Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp
Warning:line 4122, column 45
Array access (from variable 'symbol_name') results in a null pointer dereference

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ObjectFileMachO.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -isystem /usr/include/libxml2 -D HAVE_ROUND -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/lldb/source/Plugins/ObjectFile/Mach-O -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/lldb/source/Plugins/ObjectFile/Mach-O -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/lldb/include -I tools/lldb/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -I /usr/include/python3.9 -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/lldb/../clang/include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/lldb/source -I tools/lldb/source -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-deprecated-declarations -Wno-unknown-pragmas -Wno-strict-aliasing -Wno-stringop-truncation -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp
1//===-- ObjectFileMachO.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/ADT/ScopeExit.h"
10#include "llvm/ADT/StringRef.h"
11
12#include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
13#include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
14#include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
15#include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
16#include "lldb/Core/Debugger.h"
17#include "lldb/Core/FileSpecList.h"
18#include "lldb/Core/Module.h"
19#include "lldb/Core/ModuleSpec.h"
20#include "lldb/Core/PluginManager.h"
21#include "lldb/Core/Progress.h"
22#include "lldb/Core/Section.h"
23#include "lldb/Core/StreamFile.h"
24#include "lldb/Host/Host.h"
25#include "lldb/Symbol/DWARFCallFrameInfo.h"
26#include "lldb/Symbol/LocateSymbolFile.h"
27#include "lldb/Symbol/ObjectFile.h"
28#include "lldb/Target/DynamicLoader.h"
29#include "lldb/Target/MemoryRegionInfo.h"
30#include "lldb/Target/Platform.h"
31#include "lldb/Target/Process.h"
32#include "lldb/Target/SectionLoadList.h"
33#include "lldb/Target/Target.h"
34#include "lldb/Target/Thread.h"
35#include "lldb/Target/ThreadList.h"
36#include "lldb/Utility/ArchSpec.h"
37#include "lldb/Utility/DataBuffer.h"
38#include "lldb/Utility/FileSpec.h"
39#include "lldb/Utility/LLDBLog.h"
40#include "lldb/Utility/Log.h"
41#include "lldb/Utility/RangeMap.h"
42#include "lldb/Utility/RegisterValue.h"
43#include "lldb/Utility/Status.h"
44#include "lldb/Utility/StreamString.h"
45#include "lldb/Utility/Timer.h"
46#include "lldb/Utility/UUID.h"
47
48#include "lldb/Host/SafeMachO.h"
49
50#include "llvm/ADT/DenseSet.h"
51#include "llvm/Support/FormatVariadic.h"
52#include "llvm/Support/MemoryBuffer.h"
53
54#include "ObjectFileMachO.h"
55
56#if defined(__APPLE__)
57#include <TargetConditionals.h>
58// GetLLDBSharedCacheUUID() needs to call dlsym()
59#include <dlfcn.h>
60#include <mach/mach_init.h>
61#include <mach/vm_map.h>
62#include <lldb/Host/SafeMachO.h>
63#endif
64
65#ifndef __APPLE__
66#include "Utility/UuidCompatibility.h"
67#else
68#include <uuid/uuid.h>
69#endif
70
71#include <bitset>
72#include <memory>
73
74// Unfortunately the signpost header pulls in the system MachO header, too.
75#ifdef CPU_TYPE_ARM
76#undef CPU_TYPE_ARM
77#endif
78#ifdef CPU_TYPE_ARM64
79#undef CPU_TYPE_ARM64
80#endif
81#ifdef CPU_TYPE_ARM64_32
82#undef CPU_TYPE_ARM64_32
83#endif
84#ifdef CPU_TYPE_I386
85#undef CPU_TYPE_I386
86#endif
87#ifdef CPU_TYPE_X86_64
88#undef CPU_TYPE_X86_64
89#endif
90#ifdef MH_DYLINKER
91#undef MH_DYLINKER
92#endif
93#ifdef MH_OBJECT
94#undef MH_OBJECT
95#endif
96#ifdef LC_VERSION_MIN_MACOSX
97#undef LC_VERSION_MIN_MACOSX
98#endif
99#ifdef LC_VERSION_MIN_IPHONEOS
100#undef LC_VERSION_MIN_IPHONEOS
101#endif
102#ifdef LC_VERSION_MIN_TVOS
103#undef LC_VERSION_MIN_TVOS
104#endif
105#ifdef LC_VERSION_MIN_WATCHOS
106#undef LC_VERSION_MIN_WATCHOS
107#endif
108#ifdef LC_BUILD_VERSION
109#undef LC_BUILD_VERSION
110#endif
111#ifdef PLATFORM_MACOS
112#undef PLATFORM_MACOS
113#endif
114#ifdef PLATFORM_MACCATALYST
115#undef PLATFORM_MACCATALYST
116#endif
117#ifdef PLATFORM_IOS
118#undef PLATFORM_IOS
119#endif
120#ifdef PLATFORM_IOSSIMULATOR
121#undef PLATFORM_IOSSIMULATOR
122#endif
123#ifdef PLATFORM_TVOS
124#undef PLATFORM_TVOS
125#endif
126#ifdef PLATFORM_TVOSSIMULATOR
127#undef PLATFORM_TVOSSIMULATOR
128#endif
129#ifdef PLATFORM_WATCHOS
130#undef PLATFORM_WATCHOS
131#endif
132#ifdef PLATFORM_WATCHOSSIMULATOR
133#undef PLATFORM_WATCHOSSIMULATOR
134#endif
135
136#define THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull 0xfffffffffffffffeull
137using namespace lldb;
138using namespace lldb_private;
139using namespace llvm::MachO;
140
141LLDB_PLUGIN_DEFINE(ObjectFileMachO)namespace lldb_private { void lldb_initialize_ObjectFileMachO
() { ObjectFileMachO::Initialize(); } void lldb_terminate_ObjectFileMachO
() { ObjectFileMachO::Terminate(); } }
142
143// Some structure definitions needed for parsing the dyld shared cache files
144// found on iOS devices.
145
146struct lldb_copy_dyld_cache_header_v1 {
147 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc.
148 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
149 uint32_t mappingCount; // number of dyld_cache_mapping_info entries
150 uint32_t imagesOffset;
151 uint32_t imagesCount;
152 uint64_t dyldBaseAddress;
153 uint64_t codeSignatureOffset;
154 uint64_t codeSignatureSize;
155 uint64_t slideInfoOffset;
156 uint64_t slideInfoSize;
157 uint64_t localSymbolsOffset;
158 uint64_t localSymbolsSize;
159 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
160 // and later
161};
162
163static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
164 const char *alt_name, size_t reg_byte_size,
165 Stream &data) {
166 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
167 if (reg_info == nullptr)
168 reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
169 if (reg_info) {
170 lldb_private::RegisterValue reg_value;
171 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
172 if (reg_info->byte_size >= reg_byte_size)
173 data.Write(reg_value.GetBytes(), reg_byte_size);
174 else {
175 data.Write(reg_value.GetBytes(), reg_info->byte_size);
176 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
177 data.PutChar(0);
178 }
179 return;
180 }
181 }
182 // Just write zeros if all else fails
183 for (size_t i = 0; i < reg_byte_size; ++i)
184 data.PutChar(0);
185}
186
187class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
188public:
189 RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
190 const DataExtractor &data)
191 : RegisterContextDarwin_x86_64(thread, 0) {
192 SetRegisterDataFrom_LC_THREAD(data);
193 }
194
195 void InvalidateAllRegisters() override {
196 // Do nothing... registers are always valid...
197 }
198
199 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
200 lldb::offset_t offset = 0;
201 SetError(GPRRegSet, Read, -1);
202 SetError(FPURegSet, Read, -1);
203 SetError(EXCRegSet, Read, -1);
204 bool done = false;
205
206 while (!done) {
207 int flavor = data.GetU32(&offset);
208 if (flavor == 0)
209 done = true;
210 else {
211 uint32_t i;
212 uint32_t count = data.GetU32(&offset);
213 switch (flavor) {
214 case GPRRegSet:
215 for (i = 0; i < count; ++i)
216 (&gpr.rax)[i] = data.GetU64(&offset);
217 SetError(GPRRegSet, Read, 0);
218 done = true;
219
220 break;
221 case FPURegSet:
222 // TODO: fill in FPU regs....
223 // SetError (FPURegSet, Read, -1);
224 done = true;
225
226 break;
227 case EXCRegSet:
228 exc.trapno = data.GetU32(&offset);
229 exc.err = data.GetU32(&offset);
230 exc.faultvaddr = data.GetU64(&offset);
231 SetError(EXCRegSet, Read, 0);
232 done = true;
233 break;
234 case 7:
235 case 8:
236 case 9:
237 // fancy flavors that encapsulate of the above flavors...
238 break;
239
240 default:
241 done = true;
242 break;
243 }
244 }
245 }
246 }
247
248 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
249 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
250 if (reg_ctx_sp) {
251 RegisterContext *reg_ctx = reg_ctx_sp.get();
252
253 data.PutHex32(GPRRegSet); // Flavor
254 data.PutHex32(GPRWordCount);
255 PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
256 PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
257 PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
258 PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
259 PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
260 PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
261 PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
262 PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
263 PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
264 PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
265 PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
266 PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
267 PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
268 PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
269 PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
270 PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
271 PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
272 PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
273 PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
274 PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
275 PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
276
277 // // Write out the FPU registers
278 // const size_t fpu_byte_size = sizeof(FPU);
279 // size_t bytes_written = 0;
280 // data.PutHex32 (FPURegSet);
281 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
282 // bytes_written += data.PutHex32(0); // uint32_t pad[0]
283 // bytes_written += data.PutHex32(0); // uint32_t pad[1]
284 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
285 // data); // uint16_t fcw; // "fctrl"
286 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
287 // data); // uint16_t fsw; // "fstat"
288 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
289 // data); // uint8_t ftw; // "ftag"
290 // bytes_written += data.PutHex8 (0); // uint8_t pad1;
291 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
292 // data); // uint16_t fop; // "fop"
293 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
294 // data); // uint32_t ip; // "fioff"
295 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
296 // data); // uint16_t cs; // "fiseg"
297 // bytes_written += data.PutHex16 (0); // uint16_t pad2;
298 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
299 // data); // uint32_t dp; // "fooff"
300 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
301 // data); // uint16_t ds; // "foseg"
302 // bytes_written += data.PutHex16 (0); // uint16_t pad3;
303 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
304 // data); // uint32_t mxcsr;
305 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
306 // 4, data);// uint32_t mxcsrmask;
307 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
308 // sizeof(MMSReg), data);
309 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
310 // sizeof(MMSReg), data);
311 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
312 // sizeof(MMSReg), data);
313 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
314 // sizeof(MMSReg), data);
315 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
316 // sizeof(MMSReg), data);
317 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
318 // sizeof(MMSReg), data);
319 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
320 // sizeof(MMSReg), data);
321 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
322 // sizeof(MMSReg), data);
323 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
324 // sizeof(XMMReg), data);
325 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
326 // sizeof(XMMReg), data);
327 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
328 // sizeof(XMMReg), data);
329 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
330 // sizeof(XMMReg), data);
331 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
332 // sizeof(XMMReg), data);
333 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
334 // sizeof(XMMReg), data);
335 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
336 // sizeof(XMMReg), data);
337 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
338 // sizeof(XMMReg), data);
339 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
340 // sizeof(XMMReg), data);
341 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
342 // sizeof(XMMReg), data);
343 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
344 // sizeof(XMMReg), data);
345 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
346 // sizeof(XMMReg), data);
347 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
348 // sizeof(XMMReg), data);
349 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
350 // sizeof(XMMReg), data);
351 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
352 // sizeof(XMMReg), data);
353 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
354 // sizeof(XMMReg), data);
355 //
356 // // Fill rest with zeros
357 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
358 // i)
359 // data.PutChar(0);
360
361 // Write out the EXC registers
362 data.PutHex32(EXCRegSet);
363 data.PutHex32(EXCWordCount);
364 PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
365 PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
366 PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
367 return true;
368 }
369 return false;
370 }
371
372protected:
373 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
374
375 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
376
377 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
378
379 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
380 return 0;
381 }
382
383 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
384 return 0;
385 }
386
387 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
388 return 0;
389 }
390};
391
392class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
393public:
394 RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
395 const DataExtractor &data)
396 : RegisterContextDarwin_i386(thread, 0) {
397 SetRegisterDataFrom_LC_THREAD(data);
398 }
399
400 void InvalidateAllRegisters() override {
401 // Do nothing... registers are always valid...
402 }
403
404 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
405 lldb::offset_t offset = 0;
406 SetError(GPRRegSet, Read, -1);
407 SetError(FPURegSet, Read, -1);
408 SetError(EXCRegSet, Read, -1);
409 bool done = false;
410
411 while (!done) {
412 int flavor = data.GetU32(&offset);
413 if (flavor == 0)
414 done = true;
415 else {
416 uint32_t i;
417 uint32_t count = data.GetU32(&offset);
418 switch (flavor) {
419 case GPRRegSet:
420 for (i = 0; i < count; ++i)
421 (&gpr.eax)[i] = data.GetU32(&offset);
422 SetError(GPRRegSet, Read, 0);
423 done = true;
424
425 break;
426 case FPURegSet:
427 // TODO: fill in FPU regs....
428 // SetError (FPURegSet, Read, -1);
429 done = true;
430
431 break;
432 case EXCRegSet:
433 exc.trapno = data.GetU32(&offset);
434 exc.err = data.GetU32(&offset);
435 exc.faultvaddr = data.GetU32(&offset);
436 SetError(EXCRegSet, Read, 0);
437 done = true;
438 break;
439 case 7:
440 case 8:
441 case 9:
442 // fancy flavors that encapsulate of the above flavors...
443 break;
444
445 default:
446 done = true;
447 break;
448 }
449 }
450 }
451 }
452
453 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
454 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
455 if (reg_ctx_sp) {
456 RegisterContext *reg_ctx = reg_ctx_sp.get();
457
458 data.PutHex32(GPRRegSet); // Flavor
459 data.PutHex32(GPRWordCount);
460 PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
461 PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
462 PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
463 PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
464 PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
465 PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
466 PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
467 PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
468 PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
469 PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
470 PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
471 PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
472 PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
473 PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
474 PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
475 PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
476
477 // Write out the EXC registers
478 data.PutHex32(EXCRegSet);
479 data.PutHex32(EXCWordCount);
480 PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
481 PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
482 PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
483 return true;
484 }
485 return false;
486 }
487
488protected:
489 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
490
491 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
492
493 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
494
495 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
496 return 0;
497 }
498
499 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
500 return 0;
501 }
502
503 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
504 return 0;
505 }
506};
507
508class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
509public:
510 RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
511 const DataExtractor &data)
512 : RegisterContextDarwin_arm(thread, 0) {
513 SetRegisterDataFrom_LC_THREAD(data);
514 }
515
516 void InvalidateAllRegisters() override {
517 // Do nothing... registers are always valid...
518 }
519
520 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
521 lldb::offset_t offset = 0;
522 SetError(GPRRegSet, Read, -1);
523 SetError(FPURegSet, Read, -1);
524 SetError(EXCRegSet, Read, -1);
525 bool done = false;
526
527 while (!done) {
528 int flavor = data.GetU32(&offset);
529 uint32_t count = data.GetU32(&offset);
530 lldb::offset_t next_thread_state = offset + (count * 4);
531 switch (flavor) {
532 case GPRAltRegSet:
533 case GPRRegSet:
534 // On ARM, the CPSR register is also included in the count but it is
535 // not included in gpr.r so loop until (count-1).
536 for (uint32_t i = 0; i < (count - 1); ++i) {
537 gpr.r[i] = data.GetU32(&offset);
538 }
539 // Save cpsr explicitly.
540 gpr.cpsr = data.GetU32(&offset);
541
542 SetError(GPRRegSet, Read, 0);
543 offset = next_thread_state;
544 break;
545
546 case FPURegSet: {
547 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
548 const int fpu_reg_buf_size = sizeof(fpu.floats);
549 if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
550 fpu_reg_buf) == fpu_reg_buf_size) {
551 offset += fpu_reg_buf_size;
552 fpu.fpscr = data.GetU32(&offset);
553 SetError(FPURegSet, Read, 0);
554 } else {
555 done = true;
556 }
557 }
558 offset = next_thread_state;
559 break;
560
561 case EXCRegSet:
562 if (count == 3) {
563 exc.exception = data.GetU32(&offset);
564 exc.fsr = data.GetU32(&offset);
565 exc.far = data.GetU32(&offset);
566 SetError(EXCRegSet, Read, 0);
567 }
568 done = true;
569 offset = next_thread_state;
570 break;
571
572 // Unknown register set flavor, stop trying to parse.
573 default:
574 done = true;
575 }
576 }
577 }
578
579 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
580 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
581 if (reg_ctx_sp) {
582 RegisterContext *reg_ctx = reg_ctx_sp.get();
583
584 data.PutHex32(GPRRegSet); // Flavor
585 data.PutHex32(GPRWordCount);
586 PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
587 PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
588 PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
589 PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
590 PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
591 PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
592 PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
593 PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
594 PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
595 PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
596 PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
597 PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
598 PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
599 PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
600 PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
601 PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
602 PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
603
604 // Write out the EXC registers
605 // data.PutHex32 (EXCRegSet);
606 // data.PutHex32 (EXCWordCount);
607 // WriteRegister (reg_ctx, "exception", NULL, 4, data);
608 // WriteRegister (reg_ctx, "fsr", NULL, 4, data);
609 // WriteRegister (reg_ctx, "far", NULL, 4, data);
610 return true;
611 }
612 return false;
613 }
614
615protected:
616 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
617
618 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
619
620 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
621
622 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
623
624 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
625 return 0;
626 }
627
628 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
629 return 0;
630 }
631
632 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
633 return 0;
634 }
635
636 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
637 return -1;
638 }
639};
640
641class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
642public:
643 RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
644 const DataExtractor &data)
645 : RegisterContextDarwin_arm64(thread, 0) {
646 SetRegisterDataFrom_LC_THREAD(data);
647 }
648
649 void InvalidateAllRegisters() override {
650 // Do nothing... registers are always valid...
651 }
652
653 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
654 lldb::offset_t offset = 0;
655 SetError(GPRRegSet, Read, -1);
656 SetError(FPURegSet, Read, -1);
657 SetError(EXCRegSet, Read, -1);
658 bool done = false;
659 while (!done) {
660 int flavor = data.GetU32(&offset);
661 uint32_t count = data.GetU32(&offset);
662 lldb::offset_t next_thread_state = offset + (count * 4);
663 switch (flavor) {
664 case GPRRegSet:
665 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
666 // 32-bit register)
667 if (count >= (33 * 2) + 1) {
668 for (uint32_t i = 0; i < 29; ++i)
669 gpr.x[i] = data.GetU64(&offset);
670 gpr.fp = data.GetU64(&offset);
671 gpr.lr = data.GetU64(&offset);
672 gpr.sp = data.GetU64(&offset);
673 gpr.pc = data.GetU64(&offset);
674 gpr.cpsr = data.GetU32(&offset);
675 SetError(GPRRegSet, Read, 0);
676 }
677 offset = next_thread_state;
678 break;
679 case FPURegSet: {
680 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
681 const int fpu_reg_buf_size = sizeof(fpu);
682 if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
683 data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
684 fpu_reg_buf) == fpu_reg_buf_size) {
685 SetError(FPURegSet, Read, 0);
686 } else {
687 done = true;
688 }
689 }
690 offset = next_thread_state;
691 break;
692 case EXCRegSet:
693 if (count == 4) {
694 exc.far = data.GetU64(&offset);
695 exc.esr = data.GetU32(&offset);
696 exc.exception = data.GetU32(&offset);
697 SetError(EXCRegSet, Read, 0);
698 }
699 offset = next_thread_state;
700 break;
701 default:
702 done = true;
703 break;
704 }
705 }
706 }
707
708 static bool Create_LC_THREAD(Thread *thread, Stream &data) {
709 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
710 if (reg_ctx_sp) {
711 RegisterContext *reg_ctx = reg_ctx_sp.get();
712
713 data.PutHex32(GPRRegSet); // Flavor
714 data.PutHex32(GPRWordCount);
715 PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
716 PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
717 PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
718 PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
719 PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
720 PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
721 PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
722 PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
723 PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
724 PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
725 PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
726 PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
727 PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
728 PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
729 PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
730 PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
731 PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
732 PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
733 PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
734 PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
735 PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
736 PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
737 PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
738 PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
739 PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
740 PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
741 PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
742 PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
743 PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
744 PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
745 PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
746 PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
747 PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
748 PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
749 data.PutHex32(0); // uint32_t pad at the end
750
751 // Write out the EXC registers
752 data.PutHex32(EXCRegSet);
753 data.PutHex32(EXCWordCount);
754 PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
755 PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
756 PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
757 return true;
758 }
759 return false;
760 }
761
762protected:
763 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
764
765 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
766
767 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
768
769 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
770
771 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
772 return 0;
773 }
774
775 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
776 return 0;
777 }
778
779 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
780 return 0;
781 }
782
783 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
784 return -1;
785 }
786};
787
788static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
789 switch (magic) {
790 case MH_MAGIC:
791 case MH_CIGAM:
792 return sizeof(struct llvm::MachO::mach_header);
793
794 case MH_MAGIC_64:
795 case MH_CIGAM_64:
796 return sizeof(struct llvm::MachO::mach_header_64);
797 break;
798
799 default:
800 break;
801 }
802 return 0;
803}
804
805#define MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008 0x0008
806
807char ObjectFileMachO::ID;
808
809void ObjectFileMachO::Initialize() {
810 PluginManager::RegisterPlugin(
811 GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
812 CreateMemoryInstance, GetModuleSpecifications, SaveCore);
813}
814
815void ObjectFileMachO::Terminate() {
816 PluginManager::UnregisterPlugin(CreateInstance);
817}
818
819ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
820 DataBufferSP data_sp,
821 lldb::offset_t data_offset,
822 const FileSpec *file,
823 lldb::offset_t file_offset,
824 lldb::offset_t length) {
825 if (!data_sp) {
826 data_sp = MapFileData(*file, length, file_offset);
827 if (!data_sp)
828 return nullptr;
829 data_offset = 0;
830 }
831
832 if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
833 return nullptr;
834
835 // Update the data to contain the entire file if it doesn't already
836 if (data_sp->GetByteSize() < length) {
837 data_sp = MapFileData(*file, length, file_offset);
838 if (!data_sp)
839 return nullptr;
840 data_offset = 0;
841 }
842 auto objfile_up = std::make_unique<ObjectFileMachO>(
843 module_sp, data_sp, data_offset, file, file_offset, length);
844 if (!objfile_up || !objfile_up->ParseHeader())
845 return nullptr;
846
847 return objfile_up.release();
848}
849
850ObjectFile *ObjectFileMachO::CreateMemoryInstance(
851 const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
852 const ProcessSP &process_sp, lldb::addr_t header_addr) {
853 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
854 std::unique_ptr<ObjectFile> objfile_up(
855 new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
856 if (objfile_up.get() && objfile_up->ParseHeader())
857 return objfile_up.release();
858 }
859 return nullptr;
860}
861
862size_t ObjectFileMachO::GetModuleSpecifications(
863 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
864 lldb::offset_t data_offset, lldb::offset_t file_offset,
865 lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
866 const size_t initial_count = specs.GetSize();
867
868 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
869 DataExtractor data;
870 data.SetData(data_sp);
871 llvm::MachO::mach_header header;
872 if (ParseHeader(data, &data_offset, header)) {
873 size_t header_and_load_cmds =
874 header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
875 if (header_and_load_cmds >= data_sp->GetByteSize()) {
876 data_sp = MapFileData(file, header_and_load_cmds, file_offset);
877 data.SetData(data_sp);
878 data_offset = MachHeaderSizeFromMagic(header.magic);
879 }
880 if (data_sp) {
881 ModuleSpec base_spec;
882 base_spec.GetFileSpec() = file;
883 base_spec.SetObjectOffset(file_offset);
884 base_spec.SetObjectSize(length);
885 GetAllArchSpecs(header, data, data_offset, base_spec, specs);
886 }
887 }
888 }
889 return specs.GetSize() - initial_count;
890}
891
892ConstString ObjectFileMachO::GetSegmentNameTEXT() {
893 static ConstString g_segment_name_TEXT("__TEXT");
894 return g_segment_name_TEXT;
895}
896
897ConstString ObjectFileMachO::GetSegmentNameDATA() {
898 static ConstString g_segment_name_DATA("__DATA");
899 return g_segment_name_DATA;
900}
901
902ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
903 static ConstString g_segment_name("__DATA_DIRTY");
904 return g_segment_name;
905}
906
907ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
908 static ConstString g_segment_name("__DATA_CONST");
909 return g_segment_name;
910}
911
912ConstString ObjectFileMachO::GetSegmentNameOBJC() {
913 static ConstString g_segment_name_OBJC("__OBJC");
914 return g_segment_name_OBJC;
915}
916
917ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
918 static ConstString g_section_name_LINKEDIT("__LINKEDIT");
919 return g_section_name_LINKEDIT;
920}
921
922ConstString ObjectFileMachO::GetSegmentNameDWARF() {
923 static ConstString g_section_name("__DWARF");
924 return g_section_name;
925}
926
927ConstString ObjectFileMachO::GetSectionNameEHFrame() {
928 static ConstString g_section_name_eh_frame("__eh_frame");
929 return g_section_name_eh_frame;
930}
931
932bool ObjectFileMachO::MagicBytesMatch(DataBufferSP data_sp,
933 lldb::addr_t data_offset,
934 lldb::addr_t data_length) {
935 DataExtractor data;
936 data.SetData(data_sp, data_offset, data_length);
937 lldb::offset_t offset = 0;
938 uint32_t magic = data.GetU32(&offset);
939 return MachHeaderSizeFromMagic(magic) != 0;
940}
941
942ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
943 DataBufferSP data_sp,
944 lldb::offset_t data_offset,
945 const FileSpec *file,
946 lldb::offset_t file_offset,
947 lldb::offset_t length)
948 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
949 m_mach_segments(), m_mach_sections(), m_entry_point_address(),
950 m_thread_context_offsets(), m_thread_context_offsets_valid(false),
951 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
952 ::memset(&m_header, 0, sizeof(m_header));
953 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
954}
955
956ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
957 lldb::WritableDataBufferSP header_data_sp,
958 const lldb::ProcessSP &process_sp,
959 lldb::addr_t header_addr)
960 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
961 m_mach_segments(), m_mach_sections(), m_entry_point_address(),
962 m_thread_context_offsets(), m_thread_context_offsets_valid(false),
963 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
964 ::memset(&m_header, 0, sizeof(m_header));
965 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
966}
967
968bool ObjectFileMachO::ParseHeader(DataExtractor &data,
969 lldb::offset_t *data_offset_ptr,
970 llvm::MachO::mach_header &header) {
971 data.SetByteOrder(endian::InlHostByteOrder());
972 // Leave magic in the original byte order
973 header.magic = data.GetU32(data_offset_ptr);
974 bool can_parse = false;
975 bool is_64_bit = false;
976 switch (header.magic) {
977 case MH_MAGIC:
978 data.SetByteOrder(endian::InlHostByteOrder());
979 data.SetAddressByteSize(4);
980 can_parse = true;
981 break;
982
983 case MH_MAGIC_64:
984 data.SetByteOrder(endian::InlHostByteOrder());
985 data.SetAddressByteSize(8);
986 can_parse = true;
987 is_64_bit = true;
988 break;
989
990 case MH_CIGAM:
991 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
992 ? eByteOrderLittle
993 : eByteOrderBig);
994 data.SetAddressByteSize(4);
995 can_parse = true;
996 break;
997
998 case MH_CIGAM_64:
999 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1000 ? eByteOrderLittle
1001 : eByteOrderBig);
1002 data.SetAddressByteSize(8);
1003 is_64_bit = true;
1004 can_parse = true;
1005 break;
1006
1007 default:
1008 break;
1009 }
1010
1011 if (can_parse) {
1012 data.GetU32(data_offset_ptr, &header.cputype, 6);
1013 if (is_64_bit)
1014 *data_offset_ptr += 4;
1015 return true;
1016 } else {
1017 memset(&header, 0, sizeof(header));
1018 }
1019 return false;
1020}
1021
1022bool ObjectFileMachO::ParseHeader() {
1023 ModuleSP module_sp(GetModule());
1024 if (!module_sp)
1025 return false;
1026
1027 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1028 bool can_parse = false;
1029 lldb::offset_t offset = 0;
1030 m_data.SetByteOrder(endian::InlHostByteOrder());
1031 // Leave magic in the original byte order
1032 m_header.magic = m_data.GetU32(&offset);
1033 switch (m_header.magic) {
1034 case MH_MAGIC:
1035 m_data.SetByteOrder(endian::InlHostByteOrder());
1036 m_data.SetAddressByteSize(4);
1037 can_parse = true;
1038 break;
1039
1040 case MH_MAGIC_64:
1041 m_data.SetByteOrder(endian::InlHostByteOrder());
1042 m_data.SetAddressByteSize(8);
1043 can_parse = true;
1044 break;
1045
1046 case MH_CIGAM:
1047 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1048 ? eByteOrderLittle
1049 : eByteOrderBig);
1050 m_data.SetAddressByteSize(4);
1051 can_parse = true;
1052 break;
1053
1054 case MH_CIGAM_64:
1055 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1056 ? eByteOrderLittle
1057 : eByteOrderBig);
1058 m_data.SetAddressByteSize(8);
1059 can_parse = true;
1060 break;
1061
1062 default:
1063 break;
1064 }
1065
1066 if (can_parse) {
1067 m_data.GetU32(&offset, &m_header.cputype, 6);
1068
1069 ModuleSpecList all_specs;
1070 ModuleSpec base_spec;
1071 GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1072 base_spec, all_specs);
1073
1074 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1075 ArchSpec mach_arch =
1076 all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1077
1078 // Check if the module has a required architecture
1079 const ArchSpec &module_arch = module_sp->GetArchitecture();
1080 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1081 continue;
1082
1083 if (SetModulesArchitecture(mach_arch)) {
1084 const size_t header_and_lc_size =
1085 m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1086 if (m_data.GetByteSize() < header_and_lc_size) {
1087 DataBufferSP data_sp;
1088 ProcessSP process_sp(m_process_wp.lock());
1089 if (process_sp) {
1090 data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1091 } else {
1092 // Read in all only the load command data from the file on disk
1093 data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1094 if (data_sp->GetByteSize() != header_and_lc_size)
1095 continue;
1096 }
1097 if (data_sp)
1098 m_data.SetData(data_sp);
1099 }
1100 }
1101 return true;
1102 }
1103 // None found.
