath_relative_paths.push_back(path + strlen("@rpath"));
5112 else if (strncmp(path, "@executable_path",
5113 strlen("@executable_path")) == 0)
5114 at_exec_relative_paths.push_back(path
5115 + strlen("@executable_path"));
5116 } else {
5117 FileSpec file_spec(path, resolve_path);
5118 if (files.AppendIfUnique(file_spec))
5119 count++;
5120 }
5121 }
5122 }
5123 } break;
5124
5125 default:
5126 break;
5127 }
5128 offset = cmd_offset + load_cmd.cmdsize;
5129 }
5130
5131 FileSpec this_file_spec(m_file);
5132 this_file_spec.ResolvePath();
5133
5134 if (!rpath_paths.empty()) {
5135 // Fixup all LC_RPATH values to be absolute paths
5136 std::string loader_path("@loader_path");
5137 std::string executable_path("@executable_path");
5138 for (auto &rpath : rpath_paths) {
5139 if (rpath.find(loader_path) == 0) {
5140 rpath.erase(0, loader_path.size());
5141 rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5142 } else if (rpath.find(executable_path) == 0) {
5143 rpath.erase(0, executable_path.size());
5144 rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5145 }
5146 }
5147
5148 for (const auto &rpath_relative_path : rpath_relative_paths) {
5149 for (const auto &rpath : rpath_paths) {
5150 std::string path = rpath;
5151 path += rpath_relative_path;
5152 // It is OK to resolve this path because we must find a file on disk
5153 // for us to accept it anyway if it is rpath relative.
5154 FileSpec file_spec(path, true);
5155 if (file_spec.Exists() && files.AppendIfUnique(file_spec)) {
5156 count++;
5157 break;
5158 }
5159 }
5160 }
5161 }
5162
5163 // We may have @executable_paths but no RPATHS. Figure those out here.
5164 // Only do this if this object file is the executable. We have no way to
5165 // get back to the actual executable otherwise, so we won't get the right
5166 // path.
5167 if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5168 FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5169 for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5170 FileSpec file_spec =
5171 exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5172 if (file_spec.Exists() && files.AppendIfUnique(file_spec))
5173 count++;
5174 }
5175 }
5176 }
5177 return count;
5178}
5179
5180lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5181 // If the object file is not an executable it can't hold the entry point.
5182 // m_entry_point_address is initialized to an invalid address, so we can just
5183 // return that. If m_entry_point_address is valid it means we've found it
5184 // already, so return the cached value.
5185
5186 if (!IsExecutable() || m_entry_point_address.IsValid())
5187 return m_entry_point_address;
5188
5189 // Otherwise, look for the UnixThread or Thread command. The data for the
5190 // Thread command is given in /usr/include/mach-o.h, but it is basically:
5191 //
5192 // uint32_t flavor - this is the flavor argument you would pass to
5193 // thread_get_state
5194 // uint32_t count - this is the count of longs in the thread state data
5195 // struct XXX_thread_state state - this is the structure from
5196 // <machine/thread_status.h> corresponding to the flavor.
5197 // <repeat this trio>
5198 //
5199 // So we just keep reading the various register flavors till we find the GPR
5200 // one, then read the PC out of there.
5201 // FIXME: We will need to have a "RegisterContext data provider" class at some
5202 // point that can get all the registers
5203 // out of data in this form & attach them to a given thread. That should
5204 // underlie the MacOS X User process plugin, and we'll also need it for the
5205 // MacOS X Core File process plugin. When we have that we can also use it
5206 // here.
5207 //
5208 // For now we hard-code the offsets and flavors we need:
5209 //
5210 //
5211
5212 ModuleSP module_sp(GetModule());
5213 if (module_sp) {
5214 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5215 struct load_command load_cmd;
5216 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5217 uint32_t i;
5218 lldb::addr_t start_address = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5219 bool done = false;
5220
5221 for (i = 0; i < m_header.ncmds; ++i) {
5222 const lldb::offset_t cmd_offset = offset;
5223 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL__null)
5224 break;
5225
5226 switch (load_cmd.cmd) {
5227 case LC_UNIXTHREAD:
5228 case LC_THREAD: {
5229 while (offset < cmd_offset + load_cmd.cmdsize) {
5230 uint32_t flavor = m_data.GetU32(&offset);
5231 uint32_t count = m_data.GetU32(&offset);
5232 if (count == 0) {
5233 // We've gotten off somehow, log and exit;
5234 return m_entry_point_address;
5235 }
5236
5237 switch (m_header.cputype) {
5238 case llvm::MachO::CPU_TYPE_ARM:
5239 if (flavor == 1 ||
5240 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from
5241 // mach/arm/thread_status.h
5242 {
5243 offset += 60; // This is the offset of pc in the GPR thread state
5244 // data structure.
5245 start_address = m_data.GetU32(&offset);
5246 done = true;
5247 }
5248 break;
5249 case llvm::MachO::CPU_TYPE_ARM64:
5250 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5251 {
5252 offset += 256; // This is the offset of pc in the GPR thread state
5253 // data structure.
5254 start_address = m_data.GetU64(&offset);
5255 done = true;
5256 }
5257 break;
5258 case llvm::MachO::CPU_TYPE_I386:
5259 if (flavor ==
5260 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5261 {
5262 offset += 40; // This is the offset of eip in the GPR thread state
5263 // data structure.
5264 start_address = m_data.GetU32(&offset);
5265 done = true;
5266 }
5267 break;
5268 case llvm::MachO::CPU_TYPE_X86_64:
5269 if (flavor ==
5270 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5271 {
5272 offset += 16 * 8; // This is the offset of rip in the GPR thread
5273 // state data structure.
