Bug Summary

File:build/source/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
Warning:line 1994, column 15
Value stored to 'I' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name PPCISelDAGToDAG.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/PowerPC -I /build/source/llvm/lib/Target/PowerPC -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1679915782 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-27-130437-16335-1 -x c++ /build/source/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a pattern matching instruction selector for PowerPC,
10// converting from a legalized dag to a PPC dag.
11//
12//===----------------------------------------------------------------------===//
13
14#include "MCTargetDesc/PPCMCTargetDesc.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPC.h"
17#include "PPCISelLowering.h"
18#include "PPCMachineFunctionInfo.h"
19#include "PPCSubtarget.h"
20#include "PPCTargetMachine.h"
21#include "llvm/ADT/APInt.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/BranchProbabilityInfo.h"
28#include "llvm/CodeGen/FunctionLoweringInfo.h"
29#include "llvm/CodeGen/ISDOpcodes.h"
30#include "llvm/CodeGen/MachineBasicBlock.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SelectionDAGISel.h"
37#include "llvm/CodeGen/SelectionDAGNodes.h"
38#include "llvm/CodeGen/TargetInstrInfo.h"
39#include "llvm/CodeGen/TargetRegisterInfo.h"
40#include "llvm/CodeGen/ValueTypes.h"
41#include "llvm/IR/BasicBlock.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/GlobalValue.h"
45#include "llvm/IR/InlineAsm.h"
46#include "llvm/IR/InstrTypes.h"
47#include "llvm/IR/IntrinsicsPowerPC.h"
48#include "llvm/IR/Module.h"
49#include "llvm/Support/Casting.h"
50#include "llvm/Support/CodeGen.h"
51#include "llvm/Support/CommandLine.h"
52#include "llvm/Support/Compiler.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/KnownBits.h"
56#include "llvm/Support/MachineValueType.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60#include <cassert>
61#include <cstdint>
62#include <iterator>
63#include <limits>
64#include <memory>
65#include <new>
66#include <tuple>
67#include <utility>
68
69using namespace llvm;
70
71#define DEBUG_TYPE"ppc-isel" "ppc-isel"
72#define PASS_NAME"PowerPC DAG->DAG Pattern Instruction Selection" "PowerPC DAG->DAG Pattern Instruction Selection"
73
74STATISTIC(NumSextSetcc,static llvm::Statistic NumSextSetcc = {"ppc-isel", "NumSextSetcc"
, "Number of (sext(setcc)) nodes expanded into GPR sequence."
}
75 "Number of (sext(setcc)) nodes expanded into GPR sequence.")static llvm::Statistic NumSextSetcc = {"ppc-isel", "NumSextSetcc"
, "Number of (sext(setcc)) nodes expanded into GPR sequence."
}
;
76STATISTIC(NumZextSetcc,static llvm::Statistic NumZextSetcc = {"ppc-isel", "NumZextSetcc"
, "Number of (zext(setcc)) nodes expanded into GPR sequence."
}
77 "Number of (zext(setcc)) nodes expanded into GPR sequence.")static llvm::Statistic NumZextSetcc = {"ppc-isel", "NumZextSetcc"
, "Number of (zext(setcc)) nodes expanded into GPR sequence."
}
;
78STATISTIC(SignExtensionsAdded,static llvm::Statistic SignExtensionsAdded = {"ppc-isel", "SignExtensionsAdded"
, "Number of sign extensions for compare inputs added."}
79 "Number of sign extensions for compare inputs added.")static llvm::Statistic SignExtensionsAdded = {"ppc-isel", "SignExtensionsAdded"
, "Number of sign extensions for compare inputs added."}
;
80STATISTIC(ZeroExtensionsAdded,static llvm::Statistic ZeroExtensionsAdded = {"ppc-isel", "ZeroExtensionsAdded"
, "Number of zero extensions for compare inputs added."}
81 "Number of zero extensions for compare inputs added.")static llvm::Statistic ZeroExtensionsAdded = {"ppc-isel", "ZeroExtensionsAdded"
, "Number of zero extensions for compare inputs added."}
;
82STATISTIC(NumLogicOpsOnComparison,static llvm::Statistic NumLogicOpsOnComparison = {"ppc-isel",
"NumLogicOpsOnComparison", "Number of logical ops on i1 values calculated in GPR."
}
83 "Number of logical ops on i1 values calculated in GPR.")static llvm::Statistic NumLogicOpsOnComparison = {"ppc-isel",
"NumLogicOpsOnComparison", "Number of logical ops on i1 values calculated in GPR."
}
;
84STATISTIC(OmittedForNonExtendUses,static llvm::Statistic OmittedForNonExtendUses = {"ppc-isel",
"OmittedForNonExtendUses", "Number of compares not eliminated as they have non-extending uses."
}
85 "Number of compares not eliminated as they have non-extending uses.")static llvm::Statistic OmittedForNonExtendUses = {"ppc-isel",
"OmittedForNonExtendUses", "Number of compares not eliminated as they have non-extending uses."
}
;
86STATISTIC(NumP9Setb,static llvm::Statistic NumP9Setb = {"ppc-isel", "NumP9Setb", "Number of compares lowered to setb."
}
87 "Number of compares lowered to setb.")static llvm::Statistic NumP9Setb = {"ppc-isel", "NumP9Setb", "Number of compares lowered to setb."
}
;
88
89// FIXME: Remove this once the bug has been fixed!
90cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
91cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
92
93static cl::opt<bool>
94 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
95 cl::desc("use aggressive ppc isel for bit permutations"),
96 cl::Hidden);
97static cl::opt<bool> BPermRewriterNoMasking(
98 "ppc-bit-perm-rewriter-stress-rotates",
99 cl::desc("stress rotate selection in aggressive ppc isel for "
100 "bit permutations"),
101 cl::Hidden);
102
103static cl::opt<bool> EnableBranchHint(
104 "ppc-use-branch-hint", cl::init(true),
105 cl::desc("Enable static hinting of branches on ppc"),
106 cl::Hidden);
107
108static cl::opt<bool> EnableTLSOpt(
109 "ppc-tls-opt", cl::init(true),
110 cl::desc("Enable tls optimization peephole"),
111 cl::Hidden);
112
113enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
114 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
115 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
116
117static cl::opt<ICmpInGPRType> CmpInGPR(
118 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
119 cl::desc("Specify the types of comparisons to emit GPR-only code for."),
120 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons.")llvm::cl::OptionEnumValue { "none", int(ICGPR_None), "Do not modify integer comparisons."
}
,
121 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs.")llvm::cl::OptionEnumValue { "all", int(ICGPR_All), "All possible int comparisons in GPRs."
}
,
122 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs.")llvm::cl::OptionEnumValue { "i32", int(ICGPR_I32), "Only i32 comparisons in GPRs."
}
,
123 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs.")llvm::cl::OptionEnumValue { "i64", int(ICGPR_I64), "Only i64 comparisons in GPRs."
}
,
124 clEnumValN(ICGPR_NonExtIn, "nonextin",llvm::cl::OptionEnumValue { "nonextin", int(ICGPR_NonExtIn), "Only comparisons where inputs don't need [sz]ext."
}
125 "Only comparisons where inputs don't need [sz]ext.")llvm::cl::OptionEnumValue { "nonextin", int(ICGPR_NonExtIn), "Only comparisons where inputs don't need [sz]ext."
}
,
126 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result.")llvm::cl::OptionEnumValue { "zext", int(ICGPR_Zext), "Only comparisons with zext result."
}
,
127 clEnumValN(ICGPR_ZextI32, "zexti32",llvm::cl::OptionEnumValue { "zexti32", int(ICGPR_ZextI32), "Only i32 comparisons with zext result."
}
128 "Only i32 comparisons with zext result.")llvm::cl::OptionEnumValue { "zexti32", int(ICGPR_ZextI32), "Only i32 comparisons with zext result."
}
,
129 clEnumValN(ICGPR_ZextI64, "zexti64",llvm::cl::OptionEnumValue { "zexti64", int(ICGPR_ZextI64), "Only i64 comparisons with zext result."
}
130 "Only i64 comparisons with zext result.")llvm::cl::OptionEnumValue { "zexti64", int(ICGPR_ZextI64), "Only i64 comparisons with zext result."
}
,
131 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result.")llvm::cl::OptionEnumValue { "sext", int(ICGPR_Sext), "Only comparisons with sext result."
}
,
132 clEnumValN(ICGPR_SextI32, "sexti32",llvm::cl::OptionEnumValue { "sexti32", int(ICGPR_SextI32), "Only i32 comparisons with sext result."
}
133 "Only i32 comparisons with sext result.")llvm::cl::OptionEnumValue { "sexti32", int(ICGPR_SextI32), "Only i32 comparisons with sext result."
}
,
134 clEnumValN(ICGPR_SextI64, "sexti64",llvm::cl::OptionEnumValue { "sexti64", int(ICGPR_SextI64), "Only i64 comparisons with sext result."
}
135 "Only i64 comparisons with sext result.")llvm::cl::OptionEnumValue { "sexti64", int(ICGPR_SextI64), "Only i64 comparisons with sext result."
}
));
136namespace {
137
138 //===--------------------------------------------------------------------===//
139 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
140 /// instructions for SelectionDAG operations.
141 ///
142 class PPCDAGToDAGISel : public SelectionDAGISel {
143 const PPCTargetMachine &TM;
144 const PPCSubtarget *Subtarget = nullptr;
145 const PPCTargetLowering *PPCLowering = nullptr;
146 unsigned GlobalBaseReg = 0;
147
148 public:
149 static char ID;
150
151 PPCDAGToDAGISel() = delete;
152
153 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
154 : SelectionDAGISel(ID, tm, OptLevel), TM(tm) {}
155
156 bool runOnMachineFunction(MachineFunction &MF) override {
157 // Make sure we re-emit a set of the global base reg if necessary
158 GlobalBaseReg = 0;
159 Subtarget = &MF.getSubtarget<PPCSubtarget>();
160 PPCLowering = Subtarget->getTargetLowering();
161 if (Subtarget->hasROPProtect()) {
162 // Create a place on the stack for the ROP Protection Hash.
163 // The ROP Protection Hash will always be 8 bytes and aligned to 8
164 // bytes.
165 MachineFrameInfo &MFI = MF.getFrameInfo();
166 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
167 const int Result = MFI.CreateStackObject(8, Align(8), false);
168 FI->setROPProtectionHashSaveIndex(Result);
169 }
170 SelectionDAGISel::runOnMachineFunction(MF);
171
172 return true;
173 }
174
175 void PreprocessISelDAG() override;
176 void PostprocessISelDAG() override;
177
178 /// getI16Imm - Return a target constant with the specified value, of type
179 /// i16.
180 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
181 return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
182 }
183
184 /// getI32Imm - Return a target constant with the specified value, of type
185 /// i32.
186 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
187 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
188 }
189
190 /// getI64Imm - Return a target constant with the specified value, of type
191 /// i64.
192 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
193 return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
194 }
195
196 /// getSmallIPtrImm - Return a target constant of pointer type.
197 inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) {
198 return CurDAG->getTargetConstant(
199 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
200 }
201
202 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
203 /// rotate and mask opcode and mask operation.
204 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
205 unsigned &SH, unsigned &MB, unsigned &ME);
206
207 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
208 /// base register. Return the virtual register that holds this value.
209 SDNode *getGlobalBaseReg();
210
211 void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0);
212
213 // Select - Convert the specified operand from a target-independent to a
214 // target-specific node if it hasn't already been changed.
215 void Select(SDNode *N) override;
216
217 bool tryBitfieldInsert(SDNode *N);
218 bool tryBitPermutation(SDNode *N);
219 bool tryIntCompareInGPR(SDNode *N);
220
221 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
222 // an X-Form load instruction with the offset being a relocation coming from
223 // the PPCISD::ADD_TLS.
224 bool tryTLSXFormLoad(LoadSDNode *N);
225 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
226 // an X-Form store instruction with the offset being a relocation coming from
227 // the PPCISD::ADD_TLS.
228 bool tryTLSXFormStore(StoreSDNode *N);
229 /// SelectCC - Select a comparison of the specified values with the
230 /// specified condition code, returning the CR# of the expression.
231 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
232 const SDLoc &dl, SDValue Chain = SDValue());
233
234 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
235 /// immediate field. Note that the operand at this point is already the
236 /// result of a prior SelectAddressRegImm call.
237 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
238 if (N.getOpcode() == ISD::TargetConstant ||
239 N.getOpcode() == ISD::TargetGlobalAddress) {
240 Out = N;
241 return true;
242 }
243
244 return false;
245 }
246
247 /// SelectDSForm - Returns true if address N can be represented by the
248 /// addressing mode of DSForm instructions (a base register, plus a signed
249 /// 16-bit displacement that is a multiple of 4.
250 bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
251 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
252 Align(4)) == PPC::AM_DSForm;
253 }
254
255 /// SelectDQForm - Returns true if address N can be represented by the
256 /// addressing mode of DQForm instructions (a base register, plus a signed
257 /// 16-bit displacement that is a multiple of 16.
258 bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
259 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
260 Align(16)) == PPC::AM_DQForm;
261 }
262
263 /// SelectDForm - Returns true if address N can be represented by
264 /// the addressing mode of DForm instructions (a base register, plus a
265 /// signed 16-bit immediate.
266 bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
267 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
268 std::nullopt) == PPC::AM_DForm;
269 }
270
271 /// SelectPCRelForm - Returns true if address N can be represented by
272 /// PC-Relative addressing mode.
273 bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
274 SDValue &Base) {
275 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
276 std::nullopt) == PPC::AM_PCRel;
277 }
278
279 /// SelectPDForm - Returns true if address N can be represented by Prefixed
280 /// DForm addressing mode (a base register, plus a signed 34-bit immediate.
281 bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
282 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
283 std::nullopt) ==
284 PPC::AM_PrefixDForm;
285 }
286
287 /// SelectXForm - Returns true if address N can be represented by the
288 /// addressing mode of XForm instructions (an indexed [r+r] operation).
289 bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
290 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
291 std::nullopt) == PPC::AM_XForm;
292 }
293
294 /// SelectForceXForm - Given the specified address, force it to be
295 /// represented as an indexed [r+r] operation (an XForm instruction).
296 bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
297 SDValue &Base) {
298 return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
299 PPC::AM_XForm;
300 }
301
302 /// SelectAddrIdx - Given the specified address, check to see if it can be
303 /// represented as an indexed [r+r] operation.
304 /// This is for xform instructions whose associated displacement form is D.
305 /// The last parameter \p 0 means associated D form has no requirment for 16
306 /// bit signed displacement.
307 /// Returns false if it can be represented by [r+imm], which are preferred.
308 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
309 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
310 std::nullopt);
311 }
312
313 /// SelectAddrIdx4 - Given the specified address, check to see if it can be
314 /// represented as an indexed [r+r] operation.
315 /// This is for xform instructions whose associated displacement form is DS.
316 /// The last parameter \p 4 means associated DS form 16 bit signed
317 /// displacement must be a multiple of 4.
318 /// Returns false if it can be represented by [r+imm], which are preferred.
319 bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
320 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
321 Align(4));
322 }
323
324 /// SelectAddrIdx16 - Given the specified address, check to see if it can be
325 /// represented as an indexed [r+r] operation.
326 /// This is for xform instructions whose associated displacement form is DQ.
327 /// The last parameter \p 16 means associated DQ form 16 bit signed
328 /// displacement must be a multiple of 16.
329 /// Returns false if it can be represented by [r+imm], which are preferred.
330 bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
331 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
332 Align(16));
333 }
334
335 /// SelectAddrIdxOnly - Given the specified address, force it to be
336 /// represented as an indexed [r+r] operation.
337 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
338 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
339 }
340
341 /// SelectAddrImm - Returns true if the address N can be represented by
342 /// a base register plus a signed 16-bit displacement [r+imm].
343 /// The last parameter \p 0 means D form has no requirment for 16 bit signed
344 /// displacement.
345 bool SelectAddrImm(SDValue N, SDValue &Disp,
346 SDValue &Base) {
347 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
348 std::nullopt);
349 }
350
351 /// SelectAddrImmX4 - Returns true if the address N can be represented by
352 /// a base register plus a signed 16-bit displacement that is a multiple of
353 /// 4 (last parameter). Suitable for use by STD and friends.
354 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
355 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
356 }
357
358 /// SelectAddrImmX16 - Returns true if the address N can be represented by
359 /// a base register plus a signed 16-bit displacement that is a multiple of
360 /// 16(last parameter). Suitable for use by STXV and friends.
361 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
362 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
363 Align(16));
364 }
365
366 /// SelectAddrImmX34 - Returns true if the address N can be represented by
367 /// a base register plus a signed 34-bit displacement. Suitable for use by
368 /// PSTXVP and friends.
369 bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
370 return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
371 }
372
373 // Select an address into a single register.
374 bool SelectAddr(SDValue N, SDValue &Base) {
375 Base = N;
376 return true;
377 }
378
379 bool SelectAddrPCRel(SDValue N, SDValue &Base) {
380 return PPCLowering->SelectAddressPCRel(N, Base);
381 }
382
383 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
384 /// inline asm expressions. It is always correct to compute the value into
385 /// a register. The case of adding a (possibly relocatable) constant to a
386 /// register can be improved, but it is wrong to substitute Reg+Reg for
387 /// Reg in an asm, because the load or store opcode would have to change.
388 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
389 unsigned ConstraintID,
390 std::vector<SDValue> &OutOps) override {
391 switch(ConstraintID) {
392 default:
393 errs() << "ConstraintID: " << ConstraintID << "\n";
394 llvm_unreachable("Unexpected asm memory constraint")::llvm::llvm_unreachable_internal("Unexpected asm memory constraint"
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 394)
;
395 case InlineAsm::Constraint_es:
396 case InlineAsm::Constraint_m:
397 case InlineAsm::Constraint_o:
398 case InlineAsm::Constraint_Q:
399 case InlineAsm::Constraint_Z:
400 case InlineAsm::Constraint_Zy:
401 // We need to make sure that this one operand does not end up in r0
402 // (because we might end up lowering this as 0(%op)).
403 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
404 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
405 SDLoc dl(Op);
406 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
407 SDValue NewOp =
408 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
409 dl, Op.getValueType(),
410 Op, RC), 0);
411
412 OutOps.push_back(NewOp);
413 return false;
414 }
415 return true;
416 }
417
418// Include the pieces autogenerated from the target description.
419#include "PPCGenDAGISel.inc"
420
421private:
422 bool trySETCC(SDNode *N);
423 bool tryFoldSWTestBRCC(SDNode *N);
424 bool trySelectLoopCountIntrinsic(SDNode *N);
425 bool tryAsSingleRLDICL(SDNode *N);
426 bool tryAsSingleRLDICR(SDNode *N);
427 bool tryAsSingleRLWINM(SDNode *N);
428 bool tryAsSingleRLWINM8(SDNode *N);
429 bool tryAsSingleRLWIMI(SDNode *N);
430 bool tryAsPairOfRLDICL(SDNode *N);
431 bool tryAsSingleRLDIMI(SDNode *N);
432
433 void PeepholePPC64();
434 void PeepholePPC64ZExt();
435 void PeepholeCROps();
436
437 SDValue combineToCMPB(SDNode *N);
438 void foldBoolExts(SDValue &Res, SDNode *&N);
439
440 bool AllUsersSelectZero(SDNode *N);
441 void SwapAllSelectUsers(SDNode *N);
442
443 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
444 void transferMemOperands(SDNode *N, SDNode *Result);
445 };
446
447} // end anonymous namespace
448
449char PPCDAGToDAGISel::ID = 0;
450
451INITIALIZE_PASS(PPCDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)static void *initializePPCDAGToDAGISelPassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo( "PowerPC DAG->DAG Pattern Instruction Selection"
, "ppc-isel", &PPCDAGToDAGISel::ID, PassInfo::NormalCtor_t
(callDefaultCtor<PPCDAGToDAGISel>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializePPCDAGToDAGISelPassFlag; void llvm::initializePPCDAGToDAGISelPass
(PassRegistry &Registry) { llvm::call_once(InitializePPCDAGToDAGISelPassFlag
, initializePPCDAGToDAGISelPassOnce, std::ref(Registry)); }
452
453/// getGlobalBaseReg - Output the instructions required to put the
454/// base address to use for accessing globals into a register.
455///
456SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
457 if (!GlobalBaseReg) {
458 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
459 // Insert the set of GlobalBaseReg into the first MBB of the function
460 MachineBasicBlock &FirstMBB = MF->front();
461 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
462 const Module *M = MF->getFunction().getParent();
463 DebugLoc dl;
464
465 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
466 if (Subtarget->isTargetELF()) {
467 GlobalBaseReg = PPC::R30;
468 if (!Subtarget->isSecurePlt() &&
469 M->getPICLevel() == PICLevel::SmallPIC) {
470 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
471 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
472 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
473 } else {
474 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
475 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
476 Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
477 BuildMI(FirstMBB, MBBI, dl,
478 TII.get(PPC::UpdateGBR), GlobalBaseReg)
479 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
480 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
481 }
482 } else {
483 GlobalBaseReg =
484 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
485 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
486 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
487 }
488 } else {
489 // We must ensure that this sequence is dominated by the prologue.
490 // FIXME: This is a bit of a big hammer since we don't get the benefits
491 // of shrink-wrapping whenever we emit this instruction. Considering
492 // this is used in any function where we emit a jump table, this may be
493 // a significant limitation. We should consider inserting this in the
494 // block where it is used and then commoning this sequence up if it
495 // appears in multiple places.
496 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
497 // MovePCtoLR8.
498 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
499 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
500 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
501 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
502 }
503 }
504 return CurDAG->getRegister(GlobalBaseReg,
505 PPCLowering->getPointerTy(CurDAG->getDataLayout()))
506 .getNode();
507}
508
509// Check if a SDValue has the toc-data attribute.
510static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) {
511 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
512 if (!GA)
513 return false;
514
515 const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
516 if (!GV)
517 return false;
518
519 if (!GV->hasAttribute("toc-data"))
520 return false;
521
522 // TODO: These asserts should be updated as more support for the toc data
523 // transformation is added (struct support, etc.).
524
525 assert((static_cast <bool> (PointerSize >= GV->getAlign(
).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry "
"size not supported by the toc data transformation.") ? void
(0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__
__PRETTY_FUNCTION__))
526 PointerSize >= GV->getAlign().valueOrOne().value() &&(static_cast <bool> (PointerSize >= GV->getAlign(
).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry "
"size not supported by the toc data transformation.") ? void
(0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__
__PRETTY_FUNCTION__))
527 "GlobalVariables with an alignment requirement stricter than TOC entry "(static_cast <bool> (PointerSize >= GV->getAlign(
).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry "
"size not supported by the toc data transformation.") ? void
(0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__
__PRETTY_FUNCTION__))
528 "size not supported by the toc data transformation.")(static_cast <bool> (PointerSize >= GV->getAlign(
).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry "
"size not supported by the toc data transformation.") ? void
(0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__
__PRETTY_FUNCTION__))
;
529
530 Type *GVType = GV->getValueType();
531
532 assert(GVType->isSized() && "A GlobalVariable's size must be known to be "(static_cast <bool> (GVType->isSized() && "A GlobalVariable's size must be known to be "
"supported by the toc data transformation.") ? void (0) : __assert_fail
("GVType->isSized() && \"A GlobalVariable's size must be known to be \" \"supported by the toc data transformation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 533, __extension__
__PRETTY_FUNCTION__))
533 "supported by the toc data transformation.")(static_cast <bool> (GVType->isSized() && "A GlobalVariable's size must be known to be "
"supported by the toc data transformation.") ? void (0) : __assert_fail
("GVType->isSized() && \"A GlobalVariable's size must be known to be \" \"supported by the toc data transformation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 533, __extension__
__PRETTY_FUNCTION__))
;
534
535 if (GVType->isVectorTy())
536 report_fatal_error("A GlobalVariable of Vector type is not currently "
537 "supported by the toc data transformation.");
538
539 if (GVType->isArrayTy())
540 report_fatal_error("A GlobalVariable of Array type is not currently "
541 "supported by the toc data transformation.");
542
543 if (GVType->isStructTy())
544 report_fatal_error("A GlobalVariable of Struct type is not currently "
545 "supported by the toc data transformation.");
546
547 assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&(static_cast <bool> (GVType->getPrimitiveSizeInBits(
) <= PointerSize * 8 && "A GlobalVariable with size larger than a TOC entry is not currently "
"supported by the toc data transformation.") ? void (0) : __assert_fail
("GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && \"A GlobalVariable with size larger than a TOC entry is not currently \" \"supported by the toc data transformation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 549, __extension__
__PRETTY_FUNCTION__))
548 "A GlobalVariable with size larger than a TOC entry is not currently "(static_cast <bool> (GVType->getPrimitiveSizeInBits(
) <= PointerSize * 8 && "A GlobalVariable with size larger than a TOC entry is not currently "
"supported by the toc data transformation.") ? void (0) : __assert_fail
("GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && \"A GlobalVariable with size larger than a TOC entry is not currently \" \"supported by the toc data transformation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 549, __extension__
__PRETTY_FUNCTION__))
549 "supported by the toc data transformation.")(static_cast <bool> (GVType->getPrimitiveSizeInBits(
) <= PointerSize * 8 && "A GlobalVariable with size larger than a TOC entry is not currently "
"supported by the toc data transformation.") ? void (0) : __assert_fail
("GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && \"A GlobalVariable with size larger than a TOC entry is not currently \" \"supported by the toc data transformation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 549, __extension__
__PRETTY_FUNCTION__))
;
550
551 if (GV->hasLocalLinkage() || GV->hasPrivateLinkage())
552 report_fatal_error("A GlobalVariable with private or local linkage is not "
553 "currently supported by the toc data transformation.");
554
555 assert(!GV->hasCommonLinkage() &&(static_cast <bool> (!GV->hasCommonLinkage() &&
"Tentative definitions cannot have the mapping class XMC_TD."
) ? void (0) : __assert_fail ("!GV->hasCommonLinkage() && \"Tentative definitions cannot have the mapping class XMC_TD.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 556, __extension__
__PRETTY_FUNCTION__))
556 "Tentative definitions cannot have the mapping class XMC_TD.")(static_cast <bool> (!GV->hasCommonLinkage() &&
"Tentative definitions cannot have the mapping class XMC_TD."
) ? void (0) : __assert_fail ("!GV->hasCommonLinkage() && \"Tentative definitions cannot have the mapping class XMC_TD.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 556, __extension__
__PRETTY_FUNCTION__))
;
557
558 return true;
559}
560
561/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
562/// operand. If so Imm will receive the 32-bit value.
563static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
564 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
565 Imm = cast<ConstantSDNode>(N)->getZExtValue();
566 return true;
567 }
568 return false;
569}
570
571/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
572/// operand. If so Imm will receive the 64-bit value.
573static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
574 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
575 Imm = cast<ConstantSDNode>(N)->getZExtValue();
576 return true;
577 }
578 return false;
579}
580
581// isInt32Immediate - This method tests to see if a constant operand.
582// If so Imm will receive the 32 bit value.
583static bool isInt32Immediate(SDValue N, unsigned &Imm) {
584 return isInt32Immediate(N.getNode(), Imm);
585}
586
587/// isInt64Immediate - This method tests to see if the value is a 64-bit
588/// constant operand. If so Imm will receive the 64-bit value.
589static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
590 return isInt64Immediate(N.getNode(), Imm);
591}
592
593static unsigned getBranchHint(unsigned PCC,
594 const FunctionLoweringInfo &FuncInfo,
595 const SDValue &DestMBB) {
596 assert(isa<BasicBlockSDNode>(DestMBB))(static_cast <bool> (isa<BasicBlockSDNode>(DestMBB
)) ? void (0) : __assert_fail ("isa<BasicBlockSDNode>(DestMBB)"
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 596, __extension__
__PRETTY_FUNCTION__))
;
597
598 if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
599
600 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
601 const Instruction *BBTerm = BB->getTerminator();
602
603 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
604
605 const BasicBlock *TBB = BBTerm->getSuccessor(0);
606 const BasicBlock *FBB = BBTerm->getSuccessor(1);
607
608 auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
609 auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
610
611 // We only want to handle cases which are easy to predict at static time, e.g.
