Bug Summary

File:tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp
Warning:line 4191, column 47
Array access (from variable 'symbol_name') results in a null pointer dereference

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ObjectFileMachO.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D HAVE_ROUND -D LLDB_CONFIGURATION_RELEASE -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/lldb/source/Plugins/ObjectFile/Mach-O -I /build/llvm-toolchain-snapshot-7~svn338205/tools/lldb/source/Plugins/ObjectFile/Mach-O -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/lldb/include -I /build/llvm-toolchain-snapshot-7~svn338205/tools/lldb/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -I /usr/include/python2.7 -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/lldb/../clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/tools/lldb/source/. -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -Wno-deprecated-declarations -Wno-unknown-pragmas -Wno-strict-aliasing -Wno-deprecated-register -Wno-vla-extension -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/lldb/source/Plugins/ObjectFile/Mach-O -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp -faddrsig
1//===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10// C Includes
11// C++ Includes
12// Other libraries and framework includes
13#include "llvm/ADT/StringRef.h"
14
15// Project includes
16#include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
17#include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
18#include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
19#include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
20#include "lldb/Core/Debugger.h"
21#include "lldb/Core/FileSpecList.h"
22#include "lldb/Core/Module.h"
23#include "lldb/Core/ModuleSpec.h"
24#include "lldb/Core/PluginManager.h"
25#include "lldb/Core/RangeMap.h"
26#include "lldb/Core/RegisterValue.h"
27#include "lldb/Core/Section.h"
28#include "lldb/Core/StreamFile.h"
29#include "lldb/Host/Host.h"
30#include "lldb/Symbol/DWARFCallFrameInfo.h"
31#include "lldb/Symbol/ObjectFile.h"
32#include "lldb/Target/DynamicLoader.h"
33#include "lldb/Target/MemoryRegionInfo.h"
34#include "lldb/Target/Platform.h"
35#include "lldb/Target/Process.h"
36#include "lldb/Target/SectionLoadList.h"
37#include "lldb/Target/Target.h"
38#include "lldb/Target/Thread.h"
39#include "lldb/Target/ThreadList.h"
40#include "lldb/Utility/ArchSpec.h"
41#include "lldb/Utility/DataBuffer.h"
42#include "lldb/Utility/FileSpec.h"
43#include "lldb/Utility/Log.h"
44#include "lldb/Utility/Status.h"
45#include "lldb/Utility/StreamString.h"
46#include "lldb/Utility/Timer.h"
47#include "lldb/Utility/UUID.h"
48
49#include "lldb/Utility/SafeMachO.h"
50
51#include "llvm/Support/MemoryBuffer.h"
52
53#include "ObjectFileMachO.h"
54
55#if defined(__APPLE__) && \
56 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
57// GetLLDBSharedCacheUUID() needs to call dlsym()
58#include <dlfcn.h>
59#endif
60
61#ifndef __APPLE__
62#include "Utility/UuidCompatibility.h"
63#else
64#include <uuid/uuid.h>
65#endif
66
67#define THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull 0xfffffffffffffffeull
68using namespace lldb;
69using namespace lldb_private;
70using namespace llvm::MachO;
71
72// Some structure definitions needed for parsing the dyld shared cache files
73// found on iOS devices.
74
75struct lldb_copy_dyld_cache_header_v1 {
76 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc.
77 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
78 uint32_t mappingCount; // number of dyld_cache_mapping_info entries
79 uint32_t imagesOffset;
80 uint32_t imagesCount;
81 uint64_t dyldBaseAddress;
82 uint64_t codeSignatureOffset;
83 uint64_t codeSignatureSize;
84 uint64_t slideInfoOffset;
85 uint64_t slideInfoSize;
86 uint64_t localSymbolsOffset;
87 uint64_t localSymbolsSize;
88 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
89 // and later
90};
91
92struct lldb_copy_dyld_cache_mapping_info {
93 uint64_t address;
94 uint64_t size;
95 uint64_t fileOffset;
96 uint32_t maxProt;
97 uint32_t initProt;
98};
99
100struct lldb_copy_dyld_cache_local_symbols_info {
101 uint32_t nlistOffset;
102 uint32_t nlistCount;
103 uint32_t stringsOffset;
104 uint32_t stringsSize;
105 uint32_t entriesOffset;
106 uint32_t entriesCount;
107};
108struct lldb_copy_dyld_cache_local_symbols_entry {
109 uint32_t dylibOffset;
110 uint32_t nlistStartIndex;
111 uint32_t nlistCount;
112};
113
114class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
115public:
116 RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
117 const DataExtractor &data)
118 : RegisterContextDarwin_x86_64(thread, 0) {
119 SetRegisterDataFrom_LC_THREAD(data);
120 }
121
122 void InvalidateAllRegisters() override {
123 // Do nothing... registers are always valid...
124 }
125
126 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
127 lldb::offset_t offset = 0;
128 SetError(GPRRegSet, Read, -1);
129 SetError(FPURegSet, Read, -1);
130 SetError(EXCRegSet, Read, -1);
131 bool done = false;
132
133 while (!done) {
134 int flavor = data.GetU32(&offset);
135 if (flavor == 0)
136 done = true;
137 else {
138 uint32_t i;
139 uint32_t count = data.GetU32(&offset);
140 switch (flavor) {
141 case GPRRegSet:
142 for (i = 0; i < count; ++i)
143 (&gpr.rax)[i] = data.GetU64(&offset);
144 SetError(GPRRegSet, Read, 0);
145 done = true;
146
147 break;
148 case FPURegSet:
149 // TODO: fill in FPU regs....
150 // SetError (FPURegSet, Read, -1);
151 done = true;
152
153 break;
154 case EXCRegSet:
155 exc.trapno = data.GetU32(&offset);
156 exc.err = data.GetU32(&offset);
157 exc.faultvaddr = data.GetU64(&offset);
158 SetError(EXCRegSet, Read, 0);
159 done = true;
160 break;
161 case 7:
162 case 8:
163 case 9:
164 // fancy flavors that encapsulate of the above flavors...
165 break;
166
167 default:
168 done = true;
169 break;
170 }
171 }
172 }
173 }
174
175 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
176 const char *alt_name, size_t reg_byte_size,
177 Stream &data) {
178 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
179 if (reg_info == NULL__null)
180 reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
181 if (reg_info) {
182 lldb_private::RegisterValue reg_value;
183 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
184 if (reg_info->byte_size >= reg_byte_size)
185 data.Write(reg_value.GetBytes(), reg_byte_size);
186 else {
187 data.Write(reg_value.GetBytes(), reg_info->byte_size);
188 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
189 ++i)
190 data.PutChar(0);
191 }
192 return reg_byte_size;
193 }
194 }
195 // Just write zeros if all else fails
196 for (size_t i = 0; i < reg_byte_size; ++i)
197 data.PutChar(0);
198 return reg_byte_size;
199 }
200
201 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
202 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
203 if (reg_ctx_sp) {
204 RegisterContext *reg_ctx = reg_ctx_sp.get();
205
206 data.PutHex32(GPRRegSet); // Flavor
207 data.PutHex32(GPRWordCount);
208 WriteRegister(reg_ctx, "rax", NULL__null, 8, data);
209 WriteRegister(reg_ctx, "rbx", NULL__null, 8, data);
210 WriteRegister(reg_ctx, "rcx", NULL__null, 8, data);
211 WriteRegister(reg_ctx, "rdx", NULL__null, 8, data);
212 WriteRegister(reg_ctx, "rdi", NULL__null, 8, data);
213 WriteRegister(reg_ctx, "rsi", NULL__null, 8, data);
214 WriteRegister(reg_ctx, "rbp", NULL__null, 8, data);
215 WriteRegister(reg_ctx, "rsp", NULL__null, 8, data);
216 WriteRegister(reg_ctx, "r8", NULL__null, 8, data);
217 WriteRegister(reg_ctx, "r9", NULL__null, 8, data);
218 WriteRegister(reg_ctx, "r10", NULL__null, 8, data);
219 WriteRegister(reg_ctx, "r11", NULL__null, 8, data);
220 WriteRegister(reg_ctx, "r12", NULL__null, 8, data);
221 WriteRegister(reg_ctx, "r13", NULL__null, 8, data);
222 WriteRegister(reg_ctx, "r14", NULL__null, 8, data);
223 WriteRegister(reg_ctx, "r15", NULL__null, 8, data);
224 WriteRegister(reg_ctx, "rip", NULL__null, 8, data);
225 WriteRegister(reg_ctx, "rflags", NULL__null, 8, data);
226 WriteRegister(reg_ctx, "cs", NULL__null, 8, data);
227 WriteRegister(reg_ctx, "fs", NULL__null, 8, data);
228 WriteRegister(reg_ctx, "gs", NULL__null, 8, data);
229
230 // // Write out the FPU registers
231 // const size_t fpu_byte_size = sizeof(FPU);
232 // size_t bytes_written = 0;
233 // data.PutHex32 (FPURegSet);
234 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
235 // bytes_written += data.PutHex32(0); // uint32_t pad[0]
236 // bytes_written += data.PutHex32(0); // uint32_t pad[1]
237 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
238 // data); // uint16_t fcw; // "fctrl"
239 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
240 // data); // uint16_t fsw; // "fstat"
241 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
242 // data); // uint8_t ftw; // "ftag"
243 // bytes_written += data.PutHex8 (0); // uint8_t pad1;
244 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
245 // data); // uint16_t fop; // "fop"
246 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
247 // data); // uint32_t ip; // "fioff"
248 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
249 // data); // uint16_t cs; // "fiseg"
250 // bytes_written += data.PutHex16 (0); // uint16_t pad2;
251 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
252 // data); // uint32_t dp; // "fooff"
253 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
254 // data); // uint16_t ds; // "foseg"
255 // bytes_written += data.PutHex16 (0); // uint16_t pad3;
256 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
257 // data); // uint32_t mxcsr;
258 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
259 // 4, data);// uint32_t mxcsrmask;
260 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
261 // sizeof(MMSReg), data);
262 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
263 // sizeof(MMSReg), data);
264 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
265 // sizeof(MMSReg), data);
266 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
267 // sizeof(MMSReg), data);
268 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
269 // sizeof(MMSReg), data);
270 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
271 // sizeof(MMSReg), data);
272 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
273 // sizeof(MMSReg), data);
274 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
275 // sizeof(MMSReg), data);
276 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
277 // sizeof(XMMReg), data);
278 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
279 // sizeof(XMMReg), data);
280 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
281 // sizeof(XMMReg), data);
282 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
283 // sizeof(XMMReg), data);
284 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
285 // sizeof(XMMReg), data);
286 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
287 // sizeof(XMMReg), data);
288 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
289 // sizeof(XMMReg), data);
290 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
291 // sizeof(XMMReg), data);
292 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
293 // sizeof(XMMReg), data);
294 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
295 // sizeof(XMMReg), data);
296 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
297 // sizeof(XMMReg), data);
298 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
299 // sizeof(XMMReg), data);
300 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
301 // sizeof(XMMReg), data);
302 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
303 // sizeof(XMMReg), data);
304 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
305 // sizeof(XMMReg), data);
306 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
307 // sizeof(XMMReg), data);
308 //
309 // // Fill rest with zeros
310 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
311 // i)
312 // data.PutChar(0);
313
314 // Write out the EXC registers
315 data.PutHex32(EXCRegSet);
316 data.PutHex32(EXCWordCount);
317 WriteRegister(reg_ctx, "trapno", NULL__null, 4, data);
318 WriteRegister(reg_ctx, "err", NULL__null, 4, data);
319 WriteRegister(reg_ctx, "faultvaddr", NULL__null, 8, data);
320 return true;
321 }
322 return false;
323 }
324
325protected:
326 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
327
328 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
329
330 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
331
332 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
333 return 0;
334 }
335
336 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
337 return 0;
338 }
339
340 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
341 return 0;
342 }
343};
344
345class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
346public:
347 RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
348 const DataExtractor &data)
349 : RegisterContextDarwin_i386(thread, 0) {
350 SetRegisterDataFrom_LC_THREAD(data);
351 }
352
353 void InvalidateAllRegisters() override {
354 // Do nothing... registers are always valid...
355 }
356
357 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
358 lldb::offset_t offset = 0;
359 SetError(GPRRegSet, Read, -1);
360 SetError(FPURegSet, Read, -1);
361 SetError(EXCRegSet, Read, -1);
362 bool done = false;
363
364 while (!done) {
365 int flavor = data.GetU32(&offset);
366 if (flavor == 0)
367 done = true;
368 else {
369 uint32_t i;
370 uint32_t count = data.GetU32(&offset);
371 switch (flavor) {
372 case GPRRegSet:
373 for (i = 0; i < count; ++i)
374 (&gpr.eax)[i] = data.GetU32(&offset);
375 SetError(GPRRegSet, Read, 0);
376 done = true;
377
378 break;
379 case FPURegSet:
380 // TODO: fill in FPU regs....
381 // SetError (FPURegSet, Read, -1);
382 done = true;
383
384 break;
385 case EXCRegSet:
386 exc.trapno = data.GetU32(&offset);
387 exc.err = data.GetU32(&offset);
388 exc.faultvaddr = data.GetU32(&offset);
389 SetError(EXCRegSet, Read, 0);
390 done = true;
391 break;
392 case 7:
393 case 8:
394 case 9:
395 // fancy flavors that encapsulate of the above flavors...
396 break;
397
398 default:
399 done = true;
400 break;
401 }
402 }
403 }
404 }
405
406 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
407 const char *alt_name, size_t reg_byte_size,
408 Stream &data) {
409 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
410 if (reg_info == NULL__null)
411 reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
412 if (reg_info) {
413 lldb_private::RegisterValue reg_value;
414 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
415 if (reg_info->byte_size >= reg_byte_size)
416 data.Write(reg_value.GetBytes(), reg_byte_size);
417 else {
418 data.Write(reg_value.GetBytes(), reg_info->byte_size);
419 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
420 ++i)
421 data.PutChar(0);
422 }
423 return reg_byte_size;
424 }
425 }
426 // Just write zeros if all else fails
427 for (size_t i = 0; i < reg_byte_size; ++i)
428 data.PutChar(0);
429 return reg_byte_size;
430 }
431
432 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
433 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
434 if (reg_ctx_sp) {
435 RegisterContext *reg_ctx = reg_ctx_sp.get();
436
437 data.PutHex32(GPRRegSet); // Flavor
438 data.PutHex32(GPRWordCount);
439 WriteRegister(reg_ctx, "eax", NULL__null, 4, data);
440 WriteRegister(reg_ctx, "ebx", NULL__null, 4, data);
441 WriteRegister(reg_ctx, "ecx", NULL__null, 4, data);
442 WriteRegister(reg_ctx, "edx", NULL__null, 4, data);
443 WriteRegister(reg_ctx, "edi", NULL__null, 4, data);
444 WriteRegister(reg_ctx, "esi", NULL__null, 4, data);
445 WriteRegister(reg_ctx, "ebp", NULL__null, 4, data);
446 WriteRegister(reg_ctx, "esp", NULL__null, 4, data);
447 WriteRegister(reg_ctx, "ss", NULL__null, 4, data);
448 WriteRegister(reg_ctx, "eflags", NULL__null, 4, data);
449 WriteRegister(reg_ctx, "eip", NULL__null, 4, data);
450 WriteRegister(reg_ctx, "cs", NULL__null, 4, data);
451 WriteRegister(reg_ctx, "ds", NULL__null, 4, data);
452 WriteRegister(reg_ctx, "es", NULL__null, 4, data);
453 WriteRegister(reg_ctx, "fs", NULL__null, 4, data);
454 WriteRegister(reg_ctx, "gs", NULL__null, 4, data);
455
456 // Write out the EXC registers
457 data.PutHex32(EXCRegSet);
458 data.PutHex32(EXCWordCount);
459 WriteRegister(reg_ctx, "trapno", NULL__null, 4, data);
460 WriteRegister(reg_ctx, "err", NULL__null, 4, data);
461 WriteRegister(reg_ctx, "faultvaddr", NULL__null, 4, data);
462 return true;
463 }
464 return false;
465 }
466
467protected:
468 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
469
470 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
471
472 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
473
474 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
475 return 0;
476 }
477
478 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
479 return 0;
480 }
481
482 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
483 return 0;
484 }
485};
486
487class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
488public:
489 RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
490 const DataExtractor &data)
491 : RegisterContextDarwin_arm(thread, 0) {
492 SetRegisterDataFrom_LC_THREAD(data);
493 }
494
495 void InvalidateAllRegisters() override {
496 // Do nothing... registers are always valid...
497 }
498
499 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
500 lldb::offset_t offset = 0;
501 SetError(GPRRegSet, Read, -1);
502 SetError(FPURegSet, Read, -1);
503 SetError(EXCRegSet, Read, -1);
504 bool done = false;
505
506 while (!done) {
507 int flavor = data.GetU32(&offset);
508 uint32_t count = data.GetU32(&offset);
509 lldb::offset_t next_thread_state = offset + (count * 4);
510 switch (flavor) {
511 case GPRAltRegSet:
512 case GPRRegSet:
513 for (uint32_t i = 0; i < count; ++i) {
514 gpr.r[i] = data.GetU32(&offset);
515 }
516
517 // Note that gpr.cpsr is also copied by the above loop; this loop
518 // technically extends one element past the end of the gpr.r[] array.
519
520 SetError(GPRRegSet, Read, 0);
521 offset = next_thread_state;
522 break;
523
524 case FPURegSet: {
525 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
526 const int fpu_reg_buf_size = sizeof(fpu.floats);
527 if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
528 fpu_reg_buf) == fpu_reg_buf_size) {
529 offset += fpu_reg_buf_size;
530 fpu.fpscr = data.GetU32(&offset);
531 SetError(FPURegSet, Read, 0);
532 } else {
533 done = true;
534 }
535 }
536 offset = next_thread_state;
537 break;
538
539 case EXCRegSet:
540 if (count == 3) {
541 exc.exception = data.GetU32(&offset);
542 exc.fsr = data.GetU32(&offset);
543 exc.far = data.GetU32(&offset);
544 SetError(EXCRegSet, Read, 0);
545 }
546 done = true;
547 offset = next_thread_state;
548 break;
549
550 // Unknown register set flavor, stop trying to parse.
551 default:
552 done = true;
553 }
554 }
555 }
556
557 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
558 const char *alt_name, size_t reg_byte_size,
559 Stream &data) {
560 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
561 if (reg_info == NULL__null)
562 reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
563 if (reg_info) {
564 lldb_private::RegisterValue reg_value;
565 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
566 if (reg_info->byte_size >= reg_byte_size)
567 data.Write(reg_value.GetBytes(), reg_byte_size);
568 else {
569 data.Write(reg_value.GetBytes(), reg_info->byte_size);
570 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
571 ++i)
572 data.PutChar(0);
573 }
574 return reg_byte_size;
575 }
576 }
577 // Just write zeros if all else fails
578 for (size_t i = 0; i < reg_byte_size; ++i)
579 data.PutChar(0);
580 return reg_byte_size;
581 }
582
583 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
584 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
585 if (reg_ctx_sp) {
586 RegisterContext *reg_ctx = reg_ctx_sp.get();
587
588 data.PutHex32(GPRRegSet); // Flavor
589 data.PutHex32(GPRWordCount);
590 WriteRegister(reg_ctx, "r0", NULL__null, 4, data);
591 WriteRegister(reg_ctx, "r1", NULL__null, 4, data);
592 WriteRegister(reg_ctx, "r2", NULL__null, 4, data);
593 WriteRegister(reg_ctx, "r3", NULL__null, 4, data);
594 WriteRegister(reg_ctx, "r4", NULL__null, 4, data);
595 WriteRegister(reg_ctx, "r5", NULL__null, 4, data);
596 WriteRegister(reg_ctx, "r6", NULL__null, 4, data);
597 WriteRegister(reg_ctx, "r7", NULL__null, 4, data);
598 WriteRegister(reg_ctx, "r8", NULL__null, 4, data);
599 WriteRegister(reg_ctx, "r9", NULL__null, 4, data);
600 WriteRegister(reg_ctx, "r10", NULL__null, 4, data);
601 WriteRegister(reg_ctx, "r11", NULL__null, 4, data);
602 WriteRegister(reg_ctx, "r12", NULL__null, 4, data);
603 WriteRegister(reg_ctx, "sp", NULL__null, 4, data);
604 WriteRegister(reg_ctx, "lr", NULL__null, 4, data);
605 WriteRegister(reg_ctx, "pc", NULL__null, 4, data);
606 WriteRegister(reg_ctx, "cpsr", NULL__null, 4, data);
607
608 // Write out the EXC registers
609 // data.PutHex32 (EXCRegSet);
610 // data.PutHex32 (EXCWordCount);
611 // WriteRegister (reg_ctx, "exception", NULL, 4, data);
612 // WriteRegister (reg_ctx, "fsr", NULL, 4, data);
613 // WriteRegister (reg_ctx, "far", NULL, 4, data);
614 return true;
615 }
616 return false;
617 }
618
619protected:
620 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
621
622 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
623
624 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
625
626 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
627
628 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
629 return 0;
630 }
631
632 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
633 return 0;
634 }
635
636 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
637 return 0;
638 }
639
640 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
641 return -1;
642 }
643};
644
645class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
646public:
647 RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
648 const DataExtractor &data)
649 : RegisterContextDarwin_arm64(thread, 0) {
650 SetRegisterDataFrom_LC_THREAD(data);
651 }
652
653 void InvalidateAllRegisters() override {
654 // Do nothing... registers are always valid...