5274 start_address = m_data.GetU64(&offset);
5275 done = true;
5276 }
5277 break;
5278 default:
5279 return m_entry_point_address;
5280 }
5281 // Haven't found the GPR flavor yet, skip over the data for this
5282 // flavor:
5283 if (done)
5284 break;
5285 offset += count * 4;
5286 }
5287 } break;
5288 case LC_MAIN: {
5289 ConstString text_segment_name("__TEXT");
5290 uint64_t entryoffset = m_data.GetU64(&offset);
5291 SectionSP text_segment_sp =
5292 GetSectionList()->FindSectionByName(text_segment_name);
5293 if (text_segment_sp) {
5294 done = true;
5295 start_address = text_segment_sp->GetFileAddress() + entryoffset;
5296 }
5297 } break;
5298
5299 default:
5300 break;
5301 }
5302 if (done)
5303 break;
5304
5305 // Go to the next load command:
5306 offset = cmd_offset + load_cmd.cmdsize;
5307 }
5308
5309 if (start_address != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
5310 // We got the start address from the load commands, so now resolve that
5311 // address in the sections of this ObjectFile:
5312 if (!m_entry_point_address.ResolveAddressUsingFileSections(
5313 start_address, GetSectionList())) {
5314 m_entry_point_address.Clear();
5315 }
5316 } else {
5317 // We couldn't read the UnixThread load command - maybe it wasn't there.
5318 // As a fallback look for the "start" symbol in the main executable.
5319
5320 ModuleSP module_sp(GetModule());
5321
5322 if (module_sp) {
5323 SymbolContextList contexts;
5324 SymbolContext context;
5325 if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5326 eSymbolTypeCode, contexts)) {
5327 if (contexts.GetContextAtIndex(0, context))
5328 m_entry_point_address = context.symbol->GetAddress();
5329 }
5330 }
5331 }
5332 }
5333
5334 return m_entry_point_address;
5335}
5336
5337lldb_private::Address ObjectFileMachO::GetHeaderAddress() {
5338 lldb_private::Address header_addr;
5339 SectionList *section_list = GetSectionList();
5340 if (section_list) {
5341 SectionSP text_segment_sp(
5342 section_list->FindSectionByName(GetSegmentNameTEXT()));
5343 if (text_segment_sp) {
5344 header_addr.SetSection(text_segment_sp);
5345 header_addr.SetOffset(0);
5346 }
5347 }
5348 return header_addr;
5349}
5350
5351uint32_t ObjectFileMachO::GetNumThreadContexts() {
5352 ModuleSP module_sp(GetModule());
5353 if (module_sp) {
5354 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5355 if (!m_thread_context_offsets_valid) {
5356 m_thread_context_offsets_valid = true;
5357 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5358 FileRangeArray::Entry file_range;
5359 thread_command thread_cmd;
5360 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5361 const uint32_t cmd_offset = offset;
5362 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL__null)
5363 break;
5364
5365 if (thread_cmd.cmd == LC_THREAD) {
5366 file_range.SetRangeBase(offset);
5367 file_range.SetByteSize(thread_cmd.cmdsize - 8);
5368 m_thread_context_offsets.Append(file_range);
5369 }
5370 offset = cmd_offset + thread_cmd.cmdsize;
5371 }
5372 }
5373 }
5374 return m_thread_context_offsets.GetSize();
5375}
5376
5377std::string ObjectFileMachO::GetIdentifierString() {
5378 std::string result;
5379 ModuleSP module_sp(GetModule());
5380 if (module_sp) {
5381 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5382
5383 // First, look over the load commands for an LC_NOTE load command with
5384 // data_owner string "kern ver str" & use that if found.
5385 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5386 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5387 const uint32_t cmd_offset = offset;
5388 load_command lc;
5389 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
5390 break;
5391 if (lc.cmd == LC_NOTE)
5392 {
5393 char data_owner[17];
5394 m_data.CopyData (offset, 16, data_owner);
5395 data_owner[16] = '\0';
5396 offset += 16;
5397 uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5398 uint64_t size = m_data.GetU64_unchecked (&offset);
5399
5400 // "kern ver str" has a uint32_t version and then a nul terminated
5401 // c-string.
5402 if (strcmp ("kern ver str", data_owner) == 0)
5403 {
5404 offset = fileoff;
5405 uint32_t version;
5406 if (m_data.GetU32 (&offset, &version, 1) != nullptr)
5407 {
5408 if (version == 1)
5409 {
5410 uint32_t strsize = size - sizeof (uint32_t);
5411 char *buf = (char*) malloc (strsize);
5412 if (buf)
5413 {
5414 m_data.CopyData (offset, strsize, buf);
5415 buf[strsize - 1] = '\0';
5416 result = buf;
5417 if (buf)
5418 free (buf);
5419 return result;
5420 }
5421 }
5422 }
5423 }
5424 }
5425 offset = cmd_offset + lc.cmdsize;
5426 }
5427
5428 // Second, make a pass over the load commands looking for an obsolete
5429 // LC_IDENT load command.