612 // C++ throw statement, that is very likely not taken, or calling never
613 // returned function, e.g. stdlib exit(). So we set Threshold to filter
614 // unwanted cases.
615 //
616 // Below is LLVM branch weight table, we only want to handle case 1, 2
617 //
618 // Case Taken:Nontaken Example
619 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(),
620 // 2. Invoke-terminating 1:1048575
621 // 3. Coldblock 4:64 __builtin_expect
622 // 4. Loop Branch 124:4 For loop
623 // 5. PH/ZH/FPH 20:12
624 const uint32_t Threshold = 10000;
625
626 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
627 return PPC::BR_NO_HINT;
628
629 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "Use branch hint for '" <<
FuncInfo.Fn->getName() << "::" << BB->getName
() << "'\n" << " -> " << TBB->getName
() << ": " << TProb << "\n" << " -> "
<< FBB->getName() << ": " << FProb <<
"\n"; } } while (false)
630 << "::" << BB->getName() << "'\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "Use branch hint for '" <<
FuncInfo.Fn->getName() << "::" << BB->getName
() << "'\n" << " -> " << TBB->getName
() << ": " << TProb << "\n" << " -> "
<< FBB->getName() << ": " << FProb <<
"\n"; } } while (false)
631 << " -> " << TBB->getName() << ": " << TProb << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "Use branch hint for '" <<
FuncInfo.Fn->getName() << "::" << BB->getName
() << "'\n" << " -> " << TBB->getName
() << ": " << TProb << "\n" << " -> "
<< FBB->getName() << ": " << FProb <<
"\n"; } } while (false)
632 << " -> " << FBB->getName() << ": " << FProb << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "Use branch hint for '" <<
FuncInfo.Fn->getName() << "::" << BB->getName
() << "'\n" << " -> " << TBB->getName
() << ": " << TProb << "\n" << " -> "
<< FBB->getName() << ": " << FProb <<
"\n"; } } while (false)
;
633
634 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
635
636 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
637 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
638 if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
639 std::swap(TProb, FProb);
640
641 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
642}
643
644// isOpcWithIntImmediate - This method tests to see if the node is a specific
645// opcode and that it has a immediate integer right operand.
646// If so Imm will receive the 32 bit value.
647static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
648 return N->getOpcode() == Opc
649 && isInt32Immediate(N->getOperand(1).getNode(), Imm);
650}
651
652void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) {
653 SDLoc dl(SN);
654 int FI = cast<FrameIndexSDNode>(N)->getIndex();
655 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
656 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
657 if (SN->hasOneUse())
658 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
659 getSmallIPtrImm(Offset, dl));
660 else
661 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
662 getSmallIPtrImm(Offset, dl)));
663}
664
665bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
666 bool isShiftMask, unsigned &SH,
667 unsigned &MB, unsigned &ME) {
668 // Don't even go down this path for i64, since different logic will be
669 // necessary for rldicl/rldicr/rldimi.
670 if (N->getValueType(0) != MVT::i32)
671 return false;
672
673 unsigned Shift = 32;
674 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
675 unsigned Opcode = N->getOpcode();
676 if (N->getNumOperands() != 2 ||
677 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
678 return false;
679
680 if (Opcode == ISD::SHL) {
681 // apply shift left to mask if it comes first
682 if (isShiftMask) Mask = Mask << Shift;
683 // determine which bits are made indeterminant by shift
684 Indeterminant = ~(0xFFFFFFFFu << Shift);
685 } else if (Opcode == ISD::SRL) {
686 // apply shift right to mask if it comes first
687 if (isShiftMask) Mask = Mask >> Shift;
688 // determine which bits are made indeterminant by shift
689 Indeterminant = ~(0xFFFFFFFFu >> Shift);
690 // adjust for the left rotate
691 Shift = 32 - Shift;
692 } else if (Opcode == ISD::ROTL) {
693 Indeterminant = 0;
694 } else {
695 return false;
696 }
697
698 // if the mask doesn't intersect any Indeterminant bits
699 if (Mask && !(Mask & Indeterminant)) {
700 SH = Shift & 31;
701 // make sure the mask is still a mask (wrap arounds may not be)
702 return isRunOfOnes(Mask, MB, ME);
703 }
704 return false;
705}
706
707bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
708 SDValue Base = ST->getBasePtr();
709 if (Base.getOpcode() != PPCISD::ADD_TLS)
710 return false;
711 SDValue Offset = ST->getOffset();
712 if (!Offset.isUndef())
713 return false;
714 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
715 return false;
716
717 SDLoc dl(ST);
718 EVT MemVT = ST->getMemoryVT();
719 EVT RegVT = ST->getValue().getValueType();
720
721 unsigned Opcode;
722 switch (MemVT.getSimpleVT().SimpleTy) {
723 default:
724 return false;
725 case MVT::i8: {
726 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
727 break;
728 }
729 case MVT::i16: {
730 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
731 break;
732 }
733 case MVT::i32: {
734 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
735 break;
736 }
737 case MVT::i64: {
738 Opcode = PPC::STDXTLS;
739 break;
740 }
741 }
742 SDValue Chain = ST->getChain();
743 SDVTList VTs = ST->getVTList();
744 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
745 Chain};
746 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
747 transferMemOperands(ST, MN);
748 ReplaceNode(ST, MN);
749 return true;
750}
751
752bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
753 SDValue Base = LD->getBasePtr();
754 if (Base.getOpcode() != PPCISD::ADD_TLS)
755 return false;
756 SDValue Offset = LD->getOffset();
757 if (!Offset.isUndef())
758 return false;
759 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
760 return false;
761
762 SDLoc dl(LD);
763 EVT MemVT = LD->getMemoryVT();
764 EVT RegVT = LD->getValueType(0);
765 unsigned Opcode;
766 switch (MemVT.getSimpleVT().SimpleTy) {
767 default:
768 return false;
769 case MVT::i8: {
770 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
771 break;
772 }
773 case MVT::i16: {
774 Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
775 break;
776 }
777 case MVT::i32: {
778 Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
779 break;
780 }
781 case MVT::i64: {
782 Opcode = PPC::LDXTLS;
783 break;
784 }
785 }
786 SDValue Chain = LD->getChain();
787 SDVTList VTs = LD->getVTList();
788 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
789 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
790 transferMemOperands(LD, MN);
791 ReplaceNode(LD, MN);
792 return true;
793}
794
795/// Turn an or of two masked values into the rotate left word immediate then
796/// mask insert (rlwimi) instruction.
797bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
798 SDValue Op0 = N->getOperand(0);
799 SDValue Op1 = N->getOperand(1);
800 SDLoc dl(N);
801
802 KnownBits LKnown = CurDAG->computeKnownBits(Op0);
803 KnownBits RKnown = CurDAG->computeKnownBits(Op1);
804
805 unsigned TargetMask = LKnown.Zero.getZExtValue();
806 unsigned InsertMask = RKnown.Zero.getZExtValue();
807
808 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
809 unsigned Op0Opc = Op0.getOpcode();
810 unsigned Op1Opc = Op1.getOpcode();
811 unsigned Value, SH = 0;
812 TargetMask = ~TargetMask;
813 InsertMask = ~InsertMask;
814
815 // If the LHS has a foldable shift and the RHS does not, then swap it to the
816 // RHS so that we can fold the shift into the insert.
817 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
818 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
819 Op0.getOperand(0).getOpcode() == ISD::SRL) {
820 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
821 Op1.getOperand(0).getOpcode() != ISD::SRL) {
822 std::swap(Op0, Op1);
823 std::swap(Op0Opc, Op1Opc);
824 std::swap(TargetMask, InsertMask);
825 }
826 }
827 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
828 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
829 Op1.getOperand(0).getOpcode() != ISD::SRL) {
830 std::swap(Op0, Op1);
831 std::swap(Op0Opc, Op1Opc);
832 std::swap(TargetMask, InsertMask);
833 }
834 }
835
836 unsigned MB, ME;
837 if (isRunOfOnes(InsertMask, MB, ME)) {
838 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
839 isInt32Immediate(Op1.getOperand(1), Value)) {
840 Op1 = Op1.getOperand(0);
841 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
842 }
843 if (Op1Opc == ISD::AND) {
844 // The AND mask might not be a constant, and we need to make sure that
845 // if we're going to fold the masking with the insert, all bits not
846 // know to be zero in the mask are known to be one.
847 KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
848 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
849
850 unsigned SHOpc = Op1.getOperand(0).getOpcode();
851 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
852 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
853 // Note that Value must be in range here (less than 32) because
854 // otherwise there would not be any bits set in InsertMask.
855 Op1 = Op1.getOperand(0).getOperand(0);
856 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
857 }
858 }
859
860 SH &= 31;
861 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
862 getI32Imm(ME, dl) };
863 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
864 return true;
865 }
866 }
867 return false;
868}
869
870static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
871 unsigned MaxTruncation = 0;
872 // Cannot use range-based for loop here as we need the actual use (i.e. we
873 // need the operand number corresponding to the use). A range-based for
874 // will unbox the use and provide an SDNode*.
875 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
876 Use != UseEnd; ++Use) {
877 unsigned Opc =
878 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
879 switch (Opc) {
880 default: return 0;
881 case ISD::TRUNCATE:
882 if (Use->isMachineOpcode())
883 return 0;
884 MaxTruncation =
885 std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
886 continue;
887 case ISD::STORE: {
888 if (Use->isMachineOpcode())
889 return 0;
890 StoreSDNode *STN = cast<StoreSDNode>(*Use);
891 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
892 if (MemVTSize == 64 || Use.getOperandNo() != 0)
893 return 0;
894 MaxTruncation = std::max(MaxTruncation, MemVTSize);
895 continue;
896 }
897 case PPC::STW8:
898 case PPC::STWX8:
899 case PPC::STWU8:
900 case PPC::STWUX8:
901 if (Use.getOperandNo() != 0)
902 return 0;
903 MaxTruncation = std::max(MaxTruncation, 32u);
904 continue;
905 case PPC::STH8:
906 case PPC::STHX8:
907 case PPC::STHU8:
908 case PPC::STHUX8:
909 if (Use.getOperandNo() != 0)
910 return 0;
911 MaxTruncation = std::max(MaxTruncation, 16u);
912 continue;
913 case PPC::STB8:
914 case PPC::STBX8:
915 case PPC::STBU8:
916 case PPC::STBUX8:
917 if (Use.getOperandNo() != 0)
918 return 0;
919 MaxTruncation = std::max(MaxTruncation, 8u);
920 continue;
921 }
922 }
923 return MaxTruncation;
924}
925
926// For any 32 < Num < 64, check if the Imm contains at least Num consecutive
927// zeros and return the number of bits by the left of these consecutive zeros.
928static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
929 unsigned HiTZ = llvm::countr_zero<uint32_t>(Hi_32(Imm));
930 unsigned LoLZ = llvm::countl_zero<uint32_t>(Lo_32(Imm));
931 if ((HiTZ + LoLZ) >= Num)
932 return (32 + HiTZ);
933 return 0;
934}
935
936// Direct materialization of 64-bit constants by enumerated patterns.
937static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
938 uint64_t Imm, unsigned &InstCnt) {
939 unsigned TZ = llvm::countr_zero<uint64_t>(Imm);
940 unsigned LZ = llvm::countl_zero<uint64_t>(Imm);
941 unsigned TO = llvm::countr_one<uint64_t>(Imm);
942 unsigned LO = llvm::countl_one<uint64_t>(Imm);
943 unsigned Hi32 = Hi_32(Imm);
944 unsigned Lo32 = Lo_32(Imm);
945 SDNode *Result = nullptr;
946 unsigned Shift = 0;
947
948 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
949 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
950 };
951
952 // Following patterns use 1 instructions to materialize the Imm.
953 InstCnt = 1;
954 // 1-1) Patterns : {zeros}{15-bit valve}
955 // {ones}{15-bit valve}
956 if (isInt<16>(Imm)) {
957 SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
958 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
959 }
960 // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
961 // {ones}{15-bit valve}{16 zeros}
962 if (TZ > 15 && (LZ > 32 || LO > 32))
963 return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
964 getI32Imm((Imm >> 16) & 0xffff));
965
966 // Following patterns use 2 instructions to materialize the Imm.
967 InstCnt = 2;
968 assert(LZ < 64 && "Unexpected leading zeros here.")(static_cast <bool> (LZ < 64 && "Unexpected leading zeros here."
) ? void (0) : __assert_fail ("LZ < 64 && \"Unexpected leading zeros here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 968, __extension__
__PRETTY_FUNCTION__))
;
969 // Count of ones follwing the leading zeros.
970 unsigned FO = llvm::countl_one<uint64_t>(Imm << LZ);
971 // 2-1) Patterns : {zeros}{31-bit value}
972 // {ones}{31-bit value}
973 if (isInt<32>(Imm)) {
974 uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
975 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
976 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
977 return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
978 getI32Imm(Imm & 0xffff));
979 }
980 // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
981 // {zeros}{15-bit value}{zeros}
982 // {zeros}{ones}{15-bit value}
983 // {ones}{15-bit value}{zeros}
984 // We can take advantage of LI's sign-extension semantics to generate leading
985 // ones, and then use RLDIC to mask off the ones in both sides after rotation.
986 if ((LZ + FO + TZ) > 48) {
987 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
988 getI32Imm((Imm >> TZ) & 0xffff));
989 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
990 getI32Imm(TZ), getI32Imm(LZ));
991 }
992 // 2-3) Pattern : {zeros}{15-bit value}{ones}
993 // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
994 // therefore we can take advantage of LI's sign-extension semantics, and then
995 // mask them off after rotation.
996 //
997 // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+
998 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1|
999 // +------------------------+ +------------------------+
1000 // 63 0 63 0
1001 // Imm (Imm >> (48 - LZ) & 0xffff)
1002 // +----sext-----|--16-bit--+ +clear-|-----------------+
1003 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111|
1004 // +------------------------+ +------------------------+
1005 // 63 0 63 0
1006 // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ
1007 if ((LZ + TO) > 48) {
1008 // Since the immediates with (LZ > 32) have been handled by previous
1009 // patterns, here we have (LZ <= 32) to make sure we will not shift right
1010 // the Imm by a negative value.
1011 assert(LZ <= 32 && "Unexpected shift value.")(static_cast <bool> (LZ <= 32 && "Unexpected shift value."
) ? void (0) : __assert_fail ("LZ <= 32 && \"Unexpected shift value.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1011, __extension__
__PRETTY_FUNCTION__))
;
1012 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1013 getI32Imm((Imm >> (48 - LZ) & 0xffff)));
1014 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1015 getI32Imm(48 - LZ), getI32Imm(LZ));
1016 }
1017 // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
1018 // {ones}{15-bit value}{ones}
1019 // We can take advantage of LI's sign-extension semantics to generate leading
1020 // ones, and then use RLDICL to mask off the ones in left sides (if required)
1021 // after rotation.
1022 //
1023 // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+
1024 // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb|
1025 // +------------------------+ +------------------------+
1026 // 63 0 63 0
1027 // Imm (Imm >> TO) & 0xffff
1028 // +----sext-----|--16-bit--+ +LZ|---------------------+
1029 // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111|
1030 // +------------------------+ +------------------------+
1031 // 63 0 63 0
1032 // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ
1033 if ((LZ + FO + TO) > 48) {
1034 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1035 getI32Imm((Imm >> TO) & 0xffff));
1036 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1037 getI32Imm(TO), getI32Imm(LZ));
1038 }
1039 // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
1040 // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
1041 // value, we can use LI for Lo16 without generating leading ones then add the
1042 // Hi16(in Lo32).
1043 if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
1044 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1045 getI32Imm(Lo32 & 0xffff));
1046 return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
1047 getI32Imm(Lo32 >> 16));
1048 }
1049 // 2-6) Patterns : {******}{49 zeros}{******}
1050 // {******}{49 ones}{******}
1051 // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
1052 // bits remain on both sides. Rotate right the Imm to construct an int<16>
1053 // value, use LI for int<16> value and then use RLDICL without mask to rotate
1054 // it back.
1055 //
1056 // 1) findContiguousZerosAtLeast(Imm, 49)
1057 // +------|--zeros-|------+ +---ones--||---15 bit--+
1058 // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb|
1059 // +----------------------+ +----------------------+
1060 // 63 0 63 0
1061 //
1062 // 2) findContiguousZerosAtLeast(~Imm, 49)
1063 // +------|--ones--|------+ +---ones--||---15 bit--+
1064 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb|
1065 // +----------------------+ +----------------------+
1066 // 63 0 63 0
1067 if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
1068 (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
1069 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1070 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1071 getI32Imm(RotImm & 0xffff));
1072 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1073 getI32Imm(Shift), getI32Imm(0));
1074 }
1075
1076 // Following patterns use 3 instructions to materialize the Imm.
1077 InstCnt = 3;
1078 // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
1079 // {zeros}{31-bit value}{zeros}
1080 // {zeros}{ones}{31-bit value}
1081 // {ones}{31-bit value}{zeros}
1082 // We can take advantage of LIS's sign-extension semantics to generate leading
1083 // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
1084 // ones in both sides after rotation.
1085 if ((LZ + FO + TZ) > 32) {
1086 uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
1087 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1088 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1089 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1090 getI32Imm((Imm >> TZ) & 0xffff));
1091 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1092 getI32Imm(TZ), getI32Imm(LZ));
1093 }
1094 // 3-2) Pattern : {zeros}{31-bit value}{ones}
1095 // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits
1096 // value, therefore we can take advantage of LIS's sign-extension semantics,
1097 // add the remaining bits with ORI, and then mask them off after rotation.
1098 // This is similar to Pattern 2-3, please refer to the diagram there.
1099 if ((LZ + TO) > 32) {
1100 // Since the immediates with (LZ > 32) have been handled by previous
1101 // patterns, here we have (LZ <= 32) to make sure we will not shift right
1102 // the Imm by a negative value.
1103 assert(LZ <= 32 && "Unexpected shift value.")(static_cast <bool> (LZ <= 32 && "Unexpected shift value."
) ? void (0) : __assert_fail ("LZ <= 32 && \"Unexpected shift value.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1103, __extension__
__PRETTY_FUNCTION__))
;
1104 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1105 getI32Imm((Imm >> (48 - LZ)) & 0xffff));
1106 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1107 getI32Imm((Imm >> (32 - LZ)) & 0xffff));
1108 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1109 getI32Imm(32 - LZ), getI32Imm(LZ));
1110 }
1111 // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
1112 // {ones}{31-bit value}{ones}
1113 // We can take advantage of LIS's sign-extension semantics to generate leading
1114 // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
1115 // ones in left sides (if required) after rotation.
1116 // This is similar to Pattern 2-4, please refer to the diagram there.
1117 if ((LZ + FO + TO) > 32) {
1118 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1119 getI32Imm((Imm >> (TO + 16)) & 0xffff));
1120 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1121 getI32Imm((Imm >> TO) & 0xffff));
1122 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1123 getI32Imm(TO), getI32Imm(LZ));
1124 }
1125 // 3-4) Patterns : High word == Low word
1126 if (Hi32 == Lo32) {
1127 // Handle the first 32 bits.
1128 uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
1129 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1130 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1131 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1132 getI32Imm(Lo32 & 0xffff));
1133 // Use rldimi to insert the Low word into High word.
1134 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1135 getI32Imm(0)};
1136 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1137 }
1138 // 3-5) Patterns : {******}{33 zeros}{******}
1139 // {******}{33 ones}{******}
1140 // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
1141 // bits remain on both sides. Rotate right the Imm to construct an int<32>
1142 // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
1143 // rotate it back.
1144 // This is similar to Pattern 2-6, please refer to the diagram there.
1145 if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
1146 (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
1147 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1148 uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
1149 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1150 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1151 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1152 getI32Imm(RotImm & 0xffff));
1153 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1154 getI32Imm(Shift), getI32Imm(0));
1155 }
1156
1157 InstCnt = 0;
1158 return nullptr;
1159}
1160
1161// Try to select instructions to generate a 64 bit immediate using prefix as
1162// well as non prefix instructions. The function will return the SDNode
1163// to materialize that constant or it will return nullptr if it does not
1164// find one. The variable InstCnt is set to the number of instructions that
1165// were selected.
1166static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
1167 uint64_t Imm, unsigned &InstCnt) {
1168 unsigned TZ = llvm::countr_zero<uint64_t>(Imm);
1169 unsigned LZ = llvm::countl_zero<uint64_t>(Imm);
1170 unsigned TO = llvm::countr_one<uint64_t>(Imm);
1171 unsigned FO = llvm::countl_one<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
1172 unsigned Hi32 = Hi_32(Imm);
1173 unsigned Lo32 = Lo_32(Imm);
1174
1175 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1176 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1177 };
1178
1179 auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
1180 return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1181 };
1182
1183 // Following patterns use 1 instruction to materialize Imm.
1184 InstCnt = 1;
1185
1186 // The pli instruction can materialize up to 34 bits directly.
1187 // If a constant fits within 34-bits, emit the pli instruction here directly.
1188 if (isInt<34>(Imm))
1189 return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1190 CurDAG->getTargetConstant(Imm, dl, MVT::i64));
1191
1192 // Require at least two instructions.
1193 InstCnt = 2;
1194 SDNode *Result = nullptr;
1195 // Patterns : {zeros}{ones}{33-bit value}{zeros}
1196 // {zeros}{33-bit value}{zeros}
1197 // {zeros}{ones}{33-bit value}
1198 // {ones}{33-bit value}{zeros}
1199 // We can take advantage of PLI's sign-extension semantics to generate leading
1200 // ones, and then use RLDIC to mask off the ones on both sides after rotation.
1201 if ((LZ + FO + TZ) > 30) {
1202 APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
1203 APInt Extended = SignedInt34.sext(64);
1204 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1205 getI64Imm(*Extended.getRawData()));
1206 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1207 getI32Imm(TZ), getI32Imm(LZ));
1208 }
1209 // Pattern : {zeros}{33-bit value}{ones}
1210 // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
1211 // therefore we can take advantage of PLI's sign-extension semantics, and then
1212 // mask them off after rotation.
1213 //
1214 // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+
1215 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1|
1216 // +------------------------+ +------------------------+
1217 // 63 0 63 0
1218 //
1219 // +----sext-----|--34-bit--+ +clear-|-----------------+
1220 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111|
1221 // +------------------------+ +------------------------+
1222 // 63 0 63 0
1223 if ((LZ + TO) > 30) {
1224 APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
1225 APInt Extended = SignedInt34.sext(64);
1226 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1227 getI64Imm(*Extended.getRawData()));
1228 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1229 getI32Imm(30 - LZ), getI32Imm(LZ));
1230 }
1231 // Patterns : {zeros}{ones}{33-bit value}{ones}
1232 // {ones}{33-bit value}{ones}
1233 // Similar to LI we can take advantage of PLI's sign-extension semantics to
1234 // generate leading ones, and then use RLDICL to mask off the ones in left
1235 // sides (if required) after rotation.
1236 if ((LZ + FO + TO) > 30) {
1237 APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
1238 APInt Extended = SignedInt34.sext(64);
1239 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1240 getI64Imm(*Extended.getRawData()));
1241 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1242 getI32Imm(TO), getI32Imm(LZ));
1243 }
1244 // Patterns : {******}{31 zeros}{******}
1245 // : {******}{31 ones}{******}
1246 // If Imm contains 31 consecutive zeros/ones then the remaining bit count
1247 // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
1248 // for the int<33> value and then use RLDICL without a mask to rotate it back.
1249 //
1250 // +------|--ones--|------+ +---ones--||---33 bit--+
1251 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb|
1252 // +----------------------+ +----------------------+
1253 // 63 0 63 0
1254 for (unsigned Shift = 0; Shift < 63; ++Shift) {
1255 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1256 if (isInt<34>(RotImm)) {
1257 Result =
1258 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
1259 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
1260 SDValue(Result, 0), getI32Imm(Shift),
1261 getI32Imm(0));
1262 }
1263 }
1264
1265 // Patterns : High word == Low word
1266 // This is basically a splat of a 32 bit immediate.
1267 if (Hi32 == Lo32) {
1268 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1269 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1270 getI32Imm(0)};
1271 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1272 }
1273
1274 InstCnt = 3;
1275 // Catch-all
1276 // This pattern can form any 64 bit immediate in 3 instructions.
1277 SDNode *ResultHi =
1278 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1279 SDNode *ResultLo =
1280 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
1281 SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
1282 getI32Imm(0)};
1283 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1284}
1285
1286static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
1287 unsigned *InstCnt = nullptr) {
1288 unsigned InstCntDirect = 0;
1289 // No more than 3 instructions are used if we can select the i64 immediate
1290 // directly.
1291 SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
1292
1293 const PPCSubtarget &Subtarget =
1294 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
1295
1296 // If we have prefixed instructions and there is a chance we can
1297 // materialize the constant with fewer prefixed instructions than
1298 // non-prefixed, try that.
1299 if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
1300 unsigned InstCntDirectP = 0;
1301 SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
1302 // Use the prefix case in either of two cases:
1303 // 1) We have no result from the non-prefix case to use.
1304 // 2) The non-prefix case uses more instructions than the prefix case.
1305 // If the prefix and non-prefix cases use the same number of instructions
1306 // we will prefer the non-prefix case.
1307 if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
1308 if (InstCnt)
1309 *InstCnt = InstCntDirectP;
1310 return ResultP;
1311 }
1312 }
1313
1314 if (Result) {
1315 if (InstCnt)
1316 *InstCnt = InstCntDirect;
1317 return Result;
1318 }
1319 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1320 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1321 };
1322
1323 uint32_t Hi16OfLo32 = (Lo_32(Imm) >> 16) & 0xffff;
1324 uint32_t Lo16OfLo32 = Lo_32(Imm) & 0xffff;
1325
1326 // Try to use 4 instructions to materialize the immediate which is "almost" a
1327 // splat of a 32 bit immediate.
1328 if (Hi16OfLo32 && Lo16OfLo32) {
1329 uint32_t Hi16OfHi32 = (Hi_32(Imm) >> 16) & 0xffff;
1330 uint32_t Lo16OfHi32 = Hi_32(Imm) & 0xffff;
1331 bool IsSelected = false;
1332
1333 auto getSplat = [CurDAG, dl, getI32Imm](uint32_t Hi16, uint32_t Lo16) {
1334 SDNode *Result =
1335 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi16));
1336 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
1337 SDValue(Result, 0), getI32Imm(Lo16));
1338 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1339 getI32Imm(0)};
1340 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1341 };
1342
1343 if (Hi16OfHi32 == Lo16OfHi32 && Lo16OfHi32 == Lo16OfLo32) {
1344 IsSelected = true;
1345 Result = getSplat(Hi16OfLo32, Lo16OfLo32);
1346 // Modify Hi16OfHi32.
1347 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(48),
1348 getI32Imm(0)};
1349 Result = CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1350 } else if (Hi16OfHi32 == Hi16OfLo32 && Hi16OfLo32 == Lo16OfLo32) {
1351 IsSelected = true;
1352 Result = getSplat(Hi16OfHi32, Lo16OfHi32);
1353 // Modify Lo16OfLo32.
1354 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16),
1355 getI32Imm(16), getI32Imm(31)};
1356 Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops);
1357 } else if (Lo16OfHi32 == Lo16OfLo32 && Hi16OfLo32 == Lo16OfLo32) {
1358 IsSelected = true;
1359 Result = getSplat(Hi16OfHi32, Lo16OfHi32);
1360 // Modify Hi16OfLo32.
1361 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16),
1362 getI32Imm(0), getI32Imm(15)};
1363 Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops);
1364 }
1365 if (IsSelected == true) {
1366 if (InstCnt)
1367 *InstCnt = 4;
1368 return Result;
1369 }
1370 }
1371
1372 // Handle the upper 32 bit value.
1373 Result =
1374 selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
1375 // Add in the last bits as required.
1376 if (Hi16OfLo32) {
1377 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
1378 SDValue(Result, 0), getI32Imm(Hi16OfLo32));
1379 ++InstCntDirect;
1380 }
1381 if (Lo16OfLo32) {
1382 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1383 getI32Imm(Lo16OfLo32));
1384 ++InstCntDirect;
1385 }
1386 if (InstCnt)
1387 *InstCnt = InstCntDirect;
1388 return Result;
1389}
1390
1391// Select a 64-bit constant.