655 }
656
657 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
658 lldb::offset_t offset = 0;
659 SetError(GPRRegSet, Read, -1);
660 SetError(FPURegSet, Read, -1);
661 SetError(EXCRegSet, Read, -1);
662 bool done = false;
663 while (!done) {
664 int flavor = data.GetU32(&offset);
665 uint32_t count = data.GetU32(&offset);
666 lldb::offset_t next_thread_state = offset + (count * 4);
667 switch (flavor) {
668 case GPRRegSet:
669 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
670 // 32-bit register)
671 if (count >= (33 * 2) + 1) {
672 for (uint32_t i = 0; i < 29; ++i)
673 gpr.x[i] = data.GetU64(&offset);
674 gpr.fp = data.GetU64(&offset);
675 gpr.lr = data.GetU64(&offset);
676 gpr.sp = data.GetU64(&offset);
677 gpr.pc = data.GetU64(&offset);
678 gpr.cpsr = data.GetU32(&offset);
679 SetError(GPRRegSet, Read, 0);
680 }
681 offset = next_thread_state;
682 break;
683 case FPURegSet: {
684 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
685 const int fpu_reg_buf_size = sizeof(fpu);
686 if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
687 data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
688 fpu_reg_buf) == fpu_reg_buf_size) {
689 SetError(FPURegSet, Read, 0);
690 } else {
691 done = true;
692 }
693 }
694 offset = next_thread_state;
695 break;
696 case EXCRegSet:
697 if (count == 4) {
698 exc.far = data.GetU64(&offset);
699 exc.esr = data.GetU32(&offset);
700 exc.exception = data.GetU32(&offset);
701 SetError(EXCRegSet, Read, 0);
702 }
703 offset = next_thread_state;
704 break;
705 default:
706 done = true;
707 break;
708 }
709 }
710 }
711
712 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
713 const char *alt_name, size_t reg_byte_size,
714 Stream &data) {
715 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
716 if (reg_info == NULL__null)
717 reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
718 if (reg_info) {
719 lldb_private::RegisterValue reg_value;
720 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
721 if (reg_info->byte_size >= reg_byte_size)
722 data.Write(reg_value.GetBytes(), reg_byte_size);
723 else {
724 data.Write(reg_value.GetBytes(), reg_info->byte_size);
725 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
726 ++i)
727 data.PutChar(0);
728 }
729 return reg_byte_size;
730 }
731 }
732 // Just write zeros if all else fails
733 for (size_t i = 0; i < reg_byte_size; ++i)
734 data.PutChar(0);
735 return reg_byte_size;
736 }
737
738 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
739 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
740 if (reg_ctx_sp) {
741 RegisterContext *reg_ctx = reg_ctx_sp.get();
742
743 data.PutHex32(GPRRegSet); // Flavor
744 data.PutHex32(GPRWordCount);
745 WriteRegister(reg_ctx, "x0", NULL__null, 8, data);
746 WriteRegister(reg_ctx, "x1", NULL__null, 8, data);
747 WriteRegister(reg_ctx, "x2", NULL__null, 8, data);
748 WriteRegister(reg_ctx, "x3", NULL__null, 8, data);
749 WriteRegister(reg_ctx, "x4", NULL__null, 8, data);
750 WriteRegister(reg_ctx, "x5", NULL__null, 8, data);
751 WriteRegister(reg_ctx, "x6", NULL__null, 8, data);
752 WriteRegister(reg_ctx, "x7", NULL__null, 8, data);
753 WriteRegister(reg_ctx, "x8", NULL__null, 8, data);
754 WriteRegister(reg_ctx, "x9", NULL__null, 8, data);
755 WriteRegister(reg_ctx, "x10", NULL__null, 8, data);
756 WriteRegister(reg_ctx, "x11", NULL__null, 8, data);
757 WriteRegister(reg_ctx, "x12", NULL__null, 8, data);
758 WriteRegister(reg_ctx, "x13", NULL__null, 8, data);
759 WriteRegister(reg_ctx, "x14", NULL__null, 8, data);
760 WriteRegister(reg_ctx, "x15", NULL__null, 8, data);
761 WriteRegister(reg_ctx, "x16", NULL__null, 8, data);
762 WriteRegister(reg_ctx, "x17", NULL__null, 8, data);
763 WriteRegister(reg_ctx, "x18", NULL__null, 8, data);
764 WriteRegister(reg_ctx, "x19", NULL__null, 8, data);
765 WriteRegister(reg_ctx, "x20", NULL__null, 8, data);
766 WriteRegister(reg_ctx, "x21", NULL__null, 8, data);
767 WriteRegister(reg_ctx, "x22", NULL__null, 8, data);
768 WriteRegister(reg_ctx, "x23", NULL__null, 8, data);
769 WriteRegister(reg_ctx, "x24", NULL__null, 8, data);
770 WriteRegister(reg_ctx, "x25", NULL__null, 8, data);
771 WriteRegister(reg_ctx, "x26", NULL__null, 8, data);
772 WriteRegister(reg_ctx, "x27", NULL__null, 8, data);
773 WriteRegister(reg_ctx, "x28", NULL__null, 8, data);
774 WriteRegister(reg_ctx, "fp", NULL__null, 8, data);
775 WriteRegister(reg_ctx, "lr", NULL__null, 8, data);
776 WriteRegister(reg_ctx, "sp", NULL__null, 8, data);
777 WriteRegister(reg_ctx, "pc", NULL__null, 8, data);
778 WriteRegister(reg_ctx, "cpsr", NULL__null, 4, data);
779
780 // Write out the EXC registers
781 // data.PutHex32 (EXCRegSet);
782 // data.PutHex32 (EXCWordCount);
783 // WriteRegister (reg_ctx, "far", NULL, 8, data);
784 // WriteRegister (reg_ctx, "esr", NULL, 4, data);
785 // WriteRegister (reg_ctx, "exception", NULL, 4, data);
786 return true;
787 }
788 return false;
789 }
790
791protected:
792 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
793
794 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
795
796 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
797
798 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
799
800 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
801 return 0;
802 }
803
804 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
805 return 0;
806 }
807
808 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
809 return 0;
810 }
811
812 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
813 return -1;
814 }
815};
816
817static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
818 switch (magic) {
819 case MH_MAGIC:
820 case MH_CIGAM:
821 return sizeof(struct mach_header);
822
823 case MH_MAGIC_64:
824 case MH_CIGAM_64:
825 return sizeof(struct mach_header_64);
826 break;
827
828 default:
829 break;
830 }
831 return 0;
832}
833
834#define MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008 0x0008
835
836void ObjectFileMachO::Initialize() {
837 PluginManager::RegisterPlugin(
838 GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
839 CreateMemoryInstance, GetModuleSpecifications, SaveCore);
840}
841
842void ObjectFileMachO::Terminate() {
843 PluginManager::UnregisterPlugin(CreateInstance);
844}
845
846lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
847 static ConstString g_name("mach-o");
848 return g_name;
849}
850
851const char *ObjectFileMachO::GetPluginDescriptionStatic() {
852 return "Mach-o object file reader (32 and 64 bit)";
853}
854
855ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
856 DataBufferSP &data_sp,
857 lldb::offset_t data_offset,
858 const FileSpec *file,
859 lldb::offset_t file_offset,
860 lldb::offset_t length) {
861 if (!data_sp) {
862 data_sp = MapFileData(*file, length, file_offset);
863 if (!data_sp)
864 return nullptr;
865 data_offset = 0;
866 }
867
868 if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
869 return nullptr;
870
871 // Update the data to contain the entire file if it doesn't already
872 if (data_sp->GetByteSize() < length) {
873 data_sp = MapFileData(*file, length, file_offset);
874 if (!data_sp)
875 return nullptr;
876 data_offset = 0;
877 }
878 auto objfile_ap = llvm::make_unique<ObjectFileMachO>(
879 module_sp, data_sp, data_offset, file, file_offset, length);
880 if (!objfile_ap || !objfile_ap->ParseHeader())
881 return nullptr;
882
883 return objfile_ap.release();
884}
885
886ObjectFile *ObjectFileMachO::CreateMemoryInstance(
887 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
888 const ProcessSP &process_sp, lldb::addr_t header_addr) {
889 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
890 std::unique_ptr<ObjectFile> objfile_ap(
891 new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
892 if (objfile_ap.get() && objfile_ap->ParseHeader())
893 return objfile_ap.release();
894 }
895 return NULL__null;
896}
897
898size_t ObjectFileMachO::GetModuleSpecifications(
899 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
900 lldb::offset_t data_offset, lldb::offset_t file_offset,
901 lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
902 const size_t initial_count = specs.GetSize();
903
904 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
905 DataExtractor data;
906 data.SetData(data_sp);
907 llvm::MachO::mach_header header;
908 if (ParseHeader(data, &data_offset, header)) {
909 size_t header_and_load_cmds =
910 header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
911 if (header_and_load_cmds >= data_sp->GetByteSize()) {
912 data_sp = MapFileData(file, header_and_load_cmds, file_offset);
913 data.SetData(data_sp);
914 data_offset = MachHeaderSizeFromMagic(header.magic);
915 }
916 if (data_sp) {
917 ModuleSpec spec;
918 spec.GetFileSpec() = file;
919 spec.SetObjectOffset(file_offset);
920 spec.SetObjectSize(length);
921
922 if (GetArchitecture(header, data, data_offset,
923 spec.GetArchitecture())) {
924 if (spec.GetArchitecture().IsValid()) {
925 GetUUID(header, data, data_offset, spec.GetUUID());
926 specs.Append(spec);
927 }
928 }
929 }
930 }
931 }
932 return specs.GetSize() - initial_count;
933}
934
935const ConstString &ObjectFileMachO::GetSegmentNameTEXT() {
936 static ConstString g_segment_name_TEXT("__TEXT");
937 return g_segment_name_TEXT;
938}
939
940const ConstString &ObjectFileMachO::GetSegmentNameDATA() {
941 static ConstString g_segment_name_DATA("__DATA");
942 return g_segment_name_DATA;
943}
944
945const ConstString &ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
946 static ConstString g_segment_name("__DATA_DIRTY");
947 return g_segment_name;
948}
949
950const ConstString &ObjectFileMachO::GetSegmentNameDATA_CONST() {
951 static ConstString g_segment_name("__DATA_CONST");
952 return g_segment_name;
953}
954
955const ConstString &ObjectFileMachO::GetSegmentNameOBJC() {
956 static ConstString g_segment_name_OBJC("__OBJC");
957 return g_segment_name_OBJC;
958}
959
960const ConstString &ObjectFileMachO::GetSegmentNameLINKEDIT() {
961 static ConstString g_section_name_LINKEDIT("__LINKEDIT");
962 return g_section_name_LINKEDIT;
963}
964
965const ConstString &ObjectFileMachO::GetSectionNameEHFrame() {
966 static ConstString g_section_name_eh_frame("__eh_frame");
967 return g_section_name_eh_frame;
968}
969
970bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
971 lldb::addr_t data_offset,
972 lldb::addr_t data_length) {
973 DataExtractor data;
974 data.SetData(data_sp, data_offset, data_length);
975 lldb::offset_t offset = 0;
976 uint32_t magic = data.GetU32(&offset);
977 return MachHeaderSizeFromMagic(magic) != 0;
978}
979
980ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
981 DataBufferSP &data_sp,
982 lldb::offset_t data_offset,
983 const FileSpec *file,
984 lldb::offset_t file_offset,
985 lldb::offset_t length)
986 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
987 m_mach_segments(), m_mach_sections(), m_entry_point_address(),
988 m_thread_context_offsets(), m_thread_context_offsets_valid(false),
989 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
990 ::memset(&m_header, 0, sizeof(m_header));
991 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
992}
993
994ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
995 lldb::DataBufferSP &header_data_sp,
996 const lldb::ProcessSP &process_sp,
997 lldb::addr_t header_addr)
998 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
999 m_mach_segments(), m_mach_sections(), m_entry_point_address(),
1000 m_thread_context_offsets(), m_thread_context_offsets_valid(false),
1001 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
1002 ::memset(&m_header, 0, sizeof(m_header));
1003 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1004}
1005
1006bool ObjectFileMachO::ParseHeader(DataExtractor &data,
1007 lldb::offset_t *data_offset_ptr,
1008 llvm::MachO::mach_header &header) {
1009 data.SetByteOrder(endian::InlHostByteOrder());
1010 // Leave magic in the original byte order
1011 header.magic = data.GetU32(data_offset_ptr);
1012 bool can_parse = false;
1013 bool is_64_bit = false;
1014 switch (header.magic) {
1015 case MH_MAGIC:
1016 data.SetByteOrder(endian::InlHostByteOrder());
1017 data.SetAddressByteSize(4);
1018 can_parse = true;
1019 break;
1020
1021 case MH_MAGIC_64:
1022 data.SetByteOrder(endian::InlHostByteOrder());
1023 data.SetAddressByteSize(8);
1024 can_parse = true;
1025 is_64_bit = true;
1026 break;
1027
1028 case MH_CIGAM:
1029 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1030 ? eByteOrderLittle
1031 : eByteOrderBig);
1032 data.SetAddressByteSize(4);
1033 can_parse = true;
1034 break;
1035
1036 case MH_CIGAM_64:
1037 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1038 ? eByteOrderLittle
1039 : eByteOrderBig);
1040 data.SetAddressByteSize(8);
1041 is_64_bit = true;
1042 can_parse = true;
1043 break;
1044
1045 default:
1046 break;
1047 }
1048
1049 if (can_parse) {
1050 data.GetU32(data_offset_ptr, &header.cputype, 6);
1051 if (is_64_bit)
1052 *data_offset_ptr += 4;
1053 return true;
1054 } else {
1055 memset(&header, 0, sizeof(header));
1056 }
1057 return false;
1058}
1059
1060bool ObjectFileMachO::ParseHeader() {
1061 ModuleSP module_sp(GetModule());
1062 if (module_sp) {
1063 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1064 bool can_parse = false;
1065 lldb::offset_t offset = 0;
1066 m_data.SetByteOrder(endian::InlHostByteOrder());
1067 // Leave magic in the original byte order
1068 m_header.magic = m_data.GetU32(&offset);
1069 switch (m_header.magic) {
1070 case MH_MAGIC:
1071 m_data.SetByteOrder(endian::InlHostByteOrder());
1072 m_data.SetAddressByteSize(4);
1073 can_parse = true;
1074 break;
1075
1076 case MH_MAGIC_64:
1077 m_data.SetByteOrder(endian::InlHostByteOrder());
1078 m_data.SetAddressByteSize(8);
1079 can_parse = true;
1080 break;
1081
1082 case MH_CIGAM:
1083 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1084 ? eByteOrderLittle
1085 : eByteOrderBig);
1086 m_data.SetAddressByteSize(4);
1087 can_parse = true;
1088 break;
1089
1090 case MH_CIGAM_64:
1091 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1092 ? eByteOrderLittle
1093 : eByteOrderBig);
1094 m_data.SetAddressByteSize(8);
1095 can_parse = true;
1096 break;
1097
1098 default:
1099 break;
1100 }
1101
1102 if (can_parse) {
1103 m_data.GetU32(&offset, &m_header.cputype, 6);
1104
1105 ArchSpec mach_arch;
1106
1107 if (GetArchitecture(mach_arch)) {
1108 // Check if the module has a required architecture
1109 const ArchSpec &module_arch = module_sp->GetArchitecture();
1110 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1111 return false;
1112
1113 if (SetModulesArchitecture(mach_arch)) {
1114 const size_t header_and_lc_size =
1115 m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1116 if (m_data.GetByteSize() < header_and_lc_size) {
1117 DataBufferSP data_sp;
1118 ProcessSP process_sp(m_process_wp.lock());
1119 if (process_sp) {
1120 data_sp =
1121 ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1122 } else {
1123 // Read in all only the load command data from the file on disk
1124 data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1125 if (data_sp->GetByteSize() != header_and_lc_size)
1126 return false;
1127 }
1128 if (data_sp)
1129 m_data.SetData(data_sp);
1130 }
1131 }
1132 return true;
1133 }
1134 } else {
1135 memset(&m_header, 0, sizeof(struct mach_header));
1136 }
1137 }
1138 return false;
1139}
1140
1141ByteOrder ObjectFileMachO::GetByteOrder() const {
1142 return m_data.GetByteOrder();
1143}
1144
1145bool ObjectFileMachO::IsExecutable() const {
1146 return m_header.filetype == MH_EXECUTE;
1147}
1148
1149uint32_t ObjectFileMachO::GetAddressByteSize() const {
1150 return m_data.GetAddressByteSize();
1151}
1152
1153AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1154 Symtab *symtab = GetSymtab();
1155 if (symtab) {
1156 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1157 if (symbol) {
1158 if (symbol->ValueIsAddress()) {
1159 SectionSP section_sp(symbol->GetAddressRef().GetSection());
1160 if (section_sp) {
1161 const lldb::SectionType section_type = section_sp->GetType();
1162 switch (section_type) {
1163 case eSectionTypeInvalid:
1164 return AddressClass::eUnknown;
1165
1166 case eSectionTypeCode:
1167 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1168 // For ARM we have a bit in the n_desc field of the symbol that
1169 // tells us ARM/Thumb which is bit 0x0008.
1170 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008)
1171 return AddressClass::eCodeAlternateISA;
1172 }
1173 return AddressClass::eCode;
1174
1175 case eSectionTypeContainer:
1176 return AddressClass::eUnknown;
1177
1178 case eSectionTypeData:
1179 case eSectionTypeDataCString:
1180 case eSectionTypeDataCStringPointers:
1181 case eSectionTypeDataSymbolAddress:
1182 case eSectionTypeData4:
1183 case eSectionTypeData8:
1184 case eSectionTypeData16:
1185 case eSectionTypeDataPointers:
1186 case eSectionTypeZeroFill:
1187 case eSectionTypeDataObjCMessageRefs:
1188 case eSectionTypeDataObjCCFStrings:
1189 case eSectionTypeGoSymtab:
1190 return AddressClass::eData;
1191
1192 case eSectionTypeDebug:
1193 case eSectionTypeDWARFDebugAbbrev:
1194 case eSectionTypeDWARFDebugAddr:
1195 case eSectionTypeDWARFDebugAranges:
1196 case eSectionTypeDWARFDebugCuIndex:
1197 case eSectionTypeDWARFDebugFrame:
1198 case eSectionTypeDWARFDebugInfo:
1199 case eSectionTypeDWARFDebugLine:
1200 case eSectionTypeDWARFDebugLoc:
1201 case eSectionTypeDWARFDebugMacInfo:
1202 case eSectionTypeDWARFDebugMacro:
1203 case eSectionTypeDWARFDebugNames:
1204 case eSectionTypeDWARFDebugPubNames:
1205 case eSectionTypeDWARFDebugPubTypes:
1206 case eSectionTypeDWARFDebugRanges:
1207 case eSectionTypeDWARFDebugStr:
1208 case eSectionTypeDWARFDebugStrOffsets:
1209 case eSectionTypeDWARFDebugTypes:
1210 case eSectionTypeDWARFAppleNames:
1211 case eSectionTypeDWARFAppleTypes:
1212 case eSectionTypeDWARFAppleNamespaces:
1213 case eSectionTypeDWARFAppleObjC:
1214 case eSectionTypeDWARFGNUDebugAltLink:
1215 return AddressClass::eDebug;
1216
1217 case eSectionTypeEHFrame:
1218 case eSectionTypeARMexidx:
1219 case eSectionTypeARMextab:
1220 case eSectionTypeCompactUnwind:
1221 return AddressClass::eRuntime;
1222
1223 case eSectionTypeAbsoluteAddress:
1224 case eSectionTypeELFSymbolTable:
1225 case eSectionTypeELFDynamicSymbols:
1226 case eSectionTypeELFRelocationEntries:
1227 case eSectionTypeELFDynamicLinkInfo:
1228 case eSectionTypeOther:
1229 return AddressClass::eUnknown;
1230 }
1231 }
1232 }
1233
1234 const SymbolType symbol_type = symbol->GetType();
1235 switch (symbol_type) {
1236 case eSymbolTypeAny:
1237 return AddressClass::eUnknown;
1238 case eSymbolTypeAbsolute:
1239 return AddressClass::eUnknown;
1240
1241 case eSymbolTypeCode:
1242 case eSymbolTypeTrampoline:
1243 case eSymbolTypeResolver:
1244 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1245 // For ARM we have a bit in the n_desc field of the symbol that tells
1246 // us ARM/Thumb which is bit 0x0008.
1247 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008)
1248 return AddressClass::eCodeAlternateISA;
1249 }
1250 return AddressClass::eCode;
1251
1252 case eSymbolTypeData:
1253 return AddressClass::eData;
1254 case eSymbolTypeRuntime:
1255 return AddressClass::eRuntime;
1256 case eSymbolTypeException:
1257 return AddressClass::eRuntime;
1258 case eSymbolTypeSourceFile:
1259 return AddressClass::eDebug;
1260 case eSymbolTypeHeaderFile:
1261 return AddressClass::eDebug;
1262 case eSymbolTypeObjectFile:
1263 return AddressClass::eDebug;
1264 case eSymbolTypeCommonBlock:
1265 return AddressClass::eDebug;
1266 case eSymbolTypeBlock:
1267 return AddressClass::eDebug;
1268 case eSymbolTypeLocal:
1269 return AddressClass::eData;
1270 case eSymbolTypeParam:
1271 return AddressClass::eData;
1272 case eSymbolTypeVariable:
1273 return AddressClass::eData;
1274 case eSymbolTypeVariableType:
1275 return AddressClass::eDebug;
1276 case eSymbolTypeLineEntry:
1277 return AddressClass::eDebug;
1278 case eSymbolTypeLineHeader:
1279 return AddressClass::eDebug;
1280 case eSymbolTypeScopeBegin:
1281 return AddressClass::eDebug;
1282 case eSymbolTypeScopeEnd:
1283 return AddressClass::eDebug;
1284 case eSymbolTypeAdditional:
1285 return AddressClass::eUnknown;
1286 case eSymbolTypeCompiler:
1287 return AddressClass::eDebug;
1288 case eSymbolTypeInstrumentation:
1289 return AddressClass::eDebug;
1290 case eSymbolTypeUndefined:
1291 return AddressClass::eUnknown;
1292 case eSymbolTypeObjCClass:
1293 return AddressClass::eRuntime;
1294 case eSymbolTypeObjCMetaClass:
1295 return AddressClass::eRuntime;
1296 case eSymbolTypeObjCIVar:
1297 return AddressClass::eRuntime;
1298 case eSymbolTypeReExported:
1299 return AddressClass::eRuntime;
1300 }
1301 }
1302 }
1303 return AddressClass::eUnknown;
1304}
1305
1306Symtab *ObjectFileMachO::GetSymtab() {
1307 ModuleSP module_sp(GetModule());
1308 if (module_sp) {
1309 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1310 if (m_symtab_ap.get() == NULL__null) {
1311 m_symtab_ap.reset(new Symtab(this));
1312 std::lock_guard<std::recursive_mutex> symtab_guard(
1313 m_symtab_ap->GetMutex());
1314 ParseSymtab();
1315 m_symtab_ap->Finalize();
1316 }
1317 }
1318 return m_symtab_ap.get();
1319}
1320
1321bool ObjectFileMachO::IsStripped() {
1322 if (m_dysymtab.cmd == 0) {
1323 ModuleSP module_sp(GetModule());
1324 if (module_sp) {
1325 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1326 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1327 const lldb::offset_t load_cmd_offset = offset;
1328
1329 load_command lc;
1330 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
1331 break;
1332 if (lc.cmd == LC_DYSYMTAB) {
1333 m_dysymtab.cmd = lc.cmd;
1334 m_dysymtab.cmdsize = lc.cmdsize;
1335 if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1336 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1337 NULL__null) {
1338 // Clear m_dysymtab if we were unable to read all items from the
1339 // load command
1340 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1341 }
1342 }
1343 offset = load_cmd_offset + lc.cmdsize;
1344 }
1345 }
1346 }
1347 if (m_dysymtab.cmd)
1348 return m_dysymtab.nlocalsym <= 1;
1349 return false;
1350}
1351
1352ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1353 EncryptedFileRanges result;
1354 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1355
1356 encryption_info_command encryption_cmd;
1357 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1358 const lldb::offset_t load_cmd_offset = offset;
1359 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL__null)
1360 break;
1361
1362 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1363 // 3 fields we care about, so treat them the same.
1364 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1365 encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1366 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1367 if (encryption_cmd.cryptid != 0) {
1368 EncryptedFileRanges::Entry entry;
1369 entry.SetRangeBase(encryption_cmd.cryptoff);
1370 entry.SetByteSize(encryption_cmd.cryptsize);
1371 result.Append(entry);
1372 }
1373 }
1374 }
1375 offset = load_cmd_offset + encryption_cmd.cmdsize;
1376 }
1377
1378 return result;
1379}
1380
1381void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1382 uint32_t cmd_idx) {
1383 if (m_length == 0 || seg_cmd.filesize == 0)
1384 return;
1385
1386 if (seg_cmd.fileoff > m_length) {
1387 // We have a load command that says it extends past the end of the file.
1388 // This is likely a corrupt file. We don't have any way to return an error
1389 // condition here (this method was likely invoked from something like
1390 // ObjectFile::GetSectionList()), so we just null out the section contents,
1391 // and dump a message to stdout. The most common case here is core file
1392 // debugging with a truncated file.
1393 const char *lc_segment_name =
1394 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1395 GetModule()->ReportWarning(
1396 "load command %u %s has a fileoff (0x%" PRIx64"l" "x"
1397 ") that extends beyond the end of the file (0x%" PRIx64"l" "x"
1398 "), ignoring this section",
1399 cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1400
1401 seg_cmd.fileoff = 0;
1402 seg_cmd.filesize = 0;
1403 }
1404
1405 if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1406 // We have a load command that says it extends past the end of the file.
1407 // This is likely a corrupt file. We don't have any way to return an error
1408 // condition here (this method was likely invoked from something like
1409 // ObjectFile::GetSectionList()), so we just null out the section contents,
1410 // and dump a message to stdout. The most common case here is core file
1411 // debugging with a truncated file.
1412 const char *lc_segment_name =
1413 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1414 GetModule()->ReportWarning(
1415 "load command %u %s has a fileoff + filesize (0x%" PRIx64"l" "x"
1416 ") that extends beyond the end of the file (0x%" PRIx64"l" "x"
1417 "), the segment will be truncated to match",
1418 cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1419
1420 // Truncate the length
1421 seg_cmd.filesize = m_length - seg_cmd.fileoff;
1422 }
1423}
1424
1425static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1426 uint32_t result = 0;
1427 if (seg_cmd.initprot & VM_PROT_READ)
1428 result |= ePermissionsReadable;
1429 if (seg_cmd.initprot & VM_PROT_WRITE)
1430 result |= ePermissionsWritable;
1431 if (seg_cmd.initprot & VM_PROT_EXECUTE)
1432 result |= ePermissionsExecutable;
1433 return result;
1434}
1435
1436static lldb::SectionType GetSectionType(uint32_t flags,
1437 ConstString section_name) {
1438
1439 if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1440 return eSectionTypeCode;
1441
1442 uint32_t mach_sect_type = flags & SECTION_TYPE;
1443 static ConstString g_sect_name_objc_data("__objc_data");
1444 static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1445 static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1446 static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1447 static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1448 static ConstString g_sect_name_objc_const("__objc_const");
1449 static ConstString g_sect_name_objc_classlist("__objc_classlist");
1450 static ConstString g_sect_name_cfstring("__cfstring");
1451
1452 static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1453 static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1454 static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1455 static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1456 static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1457 static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1458 static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1459 static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1460 static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1461 static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1462 static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1463 static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1464 static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1465 static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1466 static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1467 static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1468 static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1469 static ConstString g_sect_name_eh_frame("__eh_frame");
1470 static ConstString g_sect_name_compact_unwind("__unwind_info");
1471 static ConstString g_sect_name_text("__text");
1472 static ConstString g_sect_name_data("__data");
1473 static ConstString g_sect_name_go_symtab("__gosymtab");
1474
1475 if (section_name == g_sect_name_dwarf_debug_abbrev)
1476 return eSectionTypeDWARFDebugAbbrev;
1477 if (section_name == g_sect_name_dwarf_debug_aranges)
1478 return eSectionTypeDWARFDebugAranges;
1479 if (section_name == g_sect_name_dwarf_debug_frame)
1480 return eSectionTypeDWARFDebugFrame;
1481 if (section_name == g_sect_name_dwarf_debug_info)
1482 return eSectionTypeDWARFDebugInfo;
1483 if (section_name == g_sect_name_dwarf_debug_line)
1484 return eSectionTypeDWARFDebugLine;
1485 if (section_name == g_sect_name_dwarf_debug_loc)
1486 return eSectionTypeDWARFDebugLoc;
1487 if (section_name == g_sect_name_dwarf_debug_macinfo)
1488 return eSectionTypeDWARFDebugMacInfo;
1489 if (section_name == g_sect_name_dwarf_debug_names)
1490 return eSectionTypeDWARFDebugNames;
1491 if (section_name == g_sect_name_dwarf_debug_pubnames)
1492 return eSectionTypeDWARFDebugPubNames;
1493 if (section_name == g_sect_name_dwarf_debug_pubtypes)
1494 return eSectionTypeDWARFDebugPubTypes;
1495 if (section_name == g_sect_name_dwarf_debug_ranges)
1496 return eSectionTypeDWARFDebugRanges;
1497 if (section_name == g_sect_name_dwarf_debug_str)
1498 return eSectionTypeDWARFDebugStr;
1499 if (section_name == g_sect_name_dwarf_debug_types)
1500 return eSectionTypeDWARFDebugTypes;
1501 if (section_name == g_sect_name_dwarf_apple_names)
1502 return eSectionTypeDWARFAppleNames;
1503 if (section_name == g_sect_name_dwarf_apple_types)
1504 return eSectionTypeDWARFAppleTypes;
1505 if (section_name == g_sect_name_dwarf_apple_namespaces)
1506 return eSectionTypeDWARFAppleNamespaces;
1507 if (section_name == g_sect_name_dwarf_apple_objc)
1508 return eSectionTypeDWARFAppleObjC;
1509 if (section_name == g_sect_name_objc_selrefs)
1510 return eSectionTypeDataCStringPointers;
1511 if (section_name == g_sect_name_objc_msgrefs)
1512 return eSectionTypeDataObjCMessageRefs;
1513 if (section_name == g_sect_name_eh_frame)
1514 return eSectionTypeEHFrame;
1515 if (section_name == g_sect_name_compact_unwind)
1516 return eSectionTypeCompactUnwind;
1517 if (section_name == g_sect_name_cfstring)
1518 return eSectionTypeDataObjCCFStrings;
1519 if (section_name == g_sect_name_go_symtab)
1520 return eSectionTypeGoSymtab;
1521 if (section_name == g_sect_name_objc_data ||
1522 section_name == g_sect_name_objc_classrefs ||
1523 section_name == g_sect_name_objc_superrefs ||
1524 section_name == g_sect_name_objc_const ||
1525 section_name == g_sect_name_objc_classlist) {
1526 return eSectionTypeDataPointers;
1527 }
1528
1529 switch (mach_sect_type) {
1530 // TODO: categorize sections by other flags for regular sections
1531 case S_REGULAR:
1532 if (section_name == g_sect_name_text)
1533 return eSectionTypeCode;
1534 if (section_name == g_sect_name_data)
1535 return eSectionTypeData;
1536 return eSectionTypeOther;
1537 case S_ZEROFILL:
1538 return eSectionTypeZeroFill;
1539 case S_CSTRING_LITERALS: // section with only literal C strings
1540 return eSectionTypeDataCString;
1541 case S_4BYTE_LITERALS: // section with only 4 byte literals
1542 return eSectionTypeData4;
1543 case S_8BYTE_LITERALS: // section with only 8 byte literals
1544 return eSectionTypeData8;
1545 case S_LITERAL_POINTERS: // section with only pointers to literals
1546 return eSectionTypeDataPointers;
1547 case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1548 return eSectionTypeDataPointers;
1549 case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1550 return eSectionTypeDataPointers;
1551 case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1552 // the reserved2 field
1553 return eSectionTypeCode;
1554 case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1555 // initialization
1556 return eSectionTypeDataPointers;
1557 case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1558 // termination
1559 return eSectionTypeDataPointers;
1560 case S_COALESCED:
1561 return eSectionTypeOther;
1562 case S_GB_ZEROFILL:
1563 return eSectionTypeZeroFill;
1564 case S_INTERPOSING: // section with only pairs of function pointers for
1565 // interposing
1566 return eSectionTypeCode;
1567 case S_16BYTE_LITERALS: // section with only 16 byte literals
1568 return eSectionTypeData16;
1569 case S_DTRACE_DOF:
1570 return eSectionTypeDebug;
1571 case S_LAZY_DYLIB_SYMBOL_POINTERS:
1572 return eSectionTypeDataPointers;
1573 default:
1574 return eSectionTypeOther;
1575 }
1576}
1577
1578struct ObjectFileMachO::SegmentParsingContext {
1579 const EncryptedFileRanges EncryptedRanges;
1580 lldb_private::SectionList &UnifiedList;
1581 uint32_t NextSegmentIdx = 0;
1582 uint32_t NextSectionIdx = 0;
1583 bool FileAddressesChanged = false;
1584
1585 SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1586 lldb_private::SectionList &UnifiedList)
1587 : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1588};
1589
1590void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1591 lldb::offset_t offset,
1592 uint32_t cmd_idx,
1593 SegmentParsingContext &context) {
1594 segment_command_64 load_cmd;
1595 memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1596
1597 if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1598 return;
1599
1600 ModuleSP module_sp = GetModule();
1601 const bool is_core = GetType() == eTypeCoreFile;
1602 const bool is_dsym = (m_header.filetype == MH_DSYM);
1603 bool add_section = true;
1604 bool add_to_unified = true;
1605 ConstString const_segname(
1606 load_cmd.segname,
1607 std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname)));
1608
1609 SectionSP unified_section_sp(
1610 context.UnifiedList.FindSectionByName(const_segname));
1611 if (is_dsym && unified_section_sp) {
1612 if (const_segname == GetSegmentNameLINKEDIT()) {
1613 // We need to keep the __LINKEDIT segment private to this object file
1614 // only
1615 add_to_unified = false;
1616 } else {
1617 // This is the dSYM file and this section has already been created by the
1618 // object file, no need to create it.
1619 add_section = false;
1620 }
1621 }
1622 load_cmd.vmaddr = m_data.GetAddress(&offset);
1623 load_cmd.vmsize = m_data.GetAddress(&offset);
1624 load_cmd.fileoff = m_data.GetAddress(&offset);
1625 load_cmd.filesize = m_data.GetAddress(&offset);
1626 if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1627 return;
1628
1629 SanitizeSegmentCommand(load_cmd, cmd_idx);
1630
1631 const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1632 const bool segment_is_encrypted =
1633 (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1634
1635 // Keep a list of mach segments around in case we need to get at data that
1636 // isn't stored in the abstracted Sections.