5430 offset = MachHeaderSizeFromMagic(m_header.magic);
5431 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5432 const uint32_t cmd_offset = offset;
5433 struct ident_command ident_command;
5434 if (m_data.GetU32(&offset, &ident_command, 2) == NULL__null)
5435 break;
5436 if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5437 char *buf = (char *) malloc (ident_command.cmdsize);
5438 if (buf != nullptr
5439 && m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) {
5440 buf[ident_command.cmdsize - 1] = '\0';
5441 result = buf;
5442 }
5443 if (buf)
5444 free (buf);
5445 }
5446 offset = cmd_offset + ident_command.cmdsize;
5447 }
5448
5449 }
5450 return result;
5451}
5452
5453bool ObjectFileMachO::GetCorefileMainBinaryInfo (addr_t &address, UUID &uuid) {
5454 address = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5455 uuid.Clear();
5456 ModuleSP module_sp(GetModule());
5457 if (module_sp) {
5458 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5459 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5460 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5461 const uint32_t cmd_offset = offset;
5462 load_command lc;
5463 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
5464 break;
5465 if (lc.cmd == LC_NOTE)
5466 {
5467 char data_owner[17];
5468 memset (data_owner, 0, sizeof (data_owner));
5469 m_data.CopyData (offset, 16, data_owner);
5470 offset += 16;
5471 uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5472 uint64_t size = m_data.GetU64_unchecked (&offset);
5473
5474 // "main bin spec" (main binary specification) data payload is
5475 // formatted:
5476 // uint32_t version [currently 1]
5477 // uint32_t type [0 == unspecified, 1 == kernel, 2 == user process]
5478 // uint64_t address [ UINT64_MAX if address not specified ]
5479 // uuid_t uuid [ all zero's if uuid not specified ]
5480 // uint32_t log2_pagesize [ process page size in log base 2, e.g. 4k pages are 12. 0 for unspecified ]
5481
5482 if (strcmp ("main bin spec", data_owner) == 0 && size >= 32)
5483 {
5484 offset = fileoff;
5485 uint32_t version;
5486 if (m_data.GetU32 (&offset, &version, 1) != nullptr && version == 1)
5487 {
5488 uint32_t type = 0;
5489 uuid_t raw_uuid;
5490 memset (raw_uuid, 0, sizeof (uuid_t));
5491
5492 if (m_data.GetU32(&offset, &type, 1) &&
5493 m_data.GetU64(&offset, &address, 1) &&
5494 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5495 uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5496 return true;
5497 }
5498 }
5499 }
5500 }
5501 offset = cmd_offset + lc.cmdsize;
5502 }
5503 }
5504 return false;
5505}
5506
5507lldb::RegisterContextSP
5508ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5509 lldb_private::Thread &thread) {
5510 lldb::RegisterContextSP reg_ctx_sp;
5511
5512 ModuleSP module_sp(GetModule());
5513 if (module_sp) {
5514 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5515 if (!m_thread_context_offsets_valid)
5516 GetNumThreadContexts();
5517
5518 const FileRangeArray::Entry *thread_context_file_range =
5519 m_thread_context_offsets.GetEntryAtIndex(idx);
5520 if (thread_context_file_range) {
5521
5522 DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5523 thread_context_file_range->GetByteSize());
5524
5525 switch (m_header.cputype) {
5526 case llvm::MachO::CPU_TYPE_ARM64:
5527 reg_ctx_sp.reset(new RegisterContextDarwin_arm64_Mach(thread, data));
5528 break;
5529
5530 case llvm::MachO::CPU_TYPE_ARM:
5531 reg_ctx_sp.reset(new RegisterContextDarwin_arm_Mach(thread, data));
5532 break;
5533
5534 case llvm::MachO::CPU_TYPE_I386:
5535 reg_ctx_sp.reset(new RegisterContextDarwin_i386_Mach(thread, data));
5536 break;
5537
5538 case llvm::MachO::CPU_TYPE_X86_64:
5539 reg_ctx_sp.reset(new RegisterContextDarwin_x86_64_Mach(thread, data));
5540 break;
5541 }
5542 }
5543 }
5544 return reg_ctx_sp;
5545}
5546
5547ObjectFile::Type ObjectFileMachO::CalculateType() {
5548 switch (m_header.filetype) {
5549 case MH_OBJECT: // 0x1u
5550 if (GetAddressByteSize() == 4) {
5551 // 32 bit kexts are just object files, but they do have a valid
5552 // UUID load command.
5553 UUID uuid;
5554 if (GetUUID(&uuid)) {
5555 // this checking for the UUID load command is not enough we could
5556 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5557 // this is required of kexts
5558 if (m_strata == eStrataInvalid)
5559 m_strata = eStrataKernel;
5560 return eTypeSharedLibrary;
5561 }
5562 }
5563 return eTypeObjectFile;
5564
5565 case MH_EXECUTE:
5566 return eTypeExecutable; // 0x2u
5567 case MH_FVMLIB:
5568 return eTypeSharedLibrary; // 0x3u
5569 case MH_CORE:
5570 return eTypeCoreFile; // 0x4u
5571 case MH_PRELOAD:
5572 return eTypeSharedLibrary; // 0x5u
5573 case MH_DYLIB:
5574 return eTypeSharedLibrary; // 0x6u
5575 case MH_DYLINKER:
5576 return eTypeDynamicLinker; // 0x7u
5577 case MH_BUNDLE:
5578 return eTypeSharedLibrary; // 0x8u
5579 case MH_DYLIB_STUB:
5580 return eTypeStubLibrary; // 0x9u
5581 case MH_DSYM:
5582 return eTypeDebugInfo; // 0xAu
5583 case MH_KEXT_BUNDLE:
5584 return eTypeSharedLibrary; // 0xBu
5585 default:
5586 break;
5587 }
5588 return eTypeUnknown;
5589}
5590
5591ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5592 switch (m_header.filetype) {
5593 case MH_OBJECT: // 0x1u
5594 {
5595 // 32 bit kexts are just object files, but they do have a valid
5596 // UUID load command.