1392static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1393 SDLoc dl(N);
1394
1395 // Get 64 bit value.
1396 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1397 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1398 uint64_t SextImm = SignExtend64(Imm, MinSize);
1399 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1400 if (isInt<16>(SextImm))
1401 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1402 }
1403 return selectI64Imm(CurDAG, dl, Imm);
1404}
1405
1406namespace {
1407
1408class BitPermutationSelector {
1409 struct ValueBit {
1410 SDValue V;
1411
1412 // The bit number in the value, using a convention where bit 0 is the
1413 // lowest-order bit.
1414 unsigned Idx;
1415
1416 // ConstZero means a bit we need to mask off.
1417 // Variable is a bit comes from an input variable.
1418 // VariableKnownToBeZero is also a bit comes from an input variable,
1419 // but it is known to be already zero. So we do not need to mask them.
1420 enum Kind {
1421 ConstZero,
1422 Variable,
1423 VariableKnownToBeZero
1424 } K;
1425
1426 ValueBit(SDValue V, unsigned I, Kind K = Variable)
1427 : V(V), Idx(I), K(K) {}
1428 ValueBit(Kind K = Variable) : Idx(UINT32_MAX(4294967295U)), K(K) {}
1429
1430 bool isZero() const {
1431 return K == ConstZero || K == VariableKnownToBeZero;
1432 }
1433
1434 bool hasValue() const {
1435 return K == Variable || K == VariableKnownToBeZero;
1436 }
1437
1438 SDValue getValue() const {
1439 assert(hasValue() && "Cannot get the value of a constant bit")(static_cast <bool> (hasValue() && "Cannot get the value of a constant bit"
) ? void (0) : __assert_fail ("hasValue() && \"Cannot get the value of a constant bit\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1439, __extension__
__PRETTY_FUNCTION__))
;
1440 return V;
1441 }
1442
1443 unsigned getValueBitIndex() const {
1444 assert(hasValue() && "Cannot get the value bit index of a constant bit")(static_cast <bool> (hasValue() && "Cannot get the value bit index of a constant bit"
) ? void (0) : __assert_fail ("hasValue() && \"Cannot get the value bit index of a constant bit\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1444, __extension__
__PRETTY_FUNCTION__))
;
1445 return Idx;
1446 }
1447 };
1448
1449 // A bit group has the same underlying value and the same rotate factor.
1450 struct BitGroup {
1451 SDValue V;
1452 unsigned RLAmt;
1453 unsigned StartIdx, EndIdx;
1454
1455 // This rotation amount assumes that the lower 32 bits of the quantity are
1456 // replicated in the high 32 bits by the rotation operator (which is done
1457 // by rlwinm and friends in 64-bit mode).
1458 bool Repl32;
1459 // Did converting to Repl32 == true change the rotation factor? If it did,
1460 // it decreased it by 32.
1461 bool Repl32CR;
1462 // Was this group coalesced after setting Repl32 to true?
1463 bool Repl32Coalesced;
1464
1465 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1466 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1467 Repl32Coalesced(false) {
1468 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << Rdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tbit group for " << V
.getNode() << " RLAmt = " << R << " [" <<
S << ", " << E << "]\n"; } } while (false)
1469 << " [" << S << ", " << E << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tbit group for " << V
.getNode() << " RLAmt = " << R << " [" <<
S << ", " << E << "]\n"; } } while (false)
;
1470 }
1471 };
1472
1473 // Information on each (Value, RLAmt) pair (like the number of groups
1474 // associated with each) used to choose the lowering method.
1475 struct ValueRotInfo {
1476 SDValue V;
1477 unsigned RLAmt = std::numeric_limits<unsigned>::max();
1478 unsigned NumGroups = 0;
1479 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1480 bool Repl32 = false;
1481
1482 ValueRotInfo() = default;
1483
1484 // For sorting (in reverse order) by NumGroups, and then by
1485 // FirstGroupStartIdx.
1486 bool operator < (const ValueRotInfo &Other) const {
1487 // We need to sort so that the non-Repl32 come first because, when we're
1488 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1489 // masking operation.
1490 if (Repl32 < Other.Repl32)
1491 return true;
1492 else if (Repl32 > Other.Repl32)
1493 return false;
1494 else if (NumGroups > Other.NumGroups)
1495 return true;
1496 else if (NumGroups < Other.NumGroups)
1497 return false;
1498 else if (RLAmt == 0 && Other.RLAmt != 0)
1499 return true;
1500 else if (RLAmt != 0 && Other.RLAmt == 0)
1501 return false;
1502 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1503 return true;
1504 return false;
1505 }
1506 };
1507
1508 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1509 using ValueBitsMemoizer =
1510 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1511 ValueBitsMemoizer Memoizer;
1512
1513 // Return a pair of bool and a SmallVector pointer to a memoization entry.
1514 // The bool is true if something interesting was deduced, otherwise if we're
1515 // providing only a generic representation of V (or something else likewise
1516 // uninteresting for instruction selection) through the SmallVector.
1517 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1518 unsigned NumBits) {
1519 auto &ValueEntry = Memoizer[V];
1520 if (ValueEntry)
1521 return std::make_pair(ValueEntry->first, &ValueEntry->second);
1522 ValueEntry.reset(new ValueBitsMemoizedValue());
1523 bool &Interesting = ValueEntry->first;
1524 SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1525 Bits.resize(NumBits);
1526
1527 switch (V.getOpcode()) {
1528 default: break;
1529 case ISD::ROTL:
1530 if (isa<ConstantSDNode>(V.getOperand(1))) {
1531 unsigned RotAmt = V.getConstantOperandVal(1);
1532
1533 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1534
1535 for (unsigned i = 0; i < NumBits; ++i)
1536 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1537
1538 return std::make_pair(Interesting = true, &Bits);
1539 }
1540 break;
1541 case ISD::SHL:
1542 case PPCISD::SHL:
1543 if (isa<ConstantSDNode>(V.getOperand(1))) {
1544 unsigned ShiftAmt = V.getConstantOperandVal(1);
1545
1546 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1547
1548 for (unsigned i = ShiftAmt; i < NumBits; ++i)
1549 Bits[i] = LHSBits[i - ShiftAmt];
1550
1551 for (unsigned i = 0; i < ShiftAmt; ++i)
1552 Bits[i] = ValueBit(ValueBit::ConstZero);
1553
1554 return std::make_pair(Interesting = true, &Bits);
1555 }
1556 break;
1557 case ISD::SRL:
1558 case PPCISD::SRL:
1559 if (isa<ConstantSDNode>(V.getOperand(1))) {
1560 unsigned ShiftAmt = V.getConstantOperandVal(1);
1561
1562 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1563
1564 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1565 Bits[i] = LHSBits[i + ShiftAmt];
1566
1567 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1568 Bits[i] = ValueBit(ValueBit::ConstZero);
1569
1570 return std::make_pair(Interesting = true, &Bits);
1571 }
1572 break;
1573 case ISD::AND:
1574 if (isa<ConstantSDNode>(V.getOperand(1))) {
1575 uint64_t Mask = V.getConstantOperandVal(1);
1576
1577 const SmallVector<ValueBit, 64> *LHSBits;
1578 // Mark this as interesting, only if the LHS was also interesting. This
1579 // prevents the overall procedure from matching a single immediate 'and'
1580 // (which is non-optimal because such an and might be folded with other
1581 // things if we don't select it here).
1582 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1583
1584 for (unsigned i = 0; i < NumBits; ++i)
1585 if (((Mask >> i) & 1) == 1)
1586 Bits[i] = (*LHSBits)[i];
1587 else {
1588 // AND instruction masks this bit. If the input is already zero,
1589 // we have nothing to do here. Otherwise, make the bit ConstZero.
1590 if ((*LHSBits)[i].isZero())
1591 Bits[i] = (*LHSBits)[i];
1592 else
1593 Bits[i] = ValueBit(ValueBit::ConstZero);
1594 }
1595
1596 return std::make_pair(Interesting, &Bits);
1597 }
1598 break;
1599 case ISD::OR: {
1600 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1601 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1602
1603 bool AllDisjoint = true;
1604 SDValue LastVal = SDValue();
1605 unsigned LastIdx = 0;
1606 for (unsigned i = 0; i < NumBits; ++i) {
1607 if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1608 // If both inputs are known to be zero and one is ConstZero and
1609 // another is VariableKnownToBeZero, we can select whichever
1610 // we like. To minimize the number of bit groups, we select
1611 // VariableKnownToBeZero if this bit is the next bit of the same
1612 // input variable from the previous bit. Otherwise, we select
1613 // ConstZero.
1614 if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1615 LHSBits[i].getValueBitIndex() == LastIdx + 1)
1616 Bits[i] = LHSBits[i];
1617 else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1618 RHSBits[i].getValueBitIndex() == LastIdx + 1)
1619 Bits[i] = RHSBits[i];
1620 else
1621 Bits[i] = ValueBit(ValueBit::ConstZero);
1622 }
1623 else if (LHSBits[i].isZero())
1624 Bits[i] = RHSBits[i];
1625 else if (RHSBits[i].isZero())
1626 Bits[i] = LHSBits[i];
1627 else {
1628 AllDisjoint = false;
1629 break;
1630 }
1631 // We remember the value and bit index of this bit.
1632 if (Bits[i].hasValue()) {
1633 LastVal = Bits[i].getValue();
1634 LastIdx = Bits[i].getValueBitIndex();
1635 }
1636 else {
1637 if (LastVal) LastVal = SDValue();
1638 LastIdx = 0;
1639 }
1640 }
1641
1642 if (!AllDisjoint)
1643 break;
1644
1645 return std::make_pair(Interesting = true, &Bits);
1646 }
1647 case ISD::ZERO_EXTEND: {
1648 // We support only the case with zero extension from i32 to i64 so far.
1649 if (V.getValueType() != MVT::i64 ||
1650 V.getOperand(0).getValueType() != MVT::i32)
1651 break;
1652
1653 const SmallVector<ValueBit, 64> *LHSBits;
1654 const unsigned NumOperandBits = 32;
1655 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1656 NumOperandBits);
1657
1658 for (unsigned i = 0; i < NumOperandBits; ++i)
1659 Bits[i] = (*LHSBits)[i];
1660
1661 for (unsigned i = NumOperandBits; i < NumBits; ++i)
1662 Bits[i] = ValueBit(ValueBit::ConstZero);
1663
1664 return std::make_pair(Interesting, &Bits);
1665 }
1666 case ISD::TRUNCATE: {
1667 EVT FromType = V.getOperand(0).getValueType();
1668 EVT ToType = V.getValueType();
1669 // We support only the case with truncate from i64 to i32.
1670 if (FromType != MVT::i64 || ToType != MVT::i32)
1671 break;
1672 const unsigned NumAllBits = FromType.getSizeInBits();
1673 SmallVector<ValueBit, 64> *InBits;
1674 std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1675 NumAllBits);
1676 const unsigned NumValidBits = ToType.getSizeInBits();
1677
1678 // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1679 // So, we cannot include this truncate.
1680 bool UseUpper32bit = false;
1681 for (unsigned i = 0; i < NumValidBits; ++i)
1682 if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1683 UseUpper32bit = true;
1684 break;
1685 }
1686 if (UseUpper32bit)
1687 break;
1688
1689 for (unsigned i = 0; i < NumValidBits; ++i)
1690 Bits[i] = (*InBits)[i];
1691
1692 return std::make_pair(Interesting, &Bits);
1693 }
1694 case ISD::AssertZext: {
1695 // For AssertZext, we look through the operand and
1696 // mark the bits known to be zero.
1697 const SmallVector<ValueBit, 64> *LHSBits;
1698 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1699 NumBits);
1700
1701 EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1702 const unsigned NumValidBits = FromType.getSizeInBits();
1703 for (unsigned i = 0; i < NumValidBits; ++i)
1704 Bits[i] = (*LHSBits)[i];
1705
1706 // These bits are known to be zero but the AssertZext may be from a value
1707 // that already has some constant zero bits (i.e. from a masking and).
1708 for (unsigned i = NumValidBits; i < NumBits; ++i)
1709 Bits[i] = (*LHSBits)[i].hasValue()
1710 ? ValueBit((*LHSBits)[i].getValue(),
1711 (*LHSBits)[i].getValueBitIndex(),
1712 ValueBit::VariableKnownToBeZero)
1713 : ValueBit(ValueBit::ConstZero);
1714
1715 return std::make_pair(Interesting, &Bits);
1716 }
1717 case ISD::LOAD:
1718 LoadSDNode *LD = cast<LoadSDNode>(V);
1719 if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1720 EVT VT = LD->getMemoryVT();
1721 const unsigned NumValidBits = VT.getSizeInBits();
1722
1723 for (unsigned i = 0; i < NumValidBits; ++i)
1724 Bits[i] = ValueBit(V, i);
1725
1726 // These bits are known to be zero.
1727 for (unsigned i = NumValidBits; i < NumBits; ++i)
1728 Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1729
1730 // Zero-extending load itself cannot be optimized. So, it is not
1731 // interesting by itself though it gives useful information.
1732 return std::make_pair(Interesting = false, &Bits);
1733 }
1734 break;
1735 }
1736
1737 for (unsigned i = 0; i < NumBits; ++i)
1738 Bits[i] = ValueBit(V, i);
1739
1740 return std::make_pair(Interesting = false, &Bits);
1741 }
1742
1743 // For each value (except the constant ones), compute the left-rotate amount
1744 // to get it from its original to final position.
1745 void computeRotationAmounts() {
1746 NeedMask = false;
1747 RLAmt.resize(Bits.size());
1748 for (unsigned i = 0; i < Bits.size(); ++i)
1749 if (Bits[i].hasValue()) {
1750 unsigned VBI = Bits[i].getValueBitIndex();
1751 if (i >= VBI)
1752 RLAmt[i] = i - VBI;
1753 else
1754 RLAmt[i] = Bits.size() - (VBI - i);
1755 } else if (Bits[i].isZero()) {
1756 NeedMask = true;
1757 RLAmt[i] = UINT32_MAX(4294967295U);
1758 } else {
1759 llvm_unreachable("Unknown value bit type")::llvm::llvm_unreachable_internal("Unknown value bit type", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp"
, 1759)
;
1760 }
1761 }
1762
1763 // Collect groups of consecutive bits with the same underlying value and
1764 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1765 // they break up groups.
1766 void collectBitGroups(bool LateMask) {
1767 BitGroups.clear();
1768
1769 unsigned LastRLAmt = RLAmt[0];
1770 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1771 unsigned LastGroupStartIdx = 0;
1772 bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1773 for (unsigned i = 1; i < Bits.size(); ++i) {
1774 unsigned ThisRLAmt = RLAmt[i];
1775 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1776 if (LateMask && !ThisValue) {
1777 ThisValue = LastValue;
1778 ThisRLAmt = LastRLAmt;
1779 // If we're doing late masking, then the first bit group always starts
1780 // at zero (even if the first bits were zero).
1781 if (BitGroups.empty())
1782 LastGroupStartIdx = 0;
1783 }
1784
1785 // If this bit is known to be zero and the current group is a bit group
1786 // of zeros, we do not need to terminate the current bit group even the
1787 // Value or RLAmt does not match here. Instead, we terminate this group
1788 // when the first non-zero bit appears later.
1789 if (IsGroupOfZeros && Bits[i].isZero())
1790 continue;
1791
1792 // If this bit has the same underlying value and the same rotate factor as
1793 // the last one, then they're part of the same group.
1794 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1795 // We cannot continue the current group if this bits is not known to
1796 // be zero in a bit group of zeros.
1797 if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1798 continue;
1799
1800 if (LastValue.getNode())
1801 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1802 i-1));
1803 LastRLAmt = ThisRLAmt;
1804 LastValue = ThisValue;
1805 LastGroupStartIdx = i;
1806 IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1807 }
1808 if (LastValue.getNode())
1809 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1810 Bits.size()-1));
1811
1812 if (BitGroups.empty())
1813 return;
1814
1815 // We might be able to combine the first and last groups.
1816 if (BitGroups.size() > 1) {
1817 // If the first and last groups are the same, then remove the first group
1818 // in favor of the last group, making the ending index of the last group
1819 // equal to the ending index of the to-be-removed first group.
1820 if (BitGroups[0].StartIdx == 0 &&
1821 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1822 BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1823 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1824 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining final bit group with initial one\n"
; } } while (false)
;
1825 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1826 BitGroups.erase(BitGroups.begin());
1827 }
1828 }
1829 }
1830
1831 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1832 // associated with each. If the number of groups are same, we prefer a group
1833 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1834 // instruction. If there is a degeneracy, pick the one that occurs
1835 // first (in the final value).
1836 void collectValueRotInfo() {
1837 ValueRots.clear();
1838
1839 for (auto &BG : BitGroups) {
1840 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1841 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1842 VRI.V = BG.V;
1843 VRI.RLAmt = BG.RLAmt;
1844 VRI.Repl32 = BG.Repl32;
1845 VRI.NumGroups += 1;
1846 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1847 }
1848
1849 // Now that we've collected the various ValueRotInfo instances, we need to
1850 // sort them.
1851 ValueRotsVec.clear();
1852 for (auto &I : ValueRots) {
1853 ValueRotsVec.push_back(I.second);
1854 }
1855 llvm::sort(ValueRotsVec);
1856 }
1857
1858 // In 64-bit mode, rlwinm and friends have a rotation operator that
1859 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1860 // indices of these instructions can only be in the lower 32 bits, so they
1861 // can only represent some 64-bit bit groups. However, when they can be used,
1862 // the 32-bit replication can be used to represent, as a single bit group,
1863 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1864 // groups when possible. Returns true if any of the bit groups were
1865 // converted.
1866 void assignRepl32BitGroups() {
1867 // If we have bits like this:
1868 //
1869 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1870 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1871 // Groups: | RLAmt = 8 | RLAmt = 40 |
1872 //
1873 // But, making use of a 32-bit operation that replicates the low-order 32
1874 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1875 // of 8.
1876
1877 auto IsAllLow32 = [this](BitGroup & BG) {
1878 if (BG.StartIdx <= BG.EndIdx) {
1879 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1880 if (!Bits[i].hasValue())
1881 continue;
1882 if (Bits[i].getValueBitIndex() >= 32)
1883 return false;
1884 }
1885 } else {
1886 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1887 if (!Bits[i].hasValue())
1888 continue;
1889 if (Bits[i].getValueBitIndex() >= 32)
1890 return false;
1891 }
1892 for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1893 if (!Bits[i].hasValue())
1894 continue;
1895 if (Bits[i].getValueBitIndex() >= 32)
1896 return false;
1897 }
1898 }
1899
1900 return true;
1901 };
1902
1903 for (auto &BG : BitGroups) {
1904 // If this bit group has RLAmt of 0 and will not be merged with
1905 // another bit group, we don't benefit from Repl32. We don't mark
1906 // such group to give more freedom for later instruction selection.
1907 if (BG.RLAmt == 0) {
1908 auto PotentiallyMerged = [this](BitGroup & BG) {
1909 for (auto &BG2 : BitGroups)
1910 if (&BG != &BG2 && BG.V == BG2.V &&
1911 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
1912 return true;
1913 return false;
1914 };
1915 if (!PotentiallyMerged(BG))
1916 continue;
1917 }
1918 if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1919 if (IsAllLow32(BG)) {
1920 if (BG.RLAmt >= 32) {
1921 BG.RLAmt -= 32;
1922 BG.Repl32CR = true;
1923 }
1924
1925 BG.Repl32 = true;
1926
1927 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t32-bit replicated bit group for "
<< BG.V.getNode() << " RLAmt = " << BG.RLAmt
<< " [" << BG.StartIdx << ", " << BG
.EndIdx << "]\n"; } } while (false)
1928 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t32-bit replicated bit group for "
<< BG.V.getNode() << " RLAmt = " << BG.RLAmt
<< " [" << BG.StartIdx << ", " << BG
.EndIdx << "]\n"; } } while (false)
1929 << BG.StartIdx << ", " << BG.EndIdx << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t32-bit replicated bit group for "
<< BG.V.getNode() << " RLAmt = " << BG.RLAmt
<< " [" << BG.StartIdx << ", " << BG
.EndIdx << "]\n"; } } while (false)
;
1930 }
1931 }
1932 }
1933
1934 // Now walk through the bit groups, consolidating where possible.
1935 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1936 // We might want to remove this bit group by merging it with the previous
1937 // group (which might be the ending group).
1938 auto IP = (I == BitGroups.begin()) ?
1939 std::prev(BitGroups.end()) : std::prev(I);
1940 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1941 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1942
1943 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for "
<< I->V.getNode() << " RLAmt = " << I->
RLAmt << " [" << I->StartIdx << ", " <<
I->EndIdx << "] with group with range [" << IP
->StartIdx << ", " << IP->EndIdx << "]\n"
; } } while (false)
1944 << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for "
<< I->V.getNode() << " RLAmt = " << I->
RLAmt << " [" << I->StartIdx << ", " <<
I->EndIdx << "] with group with range [" << IP
->StartIdx << ", " << IP->EndIdx << "]\n"
; } } while (false)
1945 << I->StartIdx << ", " << I->EndIdxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for "
<< I->V.getNode() << " RLAmt = " << I->
RLAmt << " [" << I->StartIdx << ", " <<
I->EndIdx << "] with group with range [" << IP
->StartIdx << ", " << IP->EndIdx << "]\n"
; } } while (false)
1946 << "] with group with range [" << IP->StartIdx << ", "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for "
<< I->V.getNode() << " RLAmt = " << I->
RLAmt << " [" << I->StartIdx << ", " <<
I->EndIdx << "] with group with range [" << IP
->StartIdx << ", " << IP->EndIdx << "]\n"
; } } while (false)
1947 << IP->EndIdx << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for "
<< I->V.getNode() << " RLAmt = " << I->
RLAmt << " [" << I->StartIdx << ", " <<
I->EndIdx << "] with group with range [" << IP
->StartIdx << ", " << IP->EndIdx << "]\n"
; } } while (false)
;
1948
1949 IP->EndIdx = I->EndIdx;
1950 IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1951 IP->Repl32Coalesced = true;
1952 I = BitGroups.erase(I);
1953 continue;
1954 } else {
1955 // There is a special case worth handling: If there is a single group
1956 // covering the entire upper 32 bits, and it can be merged with both
1957 // the next and previous groups (which might be the same group), then
1958 // do so. If it is the same group (so there will be only one group in
1959 // total), then we need to reverse the order of the range so that it
1960 // covers the entire 64 bits.
1961 if (I->StartIdx == 32 && I->EndIdx == 63) {
1962 assert(std::next(I) == BitGroups.end() &&(static_cast <bool> (std::next(I) == BitGroups.end() &&
"bit group ends at index 63 but there is another?") ? void (
0) : __assert_fail ("std::next(I) == BitGroups.end() && \"bit group ends at index 63 but there is another?\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1963, __extension__
__PRETTY_FUNCTION__))
1963 "bit group ends at index 63 but there is another?")(static_cast <bool> (std::next(I) == BitGroups.end() &&
"bit group ends at index 63 but there is another?") ? void (
0) : __assert_fail ("std::next(I) == BitGroups.end() && \"bit group ends at index 63 but there is another?\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1963, __extension__
__PRETTY_FUNCTION__))
;
1964 auto IN = BitGroups.begin();
1965
1966 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1967 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1968 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1969 IsAllLow32(*I)) {
1970
1971 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining bit group for " <<
I->V.getNode() << " RLAmt = " << I->RLAmt <<
" [" << I->StartIdx << ", " << I->EndIdx
<< "] with 32-bit replicated groups with ranges [" <<
IP->StartIdx << ", " << IP->EndIdx <<
"] and [" << IN->StartIdx << ", " << IN
->EndIdx << "]\n"; } } while (false)
1972 << " RLAmt = " << I->RLAmt << " [" << I->StartIdxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining bit group for " <<
I->V.getNode() << " RLAmt = " << I->RLAmt <<
" [" << I->StartIdx << ", " << I->EndIdx
<< "] with 32-bit replicated groups with ranges [" <<
IP->StartIdx << ", " << IP->EndIdx <<
"] and [" << IN->StartIdx << ", " << IN
->EndIdx << "]\n"; } } while (false)
1973 << ", " << I->EndIdxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining bit group for " <<
I->V.getNode() << " RLAmt = " << I->RLAmt <<
" [" << I->StartIdx << ", " << I->EndIdx
<< "] with 32-bit replicated groups with ranges [" <<
IP->StartIdx << ", " << IP->EndIdx <<
"] and [" << IN->StartIdx << ", " << IN
->EndIdx << "]\n"; } } while (false)
1974 << "] with 32-bit replicated groups with ranges ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining bit group for " <<
I->V.getNode() << " RLAmt = " << I->RLAmt <<
" [" << I->StartIdx << ", " << I->EndIdx
<< "] with 32-bit replicated groups with ranges [" <<
IP->StartIdx << ", " << IP->EndIdx <<
"] and [" << IN->StartIdx << ", " << IN
->EndIdx << "]\n"; } } while (false)
1975 << IP->StartIdx << ", " << IP->EndIdx << "] and ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining bit group for " <<
I->V.getNode() << " RLAmt = " << I->RLAmt <<
" [" << I->StartIdx << ", " << I->EndIdx
<< "] with 32-bit replicated groups with ranges [" <<
IP->StartIdx << ", " << IP->EndIdx <<
"] and [" << IN->StartIdx << ", " << IN
->EndIdx << "]\n"; } } while (false)
1976 << IN->StartIdx << ", " << IN->EndIdx << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tcombining bit group for " <<
I->V.getNode() << " RLAmt = " << I->RLAmt <<
" [" << I->StartIdx << ", " << I->EndIdx
<< "] with 32-bit replicated groups with ranges [" <<
IP->StartIdx << ", " << IP->EndIdx <<
"] and [" << IN->StartIdx << ", " << IN
->EndIdx << "]\n"; } } while (false)
;
1977
1978 if (IP == IN) {
1979 // There is only one other group; change it to cover the whole
1980 // range (backward, so that it can still be Repl32 but cover the
1981 // whole 64-bit range).
1982 IP->StartIdx = 31;
1983 IP->EndIdx = 30;
1984 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1985 IP->Repl32Coalesced = true;
1986 I = BitGroups.erase(I);
1987 } else {
1988 // There are two separate groups, one before this group and one
1989 // after us (at the beginning). We're going to remove this group,
1990 // but also the group at the very beginning.
1991 IP->EndIdx = IN->EndIdx;
1992 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1993 IP->Repl32Coalesced = true;
1994 I = BitGroups.erase(I);
Value stored to 'I' is never read
1995 BitGroups.erase(BitGroups.begin());
1996 }
1997
1998 // This must be the last group in the vector (and we might have
1999 // just invalidated the iterator above), so break here.
2000 break;
2001 }
2002 }
2003 }
2004
2005 ++I;
2006 }
2007 }
2008
2009 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
2010 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
2011 }
2012
2013 uint64_t getZerosMask() {
2014 uint64_t Mask = 0;
2015 for (unsigned i = 0; i < Bits.size(); ++i) {
2016 if (Bits[i].hasValue())
2017 continue;
2018 Mask |= (UINT64_C(1)1UL << i);
2019 }
2020
2021 return ~Mask;
2022 }
2023
2024 // This method extends an input value to 64 bit if input is 32-bit integer.
2025 // While selecting instructions in BitPermutationSelector in 64-bit mode,
2026 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
2027 // In such case, we extend it to 64 bit to be consistent with other values.
