File: | build/source/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp |
Warning: | line 1994, column 15 Value stored to 'I' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines a pattern matching instruction selector for PowerPC, |
10 | // converting from a legalized dag to a PPC dag. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "MCTargetDesc/PPCMCTargetDesc.h" |
15 | #include "MCTargetDesc/PPCPredicates.h" |
16 | #include "PPC.h" |
17 | #include "PPCISelLowering.h" |
18 | #include "PPCMachineFunctionInfo.h" |
19 | #include "PPCSubtarget.h" |
20 | #include "PPCTargetMachine.h" |
21 | #include "llvm/ADT/APInt.h" |
22 | #include "llvm/ADT/DenseMap.h" |
23 | #include "llvm/ADT/STLExtras.h" |
24 | #include "llvm/ADT/SmallPtrSet.h" |
25 | #include "llvm/ADT/SmallVector.h" |
26 | #include "llvm/ADT/Statistic.h" |
27 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
28 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
29 | #include "llvm/CodeGen/ISDOpcodes.h" |
30 | #include "llvm/CodeGen/MachineBasicBlock.h" |
31 | #include "llvm/CodeGen/MachineFrameInfo.h" |
32 | #include "llvm/CodeGen/MachineFunction.h" |
33 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
34 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
35 | #include "llvm/CodeGen/SelectionDAG.h" |
36 | #include "llvm/CodeGen/SelectionDAGISel.h" |
37 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
38 | #include "llvm/CodeGen/TargetInstrInfo.h" |
39 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
40 | #include "llvm/CodeGen/ValueTypes.h" |
41 | #include "llvm/IR/BasicBlock.h" |
42 | #include "llvm/IR/DebugLoc.h" |
43 | #include "llvm/IR/Function.h" |
44 | #include "llvm/IR/GlobalValue.h" |
45 | #include "llvm/IR/InlineAsm.h" |
46 | #include "llvm/IR/InstrTypes.h" |
47 | #include "llvm/IR/IntrinsicsPowerPC.h" |
48 | #include "llvm/IR/Module.h" |
49 | #include "llvm/Support/Casting.h" |
50 | #include "llvm/Support/CodeGen.h" |
51 | #include "llvm/Support/CommandLine.h" |
52 | #include "llvm/Support/Compiler.h" |
53 | #include "llvm/Support/Debug.h" |
54 | #include "llvm/Support/ErrorHandling.h" |
55 | #include "llvm/Support/KnownBits.h" |
56 | #include "llvm/Support/MachineValueType.h" |
57 | #include "llvm/Support/MathExtras.h" |
58 | #include "llvm/Support/raw_ostream.h" |
59 | #include <algorithm> |
60 | #include <cassert> |
61 | #include <cstdint> |
62 | #include <iterator> |
63 | #include <limits> |
64 | #include <memory> |
65 | #include <new> |
66 | #include <tuple> |
67 | #include <utility> |
68 | |
69 | using namespace llvm; |
70 | |
71 | #define DEBUG_TYPE"ppc-isel" "ppc-isel" |
72 | #define PASS_NAME"PowerPC DAG->DAG Pattern Instruction Selection" "PowerPC DAG->DAG Pattern Instruction Selection" |
73 | |
74 | STATISTIC(NumSextSetcc,static llvm::Statistic NumSextSetcc = {"ppc-isel", "NumSextSetcc" , "Number of (sext(setcc)) nodes expanded into GPR sequence." } |
75 | "Number of (sext(setcc)) nodes expanded into GPR sequence.")static llvm::Statistic NumSextSetcc = {"ppc-isel", "NumSextSetcc" , "Number of (sext(setcc)) nodes expanded into GPR sequence." }; |
76 | STATISTIC(NumZextSetcc,static llvm::Statistic NumZextSetcc = {"ppc-isel", "NumZextSetcc" , "Number of (zext(setcc)) nodes expanded into GPR sequence." } |
77 | "Number of (zext(setcc)) nodes expanded into GPR sequence.")static llvm::Statistic NumZextSetcc = {"ppc-isel", "NumZextSetcc" , "Number of (zext(setcc)) nodes expanded into GPR sequence." }; |
78 | STATISTIC(SignExtensionsAdded,static llvm::Statistic SignExtensionsAdded = {"ppc-isel", "SignExtensionsAdded" , "Number of sign extensions for compare inputs added."} |
79 | "Number of sign extensions for compare inputs added.")static llvm::Statistic SignExtensionsAdded = {"ppc-isel", "SignExtensionsAdded" , "Number of sign extensions for compare inputs added."}; |
80 | STATISTIC(ZeroExtensionsAdded,static llvm::Statistic ZeroExtensionsAdded = {"ppc-isel", "ZeroExtensionsAdded" , "Number of zero extensions for compare inputs added."} |
81 | "Number of zero extensions for compare inputs added.")static llvm::Statistic ZeroExtensionsAdded = {"ppc-isel", "ZeroExtensionsAdded" , "Number of zero extensions for compare inputs added."}; |
82 | STATISTIC(NumLogicOpsOnComparison,static llvm::Statistic NumLogicOpsOnComparison = {"ppc-isel", "NumLogicOpsOnComparison", "Number of logical ops on i1 values calculated in GPR." } |
83 | "Number of logical ops on i1 values calculated in GPR.")static llvm::Statistic NumLogicOpsOnComparison = {"ppc-isel", "NumLogicOpsOnComparison", "Number of logical ops on i1 values calculated in GPR." }; |
84 | STATISTIC(OmittedForNonExtendUses,static llvm::Statistic OmittedForNonExtendUses = {"ppc-isel", "OmittedForNonExtendUses", "Number of compares not eliminated as they have non-extending uses." } |
85 | "Number of compares not eliminated as they have non-extending uses.")static llvm::Statistic OmittedForNonExtendUses = {"ppc-isel", "OmittedForNonExtendUses", "Number of compares not eliminated as they have non-extending uses." }; |
86 | STATISTIC(NumP9Setb,static llvm::Statistic NumP9Setb = {"ppc-isel", "NumP9Setb", "Number of compares lowered to setb." } |
87 | "Number of compares lowered to setb.")static llvm::Statistic NumP9Setb = {"ppc-isel", "NumP9Setb", "Number of compares lowered to setb." }; |
88 | |
89 | // FIXME: Remove this once the bug has been fixed! |
90 | cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", |
91 | cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); |
92 | |
93 | static cl::opt<bool> |
94 | UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), |
95 | cl::desc("use aggressive ppc isel for bit permutations"), |
96 | cl::Hidden); |
97 | static cl::opt<bool> BPermRewriterNoMasking( |
98 | "ppc-bit-perm-rewriter-stress-rotates", |
99 | cl::desc("stress rotate selection in aggressive ppc isel for " |
100 | "bit permutations"), |
101 | cl::Hidden); |
102 | |
103 | static cl::opt<bool> EnableBranchHint( |
104 | "ppc-use-branch-hint", cl::init(true), |
105 | cl::desc("Enable static hinting of branches on ppc"), |
106 | cl::Hidden); |
107 | |
108 | static cl::opt<bool> EnableTLSOpt( |
109 | "ppc-tls-opt", cl::init(true), |
110 | cl::desc("Enable tls optimization peephole"), |
111 | cl::Hidden); |
112 | |
113 | enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, |
114 | ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, |
115 | ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; |
116 | |
117 | static cl::opt<ICmpInGPRType> CmpInGPR( |
118 | "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), |
119 | cl::desc("Specify the types of comparisons to emit GPR-only code for."), |
120 | cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons.")llvm::cl::OptionEnumValue { "none", int(ICGPR_None), "Do not modify integer comparisons." }, |
121 | clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs.")llvm::cl::OptionEnumValue { "all", int(ICGPR_All), "All possible int comparisons in GPRs." }, |
122 | clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs.")llvm::cl::OptionEnumValue { "i32", int(ICGPR_I32), "Only i32 comparisons in GPRs." }, |
123 | clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs.")llvm::cl::OptionEnumValue { "i64", int(ICGPR_I64), "Only i64 comparisons in GPRs." }, |
124 | clEnumValN(ICGPR_NonExtIn, "nonextin",llvm::cl::OptionEnumValue { "nonextin", int(ICGPR_NonExtIn), "Only comparisons where inputs don't need [sz]ext." } |
125 | "Only comparisons where inputs don't need [sz]ext.")llvm::cl::OptionEnumValue { "nonextin", int(ICGPR_NonExtIn), "Only comparisons where inputs don't need [sz]ext." }, |
126 | clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result.")llvm::cl::OptionEnumValue { "zext", int(ICGPR_Zext), "Only comparisons with zext result." }, |
127 | clEnumValN(ICGPR_ZextI32, "zexti32",llvm::cl::OptionEnumValue { "zexti32", int(ICGPR_ZextI32), "Only i32 comparisons with zext result." } |
128 | "Only i32 comparisons with zext result.")llvm::cl::OptionEnumValue { "zexti32", int(ICGPR_ZextI32), "Only i32 comparisons with zext result." }, |
129 | clEnumValN(ICGPR_ZextI64, "zexti64",llvm::cl::OptionEnumValue { "zexti64", int(ICGPR_ZextI64), "Only i64 comparisons with zext result." } |
130 | "Only i64 comparisons with zext result.")llvm::cl::OptionEnumValue { "zexti64", int(ICGPR_ZextI64), "Only i64 comparisons with zext result." }, |
131 | clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result.")llvm::cl::OptionEnumValue { "sext", int(ICGPR_Sext), "Only comparisons with sext result." }, |
132 | clEnumValN(ICGPR_SextI32, "sexti32",llvm::cl::OptionEnumValue { "sexti32", int(ICGPR_SextI32), "Only i32 comparisons with sext result." } |
133 | "Only i32 comparisons with sext result.")llvm::cl::OptionEnumValue { "sexti32", int(ICGPR_SextI32), "Only i32 comparisons with sext result." }, |
134 | clEnumValN(ICGPR_SextI64, "sexti64",llvm::cl::OptionEnumValue { "sexti64", int(ICGPR_SextI64), "Only i64 comparisons with sext result." } |
135 | "Only i64 comparisons with sext result.")llvm::cl::OptionEnumValue { "sexti64", int(ICGPR_SextI64), "Only i64 comparisons with sext result." })); |
136 | namespace { |
137 | |
138 | //===--------------------------------------------------------------------===// |
139 | /// PPCDAGToDAGISel - PPC specific code to select PPC machine |
140 | /// instructions for SelectionDAG operations. |
141 | /// |
142 | class PPCDAGToDAGISel : public SelectionDAGISel { |
143 | const PPCTargetMachine &TM; |
144 | const PPCSubtarget *Subtarget = nullptr; |
145 | const PPCTargetLowering *PPCLowering = nullptr; |
146 | unsigned GlobalBaseReg = 0; |
147 | |
148 | public: |
149 | static char ID; |
150 | |
151 | PPCDAGToDAGISel() = delete; |
152 | |
153 | explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) |
154 | : SelectionDAGISel(ID, tm, OptLevel), TM(tm) {} |
155 | |
156 | bool runOnMachineFunction(MachineFunction &MF) override { |
157 | // Make sure we re-emit a set of the global base reg if necessary |
158 | GlobalBaseReg = 0; |
159 | Subtarget = &MF.getSubtarget<PPCSubtarget>(); |
160 | PPCLowering = Subtarget->getTargetLowering(); |
161 | if (Subtarget->hasROPProtect()) { |
162 | // Create a place on the stack for the ROP Protection Hash. |
163 | // The ROP Protection Hash will always be 8 bytes and aligned to 8 |
164 | // bytes. |