5597 UUID uuid;
5598 if (GetUUID(&uuid)) {
5599 // this checking for the UUID load command is not enough we could
5600 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5601 // this is required of kexts
5602 if (m_type == eTypeInvalid)
5603 m_type = eTypeSharedLibrary;
5604
5605 return eStrataKernel;
5606 }
5607 }
5608 return eStrataUnknown;
5609
5610 case MH_EXECUTE: // 0x2u
5611 // Check for the MH_DYLDLINK bit in the flags
5612 if (m_header.flags & MH_DYLDLINK) {
5613 return eStrataUser;
5614 } else {
5615 SectionList *section_list = GetSectionList();
5616 if (section_list) {
5617 static ConstString g_kld_section_name("__KLD");
5618 if (section_list->FindSectionByName(g_kld_section_name))
5619 return eStrataKernel;
5620 }
5621 }
5622 return eStrataRawImage;
5623
5624 case MH_FVMLIB:
5625 return eStrataUser; // 0x3u
5626 case MH_CORE:
5627 return eStrataUnknown; // 0x4u
5628 case MH_PRELOAD:
5629 return eStrataRawImage; // 0x5u
5630 case MH_DYLIB:
5631 return eStrataUser; // 0x6u
5632 case MH_DYLINKER:
5633 return eStrataUser; // 0x7u
5634 case MH_BUNDLE:
5635 return eStrataUser; // 0x8u
5636 case MH_DYLIB_STUB:
5637 return eStrataUser; // 0x9u
5638 case MH_DSYM:
5639 return eStrataUnknown; // 0xAu
5640 case MH_KEXT_BUNDLE:
5641 return eStrataKernel; // 0xBu
5642 default:
5643 break;
5644 }
5645 return eStrataUnknown;
5646}
5647
5648llvm::VersionTuple ObjectFileMachO::GetVersion() {
5649 ModuleSP module_sp(GetModule());
5650 if (module_sp) {
5651 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5652 struct dylib_command load_cmd;
5653 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5654 uint32_t version_cmd = 0;
5655 uint64_t version = 0;
5656 uint32_t i;
5657 for (i = 0; i < m_header.ncmds; ++i) {
5658 const lldb::offset_t cmd_offset = offset;
5659 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL__null)
5660 break;
5661
5662 if (load_cmd.cmd == LC_ID_DYLIB) {
5663 if (version_cmd == 0) {
5664 version_cmd = load_cmd.cmd;
5665 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL__null)
5666 break;
5667 version = load_cmd.dylib.current_version;
5668 }
5669 break; // Break for now unless there is another more complete version
5670 // number load command in the future.
5671 }
5672 offset = cmd_offset + load_cmd.cmdsize;
5673 }
5674
5675 if (version_cmd == LC_ID_DYLIB) {
5676 unsigned major = (version & 0xFFFF0000ull) >> 16;
5677 unsigned minor = (version & 0x0000FF00ull) >> 8;
5678 unsigned subminor = (version & 0x000000FFull);
5679 return llvm::VersionTuple(major, minor, subminor);
5680 }
5681 }
5682 return llvm::VersionTuple();
5683}
5684
5685bool ObjectFileMachO::GetArchitecture(ArchSpec &arch) {
5686 ModuleSP module_sp(GetModule());
5687 if (module_sp) {
4
Taking true branch
5688 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5689 return GetArchitecture(m_header, m_data,
5
Calling 'ObjectFileMachO::GetArchitecture'
5690 MachHeaderSizeFromMagic(m_header.magic), arch);
5691 }
5692 return false;
5693}
5694
5695void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, addr_t &base_addr, UUID &uuid) {
5696 uuid.Clear();
5697 base_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5698 if (process && process->GetDynamicLoader()) {
5699 DynamicLoader *dl = process->GetDynamicLoader();
5700 LazyBool using_shared_cache;
5701 LazyBool private_shared_cache;
5702 dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5703 private_shared_cache);
5704 }
5705 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS(1u << 20) | LIBLLDB_LOG_PROCESS(1u << 1)));
5706 if (log)
5707 log->Printf("inferior process shared cache has a UUID of %s, base address 0x%" PRIx64"l" "x" , uuid.GetAsString().c_str(), base_addr);
5708}
5709
5710// From dyld SPI header dyld_process_info.h
5711typedef void *dyld_process_info;
5712struct lldb_copy__dyld_process_cache_info {
5713 uuid_t cacheUUID; // UUID of cache used by process
5714 uint64_t cacheBaseAddress; // load address of dyld shared cache
5715 bool noCache; // process is running without a dyld cache
5716 bool privateCache; // process is using a private copy of its dyld cache
5717};
5718
5719// #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with llvm
5720// enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile errors.
5721// So we need to use the actual underlying types of task_t and kern_return_t
5722// below.