1637 m_mach_segments.push_back(load_cmd);
1638
1639 // Use a segment ID of the segment index shifted left by 8 so they never
1640 // conflict with any of the sections.
1641 SectionSP segment_sp;
1642 if (add_section && (const_segname || is_core)) {
1643 segment_sp.reset(new Section(
1644 module_sp, // Module to which this section belongs
1645 this, // Object file to which this sections belongs
1646 ++context.NextSegmentIdx
1647 << 8, // Section ID is the 1 based segment index
1648 // shifted right by 8 bits as not to collide with any of the 256
1649 // section IDs that are possible
1650 const_segname, // Name of this section
1651 eSectionTypeContainer, // This section is a container of other
1652 // sections.
1653 load_cmd.vmaddr, // File VM address == addresses as they are
1654 // found in the object file
1655 load_cmd.vmsize, // VM size in bytes of this section
1656 load_cmd.fileoff, // Offset to the data for this section in
1657 // the file
1658 load_cmd.filesize, // Size in bytes of this section as found
1659 // in the file
1660 0, // Segments have no alignment information
1661 load_cmd.flags)); // Flags for this section
1662
1663 segment_sp->SetIsEncrypted(segment_is_encrypted);
1664 m_sections_ap->AddSection(segment_sp);
1665 segment_sp->SetPermissions(segment_permissions);
1666 if (add_to_unified)
1667 context.UnifiedList.AddSection(segment_sp);
1668 } else if (unified_section_sp) {
1669 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1670 // Check to see if the module was read from memory?
1671 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) {
1672 // We have a module that is in memory and needs to have its file
1673 // address adjusted. We need to do this because when we load a file
1674 // from memory, its addresses will be slid already, yet the addresses
1675 // in the new symbol file will still be unslid. Since everything is
1676 // stored as section offset, this shouldn't cause any problems.
1677
1678 // Make sure we've parsed the symbol table from the ObjectFile before
1679 // we go around changing its Sections.
1680 module_sp->GetObjectFile()->GetSymtab();
1681 // eh_frame would present the same problems but we parse that on a per-
1682 // function basis as-needed so it's more difficult to remove its use of
1683 // the Sections. Realistically, the environments where this code path
1684 // will be taken will not have eh_frame sections.
1685
1686 unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1687
1688 // Notify the module that the section addresses have been changed once
1689 // we're done so any file-address caches can be updated.
1690 context.FileAddressesChanged = true;
1691 }
1692 }
1693 m_sections_ap->AddSection(unified_section_sp);
1694 }
1695
1696 struct section_64 sect64;
1697 ::memset(&sect64, 0, sizeof(sect64));
1698 // Push a section into our mach sections for the section at index zero
1699 // (NO_SECT) if we don't have any mach sections yet...
1700 if (m_mach_sections.empty())
1701 m_mach_sections.push_back(sect64);
1702 uint32_t segment_sect_idx;
1703 const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1704
1705 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1706 for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1707 ++segment_sect_idx) {
1708 if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1709 sizeof(sect64.sectname)) == NULL__null)
1710 break;
1711 if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1712 sizeof(sect64.segname)) == NULL__null)
1713 break;
1714 sect64.addr = m_data.GetAddress(&offset);
1715 sect64.size = m_data.GetAddress(&offset);
1716
1717 if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL__null)
1718 break;
1719
1720 // Keep a list of mach sections around in case we need to get at data that
1721 // isn't stored in the abstracted Sections.
1722 m_mach_sections.push_back(sect64);
1723
1724 if (add_section) {
1725 ConstString section_name(
1726 sect64.sectname,
1727 std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname)));
1728 if (!const_segname) {
1729 // We have a segment with no name so we need to conjure up segments
1730 // that correspond to the section's segname if there isn't already such
1731 // a section. If there is such a section, we resize the section so that
1732 // it spans all sections. We also mark these sections as fake so
1733 // address matches don't hit if they land in the gaps between the child
1734 // sections.
1735 const_segname.SetTrimmedCStringWithLength(sect64.segname,
1736 sizeof(sect64.segname));
1737 segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1738 if (segment_sp.get()) {
1739 Section *segment = segment_sp.get();
1740 // Grow the section size as needed.
1741 const lldb::addr_t sect64_min_addr = sect64.addr;
1742 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1743 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1744 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1745 const lldb::addr_t curr_seg_max_addr =
1746 curr_seg_min_addr + curr_seg_byte_size;
1747 if (sect64_min_addr >= curr_seg_min_addr) {
1748 const lldb::addr_t new_seg_byte_size =
1749 sect64_max_addr - curr_seg_min_addr;
1750 // Only grow the section size if needed
1751 if (new_seg_byte_size > curr_seg_byte_size)
1752 segment->SetByteSize(new_seg_byte_size);
1753 } else {
1754 // We need to change the base address of the segment and adjust the
1755 // child section offsets for all existing children.
1756 const lldb::addr_t slide_amount =
1757 sect64_min_addr - curr_seg_min_addr;
1758 segment->Slide(slide_amount, false);
1759 segment->GetChildren().Slide(-slide_amount, false);
1760 segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1761 }
1762
1763 // Grow the section size as needed.
1764 if (sect64.offset) {
1765 const lldb::addr_t segment_min_file_offset =
1766 segment->GetFileOffset();
1767 const lldb::addr_t segment_max_file_offset =
1768 segment_min_file_offset + segment->GetFileSize();
1769
1770 const lldb::addr_t section_min_file_offset = sect64.offset;
1771 const lldb::addr_t section_max_file_offset =
1772 section_min_file_offset + sect64.size;
1773 const lldb::addr_t new_file_offset =
1774 std::min(section_min_file_offset, segment_min_file_offset);
1775 const lldb::addr_t new_file_size =
1776 std::max(section_max_file_offset, segment_max_file_offset) -
1777 new_file_offset;
1778 segment->SetFileOffset(new_file_offset);
1779 segment->SetFileSize(new_file_size);
1780 }
1781 } else {
1782 // Create a fake section for the section's named segment
1783 segment_sp.reset(new Section(
1784 segment_sp, // Parent section
1785 module_sp, // Module to which this section belongs
1786 this, // Object file to which this section belongs
1787 ++context.NextSegmentIdx
1788 << 8, // Section ID is the 1 based segment index
1789 // shifted right by 8 bits as not to
1790 // collide with any of the 256 section IDs
1791 // that are possible
1792 const_segname, // Name of this section
1793 eSectionTypeContainer, // This section is a container of
1794 // other sections.
1795 sect64.addr, // File VM address == addresses as they are
1796 // found in the object file
1797 sect64.size, // VM size in bytes of this section
1798 sect64.offset, // Offset to the data for this section in
1799 // the file
1800 sect64.offset ? sect64.size : 0, // Size in bytes of
1801 // this section as
1802 // found in the file
1803 sect64.align,
1804 load_cmd.flags)); // Flags for this section
1805 segment_sp->SetIsFake(true);
1806 segment_sp->SetPermissions(segment_permissions);
1807 m_sections_ap->AddSection(segment_sp);
1808 if (add_to_unified)
1809 context.UnifiedList.AddSection(segment_sp);
1810 segment_sp->SetIsEncrypted(segment_is_encrypted);
1811 }
1812 }
1813 assert(segment_sp.get())(static_cast <bool> (segment_sp.get()) ? void (0) : __assert_fail
("segment_sp.get()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 1813, __extension__ __PRETTY_FUNCTION__))
;
1814
1815 lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1816
1817 SectionSP section_sp(new Section(
1818 segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1819 sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1820 sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1821 sect64.flags));
1822 // Set the section to be encrypted to match the segment
1823
1824 bool section_is_encrypted = false;
1825 if (!segment_is_encrypted && load_cmd.filesize != 0)
1826 section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1827 sect64.offset) != NULL__null;
1828
1829 section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1830 section_sp->SetPermissions(segment_permissions);
1831 segment_sp->GetChildren().AddSection(section_sp);
1832
1833 if (segment_sp->IsFake()) {
1834 segment_sp.reset();
1835 const_segname.Clear();
1836 }
1837 }
1838 }
1839 if (segment_sp && is_dsym) {
1840 if (first_segment_sectID <= context.NextSectionIdx) {
1841 lldb::user_id_t sect_uid;
1842 for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1843 ++sect_uid) {
1844 SectionSP curr_section_sp(
1845 segment_sp->GetChildren().FindSectionByID(sect_uid));
1846 SectionSP next_section_sp;
1847 if (sect_uid + 1 <= context.NextSectionIdx)
1848 next_section_sp =
1849 segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1850
1851 if (curr_section_sp.get()) {
1852 if (curr_section_sp->GetByteSize() == 0) {
1853 if (next_section_sp.get() != NULL__null)
1854 curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1855 curr_section_sp->GetFileAddress());
1856 else
1857 curr_section_sp->SetByteSize(load_cmd.vmsize);
1858 }
1859 }
1860 }
1861 }
1862 }
1863}
1864
1865void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1866 lldb::offset_t offset) {
1867 m_dysymtab.cmd = load_cmd.cmd;
1868 m_dysymtab.cmdsize = load_cmd.cmdsize;
1869 m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1870 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1871}
1872
1873void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1874 if (m_sections_ap)
1875 return;
1876
1877 m_sections_ap.reset(new SectionList());
1878
1879 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1880 // bool dump_sections = false;
1881 ModuleSP module_sp(GetModule());
1882
1883 offset = MachHeaderSizeFromMagic(m_header.magic);
1884
1885 SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1886 struct load_command load_cmd;
1887 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1888 const lldb::offset_t load_cmd_offset = offset;
1889 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL__null)
1890 break;
1891
1892 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1893 ProcessSegmentCommand(load_cmd, offset, i, context);
1894 else if (load_cmd.cmd == LC_DYSYMTAB)
1895 ProcessDysymtabCommand(load_cmd, offset);
1896
1897 offset = load_cmd_offset + load_cmd.cmdsize;
1898 }
1899
1900 if (context.FileAddressesChanged && module_sp)
1901 module_sp->SectionFileAddressesChanged();
1902}
1903
1904class MachSymtabSectionInfo {
1905public:
1906 MachSymtabSectionInfo(SectionList *section_list)
1907 : m_section_list(section_list), m_section_infos() {
1908 // Get the number of sections down to a depth of 1 to include all segments
1909 // and their sections, but no other sections that may be added for debug
1910 // map or
1911 m_section_infos.resize(section_list->GetNumSections(1));
1912 }
1913
1914 SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1915 if (n_sect == 0)
1916 return SectionSP();
1917 if (n_sect < m_section_infos.size()) {
1918 if (!m_section_infos[n_sect].section_sp) {
1919 SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1920 m_section_infos[n_sect].section_sp = section_sp;
1921 if (section_sp) {
1922 m_section_infos[n_sect].vm_range.SetBaseAddress(
1923 section_sp->GetFileAddress());
1924 m_section_infos[n_sect].vm_range.SetByteSize(
1925 section_sp->GetByteSize());
1926 } else {
1927 Host::SystemLog(Host::eSystemLogError,
1928 "error: unable to find section for section %u\n",
1929 n_sect);
1930 }
1931 }
1932 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1933 // Symbol is in section.
1934 return m_section_infos[n_sect].section_sp;
1935 } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1936 m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1937 file_addr) {
1938 // Symbol is in section with zero size, but has the same start address
1939 // as the section. This can happen with linker symbols (symbols that
1940 // start with the letter 'l' or 'L'.
1941 return m_section_infos[n_sect].section_sp;
1942 }
1943 }
1944 return m_section_list->FindSectionContainingFileAddress(file_addr);
1945 }
1946
1947protected:
1948 struct SectionInfo {
1949 SectionInfo() : vm_range(), section_sp() {}
1950
1951 VMRange vm_range;
1952 SectionSP section_sp;
1953 };
1954 SectionList *m_section_list;
1955 std::vector<SectionInfo> m_section_infos;
1956};
1957
1958struct TrieEntry {
1959 TrieEntry()
1960 : name(), address(LLDB_INVALID_ADDRESS(18446744073709551615UL)), flags(0), other(0),
1961 import_name() {}
1962
1963 void Clear() {
1964 name.Clear();
1965 address = LLDB_INVALID_ADDRESS(18446744073709551615UL);
1966 flags = 0;
1967 other = 0;
1968 import_name.Clear();
1969 }
1970
1971 void Dump() const {
1972 printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1973 static_cast<unsigned long long>(address),
1974 static_cast<unsigned long long>(flags),
1975 static_cast<unsigned long long>(other), name.GetCString());
1976 if (import_name)
1977 printf(" -> \"%s\"\n", import_name.GetCString());
1978 else
1979 printf("\n");
1980 }
1981 ConstString name;
1982 uint64_t address;
1983 uint64_t flags;
1984 uint64_t other;
1985 ConstString import_name;
1986};
1987
1988struct TrieEntryWithOffset {
1989 lldb::offset_t nodeOffset;
1990 TrieEntry entry;
1991
1992 TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1993
1994 void Dump(uint32_t idx) const {
1995 printf("[%3u] 0x%16.16llx: ", idx,
1996 static_cast<unsigned long long>(nodeOffset));
1997 entry.Dump();
1998 }
1999
2000 bool operator<(const TrieEntryWithOffset &other) const {
2001 return (nodeOffset < other.nodeOffset);
2002 }
2003};
2004
2005static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2006 const bool is_arm,
2007 std::vector<llvm::StringRef> &nameSlices,
2008 std::set<lldb::addr_t> &resolver_addresses,
2009 std::vector<TrieEntryWithOffset> &output) {
2010 if (!data.ValidOffset(offset))
2011 return true;
2012
2013 const uint64_t terminalSize = data.GetULEB128(&offset);
2014 lldb::offset_t children_offset = offset + terminalSize;
2015 if (terminalSize != 0) {
2016 TrieEntryWithOffset e(offset);
2017 e.entry.flags = data.GetULEB128(&offset);
2018 const char *import_name = NULL__null;
2019 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2020 e.entry.address = 0;
2021 e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2022 import_name = data.GetCStr(&offset);
2023 } else {
2024 e.entry.address = data.GetULEB128(&offset);
2025 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2026 e.entry.other = data.GetULEB128(&offset);
2027 uint64_t resolver_addr = e.entry.other;
2028 if (is_arm)
2029 resolver_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
2030 resolver_addresses.insert(resolver_addr);
2031 } else
2032 e.entry.other = 0;
2033 }
2034 // Only add symbols that are reexport symbols with a valid import name
2035 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
2036 import_name[0]) {
2037 std::string name;
2038 if (!nameSlices.empty()) {
2039 for (auto name_slice : nameSlices)
2040 name.append(name_slice.data(), name_slice.size());
2041 }
2042 if (name.size() > 1) {
2043 // Skip the leading '_'
2044 e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2045 }
2046 if (import_name) {
2047 // Skip the leading '_'
2048 e.entry.import_name.SetCString(import_name + 1);
2049 }
2050 output.push_back(e);
2051 }
2052 }
2053
2054 const uint8_t childrenCount = data.GetU8(&children_offset);
2055 for (uint8_t i = 0; i < childrenCount; ++i) {
2056 const char *cstr = data.GetCStr(&children_offset);
2057 if (cstr)
2058 nameSlices.push_back(llvm::StringRef(cstr));
2059 else
2060 return false; // Corrupt data
2061 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2062 if (childNodeOffset) {
2063 if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
2064 resolver_addresses, output)) {
2065 return false;
2066 }
2067 }
2068 nameSlices.pop_back();
2069 }
2070 return true;
2071}
2072
2073// Read the UUID out of a dyld_shared_cache file on-disk.
2074UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2075 const ByteOrder byte_order,
2076 const uint32_t addr_byte_size) {
2077 UUID dsc_uuid;
2078 DataBufferSP DscData = MapFileData(
2079 dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2080 if (!DscData)
2081 return dsc_uuid;
2082 DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2083
2084 char version_str[7];
2085 lldb::offset_t offset = 0;
2086 memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2087 version_str[6] = '\0';
2088 if (strcmp(version_str, "dyld_v") == 0) {
2089 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid)__builtin_offsetof(struct lldb_copy_dyld_cache_header_v1, uuid
)
;
2090 dsc_uuid = UUID::fromOptionalData(
2091 dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2092 }
2093 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS(1u << 20)));
2094 if (log && dsc_uuid.IsValid()) {
2095 log->Printf("Shared cache %s has UUID %s", dyld_shared_cache.GetPath().c_str(),
2096 dsc_uuid.GetAsString().c_str());
2097 }
2098 return dsc_uuid;
2099}
2100
2101size_t ObjectFileMachO::ParseSymtab() {
2102 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION__PRETTY_FUNCTION__);
2103 Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2104 m_file.GetFilename().AsCString(""));
2105 ModuleSP module_sp(GetModule());
2106 if (!module_sp)
1
Taking false branch
2107 return 0;
2108
2109 struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2110 struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2111 struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2112 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2113 FunctionStarts function_starts;
2114 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2115 uint32_t i;
2116 FileSpecList dylib_files;
2117 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS(1u << 20)));
2118 static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2119 static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2120 static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2121
2122 for (i = 0; i < m_header.ncmds; ++i) {
2
Assuming the condition is true
3
Loop condition is true. Entering loop body
18
Assuming the condition is false
19
Loop condition is false. Execution continues on line 2209
2123 const lldb::offset_t cmd_offset = offset;
2124 // Read in the load command and load command size
2125 struct load_command lc;
2126 if (m_data.GetU32(&offset, &lc, 2) == NULL__null)
4
Assuming the condition is false
5
Taking false branch
2127 break;
2128 // Watch for the symbol table load command
2129 switch (lc.cmd) {
6
Control jumps to 'case LC_SYMTAB:' at line 2130
2130 case LC_SYMTAB:
2131 symtab_load_command.cmd = lc.cmd;
2132 symtab_load_command.cmdsize = lc.cmdsize;
2133 // Read in the rest of the symtab load command
2134 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
7
Assuming the condition is false
8
Taking false branch
2135 0) // fill in symoff, nsyms, stroff, strsize fields
2136 return 0;
2137 if (symtab_load_command.symoff == 0) {
9
Assuming the condition is false
10
Taking false branch
2138 if (log)
2139 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2140 return 0;
2141 }
2142
2143 if (symtab_load_command.stroff == 0) {
11
Assuming the condition is false
12
Taking false branch
2144 if (log)
2145 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2146 return 0;
2147 }
2148
2149 if (symtab_load_command.nsyms == 0) {
13
Assuming the condition is false
14
Taking false branch
2150 if (log)
2151 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2152 return 0;
2153 }
2154
2155 if (symtab_load_command.strsize == 0) {
15
Assuming the condition is false
16
Taking false branch
2156 if (log)
2157 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2158 return 0;
2159 }
2160 break;
17
Execution continues on line 2206
2161
2162 case LC_DYLD_INFO:
2163 case LC_DYLD_INFO_ONLY:
2164 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2165 dyld_info.cmd = lc.cmd;
2166 dyld_info.cmdsize = lc.cmdsize;
2167 } else {
2168 memset(&dyld_info, 0, sizeof(dyld_info));
2169 }
2170 break;
2171
2172 case LC_LOAD_DYLIB:
2173 case LC_LOAD_WEAK_DYLIB:
2174 case LC_REEXPORT_DYLIB:
2175 case LC_LOADFVMLIB:
2176 case LC_LOAD_UPWARD_DYLIB: {
2177 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2178 const char *path = m_data.PeekCStr(name_offset);
2179 if (path) {
2180 FileSpec file_spec(path, false);
2181 // Strip the path if there is @rpath, @executable, etc so we just use
2182 // the basename
2183 if (path[0] == '@')
2184 file_spec.GetDirectory().Clear();
2185
2186 if (lc.cmd == LC_REEXPORT_DYLIB) {
2187 m_reexported_dylibs.AppendIfUnique(file_spec);
2188 }
2189
2190 dylib_files.Append(file_spec);
2191 }
2192 } break;
2193
2194 case LC_FUNCTION_STARTS:
2195 function_starts_load_command.cmd = lc.cmd;
2196 function_starts_load_command.cmdsize = lc.cmdsize;
2197 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2198 NULL__null) // fill in symoff, nsyms, stroff, strsize fields
2199 memset(&function_starts_load_command, 0,
2200 sizeof(function_starts_load_command));
2201 break;
2202
2203 default:
2204 break;
2205 }
2206 offset = cmd_offset + lc.cmdsize;
2207 }
2208
2209 if (symtab_load_command.cmd) {
20
Assuming the condition is true
21
Taking true branch
2210 Symtab *symtab = m_symtab_ap.get();
2211 SectionList *section_list = GetSectionList();
2212 if (section_list == NULL__null)
22
Assuming 'section_list' is not equal to NULL
23
Taking false branch
2213 return 0;
2214
2215 const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2216 const ByteOrder byte_order = m_data.GetByteOrder();
2217 bool bit_width_32 = addr_byte_size == 4;
24
Assuming 'addr_byte_size' is not equal to 4
2218 const size_t nlist_byte_size =
2219 bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
25
'?' condition is false
2220
2221 DataExtractor nlist_data(NULL__null, 0, byte_order, addr_byte_size);
2222 DataExtractor strtab_data(NULL__null, 0, byte_order, addr_byte_size);
2223 DataExtractor function_starts_data(NULL__null, 0, byte_order, addr_byte_size);
2224 DataExtractor indirect_symbol_index_data(NULL__null, 0, byte_order,
2225 addr_byte_size);
2226 DataExtractor dyld_trie_data(NULL__null, 0, byte_order, addr_byte_size);
2227
2228 const addr_t nlist_data_byte_size =
2229 symtab_load_command.nsyms * nlist_byte_size;
2230 const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2231 addr_t strtab_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
2232
2233 ProcessSP process_sp(m_process_wp.lock());
2234 Process *process = process_sp.get();
2235
2236 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2237
2238 if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2239 Target &target = process->GetTarget();
2240
2241 memory_module_load_level = target.GetMemoryModuleLoadLevel();
2242
2243 SectionSP linkedit_section_sp(
2244 section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2245 // Reading mach file from memory in a process or core file...
2246
2247 if (linkedit_section_sp) {
2248 addr_t linkedit_load_addr =
2249 linkedit_section_sp->GetLoadBaseAddress(&target);
2250 if (linkedit_load_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
2251 // We might be trying to access the symbol table before the
2252 // __LINKEDIT's load address has been set in the target. We can't
2253 // fail to read the symbol table, so calculate the right address
2254 // manually
2255 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2256 m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2257 }
2258
2259 const addr_t linkedit_file_offset =
2260 linkedit_section_sp->GetFileOffset();
2261 const addr_t symoff_addr = linkedit_load_addr +
2262 symtab_load_command.symoff -
2263 linkedit_file_offset;
2264 strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2265 linkedit_file_offset;
2266
2267 bool data_was_read = false;
2268
2269#if defined(__APPLE__) && \
2270 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2271 if (m_header.flags & 0x80000000u &&
2272 process->GetAddressByteSize() == sizeof(void *)) {
2273 // This mach-o memory file is in the dyld shared cache. If this
2274 // program is not remote and this is iOS, then this process will
2275 // share the same shared cache as the process we are debugging and we
2276 // can read the entire __LINKEDIT from the address space in this
2277 // process. This is a needed optimization that is used for local iOS
2278 // debugging only since all shared libraries in the shared cache do
2279 // not have corresponding files that exist in the file system of the
2280 // device. They have been combined into a single file. This means we
2281 // always have to load these files from memory. All of the symbol and
2282 // string tables from all of the __LINKEDIT sections from the shared
2283 // libraries in the shared cache have been merged into a single large
2284 // symbol and string table. Reading all of this symbol and string
2285 // table data across can slow down debug launch times, so we optimize
2286 // this by reading the memory for the __LINKEDIT section from this
2287 // process.
2288
2289 UUID lldb_shared_cache;
2290 addr_t lldb_shared_cache_addr;
2291 GetLLDBSharedCacheUUID (lldb_shared_cache_addr, lldb_shared_cache);
2292 UUID process_shared_cache;
2293 addr_t process_shared_cache_addr;
2294 GetProcessSharedCacheUUID(process, process_shared_cache_addr, process_shared_cache);
2295 bool use_lldb_cache = true;
2296 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2297 (lldb_shared_cache != process_shared_cache
2298 || process_shared_cache_addr != lldb_shared_cache_addr)) {
2299 use_lldb_cache = false;
2300 }
2301
2302 PlatformSP platform_sp(target.GetPlatform());
2303 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2304 data_was_read = true;
2305 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2306 eByteOrderLittle);
2307 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2308 eByteOrderLittle);
2309 if (function_starts_load_command.cmd) {
2310 const addr_t func_start_addr =
2311 linkedit_load_addr + function_starts_load_command.dataoff -
2312 linkedit_file_offset;
2313 function_starts_data.SetData(
2314 (void *)func_start_addr,
2315 function_starts_load_command.datasize, eByteOrderLittle);
2316 }
2317 }
2318 }
2319#endif
2320
2321 if (!data_was_read) {
2322 // Always load dyld - the dynamic linker - from memory if we didn't
2323 // find a binary anywhere else. lldb will not register
2324 // dylib/framework/bundle loads/unloads if we don't have the dyld
2325 // symbols, we force dyld to load from memory despite the user's
2326 // target.memory-module-load-level setting.
2327 if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2328 m_header.filetype == llvm::MachO::MH_DYLINKER) {
2329 DataBufferSP nlist_data_sp(
2330 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2331 if (nlist_data_sp)
2332 nlist_data.SetData(nlist_data_sp, 0,
2333 nlist_data_sp->GetByteSize());
2334 // Load strings individually from memory when loading from memory
2335 // since shared cache string tables contain strings for all symbols
2336 // from all shared cached libraries DataBufferSP strtab_data_sp
2337 // (ReadMemory (process_sp, strtab_addr,
2338 // strtab_data_byte_size));
2339 // if (strtab_data_sp)
2340 // strtab_data.SetData (strtab_data_sp, 0,
2341 // strtab_data_sp->GetByteSize());
2342 if (m_dysymtab.nindirectsyms != 0) {
2343 const addr_t indirect_syms_addr = linkedit_load_addr +
2344 m_dysymtab.indirectsymoff -
2345 linkedit_file_offset;
2346 DataBufferSP indirect_syms_data_sp(
2347 ReadMemory(process_sp, indirect_syms_addr,
2348 m_dysymtab.nindirectsyms * 4));
2349 if (indirect_syms_data_sp)
2350 indirect_symbol_index_data.SetData(
2351 indirect_syms_data_sp, 0,
2352 indirect_syms_data_sp->GetByteSize());
2353 }
2354 } else if (memory_module_load_level >=
2355 eMemoryModuleLoadLevelPartial) {
2356 if (function_starts_load_command.cmd) {
2357 const addr_t func_start_addr =
2358 linkedit_load_addr + function_starts_load_command.dataoff -
2359 linkedit_file_offset;
2360 DataBufferSP func_start_data_sp(
2361 ReadMemory(process_sp, func_start_addr,
2362 function_starts_load_command.datasize));
2363 if (func_start_data_sp)
2364 function_starts_data.SetData(func_start_data_sp, 0,
2365 func_start_data_sp->GetByteSize());
2366 }
2367 }
2368 }
2369 }
2370 } else {
2371 nlist_data.SetData(m_data, symtab_load_command.symoff,
2372 nlist_data_byte_size);
2373 strtab_data.SetData(m_data, symtab_load_command.stroff,
2374 strtab_data_byte_size);
2375
2376 if (dyld_info.export_size > 0) {
26
Taking false branch
2377 dyld_trie_data.SetData(m_data, dyld_info.export_off,
2378 dyld_info.export_size);
2379 }
2380
2381 if (m_dysymtab.nindirectsyms != 0) {
27
Assuming the condition is false
28
Taking false branch
2382 indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2383 m_dysymtab.nindirectsyms * 4);
2384 }
2385 if (function_starts_load_command.cmd) {
29
Taking false branch
2386 function_starts_data.SetData(m_data,
2387 function_starts_load_command.dataoff,
2388 function_starts_load_command.datasize);
2389 }
2390 }
2391
2392 if (nlist_data.GetByteSize() == 0 &&
30
Assuming the condition is false
2393 memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2394 if (log)
2395 module_sp->LogMessage(log, "failed to read nlist data");
2396 return 0;
2397 }
2398
2399 const bool have_strtab_data = strtab_data.GetByteSize() > 0;
31
Assuming the condition is true
2400 if (!have_strtab_data) {
32
Taking false branch
2401 if (process) {
2402 if (strtab_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
2403 if (log)
2404 module_sp->LogMessage(log, "failed to locate the strtab in memory");
2405 return 0;
2406 }
2407 } else {
2408 if (log)
2409 module_sp->LogMessage(log, "failed to read strtab data");
2410 return 0;
2411 }
2412 }
2413
2414 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT();
2415 const ConstString &g_segment_name_DATA = GetSegmentNameDATA();
2416 const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2417 const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2418 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC();
2419 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame();
2420 SectionSP text_section_sp(
2421 section_list->FindSectionByName(g_segment_name_TEXT));
2422 SectionSP data_section_sp(
2423 section_list->FindSectionByName(g_segment_name_DATA));
2424 SectionSP data_dirty_section_sp(
2425 section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2426 SectionSP data_const_section_sp(
2427 section_list->FindSectionByName(g_segment_name_DATA_CONST));
2428 SectionSP objc_section_sp(
2429 section_list->FindSectionByName(g_segment_name_OBJC));
2430 SectionSP eh_frame_section_sp;
2431 if (text_section_sp.get())
33
Assuming the condition is false
34
Taking false branch
2432 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2433 g_section_name_eh_frame);
2434 else
2435 eh_frame_section_sp =
2436 section_list->FindSectionByName(g_section_name_eh_frame);
2437
2438 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
35
Assuming the condition is false
2439
2440 // lldb works best if it knows the start address of all functions in a
2441 // module. Linker symbols or debug info are normally the best source of
2442 // information for start addr / size but they may be stripped in a released
2443 // binary. Two additional sources of information exist in Mach-O binaries:
2444 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2445 // function's start address in the
2446 // binary, relative to the text section.