1104 return false;
1105 } else {
1106 memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1107 }
1108 return false;
1109}
1110
1111ByteOrder ObjectFileMachO::GetByteOrder() const {
1112 return m_data.GetByteOrder();
1113}
1114
1115bool ObjectFileMachO::IsExecutable() const {
1116 return m_header.filetype == MH_EXECUTE;
1117}
1118
1119bool ObjectFileMachO::IsDynamicLoader() const {
1120 return m_header.filetype == MH_DYLINKER;
1121}
1122
1123bool ObjectFileMachO::IsSharedCacheBinary() const {
1124 return m_header.flags & MH_DYLIB_IN_CACHE;
1125}
1126
1127uint32_t ObjectFileMachO::GetAddressByteSize() const {
1128 return m_data.GetAddressByteSize();
1129}
1130
1131AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1132 Symtab *symtab = GetSymtab();
1133 if (!symtab)
1134 return AddressClass::eUnknown;
1135
1136 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1137 if (symbol) {
1138 if (symbol->ValueIsAddress()) {
1139 SectionSP section_sp(symbol->GetAddressRef().GetSection());
1140 if (section_sp) {
1141 const lldb::SectionType section_type = section_sp->GetType();
1142 switch (section_type) {
1143 case eSectionTypeInvalid:
1144 return AddressClass::eUnknown;
1145
1146 case eSectionTypeCode:
1147 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1148 // For ARM we have a bit in the n_desc field of the symbol that
1149 // tells us ARM/Thumb which is bit 0x0008.
1150 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008)
1151 return AddressClass::eCodeAlternateISA;
1152 }
1153 return AddressClass::eCode;
1154
1155 case eSectionTypeContainer:
1156 return AddressClass::eUnknown;
1157
1158 case eSectionTypeData:
1159 case eSectionTypeDataCString:
1160 case eSectionTypeDataCStringPointers:
1161 case eSectionTypeDataSymbolAddress:
1162 case eSectionTypeData4:
1163 case eSectionTypeData8:
1164 case eSectionTypeData16:
1165 case eSectionTypeDataPointers:
1166 case eSectionTypeZeroFill:
1167 case eSectionTypeDataObjCMessageRefs:
1168 case eSectionTypeDataObjCCFStrings:
1169 case eSectionTypeGoSymtab:
1170 return AddressClass::eData;
1171
1172 case eSectionTypeDebug:
1173 case eSectionTypeDWARFDebugAbbrev:
1174 case eSectionTypeDWARFDebugAbbrevDwo:
1175 case eSectionTypeDWARFDebugAddr:
1176 case eSectionTypeDWARFDebugAranges:
1177 case eSectionTypeDWARFDebugCuIndex:
1178 case eSectionTypeDWARFDebugFrame:
1179 case eSectionTypeDWARFDebugInfo:
1180 case eSectionTypeDWARFDebugInfoDwo:
1181 case eSectionTypeDWARFDebugLine:
1182 case eSectionTypeDWARFDebugLineStr:
1183 case eSectionTypeDWARFDebugLoc:
1184 case eSectionTypeDWARFDebugLocDwo:
1185 case eSectionTypeDWARFDebugLocLists:
1186 case eSectionTypeDWARFDebugLocListsDwo:
1187 case eSectionTypeDWARFDebugMacInfo:
1188 case eSectionTypeDWARFDebugMacro:
1189 case eSectionTypeDWARFDebugNames:
1190 case eSectionTypeDWARFDebugPubNames:
1191 case eSectionTypeDWARFDebugPubTypes:
1192 case eSectionTypeDWARFDebugRanges:
1193 case eSectionTypeDWARFDebugRngLists:
1194 case eSectionTypeDWARFDebugRngListsDwo:
1195 case eSectionTypeDWARFDebugStr:
1196 case eSectionTypeDWARFDebugStrDwo:
1197 case eSectionTypeDWARFDebugStrOffsets:
1198 case eSectionTypeDWARFDebugStrOffsetsDwo:
1199 case eSectionTypeDWARFDebugTuIndex:
1200 case eSectionTypeDWARFDebugTypes:
1201 case eSectionTypeDWARFDebugTypesDwo:
1202 case eSectionTypeDWARFAppleNames:
1203 case eSectionTypeDWARFAppleTypes:
1204 case eSectionTypeDWARFAppleNamespaces:
1205 case eSectionTypeDWARFAppleObjC:
1206 case eSectionTypeDWARFGNUDebugAltLink:
1207 return AddressClass::eDebug;
1208
1209 case eSectionTypeEHFrame:
1210 case eSectionTypeARMexidx:
1211 case eSectionTypeARMextab:
1212 case eSectionTypeCompactUnwind:
1213 return AddressClass::eRuntime;
1214
1215 case eSectionTypeAbsoluteAddress:
1216 case eSectionTypeELFSymbolTable:
1217 case eSectionTypeELFDynamicSymbols:
1218 case eSectionTypeELFRelocationEntries:
1219 case eSectionTypeELFDynamicLinkInfo:
1220 case eSectionTypeOther:
1221 return AddressClass::eUnknown;
1222 }
1223 }
1224 }
1225
1226 const SymbolType symbol_type = symbol->GetType();
1227 switch (symbol_type) {
1228 case eSymbolTypeAny:
1229 return AddressClass::eUnknown;
1230 case eSymbolTypeAbsolute:
1231 return AddressClass::eUnknown;
1232
1233 case eSymbolTypeCode:
1234 case eSymbolTypeTrampoline:
1235 case eSymbolTypeResolver:
1236 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1237 // For ARM we have a bit in the n_desc field of the symbol that tells
1238 // us ARM/Thumb which is bit 0x0008.
1239 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008)
1240 return AddressClass::eCodeAlternateISA;
1241 }
1242 return AddressClass::eCode;
1243
1244 case eSymbolTypeData:
1245 return AddressClass::eData;
1246 case eSymbolTypeRuntime:
1247 return AddressClass::eRuntime;
1248 case eSymbolTypeException:
1249 return AddressClass::eRuntime;
1250 case eSymbolTypeSourceFile:
1251 return AddressClass::eDebug;
1252 case eSymbolTypeHeaderFile:
1253 return AddressClass::eDebug;
1254 case eSymbolTypeObjectFile:
1255 return AddressClass::eDebug;
1256 case eSymbolTypeCommonBlock:
1257 return AddressClass::eDebug;
1258 case eSymbolTypeBlock:
1259 return AddressClass::eDebug;
1260 case eSymbolTypeLocal:
1261 return AddressClass::eData;
1262 case eSymbolTypeParam:
1263 return AddressClass::eData;
1264 case eSymbolTypeVariable:
1265 return AddressClass::eData;
1266 case eSymbolTypeVariableType:
1267 return AddressClass::eDebug;
1268 case eSymbolTypeLineEntry:
1269 return AddressClass::eDebug;
1270 case eSymbolTypeLineHeader:
1271 return AddressClass::eDebug;
1272 case eSymbolTypeScopeBegin:
1273 return AddressClass::eDebug;
1274 case eSymbolTypeScopeEnd:
1275 return AddressClass::eDebug;
1276 case eSymbolTypeAdditional:
1277 return AddressClass::eUnknown;
1278 case eSymbolTypeCompiler:
1279 return AddressClass::eDebug;
1280 case eSymbolTypeInstrumentation:
1281 return AddressClass::eDebug;
1282 case eSymbolTypeUndefined:
1283 return AddressClass::eUnknown;
1284 case eSymbolTypeObjCClass:
1285 return AddressClass::eRuntime;
1286 case eSymbolTypeObjCMetaClass:
1287 return AddressClass::eRuntime;
1288 case eSymbolTypeObjCIVar:
1289 return AddressClass::eRuntime;
1290 case eSymbolTypeReExported:
1291 return AddressClass::eRuntime;
1292 }
1293 }
1294 return AddressClass::eUnknown;
1295}
1296
1297bool ObjectFileMachO::IsStripped() {
1298 if (m_dysymtab.cmd == 0) {
1299 ModuleSP module_sp(GetModule());
1300 if (module_sp) {
1301 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1302 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1303 const lldb::offset_t load_cmd_offset = offset;
1304
1305 llvm::MachO::load_command lc;
1306 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1307 break;
1308 if (lc.cmd == LC_DYSYMTAB) {
1309 m_dysymtab.cmd = lc.cmd;
1310 m_dysymtab.cmdsize = lc.cmdsize;
1311 if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1312 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1313 nullptr) {
1314 // Clear m_dysymtab if we were unable to read all items from the
1315 // load command
1316 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1317 }
1318 }
1319 offset = load_cmd_offset + lc.cmdsize;
1320 }
1321 }
1322 }
1323 if (m_dysymtab.cmd)
1324 return m_dysymtab.nlocalsym <= 1;
1325 return false;
1326}
1327
1328ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1329 EncryptedFileRanges result;
1330 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1331
1332 llvm::MachO::encryption_info_command encryption_cmd;
1333 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1334 const lldb::offset_t load_cmd_offset = offset;
1335 if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1336 break;
1337
1338 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1339 // 3 fields we care about, so treat them the same.
1340 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1341 encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1342 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1343 if (encryption_cmd.cryptid != 0) {
1344 EncryptedFileRanges::Entry entry;
1345 entry.SetRangeBase(encryption_cmd.cryptoff);
1346 entry.SetByteSize(encryption_cmd.cryptsize);
1347 result.Append(entry);
1348 }
1349 }
1350 }
1351 offset = load_cmd_offset + encryption_cmd.cmdsize;
1352 }
1353
1354 return result;
1355}
1356
1357void ObjectFileMachO::SanitizeSegmentCommand(
1358 llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1359 if (m_length == 0 || seg_cmd.filesize == 0)
1360 return;
1361
1362 if (IsSharedCacheBinary() && !IsInMemory()) {
1363 // In shared cache images, the load commands are relative to the
1364 // shared cache file, and not the specific image we are
1365 // examining. Let's fix this up so that it looks like a normal
1366 // image.
1367 if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1368 m_text_address = seg_cmd.vmaddr;
1369 if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1370 m_linkedit_original_offset = seg_cmd.fileoff;
1371
1372 seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1373 }
1374
1375 if (seg_cmd.fileoff > m_length) {
1376 // We have a load command that says it extends past the end of the file.
1377 // This is likely a corrupt file. We don't have any way to return an error
1378 // condition here (this method was likely invoked from something like
1379 // ObjectFile::GetSectionList()), so we just null out the section contents,
1380 // and dump a message to stdout. The most common case here is core file
1381 // debugging with a truncated file.
1382 const char *lc_segment_name =
1383 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1384 GetModule()->ReportWarning(
1385 "load command %u %s has a fileoff (0x%" PRIx64"l" "x"
1386 ") that extends beyond the end of the file (0x%" PRIx64"l" "x"
1387 "), ignoring this section",
1388 cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1389
1390 seg_cmd.fileoff = 0;
1391 seg_cmd.filesize = 0;
1392 }
1393
1394 if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1395 // We have a load command that says it extends past the end of the file.
1396 // This is likely a corrupt file. We don't have any way to return an error
1397 // condition here (this method was likely invoked from something like
1398 // ObjectFile::GetSectionList()), so we just null out the section contents,
1399 // and dump a message to stdout. The most common case here is core file
1400 // debugging with a truncated file.
1401 const char *lc_segment_name =
1402 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1403 GetModule()->ReportWarning(
1404 "load command %u %s has a fileoff + filesize (0x%" PRIx64"l" "x"
1405 ") that extends beyond the end of the file (0x%" PRIx64"l" "x"
1406 "), the segment will be truncated to match",
1407 cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1408
1409 // Truncate the length
1410 seg_cmd.filesize = m_length - seg_cmd.fileoff;
1411 }
1412}
1413
1414static uint32_t
1415GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1416 uint32_t result = 0;
1417 if (seg_cmd.initprot & VM_PROT_READ)
1418 result |= ePermissionsReadable;
1419 if (seg_cmd.initprot & VM_PROT_WRITE)
1420 result |= ePermissionsWritable;
1421 if (seg_cmd.initprot & VM_PROT_EXECUTE)
1422 result |= ePermissionsExecutable;
1423 return result;
1424}
1425
1426static lldb::SectionType GetSectionType(uint32_t flags,
1427 ConstString section_name) {
1428
1429 if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1430 return eSectionTypeCode;
1431
1432 uint32_t mach_sect_type = flags & SECTION_TYPE;
1433 static ConstString g_sect_name_objc_data("__objc_data");
1434 static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1435 static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1436 static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1437 static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1438 static ConstString g_sect_name_objc_const("__objc_const");
1439 static ConstString g_sect_name_objc_classlist("__objc_classlist");
1440 static ConstString g_sect_name_cfstring("__cfstring");
1441
1442 static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1443 static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1444 static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1445 static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1446 static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1447 static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1448 static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1449 static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1450 static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1451 static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1452 static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1453 static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1454 static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1455 static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1456 static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1457 static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1458 static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1459 static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1460 static ConstString g_sect_name_eh_frame("__eh_frame");
1461 static ConstString g_sect_name_compact_unwind("__unwind_info");
1462 static ConstString g_sect_name_text("__text");
1463 static ConstString g_sect_name_data("__data");
1464 static ConstString g_sect_name_go_symtab("__gosymtab");
1465
1466 if (section_name == g_sect_name_dwarf_debug_abbrev)
1467 return eSectionTypeDWARFDebugAbbrev;
1468 if (section_name == g_sect_name_dwarf_debug_aranges)
1469 return eSectionTypeDWARFDebugAranges;
1470 if (section_name == g_sect_name_dwarf_debug_frame)
1471 return eSectionTypeDWARFDebugFrame;
1472 if (section_name == g_sect_name_dwarf_debug_info)
1473 return eSectionTypeDWARFDebugInfo;
1474 if (section_name == g_sect_name_dwarf_debug_line)
1475 return eSectionTypeDWARFDebugLine;
1476 if (section_name == g_sect_name_dwarf_debug_loc)
1477 return eSectionTypeDWARFDebugLoc;
1478 if (section_name == g_sect_name_dwarf_debug_loclists)
1479 return eSectionTypeDWARFDebugLocLists;
1480 if (section_name == g_sect_name_dwarf_debug_macinfo)
1481 return eSectionTypeDWARFDebugMacInfo;
1482 if (section_name == g_sect_name_dwarf_debug_names)
1483 return eSectionTypeDWARFDebugNames;
1484 if (section_name == g_sect_name_dwarf_debug_pubnames)
1485 return eSectionTypeDWARFDebugPubNames;
1486 if (section_name == g_sect_name_dwarf_debug_pubtypes)
1487 return eSectionTypeDWARFDebugPubTypes;
1488 if (section_name == g_sect_name_dwarf_debug_ranges)
1489 return eSectionTypeDWARFDebugRanges;
1490 if (section_name == g_sect_name_dwarf_debug_str)
1491 return eSectionTypeDWARFDebugStr;
1492 if (section_name == g_sect_name_dwarf_debug_types)
1493 return eSectionTypeDWARFDebugTypes;
1494 if (section_name == g_sect_name_dwarf_apple_names)
1495 return eSectionTypeDWARFAppleNames;
1496 if (section_name == g_sect_name_dwarf_apple_types)
1497 return eSectionTypeDWARFAppleTypes;
1498 if (section_name == g_sect_name_dwarf_apple_namespaces)
1499 return eSectionTypeDWARFAppleNamespaces;
1500 if (section_name == g_sect_name_dwarf_apple_objc)
1501 return eSectionTypeDWARFAppleObjC;
1502 if (section_name == g_sect_name_objc_selrefs)
1503 return eSectionTypeDataCStringPointers;
1504 if (section_name == g_sect_name_objc_msgrefs)
1505 return eSectionTypeDataObjCMessageRefs;
1506 if (section_name == g_sect_name_eh_frame)
1507 return eSectionTypeEHFrame;
1508 if (section_name == g_sect_name_compact_unwind)
1509 return eSectionTypeCompactUnwind;
1510 if (section_name == g_sect_name_cfstring)
1511 return eSectionTypeDataObjCCFStrings;
1512 if (section_name == g_sect_name_go_symtab)
1513 return eSectionTypeGoSymtab;
1514 if (section_name == g_sect_name_objc_data ||
1515 section_name == g_sect_name_objc_classrefs ||
1516 section_name == g_sect_name_objc_superrefs ||
1517 section_name == g_sect_name_objc_const ||
1518 section_name == g_sect_name_objc_classlist) {
1519 return eSectionTypeDataPointers;
1520 }
1521
1522 switch (mach_sect_type) {
1523 // TODO: categorize sections by other flags for regular sections
1524 case S_REGULAR:
1525 if (section_name == g_sect_name_text)
1526 return eSectionTypeCode;
1527 if (section_name == g_sect_name_data)
1528 return eSectionTypeData;
1529 return eSectionTypeOther;
1530 case S_ZEROFILL:
1531 return eSectionTypeZeroFill;
1532 case S_CSTRING_LITERALS: // section with only literal C strings
1533 return eSectionTypeDataCString;
1534 case S_4BYTE_LITERALS: // section with only 4 byte literals
1535 return eSectionTypeData4;
1536 case S_8BYTE_LITERALS: // section with only 8 byte literals
1537 return eSectionTypeData8;
1538 case S_LITERAL_POINTERS: // section with only pointers to literals
1539 return eSectionTypeDataPointers;
1540 case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1541 return eSectionTypeDataPointers;
1542 case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1543 return eSectionTypeDataPointers;
1544 case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1545 // the reserved2 field
1546 return eSectionTypeCode;
1547 case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1548 // initialization
1549 return eSectionTypeDataPointers;
1550 case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1551 // termination
1552 return eSectionTypeDataPointers;
1553 case S_COALESCED:
1554 return eSectionTypeOther;
1555 case S_GB_ZEROFILL:
1556 return eSectionTypeZeroFill;
1557 case S_INTERPOSING: // section with only pairs of function pointers for
1558 // interposing
1559 return eSectionTypeCode;
1560 case S_16BYTE_LITERALS: // section with only 16 byte literals
1561 return eSectionTypeData16;
1562 case S_DTRACE_DOF:
1563 return eSectionTypeDebug;
1564 case S_LAZY_DYLIB_SYMBOL_POINTERS:
1565 return eSectionTypeDataPointers;
1566 default:
1567 return eSectionTypeOther;
1568 }
1569}
1570
1571struct ObjectFileMachO::SegmentParsingContext {
1572 const EncryptedFileRanges EncryptedRanges;
1573 lldb_private::SectionList &UnifiedList;
1574 uint32_t NextSegmentIdx = 0;
1575 uint32_t NextSectionIdx = 0;
1576 bool FileAddressesChanged = false;
1577
1578 SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1579 lldb_private::SectionList &UnifiedList)
1580 : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1581};
1582
1583void ObjectFileMachO::ProcessSegmentCommand(
1584 const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1585 uint32_t cmd_idx, SegmentParsingContext &context) {
1586 llvm::MachO::segment_command_64 load_cmd;
1587 memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1588
1589 if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1590 return;
1591
1592 ModuleSP module_sp = GetModule();
1593 const bool is_core = GetType() == eTypeCoreFile;
1594 const bool is_dsym = (m_header.filetype == MH_DSYM);
1595 bool add_section = true;
1596 bool add_to_unified = true;
1597 ConstString const_segname(
1598 load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1599
1600 SectionSP unified_section_sp(
1601 context.UnifiedList.FindSectionByName(const_segname));
1602 if (is_dsym && unified_section_sp) {
1603 if (const_segname == GetSegmentNameLINKEDIT()) {
1604 // We need to keep the __LINKEDIT segment private to this object file
1605 // only
1606 add_to_unified = false;
1607 } else {
1608 // This is the dSYM file and this section has already been created by the
1609 // object file, no need to create it.
1610 add_section = false;
1611 }
1612 }
1613 load_cmd.vmaddr = m_data.GetAddress(&offset);
1614 load_cmd.vmsize = m_data.GetAddress(&offset);
1615 load_cmd.fileoff = m_data.GetAddress(&offset);
1616 load_cmd.filesize = m_data.GetAddress(&offset);
1617 if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1618 return;
1619
1620 SanitizeSegmentCommand(load_cmd, cmd_idx);
1621
1622 const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1623 const bool segment_is_encrypted =
1624 (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1625
1626 // Keep a list of mach segments around in case we need to get at data that
1627 // isn't stored in the abstracted Sections.
1628 m_mach_segments.push_back(load_cmd);
1629
1630 // Use a segment ID of the segment index shifted left by 8 so they never
1631 // conflict with any of the sections.
1632 SectionSP segment_sp;
1633 if (add_section && (const_segname || is_core)) {
1634 segment_sp = std::make_shared<Section>(
1635 module_sp, // Module to which this section belongs
1636 this, // Object file to which this sections belongs
1637 ++context.NextSegmentIdx
1638 << 8, // Section ID is the 1 based segment index
1639 // shifted right by 8 bits as not to collide with any of the 256
1640 // section IDs that are possible
1641 const_segname, // Name of this section
1642 eSectionTypeContainer, // This section is a container of other
1643 // sections.
1644 load_cmd.vmaddr, // File VM address == addresses as they are
1645 // found in the object file
1646 load_cmd.vmsize, // VM size in bytes of this section
1647 load_cmd.fileoff, // Offset to the data for this section in
1648 // the file
1649 load_cmd.filesize, // Size in bytes of this section as found
1650 // in the file
1651 0, // Segments have no alignment information
1652 load_cmd.flags); // Flags for this section
1653
1654 segment_sp->SetIsEncrypted(segment_is_encrypted);
1655 m_sections_up->AddSection(segment_sp);
1656 segment_sp->SetPermissions(segment_permissions);
1657 if (add_to_unified)
1658 context.UnifiedList.AddSection(segment_sp);
1659 } else if (unified_section_sp) {
1660 // If this is a dSYM and the file addresses in the dSYM differ from the
1661 // file addresses in the ObjectFile, we must use the file base address for
1662 // the Section from the dSYM for the DWARF to resolve correctly.
1663 // This only happens with binaries in the shared cache in practice;
1664 // normally a mismatch like this would give a binary & dSYM that do not
1665 // match UUIDs. When a binary is included in the shared cache, its
1666 // segments are rearranged to optimize the shared cache, so its file
1667 // addresses will differ from what the ObjectFile had originally,
1668 // and what the dSYM has.
1669 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1670 Log *log = GetLog(LLDBLog::Symbols);
1671 if (log) {
1672 log->Printf(
1673 "Installing dSYM's %s segment file address over ObjectFile's "
1674 "so symbol table/debug info resolves correctly for %s",
1675 const_segname.AsCString(),
1676 module_sp->GetFileSpec().GetFilename().AsCString());
1677 }
1678
1679 // Make sure we've parsed the symbol table from the ObjectFile before
1680 // we go around changing its Sections.
1681 module_sp->GetObjectFile()->GetSymtab();
1682 // eh_frame would present the same problems but we parse that on a per-
1683 // function basis as-needed so it's more difficult to remove its use of
1684 // the Sections. Realistically, the environments where this code path
1685 // will be taken will not have eh_frame sections.
1686
1687 unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1688
1689 // Notify the module that the section addresses have been changed once
1690 // we're done so any file-address caches can be updated.
1691 context.FileAddressesChanged = true;
1692 }
1693 m_sections_up->AddSection(unified_section_sp);
1694 }
1695
1696 llvm::MachO::section_64 sect64;
1697 ::memset(&sect64, 0, sizeof(sect64));
1698 // Push a section into our mach sections for the section at index zero
1699 // (NO_SECT) if we don't have any mach sections yet...
1700 if (m_mach_sections.empty())
1701 m_mach_sections.push_back(sect64);
1702 uint32_t segment_sect_idx;
1703 const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1704
1705 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1706 for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1707 ++segment_sect_idx) {
1708 if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1709 sizeof(sect64.sectname)) == nullptr)
1710 break;
1711 if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1712 sizeof(sect64.segname)) == nullptr)
1713 break;
1714 sect64.addr = m_data.GetAddress(&offset);
1715 sect64.size = m_data.GetAddress(&offset);
1716
1717 if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1718 break;
1719
1720 if (IsSharedCacheBinary() && !IsInMemory()) {
1721 sect64.offset = sect64.addr - m_text_address;
1722 }
1723
1724 // Keep a list of mach sections around in case we need to get at data that
1725 // isn't stored in the abstracted Sections.
1726 m_mach_sections.push_back(sect64);
1727
1728 if (add_section) {
1729 ConstString section_name(
1730 sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1731 if (!const_segname) {
1732 // We have a segment with no name so we need to conjure up segments
1733 // that correspond to the section's segname if there isn't already such
1734 // a section. If there is such a section, we resize the section so that
1735 // it spans all sections. We also mark these sections as fake so
1736 // address matches don't hit if they land in the gaps between the child
1737 // sections.
1738 const_segname.SetTrimmedCStringWithLength(sect64.segname,
1739 sizeof(sect64.segname));
1740 segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1741 if (segment_sp.get()) {
1742 Section *segment = segment_sp.get();
1743 // Grow the section size as needed.
1744 const lldb::addr_t sect64_min_addr = sect64.addr;
1745 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1746 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1747 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1748 const lldb::addr_t curr_seg_max_addr =
1749 curr_seg_min_addr + curr_seg_byte_size;
1750 if (sect64_min_addr >= curr_seg_min_addr) {
1751 const lldb::addr_t new_seg_byte_size =
1752 sect64_max_addr - curr_seg_min_addr;
1753 // Only grow the section size if needed
1754 if (new_seg_byte_size > curr_seg_byte_size)
1755 segment->SetByteSize(new_seg_byte_size);
1756 } else {
1757 // We need to change the base address of the segment and adjust the
1758 // child section offsets for all existing children.
1759 const lldb::addr_t slide_amount =
1760 sect64_min_addr - curr_seg_min_addr;
1761 segment->Slide(slide_amount, false);
1762 segment->GetChildren().Slide(-slide_amount, false);
1763 segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1764 }
1765
1766 // Grow the section size as needed.
1767 if (sect64.offset) {
1768 const lldb::addr_t segment_min_file_offset =
1769 segment->GetFileOffset();
1770 const lldb::addr_t segment_max_file_offset =
1771 segment_min_file_offset + segment->GetFileSize();
1772
1773 const lldb::addr_t section_min_file_offset = sect64.offset;
1774 const lldb::addr_t section_max_file_offset =
1775 section_min_file_offset + sect64.size;
1776 const lldb::addr_t new_file_offset =
1777 std::min(section_min_file_offset, segment_min_file_offset);
1778 const lldb::addr_t new_file_size =
1779 std::max(section_max_file_offset, segment_max_file_offset) -
1780 new_file_offset;
1781 segment->SetFileOffset(new_file_offset);
1782 segment->SetFileSize(new_file_size);
1783 }
1784 } else {
1785 // Create a fake section for the section's named segment
1786 segment_sp = std::make_shared<Section>(
1787 segment_sp, // Parent section
1788 module_sp, // Module to which this section belongs
1789 this, // Object file to which this section belongs
1790 ++context.NextSegmentIdx
1791 << 8, // Section ID is the 1 based segment index
1792 // shifted right by 8 bits as not to
1793 // collide with any of the 256 section IDs
1794 // that are possible
1795 const_segname, // Name of this section
1796 eSectionTypeContainer, // This section is a container of
1797 // other sections.
1798 sect64.addr, // File VM address == addresses as they are
1799 // found in the object file
1800 sect64.size, // VM size in bytes of this section
1801 sect64.offset, // Offset to the data for this section in
1802 // the file
1803 sect64.offset ? sect64.size : 0, // Size in bytes of
1804 // this section as
1805 // found in the file
1806 sect64.align,
1807 load_cmd.flags); // Flags for this section
1808 segment_sp->SetIsFake(true);
1809 segment_sp->SetPermissions(segment_permissions);
1810 m_sections_up->AddSection(segment_sp);
1811 if (add_to_unified)
1812 context.UnifiedList.AddSection(segment_sp);
1813 segment_sp->SetIsEncrypted(segment_is_encrypted);
1814 }
1815 }
1816 assert(segment_sp.get())(static_cast <bool> (segment_sp.get()) ? void (0) : __assert_fail
("segment_sp.get()", "lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 1816, __extension__ __PRETTY_FUNCTION__))
;
1817
1818 lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1819
1820 SectionSP section_sp(new Section(
1821 segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1822 sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1823 sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1824 sect64.flags));
1825 // Set the section to be encrypted to match the segment
1826
1827 bool section_is_encrypted = false;
1828 if (!segment_is_encrypted && load_cmd.filesize != 0)
1829 section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1830 sect64.offset) != nullptr;
1831
1832 section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1833 section_sp->SetPermissions(segment_permissions);
1834 segment_sp->GetChildren().AddSection(section_sp);
1835
1836 if (segment_sp->IsFake()) {
1837 segment_sp.reset();
1838 const_segname.Clear();
1839 }
1840 }
1841 }
1842 if (segment_sp && is_dsym) {
1843 if (first_segment_sectID <= context.NextSectionIdx) {
1844 lldb::user_id_t sect_uid;
1845 for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1846 ++sect_uid) {
1847 SectionSP curr_section_sp(
1848 segment_sp->GetChildren().FindSectionByID(sect_uid));
1849 SectionSP next_section_sp;
1850 if (sect_uid + 1 <= context.NextSectionIdx)
1851 next_section_sp =
1852 segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1853
1854 if (curr_section_sp.get()) {
1855 if (curr_section_sp->GetByteSize() == 0) {
1856 if (next_section_sp.get() != nullptr)
1857 curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1858 curr_section_sp->GetFileAddress());
1859 else
1860 curr_section_sp->SetByteSize(load_cmd.vmsize);
1861 }
1862 }
1863 }
1864 }
1865 }
1866}
1867
1868void ObjectFileMachO::ProcessDysymtabCommand(
1869 const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1870 m_dysymtab.cmd = load_cmd.cmd;
1871 m_dysymtab.cmdsize = load_cmd.cmdsize;
1872 m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1873 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1874}
1875
1876void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1877 if (m_sections_up)
1878 return;
1879
1880 m_sections_up = std::make_unique<SectionList>();
1881
1882 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1883 // bool dump_sections = false;
1884 ModuleSP module_sp(GetModule());
1885
1886 offset = MachHeaderSizeFromMagic(m_header.magic);
1887
1888 SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1889 llvm::MachO::load_command load_cmd;
1890 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1891 const lldb::offset_t load_cmd_offset = offset;
1892 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1893 break;
1894
1895 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1896 ProcessSegmentCommand(load_cmd, offset, i, context);
1897 else if (load_cmd.cmd == LC_DYSYMTAB)
1898 ProcessDysymtabCommand(load_cmd, offset);
1899
1900 offset = load_cmd_offset + load_cmd.cmdsize;
1901 }
1902
1903 if (context.FileAddressesChanged && module_sp)
1904 module_sp->SectionFileAddressesChanged();
1905}
1906
1907class MachSymtabSectionInfo {
1908public:
1909 MachSymtabSectionInfo(SectionList *section_list)
1910 : m_section_list(section_list), m_section_infos() {
1911 // Get the number of sections down to a depth of 1 to include all segments
1912 // and their sections, but no other sections that may be added for debug
1913 // map or
1914 m_section_infos.resize(section_list->GetNumSections(1));
1915 }
1916
1917 SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1918 if (n_sect == 0)
1919 return SectionSP();
1920 if (n_sect < m_section_infos.size()) {
1921 if (!m_section_infos[n_sect].section_sp) {
1922 SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1923 m_section_infos[n_sect].section_sp = section_sp;
1924 if (section_sp) {
1925 m_section_infos[n_sect].vm_range.SetBaseAddress(
1926 section_sp->GetFileAddress());
1927 m_section_infos[n_sect].vm_range.SetByteSize(
1928 section_sp->GetByteSize());
1929 } else {
1930 std::string filename = "<unknown>";
1931 SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1932 if (first_section_sp)
1933 filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1934
1935 Host::SystemLog(Host::eSystemLogError,
1936 "error: unable to find section %d for a symbol in "
1937 "%s, corrupt file?\n",
1938 n_sect, filename.c_str());
1939 }
1940 }
1941 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1942 // Symbol is in section.