165 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
166 | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
167 | const int Result = MFI.CreateStackObject(8, Align(8), false); |
168 | FI->setROPProtectionHashSaveIndex(Result); |
169 | } |
170 | SelectionDAGISel::runOnMachineFunction(MF); |
171 | |
172 | return true; |
173 | } |
174 | |
175 | void PreprocessISelDAG() override; |
176 | void PostprocessISelDAG() override; |
177 | |
178 | /// getI16Imm - Return a target constant with the specified value, of type |
179 | /// i16. |
180 | inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { |
181 | return CurDAG->getTargetConstant(Imm, dl, MVT::i16); |
182 | } |
183 | |
184 | /// getI32Imm - Return a target constant with the specified value, of type |
185 | /// i32. |
186 | inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { |
187 | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
188 | } |
189 | |
190 | /// getI64Imm - Return a target constant with the specified value, of type |
191 | /// i64. |
192 | inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { |
193 | return CurDAG->getTargetConstant(Imm, dl, MVT::i64); |
194 | } |
195 | |
196 | /// getSmallIPtrImm - Return a target constant of pointer type. |
197 | inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) { |
198 | return CurDAG->getTargetConstant( |
199 | Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); |
200 | } |
201 | |
202 | /// isRotateAndMask - Returns true if Mask and Shift can be folded into a |
203 | /// rotate and mask opcode and mask operation. |
204 | static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, |
205 | unsigned &SH, unsigned &MB, unsigned &ME); |
206 | |
207 | /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC |
208 | /// base register. Return the virtual register that holds this value. |
209 | SDNode *getGlobalBaseReg(); |
210 | |
211 | void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0); |
212 | |
213 | // Select - Convert the specified operand from a target-independent to a |
214 | // target-specific node if it hasn't already been changed. |
215 | void Select(SDNode *N) override; |
216 | |
217 | bool tryBitfieldInsert(SDNode *N); |
218 | bool tryBitPermutation(SDNode *N); |
219 | bool tryIntCompareInGPR(SDNode *N); |
220 | |
221 | // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into |
222 | // an X-Form load instruction with the offset being a relocation coming from |
223 | // the PPCISD::ADD_TLS. |
224 | bool tryTLSXFormLoad(LoadSDNode *N); |
225 | // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into |
226 | // an X-Form store instruction with the offset being a relocation coming from |
227 | // the PPCISD::ADD_TLS. |
228 | bool tryTLSXFormStore(StoreSDNode *N); |
229 | /// SelectCC - Select a comparison of the specified values with the |
230 | /// specified condition code, returning the CR# of the expression. |
231 | SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
232 | const SDLoc &dl, SDValue Chain = SDValue()); |
233 | |
234 | /// SelectAddrImmOffs - Return true if the operand is valid for a preinc |
235 | /// immediate field. Note that the operand at this point is already the |
236 | /// result of a prior SelectAddressRegImm call. |
237 | bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { |
238 | if (N.getOpcode() == ISD::TargetConstant || |
239 | N.getOpcode() == ISD::TargetGlobalAddress) { |
240 | Out = N; |
241 | return true; |
242 | } |
243 | |
244 | return false; |
245 | } |
246 | |
247 | /// SelectDSForm - Returns true if address N can be represented by the |
248 | /// addressing mode of DSForm instructions (a base register, plus a signed |
249 | /// 16-bit displacement that is a multiple of 4. |
250 | bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { |
251 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
252 | Align(4)) == PPC::AM_DSForm; |
253 | } |
254 | |
255 | /// SelectDQForm - Returns true if address N can be represented by the |
256 | /// addressing mode of DQForm instructions (a base register, plus a signed |
257 | /// 16-bit displacement that is a multiple of 16. |
258 | bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { |
259 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
260 | Align(16)) == PPC::AM_DQForm; |
261 | } |
262 | |
263 | /// SelectDForm - Returns true if address N can be represented by |
264 | /// the addressing mode of DForm instructions (a base register, plus a |
265 | /// signed 16-bit immediate. |
266 | bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { |
267 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
268 | std::nullopt) == PPC::AM_DForm; |
269 | } |
270 | |
271 | /// SelectPCRelForm - Returns true if address N can be represented by |
272 | /// PC-Relative addressing mode. |
273 | bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp, |
274 | SDValue &Base) { |
275 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
276 | std::nullopt) == PPC::AM_PCRel; |
277 | } |
278 | |
279 | /// SelectPDForm - Returns true if address N can be represented by Prefixed |
280 | /// DForm addressing mode (a base register, plus a signed 34-bit immediate. |
281 | bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { |
282 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
283 | std::nullopt) == |
284 | PPC::AM_PrefixDForm; |
285 | } |
286 | |
287 | /// SelectXForm - Returns true if address N can be represented by the |
288 | /// addressing mode of XForm instructions (an indexed [r+r] operation). |
289 | bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { |
290 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
291 | std::nullopt) == PPC::AM_XForm; |
292 | } |
293 | |
294 | /// SelectForceXForm - Given the specified address, force it to be |
295 | /// represented as an indexed [r+r] operation (an XForm instruction). |
296 | bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp, |
297 | SDValue &Base) { |
298 | return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) == |
299 | PPC::AM_XForm; |
300 | } |
301 | |
302 | /// SelectAddrIdx - Given the specified address, check to see if it can be |
303 | /// represented as an indexed [r+r] operation. |
304 | /// This is for xform instructions whose associated displacement form is D. |
305 | /// The last parameter \p 0 means associated D form has no requirment for 16 |
306 | /// bit signed displacement. |
307 | /// Returns false if it can be represented by [r+imm], which are preferred. |
308 | bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { |
309 | return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, |
310 | std::nullopt); |
311 | } |
312 | |
313 | /// SelectAddrIdx4 - Given the specified address, check to see if it can be |
314 | /// represented as an indexed [r+r] operation. |
315 | /// This is for xform instructions whose associated displacement form is DS. |
316 | /// The last parameter \p 4 means associated DS form 16 bit signed |
317 | /// displacement must be a multiple of 4. |
318 | /// Returns false if it can be represented by [r+imm], which are preferred. |
319 | bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { |
320 | return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, |
321 | Align(4)); |
322 | } |
323 | |
324 | /// SelectAddrIdx16 - Given the specified address, check to see if it can be |
325 | /// represented as an indexed [r+r] operation. |
326 | /// This is for xform instructions whose associated displacement form is DQ. |
327 | /// The last parameter \p 16 means associated DQ form 16 bit signed |
328 | /// displacement must be a multiple of 16. |
329 | /// Returns false if it can be represented by [r+imm], which are preferred. |
330 | bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { |
331 | return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, |
332 | Align(16)); |
333 | } |
334 | |
335 | /// SelectAddrIdxOnly - Given the specified address, force it to be |
336 | /// represented as an indexed [r+r] operation. |
337 | bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { |
338 | return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); |
339 | } |
340 | |
341 | /// SelectAddrImm - Returns true if the address N can be represented by |
342 | /// a base register plus a signed 16-bit displacement [r+imm]. |
343 | /// The last parameter \p 0 means D form has no requirment for 16 bit signed |
344 | /// displacement. |
345 | bool SelectAddrImm(SDValue N, SDValue &Disp, |
346 | SDValue &Base) { |
347 | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, |
348 | std::nullopt); |
349 | } |
350 | |
351 | /// SelectAddrImmX4 - Returns true if the address N can be represented by |
352 | /// a base register plus a signed 16-bit displacement that is a multiple of |
353 | /// 4 (last parameter). Suitable for use by STD and friends. |
354 | bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { |
355 | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4)); |
356 | } |
357 | |
358 | /// SelectAddrImmX16 - Returns true if the address N can be represented by |
359 | /// a base register plus a signed 16-bit displacement that is a multiple of |
360 | /// 16(last parameter). Suitable for use by STXV and friends. |
361 | bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { |
362 | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, |
363 | Align(16)); |
364 | } |
365 | |
366 | /// SelectAddrImmX34 - Returns true if the address N can be represented by |
367 | /// a base register plus a signed 34-bit displacement. Suitable for use by |
368 | /// PSTXVP and friends. |
369 | bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) { |
370 | return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG); |
371 | } |
372 | |
373 | // Select an address into a single register. |
374 | bool SelectAddr(SDValue N, SDValue &Base) { |
375 | Base = N; |
376 | return true; |
377 | } |
378 | |
379 | bool SelectAddrPCRel(SDValue N, SDValue &Base) { |
380 | return PPCLowering->SelectAddressPCRel(N, Base); |
381 | } |
382 | |
383 | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
384 | /// inline asm expressions. It is always correct to compute the value into |
385 | /// a register. The case of adding a (possibly relocatable) constant to a |
386 | /// register can be improved, but it is wrong to substitute Reg+Reg for |
387 | /// Reg in an asm, because the load or store opcode would have to change. |