5723extern "C" unsigned int /*task_t*/ mach_task_self();
5724
5725void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5726 uuid.Clear();
5727 base_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5728
5729#if defined(__APPLE__) && \
5730 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5731 uint8_t *(*dyld_get_all_image_infos)(void);
5732 dyld_get_all_image_infos =
5733 (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5734 if (dyld_get_all_image_infos) {
5735 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5736 if (dyld_all_image_infos_address) {
5737 uint32_t *version = (uint32_t *)
5738 dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5739 if (*version >= 13) {
5740 uuid_t *sharedCacheUUID_address = 0;
5741 int wordsize = sizeof(uint8_t *);
5742 if (wordsize == 8) {
5743 sharedCacheUUID_address =
5744 (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5745 160); // sharedCacheUUID <mach-o/dyld_images.h>
5746 if (*version >= 15)
5747 base_addr = *(uint64_t *) ((uint8_t *) dyld_all_image_infos_address
5748 + 176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5749 } else {
5750 sharedCacheUUID_address =
5751 (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5752 84); // sharedCacheUUID <mach-o/dyld_images.h>
5753 if (*version >= 15) {
5754 base_addr = 0;
5755 base_addr = *(uint32_t *) ((uint8_t *) dyld_all_image_infos_address
5756 + 100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5757 }
5758 }
5759 uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5760 }
5761 }
5762 } else {
5763 // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5764 dyld_process_info (*dyld_process_info_create)(unsigned int /* task_t */ task, uint64_t timestamp, unsigned int /*kern_return_t*/ *kernelError);
5765 void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5766 void (*dyld_process_info_release)(dyld_process_info info);
5767
5768 dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, unsigned int /*kern_return_t*/ *))
5769 dlsym (RTLD_DEFAULT, "_dyld_process_info_create");
5770 dyld_process_info_get_cache = (void (*)(void *, void *))
5771 dlsym (RTLD_DEFAULT, "_dyld_process_info_get_cache");
5772 dyld_process_info_release = (void (*)(void *))
5773 dlsym (RTLD_DEFAULT, "_dyld_process_info_release");
5774
5775 if (dyld_process_info_create && dyld_process_info_get_cache) {
5776 unsigned int /*kern_return_t */ kern_ret;
5777 dyld_process_info process_info = dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5778 if (process_info) {
5779 struct lldb_copy__dyld_process_cache_info sc_info;
5780 memset (&sc_info, 0, sizeof (struct lldb_copy__dyld_process_cache_info));
5781 dyld_process_info_get_cache (process_info, &sc_info);
5782 if (sc_info.cacheBaseAddress != 0) {
5783 base_addr = sc_info.cacheBaseAddress;
5784 uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5785 }
5786 dyld_process_info_release (process_info);
5787 }
5788 }
5789 }
5790 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS(1u << 20) | LIBLLDB_LOG_PROCESS(1u << 1)));
5791 if (log && uuid.IsValid())
5792 log->Printf("lldb's in-memory shared cache has a UUID of %s base address of 0x%" PRIx64"l" "x", uuid.GetAsString().c_str(), base_addr);
5793#endif
5794}
5795
5796llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5797 if (!m_min_os_version) {
5798 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5799 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5800 const lldb::offset_t load_cmd_offset = offset;
5801
5802 version_min_command lc;
5803 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
5804 break;
5805 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5806 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5807 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5808 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5809 if (m_data.GetU32(&offset, &lc.version,
5810 (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5811 const uint32_t xxxx = lc.version >> 16;
5812 const uint32_t yy = (lc.version >> 8) & 0xffu;
5813 const uint32_t zz = lc.version & 0xffu;
5814 if (xxxx) {
5815 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5816 break;
5817 }
5818 }
5819 } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5820 // struct build_version_command {
5821 // uint32_t cmd; /* LC_BUILD_VERSION */
5822 // uint32_t cmdsize; /* sizeof(struct build_version_command) plus */
5823 // /* ntools * sizeof(struct build_tool_version) */
5824 // uint32_t platform; /* platform */
5825 // uint32_t minos; /* X.Y.Z is encoded in nibbles xxxx.yy.zz */
5826 // uint32_t sdk; /* X.Y.Z is encoded in nibbles xxxx.yy.zz */
5827 // uint32_t ntools; /* number of tool entries following this */
5828 // };
5829
5830 offset += 4; // skip platform
5831 uint32_t minos = m_data.GetU32(&offset);
5832
5833 const uint32_t xxxx = minos >> 16;
5834 const uint32_t yy = (minos >> 8) & 0xffu;
5835 const uint32_t zz = minos & 0xffu;
5836 if (xxxx) {
5837 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5838 break;
5839 }
5840 }
5841
5842 offset = load_cmd_offset + lc.cmdsize;
5843 }
5844
5845 if (!m_min_os_version) {
5846 // Set version to an empty value so we don't keep trying to
5847 m_min_os_version = llvm::VersionTuple();
5848 }
5849 }
5850
5851 return *m_min_os_version;
5852}
5853
5854uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions,
5855 uint32_t num_versions) {
5856 if (m_sdk_versions.empty()) {
5857 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5858 bool success = false;
5859 for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5860 const lldb::offset_t load_cmd_offset = offset;
5861
5862 version_min_command lc;
5863 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
5864 break;
5865 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5866 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5867 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5868 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5869 if (m_data.GetU32(&offset, &lc.version,
5870 (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5871 const uint32_t xxxx = lc.sdk >> 16;
5872 const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5873 const uint32_t zz = lc.sdk & 0xffu;
5874 if (xxxx) {
5875 m_sdk_versions.push_back(xxxx);
5876 m_sdk_versions.push_back(yy);
5877 m_sdk_versions.push_back(zz);
5878 success = true;
5879 } else {
5880 GetModule()->ReportWarning(
5881 "minimum OS version load command with invalid (0) version found.");
5882 }
5883 }
5884 }
5885 offset = load_cmd_offset + lc.cmdsize;
5886 }
5887
5888 if (success == false)
5889 {
5890 offset = MachHeaderSizeFromMagic(m_header.magic);
5891 for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i)
5892 {
5893 const lldb::offset_t load_cmd_offset = offset;
5894
5895 version_min_command lc;
5896 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
5897 break;
5898 if (lc.cmd == llvm::MachO::LC_BUILD_VERSION)
5899 {
5900 // struct build_version_command {
5901 // uint32_t cmd; /* LC_BUILD_VERSION */
5902 // uint32_t cmdsize; /* sizeof(struct build_version_command) plus */
5903 // /* ntools * sizeof(struct build_tool_version) */
5904 // uint32_t platform; /* platform */
5905 // uint32_t minos; /* X.Y.Z is encoded in nibbles xxxx.yy.zz */
5906 // uint32_t sdk; /* X.Y.Z is encoded in nibbles xxxx.yy.zz */
5907 // uint32_t ntools; /* number of tool entries following this */
5908 // };
5909
5910 offset += 4; // skip platform
5911 uint32_t minos = m_data.GetU32(&offset);
5912
5913 const uint32_t xxxx = minos >> 16;
5914 const uint32_t yy = (minos >> 8) & 0xffu;
5915 const uint32_t zz = minos & 0xffu;
5916 if (xxxx)
5917 {
5918 m_sdk_versions.push_back (xxxx);
5919 m_sdk_versions.push_back (yy);
5920 m_sdk_versions.push_back (zz);
5921 success = true;
5922 }
5923 }
5924 offset = load_cmd_offset + lc.cmdsize;
5925 }
5926 }
5927
5928 if (success == false) {
5929 // Push an invalid value so we don't try to find
5930 // the version # again on the next call to this
5931 // method.