1943 return m_section_infos[n_sect].section_sp;
1944 } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1945 m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1946 file_addr) {
1947 // Symbol is in section with zero size, but has the same start address
1948 // as the section. This can happen with linker symbols (symbols that
1949 // start with the letter 'l' or 'L'.
1950 return m_section_infos[n_sect].section_sp;
1951 }
1952 }
1953 return m_section_list->FindSectionContainingFileAddress(file_addr);
1954 }
1955
1956protected:
1957 struct SectionInfo {
1958 SectionInfo() : vm_range(), section_sp() {}
1959
1960 VMRange vm_range;
1961 SectionSP section_sp;
1962 };
1963 SectionList *m_section_list;
1964 std::vector<SectionInfo> m_section_infos;
1965};
1966
1967#define TRIE_SYMBOL_IS_THUMB(1ULL << 63) (1ULL << 63)
1968struct TrieEntry {
1969 void Dump() const {
1970 printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1971 static_cast<unsigned long long>(address),
1972 static_cast<unsigned long long>(flags),
1973 static_cast<unsigned long long>(other), name.GetCString());
1974 if (import_name)
1975 printf(" -> \"%s\"\n", import_name.GetCString());
1976 else
1977 printf("\n");
1978 }
1979 ConstString name;
1980 uint64_t address = LLDB_INVALID_ADDRESS(18446744073709551615UL);
1981 uint64_t flags =
1982 0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
1983 // TRIE_SYMBOL_IS_THUMB
1984 uint64_t other = 0;
1985 ConstString import_name;
1986};
1987
1988struct TrieEntryWithOffset {
1989 lldb::offset_t nodeOffset;
1990 TrieEntry entry;
1991
1992 TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1993
1994 void Dump(uint32_t idx) const {
1995 printf("[%3u] 0x%16.16llx: ", idx,
1996 static_cast<unsigned long long>(nodeOffset));
1997 entry.Dump();
1998 }
1999
2000 bool operator<(const TrieEntryWithOffset &other) const {
2001 return (nodeOffset < other.nodeOffset);
2002 }
2003};
2004
2005static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2006 const bool is_arm, addr_t text_seg_base_addr,
2007 std::vector<llvm::StringRef> &nameSlices,
2008 std::set<lldb::addr_t> &resolver_addresses,
2009 std::vector<TrieEntryWithOffset> &reexports,
2010 std::vector<TrieEntryWithOffset> &ext_symbols) {
2011 if (!data.ValidOffset(offset))
2012 return true;
2013
2014 // Terminal node -- end of a branch, possibly add this to
2015 // the symbol table or resolver table.
2016 const uint64_t terminalSize = data.GetULEB128(&offset);
2017 lldb::offset_t children_offset = offset + terminalSize;
2018 if (terminalSize != 0) {
2019 TrieEntryWithOffset e(offset);
2020 e.entry.flags = data.GetULEB128(&offset);
2021 const char *import_name = nullptr;
2022 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2023 e.entry.address = 0;
2024 e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2025 import_name = data.GetCStr(&offset);
2026 } else {
2027 e.entry.address = data.GetULEB128(&offset);
2028 if (text_seg_base_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL))
2029 e.entry.address += text_seg_base_addr;
2030 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2031 e.entry.other = data.GetULEB128(&offset);
2032 uint64_t resolver_addr = e.entry.other;
2033 if (text_seg_base_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL))
2034 resolver_addr += text_seg_base_addr;
2035 if (is_arm)
2036 resolver_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
2037 resolver_addresses.insert(resolver_addr);
2038 } else
2039 e.entry.other = 0;
2040 }
2041 bool add_this_entry = false;
2042 if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2043 import_name && import_name[0]) {
2044 // add symbols that are reexport symbols with a valid import name.
2045 add_this_entry = true;
2046 } else if (e.entry.flags == 0 &&
2047 (import_name == nullptr || import_name[0] == '\0')) {
2048 // add externally visible symbols, in case the nlist record has
2049 // been stripped/omitted.
2050 add_this_entry = true;
2051 }
2052 if (add_this_entry) {
2053 std::string name;
2054 if (!nameSlices.empty()) {
2055 for (auto name_slice : nameSlices)
2056 name.append(name_slice.data(), name_slice.size());
2057 }
2058 if (name.size() > 1) {
2059 // Skip the leading '_'
2060 e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2061 }
2062 if (import_name) {
2063 // Skip the leading '_'
2064 e.entry.import_name.SetCString(import_name + 1);
2065 }
2066 if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2067 reexports.push_back(e);
2068 } else {
2069 if (is_arm && (e.entry.address & 1)) {
2070 e.entry.flags |= TRIE_SYMBOL_IS_THUMB(1ULL << 63);
2071 e.entry.address &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
2072 }
2073 ext_symbols.push_back(e);
2074 }
2075 }
2076 }
2077
2078 const uint8_t childrenCount = data.GetU8(&children_offset);
2079 for (uint8_t i = 0; i < childrenCount; ++i) {
2080 const char *cstr = data.GetCStr(&children_offset);
2081 if (cstr)
2082 nameSlices.push_back(llvm::StringRef(cstr));
2083 else
2084 return false; // Corrupt data
2085 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2086 if (childNodeOffset) {
2087 if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2088 nameSlices, resolver_addresses, reexports,
2089 ext_symbols)) {
2090 return false;
2091 }
2092 }
2093 nameSlices.pop_back();
2094 }
2095 return true;
2096}
2097
2098static SymbolType GetSymbolType(const char *&symbol_name,
2099 bool &demangled_is_synthesized,
2100 const SectionSP &text_section_sp,
2101 const SectionSP &data_section_sp,
2102 const SectionSP &data_dirty_section_sp,
2103 const SectionSP &data_const_section_sp,
2104 const SectionSP &symbol_section) {
2105 SymbolType type = eSymbolTypeInvalid;
2106
2107 const char *symbol_sect_name = symbol_section->GetName().AsCString();
2108 if (symbol_section->IsDescendant(text_section_sp.get())) {
2109 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2110 S_ATTR_SELF_MODIFYING_CODE |
2111 S_ATTR_SOME_INSTRUCTIONS))
2112 type = eSymbolTypeData;
2113 else
2114 type = eSymbolTypeCode;
2115 } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2116 symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2117 symbol_section->IsDescendant(data_const_section_sp.get())) {
2118 if (symbol_sect_name &&
2119 ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2120 type = eSymbolTypeRuntime;
2121
2122 if (symbol_name) {
2123 llvm::StringRef symbol_name_ref(symbol_name);
2124 if (symbol_name_ref.startswith("OBJC_")) {
2125 static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2126 static const llvm::StringRef g_objc_v2_prefix_metaclass(
2127 "OBJC_METACLASS_$_");
2128 static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2129 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2130 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2131 type = eSymbolTypeObjCClass;
2132 demangled_is_synthesized = true;
2133 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2134 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2135 type = eSymbolTypeObjCMetaClass;
2136 demangled_is_synthesized = true;
2137 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2138 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2139 type = eSymbolTypeObjCIVar;
2140 demangled_is_synthesized = true;
2141 }
2142 }
2143 }
2144 } else if (symbol_sect_name &&
2145 ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2146 symbol_sect_name) {
2147 type = eSymbolTypeException;
2148 } else {
2149 type = eSymbolTypeData;
2150 }
2151 } else if (symbol_sect_name &&
2152 ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2153 type = eSymbolTypeTrampoline;
2154 }
2155 return type;
2156}
2157
2158// Read the UUID out of a dyld_shared_cache file on-disk.
2159UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2160 const ByteOrder byte_order,
2161 const uint32_t addr_byte_size) {
2162 UUID dsc_uuid;
2163 DataBufferSP DscData = MapFileData(
2164 dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2165 if (!DscData)
2166 return dsc_uuid;
2167 DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2168
2169 char version_str[7];
2170 lldb::offset_t offset = 0;
2171 memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2172 version_str[6] = '\0';
2173 if (strcmp(version_str, "dyld_v") == 0) {
2174 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid)__builtin_offsetof(struct lldb_copy_dyld_cache_header_v1, uuid
)
;
2175 dsc_uuid = UUID::fromOptionalData(
2176 dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2177 }
2178 Log *log = GetLog(LLDBLog::Symbols);
2179 if (log && dsc_uuid.IsValid()) {
2180 LLDB_LOGF(log, "Shared cache %s has UUID %s",do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("Shared cache %s has UUID %s", dyld_shared_cache
.GetPath().c_str(), dsc_uuid.GetAsString().c_str()); } while (
0)
2181 dyld_shared_cache.GetPath().c_str(),do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("Shared cache %s has UUID %s", dyld_shared_cache
.GetPath().c_str(), dsc_uuid.GetAsString().c_str()); } while (
0)
2182 dsc_uuid.GetAsString().c_str())do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("Shared cache %s has UUID %s", dyld_shared_cache
.GetPath().c_str(), dsc_uuid.GetAsString().c_str()); } while (
0)
;
2183 }
2184 return dsc_uuid;
2185}
2186
2187static llvm::Optional<struct nlist_64>
2188ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2189 size_t nlist_byte_size) {
2190 struct nlist_64 nlist;
2191 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2192 return {};
2193 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2194 nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2195 nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2196 nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2197 nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2198 return nlist;
2199}
2200
2201enum { DebugSymbols = true, NonDebugSymbols = false };
2202
2203void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
2204 ModuleSP module_sp(GetModule());
2205 if (!module_sp)
2206 return;
2207
2208 const FileSpec &file = m_file ? m_file : module_sp->GetFileSpec();
2209 const char *file_name = file.GetFilename().AsCString("<Unknown>");
2210 LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", file_name)static ::lldb_private::Timer::Category _cat(__PRETTY_FUNCTION__
); ::lldb_private::Timer _scoped_timer(_cat, "ObjectFileMachO::ParseSymtab () module = %s"
, file_name)
;
2211 Progress progress(llvm::formatv("Parsing symbol table for {0}", file_name));
2212
2213 llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2214 llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2215 llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2216 llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2217 llvm::MachO::dysymtab_command dysymtab = m_dysymtab;
2218 // The data element of type bool indicates that this entry is thumb
2219 // code.
2220 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2221
2222 // Record the address of every function/data that we add to the symtab.
2223 // We add symbols to the table in the order of most information (nlist
2224 // records) to least (function starts), and avoid duplicating symbols
2225 // via this set.
2226 llvm::DenseSet<addr_t> symbols_added;
2227
2228 // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2229 // do not add the tombstone or empty keys to the set.
2230 auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2231 // Don't add the tombstone or empty keys.
2232 if (file_addr == UINT64_MAX(18446744073709551615UL) || file_addr == UINT64_MAX(18446744073709551615UL) - 1)
2233 return;
2234 symbols_added.insert(file_addr);
2235 };
2236 FunctionStarts function_starts;
2237 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2238 uint32_t i;
2239 FileSpecList dylib_files;
2240 Log *log = GetLog(LLDBLog::Symbols);
2241 llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2242 llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2243 llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2244 UUID image_uuid;
2245
2246 for (i = 0; i < m_header.ncmds; ++i) {
2247 const lldb::offset_t cmd_offset = offset;
2248 // Read in the load command and load command size
2249 llvm::MachO::load_command lc;
2250 if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2251 break;
2252 // Watch for the symbol table load command
2253 switch (lc.cmd) {
2254 case LC_SYMTAB:
2255 symtab_load_command.cmd = lc.cmd;
2256 symtab_load_command.cmdsize = lc.cmdsize;
2257 // Read in the rest of the symtab load command
2258 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2259 nullptr) // fill in symoff, nsyms, stroff, strsize fields
2260 return;
2261 break;
2262
2263 case LC_DYLD_INFO:
2264 case LC_DYLD_INFO_ONLY:
2265 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2266 dyld_info.cmd = lc.cmd;
2267 dyld_info.cmdsize = lc.cmdsize;
2268 } else {
2269 memset(&dyld_info, 0, sizeof(dyld_info));
2270 }
2271 break;
2272
2273 case LC_LOAD_DYLIB:
2274 case LC_LOAD_WEAK_DYLIB:
2275 case LC_REEXPORT_DYLIB:
2276 case LC_LOADFVMLIB:
2277 case LC_LOAD_UPWARD_DYLIB: {
2278 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2279 const char *path = m_data.PeekCStr(name_offset);
2280 if (path) {
2281 FileSpec file_spec(path);
2282 // Strip the path if there is @rpath, @executable, etc so we just use
2283 // the basename
2284 if (path[0] == '@')
2285 file_spec.GetDirectory().Clear();
2286
2287 if (lc.cmd == LC_REEXPORT_DYLIB) {
2288 m_reexported_dylibs.AppendIfUnique(file_spec);
2289 }
2290
2291 dylib_files.Append(file_spec);
2292 }
2293 } break;
2294
2295 case LC_DYLD_EXPORTS_TRIE:
2296 exports_trie_load_command.cmd = lc.cmd;
2297 exports_trie_load_command.cmdsize = lc.cmdsize;
2298 if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2299 nullptr) // fill in offset and size fields
2300 memset(&exports_trie_load_command, 0,
2301 sizeof(exports_trie_load_command));
2302 break;
2303 case LC_FUNCTION_STARTS:
2304 function_starts_load_command.cmd = lc.cmd;
2305 function_starts_load_command.cmdsize = lc.cmdsize;
2306 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2307 nullptr) // fill in data offset and size fields
2308 memset(&function_starts_load_command, 0,
2309 sizeof(function_starts_load_command));
2310 break;
2311
2312 case LC_UUID: {
2313 const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
2314
2315 if (uuid_bytes)
2316 image_uuid = UUID::fromOptionalData(uuid_bytes, 16);
2317 break;
2318 }
2319
2320 default:
2321 break;
2322 }
2323 offset = cmd_offset + lc.cmdsize;
2324 }
2325
2326 if (!symtab_load_command.cmd)
2327 return;
2328
2329 SectionList *section_list = GetSectionList();
2330 if (section_list == nullptr)
2331 return;
2332
2333 const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2334 const ByteOrder byte_order = m_data.GetByteOrder();
2335 bool bit_width_32 = addr_byte_size == 4;
2336 const size_t nlist_byte_size =
2337 bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2338
2339 DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2340 DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2341 DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2342 DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2343 addr_byte_size);
2344 DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2345
2346 const addr_t nlist_data_byte_size =
2347 symtab_load_command.nsyms * nlist_byte_size;
2348 const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2349 addr_t strtab_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
2350
2351 ProcessSP process_sp(m_process_wp.lock());
2352 Process *process = process_sp.get();
2353
2354 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2355 bool is_shared_cache_image = IsSharedCacheBinary();
2356 bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2357 SectionSP linkedit_section_sp(
2358 section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2359
2360 if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2361 !is_local_shared_cache_image) {
2362 Target &target = process->GetTarget();
2363
2364 memory_module_load_level = target.GetMemoryModuleLoadLevel();
2365
2366 // Reading mach file from memory in a process or core file...
2367
2368 if (linkedit_section_sp) {
2369 addr_t linkedit_load_addr =
2370 linkedit_section_sp->GetLoadBaseAddress(&target);
2371 if (linkedit_load_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
2372 // We might be trying to access the symbol table before the
2373 // __LINKEDIT's load address has been set in the target. We can't
2374 // fail to read the symbol table, so calculate the right address
2375 // manually
2376 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2377 m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2378 }
2379
2380 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2381 const addr_t symoff_addr = linkedit_load_addr +
2382 symtab_load_command.symoff -
2383 linkedit_file_offset;
2384 strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2385 linkedit_file_offset;
2386
2387 // Always load dyld - the dynamic linker - from memory if we didn't
2388 // find a binary anywhere else. lldb will not register
2389 // dylib/framework/bundle loads/unloads if we don't have the dyld
2390 // symbols, we force dyld to load from memory despite the user's
2391 // target.memory-module-load-level setting.
2392 if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2393 m_header.filetype == llvm::MachO::MH_DYLINKER) {
2394 DataBufferSP nlist_data_sp(
2395 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2396 if (nlist_data_sp)
2397 nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2398 if (dysymtab.nindirectsyms != 0) {
2399 const addr_t indirect_syms_addr = linkedit_load_addr +
2400 dysymtab.indirectsymoff -
2401 linkedit_file_offset;
2402 DataBufferSP indirect_syms_data_sp(ReadMemory(
2403 process_sp, indirect_syms_addr, dysymtab.nindirectsyms * 4));
2404 if (indirect_syms_data_sp)
2405 indirect_symbol_index_data.SetData(
2406 indirect_syms_data_sp, 0,
2407 indirect_syms_data_sp->GetByteSize());
2408 // If this binary is outside the shared cache,
2409 // cache the string table.
2410 // Binaries in the shared cache all share a giant string table,
2411 // and we can't share the string tables across multiple
2412 // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2413 // for every binary in the shared cache - it would be a big perf
2414 // problem. For binaries outside the shared cache, it's faster to
2415 // read the entire strtab at once instead of piece-by-piece as we
2416 // process the nlist records.
2417 if (!is_shared_cache_image) {
2418 DataBufferSP strtab_data_sp(
2419 ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2420 if (strtab_data_sp) {
2421 strtab_data.SetData(strtab_data_sp, 0,
2422 strtab_data_sp->GetByteSize());
2423 }
2424 }
2425 }
2426 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2427 if (function_starts_load_command.cmd) {
2428 const addr_t func_start_addr =
2429 linkedit_load_addr + function_starts_load_command.dataoff -
2430 linkedit_file_offset;
2431 DataBufferSP func_start_data_sp(
2432 ReadMemory(process_sp, func_start_addr,
2433 function_starts_load_command.datasize));
2434 if (func_start_data_sp)
2435 function_starts_data.SetData(func_start_data_sp, 0,
2436 func_start_data_sp->GetByteSize());
2437 }
2438 }
2439 }
2440 }
2441 } else {
2442 if (is_local_shared_cache_image) {
2443 // The load commands in shared cache images are relative to the
2444 // beginning of the shared cache, not the library image. The
2445 // data we get handed when creating the ObjectFileMachO starts
2446 // at the beginning of a specific library and spans to the end
2447 // of the cache to be able to reach the shared LINKEDIT
2448 // segments. We need to convert the load command offsets to be
2449 // relative to the beginning of our specific image.
2450 lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2451 lldb::offset_t linkedit_slide =
2452 linkedit_offset - m_linkedit_original_offset;
2453 symtab_load_command.symoff += linkedit_slide;
2454 symtab_load_command.stroff += linkedit_slide;
2455 dyld_info.export_off += linkedit_slide;
2456 dysymtab.indirectsymoff += linkedit_slide;
2457 function_starts_load_command.dataoff += linkedit_slide;
2458 exports_trie_load_command.dataoff += linkedit_slide;
2459 }
2460
2461 nlist_data.SetData(m_data, symtab_load_command.symoff,
2462 nlist_data_byte_size);
2463 strtab_data.SetData(m_data, symtab_load_command.stroff,
2464 strtab_data_byte_size);
2465
2466 // We shouldn't have exports data from both the LC_DYLD_INFO command
2467 // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2468 lldbassert(!((dyld_info.export_size > 0)lldb_private::lldb_assert(static_cast<bool>(!((dyld_info
.export_size > 0) && (exports_trie_load_command.datasize
> 0))), "!((dyld_info.export_size > 0) && (exports_trie_load_command.datasize > 0))"
, __FUNCTION__, "lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 2469)
2469 && (exports_trie_load_command.datasize > 0)))lldb_private::lldb_assert(static_cast<bool>(!((dyld_info
.export_size > 0) && (exports_trie_load_command.datasize
> 0))), "!((dyld_info.export_size > 0) && (exports_trie_load_command.datasize > 0))"
, __FUNCTION__, "lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 2469)
;
2470 if (dyld_info.export_size > 0) {
2471 dyld_trie_data.SetData(m_data, dyld_info.export_off,
2472 dyld_info.export_size);
2473 } else if (exports_trie_load_command.datasize > 0) {
2474 dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2475 exports_trie_load_command.datasize);
2476 }
2477
2478 if (dysymtab.nindirectsyms != 0) {
2479 indirect_symbol_index_data.SetData(m_data, dysymtab.indirectsymoff,
2480 dysymtab.nindirectsyms * 4);
2481 }
2482 if (function_starts_load_command.cmd) {
2483 function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2484 function_starts_load_command.datasize);
2485 }
2486 }
2487
2488 const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2489
2490 ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2491 ConstString g_segment_name_DATA = GetSegmentNameDATA();
2492 ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2493 ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2494 ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2495 ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2496 SectionSP text_section_sp(
2497 section_list->FindSectionByName(g_segment_name_TEXT));
2498 SectionSP data_section_sp(
2499 section_list->FindSectionByName(g_segment_name_DATA));
2500 SectionSP data_dirty_section_sp(
2501 section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2502 SectionSP data_const_section_sp(
2503 section_list->FindSectionByName(g_segment_name_DATA_CONST));
2504 SectionSP objc_section_sp(
2505 section_list->FindSectionByName(g_segment_name_OBJC));
2506 SectionSP eh_frame_section_sp;
2507 if (text_section_sp.get())
2508 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2509 g_section_name_eh_frame);
2510 else
2511 eh_frame_section_sp =
2512 section_list->FindSectionByName(g_section_name_eh_frame);
2513
2514 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2515 const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2516
2517 // lldb works best if it knows the start address of all functions in a
2518 // module. Linker symbols or debug info are normally the best source of
2519 // information for start addr / size but they may be stripped in a released
2520 // binary. Two additional sources of information exist in Mach-O binaries:
2521 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2522 // function's start address in the
2523 // binary, relative to the text section.
2524 // eh_frame - the eh_frame FDEs have the start addr & size of
2525 // each function
2526 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2527 // all modern binaries.
2528 // Binaries built to run on older releases may need to use eh_frame
2529 // information.
2530
2531 if (text_section_sp && function_starts_data.GetByteSize()) {
2532 FunctionStarts::Entry function_start_entry;
2533 function_start_entry.data = false;
2534 lldb::offset_t function_start_offset = 0;
2535 function_start_entry.addr = text_section_sp->GetFileAddress();
2536 uint64_t delta;
2537 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2538 0) {
2539 // Now append the current entry
2540 function_start_entry.addr += delta;
2541 if (is_arm) {
2542 if (function_start_entry.addr & 1) {
2543 function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
2544 function_start_entry.data = true;
2545 } else if (always_thumb) {
2546 function_start_entry.data = true;
2547 }
2548 }
2549 function_starts.Append(function_start_entry);
2550 }
2551 } else {
2552 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2553 // load command claiming an eh_frame but it doesn't actually have the
2554 // eh_frame content. And if we have a dSYM, we don't need to do any of
2555 // this fill-in-the-missing-symbols works anyway - the debug info should
2556 // give us all the functions in the module.
2557 if (text_section_sp.get() && eh_frame_section_sp.get() &&
2558 m_type != eTypeDebugInfo) {
2559 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2560 DWARFCallFrameInfo::EH);
2561 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2562 eh_frame.GetFunctionAddressAndSizeVector(functions);
2563 addr_t text_base_addr = text_section_sp->GetFileAddress();
2564 size_t count = functions.GetSize();
2565 for (size_t i = 0; i < count; ++i) {
2566 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2567 functions.GetEntryAtIndex(i);
2568 if (func) {
2569 FunctionStarts::Entry function_start_entry;
2570 function_start_entry.addr = func->base - text_base_addr;
2571 if (is_arm) {
2572 if (function_start_entry.addr & 1) {
2573 function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
2574 function_start_entry.data = true;
2575 } else if (always_thumb) {
2576 function_start_entry.data = true;
2577 }
2578 }
2579 function_starts.Append(function_start_entry);
2580 }
2581 }
2582 }
2583 }
2584
2585 const size_t function_starts_count = function_starts.GetSize();
2586
2587 // For user process binaries (executables, dylibs, frameworks, bundles), if
2588 // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2589 // going to assume the binary has been stripped. Don't allow assembly
2590 // language instruction emulation because we don't know proper function
2591 // start boundaries.
2592 //
2593 // For all other types of binaries (kernels, stand-alone bare board
2594 // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2595 // sections - we should not make any assumptions about them based on that.
2596 if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2597 m_allow_assembly_emulation_unwind_plans = false;
2598 Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
2599
2600 if (unwind_or_symbol_log)
2601 module_sp->LogMessage(
2602 unwind_or_symbol_log,
2603 "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2604 }
2605
2606 const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2607 ? eh_frame_section_sp->GetID()
2608 : static_cast<user_id_t>(NO_SECT);
2609
2610 uint32_t N_SO_index = UINT32_MAX(4294967295U);
2611
2612 MachSymtabSectionInfo section_info(section_list);
2613 std::vector<uint32_t> N_FUN_indexes;
2614 std::vector<uint32_t> N_NSYM_indexes;
2615 std::vector<uint32_t> N_INCL_indexes;
2616 std::vector<uint32_t> N_BRAC_indexes;
2617 std::vector<uint32_t> N_COMM_indexes;
2618 typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2619 typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2620 typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2621 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2622 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2623 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2624 // Any symbols that get merged into another will get an entry in this map
2625 // so we know
2626 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2627 uint32_t nlist_idx = 0;
2628 Symbol *symbol_ptr = nullptr;
2629
2630 uint32_t sym_idx = 0;
2631 Symbol *sym = nullptr;
2632 size_t num_syms = 0;
2633 std::string memory_symbol_name;
2634 uint32_t unmapped_local_symbols_found = 0;
2635
2636 std::vector<TrieEntryWithOffset> reexport_trie_entries;
2637 std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2638 std::set<lldb::addr_t> resolver_addresses;
2639
2640 if (dyld_trie_data.GetByteSize() > 0) {
2641 ConstString text_segment_name("__TEXT");
2642 SectionSP text_segment_sp =
2643 GetSectionList()->FindSectionByName(text_segment_name);
2644 lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
2645 if (text_segment_sp)
2646 text_segment_file_addr = text_segment_sp->GetFileAddress();
2647 std::vector<llvm::StringRef> nameSlices;
2648 ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2649 nameSlices, resolver_addresses, reexport_trie_entries,
2650 external_sym_trie_entries);
2651 }
2652
2653 typedef std::set<ConstString> IndirectSymbols;
2654 IndirectSymbols indirect_symbol_names;
2655
2656#if TARGET_OS_IPHONE
2657
2658 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2659 // optimized by moving LOCAL symbols out of the memory mapped portion of
2660 // the DSC. The symbol information has all been retained, but it isn't
2661 // available in the normal nlist data. However, there *are* duplicate
2662 // entries of *some*
2663 // LOCAL symbols in the normal nlist data. To handle this situation
2664 // correctly, we must first attempt
2665 // to parse any DSC unmapped symbol information. If we find any, we set a
2666 // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2667
2668 if (IsSharedCacheBinary()) {
2669 // Before we can start mapping the DSC, we need to make certain the
2670 // target process is actually using the cache we can find.
2671
2672 // Next we need to determine the correct path for the dyld shared cache.
2673
2674 ArchSpec header_arch = GetArchitecture();
2675
2676 UUID dsc_uuid;
2677 UUID process_shared_cache_uuid;
2678 addr_t process_shared_cache_base_addr;
2679
2680 if (process) {
2681 GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2682 process_shared_cache_uuid);
2683 }
2684
2685 __block bool found_image = false;
2686 __block void *nlist_buffer = nullptr;
2687 __block unsigned nlist_count = 0;
2688 __block char *string_table = nullptr;
2689 __block vm_offset_t vm_nlist_memory = 0;
2690 __block mach_msg_type_number_t vm_nlist_bytes_read = 0;
2691 __block vm_offset_t vm_string_memory = 0;
2692 __block mach_msg_type_number_t vm_string_bytes_read = 0;
2693
2694 auto _ = llvm::make_scope_exit(^{
2695 if (vm_nlist_memory)
2696 vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
2697 if (vm_string_memory)
2698 vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
2699 });
2700
2701 typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2702 typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2703 UndefinedNameToDescMap undefined_name_to_desc;
2704 SymbolIndexToName reexport_shlib_needs_fixup;
2705
2706 dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
2707 uuid_t cache_uuid;
2708 dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
2709 if (found_image)
2710 return;
2711
2712 if (process_shared_cache_uuid.IsValid() &&
2713 process_shared_cache_uuid != UUID::fromOptionalData(&cache_uuid, 16))
2714 return;
2715
2716 dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
2717 uuid_t dsc_image_uuid;
2718 if (found_image)
2719 return;
2720
2721 dyld_image_copy_uuid(image, &dsc_image_uuid);
2722 if (image_uuid != UUID::fromOptionalData(dsc_image_uuid, 16))
2723 return;
2724
2725 found_image = true;
2726
2727 // Compute the size of the string table. We need to ask dyld for a
2728 // new SPI to avoid this step.
2729 dyld_image_local_nlist_content_4Symbolication(
2730 image, ^(const void *nlistStart, uint64_t nlistCount,
2731 const char *stringTable) {
2732 if (!nlistStart || !nlistCount)
2733 return;
2734
2735 // The buffers passed here are valid only inside the block.
2736 // Use vm_read to make a cheap copy of them available for our
2737 // processing later.
2738 kern_return_t ret =
2739 vm_read(mach_task_self(), (vm_address_t)nlistStart,
2740 nlist_byte_size * nlistCount, &vm_nlist_memory,
2741 &vm_nlist_bytes_read);
2742 if (ret != KERN_SUCCESS)
2743 return;
2744 assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount)(static_cast <bool> (vm_nlist_bytes_read == nlist_byte_size
* nlistCount) ? void (0) : __assert_fail ("vm_nlist_bytes_read == nlist_byte_size * nlistCount"
, "lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 2744, __extension__ __PRETTY_FUNCTION__))
;
2745
2746 // We don't know the size of the string table. It's cheaper
2747 // to map the whol VM region than to determine the size by
2748 // parsing all teh nlist entries.