388 | bool SelectInlineAsmMemoryOperand(const SDValue &Op, |
389 | unsigned ConstraintID, |
390 | std::vector<SDValue> &OutOps) override { |
391 | switch(ConstraintID) { |
392 | default: |
393 | errs() << "ConstraintID: " << ConstraintID << "\n"; |
394 | llvm_unreachable("Unexpected asm memory constraint")::llvm::llvm_unreachable_internal("Unexpected asm memory constraint" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 394); |
395 | case InlineAsm::Constraint_es: |
396 | case InlineAsm::Constraint_m: |
397 | case InlineAsm::Constraint_o: |
398 | case InlineAsm::Constraint_Q: |
399 | case InlineAsm::Constraint_Z: |
400 | case InlineAsm::Constraint_Zy: |
401 | // We need to make sure that this one operand does not end up in r0 |
402 | // (because we might end up lowering this as 0(%op)). |
403 | const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
404 | const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); |
405 | SDLoc dl(Op); |
406 | SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); |
407 | SDValue NewOp = |
408 | SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, |
409 | dl, Op.getValueType(), |
410 | Op, RC), 0); |
411 | |
412 | OutOps.push_back(NewOp); |
413 | return false; |
414 | } |
415 | return true; |
416 | } |
417 | |
418 | // Include the pieces autogenerated from the target description. |
419 | #include "PPCGenDAGISel.inc" |
420 | |
421 | private: |
422 | bool trySETCC(SDNode *N); |
423 | bool tryFoldSWTestBRCC(SDNode *N); |
424 | bool trySelectLoopCountIntrinsic(SDNode *N); |
425 | bool tryAsSingleRLDICL(SDNode *N); |
426 | bool tryAsSingleRLDICR(SDNode *N); |
427 | bool tryAsSingleRLWINM(SDNode *N); |
428 | bool tryAsSingleRLWINM8(SDNode *N); |
429 | bool tryAsSingleRLWIMI(SDNode *N); |
430 | bool tryAsPairOfRLDICL(SDNode *N); |
431 | bool tryAsSingleRLDIMI(SDNode *N); |
432 | |
433 | void PeepholePPC64(); |
434 | void PeepholePPC64ZExt(); |
435 | void PeepholeCROps(); |
436 | |
437 | SDValue combineToCMPB(SDNode *N); |
438 | void foldBoolExts(SDValue &Res, SDNode *&N); |
439 | |
440 | bool AllUsersSelectZero(SDNode *N); |
441 | void SwapAllSelectUsers(SDNode *N); |
442 | |
443 | bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; |
444 | void transferMemOperands(SDNode *N, SDNode *Result); |
445 | }; |
446 | |
447 | } // end anonymous namespace |
448 | |
449 | char PPCDAGToDAGISel::ID = 0; |
450 | |
451 | INITIALIZE_PASS(PPCDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)static void *initializePPCDAGToDAGISelPassOnce(PassRegistry & Registry) { PassInfo *PI = new PassInfo( "PowerPC DAG->DAG Pattern Instruction Selection" , "ppc-isel", &PPCDAGToDAGISel::ID, PassInfo::NormalCtor_t (callDefaultCtor<PPCDAGToDAGISel>), false, false); Registry .registerPass(*PI, true); return PI; } static llvm::once_flag InitializePPCDAGToDAGISelPassFlag; void llvm::initializePPCDAGToDAGISelPass (PassRegistry &Registry) { llvm::call_once(InitializePPCDAGToDAGISelPassFlag , initializePPCDAGToDAGISelPassOnce, std::ref(Registry)); } |
452 | |
453 | /// getGlobalBaseReg - Output the instructions required to put the |
454 | /// base address to use for accessing globals into a register. |
455 | /// |
456 | SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { |
457 | if (!GlobalBaseReg) { |
458 | const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); |
459 | // Insert the set of GlobalBaseReg into the first MBB of the function |
460 | MachineBasicBlock &FirstMBB = MF->front(); |
461 | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
462 | const Module *M = MF->getFunction().getParent(); |
463 | DebugLoc dl; |
464 | |
465 | if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { |
466 | if (Subtarget->isTargetELF()) { |
467 | GlobalBaseReg = PPC::R30; |
468 | if (!Subtarget->isSecurePlt() && |
469 | M->getPICLevel() == PICLevel::SmallPIC) { |
470 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); |
471 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); |
472 | MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); |
473 | } else { |
474 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); |
475 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); |
476 | Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); |
477 | BuildMI(FirstMBB, MBBI, dl, |
478 | TII.get(PPC::UpdateGBR), GlobalBaseReg) |
479 | .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); |
480 | MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); |
481 | } |
482 | } else { |
483 | GlobalBaseReg = |
484 | RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); |
485 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); |
486 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); |
487 | } |
488 | } else { |
489 | // We must ensure that this sequence is dominated by the prologue. |
490 | // FIXME: This is a bit of a big hammer since we don't get the benefits |
491 | // of shrink-wrapping whenever we emit this instruction. Considering |
492 | // this is used in any function where we emit a jump table, this may be |
493 | // a significant limitation. We should consider inserting this in the |
494 | // block where it is used and then commoning this sequence up if it |
495 | // appears in multiple places. |
496 | // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of |
497 | // MovePCtoLR8. |
498 | MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); |
499 | GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); |
500 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); |
501 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); |
502 | } |
503 | } |
504 | return CurDAG->getRegister(GlobalBaseReg, |
505 | PPCLowering->getPointerTy(CurDAG->getDataLayout())) |
506 | .getNode(); |
507 | } |
508 | |
509 | // Check if a SDValue has the toc-data attribute. |
510 | static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) { |
511 | GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val); |
512 | if (!GA) |
513 | return false; |
514 | |
515 | const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal()); |
516 | if (!GV) |
517 | return false; |
518 | |
519 | if (!GV->hasAttribute("toc-data")) |
520 | return false; |
521 | |
522 | // TODO: These asserts should be updated as more support for the toc data |
523 | // transformation is added (struct support, etc.). |
524 | |
525 | assert((static_cast <bool> (PointerSize >= GV->getAlign( ).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry " "size not supported by the toc data transformation.") ? void (0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__ __PRETTY_FUNCTION__)) |
526 | PointerSize >= GV->getAlign().valueOrOne().value() &&(static_cast <bool> (PointerSize >= GV->getAlign( ).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry " "size not supported by the toc data transformation.") ? void (0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__ __PRETTY_FUNCTION__)) |
527 | "GlobalVariables with an alignment requirement stricter than TOC entry "(static_cast <bool> (PointerSize >= GV->getAlign( ).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry " "size not supported by the toc data transformation.") ? void (0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__ __PRETTY_FUNCTION__)) |
528 | "size not supported by the toc data transformation.")(static_cast <bool> (PointerSize >= GV->getAlign( ).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry " "size not supported by the toc data transformation.") ? void (0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__ __PRETTY_FUNCTION__)); |
529 | |
530 | Type *GVType = GV->getValueType(); |
531 | |
532 | assert(GVType->isSized() && "A GlobalVariable's size must be known to be "(static_cast <bool> (GVType->isSized() && "A GlobalVariable's size must be known to be " "supported by the toc data transformation.") ? void (0) : __assert_fail ("GVType->isSized() && \"A GlobalVariable's size must be known to be \" \"supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 533, __extension__ __PRETTY_FUNCTION__)) |
533 | "supported by the toc data transformation.")(static_cast <bool> (GVType->isSized() && "A GlobalVariable's size must be known to be " "supported by the toc data transformation.") ? void (0) : __assert_fail ("GVType->isSized() && \"A GlobalVariable's size must be known to be \" \"supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 533, __extension__ __PRETTY_FUNCTION__)); |
534 | |
535 | if (GVType->isVectorTy()) |
536 | report_fatal_error("A GlobalVariable of Vector type is not currently " |
537 | "supported by the toc data transformation."); |
538 | |
539 | if (GVType->isArrayTy()) |
540 | report_fatal_error("A GlobalVariable of Array type is not currently " |
541 | "supported by the toc data transformation."); |
542 | |
543 | if (GVType->isStructTy()) |
544 | report_fatal_error("A GlobalVariable of Struct type is not currently " |
545 | "supported by the toc data transformation."); |
546 | |
547 | assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&(static_cast <bool> (GVType->getPrimitiveSizeInBits( ) <= PointerSize * 8 && "A GlobalVariable with size larger than a TOC entry is not currently " "supported by the toc data transformation.") ? void (0) : __assert_fail ("GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && \"A GlobalVariable with size larger than a TOC entry is not currently \" \"supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 549, __extension__ __PRETTY_FUNCTION__)) |
548 | "A GlobalVariable with size larger than a TOC entry is not currently "(static_cast <bool> (GVType->getPrimitiveSizeInBits( ) <= PointerSize * 8 && "A GlobalVariable with size larger than a TOC entry is not currently " "supported by the toc data transformation.") ? void (0) : __assert_fail ("GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && \"A GlobalVariable with size larger than a TOC entry is not currently \" \"supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 549, __extension__ __PRETTY_FUNCTION__)) |
549 | "supported by the toc data transformation.")(static_cast <bool> (GVType->getPrimitiveSizeInBits( ) <= PointerSize * 8 && "A GlobalVariable with size larger than a TOC entry is not currently " "supported by the toc data transformation.") ? void (0) : __assert_fail ("GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && \"A GlobalVariable with size larger than a TOC entry is not currently \" \"supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 549, __extension__ __PRETTY_FUNCTION__)); |