2028 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
2029 if (V.getValueSizeInBits() == 64)
2030 return V;
2031
2032 assert(V.getValueSizeInBits() == 32)(static_cast <bool> (V.getValueSizeInBits() == 32) ? void
(0) : __assert_fail ("V.getValueSizeInBits() == 32", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp"
, 2032, __extension__ __PRETTY_FUNCTION__))
;
2033 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2034 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
2035 MVT::i64), 0);
2036 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
2037 MVT::i64, ImDef, V,
2038 SubRegIdx), 0);
2039 return ExtVal;
2040 }
2041
2042 SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
2043 if (V.getValueSizeInBits() == 32)
2044 return V;
2045
2046 assert(V.getValueSizeInBits() == 64)(static_cast <bool> (V.getValueSizeInBits() == 64) ? void
(0) : __assert_fail ("V.getValueSizeInBits() == 64", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp"
, 2046, __extension__ __PRETTY_FUNCTION__))
;
2047 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2048 SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
2049 MVT::i32, V, SubRegIdx), 0);
2050 return SubVal;
2051 }
2052
2053 // Depending on the number of groups for a particular value, it might be
2054 // better to rotate, mask explicitly (using andi/andis), and then or the
2055 // result. Select this part of the result first.
2056 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2057 if (BPermRewriterNoMasking)
2058 return;
2059
2060 for (ValueRotInfo &VRI : ValueRotsVec) {
2061 unsigned Mask = 0;
2062 for (unsigned i = 0; i < Bits.size(); ++i) {
2063 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
2064 continue;
2065 if (RLAmt[i] != VRI.RLAmt)
2066 continue;
2067 Mask |= (1u << i);
2068 }
2069
2070 // Compute the masks for andi/andis that would be necessary.
2071 unsigned ANDIMask = (Mask & UINT16_MAX(65535)), ANDISMask = Mask >> 16;
2072 assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in mask for value bit groups") ? void (0) : __assert_fail
("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask for value bit groups\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2073, __extension__
__PRETTY_FUNCTION__))
2073 "No set bits in mask for value bit groups")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in mask for value bit groups") ? void (0) : __assert_fail
("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask for value bit groups\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2073, __extension__
__PRETTY_FUNCTION__))
;
2074 bool NeedsRotate = VRI.RLAmt != 0;
2075
2076 // We're trying to minimize the number of instructions. If we have one
2077 // group, using one of andi/andis can break even. If we have three
2078 // groups, we can use both andi and andis and break even (to use both
2079 // andi and andis we also need to or the results together). We need four
2080 // groups if we also need to rotate. To use andi/andis we need to do more
2081 // than break even because rotate-and-mask instructions tend to be easier
2082 // to schedule.
2083
2084 // FIXME: We've biased here against using andi/andis, which is right for
2085 // POWER cores, but not optimal everywhere. For example, on the A2,
2086 // andi/andis have single-cycle latency whereas the rotate-and-mask
2087 // instructions take two cycles, and it would be better to bias toward
2088 // andi/andis in break-even cases.
2089
2090 unsigned NumAndInsts = (unsigned) NeedsRotate +
2091 (unsigned) (ANDIMask != 0) +
2092 (unsigned) (ANDISMask != 0) +
2093 (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
2094 (unsigned) (bool) Res;
2095
2096 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\trotation groups for " <<
VRI.V.getNode() << " RL: " << VRI.RLAmt <<
":" << "\n\t\t\tisel using masking: " << NumAndInsts
<< " using rotates: " << VRI.NumGroups << "\n"
; } } while (false)
2097 << " RL: " << VRI.RLAmt << ":"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\trotation groups for " <<
VRI.V.getNode() << " RL: " << VRI.RLAmt <<
":" << "\n\t\t\tisel using masking: " << NumAndInsts
<< " using rotates: " << VRI.NumGroups << "\n"
; } } while (false)
2098 << "\n\t\t\tisel using masking: " << NumAndInstsdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\trotation groups for " <<
VRI.V.getNode() << " RL: " << VRI.RLAmt <<
":" << "\n\t\t\tisel using masking: " << NumAndInsts
<< " using rotates: " << VRI.NumGroups << "\n"
; } } while (false)
2099 << " using rotates: " << VRI.NumGroups << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\trotation groups for " <<
VRI.V.getNode() << " RL: " << VRI.RLAmt <<
":" << "\n\t\t\tisel using masking: " << NumAndInsts
<< " using rotates: " << VRI.NumGroups << "\n"
; } } while (false)
;
2100
2101 if (NumAndInsts >= VRI.NumGroups)
2102 continue;
2103
2104 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\t\t\tusing masking\n"; } }
while (false)
;
2105
2106 if (InstCnt) *InstCnt += NumAndInsts;
2107
2108 SDValue VRot;
2109 if (VRI.RLAmt) {
2110 SDValue Ops[] =
2111 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2112 getI32Imm(0, dl), getI32Imm(31, dl) };
2113 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2114 Ops), 0);
2115 } else {
2116 VRot = TruncateToInt32(VRI.V, dl);
2117 }
2118
2119 SDValue ANDIVal, ANDISVal;
2120 if (ANDIMask != 0)
2121 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2122 VRot, getI32Imm(ANDIMask, dl)),
2123 0);
2124 if (ANDISMask != 0)
2125 ANDISVal =
2126 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
2127 getI32Imm(ANDISMask, dl)),
2128 0);
2129
2130 SDValue TotalVal;
2131 if (!ANDIVal)
2132 TotalVal = ANDISVal;
2133 else if (!ANDISVal)
2134 TotalVal = ANDIVal;
2135 else
2136 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2137 ANDIVal, ANDISVal), 0);
2138
2139 if (!Res)
2140 Res = TotalVal;
2141 else
2142 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2143 Res, TotalVal), 0);
2144
2145 // Now, remove all groups with this underlying value and rotation
2146 // factor.
2147 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2148 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2149 });
2150 }
2151 }
2152
2153 // Instruction selection for the 32-bit case.
2154 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
2155 SDLoc dl(N);
2156 SDValue Res;
2157
2158 if (InstCnt) *InstCnt = 0;
2159
2160 // Take care of cases that should use andi/andis first.
2161 SelectAndParts32(dl, Res, InstCnt);
2162
2163 // If we've not yet selected a 'starting' instruction, and we have no zeros
2164 // to fill in, select the (Value, RLAmt) with the highest priority (largest
2165 // number of groups), and start with this rotated value.
2166 if ((!NeedMask || LateMask) && !Res) {
2167 ValueRotInfo &VRI = ValueRotsVec[0];
2168 if (VRI.RLAmt) {
2169 if (InstCnt) *InstCnt += 1;
2170 SDValue Ops[] =
2171 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2172 getI32Imm(0, dl), getI32Imm(31, dl) };
2173 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2174 0);
2175 } else {
2176 Res = TruncateToInt32(VRI.V, dl);
2177 }
2178
2179 // Now, remove all groups with this underlying value and rotation factor.
2180 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2181 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2182 });
2183 }
2184
2185 if (InstCnt) *InstCnt += BitGroups.size();
2186
2187 // Insert the other groups (one at a time).
2188 for (auto &BG : BitGroups) {
2189 if (!Res) {
2190 SDValue Ops[] =
2191 { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2192 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2193 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2194 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2195 } else {
2196 SDValue Ops[] =
2197 { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2198 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2199 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2200 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
2201 }
2202 }
2203
2204 if (LateMask) {
2205 unsigned Mask = (unsigned) getZerosMask();
2206
2207 unsigned ANDIMask = (Mask & UINT16_MAX(65535)), ANDISMask = Mask >> 16;
2208 assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in zeros mask?") ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in zeros mask?\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2209, __extension__
__PRETTY_FUNCTION__))
2209 "No set bits in zeros mask?")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in zeros mask?") ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in zeros mask?\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2209, __extension__
__PRETTY_FUNCTION__))
;
2210
2211 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2212 (unsigned) (ANDISMask != 0) +
2213 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2214
2215 SDValue ANDIVal, ANDISVal;
2216 if (ANDIMask != 0)
2217 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2218 Res, getI32Imm(ANDIMask, dl)),
2219 0);
2220 if (ANDISMask != 0)
2221 ANDISVal =
2222 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
2223 getI32Imm(ANDISMask, dl)),
2224 0);
2225
2226 if (!ANDIVal)
2227 Res = ANDISVal;
2228 else if (!ANDISVal)
2229 Res = ANDIVal;
2230 else
2231 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2232 ANDIVal, ANDISVal), 0);
2233 }
2234
2235 return Res.getNode();
2236 }
2237
2238 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
2239 unsigned MaskStart, unsigned MaskEnd,
2240 bool IsIns) {
2241 // In the notation used by the instructions, 'start' and 'end' are reversed
2242 // because bits are counted from high to low order.
2243 unsigned InstMaskStart = 64 - MaskEnd - 1,
2244 InstMaskEnd = 64 - MaskStart - 1;
2245
2246 if (Repl32)
2247 return 1;
2248
2249 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
2250 InstMaskEnd == 63 - RLAmt)
2251 return 1;
2252
2253 return 2;
2254 }
2255
2256 // For 64-bit values, not all combinations of rotates and masks are
2257 // available. Produce one if it is available.
2258 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
2259 bool Repl32, unsigned MaskStart, unsigned MaskEnd,
2260 unsigned *InstCnt = nullptr) {
2261 // In the notation used by the instructions, 'start' and 'end' are reversed
2262 // because bits are counted from high to low order.
2263 unsigned InstMaskStart = 64 - MaskEnd - 1,
2264 InstMaskEnd = 64 - MaskStart - 1;
2265
2266 if (InstCnt) *InstCnt += 1;
2267
2268 if (Repl32) {
2269 // This rotation amount assumes that the lower 32 bits of the quantity
2270 // are replicated in the high 32 bits by the rotation operator (which is
2271 // done by rlwinm and friends).
2272 assert(InstMaskStart >= 32 && "Mask cannot start out of range")(static_cast <bool> (InstMaskStart >= 32 && "Mask cannot start out of range"
) ? void (0) : __assert_fail ("InstMaskStart >= 32 && \"Mask cannot start out of range\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2272, __extension__
__PRETTY_FUNCTION__))
;
2273 assert(InstMaskEnd >= 32 && "Mask cannot end out of range")(static_cast <bool> (InstMaskEnd >= 32 && "Mask cannot end out of range"
) ? void (0) : __assert_fail ("InstMaskEnd >= 32 && \"Mask cannot end out of range\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2273, __extension__
__PRETTY_FUNCTION__))
;
2274 SDValue Ops[] =
2275 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2276 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2277 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
2278 Ops), 0);
2279 }
2280
2281 if (InstMaskEnd == 63) {
2282 SDValue Ops[] =
2283 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2284 getI32Imm(InstMaskStart, dl) };
2285 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
2286 }
2287
2288 if (InstMaskStart == 0) {
2289 SDValue Ops[] =
2290 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2291 getI32Imm(InstMaskEnd, dl) };
2292 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2293 }
2294
2295 if (InstMaskEnd == 63 - RLAmt) {
2296 SDValue Ops[] =
2297 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2298 getI32Imm(InstMaskStart, dl) };
2299 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2300 }
2301
2302 // We cannot do this with a single instruction, so we'll use two. The
2303 // problem is that we're not free to choose both a rotation amount and mask
2304 // start and end independently. We can choose an arbitrary mask start and
2305 // end, but then the rotation amount is fixed. Rotation, however, can be
2306 // inverted, and so by applying an "inverse" rotation first, we can get the
2307 // desired result.
2308 if (InstCnt) *InstCnt += 1;
2309
2310 // The rotation mask for the second instruction must be MaskStart.
2311 unsigned RLAmt2 = MaskStart;
2312 // The first instruction must rotate V so that the overall rotation amount
2313 // is RLAmt.
2314 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2315 if (RLAmt1)
2316 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2317 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2318 }
2319
2320 // For 64-bit values, not all combinations of rotates and masks are
2321 // available. Produce a rotate-mask-and-insert if one is available.
2322 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2323 unsigned RLAmt, bool Repl32, unsigned MaskStart,
2324 unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2325 // In the notation used by the instructions, 'start' and 'end' are reversed
2326 // because bits are counted from high to low order.
2327 unsigned InstMaskStart = 64 - MaskEnd - 1,
2328 InstMaskEnd = 64 - MaskStart - 1;
2329
2330 if (InstCnt) *InstCnt += 1;
2331
2332 if (Repl32) {
2333 // This rotation amount assumes that the lower 32 bits of the quantity
2334 // are replicated in the high 32 bits by the rotation operator (which is
2335 // done by rlwinm and friends).
2336 assert(InstMaskStart >= 32 && "Mask cannot start out of range")(static_cast <bool> (InstMaskStart >= 32 && "Mask cannot start out of range"
) ? void (0) : __assert_fail ("InstMaskStart >= 32 && \"Mask cannot start out of range\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2336, __extension__
__PRETTY_FUNCTION__))
;
2337 assert(InstMaskEnd >= 32 && "Mask cannot end out of range")(static_cast <bool> (InstMaskEnd >= 32 && "Mask cannot end out of range"
) ? void (0) : __assert_fail ("InstMaskEnd >= 32 && \"Mask cannot end out of range\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2337, __extension__
__PRETTY_FUNCTION__))
;
2338 SDValue Ops[] =
2339 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2340 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2341 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2342 Ops), 0);
2343 }
2344
2345 if (InstMaskEnd == 63 - RLAmt) {
2346 SDValue Ops[] =
2347 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2348 getI32Imm(InstMaskStart, dl) };
2349 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2350 }
2351
2352 // We cannot do this with a single instruction, so we'll use two. The
2353 // problem is that we're not free to choose both a rotation amount and mask
2354 // start and end independently. We can choose an arbitrary mask start and
2355 // end, but then the rotation amount is fixed. Rotation, however, can be
2356 // inverted, and so by applying an "inverse" rotation first, we can get the
2357 // desired result.
2358 if (InstCnt) *InstCnt += 1;
2359
2360 // The rotation mask for the second instruction must be MaskStart.
2361 unsigned RLAmt2 = MaskStart;
2362 // The first instruction must rotate V so that the overall rotation amount
2363 // is RLAmt.
2364 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2365 if (RLAmt1)
2366 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2367 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2368 }
2369
2370 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2371 if (BPermRewriterNoMasking)
2372 return;
2373
2374 // The idea here is the same as in the 32-bit version, but with additional
2375 // complications from the fact that Repl32 might be true. Because we
2376 // aggressively convert bit groups to Repl32 form (which, for small
2377 // rotation factors, involves no other change), and then coalesce, it might
2378 // be the case that a single 64-bit masking operation could handle both
2379 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2380 // form allowed coalescing, then we must use a 32-bit rotaton in order to
2381 // completely capture the new combined bit group.
2382
2383 for (ValueRotInfo &VRI : ValueRotsVec) {
2384 uint64_t Mask = 0;
2385
2386 // We need to add to the mask all bits from the associated bit groups.
2387 // If Repl32 is false, we need to add bits from bit groups that have
2388 // Repl32 true, but are trivially convertable to Repl32 false. Such a
2389 // group is trivially convertable if it overlaps only with the lower 32
2390 // bits, and the group has not been coalesced.
2391 auto MatchingBG = [VRI](const BitGroup &BG) {
2392 if (VRI.V != BG.V)
2393 return false;
2394
2395 unsigned EffRLAmt = BG.RLAmt;
2396 if (!VRI.Repl32 && BG.Repl32) {
2397 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2398 !BG.Repl32Coalesced) {
2399 if (BG.Repl32CR)
2400 EffRLAmt += 32;
2401 } else {
2402 return false;
2403 }
2404 } else if (VRI.Repl32 != BG.Repl32) {
2405 return false;
2406 }
2407
2408 return VRI.RLAmt == EffRLAmt;
2409 };
2410
2411 for (auto &BG : BitGroups) {
2412 if (!MatchingBG(BG))
2413 continue;
2414
2415 if (BG.StartIdx <= BG.EndIdx) {
2416 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2417 Mask |= (UINT64_C(1)1UL << i);
2418 } else {
2419 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2420 Mask |= (UINT64_C(1)1UL << i);
2421 for (unsigned i = 0; i <= BG.EndIdx; ++i)
2422 Mask |= (UINT64_C(1)1UL << i);
2423 }
2424 }
2425
2426 // We can use the 32-bit andi/andis technique if the mask does not
2427 // require any higher-order bits. This can save an instruction compared
2428 // to always using the general 64-bit technique.
2429 bool Use32BitInsts = isUInt<32>(Mask);
2430 // Compute the masks for andi/andis that would be necessary.
2431 unsigned ANDIMask = (Mask & UINT16_MAX(65535)),
2432 ANDISMask = (Mask >> 16) & UINT16_MAX(65535);
2433
2434 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2435
2436 unsigned NumAndInsts = (unsigned) NeedsRotate +
2437 (unsigned) (bool) Res;
2438 unsigned NumOfSelectInsts = 0;
2439 selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
2440 assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.")(static_cast <bool> (NumOfSelectInsts > 0 &&
"Failed to select an i64 constant.") ? void (0) : __assert_fail
("NumOfSelectInsts > 0 && \"Failed to select an i64 constant.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2440, __extension__
__PRETTY_FUNCTION__))
;
2441 if (Use32BitInsts)
2442 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2443 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2444 else
2445 NumAndInsts += NumOfSelectInsts + /* and */ 1;
2446
2447 unsigned NumRLInsts = 0;
2448 bool FirstBG = true;
2449 bool MoreBG = false;
2450 for (auto &BG : BitGroups) {
2451 if (!MatchingBG(BG)) {
2452 MoreBG = true;
2453 continue;
2454 }
2455 NumRLInsts +=
2456 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2457 !FirstBG);
2458 FirstBG = false;
2459 }
2460
2461 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\trotation groups for " <<
VRI.V.getNode() << " RL: " << VRI.RLAmt <<
(VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: "
<< NumAndInsts << " using rotates: " << NumRLInsts
<< "\n"; } } while (false)
2462 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\trotation groups for " <<
VRI.V.getNode() << " RL: " << VRI.RLAmt <<
(VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: "
<< NumAndInsts << " using rotates: " << NumRLInsts
<< "\n"; } } while (false)
2463 << "\n\t\t\tisel using masking: " << NumAndInstsdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\trotation groups for " <<
VRI.V.getNode() << " RL: " << VRI.RLAmt <<
(VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: "
<< NumAndInsts << " using rotates: " << NumRLInsts
<< "\n"; } } while (false)
2464 << " using rotates: " << NumRLInsts << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\trotation groups for " <<
VRI.V.getNode() << " RL: " << VRI.RLAmt <<
(VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: "
<< NumAndInsts << " using rotates: " << NumRLInsts
<< "\n"; } } while (false)
;
2465
2466 // When we'd use andi/andis, we bias toward using the rotates (andi only
2467 // has a record form, and is cracked on POWER cores). However, when using
2468 // general 64-bit constant formation, bias toward the constant form,
2469 // because that exposes more opportunities for CSE.
2470 if (NumAndInsts > NumRLInsts)
2471 continue;
2472 // When merging multiple bit groups, instruction or is used.
2473 // But when rotate is used, rldimi can inert the rotated value into any
2474 // register, so instruction or can be avoided.
2475 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2476 continue;
2477
2478 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\t\t\tusing masking\n"; } }
while (false)
;
2479
2480 if (InstCnt) *InstCnt += NumAndInsts;
2481
2482 SDValue VRot;
2483 // We actually need to generate a rotation if we have a non-zero rotation
2484 // factor or, in the Repl32 case, if we care about any of the
2485 // higher-order replicated bits. In the latter case, we generate a mask
2486 // backward so that it actually includes the entire 64 bits.
2487 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2488 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2489 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2490 else
2491 VRot = VRI.V;
2492
2493 SDValue TotalVal;
2494 if (Use32BitInsts) {
2495 assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in mask when using 32-bit ands for 64-bit value"
) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2496, __extension__
__PRETTY_FUNCTION__))
2496 "No set bits in mask when using 32-bit ands for 64-bit value")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in mask when using 32-bit ands for 64-bit value"
) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2496, __extension__
__PRETTY_FUNCTION__))
;
2497
2498 SDValue ANDIVal, ANDISVal;
2499 if (ANDIMask != 0)
2500 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2501 ExtendToInt64(VRot, dl),
2502 getI32Imm(ANDIMask, dl)),
2503 0);
2504 if (ANDISMask != 0)
2505 ANDISVal =
2506 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2507 ExtendToInt64(VRot, dl),
2508 getI32Imm(ANDISMask, dl)),
2509 0);
2510
2511 if (!ANDIVal)
2512 TotalVal = ANDISVal;
2513 else if (!ANDISVal)
2514 TotalVal = ANDIVal;
2515 else
2516 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2517 ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2518 } else {
2519 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2520 TotalVal =
2521 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2522 ExtendToInt64(VRot, dl), TotalVal),
2523 0);
2524 }
2525
2526 if (!Res)
2527 Res = TotalVal;
2528 else
2529 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2530 ExtendToInt64(Res, dl), TotalVal),
2531 0);
2532
2533 // Now, remove all groups with this underlying value and rotation
2534 // factor.
2535 eraseMatchingBitGroups(MatchingBG);
2536 }
2537 }
2538
2539 // Instruction selection for the 64-bit case.
2540 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2541 SDLoc dl(N);
2542 SDValue Res;
2543
2544 if (InstCnt) *InstCnt = 0;
2545
2546 // Take care of cases that should use andi/andis first.
2547 SelectAndParts64(dl, Res, InstCnt);
2548
2549 // If we've not yet selected a 'starting' instruction, and we have no zeros
2550 // to fill in, select the (Value, RLAmt) with the highest priority (largest
2551 // number of groups), and start with this rotated value.
2552 if ((!NeedMask || LateMask) && !Res) {
2553 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2554 // groups will come first, and so the VRI representing the largest number
2555 // of groups might not be first (it might be the first Repl32 groups).
2556 unsigned MaxGroupsIdx = 0;
2557 if (!ValueRotsVec[0].Repl32) {
2558 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2559 if (ValueRotsVec[i].Repl32) {
2560 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2561 MaxGroupsIdx = i;
2562 break;
2563 }
2564 }
2565
2566 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2567 bool NeedsRotate = false;
2568 if (VRI.RLAmt) {
2569 NeedsRotate = true;
2570 } else if (VRI.Repl32) {
2571 for (auto &BG : BitGroups) {
2572 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2573 BG.Repl32 != VRI.Repl32)
2574 continue;
2575
2576 // We don't need a rotate if the bit group is confined to the lower
2577 // 32 bits.
2578 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2579 continue;
2580
2581 NeedsRotate = true;
2582 break;
2583 }
2584 }
2585
2586 if (NeedsRotate)
2587 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2588 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2589 InstCnt);
2590 else
2591 Res = VRI.V;
2592
2593 // Now, remove all groups with this underlying value and rotation factor.
2594 if (Res)
2595 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2596 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2597 BG.Repl32 == VRI.Repl32;
2598 });
2599 }
2600
2601 // Because 64-bit rotates are more flexible than inserts, we might have a
2602 // preference regarding which one we do first (to save one instruction).
2603 if (!Res)
2604 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2605 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2606 false) <
2607 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2608 true)) {
2609 if (I != BitGroups.begin()) {
2610 BitGroup BG = *I;
2611 BitGroups.erase(I);
2612 BitGroups.insert(BitGroups.begin(), BG);
2613 }
2614
2615 break;
2616 }
2617 }
2618
2619 // Insert the other groups (one at a time).
2620 for (auto &BG : BitGroups) {
2621 if (!Res)
2622 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2623 BG.EndIdx, InstCnt);
2624 else
2625 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2626 BG.StartIdx, BG.EndIdx, InstCnt);
2627 }
2628
2629 if (LateMask) {
2630 uint64_t Mask = getZerosMask();
2631
2632 // We can use the 32-bit andi/andis technique if the mask does not
2633 // require any higher-order bits. This can save an instruction compared
2634 // to always using the general 64-bit technique.
2635 bool Use32BitInsts = isUInt<32>(Mask);
2636 // Compute the masks for andi/andis that would be necessary.
2637 unsigned ANDIMask = (Mask & UINT16_MAX(65535)),
2638 ANDISMask = (Mask >> 16) & UINT16_MAX(65535);
2639
2640 if (Use32BitInsts) {
2641 assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in mask when using 32-bit ands for 64-bit value"
) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2642, __extension__
__PRETTY_FUNCTION__))
2642 "No set bits in mask when using 32-bit ands for 64-bit value")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in mask when using 32-bit ands for 64-bit value"
) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2642, __extension__
__PRETTY_FUNCTION__))
;
2643
2644 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2645 (unsigned) (ANDISMask != 0) +
2646 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2647
2648 SDValue ANDIVal, ANDISVal;
2649 if (ANDIMask != 0)
2650 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2651 ExtendToInt64(Res, dl),
2652 getI32Imm(ANDIMask, dl)),
2653 0);
2654 if (ANDISMask != 0)
2655 ANDISVal =
2656 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2657 ExtendToInt64(Res, dl),
2658 getI32Imm(ANDISMask, dl)),
2659 0);
2660
2661 if (!ANDIVal)
2662 Res = ANDISVal;
2663 else if (!ANDISVal)
2664 Res = ANDIVal;
2665 else
2666 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2667 ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2668 } else {
2669 unsigned NumOfSelectInsts = 0;
2670 SDValue MaskVal =
2671 SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
2672 Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2673 ExtendToInt64(Res, dl), MaskVal),
2674 0);
2675 if (InstCnt)
2676 *InstCnt += NumOfSelectInsts + /* and */ 1;
2677 }
2678 }
2679
2680 return Res.getNode();
2681 }
2682
2683 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2684 // Fill in BitGroups.
2685 collectBitGroups(LateMask);
2686 if (BitGroups.empty())
2687 return nullptr;
2688
2689 // For 64-bit values, figure out when we can use 32-bit instructions.
2690 if (Bits.size() == 64)
2691 assignRepl32BitGroups();
2692
2693 // Fill in ValueRotsVec.
2694 collectValueRotInfo();
2695
2696 if (Bits.size() == 32) {
2697 return Select32(N, LateMask, InstCnt);
2698 } else {
2699 assert(Bits.size() == 64 && "Not 64 bits here?")(static_cast <bool> (Bits.size() == 64 && "Not 64 bits here?"
) ? void (0) : __assert_fail ("Bits.size() == 64 && \"Not 64 bits here?\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2699, __extension__
__PRETTY_FUNCTION__))
;
2700 return Select64(N, LateMask, InstCnt);
2701 }
2702
2703 return nullptr;
2704 }
2705
2706 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2707 erase_if(BitGroups, F);
2708 }
2709
2710 SmallVector<ValueBit, 64> Bits;
2711
2712 bool NeedMask = false;
2713 SmallVector<unsigned, 64> RLAmt;
2714
2715 SmallVector<BitGroup, 16> BitGroups;
2716
2717 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2718 SmallVector<ValueRotInfo, 16> ValueRotsVec;
2719
2720 SelectionDAG *CurDAG = nullptr;
2721
2722public:
2723 BitPermutationSelector(SelectionDAG *DAG)
2724 : CurDAG(DAG) {}
2725
2726 // Here we try to match complex bit permutations into a set of
2727 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2728 // known to produce optimal code for common cases (like i32 byte swapping).
2729 SDNode *Select(SDNode *N) {
2730 Memoizer.clear();
2731 auto Result =
2732 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2733 if (!Result.first)
2734 return nullptr;
2735 Bits = std::move(*Result.second);
2736
2737 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "Considering bit-permutation-based instruction"
" selection for: "; } } while (false)
2738 " selection for: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "Considering bit-permutation-based instruction"
" selection for: "; } } while (false)
;
2739 LLVM_DEBUG(N->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { N->dump(CurDAG); } } while (false)
;
2740
2741 // Fill it RLAmt and set NeedMask.
2742 computeRotationAmounts();
2743
2744 if (!NeedMask)
2745 return Select(N, false);
2746
2747 // We currently have two techniques for handling results with zeros: early
2748 // masking (the default) and late masking. Late masking is sometimes more
2749 // efficient, but because the structure of the bit groups is different, it
2750 // is hard to tell without generating both and comparing the results. With
2751 // late masking, we ignore zeros in the resulting value when inserting each
2752 // set of bit groups, and then mask in the zeros at the end. With early
2753 // masking, we only insert the non-zero parts of the result at every step.