2749 vm_address_t string_address = (vm_address_t)stringTable;
2750 vm_size_t region_size;
2751 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
2752 vm_region_basic_info_data_t info;
2753 memory_object_name_t object;
2754 ret = vm_region_64(mach_task_self(), &string_address,
2755 &region_size, VM_REGION_BASIC_INFO_64,
2756 (vm_region_info_t)&info, &info_count, &object);
2757 if (ret != KERN_SUCCESS)
2758 return;
2759
2760 ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
2761 region_size -
2762 ((vm_address_t)stringTable - string_address),
2763 &vm_string_memory, &vm_string_bytes_read);
2764 if (ret != KERN_SUCCESS)
2765 return;
2766
2767 nlist_buffer = (void *)vm_nlist_memory;
2768 string_table = (char *)vm_string_memory;
2769 nlist_count = nlistCount;
2770 });
2771 });
2772 });
2773 if (nlist_buffer) {
2774 DataExtractor dsc_local_symbols_data(nlist_buffer,
2775 nlist_count * nlist_byte_size,
2776 byte_order, addr_byte_size);
2777 unmapped_local_symbols_found = nlist_count;
2778
2779 // The normal nlist code cannot correctly size the Symbols
2780 // array, we need to allocate it here.
2781 sym = symtab.Resize(
2782 symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2783 unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2784 num_syms = symtab.GetNumSymbols();
2785
2786 lldb::offset_t nlist_data_offset = 0;
2787
2788 for (uint32_t nlist_index = 0;
2789 nlist_index < nlist_count;
2790 nlist_index++) {
2791 /////////////////////////////
2792 {
2793 llvm::Optional<struct nlist_64> nlist_maybe =
2794 ParseNList(dsc_local_symbols_data, nlist_data_offset,
2795 nlist_byte_size);
2796 if (!nlist_maybe)
2797 break;
2798 struct nlist_64 nlist = *nlist_maybe;
2799
2800 SymbolType type = eSymbolTypeInvalid;
2801 const char *symbol_name = string_table + nlist.n_strx;
2802
2803 if (symbol_name == NULL__null) {
2804 // No symbol should be NULL, even the symbols with no
2805 // string values should have an offset zero which
2806 // points to an empty C-string
2807 Host::SystemLog(
2808 Host::eSystemLogError,
2809 "error: DSC unmapped local symbol[%u] has invalid "
2810 "string table offset 0x%x in %s, ignoring symbol\n",
2811 nlist_index, nlist.n_strx,
2812 module_sp->GetFileSpec().GetPath().c_str());
2813 continue;
2814 }
2815 if (symbol_name[0] == '\0')
2816 symbol_name = NULL__null;
2817
2818 const char *symbol_name_non_abi_mangled = NULL__null;
2819
2820 SectionSP symbol_section;
2821 uint32_t symbol_byte_size = 0;
2822 bool add_nlist = true;
2823 bool is_debug = ((nlist.n_type & N_STAB) != 0);
2824 bool demangled_is_synthesized = false;
2825 bool is_gsym = false;
2826 bool set_value = true;
2827
2828 assert(sym_idx < num_syms)(static_cast <bool> (sym_idx < num_syms) ? void (0) :
__assert_fail ("sym_idx < num_syms", "lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 2828, __extension__ __PRETTY_FUNCTION__))
;
2829
2830 sym[sym_idx].SetDebug(is_debug);
2831
2832 if (is_debug) {
2833 switch (nlist.n_type) {
2834 case N_GSYM:
2835 // global symbol: name,,NO_SECT,type,0
2836 // Sometimes the N_GSYM value contains the address.
2837
2838 // FIXME: In the .o files, we have a GSYM and a debug
2839 // symbol for all the ObjC data. They
2840 // have the same address, but we want to ensure that
2841 // we always find only the real symbol, 'cause we
2842 // don't currently correctly attribute the
2843 // GSYM one to the ObjCClass/Ivar/MetaClass
2844 // symbol type. This is a temporary hack to make
2845 // sure the ObjectiveC symbols get treated correctly.
2846 // To do this right, we should coalesce all the GSYM
2847 // & global symbols that have the same address.
2848
2849 is_gsym = true;
2850 sym[sym_idx].SetExternal(true);
2851
2852 if (symbol_name && symbol_name[0] == '_' &&
2853 symbol_name[1] == 'O') {
2854 llvm::StringRef symbol_name_ref(symbol_name);
2855 if (symbol_name_ref.startswith(
2856 g_objc_v2_prefix_class)) {
2857 symbol_name_non_abi_mangled = symbol_name + 1;
2858 symbol_name =
2859 symbol_name + g_objc_v2_prefix_class.size();
2860 type = eSymbolTypeObjCClass;
2861 demangled_is_synthesized = true;
2862
2863 } else if (symbol_name_ref.startswith(
2864 g_objc_v2_prefix_metaclass)) {
2865 symbol_name_non_abi_mangled = symbol_name + 1;
2866 symbol_name =
2867 symbol_name + g_objc_v2_prefix_metaclass.size();
2868 type = eSymbolTypeObjCMetaClass;
2869 demangled_is_synthesized = true;
2870 } else if (symbol_name_ref.startswith(
2871 g_objc_v2_prefix_ivar)) {
2872 symbol_name_non_abi_mangled = symbol_name + 1;
2873 symbol_name =
2874 symbol_name + g_objc_v2_prefix_ivar.size();
2875 type = eSymbolTypeObjCIVar;
2876 demangled_is_synthesized = true;
2877 }
2878 } else {
2879 if (nlist.n_value != 0)
2880 symbol_section = section_info.GetSection(
2881 nlist.n_sect, nlist.n_value);
2882 type = eSymbolTypeData;
2883 }
2884 break;
2885
2886 case N_FNAME:
2887 // procedure name (f77 kludge): name,,NO_SECT,0,0
2888 type = eSymbolTypeCompiler;
2889 break;
2890
2891 case N_FUN:
2892 // procedure: name,,n_sect,linenumber,address
2893 if (symbol_name) {
2894 type = eSymbolTypeCode;
2895 symbol_section = section_info.GetSection(
2896 nlist.n_sect, nlist.n_value);
2897
2898 N_FUN_addr_to_sym_idx.insert(
2899 std::make_pair(nlist.n_value, sym_idx));
2900 // We use the current number of symbols in the
2901 // symbol table in lieu of using nlist_idx in case
2902 // we ever start trimming entries out
2903 N_FUN_indexes.push_back(sym_idx);
2904 } else {
2905 type = eSymbolTypeCompiler;
2906
2907 if (!N_FUN_indexes.empty()) {
2908 // Copy the size of the function into the
2909 // original
2910 // STAB entry so we don't have
2911 // to hunt for it later
2912 symtab.SymbolAtIndex(N_FUN_indexes.back())
2913 ->SetByteSize(nlist.n_value);
2914 N_FUN_indexes.pop_back();
2915 // We don't really need the end function STAB as
2916 // it contains the size which we already placed
2917 // with the original symbol, so don't add it if
2918 // we want a minimal symbol table
2919 add_nlist = false;
2920 }
2921 }
2922 break;
2923
2924 case N_STSYM:
2925 // static symbol: name,,n_sect,type,address
2926 N_STSYM_addr_to_sym_idx.insert(
2927 std::make_pair(nlist.n_value, sym_idx));
2928 symbol_section = section_info.GetSection(nlist.n_sect,
2929 nlist.n_value);
2930 if (symbol_name && symbol_name[0]) {
2931 type = ObjectFile::GetSymbolTypeFromName(
2932 symbol_name + 1, eSymbolTypeData);
2933 }
2934 break;
2935
2936 case N_LCSYM:
2937 // .lcomm symbol: name,,n_sect,type,address
2938 symbol_section = section_info.GetSection(nlist.n_sect,
2939 nlist.n_value);
2940 type = eSymbolTypeCommonBlock;
2941 break;
2942
2943 case N_BNSYM:
2944 // We use the current number of symbols in the symbol
2945 // table in lieu of using nlist_idx in case we ever
2946 // start trimming entries out Skip these if we want
2947 // minimal symbol tables
2948 add_nlist = false;
2949 break;
2950
2951 case N_ENSYM:
2952 // Set the size of the N_BNSYM to the terminating
2953 // index of this N_ENSYM so that we can always skip
2954 // the entire symbol if we need to navigate more
2955 // quickly at the source level when parsing STABS
2956 // Skip these if we want minimal symbol tables
2957 add_nlist = false;
2958 break;
2959
2960 case N_OPT:
2961 // emitted with gcc2_compiled and in gcc source
2962 type = eSymbolTypeCompiler;
2963 break;
2964
2965 case N_RSYM:
2966 // register sym: name,,NO_SECT,type,register
2967 type = eSymbolTypeVariable;
2968 break;
2969
2970 case N_SLINE:
2971 // src line: 0,,n_sect,linenumber,address
2972 symbol_section = section_info.GetSection(nlist.n_sect,
2973 nlist.n_value);
2974 type = eSymbolTypeLineEntry;
2975 break;
2976
2977 case N_SSYM:
2978 // structure elt: name,,NO_SECT,type,struct_offset
2979 type = eSymbolTypeVariableType;
2980 break;
2981
2982 case N_SO:
2983 // source file name
2984 type = eSymbolTypeSourceFile;
2985 if (symbol_name == NULL__null) {
2986 add_nlist = false;
2987 if (N_SO_index != UINT32_MAX(4294967295U)) {
2988 // Set the size of the N_SO to the terminating
2989 // index of this N_SO so that we can always skip
2990 // the entire N_SO if we need to navigate more
2991 // quickly at the source level when parsing STABS
2992 symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
2993 symbol_ptr->SetByteSize(sym_idx);
2994 symbol_ptr->SetSizeIsSibling(true);
2995 }
2996 N_NSYM_indexes.clear();
2997 N_INCL_indexes.clear();
2998 N_BRAC_indexes.clear();
2999 N_COMM_indexes.clear();
3000 N_FUN_indexes.clear();
3001 N_SO_index = UINT32_MAX(4294967295U);
3002 } else {
3003 // We use the current number of symbols in the
3004 // symbol table in lieu of using nlist_idx in case
3005 // we ever start trimming entries out
3006 const bool N_SO_has_full_path = symbol_name[0] == '/';
3007 if (N_SO_has_full_path) {
3008 if ((N_SO_index == sym_idx - 1) &&
3009 ((sym_idx - 1) < num_syms)) {
3010 // We have two consecutive N_SO entries where
3011 // the first contains a directory and the
3012 // second contains a full path.
3013 sym[sym_idx - 1].GetMangled().SetValue(
3014 ConstString(symbol_name), false);
3015 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3016 add_nlist = false;
3017 } else {
3018 // This is the first entry in a N_SO that
3019 // contains a directory or
3020 // a full path to the source file
3021 N_SO_index = sym_idx;
3022 }
3023 } else if ((N_SO_index == sym_idx - 1) &&
3024 ((sym_idx - 1) < num_syms)) {
3025 // This is usually the second N_SO entry that
3026 // contains just the filename, so here we combine
3027 // it with the first one if we are minimizing the
3028 // symbol table
3029 const char *so_path = sym[sym_idx - 1]
3030 .GetMangled()
3031 .GetDemangledName()
3032 .AsCString();
3033 if (so_path && so_path[0]) {
3034 std::string full_so_path(so_path);
3035 const size_t double_slash_pos =
3036 full_so_path.find("//");
3037 if (double_slash_pos != std::string::npos) {
3038 // The linker has been generating bad N_SO
3039 // entries with doubled up paths
3040 // in the format "%s%s" where the first
3041 // string in the DW_AT_comp_dir, and the
3042 // second is the directory for the source
3043 // file so you end up with a path that looks
3044 // like "/tmp/src//tmp/src/"
3045 FileSpec so_dir(so_path);
3046 if (!FileSystem::Instance().Exists(so_dir)) {
3047 so_dir.SetFile(
3048 &full_so_path[double_slash_pos + 1],
3049 FileSpec::Style::native);
3050 if (FileSystem::Instance().Exists(so_dir)) {
3051 // Trim off the incorrect path
3052 full_so_path.erase(0, double_slash_pos + 1);
3053 }
3054 }
3055 }
3056 if (*full_so_path.rbegin() != '/')
3057 full_so_path += '/';
3058 full_so_path += symbol_name;
3059 sym[sym_idx - 1].GetMangled().SetValue(
3060 ConstString(full_so_path.c_str()), false);
3061 add_nlist = false;
3062 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3063 }
3064 } else {
3065 // This could be a relative path to a N_SO
3066 N_SO_index = sym_idx;
3067 }
3068 }
3069 break;
3070
3071 case N_OSO:
3072 // object file name: name,,0,0,st_mtime
3073 type = eSymbolTypeObjectFile;
3074 break;
3075
3076 case N_LSYM:
3077 // local sym: name,,NO_SECT,type,offset
3078 type = eSymbolTypeLocal;
3079 break;
3080
3081 // INCL scopes
3082 case N_BINCL:
3083 // include file beginning: name,,NO_SECT,0,sum We use
3084 // the current number of symbols in the symbol table
3085 // in lieu of using nlist_idx in case we ever start
3086 // trimming entries out
3087 N_INCL_indexes.push_back(sym_idx);
3088 type = eSymbolTypeScopeBegin;
3089 break;
3090
3091 case N_EINCL:
3092 // include file end: name,,NO_SECT,0,0
3093 // Set the size of the N_BINCL to the terminating
3094 // index of this N_EINCL so that we can always skip
3095 // the entire symbol if we need to navigate more
3096 // quickly at the source level when parsing STABS
3097 if (!N_INCL_indexes.empty()) {
3098 symbol_ptr =
3099 symtab.SymbolAtIndex(N_INCL_indexes.back());
3100 symbol_ptr->SetByteSize(sym_idx + 1);
3101 symbol_ptr->SetSizeIsSibling(true);
3102 N_INCL_indexes.pop_back();
3103 }
3104 type = eSymbolTypeScopeEnd;
3105 break;
3106
3107 case N_SOL:
3108 // #included file name: name,,n_sect,0,address
3109 type = eSymbolTypeHeaderFile;
3110
3111 // We currently don't use the header files on darwin
3112 add_nlist = false;
3113 break;
3114
3115 case N_PARAMS:
3116 // compiler parameters: name,,NO_SECT,0,0
3117 type = eSymbolTypeCompiler;
3118 break;
3119
3120 case N_VERSION:
3121 // compiler version: name,,NO_SECT,0,0
3122 type = eSymbolTypeCompiler;
3123 break;
3124
3125 case N_OLEVEL:
3126 // compiler -O level: name,,NO_SECT,0,0
3127 type = eSymbolTypeCompiler;
3128 break;
3129
3130 case N_PSYM:
3131 // parameter: name,,NO_SECT,type,offset
3132 type = eSymbolTypeVariable;
3133 break;
3134
3135 case N_ENTRY:
3136 // alternate entry: name,,n_sect,linenumber,address
3137 symbol_section = section_info.GetSection(nlist.n_sect,
3138 nlist.n_value);
3139 type = eSymbolTypeLineEntry;
3140 break;
3141
3142 // Left and Right Braces
3143 case N_LBRAC:
3144 // left bracket: 0,,NO_SECT,nesting level,address We
3145 // use the current number of symbols in the symbol
3146 // table in lieu of using nlist_idx in case we ever
3147 // start trimming entries out
3148 symbol_section = section_info.GetSection(nlist.n_sect,
3149 nlist.n_value);
3150 N_BRAC_indexes.push_back(sym_idx);
3151 type = eSymbolTypeScopeBegin;
3152 break;
3153
3154 case N_RBRAC:
3155 // right bracket: 0,,NO_SECT,nesting level,address
3156 // Set the size of the N_LBRAC to the terminating
3157 // index of this N_RBRAC so that we can always skip
3158 // the entire symbol if we need to navigate more
3159 // quickly at the source level when parsing STABS
3160 symbol_section = section_info.GetSection(nlist.n_sect,
3161 nlist.n_value);
3162 if (!N_BRAC_indexes.empty()) {
3163 symbol_ptr =
3164 symtab.SymbolAtIndex(N_BRAC_indexes.back());
3165 symbol_ptr->SetByteSize(sym_idx + 1);
3166 symbol_ptr->SetSizeIsSibling(true);
3167 N_BRAC_indexes.pop_back();
3168 }
3169 type = eSymbolTypeScopeEnd;
3170 break;
3171
3172 case N_EXCL:
3173 // deleted include file: name,,NO_SECT,0,sum
3174 type = eSymbolTypeHeaderFile;
3175 break;
3176
3177 // COMM scopes
3178 case N_BCOMM:
3179 // begin common: name,,NO_SECT,0,0
3180 // We use the current number of symbols in the symbol
3181 // table in lieu of using nlist_idx in case we ever
3182 // start trimming entries out
3183 type = eSymbolTypeScopeBegin;
3184 N_COMM_indexes.push_back(sym_idx);
3185 break;
3186
3187 case N_ECOML:
3188 // end common (local name): 0,,n_sect,0,address
3189 symbol_section = section_info.GetSection(nlist.n_sect,
3190 nlist.n_value);
3191 // Fall through
3192
3193 case N_ECOMM:
3194 // end common: name,,n_sect,0,0
3195 // Set the size of the N_BCOMM to the terminating
3196 // index of this N_ECOMM/N_ECOML so that we can
3197 // always skip the entire symbol if we need to
3198 // navigate more quickly at the source level when
3199 // parsing STABS
3200 if (!N_COMM_indexes.empty()) {
3201 symbol_ptr =
3202 symtab.SymbolAtIndex(N_COMM_indexes.back());
3203 symbol_ptr->SetByteSize(sym_idx + 1);
3204 symbol_ptr->SetSizeIsSibling(true);
3205 N_COMM_indexes.pop_back();
3206 }
3207 type = eSymbolTypeScopeEnd;
3208 break;
3209
3210 case N_LENG:
3211 // second stab entry with length information
3212 type = eSymbolTypeAdditional;
3213 break;
3214
3215 default:
3216 break;
3217 }
3218 } else {
3219 // uint8_t n_pext = N_PEXT & nlist.n_type;
3220 uint8_t n_type = N_TYPE & nlist.n_type;
3221 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3222
3223 switch (n_type) {
3224 case N_INDR: {
3225 const char *reexport_name_cstr =
3226 strtab_data.PeekCStr(nlist.n_value);
3227 if (reexport_name_cstr && reexport_name_cstr[0]) {
3228 type = eSymbolTypeReExported;
3229 ConstString reexport_name(
3230 reexport_name_cstr +
3231 ((reexport_name_cstr[0] == '_') ? 1 : 0));
3232 sym[sym_idx].SetReExportedSymbolName(reexport_name);
3233 set_value = false;
3234 reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3235 indirect_symbol_names.insert(ConstString(
3236 symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3237 } else
3238 type = eSymbolTypeUndefined;
3239 } break;
3240
3241 case N_UNDF:
3242 if (symbol_name && symbol_name[0]) {
3243 ConstString undefined_name(
3244 symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3245 undefined_name_to_desc[undefined_name] = nlist.n_desc;
3246 }
3247 // Fall through
3248 case N_PBUD:
3249 type = eSymbolTypeUndefined;
3250 break;
3251
3252 case N_ABS:
3253 type = eSymbolTypeAbsolute;
3254 break;
3255
3256 case N_SECT: {
3257 symbol_section = section_info.GetSection(nlist.n_sect,
3258 nlist.n_value);
3259
3260 if (symbol_section == NULL__null) {
3261 // TODO: warn about this?
3262 add_nlist = false;
3263 break;
3264 }
3265
3266 if (TEXT_eh_frame_sectID == nlist.n_sect) {
3267 type = eSymbolTypeException;
3268 } else {
3269 uint32_t section_type =
3270 symbol_section->Get() & SECTION_TYPE;
3271
3272 switch (section_type) {
3273 case S_CSTRING_LITERALS:
3274 type = eSymbolTypeData;
3275 break; // section with only literal C strings
3276 case S_4BYTE_LITERALS:
3277 type = eSymbolTypeData;
3278 break; // section with only 4 byte literals
3279 case S_8BYTE_LITERALS:
3280 type = eSymbolTypeData;
3281 break; // section with only 8 byte literals
3282 case S_LITERAL_POINTERS:
3283 type = eSymbolTypeTrampoline;
3284 break; // section with only pointers to literals
3285 case S_NON_LAZY_SYMBOL_POINTERS:
3286 type = eSymbolTypeTrampoline;
3287 break; // section with only non-lazy symbol
3288 // pointers
3289 case S_LAZY_SYMBOL_POINTERS:
3290 type = eSymbolTypeTrampoline;
3291 break; // section with only lazy symbol pointers
3292 case S_SYMBOL_STUBS:
3293 type = eSymbolTypeTrampoline;
3294 break; // section with only symbol stubs, byte
3295 // size of stub in the reserved2 field
3296 case S_MOD_INIT_FUNC_POINTERS:
3297 type = eSymbolTypeCode;
3298 break; // section with only function pointers for
3299 // initialization
3300 case S_MOD_TERM_FUNC_POINTERS:
3301 type = eSymbolTypeCode;
3302 break; // section with only function pointers for
3303 // termination
3304 case S_INTERPOSING:
3305 type = eSymbolTypeTrampoline;
3306 break; // section with only pairs of function
3307 // pointers for interposing
3308 case S_16BYTE_LITERALS:
3309 type = eSymbolTypeData;
3310 break; // section with only 16 byte literals
3311 case S_DTRACE_DOF:
3312 type = eSymbolTypeInstrumentation;
3313 break;
3314 case S_LAZY_DYLIB_SYMBOL_POINTERS:
3315 type = eSymbolTypeTrampoline;
3316 break;
3317 default:
3318 switch (symbol_section->GetType()) {
3319 case lldb::eSectionTypeCode:
3320 type = eSymbolTypeCode;
3321 break;
3322 case eSectionTypeData:
3323 case eSectionTypeDataCString: // Inlined C string
3324 // data
3325 case eSectionTypeDataCStringPointers: // Pointers
3326 // to C
3327 // string
3328 // data
3329 case eSectionTypeDataSymbolAddress: // Address of
3330 // a symbol in
3331 // the symbol
3332 // table
3333 case eSectionTypeData4:
3334 case eSectionTypeData8:
3335 case eSectionTypeData16:
3336 type = eSymbolTypeData;
3337 break;
3338 default:
3339 break;
3340 }
3341 break;
3342 }
3343
3344 if (type == eSymbolTypeInvalid) {
3345 const char *symbol_sect_name =
3346 symbol_section->GetName().AsCString();
3347 if (symbol_section->IsDescendant(
3348 text_section_sp.get())) {
3349 if (symbol_section->IsClear(
3350 S_ATTR_PURE_INSTRUCTIONS |
3351 S_ATTR_SELF_MODIFYING_CODE |
3352 S_ATTR_SOME_INSTRUCTIONS))
3353 type = eSymbolTypeData;
3354 else
3355 type = eSymbolTypeCode;
3356 } else if (symbol_section->IsDescendant(
3357 data_section_sp.get()) ||
3358 symbol_section->IsDescendant(
3359 data_dirty_section_sp.get()) ||
3360 symbol_section->IsDescendant(
3361 data_const_section_sp.get())) {
3362 if (symbol_sect_name &&
3363 ::strstr(symbol_sect_name, "__objc") ==
3364 symbol_sect_name) {
3365 type = eSymbolTypeRuntime;
3366
3367 if (symbol_name) {
3368 llvm::StringRef symbol_name_ref(symbol_name);
3369 if (symbol_name_ref.startswith("_OBJC_")) {
3370 llvm::StringRef
3371 g_objc_v2_prefix_class(
3372 "_OBJC_CLASS_$_");
3373 llvm::StringRef
3374 g_objc_v2_prefix_metaclass(
3375 "_OBJC_METACLASS_$_");
3376 llvm::StringRef
3377 g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3378 if (symbol_name_ref.startswith(
3379 g_objc_v2_prefix_class)) {
3380 symbol_name_non_abi_mangled =
3381 symbol_name + 1;
3382 symbol_name =
3383 symbol_name +
3384 g_objc_v2_prefix_class.size();
3385 type = eSymbolTypeObjCClass;
3386 demangled_is_synthesized = true;
3387 } else if (
3388 symbol_name_ref.startswith(
3389 g_objc_v2_prefix_metaclass)) {
3390 symbol_name_non_abi_mangled =
3391 symbol_name + 1;
3392 symbol_name =
3393 symbol_name +
3394 g_objc_v2_prefix_metaclass.size();
3395 type = eSymbolTypeObjCMetaClass;
3396 demangled_is_synthesized = true;
3397 } else if (symbol_name_ref.startswith(
3398 g_objc_v2_prefix_ivar)) {
3399 symbol_name_non_abi_mangled =
3400 symbol_name + 1;
3401 symbol_name =
3402 symbol_name +
3403 g_objc_v2_prefix_ivar.size();
3404 type = eSymbolTypeObjCIVar;
3405 demangled_is_synthesized = true;
3406 }
3407 }
3408 }
3409 } else if (symbol_sect_name &&
3410 ::strstr(symbol_sect_name,
3411 "__gcc_except_tab") ==
3412 symbol_sect_name) {
3413 type = eSymbolTypeException;
3414 } else {
3415 type = eSymbolTypeData;
3416 }
3417 } else if (symbol_sect_name &&
3418 ::strstr(symbol_sect_name, "__IMPORT") ==
3419 symbol_sect_name) {
3420 type = eSymbolTypeTrampoline;
3421 } else if (symbol_section->IsDescendant(
3422 objc_section_sp.get())) {
3423 type = eSymbolTypeRuntime;
3424 if (symbol_name && symbol_name[0] == '.') {
3425 llvm::StringRef symbol_name_ref(symbol_name);
3426 llvm::StringRef
3427 g_objc_v1_prefix_class(".objc_class_name_");
3428 if (symbol_name_ref.startswith(
3429 g_objc_v1_prefix_class)) {
3430 symbol_name_non_abi_mangled = symbol_name;
3431 symbol_name = symbol_name +
3432 g_objc_v1_prefix_class.size();
3433 type = eSymbolTypeObjCClass;
3434 demangled_is_synthesized = true;
3435 }
3436 }
3437 }
3438 }
3439 }
3440 } break;
3441 }
3442 }
3443
3444 if (add_nlist) {
3445 uint64_t symbol_value = nlist.n_value;
3446 if (symbol_name_non_abi_mangled) {
3447 sym[sym_idx].GetMangled().SetMangledName(
3448 ConstString(symbol_name_non_abi_mangled));
3449 sym[sym_idx].GetMangled().SetDemangledName(
3450 ConstString(symbol_name));
3451 } else {
3452 bool symbol_name_is_mangled = false;
3453
3454 if (symbol_name && symbol_name[0] == '_') {
3455 symbol_name_is_mangled = symbol_name[1] == '_';
3456 symbol_name++; // Skip the leading underscore
3457 }
3458
3459 if (symbol_name) {
3460 ConstString const_symbol_name(symbol_name);
3461 sym[sym_idx].GetMangled().SetValue(
3462 const_symbol_name, symbol_name_is_mangled);
3463 if (is_gsym && is_debug) {
3464 const char *gsym_name =
3465 sym[sym_idx]
3466 .GetMangled()
3467 .GetName(Mangled::ePreferMangled)
3468 .GetCString();
3469 if (gsym_name)
3470 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3471 }
3472 }
3473 }
3474 if (symbol_section) {
3475 const addr_t section_file_addr =
3476 symbol_section->GetFileAddress();
3477 if (symbol_byte_size == 0 &&
3478 function_starts_count > 0) {
3479 addr_t symbol_lookup_file_addr = nlist.n_value;
3480 // Do an exact address match for non-ARM addresses,
3481 // else get the closest since the symbol might be a
3482 // thumb symbol which has an address with bit zero
3483 // set
3484 FunctionStarts::Entry *func_start_entry =
3485 function_starts.FindEntry(symbol_lookup_file_addr,
3486 !is_arm);
3487 if (is_arm && func_start_entry) {
3488 // Verify that the function start address is the
3489 // symbol address (ARM) or the symbol address + 1
3490 // (thumb)
3491 if (func_start_entry->addr !=
3492 symbol_lookup_file_addr &&
3493 func_start_entry->addr !=
3494 (symbol_lookup_file_addr + 1)) {
3495 // Not the right entry, NULL it out...