550 | |
551 | if (GV->hasLocalLinkage() || GV->hasPrivateLinkage()) |
552 | report_fatal_error("A GlobalVariable with private or local linkage is not " |
553 | "currently supported by the toc data transformation."); |
554 | |
555 | assert(!GV->hasCommonLinkage() &&(static_cast <bool> (!GV->hasCommonLinkage() && "Tentative definitions cannot have the mapping class XMC_TD." ) ? void (0) : __assert_fail ("!GV->hasCommonLinkage() && \"Tentative definitions cannot have the mapping class XMC_TD.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 556, __extension__ __PRETTY_FUNCTION__)) |
556 | "Tentative definitions cannot have the mapping class XMC_TD.")(static_cast <bool> (!GV->hasCommonLinkage() && "Tentative definitions cannot have the mapping class XMC_TD." ) ? void (0) : __assert_fail ("!GV->hasCommonLinkage() && \"Tentative definitions cannot have the mapping class XMC_TD.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 556, __extension__ __PRETTY_FUNCTION__)); |
557 | |
558 | return true; |
559 | } |
560 | |
561 | /// isInt32Immediate - This method tests to see if the node is a 32-bit constant |
562 | /// operand. If so Imm will receive the 32-bit value. |
563 | static bool isInt32Immediate(SDNode *N, unsigned &Imm) { |
564 | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { |
565 | Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
566 | return true; |
567 | } |
568 | return false; |
569 | } |
570 | |
571 | /// isInt64Immediate - This method tests to see if the node is a 64-bit constant |
572 | /// operand. If so Imm will receive the 64-bit value. |
573 | static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { |
574 | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { |
575 | Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
576 | return true; |
577 | } |
578 | return false; |
579 | } |
580 | |
581 | // isInt32Immediate - This method tests to see if a constant operand. |
582 | // If so Imm will receive the 32 bit value. |
583 | static bool isInt32Immediate(SDValue N, unsigned &Imm) { |
584 | return isInt32Immediate(N.getNode(), Imm); |
585 | } |
586 | |
587 | /// isInt64Immediate - This method tests to see if the value is a 64-bit |
588 | /// constant operand. If so Imm will receive the 64-bit value. |
589 | static bool isInt64Immediate(SDValue N, uint64_t &Imm) { |
590 | return isInt64Immediate(N.getNode(), Imm); |
591 | } |
592 | |
593 | static unsigned getBranchHint(unsigned PCC, |
594 | const FunctionLoweringInfo &FuncInfo, |
595 | const SDValue &DestMBB) { |
596 | assert(isa<BasicBlockSDNode>(DestMBB))(static_cast <bool> (isa<BasicBlockSDNode>(DestMBB )) ? void (0) : __assert_fail ("isa<BasicBlockSDNode>(DestMBB)" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 596, __extension__ __PRETTY_FUNCTION__)); |
597 | |
598 | if (!FuncInfo.BPI) return PPC::BR_NO_HINT; |
599 | |
600 | const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); |
601 | const Instruction *BBTerm = BB->getTerminator(); |
602 | |
603 | if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; |
604 | |
605 | const BasicBlock *TBB = BBTerm->getSuccessor(0); |
606 | const BasicBlock *FBB = BBTerm->getSuccessor(1); |
607 | |
608 | auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB); |
609 | auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB); |
610 | |
611 | // We only want to handle cases which are easy to predict at static time, e.g. |
612 | // C++ throw statement, that is very likely not taken, or calling never |
613 | // returned function, e.g. stdlib exit(). So we set Threshold to filter |
614 | // unwanted cases. |
615 | // |
616 | // Below is LLVM branch weight table, we only want to handle case 1, 2 |
617 | // |
618 | // Case Taken:Nontaken Example |
619 | // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), |
620 | // 2. Invoke-terminating 1:1048575 |
621 | // 3. Coldblock 4:64 __builtin_expect |
622 | // 4. Loop Branch 124:4 For loop |
623 | // 5. PH/ZH/FPH 20:12 |
624 | const uint32_t Threshold = 10000; |
625 | |
626 | if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) |
627 | return PPC::BR_NO_HINT; |
628 | |
629 | LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() << "::" << BB->getName () << "'\n" << " -> " << TBB->getName () << ": " << TProb << "\n" << " -> " << FBB->getName() << ": " << FProb << "\n"; } } while (false) |
630 | << "::" << BB->getName() << "'\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() << "::" << BB->getName () << "'\n" << " -> " << TBB->getName () << ": " << TProb << "\n" << " -> " << FBB->getName() << ": " << FProb << "\n"; } } while (false) |
631 | << " -> " << TBB->getName() << ": " << TProb << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() << "::" << BB->getName () << "'\n" << " -> " << TBB->getName () << ": " << TProb << "\n" << " -> " << FBB->getName() << ": " << FProb << "\n"; } } while (false) |
632 | << " -> " << FBB->getName() << ": " << FProb << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() << "::" << BB->getName () << "'\n" << " -> " << TBB->getName () << ": " << TProb << "\n" << " -> " << FBB->getName() << ": " << FProb << "\n"; } } while (false); |
633 | |
634 | const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); |
635 | |
636 | // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, |
637 | // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock |
638 | if (BBDN->getBasicBlock()->getBasicBlock() != TBB) |
639 | std::swap(TProb, FProb); |
640 | |
641 | return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; |
642 | } |
643 | |
644 | // isOpcWithIntImmediate - This method tests to see if the node is a specific |
645 | // opcode and that it has a immediate integer right operand. |
646 | // If so Imm will receive the 32 bit value. |
647 | static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { |
648 | return N->getOpcode() == Opc |
649 | && isInt32Immediate(N->getOperand(1).getNode(), Imm); |
650 | } |
651 | |
652 | void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) { |
653 | SDLoc dl(SN); |
654 | int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
655 | SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); |
656 | unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; |
657 | if (SN->hasOneUse()) |
658 | CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, |
659 | getSmallIPtrImm(Offset, dl)); |
660 | else |
661 | ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, |
662 | getSmallIPtrImm(Offset, dl))); |
663 | } |
664 | |
665 | bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, |
666 | bool isShiftMask, unsigned &SH, |
667 | unsigned &MB, unsigned &ME) { |
668 | // Don't even go down this path for i64, since different logic will be |
669 | // necessary for rldicl/rldicr/rldimi. |
670 | if (N->getValueType(0) != MVT::i32) |
671 | return false; |
672 | |
673 | unsigned Shift = 32; |
674 | unsigned Indeterminant = ~0; // bit mask marking indeterminant results |
675 | unsigned Opcode = N->getOpcode(); |
676 | if (N->getNumOperands() != 2 || |
677 | !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) |
678 | return false; |
679 | |
680 | if (Opcode == ISD::SHL) { |
681 | // apply shift left to mask if it comes first |
682 | if (isShiftMask) Mask = Mask << Shift; |
683 | // determine which bits are made indeterminant by shift |
684 | Indeterminant = ~(0xFFFFFFFFu << Shift); |
685 | } else if (Opcode == ISD::SRL) { |
686 | // apply shift right to mask if it comes first |
687 | if (isShiftMask) Mask = Mask >> Shift; |
688 | // determine which bits are made indeterminant by shift |
689 | Indeterminant = ~(0xFFFFFFFFu >> Shift); |
690 | // adjust for the left rotate |
691 | Shift = 32 - Shift; |
692 | } else if (Opcode == ISD::ROTL) { |
693 | Indeterminant = 0; |
694 | } else { |
695 | return false; |
696 | } |
697 | |
698 | // if the mask doesn't intersect any Indeterminant bits |
699 | if (Mask && !(Mask & Indeterminant)) { |
700 | SH = Shift & 31; |
701 | // make sure the mask is still a mask (wrap arounds may not be) |
702 | return isRunOfOnes(Mask, MB, ME); |
703 | } |
704 | return false; |
705 | } |
706 | |
707 | bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { |
708 | SDValue Base = ST->getBasePtr(); |
709 | if (Base.getOpcode() != PPCISD::ADD_TLS) |
710 | return false; |
711 | SDValue Offset = ST->getOffset(); |
712 | if (!Offset.isUndef()) |
713 | return false; |
714 | if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) |
715 | return false; |
716 | |
717 | SDLoc dl(ST); |
718 | EVT MemVT = ST->getMemoryVT(); |
719 | EVT RegVT = ST->getValue().getValueType(); |
720 | |
721 | unsigned Opcode; |
722 | switch (MemVT.getSimpleVT().SimpleTy) { |
723 | default: |
724 | return false; |
725 | case MVT::i8: { |
726 | Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; |
727 | break; |
728 | } |
729 | case MVT::i16: { |
730 | Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; |
731 | break; |
732 | } |
733 | case MVT::i32: { |
734 | Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; |
735 | break; |
736 | } |
737 | case MVT::i64: { |
738 | Opcode = PPC::STDXTLS; |
739 | break; |
740 | } |
741 | } |
742 | SDValue Chain = ST->getChain(); |
743 | SDVTList VTs = ST->getVTList(); |
744 | SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), |
745 | Chain}; |
746 | SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); |
747 | transferMemOperands(ST, MN); |
748 | ReplaceNode(ST, MN); |
749 | return true; |
750 | } |
751 | |
752 | bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { |
753 | SDValue Base = LD->getBasePtr(); |
754 | if (Base.getOpcode() != PPCISD::ADD_TLS) |
755 | return false; |
756 | SDValue Offset = LD->getOffset(); |
757 | if (!Offset.isUndef()) |
758 | return false; |
759 | if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) |
760 | return false; |
761 | |
762 | SDLoc dl(LD); |
763 | EVT MemVT = LD->getMemoryVT(); |
764 | EVT RegVT = LD->getValueType(0); |
765 | unsigned Opcode; |
766 | switch (MemVT.getSimpleVT().SimpleTy) { |
767 | default: |
768 | return false; |
769 | case MVT::i8: { |
770 | Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; |
771 | break; |
772 | } |
773 | case MVT::i16: { |
774 | Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS; |