2754
2755 unsigned InstCnt = 0, InstCntLateMask = 0;
2756 LLVM_DEBUG(dbgs() << "\tEarly masking:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tEarly masking:\n"; } } while
(false)
;
2757 SDNode *RN = Select(N, false, &InstCnt);
2758 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\tisel would use " <<
InstCnt << " instructions\n"; } } while (false)
;
2759
2760 LLVM_DEBUG(dbgs() << "\tLate masking:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tLate masking:\n"; } } while
(false)
;
2761 SDNode *RNLM = Select(N, true, &InstCntLateMask);
2762 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMaskdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\tisel would use " <<
InstCntLateMask << " instructions\n"; } } while (false
)
2763 << " instructions\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\t\tisel would use " <<
InstCntLateMask << " instructions\n"; } } while (false
)
;
2764
2765 if (InstCnt <= InstCntLateMask) {
2766 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tUsing early-masking for isel\n"
; } } while (false)
;
2767 return RN;
2768 }
2769
2770 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "\tUsing late-masking for isel\n"
; } } while (false)
;
2771 return RNLM;
2772 }
2773};
2774
2775class IntegerCompareEliminator {
2776 SelectionDAG *CurDAG;
2777 PPCDAGToDAGISel *S;
2778 // Conversion type for interpreting results of a 32-bit instruction as
2779 // a 64-bit value or vice versa.
2780 enum ExtOrTruncConversion { Ext, Trunc };
2781
2782 // Modifiers to guide how an ISD::SETCC node's result is to be computed
2783 // in a GPR.
2784 // ZExtOrig - use the original condition code, zero-extend value
2785 // ZExtInvert - invert the condition code, zero-extend value
2786 // SExtOrig - use the original condition code, sign-extend value
2787 // SExtInvert - invert the condition code, sign-extend value
2788 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2789
2790 // Comparisons against zero to emit GPR code sequences for. Each of these
2791 // sequences may need to be emitted for two or more equivalent patterns.
2792 // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2793 // matters as well as the extension type: sext (-1/0), zext (1/0).
2794 // GEZExt - (zext (LHS >= 0))
2795 // GESExt - (sext (LHS >= 0))
2796 // LEZExt - (zext (LHS <= 0))
2797 // LESExt - (sext (LHS <= 0))
2798 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2799
2800 SDNode *tryEXTEND(SDNode *N);
2801 SDNode *tryLogicOpOfCompares(SDNode *N);
2802 SDValue computeLogicOpInGPR(SDValue LogicOp);
2803 SDValue signExtendInputIfNeeded(SDValue Input);
2804 SDValue zeroExtendInputIfNeeded(SDValue Input);
2805 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2806 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2807 ZeroCompare CmpTy);
2808 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2809 int64_t RHSValue, SDLoc dl);
2810 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2811 int64_t RHSValue, SDLoc dl);
2812 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2813 int64_t RHSValue, SDLoc dl);
2814 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2815 int64_t RHSValue, SDLoc dl);
2816 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2817
2818public:
2819 IntegerCompareEliminator(SelectionDAG *DAG,
2820 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2821 assert(CurDAG->getTargetLoweringInfo()(static_cast <bool> (CurDAG->getTargetLoweringInfo()
.getPointerTy(CurDAG->getDataLayout()).getSizeInBits() ==
64 && "Only expecting to use this on 64 bit targets."
) ? void (0) : __assert_fail ("CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && \"Only expecting to use this on 64 bit targets.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2823, __extension__
__PRETTY_FUNCTION__))
2822 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&(static_cast <bool> (CurDAG->getTargetLoweringInfo()
.getPointerTy(CurDAG->getDataLayout()).getSizeInBits() ==
64 && "Only expecting to use this on 64 bit targets."
) ? void (0) : __assert_fail ("CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && \"Only expecting to use this on 64 bit targets.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2823, __extension__
__PRETTY_FUNCTION__))
2823 "Only expecting to use this on 64 bit targets.")(static_cast <bool> (CurDAG->getTargetLoweringInfo()
.getPointerTy(CurDAG->getDataLayout()).getSizeInBits() ==
64 && "Only expecting to use this on 64 bit targets."
) ? void (0) : __assert_fail ("CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && \"Only expecting to use this on 64 bit targets.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2823, __extension__
__PRETTY_FUNCTION__))
;
2824 }
2825 SDNode *Select(SDNode *N) {
2826 if (CmpInGPR == ICGPR_None)
2827 return nullptr;
2828 switch (N->getOpcode()) {
2829 default: break;
2830 case ISD::ZERO_EXTEND:
2831 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2832 CmpInGPR == ICGPR_SextI64)
2833 return nullptr;
2834 [[fallthrough]];
2835 case ISD::SIGN_EXTEND:
2836 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2837 CmpInGPR == ICGPR_ZextI64)
2838 return nullptr;
2839 return tryEXTEND(N);
2840 case ISD::AND:
2841 case ISD::OR:
2842 case ISD::XOR:
2843 return tryLogicOpOfCompares(N);
2844 }
2845 return nullptr;
2846 }
2847};
2848
2849// The obvious case for wanting to keep the value in a GPR. Namely, the
2850// result of the comparison is actually needed in a GPR.
2851SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2852 assert((N->getOpcode() == ISD::ZERO_EXTEND ||(static_cast <bool> ((N->getOpcode() == ISD::ZERO_EXTEND
|| N->getOpcode() == ISD::SIGN_EXTEND) && "Expecting a zero/sign extend node!"
) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && \"Expecting a zero/sign extend node!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2854, __extension__
__PRETTY_FUNCTION__))
2853 N->getOpcode() == ISD::SIGN_EXTEND) &&(static_cast <bool> ((N->getOpcode() == ISD::ZERO_EXTEND
|| N->getOpcode() == ISD::SIGN_EXTEND) && "Expecting a zero/sign extend node!"
) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && \"Expecting a zero/sign extend node!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2854, __extension__
__PRETTY_FUNCTION__))
2854 "Expecting a zero/sign extend node!")(static_cast <bool> ((N->getOpcode() == ISD::ZERO_EXTEND
|| N->getOpcode() == ISD::SIGN_EXTEND) && "Expecting a zero/sign extend node!"
) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && \"Expecting a zero/sign extend node!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2854, __extension__
__PRETTY_FUNCTION__))
;
2855 SDValue WideRes;
2856 // If we are zero-extending the result of a logical operation on i1
2857 // values, we can keep the values in GPRs.
2858 if (ISD::isBitwiseLogicOp(N->getOperand(0).getOpcode()) &&
2859 N->getOperand(0).getValueType() == MVT::i1 &&
2860 N->getOpcode() == ISD::ZERO_EXTEND)
2861 WideRes = computeLogicOpInGPR(N->getOperand(0));
2862 else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2863 return nullptr;
2864 else
2865 WideRes =
2866 getSETCCInGPR(N->getOperand(0),
2867 N->getOpcode() == ISD::SIGN_EXTEND ?
2868 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2869
2870 if (!WideRes)
2871 return nullptr;
2872
2873 SDLoc dl(N);
2874 bool Input32Bit = WideRes.getValueType() == MVT::i32;
2875 bool Output32Bit = N->getValueType(0) == MVT::i32;
2876
2877 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2878 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2879
2880 SDValue ConvOp = WideRes;
2881 if (Input32Bit != Output32Bit)
2882 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2883 ExtOrTruncConversion::Trunc);
2884 return ConvOp.getNode();
2885}
2886
2887// Attempt to perform logical operations on the results of comparisons while
2888// keeping the values in GPRs. Without doing so, these would end up being
2889// lowered to CR-logical operations which suffer from significant latency and
2890// low ILP.
2891SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2892 if (N->getValueType(0) != MVT::i1)
2893 return nullptr;
2894 assert(ISD::isBitwiseLogicOp(N->getOpcode()) &&(static_cast <bool> (ISD::isBitwiseLogicOp(N->getOpcode
()) && "Expected a logic operation on setcc results."
) ? void (0) : __assert_fail ("ISD::isBitwiseLogicOp(N->getOpcode()) && \"Expected a logic operation on setcc results.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2895, __extension__
__PRETTY_FUNCTION__))
2895 "Expected a logic operation on setcc results.")(static_cast <bool> (ISD::isBitwiseLogicOp(N->getOpcode
()) && "Expected a logic operation on setcc results."
) ? void (0) : __assert_fail ("ISD::isBitwiseLogicOp(N->getOpcode()) && \"Expected a logic operation on setcc results.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2895, __extension__
__PRETTY_FUNCTION__))
;
2896 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2897 if (!LoweredLogical)
2898 return nullptr;
2899
2900 SDLoc dl(N);
2901 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2902 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2903 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2904 SDValue LHS = LoweredLogical.getOperand(0);
2905 SDValue RHS = LoweredLogical.getOperand(1);
2906 SDValue WideOp;
2907 SDValue OpToConvToRecForm;
2908
2909 // Look through any 32-bit to 64-bit implicit extend nodes to find the
2910 // opcode that is input to the XORI.
2911 if (IsBitwiseNegate &&
2912 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2913 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2914 else if (IsBitwiseNegate)
2915 // If the input to the XORI isn't an extension, that's what we're after.
2916 OpToConvToRecForm = LoweredLogical.getOperand(0);
2917 else
2918 // If this is not an XORI, it is a reg-reg logical op and we can convert
2919 // it to record-form.
2920 OpToConvToRecForm = LoweredLogical;
2921
2922 // Get the record-form version of the node we're looking to use to get the
2923 // CR result from.
2924 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2925 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2926
2927 // Convert the right node to record-form. This is either the logical we're
2928 // looking at or it is the input node to the negation (if we're looking at
2929 // a bitwise negation).
2930 if (NewOpc != -1 && IsBitwiseNegate) {
2931 // The input to the XORI has a record-form. Use it.
2932 assert(LoweredLogical.getConstantOperandVal(1) == 1 &&(static_cast <bool> (LoweredLogical.getConstantOperandVal
(1) == 1 && "Expected a PPC::XORI8 only for bitwise negation."
) ? void (0) : __assert_fail ("LoweredLogical.getConstantOperandVal(1) == 1 && \"Expected a PPC::XORI8 only for bitwise negation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2933, __extension__
__PRETTY_FUNCTION__))
2933 "Expected a PPC::XORI8 only for bitwise negation.")(static_cast <bool> (LoweredLogical.getConstantOperandVal
(1) == 1 && "Expected a PPC::XORI8 only for bitwise negation."
) ? void (0) : __assert_fail ("LoweredLogical.getConstantOperandVal(1) == 1 && \"Expected a PPC::XORI8 only for bitwise negation.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2933, __extension__
__PRETTY_FUNCTION__))
;
2934 // Emit the record-form instruction.
2935 std::vector<SDValue> Ops;
2936 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2937 Ops.push_back(OpToConvToRecForm.getOperand(i));
2938
2939 WideOp =
2940 SDValue(CurDAG->getMachineNode(NewOpc, dl,
2941 OpToConvToRecForm.getValueType(),
2942 MVT::Glue, Ops), 0);
2943 } else {
2944 assert((NewOpc != -1 || !IsBitwiseNegate) &&(static_cast <bool> ((NewOpc != -1 || !IsBitwiseNegate)
&& "No record form available for AND8/OR8/XOR8?") ? void
(0) : __assert_fail ("(NewOpc != -1 || !IsBitwiseNegate) && \"No record form available for AND8/OR8/XOR8?\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2945, __extension__
__PRETTY_FUNCTION__))
2945 "No record form available for AND8/OR8/XOR8?")(static_cast <bool> ((NewOpc != -1 || !IsBitwiseNegate)
&& "No record form available for AND8/OR8/XOR8?") ? void
(0) : __assert_fail ("(NewOpc != -1 || !IsBitwiseNegate) && \"No record form available for AND8/OR8/XOR8?\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2945, __extension__
__PRETTY_FUNCTION__))
;
2946 WideOp =
2947 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
2948 dl, MVT::i64, MVT::Glue, LHS, RHS),
2949 0);
2950 }
2951
2952 // Select this node to a single bit from CR0 set by the record-form node
2953 // just created. For bitwise negation, use the EQ bit which is the equivalent
2954 // of negating the result (i.e. it is a bit set when the result of the
2955 // operation is zero).
2956 SDValue SRIdxVal =
2957 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2958 SDValue CRBit =
2959 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2960 MVT::i1, CR0Reg, SRIdxVal,
2961 WideOp.getValue(1)), 0);
2962 return CRBit.getNode();
2963}
2964
2965// Lower a logical operation on i1 values into a GPR sequence if possible.
2966// The result can be kept in a GPR if requested.
2967// Three types of inputs can be handled:
2968// - SETCC
2969// - TRUNCATE
2970// - Logical operation (AND/OR/XOR)
2971// There is also a special case that is handled (namely a complement operation
2972// achieved with xor %a, -1).
2973SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2974 assert(ISD::isBitwiseLogicOp(LogicOp.getOpcode()) &&(static_cast <bool> (ISD::isBitwiseLogicOp(LogicOp.getOpcode
()) && "Can only handle logic operations here.") ? void
(0) : __assert_fail ("ISD::isBitwiseLogicOp(LogicOp.getOpcode()) && \"Can only handle logic operations here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2975, __extension__
__PRETTY_FUNCTION__))
2975 "Can only handle logic operations here.")(static_cast <bool> (ISD::isBitwiseLogicOp(LogicOp.getOpcode
()) && "Can only handle logic operations here.") ? void
(0) : __assert_fail ("ISD::isBitwiseLogicOp(LogicOp.getOpcode()) && \"Can only handle logic operations here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2975, __extension__
__PRETTY_FUNCTION__))
;
2976 assert(LogicOp.getValueType() == MVT::i1 &&(static_cast <bool> (LogicOp.getValueType() == MVT::i1 &&
"Can only handle logic operations on i1 values here.") ? void
(0) : __assert_fail ("LogicOp.getValueType() == MVT::i1 && \"Can only handle logic operations on i1 values here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2977, __extension__
__PRETTY_FUNCTION__))
2977 "Can only handle logic operations on i1 values here.")(static_cast <bool> (LogicOp.getValueType() == MVT::i1 &&
"Can only handle logic operations on i1 values here.") ? void
(0) : __assert_fail ("LogicOp.getValueType() == MVT::i1 && \"Can only handle logic operations on i1 values here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2977, __extension__
__PRETTY_FUNCTION__))
;
2978 SDLoc dl(LogicOp);
2979 SDValue LHS, RHS;
2980
2981 // Special case: xor %a, -1
2982 bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2983
2984 // Produces a GPR sequence for each operand of the binary logic operation.
2985 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2986 // the value in a GPR and for logic operations, it will recursively produce
2987 // a GPR sequence for the operation.
2988 auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2989 unsigned OperandOpcode = Operand.getOpcode();
2990 if (OperandOpcode == ISD::SETCC)
2991 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2992 else if (OperandOpcode == ISD::TRUNCATE) {
2993 SDValue InputOp = Operand.getOperand(0);
2994 EVT InVT = InputOp.getValueType();
2995 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2996 PPC::RLDICL, dl, InVT, InputOp,
2997 S->getI64Imm(0, dl),
2998 S->getI64Imm(63, dl)), 0);
2999 } else if (ISD::isBitwiseLogicOp(OperandOpcode))
3000 return computeLogicOpInGPR(Operand);
3001 return SDValue();
3002 };
3003 LHS = getLogicOperand(LogicOp.getOperand(0));
3004 RHS = getLogicOperand(LogicOp.getOperand(1));
3005
3006 // If a GPR sequence can't be produced for the LHS we can't proceed.
3007 // Not producing a GPR sequence for the RHS is only a problem if this isn't
3008 // a bitwise negation operation.
3009 if (!LHS || (!RHS && !IsBitwiseNegation))
3010 return SDValue();
3011
3012 NumLogicOpsOnComparison++;
3013
3014 // We will use the inputs as 64-bit values.
3015 if (LHS.getValueType() == MVT::i32)
3016 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
3017 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
3018 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
3019
3020 unsigned NewOpc;
3021 switch (LogicOp.getOpcode()) {
3022 default: llvm_unreachable("Unknown logic operation.")::llvm::llvm_unreachable_internal("Unknown logic operation.",
"llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3022)
;
3023 case ISD::AND: NewOpc = PPC::AND8; break;
3024 case ISD::OR: NewOpc = PPC::OR8; break;
3025 case ISD::XOR: NewOpc = PPC::XOR8; break;
3026 }
3027
3028 if (IsBitwiseNegation) {
3029 RHS = S->getI64Imm(1, dl);
3030 NewOpc = PPC::XORI8;
3031 }
3032
3033 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
3034
3035}
3036
3037/// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
3038/// Otherwise just reinterpret it as a 64-bit value.
3039/// Useful when emitting comparison code for 32-bit values without using
3040/// the compare instruction (which only considers the lower 32-bits).
3041SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
3042 assert(Input.getValueType() == MVT::i32 &&(static_cast <bool> (Input.getValueType() == MVT::i32 &&
"Can only sign-extend 32-bit values here.") ? void (0) : __assert_fail
("Input.getValueType() == MVT::i32 && \"Can only sign-extend 32-bit values here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3043, __extension__
__PRETTY_FUNCTION__))
3043 "Can only sign-extend 32-bit values here.")(static_cast <bool> (Input.getValueType() == MVT::i32 &&
"Can only sign-extend 32-bit values here.") ? void (0) : __assert_fail
("Input.getValueType() == MVT::i32 && \"Can only sign-extend 32-bit values here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3043, __extension__
__PRETTY_FUNCTION__))
;
3044 unsigned Opc = Input.getOpcode();
3045
3046 // The value was sign extended and then truncated to 32-bits. No need to
3047 // sign extend it again.
3048 if (Opc == ISD::TRUNCATE &&
3049 (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
3050 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
3051 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3052
3053 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3054 // The input is a sign-extending load. All ppc sign-extending loads
3055 // sign-extend to the full 64-bits.
3056 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
3057 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3058
3059 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3060 // We don't sign-extend constants.
3061 if (InputConst)
3062 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3063
3064 SDLoc dl(Input);
3065 SignExtensionsAdded++;
3066 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
3067 MVT::i64, Input), 0);
3068}
3069
3070/// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
3071/// Otherwise just reinterpret it as a 64-bit value.
3072/// Useful when emitting comparison code for 32-bit values without using
3073/// the compare instruction (which only considers the lower 32-bits).
3074SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
3075 assert(Input.getValueType() == MVT::i32 &&(static_cast <bool> (Input.getValueType() == MVT::i32 &&
"Can only zero-extend 32-bit values here.") ? void (0) : __assert_fail
("Input.getValueType() == MVT::i32 && \"Can only zero-extend 32-bit values here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3076, __extension__
__PRETTY_FUNCTION__))
3076 "Can only zero-extend 32-bit values here.")(static_cast <bool> (Input.getValueType() == MVT::i32 &&
"Can only zero-extend 32-bit values here.") ? void (0) : __assert_fail
("Input.getValueType() == MVT::i32 && \"Can only zero-extend 32-bit values here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3076, __extension__
__PRETTY_FUNCTION__))
;
3077 unsigned Opc = Input.getOpcode();
3078
3079 // The only condition under which we can omit the actual extend instruction:
3080 // - The value is a positive constant
3081 // - The value comes from a load that isn't a sign-extending load
3082 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
3083 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
3084 (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
3085 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
3086 if (IsTruncateOfZExt)
3087 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3088
3089 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3090 if (InputConst && InputConst->getSExtValue() >= 0)
3091 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3092
3093 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3094 // The input is a load that doesn't sign-extend (it will be zero-extended).
3095 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
3096 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3097
3098 // None of the above, need to zero-extend.
3099 SDLoc dl(Input);
3100 ZeroExtensionsAdded++;
3101 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
3102 S->getI64Imm(0, dl),
3103 S->getI64Imm(32, dl)), 0);
3104}
3105
3106// Handle a 32-bit value in a 64-bit register and vice-versa. These are of
3107// course not actual zero/sign extensions that will generate machine code,
3108// they're just a way to reinterpret a 32 bit value in a register as a
3109// 64 bit value and vice-versa.
3110SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
3111 ExtOrTruncConversion Conv) {
3112 SDLoc dl(NatWidthRes);
3113
3114 // For reinterpreting 32-bit values as 64 bit values, we generate
3115 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
3116 if (Conv == ExtOrTruncConversion::Ext) {
3117 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
3118 SDValue SubRegIdx =
3119 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3120 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
3121 ImDef, NatWidthRes, SubRegIdx), 0);
3122 }
3123
3124 assert(Conv == ExtOrTruncConversion::Trunc &&(static_cast <bool> (Conv == ExtOrTruncConversion::Trunc
&& "Unknown convertion between 32 and 64 bit values."
) ? void (0) : __assert_fail ("Conv == ExtOrTruncConversion::Trunc && \"Unknown convertion between 32 and 64 bit values.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3125, __extension__
__PRETTY_FUNCTION__))
3125 "Unknown convertion between 32 and 64 bit values.")(static_cast <bool> (Conv == ExtOrTruncConversion::Trunc
&& "Unknown convertion between 32 and 64 bit values."
) ? void (0) : __assert_fail ("Conv == ExtOrTruncConversion::Trunc && \"Unknown convertion between 32 and 64 bit values.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3125, __extension__
__PRETTY_FUNCTION__))
;
3126 // For reinterpreting 64-bit values as 32-bit values, we just need to
3127 // EXTRACT_SUBREG (i.e. extract the low word).
3128 SDValue SubRegIdx =
3129 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3130 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
3131 NatWidthRes, SubRegIdx), 0);
3132}
3133
3134// Produce a GPR sequence for compound comparisons (<=, >=) against zero.
3135// Handle both zero-extensions and sign-extensions.
3136SDValue
3137IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
3138 ZeroCompare CmpTy) {
3139 EVT InVT = LHS.getValueType();
3140 bool Is32Bit = InVT == MVT::i32;
3141 SDValue ToExtend;
3142
3143 // Produce the value that needs to be either zero or sign extended.
3144 switch (CmpTy) {
3145 case ZeroCompare::GEZExt:
3146 case ZeroCompare::GESExt:
3147 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
3148 dl, InVT, LHS, LHS), 0);
3149 break;
3150 case ZeroCompare::LEZExt:
3151 case ZeroCompare::LESExt: {
3152 if (Is32Bit) {
3153 // Upper 32 bits cannot be undefined for this sequence.
3154 LHS = signExtendInputIfNeeded(LHS);
3155 SDValue Neg =
3156 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3157 ToExtend =
3158 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3159 Neg, S->getI64Imm(1, dl),
3160 S->getI64Imm(63, dl)), 0);
3161 } else {
3162 SDValue Addi =
3163 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3164 S->getI64Imm(~0ULL, dl)), 0);
3165 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
3166 Addi, LHS), 0);
3167 }
3168 break;
3169 }
3170 }
3171
3172 // For 64-bit sequences, the extensions are the same for the GE/LE cases.
3173 if (!Is32Bit &&
3174 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
3175 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3176 ToExtend, S->getI64Imm(1, dl),
3177 S->getI64Imm(63, dl)), 0);
3178 if (!Is32Bit &&
3179 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
3180 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
3181 S->getI64Imm(63, dl)), 0);
3182
3183 assert(Is32Bit && "Should have handled the 32-bit sequences above.")(static_cast <bool> (Is32Bit && "Should have handled the 32-bit sequences above."
) ? void (0) : __assert_fail ("Is32Bit && \"Should have handled the 32-bit sequences above.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3183, __extension__
__PRETTY_FUNCTION__))
;
3184 // For 32-bit sequences, the extensions differ between GE/LE cases.
3185 switch (CmpTy) {
3186 case ZeroCompare::GEZExt: {
3187 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3188 S->getI32Imm(31, dl) };
3189 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3190 ShiftOps), 0);
3191 }
3192 case ZeroCompare::GESExt:
3193 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
3194 S->getI32Imm(31, dl)), 0);
3195 case ZeroCompare::LEZExt:
3196 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
3197 S->getI32Imm(1, dl)), 0);
3198 case ZeroCompare::LESExt:
3199 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
3200 S->getI32Imm(-1, dl)), 0);
3201 }
3202
3203 // The above case covers all the enumerators so it can't have a default clause
3204 // to avoid compiler warnings.
3205 llvm_unreachable("Unknown zero-comparison type.")::llvm::llvm_unreachable_internal("Unknown zero-comparison type."
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3205)
;
3206}
3207
3208/// Produces a zero-extended result of comparing two 32-bit values according to
3209/// the passed condition code.
3210SDValue
3211IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
3212 ISD::CondCode CC,
3213 int64_t RHSValue, SDLoc dl) {
3214 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3215 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
3216 return SDValue();
3217 bool IsRHSZero = RHSValue == 0;
3218 bool IsRHSOne = RHSValue == 1;
3219 bool IsRHSNegOne = RHSValue == -1LL;
3220 switch (CC) {
3221 default: return SDValue();
3222 case ISD::SETEQ: {
3223 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
3224 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5)
3225 SDValue Xor = IsRHSZero ? LHS :
3226 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3227 SDValue Clz =
3228 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3229 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3230 S->getI32Imm(31, dl) };
3231 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3232 ShiftOps), 0);
3233 }
3234 case ISD::SETNE: {
3235 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
3236 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1)
3237 SDValue Xor = IsRHSZero ? LHS :
3238 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3239 SDValue Clz =
3240 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3241 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3242 S->getI32Imm(31, dl) };
3243 SDValue Shift =
3244 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3245 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3246 S->getI32Imm(1, dl)), 0);
3247 }
3248 case ISD::SETGE: {
3249 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
3250 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31)
3251 if(IsRHSZero)
3252 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3253
3254 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3255 // by swapping inputs and falling through.
3256 std::swap(LHS, RHS);
3257 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3258 IsRHSZero = RHSConst && RHSConst->isZero();
3259 [[fallthrough]];
3260 }
3261 case ISD::SETLE: {
3262 if (CmpInGPR == ICGPR_NonExtIn)
3263 return SDValue();
3264 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
3265 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1)
3266 if(IsRHSZero) {
3267 if (CmpInGPR == ICGPR_NonExtIn)
3268 return SDValue();
3269 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3270 }
3271
3272 // The upper 32-bits of the register can't be undefined for this sequence.
3273 LHS = signExtendInputIfNeeded(LHS);
3274 RHS = signExtendInputIfNeeded(RHS);
3275 SDValue Sub =
3276 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3277 SDValue Shift =
3278 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
3279 S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
3280 0);
3281 return
3282 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
3283 MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
3284 }
3285 case ISD::SETGT: {
3286 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
3287 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
3288 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63)
3289 // Handle SETLT -1 (which is equivalent to SETGE 0).
3290 if (IsRHSNegOne)
3291 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3292
3293 if (IsRHSZero) {
3294 if (CmpInGPR == ICGPR_NonExtIn)
3295 return SDValue();
3296 // The upper 32-bits of the register can't be undefined for this sequence.
3297 LHS = signExtendInputIfNeeded(LHS);
3298 RHS = signExtendInputIfNeeded(RHS);
3299 SDValue Neg =
3300 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3301 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3302 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3303 }
3304 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3305 // (%b < %a) by swapping inputs and falling through.
3306 std::swap(LHS, RHS);
3307 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3308 IsRHSZero = RHSConst && RHSConst->isZero();
3309 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3310 [[fallthrough]];
3311 }
3312 case ISD::SETLT: {
3313 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3314 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1)
3315 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31)
3316 // Handle SETLT 1 (which is equivalent to SETLE 0).
3317 if (IsRHSOne) {
3318 if (CmpInGPR == ICGPR_NonExtIn)
3319 return SDValue();
3320 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3321 }
3322
3323 if (IsRHSZero) {
3324 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3325 S->getI32Imm(31, dl) };
3326 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3327 ShiftOps), 0);
3328 }
3329
3330 if (CmpInGPR == ICGPR_NonExtIn)
3331 return SDValue();
3332 // The upper 32-bits of the register can't be undefined for this sequence.
3333 LHS = signExtendInputIfNeeded(LHS);
3334 RHS = signExtendInputIfNeeded(RHS);
3335 SDValue SUBFNode =
3336 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3337 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3338 SUBFNode, S->getI64Imm(1, dl),
3339 S->getI64Imm(63, dl)), 0);
3340 }
3341 case ISD::SETUGE:
3342 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3343 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3344 std::swap(LHS, RHS);
3345 [[fallthrough]];
3346 case ISD::SETULE: {
3347 if (CmpInGPR == ICGPR_NonExtIn)
3348 return SDValue();
3349 // The upper 32-bits of the register can't be undefined for this sequence.