2447 // eh_frame - the eh_frame FDEs have the start addr & size of
2448 // each function
2449 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2450 // all modern binaries.
2451 // Binaries built to run on older releases may need to use eh_frame
2452 // information.
2453
2454 if (text_section_sp && function_starts_data.GetByteSize()) {
2455 FunctionStarts::Entry function_start_entry;
2456 function_start_entry.data = false;
2457 lldb::offset_t function_start_offset = 0;
2458 function_start_entry.addr = text_section_sp->GetFileAddress();
2459 uint64_t delta;
2460 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2461 0) {
2462 // Now append the current entry
2463 function_start_entry.addr += delta;
2464 function_starts.Append(function_start_entry);
2465 }
2466 } else {
2467 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2468 // load command claiming an eh_frame but it doesn't actually have the
2469 // eh_frame content. And if we have a dSYM, we don't need to do any of
2470 // this fill-in-the-missing-symbols works anyway - the debug info should
2471 // give us all the functions in the module.
2472 if (text_section_sp.get() && eh_frame_section_sp.get() &&
2473 m_type != eTypeDebugInfo) {
2474 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2475 DWARFCallFrameInfo::EH);
2476 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2477 eh_frame.GetFunctionAddressAndSizeVector(functions);
2478 addr_t text_base_addr = text_section_sp->GetFileAddress();
2479 size_t count = functions.GetSize();
2480 for (size_t i = 0; i < count; ++i) {
2481 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2482 functions.GetEntryAtIndex(i);
2483 if (func) {
2484 FunctionStarts::Entry function_start_entry;
2485 function_start_entry.addr = func->base - text_base_addr;
2486 function_starts.Append(function_start_entry);
2487 }
2488 }
2489 }
2490 }
2491
2492 const size_t function_starts_count = function_starts.GetSize();
2493
2494 // For user process binaries (executables, dylibs, frameworks, bundles), if
2495 // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2496 // going to assume the binary has been stripped. Don't allow assembly
2497 // language instruction emulation because we don't know proper function
2498 // start boundaries.
2499 //
2500 // For all other types of binaries (kernels, stand-alone bare board
2501 // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2502 // sections - we should not make any assumptions about them based on that.
2503 if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
36
Assuming 'function_starts_count' is not equal to 0
2504 m_allow_assembly_emulation_unwind_plans = false;
2505 Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2506 LIBLLDB_LOG_SYMBOLS(1u << 20) | LIBLLDB_LOG_UNWIND(1u << 15)));
2507
2508 if (unwind_or_symbol_log)
2509 module_sp->LogMessage(
2510 unwind_or_symbol_log,
2511 "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2512 }
2513
2514 const user_id_t TEXT_eh_frame_sectID =
2515 eh_frame_section_sp.get() ? eh_frame_section_sp->GetID()
37
Assuming the condition is false
38
'?' condition is false
2516 : static_cast<user_id_t>(NO_SECT);
2517
2518 lldb::offset_t nlist_data_offset = 0;
2519
2520 uint32_t N_SO_index = UINT32_MAX(4294967295U);
2521
2522 MachSymtabSectionInfo section_info(section_list);
2523 std::vector<uint32_t> N_FUN_indexes;
2524 std::vector<uint32_t> N_NSYM_indexes;
2525 std::vector<uint32_t> N_INCL_indexes;
2526 std::vector<uint32_t> N_BRAC_indexes;
2527 std::vector<uint32_t> N_COMM_indexes;
2528 typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2529 typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2530 typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap;
2531 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2532 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2533 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2534 // Any symbols that get merged into another will get an entry in this map
2535 // so we know
2536 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2537 uint32_t nlist_idx = 0;
2538 Symbol *symbol_ptr = NULL__null;
2539
2540 uint32_t sym_idx = 0;
2541 Symbol *sym = NULL__null;
2542 size_t num_syms = 0;
2543 std::string memory_symbol_name;
2544 uint32_t unmapped_local_symbols_found = 0;
2545
2546 std::vector<TrieEntryWithOffset> trie_entries;
2547 std::set<lldb::addr_t> resolver_addresses;
2548
2549 if (dyld_trie_data.GetByteSize() > 0) {
39
Assuming the condition is false
40
Taking false branch
2550 std::vector<llvm::StringRef> nameSlices;
2551 ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices,
2552 resolver_addresses, trie_entries);
2553
2554 ConstString text_segment_name("__TEXT");
2555 SectionSP text_segment_sp =
2556 GetSectionList()->FindSectionByName(text_segment_name);
2557 if (text_segment_sp) {
2558 const lldb::addr_t text_segment_file_addr =
2559 text_segment_sp->GetFileAddress();
2560 if (text_segment_file_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
2561 for (auto &e : trie_entries)
2562 e.entry.address += text_segment_file_addr;
2563 }
2564 }
2565 }
2566
2567 typedef std::set<ConstString> IndirectSymbols;
2568 IndirectSymbols indirect_symbol_names;
2569
2570#if defined(__APPLE__) && \
2571 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2572
2573 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2574 // optimized by moving LOCAL symbols out of the memory mapped portion of
2575 // the DSC. The symbol information has all been retained, but it isn't
2576 // available in the normal nlist data. However, there *are* duplicate
2577 // entries of *some*
2578 // LOCAL symbols in the normal nlist data. To handle this situation
2579 // correctly, we must first attempt
2580 // to parse any DSC unmapped symbol information. If we find any, we set a
2581 // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2582
2583 if (m_header.flags & 0x80000000u) {
2584 // Before we can start mapping the DSC, we need to make certain the
2585 // target process is actually using the cache we can find.
2586
2587 // Next we need to determine the correct path for the dyld shared cache.
2588
2589 ArchSpec header_arch;
2590 GetArchitecture(header_arch);
2591 char dsc_path[PATH_MAX4096];
2592 char dsc_path_development[PATH_MAX4096];
2593
2594 snprintf(
2595 dsc_path, sizeof(dsc_path), "%s%s%s",
2596 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2597 */
2598 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2599 header_arch.GetArchitectureName());
2600
2601 snprintf(
2602 dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2603 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2604 */
2605 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2606 header_arch.GetArchitectureName(), ".development");
2607
2608 FileSpec dsc_nondevelopment_filespec(dsc_path, false);
2609 FileSpec dsc_development_filespec(dsc_path_development, false);
2610 FileSpec dsc_filespec;
2611
2612 UUID dsc_uuid;
2613 UUID process_shared_cache_uuid;
2614 addr_t process_shared_cache_base_addr;
2615
2616 if (process) {
2617 GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, process_shared_cache_uuid);
2618 }
2619
2620 // First see if we can find an exact match for the inferior process
2621 // shared cache UUID in the development or non-development shared caches
2622 // on disk.
2623 if (process_shared_cache_uuid.IsValid()) {
2624 if (dsc_development_filespec.Exists()) {
2625 UUID dsc_development_uuid = GetSharedCacheUUID(
2626 dsc_development_filespec, byte_order, addr_byte_size);
2627 if (dsc_development_uuid.IsValid() &&
2628 dsc_development_uuid == process_shared_cache_uuid) {
2629 dsc_filespec = dsc_development_filespec;
2630 dsc_uuid = dsc_development_uuid;
2631 }
2632 }
2633 if (!dsc_uuid.IsValid() && dsc_nondevelopment_filespec.Exists()) {
2634 UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2635 dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2636 if (dsc_nondevelopment_uuid.IsValid() &&
2637 dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2638 dsc_filespec = dsc_nondevelopment_filespec;
2639 dsc_uuid = dsc_nondevelopment_uuid;
2640 }
2641 }
2642 }
2643
2644 // Failing a UUID match, prefer the development dyld_shared cache if both
2645 // are present.
2646 if (!dsc_filespec.Exists()) {
2647 if (dsc_development_filespec.Exists()) {
2648 dsc_filespec = dsc_development_filespec;
2649 } else {
2650 dsc_filespec = dsc_nondevelopment_filespec;
2651 }
2652 }
2653
2654 /* The dyld_cache_header has a pointer to the
2655 dyld_cache_local_symbols_info structure (localSymbolsOffset).
2656 The dyld_cache_local_symbols_info structure gives us three things:
2657 1. The start and count of the nlist records in the dyld_shared_cache
2658 file
2659 2. The start and size of the strings for these nlist records
2660 3. The start and count of dyld_cache_local_symbols_entry entries
2661
2662 There is one dyld_cache_local_symbols_entry per dylib/framework in the
2663 dyld shared cache.
2664 The "dylibOffset" field is the Mach-O header of this dylib/framework in
2665 the dyld shared cache.
2666 The dyld_cache_local_symbols_entry also lists the start of this
2667 dylib/framework's nlist records
2668 and the count of how many nlist records there are for this
2669 dylib/framework.
2670 */
2671
2672 // Process the dyld shared cache header to find the unmapped symbols
2673
2674 DataBufferSP dsc_data_sp = MapFileData(
2675 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2676 if (!dsc_uuid.IsValid()) {
2677 dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2678 }
2679 if (dsc_data_sp) {
2680 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2681
2682 bool uuid_match = true;
2683 if (dsc_uuid.IsValid() && process) {
2684 if (process_shared_cache_uuid.IsValid() &&
2685 dsc_uuid != process_shared_cache_uuid) {
2686 // The on-disk dyld_shared_cache file is not the same as the one in
2687 // this process' memory, don't use it.
2688 uuid_match = false;
2689 ModuleSP module_sp(GetModule());
2690 if (module_sp)
2691 module_sp->ReportWarning("process shared cache does not match "
2692 "on-disk dyld_shared_cache file, some "
2693 "symbol names will be missing.");
2694 }
2695 }
2696
2697 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset)__builtin_offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset
)
;
2698
2699 uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2700
2701 // If the mappingOffset points to a location inside the header, we've
2702 // opened an old dyld shared cache, and should not proceed further.
2703 if (uuid_match &&
2704 mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2705
2706 DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2707 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2708 mappingOffset);
2709
2710 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2711 byte_order, addr_byte_size);
2712 offset = 0;
2713
2714 // The File addresses (from the in-memory Mach-O load commands) for
2715 // the shared libraries in the shared library cache need to be
2716 // adjusted by an offset to match up with the dylibOffset identifying
2717 // field in the dyld_cache_local_symbol_entry's. This offset is
2718 // recorded in mapping_offset_value.
2719 const uint64_t mapping_offset_value =
2720 dsc_mapping_info_data.GetU64(&offset);
2721
2722 offset = offsetof(struct lldb_copy_dyld_cache_header_v1,__builtin_offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset
)
2723 localSymbolsOffset)__builtin_offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset
)
;
2724 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2725 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2726
2727 if (localSymbolsOffset && localSymbolsSize) {
2728 // Map the local symbols
2729 DataBufferSP dsc_local_symbols_data_sp =
2730 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2731
2732 if (dsc_local_symbols_data_sp) {
2733 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2734 byte_order, addr_byte_size);
2735
2736 offset = 0;
2737
2738 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
2739 typedef std::map<uint32_t, ConstString> SymbolIndexToName;
2740 UndefinedNameToDescMap undefined_name_to_desc;
2741 SymbolIndexToName reexport_shlib_needs_fixup;
2742
2743 // Read the local_symbols_infos struct in one shot
2744 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2745 dsc_local_symbols_data.GetU32(&offset,
2746 &local_symbols_info.nlistOffset, 6);
2747
2748 SectionSP text_section_sp(
2749 section_list->FindSectionByName(GetSegmentNameTEXT()));
2750
2751 uint32_t header_file_offset =
2752 (text_section_sp->GetFileAddress() - mapping_offset_value);
2753
2754 offset = local_symbols_info.entriesOffset;
2755 for (uint32_t entry_index = 0;
2756 entry_index < local_symbols_info.entriesCount;
2757 entry_index++) {
2758 struct lldb_copy_dyld_cache_local_symbols_entry
2759 local_symbols_entry;
2760 local_symbols_entry.dylibOffset =
2761 dsc_local_symbols_data.GetU32(&offset);
2762 local_symbols_entry.nlistStartIndex =
2763 dsc_local_symbols_data.GetU32(&offset);
2764 local_symbols_entry.nlistCount =
2765 dsc_local_symbols_data.GetU32(&offset);
2766
2767 if (header_file_offset == local_symbols_entry.dylibOffset) {
2768 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2769
2770 // The normal nlist code cannot correctly size the Symbols
2771 // array, we need to allocate it here.
2772 sym = symtab->Resize(
2773 symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2774 unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2775 num_syms = symtab->GetNumSymbols();
2776
2777 nlist_data_offset =
2778 local_symbols_info.nlistOffset +
2779 (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2780 uint32_t string_table_offset =
2781 local_symbols_info.stringsOffset;
2782
2783 for (uint32_t nlist_index = 0;
2784 nlist_index < local_symbols_entry.nlistCount;
2785 nlist_index++) {
2786 /////////////////////////////
2787 {
2788 struct nlist_64 nlist;
2789 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(
2790 nlist_data_offset, nlist_byte_size))
2791 break;
2792
2793 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(
2794 &nlist_data_offset);
2795 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked(
2796 &nlist_data_offset);
2797 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked(
2798 &nlist_data_offset);
2799 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked(
2800 &nlist_data_offset);
2801 nlist.n_value =
2802 dsc_local_symbols_data.GetAddress_unchecked(
2803 &nlist_data_offset);
2804
2805 SymbolType type = eSymbolTypeInvalid;
2806 const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2807 string_table_offset + nlist.n_strx);
2808
2809 if (symbol_name == NULL__null) {
2810 // No symbol should be NULL, even the symbols with no
2811 // string values should have an offset zero which
2812 // points to an empty C-string
2813 Host::SystemLog(
2814 Host::eSystemLogError,
2815 "error: DSC unmapped local symbol[%u] has invalid "
2816 "string table offset 0x%x in %s, ignoring symbol\n",
2817 entry_index, nlist.n_strx,
2818 module_sp->GetFileSpec().GetPath().c_str());
2819 continue;
2820 }
2821 if (symbol_name[0] == '\0')
2822 symbol_name = NULL__null;
2823
2824 const char *symbol_name_non_abi_mangled = NULL__null;
2825
2826 SectionSP symbol_section;
2827 uint32_t symbol_byte_size = 0;
2828 bool add_nlist = true;
2829 bool is_debug = ((nlist.n_type & N_STAB) != 0);
2830 bool demangled_is_synthesized = false;
2831 bool is_gsym = false;
2832 bool set_value = true;
2833
2834 assert(sym_idx < num_syms)(static_cast <bool> (sym_idx < num_syms) ? void (0) :
__assert_fail ("sym_idx < num_syms", "/build/llvm-toolchain-snapshot-7~svn338205/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 2834, __extension__ __PRETTY_FUNCTION__))
;
2835
2836 sym[sym_idx].SetDebug(is_debug);
2837
2838 if (is_debug) {
2839 switch (nlist.n_type) {
2840 case N_GSYM:
2841 // global symbol: name,,NO_SECT,type,0
2842 // Sometimes the N_GSYM value contains the address.
2843
2844 // FIXME: In the .o files, we have a GSYM and a debug
2845 // symbol for all the ObjC data. They
2846 // have the same address, but we want to ensure that
2847 // we always find only the real symbol, 'cause we
2848 // don't currently correctly attribute the
2849 // GSYM one to the ObjCClass/Ivar/MetaClass
2850 // symbol type. This is a temporary hack to make
2851 // sure the ObjectiveC symbols get treated correctly.
2852 // To do this right, we should coalesce all the GSYM
2853 // & global symbols that have the same address.
2854
2855 is_gsym = true;
2856 sym[sym_idx].SetExternal(true);
2857
2858 if (symbol_name && symbol_name[0] == '_' &&
2859 symbol_name[1] == 'O') {
2860 llvm::StringRef symbol_name_ref(symbol_name);
2861 if (symbol_name_ref.startswith(
2862 g_objc_v2_prefix_class)) {
2863 symbol_name_non_abi_mangled = symbol_name + 1;
2864 symbol_name =
2865 symbol_name + g_objc_v2_prefix_class.size();
2866 type = eSymbolTypeObjCClass;
2867 demangled_is_synthesized = true;
2868
2869 } else if (symbol_name_ref.startswith(
2870 g_objc_v2_prefix_metaclass)) {
2871 symbol_name_non_abi_mangled = symbol_name + 1;
2872 symbol_name = symbol_name +
2873 g_objc_v2_prefix_metaclass.size();
2874 type = eSymbolTypeObjCMetaClass;
2875 demangled_is_synthesized = true;
2876 } else if (symbol_name_ref.startswith(
2877 g_objc_v2_prefix_ivar)) {
2878 symbol_name_non_abi_mangled = symbol_name + 1;
2879 symbol_name =
2880 symbol_name + g_objc_v2_prefix_ivar.size();
2881 type = eSymbolTypeObjCIVar;
2882 demangled_is_synthesized = true;
2883 }
2884 } else {
2885 if (nlist.n_value != 0)
2886 symbol_section = section_info.GetSection(
2887 nlist.n_sect, nlist.n_value);
2888 type = eSymbolTypeData;
2889 }
2890 break;
2891
2892 case N_FNAME:
2893 // procedure name (f77 kludge): name,,NO_SECT,0,0
2894 type = eSymbolTypeCompiler;
2895 break;
2896
2897 case N_FUN:
2898 // procedure: name,,n_sect,linenumber,address
2899 if (symbol_name) {
2900 type = eSymbolTypeCode;
2901 symbol_section = section_info.GetSection(
2902 nlist.n_sect, nlist.n_value);
2903
2904 N_FUN_addr_to_sym_idx.insert(
2905 std::make_pair(nlist.n_value, sym_idx));
2906 // We use the current number of symbols in the
2907 // symbol table in lieu of using nlist_idx in case
2908 // we ever start trimming entries out
2909 N_FUN_indexes.push_back(sym_idx);
2910 } else {
2911 type = eSymbolTypeCompiler;
2912
2913 if (!N_FUN_indexes.empty()) {
2914 // Copy the size of the function into the
2915 // original
2916 // STAB entry so we don't have
2917 // to hunt for it later
2918 symtab->SymbolAtIndex(N_FUN_indexes.back())
2919 ->SetByteSize(nlist.n_value);
2920 N_FUN_indexes.pop_back();
2921 // We don't really need the end function STAB as
2922 // it contains the size which we already placed
2923 // with the original symbol, so don't add it if
2924 // we want a minimal symbol table
2925 add_nlist = false;
2926 }
2927 }
2928 break;
2929
2930 case N_STSYM:
2931 // static symbol: name,,n_sect,type,address
2932 N_STSYM_addr_to_sym_idx.insert(
2933 std::make_pair(nlist.n_value, sym_idx));
2934 symbol_section = section_info.GetSection(
2935 nlist.n_sect, nlist.n_value);
2936 if (symbol_name && symbol_name[0]) {
2937 type = ObjectFile::GetSymbolTypeFromName(
2938 symbol_name + 1, eSymbolTypeData);
2939 }
2940 break;
2941
2942 case N_LCSYM:
2943 // .lcomm symbol: name,,n_sect,type,address
2944 symbol_section = section_info.GetSection(
2945 nlist.n_sect, nlist.n_value);
2946 type = eSymbolTypeCommonBlock;
2947 break;
2948
2949 case N_BNSYM:
2950 // We use the current number of symbols in the symbol
2951 // table in lieu of using nlist_idx in case we ever
2952 // start trimming entries out Skip these if we want
2953 // minimal symbol tables
2954 add_nlist = false;
2955 break;
2956
2957 case N_ENSYM:
2958 // Set the size of the N_BNSYM to the terminating
2959 // index of this N_ENSYM so that we can always skip
2960 // the entire symbol if we need to navigate more
2961 // quickly at the source level when parsing STABS
2962 // Skip these if we want minimal symbol tables
2963 add_nlist = false;
2964 break;
2965
2966 case N_OPT:
2967 // emitted with gcc2_compiled and in gcc source
2968 type = eSymbolTypeCompiler;
2969 break;
2970
2971 case N_RSYM:
2972 // register sym: name,,NO_SECT,type,register
2973 type = eSymbolTypeVariable;
2974 break;
2975
2976 case N_SLINE:
2977 // src line: 0,,n_sect,linenumber,address
2978 symbol_section = section_info.GetSection(
2979 nlist.n_sect, nlist.n_value);
2980 type = eSymbolTypeLineEntry;
2981 break;
2982
2983 case N_SSYM:
2984 // structure elt: name,,NO_SECT,type,struct_offset
2985 type = eSymbolTypeVariableType;
2986 break;
2987
2988 case N_SO:
2989 // source file name
2990 type = eSymbolTypeSourceFile;
2991 if (symbol_name == NULL__null) {
2992 add_nlist = false;
2993 if (N_SO_index != UINT32_MAX(4294967295U)) {
2994 // Set the size of the N_SO to the terminating
2995 // index of this N_SO so that we can always skip
2996 // the entire N_SO if we need to navigate more
2997 // quickly at the source level when parsing STABS
2998 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
2999 symbol_ptr->SetByteSize(sym_idx);
3000 symbol_ptr->SetSizeIsSibling(true);
3001 }
3002 N_NSYM_indexes.clear();
3003 N_INCL_indexes.clear();
3004 N_BRAC_indexes.clear();
3005 N_COMM_indexes.clear();
3006 N_FUN_indexes.clear();
3007 N_SO_index = UINT32_MAX(4294967295U);
3008 } else {
3009 // We use the current number of symbols in the
3010 // symbol table in lieu of using nlist_idx in case
3011 // we ever start trimming entries out
3012 const bool N_SO_has_full_path =
3013 symbol_name[0] == '/';
3014 if (N_SO_has_full_path) {
3015 if ((N_SO_index == sym_idx - 1) &&
3016 ((sym_idx - 1) < num_syms)) {
3017 // We have two consecutive N_SO entries where
3018 // the first contains a directory and the
3019 // second contains a full path.