3496 func_start_entry = NULL__null;
3497 }
3498 }
3499 if (func_start_entry) {
3500 func_start_entry->data = true;
3501
3502 addr_t symbol_file_addr = func_start_entry->addr;
3503 uint32_t symbol_flags = 0;
3504 if (is_arm) {
3505 if (symbol_file_addr & 1)
3506 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008;
3507 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
3508 }
3509
3510 const FunctionStarts::Entry *next_func_start_entry =
3511 function_starts.FindNextEntry(func_start_entry);
3512 const addr_t section_end_file_addr =
3513 section_file_addr +
3514 symbol_section->GetByteSize();
3515 if (next_func_start_entry) {
3516 addr_t next_symbol_file_addr =
3517 next_func_start_entry->addr;
3518 // Be sure the clear the Thumb address bit when
3519 // we calculate the size from the current and
3520 // next address
3521 if (is_arm)
3522 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
3523 symbol_byte_size = std::min<lldb::addr_t>(
3524 next_symbol_file_addr - symbol_file_addr,
3525 section_end_file_addr - symbol_file_addr);
3526 } else {
3527 symbol_byte_size =
3528 section_end_file_addr - symbol_file_addr;
3529 }
3530 }
3531 }
3532 symbol_value -= section_file_addr;
3533 }
3534
3535 if (is_debug == false) {
3536 if (type == eSymbolTypeCode) {
3537 // See if we can find a N_FUN entry for any code
3538 // symbols. If we do find a match, and the name
3539 // matches, then we can merge the two into just the
3540 // function symbol to avoid duplicate entries in
3541 // the symbol table
3542 auto range =
3543 N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3544 if (range.first != range.second) {
3545 bool found_it = false;
3546 for (auto pos = range.first; pos != range.second;
3547 ++pos) {
3548 if (sym[sym_idx].GetMangled().GetName(
3549 Mangled::ePreferMangled) ==
3550 sym[pos->second].GetMangled().GetName(
3551 Mangled::ePreferMangled)) {
3552 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3553 // We just need the flags from the linker
3554 // symbol, so put these flags
3555 // into the N_FUN flags to avoid duplicate
3556 // symbols in the symbol table
3557 sym[pos->second].SetExternal(
3558 sym[sym_idx].IsExternal());
3559 sym[pos->second].SetFlags(nlist.n_type << 16 |
3560 nlist.n_desc);
3561 if (resolver_addresses.find(nlist.n_value) !=
3562 resolver_addresses.end())
3563 sym[pos->second].SetType(eSymbolTypeResolver);
3564 sym[sym_idx].Clear();
3565 found_it = true;
3566 break;
3567 }
3568 }
3569 if (found_it)
3570 continue;
3571 } else {
3572 if (resolver_addresses.find(nlist.n_value) !=
3573 resolver_addresses.end())
3574 type = eSymbolTypeResolver;
3575 }
3576 } else if (type == eSymbolTypeData ||
3577 type == eSymbolTypeObjCClass ||
3578 type == eSymbolTypeObjCMetaClass ||
3579 type == eSymbolTypeObjCIVar) {
3580 // See if we can find a N_STSYM entry for any data
3581 // symbols. If we do find a match, and the name
3582 // matches, then we can merge the two into just the
3583 // Static symbol to avoid duplicate entries in the
3584 // symbol table
3585 auto range = N_STSYM_addr_to_sym_idx.equal_range(
3586 nlist.n_value);
3587 if (range.first != range.second) {
3588 bool found_it = false;
3589 for (auto pos = range.first; pos != range.second;
3590 ++pos) {
3591 if (sym[sym_idx].GetMangled().GetName(
3592 Mangled::ePreferMangled) ==
3593 sym[pos->second].GetMangled().GetName(
3594 Mangled::ePreferMangled)) {
3595 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3596 // We just need the flags from the linker
3597 // symbol, so put these flags
3598 // into the N_STSYM flags to avoid duplicate
3599 // symbols in the symbol table
3600 sym[pos->second].SetExternal(
3601 sym[sym_idx].IsExternal());
3602 sym[pos->second].SetFlags(nlist.n_type << 16 |
3603 nlist.n_desc);
3604 sym[sym_idx].Clear();
3605 found_it = true;
3606 break;
3607 }
3608 }
3609 if (found_it)
3610 continue;
3611 } else {
3612 const char *gsym_name =
3613 sym[sym_idx]
3614 .GetMangled()
3615 .GetName(Mangled::ePreferMangled)
3616 .GetCString();
3617 if (gsym_name) {
3618 // Combine N_GSYM stab entries with the non
3619 // stab symbol
3620 ConstNameToSymbolIndexMap::const_iterator pos =
3621 N_GSYM_name_to_sym_idx.find(gsym_name);
3622 if (pos != N_GSYM_name_to_sym_idx.end()) {
3623 const uint32_t GSYM_sym_idx = pos->second;
3624 m_nlist_idx_to_sym_idx[nlist_idx] =
3625 GSYM_sym_idx;
3626 // Copy the address, because often the N_GSYM
3627 // address has an invalid address of zero
3628 // when the global is a common symbol
3629 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3630 symbol_section);
3631 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3632 symbol_value);
3633 add_symbol_addr(sym[GSYM_sym_idx]
3634 .GetAddress()
3635 .GetFileAddress());
3636 // We just need the flags from the linker
3637 // symbol, so put these flags
3638 // into the N_GSYM flags to avoid duplicate
3639 // symbols in the symbol table
3640 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3641 nlist.n_desc);
3642 sym[sym_idx].Clear();
3643 continue;
3644 }
3645 }
3646 }
3647 }
3648 }
3649
3650 sym[sym_idx].SetID(nlist_idx);
3651 sym[sym_idx].SetType(type);
3652 if (set_value) {
3653 sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3654 sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3655 add_symbol_addr(
3656 sym[sym_idx].GetAddress().GetFileAddress());
3657 }
3658 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3659
3660 if (symbol_byte_size > 0)
3661 sym[sym_idx].SetByteSize(symbol_byte_size);
3662
3663 if (demangled_is_synthesized)
3664 sym[sym_idx].SetDemangledNameIsSynthesized(true);
3665 ++sym_idx;
3666 } else {
3667 sym[sym_idx].Clear();
3668 }
3669 }
3670 /////////////////////////////
3671 }
3672 }
3673
3674 for (const auto &pos : reexport_shlib_needs_fixup) {
3675 const auto undef_pos = undefined_name_to_desc.find(pos.second);
3676 if (undef_pos != undefined_name_to_desc.end()) {
3677 const uint8_t dylib_ordinal =
3678 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3679 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3680 sym[pos.first].SetReExportedSymbolSharedLibrary(
3681 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3682 }
3683 }
3684 }
3685
3686#endif
3687 lldb::offset_t nlist_data_offset = 0;
3688
3689 if (nlist_data.GetByteSize() > 0) {
3690
3691 // If the sym array was not created while parsing the DSC unmapped
3692 // symbols, create it now.
3693 if (sym == nullptr) {
3694 sym =
3695 symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3696 num_syms = symtab.GetNumSymbols();
3697 }
3698
3699 if (unmapped_local_symbols_found) {
3700 assert(m_dysymtab.ilocalsym == 0)(static_cast <bool> (m_dysymtab.ilocalsym == 0) ? void (
0) : __assert_fail ("m_dysymtab.ilocalsym == 0", "lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 3700, __extension__ __PRETTY_FUNCTION__))
;
3701 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3702 nlist_idx = m_dysymtab.nlocalsym;
3703 } else {
3704 nlist_idx = 0;
3705 }
3706
3707 typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3708 typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3709 UndefinedNameToDescMap undefined_name_to_desc;
3710 SymbolIndexToName reexport_shlib_needs_fixup;
3711
3712 // Symtab parsing is a huge mess. Everything is entangled and the code
3713 // requires access to a ridiculous amount of variables. LLDB depends
3714 // heavily on the proper merging of symbols and to get that right we need
3715 // to make sure we have parsed all the debug symbols first. Therefore we
3716 // invoke the lambda twice, once to parse only the debug symbols and then
3717 // once more to parse the remaining symbols.
3718 auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3719 bool debug_only) {
3720 const bool is_debug = ((nlist.n_type & N_STAB) != 0);
1
Assuming the condition is false
3721 if (is_debug != debug_only)
2
Assuming 'is_debug' is equal to 'debug_only'
3
Taking false branch
3722 return true;
3723
3724 const char *symbol_name_non_abi_mangled = nullptr;
3725 const char *symbol_name = nullptr;
4
'symbol_name' initialized to a null pointer value
3726
3727 if (have_strtab_data) {
5
Assuming 'have_strtab_data' is false
6
Taking false branch
3728 symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3729
3730 if (symbol_name == nullptr) {
3731 // No symbol should be NULL, even the symbols with no string values
3732 // should have an offset zero which points to an empty C-string
3733 Host::SystemLog(Host::eSystemLogError,
3734 "error: symbol[%u] has invalid string table offset "
3735 "0x%x in %s, ignoring symbol\n",
3736 nlist_idx, nlist.n_strx,
3737 module_sp->GetFileSpec().GetPath().c_str());
3738 return true;
3739 }
3740 if (symbol_name[0] == '\0')
3741 symbol_name = nullptr;
3742 } else {
3743 const addr_t str_addr = strtab_addr + nlist.n_strx;
3744 Status str_error;
3745 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
7
Assuming the condition is false
8
Taking false branch
3746 str_error))
3747 symbol_name = memory_symbol_name.c_str();
3748 }
3749
3750 SymbolType type = eSymbolTypeInvalid;
3751 SectionSP symbol_section;
3752 lldb::addr_t symbol_byte_size = 0;
3753 bool add_nlist = true;
3754 bool is_gsym = false;
3755 bool demangled_is_synthesized = false;
3756 bool set_value = true;
3757
3758 assert(sym_idx < num_syms)(static_cast <bool> (sym_idx < num_syms) ? void (0) :
__assert_fail ("sym_idx < num_syms", "lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 3758, __extension__ __PRETTY_FUNCTION__))
;
9
Assuming 'sym_idx' is < 'num_syms'
10
'?' condition is true
3759 sym[sym_idx].SetDebug(is_debug);
3760
3761 if (is_debug
10.1
'is_debug' is false
) {
11
Taking false branch
3762 switch (nlist.n_type) {
3763 case N_GSYM:
3764 // global symbol: name,,NO_SECT,type,0
3765 // Sometimes the N_GSYM value contains the address.
3766
3767 // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3768 // the ObjC data. They
3769 // have the same address, but we want to ensure that we always find
3770 // only the real symbol, 'cause we don't currently correctly
3771 // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3772 // type. This is a temporary hack to make sure the ObjectiveC
3773 // symbols get treated correctly. To do this right, we should
3774 // coalesce all the GSYM & global symbols that have the same
3775 // address.
3776 is_gsym = true;
3777 sym[sym_idx].SetExternal(true);
3778
3779 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3780 llvm::StringRef symbol_name_ref(symbol_name);
3781 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3782 symbol_name_non_abi_mangled = symbol_name + 1;
3783 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3784 type = eSymbolTypeObjCClass;
3785 demangled_is_synthesized = true;
3786
3787 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3788 symbol_name_non_abi_mangled = symbol_name + 1;
3789 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3790 type = eSymbolTypeObjCMetaClass;
3791 demangled_is_synthesized = true;
3792 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3793 symbol_name_non_abi_mangled = symbol_name + 1;
3794 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3795 type = eSymbolTypeObjCIVar;
3796 demangled_is_synthesized = true;
3797 }
3798 } else {
3799 if (nlist.n_value != 0)
3800 symbol_section =
3801 section_info.GetSection(nlist.n_sect, nlist.n_value);
3802 type = eSymbolTypeData;
3803 }
3804 break;
3805
3806 case N_FNAME:
3807 // procedure name (f77 kludge): name,,NO_SECT,0,0
3808 type = eSymbolTypeCompiler;
3809 break;
3810
3811 case N_FUN:
3812 // procedure: name,,n_sect,linenumber,address
3813 if (symbol_name) {
3814 type = eSymbolTypeCode;
3815 symbol_section =
3816 section_info.GetSection(nlist.n_sect, nlist.n_value);
3817
3818 N_FUN_addr_to_sym_idx.insert(
3819 std::make_pair(nlist.n_value, sym_idx));
3820 // We use the current number of symbols in the symbol table in
3821 // lieu of using nlist_idx in case we ever start trimming entries
3822 // out
3823 N_FUN_indexes.push_back(sym_idx);
3824 } else {
3825 type = eSymbolTypeCompiler;
3826
3827 if (!N_FUN_indexes.empty()) {
3828 // Copy the size of the function into the original STAB entry
3829 // so we don't have to hunt for it later
3830 symtab.SymbolAtIndex(N_FUN_indexes.back())
3831 ->SetByteSize(nlist.n_value);
3832 N_FUN_indexes.pop_back();
3833 // We don't really need the end function STAB as it contains
3834 // the size which we already placed with the original symbol,
3835 // so don't add it if we want a minimal symbol table
3836 add_nlist = false;
3837 }
3838 }
3839 break;
3840
3841 case N_STSYM:
3842 // static symbol: name,,n_sect,type,address
3843 N_STSYM_addr_to_sym_idx.insert(
3844 std::make_pair(nlist.n_value, sym_idx));
3845 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3846 if (symbol_name && symbol_name[0]) {
3847 type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3848 eSymbolTypeData);
3849 }
3850 break;
3851
3852 case N_LCSYM:
3853 // .lcomm symbol: name,,n_sect,type,address
3854 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3855 type = eSymbolTypeCommonBlock;
3856 break;
3857
3858 case N_BNSYM:
3859 // We use the current number of symbols in the symbol table in lieu
3860 // of using nlist_idx in case we ever start trimming entries out
3861 // Skip these if we want minimal symbol tables
3862 add_nlist = false;
3863 break;
3864
3865 case N_ENSYM:
3866 // Set the size of the N_BNSYM to the terminating index of this
3867 // N_ENSYM so that we can always skip the entire symbol if we need
3868 // to navigate more quickly at the source level when parsing STABS
3869 // Skip these if we want minimal symbol tables
3870 add_nlist = false;
3871 break;
3872
3873 case N_OPT:
3874 // emitted with gcc2_compiled and in gcc source
3875 type = eSymbolTypeCompiler;
3876 break;
3877
3878 case N_RSYM:
3879 // register sym: name,,NO_SECT,type,register
3880 type = eSymbolTypeVariable;
3881 break;
3882
3883 case N_SLINE:
3884 // src line: 0,,n_sect,linenumber,address
3885 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3886 type = eSymbolTypeLineEntry;
3887 break;
3888
3889 case N_SSYM:
3890 // structure elt: name,,NO_SECT,type,struct_offset
3891 type = eSymbolTypeVariableType;
3892 break;
3893
3894 case N_SO:
3895 // source file name
3896 type = eSymbolTypeSourceFile;
3897 if (symbol_name == nullptr) {
3898 add_nlist = false;
3899 if (N_SO_index != UINT32_MAX(4294967295U)) {
3900 // Set the size of the N_SO to the terminating index of this
3901 // N_SO so that we can always skip the entire N_SO if we need
3902 // to navigate more quickly at the source level when parsing
3903 // STABS
3904 symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3905 symbol_ptr->SetByteSize(sym_idx);
3906 symbol_ptr->SetSizeIsSibling(true);
3907 }
3908 N_NSYM_indexes.clear();
3909 N_INCL_indexes.clear();
3910 N_BRAC_indexes.clear();
3911 N_COMM_indexes.clear();
3912 N_FUN_indexes.clear();
3913 N_SO_index = UINT32_MAX(4294967295U);
3914 } else {
3915 // We use the current number of symbols in the symbol table in
3916 // lieu of using nlist_idx in case we ever start trimming entries
3917 // out
3918 const bool N_SO_has_full_path = symbol_name[0] == '/';
3919 if (N_SO_has_full_path) {
3920 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3921 // We have two consecutive N_SO entries where the first
3922 // contains a directory and the second contains a full path.
3923 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3924 false);
3925 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3926 add_nlist = false;
3927 } else {
3928 // This is the first entry in a N_SO that contains a
3929 // directory or a full path to the source file
3930 N_SO_index = sym_idx;
3931 }
3932 } else if ((N_SO_index == sym_idx - 1) &&
3933 ((sym_idx - 1) < num_syms)) {
3934 // This is usually the second N_SO entry that contains just the
3935 // filename, so here we combine it with the first one if we are
3936 // minimizing the symbol table
3937 const char *so_path =
3938 sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3939 if (so_path && so_path[0]) {
3940 std::string full_so_path(so_path);
3941 const size_t double_slash_pos = full_so_path.find("//");
3942 if (double_slash_pos != std::string::npos) {
3943 // The linker has been generating bad N_SO entries with
3944 // doubled up paths in the format "%s%s" where the first
3945 // string in the DW_AT_comp_dir, and the second is the
3946 // directory for the source file so you end up with a path
3947 // that looks like "/tmp/src//tmp/src/"
3948 FileSpec so_dir(so_path);
3949 if (!FileSystem::Instance().Exists(so_dir)) {
3950 so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3951 FileSpec::Style::native);
3952 if (FileSystem::Instance().Exists(so_dir)) {
3953 // Trim off the incorrect path
3954 full_so_path.erase(0, double_slash_pos + 1);
3955 }
3956 }
3957 }
3958 if (*full_so_path.rbegin() != '/')
3959 full_so_path += '/';
3960 full_so_path += symbol_name;
3961 sym[sym_idx - 1].GetMangled().SetValue(
3962 ConstString(full_so_path.c_str()), false);
3963 add_nlist = false;
3964 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3965 }
3966 } else {
3967 // This could be a relative path to a N_SO
3968 N_SO_index = sym_idx;
3969 }
3970 }
3971 break;
3972
3973 case N_OSO:
3974 // object file name: name,,0,0,st_mtime
3975 type = eSymbolTypeObjectFile;
3976 break;
3977
3978 case N_LSYM:
3979 // local sym: name,,NO_SECT,type,offset
3980 type = eSymbolTypeLocal;
3981 break;
3982
3983 // INCL scopes
3984 case N_BINCL:
3985 // include file beginning: name,,NO_SECT,0,sum We use the current
3986 // number of symbols in the symbol table in lieu of using nlist_idx
3987 // in case we ever start trimming entries out
3988 N_INCL_indexes.push_back(sym_idx);
3989 type = eSymbolTypeScopeBegin;
3990 break;
3991
3992 case N_EINCL:
3993 // include file end: name,,NO_SECT,0,0
3994 // Set the size of the N_BINCL to the terminating index of this
3995 // N_EINCL so that we can always skip the entire symbol if we need
3996 // to navigate more quickly at the source level when parsing STABS
3997 if (!N_INCL_indexes.empty()) {
3998 symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
3999 symbol_ptr->SetByteSize(sym_idx + 1);
4000 symbol_ptr->SetSizeIsSibling(true);
4001 N_INCL_indexes.pop_back();
4002 }
4003 type = eSymbolTypeScopeEnd;
4004 break;
4005
4006 case N_SOL:
4007 // #included file name: name,,n_sect,0,address
4008 type = eSymbolTypeHeaderFile;
4009
4010 // We currently don't use the header files on darwin
4011 add_nlist = false;
4012 break;
4013
4014 case N_PARAMS:
4015 // compiler parameters: name,,NO_SECT,0,0
4016 type = eSymbolTypeCompiler;
4017 break;
4018
4019 case N_VERSION:
4020 // compiler version: name,,NO_SECT,0,0
4021 type = eSymbolTypeCompiler;
4022 break;
4023
4024 case N_OLEVEL:
4025 // compiler -O level: name,,NO_SECT,0,0
4026 type = eSymbolTypeCompiler;
4027 break;
4028
4029 case N_PSYM:
4030 // parameter: name,,NO_SECT,type,offset
4031 type = eSymbolTypeVariable;
4032 break;
4033
4034 case N_ENTRY:
4035 // alternate entry: name,,n_sect,linenumber,address
4036 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4037 type = eSymbolTypeLineEntry;
4038 break;
4039
4040 // Left and Right Braces
4041 case N_LBRAC:
4042 // left bracket: 0,,NO_SECT,nesting level,address We use the
4043 // current number of symbols in the symbol table in lieu of using
4044 // nlist_idx in case we ever start trimming entries out
4045 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4046 N_BRAC_indexes.push_back(sym_idx);
4047 type = eSymbolTypeScopeBegin;
4048 break;
4049
4050 case N_RBRAC:
4051 // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4052 // the N_LBRAC to the terminating index of this N_RBRAC so that we
4053 // can always skip the entire symbol if we need to navigate more
4054 // quickly at the source level when parsing STABS
4055 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4056 if (!N_BRAC_indexes.empty()) {
4057 symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
4058 symbol_ptr->SetByteSize(sym_idx + 1);
4059 symbol_ptr->SetSizeIsSibling(true);
4060 N_BRAC_indexes.pop_back();
4061 }
4062 type = eSymbolTypeScopeEnd;
4063 break;
4064
4065 case N_EXCL:
4066 // deleted include file: name,,NO_SECT,0,sum
4067 type = eSymbolTypeHeaderFile;
4068 break;
4069
4070 // COMM scopes
4071 case N_BCOMM:
4072 // begin common: name,,NO_SECT,0,0
4073 // We use the current number of symbols in the symbol table in lieu
4074 // of using nlist_idx in case we ever start trimming entries out
4075 type = eSymbolTypeScopeBegin;
4076 N_COMM_indexes.push_back(sym_idx);
4077 break;
4078
4079 case N_ECOML:
4080 // end common (local name): 0,,n_sect,0,address
4081 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4082 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4083
4084 case N_ECOMM:
4085 // end common: name,,n_sect,0,0
4086 // Set the size of the N_BCOMM to the terminating index of this
4087 // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4088 // we need to navigate more quickly at the source level when
4089 // parsing STABS
4090 if (!N_COMM_indexes.empty()) {
4091 symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
4092 symbol_ptr->SetByteSize(sym_idx + 1);
4093 symbol_ptr->SetSizeIsSibling(true);
4094 N_COMM_indexes.pop_back();
4095 }
4096 type = eSymbolTypeScopeEnd;
4097 break;
4098
4099 case N_LENG:
4100 // second stab entry with length information
4101 type = eSymbolTypeAdditional;
4102 break;
4103
4104 default:
4105 break;
4106 }
4107 } else {
4108 uint8_t n_type = N_TYPE & nlist.n_type;
4109 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
12
Assuming the condition is false
4110
4111 switch (n_type) {
13
Control jumps to 'case N_INDR:' at line 4112
4112 case N_INDR: {
4113 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4114 if (reexport_name_cstr && reexport_name_cstr[0]) {
14
Assuming 'reexport_name_cstr' is non-null
15
Assuming the condition is true
16
Taking true branch
4115 type = eSymbolTypeReExported;
4116 ConstString reexport_name(reexport_name_cstr +
4117 ((reexport_name_cstr[0] == '_') ? 1 : 0));
17
Assuming the condition is false
18
'?' condition is false
4118 sym[sym_idx].SetReExportedSymbolName(reexport_name);
4119 set_value = false;
4120 reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4121 indirect_symbol_names.insert(
4122 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
19
Array access (from variable 'symbol_name') results in a null pointer dereference
4123 } else
4124 type = eSymbolTypeUndefined;
4125 } break;
4126
4127 case N_UNDF:
4128 if (symbol_name && symbol_name[0]) {
4129 ConstString undefined_name(symbol_name +
4130 ((symbol_name[0] == '_') ? 1 : 0));
4131 undefined_name_to_desc[undefined_name] = nlist.n_desc;
4132 }
4133 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4134
4135 case N_PBUD:
4136 type = eSymbolTypeUndefined;
4137 break;
4138
4139 case N_ABS:
4140 type = eSymbolTypeAbsolute;
4141 break;
4142
4143 case N_SECT: {
4144 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4145
4146 if (!symbol_section) {
4147 // TODO: warn about this?
4148 add_nlist = false;
4149 break;
4150 }
4151
4152 if (TEXT_eh_frame_sectID == nlist.n_sect) {
4153 type = eSymbolTypeException;
4154 } else {
4155 uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4156
4157 switch (section_type) {
4158 case S_CSTRING_LITERALS:
4159 type = eSymbolTypeData;
4160 break; // section with only literal C strings
4161 case S_4BYTE_LITERALS:
4162 type = eSymbolTypeData;
4163 break; // section with only 4 byte literals
4164 case S_8BYTE_LITERALS:
4165 type = eSymbolTypeData;
4166 break; // section with only 8 byte literals
4167 case S_LITERAL_POINTERS:
4168 type = eSymbolTypeTrampoline;
4169 break; // section with only pointers to literals
4170 case S_NON_LAZY_SYMBOL_POINTERS:
4171 type = eSymbolTypeTrampoline;
4172 break; // section with only non-lazy symbol pointers
4173 case S_LAZY_SYMBOL_POINTERS:
4174 type = eSymbolTypeTrampoline;
4175 break; // section with only lazy symbol pointers
4176 case S_SYMBOL_STUBS:
4177 type = eSymbolTypeTrampoline;
4178 break; // section with only symbol stubs, byte size of stub in
4179 // the reserved2 field
4180 case S_MOD_INIT_FUNC_POINTERS:
4181 type = eSymbolTypeCode;
4182 break; // section with only function pointers for initialization
4183 case S_MOD_TERM_FUNC_POINTERS:
4184 type = eSymbolTypeCode;
4185 break; // section with only function pointers for termination
4186 case S_INTERPOSING:
4187 type = eSymbolTypeTrampoline;
4188 break; // section with only pairs of function pointers for
4189 // interposing
4190 case S_16BYTE_LITERALS:
4191 type = eSymbolTypeData;
4192 break; // section with only 16 byte literals
4193 case S_DTRACE_DOF:
4194 type = eSymbolTypeInstrumentation;
4195 break;
4196 case S_LAZY_DYLIB_SYMBOL_POINTERS:
4197 type = eSymbolTypeTrampoline;
4198 break;
4199 default:
4200 switch (symbol_section->GetType()) {
4201 case lldb::eSectionTypeCode:
4202 type = eSymbolTypeCode;
4203 break;
4204 case eSectionTypeData:
4205 case eSectionTypeDataCString: // Inlined C string data
4206 case eSectionTypeDataCStringPointers: // Pointers to C string
4207 // data
4208 case eSectionTypeDataSymbolAddress: // Address of a symbol in
4209 // the symbol table
4210 case eSectionTypeData4:
4211 case eSectionTypeData8:
4212 case eSectionTypeData16:
4213 type = eSymbolTypeData;
4214 break;
4215 default:
4216 break;
4217 }
4218 break;
4219 }
4220
4221 if (type == eSymbolTypeInvalid) {
4222 const char *symbol_sect_name =
4223 symbol_section->GetName().AsCString();
4224 if (symbol_section->IsDescendant(text_section_sp.get())) {
4225 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4226 S_ATTR_SELF_MODIFYING_CODE |
4227 S_ATTR_SOME_INSTRUCTIONS))
4228 type = eSymbolTypeData;
4229 else
4230 type = eSymbolTypeCode;
4231 } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4232 symbol_section->IsDescendant(
4233 data_dirty_section_sp.get()) ||
4234 symbol_section->IsDescendant(
4235 data_const_section_sp.get())) {
4236 if (symbol_sect_name &&
4237 ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4238 type = eSymbolTypeRuntime;
4239
4240 if (symbol_name) {
4241 llvm::StringRef symbol_name_ref(symbol_name);
4242 if (symbol_name_ref.startswith("_OBJC_")) {
4243 llvm::StringRef g_objc_v2_prefix_class(
4244 "_OBJC_CLASS_$_");
4245 llvm::StringRef g_objc_v2_prefix_metaclass(
4246 "_OBJC_METACLASS_$_");
4247 llvm::StringRef g_objc_v2_prefix_ivar(
4248 "_OBJC_IVAR_$_");
4249 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4250 symbol_name_non_abi_mangled = symbol_name + 1;
4251 symbol_name =
4252 symbol_name + g_objc_v2_prefix_class.size();
4253 type = eSymbolTypeObjCClass;
4254 demangled_is_synthesized = true;
4255 } else if (symbol_name_ref.startswith(
4256 g_objc_v2_prefix_metaclass)) {
4257 symbol_name_non_abi_mangled = symbol_name + 1;
4258 symbol_name =
4259 symbol_name + g_objc_v2_prefix_metaclass.size();
4260 type = eSymbolTypeObjCMetaClass;
4261 demangled_is_synthesized = true;
4262 } else if (symbol_name_ref.startswith(
4263 g_objc_v2_prefix_ivar)) {
4264 symbol_name_non_abi_mangled = symbol_name + 1;
4265 symbol_name =
4266 symbol_name + g_objc_v2_prefix_ivar.size();
4267 type = eSymbolTypeObjCIVar;
4268 demangled_is_synthesized = true;
4269 }
4270 }
4271 }
4272 } else if (symbol_sect_name &&
4273 ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4274 symbol_sect_name) {
4275 type = eSymbolTypeException;
4276 } else {
4277 type = eSymbolTypeData;
4278 }
4279 } else if (symbol_sect_name &&
4280 ::strstr(symbol_sect_name, "__IMPORT") ==
4281 symbol_sect_name) {
4282 type = eSymbolTypeTrampoline;
4283 } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4284 type = eSymbolTypeRuntime;
4285 if (symbol_name && symbol_name[0] == '.') {
4286 llvm::StringRef symbol_name_ref(symbol_name);
4287 llvm::StringRef g_objc_v1_prefix_class(
4288 ".objc_class_name_");
4289 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4290 symbol_name_non_abi_mangled = symbol_name;
4291 symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4292 type = eSymbolTypeObjCClass;
4293 demangled_is_synthesized = true;
4294 }
4295 }
4296 }
4297 }
4298 }
4299 } break;
4300 }
4301 }
4302
4303 if (!add_nlist) {
4304 sym[sym_idx].Clear();
4305 return true;
4306 }
4307
4308 uint64_t symbol_value = nlist.n_value;
4309
4310 if (symbol_name_non_abi_mangled) {
4311 sym[sym_idx].GetMangled().SetMangledName(
4312 ConstString(symbol_name_non_abi_mangled));
4313 sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4314 } else {
4315 bool symbol_name_is_mangled = false;
4316
4317 if (symbol_name && symbol_name[0] == '_') {
4318 symbol_name_is_mangled = symbol_name[1] == '_';
4319 symbol_name++; // Skip the leading underscore
4320 }
4321
4322 if (symbol_name) {
4323 ConstString const_symbol_name(symbol_name);
4324 sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4325 symbol_name_is_mangled);
4326 }
4327 }
4328
4329 if (is_gsym) {
4330 const char *gsym_name = sym[sym_idx]
4331 .GetMangled()
4332 .GetName(Mangled::ePreferMangled)
4333 .GetCString();
4334 if (gsym_name)
4335 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4336 }
4337
4338 if (symbol_section) {
4339 const addr_t section_file_addr = symbol_section->GetFileAddress();
4340 if (symbol_byte_size == 0 && function_starts_count > 0) {
4341 addr_t symbol_lookup_file_addr = nlist.n_value;
4342 // Do an exact address match for non-ARM addresses, else get the
4343 // closest since the symbol might be a thumb symbol which has an
4344 // address with bit zero set.
4345 FunctionStarts::Entry *func_start_entry =
4346 function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4347 if (is_arm && func_start_entry) {
4348 // Verify that the function start address is the symbol address
4349 // (ARM) or the symbol address + 1 (thumb).
4350 if (func_start_entry->addr != symbol_lookup_file_addr &&
4351 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4352 // Not the right entry, NULL it out...
4353 func_start_entry = nullptr;
4354 }
4355 }
4356 if (func_start_entry) {
4357 func_start_entry->data = true;
4358
4359 addr_t symbol_file_addr = func_start_entry->addr;
4360 if (is_arm)
4361 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4362
4363 const FunctionStarts::Entry *next_func_start_entry =
4364 function_starts.FindNextEntry(func_start_entry);
4365 const addr_t section_end_file_addr =
4366 section_file_addr + symbol_section->GetByteSize();
4367 if (next_func_start_entry) {
4368 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4369 // Be sure the clear the Thumb address bit when we calculate the
4370 // size from the current and next address
4371 if (is_arm)
4372 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4373 symbol_byte_size = std::min<lldb::addr_t>(
4374 next_symbol_file_addr - symbol_file_addr,
4375 section_end_file_addr - symbol_file_addr);
4376 } else {
4377 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4378 }
4379 }
4380 }
4381 symbol_value -= section_file_addr;
4382 }
4383
4384 if (!is_debug) {
4385 if (type == eSymbolTypeCode) {
4386 // See if we can find a N_FUN entry for any code symbols. If we do
4387 // find a match, and the name matches, then we can merge the two into
4388 // just the function symbol to avoid duplicate entries in the symbol
4389 // table.
4390 std::pair<ValueToSymbolIndexMap::const_iterator,
4391 ValueToSymbolIndexMap::const_iterator>
4392 range;
4393 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4394 if (range.first != range.second) {
4395 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4396 pos != range.second; ++pos) {
4397 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4398 sym[pos->second].GetMangled().GetName(
4399 Mangled::ePreferMangled)) {
4400 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4401 // We just need the flags from the linker symbol, so put these
4402 // flags into the N_FUN flags to avoid duplicate symbols in the
4403 // symbol table.