3350 LHS = zeroExtendInputIfNeeded(LHS);
3351 RHS = zeroExtendInputIfNeeded(RHS);
3352 SDValue Subtract =
3353 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3354 SDValue SrdiNode =
3355 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3356 Subtract, S->getI64Imm(1, dl),
3357 S->getI64Imm(63, dl)), 0);
3358 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3359 S->getI32Imm(1, dl)), 0);
3360 }
3361 case ISD::SETUGT:
3362 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3363 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3364 std::swap(LHS, RHS);
3365 [[fallthrough]];
3366 case ISD::SETULT: {
3367 if (CmpInGPR == ICGPR_NonExtIn)
3368 return SDValue();
3369 // The upper 32-bits of the register can't be undefined for this sequence.
3370 LHS = zeroExtendInputIfNeeded(LHS);
3371 RHS = zeroExtendInputIfNeeded(RHS);
3372 SDValue Subtract =
3373 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3374 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3375 Subtract, S->getI64Imm(1, dl),
3376 S->getI64Imm(63, dl)), 0);
3377 }
3378 }
3379}
3380
3381/// Produces a sign-extended result of comparing two 32-bit values according to
3382/// the passed condition code.
3383SDValue
3384IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3385 ISD::CondCode CC,
3386 int64_t RHSValue, SDLoc dl) {
3387 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3388 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3389 return SDValue();
3390 bool IsRHSZero = RHSValue == 0;
3391 bool IsRHSOne = RHSValue == 1;
3392 bool IsRHSNegOne = RHSValue == -1LL;
3393
3394 switch (CC) {
3395 default: return SDValue();
3396 case ISD::SETEQ: {
3397 // (sext (setcc %a, %b, seteq)) ->
3398 // (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3399 // (sext (setcc %a, 0, seteq)) ->
3400 // (ashr (shl (ctlz %a), 58), 63)
3401 SDValue CountInput = IsRHSZero ? LHS :
3402 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3403 SDValue Cntlzw =
3404 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3405 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3406 S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3407 SDValue Slwi =
3408 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3409 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3410 }
3411 case ISD::SETNE: {
3412 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3413 // flip the bit, finally take 2's complement.
3414 // (sext (setcc %a, %b, setne)) ->
3415 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3416 // Same as above, but the first xor is not needed.
3417 // (sext (setcc %a, 0, setne)) ->
3418 // (neg (xor (lshr (ctlz %a), 5), 1))
3419 SDValue Xor = IsRHSZero ? LHS :
3420 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3421 SDValue Clz =
3422 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3423 SDValue ShiftOps[] =
3424 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3425 SDValue Shift =
3426 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3427 SDValue Xori =
3428 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3429 S->getI32Imm(1, dl)), 0);
3430 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3431 }
3432 case ISD::SETGE: {
3433 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3434 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31)
3435 if (IsRHSZero)
3436 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3437
3438 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3439 // by swapping inputs and falling through.
3440 std::swap(LHS, RHS);
3441 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3442 IsRHSZero = RHSConst && RHSConst->isZero();
3443 [[fallthrough]];
3444 }
3445 case ISD::SETLE: {
3446 if (CmpInGPR == ICGPR_NonExtIn)
3447 return SDValue();
3448 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3449 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1)
3450 if (IsRHSZero)
3451 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3452
3453 // The upper 32-bits of the register can't be undefined for this sequence.
3454 LHS = signExtendInputIfNeeded(LHS);
3455 RHS = signExtendInputIfNeeded(RHS);
3456 SDValue SUBFNode =
3457 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3458 LHS, RHS), 0);
3459 SDValue Srdi =
3460 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3461 SUBFNode, S->getI64Imm(1, dl),
3462 S->getI64Imm(63, dl)), 0);
3463 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3464 S->getI32Imm(-1, dl)), 0);
3465 }
3466 case ISD::SETGT: {
3467 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3468 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3469 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63)
3470 if (IsRHSNegOne)
3471 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3472 if (IsRHSZero) {
3473 if (CmpInGPR == ICGPR_NonExtIn)
3474 return SDValue();
3475 // The upper 32-bits of the register can't be undefined for this sequence.
3476 LHS = signExtendInputIfNeeded(LHS);
3477 RHS = signExtendInputIfNeeded(RHS);
3478 SDValue Neg =
3479 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3480 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3481 S->getI64Imm(63, dl)), 0);
3482 }
3483 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3484 // (%b < %a) by swapping inputs and falling through.
3485 std::swap(LHS, RHS);
3486 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3487 IsRHSZero = RHSConst && RHSConst->isZero();
3488 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3489 [[fallthrough]];
3490 }
3491 case ISD::SETLT: {
3492 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3493 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1)
3494 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31)
3495 if (IsRHSOne) {
3496 if (CmpInGPR == ICGPR_NonExtIn)
3497 return SDValue();
3498 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3499 }
3500 if (IsRHSZero)
3501 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3502 S->getI32Imm(31, dl)), 0);
3503
3504 if (CmpInGPR == ICGPR_NonExtIn)
3505 return SDValue();
3506 // The upper 32-bits of the register can't be undefined for this sequence.
3507 LHS = signExtendInputIfNeeded(LHS);
3508 RHS = signExtendInputIfNeeded(RHS);
3509 SDValue SUBFNode =
3510 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3511 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3512 SUBFNode, S->getI64Imm(63, dl)), 0);
3513 }
3514 case ISD::SETUGE:
3515 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3516 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3517 std::swap(LHS, RHS);
3518 [[fallthrough]];
3519 case ISD::SETULE: {
3520 if (CmpInGPR == ICGPR_NonExtIn)
3521 return SDValue();
3522 // The upper 32-bits of the register can't be undefined for this sequence.
3523 LHS = zeroExtendInputIfNeeded(LHS);
3524 RHS = zeroExtendInputIfNeeded(RHS);
3525 SDValue Subtract =
3526 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3527 SDValue Shift =
3528 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3529 S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3530 0);
3531 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3532 S->getI32Imm(-1, dl)), 0);
3533 }
3534 case ISD::SETUGT:
3535 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3536 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3537 std::swap(LHS, RHS);
3538 [[fallthrough]];
3539 case ISD::SETULT: {
3540 if (CmpInGPR == ICGPR_NonExtIn)
3541 return SDValue();
3542 // The upper 32-bits of the register can't be undefined for this sequence.
3543 LHS = zeroExtendInputIfNeeded(LHS);
3544 RHS = zeroExtendInputIfNeeded(RHS);
3545 SDValue Subtract =
3546 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3547 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3548 Subtract, S->getI64Imm(63, dl)), 0);
3549 }
3550 }
3551}
3552
3553/// Produces a zero-extended result of comparing two 64-bit values according to
3554/// the passed condition code.
3555SDValue
3556IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3557 ISD::CondCode CC,
3558 int64_t RHSValue, SDLoc dl) {
3559 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3560 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3561 return SDValue();
3562 bool IsRHSZero = RHSValue == 0;
3563 bool IsRHSOne = RHSValue == 1;
3564 bool IsRHSNegOne = RHSValue == -1LL;
3565 switch (CC) {
3566 default: return SDValue();
3567 case ISD::SETEQ: {
3568 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3569 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6)
3570 SDValue Xor = IsRHSZero ? LHS :
3571 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3572 SDValue Clz =
3573 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3574 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3575 S->getI64Imm(58, dl),
3576 S->getI64Imm(63, dl)), 0);
3577 }
3578 case ISD::SETNE: {
3579 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3580 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3581 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3582 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3583 SDValue Xor = IsRHSZero ? LHS :
3584 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3585 SDValue AC =
3586 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3587 Xor, S->getI32Imm(~0U, dl)), 0);
3588 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3589 Xor, AC.getValue(1)), 0);
3590 }
3591 case ISD::SETGE: {
3592 // {subc.reg, subc.CA} = (subcarry %a, %b)
3593 // (zext (setcc %a, %b, setge)) ->
3594 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3595 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3596 if (IsRHSZero)
3597 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3598 std::swap(LHS, RHS);
3599 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3600 IsRHSZero = RHSConst && RHSConst->isZero();
3601 [[fallthrough]];
3602 }
3603 case ISD::SETLE: {
3604 // {subc.reg, subc.CA} = (subcarry %b, %a)
3605 // (zext (setcc %a, %b, setge)) ->
3606 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3607 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3608 if (IsRHSZero)
3609 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3610 SDValue ShiftL =
3611 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3612 S->getI64Imm(1, dl),
3613 S->getI64Imm(63, dl)), 0);
3614 SDValue ShiftR =
3615 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3616 S->getI64Imm(63, dl)), 0);
3617 SDValue SubtractCarry =
3618 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3619 LHS, RHS), 1);
3620 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3621 ShiftR, ShiftL, SubtractCarry), 0);
3622 }
3623 case ISD::SETGT: {
3624 // {subc.reg, subc.CA} = (subcarry %b, %a)
3625 // (zext (setcc %a, %b, setgt)) ->
3626 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3627 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3628 if (IsRHSNegOne)
3629 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3630 if (IsRHSZero) {
3631 SDValue Addi =
3632 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3633 S->getI64Imm(~0ULL, dl)), 0);
3634 SDValue Nor =
3635 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3636 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3637 S->getI64Imm(1, dl),
3638 S->getI64Imm(63, dl)), 0);
3639 }
3640 std::swap(LHS, RHS);
3641 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3642 IsRHSZero = RHSConst && RHSConst->isZero();
3643 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3644 [[fallthrough]];
3645 }
3646 case ISD::SETLT: {
3647 // {subc.reg, subc.CA} = (subcarry %a, %b)
3648 // (zext (setcc %a, %b, setlt)) ->
3649 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3650 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3651 if (IsRHSOne)
3652 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3653 if (IsRHSZero)
3654 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3655 S->getI64Imm(1, dl),
3656 S->getI64Imm(63, dl)), 0);
3657 SDValue SRADINode =
3658 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3659 LHS, S->getI64Imm(63, dl)), 0);
3660 SDValue SRDINode =
3661 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3662 RHS, S->getI64Imm(1, dl),
3663 S->getI64Imm(63, dl)), 0);
3664 SDValue SUBFC8Carry =
3665 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3666 RHS, LHS), 1);
3667 SDValue ADDE8Node =
3668 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3669 SRDINode, SRADINode, SUBFC8Carry), 0);
3670 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3671 ADDE8Node, S->getI64Imm(1, dl)), 0);
3672 }
3673 case ISD::SETUGE:
3674 // {subc.reg, subc.CA} = (subcarry %a, %b)
3675 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3676 std::swap(LHS, RHS);
3677 [[fallthrough]];
3678 case ISD::SETULE: {
3679 // {subc.reg, subc.CA} = (subcarry %b, %a)
3680 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3681 SDValue SUBFC8Carry =
3682 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3683 LHS, RHS), 1);
3684 SDValue SUBFE8Node =
3685 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3686 LHS, LHS, SUBFC8Carry), 0);
3687 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3688 SUBFE8Node, S->getI64Imm(1, dl)), 0);
3689 }
3690 case ISD::SETUGT:
3691 // {subc.reg, subc.CA} = (subcarry %b, %a)
3692 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3693 std::swap(LHS, RHS);
3694 [[fallthrough]];
3695 case ISD::SETULT: {
3696 // {subc.reg, subc.CA} = (subcarry %a, %b)
3697 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3698 SDValue SubtractCarry =
3699 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3700 RHS, LHS), 1);
3701 SDValue ExtSub =
3702 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3703 LHS, LHS, SubtractCarry), 0);
3704 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3705 ExtSub), 0);
3706 }
3707 }
3708}
3709
3710/// Produces a sign-extended result of comparing two 64-bit values according to
3711/// the passed condition code.
3712SDValue
3713IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3714 ISD::CondCode CC,
3715 int64_t RHSValue, SDLoc dl) {
3716 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3717 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3718 return SDValue();
3719 bool IsRHSZero = RHSValue == 0;
3720 bool IsRHSOne = RHSValue == 1;
3721 bool IsRHSNegOne = RHSValue == -1LL;
3722 switch (CC) {
3723 default: return SDValue();
3724 case ISD::SETEQ: {
3725 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3726 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3727 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3728 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3729 SDValue AddInput = IsRHSZero ? LHS :
3730 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3731 SDValue Addic =
3732 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3733 AddInput, S->getI32Imm(~0U, dl)), 0);
3734 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3735 Addic, Addic.getValue(1)), 0);
3736 }
3737 case ISD::SETNE: {
3738 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3739 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3740 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3741 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3742 SDValue Xor = IsRHSZero ? LHS :
3743 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3744 SDValue SC =
3745 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3746 Xor, S->getI32Imm(0, dl)), 0);
3747 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3748 SC, SC.getValue(1)), 0);
3749 }
3750 case ISD::SETGE: {
3751 // {subc.reg, subc.CA} = (subcarry %a, %b)
3752 // (zext (setcc %a, %b, setge)) ->
3753 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3754 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3755 if (IsRHSZero)
3756 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3757 std::swap(LHS, RHS);
3758 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3759 IsRHSZero = RHSConst && RHSConst->isZero();
3760 [[fallthrough]];
3761 }
3762 case ISD::SETLE: {
3763 // {subc.reg, subc.CA} = (subcarry %b, %a)
3764 // (zext (setcc %a, %b, setge)) ->
3765 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3766 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3767 if (IsRHSZero)
3768 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3769 SDValue ShiftR =
3770 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3771 S->getI64Imm(63, dl)), 0);
3772 SDValue ShiftL =
3773 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3774 S->getI64Imm(1, dl),
3775 S->getI64Imm(63, dl)), 0);
3776 SDValue SubtractCarry =
3777 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3778 LHS, RHS), 1);
3779 SDValue Adde =
3780 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3781 ShiftR, ShiftL, SubtractCarry), 0);
3782 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3783 }
3784 case ISD::SETGT: {
3785 // {subc.reg, subc.CA} = (subcarry %b, %a)
3786 // (zext (setcc %a, %b, setgt)) ->
3787 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3788 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3789 if (IsRHSNegOne)
3790 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3791 if (IsRHSZero) {
3792 SDValue Add =
3793 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3794 S->getI64Imm(-1, dl)), 0);
3795 SDValue Nor =
3796 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3797 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3798 S->getI64Imm(63, dl)), 0);
3799 }
3800 std::swap(LHS, RHS);
3801 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3802 IsRHSZero = RHSConst && RHSConst->isZero();
3803 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3804 [[fallthrough]];
3805 }
3806 case ISD::SETLT: {
3807 // {subc.reg, subc.CA} = (subcarry %a, %b)
3808 // (zext (setcc %a, %b, setlt)) ->
3809 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3810 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3811 if (IsRHSOne)
3812 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3813 if (IsRHSZero) {
3814 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3815 S->getI64Imm(63, dl)), 0);
3816 }
3817 SDValue SRADINode =
3818 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3819 LHS, S->getI64Imm(63, dl)), 0);
3820 SDValue SRDINode =
3821 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3822 RHS, S->getI64Imm(1, dl),
3823 S->getI64Imm(63, dl)), 0);
3824 SDValue SUBFC8Carry =
3825 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3826 RHS, LHS), 1);
3827 SDValue ADDE8Node =
3828 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3829 SRDINode, SRADINode, SUBFC8Carry), 0);
3830 SDValue XORI8Node =
3831 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3832 ADDE8Node, S->getI64Imm(1, dl)), 0);
3833 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3834 XORI8Node), 0);
3835 }
3836 case ISD::SETUGE:
3837 // {subc.reg, subc.CA} = (subcarry %a, %b)
3838 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3839 std::swap(LHS, RHS);
3840 [[fallthrough]];
3841 case ISD::SETULE: {
3842 // {subc.reg, subc.CA} = (subcarry %b, %a)
3843 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3844 SDValue SubtractCarry =
3845 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3846 LHS, RHS), 1);
3847 SDValue ExtSub =
3848 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3849 LHS, SubtractCarry), 0);
3850 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3851 ExtSub, ExtSub), 0);
3852 }
3853 case ISD::SETUGT:
3854 // {subc.reg, subc.CA} = (subcarry %b, %a)
3855 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3856 std::swap(LHS, RHS);
3857 [[fallthrough]];
3858 case ISD::SETULT: {
3859 // {subc.reg, subc.CA} = (subcarry %a, %b)
3860 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3861 SDValue SubCarry =
3862 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3863 RHS, LHS), 1);
3864 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3865 LHS, LHS, SubCarry), 0);
3866 }
3867 }
3868}
3869
3870/// Do all uses of this SDValue need the result in a GPR?
3871/// This is meant to be used on values that have type i1 since
3872/// it is somewhat meaningless to ask if values of other types
3873/// should be kept in GPR's.
3874static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3875 assert(Compare.getOpcode() == ISD::SETCC &&(static_cast <bool> (Compare.getOpcode() == ISD::SETCC &&
"An ISD::SETCC node required here.") ? void (0) : __assert_fail
("Compare.getOpcode() == ISD::SETCC && \"An ISD::SETCC node required here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3876, __extension__
__PRETTY_FUNCTION__))
3876 "An ISD::SETCC node required here.")(static_cast <bool> (Compare.getOpcode() == ISD::SETCC &&
"An ISD::SETCC node required here.") ? void (0) : __assert_fail
("Compare.getOpcode() == ISD::SETCC && \"An ISD::SETCC node required here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3876, __extension__
__PRETTY_FUNCTION__))
;
3877
3878 // For values that have a single use, the caller should obviously already have
3879 // checked if that use is an extending use. We check the other uses here.
3880 if (Compare.hasOneUse())
3881 return true;
3882 // We want the value in a GPR if it is being extended, used for a select, or
3883 // used in logical operations.
3884 for (auto *CompareUse : Compare.getNode()->uses())
3885 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3886 CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3887 CompareUse->getOpcode() != ISD::SELECT &&
3888 !ISD::isBitwiseLogicOp(CompareUse->getOpcode())) {
3889 OmittedForNonExtendUses++;
3890 return false;
3891 }
3892 return true;
3893}
3894
3895/// Returns an equivalent of a SETCC node but with the result the same width as
3896/// the inputs. This can also be used for SELECT_CC if either the true or false
3897/// values is a power of two while the other is zero.
3898SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3899 SetccInGPROpts ConvOpts) {
3900 assert((Compare.getOpcode() == ISD::SETCC ||(static_cast <bool> ((Compare.getOpcode() == ISD::SETCC
|| Compare.getOpcode() == ISD::SELECT_CC) && "An ISD::SETCC node required here."
) ? void (0) : __assert_fail ("(Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && \"An ISD::SETCC node required here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3902, __extension__
__PRETTY_FUNCTION__))
3901 Compare.getOpcode() == ISD::SELECT_CC) &&(static_cast <bool> ((Compare.getOpcode() == ISD::SETCC
|| Compare.getOpcode() == ISD::SELECT_CC) && "An ISD::SETCC node required here."
) ? void (0) : __assert_fail ("(Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && \"An ISD::SETCC node required here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3902, __extension__
__PRETTY_FUNCTION__))
3902 "An ISD::SETCC node required here.")(static_cast <bool> ((Compare.getOpcode() == ISD::SETCC
|| Compare.getOpcode() == ISD::SELECT_CC) && "An ISD::SETCC node required here."
) ? void (0) : __assert_fail ("(Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && \"An ISD::SETCC node required here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3902, __extension__
__PRETTY_FUNCTION__))
;
3903
3904 // Don't convert this comparison to a GPR sequence because there are uses
3905 // of the i1 result (i.e. uses that require the result in the CR).
3906 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3907 return SDValue();
3908
3909 SDValue LHS = Compare.getOperand(0);
3910 SDValue RHS = Compare.getOperand(1);
3911
3912 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3913 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3914 ISD::CondCode CC =
3915 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3916 EVT InputVT = LHS.getValueType();
3917 if (InputVT != MVT::i32 && InputVT != MVT::i64)
3918 return SDValue();
3919
3920 if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3921 ConvOpts == SetccInGPROpts::SExtInvert)
3922 CC = ISD::getSetCCInverse(CC, InputVT);
3923
3924 bool Inputs32Bit = InputVT == MVT::i32;
3925
3926 SDLoc dl(Compare);
3927 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3928 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX(9223372036854775807L);
3929 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3930 ConvOpts == SetccInGPROpts::SExtInvert;
3931
3932 if (IsSext && Inputs32Bit)
3933 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3934 else if (Inputs32Bit)
3935 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3936 else if (IsSext)
3937 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3938 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3939}
3940
3941} // end anonymous namespace
3942
3943bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3944 if (N->getValueType(0) != MVT::i32 &&
3945 N->getValueType(0) != MVT::i64)
3946 return false;
3947
3948 // This optimization will emit code that assumes 64-bit registers
3949 // so we don't want to run it in 32-bit mode. Also don't run it
3950 // on functions that are not to be optimized.
3951 if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3952 return false;
3953
3954 // For POWER10, it is more profitable to use the set boolean extension
3955 // instructions rather than the integer compare elimination codegen.
3956 // Users can override this via the command line option, `--ppc-gpr-icmps`.
3957 if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
3958 return false;
3959
3960 switch (N->getOpcode()) {
3961 default: break;
3962 case ISD::ZERO_EXTEND:
3963 case ISD::SIGN_EXTEND:
3964 case ISD::AND:
3965 case ISD::OR:
3966 case ISD::XOR: {
3967 IntegerCompareEliminator ICmpElim(CurDAG, this);
3968 if (SDNode *New = ICmpElim.Select(N)) {
3969 ReplaceNode(N, New);
3970 return true;
3971 }
3972 }
3973 }
3974 return false;
3975}
3976
3977bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3978 if (N->getValueType(0) != MVT::i32 &&
3979 N->getValueType(0) != MVT::i64)
3980 return false;
3981
3982 if (!UseBitPermRewriter)
3983 return false;
3984
3985 switch (N->getOpcode()) {
3986 default: break;
3987 case ISD::SRL:
3988 // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that
3989 // uses the BRH instruction.
3990 if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 &&
3991 N->getOperand(0).getOpcode() == ISD::BSWAP) {
3992 auto &OpRight = N->getOperand(1);
3993 ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight);
3994 if (SRLConst && SRLConst->getSExtValue() == 16)
3995 return false;
3996 }
3997 LLVM_FALLTHROUGH[[fallthrough]];
3998 case ISD::ROTL:
3999 case ISD::SHL:
4000 case ISD::AND:
4001 case ISD::OR: {
4002 BitPermutationSelector BPS(CurDAG);
4003 if (SDNode *New = BPS.Select(N)) {
4004 ReplaceNode(N, New);
4005 return true;
4006 }
4007 return false;
4008 }
4009 }
4010
4011 return false;
4012}
4013
4014/// SelectCC - Select a comparison of the specified values with the specified
4015/// condition code, returning the CR# of the expression.
4016SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4017 const SDLoc &dl, SDValue Chain) {
4018 // Always select the LHS.
4019 unsigned Opc;
4020
4021 if (LHS.getValueType() == MVT::i32) {
4022 unsigned Imm;
4023 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4024 if (isInt32Immediate(RHS, Imm)) {
4025 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4026 if (isUInt<16>(Imm))
4027 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4028 getI32Imm(Imm & 0xFFFF, dl)),
4029 0);
4030 // If this is a 16-bit signed immediate, fold it.
4031 if (isInt<16>((int)Imm))
4032 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4033 getI32Imm(Imm & 0xFFFF, dl)),
4034 0);
4035
4036 // For non-equality comparisons, the default code would materialize the
4037 // constant, then compare against it, like this:
4038 // lis r2, 4660
4039 // ori r2, r2, 22136
4040 // cmpw cr0, r3, r2
4041 // Since we are just comparing for equality, we can emit this instead:
4042 // xoris r0,r3,0x1234
4043 // cmplwi cr0,r0,0x5678
4044 // beq cr0,L6
4045 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
4046 getI32Imm(Imm >> 16, dl)), 0);
4047 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
4048 getI32Imm(Imm & 0xFFFF, dl)), 0);
4049 }
4050 Opc = PPC::CMPLW;
4051 } else if (ISD::isUnsignedIntSetCC(CC)) {
4052 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
4053 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4054 getI32Imm(Imm & 0xFFFF, dl)), 0);
4055 Opc = PPC::CMPLW;
4056 } else {
4057 int16_t SImm;
4058 if (isIntS16Immediate(RHS, SImm))
4059 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4060 getI32Imm((int)SImm & 0xFFFF,
4061 dl)),
4062 0);
4063 Opc = PPC::CMPW;
4064 }
4065 } else if (LHS.getValueType() == MVT::i64) {
4066 uint64_t Imm;
4067 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4068 if (isInt64Immediate(RHS.getNode(), Imm)) {
4069 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4070 if (isUInt<16>(Imm))
4071 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4072 getI32Imm(Imm & 0xFFFF, dl)),
4073 0);
4074 // If this is a 16-bit signed immediate, fold it.
4075 if (isInt<16>(Imm))
4076 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4077 getI32Imm(Imm & 0xFFFF, dl)),
4078 0);
4079
4080 // For non-equality comparisons, the default code would materialize the
4081 // constant, then compare against it, like this:
4082 // lis r2, 4660
4083 // ori r2, r2, 22136
4084 // cmpd cr0, r3, r2
4085 // Since we are just comparing for equality, we can emit this instead:
4086 // xoris r0,r3,0x1234
4087 // cmpldi cr0,r0,0x5678
4088 // beq cr0,L6
4089 if (isUInt<32>(Imm)) {
4090 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
4091 getI64Imm(Imm >> 16, dl)), 0);
4092 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
4093 getI64Imm(Imm & 0xFFFF, dl)),
4094 0);
4095 }
4096 }
4097 Opc = PPC::CMPLD;
4098 } else if (ISD::isUnsignedIntSetCC(CC)) {
4099 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
4100 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4101 getI64Imm(Imm & 0xFFFF, dl)), 0);
4102 Opc = PPC::CMPLD;
4103 } else {
4104 int16_t SImm;
4105 if (isIntS16Immediate(RHS, SImm))
4106 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4107 getI64Imm(SImm & 0xFFFF, dl)),
4108 0);
4109 Opc = PPC::CMPD;
4110 }
4111 } else if (LHS.getValueType() == MVT::f32) {
4112 if (Subtarget->hasSPE()) {
4113 switch (CC) {
4114 default:
4115 case ISD::SETEQ:
4116 case ISD::SETNE:
4117 Opc = PPC::EFSCMPEQ;
4118 break;
4119 case ISD::SETLT:
4120 case ISD::SETGE:
4121 case ISD::SETOLT:
4122 case ISD::SETOGE:
4123 case ISD::SETULT:
4124 case ISD::SETUGE:
4125 Opc = PPC::EFSCMPLT;
4126 break;
4127 case ISD::SETGT:
4128 case ISD::SETLE:
4129 case ISD::SETOGT:
4130 case ISD::SETOLE:
4131 case ISD::SETUGT:
4132 case ISD::SETULE:
4133 Opc = PPC::EFSCMPGT;
4134 break;
4135 }
4136 } else
4137 Opc = PPC::FCMPUS;
4138 } else if (LHS.getValueType() == MVT::f64) {
4139 if (Subtarget->hasSPE()) {
4140 switch (CC) {
4141 default:
4142 case ISD::SETEQ:
4143 case ISD::SETNE:
4144 Opc = PPC::EFDCMPEQ;
4145 break;
4146 case ISD::SETLT:
4147 case ISD::SETGE:
4148 case ISD::SETOLT:
4149 case ISD::SETOGE:
4150 case ISD::SETULT:
4151 case ISD::SETUGE:
4152 Opc = PPC::EFDCMPLT;
4153 break;
4154 case ISD::SETGT:
4155 case ISD::SETLE:
4156 case ISD::SETOGT:
4157 case ISD::SETOLE:
4158 case ISD::SETUGT:
4159 case ISD::SETULE:
4160 Opc = PPC::EFDCMPGT;
4161 break;
4162 }
4163 } else
4164 Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
4165 } else {
4166 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!")(static_cast <bool> (LHS.getValueType() == MVT::f128 &&
"Unknown vt!") ? void (0) : __assert_fail ("LHS.getValueType() == MVT::f128 && \"Unknown vt!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4166, __extension__
__PRETTY_FUNCTION__))
;
4167 assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector")(static_cast <bool> (Subtarget->hasP9Vector() &&
"XSCMPUQP requires Power9 Vector") ? void (0) : __assert_fail
("Subtarget->hasP9Vector() && \"XSCMPUQP requires Power9 Vector\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4167, __extension__
__PRETTY_FUNCTION__))
;
4168 Opc = PPC::XSCMPUQP;
4169 }
4170 if (Chain)
4171 return SDValue(
4172 CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
4173 0);
4174 else
4175 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
4176}
4177
4178static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
4179 const PPCSubtarget *Subtarget) {
4180 // For SPE instructions, the result is in GT bit of the CR
4181 bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
4182
4183 switch (CC) {
4184 case ISD::SETUEQ:
4185 case ISD::SETONE:
4186 case ISD::SETOLE:
4187 case ISD::SETOGE:
4188 llvm_unreachable("Should be lowered by legalize!")::llvm::llvm_unreachable_internal("Should be lowered by legalize!"