5932 m_sdk_versions.push_back(UINT32_MAX(4294967295U));
5933 }
5934 }
5935
5936 // Legitimate version numbers will have 3 entries pushed
5937 // on to m_sdk_versions. If we only have one value, it's
5938 // the sentinel value indicating that this object file
5939 // does not have a valid minimum os version #.
5940 if (m_sdk_versions.size() > 1) {
5941 if (versions != NULL__null && num_versions > 0) {
5942 for (size_t i = 0; i < num_versions; ++i) {
5943 if (i < m_sdk_versions.size())
5944 versions[i] = m_sdk_versions[i];
5945 else
5946 versions[i] = 0;
5947 }
5948 }
5949 return m_sdk_versions.size();
5950 }
5951 // Call the superclasses version that will empty out the data
5952 return ObjectFile::GetSDKVersion(versions, num_versions);
5953}
5954
5955bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5956 return m_header.filetype == llvm::MachO::MH_DYLINKER;
5957}
5958
5959bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5960 return m_allow_assembly_emulation_unwind_plans;
5961}
5962
5963//------------------------------------------------------------------
5964// PluginInterface protocol
5965//------------------------------------------------------------------
5966lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5967 return GetPluginNameStatic();
5968}
5969
5970uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5971
5972Section *ObjectFileMachO::GetMachHeaderSection() {
5973 // Find the first address of the mach header which is the first non-zero file
5974 // sized section whose file offset is zero. This is the base file address of
5975 // the mach-o file which can be subtracted from the vmaddr of the other
5976 // segments found in memory and added to the load address
5977 ModuleSP module_sp = GetModule();
5978 if (module_sp) {
5979 SectionList *section_list = GetSectionList();
5980 if (section_list) {
5981 lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5982 const size_t num_sections = section_list->GetSize();
5983
5984 for (size_t sect_idx = 0; sect_idx < num_sections &&
5985 mach_base_file_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL);
5986 ++sect_idx) {
5987 Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5988 if (section && section->GetFileSize() > 0 &&
5989 section->GetFileOffset() == 0 &&
5990 section->IsThreadSpecific() == false &&
5991 module_sp.get() == section->GetModule().get()) {
5992 return section;
5993 }
5994 }
5995 }
5996 }
5997 return nullptr;
5998}
5999
6000lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6001 lldb::addr_t mach_header_load_address, const Section *mach_header_section,
6002 const Section *section) {
6003 ModuleSP module_sp = GetModule();
6004 if (module_sp && mach_header_section && section &&
6005 mach_header_load_address != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
6006 lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress();
6007 if (mach_header_file_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
6008 if (section && section->GetFileSize() > 0 &&
6009 section->IsThreadSpecific() == false &&
6010 module_sp.get() == section->GetModule().get()) {
6011 // Ignore __LINKEDIT and __DWARF segments
6012 if (section->GetName() == GetSegmentNameLINKEDIT()) {
6013 // Only map __LINKEDIT if we have an in memory image and this isn't a
6014 // kernel binary like a kext or mach_kernel.
6015 const bool is_memory_image = (bool)m_process_wp.lock();
6016 const Strata strata = GetStrata();
6017 if (is_memory_image == false || strata == eStrataKernel)
6018 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
6019 }
6020 return section->GetFileAddress() - mach_header_file_addr +
6021 mach_header_load_address;
6022 }
6023 }
6024 }
6025 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
6026}
6027
6028bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6029 bool value_is_offset) {
6030 ModuleSP module_sp = GetModule();
6031 if (module_sp) {
6032 size_t num_loaded_sections = 0;
6033 SectionList *section_list = GetSectionList();
6034 if (section_list) {
6035 const size_t num_sections = section_list->GetSize();
6036
6037 if (value_is_offset) {
6038 // "value" is an offset to apply to each top level segment
6039 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6040 // Iterate through the object file sections to find all of the
6041 // sections that size on disk (to avoid __PAGEZERO) and load them
6042 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6043 if (section_sp && section_sp->GetFileSize() > 0 &&
6044 section_sp->IsThreadSpecific() == false &&
6045 module_sp.get() == section_sp->GetModule().get()) {
6046 // Ignore __LINKEDIT and __DWARF segments
6047 if (section_sp->GetName() == GetSegmentNameLINKEDIT()) {
6048 // Only map __LINKEDIT if we have an in memory image and this
6049 // isn't a kernel binary like a kext or mach_kernel.