3020 sym[sym_idx - 1].GetMangled().SetValue(
3021 ConstString(symbol_name), false);
3022 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3023 add_nlist = false;
3024 } else {
3025 // This is the first entry in a N_SO that
3026 // contains a directory or
3027 // a full path to the source file
3028 N_SO_index = sym_idx;
3029 }
3030 } else if ((N_SO_index == sym_idx - 1) &&
3031 ((sym_idx - 1) < num_syms)) {
3032 // This is usually the second N_SO entry that
3033 // contains just the filename, so here we combine
3034 // it with the first one if we are minimizing the
3035 // symbol table
3036 const char *so_path =
3037 sym[sym_idx - 1]
3038 .GetMangled()
3039 .GetDemangledName(
3040 lldb::eLanguageTypeUnknown)
3041 .AsCString();
3042 if (so_path && so_path[0]) {
3043 std::string full_so_path(so_path);
3044 const size_t double_slash_pos =
3045 full_so_path.find("//");
3046 if (double_slash_pos != std::string::npos) {
3047 // The linker has been generating bad N_SO
3048 // entries with doubled up paths
3049 // in the format "%s%s" where the first
3050 // string in the DW_AT_comp_dir, and the
3051 // second is the directory for the source
3052 // file so you end up with a path that looks
3053 // like "/tmp/src//tmp/src/"
3054 FileSpec so_dir(so_path, false);
3055 if (!so_dir.Exists()) {
3056 so_dir.SetFile(
3057 &full_so_path[double_slash_pos + 1],
3058 false);
3059 if (so_dir.Exists()) {
3060 // Trim off the incorrect path
3061 full_so_path.erase(0,
3062 double_slash_pos + 1);
3063 }
3064 }
3065 }
3066 if (*full_so_path.rbegin() != '/')
3067 full_so_path += '/';
3068 full_so_path += symbol_name;
3069 sym[sym_idx - 1].GetMangled().SetValue(
3070 ConstString(full_so_path.c_str()), false);
3071 add_nlist = false;
3072 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3073 }
3074 } else {
3075 // This could be a relative path to a N_SO
3076 N_SO_index = sym_idx;
3077 }
3078 }
3079 break;
3080
3081 case N_OSO:
3082 // object file name: name,,0,0,st_mtime
3083 type = eSymbolTypeObjectFile;
3084 break;
3085
3086 case N_LSYM:
3087 // local sym: name,,NO_SECT,type,offset
3088 type = eSymbolTypeLocal;
3089 break;
3090
3091 //----------------------------------------------------------------------
3092 // INCL scopes
3093 //----------------------------------------------------------------------
3094 case N_BINCL:
3095 // include file beginning: name,,NO_SECT,0,sum We use
3096 // the current number of symbols in the symbol table
3097 // in lieu of using nlist_idx in case we ever start
3098 // trimming entries out
3099 N_INCL_indexes.push_back(sym_idx);
3100 type = eSymbolTypeScopeBegin;
3101 break;
3102
3103 case N_EINCL:
3104 // include file end: name,,NO_SECT,0,0
3105 // Set the size of the N_BINCL to the terminating
3106 // index of this N_EINCL so that we can always skip
3107 // the entire symbol if we need to navigate more
3108 // quickly at the source level when parsing STABS
3109 if (!N_INCL_indexes.empty()) {
3110 symbol_ptr =
3111 symtab->SymbolAtIndex(N_INCL_indexes.back());
3112 symbol_ptr->SetByteSize(sym_idx + 1);
3113 symbol_ptr->SetSizeIsSibling(true);
3114 N_INCL_indexes.pop_back();
3115 }
3116 type = eSymbolTypeScopeEnd;
3117 break;
3118
3119 case N_SOL:
3120 // #included file name: name,,n_sect,0,address
3121 type = eSymbolTypeHeaderFile;
3122
3123 // We currently don't use the header files on darwin
3124 add_nlist = false;
3125 break;
3126
3127 case N_PARAMS:
3128 // compiler parameters: name,,NO_SECT,0,0
3129 type = eSymbolTypeCompiler;
3130 break;
3131
3132 case N_VERSION:
3133 // compiler version: name,,NO_SECT,0,0
3134 type = eSymbolTypeCompiler;
3135 break;
3136
3137 case N_OLEVEL:
3138 // compiler -O level: name,,NO_SECT,0,0
3139 type = eSymbolTypeCompiler;
3140 break;
3141
3142 case N_PSYM:
3143 // parameter: name,,NO_SECT,type,offset
3144 type = eSymbolTypeVariable;
3145 break;
3146
3147 case N_ENTRY:
3148 // alternate entry: name,,n_sect,linenumber,address
3149 symbol_section = section_info.GetSection(
3150 nlist.n_sect, nlist.n_value);
3151 type = eSymbolTypeLineEntry;
3152 break;
3153
3154 //----------------------------------------------------------------------
3155 // Left and Right Braces
3156 //----------------------------------------------------------------------
3157 case N_LBRAC:
3158 // left bracket: 0,,NO_SECT,nesting level,address We
3159 // use the current number of symbols in the symbol
3160 // table in lieu of using nlist_idx in case we ever
3161 // start trimming entries out
3162 symbol_section = section_info.GetSection(
3163 nlist.n_sect, nlist.n_value);
3164 N_BRAC_indexes.push_back(sym_idx);
3165 type = eSymbolTypeScopeBegin;
3166 break;
3167
3168 case N_RBRAC:
3169 // right bracket: 0,,NO_SECT,nesting level,address
3170 // Set the size of the N_LBRAC to the terminating
3171 // index of this N_RBRAC so that we can always skip
3172 // the entire symbol if we need to navigate more
3173 // quickly at the source level when parsing STABS
3174 symbol_section = section_info.GetSection(
3175 nlist.n_sect, nlist.n_value);
3176 if (!N_BRAC_indexes.empty()) {
3177 symbol_ptr =
3178 symtab->SymbolAtIndex(N_BRAC_indexes.back());
3179 symbol_ptr->SetByteSize(sym_idx + 1);
3180 symbol_ptr->SetSizeIsSibling(true);
3181 N_BRAC_indexes.pop_back();
3182 }
3183 type = eSymbolTypeScopeEnd;
3184 break;
3185
3186 case N_EXCL:
3187 // deleted include file: name,,NO_SECT,0,sum
3188 type = eSymbolTypeHeaderFile;
3189 break;
3190
3191 //----------------------------------------------------------------------
3192 // COMM scopes
3193 //----------------------------------------------------------------------
3194 case N_BCOMM:
3195 // begin common: name,,NO_SECT,0,0
3196 // We use the current number of symbols in the symbol
3197 // table in lieu of using nlist_idx in case we ever
3198 // start trimming entries out
3199 type = eSymbolTypeScopeBegin;
3200 N_COMM_indexes.push_back(sym_idx);
3201 break;
3202
3203 case N_ECOML:
3204 // end common (local name): 0,,n_sect,0,address
3205 symbol_section = section_info.GetSection(
3206 nlist.n_sect, nlist.n_value);
3207 // Fall through
3208
3209 case N_ECOMM:
3210 // end common: name,,n_sect,0,0
3211 // Set the size of the N_BCOMM to the terminating
3212 // index of this N_ECOMM/N_ECOML so that we can
3213 // always skip the entire symbol if we need to
3214 // navigate more quickly at the source level when
3215 // parsing STABS
3216 if (!N_COMM_indexes.empty()) {
3217 symbol_ptr =
3218 symtab->SymbolAtIndex(N_COMM_indexes.back());
3219 symbol_ptr->SetByteSize(sym_idx + 1);
3220 symbol_ptr->SetSizeIsSibling(true);
3221 N_COMM_indexes.pop_back();
3222 }
3223 type = eSymbolTypeScopeEnd;
3224 break;
3225
3226 case N_LENG:
3227 // second stab entry with length information
3228 type = eSymbolTypeAdditional;
3229 break;
3230
3231 default:
3232 break;
3233 }
3234 } else {
3235 // uint8_t n_pext = N_PEXT & nlist.n_type;
3236 uint8_t n_type = N_TYPE & nlist.n_type;
3237 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3238
3239 switch (n_type) {
3240 case N_INDR: {
3241 const char *reexport_name_cstr =
3242 strtab_data.PeekCStr(nlist.n_value);
3243 if (reexport_name_cstr && reexport_name_cstr[0]) {
3244 type = eSymbolTypeReExported;
3245 ConstString reexport_name(
3246 reexport_name_cstr +
3247 ((reexport_name_cstr[0] == '_') ? 1 : 0));
3248 sym[sym_idx].SetReExportedSymbolName(reexport_name);
3249 set_value = false;
3250 reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3251 indirect_symbol_names.insert(
3252 ConstString(symbol_name +
3253 ((symbol_name[0] == '_') ? 1 : 0)));
3254 } else
3255 type = eSymbolTypeUndefined;
3256 } break;
3257
3258 case N_UNDF:
3259 if (symbol_name && symbol_name[0]) {
3260 ConstString undefined_name(
3261 symbol_name +
3262 ((symbol_name[0] == '_') ? 1 : 0));
3263 undefined_name_to_desc[undefined_name] =
3264 nlist.n_desc;
3265 }
3266 // Fall through
3267 case N_PBUD:
3268 type = eSymbolTypeUndefined;
3269 break;
3270
3271 case N_ABS:
3272 type = eSymbolTypeAbsolute;
3273 break;
3274
3275 case N_SECT: {
3276 symbol_section = section_info.GetSection(
3277 nlist.n_sect, nlist.n_value);
3278
3279 if (symbol_section == NULL__null) {
3280 // TODO: warn about this?
3281 add_nlist = false;
3282 break;
3283 }
3284
3285 if (TEXT_eh_frame_sectID == nlist.n_sect) {
3286 type = eSymbolTypeException;
3287 } else {
3288 uint32_t section_type =
3289 symbol_section->Get() & SECTION_TYPE;
3290
3291 switch (section_type) {
3292 case S_CSTRING_LITERALS:
3293 type = eSymbolTypeData;
3294 break; // section with only literal C strings
3295 case S_4BYTE_LITERALS:
3296 type = eSymbolTypeData;
3297 break; // section with only 4 byte literals
3298 case S_8BYTE_LITERALS:
3299 type = eSymbolTypeData;
3300 break; // section with only 8 byte literals
3301 case S_LITERAL_POINTERS:
3302 type = eSymbolTypeTrampoline;
3303 break; // section with only pointers to literals
3304 case S_NON_LAZY_SYMBOL_POINTERS:
3305 type = eSymbolTypeTrampoline;
3306 break; // section with only non-lazy symbol
3307 // pointers
3308 case S_LAZY_SYMBOL_POINTERS:
3309 type = eSymbolTypeTrampoline;
3310 break; // section with only lazy symbol pointers
3311 case S_SYMBOL_STUBS:
3312 type = eSymbolTypeTrampoline;
3313 break; // section with only symbol stubs, byte
3314 // size of stub in the reserved2 field
3315 case S_MOD_INIT_FUNC_POINTERS:
3316 type = eSymbolTypeCode;
3317 break; // section with only function pointers for
3318 // initialization
3319 case S_MOD_TERM_FUNC_POINTERS:
3320 type = eSymbolTypeCode;
3321 break; // section with only function pointers for
3322 // termination
3323 case S_INTERPOSING:
3324 type = eSymbolTypeTrampoline;
3325 break; // section with only pairs of function
3326 // pointers for interposing
3327 case S_16BYTE_LITERALS:
3328 type = eSymbolTypeData;
3329 break; // section with only 16 byte literals
3330 case S_DTRACE_DOF:
3331 type = eSymbolTypeInstrumentation;
3332 break;
3333 case S_LAZY_DYLIB_SYMBOL_POINTERS:
3334 type = eSymbolTypeTrampoline;
3335 break;
3336 default:
3337 switch (symbol_section->GetType()) {
3338 case lldb::eSectionTypeCode:
3339 type = eSymbolTypeCode;
3340 break;
3341 case eSectionTypeData:
3342 case eSectionTypeDataCString: // Inlined C string
3343 // data
3344 case eSectionTypeDataCStringPointers: // Pointers
3345 // to C
3346 // string
3347 // data
3348 case eSectionTypeDataSymbolAddress: // Address of
3349 // a symbol in
3350 // the symbol
3351 // table
3352 case eSectionTypeData4:
3353 case eSectionTypeData8:
3354 case eSectionTypeData16:
3355 type = eSymbolTypeData;
3356 break;
3357 default:
3358 break;
3359 }
3360 break;
3361 }
3362
3363 if (type == eSymbolTypeInvalid) {
3364 const char *symbol_sect_name =
3365 symbol_section->GetName().AsCString();
3366 if (symbol_section->IsDescendant(
3367 text_section_sp.get())) {
3368 if (symbol_section->IsClear(
3369 S_ATTR_PURE_INSTRUCTIONS |
3370 S_ATTR_SELF_MODIFYING_CODE |
3371 S_ATTR_SOME_INSTRUCTIONS))
3372 type = eSymbolTypeData;
3373 else
3374 type = eSymbolTypeCode;
3375 } else if (symbol_section->IsDescendant(
3376 data_section_sp.get()) ||
3377 symbol_section->IsDescendant(
3378 data_dirty_section_sp.get()) ||
3379 symbol_section->IsDescendant(
3380 data_const_section_sp.get())) {
3381 if (symbol_sect_name &&
3382 ::strstr(symbol_sect_name, "__objc") ==
3383 symbol_sect_name) {
3384 type = eSymbolTypeRuntime;
3385
3386 if (symbol_name) {
3387 llvm::StringRef symbol_name_ref(
3388 symbol_name);
3389 if (symbol_name_ref.startswith("_OBJC_")) {
3390 static const llvm::StringRef
3391 g_objc_v2_prefix_class(
3392 "_OBJC_CLASS_$_");
3393 static const llvm::StringRef
3394 g_objc_v2_prefix_metaclass(
3395 "_OBJC_METACLASS_$_");
3396 static const llvm::StringRef
3397 g_objc_v2_prefix_ivar(
3398 "_OBJC_IVAR_$_");
3399 if (symbol_name_ref.startswith(
3400 g_objc_v2_prefix_class)) {
3401 symbol_name_non_abi_mangled =
3402 symbol_name + 1;
3403 symbol_name =
3404 symbol_name +
3405 g_objc_v2_prefix_class.size();
3406 type = eSymbolTypeObjCClass;
3407 demangled_is_synthesized = true;
3408 } else if (
3409 symbol_name_ref.startswith(
3410 g_objc_v2_prefix_metaclass)) {
3411 symbol_name_non_abi_mangled =
3412 symbol_name + 1;
3413 symbol_name =
3414 symbol_name +
3415 g_objc_v2_prefix_metaclass.size();
3416 type = eSymbolTypeObjCMetaClass;
3417 demangled_is_synthesized = true;
3418 } else if (symbol_name_ref.startswith(
3419 g_objc_v2_prefix_ivar)) {
3420 symbol_name_non_abi_mangled =
3421 symbol_name + 1;
3422 symbol_name =
3423 symbol_name +
3424 g_objc_v2_prefix_ivar.size();
3425 type = eSymbolTypeObjCIVar;
3426 demangled_is_synthesized = true;
3427 }
3428 }
3429 }
3430 } else if (symbol_sect_name &&
3431 ::strstr(symbol_sect_name,
3432 "__gcc_except_tab") ==
3433 symbol_sect_name) {
3434 type = eSymbolTypeException;
3435 } else {
3436 type = eSymbolTypeData;
3437 }
3438 } else if (symbol_sect_name &&
3439 ::strstr(symbol_sect_name,
3440 "__IMPORT") ==
3441 symbol_sect_name) {
3442 type = eSymbolTypeTrampoline;
3443 } else if (symbol_section->IsDescendant(
3444 objc_section_sp.get())) {
3445 type = eSymbolTypeRuntime;
3446 if (symbol_name && symbol_name[0] == '.') {
3447 llvm::StringRef symbol_name_ref(symbol_name);
3448 static const llvm::StringRef
3449 g_objc_v1_prefix_class(
3450 ".objc_class_name_");
3451 if (symbol_name_ref.startswith(
3452 g_objc_v1_prefix_class)) {
3453 symbol_name_non_abi_mangled = symbol_name;
3454 symbol_name = symbol_name +
3455 g_objc_v1_prefix_class.size();
3456 type = eSymbolTypeObjCClass;
3457 demangled_is_synthesized = true;
3458 }
3459 }
3460 }
3461 }
3462 }
3463 } break;
3464 }
3465 }
3466
3467 if (add_nlist) {
3468 uint64_t symbol_value = nlist.n_value;
3469 if (symbol_name_non_abi_mangled) {
3470 sym[sym_idx].GetMangled().SetMangledName(
3471 ConstString(symbol_name_non_abi_mangled));
3472 sym[sym_idx].GetMangled().SetDemangledName(
3473 ConstString(symbol_name));
3474 } else {
3475 bool symbol_name_is_mangled = false;
3476
3477 if (symbol_name && symbol_name[0] == '_') {
3478 symbol_name_is_mangled = symbol_name[1] == '_';
3479 symbol_name++; // Skip the leading underscore
3480 }
3481
3482 if (symbol_name) {
3483 ConstString const_symbol_name(symbol_name);
3484 sym[sym_idx].GetMangled().SetValue(
3485 const_symbol_name, symbol_name_is_mangled);
3486 if (is_gsym && is_debug) {
3487 const char *gsym_name =
3488 sym[sym_idx]
3489 .GetMangled()
3490 .GetName(lldb::eLanguageTypeUnknown,
3491 Mangled::ePreferMangled)
3492 .GetCString();
3493 if (gsym_name)
3494 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3495 }
3496 }
3497 }
3498 if (symbol_section) {
3499 const addr_t section_file_addr =
3500 symbol_section->GetFileAddress();
3501 if (symbol_byte_size == 0 &&
3502 function_starts_count > 0) {
3503 addr_t symbol_lookup_file_addr = nlist.n_value;
3504 // Do an exact address match for non-ARM addresses,
3505 // else get the closest since the symbol might be a
3506 // thumb symbol which has an address with bit zero
3507 // set
3508 FunctionStarts::Entry *func_start_entry =
3509 function_starts.FindEntry(
3510 symbol_lookup_file_addr, !is_arm);
3511 if (is_arm && func_start_entry) {
3512 // Verify that the function start address is the
3513 // symbol address (ARM) or the symbol address + 1
3514 // (thumb)
3515 if (func_start_entry->addr !=
3516 symbol_lookup_file_addr &&
3517 func_start_entry->addr !=
3518 (symbol_lookup_file_addr + 1)) {
3519 // Not the right entry, NULL it out...
3520 func_start_entry = NULL__null;
3521 }
3522 }
3523 if (func_start_entry) {
3524 func_start_entry->data = true;
3525
3526 addr_t symbol_file_addr = func_start_entry->addr;
3527 uint32_t symbol_flags = 0;
3528 if (is_arm) {
3529 if (symbol_file_addr & 1)
3530 symbol_flags =
3531 MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008;
3532 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
3533 }
3534
3535 const FunctionStarts::Entry
3536 *next_func_start_entry =
3537 function_starts.FindNextEntry(
3538 func_start_entry);
3539 const addr_t section_end_file_addr =
3540 section_file_addr +
3541 symbol_section->GetByteSize();
3542 if (next_func_start_entry) {
3543 addr_t next_symbol_file_addr =
3544 next_func_start_entry->addr;
3545 // Be sure the clear the Thumb address bit when
3546 // we calculate the size from the current and
3547 // next address
3548 if (is_arm)
3549 next_symbol_file_addr &=
3550 THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
3551 symbol_byte_size = std::min<lldb::addr_t>(
3552 next_symbol_file_addr - symbol_file_addr,
3553 section_end_file_addr - symbol_file_addr);
3554 } else {
3555 symbol_byte_size =
3556 section_end_file_addr - symbol_file_addr;
3557 }
3558 }
3559 }
3560 symbol_value -= section_file_addr;
3561 }
3562
3563 if (is_debug == false) {
3564 if (type == eSymbolTypeCode) {
3565 // See if we can find a N_FUN entry for any code
3566 // symbols. If we do find a match, and the name
3567 // matches, then we can merge the two into just the
3568 // function symbol to avoid duplicate entries in
3569 // the symbol table
3570 std::pair<ValueToSymbolIndexMap::const_iterator,
3571 ValueToSymbolIndexMap::const_iterator>
3572 range;
3573 range = N_FUN_addr_to_sym_idx.equal_range(
3574 nlist.n_value);
3575 if (range.first != range.second) {
3576 bool found_it = false;
3577 for (ValueToSymbolIndexMap::const_iterator pos =
3578 range.first;
3579 pos != range.second; ++pos) {
3580 if (sym[sym_idx].GetMangled().GetName(
3581 lldb::eLanguageTypeUnknown,
3582 Mangled::ePreferMangled) ==
3583 sym[pos->second].GetMangled().GetName(
3584 lldb::eLanguageTypeUnknown,
3585 Mangled::ePreferMangled)) {
3586 m_nlist_idx_to_sym_idx[nlist_idx] =
3587 pos->second;
3588 // We just need the flags from the linker
3589 // symbol, so put these flags
3590 // into the N_FUN flags to avoid duplicate
3591 // symbols in the symbol table
3592 sym[pos->second].SetExternal(
3593 sym[sym_idx].IsExternal());
3594 sym[pos->second].SetFlags(nlist.n_type << 16 |
3595 nlist.n_desc);
3596 if (resolver_addresses.find(nlist.n_value) !=
3597 resolver_addresses.end())
3598 sym[pos->second].SetType(
3599 eSymbolTypeResolver);
3600 sym[sym_idx].Clear();
3601 found_it = true;
3602 break;
3603 }
3604 }
3605 if (found_it)
3606 continue;
3607 } else {
3608 if (resolver_addresses.find(nlist.n_value) !=
3609 resolver_addresses.end())
3610 type = eSymbolTypeResolver;
3611 }
3612 } else if (type == eSymbolTypeData ||
3613 type == eSymbolTypeObjCClass ||
3614 type == eSymbolTypeObjCMetaClass ||
3615 type == eSymbolTypeObjCIVar) {
3616 // See if we can find a N_STSYM entry for any data
3617 // symbols. If we do find a match, and the name
3618 // matches, then we can merge the two into just the
3619 // Static symbol to avoid duplicate entries in the
3620 // symbol table
3621 std::pair<ValueToSymbolIndexMap::const_iterator,
3622 ValueToSymbolIndexMap::const_iterator>
3623 range;
3624 range = N_STSYM_addr_to_sym_idx.equal_range(
3625 nlist.n_value);
3626 if (range.first != range.second) {
3627 bool found_it = false;
3628 for (ValueToSymbolIndexMap::const_iterator pos =
3629 range.first;
3630 pos != range.second; ++pos) {
3631 if (sym[sym_idx].GetMangled().GetName(
3632 lldb::eLanguageTypeUnknown,
3633 Mangled::ePreferMangled) ==
3634 sym[pos->second].GetMangled().GetName(
3635 lldb::eLanguageTypeUnknown,
3636 Mangled::ePreferMangled)) {
3637 m_nlist_idx_to_sym_idx[nlist_idx] =
3638 pos->second;
3639 // We just need the flags from the linker
3640 // symbol, so put these flags
3641 // into the N_STSYM flags to avoid duplicate
3642 // symbols in the symbol table
3643 sym[pos->second].SetExternal(
3644 sym[sym_idx].IsExternal());
3645 sym[pos->second].SetFlags(nlist.n_type << 16 |
3646 nlist.n_desc);
3647 sym[sym_idx].Clear();
3648 found_it = true;
3649 break;
3650 }
3651 }
3652 if (found_it)
3653 continue;
3654 } else {
3655 const char *gsym_name =
3656 sym[sym_idx]
3657 .GetMangled()
3658 .GetName(lldb::eLanguageTypeUnknown,
3659 Mangled::ePreferMangled)
3660 .GetCString();
3661 if (gsym_name) {
3662 // Combine N_GSYM stab entries with the non
3663 // stab symbol
3664 ConstNameToSymbolIndexMap::const_iterator pos =
3665 N_GSYM_name_to_sym_idx.find(gsym_name);
3666 if (pos != N_GSYM_name_to_sym_idx.end()) {
3667 const uint32_t GSYM_sym_idx = pos->second;
3668 m_nlist_idx_to_sym_idx[nlist_idx] =
3669 GSYM_sym_idx;
3670 // Copy the address, because often the N_GSYM
3671 // address has an invalid address of zero
3672 // when the global is a common symbol
3673 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3674 symbol_section);
3675 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3676 symbol_value);
3677 // We just need the flags from the linker
3678 // symbol, so put these flags
3679 // into the N_GSYM flags to avoid duplicate
3680 // symbols in the symbol table
3681 sym[GSYM_sym_idx].SetFlags(
3682 nlist.n_type << 16 | nlist.n_desc);
3683 sym[sym_idx].Clear();
3684 continue;
3685 }
3686 }
3687 }
3688 }
3689 }
3690
3691 sym[sym_idx].SetID(nlist_idx);
3692 sym[sym_idx].SetType(type);
3693 if (set_value) {
3694 sym[sym_idx].GetAddressRef().SetSection(
3695 symbol_section);
3696 sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3697 }
3698 sym[sym_idx].SetFlags(nlist.n_type << 16 |
3699 nlist.n_desc);
3700
3701 if (symbol_byte_size > 0)
3702 sym[sym_idx].SetByteSize(symbol_byte_size);
3703
3704 if (demangled_is_synthesized)
3705 sym[sym_idx].SetDemangledNameIsSynthesized(true);
3706 ++sym_idx;
3707 } else {
3708 sym[sym_idx].Clear();
3709 }
3710 }
3711 /////////////////////////////
3712 }
3713 break; // No more entries to consider
3714 }
3715 }
3716
3717 for (const auto &pos : reexport_shlib_needs_fixup) {
3718 const auto undef_pos = undefined_name_to_desc.find(pos.second);
3719 if (undef_pos != undefined_name_to_desc.end()) {
3720 const uint8_t dylib_ordinal =
3721 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3722 if (dylib_ordinal > 0 &&
3723 dylib_ordinal < dylib_files.GetSize())
3724 sym[pos.first].SetReExportedSymbolSharedLibrary(
3725 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3726 }
3727 }
3728 }
3729 }
3730 }
3731 }
3732 }
3733
3734 // Must reset this in case it was mutated above!
3735 nlist_data_offset = 0;
3736#endif
3737
3738 if (nlist_data.GetByteSize() > 0) {
41
Taking true branch
3739
3740 // If the sym array was not created while parsing the DSC unmapped
3741 // symbols, create it now.
3742 if (sym == NULL__null) {
42
Taking true branch
3743 sym = symtab->Resize(symtab_load_command.nsyms +
3744 m_dysymtab.nindirectsyms);
3745 num_syms = symtab->GetNumSymbols();
3746 }
3747
3748 if (unmapped_local_symbols_found) {
43
Taking false branch
3749 assert(m_dysymtab.ilocalsym == 0)(static_cast <bool> (m_dysymtab.ilocalsym == 0) ? void (
0) : __assert_fail ("m_dysymtab.ilocalsym == 0", "/build/llvm-toolchain-snapshot-7~svn338205/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 3749, __extension__ __PRETTY_FUNCTION__))
;
3750 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3751 nlist_idx = m_dysymtab.nlocalsym;
3752 } else {
3753 nlist_idx = 0;
3754 }
3755
3756 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
3757 typedef std::map<uint32_t, ConstString> SymbolIndexToName;
3758 UndefinedNameToDescMap undefined_name_to_desc;
3759 SymbolIndexToName reexport_shlib_needs_fixup;
3760 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
44
Loop condition is true. Entering loop body
3761 struct nlist_64 nlist;
3762 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset,
45
Taking false branch
3763 nlist_byte_size))
3764 break;
3765
3766 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
3767 nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
3768 nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
3769 nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
3770 nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
3771
3772 SymbolType type = eSymbolTypeInvalid;
3773 const char *symbol_name = NULL__null;
3774
3775 if (have_strtab_data) {
46
Taking true branch
3776 symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3777
3778 if (symbol_name == NULL__null) {
47
Assuming 'symbol_name' is not equal to NULL
48
Taking false branch
3779 // No symbol should be NULL, even the symbols with no string values
3780 // should have an offset zero which points to an empty C-string
3781 Host::SystemLog(Host::eSystemLogError,
3782 "error: symbol[%u] has invalid string table offset "
3783 "0x%x in %s, ignoring symbol\n",
3784 nlist_idx, nlist.n_strx,
3785 module_sp->GetFileSpec().GetPath().c_str());
3786 continue;
3787 }
3788 if (symbol_name[0] == '\0')
49
Assuming the condition is true
50
Taking true branch
3789 symbol_name = NULL__null;
51
Null pointer value stored to 'symbol_name'
3790 } else {
3791 const addr_t str_addr = strtab_addr + nlist.n_strx;
3792 Status str_error;
3793 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3794 str_error))
3795 symbol_name = memory_symbol_name.c_str();
3796 }
3797 const char *symbol_name_non_abi_mangled = NULL__null;
3798
3799 SectionSP symbol_section;
3800 lldb::addr_t symbol_byte_size = 0;
3801 bool add_nlist = true;
3802 bool is_gsym = false;
3803 bool is_debug = ((nlist.n_type & N_STAB) != 0);
52
Assuming the condition is false
3804 bool demangled_is_synthesized = false;
3805 bool set_value = true;
3806 assert(sym_idx < num_syms)(static_cast <bool> (sym_idx < num_syms) ? void (0) :
__assert_fail ("sym_idx < num_syms", "/build/llvm-toolchain-snapshot-7~svn338205/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 3806, __extension__ __PRETTY_FUNCTION__))
;
3807
3808 sym[sym_idx].SetDebug(is_debug);
3809
3810 if (is_debug) {
53
Taking false branch
3811 switch (nlist.n_type) {
3812 case N_GSYM:
3813 // global symbol: name,,NO_SECT,type,0
3814 // Sometimes the N_GSYM value contains the address.
3815
3816 // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3817 // the ObjC data. They
3818 // have the same address, but we want to ensure that we always find
3819 // only the real symbol, 'cause we don't currently correctly
3820 // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3821 // type. This is a temporary hack to make sure the ObjectiveC
3822 // symbols get treated correctly. To do this right, we should
3823 // coalesce all the GSYM & global symbols that have the same
3824 // address.