775 | break; |
776 | } |
777 | case MVT::i32: { |
778 | Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS; |
779 | break; |
780 | } |
781 | case MVT::i64: { |
782 | Opcode = PPC::LDXTLS; |
783 | break; |
784 | } |
785 | } |
786 | SDValue Chain = LD->getChain(); |
787 | SDVTList VTs = LD->getVTList(); |
788 | SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; |
789 | SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); |
790 | transferMemOperands(LD, MN); |
791 | ReplaceNode(LD, MN); |
792 | return true; |
793 | } |
794 | |
795 | /// Turn an or of two masked values into the rotate left word immediate then |
796 | /// mask insert (rlwimi) instruction. |
797 | bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { |
798 | SDValue Op0 = N->getOperand(0); |
799 | SDValue Op1 = N->getOperand(1); |
800 | SDLoc dl(N); |
801 | |
802 | KnownBits LKnown = CurDAG->computeKnownBits(Op0); |
803 | KnownBits RKnown = CurDAG->computeKnownBits(Op1); |
804 | |
805 | unsigned TargetMask = LKnown.Zero.getZExtValue(); |
806 | unsigned InsertMask = RKnown.Zero.getZExtValue(); |
807 | |
808 | if ((TargetMask | InsertMask) == 0xFFFFFFFF) { |
809 | unsigned Op0Opc = Op0.getOpcode(); |
810 | unsigned Op1Opc = Op1.getOpcode(); |
811 | unsigned Value, SH = 0; |
812 | TargetMask = ~TargetMask; |
813 | InsertMask = ~InsertMask; |
814 | |
815 | // If the LHS has a foldable shift and the RHS does not, then swap it to the |
816 | // RHS so that we can fold the shift into the insert. |
817 | if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { |
818 | if (Op0.getOperand(0).getOpcode() == ISD::SHL || |
819 | Op0.getOperand(0).getOpcode() == ISD::SRL) { |
820 | if (Op1.getOperand(0).getOpcode() != ISD::SHL && |
821 | Op1.getOperand(0).getOpcode() != ISD::SRL) { |
822 | std::swap(Op0, Op1); |
823 | std::swap(Op0Opc, Op1Opc); |
824 | std::swap(TargetMask, InsertMask); |
825 | } |
826 | } |
827 | } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { |
828 | if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && |
829 | Op1.getOperand(0).getOpcode() != ISD::SRL) { |
830 | std::swap(Op0, Op1); |
831 | std::swap(Op0Opc, Op1Opc); |
832 | std::swap(TargetMask, InsertMask); |
833 | } |
834 | } |
835 | |
836 | unsigned MB, ME; |
837 | if (isRunOfOnes(InsertMask, MB, ME)) { |
838 | if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && |
839 | isInt32Immediate(Op1.getOperand(1), Value)) { |
840 | Op1 = Op1.getOperand(0); |
841 | SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; |
842 | } |
843 | if (Op1Opc == ISD::AND) { |
844 | // The AND mask might not be a constant, and we need to make sure that |
845 | // if we're going to fold the masking with the insert, all bits not |
846 | // know to be zero in the mask are known to be one. |
847 | KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); |
848 | bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); |
849 | |
850 | unsigned SHOpc = Op1.getOperand(0).getOpcode(); |
851 | if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && |
852 | isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { |
853 | // Note that Value must be in range here (less than 32) because |
854 | // otherwise there would not be any bits set in InsertMask. |
855 | Op1 = Op1.getOperand(0).getOperand(0); |
856 | SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; |
857 | } |
858 | } |
859 | |
860 | SH &= 31; |
861 | SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), |
862 | getI32Imm(ME, dl) }; |
863 | ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); |
864 | return true; |
865 | } |
866 | } |
867 | return false; |
868 | } |
869 | |
870 | static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { |
871 | unsigned MaxTruncation = 0; |
872 | // Cannot use range-based for loop here as we need the actual use (i.e. we |
873 | // need the operand number corresponding to the use). A range-based for |
874 | // will unbox the use and provide an SDNode*. |
875 | for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); |
876 | Use != UseEnd; ++Use) { |
877 | unsigned Opc = |
878 | Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); |
879 | switch (Opc) { |
880 | default: return 0; |
881 | case ISD::TRUNCATE: |
882 | if (Use->isMachineOpcode()) |
883 | return 0; |
884 | MaxTruncation = |
885 | std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits()); |
886 | continue; |
887 | case ISD::STORE: { |
888 | if (Use->isMachineOpcode()) |
889 | return 0; |
890 | StoreSDNode *STN = cast<StoreSDNode>(*Use); |
891 | unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); |
892 | if (MemVTSize == 64 || Use.getOperandNo() != 0) |
893 | return 0; |
894 | MaxTruncation = std::max(MaxTruncation, MemVTSize); |
895 | continue; |
896 | } |
897 | case PPC::STW8: |
898 | case PPC::STWX8: |
899 | case PPC::STWU8: |
900 | case PPC::STWUX8: |
901 | if (Use.getOperandNo() != 0) |
902 | return 0; |
903 | MaxTruncation = std::max(MaxTruncation, 32u); |
904 | continue; |
905 | case PPC::STH8: |
906 | case PPC::STHX8: |
907 | case PPC::STHU8: |
908 | case PPC::STHUX8: |
909 | if (Use.getOperandNo() != 0) |
910 | return 0; |
911 | MaxTruncation = std::max(MaxTruncation, 16u); |
912 | continue; |
913 | case PPC::STB8: |
914 | case PPC::STBX8: |
915 | case PPC::STBU8: |
916 | case PPC::STBUX8: |
917 | if (Use.getOperandNo() != 0) |
918 | return 0; |
919 | MaxTruncation = std::max(MaxTruncation, 8u); |
920 | continue; |
921 | } |
922 | } |
923 | return MaxTruncation; |
924 | } |
925 | |
926 | // For any 32 < Num < 64, check if the Imm contains at least Num consecutive |
927 | // zeros and return the number of bits by the left of these consecutive zeros. |
928 | static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) { |
929 | unsigned HiTZ = llvm::countr_zero<uint32_t>(Hi_32(Imm)); |
930 | unsigned LoLZ = llvm::countl_zero<uint32_t>(Lo_32(Imm)); |
931 | if ((HiTZ + LoLZ) >= Num) |
932 | return (32 + HiTZ); |
933 | return 0; |
934 | } |
935 | |
936 | // Direct materialization of 64-bit constants by enumerated patterns. |
937 | static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, |
938 | uint64_t Imm, unsigned &InstCnt) { |
939 | unsigned TZ = llvm::countr_zero<uint64_t>(Imm); |
940 | unsigned LZ = llvm::countl_zero<uint64_t>(Imm); |
941 | unsigned TO = llvm::countr_one<uint64_t>(Imm); |
942 | unsigned LO = llvm::countl_one<uint64_t>(Imm); |
943 | unsigned Hi32 = Hi_32(Imm); |
944 | unsigned Lo32 = Lo_32(Imm); |
945 | SDNode *Result = nullptr; |
946 | unsigned Shift = 0; |
947 | |
948 | auto getI32Imm = [CurDAG, dl](unsigned Imm) { |
949 | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
950 | }; |
951 | |
952 | // Following patterns use 1 instructions to materialize the Imm. |
953 | InstCnt = 1; |
954 | // 1-1) Patterns : {zeros}{15-bit valve} |
955 | // {ones}{15-bit valve} |
956 | if (isInt<16>(Imm)) { |
957 | SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64); |
958 | return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); |
959 | } |
960 | // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros} |
961 | // {ones}{15-bit valve}{16 zeros} |
962 | if (TZ > 15 && (LZ > 32 || LO > 32)) |
963 | return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, |
964 | getI32Imm((Imm >> 16) & 0xffff)); |
965 | |
966 | // Following patterns use 2 instructions to materialize the Imm. |
967 | InstCnt = 2; |
968 | assert(LZ < 64 && "Unexpected leading zeros here.")(static_cast <bool> (LZ < 64 && "Unexpected leading zeros here." ) ? void (0) : __assert_fail ("LZ < 64 && \"Unexpected leading zeros here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 968, __extension__ __PRETTY_FUNCTION__)); |
969 | // Count of ones follwing the leading zeros. |
970 | unsigned FO = llvm::countl_one<uint64_t>(Imm << LZ); |
971 | // 2-1) Patterns : {zeros}{31-bit value} |
972 | // {ones}{31-bit value} |
973 | if (isInt<32>(Imm)) { |
974 | uint64_t ImmHi16 = (Imm >> 16) & 0xffff; |
975 | unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; |
976 | Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); |
977 | return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
978 | getI32Imm(Imm & 0xffff)); |
979 | } |
980 | // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros} |
981 | // {zeros}{15-bit value}{zeros} |
982 | // {zeros}{ones}{15-bit value} |
983 | // {ones}{15-bit value}{zeros} |
984 | // We can take advantage of LI's sign-extension semantics to generate leading |
985 | // ones, and then use RLDIC to mask off the ones in both sides after rotation. |
986 | if ((LZ + FO + TZ) > 48) { |
987 | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, |
988 | getI32Imm((Imm >> TZ) & 0xffff)); |
989 | return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), |
990 | getI32Imm(TZ), getI32Imm(LZ)); |
991 | } |
992 | // 2-3) Pattern : {zeros}{15-bit value}{ones} |
993 | // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value, |
994 | // therefore we can take advantage of LI's sign-extension semantics, and then |
995 | // mask them off after rotation. |
996 | // |
997 | // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+ |
998 | // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| |
999 | // +------------------------+ +------------------------+ |
1000 | // 63 0 63 0 |
1001 | // Imm (Imm >> (48 - LZ) & 0xffff) |
1002 | // +----sext-----|--16-bit--+ +clear-|-----------------+ |
1003 | // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| |
1004 | // +------------------------+ +------------------------+ |
1005 | // 63 0 63 0 |
1006 | // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ |
1007 | if ((LZ + TO) > 48) { |
1008 | // Since the immediates with (LZ > 32) have been handled by previous |
1009 | // patterns, here we have (LZ <= 32) to make sure we will not shift right |
1010 | // the Imm by a negative value. |
1011 | assert(LZ <= 32 && "Unexpected shift value.")(static_cast <bool> (LZ <= 32 && "Unexpected shift value." ) ? void (0) : __assert_fail ("LZ <= 32 && \"Unexpected shift value.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1011, __extension__ __PRETTY_FUNCTION__)); |
1012 | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, |
1013 | getI32Imm((Imm >> (48 - LZ) & 0xffff))); |
1014 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
1015 | getI32Imm(48 - LZ), getI32Imm(LZ)); |
1016 | } |