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4188)
;
4189 default: llvm_unreachable("Unknown condition!")::llvm::llvm_unreachable_internal("Unknown condition!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp"
, 4189)
;
4190 case ISD::SETOEQ:
4191 case ISD::SETEQ:
4192 return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
4193 case ISD::SETUNE:
4194 case ISD::SETNE:
4195 return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
4196 case ISD::SETOLT:
4197 case ISD::SETLT:
4198 return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
4199 case ISD::SETULE:
4200 case ISD::SETLE:
4201 return PPC::PRED_LE;
4202 case ISD::SETOGT:
4203 case ISD::SETGT:
4204 return PPC::PRED_GT;
4205 case ISD::SETUGE:
4206 case ISD::SETGE:
4207 return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
4208 case ISD::SETO: return PPC::PRED_NU;
4209 case ISD::SETUO: return PPC::PRED_UN;
4210 // These two are invalid for floating point. Assume we have int.
4211 case ISD::SETULT: return PPC::PRED_LT;
4212 case ISD::SETUGT: return PPC::PRED_GT;
4213 }
4214}
4215
4216/// getCRIdxForSetCC - Return the index of the condition register field
4217/// associated with the SetCC condition, and whether or not the field is
4218/// treated as inverted. That is, lt = 0; ge = 0 inverted.
4219static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
4220 Invert = false;
4221 switch (CC) {
4222 default: llvm_unreachable("Unknown condition!")::llvm::llvm_unreachable_internal("Unknown condition!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp"
, 4222)
;
4223 case ISD::SETOLT:
4224 case ISD::SETLT: return 0; // Bit #0 = SETOLT
4225 case ISD::SETOGT:
4226 case ISD::SETGT: return 1; // Bit #1 = SETOGT
4227 case ISD::SETOEQ:
4228 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
4229 case ISD::SETUO: return 3; // Bit #3 = SETUO
4230 case ISD::SETUGE:
4231 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
4232 case ISD::SETULE:
4233 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
4234 case ISD::SETUNE:
4235 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
4236 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
4237 case ISD::SETUEQ:
4238 case ISD::SETOGE:
4239 case ISD::SETOLE:
4240 case ISD::SETONE:
4241 llvm_unreachable("Invalid branch code: should be expanded by legalize")::llvm::llvm_unreachable_internal("Invalid branch code: should be expanded by legalize"
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4241)
;
4242 // These are invalid for floating point. Assume integer.
4243 case ISD::SETULT: return 0;
4244 case ISD::SETUGT: return 1;
4245 }
4246}
4247
4248// getVCmpInst: return the vector compare instruction for the specified
4249// vector type and condition code. Since this is for altivec specific code,
4250// only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
4251// and v4f32).
4252static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
4253 bool HasVSX, bool &Swap, bool &Negate) {
4254 Swap = false;
4255 Negate = false;
4256
4257 if (VecVT.isFloatingPoint()) {
4258 /* Handle some cases by swapping input operands. */
4259 switch (CC) {
4260 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
4261 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4262 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
4263 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
4264 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4265 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
4266 default: break;
4267 }
4268 /* Handle some cases by negating the result. */
4269 switch (CC) {
4270 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4271 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
4272 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
4273 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
4274 default: break;
4275 }
4276 /* We have instructions implementing the remaining cases. */
4277 switch (CC) {
4278 case ISD::SETEQ:
4279 case ISD::SETOEQ:
4280 if (VecVT == MVT::v4f32)
4281 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
4282 else if (VecVT == MVT::v2f64)
4283 return PPC::XVCMPEQDP;
4284 break;
4285 case ISD::SETGT:
4286 case ISD::SETOGT:
4287 if (VecVT == MVT::v4f32)
4288 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
4289 else if (VecVT == MVT::v2f64)
4290 return PPC::XVCMPGTDP;
4291 break;
4292 case ISD::SETGE:
4293 case ISD::SETOGE:
4294 if (VecVT == MVT::v4f32)
4295 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
4296 else if (VecVT == MVT::v2f64)
4297 return PPC::XVCMPGEDP;
4298 break;
4299 default:
4300 break;
4301 }
4302 llvm_unreachable("Invalid floating-point vector compare condition")::llvm::llvm_unreachable_internal("Invalid floating-point vector compare condition"
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4302)
;
4303 } else {
4304 /* Handle some cases by swapping input operands. */
4305 switch (CC) {
4306 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
4307 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4308 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4309 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
4310 default: break;
4311 }
4312 /* Handle some cases by negating the result. */
4313 switch (CC) {
4314 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4315 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
4316 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4317 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4318 default: break;
4319 }
4320 /* We have instructions implementing the remaining cases. */
4321 switch (CC) {
4322 case ISD::SETEQ:
4323 case ISD::SETUEQ:
4324 if (VecVT == MVT::v16i8)
4325 return PPC::VCMPEQUB;
4326 else if (VecVT == MVT::v8i16)
4327 return PPC::VCMPEQUH;
4328 else if (VecVT == MVT::v4i32)
4329 return PPC::VCMPEQUW;
4330 else if (VecVT == MVT::v2i64)
4331 return PPC::VCMPEQUD;
4332 else if (VecVT == MVT::v1i128)
4333 return PPC::VCMPEQUQ;
4334 break;
4335 case ISD::SETGT:
4336 if (VecVT == MVT::v16i8)
4337 return PPC::VCMPGTSB;
4338 else if (VecVT == MVT::v8i16)
4339 return PPC::VCMPGTSH;
4340 else if (VecVT == MVT::v4i32)
4341 return PPC::VCMPGTSW;
4342 else if (VecVT == MVT::v2i64)
4343 return PPC::VCMPGTSD;
4344 else if (VecVT == MVT::v1i128)
4345 return PPC::VCMPGTSQ;
4346 break;
4347 case ISD::SETUGT:
4348 if (VecVT == MVT::v16i8)
4349 return PPC::VCMPGTUB;
4350 else if (VecVT == MVT::v8i16)
4351 return PPC::VCMPGTUH;
4352 else if (VecVT == MVT::v4i32)
4353 return PPC::VCMPGTUW;
4354 else if (VecVT == MVT::v2i64)
4355 return PPC::VCMPGTUD;
4356 else if (VecVT == MVT::v1i128)
4357 return PPC::VCMPGTUQ;
4358 break;
4359 default:
4360 break;
4361 }
4362 llvm_unreachable("Invalid integer vector compare condition")::llvm::llvm_unreachable_internal("Invalid integer vector compare condition"
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4362)
;
4363 }
4364}
4365
4366bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4367 SDLoc dl(N);
4368 unsigned Imm;
4369 bool IsStrict = N->isStrictFPOpcode();
4370 ISD::CondCode CC =
4371 cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
4372 EVT PtrVT =
4373 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4374 bool isPPC64 = (PtrVT == MVT::i64);
4375 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4376
4377 SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
4378 SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
4379
4380 if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
4381 // We can codegen setcc op, imm very efficiently compared to a brcond.
4382 // Check for those cases here.
4383 // setcc op, 0
4384 if (Imm == 0) {
4385 SDValue Op = LHS;
4386 switch (CC) {
4387 default: break;
4388 case ISD::SETEQ: {
4389 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4390 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4391 getI32Imm(31, dl) };
4392 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4393 return true;
4394 }
4395 case ISD::SETNE: {
4396 if (isPPC64) break;
4397 SDValue AD =
4398 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4399 Op, getI32Imm(~0U, dl)), 0);
4400 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4401 return true;
4402 }
4403 case ISD::SETLT: {
4404 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4405 getI32Imm(31, dl) };
4406 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4407 return true;
4408 }
4409 case ISD::SETGT: {
4410 SDValue T =
4411 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4412 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4413 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4414 getI32Imm(31, dl) };
4415 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4416 return true;
4417 }
4418 }
4419 } else if (Imm == ~0U) { // setcc op, -1
4420 SDValue Op = LHS;
4421 switch (CC) {
4422 default: break;
4423 case ISD::SETEQ:
4424 if (isPPC64) break;
4425 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4426 Op, getI32Imm(1, dl)), 0);
4427 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4428 SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4429 MVT::i32,
4430 getI32Imm(0, dl)),
4431 0), Op.getValue(1));
4432 return true;
4433 case ISD::SETNE: {
4434 if (isPPC64) break;
4435 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4436 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4437 Op, getI32Imm(~0U, dl));
4438 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4439 SDValue(AD, 1));
4440 return true;
4441 }
4442 case ISD::SETLT: {
4443 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4444 getI32Imm(1, dl)), 0);
4445 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4446 Op), 0);
4447 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4448 getI32Imm(31, dl) };
4449 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4450 return true;
4451 }
4452 case ISD::SETGT: {
4453 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4454 getI32Imm(31, dl) };
4455 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4456 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4457 return true;
4458 }
4459 }
4460 }
4461 }
4462
4463 // Altivec Vector compare instructions do not set any CR register by default and
4464 // vector compare operations return the same type as the operands.
4465 if (!IsStrict && LHS.getValueType().isVector()) {
4466 if (Subtarget->hasSPE())
4467 return false;
4468
4469 EVT VecVT = LHS.getValueType();
4470 bool Swap, Negate;
4471 unsigned int VCmpInst =
4472 getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
4473 if (Swap)
4474 std::swap(LHS, RHS);
4475
4476 EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4477 if (Negate) {
4478 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4479 CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4480 ResVT, VCmp, VCmp);
4481 return true;
4482 }
4483
4484 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4485 return true;
4486 }
4487
4488 if (Subtarget->useCRBits())
4489 return false;
4490
4491 bool Inv;
4492 unsigned Idx = getCRIdxForSetCC(CC, Inv);
4493 SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
4494 if (IsStrict)
4495 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
4496 SDValue IntCR;
4497
4498 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4499 // The correct compare instruction is already set by SelectCC()
4500 if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4501 Idx = 1;
4502 }
4503
4504 // Force the ccreg into CR7.
4505 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4506
4507 SDValue InFlag; // Null incoming flag value.
4508 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4509 InFlag).getValue(1);
4510
4511 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4512 CCReg), 0);
4513
4514 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4515 getI32Imm(31, dl), getI32Imm(31, dl) };
4516 if (!Inv) {
4517 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4518 return true;
4519 }
4520
4521 // Get the specified bit.
4522 SDValue Tmp =
4523 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4524 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4525 return true;
4526}
4527
4528/// Does this node represent a load/store node whose address can be represented
4529/// with a register plus an immediate that's a multiple of \p Val:
4530bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4531 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4532 StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4533 MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
4534 SDValue AddrOp;
4535 if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
4536 AddrOp = N->getOperand(1);
4537 else if (STN)
4538 AddrOp = STN->getOperand(2);
4539
4540 // If the address points a frame object or a frame object with an offset,
4541 // we need to check the object alignment.
4542 short Imm = 0;
4543 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4544 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4545 AddrOp)) {
4546 // If op0 is a frame index that is under aligned, we can't do it either,
4547 // because it is translated to r31 or r1 + slot + offset. We won't know the
4548 // slot number until the stack frame is finalized.
4549 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4550 unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4551 if ((SlotAlign % Val) != 0)
4552 return false;
4553
4554 // If we have an offset, we need further check on the offset.
4555 if (AddrOp.getOpcode() != ISD::ADD)
4556 return true;
4557 }
4558
4559 if (AddrOp.getOpcode() == ISD::ADD)
4560 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4561
4562 // If the address comes from the outside, the offset will be zero.
4563 return AddrOp.getOpcode() == ISD::CopyFromReg;
4564}
4565
4566void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4567 // Transfer memoperands.
4568 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4569 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4570}
4571
4572static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4573 bool &NeedSwapOps, bool &IsUnCmp) {
4574
4575 assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.")(static_cast <bool> (N->getOpcode() == ISD::SELECT_CC
&& "Expecting a SELECT_CC here.") ? void (0) : __assert_fail
("N->getOpcode() == ISD::SELECT_CC && \"Expecting a SELECT_CC here.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4575, __extension__
__PRETTY_FUNCTION__))
;
4576
4577 SDValue LHS = N->getOperand(0);
4578 SDValue RHS = N->getOperand(1);
4579 SDValue TrueRes = N->getOperand(2);
4580 SDValue FalseRes = N->getOperand(3);
4581 ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4582 if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4583 N->getSimpleValueType(0) != MVT::i32))
4584 return false;
4585
4586 // We are looking for any of:
4587 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4588 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4589 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq)
4590 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq)
4591 int64_t TrueResVal = TrueConst->getSExtValue();
4592 if ((TrueResVal < -1 || TrueResVal > 1) ||
4593 (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4594 (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4595 (TrueResVal == 0 &&
4596 (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4597 return false;
4598
4599 SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
4600 ? FalseRes
4601 : FalseRes.getOperand(0);
4602 bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
4603 if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4604 SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4605 return false;
4606
4607 // Without this setb optimization, the outer SELECT_CC will be manually
4608 // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4609 // transforms pseudo instruction to isel instruction. When there are more than
4610 // one use for result like zext/sext, with current optimization we only see
4611 // isel is replaced by setb but can't see any significant gain. Since
4612 // setb has longer latency than original isel, we should avoid this. Another
4613 // point is that setb requires comparison always kept, it can break the
4614 // opportunity to get the comparison away if we have in future.
4615 if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4616 return false;
4617
4618 SDValue InnerLHS = SetOrSelCC.getOperand(0);
4619 SDValue InnerRHS = SetOrSelCC.getOperand(1);
4620 ISD::CondCode InnerCC =
4621 cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4622 // If the inner comparison is a select_cc, make sure the true/false values are
4623 // 1/-1 and canonicalize it if needed.
4624 if (InnerIsSel) {
4625 ConstantSDNode *SelCCTrueConst =
4626 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4627 ConstantSDNode *SelCCFalseConst =
4628 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4629 if (!SelCCTrueConst || !SelCCFalseConst)
4630 return false;
4631 int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4632 int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4633 // The values must be -1/1 (requiring a swap) or 1/-1.
4634 if (SelCCTVal == -1 && SelCCFVal == 1) {
4635 std::swap(InnerLHS, InnerRHS);
4636 } else if (SelCCTVal != 1 || SelCCFVal != -1)
4637 return false;
4638 }
4639
4640 // Canonicalize unsigned case
4641 if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4642 IsUnCmp = true;
4643 InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4644 }
4645
4646 bool InnerSwapped = false;
4647 if (LHS == InnerRHS && RHS == InnerLHS)
4648 InnerSwapped = true;
4649 else if (LHS != InnerLHS || RHS != InnerRHS)
4650 return false;
4651
4652 switch (CC) {
4653 // (select_cc lhs, rhs, 0, \
4654 // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4655 case ISD::SETEQ:
4656 if (!InnerIsSel)
4657 return false;
4658 if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4659 return false;
4660 NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4661 break;
4662
4663 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4664 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4665 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4666 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4667 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4668 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4669 case ISD::SETULT:
4670 if (!IsUnCmp && InnerCC != ISD::SETNE)
4671 return false;
4672 IsUnCmp = true;
4673 [[fallthrough]];
4674 case ISD::SETLT:
4675 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4676 (InnerCC == ISD::SETLT && InnerSwapped))
4677 NeedSwapOps = (TrueResVal == 1);
4678 else
4679 return false;
4680 break;
4681
4682 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4683 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4684 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4685 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4686 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4687 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4688 case ISD::SETUGT:
4689 if (!IsUnCmp && InnerCC != ISD::SETNE)
4690 return false;
4691 IsUnCmp = true;
4692 [[fallthrough]];
4693 case ISD::SETGT:
4694 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4695 (InnerCC == ISD::SETGT && InnerSwapped))
4696 NeedSwapOps = (TrueResVal == -1);
4697 else
4698 return false;
4699 break;
4700
4701 default:
4702 return false;
4703 }
4704
4705 LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { dbgs() << "Found a node that can be lowered to a SETB: "
; } } while (false)
;
4706 LLVM_DEBUG(N->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-isel")) { N->dump(); } } while (false)
;
4707
4708 return true;
4709}
4710
4711// Return true if it's a software square-root/divide operand.
4712static bool isSWTestOp(SDValue N) {
4713 if (N.getOpcode() == PPCISD::FTSQRT)
4714 return true;
4715 if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) ||
4716 N.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
4717 return false;
4718 switch (N.getConstantOperandVal(0)) {
4719 case Intrinsic::ppc_vsx_xvtdivdp:
4720 case Intrinsic::ppc_vsx_xvtdivsp:
4721 case Intrinsic::ppc_vsx_xvtsqrtdp:
4722 case Intrinsic::ppc_vsx_xvtsqrtsp:
4723 return true;
4724 }
4725 return false;
4726}
4727
4728bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
4729 assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.")(static_cast <bool> (N->getOpcode() == ISD::BR_CC &&
"ISD::BR_CC is expected.") ? void (0) : __assert_fail ("N->getOpcode() == ISD::BR_CC && \"ISD::BR_CC is expected.\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4729, __extension__
__PRETTY_FUNCTION__))
;
4730 // We are looking for following patterns, where `truncate to i1` actually has
4731 // the same semantic with `and 1`.
4732 // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
4733 // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
4734 // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
4735 // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
4736 // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
4737 // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
4738 // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
4739 // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
4740 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4741 if (CC != ISD::SETEQ && CC != ISD::SETNE)
4742 return false;
4743
4744 SDValue CmpRHS = N->getOperand(3);
4745 if (!isa<ConstantSDNode>(CmpRHS) ||
4746 cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0)
4747 return false;
4748
4749 SDValue CmpLHS = N->getOperand(2);
4750 if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
4751 return false;
4752
4753 unsigned PCC = 0;
4754 bool IsCCNE = CC == ISD::SETNE;
4755 if (CmpLHS.getOpcode() == ISD::AND &&
4756 isa<ConstantSDNode>(CmpLHS.getOperand(1)))
4757 switch (CmpLHS.getConstantOperandVal(1)) {
4758 case 1:
4759 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4760 break;
4761 case 2:
4762 PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
4763 break;
4764 case 4:
4765 PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
4766 break;
4767 case 8:
4768 PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
4769 break;
4770 default:
4771 return false;
4772 }
4773 else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
4774 CmpLHS.getValueType() == MVT::i1)
4775 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4776
4777 if (PCC) {
4778 SDLoc dl(N);
4779 SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
4780 N->getOperand(0)};
4781 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4782 return true;
4783 }
4784 return false;
4785}
4786
4787bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) {
4788 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
4789 // value, for example when crbits is disabled. If so, select the
4790 // loop_decrement intrinsics now.
4791 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4792 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4793
4794 if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) ||
4795 isNullConstant(LHS.getOperand(1)))
4796 return false;
4797
4798 if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN ||
4799 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() !=
4800 Intrinsic::loop_decrement)
4801 return false;
4802
4803 if (!isa<ConstantSDNode>(RHS))
4804 return false;
4805
4806 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&(static_cast <bool> ((CC == ISD::SETEQ || CC == ISD::SETNE
) && "Counter decrement comparison is not EQ or NE") ?
void (0) : __assert_fail ("(CC == ISD::SETEQ || CC == ISD::SETNE) && \"Counter decrement comparison is not EQ or NE\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4807, __extension__
__PRETTY_FUNCTION__))
4807 "Counter decrement comparison is not EQ or NE")(static_cast <bool> ((CC == ISD::SETEQ || CC == ISD::SETNE
) && "Counter decrement comparison is not EQ or NE") ?
void (0) : __assert_fail ("(CC == ISD::SETEQ || CC == ISD::SETNE) && \"Counter decrement comparison is not EQ or NE\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4807, __extension__
__PRETTY_FUNCTION__))
;
4808
4809 SDValue OldDecrement = LHS.getOperand(0);
4810 assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!")(static_cast <bool> (OldDecrement.hasOneUse() &&
"loop decrement has more than one use!") ? void (0) : __assert_fail
("OldDecrement.hasOneUse() && \"loop decrement has more than one use!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4810, __extension__
__PRETTY_FUNCTION__))
;
4811
4812 SDLoc DecrementLoc(OldDecrement);
4813 SDValue ChainInput = OldDecrement.getOperand(0);
4814 SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc)
4815 : getI32Imm(1, DecrementLoc)};
4816 unsigned DecrementOpcode =
4817 Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop;
4818 SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc,
4819 MVT::i1, DecrementOps);
4820
4821 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4822 bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val);
4823 unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn;
4824
4825 ReplaceUses(LHS.getValue(0), LHS.getOperand(1));
4826 CurDAG->RemoveDeadNode(LHS.getNode());
4827
4828 // Mark the old loop_decrement intrinsic as dead.
4829 ReplaceUses(OldDecrement.getValue(1), ChainInput);
4830 CurDAG->RemoveDeadNode(OldDecrement.getNode());
4831
4832 SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
4833 ChainInput, N->getOperand(0));
4834
4835 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0),
4836 N->getOperand(4), Chain);
4837 return true;
4838}
4839
4840bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4841 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND &&
"ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4841, __extension__
__PRETTY_FUNCTION__))
;
4842 unsigned Imm;
4843 if (!isInt32Immediate(N->getOperand(1), Imm))
4844 return false;
4845
4846 SDLoc dl(N);
4847 SDValue Val = N->getOperand(0);
4848 unsigned SH, MB, ME;
4849 // If this is an and of a value rotated between 0 and 31 bits and then and'd
4850 // with a mask, emit rlwinm
4851 if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4852 Val = Val.getOperand(0);
4853 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4854 getI32Imm(ME, dl)};
4855 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4856 return true;
4857 }
4858
4859 // If this is just a masked value where the input is not handled, and
4860 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4861 if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4862 SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4863 getI32Imm(ME, dl)};
4864 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4865 return true;
4866 }
4867
4868 // AND X, 0 -> 0, not "rlwinm 32".
4869 if (Imm == 0) {
4870 ReplaceUses(SDValue(N, 0), N->getOperand(1));
4871 return true;
4872 }
4873
4874 return false;
4875}
4876
4877bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4878 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND &&
"ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4878, __extension__
__PRETTY_FUNCTION__))
;
4879 uint64_t Imm64;
4880 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4881 return false;
4882
4883 unsigned MB, ME;
4884 if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
4885 // MB ME
4886 // +----------------------+
4887 // |xxxxxxxxxxx00011111000|
4888 // +----------------------+
4889 // 0 32 64
4890 // We can only do it if the MB is larger than 32 and MB <= ME
4891 // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
4892 // we didn't rotate it.
4893 SDLoc dl(N);
4894 SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4895 getI64Imm(ME - 32, dl)};
4896 CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
4897 return true;
4898 }
4899
4900 return false;
4901}
4902
4903bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
4904 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND &&
"ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4904, __extension__
__PRETTY_FUNCTION__))
;
4905 uint64_t Imm64;
4906 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4907 return false;
4908
4909 // Do nothing if it is 16-bit imm as the pattern in the .td file handle
4910 // it well with "andi.".
4911 if (isUInt<16>(Imm64))
4912 return false;
4913
4914 SDLoc Loc(N);
4915 SDValue Val = N->getOperand(0);
4916
4917 // Optimized with two rldicl's as follows:
4918 // Add missing bits on left to the mask and check that the mask is a
4919 // wrapped run of ones, i.e.
4920 // Change pattern |0001111100000011111111|
4921 // to |1111111100000011111111|.
4922 unsigned NumOfLeadingZeros = llvm::countl_zero(Imm64);
4923 if (NumOfLeadingZeros != 0)
4924 Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
4925
4926 unsigned MB, ME;
4927 if (!isRunOfOnes64(Imm64, MB, ME))
4928 return false;
4929
4930 // ME MB MB-ME+63
4931 // +----------------------+ +----------------------+
4932 // |1111111100000011111111| -> |0000001111111111111111|
4933 // +----------------------+ +----------------------+
4934 // 0 63 0 63
4935 // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
4936 unsigned OnesOnLeft = ME + 1;
4937 unsigned ZerosInBetween = (MB - ME + 63) & 63;
4938 // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
4939 // on the left the bits that are already zeros in the mask.
4940 Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
4941 getI64Imm(OnesOnLeft, Loc),
4942 getI64Imm(ZerosInBetween, Loc)),
4943 0);
4944 // MB-ME+63 ME MB
4945 // +----------------------+ +----------------------+
4946 // |0000001111111111111111| -> |0001111100000011111111|
4947 // +----------------------+ +----------------------+
4948 // 0 63 0 63
4949 // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
4950 // left the number of ones we previously added.
4951 SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
4952 getI64Imm(NumOfLeadingZeros, Loc)};
4953 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4954 return true;
4955}
4956
4957bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
4958 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND &&
"ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4958, __extension__
__PRETTY_FUNCTION__))
;
4959 unsigned Imm;
4960 if (!isInt32Immediate(N->getOperand(1), Imm))
4961 return false;
4962
4963 SDValue Val = N->getOperand(0);
4964 unsigned Imm2;
4965 // ISD::OR doesn't get all the bitfield insertion fun.
4966 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4967 // bitfield insert.
4968 if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
4969 return false;
4970
4971 // The idea here is to check whether this is equivalent to:
4972 // (c1 & m) | (x & ~m)
4973 // where m is a run-of-ones mask. The logic here is that, for each bit in
4974 // c1 and c2:
4975 // - if both are 1, then the output will be 1.
4976 // - if both are 0, then the output will be 0.
4977 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4978 // come from x.
4979 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4980 // be 0.
4981 // If that last condition is never the case, then we can form m from the
4982 // bits that are the same between c1 and c2.
4983 unsigned MB, ME;
4984 if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
4985 SDLoc dl(N);
4986 SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
4987 getI32Imm(MB, dl), getI32Imm(ME, dl)};
4988 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4989 return true;
4990 }
4991
4992 return false;
4993}
4994
4995bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
4996 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND &&
"ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4996, __extension__
__PRETTY_FUNCTION__))
;
4997 uint64_t Imm64;
4998 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
4999 return false;
5000
5001 // If this is a 64-bit zero-extension mask, emit rldicl.
5002 unsigned MB = 64 - llvm::countr_one(Imm64);
5003 unsigned SH = 0;
5004 unsigned Imm;
5005 SDValue Val = N->getOperand(0);
5006 SDLoc dl(N);
5007
5008 if (Val.getOpcode() == ISD::ANY_EXTEND) {
5009 auto Op0 = Val.getOperand(0);
5010 if (Op0.getOpcode() == ISD::SRL &&
5011 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
5012
5013 auto ResultType = Val.getNode()->getValueType(0);
5014 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
5015 SDValue IDVal(ImDef, 0);
5016
5017 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
5018 IDVal, Op0.getOperand(0),
5019 getI32Imm(1, dl)),
5020 0);
5021 SH = 64 - Imm;
5022 }
5023 }
5024
5025 // If the operand is a logical right shift, we can fold it into this
5026 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
5027 // for n <= mb. The right shift is really a left rotate followed by a
5028 // mask, and this mask is a more-restrictive sub-mask of the mask implied
5029 // by the shift.