3825 is_gsym = true;
3826 sym[sym_idx].SetExternal(true);
3827
3828 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3829 llvm::StringRef symbol_name_ref(symbol_name);
3830 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3831 symbol_name_non_abi_mangled = symbol_name + 1;
3832 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3833 type = eSymbolTypeObjCClass;
3834 demangled_is_synthesized = true;
3835
3836 } else if (symbol_name_ref.startswith(
3837 g_objc_v2_prefix_metaclass)) {
3838 symbol_name_non_abi_mangled = symbol_name + 1;
3839 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3840 type = eSymbolTypeObjCMetaClass;
3841 demangled_is_synthesized = true;
3842 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3843 symbol_name_non_abi_mangled = symbol_name + 1;
3844 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3845 type = eSymbolTypeObjCIVar;
3846 demangled_is_synthesized = true;
3847 }
3848 } else {
3849 if (nlist.n_value != 0)
3850 symbol_section =
3851 section_info.GetSection(nlist.n_sect, nlist.n_value);
3852 type = eSymbolTypeData;
3853 }
3854 break;
3855
3856 case N_FNAME:
3857 // procedure name (f77 kludge): name,,NO_SECT,0,0
3858 type = eSymbolTypeCompiler;
3859 break;
3860
3861 case N_FUN:
3862 // procedure: name,,n_sect,linenumber,address
3863 if (symbol_name) {
3864 type = eSymbolTypeCode;
3865 symbol_section =
3866 section_info.GetSection(nlist.n_sect, nlist.n_value);
3867
3868 N_FUN_addr_to_sym_idx.insert(
3869 std::make_pair(nlist.n_value, sym_idx));
3870 // We use the current number of symbols in the symbol table in
3871 // lieu of using nlist_idx in case we ever start trimming entries
3872 // out
3873 N_FUN_indexes.push_back(sym_idx);
3874 } else {
3875 type = eSymbolTypeCompiler;
3876
3877 if (!N_FUN_indexes.empty()) {
3878 // Copy the size of the function into the original STAB entry
3879 // so we don't have to hunt for it later
3880 symtab->SymbolAtIndex(N_FUN_indexes.back())
3881 ->SetByteSize(nlist.n_value);
3882 N_FUN_indexes.pop_back();
3883 // We don't really need the end function STAB as it contains
3884 // the size which we already placed with the original symbol,
3885 // so don't add it if we want a minimal symbol table
3886 add_nlist = false;
3887 }
3888 }
3889 break;
3890
3891 case N_STSYM:
3892 // static symbol: name,,n_sect,type,address
3893 N_STSYM_addr_to_sym_idx.insert(
3894 std::make_pair(nlist.n_value, sym_idx));
3895 symbol_section =
3896 section_info.GetSection(nlist.n_sect, nlist.n_value);
3897 if (symbol_name && symbol_name[0]) {
3898 type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3899 eSymbolTypeData);
3900 }
3901 break;
3902
3903 case N_LCSYM:
3904 // .lcomm symbol: name,,n_sect,type,address
3905 symbol_section =
3906 section_info.GetSection(nlist.n_sect, nlist.n_value);
3907 type = eSymbolTypeCommonBlock;
3908 break;
3909
3910 case N_BNSYM:
3911 // We use the current number of symbols in the symbol table in lieu
3912 // of using nlist_idx in case we ever start trimming entries out
3913 // Skip these if we want minimal symbol tables
3914 add_nlist = false;
3915 break;
3916
3917 case N_ENSYM:
3918 // Set the size of the N_BNSYM to the terminating index of this
3919 // N_ENSYM so that we can always skip the entire symbol if we need
3920 // to navigate more quickly at the source level when parsing STABS
3921 // Skip these if we want minimal symbol tables
3922 add_nlist = false;
3923 break;
3924
3925 case N_OPT:
3926 // emitted with gcc2_compiled and in gcc source
3927 type = eSymbolTypeCompiler;
3928 break;
3929
3930 case N_RSYM:
3931 // register sym: name,,NO_SECT,type,register
3932 type = eSymbolTypeVariable;
3933 break;
3934
3935 case N_SLINE:
3936 // src line: 0,,n_sect,linenumber,address
3937 symbol_section =
3938 section_info.GetSection(nlist.n_sect, nlist.n_value);
3939 type = eSymbolTypeLineEntry;
3940 break;
3941
3942 case N_SSYM:
3943 // structure elt: name,,NO_SECT,type,struct_offset
3944 type = eSymbolTypeVariableType;
3945 break;
3946
3947 case N_SO:
3948 // source file name
3949 type = eSymbolTypeSourceFile;
3950 if (symbol_name == NULL__null) {
3951 add_nlist = false;
3952 if (N_SO_index != UINT32_MAX(4294967295U)) {
3953 // Set the size of the N_SO to the terminating index of this
3954 // N_SO so that we can always skip the entire N_SO if we need
3955 // to navigate more quickly at the source level when parsing
3956 // STABS
3957 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3958 symbol_ptr->SetByteSize(sym_idx);
3959 symbol_ptr->SetSizeIsSibling(true);
3960 }
3961 N_NSYM_indexes.clear();
3962 N_INCL_indexes.clear();
3963 N_BRAC_indexes.clear();
3964 N_COMM_indexes.clear();
3965 N_FUN_indexes.clear();
3966 N_SO_index = UINT32_MAX(4294967295U);
3967 } else {
3968 // We use the current number of symbols in the symbol table in
3969 // lieu of using nlist_idx in case we ever start trimming entries
3970 // out
3971 const bool N_SO_has_full_path = symbol_name[0] == '/';
3972 if (N_SO_has_full_path) {
3973 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3974 // We have two consecutive N_SO entries where the first
3975 // contains a directory and the second contains a full path.
3976 sym[sym_idx - 1].GetMangled().SetValue(
3977 ConstString(symbol_name), false);
3978 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3979 add_nlist = false;
3980 } else {
3981 // This is the first entry in a N_SO that contains a
3982 // directory or a full path to the source file
3983 N_SO_index = sym_idx;
3984 }
3985 } else if ((N_SO_index == sym_idx - 1) &&
3986 ((sym_idx - 1) < num_syms)) {
3987 // This is usually the second N_SO entry that contains just the
3988 // filename, so here we combine it with the first one if we are
3989 // minimizing the symbol table
3990 const char *so_path =
3991 sym[sym_idx - 1]
3992 .GetMangled()
3993 .GetDemangledName(lldb::eLanguageTypeUnknown)
3994 .AsCString();
3995 if (so_path && so_path[0]) {
3996 std::string full_so_path(so_path);
3997 const size_t double_slash_pos = full_so_path.find("//");
3998 if (double_slash_pos != std::string::npos) {
3999 // The linker has been generating bad N_SO entries with
4000 // doubled up paths in the format "%s%s" where the first
4001 // string in the DW_AT_comp_dir, and the second is the
4002 // directory for the source file so you end up with a path
4003 // that looks like "/tmp/src//tmp/src/"
4004 FileSpec so_dir(so_path, false);
4005 if (!so_dir.Exists()) {
4006 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false,
4007 FileSpec::Style::native);
4008 if (so_dir.Exists()) {
4009 // Trim off the incorrect path
4010 full_so_path.erase(0, double_slash_pos + 1);
4011 }
4012 }
4013 }
4014 if (*full_so_path.rbegin() != '/')
4015 full_so_path += '/';
4016 full_so_path += symbol_name;
4017 sym[sym_idx - 1].GetMangled().SetValue(
4018 ConstString(full_so_path.c_str()), false);
4019 add_nlist = false;
4020 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4021 }
4022 } else {
4023 // This could be a relative path to a N_SO
4024 N_SO_index = sym_idx;
4025 }
4026 }
4027 break;
4028
4029 case N_OSO:
4030 // object file name: name,,0,0,st_mtime
4031 type = eSymbolTypeObjectFile;
4032 break;
4033
4034 case N_LSYM:
4035 // local sym: name,,NO_SECT,type,offset
4036 type = eSymbolTypeLocal;
4037 break;
4038
4039 //----------------------------------------------------------------------
4040 // INCL scopes
4041 //----------------------------------------------------------------------
4042 case N_BINCL:
4043 // include file beginning: name,,NO_SECT,0,sum We use the current
4044 // number of symbols in the symbol table in lieu of using nlist_idx
4045 // in case we ever start trimming entries out
4046 N_INCL_indexes.push_back(sym_idx);
4047 type = eSymbolTypeScopeBegin;
4048 break;
4049
4050 case N_EINCL:
4051 // include file end: name,,NO_SECT,0,0
4052 // Set the size of the N_BINCL to the terminating index of this
4053 // N_EINCL so that we can always skip the entire symbol if we need
4054 // to navigate more quickly at the source level when parsing STABS
4055 if (!N_INCL_indexes.empty()) {
4056 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4057 symbol_ptr->SetByteSize(sym_idx + 1);
4058 symbol_ptr->SetSizeIsSibling(true);
4059 N_INCL_indexes.pop_back();
4060 }
4061 type = eSymbolTypeScopeEnd;
4062 break;
4063
4064 case N_SOL:
4065 // #included file name: name,,n_sect,0,address
4066 type = eSymbolTypeHeaderFile;
4067
4068 // We currently don't use the header files on darwin
4069 add_nlist = false;
4070 break;
4071
4072 case N_PARAMS:
4073 // compiler parameters: name,,NO_SECT,0,0
4074 type = eSymbolTypeCompiler;
4075 break;
4076
4077 case N_VERSION:
4078 // compiler version: name,,NO_SECT,0,0
4079 type = eSymbolTypeCompiler;
4080 break;
4081
4082 case N_OLEVEL:
4083 // compiler -O level: name,,NO_SECT,0,0
4084 type = eSymbolTypeCompiler;
4085 break;
4086
4087 case N_PSYM:
4088 // parameter: name,,NO_SECT,type,offset
4089 type = eSymbolTypeVariable;
4090 break;
4091
4092 case N_ENTRY:
4093 // alternate entry: name,,n_sect,linenumber,address
4094 symbol_section =
4095 section_info.GetSection(nlist.n_sect, nlist.n_value);
4096 type = eSymbolTypeLineEntry;
4097 break;
4098
4099 //----------------------------------------------------------------------
4100 // Left and Right Braces
4101 //----------------------------------------------------------------------
4102 case N_LBRAC:
4103 // left bracket: 0,,NO_SECT,nesting level,address We use the
4104 // current number of symbols in the symbol table in lieu of using
4105 // nlist_idx in case we ever start trimming entries out
4106 symbol_section =
4107 section_info.GetSection(nlist.n_sect, nlist.n_value);
4108 N_BRAC_indexes.push_back(sym_idx);
4109 type = eSymbolTypeScopeBegin;
4110 break;
4111
4112 case N_RBRAC:
4113 // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4114 // the N_LBRAC to the terminating index of this N_RBRAC so that we
4115 // can always skip the entire symbol if we need to navigate more
4116 // quickly at the source level when parsing STABS
4117 symbol_section =
4118 section_info.GetSection(nlist.n_sect, nlist.n_value);
4119 if (!N_BRAC_indexes.empty()) {
4120 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4121 symbol_ptr->SetByteSize(sym_idx + 1);
4122 symbol_ptr->SetSizeIsSibling(true);
4123 N_BRAC_indexes.pop_back();
4124 }
4125 type = eSymbolTypeScopeEnd;
4126 break;
4127
4128 case N_EXCL:
4129 // deleted include file: name,,NO_SECT,0,sum
4130 type = eSymbolTypeHeaderFile;
4131 break;
4132
4133 //----------------------------------------------------------------------
4134 // COMM scopes
4135 //----------------------------------------------------------------------
4136 case N_BCOMM:
4137 // begin common: name,,NO_SECT,0,0
4138 // We use the current number of symbols in the symbol table in lieu
4139 // of using nlist_idx in case we ever start trimming entries out
4140 type = eSymbolTypeScopeBegin;
4141 N_COMM_indexes.push_back(sym_idx);
4142 break;
4143
4144 case N_ECOML:
4145 // end common (local name): 0,,n_sect,0,address
4146 symbol_section =
4147 section_info.GetSection(nlist.n_sect, nlist.n_value);
4148 LLVM_FALLTHROUGH[[clang::fallthrough]];
4149
4150 case N_ECOMM:
4151 // end common: name,,n_sect,0,0
4152 // Set the size of the N_BCOMM to the terminating index of this
4153 // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4154 // we need to navigate more quickly at the source level when
4155 // parsing STABS
4156 if (!N_COMM_indexes.empty()) {
4157 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4158 symbol_ptr->SetByteSize(sym_idx + 1);
4159 symbol_ptr->SetSizeIsSibling(true);
4160 N_COMM_indexes.pop_back();
4161 }
4162 type = eSymbolTypeScopeEnd;
4163 break;
4164
4165 case N_LENG:
4166 // second stab entry with length information
4167 type = eSymbolTypeAdditional;
4168 break;
4169
4170 default:
4171 break;
4172 }
4173 } else {
4174 // uint8_t n_pext = N_PEXT & nlist.n_type;
4175 uint8_t n_type = N_TYPE & nlist.n_type;
4176 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
54
Assuming the condition is false
4177
4178 switch (n_type) {
55
Control jumps to 'case N_INDR:' at line 4179
4179 case N_INDR: {
4180 const char *reexport_name_cstr =
4181 strtab_data.PeekCStr(nlist.n_value);
4182 if (reexport_name_cstr && reexport_name_cstr[0]) {
56
Assuming 'reexport_name_cstr' is non-null
57
Assuming the condition is true
58
Taking true branch
4183 type = eSymbolTypeReExported;
4184 ConstString reexport_name(
4185 reexport_name_cstr +
4186 ((reexport_name_cstr[0] == '_') ? 1 : 0));
59
Assuming the condition is false
60
'?' condition is false
4187 sym[sym_idx].SetReExportedSymbolName(reexport_name);
4188 set_value = false;
4189 reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4190 indirect_symbol_names.insert(
4191 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
61
Array access (from variable 'symbol_name') results in a null pointer dereference
4192 } else
4193 type = eSymbolTypeUndefined;
4194 } break;
4195
4196 case N_UNDF:
4197 if (symbol_name && symbol_name[0]) {
4198 ConstString undefined_name(symbol_name +
4199 ((symbol_name[0] == '_') ? 1 : 0));
4200 undefined_name_to_desc[undefined_name] = nlist.n_desc;
4201 }
4202 LLVM_FALLTHROUGH[[clang::fallthrough]];
4203
4204 case N_PBUD:
4205 type = eSymbolTypeUndefined;
4206 break;
4207
4208 case N_ABS:
4209 type = eSymbolTypeAbsolute;
4210 break;
4211
4212 case N_SECT: {
4213 symbol_section =
4214 section_info.GetSection(nlist.n_sect, nlist.n_value);
4215
4216 if (!symbol_section) {
4217 // TODO: warn about this?
4218 add_nlist = false;
4219 break;
4220 }
4221
4222 if (TEXT_eh_frame_sectID == nlist.n_sect) {
4223 type = eSymbolTypeException;
4224 } else {
4225 uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4226
4227 switch (section_type) {
4228 case S_CSTRING_LITERALS:
4229 type = eSymbolTypeData;
4230 break; // section with only literal C strings
4231 case S_4BYTE_LITERALS:
4232 type = eSymbolTypeData;
4233 break; // section with only 4 byte literals
4234 case S_8BYTE_LITERALS:
4235 type = eSymbolTypeData;
4236 break; // section with only 8 byte literals
4237 case S_LITERAL_POINTERS:
4238 type = eSymbolTypeTrampoline;
4239 break; // section with only pointers to literals
4240 case S_NON_LAZY_SYMBOL_POINTERS:
4241 type = eSymbolTypeTrampoline;
4242 break; // section with only non-lazy symbol pointers
4243 case S_LAZY_SYMBOL_POINTERS:
4244 type = eSymbolTypeTrampoline;
4245 break; // section with only lazy symbol pointers
4246 case S_SYMBOL_STUBS:
4247 type = eSymbolTypeTrampoline;
4248 break; // section with only symbol stubs, byte size of stub in
4249 // the reserved2 field
4250 case S_MOD_INIT_FUNC_POINTERS:
4251 type = eSymbolTypeCode;
4252 break; // section with only function pointers for initialization
4253 case S_MOD_TERM_FUNC_POINTERS:
4254 type = eSymbolTypeCode;
4255 break; // section with only function pointers for termination
4256 case S_INTERPOSING:
4257 type = eSymbolTypeTrampoline;
4258 break; // section with only pairs of function pointers for
4259 // interposing
4260 case S_16BYTE_LITERALS:
4261 type = eSymbolTypeData;
4262 break; // section with only 16 byte literals
4263 case S_DTRACE_DOF:
4264 type = eSymbolTypeInstrumentation;
4265 break;
4266 case S_LAZY_DYLIB_SYMBOL_POINTERS:
4267 type = eSymbolTypeTrampoline;
4268 break;
4269 default:
4270 switch (symbol_section->GetType()) {
4271 case lldb::eSectionTypeCode:
4272 type = eSymbolTypeCode;
4273 break;
4274 case eSectionTypeData:
4275 case eSectionTypeDataCString: // Inlined C string data
4276 case eSectionTypeDataCStringPointers: // Pointers to C string
4277 // data
4278 case eSectionTypeDataSymbolAddress: // Address of a symbol in
4279 // the symbol table
4280 case eSectionTypeData4:
4281 case eSectionTypeData8:
4282 case eSectionTypeData16:
4283 type = eSymbolTypeData;
4284 break;
4285 default:
4286 break;
4287 }
4288 break;
4289 }
4290
4291 if (type == eSymbolTypeInvalid) {
4292 const char *symbol_sect_name =
4293 symbol_section->GetName().AsCString();
4294 if (symbol_section->IsDescendant(text_section_sp.get())) {
4295 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4296 S_ATTR_SELF_MODIFYING_CODE |
4297 S_ATTR_SOME_INSTRUCTIONS))
4298 type = eSymbolTypeData;
4299 else
4300 type = eSymbolTypeCode;
4301 } else if (symbol_section->IsDescendant(
4302 data_section_sp.get()) ||
4303 symbol_section->IsDescendant(
4304 data_dirty_section_sp.get()) ||
4305 symbol_section->IsDescendant(
4306 data_const_section_sp.get())) {
4307 if (symbol_sect_name &&
4308 ::strstr(symbol_sect_name, "__objc") ==
4309 symbol_sect_name) {
4310 type = eSymbolTypeRuntime;
4311
4312 if (symbol_name) {
4313 llvm::StringRef symbol_name_ref(symbol_name);
4314 if (symbol_name_ref.startswith("_OBJC_")) {
4315 static const llvm::StringRef g_objc_v2_prefix_class(
4316 "_OBJC_CLASS_$_");
4317 static const llvm::StringRef g_objc_v2_prefix_metaclass(
4318 "_OBJC_METACLASS_$_");
4319 static const llvm::StringRef g_objc_v2_prefix_ivar(
4320 "_OBJC_IVAR_$_");
4321 if (symbol_name_ref.startswith(
4322 g_objc_v2_prefix_class)) {
4323 symbol_name_non_abi_mangled = symbol_name + 1;
4324 symbol_name =
4325 symbol_name + g_objc_v2_prefix_class.size();
4326 type = eSymbolTypeObjCClass;
4327 demangled_is_synthesized = true;
4328 } else if (symbol_name_ref.startswith(
4329 g_objc_v2_prefix_metaclass)) {
4330 symbol_name_non_abi_mangled = symbol_name + 1;
4331 symbol_name =
4332 symbol_name + g_objc_v2_prefix_metaclass.size();
4333 type = eSymbolTypeObjCMetaClass;
4334 demangled_is_synthesized = true;
4335 } else if (symbol_name_ref.startswith(
4336 g_objc_v2_prefix_ivar)) {
4337 symbol_name_non_abi_mangled = symbol_name + 1;
4338 symbol_name =
4339 symbol_name + g_objc_v2_prefix_ivar.size();
4340 type = eSymbolTypeObjCIVar;
4341 demangled_is_synthesized = true;
4342 }
4343 }
4344 }
4345 } else if (symbol_sect_name &&
4346 ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4347 symbol_sect_name) {
4348 type = eSymbolTypeException;
4349 } else {
4350 type = eSymbolTypeData;
4351 }
4352 } else if (symbol_sect_name &&
4353 ::strstr(symbol_sect_name, "__IMPORT") ==
4354 symbol_sect_name) {
4355 type = eSymbolTypeTrampoline;
4356 } else if (symbol_section->IsDescendant(
4357 objc_section_sp.get())) {
4358 type = eSymbolTypeRuntime;
4359 if (symbol_name && symbol_name[0] == '.') {
4360 llvm::StringRef symbol_name_ref(symbol_name);
4361 static const llvm::StringRef g_objc_v1_prefix_class(
4362 ".objc_class_name_");
4363 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4364 symbol_name_non_abi_mangled = symbol_name;
4365 symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4366 type = eSymbolTypeObjCClass;
4367 demangled_is_synthesized = true;
4368 }
4369 }
4370 }
4371 }
4372 }
4373 } break;
4374 }
4375 }
4376
4377 if (add_nlist) {
4378 uint64_t symbol_value = nlist.n_value;
4379
4380 if (symbol_name_non_abi_mangled) {
4381 sym[sym_idx].GetMangled().SetMangledName(
4382 ConstString(symbol_name_non_abi_mangled));
4383 sym[sym_idx].GetMangled().SetDemangledName(
4384 ConstString(symbol_name));
4385 } else {
4386 bool symbol_name_is_mangled = false;
4387
4388 if (symbol_name && symbol_name[0] == '_') {
4389 symbol_name_is_mangled = symbol_name[1] == '_';
4390 symbol_name++; // Skip the leading underscore
4391 }
4392
4393 if (symbol_name) {
4394 ConstString const_symbol_name(symbol_name);
4395 sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4396 symbol_name_is_mangled);
4397 }
4398 }
4399
4400 if (is_gsym) {
4401 const char *gsym_name = sym[sym_idx]
4402 .GetMangled()
4403 .GetName(lldb::eLanguageTypeUnknown,
4404 Mangled::ePreferMangled)
4405 .GetCString();
4406 if (gsym_name)
4407 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4408 }
4409
4410 if (symbol_section) {
4411 const addr_t section_file_addr = symbol_section->GetFileAddress();
4412 if (symbol_byte_size == 0 && function_starts_count > 0) {
4413 addr_t symbol_lookup_file_addr = nlist.n_value;
4414 // Do an exact address match for non-ARM addresses, else get the
4415 // closest since the symbol might be a thumb symbol which has an
4416 // address with bit zero set
4417 FunctionStarts::Entry *func_start_entry =
4418 function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4419 if (is_arm && func_start_entry) {
4420 // Verify that the function start address is the symbol address
4421 // (ARM) or the symbol address + 1 (thumb)
4422 if (func_start_entry->addr != symbol_lookup_file_addr &&
4423 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4424 // Not the right entry, NULL it out...
4425 func_start_entry = NULL__null;
4426 }
4427 }
4428 if (func_start_entry) {
4429 func_start_entry->data = true;
4430
4431 addr_t symbol_file_addr = func_start_entry->addr;
4432 if (is_arm)
4433 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4434
4435 const FunctionStarts::Entry *next_func_start_entry =
4436 function_starts.FindNextEntry(func_start_entry);
4437 const addr_t section_end_file_addr =
4438 section_file_addr + symbol_section->GetByteSize();
4439 if (next_func_start_entry) {
4440 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4441 // Be sure the clear the Thumb address bit when we calculate
4442 // the size from the current and next address
4443 if (is_arm)
4444 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4445 symbol_byte_size = std::min<lldb::addr_t>(
4446 next_symbol_file_addr - symbol_file_addr,
4447 section_end_file_addr - symbol_file_addr);
4448 } else {
4449 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4450 }
4451 }
4452 }
4453 symbol_value -= section_file_addr;
4454 }
4455
4456 if (is_debug == false) {
4457 if (type == eSymbolTypeCode) {
4458 // See if we can find a N_FUN entry for any code symbols. If we
4459 // do find a match, and the name matches, then we can merge the
4460 // two into just the function symbol to avoid duplicate entries
4461 // in the symbol table
4462 std::pair<ValueToSymbolIndexMap::const_iterator,
4463 ValueToSymbolIndexMap::const_iterator>
4464 range;
4465 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4466 if (range.first != range.second) {
4467 bool found_it = false;
4468 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4469 pos != range.second; ++pos) {
4470 if (sym[sym_idx].GetMangled().GetName(
4471 lldb::eLanguageTypeUnknown,
4472 Mangled::ePreferMangled) ==
4473 sym[pos->second].GetMangled().GetName(
4474 lldb::eLanguageTypeUnknown,
4475 Mangled::ePreferMangled)) {
4476 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4477 // We just need the flags from the linker symbol, so put
4478 // these flags into the N_FUN flags to avoid duplicate
4479 // symbols in the symbol table
4480 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4481 sym[pos->second].SetFlags(nlist.n_type << 16 |
4482 nlist.n_desc);
4483 if (resolver_addresses.find(nlist.n_value) !=
4484 resolver_addresses.end())
4485 sym[pos->second].SetType(eSymbolTypeResolver);
4486 sym[sym_idx].Clear();
4487 found_it = true;
4488 break;
4489 }
4490 }
4491 if (found_it)
4492 continue;
4493 } else {
4494 if (resolver_addresses.find(nlist.n_value) !=
4495 resolver_addresses.end())
4496 type = eSymbolTypeResolver;
4497 }
4498 } else if (type == eSymbolTypeData ||
4499 type == eSymbolTypeObjCClass ||
4500 type == eSymbolTypeObjCMetaClass ||
4501 type == eSymbolTypeObjCIVar) {
4502 // See if we can find a N_STSYM entry for any data symbols. If we
4503 // do find a match, and the name matches, then we can merge the
4504 // two into just the Static symbol to avoid duplicate entries in
4505 // the symbol table
4506 std::pair<ValueToSymbolIndexMap::const_iterator,
4507 ValueToSymbolIndexMap::const_iterator>
4508 range;
4509 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4510 if (range.first != range.second) {
4511 bool found_it = false;
4512 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4513 pos != range.second; ++pos) {
4514 if (sym[sym_idx].GetMangled().GetName(
4515 lldb::eLanguageTypeUnknown,
4516 Mangled::ePreferMangled) ==
4517 sym[pos->second].GetMangled().GetName(
4518 lldb::eLanguageTypeUnknown,
4519 Mangled::ePreferMangled)) {
4520 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4521 // We just need the flags from the linker symbol, so put
4522 // these flags into the N_STSYM flags to avoid duplicate
4523 // symbols in the symbol table
4524 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4525 sym[pos->second].SetFlags(nlist.n_type << 16 |
4526 nlist.n_desc);
4527 sym[sym_idx].Clear();
4528 found_it = true;
4529 break;
4530 }
4531 }
4532 if (found_it)
4533 continue;
4534 } else {
4535 // Combine N_GSYM stab entries with the non stab symbol
4536 const char *gsym_name = sym[sym_idx]
4537 .GetMangled()
4538 .GetName(lldb::eLanguageTypeUnknown,
4539 Mangled::ePreferMangled)
4540 .GetCString();
4541 if (gsym_name) {
4542 ConstNameToSymbolIndexMap::const_iterator pos =
4543 N_GSYM_name_to_sym_idx.find(gsym_name);
4544 if (pos != N_GSYM_name_to_sym_idx.end()) {
4545 const uint32_t GSYM_sym_idx = pos->second;
4546 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4547 // Copy the address, because often the N_GSYM address has
4548 // an invalid address of zero when the global is a common
4549 // symbol
4550 sym[GSYM_sym_idx].GetAddressRef().SetSection(
4551 symbol_section);
4552 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4553 // We just need the flags from the linker symbol, so put
4554 // these flags into the N_GSYM flags to avoid duplicate
4555 // symbols in the symbol table
4556 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
4557 nlist.n_desc);
4558 sym[sym_idx].Clear();
4559 continue;
4560 }
4561 }
4562 }
4563 }
4564 }
4565
4566 sym[sym_idx].SetID(nlist_idx);
4567 sym[sym_idx].SetType(type);
4568 if (set_value) {
4569 sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4570 sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4571 }
4572 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4573
4574 if (symbol_byte_size > 0)
4575 sym[sym_idx].SetByteSize(symbol_byte_size);
4576
4577 if (demangled_is_synthesized)
4578 sym[sym_idx].SetDemangledNameIsSynthesized(true);
4579
4580 ++sym_idx;
4581 } else {
4582 sym[sym_idx].Clear();
4583 }
4584 }
4585
4586 for (const auto &pos : reexport_shlib_needs_fixup) {
4587 const auto undef_pos = undefined_name_to_desc.find(pos.second);
4588 if (undef_pos != undefined_name_to_desc.end()) {
4589 const uint8_t dylib_ordinal =
4590 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4591 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4592 sym[pos.first].SetReExportedSymbolSharedLibrary(
4593 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4594 }
4595 }
4596 }
4597
4598 uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4599
4600 if (function_starts_count > 0) {
4601 uint32_t num_synthetic_function_symbols = 0;
4602 for (i = 0; i < function_starts_count; ++i) {
4603 if (function_starts.GetEntryRef(i).data == false)
4604 ++num_synthetic_function_symbols;
4605 }
4606
4607 if (num_synthetic_function_symbols > 0) {
4608 if (num_syms < sym_idx + num_synthetic_function_symbols) {
4609 num_syms = sym_idx + num_synthetic_function_symbols;
4610 sym = symtab->Resize(num_syms);
4611 }
4612 for (i = 0; i < function_starts_count; ++i) {
4613 const FunctionStarts::Entry *func_start_entry =
4614 function_starts.GetEntryAtIndex(i);
4615 if (func_start_entry->data == false) {
4616 addr_t symbol_file_addr = func_start_entry->addr;
4617 uint32_t symbol_flags = 0;
4618 if (is_arm) {
4619 if (symbol_file_addr & 1)
4620 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008;
4621 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4622 }
4623 Address symbol_addr;
4624 if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4625 SectionSP symbol_section(symbol_addr.GetSection());
4626 uint32_t symbol_byte_size = 0;
4627 if (symbol_section) {
4628 const addr_t section_file_addr =
4629 symbol_section->GetFileAddress();
4630 const FunctionStarts::Entry *next_func_start_entry =
4631 function_starts.FindNextEntry(func_start_entry);
4632 const addr_t section_end_file_addr =
4633 section_file_addr + symbol_section->GetByteSize();
4634 if (next_func_start_entry) {
4635 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4636 if (is_arm)
4637 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4638 symbol_byte_size = std::min<lldb::addr_t>(
4639 next_symbol_file_addr - symbol_file_addr,
4640 section_end_file_addr - symbol_file_addr);
4641 } else {
4642 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4643 }
4644 sym[sym_idx].SetID(synthetic_sym_id++);
4645 sym[sym_idx].GetMangled().SetDemangledName(
4646 GetNextSyntheticSymbolName());
4647 sym[sym_idx].SetType(eSymbolTypeCode);
4648 sym[sym_idx].SetIsSynthetic(true);
4649 sym[sym_idx].GetAddressRef() = symbol_addr;
4650 if (symbol_flags)
4651 sym[sym_idx].SetFlags(symbol_flags);
4652 if (symbol_byte_size)
4653 sym[sym_idx].SetByteSize(symbol_byte_size);
4654 ++sym_idx;
4655 }
4656 }
4657 }
4658 }
4659 }
4660 }
4661
4662 // Trim our symbols down to just what we ended up with after removing any
4663 // symbols.