6050 const bool is_memory_image = (bool)m_process_wp.lock();
6051 const Strata strata = GetStrata();
6052 if (is_memory_image == false || strata == eStrataKernel)
6053 continue;
6054 }
6055 if (target.GetSectionLoadList().SetSectionLoadAddress(
6056 section_sp, section_sp->GetFileAddress() + value))
6057 ++num_loaded_sections;
6058 }
6059 }
6060 } else {
6061 // "value" is the new base address of the mach_header, adjust each
6062 // section accordingly
6063
6064 Section *mach_header_section = GetMachHeaderSection();
6065 if (mach_header_section) {
6066 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6067 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6068
6069 lldb::addr_t section_load_addr =
6070 CalculateSectionLoadAddressForMemoryImage(
6071 value, mach_header_section, section_sp.get());
6072 if (section_load_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
6073 if (target.GetSectionLoadList().SetSectionLoadAddress(
6074 section_sp, section_load_addr))
6075 ++num_loaded_sections;
6076 }
6077 }
6078 }
6079 }
6080 }
6081 return num_loaded_sections > 0;
6082 }
6083 return false;
6084}
6085
6086bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6087 const FileSpec &outfile, Status &error) {
6088 if (process_sp) {
6089 Target &target = process_sp->GetTarget();
6090 const ArchSpec target_arch = target.GetArchitecture();
6091 const llvm::Triple &target_triple = target_arch.GetTriple();
6092 if (target_triple.getVendor() == llvm::Triple::Apple &&
6093 (target_triple.getOS() == llvm::Triple::MacOSX ||
6094 target_triple.getOS() == llvm::Triple::IOS ||
6095 target_triple.getOS() == llvm::Triple::WatchOS ||
6096 target_triple.getOS() == llvm::Triple::TvOS)) {
6097 // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS)) {
6098 bool make_core = false;
6099 switch (target_arch.GetMachine()) {
6100 case llvm::Triple::aarch64:
6101 case llvm::Triple::arm:
6102 case llvm::Triple::thumb:
6103 case llvm::Triple::x86:
6104 case llvm::Triple::x86_64:
6105 make_core = true;
6106 break;
6107 default:
6108 error.SetErrorStringWithFormat("unsupported core architecture: %s",
6109 target_triple.str().c_str());
6110 break;
6111 }
6112
6113 if (make_core) {
6114 std::vector<segment_command_64> segment_load_commands;
6115 // uint32_t range_info_idx = 0;
6116 MemoryRegionInfo range_info;
6117 Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6118 const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6119 const ByteOrder byte_order = target_arch.GetByteOrder();
6120 if (range_error.Success()) {
6121 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
6122 const addr_t addr = range_info.GetRange().GetRangeBase();
6123 const addr_t size = range_info.GetRange().GetByteSize();
6124
6125 if (size == 0)
6126 break;
6127
6128 // Calculate correct protections
6129 uint32_t prot = 0;
6130 if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6131 prot |= VM_PROT_READ;
6132 if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6133 prot |= VM_PROT_WRITE;
6134 if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6135 prot |= VM_PROT_EXECUTE;
6136
6137 // printf ("[%3u] [0x%16.16" PRIx64 " -
6138 // 0x%16.16" PRIx64 ") %c%c%c\n",
6139 // range_info_idx,
6140 // addr,
6141 // size,
6142 // (prot & VM_PROT_READ ) ? 'r' :
6143 // '-',
6144 // (prot & VM_PROT_WRITE ) ? 'w' :
6145 // '-',
6146 // (prot & VM_PROT_EXECUTE) ? 'x' :
6147 // '-');
6148
6149 if (prot != 0) {
6150 uint32_t cmd_type = LC_SEGMENT_64;
6151 uint32_t segment_size = sizeof(segment_command_64);
6152 if (addr_byte_size == 4) {
6153 cmd_type = LC_SEGMENT;
6154 segment_size = sizeof(segment_command);
6155 }
6156 segment_command_64 segment = {
6157 cmd_type, // uint32_t cmd;
6158 segment_size, // uint32_t cmdsize;
6159 {0}, // char segname[16];
6160 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O
6161 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O
6162 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O
6163 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O
6164 prot, // uint32_t maxprot;
6165 prot, // uint32_t initprot;
6166 0, // uint32_t nsects;
6167 0}; // uint32_t flags;
6168 segment_load_commands.push_back(segment);
6169 } else {
6170 // No protections and a size of 1 used to be returned from old
6171 // debugservers when we asked about a region that was past the
6172 // last memory region and it indicates the end...
6173 if (size == 1)
6174 break;
6175 }
6176
6177 range_error = process_sp->GetMemoryRegionInfo(
6178 range_info.GetRange().GetRangeEnd(), range_info);
6179 if (range_error.Fail())
6180 break;
6181 }
6182
6183 StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6184
6185 mach_header_64 mach_header;
6186 if (addr_byte_size == 8) {
6187 mach_header.magic = MH_MAGIC_64;
6188 } else {
6189 mach_header.magic = MH_MAGIC;
6190 }
6191 mach_header.cputype = target_arch.GetMachOCPUType();
6192 mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6193 mach_header.filetype = MH_CORE;
6194 mach_header.ncmds = segment_load_commands.size();
6195 mach_header.flags = 0;
6196 mach_header.reserved = 0;
6197 ThreadList &thread_list = process_sp->GetThreadList();
6198 const uint32_t num_threads = thread_list.GetSize();
6199
6200 // Make an array of LC_THREAD data items. Each one contains the
6201 // contents of the LC_THREAD load command. The data doesn't contain
6202 // the load command + load command size, we will add the load command
6203 // and load command size as we emit the data.
6204 std::vector<StreamString> LC_THREAD_datas(num_threads);
6205 for (auto &LC_THREAD_data : LC_THREAD_datas) {
6206 LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6207 LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6208 LC_THREAD_data.SetByteOrder(byte_order);
6209 }
6210 for (uint32_t thread_idx = 0; thread_idx < num_threads;
6211 ++thread_idx) {
6212 ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6213 if (thread_sp) {
6214 switch (mach_header.cputype) {
6215 case llvm::MachO::CPU_TYPE_ARM64:
6216 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6217 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6218 break;
6219
6220 case llvm::MachO::CPU_TYPE_ARM:
6221 RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6222 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6223 break;
6224
6225 case llvm::MachO::CPU_TYPE_I386:
6226 RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6227 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6228 break;
6229
6230 case llvm::MachO::CPU_TYPE_X86_64:
6231 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6232 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6233 break;
6234 }
6235 }
6236 }
6237
6238 // The size of the load command is the size of the segments...