5030 if (Val.getOpcode() == ISD::SRL &&
5031 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
5032 assert(Imm < 64 && "Illegal shift amount")(static_cast <bool> (Imm < 64 && "Illegal shift amount"
) ? void (0) : __assert_fail ("Imm < 64 && \"Illegal shift amount\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5032, __extension__
__PRETTY_FUNCTION__))
;
5033 Val = Val.getOperand(0);
5034 SH = 64 - Imm;
5035 }
5036
5037 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
5038 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
5039 return true;
5040}
5041
5042bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
5043 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND &&
"ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5043, __extension__
__PRETTY_FUNCTION__))
;
5044 uint64_t Imm64;
5045 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5046 !isMask_64(~Imm64))
5047 return false;
5048
5049 // If this is a negated 64-bit zero-extension mask,
5050 // i.e. the immediate is a sequence of ones from most significant side
5051 // and all zero for reminder, we should use rldicr.
5052 unsigned MB = 63 - llvm::countr_one(~Imm64);
5053 unsigned SH = 0;
5054 SDLoc dl(N);
5055 SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
5056 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5057 return true;
5058}
5059
5060bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
5061 assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::OR &&
"ISD::OR SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::OR && \"ISD::OR SDNode expected\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5061, __extension__
__PRETTY_FUNCTION__))
;
5062 uint64_t Imm64;
5063 unsigned MB, ME;
5064 SDValue N0 = N->getOperand(0);
5065
5066 // We won't get fewer instructions if the imm is 32-bit integer.
5067 // rldimi requires the imm to have consecutive ones with both sides zero.
5068 // Also, make sure the first Op has only one use, otherwise this may increase
5069 // register pressure since rldimi is destructive.
5070 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5071 isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
5072 return false;
5073
5074 unsigned SH = 63 - ME;
5075 SDLoc Dl(N);
5076 // Use select64Imm for making LI instr instead of directly putting Imm64
5077 SDValue Ops[] = {
5078 N->getOperand(0),
5079 SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
5080 getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
5081 CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
5082 return true;
5083}
5084
5085// Select - Convert the specified operand from a target-independent to a
5086// target-specific node if it hasn't already been changed.
5087void PPCDAGToDAGISel::Select(SDNode *N) {
5088 SDLoc dl(N);
5089 if (N->isMachineOpcode()) {
5090 N->setNodeId(-1);
5091 return; // Already selected.
5092 }
5093
5094 // In case any misguided DAG-level optimizations form an ADD with a
5095 // TargetConstant operand, crash here instead of miscompiling (by selecting
5096 // an r+r add instead of some kind of r+i add).
5097 if (N->getOpcode() == ISD::ADD &&
5098 N->getOperand(1).getOpcode() == ISD::TargetConstant)
5099 llvm_unreachable("Invalid ADD with TargetConstant operand")::llvm::llvm_unreachable_internal("Invalid ADD with TargetConstant operand"
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5099)
;
5100
5101 // Try matching complex bit permutations before doing anything else.
5102 if (tryBitPermutation(N))
5103 return;
5104
5105 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
5106 if (tryIntCompareInGPR(N))
5107 return;
5108
5109 switch (N->getOpcode()) {
5110 default: break;
5111
5112 case ISD::Constant:
5113 if (N->getValueType(0) == MVT::i64) {
5114 ReplaceNode(N, selectI64Imm(CurDAG, N));
5115 return;
5116 }
5117 break;
5118
5119 case ISD::INTRINSIC_VOID: {
5120 auto IntrinsicID = N->getConstantOperandVal(1);
5121 if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
5122 IntrinsicID != Intrinsic::ppc_trapd &&
5123 IntrinsicID != Intrinsic::ppc_trap)
5124 break;
5125 unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw ||
5126 IntrinsicID == Intrinsic::ppc_trapd)
5127 ? PPC::TDI
5128 : PPC::TWI;
5129 SmallVector<SDValue, 4> OpsWithMD;
5130 unsigned MDIndex;
5131 if (IntrinsicID == Intrinsic::ppc_tdw ||
5132 IntrinsicID == Intrinsic::ppc_tw) {
5133 SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
5134 int16_t SImmOperand2;
5135 int16_t SImmOperand3;
5136 int16_t SImmOperand4;
5137 bool isOperand2IntS16Immediate =
5138 isIntS16Immediate(N->getOperand(2), SImmOperand2);
5139 bool isOperand3IntS16Immediate =
5140 isIntS16Immediate(N->getOperand(3), SImmOperand3);
5141 // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg +
5142 // reg or imm + imm. The imm + imm form will be optimized to either an
5143 // unconditional trap or a nop in a later pass.
5144 if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
5145 Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
5146 else if (isOperand3IntS16Immediate)
5147 // The 2nd and 3rd operands are reg + imm.
5148 Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
5149 else {
5150 // The 2nd and 3rd operands are imm + reg.
5151 bool isOperand4IntS16Immediate =
5152 isIntS16Immediate(N->getOperand(4), SImmOperand4);
5153 (void)isOperand4IntS16Immediate;
5154 assert(isOperand4IntS16Immediate &&(static_cast <bool> (isOperand4IntS16Immediate &&
"The 4th operand is not an Immediate") ? void (0) : __assert_fail
("isOperand4IntS16Immediate && \"The 4th operand is not an Immediate\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5155, __extension__
__PRETTY_FUNCTION__))
5155 "The 4th operand is not an Immediate")(static_cast <bool> (isOperand4IntS16Immediate &&
"The 4th operand is not an Immediate") ? void (0) : __assert_fail
("isOperand4IntS16Immediate && \"The 4th operand is not an Immediate\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5155, __extension__
__PRETTY_FUNCTION__))
;
5156 // We need to flip the condition immediate TO.
5157 int16_t TO = int(SImmOperand4) & 0x1F;
5158 // We swap the first and second bit of TO if they are not same.
5159 if ((TO & 0x1) != ((TO & 0x2) >> 1))
5160 TO = (TO & 0x1) ? TO + 1 : TO - 1;
5161 // We swap the fourth and fifth bit of TO if they are not same.
5162 if ((TO & 0x8) != ((TO & 0x10) >> 1))
5163 TO = (TO & 0x8) ? TO + 8 : TO - 8;
5164 Ops[0] = getI32Imm(TO, dl);
5165 Ops[1] = N->getOperand(3);
5166 Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
5167 }
5168 OpsWithMD = {Ops[0], Ops[1], Ops[2]};
5169 MDIndex = 5;
5170 } else {
5171 OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)};
5172 MDIndex = 3;
5173 }
5174
5175 if (N->getNumOperands() > MDIndex) {
5176 SDValue MDV = N->getOperand(MDIndex);
5177 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
5178 assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!")(static_cast <bool> (MD->getNumOperands() != 0 &&
"Empty MDNode in operands!") ? void (0) : __assert_fail ("MD->getNumOperands() != 0 && \"Empty MDNode in operands!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5178, __extension__
__PRETTY_FUNCTION__))
;
5179 assert((isa<MDString>(MD->getOperand(0)) && cast<MDString>((static_cast <bool> ((isa<MDString>(MD->getOperand
(0)) && cast<MDString>( MD->getOperand(0))->
getString().equals("ppc-trap-reason")) && "Unsupported annotation data type!"
) ? void (0) : __assert_fail ("(isa<MDString>(MD->getOperand(0)) && cast<MDString>( MD->getOperand(0))->getString().equals(\"ppc-trap-reason\")) && \"Unsupported annotation data type!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5181, __extension__
__PRETTY_FUNCTION__))
5180 MD->getOperand(0))->getString().equals("ppc-trap-reason"))(static_cast <bool> ((isa<MDString>(MD->getOperand
(0)) && cast<MDString>( MD->getOperand(0))->
getString().equals("ppc-trap-reason")) && "Unsupported annotation data type!"
) ? void (0) : __assert_fail ("(isa<MDString>(MD->getOperand(0)) && cast<MDString>( MD->getOperand(0))->getString().equals(\"ppc-trap-reason\")) && \"Unsupported annotation data type!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5181, __extension__
__PRETTY_FUNCTION__))
5181 && "Unsupported annotation data type!")(static_cast <bool> ((isa<MDString>(MD->getOperand
(0)) && cast<MDString>( MD->getOperand(0))->
getString().equals("ppc-trap-reason")) && "Unsupported annotation data type!"
) ? void (0) : __assert_fail ("(isa<MDString>(MD->getOperand(0)) && cast<MDString>( MD->getOperand(0))->getString().equals(\"ppc-trap-reason\")) && \"Unsupported annotation data type!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5181, __extension__
__PRETTY_FUNCTION__))
;
5182 for (unsigned i = 1; i < MD->getNumOperands(); i++) {
5183 assert(isa<MDString>(MD->getOperand(i)) &&(static_cast <bool> (isa<MDString>(MD->getOperand
(i)) && "Invalid data type for annotation ppc-trap-reason!"
) ? void (0) : __assert_fail ("isa<MDString>(MD->getOperand(i)) && \"Invalid data type for annotation ppc-trap-reason!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5184, __extension__
__PRETTY_FUNCTION__))
5184 "Invalid data type for annotation ppc-trap-reason!")(static_cast <bool> (isa<MDString>(MD->getOperand
(i)) && "Invalid data type for annotation ppc-trap-reason!"
) ? void (0) : __assert_fail ("isa<MDString>(MD->getOperand(i)) && \"Invalid data type for annotation ppc-trap-reason!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5184, __extension__
__PRETTY_FUNCTION__))
;
5185 OpsWithMD.push_back(
5186 getI32Imm(std::stoi(cast<MDString>(
5187 MD->getOperand(i))->getString().str()), dl));
5188 }
5189 }
5190 OpsWithMD.push_back(N->getOperand(0)); // chain
5191 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD);
5192 return;
5193 }
5194
5195 case ISD::INTRINSIC_WO_CHAIN: {
5196 // We emit the PPC::FSELS instruction here because of type conflicts with
5197 // the comparison operand. The FSELS instruction is defined to use an 8-byte
5198 // comparison like the FSELD version. The fsels intrinsic takes a 4-byte
5199 // value for the comparison. When selecting through a .td file, a type
5200 // error is raised. Must check this first so we never break on the
5201 // !Subtarget->isISA3_1() check.
5202 auto IntID = N->getConstantOperandVal(0);
5203 if (IntID == Intrinsic::ppc_fsels) {
5204 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
5205 CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
5206 return;
5207 }
5208
5209 if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
5210 auto Pred = N->getConstantOperandVal(1);
5211 unsigned Opcode =
5212 IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
5213 unsigned SubReg = 0;
5214 unsigned ShiftVal = 0;
5215 bool Reverse = false;
5216 switch (Pred) {
5217 case 0:
5218 SubReg = PPC::sub_eq;
5219 ShiftVal = 1;
5220 break;
5221 case 1:
5222 SubReg = PPC::sub_eq;
5223 ShiftVal = 1;
5224 Reverse = true;
5225 break;
5226 case 2:
5227 SubReg = PPC::sub_lt;
5228 ShiftVal = 3;
5229 break;
5230 case 3:
5231 SubReg = PPC::sub_lt;
5232 ShiftVal = 3;
5233 Reverse = true;
5234 break;
5235 case 4:
5236 SubReg = PPC::sub_gt;
5237 ShiftVal = 2;
5238 break;
5239 case 5:
5240 SubReg = PPC::sub_gt;
5241 ShiftVal = 2;
5242 Reverse = true;
5243 break;
5244 case 6:
5245 SubReg = PPC::sub_un;
5246 break;
5247 case 7:
5248 SubReg = PPC::sub_un;
5249 Reverse = true;
5250 break;
5251 }
5252
5253 EVT VTs[] = {MVT::v16i8, MVT::Glue};
5254 SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
5255 CurDAG->getTargetConstant(0, dl, MVT::i32)};
5256 SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
5257 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5258 // On Power10, we can use SETBC[R]. On prior architectures, we have to use
5259 // MFOCRF and shift/negate the value.
5260 if (Subtarget->isISA3_1()) {
5261 SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
5262 SDValue CRBit = SDValue(
5263 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5264 CR6Reg, SubRegIdx, BCDOp.getValue(1)),
5265 0);
5266 CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
5267 CRBit);
5268 } else {
5269 SDValue Move =
5270 SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
5271 BCDOp.getValue(1)),
5272 0);
5273 SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
5274 getI32Imm(31, dl), getI32Imm(31, dl)};
5275 if (!Reverse)
5276 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5277 else {
5278 SDValue Shift = SDValue(
5279 CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
5280 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
5281 }
5282 }
5283 return;
5284 }
5285
5286 if (!Subtarget->isISA3_1())
5287 break;
5288 unsigned Opcode = 0;
5289 switch (IntID) {
5290 default:
5291 break;
5292 case Intrinsic::ppc_altivec_vstribr_p:
5293 Opcode = PPC::VSTRIBR_rec;
5294 break;
5295 case Intrinsic::ppc_altivec_vstribl_p:
5296 Opcode = PPC::VSTRIBL_rec;
5297 break;
5298 case Intrinsic::ppc_altivec_vstrihr_p:
5299 Opcode = PPC::VSTRIHR_rec;
5300 break;
5301 case Intrinsic::ppc_altivec_vstrihl_p:
5302 Opcode = PPC::VSTRIHL_rec;
5303 break;
5304 }
5305 if (!Opcode)
5306 break;
5307
5308 // Generate the appropriate vector string isolate intrinsic to match.
5309 EVT VTs[] = {MVT::v16i8, MVT::Glue};
5310 SDValue VecStrOp =
5311 SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
5312 // Vector string isolate instructions update the EQ bit of CR6.
5313 // Generate a SETBC instruction to extract the bit and place it in a GPR.
5314 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
5315 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5316 SDValue CRBit = SDValue(
5317 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5318 CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
5319 0);
5320 CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
5321 return;
5322 }
5323
5324 case ISD::SETCC:
5325 case ISD::STRICT_FSETCC:
5326 case ISD::STRICT_FSETCCS:
5327 if (trySETCC(N))
5328 return;
5329 break;
5330 // These nodes will be transformed into GETtlsADDR32 node, which
5331 // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
5332 case PPCISD::ADDI_TLSLD_L_ADDR:
5333 case PPCISD::ADDI_TLSGD_L_ADDR: {
5334 const Module *Mod = MF->getFunction().getParent();
5335 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5336 !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
5337 Mod->getPICLevel() == PICLevel::SmallPIC)
5338 break;
5339 // Attach global base pointer on GETtlsADDR32 node in order to
5340 // generate secure plt code for TLS symbols.
5341 getGlobalBaseReg();
5342 } break;
5343 case PPCISD::CALL: {
5344 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5345 !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
5346 !Subtarget->isTargetELF())
5347 break;
5348
5349 SDValue Op = N->getOperand(1);
5350
5351 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5352 if (GA->getTargetFlags() == PPCII::MO_PLT)
5353 getGlobalBaseReg();
5354 }
5355 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
5356 if (ES->getTargetFlags() == PPCII::MO_PLT)
5357 getGlobalBaseReg();
5358 }
5359 }
5360 break;
5361
5362 case PPCISD::GlobalBaseReg:
5363 ReplaceNode(N, getGlobalBaseReg());
5364 return;
5365
5366 case ISD::FrameIndex:
5367 selectFrameIndex(N, N);
5368 return;
5369
5370 case PPCISD::MFOCRF: {
5371 SDValue InFlag = N->getOperand(1);
5372 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
5373 N->getOperand(0), InFlag));
5374 return;
5375 }
5376
5377 case PPCISD::READ_TIME_BASE:
5378 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
5379 MVT::Other, N->getOperand(0)));
5380 return;
5381
5382 case PPCISD::SRA_ADDZE: {
5383 SDValue N0 = N->getOperand(0);
5384 SDValue ShiftAmt =
5385 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
5386 getConstantIntValue(), dl,
5387 N->getValueType(0));
5388 if (N->getValueType(0) == MVT::i64) {
5389 SDNode *Op =
5390 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
5391 N0, ShiftAmt);
5392 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
5393 SDValue(Op, 1));
5394 return;
5395 } else {
5396 assert(N->getValueType(0) == MVT::i32 &&(static_cast <bool> (N->getValueType(0) == MVT::i32 &&
"Expecting i64 or i32 in PPCISD::SRA_ADDZE") ? void (0) : __assert_fail
("N->getValueType(0) == MVT::i32 && \"Expecting i64 or i32 in PPCISD::SRA_ADDZE\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5397, __extension__
__PRETTY_FUNCTION__))
5397 "Expecting i64 or i32 in PPCISD::SRA_ADDZE")(static_cast <bool> (N->getValueType(0) == MVT::i32 &&
"Expecting i64 or i32 in PPCISD::SRA_ADDZE") ? void (0) : __assert_fail
("N->getValueType(0) == MVT::i32 && \"Expecting i64 or i32 in PPCISD::SRA_ADDZE\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5397, __extension__
__PRETTY_FUNCTION__))
;
5398 SDNode *Op =
5399 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
5400 N0, ShiftAmt);
5401 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
5402 SDValue(Op, 1));
5403 return;
5404 }
5405 }
5406
5407 case ISD::STORE: {
5408 // Change TLS initial-exec D-form stores to X-form stores.
5409 StoreSDNode *ST = cast<StoreSDNode>(N);
5410 if (EnableTLSOpt && Subtarget->isELFv2ABI() &&
5411 ST->getAddressingMode() != ISD::PRE_INC)
5412 if (tryTLSXFormStore(ST))
5413 return;
5414 break;
5415 }
5416 case ISD::LOAD: {
5417 // Handle preincrement loads.
5418 LoadSDNode *LD = cast<LoadSDNode>(N);
5419 EVT LoadedVT = LD->getMemoryVT();
5420
5421 // Normal loads are handled by code generated from the .td file.
5422 if (LD->getAddressingMode() != ISD::PRE_INC) {
5423 // Change TLS initial-exec D-form loads to X-form loads.
5424 if (EnableTLSOpt && Subtarget->isELFv2ABI())
5425 if (tryTLSXFormLoad(LD))
5426 return;
5427 break;
5428 }
5429
5430 SDValue Offset = LD->getOffset();
5431 if (Offset.getOpcode() == ISD::TargetConstant ||
5432 Offset.getOpcode() == ISD::TargetGlobalAddress) {
5433
5434 unsigned Opcode;
5435 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5436 if (LD->getValueType(0) != MVT::i64) {
5437 // Handle PPC32 integer and normal FP loads.
5438 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16) &&
"Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16) && \"Invalid sext update load\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5438, __extension__
__PRETTY_FUNCTION__))
;
5439 switch (LoadedVT.getSimpleVT().SimpleTy) {
5440 default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp"
, 5440)
;
5441 case MVT::f64: Opcode = PPC::LFDU; break;
5442 case MVT::f32: Opcode = PPC::LFSU; break;
5443 case MVT::i32: Opcode = PPC::LWZU; break;
5444 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
5445 case MVT::i1:
5446 case MVT::i8: Opcode = PPC::LBZU; break;
5447 }
5448 } else {
5449 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!")(static_cast <bool> (LD->getValueType(0) == MVT::i64
&& "Unknown load result type!") ? void (0) : __assert_fail
("LD->getValueType(0) == MVT::i64 && \"Unknown load result type!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5449, __extension__
__PRETTY_FUNCTION__))
;
5450 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16) &&
"Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16) && \"Invalid sext update load\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5450, __extension__
__PRETTY_FUNCTION__))
;
5451 switch (LoadedVT.getSimpleVT().SimpleTy) {
5452 default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp"
, 5452)
;
5453 case MVT::i64: Opcode = PPC::LDU; break;
5454 case MVT::i32: Opcode = PPC::LWZU8; break;
5455 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
5456 case MVT::i1:
5457 case MVT::i8: Opcode = PPC::LBZU8; break;
5458 }
5459 }
5460
5461 SDValue Chain = LD->getChain();
5462 SDValue Base = LD->getBasePtr();
5463 SDValue Ops[] = { Offset, Base, Chain };
5464 SDNode *MN = CurDAG->getMachineNode(
5465 Opcode, dl, LD->getValueType(0),
5466 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5467 transferMemOperands(N, MN);
5468 ReplaceNode(N, MN);
5469 return;
5470 } else {
5471 unsigned Opcode;
5472 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5473 if (LD->getValueType(0) != MVT::i64) {
5474 // Handle PPC32 integer and normal FP loads.
5475 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16) &&
"Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16) && \"Invalid sext update load\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5475, __extension__
__PRETTY_FUNCTION__))
;
5476 switch (LoadedVT.getSimpleVT().SimpleTy) {
5477 default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp"
, 5477)
;
5478 case MVT::f64: Opcode = PPC::LFDUX; break;
5479 case MVT::f32: Opcode = PPC::LFSUX; break;
5480 case MVT::i32: Opcode = PPC::LWZUX; break;
5481 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
5482 case MVT::i1:
5483 case MVT::i8: Opcode = PPC::LBZUX; break;
5484 }
5485 } else {
5486 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!")(static_cast <bool> (LD->getValueType(0) == MVT::i64
&& "Unknown load result type!") ? void (0) : __assert_fail
("LD->getValueType(0) == MVT::i64 && \"Unknown load result type!\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5486, __extension__
__PRETTY_FUNCTION__))
;
5487 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16 ||
LoadedVT == MVT::i32) && "Invalid sext update load")
? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && \"Invalid sext update load\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5488, __extension__
__PRETTY_FUNCTION__))
5488 "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16 ||
LoadedVT == MVT::i32) && "Invalid sext update load")
? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && \"Invalid sext update load\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5488, __extension__
__PRETTY_FUNCTION__))
;
5489 switch (LoadedVT.getSimpleVT().SimpleTy) {
5490 default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp"
, 5490)
;
5491 case MVT::i64: Opcode = PPC::LDUX; break;
5492 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
5493 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
5494 case MVT::i1:
5495 case MVT::i8: Opcode = PPC::LBZUX8; break;
5496 }
5497 }
5498
5499 SDValue Chain = LD->getChain();
5500 SDValue Base = LD->getBasePtr();
5501 SDValue Ops[] = { Base, Offset, Chain };
5502 SDNode *MN = CurDAG->getMachineNode(
5503 Opcode, dl, LD->getValueType(0),
5504 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5505 transferMemOperands(N, MN);
5506 ReplaceNode(N, MN);
5507 return;
5508 }
5509 }
5510
5511 case ISD::AND:
5512 // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
5513 if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
5514 tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
5515 return;
5516
5517 // Other cases are autogenerated.
5518 break;
5519 case ISD::OR: {
5520 if (N->getValueType(0) == MVT::i32)
5521 if (tryBitfieldInsert(N))
5522 return;
5523
5524 int16_t Imm;
5525 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5526 isIntS16Immediate(N->getOperand(1), Imm)) {
5527 KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
5528
5529 // If this is equivalent to an add, then we can fold it with the
5530 // FrameIndex calculation.
5531 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
5532 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5533 return;
5534 }
5535 }
5536
5537 // If this is 'or' against an imm with consecutive ones and both sides zero,
5538 // try to emit rldimi
5539 if (tryAsSingleRLDIMI(N))
5540 return;
5541
5542 // OR with a 32-bit immediate can be handled by ori + oris
5543 // without creating an immediate in a GPR.
5544 uint64_t Imm64 = 0;
5545 bool IsPPC64 = Subtarget->isPPC64();
5546 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5547 (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5548 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
5549 uint64_t ImmHi = Imm64 >> 16;
5550 uint64_t ImmLo = Imm64 & 0xFFFF;
5551 if (ImmHi != 0 && ImmLo != 0) {
5552 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
5553 N->getOperand(0),
5554 getI16Imm(ImmLo, dl));
5555 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5556 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
5557 return;
5558 }
5559 }
5560
5561 // Other cases are autogenerated.
5562 break;
5563 }
5564 case ISD::XOR: {
5565 // XOR with a 32-bit immediate can be handled by xori + xoris
5566 // without creating an immediate in a GPR.
5567 uint64_t Imm64 = 0;
5568 bool IsPPC64 = Subtarget->isPPC64();
5569 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5570 (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5571 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
5572 uint64_t ImmHi = Imm64 >> 16;
5573 uint64_t ImmLo = Imm64 & 0xFFFF;
5574 if (ImmHi != 0 && ImmLo != 0) {
5575 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
5576 N->getOperand(0),
5577 getI16Imm(ImmLo, dl));
5578 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5579 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
5580 return;
5581 }
5582 }
5583
5584 break;
5585 }
5586 case ISD::ADD: {
5587 int16_t Imm;
5588 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5589 isIntS16Immediate(N->getOperand(1), Imm)) {
5590 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5591 return;
5592 }
5593
5594 break;
5595 }
5596 case ISD::SHL: {
5597 unsigned Imm, SH, MB, ME;
5598 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5599 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5600 SDValue Ops[] = { N->getOperand(0).getOperand(0),
5601 getI32Imm(SH, dl), getI32Imm(MB, dl),
5602 getI32Imm(ME, dl) };
5603 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5604 return;
5605 }
5606
5607 // Other cases are autogenerated.
5608 break;
5609 }
5610 case ISD::SRL: {
5611 unsigned Imm, SH, MB, ME;
5612 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5613 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5614 SDValue Ops[] = { N->getOperand(0).getOperand(0),
5615 getI32Imm(SH, dl), getI32Imm(MB, dl),
5616 getI32Imm(ME, dl) };
5617 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5618 return;
5619 }
5620
5621 // Other cases are autogenerated.
5622 break;
5623 }
5624 case ISD::MUL: {
5625 SDValue Op1 = N->getOperand(1);
5626 if (Op1.getOpcode() != ISD::Constant ||
5627 (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32))
5628 break;
5629
5630 // If the multiplier fits int16, we can handle it with mulli.
5631 int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue();
5632 unsigned Shift = llvm::countr_zero<uint64_t>(Imm);
5633 if (isInt<16>(Imm) || !Shift)
5634 break;
5635
5636 // If the shifted value fits int16, we can do this transformation:
5637 // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
5638 // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
5639 uint64_t ImmSh = Imm >> Shift;
5640 if (!isInt<16>(ImmSh))
5641 break;
5642
5643 uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
5644 if (Op1.getValueType() == MVT::i64) {
5645 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
5646 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
5647 N->getOperand(0), SDImm);
5648
5649 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5650 getI32Imm(63 - Shift, dl)};
5651 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5652 return;
5653 } else {
5654 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32);
5655 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32,
5656 N->getOperand(0), SDImm);
5657
5658 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5659 getI32Imm(0, dl), getI32Imm(31 - Shift, dl)};
5660 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5661 return;
5662 }
5663 break;
5664 }
5665 // FIXME: Remove this once the ANDI glue bug is fixed:
5666 case PPCISD::ANDI_rec_1_EQ_BIT:
5667 case PPCISD::ANDI_rec_1_GT_BIT: {
5668 if (!ANDIGlueBug)
5669 break;
5670
5671 EVT InVT = N->getOperand(0).getValueType();
5672 assert((InVT == MVT::i64 || InVT == MVT::i32) &&(static_cast <bool> ((InVT == MVT::i64 || InVT == MVT::
i32) && "Invalid input type for ANDI_rec_1_EQ_BIT") ?
void (0) : __assert_fail ("(InVT == MVT::i64 || InVT == MVT::i32) && \"Invalid input type for ANDI_rec_1_EQ_BIT\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5673, __extension__
__PRETTY_FUNCTION__))
5673 "Invalid input type for ANDI_rec_1_EQ_BIT")(static_cast <bool> ((InVT == MVT::i64 || InVT == MVT::
i32) && "Invalid input type for ANDI_rec_1_EQ_BIT") ?
void (0) : __assert_fail ("(InVT == MVT::i64 || InVT == MVT::i32) && \"Invalid input type for ANDI_rec_1_EQ_BIT\""
, "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5673, __extension__
__PRETTY_FUNCTION__))
;
5674
5675 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
5676 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
5677 N->getOperand(0),
5678 CurDAG->getTargetConstant(1, dl, InVT)),
5679 0);
5680 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
5681 SDValue SRIdxVal = CurDAG->getTargetConstant(
5682 N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
5683 dl, MVT::i32);
5684
5685 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
5686 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
5687 return;
5688 }
5689 case ISD::SELECT_CC: {