4664 if (sym_idx < num_syms) {
4665 num_syms = sym_idx;
4666 sym = symtab->Resize(num_syms);
4667 }
4668
4669 // Now synthesize indirect symbols
4670 if (m_dysymtab.nindirectsyms != 0) {
4671 if (indirect_symbol_index_data.GetByteSize()) {
4672 NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4673 m_nlist_idx_to_sym_idx.end();
4674
4675 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4676 ++sect_idx) {
4677 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4678 S_SYMBOL_STUBS) {
4679 uint32_t symbol_stub_byte_size =
4680 m_mach_sections[sect_idx].reserved2;
4681 if (symbol_stub_byte_size == 0)
4682 continue;
4683
4684 const uint32_t num_symbol_stubs =
4685 m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4686
4687 if (num_symbol_stubs == 0)
4688 continue;
4689
4690 const uint32_t symbol_stub_index_offset =
4691 m_mach_sections[sect_idx].reserved1;
4692 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs;
4693 ++stub_idx) {
4694 const uint32_t symbol_stub_index =
4695 symbol_stub_index_offset + stub_idx;
4696 const lldb::addr_t symbol_stub_addr =
4697 m_mach_sections[sect_idx].addr +
4698 (stub_idx * symbol_stub_byte_size);
4699 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4700 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4701 symbol_stub_offset, 4)) {
4702 const uint32_t stub_sym_id =
4703 indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4704 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4705 continue;
4706
4707 NListIndexToSymbolIndexMap::const_iterator index_pos =
4708 m_nlist_idx_to_sym_idx.find(stub_sym_id);
4709 Symbol *stub_symbol = NULL__null;
4710 if (index_pos != end_index_pos) {
4711 // We have a remapping from the original nlist index to a
4712 // current symbol index, so just look this up by index
4713 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4714 } else {
4715 // We need to lookup a symbol using the original nlist symbol
4716 // index since this index is coming from the S_SYMBOL_STUBS
4717 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4718 }
4719
4720 if (stub_symbol) {
4721 Address so_addr(symbol_stub_addr, section_list);
4722
4723 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4724 // Change the external symbol into a trampoline that makes
4725 // sense These symbols were N_UNDF N_EXT, and are useless
4726 // to us, so we can re-use them so we don't have to make up
4727 // a synthetic symbol for no good reason.
4728 if (resolver_addresses.find(symbol_stub_addr) ==
4729 resolver_addresses.end())
4730 stub_symbol->SetType(eSymbolTypeTrampoline);
4731 else
4732 stub_symbol->SetType(eSymbolTypeResolver);
4733 stub_symbol->SetExternal(false);
4734 stub_symbol->GetAddressRef() = so_addr;
4735 stub_symbol->SetByteSize(symbol_stub_byte_size);
4736 } else {
4737 // Make a synthetic symbol to describe the trampoline stub
4738 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4739 if (sym_idx >= num_syms) {
4740 sym = symtab->Resize(++num_syms);
4741 stub_symbol = NULL__null; // this pointer no longer valid
4742 }
4743 sym[sym_idx].SetID(synthetic_sym_id++);
4744 sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4745 if (resolver_addresses.find(symbol_stub_addr) ==
4746 resolver_addresses.end())
4747 sym[sym_idx].SetType(eSymbolTypeTrampoline);
4748 else
4749 sym[sym_idx].SetType(eSymbolTypeResolver);
4750 sym[sym_idx].SetIsSynthetic(true);
4751 sym[sym_idx].GetAddressRef() = so_addr;
4752 sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4753 ++sym_idx;
4754 }
4755 } else {
4756 if (log)
4757 log->Warning("symbol stub referencing symbol table symbol "
4758 "%u that isn't in our minimal symbol table, "
4759 "fix this!!!",
4760 stub_sym_id);
4761 }
4762 }
4763 }
4764 }
4765 }
4766 }
4767 }
4768
4769 if (!trie_entries.empty()) {
4770 for (const auto &e : trie_entries) {
4771 if (e.entry.import_name) {
4772 // Only add indirect symbols from the Trie entries if we didn't have
4773 // a N_INDR nlist entry for this already
4774 if (indirect_symbol_names.find(e.entry.name) ==
4775 indirect_symbol_names.end()) {
4776 // Make a synthetic symbol to describe re-exported symbol.
4777 if (sym_idx >= num_syms)
4778 sym = symtab->Resize(++num_syms);
4779 sym[sym_idx].SetID(synthetic_sym_id++);
4780 sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4781 sym[sym_idx].SetType(eSymbolTypeReExported);
4782 sym[sym_idx].SetIsSynthetic(true);
4783 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4784 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4785 sym[sym_idx].SetReExportedSymbolSharedLibrary(
4786 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4787 }
4788 ++sym_idx;
4789 }
4790 }
4791 }
4792 }
4793
4794 // StreamFile s(stdout, false);
4795 // s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4796 // symtab->Dump(&s, NULL, eSortOrderNone);
4797 // Set symbol byte sizes correctly since mach-o nlist entries don't have
4798 // sizes
4799 symtab->CalculateSymbolSizes();
4800
4801 // s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4802 // symtab->Dump(&s, NULL, eSortOrderNone);
4803
4804 return symtab->GetNumSymbols();
4805 }
4806 return 0;
4807}
4808
4809void ObjectFileMachO::Dump(Stream *s) {
4810 ModuleSP module_sp(GetModule());
4811 if (module_sp) {
4812 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4813 s->Printf("%p: ", static_cast<void *>(this));
4814 s->Indent();
4815 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4816 s->PutCString("ObjectFileMachO64");
4817 else
4818 s->PutCString("ObjectFileMachO32");
4819
4820 ArchSpec header_arch;
4821 GetArchitecture(header_arch);
4822
4823 *s << ", file = '" << m_file
4824 << "', triple = " << header_arch.GetTriple().getTriple() << "\n";
4825
4826 SectionList *sections = GetSectionList();
4827 if (sections)
4828 sections->Dump(s, NULL__null, true, UINT32_MAX(4294967295U));
4829
4830 if (m_symtab_ap.get())
4831 m_symtab_ap->Dump(s, NULL__null, eSortOrderNone);
4832 }
4833}
4834
4835bool ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4836 const lldb_private::DataExtractor &data,
4837 lldb::offset_t lc_offset,
4838 lldb_private::UUID &uuid) {
4839 uint32_t i;
4840 struct uuid_command load_cmd;
4841
4842 lldb::offset_t offset = lc_offset;
4843 for (i = 0; i < header.ncmds; ++i) {
4844 const lldb::offset_t cmd_offset = offset;
4845 if (data.GetU32(&offset, &load_cmd, 2) == NULL__null)
4846 break;
4847
4848 if (load_cmd.cmd == LC_UUID) {
4849 const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4850
4851 if (uuid_bytes) {
4852 // OpenCL on Mac OS X uses the same UUID for each of its object files.
4853 // We pretend these object files have no UUID to prevent crashing.
4854
4855 const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4856 0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4857 0xbb, 0x14, 0xf0, 0x0d};
4858
4859 if (!memcmp(uuid_bytes, opencl_uuid, 16))
4860 return false;
4861
4862 uuid = UUID::fromOptionalData(uuid_bytes, 16);
4863 return true;
4864 }
4865 return false;
4866 }
4867 offset = cmd_offset + load_cmd.cmdsize;
4868 }
4869 return false;
4870}
4871
4872static const char *GetOSName(uint32_t cmd) {
4873 switch (cmd) {
4874 case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4875 return "ios";
4876 case llvm::MachO::LC_VERSION_MIN_MACOSX:
4877 return "macosx";
4878 case llvm::MachO::LC_VERSION_MIN_TVOS:
4879 return "tvos";
4880 case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4881 return "watchos";
4882 default:
4883 llvm_unreachable("unexpected LC_VERSION load command")::llvm::llvm_unreachable_internal("unexpected LC_VERSION load command"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 4883)
;
4884 }
4885}
4886
4887bool ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header,
4888 const lldb_private::DataExtractor &data,
4889 lldb::offset_t lc_offset,
4890 ArchSpec &arch) {
4891 arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4892
4893 if (arch.IsValid()) {
4894 llvm::Triple &triple = arch.GetTriple();
4895
4896 // Set OS to an unspecified unknown or a "*" so it can match any OS
4897 triple.setOS(llvm::Triple::UnknownOS);
4898 triple.setOSName(llvm::StringRef());
4899
4900 if (header.filetype == MH_PRELOAD) {
4901 if (header.cputype == CPU_TYPE_ARM) {
4902 // If this is a 32-bit arm binary, and it's a standalone binary, force
4903 // the Vendor to Apple so we don't accidentally pick up the generic
4904 // armv7 ABI at runtime. Apple's armv7 ABI always uses r7 for the
4905 // frame pointer register; most other armv7 ABIs use a combination of
4906 // r7 and r11.
4907 triple.setVendor(llvm::Triple::Apple);
4908 } else {
4909 // Set vendor to an unspecified unknown or a "*" so it can match any
4910 // vendor This is required for correct behavior of EFI debugging on
4911 // x86_64
4912 triple.setVendor(llvm::Triple::UnknownVendor);
4913 triple.setVendorName(llvm::StringRef());
4914 }
4915 return true;
4916 } else {
4917 struct load_command load_cmd;
4918
4919 lldb::offset_t offset = lc_offset;
4920 for (uint32_t i = 0; i < header.ncmds; ++i) {
4921 const lldb::offset_t cmd_offset = offset;
4922 if (data.GetU32(&offset, &load_cmd, 2) == NULL__null)
4923 break;
4924
4925 uint32_t major, minor, patch;
4926 struct version_min_command version_min;
4927
4928 llvm::SmallString<16> os_name;
4929 llvm::raw_svector_ostream os(os_name);
4930
4931 switch (load_cmd.cmd) {
4932 case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4933 case llvm::MachO::LC_VERSION_MIN_MACOSX:
4934 case llvm::MachO::LC_VERSION_MIN_TVOS:
4935 case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4936 if (load_cmd.cmdsize != sizeof(version_min))
4937 break;
4938 data.ExtractBytes(cmd_offset,
4939 sizeof(version_min), data.GetByteOrder(),
4940 &version_min);
4941 major = version_min.version >> 16;
4942 minor = (version_min.version >> 8) & 0xffu;
4943 patch = version_min.version & 0xffu;
4944 os << GetOSName(load_cmd.cmd) << major << '.' << minor << '.'
4945 << patch;
4946 triple.setOSName(os.str());
4947 return true;
4948 default:
4949 break;
4950 }
4951
4952 offset = cmd_offset + load_cmd.cmdsize;
4953 }
4954
4955 if (header.filetype != MH_KEXT_BUNDLE) {
4956 // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
4957 // so lets not say our Vendor is Apple, leave it as an unspecified
4958 // unknown
4959 triple.setVendor(llvm::Triple::UnknownVendor);
4960 triple.setVendorName(llvm::StringRef());
4961 }
4962 }
4963 }
4964 return arch.IsValid();
4965}
4966
4967bool ObjectFileMachO::GetUUID(lldb_private::UUID *uuid) {
4968 ModuleSP module_sp(GetModule());
4969 if (module_sp) {
4970 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4971 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
4972 return GetUUID(m_header, m_data, offset, *uuid);
4973 }
4974 return false;
4975}
4976
4977uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
4978 uint32_t count = 0;
4979 ModuleSP module_sp(GetModule());
4980 if (module_sp) {
4981 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4982 struct load_command load_cmd;
4983 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
4984 std::vector<std::string> rpath_paths;
4985 std::vector<std::string> rpath_relative_paths;
4986 std::vector<std::string> at_exec_relative_paths;
4987 const bool resolve_path = false; // Don't resolve the dependent file paths
4988 // since they may not reside on this
4989 // system
4990 uint32_t i;
4991 for (i = 0; i < m_header.ncmds; ++i) {
4992 const uint32_t cmd_offset = offset;
4993 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL__null)
4994 break;
4995
4996 switch (load_cmd.cmd) {
4997 case LC_RPATH:
4998 case LC_LOAD_DYLIB:
4999 case LC_LOAD_WEAK_DYLIB:
5000 case LC_REEXPORT_DYLIB:
5001 case LC_LOAD_DYLINKER:
5002 case LC_LOADFVMLIB:
5003 case LC_LOAD_UPWARD_DYLIB: {
5004 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5005 const char *path = m_data.PeekCStr(name_offset);
5006 if (path) {
5007 if (load_cmd.cmd == LC_RPATH)
5008 rpath_paths.push_back(path);
5009 else {
5010 if (path[0] == '@') {
5011 if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5012 rpath_relative_paths.push_back(path + strlen("@rpath"));
5013 else if (strncmp(path, "@executable_path",
5014 strlen("@executable_path")) == 0)
5015 at_exec_relative_paths.push_back(path
5016 + strlen("@executable_path"));
5017 } else {
5018 FileSpec file_spec(path, resolve_path);
5019 if (files.AppendIfUnique(file_spec))
5020 count++;
5021 }
5022 }
5023 }
5024 } break;
5025
5026 default:
5027 break;
5028 }
5029 offset = cmd_offset + load_cmd.cmdsize;
5030 }
5031
5032 FileSpec this_file_spec(m_file);
5033 this_file_spec.ResolvePath();
5034
5035 if (!rpath_paths.empty()) {
5036 // Fixup all LC_RPATH values to be absolute paths
5037 std::string loader_path("@loader_path");
5038 std::string executable_path("@executable_path");
5039 for (auto &rpath : rpath_paths) {
5040 if (rpath.find(loader_path) == 0) {
5041 rpath.erase(0, loader_path.size());
5042 rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5043 } else if (rpath.find(executable_path) == 0) {
5044 rpath.erase(0, executable_path.size());
5045 rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5046 }
5047 }
5048
5049 for (const auto &rpath_relative_path : rpath_relative_paths) {
5050 for (const auto &rpath : rpath_paths) {
5051 std::string path = rpath;
5052 path += rpath_relative_path;
5053 // It is OK to resolve this path because we must find a file on disk
5054 // for us to accept it anyway if it is rpath relative.
5055 FileSpec file_spec(path, true);
5056 if (file_spec.Exists() && files.AppendIfUnique(file_spec)) {
5057 count++;
5058 break;
5059 }
5060 }
5061 }
5062 }
5063
5064 // We may have @executable_paths but no RPATHS. Figure those out here.
5065 // Only do this if this object file is the executable. We have no way to
5066 // get back to the actual executable otherwise, so we won't get the right
5067 // path.
5068 if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5069 FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5070 for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5071 FileSpec file_spec =
5072 exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5073 if (file_spec.Exists() && files.AppendIfUnique(file_spec))
5074 count++;
5075 }
5076 }
5077 }
5078 return count;
5079}
5080
5081lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5082 // If the object file is not an executable it can't hold the entry point.
5083 // m_entry_point_address is initialized to an invalid address, so we can just
5084 // return that. If m_entry_point_address is valid it means we've found it
5085 // already, so return the cached value.
5086
5087 if (!IsExecutable() || m_entry_point_address.IsValid())
5088 return m_entry_point_address;
5089
5090 // Otherwise, look for the UnixThread or Thread command. The data for the
5091 // Thread command is given in /usr/include/mach-o.h, but it is basically:
5092 //
5093 // uint32_t flavor - this is the flavor argument you would pass to
5094 // thread_get_state
5095 // uint32_t count - this is the count of longs in the thread state data
5096 // struct XXX_thread_state state - this is the structure from
5097 // <machine/thread_status.h> corresponding to the flavor.
5098 // <repeat this trio>
5099 //
5100 // So we just keep reading the various register flavors till we find the GPR
5101 // one, then read the PC out of there.
5102 // FIXME: We will need to have a "RegisterContext data provider" class at some
5103 // point that can get all the registers
5104 // out of data in this form & attach them to a given thread. That should
5105 // underlie the MacOS X User process plugin, and we'll also need it for the
5106 // MacOS X Core File process plugin. When we have that we can also use it
5107 // here.
5108 //
5109 // For now we hard-code the offsets and flavors we need:
5110 //
5111 //
5112
5113 ModuleSP module_sp(GetModule());
5114 if (module_sp) {
5115 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5116 struct load_command load_cmd;
5117 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5118 uint32_t i;
5119 lldb::addr_t start_address = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5120 bool done = false;
5121
5122 for (i = 0; i < m_header.ncmds; ++i) {
5123 const lldb::offset_t cmd_offset = offset;
5124 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL__null)
5125 break;
5126
5127 switch (load_cmd.cmd) {
5128 case LC_UNIXTHREAD:
5129 case LC_THREAD: {
5130 while (offset < cmd_offset + load_cmd.cmdsize) {
5131 uint32_t flavor = m_data.GetU32(&offset);
5132 uint32_t count = m_data.GetU32(&offset);
5133 if (count == 0) {
5134 // We've gotten off somehow, log and exit;
5135 return m_entry_point_address;
5136 }
5137
5138 switch (m_header.cputype) {
5139 case llvm::MachO::CPU_TYPE_ARM:
5140 if (flavor == 1 ||
5141 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from
5142 // mach/arm/thread_status.h
5143 {
5144 offset += 60; // This is the offset of pc in the GPR thread state
5145 // data structure.
5146 start_address = m_data.GetU32(&offset);
5147 done = true;
5148 }
5149 break;
5150 case llvm::MachO::CPU_TYPE_ARM64:
5151 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5152 {
5153 offset += 256; // This is the offset of pc in the GPR thread state
5154 // data structure.
5155 start_address = m_data.GetU64(&offset);
5156 done = true;
5157 }
5158 break;
5159 case llvm::MachO::CPU_TYPE_I386:
5160 if (flavor ==
5161 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5162 {
5163 offset += 40; // This is the offset of eip in the GPR thread state
5164 // data structure.
5165 start_address = m_data.GetU32(&offset);
5166 done = true;
5167 }
5168 break;
5169 case llvm::MachO::CPU_TYPE_X86_64:
5170 if (flavor ==
5171 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5172 {
5173 offset += 16 * 8; // This is the offset of rip in the GPR thread
5174 // state data structure.
5175 start_address = m_data.GetU64(&offset);
5176 done = true;
5177 }
5178 break;
5179 default:
5180 return m_entry_point_address;
5181 }
5182 // Haven't found the GPR flavor yet, skip over the data for this
5183 // flavor:
5184 if (done)
5185 break;
5186 offset += count * 4;
5187 }
5188 } break;
5189 case LC_MAIN: {
5190 ConstString text_segment_name("__TEXT");
5191 uint64_t entryoffset = m_data.GetU64(&offset);
5192 SectionSP text_segment_sp =
5193 GetSectionList()->FindSectionByName(text_segment_name);
5194 if (text_segment_sp) {
5195 done = true;
5196 start_address = text_segment_sp->GetFileAddress() + entryoffset;
5197 }
5198 } break;
5199
5200 default:
5201 break;
5202 }
5203 if (done)
5204 break;
5205
5206 // Go to the next load command:
5207 offset = cmd_offset + load_cmd.cmdsize;
5208 }
5209
5210 if (start_address != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
5211 // We got the start address from the load commands, so now resolve that
5212 // address in the sections of this ObjectFile:
5213 if (!m_entry_point_address.ResolveAddressUsingFileSections(
5214 start_address, GetSectionList())) {
5215 m_entry_point_address.Clear();
5216 }
5217 } else {
5218 // We couldn't read the UnixThread load command - maybe it wasn't there.
5219 // As a fallback look for the "start" symbol in the main executable.
5220
5221 ModuleSP module_sp(GetModule());
5222
5223 if (module_sp) {
5224 SymbolContextList contexts;
5225 SymbolContext context;
5226 if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5227 eSymbolTypeCode, contexts)) {
5228 if (contexts.GetContextAtIndex(0, context))
5229 m_entry_point_address = context.symbol->GetAddress();
5230 }
5231 }
5232 }
5233 }
5234
5235 return m_entry_point_address;
5236}
5237
5238lldb_private::Address ObjectFileMachO::GetHeaderAddress() {
5239 lldb_private::Address header_addr;
5240 SectionList *section_list = GetSectionList();
5241 if (section_list) {
5242 SectionSP text_segment_sp(
5243 section_list->FindSectionByName(GetSegmentNameTEXT()));
5244 if (text_segment_sp) {
5245 header_addr.SetSection(text_segment_sp);
5246 header_addr.SetOffset(0);
5247 }
5248 }
5249 return header_addr;
5250}
5251
5252uint32_t ObjectFileMachO::GetNumThreadContexts() {
5253 ModuleSP module_sp(GetModule());
5254 if (module_sp) {
5255 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5256 if (!m_thread_context_offsets_valid) {
5257 m_thread_context_offsets_valid = true;
5258 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5259 FileRangeArray::Entry file_range;
5260 thread_command thread_cmd;
5261 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5262 const uint32_t cmd_offset = offset;
5263 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL__null)
5264 break;
5265
5266 if (thread_cmd.cmd == LC_THREAD) {
5267 file_range.SetRangeBase(offset);
5268 file_range.SetByteSize(thread_cmd.cmdsize - 8);
5269 m_thread_context_offsets.Append(file_range);
5270 }
5271 offset = cmd_offset + thread_cmd.cmdsize;
5272 }
5273 }
5274 }
5275 return m_thread_context_offsets.GetSize();
5276}
5277
5278std::string ObjectFileMachO::GetIdentifierString() {
5279 std::string result;
5280 ModuleSP module_sp(GetModule());
5281 if (module_sp) {
5282 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5283
5284 // First, look over the load commands for an LC_NOTE load command with
5285 // data_owner string "kern ver str" & use that if found.
5286 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5287 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5288 const uint32_t cmd_offset = offset;
5289 load_command lc;
5290 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
5291 break;
5292 if (lc.cmd == LC_NOTE)
5293 {
5294 char data_owner[17];
5295 m_data.CopyData (offset, 16, data_owner);
5296 data_owner[16] = '\0';
5297 offset += 16;
5298 uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5299 uint64_t size = m_data.GetU64_unchecked (&offset);
5300
5301 // "kern ver str" has a uint32_t version and then a nul terminated
5302 // c-string.
5303 if (strcmp ("kern ver str", data_owner) == 0)
5304 {
5305 offset = fileoff;
5306 uint32_t version;
5307 if (m_data.GetU32 (&offset, &version, 1) != nullptr)
5308 {
5309 if (version == 1)
5310 {
5311 uint32_t strsize = size - sizeof (uint32_t);
5312 char *buf = (char*) malloc (strsize);
5313 if (buf)
5314 {
5315 m_data.CopyData (offset, strsize, buf);
5316 buf[strsize - 1] = '\0';
5317 result = buf;
5318 if (buf)
5319 free (buf);
5320 return result;
5321 }
5322 }
5323 }
5324 }
5325 }
5326 offset = cmd_offset + lc.cmdsize;
5327 }
5328
5329 // Second, make a pass over the load commands looking for an obsolete
5330 // LC_IDENT load command.
5331 offset = MachHeaderSizeFromMagic(m_header.magic);
5332 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5333 const uint32_t cmd_offset = offset;
5334 struct ident_command ident_command;
5335 if (m_data.GetU32(&offset, &ident_command, 2) == NULL__null)
5336 break;
5337 if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5338 char *buf = (char *) malloc (ident_command.cmdsize);
5339 if (buf != nullptr
5340 && m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) {
5341 buf[ident_command.cmdsize - 1] = '\0';
5342 result = buf;
5343 }
5344 if (buf)
5345 free (buf);
5346 }
5347 offset = cmd_offset + ident_command.cmdsize;
5348 }
5349
5350 }
5351 return result;
5352}
5353
5354bool ObjectFileMachO::GetCorefileMainBinaryInfo (addr_t &address, UUID &uuid) {
5355 address = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5356 uuid.Clear();
5357 ModuleSP module_sp(GetModule());
5358 if (module_sp) {
5359 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5360 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5361 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5362 const uint32_t cmd_offset = offset;
5363 load_command lc;
5364 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
5365 break;
5366 if (lc.cmd == LC_NOTE)
5367 {
5368 char data_owner[17];
5369 memset (data_owner, 0, sizeof (data_owner));
5370 m_data.CopyData (offset, 16, data_owner);
5371 offset += 16;
5372 uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5373 uint64_t size = m_data.GetU64_unchecked (&offset);
5374
5375 // "main bin spec" (main binary specification) data payload is
5376 // formatted:
5377 // uint32_t version [currently 1]
5378 // uint32_t type [0 == unspecified, 1 == kernel, 2 == user process]
5379 // uint64_t address [ UINT64_MAX if address not specified ]
5380 // uuid_t uuid [ all zero's if uuid not specified ]
5381 // uint32_t log2_pagesize [ process page size in log base 2, e.g. 4k pages are 12. 0 for unspecified ]
5382
5383 if (strcmp ("main bin spec", data_owner) == 0 && size >= 32)
5384 {
5385 offset = fileoff;
5386 uint32_t version;
5387 if (m_data.GetU32 (&offset, &version, 1) != nullptr && version == 1)
5388 {
5389 uint32_t type = 0;
5390 uuid_t raw_uuid;
5391 memset (raw_uuid, 0, sizeof (uuid_t));
5392
5393 if (m_data.GetU32(&offset, &type, 1) &&
5394 m_data.GetU64(&offset, &address, 1) &&
5395 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5396 uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5397 return true;
5398 }
5399 }
5400 }
5401 }
5402 offset = cmd_offset + lc.cmdsize;
5403 }
5404 }
5405 return false;
5406}
5407
5408lldb::RegisterContextSP
5409ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5410 lldb_private::Thread &thread) {
5411 lldb::RegisterContextSP reg_ctx_sp;
5412
5413 ModuleSP module_sp(GetModule());
5414 if (module_sp) {
5415 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5416 if (!m_thread_context_offsets_valid)
5417 GetNumThreadContexts();
5418
5419 const FileRangeArray::Entry *thread_context_file_range =
5420 m_thread_context_offsets.GetEntryAtIndex(idx);
5421 if (thread_context_file_range) {
5422
5423 DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5424 thread_context_file_range->GetByteSize());
5425
5426 switch (m_header.cputype) {
5427 case llvm::MachO::CPU_TYPE_ARM64:
5428 reg_ctx_sp.reset(new RegisterContextDarwin_arm64_Mach(thread, data));
5429 break;
5430
5431 case llvm::MachO::CPU_TYPE_ARM:
5432 reg_ctx_sp.reset(new RegisterContextDarwin_arm_Mach(thread, data));
5433 break;
5434
5435 case llvm::MachO::CPU_TYPE_I386:
5436 reg_ctx_sp.reset(new RegisterContextDarwin_i386_Mach(thread, data));
5437 break;
5438
5439 case llvm::MachO::CPU_TYPE_X86_64:
5440 reg_ctx_sp.reset(new RegisterContextDarwin_x86_64_Mach(thread, data));
5441 break;
5442 }
5443 }
5444 }
5445 return reg_ctx_sp;
5446}
5447
5448ObjectFile::Type ObjectFileMachO::CalculateType() {
5449 switch (m_header.filetype) {
5450 case MH_OBJECT: // 0x1u
5451 if (GetAddressByteSize() == 4) {
5452 // 32 bit kexts are just object files, but they do have a valid
5453 // UUID load command.