1017 | // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones} |
1018 | // {ones}{15-bit value}{ones} |
1019 | // We can take advantage of LI's sign-extension semantics to generate leading |
1020 | // ones, and then use RLDICL to mask off the ones in left sides (if required) |
1021 | // after rotation. |
1022 | // |
1023 | // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+ |
1024 | // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb| |
1025 | // +------------------------+ +------------------------+ |
1026 | // 63 0 63 0 |
1027 | // Imm (Imm >> TO) & 0xffff |
1028 | // +----sext-----|--16-bit--+ +LZ|---------------------+ |
1029 | // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111| |
1030 | // +------------------------+ +------------------------+ |
1031 | // 63 0 63 0 |
1032 | // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ |
1033 | if ((LZ + FO + TO) > 48) { |
1034 | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, |
1035 | getI32Imm((Imm >> TO) & 0xffff)); |
1036 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
1037 | getI32Imm(TO), getI32Imm(LZ)); |
1038 | } |
1039 | // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value} |
1040 | // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit |
1041 | // value, we can use LI for Lo16 without generating leading ones then add the |
1042 | // Hi16(in Lo32). |
1043 | if (LZ == 32 && ((Lo32 & 0x8000) == 0)) { |
1044 | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, |
1045 | getI32Imm(Lo32 & 0xffff)); |
1046 | return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0), |
1047 | getI32Imm(Lo32 >> 16)); |
1048 | } |
1049 | // 2-6) Patterns : {******}{49 zeros}{******} |
1050 | // {******}{49 ones}{******} |
1051 | // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15 |
1052 | // bits remain on both sides. Rotate right the Imm to construct an int<16> |
1053 | // value, use LI for int<16> value and then use RLDICL without mask to rotate |
1054 | // it back. |
1055 | // |
1056 | // 1) findContiguousZerosAtLeast(Imm, 49) |
1057 | // +------|--zeros-|------+ +---ones--||---15 bit--+ |
1058 | // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb| |
1059 | // +----------------------+ +----------------------+ |
1060 | // 63 0 63 0 |
1061 | // |
1062 | // 2) findContiguousZerosAtLeast(~Imm, 49) |
1063 | // +------|--ones--|------+ +---ones--||---15 bit--+ |
1064 | // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| |
1065 | // +----------------------+ +----------------------+ |
1066 | // 63 0 63 0 |
1067 | if ((Shift = findContiguousZerosAtLeast(Imm, 49)) || |
1068 | (Shift = findContiguousZerosAtLeast(~Imm, 49))) { |
1069 | uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); |
1070 | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, |
1071 | getI32Imm(RotImm & 0xffff)); |
1072 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
1073 | getI32Imm(Shift), getI32Imm(0)); |
1074 | } |
1075 | |
1076 | // Following patterns use 3 instructions to materialize the Imm. |
1077 | InstCnt = 3; |
1078 | // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros} |
1079 | // {zeros}{31-bit value}{zeros} |
1080 | // {zeros}{ones}{31-bit value} |
1081 | // {ones}{31-bit value}{zeros} |
1082 | // We can take advantage of LIS's sign-extension semantics to generate leading |
1083 | // ones, add the remaining bits with ORI, and then use RLDIC to mask off the |
1084 | // ones in both sides after rotation. |
1085 | if ((LZ + FO + TZ) > 32) { |
1086 | uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff; |
1087 | unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; |
1088 | Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); |
1089 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
1090 | getI32Imm((Imm >> TZ) & 0xffff)); |
1091 | return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), |
1092 | getI32Imm(TZ), getI32Imm(LZ)); |
1093 | } |
1094 | // 3-2) Pattern : {zeros}{31-bit value}{ones} |
1095 | // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits |
1096 | // value, therefore we can take advantage of LIS's sign-extension semantics, |
1097 | // add the remaining bits with ORI, and then mask them off after rotation. |
1098 | // This is similar to Pattern 2-3, please refer to the diagram there. |
1099 | if ((LZ + TO) > 32) { |
1100 | // Since the immediates with (LZ > 32) have been handled by previous |
1101 | // patterns, here we have (LZ <= 32) to make sure we will not shift right |
1102 | // the Imm by a negative value. |
1103 | assert(LZ <= 32 && "Unexpected shift value.")(static_cast <bool> (LZ <= 32 && "Unexpected shift value." ) ? void (0) : __assert_fail ("LZ <= 32 && \"Unexpected shift value.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1103, __extension__ __PRETTY_FUNCTION__)); |
1104 | Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, |
1105 | getI32Imm((Imm >> (48 - LZ)) & 0xffff)); |
1106 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
1107 | getI32Imm((Imm >> (32 - LZ)) & 0xffff)); |
1108 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
1109 | getI32Imm(32 - LZ), getI32Imm(LZ)); |
1110 | } |
1111 | // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones} |
1112 | // {ones}{31-bit value}{ones} |
1113 | // We can take advantage of LIS's sign-extension semantics to generate leading |
1114 | // ones, add the remaining bits with ORI, and then use RLDICL to mask off the |
1115 | // ones in left sides (if required) after rotation. |
1116 | // This is similar to Pattern 2-4, please refer to the diagram there. |
1117 | if ((LZ + FO + TO) > 32) { |
1118 | Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, |
1119 | getI32Imm((Imm >> (TO + 16)) & 0xffff)); |
1120 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
1121 | getI32Imm((Imm >> TO) & 0xffff)); |
1122 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
1123 | getI32Imm(TO), getI32Imm(LZ)); |
1124 | } |
1125 | // 3-4) Patterns : High word == Low word |
1126 | if (Hi32 == Lo32) { |
1127 | // Handle the first 32 bits. |
1128 | uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff; |
1129 | unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; |
1130 | Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); |
1131 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
1132 | getI32Imm(Lo32 & 0xffff)); |
1133 | // Use rldimi to insert the Low word into High word. |
1134 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), |
1135 | getI32Imm(0)}; |
1136 | return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
1137 | } |
1138 | // 3-5) Patterns : {******}{33 zeros}{******} |
1139 | // {******}{33 ones}{******} |
1140 | // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31 |
1141 | // bits remain on both sides. Rotate right the Imm to construct an int<32> |
1142 | // value, use LIS + ORI for int<32> value and then use RLDICL without mask to |
1143 | // rotate it back. |
1144 | // This is similar to Pattern 2-6, please refer to the diagram there. |
1145 | if ((Shift = findContiguousZerosAtLeast(Imm, 33)) || |
1146 | (Shift = findContiguousZerosAtLeast(~Imm, 33))) { |
1147 | uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); |
1148 | uint64_t ImmHi16 = (RotImm >> 16) & 0xffff; |
1149 | unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; |
1150 | Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); |
1151 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
1152 | getI32Imm(RotImm & 0xffff)); |
1153 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
1154 | getI32Imm(Shift), getI32Imm(0)); |
1155 | } |
1156 | |
1157 | InstCnt = 0; |
1158 | return nullptr; |
1159 | } |
1160 | |
1161 | // Try to select instructions to generate a 64 bit immediate using prefix as |
1162 | // well as non prefix instructions. The function will return the SDNode |
1163 | // to materialize that constant or it will return nullptr if it does not |
1164 | // find one. The variable InstCnt is set to the number of instructions that |
1165 | // were selected. |
1166 | static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl, |
1167 | uint64_t Imm, unsigned &InstCnt) { |
1168 | unsigned TZ = llvm::countr_zero<uint64_t>(Imm); |
1169 | unsigned LZ = llvm::countl_zero<uint64_t>(Imm); |
1170 | unsigned TO = llvm::countr_one<uint64_t>(Imm); |
1171 | unsigned FO = llvm::countl_one<uint64_t>(LZ == 64 ? 0 : (Imm << LZ)); |
1172 | unsigned Hi32 = Hi_32(Imm); |
1173 | unsigned Lo32 = Lo_32(Imm); |
1174 | |
1175 | auto getI32Imm = [CurDAG, dl](unsigned Imm) { |
1176 | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
1177 | }; |
1178 | |
1179 | auto getI64Imm = [CurDAG, dl](uint64_t Imm) { |
1180 | return CurDAG->getTargetConstant(Imm, dl, MVT::i64); |
1181 | }; |
1182 | |
1183 | // Following patterns use 1 instruction to materialize Imm. |
1184 | InstCnt = 1; |
1185 | |
1186 | // The pli instruction can materialize up to 34 bits directly. |
1187 | // If a constant fits within 34-bits, emit the pli instruction here directly. |
1188 | if (isInt<34>(Imm)) |
1189 | return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, |
1190 | CurDAG->getTargetConstant(Imm, dl, MVT::i64)); |
1191 | |
1192 | // Require at least two instructions. |
1193 | InstCnt = 2; |
1194 | SDNode *Result = nullptr; |
1195 | // Patterns : {zeros}{ones}{33-bit value}{zeros} |
1196 | // {zeros}{33-bit value}{zeros} |
1197 | // {zeros}{ones}{33-bit value} |
1198 | // {ones}{33-bit value}{zeros} |
1199 | // We can take advantage of PLI's sign-extension semantics to generate leading |
1200 | // ones, and then use RLDIC to mask off the ones on both sides after rotation. |
1201 | if ((LZ + FO + TZ) > 30) { |
1202 | APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff); |
1203 | APInt Extended = SignedInt34.sext(64); |
1204 | Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, |
1205 | getI64Imm(*Extended.getRawData())); |
1206 | return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), |
1207 | getI32Imm(TZ), getI32Imm(LZ)); |
1208 | } |
1209 | // Pattern : {zeros}{33-bit value}{ones} |
1210 | // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value, |
1211 | // therefore we can take advantage of PLI's sign-extension semantics, and then |
1212 | // mask them off after rotation. |
1213 | // |
1214 | // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+ |
1215 | // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| |