6239 if (addr_byte_size == 8) {
6240 mach_header.sizeofcmds = segment_load_commands.size() *
6241 sizeof(struct segment_command_64);
6242 } else {
6243 mach_header.sizeofcmds =
6244 segment_load_commands.size() * sizeof(struct segment_command);
6245 }
6246
6247 // and the size of all LC_THREAD load command
6248 for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6249 ++mach_header.ncmds;
6250 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6251 }
6252
6253 printf("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x "
6254 "0x%8.8x 0x%8.8x\n",
6255 mach_header.magic, mach_header.cputype, mach_header.cpusubtype,
6256 mach_header.filetype, mach_header.ncmds,
6257 mach_header.sizeofcmds, mach_header.flags,
6258 mach_header.reserved);
6259
6260 // Write the mach header
6261 buffer.PutHex32(mach_header.magic);
6262 buffer.PutHex32(mach_header.cputype);
6263 buffer.PutHex32(mach_header.cpusubtype);
6264 buffer.PutHex32(mach_header.filetype);
6265 buffer.PutHex32(mach_header.ncmds);
6266 buffer.PutHex32(mach_header.sizeofcmds);
6267 buffer.PutHex32(mach_header.flags);
6268 if (addr_byte_size == 8) {
6269 buffer.PutHex32(mach_header.reserved);
6270 }
6271
6272 // Skip the mach header and all load commands and align to the next
6273 // 0x1000 byte boundary
6274 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6275 if (file_offset & 0x00000fff) {
6276 file_offset += 0x00001000ull;
6277 file_offset &= (~0x00001000ull + 1);
6278 }
6279
6280 for (auto &segment : segment_load_commands) {
6281 segment.fileoff = file_offset;
6282 file_offset += segment.filesize;
6283 }
6284
6285 // Write out all of the LC_THREAD load commands
6286 for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6287 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6288 buffer.PutHex32(LC_THREAD);
6289 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6290 buffer.Write(LC_THREAD_data.GetString().data(),
6291 LC_THREAD_data_size);
6292 }
6293
6294 // Write out all of the segment load commands
6295 for (const auto &segment : segment_load_commands) {
6296 printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64"l" "x" " - 0x%16.16" PRIx64"l" "x"
6297 ") [0x%16.16" PRIx64"l" "x" " 0x%16.16" PRIx64"l" "x"
6298 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6299 segment.cmd, segment.cmdsize, segment.vmaddr,
6300 segment.vmaddr + segment.vmsize, segment.fileoff,
6301 segment.filesize, segment.maxprot, segment.initprot,
6302 segment.nsects, segment.flags);
6303
6304 buffer.PutHex32(segment.cmd);
6305 buffer.PutHex32(segment.cmdsize);
6306 buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6307 if (addr_byte_size == 8) {
6308 buffer.PutHex64(segment.vmaddr);
6309 buffer.PutHex64(segment.vmsize);
6310 buffer.PutHex64(segment.fileoff);
6311 buffer.PutHex64(segment.filesize);
6312 } else {
6313 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6314 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6315 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6316 buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6317 }
6318 buffer.PutHex32(segment.maxprot);
6319 buffer.PutHex32(segment.initprot);
6320 buffer.PutHex32(segment.nsects);
6321 buffer.PutHex32(segment.flags);
6322 }
6323
6324 File core_file;
6325 std::string core_file_path(outfile.GetPath());
6326 error = core_file.Open(core_file_path.c_str(),
6327 File::eOpenOptionWrite |
6328 File::eOpenOptionTruncate |
6329 File::eOpenOptionCanCreate);
6330 if (error.Success()) {
6331 // Read 1 page at a time
6332 uint8_t bytes[0x1000];
6333 // Write the mach header and load commands out to the core file
6334 size_t bytes_written = buffer.GetString().size();
6335 error = core_file.Write(buffer.GetString().data(), bytes_written);
6336 if (error.Success()) {
6337 // Now write the file data for all memory segments in the process
6338 for (const auto &segment : segment_load_commands) {
6339 if (core_file.SeekFromStart(segment.fileoff) == -1) {
6340 error.SetErrorStringWithFormat(
6341 "unable to seek to offset 0x%" PRIx64"l" "x" " in '%s'",
6342 segment.fileoff, core_file_path.c_str());
6343 break;
6344 }
6345
6346 printf("Saving %" PRId64"l" "d"
6347 " bytes of data for memory region at 0x%" PRIx64"l" "x" "\n",
6348 segment.vmsize, segment.vmaddr);
6349 addr_t bytes_left = segment.vmsize;
6350 addr_t addr = segment.vmaddr;
6351 Status memory_read_error;
6352 while (bytes_left > 0 && error.Success()) {
6353 const size_t bytes_to_read =
6354 bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6355 const size_t bytes_read = process_sp->ReadMemory(
6356 addr, bytes, bytes_to_read, memory_read_error);
6357 if (bytes_read == bytes_to_read) {
6358 size_t bytes_written = bytes_read;
6359 error = core_file.Write(bytes, bytes_written);
6360 bytes_left -= bytes_read;
6361 addr += bytes_read;
6362 } else {
6363 // Some pages within regions are not readable, those should
6364 // be zero filled
6365 memset(bytes, 0, bytes_to_read);
6366 size_t bytes_written = bytes_to_read;
6367 error = core_file.Write(bytes, bytes_written);
6368 bytes_left -= bytes_to_read;
6369 addr += bytes_to_read;
6370 }
6371 }
6372 }
6373 }
6374 }
6375 } else {
6376 error.SetErrorString(
6377 "process doesn't support getting memory region info");
6378 }
6379 }
6380 return true; // This is the right plug to handle saving core files for
6381 // this process
6382 }
6383 }
6384 return false;
6385}