4404 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4405 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4406 if (resolver_addresses.find(nlist.n_value) !=
4407 resolver_addresses.end())
4408 sym[pos->second].SetType(eSymbolTypeResolver);
4409 sym[sym_idx].Clear();
4410 return true;
4411 }
4412 }
4413 } else {
4414 if (resolver_addresses.find(nlist.n_value) !=
4415 resolver_addresses.end())
4416 type = eSymbolTypeResolver;
4417 }
4418 } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4419 type == eSymbolTypeObjCMetaClass ||
4420 type == eSymbolTypeObjCIVar) {
4421 // See if we can find a N_STSYM entry for any data symbols. If we do
4422 // find a match, and the name matches, then we can merge the two into
4423 // just the Static symbol to avoid duplicate entries in the symbol
4424 // table.
4425 std::pair<ValueToSymbolIndexMap::const_iterator,
4426 ValueToSymbolIndexMap::const_iterator>
4427 range;
4428 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4429 if (range.first != range.second) {
4430 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4431 pos != range.second; ++pos) {
4432 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4433 sym[pos->second].GetMangled().GetName(
4434 Mangled::ePreferMangled)) {
4435 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4436 // We just need the flags from the linker symbol, so put these
4437 // flags into the N_STSYM flags to avoid duplicate symbols in
4438 // the symbol table.
4439 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4440 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4441 sym[sym_idx].Clear();
4442 return true;
4443 }
4444 }
4445 } else {
4446 // Combine N_GSYM stab entries with the non stab symbol.
4447 const char *gsym_name = sym[sym_idx]
4448 .GetMangled()
4449 .GetName(Mangled::ePreferMangled)
4450 .GetCString();
4451 if (gsym_name) {
4452 ConstNameToSymbolIndexMap::const_iterator pos =
4453 N_GSYM_name_to_sym_idx.find(gsym_name);
4454 if (pos != N_GSYM_name_to_sym_idx.end()) {
4455 const uint32_t GSYM_sym_idx = pos->second;
4456 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4457 // Copy the address, because often the N_GSYM address has an
4458 // invalid address of zero when the global is a common symbol.
4459 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4460 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4461 add_symbol_addr(
4462 sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4463 // We just need the flags from the linker symbol, so put these
4464 // flags into the N_GSYM flags to avoid duplicate symbols in
4465 // the symbol table.
4466 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4467 sym[sym_idx].Clear();
4468 return true;
4469 }
4470 }
4471 }
4472 }
4473 }
4474
4475 sym[sym_idx].SetID(nlist_idx);
4476 sym[sym_idx].SetType(type);
4477 if (set_value) {
4478 sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4479 sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4480 if (symbol_section)
4481 add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4482 }
4483 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4484 if (nlist.n_desc & N_WEAK_REF)
4485 sym[sym_idx].SetIsWeak(true);
4486
4487 if (symbol_byte_size > 0)
4488 sym[sym_idx].SetByteSize(symbol_byte_size);
4489
4490 if (demangled_is_synthesized)
4491 sym[sym_idx].SetDemangledNameIsSynthesized(true);
4492
4493 ++sym_idx;
4494 return true;
4495 };
4496
4497 // First parse all the nlists but don't process them yet. See the next
4498 // comment for an explanation why.
4499 std::vector<struct nlist_64> nlists;
4500 nlists.reserve(symtab_load_command.nsyms);
4501 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4502 if (auto nlist =
4503 ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4504 nlists.push_back(*nlist);
4505 else
4506 break;
4507 }
4508
4509 // Now parse all the debug symbols. This is needed to merge non-debug
4510 // symbols in the next step. Non-debug symbols are always coalesced into
4511 // the debug symbol. Doing this in one step would mean that some symbols
4512 // won't be merged.
4513 nlist_idx = 0;
4514 for (auto &nlist : nlists) {
4515 if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4516 break;
4517 }
4518
4519 // Finally parse all the non debug symbols.
4520 nlist_idx = 0;
4521 for (auto &nlist : nlists) {
4522 if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4523 break;
4524 }
4525
4526 for (const auto &pos : reexport_shlib_needs_fixup) {
4527 const auto undef_pos = undefined_name_to_desc.find(pos.second);
4528 if (undef_pos != undefined_name_to_desc.end()) {
4529 const uint8_t dylib_ordinal =
4530 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4531 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4532 sym[pos.first].SetReExportedSymbolSharedLibrary(
4533 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4534 }
4535 }
4536 }
4537
4538 // Count how many trie symbols we'll add to the symbol table
4539 int trie_symbol_table_augment_count = 0;
4540 for (auto &e : external_sym_trie_entries) {
4541 if (symbols_added.find(e.entry.address) == symbols_added.end())
4542 trie_symbol_table_augment_count++;
4543 }
4544
4545 if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4546 num_syms = sym_idx + trie_symbol_table_augment_count;
4547 sym = symtab.Resize(num_syms);
4548 }
4549 uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4550
4551 // Add symbols from the trie to the symbol table.
4552 for (auto &e : external_sym_trie_entries) {
4553 if (symbols_added.contains(e.entry.address))
4554 continue;
4555
4556 // Find the section that this trie address is in, use that to annotate
4557 // symbol type as we add the trie address and name to the symbol table.
4558 Address symbol_addr;
4559 if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4560 SectionSP symbol_section(symbol_addr.GetSection());
4561 const char *symbol_name = e.entry.name.GetCString();
4562 bool demangled_is_synthesized = false;
4563 SymbolType type =
4564 GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4565 data_section_sp, data_dirty_section_sp,
4566 data_const_section_sp, symbol_section);
4567
4568 sym[sym_idx].SetType(type);
4569 if (symbol_section) {
4570 sym[sym_idx].SetID(synthetic_sym_id++);
4571 sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4572 if (demangled_is_synthesized)
4573 sym[sym_idx].SetDemangledNameIsSynthesized(true);
4574 sym[sym_idx].SetIsSynthetic(true);
4575 sym[sym_idx].SetExternal(true);
4576 sym[sym_idx].GetAddressRef() = symbol_addr;
4577 add_symbol_addr(symbol_addr.GetFileAddress());
4578 if (e.entry.flags & TRIE_SYMBOL_IS_THUMB(1ULL << 63))
4579 sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008);
4580 ++sym_idx;
4581 }
4582 }
4583 }
4584
4585 if (function_starts_count > 0) {
4586 uint32_t num_synthetic_function_symbols = 0;
4587 for (i = 0; i < function_starts_count; ++i) {
4588 if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4589 symbols_added.end())
4590 ++num_synthetic_function_symbols;
4591 }
4592
4593 if (num_synthetic_function_symbols > 0) {
4594 if (num_syms < sym_idx + num_synthetic_function_symbols) {
4595 num_syms = sym_idx + num_synthetic_function_symbols;
4596 sym = symtab.Resize(num_syms);
4597 }
4598 for (i = 0; i < function_starts_count; ++i) {
4599 const FunctionStarts::Entry *func_start_entry =
4600 function_starts.GetEntryAtIndex(i);
4601 if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4602 addr_t symbol_file_addr = func_start_entry->addr;
4603 uint32_t symbol_flags = 0;
4604 if (func_start_entry->data)
4605 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB0x0008;
4606 Address symbol_addr;
4607 if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4608 SectionSP symbol_section(symbol_addr.GetSection());
4609 uint32_t symbol_byte_size = 0;
4610 if (symbol_section) {
4611 const addr_t section_file_addr = symbol_section->GetFileAddress();
4612 const FunctionStarts::Entry *next_func_start_entry =
4613 function_starts.FindNextEntry(func_start_entry);
4614 const addr_t section_end_file_addr =
4615 section_file_addr + symbol_section->GetByteSize();
4616 if (next_func_start_entry) {
4617 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4618 if (is_arm)
4619 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK0xfffffffffffffffeull;
4620 symbol_byte_size = std::min<lldb::addr_t>(
4621 next_symbol_file_addr - symbol_file_addr,
4622 section_end_file_addr - symbol_file_addr);
4623 } else {
4624 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4625 }
4626 sym[sym_idx].SetID(synthetic_sym_id++);
4627 // Don't set the name for any synthetic symbols, the Symbol
4628 // object will generate one if needed when the name is accessed
4629 // via accessors.
4630 sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4631 sym[sym_idx].SetType(eSymbolTypeCode);
4632 sym[sym_idx].SetIsSynthetic(true);
4633 sym[sym_idx].GetAddressRef() = symbol_addr;
4634 add_symbol_addr(symbol_addr.GetFileAddress());
4635 if (symbol_flags)
4636 sym[sym_idx].SetFlags(symbol_flags);
4637 if (symbol_byte_size)
4638 sym[sym_idx].SetByteSize(symbol_byte_size);
4639 ++sym_idx;
4640 }
4641 }
4642 }
4643 }
4644 }
4645 }
4646
4647 // Trim our symbols down to just what we ended up with after removing any
4648 // symbols.
4649 if (sym_idx < num_syms) {
4650 num_syms = sym_idx;
4651 sym = symtab.Resize(num_syms);
4652 }
4653
4654 // Now synthesize indirect symbols
4655 if (m_dysymtab.nindirectsyms != 0) {
4656 if (indirect_symbol_index_data.GetByteSize()) {
4657 NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4658 m_nlist_idx_to_sym_idx.end();
4659
4660 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4661 ++sect_idx) {
4662 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4663 S_SYMBOL_STUBS) {
4664 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4665 if (symbol_stub_byte_size == 0)
4666 continue;
4667
4668 const uint32_t num_symbol_stubs =
4669 m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4670
4671 if (num_symbol_stubs == 0)
4672 continue;
4673
4674 const uint32_t symbol_stub_index_offset =
4675 m_mach_sections[sect_idx].reserved1;
4676 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4677 const uint32_t symbol_stub_index =
4678 symbol_stub_index_offset + stub_idx;
4679 const lldb::addr_t symbol_stub_addr =
4680 m_mach_sections[sect_idx].addr +
4681 (stub_idx * symbol_stub_byte_size);
4682 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4683 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4684 symbol_stub_offset, 4)) {
4685 const uint32_t stub_sym_id =
4686 indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4687 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4688 continue;
4689
4690 NListIndexToSymbolIndexMap::const_iterator index_pos =
4691 m_nlist_idx_to_sym_idx.find(stub_sym_id);
4692 Symbol *stub_symbol = nullptr;
4693 if (index_pos != end_index_pos) {
4694 // We have a remapping from the original nlist index to a
4695 // current symbol index, so just look this up by index
4696 stub_symbol = symtab.SymbolAtIndex(index_pos->second);
4697 } else {
4698 // We need to lookup a symbol using the original nlist symbol
4699 // index since this index is coming from the S_SYMBOL_STUBS
4700 stub_symbol = symtab.FindSymbolByID(stub_sym_id);
4701 }
4702
4703 if (stub_symbol) {
4704 Address so_addr(symbol_stub_addr, section_list);
4705
4706 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4707 // Change the external symbol into a trampoline that makes
4708 // sense These symbols were N_UNDF N_EXT, and are useless
4709 // to us, so we can re-use them so we don't have to make up
4710 // a synthetic symbol for no good reason.
4711 if (resolver_addresses.find(symbol_stub_addr) ==
4712 resolver_addresses.end())
4713 stub_symbol->SetType(eSymbolTypeTrampoline);
4714 else
4715 stub_symbol->SetType(eSymbolTypeResolver);
4716 stub_symbol->SetExternal(false);
4717 stub_symbol->GetAddressRef() = so_addr;
4718 stub_symbol->SetByteSize(symbol_stub_byte_size);
4719 } else {
4720 // Make a synthetic symbol to describe the trampoline stub
4721 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4722 if (sym_idx >= num_syms) {
4723 sym = symtab.Resize(++num_syms);
4724 stub_symbol = nullptr; // this pointer no longer valid
4725 }
4726 sym[sym_idx].SetID(synthetic_sym_id++);
4727 sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4728 if (resolver_addresses.find(symbol_stub_addr) ==
4729 resolver_addresses.end())
4730 sym[sym_idx].SetType(eSymbolTypeTrampoline);
4731 else
4732 sym[sym_idx].SetType(eSymbolTypeResolver);
4733 sym[sym_idx].SetIsSynthetic(true);
4734 sym[sym_idx].GetAddressRef() = so_addr;
4735 add_symbol_addr(so_addr.GetFileAddress());
4736 sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4737 ++sym_idx;
4738 }
4739 } else {
4740 if (log)
4741 log->Warning("symbol stub referencing symbol table symbol "
4742 "%u that isn't in our minimal symbol table, "
4743 "fix this!!!",
4744 stub_sym_id);
4745 }
4746 }
4747 }
4748 }
4749 }
4750 }
4751 }
4752
4753 if (!reexport_trie_entries.empty()) {
4754 for (const auto &e : reexport_trie_entries) {
4755 if (e.entry.import_name) {
4756 // Only add indirect symbols from the Trie entries if we didn't have
4757 // a N_INDR nlist entry for this already
4758 if (indirect_symbol_names.find(e.entry.name) ==
4759 indirect_symbol_names.end()) {
4760 // Make a synthetic symbol to describe re-exported symbol.
4761 if (sym_idx >= num_syms)
4762 sym = symtab.Resize(++num_syms);
4763 sym[sym_idx].SetID(synthetic_sym_id++);
4764 sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4765 sym[sym_idx].SetType(eSymbolTypeReExported);
4766 sym[sym_idx].SetIsSynthetic(true);
4767 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4768 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4769 sym[sym_idx].SetReExportedSymbolSharedLibrary(
4770 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4771 }
4772 ++sym_idx;
4773 }
4774 }
4775 }
4776 }
4777}
4778
4779void ObjectFileMachO::Dump(Stream *s) {
4780 ModuleSP module_sp(GetModule());
4781 if (module_sp) {
4782 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4783 s->Printf("%p: ", static_cast<void *>(this));
4784 s->Indent();
4785 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4786 s->PutCString("ObjectFileMachO64");
4787 else
4788 s->PutCString("ObjectFileMachO32");
4789
4790 *s << ", file = '" << m_file;
4791 ModuleSpecList all_specs;
4792 ModuleSpec base_spec;
4793 GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4794 base_spec, all_specs);
4795 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4796 *s << "', triple";
4797 if (e)
4798 s->Printf("[%d]", i);
4799 *s << " = ";
4800 *s << all_specs.GetModuleSpecRefAtIndex(i)
4801 .GetArchitecture()
4802 .GetTriple()
4803 .getTriple();
4804 }
4805 *s << "\n";
4806 SectionList *sections = GetSectionList();
4807 if (sections)
4808 sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4809 UINT32_MAX(4294967295U));
4810
4811 if (m_symtab_up)
4812 m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4813 }
4814}
4815
4816UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4817 const lldb_private::DataExtractor &data,
4818 lldb::offset_t lc_offset) {
4819 uint32_t i;
4820 llvm::MachO::uuid_command load_cmd;
4821
4822 lldb::offset_t offset = lc_offset;
4823 for (i = 0; i < header.ncmds; ++i) {
4824 const lldb::offset_t cmd_offset = offset;
4825 if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4826 break;
4827
4828 if (load_cmd.cmd == LC_UUID) {
4829 const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4830
4831 if (uuid_bytes) {
4832 // OpenCL on Mac OS X uses the same UUID for each of its object files.
4833 // We pretend these object files have no UUID to prevent crashing.
4834
4835 const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4836 0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4837 0xbb, 0x14, 0xf0, 0x0d};
4838
4839 if (!memcmp(uuid_bytes, opencl_uuid, 16))
4840 return UUID();
4841
4842 return UUID::fromOptionalData(uuid_bytes, 16);
4843 }
4844 return UUID();
4845 }
4846 offset = cmd_offset + load_cmd.cmdsize;
4847 }
4848 return UUID();
4849}
4850
4851static llvm::StringRef GetOSName(uint32_t cmd) {
4852 switch (cmd) {
4853 case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4854 return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4855 case llvm::MachO::LC_VERSION_MIN_MACOSX:
4856 return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4857 case llvm::MachO::LC_VERSION_MIN_TVOS:
4858 return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4859 case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4860 return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4861 default:
4862 llvm_unreachable("unexpected LC_VERSION load command")::llvm::llvm_unreachable_internal("unexpected LC_VERSION load command"
, "lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp"
, 4862)
;
4863 }
4864}
4865
4866namespace {
4867struct OSEnv {
4868 llvm::StringRef os_type;
4869 llvm::StringRef environment;
4870 OSEnv(uint32_t cmd) {
4871 switch (cmd) {
4872 case llvm::MachO::PLATFORM_MACOS:
4873 os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4874 return;
4875 case llvm::MachO::PLATFORM_IOS:
4876 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4877 return;
4878 case llvm::MachO::PLATFORM_TVOS:
4879 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4880 return;
4881 case llvm::MachO::PLATFORM_WATCHOS:
4882 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4883 return;
4884 // TODO: add BridgeOS & DriverKit once in llvm/lib/Support/Triple.cpp
4885 // NEED_BRIDGEOS_TRIPLE
4886 // case llvm::MachO::PLATFORM_BRIDGEOS:
4887 // os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4888 // return;
4889 // case llvm::MachO::PLATFORM_DRIVERKIT:
4890 // os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
4891 // return;
4892 case llvm::MachO::PLATFORM_MACCATALYST:
4893 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4894 environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4895 return;
4896 case llvm::MachO::PLATFORM_IOSSIMULATOR:
4897 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4898 environment =
4899 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4900 return;
4901 case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4902 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4903 environment =
4904 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4905 return;
4906 case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4907 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4908 environment =
4909 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4910 return;
4911 default: {
4912 Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
4913 LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION")do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("unsupported platform in LC_BUILD_VERSION"
); } while (0)
;
4914 }
4915 }
4916 }
4917};
4918
4919struct MinOS {
4920 uint32_t major_version, minor_version, patch_version;
4921 MinOS(uint32_t version)
4922 : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4923 patch_version(version & 0xffu) {}
4924};
4925} // namespace
4926
4927void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4928 const lldb_private::DataExtractor &data,
4929 lldb::offset_t lc_offset,
4930 ModuleSpec &base_spec,
4931 lldb_private::ModuleSpecList &all_specs) {
4932 auto &base_arch = base_spec.GetArchitecture();
4933 base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4934 if (!base_arch.IsValid())
4935 return;
4936
4937 bool found_any = false;
4938 auto add_triple = [&](const llvm::Triple &triple) {
4939 auto spec = base_spec;
4940 spec.GetArchitecture().GetTriple() = triple;
4941 if (spec.GetArchitecture().IsValid()) {
4942 spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4943 all_specs.Append(spec);
4944 found_any = true;
4945 }
4946 };
4947
4948 // Set OS to an unspecified unknown or a "*" so it can match any OS
4949 llvm::Triple base_triple = base_arch.GetTriple();
4950 base_triple.setOS(llvm::Triple::UnknownOS);
4951 base_triple.setOSName(llvm::StringRef());
4952
4953 if (header.filetype == MH_PRELOAD) {
4954 if (header.cputype == CPU_TYPE_ARM) {
4955 // If this is a 32-bit arm binary, and it's a standalone binary, force
4956 // the Vendor to Apple so we don't accidentally pick up the generic
4957 // armv7 ABI at runtime. Apple's armv7 ABI always uses r7 for the
4958 // frame pointer register; most other armv7 ABIs use a combination of
4959 // r7 and r11.
4960 base_triple.setVendor(llvm::Triple::Apple);
4961 } else {
4962 // Set vendor to an unspecified unknown or a "*" so it can match any
4963 // vendor This is required for correct behavior of EFI debugging on
4964 // x86_64
4965 base_triple.setVendor(llvm::Triple::UnknownVendor);
4966 base_triple.setVendorName(llvm::StringRef());
4967 }
4968 return add_triple(base_triple);
4969 }
4970
4971 llvm::MachO::load_command load_cmd;
4972
4973 // See if there is an LC_VERSION_MIN_* load command that can give
4974 // us the OS type.
4975 lldb::offset_t offset = lc_offset;
4976 for (uint32_t i = 0; i < header.ncmds; ++i) {
4977 const lldb::offset_t cmd_offset = offset;
4978 if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4979 break;
4980
4981 llvm::MachO::version_min_command version_min;
4982 switch (load_cmd.cmd) {
4983 case llvm::MachO::LC_VERSION_MIN_MACOSX:
4984 case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4985 case llvm::MachO::LC_VERSION_MIN_TVOS:
4986 case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4987 if (load_cmd.cmdsize != sizeof(version_min))
4988 break;
4989 if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4990 data.GetByteOrder(), &version_min) == 0)
4991 break;
4992 MinOS min_os(version_min.version);
4993 llvm::SmallString<32> os_name;
4994 llvm::raw_svector_ostream os(os_name);
4995 os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
4996 << min_os.minor_version << '.' << min_os.patch_version;
4997
4998 auto triple = base_triple;
4999 triple.setOSName(os.str());
5000
5001 // Disambiguate legacy simulator platforms.
5002 if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5003 (base_triple.getArch() == llvm::Triple::x86_64 ||
5004 base_triple.getArch() == llvm::Triple::x86)) {
5005 // The combination of legacy LC_VERSION_MIN load command and
5006 // x86 architecture always indicates a simulator environment.
5007 // The combination of LC_VERSION_MIN and arm architecture only
5008 // appears for native binaries. Back-deploying simulator
5009 // binaries on Apple Silicon Macs use the modern unambigous
5010 // LC_BUILD_VERSION load commands; no special handling required.
5011 triple.setEnvironment(llvm::Triple::Simulator);
5012 }
5013 add_triple(triple);
5014 break;
5015 }
5016 default:
5017 break;
5018 }
5019
5020 offset = cmd_offset + load_cmd.cmdsize;
5021 }
5022
5023 // See if there are LC_BUILD_VERSION load commands that can give
5024 // us the OS type.
5025 offset = lc_offset;
5026 for (uint32_t i = 0; i < header.ncmds; ++i) {
5027 const lldb::offset_t cmd_offset = offset;
5028 if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5029 break;
5030
5031 do {
5032 if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5033 llvm::MachO::build_version_command build_version;
5034 if (load_cmd.cmdsize < sizeof(build_version)) {
5035 // Malformed load command.
5036 break;
5037 }
5038 if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5039 data.GetByteOrder(), &build_version) == 0)
5040 break;
5041 MinOS min_os(build_version.minos);
5042 OSEnv os_env(build_version.platform);
5043 llvm::SmallString<16> os_name;
5044 llvm::raw_svector_ostream os(os_name);
5045 os << os_env.os_type << min_os.major_version << '.'
5046 << min_os.minor_version << '.' << min_os.patch_version;
5047 auto triple = base_triple;
5048 triple.setOSName(os.str());
5049 os_name.clear();
5050 if (!os_env.environment.empty())
5051 triple.setEnvironmentName(os_env.environment);
5052 add_triple(triple);
5053 }
5054 } while (false);
5055 offset = cmd_offset + load_cmd.cmdsize;
5056 }
5057
5058 if (!found_any) {
5059 add_triple(base_triple);
5060 }
5061}
5062
5063ArchSpec ObjectFileMachO::GetArchitecture(
5064 ModuleSP module_sp, const llvm::MachO::mach_header &header,
5065 const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5066 ModuleSpecList all_specs;
5067 ModuleSpec base_spec;
5068 GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5069 base_spec, all_specs);
5070
5071 // If the object file offers multiple alternative load commands,
5072 // pick the one that matches the module.
5073 if (module_sp) {
5074 const ArchSpec &module_arch = module_sp->GetArchitecture();
5075 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5076 ArchSpec mach_arch =
5077 all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5078 if (module_arch.IsCompatibleMatch(mach_arch))
5079 return mach_arch;
5080 }
5081 }
5082
5083 // Return the first arch we found.
5084 if (all_specs.GetSize() == 0)
5085 return {};
5086 return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5087}
5088
5089UUID ObjectFileMachO::GetUUID() {
5090 ModuleSP module_sp(GetModule());
5091 if (module_sp) {
5092 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5093 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5094 return GetUUID(m_header, m_data, offset);
5095 }
5096 return UUID();
5097}
5098
5099uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5100 uint32_t count = 0;
5101 ModuleSP module_sp(GetModule());
5102 if (module_sp) {
5103 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5104 llvm::MachO::load_command load_cmd;
5105 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5106 std::vector<std::string> rpath_paths;
5107 std::vector<std::string> rpath_relative_paths;
5108 std::vector<std::string> at_exec_relative_paths;
5109 uint32_t i;
5110 for (i = 0; i < m_header.ncmds; ++i) {
5111 const uint32_t cmd_offset = offset;
5112 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5113 break;
5114
5115 switch (load_cmd.cmd) {
5116 case LC_RPATH:
5117 case LC_LOAD_DYLIB:
5118 case LC_LOAD_WEAK_DYLIB:
5119 case LC_REEXPORT_DYLIB:
5120 case LC_LOAD_DYLINKER:
5121 case LC_LOADFVMLIB:
5122 case LC_LOAD_UPWARD_DYLIB: {
5123 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5124 const char *path = m_data.PeekCStr(name_offset);
5125 if (path) {
5126 if (load_cmd.cmd == LC_RPATH)
5127 rpath_paths.push_back(path);
5128 else {
5129 if (path[0] == '@') {
5130 if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5131 rpath_relative_paths.push_back(path + strlen("@rpath"));
5132 else if (strncmp(path, "@executable_path",
5133 strlen("@executable_path")) == 0)
5134 at_exec_relative_paths.push_back(path +
5135 strlen("@executable_path"));
5136 } else {
5137 FileSpec file_spec(path);
5138 if (files.AppendIfUnique(file_spec))
5139 count++;
5140 }
5141 }
5142 }
5143 } break;
5144
5145 default:
5146 break;
5147 }
5148 offset = cmd_offset + load_cmd.cmdsize;
5149 }
5150
5151 FileSpec this_file_spec(m_file);
5152 FileSystem::Instance().Resolve(this_file_spec);
5153
5154 if (!rpath_paths.empty()) {
5155 // Fixup all LC_RPATH values to be absolute paths
5156 std::string loader_path("@loader_path");
5157 std::string executable_path("@executable_path");
5158 for (auto &rpath : rpath_paths) {
5159 if (llvm::StringRef(rpath).startswith(loader_path)) {
5160 rpath.erase(0, loader_path.size());
5161 rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5162 } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5163 rpath.erase(0, executable_path.size());
5164 rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5165 }
5166 }
5167
5168 for (const auto &rpath_relative_path : rpath_relative_paths) {
5169 for (const auto &rpath : rpath_paths) {
5170 std::string path = rpath;
5171 path += rpath_relative_path;
5172 // It is OK to resolve this path because we must find a file on disk
5173 // for us to accept it anyway if it is rpath relative.
5174 FileSpec file_spec(path);
5175 FileSystem::Instance().Resolve(file_spec);
5176 if (FileSystem::Instance().Exists(file_spec) &&
5177 files.AppendIfUnique(file_spec)) {
5178 count++;
5179 break;
5180 }
5181 }
5182 }
5183 }
5184
5185 // We may have @executable_paths but no RPATHS. Figure those out here.
5186 // Only do this if this object file is the executable. We have no way to
5187 // get back to the actual executable otherwise, so we won't get the right
5188 // path.
5189 if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5190 FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5191 for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5192 FileSpec file_spec =
5193 exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5194 if (FileSystem::Instance().Exists(file_spec) &&
5195 files.AppendIfUnique(file_spec))
5196 count++;
5197 }
5198 }
5199 }
5200 return count;
5201}
5202
5203lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5204 // If the object file is not an executable it can't hold the entry point.
5205 // m_entry_point_address is initialized to an invalid address, so we can just
5206 // return that. If m_entry_point_address is valid it means we've found it
5207 // already, so return the cached value.
5208
5209 if ((!IsExecutable() && !IsDynamicLoader()) ||
5210 m_entry_point_address.IsValid()) {
5211 return m_entry_point_address;
5212 }
5213
5214 // Otherwise, look for the UnixThread or Thread command. The data for the
5215 // Thread command is given in /usr/include/mach-o.h, but it is basically:
5216 //
5217 // uint32_t flavor - this is the flavor argument you would pass to
5218 // thread_get_state
5219 // uint32_t count - this is the count of longs in the thread state data
5220 // struct XXX_thread_state state - this is the structure from
5221 // <machine/thread_status.h> corresponding to the flavor.
5222 // <repeat this trio>
5223 //
5224 // So we just keep reading the various register flavors till we find the GPR
5225 // one, then read the PC out of there.
5226 // FIXME: We will need to have a "RegisterContext data provider" class at some
5227 // point that can get all the registers
5228 // out of data in this form & attach them to a given thread. That should
5229 // underlie the MacOS X User process plugin, and we'll also need it for the
5230 // MacOS X Core File process plugin. When we have that we can also use it
5231 // here.
5232 //
5233 // For now we hard-code the offsets and flavors we need:
5234 //
5235 //
5236
5237 ModuleSP module_sp(GetModule());
5238 if (module_sp) {
5239 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5240 llvm::MachO::load_command load_cmd;
5241 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5242 uint32_t i;
5243 lldb::addr_t start_address = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5244 bool done = false;
5245
5246 for (i = 0; i < m_header.ncmds; ++i) {
5247 const lldb::offset_t cmd_offset = offset;
5248 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5249 break;
5250
5251 switch (load_cmd.cmd) {
5252 case LC_UNIXTHREAD:
5253 case LC_THREAD: {
5254 while (offset < cmd_offset + load_cmd.cmdsize) {
5255 uint32_t flavor = m_data.GetU32(&offset);
5256 uint32_t count = m_data.GetU32(&offset);
5257 if (count == 0) {
5258 // We've gotten off somehow, log and exit;
5259 return m_entry_point_address;
5260 }
5261
5262 switch (m_header.cputype) {
5263 case llvm::MachO::CPU_TYPE_ARM:
5264 if (flavor == 1 ||
5265 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5266 // from mach/arm/thread_status.h
5267 {
5268 offset += 60; // This is the offset of pc in the GPR thread state
5269 // data structure.
5270 start_address = m_data.GetU32(&offset);
5271 done = true;
5272 }
5273 break;
5274 case llvm::MachO::CPU_TYPE_ARM64:
5275 case llvm::MachO::CPU_TYPE_ARM64_32:
5276 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5277 {
5278 offset += 256; // This is the offset of pc in the GPR thread state
5279 // data structure.
5280 start_address = m_data.GetU64(&offset);
5281 done = true;
5282 }
5283 break;
5284 case llvm::MachO::CPU_TYPE_I386:
5285 if (flavor ==
5286 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5287 {
5288 offset += 40; // This is the offset of eip in the GPR thread state
5289 // data structure.