1216 | // +------------------------+ +------------------------+ |
1217 | // 63 0 63 0 |
1218 | // |
1219 | // +----sext-----|--34-bit--+ +clear-|-----------------+ |
1220 | // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| |
1221 | // +------------------------+ +------------------------+ |
1222 | // 63 0 63 0 |
1223 | if ((LZ + TO) > 30) { |
1224 | APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff); |
1225 | APInt Extended = SignedInt34.sext(64); |
1226 | Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, |
1227 | getI64Imm(*Extended.getRawData())); |
1228 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
1229 | getI32Imm(30 - LZ), getI32Imm(LZ)); |
1230 | } |
1231 | // Patterns : {zeros}{ones}{33-bit value}{ones} |
1232 | // {ones}{33-bit value}{ones} |
1233 | // Similar to LI we can take advantage of PLI's sign-extension semantics to |
1234 | // generate leading ones, and then use RLDICL to mask off the ones in left |
1235 | // sides (if required) after rotation. |
1236 | if ((LZ + FO + TO) > 30) { |
1237 | APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff); |
1238 | APInt Extended = SignedInt34.sext(64); |
1239 | Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, |
1240 | getI64Imm(*Extended.getRawData())); |
1241 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
1242 | getI32Imm(TO), getI32Imm(LZ)); |
1243 | } |
1244 | // Patterns : {******}{31 zeros}{******} |
1245 | // : {******}{31 ones}{******} |
1246 | // If Imm contains 31 consecutive zeros/ones then the remaining bit count |
1247 | // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI |
1248 | // for the int<33> value and then use RLDICL without a mask to rotate it back. |
1249 | // |
1250 | // +------|--ones--|------+ +---ones--||---33 bit--+ |
1251 | // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| |
1252 | // +----------------------+ +----------------------+ |
1253 | // 63 0 63 0 |
1254 | for (unsigned Shift = 0; Shift < 63; ++Shift) { |
1255 | uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); |
1256 | if (isInt<34>(RotImm)) { |
1257 | Result = |
1258 | CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm)); |
1259 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
1260 | SDValue(Result, 0), getI32Imm(Shift), |
1261 | getI32Imm(0)); |
1262 | } |
1263 | } |
1264 | |
1265 | // Patterns : High word == Low word |
1266 | // This is basically a splat of a 32 bit immediate. |
1267 | if (Hi32 == Lo32) { |
1268 | Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); |
1269 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), |
1270 | getI32Imm(0)}; |
1271 | return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
1272 | } |
1273 | |
1274 | InstCnt = 3; |
1275 | // Catch-all |
1276 | // This pattern can form any 64 bit immediate in 3 instructions. |
1277 | SDNode *ResultHi = |
1278 | CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); |
1279 | SDNode *ResultLo = |
1280 | CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32)); |
1281 | SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32), |
1282 | getI32Imm(0)}; |
1283 | return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
1284 | } |
1285 | |
1286 | static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm, |
1287 | unsigned *InstCnt = nullptr) { |
1288 | unsigned InstCntDirect = 0; |
1289 | // No more than 3 instructions are used if we can select the i64 immediate |
1290 | // directly. |
1291 | SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect); |
1292 | |
1293 | const PPCSubtarget &Subtarget = |
1294 | CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>(); |
1295 | |
1296 | // If we have prefixed instructions and there is a chance we can |
1297 | // materialize the constant with fewer prefixed instructions than |
1298 | // non-prefixed, try that. |
1299 | if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) { |
1300 | unsigned InstCntDirectP = 0; |
1301 | SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP); |
1302 | // Use the prefix case in either of two cases: |
1303 | // 1) We have no result from the non-prefix case to use. |
1304 | // 2) The non-prefix case uses more instructions than the prefix case. |
1305 | // If the prefix and non-prefix cases use the same number of instructions |
1306 | // we will prefer the non-prefix case. |
1307 | if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) { |
1308 | if (InstCnt) |
1309 | *InstCnt = InstCntDirectP; |
1310 | return ResultP; |
1311 | } |
1312 | } |
1313 | |
1314 | if (Result) { |
1315 | if (InstCnt) |
1316 | *InstCnt = InstCntDirect; |
1317 | return Result; |
1318 | } |
1319 | auto getI32Imm = [CurDAG, dl](unsigned Imm) { |
1320 | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
1321 | }; |
1322 | |
1323 | uint32_t Hi16OfLo32 = (Lo_32(Imm) >> 16) & 0xffff; |
1324 | uint32_t Lo16OfLo32 = Lo_32(Imm) & 0xffff; |
1325 | |
1326 | // Try to use 4 instructions to materialize the immediate which is "almost" a |
1327 | // splat of a 32 bit immediate. |
1328 | if (Hi16OfLo32 && Lo16OfLo32) { |
1329 | uint32_t Hi16OfHi32 = (Hi_32(Imm) >> 16) & 0xffff; |
1330 | uint32_t Lo16OfHi32 = Hi_32(Imm) & 0xffff; |
1331 | bool IsSelected = false; |
1332 | |
1333 | auto getSplat = [CurDAG, dl, getI32Imm](uint32_t Hi16, uint32_t Lo16) { |
1334 | SDNode *Result = |
1335 | CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi16)); |
1336 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, |
1337 | SDValue(Result, 0), getI32Imm(Lo16)); |
1338 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), |
1339 | getI32Imm(0)}; |
1340 | return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
1341 | }; |
1342 | |
1343 | if (Hi16OfHi32 == Lo16OfHi32 && Lo16OfHi32 == Lo16OfLo32) { |
1344 | IsSelected = true; |
1345 | Result = getSplat(Hi16OfLo32, Lo16OfLo32); |
1346 | // Modify Hi16OfHi32. |
1347 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(48), |
1348 | getI32Imm(0)}; |
1349 | Result = CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
1350 | } else if (Hi16OfHi32 == Hi16OfLo32 && Hi16OfLo32 == Lo16OfLo32) { |
1351 | IsSelected = true; |
1352 | Result = getSplat(Hi16OfHi32, Lo16OfHi32); |
1353 | // Modify Lo16OfLo32. |
1354 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16), |
1355 | getI32Imm(16), getI32Imm(31)}; |
1356 | Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops); |
1357 | } else if (Lo16OfHi32 == Lo16OfLo32 && Hi16OfLo32 == Lo16OfLo32) { |
1358 | IsSelected = true; |
1359 | Result = getSplat(Hi16OfHi32, Lo16OfHi32); |
1360 | // Modify Hi16OfLo32. |
1361 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16), |
1362 | getI32Imm(0), getI32Imm(15)}; |
1363 | Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops); |
1364 | } |
1365 | if (IsSelected == true) { |
1366 | if (InstCnt) |
1367 | *InstCnt = 4; |
1368 | return Result; |
1369 | } |
1370 | } |
1371 | |
1372 | // Handle the upper 32 bit value. |
1373 | Result = |
1374 | selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect); |
1375 | // Add in the last bits as required. |
1376 | if (Hi16OfLo32) { |
1377 | Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, |
1378 | SDValue(Result, 0), getI32Imm(Hi16OfLo32)); |
1379 | ++InstCntDirect; |
1380 | } |
1381 | if (Lo16OfLo32) { |
1382 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
1383 | getI32Imm(Lo16OfLo32)); |
1384 | ++InstCntDirect; |
1385 | } |
1386 | if (InstCnt) |
1387 | *InstCnt = InstCntDirect; |
1388 | return Result; |
1389 | } |
1390 | |
1391 | // Select a 64-bit constant. |
1392 | static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { |
1393 | SDLoc dl(N); |
1394 | |
1395 | // Get 64 bit value. |
1396 | int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
1397 | if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { |
1398 | uint64_t SextImm = SignExtend64(Imm, MinSize); |
1399 | SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); |
1400 | if (isInt<16>(SextImm)) |
1401 | return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); |
1402 | } |
1403 | return selectI64Imm(CurDAG, dl, Imm); |
1404 | } |
1405 | |
1406 | namespace { |
1407 | |
1408 | class BitPermutationSelector { |
1409 | struct ValueBit { |
1410 | SDValue V; |
1411 | |
1412 | // The bit number in the value, using a convention where bit 0 is the |
1413 | // lowest-order bit. |
1414 | unsigned Idx; |
1415 | |
1416 | // ConstZero means a bit we need to mask off. |
1417 | // Variable is a bit comes from an input variable. |
1418 | // VariableKnownToBeZero is also a bit comes from an input variable, |
1419 | // but it is known to be already zero. So we do not need to mask them. |
1420 | enum Kind { |
1421 | ConstZero, |
1422 | Variable, |
1423 | VariableKnownToBeZero |
1424 | } K; |
1425 | |
1426 | ValueBit(SDValue V, unsigned I, Kind K = Variable) |
1427 | : V(V), Idx(I), K(K) {} |
1428 | ValueBit(Kind K = Variable) : Idx(UINT32_MAX(4294967295U)), K(K) {} |
1429 | |
1430 | bool isZero() const { |
1431 | return K == ConstZero || K == VariableKnownToBeZero; |
1432 | } |
1433 | |
1434 | bool hasValue() const { |
1435 | return K == Variable || K == VariableKnownToBeZero; |
1436 | } |
1437 | |
1438 | SDValue getValue() const { |
1439 | assert(hasValue() && "Cannot get the value of a constant bit")(static_cast <bool> (hasValue() && "Cannot get the value of a constant bit" ) ? void (0) : __assert_fail ("hasValue() && \"Cannot get the value of a constant bit\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1439, __extension__ __PRETTY_FUNCTION__)); |
1440 | return V; |
1441 | } |
1442 | |
1443 | unsigned getValueBitIndex() const { |
1444 | assert(hasValue() && "Cannot get the value bit index of a constant bit")(static_cast <bool> (hasValue() && "Cannot get the value bit index of a constant bit" ) ? void (0) : __assert_fail ("hasValue() && \"Cannot get the value bit index of a constant bit\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1444, __extension__ __PRETTY_FUNCTION__)); |
1445 | return Idx; |
1446 | } |
1447 | }; |
1448 | |
1449 | // A bit group has the same underlying value and the same rotate factor. |
1450 | struct BitGroup { |
1451 | SDValue V; |
1452 | unsigned RLAmt; |
1453 | unsigned StartIdx, EndIdx; |
1454 | |
1455 | // This rotation amount assumes that the lower 32 bits of the quantity are |
1456 | // replicated in the high 32 bits by the rotation operator (which is done |