5454 UUID uuid;
5455 if (GetUUID(&uuid)) {
5456 // this checking for the UUID load command is not enough we could
5457 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5458 // this is required of kexts
5459 if (m_strata == eStrataInvalid)
5460 m_strata = eStrataKernel;
5461 return eTypeSharedLibrary;
5462 }
5463 }
5464 return eTypeObjectFile;
5465
5466 case MH_EXECUTE:
5467 return eTypeExecutable; // 0x2u
5468 case MH_FVMLIB:
5469 return eTypeSharedLibrary; // 0x3u
5470 case MH_CORE:
5471 return eTypeCoreFile; // 0x4u
5472 case MH_PRELOAD:
5473 return eTypeSharedLibrary; // 0x5u
5474 case MH_DYLIB:
5475 return eTypeSharedLibrary; // 0x6u
5476 case MH_DYLINKER:
5477 return eTypeDynamicLinker; // 0x7u
5478 case MH_BUNDLE:
5479 return eTypeSharedLibrary; // 0x8u
5480 case MH_DYLIB_STUB:
5481 return eTypeStubLibrary; // 0x9u
5482 case MH_DSYM:
5483 return eTypeDebugInfo; // 0xAu
5484 case MH_KEXT_BUNDLE:
5485 return eTypeSharedLibrary; // 0xBu
5486 default:
5487 break;
5488 }
5489 return eTypeUnknown;
5490}
5491
5492ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5493 switch (m_header.filetype) {
5494 case MH_OBJECT: // 0x1u
5495 {
5496 // 32 bit kexts are just object files, but they do have a valid
5497 // UUID load command.
5498 UUID uuid;
5499 if (GetUUID(&uuid)) {
5500 // this checking for the UUID load command is not enough we could
5501 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5502 // this is required of kexts
5503 if (m_type == eTypeInvalid)
5504 m_type = eTypeSharedLibrary;
5505
5506 return eStrataKernel;
5507 }
5508 }
5509 return eStrataUnknown;
5510
5511 case MH_EXECUTE: // 0x2u
5512 // Check for the MH_DYLDLINK bit in the flags
5513 if (m_header.flags & MH_DYLDLINK) {
5514 return eStrataUser;
5515 } else {
5516 SectionList *section_list = GetSectionList();
5517 if (section_list) {
5518 static ConstString g_kld_section_name("__KLD");
5519 if (section_list->FindSectionByName(g_kld_section_name))
5520 return eStrataKernel;
5521 }
5522 }
5523 return eStrataRawImage;
5524
5525 case MH_FVMLIB:
5526 return eStrataUser; // 0x3u
5527 case MH_CORE:
5528 return eStrataUnknown; // 0x4u
5529 case MH_PRELOAD:
5530 return eStrataRawImage; // 0x5u
5531 case MH_DYLIB:
5532 return eStrataUser; // 0x6u
5533 case MH_DYLINKER:
5534 return eStrataUser; // 0x7u
5535 case MH_BUNDLE:
5536 return eStrataUser; // 0x8u
5537 case MH_DYLIB_STUB:
5538 return eStrataUser; // 0x9u
5539 case MH_DSYM:
5540 return eStrataUnknown; // 0xAu
5541 case MH_KEXT_BUNDLE:
5542 return eStrataKernel; // 0xBu
5543 default:
5544 break;
5545 }
5546 return eStrataUnknown;
5547}
5548
5549llvm::VersionTuple ObjectFileMachO::GetVersion() {
5550 ModuleSP module_sp(GetModule());
5551 if (module_sp) {
5552 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5553 struct dylib_command load_cmd;
5554 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5555 uint32_t version_cmd = 0;
5556 uint64_t version = 0;
5557 uint32_t i;
5558 for (i = 0; i < m_header.ncmds; ++i) {
5559 const lldb::offset_t cmd_offset = offset;
5560 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL__null)
5561 break;
5562
5563 if (load_cmd.cmd == LC_ID_DYLIB) {
5564 if (version_cmd == 0) {
5565 version_cmd = load_cmd.cmd;
5566 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL__null)
5567 break;
5568 version = load_cmd.dylib.current_version;
5569 }
5570 break; // Break for now unless there is another more complete version
5571 // number load command in the future.
5572 }
5573 offset = cmd_offset + load_cmd.cmdsize;
5574 }
5575
5576 if (version_cmd == LC_ID_DYLIB) {
5577 unsigned major = (version & 0xFFFF0000ull) >> 16;
5578 unsigned minor = (version & 0x0000FF00ull) >> 8;
5579 unsigned subminor = (version & 0x000000FFull);
5580 return llvm::VersionTuple(major, minor, subminor);
5581 }
5582 }
5583 return llvm::VersionTuple();
5584}
5585
5586bool ObjectFileMachO::GetArchitecture(ArchSpec &arch) {
5587 ModuleSP module_sp(GetModule());
5588 if (module_sp) {
5589 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5590 return GetArchitecture(m_header, m_data,
5591 MachHeaderSizeFromMagic(m_header.magic), arch);
5592 }
5593 return false;
5594}
5595
5596void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, addr_t &base_addr, UUID &uuid) {
5597 uuid.Clear();
5598 base_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5599 if (process && process->GetDynamicLoader()) {
5600 DynamicLoader *dl = process->GetDynamicLoader();
5601 LazyBool using_shared_cache;
5602 LazyBool private_shared_cache;
5603 dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5604 private_shared_cache);
5605 }
5606 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS(1u << 20) | LIBLLDB_LOG_PROCESS(1u << 1)));
5607 if (log)
5608 log->Printf("inferior process shared cache has a UUID of %s, base address 0x%" PRIx64"l" "x" , uuid.GetAsString().c_str(), base_addr);
5609}
5610
5611// From dyld SPI header dyld_process_info.h
5612typedef void *dyld_process_info;
5613struct lldb_copy__dyld_process_cache_info {
5614 uuid_t cacheUUID; // UUID of cache used by process
5615 uint64_t cacheBaseAddress; // load address of dyld shared cache
5616 bool noCache; // process is running without a dyld cache
5617 bool privateCache; // process is using a private copy of its dyld cache
5618};
5619
5620// #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with llvm
5621// enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile errors.
5622// So we need to use the actual underlying types of task_t and kern_return_t
5623// below.
5624extern "C" unsigned int /*task_t*/ mach_task_self();
5625
5626void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5627 uuid.Clear();
5628 base_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5629
5630#if defined(__APPLE__) && \
5631 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5632 uint8_t *(*dyld_get_all_image_infos)(void);
5633 dyld_get_all_image_infos =
5634 (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5635 if (dyld_get_all_image_infos) {
5636 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5637 if (dyld_all_image_infos_address) {
5638 uint32_t *version = (uint32_t *)
5639 dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5640 if (*version >= 13) {
5641 uuid_t *sharedCacheUUID_address = 0;
5642 int wordsize = sizeof(uint8_t *);
5643 if (wordsize == 8) {
5644 sharedCacheUUID_address =
5645 (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5646 160); // sharedCacheUUID <mach-o/dyld_images.h>
5647 if (*version >= 15)
5648 base_addr = *(uint64_t *) ((uint8_t *) dyld_all_image_infos_address
5649 + 176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5650 } else {
5651 sharedCacheUUID_address =
5652 (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5653 84); // sharedCacheUUID <mach-o/dyld_images.h>
5654 if (*version >= 15) {
5655 base_addr = 0;
5656 base_addr = *(uint32_t *) ((uint8_t *) dyld_all_image_infos_address
5657 + 100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5658 }
5659 }
5660 uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5661 }
5662 }
5663 } else {
5664 // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5665 dyld_process_info (*dyld_process_info_create)(unsigned int /* task_t */ task, uint64_t timestamp, unsigned int /*kern_return_t*/ *kernelError);
5666 void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5667 void (*dyld_process_info_release)(dyld_process_info info);
5668
5669 dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, unsigned int /*kern_return_t*/ *))
5670 dlsym (RTLD_DEFAULT, "_dyld_process_info_create");
5671 dyld_process_info_get_cache = (void (*)(void *, void *))
5672 dlsym (RTLD_DEFAULT, "_dyld_process_info_get_cache");
5673 dyld_process_info_release = (void (*)(void *))
5674 dlsym (RTLD_DEFAULT, "_dyld_process_info_release");
5675
5676 if (dyld_process_info_create && dyld_process_info_get_cache) {
5677 unsigned int /*kern_return_t */ kern_ret;
5678 dyld_process_info process_info = dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5679 if (process_info) {
5680 struct lldb_copy__dyld_process_cache_info sc_info;
5681 memset (&sc_info, 0, sizeof (struct lldb_copy__dyld_process_cache_info));
5682 dyld_process_info_get_cache (process_info, &sc_info);
5683 if (sc_info.cacheBaseAddress != 0) {
5684 base_addr = sc_info.cacheBaseAddress;
5685 uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5686 }
5687 dyld_process_info_release (process_info);
5688 }
5689 }
5690 }
5691 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS(1u << 20) | LIBLLDB_LOG_PROCESS(1u << 1)));
5692 if (log && uuid.IsValid())
5693 log->Printf("lldb's in-memory shared cache has a UUID of %s base address of 0x%" PRIx64"l" "x", uuid.GetAsString().c_str(), base_addr);
5694#endif
5695}
5696
5697llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5698 if (!m_min_os_version) {
5699 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5700 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5701 const lldb::offset_t load_cmd_offset = offset;
5702
5703 version_min_command lc;
5704 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
5705 break;
5706 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5707 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5708 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5709 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5710 if (m_data.GetU32(&offset, &lc.version,
5711 (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5712 const uint32_t xxxx = lc.version >> 16;
5713 const uint32_t yy = (lc.version >> 8) & 0xffu;
5714 const uint32_t zz = lc.version & 0xffu;
5715 if (xxxx) {
5716 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5717 break;
5718 }
5719 }
5720 }
5721 offset = load_cmd_offset + lc.cmdsize;
5722 }
5723
5724 if (!m_min_os_version) {
5725 // Set version to an empty value so we don't keep trying to
5726 m_min_os_version = llvm::VersionTuple();
5727 }
5728 }
5729
5730 return *m_min_os_version;
5731}
5732
5733uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions,
5734 uint32_t num_versions) {
5735 if (m_sdk_versions.empty()) {
5736 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5737 bool success = false;
5738 for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5739 const lldb::offset_t load_cmd_offset = offset;
5740
5741 version_min_command lc;
5742 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL__null)
5743 break;
5744 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5745 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5746 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5747 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5748 if (m_data.GetU32(&offset, &lc.version,
5749 (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5750 const uint32_t xxxx = lc.sdk >> 16;
5751 const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5752 const uint32_t zz = lc.sdk & 0xffu;
5753 if (xxxx) {
5754 m_sdk_versions.push_back(xxxx);
5755 m_sdk_versions.push_back(yy);
5756 m_sdk_versions.push_back(zz);
5757 success = true;
5758 } else {
5759 GetModule()->ReportWarning(
5760 "minimum OS version load command with invalid (0) version found.");
5761 }
5762 }
5763 }
5764 offset = load_cmd_offset + lc.cmdsize;
5765 }
5766
5767 if (success == false) {
5768 // Push an invalid value so we don't try to find
5769 // the version # again on the next call to this
5770 // method.
5771 m_sdk_versions.push_back(UINT32_MAX(4294967295U));
5772 }
5773 }
5774
5775 // Legitimate version numbers will have 3 entries pushed
5776 // on to m_sdk_versions. If we only have one value, it's
5777 // the sentinel value indicating that this object file
5778 // does not have a valid minimum os version #.
5779 if (m_sdk_versions.size() > 1) {
5780 if (versions != NULL__null && num_versions > 0) {
5781 for (size_t i = 0; i < num_versions; ++i) {
5782 if (i < m_sdk_versions.size())
5783 versions[i] = m_sdk_versions[i];
5784 else
5785 versions[i] = 0;
5786 }
5787 }
5788 return m_sdk_versions.size();
5789 }
5790 // Call the superclasses version that will empty out the data
5791 return ObjectFile::GetSDKVersion(versions, num_versions);
5792}
5793
5794bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5795 return m_header.filetype == llvm::MachO::MH_DYLINKER;
5796}
5797
5798bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5799 return m_allow_assembly_emulation_unwind_plans;
5800}
5801
5802//------------------------------------------------------------------
5803// PluginInterface protocol
5804//------------------------------------------------------------------
5805lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5806 return GetPluginNameStatic();
5807}
5808
5809uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5810
5811Section *ObjectFileMachO::GetMachHeaderSection() {
5812 // Find the first address of the mach header which is the first non-zero file
5813 // sized section whose file offset is zero. This is the base file address of
5814 // the mach-o file which can be subtracted from the vmaddr of the other
5815 // segments found in memory and added to the load address
5816 ModuleSP module_sp = GetModule();
5817 if (module_sp) {
5818 SectionList *section_list = GetSectionList();
5819 if (section_list) {
5820 lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5821 const size_t num_sections = section_list->GetSize();
5822
5823 for (size_t sect_idx = 0; sect_idx < num_sections &&
5824 mach_base_file_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL);
5825 ++sect_idx) {
5826 Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5827 if (section && section->GetFileSize() > 0 &&
5828 section->GetFileOffset() == 0 &&
5829 section->IsThreadSpecific() == false &&
5830 module_sp.get() == section->GetModule().get()) {
5831 return section;
5832 }
5833 }
5834 }
5835 }
5836 return nullptr;
5837}
5838
5839lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
5840 lldb::addr_t mach_header_load_address, const Section *mach_header_section,
5841 const Section *section) {
5842 ModuleSP module_sp = GetModule();
5843 if (module_sp && mach_header_section && section &&
5844 mach_header_load_address != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
5845 lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress();
5846 if (mach_header_file_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
5847 if (section && section->GetFileSize() > 0 &&
5848 section->IsThreadSpecific() == false &&
5849 module_sp.get() == section->GetModule().get()) {
5850 // Ignore __LINKEDIT and __DWARF segments
5851 if (section->GetName() == GetSegmentNameLINKEDIT()) {
5852 // Only map __LINKEDIT if we have an in memory image and this isn't a
5853 // kernel binary like a kext or mach_kernel.
5854 const bool is_memory_image = (bool)m_process_wp.lock();
5855 const Strata strata = GetStrata();
5856 if (is_memory_image == false || strata == eStrataKernel)
5857 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
5858 }
5859 return section->GetFileAddress() - mach_header_file_addr +
5860 mach_header_load_address;
5861 }
5862 }
5863 }
5864 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
5865}
5866
5867bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
5868 bool value_is_offset) {
5869 ModuleSP module_sp = GetModule();
5870 if (module_sp) {
5871 size_t num_loaded_sections = 0;
5872 SectionList *section_list = GetSectionList();
5873 if (section_list) {
5874 const size_t num_sections = section_list->GetSize();
5875
5876 if (value_is_offset) {
5877 // "value" is an offset to apply to each top level segment
5878 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5879 // Iterate through the object file sections to find all of the
5880 // sections that size on disk (to avoid __PAGEZERO) and load them
5881 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5882 if (section_sp && section_sp->GetFileSize() > 0 &&
5883 section_sp->IsThreadSpecific() == false &&
5884 module_sp.get() == section_sp->GetModule().get()) {
5885 // Ignore __LINKEDIT and __DWARF segments
5886 if (section_sp->GetName() == GetSegmentNameLINKEDIT()) {
5887 // Only map __LINKEDIT if we have an in memory image and this
5888 // isn't a kernel binary like a kext or mach_kernel.
5889 const bool is_memory_image = (bool)m_process_wp.lock();
5890 const Strata strata = GetStrata();
5891 if (is_memory_image == false || strata == eStrataKernel)
5892 continue;
5893 }
5894 if (target.GetSectionLoadList().SetSectionLoadAddress(
5895 section_sp, section_sp->GetFileAddress() + value))
5896 ++num_loaded_sections;
5897 }
5898 }
5899 } else {
5900 // "value" is the new base address of the mach_header, adjust each
5901 // section accordingly
5902
5903 Section *mach_header_section = GetMachHeaderSection();
5904 if (mach_header_section) {
5905 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5906 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5907
5908 lldb::addr_t section_load_addr =
5909 CalculateSectionLoadAddressForMemoryImage(
5910 value, mach_header_section, section_sp.get());
5911 if (section_load_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
5912 if (target.GetSectionLoadList().SetSectionLoadAddress(
5913 section_sp, section_load_addr))
5914 ++num_loaded_sections;
5915 }
5916 }
5917 }
5918 }
5919 }
5920 return num_loaded_sections > 0;
5921 }
5922 return false;
5923}
5924
5925bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
5926 const FileSpec &outfile, Status &error) {
5927 if (process_sp) {
5928 Target &target = process_sp->GetTarget();
5929 const ArchSpec target_arch = target.GetArchitecture();
5930 const llvm::Triple &target_triple = target_arch.GetTriple();
5931 if (target_triple.getVendor() == llvm::Triple::Apple &&
5932 (target_triple.getOS() == llvm::Triple::MacOSX ||
5933 target_triple.getOS() == llvm::Triple::IOS ||
5934 target_triple.getOS() == llvm::Triple::WatchOS ||
5935 target_triple.getOS() == llvm::Triple::TvOS)) {
5936 bool make_core = false;
5937 switch (target_arch.GetMachine()) {
5938 case llvm::Triple::aarch64:
5939 case llvm::Triple::arm:
5940 case llvm::Triple::thumb:
5941 case llvm::Triple::x86:
5942 case llvm::Triple::x86_64:
5943 make_core = true;
5944 break;
5945 default:
5946 error.SetErrorStringWithFormat("unsupported core architecture: %s",
5947 target_triple.str().c_str());
5948 break;
5949 }
5950
5951 if (make_core) {
5952 std::vector<segment_command_64> segment_load_commands;
5953 // uint32_t range_info_idx = 0;
5954 MemoryRegionInfo range_info;
5955 Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
5956 const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
5957 const ByteOrder byte_order = target_arch.GetByteOrder();
5958 if (range_error.Success()) {
5959 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
5960 const addr_t addr = range_info.GetRange().GetRangeBase();
5961 const addr_t size = range_info.GetRange().GetByteSize();
5962
5963 if (size == 0)
5964 break;
5965
5966 // Calculate correct protections
5967 uint32_t prot = 0;
5968 if (range_info.GetReadable() == MemoryRegionInfo::eYes)
5969 prot |= VM_PROT_READ;
5970 if (range_info.GetWritable() == MemoryRegionInfo::eYes)
5971 prot |= VM_PROT_WRITE;
5972 if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
5973 prot |= VM_PROT_EXECUTE;
5974
5975 // printf ("[%3u] [0x%16.16" PRIx64 " -
5976 // 0x%16.16" PRIx64 ") %c%c%c\n",
5977 // range_info_idx,
5978 // addr,
5979 // size,
5980 // (prot & VM_PROT_READ ) ? 'r' :
5981 // '-',
5982 // (prot & VM_PROT_WRITE ) ? 'w' :
5983 // '-',
5984 // (prot & VM_PROT_EXECUTE) ? 'x' :
5985 // '-');
5986
5987 if (prot != 0) {
5988 uint32_t cmd_type = LC_SEGMENT_64;
5989 uint32_t segment_size = sizeof(segment_command_64);
5990 if (addr_byte_size == 4) {
5991 cmd_type = LC_SEGMENT;
5992 segment_size = sizeof(segment_command);
5993 }
5994 segment_command_64 segment = {
5995 cmd_type, // uint32_t cmd;
5996 segment_size, // uint32_t cmdsize;
5997 {0}, // char segname[16];
5998 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O
5999 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O
6000 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O
6001 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O
6002 prot, // uint32_t maxprot;
6003 prot, // uint32_t initprot;
6004 0, // uint32_t nsects;
6005 0}; // uint32_t flags;
6006 segment_load_commands.push_back(segment);
6007 } else {
6008 // No protections and a size of 1 used to be returned from old
6009 // debugservers when we asked about a region that was past the
6010 // last memory region and it indicates the end...
6011 if (size == 1)
6012 break;
6013 }
6014
6015 range_error = process_sp->GetMemoryRegionInfo(
6016 range_info.GetRange().GetRangeEnd(), range_info);
6017 if (range_error.Fail())
6018 break;
6019 }
6020
6021 StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6022
6023 mach_header_64 mach_header;
6024 if (addr_byte_size == 8) {
6025 mach_header.magic = MH_MAGIC_64;
6026 } else {
6027 mach_header.magic = MH_MAGIC;
6028 }
6029 mach_header.cputype = target_arch.GetMachOCPUType();
6030 mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6031 mach_header.filetype = MH_CORE;
6032 mach_header.ncmds = segment_load_commands.size();
6033 mach_header.flags = 0;
6034 mach_header.reserved = 0;
6035 ThreadList &thread_list = process_sp->GetThreadList();
6036 const uint32_t num_threads = thread_list.GetSize();
6037
6038 // Make an array of LC_THREAD data items. Each one contains the
6039 // contents of the LC_THREAD load command. The data doesn't contain
6040 // the load command + load command size, we will add the load command
6041 // and load command size as we emit the data.
6042 std::vector<StreamString> LC_THREAD_datas(num_threads);
6043 for (auto &LC_THREAD_data : LC_THREAD_datas) {
6044 LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6045 LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6046 LC_THREAD_data.SetByteOrder(byte_order);
6047 }
6048 for (uint32_t thread_idx = 0; thread_idx < num_threads;
6049 ++thread_idx) {
6050 ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6051 if (thread_sp) {
6052 switch (mach_header.cputype) {
6053 case llvm::MachO::CPU_TYPE_ARM64:
6054 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6055 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6056 break;
6057
6058 case llvm::MachO::CPU_TYPE_ARM:
6059 RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6060 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6061 break;
6062
6063 case llvm::MachO::CPU_TYPE_I386:
6064 RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6065 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6066 break;
6067
6068 case llvm::MachO::CPU_TYPE_X86_64:
6069 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6070 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6071 break;
6072 }
6073 }
6074 }
6075
6076 // The size of the load command is the size of the segments...
6077 if (addr_byte_size == 8) {
6078 mach_header.sizeofcmds = segment_load_commands.size() *
6079 sizeof(struct segment_command_64);
6080 } else {
6081 mach_header.sizeofcmds =
6082 segment_load_commands.size() * sizeof(struct segment_command);
6083 }
6084
6085 // and the size of all LC_THREAD load command
6086 for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6087 ++mach_header.ncmds;
6088 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6089 }
6090
6091 printf("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x "
6092 "0x%8.8x 0x%8.8x\n",
6093 mach_header.magic, mach_header.cputype, mach_header.cpusubtype,
6094 mach_header.filetype, mach_header.ncmds,
6095 mach_header.sizeofcmds, mach_header.flags,
6096 mach_header.reserved);
6097
6098 // Write the mach header
6099 buffer.PutHex32(mach_header.magic);
6100 buffer.PutHex32(mach_header.cputype);
6101 buffer.PutHex32(mach_header.cpusubtype);
6102 buffer.PutHex32(mach_header.filetype);
6103 buffer.PutHex32(mach_header.ncmds);
6104 buffer.PutHex32(mach_header.sizeofcmds);
6105 buffer.PutHex32(mach_header.flags);
6106 if (addr_byte_size == 8) {
6107 buffer.PutHex32(mach_header.reserved);
6108 }
6109
6110 // Skip the mach header and all load commands and align to the next
6111 // 0x1000 byte boundary
6112 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6113 if (file_offset & 0x00000fff) {
6114 file_offset += 0x00001000ull;
6115 file_offset &= (~0x00001000ull + 1);
6116 }
6117
6118 for (auto &segment : segment_load_commands) {
6119 segment.fileoff = file_offset;
6120 file_offset += segment.filesize;
6121 }
6122
6123 // Write out all of the LC_THREAD load commands
6124 for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6125 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6126 buffer.PutHex32(LC_THREAD);
6127 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6128 buffer.Write(LC_THREAD_data.GetString().data(),
6129 LC_THREAD_data_size);
6130 }
6131
6132 // Write out all of the segment load commands
6133 for (const auto &segment : segment_load_commands) {
6134 printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64"l" "x" " - 0x%16.16" PRIx64"l" "x"
6135 ") [0x%16.16" PRIx64"l" "x" " 0x%16.16" PRIx64"l" "x"
6136 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6137 segment.cmd, segment.cmdsize, segment.vmaddr,
6138 segment.vmaddr + segment.vmsize, segment.fileoff,
6139 segment.filesize, segment.maxprot, segment.initprot,
6140 segment.nsects, segment.flags);
6141
6142 buffer.PutHex32(segment.cmd);
6143 buffer.PutHex32(segment.cmdsize);
6144 buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6145 if (addr_byte_size == 8) {
6146 buffer.PutHex64(segment.vmaddr);
6147 buffer.PutHex64(segment.vmsize);
6148 buffer.PutHex64(segment.fileoff);
6149 buffer.PutHex64(segment.filesize);
6150 } else {
6151 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6152 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6153 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6154 buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6155 }
6156 buffer.PutHex32(segment.maxprot);
6157 buffer.PutHex32(segment.initprot);
6158 buffer.PutHex32(segment.nsects);
6159 buffer.PutHex32(segment.flags);
6160 }
6161
6162 File core_file;
6163 std::string core_file_path(outfile.GetPath());
6164 error = core_file.Open(core_file_path.c_str(),
6165 File::eOpenOptionWrite |
6166 File::eOpenOptionTruncate |
6167 File::eOpenOptionCanCreate);
6168 if (error.Success()) {
6169 // Read 1 page at a time
6170 uint8_t bytes[0x1000];
6171 // Write the mach header and load commands out to the core file
6172 size_t bytes_written = buffer.GetString().size();
6173 error = core_file.Write(buffer.GetString().data(), bytes_written);
6174 if (error.Success()) {
6175 // Now write the file data for all memory segments in the process
6176 for (const auto &segment : segment_load_commands) {
6177 if (core_file.SeekFromStart(segment.fileoff) == -1) {
6178 error.SetErrorStringWithFormat(
6179 "unable to seek to offset 0x%" PRIx64"l" "x" " in '%s'",
6180 segment.fileoff, core_file_path.c_str());
6181 break;
6182 }
6183
6184 printf("Saving %" PRId64"l" "d"
6185 " bytes of data for memory region at 0x%" PRIx64"l" "x" "\n",
6186 segment.vmsize, segment.vmaddr);
6187 addr_t bytes_left = segment.vmsize;
6188 addr_t addr = segment.vmaddr;
6189 Status memory_read_error;
6190 while (bytes_left > 0 && error.Success()) {
6191 const size_t bytes_to_read =
6192 bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6193 const size_t bytes_read = process_sp->ReadMemory(
6194 addr, bytes, bytes_to_read, memory_read_error);
6195 if (bytes_read == bytes_to_read) {
6196 size_t bytes_written = bytes_read;
6197 error = core_file.Write(bytes, bytes_written);
6198 bytes_left -= bytes_read;
6199 addr += bytes_read;
6200 } else {
6201 // Some pages within regions are not readable, those should
6202 // be zero filled
6203 memset(bytes, 0, bytes_to_read);
6204 size_t bytes_written = bytes_to_read;
6205 error = core_file.Write(bytes, bytes_written);
6206 bytes_left -= bytes_to_read;
6207 addr += bytes_to_read;
6208 }
6209 }
6210 }
6211 }
6212 }
6213 } else {
6214 error.SetErrorString(
6215 "process doesn't support getting memory region info");
6216 }
6217 }
6218 return true; // This is the right plug to handle saving core files for
6219 // this process
6220 }
6221 }
6222 return false;
6223}