5290 start_address = m_data.GetU32(&offset);
5291 done = true;
5292 }
5293 break;
5294 case llvm::MachO::CPU_TYPE_X86_64:
5295 if (flavor ==
5296 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5297 {
5298 offset += 16 * 8; // This is the offset of rip in the GPR thread
5299 // state data structure.
5300 start_address = m_data.GetU64(&offset);
5301 done = true;
5302 }
5303 break;
5304 default:
5305 return m_entry_point_address;
5306 }
5307 // Haven't found the GPR flavor yet, skip over the data for this
5308 // flavor:
5309 if (done)
5310 break;
5311 offset += count * 4;
5312 }
5313 } break;
5314 case LC_MAIN: {
5315 ConstString text_segment_name("__TEXT");
5316 uint64_t entryoffset = m_data.GetU64(&offset);
5317 SectionSP text_segment_sp =
5318 GetSectionList()->FindSectionByName(text_segment_name);
5319 if (text_segment_sp) {
5320 done = true;
5321 start_address = text_segment_sp->GetFileAddress() + entryoffset;
5322 }
5323 } break;
5324
5325 default:
5326 break;
5327 }
5328 if (done)
5329 break;
5330
5331 // Go to the next load command:
5332 offset = cmd_offset + load_cmd.cmdsize;
5333 }
5334
5335 if (start_address == LLDB_INVALID_ADDRESS(18446744073709551615UL) && IsDynamicLoader()) {
5336 if (GetSymtab()) {
5337 Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5338 ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5339 Symtab::eDebugAny, Symtab::eVisibilityAny);
5340 if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5341 start_address = dyld_start_sym->GetAddress().GetFileAddress();
5342 }
5343 }
5344 }
5345
5346 if (start_address != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
5347 // We got the start address from the load commands, so now resolve that
5348 // address in the sections of this ObjectFile:
5349 if (!m_entry_point_address.ResolveAddressUsingFileSections(
5350 start_address, GetSectionList())) {
5351 m_entry_point_address.Clear();
5352 }
5353 } else {
5354 // We couldn't read the UnixThread load command - maybe it wasn't there.
5355 // As a fallback look for the "start" symbol in the main executable.
5356
5357 ModuleSP module_sp(GetModule());
5358
5359 if (module_sp) {
5360 SymbolContextList contexts;
5361 SymbolContext context;
5362 module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5363 eSymbolTypeCode, contexts);
5364 if (contexts.GetSize()) {
5365 if (contexts.GetContextAtIndex(0, context))
5366 m_entry_point_address = context.symbol->GetAddress();
5367 }
5368 }
5369 }
5370 }
5371
5372 return m_entry_point_address;
5373}
5374
5375lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5376 lldb_private::Address header_addr;
5377 SectionList *section_list = GetSectionList();
5378 if (section_list) {
5379 SectionSP text_segment_sp(
5380 section_list->FindSectionByName(GetSegmentNameTEXT()));
5381 if (text_segment_sp) {
5382 header_addr.SetSection(text_segment_sp);
5383 header_addr.SetOffset(0);
5384 }
5385 }
5386 return header_addr;
5387}
5388
5389uint32_t ObjectFileMachO::GetNumThreadContexts() {
5390 ModuleSP module_sp(GetModule());
5391 if (module_sp) {
5392 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5393 if (!m_thread_context_offsets_valid) {
5394 m_thread_context_offsets_valid = true;
5395 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5396 FileRangeArray::Entry file_range;
5397 llvm::MachO::thread_command thread_cmd;
5398 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5399 const uint32_t cmd_offset = offset;
5400 if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5401 break;
5402
5403 if (thread_cmd.cmd == LC_THREAD) {
5404 file_range.SetRangeBase(offset);
5405 file_range.SetByteSize(thread_cmd.cmdsize - 8);
5406 m_thread_context_offsets.Append(file_range);
5407 }
5408 offset = cmd_offset + thread_cmd.cmdsize;
5409 }
5410 }
5411 }
5412 return m_thread_context_offsets.GetSize();
5413}
5414
5415std::string ObjectFileMachO::GetIdentifierString() {
5416 std::string result;
5417 ModuleSP module_sp(GetModule());
5418 if (module_sp) {
5419 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5420
5421 // First, look over the load commands for an LC_NOTE load command with
5422 // data_owner string "kern ver str" & use that if found.
5423 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5424 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5425 const uint32_t cmd_offset = offset;
5426 llvm::MachO::load_command lc;
5427 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5428 break;
5429 if (lc.cmd == LC_NOTE) {
5430 char data_owner[17];
5431 m_data.CopyData(offset, 16, data_owner);
5432 data_owner[16] = '\0';
5433 offset += 16;
5434 uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5435 uint64_t size = m_data.GetU64_unchecked(&offset);
5436
5437 // "kern ver str" has a uint32_t version and then a nul terminated
5438 // c-string.
5439 if (strcmp("kern ver str", data_owner) == 0) {
5440 offset = fileoff;
5441 uint32_t version;
5442 if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5443 if (version == 1) {
5444 uint32_t strsize = size - sizeof(uint32_t);
5445 char *buf = (char *)malloc(strsize);
5446 if (buf) {
5447 m_data.CopyData(offset, strsize, buf);
5448 buf[strsize - 1] = '\0';
5449 result = buf;
5450 if (buf)
5451 free(buf);
5452 return result;
5453 }
5454 }
5455 }
5456 }
5457 }
5458 offset = cmd_offset + lc.cmdsize;
5459 }
5460
5461 // Second, make a pass over the load commands looking for an obsolete
5462 // LC_IDENT load command.
5463 offset = MachHeaderSizeFromMagic(m_header.magic);
5464 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5465 const uint32_t cmd_offset = offset;
5466 llvm::MachO::ident_command ident_command;
5467 if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5468 break;
5469 if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5470 char *buf = (char *)malloc(ident_command.cmdsize);
5471 if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5472 buf) == ident_command.cmdsize) {
5473 buf[ident_command.cmdsize - 1] = '\0';
5474 result = buf;
5475 }
5476 if (buf)
5477 free(buf);
5478 }
5479 offset = cmd_offset + ident_command.cmdsize;
5480 }
5481 }
5482 return result;
5483}
5484
5485addr_t ObjectFileMachO::GetAddressMask() {
5486 addr_t mask = 0;
5487 ModuleSP module_sp(GetModule());
5488 if (module_sp) {
5489 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5490 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5491 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5492 const uint32_t cmd_offset = offset;
5493 llvm::MachO::load_command lc;
5494 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5495 break;
5496 if (lc.cmd == LC_NOTE) {
5497 char data_owner[17];
5498 m_data.CopyData(offset, 16, data_owner);
5499 data_owner[16] = '\0';
5500 offset += 16;
5501 uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5502
5503 // "addrable bits" has a uint32_t version and a uint32_t
5504 // number of bits used in addressing.
5505 if (strcmp("addrable bits", data_owner) == 0) {
5506 offset = fileoff;
5507 uint32_t version;
5508 if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5509 if (version == 3) {
5510 uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
5511 if (num_addr_bits != 0) {
5512 mask = ~((1ULL << num_addr_bits) - 1);
5513 }
5514 break;
5515 }
5516 }
5517 }
5518 }
5519 offset = cmd_offset + lc.cmdsize;
5520 }
5521 }
5522 return mask;
5523}
5524
5525bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
5526 bool &value_is_offset,
5527 UUID &uuid,
5528 ObjectFile::BinaryType &type) {
5529 value = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5530 value_is_offset = false;
5531 uuid.Clear();
5532 uint32_t log2_pagesize = 0; // not currently passed up to caller
5533 uint32_t platform = 0; // not currently passed up to caller
5534 ModuleSP module_sp(GetModule());
5535 if (module_sp) {
5536 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5537 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5538 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5539 const uint32_t cmd_offset = offset;
5540 llvm::MachO::load_command lc;
5541 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5542 break;
5543 if (lc.cmd == LC_NOTE) {
5544 char data_owner[17];
5545 memset(data_owner, 0, sizeof(data_owner));
5546 m_data.CopyData(offset, 16, data_owner);
5547 offset += 16;
5548 uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5549 uint64_t size = m_data.GetU64_unchecked(&offset);
5550
5551 // struct main_bin_spec
5552 // {
5553 // uint32_t version; // currently 2
5554 // uint32_t type; // 0 == unspecified, 1 == kernel,
5555 // // 2 == user process,
5556 // // 3 == standalone binary
5557 // uint64_t address; // UINT64_MAX if address not specified
5558 // uint64_t slide; // slide, UINT64_MAX if unspecified
5559 // // 0 if no slide needs to be applied to
5560 // // file address
5561 // uuid_t uuid; // all zero's if uuid not specified
5562 // uint32_t log2_pagesize; // process page size in log base 2,
5563 // // e.g. 4k pages are 12.
5564 // // 0 for unspecified
5565 // uint32_t platform; // The Mach-O platform for this corefile.
5566 // // 0 for unspecified.
5567 // // The values are defined in
5568 // // <mach-o/loader.h>, PLATFORM_*.
5569 // } __attribute((packed));
5570
5571 // "main bin spec" (main binary specification) data payload is
5572 // formatted:
5573 // uint32_t version [currently 1]
5574 // uint32_t type [0 == unspecified, 1 == kernel,
5575 // 2 == user process, 3 == firmware ]
5576 // uint64_t address [ UINT64_MAX if address not specified ]
5577 // uuid_t uuid [ all zero's if uuid not specified ]
5578 // uint32_t log2_pagesize [ process page size in log base
5579 // 2, e.g. 4k pages are 12.
5580 // 0 for unspecified ]
5581 // uint32_t unused [ for alignment ]
5582
5583 if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5584 offset = fileoff;
5585 uint32_t version;
5586 if (m_data.GetU32(&offset, &version, 1) != nullptr && version <= 2) {
5587 uint32_t binspec_type = 0;
5588 uuid_t raw_uuid;
5589 memset(raw_uuid, 0, sizeof(uuid_t));
5590
5591 if (!m_data.GetU32(&offset, &binspec_type, 1))
5592 return false;
5593 if (!m_data.GetU64(&offset, &value, 1))
5594 return false;
5595 uint64_t slide = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5596 if (version > 1 && !m_data.GetU64(&offset, &slide, 1))
5597 return false;
5598 if (value == LLDB_INVALID_ADDRESS(18446744073709551615UL) &&
5599 slide != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
5600 value = slide;
5601 value_is_offset = true;
5602 }
5603
5604 if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5605 uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5606 // convert the "main bin spec" type into our
5607 // ObjectFile::BinaryType enum
5608 switch (binspec_type) {
5609 case 0:
5610 type = eBinaryTypeUnknown;
5611 break;
5612 case 1:
5613 type = eBinaryTypeKernel;
5614 break;
5615 case 2:
5616 type = eBinaryTypeUser;
5617 break;
5618 case 3:
5619 type = eBinaryTypeStandalone;
5620 break;
5621 }
5622 if (!m_data.GetU32(&offset, &log2_pagesize, 1))
5623 return false;
5624 if (version > 1 && !m_data.GetU32(&offset, &platform, 1))
5625 return false;
5626 return true;
5627 }
5628 }
5629 }
5630 }
5631 offset = cmd_offset + lc.cmdsize;
5632 }
5633 }
5634 return false;
5635}
5636
5637lldb::RegisterContextSP
5638ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5639 lldb_private::Thread &thread) {
5640 lldb::RegisterContextSP reg_ctx_sp;
5641
5642 ModuleSP module_sp(GetModule());
5643 if (module_sp) {
5644 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5645 if (!m_thread_context_offsets_valid)
5646 GetNumThreadContexts();
5647
5648 const FileRangeArray::Entry *thread_context_file_range =
5649 m_thread_context_offsets.GetEntryAtIndex(idx);
5650 if (thread_context_file_range) {
5651
5652 DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5653 thread_context_file_range->GetByteSize());
5654
5655 switch (m_header.cputype) {
5656 case llvm::MachO::CPU_TYPE_ARM64:
5657 case llvm::MachO::CPU_TYPE_ARM64_32:
5658 reg_ctx_sp =
5659 std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5660 break;
5661
5662 case llvm::MachO::CPU_TYPE_ARM:
5663 reg_ctx_sp =
5664 std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5665 break;
5666
5667 case llvm::MachO::CPU_TYPE_I386:
5668 reg_ctx_sp =
5669 std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5670 break;
5671
5672 case llvm::MachO::CPU_TYPE_X86_64:
5673 reg_ctx_sp =
5674 std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5675 break;
5676 }
5677 }
5678 }
5679 return reg_ctx_sp;
5680}
5681
5682ObjectFile::Type ObjectFileMachO::CalculateType() {
5683 switch (m_header.filetype) {
5684 case MH_OBJECT: // 0x1u
5685 if (GetAddressByteSize() == 4) {
5686 // 32 bit kexts are just object files, but they do have a valid
5687 // UUID load command.
5688 if (GetUUID()) {
5689 // this checking for the UUID load command is not enough we could
5690 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5691 // this is required of kexts
5692 if (m_strata == eStrataInvalid)
5693 m_strata = eStrataKernel;
5694 return eTypeSharedLibrary;
5695 }
5696 }
5697 return eTypeObjectFile;
5698
5699 case MH_EXECUTE:
5700 return eTypeExecutable; // 0x2u
5701 case MH_FVMLIB:
5702 return eTypeSharedLibrary; // 0x3u
5703 case MH_CORE:
5704 return eTypeCoreFile; // 0x4u
5705 case MH_PRELOAD:
5706 return eTypeSharedLibrary; // 0x5u
5707 case MH_DYLIB:
5708 return eTypeSharedLibrary; // 0x6u
5709 case MH_DYLINKER:
5710 return eTypeDynamicLinker; // 0x7u
5711 case MH_BUNDLE:
5712 return eTypeSharedLibrary; // 0x8u
5713 case MH_DYLIB_STUB:
5714 return eTypeStubLibrary; // 0x9u
5715 case MH_DSYM:
5716 return eTypeDebugInfo; // 0xAu
5717 case MH_KEXT_BUNDLE:
5718 return eTypeSharedLibrary; // 0xBu
5719 default:
5720 break;
5721 }
5722 return eTypeUnknown;
5723}
5724
5725ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5726 switch (m_header.filetype) {
5727 case MH_OBJECT: // 0x1u
5728 {
5729 // 32 bit kexts are just object files, but they do have a valid
5730 // UUID load command.
5731 if (GetUUID()) {
5732 // this checking for the UUID load command is not enough we could
5733 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5734 // this is required of kexts
5735 if (m_type == eTypeInvalid)
5736 m_type = eTypeSharedLibrary;
5737
5738 return eStrataKernel;
5739 }
5740 }
5741 return eStrataUnknown;
5742
5743 case MH_EXECUTE: // 0x2u
5744 // Check for the MH_DYLDLINK bit in the flags
5745 if (m_header.flags & MH_DYLDLINK) {
5746 return eStrataUser;
5747 } else {
5748 SectionList *section_list = GetSectionList();
5749 if (section_list) {
5750 static ConstString g_kld_section_name("__KLD");
5751 if (section_list->FindSectionByName(g_kld_section_name))
5752 return eStrataKernel;
5753 }
5754 }
5755 return eStrataRawImage;
5756
5757 case MH_FVMLIB:
5758 return eStrataUser; // 0x3u
5759 case MH_CORE:
5760 return eStrataUnknown; // 0x4u
5761 case MH_PRELOAD:
5762 return eStrataRawImage; // 0x5u
5763 case MH_DYLIB:
5764 return eStrataUser; // 0x6u
5765 case MH_DYLINKER:
5766 return eStrataUser; // 0x7u
5767 case MH_BUNDLE:
5768 return eStrataUser; // 0x8u
5769 case MH_DYLIB_STUB:
5770 return eStrataUser; // 0x9u
5771 case MH_DSYM:
5772 return eStrataUnknown; // 0xAu
5773 case MH_KEXT_BUNDLE:
5774 return eStrataKernel; // 0xBu
5775 default:
5776 break;
5777 }
5778 return eStrataUnknown;
5779}
5780
5781llvm::VersionTuple ObjectFileMachO::GetVersion() {
5782 ModuleSP module_sp(GetModule());
5783 if (module_sp) {
5784 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5785 llvm::MachO::dylib_command load_cmd;
5786 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5787 uint32_t version_cmd = 0;
5788 uint64_t version = 0;
5789 uint32_t i;
5790 for (i = 0; i < m_header.ncmds; ++i) {
5791 const lldb::offset_t cmd_offset = offset;
5792 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5793 break;
5794
5795 if (load_cmd.cmd == LC_ID_DYLIB) {
5796 if (version_cmd == 0) {
5797 version_cmd = load_cmd.cmd;
5798 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5799 break;
5800 version = load_cmd.dylib.current_version;
5801 }
5802 break; // Break for now unless there is another more complete version
5803 // number load command in the future.
5804 }
5805 offset = cmd_offset + load_cmd.cmdsize;
5806 }
5807
5808 if (version_cmd == LC_ID_DYLIB) {
5809 unsigned major = (version & 0xFFFF0000ull) >> 16;
5810 unsigned minor = (version & 0x0000FF00ull) >> 8;
5811 unsigned subminor = (version & 0x000000FFull);
5812 return llvm::VersionTuple(major, minor, subminor);
5813 }
5814 }
5815 return llvm::VersionTuple();
5816}
5817
5818ArchSpec ObjectFileMachO::GetArchitecture() {
5819 ModuleSP module_sp(GetModule());
5820 ArchSpec arch;
5821 if (module_sp) {
5822 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5823
5824 return GetArchitecture(module_sp, m_header, m_data,
5825 MachHeaderSizeFromMagic(m_header.magic));
5826 }
5827 return arch;
5828}
5829
5830void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5831 addr_t &base_addr, UUID &uuid) {
5832 uuid.Clear();
5833 base_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5834 if (process && process->GetDynamicLoader()) {
5835 DynamicLoader *dl = process->GetDynamicLoader();
5836 LazyBool using_shared_cache;
5837 LazyBool private_shared_cache;
5838 dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5839 private_shared_cache);
5840 }
5841 Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5842 LLDB_LOGF(do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("inferior process shared cache has a UUID of %s, base address 0x%"
"l" "x", uuid.GetAsString().c_str(), base_addr); } while (0)
5843 log,do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("inferior process shared cache has a UUID of %s, base address 0x%"
"l" "x", uuid.GetAsString().c_str(), base_addr); } while (0)
5844 "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("inferior process shared cache has a UUID of %s, base address 0x%"
"l" "x", uuid.GetAsString().c_str(), base_addr); } while (0)
5845 uuid.GetAsString().c_str(), base_addr)do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("inferior process shared cache has a UUID of %s, base address 0x%"
"l" "x", uuid.GetAsString().c_str(), base_addr); } while (0)
;
5846}
5847
5848// From dyld SPI header dyld_process_info.h
5849typedef void *dyld_process_info;
5850struct lldb_copy__dyld_process_cache_info {
5851 uuid_t cacheUUID; // UUID of cache used by process
5852 uint64_t cacheBaseAddress; // load address of dyld shared cache
5853 bool noCache; // process is running without a dyld cache
5854 bool privateCache; // process is using a private copy of its dyld cache
5855};
5856
5857// #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5858// llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5859// errors. So we need to use the actual underlying types of task_t and
5860// kern_return_t below.
5861extern "C" unsigned int /*task_t*/ mach_task_self();
5862
5863void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5864 uuid.Clear();
5865 base_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
5866
5867#if defined(__APPLE__)
5868 uint8_t *(*dyld_get_all_image_infos)(void);
5869 dyld_get_all_image_infos =
5870 (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5871 if (dyld_get_all_image_infos) {
5872 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5873 if (dyld_all_image_infos_address) {
5874 uint32_t *version = (uint32_t *)
5875 dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5876 if (*version >= 13) {
5877 uuid_t *sharedCacheUUID_address = 0;
5878 int wordsize = sizeof(uint8_t *);
5879 if (wordsize == 8) {
5880 sharedCacheUUID_address =
5881 (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5882 160); // sharedCacheUUID <mach-o/dyld_images.h>
5883 if (*version >= 15)
5884 base_addr =
5885 *(uint64_t
5886 *)((uint8_t *)dyld_all_image_infos_address +
5887 176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5888 } else {
5889 sharedCacheUUID_address =
5890 (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5891 84); // sharedCacheUUID <mach-o/dyld_images.h>
5892 if (*version >= 15) {
5893 base_addr = 0;
5894 base_addr =
5895 *(uint32_t
5896 *)((uint8_t *)dyld_all_image_infos_address +
5897 100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5898 }
5899 }
5900 uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5901 }
5902 }
5903 } else {
5904 // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5905 dyld_process_info (*dyld_process_info_create)(
5906 unsigned int /* task_t */ task, uint64_t timestamp,
5907 unsigned int /*kern_return_t*/ *kernelError);
5908 void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5909 void (*dyld_process_info_release)(dyld_process_info info);
5910
5911 dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5912 unsigned int /*kern_return_t*/ *))
5913 dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5914 dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5915 RTLD_DEFAULT, "_dyld_process_info_get_cache");
5916 dyld_process_info_release =
5917 (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5918
5919 if (dyld_process_info_create && dyld_process_info_get_cache) {
5920 unsigned int /*kern_return_t */ kern_ret;
5921 dyld_process_info process_info =
5922 dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5923 if (process_info) {
5924 struct lldb_copy__dyld_process_cache_info sc_info;
5925 memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5926 dyld_process_info_get_cache(process_info, &sc_info);
5927 if (sc_info.cacheBaseAddress != 0) {
5928 base_addr = sc_info.cacheBaseAddress;
5929 uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5930 }
5931 dyld_process_info_release(process_info);
5932 }
5933 }
5934 }
5935 Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5936 if (log && uuid.IsValid())
5937 LLDB_LOGF(log,do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("lldb's in-memory shared cache has a UUID of %s base address of "
"0x%" "l" "x", uuid.GetAsString().c_str(), base_addr); } while
(0)
5938 "lldb's in-memory shared cache has a UUID of %s base address of "do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("lldb's in-memory shared cache has a UUID of %s base address of "
"0x%" "l" "x", uuid.GetAsString().c_str(), base_addr); } while
(0)
5939 "0x%" PRIx64,do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("lldb's in-memory shared cache has a UUID of %s base address of "
"0x%" "l" "x", uuid.GetAsString().c_str(), base_addr); } while
(0)
5940 uuid.GetAsString().c_str(), base_addr)do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Printf("lldb's in-memory shared cache has a UUID of %s base address of "
"0x%" "l" "x", uuid.GetAsString().c_str(), base_addr); } while
(0)
;
5941#endif
5942}
5943
5944llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5945 if (!m_min_os_version) {
5946 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5947 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5948 const lldb::offset_t load_cmd_offset = offset;
5949
5950 llvm::MachO::version_min_command lc;
5951 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5952 break;
5953 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5954 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5955 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5956 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5957 if (m_data.GetU32(&offset, &lc.version,
5958 (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5959 const uint32_t xxxx = lc.version >> 16;
5960 const uint32_t yy = (lc.version >> 8) & 0xffu;
5961 const uint32_t zz = lc.version & 0xffu;
5962 if (xxxx) {
5963 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5964 break;
5965 }
5966 }
5967 } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5968 // struct build_version_command {
5969 // uint32_t cmd; /* LC_BUILD_VERSION */
5970 // uint32_t cmdsize; /* sizeof(struct
5971 // build_version_command) plus */
5972 // /* ntools * sizeof(struct
5973 // build_tool_version) */
5974 // uint32_t platform; /* platform */
5975 // uint32_t minos; /* X.Y.Z is encoded in nibbles
5976 // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded in
5977 // nibbles xxxx.yy.zz */ uint32_t ntools; /* number of
5978 // tool entries following this */
5979 // };
5980
5981 offset += 4; // skip platform
5982 uint32_t minos = m_data.GetU32(&offset);
5983
5984 const uint32_t xxxx = minos >> 16;
5985 const uint32_t yy = (minos >> 8) & 0xffu;
5986 const uint32_t zz = minos & 0xffu;
5987 if (xxxx) {
5988 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5989 break;
5990 }
5991 }
5992
5993 offset = load_cmd_offset + lc.cmdsize;
5994 }
5995
5996 if (!m_min_os_version) {
5997 // Set version to an empty value so we don't keep trying to
5998 m_min_os_version = llvm::VersionTuple();
5999 }
6000 }
6001
6002 return *m_min_os_version;
6003}
6004
6005llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6006 if (!m_sdk_versions.hasValue()) {
6007 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6008 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6009 const lldb::offset_t load_cmd_offset = offset;
6010
6011 llvm::MachO::version_min_command lc;
6012 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6013 break;
6014 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6015 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6016 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6017 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6018 if (m_data.GetU32(&offset, &lc.version,
6019 (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6020 const uint32_t xxxx = lc.sdk >> 16;
6021 const uint32_t yy = (lc.sdk >> 8) & 0xffu;
6022 const uint32_t zz = lc.sdk & 0xffu;
6023 if (xxxx) {
6024 m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6025 break;
6026 } else {
6027 GetModule()->ReportWarning("minimum OS version load command with "
6028 "invalid (0) version found.");
6029 }
6030 }
6031 }
6032 offset = load_cmd_offset + lc.cmdsize;
6033 }
6034
6035 if (!m_sdk_versions.hasValue()) {
6036 offset = MachHeaderSizeFromMagic(m_header.magic);
6037 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6038 const lldb::offset_t load_cmd_offset = offset;
6039
6040 llvm::MachO::version_min_command lc;
6041 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6042 break;
6043 if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6044 // struct build_version_command {
6045 // uint32_t cmd; /* LC_BUILD_VERSION */
6046 // uint32_t cmdsize; /* sizeof(struct
6047 // build_version_command) plus */
6048 // /* ntools * sizeof(struct
6049 // build_tool_version) */
6050 // uint32_t platform; /* platform */
6051 // uint32_t minos; /* X.Y.Z is encoded in nibbles
6052 // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded
6053 // in nibbles xxxx.yy.zz */ uint32_t ntools; /* number
6054 // of tool entries following this */
6055 // };
6056
6057 offset += 4; // skip platform
6058 uint32_t minos = m_data.GetU32(&offset);
6059
6060 const uint32_t xxxx = minos >> 16;
6061 const uint32_t yy = (minos >> 8) & 0xffu;
6062 const uint32_t zz = minos & 0xffu;
6063 if (xxxx) {
6064 m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6065 break;
6066 }
6067 }
6068 offset = load_cmd_offset + lc.cmdsize;
6069 }
6070 }
6071
6072 if (!m_sdk_versions.hasValue())
6073 m_sdk_versions = llvm::VersionTuple();
6074 }
6075
6076 return m_sdk_versions.getValue();
6077}
6078
6079bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6080 return m_header.filetype == llvm::MachO::MH_DYLINKER;
6081}
6082
6083bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6084 return m_allow_assembly_emulation_unwind_plans;
6085}
6086
6087Section *ObjectFileMachO::GetMachHeaderSection() {
6088 // Find the first address of the mach header which is the first non-zero file
6089 // sized section whose file offset is zero. This is the base file address of
6090 // the mach-o file which can be subtracted from the vmaddr of the other
6091 // segments found in memory and added to the load address
6092 ModuleSP module_sp = GetModule();
6093 if (!module_sp)
6094 return nullptr;
6095 SectionList *section_list = GetSectionList();
6096 if (!section_list)
6097 return nullptr;
6098 const size_t num_sections = section_list->GetSize();
6099 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6100 Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6101 if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6102 return section;
6103 }
6104
6105 // We may have a binary in the shared cache that has a non-zero
6106 // file address for its first segment, traditionally the __TEXT segment.
6107 // Search for it by name and return it as our next best guess.
6108 SectionSP text_segment_sp =
6109 GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
6110 if (text_segment_sp.get() && SectionIsLoadable(text_segment_sp.get()))
6111 return text_segment_sp.get();
6112
6113 return nullptr;
6114}
6115
6116bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6117 if (!section)
6118 return false;
6119 const bool is_dsym = (m_header.filetype == MH_DSYM);
6120 if (section->GetFileSize() == 0 && !is_dsym)
6121 return false;
6122 if (section->IsThreadSpecific())
6123 return false;
6124 if (GetModule().get() != section->GetModule().get())
6125 return false;
6126 // Be careful with __LINKEDIT and __DWARF segments
6127 if (section->GetName() == GetSegmentNameLINKEDIT() ||
6128 section->GetName() == GetSegmentNameDWARF()) {
6129 // Only map __LINKEDIT and __DWARF if we have an in memory image and
6130 // this isn't a kernel binary like a kext or mach_kernel.
6131 const bool is_memory_image = (bool)m_process_wp.lock();
6132 const Strata strata = GetStrata();
6133 if (is_memory_image == false || strata == eStrataKernel)
6134 return false;
6135 }
6136 return true;
6137}
6138
6139lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6140 lldb::addr_t header_load_address, const Section *header_section,
6141 const Section *section) {
6142 ModuleSP module_sp = GetModule();
6143 if (module_sp && header_section && section &&
6144 header_load_address != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
6145 lldb::addr_t file_addr = header_section->GetFileAddress();
6146 if (file_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL) && SectionIsLoadable(section))
6147 return section->GetFileAddress() - file_addr + header_load_address;
6148 }
6149 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
6150}
6151
6152bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6153 bool value_is_offset) {
6154 ModuleSP module_sp = GetModule();
6155 if (!module_sp)
6156 return false;
6157
6158 SectionList *section_list = GetSectionList();
6159 if (!section_list)
6160 return false;
6161
6162 size_t num_loaded_sections = 0;
6163 const size_t num_sections = section_list->GetSize();
6164
6165 if (value_is_offset) {
6166 // "value" is an offset to apply to each top level segment
6167 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6168 // Iterate through the object file sections to find all of the
6169 // sections that size on disk (to avoid __PAGEZERO) and load them
6170 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6171 if (SectionIsLoadable(section_sp.get()))
6172 if (target.GetSectionLoadList().SetSectionLoadAddress(
6173 section_sp, section_sp->GetFileAddress() + value))
6174 ++num_loaded_sections;
6175 }
6176 } else {
6177 // "value" is the new base address of the mach_header, adjust each
6178 // section accordingly
6179
6180 Section *mach_header_section = GetMachHeaderSection();
6181 if (mach_header_section) {
6182 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6183 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6184
6185 lldb::addr_t section_load_addr =
6186 CalculateSectionLoadAddressForMemoryImage(
6187 value, mach_header_section, section_sp.get());
6188 if (section_load_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
6189 if (target.GetSectionLoadList().SetSectionLoadAddress(
6190 section_sp, section_load_addr))
6191 ++num_loaded_sections;
6192 }
6193 }
6194 }
6195 }
6196 return num_loaded_sections > 0;
6197}
6198
6199struct all_image_infos_header {
6200 uint32_t version; // currently 1
6201 uint32_t imgcount; // number of binary images
6202 uint64_t entries_fileoff; // file offset in the corefile of where the array of
6203 // struct entry's begin.
6204 uint32_t entries_size; // size of 'struct entry'.
6205 uint32_t unused;
6206};
6207
6208struct image_entry {
6209 uint64_t filepath_offset; // offset in corefile to c-string of the file path,
6210 // UINT64_MAX if unavailable.
6211 uuid_t uuid; // uint8_t[16]. should be set to all zeroes if
6212 // uuid is unknown.
6213 uint64_t load_address; // UINT64_MAX if unknown.
6214 uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6215 uint32_t segment_count; // The number of segments for this binary.
6216 uint32_t unused;
6217
6218 image_entry() {
6219 filepath_offset = UINT64_MAX(18446744073709551615UL);
6220 memset(&uuid, 0, sizeof(uuid_t));
6221 segment_count = 0;
6222 load_address = UINT64_MAX(18446744073709551615UL);
6223 seg_addrs_offset = UINT64_MAX(18446744073709551615UL);
6224 unused = 0;
6225 }
6226 image_entry(const image_entry &rhs) {
6227 filepath_offset = rhs.filepath_offset;
6228 memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6229 segment_count = rhs.segment_count;
6230 seg_addrs_offset = rhs.seg_addrs_offset;
6231 load_address = rhs.load_address;
6232 unused = rhs.unused;
6233 }
6234};
6235
6236struct segment_vmaddr {
6237 char segname[16];
6238 uint64_t vmaddr;
6239 uint64_t unused;
6240
6241 segment_vmaddr() {
6242 memset(&segname, 0, 16);
6243 vmaddr = UINT64_MAX(18446744073709551615UL);
6244 unused = 0;
6245 }
6246 segment_vmaddr(const segment_vmaddr &rhs) {
6247 memcpy(&segname, &rhs.segname, 16);
6248 vmaddr = rhs.vmaddr;
6249 unused = rhs.unused;
6250 }
6251};
6252
6253// Write the payload for the "all image infos" LC_NOTE into
6254// the supplied all_image_infos_payload, assuming that this
6255// will be written into the corefile starting at
6256// initial_file_offset.
6257//
6258// The placement of this payload is a little tricky. We're
6259// laying this out as
6260//
6261// 1. header (struct all_image_info_header)
6262// 2. Array of fixed-size (struct image_entry)'s, one
6263// per binary image present in the process.
6264// 3. Arrays of (struct segment_vmaddr)'s, a varying number
6265// for each binary image.
6266// 4. Variable length c-strings of binary image filepaths,
6267// one per binary.
6268//
6269// To compute where everything will be laid out in the
6270// payload, we need to iterate over the images and calculate
6271// how many segment_vmaddr structures each image will need,
6272// and how long each image's filepath c-string is. There
6273// are some multiple passes over the image list while calculating
6274// everything.
6275
6276static offset_t CreateAllImageInfosPayload(
6277 const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
6278 StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
6279 Target &target = process_sp->GetTarget();
6280 ModuleList modules = target.GetImages();
6281
6282 // stack-only corefiles have no reason to include binaries that
6283 // are not executing; we're trying to make the smallest corefile
6284 // we can, so leave the rest out.
6285 if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
6286 modules.Clear();
6287
6288 std::set<std::string> executing_uuids;
6289 ThreadList &thread_list(process_sp->GetThreadList());
6290 for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
6291 ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
6292 uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6293 for (uint32_t j = 0; j < stack_frame_count; j++) {
6294 StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6295 Address pc = stack_frame_sp->GetFrameCodeAddress();
6296 ModuleSP module_sp = pc.GetModule();
6297 if (module_sp) {
6298 UUID uuid = module_sp->GetUUID();
6299 if (uuid.IsValid()) {
6300 executing_uuids.insert(uuid.GetAsString());
6301 modules.AppendIfNeeded(module_sp);
6302 }
6303 }
6304 }
6305 }
6306 size_t modules_count = modules.GetSize();
6307
6308 struct all_image_infos_header infos;
6309 infos.version = 1;
6310 infos.imgcount = modules_count;
6311 infos.entries_size = sizeof(image_entry);
6312 infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6313 infos.unused = 0;
6314
6315 all_image_infos_payload.PutHex32(infos.version);
6316 all_image_infos_payload.PutHex32(infos.imgcount);
6317 all_image_infos_payload.PutHex64(infos.entries_fileoff);
6318 all_image_infos_payload.PutHex32(infos.entries_size);
6319 all_image_infos_payload.PutHex32(infos.unused);
6320
6321 // First create the structures for all of the segment name+vmaddr vectors
6322 // for each module, so we will know the size of them as we add the
6323 // module entries.
6324 std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6325 for (size_t i = 0; i < modules_count; i++) {
6326 ModuleSP module = modules.GetModuleAtIndex(i);
6327
6328 SectionList *sections = module->GetSectionList();
6329 size_t sections_count = sections->GetSize();
6330 std::vector<segment_vmaddr> segment_vmaddrs;
6331 for (size_t j = 0; j < sections_count; j++) {
6332 SectionSP section = sections->GetSectionAtIndex(j);
6333 if (!section->GetParent().get()) {
6334 addr_t vmaddr = section->GetLoadBaseAddress(&target);
6335 if (vmaddr == LLDB_INVALID_ADDRESS(18446744073709551615UL))
6336 continue;
6337 ConstString name = section->GetName();
6338 segment_vmaddr seg_vmaddr;
6339 strncpy(seg_vmaddr.segname, name.AsCString(),
6340 sizeof(seg_vmaddr.segname));
6341 seg_vmaddr.vmaddr = vmaddr;
6342 seg_vmaddr.unused = 0;
6343 segment_vmaddrs.push_back(seg_vmaddr);
6344 }
6345 }
6346 modules_segment_vmaddrs.push_back(segment_vmaddrs);
6347 }
6348
6349 offset_t size_of_vmaddr_structs = 0;
6350 for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6351 size_of_vmaddr_structs +=
6352 modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6353 }
6354
6355 offset_t size_of_filepath_cstrings = 0;
6356 for (size_t i = 0; i < modules_count; i++) {
6357 ModuleSP module_sp = modules.GetModuleAtIndex(i);
6358 size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6359 }
6360
6361 // Calculate the file offsets of our "all image infos" payload in the
6362 // corefile. initial_file_offset the original value passed in to this method.
6363
6364 offset_t start_of_entries =
6365 initial_file_offset + sizeof(all_image_infos_header);
6366 offset_t start_of_seg_vmaddrs =
6367 start_of_entries + sizeof(image_entry) * modules_count;
6368 offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6369
6370 offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6371
6372 // Now write the one-per-module 'struct image_entry' into the
6373 // StringStream; keep track of where the struct segment_vmaddr
6374 // entries for each module will end up in the corefile.
6375
6376 offset_t current_string_offset = start_of_filenames;
6377 offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6378 std::vector<struct image_entry> image_entries;
6379 for (size_t i = 0; i < modules_count; i++) {
6380 ModuleSP module_sp = modules.GetModuleAtIndex(i);
6381
6382 struct image_entry ent;
6383 memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6384 if (modules_segment_vmaddrs[i].size() > 0) {
6385 ent.segment_count = modules_segment_vmaddrs[i].size();
6386 ent.seg_addrs_offset = current_segaddrs_offset;
6387 }
6388 ent.filepath_offset = current_string_offset;
6389 ObjectFile *objfile = module_sp->GetObjectFile();
6390 if (objfile) {
6391 Address base_addr(objfile->GetBaseAddress());
6392 if (base_addr.IsValid()) {
6393 ent.load_address = base_addr.GetLoadAddress(&target);
6394 }
6395 }
6396
6397 all_image_infos_payload.PutHex64(ent.filepath_offset);
6398 all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6399 all_image_infos_payload.PutHex64(ent.load_address);
6400 all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6401 all_image_infos_payload.PutHex32(ent.segment_count);
6402
6403 if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6404 executing_uuids.end())
6405 all_image_infos_payload.PutHex32(1);
6406 else
6407 all_image_infos_payload.PutHex32(0);
6408
6409 current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6410 current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6411 }
6412
6413 // Now write the struct segment_vmaddr entries into the StringStream.
6414
6415 for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6416 if (modules_segment_vmaddrs[i].size() == 0)
6417 continue;
6418 for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6419 all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6420 all_image_infos_payload.PutHex64(segvm.vmaddr);
6421 all_image_infos_payload.PutHex64(segvm.unused);
6422 }
6423 }
6424
6425 for (size_t i = 0; i < modules_count; i++) {
6426 ModuleSP module_sp = modules.GetModuleAtIndex(i);
6427 std::string filepath = module_sp->GetFileSpec().GetPath();
6428 all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6429 }
6430
6431 return final_file_offset;
6432}
6433
6434// Temp struct used to combine contiguous memory regions with
6435// identical permissions.
6436struct page_object {
6437 addr_t addr;
6438 addr_t size;
6439 uint32_t prot;
6440};
6441
6442bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6443 const FileSpec &outfile,
6444 lldb::SaveCoreStyle &core_style, Status &error) {
6445 if (!process_sp)
6446 return false;
6447
6448 // Default on macOS is to create a dirty-memory-only corefile.
6449 if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
6450 core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
6451 }
6452
6453 Target &target = process_sp->GetTarget();
6454 const ArchSpec target_arch = target.GetArchitecture();
6455 const llvm::Triple &target_triple = target_arch.GetTriple();
6456 if (target_triple.getVendor() == llvm::Triple::Apple &&
6457 (target_triple.getOS() == llvm::Triple::MacOSX ||
6458 target_triple.getOS() == llvm::Triple::IOS ||
6459 target_triple.getOS() == llvm::Triple::WatchOS ||
6460 target_triple.getOS() == llvm::Triple::TvOS)) {
6461 // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6462 // {
6463 bool make_core = false;
6464 switch (target_arch.GetMachine()) {
6465 case llvm::Triple::aarch64:
6466 case llvm::Triple::aarch64_32:
6467 case llvm::Triple::arm:
6468 case llvm::Triple::thumb:
6469 case llvm::Triple::x86:
6470 case llvm::Triple::x86_64:
6471 make_core = true;
6472 break;
6473 default:
6474 error.SetErrorStringWithFormat("unsupported core architecture: %s",
6475 target_triple.str().c_str());
6476 break;
6477 }
6478
6479 if (make_core) {
6480 std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6481 // uint32_t range_info_idx = 0;
6482 MemoryRegionInfo range_info;
6483 Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6484 const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6485 const ByteOrder byte_order = target_arch.GetByteOrder();
6486 std::vector<page_object> pages_to_copy;
6487
6488 if (range_error.Success()) {
6489 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
6490 // Calculate correct protections
6491 uint32_t prot = 0;
6492 if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6493 prot |= VM_PROT_READ;
6494 if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6495 prot |= VM_PROT_WRITE;
6496 if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6497 prot |= VM_PROT_EXECUTE;
6498
6499 const addr_t addr = range_info.GetRange().GetRangeBase();
6500 const addr_t size = range_info.GetRange().GetByteSize();
6501
6502 if (size == 0)
6503 break;
6504
6505 bool include_this_region = true;
6506 bool dirty_pages_only = false;
6507 if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
6508 dirty_pages_only = true;
6509 if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
6510 include_this_region = false;
6511 }
6512 }
6513 if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
6514 dirty_pages_only = true;
6515 }
6516
6517 if (prot != 0 && include_this_region) {
6518 addr_t pagesize = range_info.GetPageSize();
6519 const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
6520 range_info.GetDirtyPageList();
6521 if (dirty_pages_only && dirty_page_list.hasValue()) {
6522 for (addr_t dirtypage : dirty_page_list.getValue()) {
6523 page_object obj;
6524 obj.addr = dirtypage;
6525 obj.size = pagesize;
6526 obj.prot = prot;
6527 pages_to_copy.push_back(obj);
6528 }
6529 } else {
6530 page_object obj;
6531 obj.addr = addr;
6532 obj.size = size;
6533 obj.prot = prot;
6534 pages_to_copy.push_back(obj);
6535 }
6536 }
6537
6538 range_error = process_sp->GetMemoryRegionInfo(
6539 range_info.GetRange().GetRangeEnd(), range_info);
6540 if (range_error.Fail())
6541 break;
6542 }
6543
6544 // Combine contiguous entries that have the same
6545 // protections so we don't have an excess of
6546 // load commands.
6547 std::vector<page_object> combined_page_objects;
6548 page_object last_obj;
6549 last_obj.addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
6550 last_obj.size = 0;
6551 for (page_object obj : pages_to_copy) {
6552 if (last_obj.addr == LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
6553 last_obj = obj;
6554 continue;
6555 }
6556 if (last_obj.addr + last_obj.size == obj.addr &&
6557 last_obj.prot == obj.prot) {
6558 last_obj.size += obj.size;
6559 continue;
6560 }
6561 combined_page_objects.push_back(last_obj);
6562 last_obj = obj;
6563 }
6564 // Add the last entry we were looking to combine
6565 // on to the array.
6566 if (last_obj.addr != LLDB_INVALID_ADDRESS(18446744073709551615UL) && last_obj.size != 0)
6567 combined_page_objects.push_back(last_obj);
6568
6569 for (page_object obj : combined_page_objects) {
6570 uint32_t cmd_type = LC_SEGMENT_64;
6571 uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6572 if (addr_byte_size == 4) {
6573 cmd_type = LC_SEGMENT;
6574 segment_size = sizeof(llvm::MachO::segment_command);
6575 }
6576 llvm::MachO::segment_command_64 segment = {
6577 cmd_type, // uint32_t cmd;
6578 segment_size, // uint32_t cmdsize;
6579 {0}, // char segname[16];
6580 obj.addr, // uint64_t vmaddr; // uint32_t for 32-bit
6581 // Mach-O
6582 obj.size, // uint64_t vmsize; // uint32_t for 32-bit
6583 // Mach-O
6584 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O
6585 obj.size, // uint64_t filesize; // uint32_t for 32-bit
6586 // Mach-O
6587 obj.prot, // uint32_t maxprot;
6588 obj.prot, // uint32_t initprot;
6589 0, // uint32_t nsects;
6590 0}; // uint32_t flags;
6591 segment_load_commands.push_back(segment);
6592 }
6593
6594 StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6595
6596 llvm::MachO::mach_header_64 mach_header;
6597 if (addr_byte_size == 8) {
6598 mach_header.magic = MH_MAGIC_64;
6599 } else {
6600 mach_header.magic = MH_MAGIC;
6601 }
6602 mach_header.cputype = target_arch.GetMachOCPUType();
6603 mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6604 mach_header.filetype = MH_CORE;
6605 mach_header.ncmds = segment_load_commands.size();
6606 mach_header.flags = 0;
6607 mach_header.reserved = 0;
6608 ThreadList &thread_list = process_sp->GetThreadList();
6609 const uint32_t num_threads = thread_list.GetSize();
6610
6611 // Make an array of LC_THREAD data items. Each one contains the
6612 // contents of the LC_THREAD load command. The data doesn't contain
6613 // the load command + load command size, we will add the load command
6614 // and load command size as we emit the data.
6615 std::vector<StreamString> LC_THREAD_datas(num_threads);
6616 for (auto &LC_THREAD_data : LC_THREAD_datas) {
6617 LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6618 LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6619 LC_THREAD_data.SetByteOrder(byte_order);
6620 }
6621 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6622 ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6623 if (thread_sp) {
6624 switch (mach_header.cputype) {
6625 case llvm::MachO::CPU_TYPE_ARM64:
6626 case llvm::MachO::CPU_TYPE_ARM64_32:
6627 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6628 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6629 break;
6630
6631 case llvm::MachO::CPU_TYPE_ARM:
6632 RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6633 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6634 break;
6635
6636 case llvm::MachO::CPU_TYPE_I386:
6637 RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6638 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6639 break;
6640
6641 case llvm::MachO::CPU_TYPE_X86_64:
6642 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6643 thread_sp.get(), LC_THREAD_datas[thread_idx]);
6644 break;
6645 }
6646 }
6647 }
6648
6649 // The size of the load command is the size of the segments...
6650 if (addr_byte_size == 8) {
6651 mach_header.sizeofcmds = segment_load_commands.size() *
6652 sizeof(llvm::MachO::segment_command_64);
6653 } else {
6654 mach_header.sizeofcmds = segment_load_commands.size() *
6655 sizeof(llvm::MachO::segment_command);
6656 }
6657
6658 // and the size of all LC_THREAD load command
6659 for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6660 ++mach_header.ncmds;
6661 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6662 }
6663
6664 // Bits will be set to indicate which bits are NOT used in
6665 // addressing in this process or 0 for unknown.
6666 uint64_t address_mask = process_sp->GetCodeAddressMask();
6667 if (address_mask != 0) {
6668 // LC_NOTE "addrable bits"
6669 mach_header.ncmds++;
6670 mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6671 }
6672
6673 // LC_NOTE "all image infos"
6674 mach_header.ncmds++;
6675 mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6676
6677 // Write the mach header
6678 buffer.PutHex32(mach_header.magic);
6679 buffer.PutHex32(mach_header.cputype);
6680 buffer.PutHex32(mach_header.cpusubtype);
6681 buffer.PutHex32(mach_header.filetype);
6682 buffer.PutHex32(mach_header.ncmds);
6683 buffer.PutHex32(mach_header.sizeofcmds);
6684 buffer.PutHex32(mach_header.flags);
6685 if (addr_byte_size == 8) {
6686 buffer.PutHex32(mach_header.reserved);
6687 }
6688
6689 // Skip the mach header and all load commands and align to the next
6690 // 0x1000 byte boundary
6691 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6692
6693 file_offset = llvm::alignTo(file_offset, 16);
6694 std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6695
6696 // Add "addrable bits" LC_NOTE when an address mask is available
6697 if (address_mask != 0) {
6698 std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6699 new LCNoteEntry(addr_byte_size, byte_order));
6700 addrable_bits_lcnote_up->name = "addrable bits";
6701 addrable_bits_lcnote_up->payload_file_offset = file_offset;
6702 int bits = std::bitset<64>(~address_mask).count();
6703 addrable_bits_lcnote_up->payload.PutHex32(3); // version
6704 addrable_bits_lcnote_up->payload.PutHex32(
6705 bits); // # of bits used for addressing
6706 addrable_bits_lcnote_up->payload.PutHex64(0); // unused
6707
6708 file_offset += addrable_bits_lcnote_up->payload.GetSize();
6709
6710 lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6711 }
6712
6713 // Add "all image infos" LC_NOTE
6714 std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6715 new LCNoteEntry(addr_byte_size, byte_order));
6716 all_image_infos_lcnote_up->name = "all image infos";
6717 all_image_infos_lcnote_up->payload_file_offset = file_offset;
6718 file_offset = CreateAllImageInfosPayload(
6719 process_sp, file_offset, all_image_infos_lcnote_up->payload,
6720 core_style);
6721 lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6722
6723 // Add LC_NOTE load commands
6724 for (auto &lcnote : lc_notes) {
6725 // Add the LC_NOTE load command to the file.
6726 buffer.PutHex32(LC_NOTE);
6727 buffer.PutHex32(sizeof(llvm::MachO::note_command));
6728 char namebuf[16];
6729 memset(namebuf, 0, sizeof(namebuf));
6730 // this is the uncommon case where strncpy is exactly
6731 // the right one, doesn't need to be nul terminated.
6732 strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6733 buffer.PutRawBytes(namebuf, sizeof(namebuf));
6734 buffer.PutHex64(lcnote->payload_file_offset);
6735 buffer.PutHex64(lcnote->payload.GetSize());
6736 }
6737
6738 // Align to 4096-byte page boundary for the LC_SEGMENTs.
6739 file_offset = llvm::alignTo(file_offset, 4096);
6740
6741 for (auto &segment : segment_load_commands) {
6742 segment.fileoff = file_offset;
6743 file_offset += segment.filesize;
6744 }
6745
6746 // Write out all of the LC_THREAD load commands
6747 for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6748 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6749 buffer.PutHex32(LC_THREAD);
6750 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6751 buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6752 }
6753
6754 // Write out all of the segment load commands
6755 for (const auto &segment : segment_load_commands) {
6756 buffer.PutHex32(segment.cmd);
6757 buffer.PutHex32(segment.cmdsize);
6758 buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6759 if (addr_byte_size == 8) {
6760 buffer.PutHex64(segment.vmaddr);
6761 buffer.PutHex64(segment.vmsize);
6762 buffer.PutHex64(segment.fileoff);
6763 buffer.PutHex64(segment.filesize);
6764 } else {
6765 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6766 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6767 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6768 buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6769 }
6770 buffer.PutHex32(segment.maxprot);
6771 buffer.PutHex32(segment.initprot);
6772 buffer.PutHex32(segment.nsects);
6773 buffer.PutHex32(segment.flags);
6774 }
6775
6776 std::string core_file_path(outfile.GetPath());
6777 auto core_file = FileSystem::Instance().Open(
6778 outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6779 File::eOpenOptionCanCreate);
6780 if (!core_file) {
6781 error = core_file.takeError();
6782 } else {
6783 // Read 1 page at a time
6784 uint8_t bytes[0x1000];
6785 // Write the mach header and load commands out to the core file
6786 size_t bytes_written = buffer.GetString().size();
6787 error =
6788 core_file.get()->Write(buffer.GetString().data(), bytes_written);
6789 if (error.Success()) {
6790
6791 for (auto &lcnote : lc_notes) {
6792 if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6793 -1) {
6794 error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6795 "to write '%s' LC_NOTE payload",
6796 lcnote->name.c_str());
6797 return false;
6798 }
6799 bytes_written = lcnote->payload.GetSize();
6800 error = core_file.get()->Write(lcnote->payload.GetData(),
6801 bytes_written);
6802 if (!error.Success())
6803 return false;
6804 }
6805
6806 // Now write the file data for all memory segments in the process
6807 for (const auto &segment : segment_load_commands) {
6808 if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6809 error.SetErrorStringWithFormat(
6810 "unable to seek to offset 0x%" PRIx64"l" "x" " in '%s'",
6811 segment.fileoff, core_file_path.c_str());
6812 break;
6813 }
6814
6815 target.GetDebugger().GetAsyncOutputStream()->Printf(
6816 "Saving %" PRId64"l" "d"
6817 " bytes of data for memory region at 0x%" PRIx64"l" "x" "\n",
6818 segment.vmsize, segment.vmaddr);
6819 addr_t bytes_left = segment.vmsize;
6820 addr_t addr = segment.vmaddr;
6821 Status memory_read_error;
6822 while (bytes_left > 0 && error.Success()) {
6823 const size_t bytes_to_read =
6824 bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6825
6826 // In a savecore setting, we don't really care about caching,
6827 // as the data is dumped and very likely never read again,
6828 // so we call ReadMemoryFromInferior to bypass it.
6829 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6830 addr, bytes, bytes_to_read, memory_read_error);
6831
6832 if (bytes_read == bytes_to_read) {
6833 size_t bytes_written = bytes_read;
6834 error = core_file.get()->Write(bytes, bytes_written);
6835 bytes_left -= bytes_read;
6836 addr += bytes_read;
6837 } else {
6838 // Some pages within regions are not readable, those should
6839 // be zero filled
6840 memset(bytes, 0, bytes_to_read);
6841 size_t bytes_written = bytes_to_read;
6842 error = core_file.get()->Write(bytes, bytes_written);
6843 bytes_left -= bytes_to_read;
6844 addr += bytes_to_read;
6845 }
6846 }
6847 }
6848 }
6849 }
6850 } else {
6851 error.SetErrorString(
6852 "process doesn't support getting memory region info");
6853 }
6854 }
6855 return true; // This is the right plug to handle saving core files for
6856 // this process
6857 }
6858 return false;
6859}
6860
6861ObjectFileMachO::MachOCorefileAllImageInfos
6862ObjectFileMachO::GetCorefileAllImageInfos() {
6863 MachOCorefileAllImageInfos image_infos;
6864
6865 // Look for an "all image infos" LC_NOTE.
6866 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6867 for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6868 const uint32_t cmd_offset = offset;
6869 llvm::MachO::load_command lc;
6870 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6871 break;
6872 if (lc.cmd == LC_NOTE) {
6873 char data_owner[17];
6874 m_data.CopyData(offset, 16, data_owner);
6875 data_owner[16] = '\0';
6876 offset += 16;
6877 uint64_t fileoff = m_data.GetU64_unchecked(&offset);
6878 offset += 4; /* size unused */
6879
6880 if (strcmp("all image infos", data_owner) == 0) {
6881 offset = fileoff;
6882 // Read the struct all_image_infos_header.
6883 uint32_t version = m_data.GetU32(&offset);
6884 if (version != 1) {
6885 return image_infos;
6886 }
6887 uint32_t imgcount = m_data.GetU32(&offset);
6888 uint64_t entries_fileoff = m_data.GetU64(&offset);
6889 offset += 4; // uint32_t entries_size;
6890 offset += 4; // uint32_t unused;
6891
6892 offset = entries_fileoff;
6893 for (uint32_t i = 0; i < imgcount; i++) {
6894 // Read the struct image_entry.
6895 offset_t filepath_offset = m_data.GetU64(&offset);
6896 uuid_t uuid;
6897 memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
6898 sizeof(uuid_t));
6899 uint64_t load_address = m_data.GetU64(&offset);
6900 offset_t seg_addrs_offset = m_data.GetU64(&offset);
6901 uint32_t segment_count = m_data.GetU32(&offset);
6902 uint32_t currently_executing = m_data.GetU32(&offset);
6903
6904 MachOCorefileImageEntry image_entry;
6905 image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6906 image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6907 image_entry.load_address = load_address;
6908 image_entry.currently_executing = currently_executing;
6909
6910 offset_t seg_vmaddrs_offset = seg_addrs_offset;
6911 for (uint32_t j = 0; j < segment_count; j++) {
6912 char segname[17];
6913 m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6914 segname[16] = '\0';
6915 seg_vmaddrs_offset += 16;
6916 uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6917 seg_vmaddrs_offset += 8; /* unused */
6918
6919 std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
6920 vmaddr};
6921 image_entry.segment_load_addresses.push_back(new_seg);
6922 }
6923 image_infos.all_image_infos.push_back(image_entry);
6924 }
6925 } else if (strcmp("load binary", data_owner) == 0) {
6926 uint32_t version = m_data.GetU32(&fileoff);
6927 if (version == 1) {
6928 uuid_t uuid;
6929 memcpy(&uuid, m_data.GetData(&fileoff, sizeof(uuid_t)),
6930 sizeof(uuid_t));
6931 uint64_t load_address = m_data.GetU64(&fileoff);
6932 uint64_t slide = m_data.GetU64(&fileoff);
6933 std::string filename = m_data.GetCStr(&fileoff);
6934
6935 MachOCorefileImageEntry image_entry;
6936 image_entry.filename = filename;
6937 image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6938 image_entry.load_address = load_address;
6939 image_entry.slide = slide;
6940 image_infos.all_image_infos.push_back(image_entry);
6941 }
6942 }
6943 }
6944 offset = cmd_offset + lc.cmdsize;
6945 }
6946
6947 return image_infos;
6948}
6949
6950bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
6951 MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
6952 Log *log = GetLog(LLDBLog::DynamicLoader);
6953
6954 ModuleList added_modules;
6955 for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
6956 ModuleSpec module_spec;
6957 module_spec.GetUUID() = image.uuid;
6958 if (image.filename.empty()) {
6959 char namebuf[80];
6960 if (image.load_address != LLDB_INVALID_ADDRESS(18446744073709551615UL))
6961 snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64"l" "x",
6962 image.load_address);
6963 else
6964 snprintf(namebuf, sizeof(namebuf), "mem-image+0x%" PRIx64"l" "x", image.slide);
6965 module_spec.GetFileSpec() = FileSpec(namebuf);
6966 } else {
6967 module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
6968 }
6969 if (image.currently_executing) {
6970 Status error;
6971 Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
6972 if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
6973 process.GetTarget().GetOrCreateModule(module_spec, false);
6974 }
6975 }
6976 Status error;
6977 ModuleSP module_sp =
6978 process.GetTarget().GetOrCreateModule(module_spec, false, &error);
6979 if (!module_sp.get() || !module_sp->GetObjectFile()) {
6980 if (image.load_address != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
6981 module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(),
6982 image.load_address);
6983 }
6984 }
6985 if (module_sp.get()) {
6986 // Will call ModulesDidLoad with all modules once they've all
6987 // been added to the Target with load addresses. Don't notify
6988 // here, before the load address is set.
6989 const bool notify = false;
6990 process.GetTarget().GetImages().AppendIfNeeded(module_sp, notify);
6991 added_modules.Append(module_sp, notify);
6992 if (image.segment_load_addresses.size() > 0) {
6993 if (log) {
6994 std::string uuidstr = image.uuid.GetAsString();
6995 log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
6996 "UUID %s with section load addresses",
6997 image.filename.c_str(), uuidstr.c_str());
6998 }
6999 for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7000 SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7001 if (sectlist) {
7002 SectionSP sect_sp =
7003 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7004 if (sect_sp) {
7005 process.GetTarget().SetSectionLoadAddress(
7006 sect_sp, std::get<1>(name_vmaddr_tuple));
7007 }
7008 }
7009 }
7010 } else if (image.load_address != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
7011 if (log) {
7012 std::string uuidstr = image.uuid.GetAsString();
7013 log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7014 "UUID %s with load address 0x%" PRIx64"l" "x",
7015 image.filename.c_str(), uuidstr.c_str(),
7016 image.load_address);
7017 }
7018 const bool address_is_slide = false;
7019 bool changed = false;
7020 module_sp->SetLoadAddress(process.GetTarget(), image.load_address,
7021 address_is_slide, changed);
7022 } else if (image.slide != 0) {
7023 if (log) {
7024 std::string uuidstr = image.uuid.GetAsString();
7025 log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7026 "UUID %s with slide amount 0x%" PRIx64"l" "x",
7027 image.filename.c_str(), uuidstr.c_str(), image.slide);
7028 }
7029 const bool address_is_slide = true;
7030 bool changed = false;
7031 module_sp->SetLoadAddress(process.GetTarget(), image.slide,
7032 address_is_slide, changed);
7033 } else {
7034 if (log) {
7035 std::string uuidstr = image.uuid.GetAsString();
7036 log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7037 "UUID %s at its file address, no slide applied",
7038 image.filename.c_str(), uuidstr.c_str());
7039 }
7040 const bool address_is_slide = true;
7041 bool changed = false;
7042 module_sp->SetLoadAddress(process.GetTarget(), 0, address_is_slide,
7043 changed);
7044 }
7045 }
7046 }
7047 if (added_modules.GetSize() > 0) {
7048 process.GetTarget().ModulesDidLoad(added_modules);
7049 process.Flush();
7050 return true;
7051 }
7052 return false;
7053}