1457 | // by rlwinm and friends in 64-bit mode). |
1458 | bool Repl32; |
1459 | // Did converting to Repl32 == true change the rotation factor? If it did, |
1460 | // it decreased it by 32. |
1461 | bool Repl32CR; |
1462 | // Was this group coalesced after setting Repl32 to true? |
1463 | bool Repl32Coalesced; |
1464 | |
1465 | BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) |
1466 | : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), |
1467 | Repl32Coalesced(false) { |
1468 | LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << Rdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tbit group for " << V .getNode() << " RLAmt = " << R << " [" << S << ", " << E << "]\n"; } } while (false) |
1469 | << " [" << S << ", " << E << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tbit group for " << V .getNode() << " RLAmt = " << R << " [" << S << ", " << E << "]\n"; } } while (false); |
1470 | } |
1471 | }; |
1472 | |
1473 | // Information on each (Value, RLAmt) pair (like the number of groups |
1474 | // associated with each) used to choose the lowering method. |
1475 | struct ValueRotInfo { |
1476 | SDValue V; |
1477 | unsigned RLAmt = std::numeric_limits<unsigned>::max(); |
1478 | unsigned NumGroups = 0; |
1479 | unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); |
1480 | bool Repl32 = false; |
1481 | |
1482 | ValueRotInfo() = default; |
1483 | |
1484 | // For sorting (in reverse order) by NumGroups, and then by |
1485 | // FirstGroupStartIdx. |
1486 | bool operator < (const ValueRotInfo &Other) const { |
1487 | // We need to sort so that the non-Repl32 come first because, when we're |
1488 | // doing masking, the Repl32 bit groups might be subsumed into the 64-bit |
1489 | // masking operation. |
1490 | if (Repl32 < Other.Repl32) |
1491 | return true; |
1492 | else if (Repl32 > Other.Repl32) |
1493 | return false; |
1494 | else if (NumGroups > Other.NumGroups) |
1495 | return true; |
1496 | else if (NumGroups < Other.NumGroups) |
1497 | return false; |
1498 | else if (RLAmt == 0 && Other.RLAmt != 0) |
1499 | return true; |
1500 | else if (RLAmt != 0 && Other.RLAmt == 0) |
1501 | return false; |
1502 | else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) |
1503 | return true; |
1504 | return false; |
1505 | } |
1506 | }; |
1507 | |
1508 | using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; |
1509 | using ValueBitsMemoizer = |
1510 | DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; |
1511 | ValueBitsMemoizer Memoizer; |
1512 | |
1513 | // Return a pair of bool and a SmallVector pointer to a memoization entry. |
1514 | // The bool is true if something interesting was deduced, otherwise if we're |
1515 | // providing only a generic representation of V (or something else likewise |
1516 | // uninteresting for instruction selection) through the SmallVector. |
1517 | std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, |
1518 | unsigned NumBits) { |
1519 | auto &ValueEntry = Memoizer[V]; |
1520 | if (ValueEntry) |
1521 | return std::make_pair(ValueEntry->first, &ValueEntry->second); |
1522 | ValueEntry.reset(new ValueBitsMemoizedValue()); |
1523 | bool &Interesting = ValueEntry->first; |
1524 | SmallVector<ValueBit, 64> &Bits = ValueEntry->second; |
1525 | Bits.resize(NumBits); |
1526 | |
1527 | switch (V.getOpcode()) { |
1528 | default: break; |
1529 | case ISD::ROTL: |
1530 | if (isa<ConstantSDNode>(V.getOperand(1))) { |
1531 | unsigned RotAmt = V.getConstantOperandVal(1); |
1532 | |
1533 | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
1534 | |
1535 | for (unsigned i = 0; i < NumBits; ++i) |
1536 | Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; |
1537 | |
1538 | return std::make_pair(Interesting = true, &Bits); |
1539 | } |
1540 | break; |
1541 | case ISD::SHL: |
1542 | case PPCISD::SHL: |
1543 | if (isa<ConstantSDNode>(V.getOperand(1))) { |
1544 | unsigned ShiftAmt = V.getConstantOperandVal(1); |
1545 | |
1546 | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
1547 | |
1548 | for (unsigned i = ShiftAmt; i < NumBits; ++i) |
1549 | Bits[i] = LHSBits[i - ShiftAmt]; |
1550 | |
1551 | for (unsigned i = 0; i < ShiftAmt; ++i) |
1552 | Bits[i] = ValueBit(ValueBit::ConstZero); |
1553 | |
1554 | return std::make_pair(Interesting = true, &Bits); |
1555 | } |
1556 | break; |
1557 | case ISD::SRL: |
1558 | case PPCISD::SRL: |
1559 | if (isa<ConstantSDNode>(V.getOperand(1))) { |
1560 | unsigned ShiftAmt = V.getConstantOperandVal(1); |
1561 | |
1562 | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
1563 | |
1564 | for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) |
1565 | Bits[i] = LHSBits[i + ShiftAmt]; |
1566 | |
1567 | for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) |
1568 | Bits[i] = ValueBit(ValueBit::ConstZero); |
1569 | |
1570 | return std::make_pair(Interesting = true, &Bits); |
1571 | } |
1572 | break; |
1573 | case ISD::AND: |
1574 | if (isa<ConstantSDNode>(V.getOperand(1))) { |
1575 | uint64_t Mask = V.getConstantOperandVal(1); |
1576 | |
1577 | const SmallVector<ValueBit, 64> *LHSBits; |
1578 | // Mark this as interesting, only if the LHS was also interesting. This |
1579 | // prevents the overall procedure from matching a single immediate 'and' |
1580 | // (which is non-optimal because such an and might be folded with other |
1581 | // things if we don't select it here). |
1582 | std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); |
1583 | |
1584 | for (unsigned i = 0; i < NumBits; ++i) |
1585 | if (((Mask >> i) & 1) == 1) |
1586 | Bits[i] = (*LHSBits)[i]; |
1587 | else { |
1588 | // AND instruction masks this bit. If the input is already zero, |
1589 | // we have nothing to do here. Otherwise, make the bit ConstZero. |
1590 | if ((*LHSBits)[i].isZero()) |
1591 | Bits[i] = (*LHSBits)[i]; |
1592 | else |
1593 | Bits[i] = ValueBit(ValueBit::ConstZero); |
1594 | } |
1595 | |
1596 | return std::make_pair(Interesting, &Bits); |
1597 | } |
1598 | break; |
1599 | case ISD::OR: { |
1600 | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
1601 | const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; |
1602 | |
1603 | bool AllDisjoint = true; |
1604 | SDValue LastVal = SDValue(); |
1605 | unsigned LastIdx = 0; |
1606 | for (unsigned i = 0; i < NumBits; ++i) { |
1607 | if (LHSBits[i].isZero() && RHSBits[i].isZero()) { |
1608 | // If both inputs are known to be zero and one is ConstZero and |
1609 | // another is VariableKnownToBeZero, we can select whichever |
1610 | // we like. To minimize the number of bit groups, we select |
1611 | // VariableKnownToBeZero if this bit is the next bit of the same |
1612 | // input variable from the previous bit. Otherwise, we select |
1613 | // ConstZero. |
1614 | if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && |
1615 | LHSBits[i].getValueBitIndex() == LastIdx + 1) |
1616 | Bits[i] = LHSBits[i]; |
1617 | else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && |
1618 | RHSBits[i].getValueBitIndex() == LastIdx + 1) |
1619 | Bits[i] = RHSBits[i]; |
1620 | else |
1621 | Bits[i] = ValueBit(ValueBit::ConstZero); |
1622 | } |
1623 | else if (LHSBits[i].isZero()) |
1624 | Bits[i] = RHSBits[i]; |
1625 | else if (RHSBits[i].isZero()) |
1626 | Bits[i] = LHSBits[i]; |
1627 | else { |
1628 | AllDisjoint = false; |
1629 | break; |
1630 | } |
1631 | // We remember the value and bit index of this bit. |
1632 | if (Bits[i].hasValue()) { |
1633 | LastVal = Bits[i].getValue(); |
1634 | LastIdx = Bits[i].getValueBitIndex(); |
1635 | } |
1636 | else { |
1637 | if (LastVal) LastVal = SDValue(); |
1638 | LastIdx = 0; |
1639 | } |
1640 | } |
1641 | |
1642 | if (!AllDisjoint) |
1643 | break; |
1644 | |
1645 | return std::make_pair(Interesting = true, &Bits); |
1646 | } |
1647 | case ISD::ZERO_EXTEND: { |
1648 | // We support only the case with zero extension from i32 to i64 so far. |
1649 | if (V.getValueType() != MVT::i64 || |
1650 | V.getOperand(0).getValueType() != MVT::i32) |
1651 | break; |
1652 | |
1653 | const SmallVector<ValueBit, 64> *LHSBits; |
1654 | const unsigned NumOperandBits = 32; |
1655 | std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), |
1656 | NumOperandBits); |
1657 | |
1658 | for (unsigned i = 0; i < NumOperandBits; ++i) |
1659 | Bits[i] = (*LHSBits)[i]; |
1660 | |
1661 | for (unsigned i = NumOperandBits; i < NumBits; ++i) |
1662 | Bits[i] = ValueBit(ValueBit::ConstZero); |
1663 | |
1664 | return std::make_pair(Interesting, &Bits); |
1665 | } |
1666 | case ISD::TRUNCATE: { |
1667 | EVT FromType = V.getOperand(0).getValueType(); |
1668 | EVT ToType = V.getValueType(); |
1669 | // We support only the case with truncate from i64 to i32. |
1670 | if (FromType != MVT::i64 || ToType != MVT::i32) |
1671 | break; |
1672 | const unsigned NumAllBits = FromType.getSizeInBits(); |
1673 | SmallVector<ValueBit, 64> *InBits; |
1674 | std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), |
1675 | NumAllBits); |
1676 | const unsigned NumValidBits = ToType.getSizeInBits(); |
1677 | |
1678 | // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. |
1679 | // So, we cannot include this truncate. |
1680 | bool UseUpper32bit = false; |
1681 | for (unsigned i = 0; i < NumValidBits; ++i) |
1682 | if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { |
1683 | UseUpper32bit = true; |
1684 | break; |
1685 | } |
1686 | if (UseUpper32bit) |
1687 | break; |
1688 | |
1689 | for (unsigned i = 0; i < NumValidBits; ++i) |
1690 | Bits[i] = (*InBits)[i]; |
1691 | |
1692 | return std::make_pair(Interesting, &Bits); |
1693 | } |
1694 | case ISD::AssertZext: { |
1695 | // For AssertZext, we look through the operand and |
1696 | // mark the bits known to be zero. |
1697 | const SmallVector<ValueBit, 64> *LHSBits; |
1698 | std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), |
1699 | NumBits); |
1700 | |
1701 | EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); |
1702 | const unsigned NumValidBits = FromType.getSizeInBits(); |
1703 | for (unsigned i = 0; i < NumValidBits; ++i) |
1704 | Bits[i] = (*LHSBits)[i]; |
1705 | |
1706 | // These bits are known to be zero but the AssertZext may be from a value |
1707 | // that already has some constant zero bits (i.e. from a masking and). |
1708 | for (unsigned i = NumValidBits; i < NumBits; ++i) |
1709 | Bits[i] = (*LHSBits)[i].hasValue() |
1710 | ? ValueBit((*LHSBits)[i].getValue(), |
1711 | (*LHSBits)[i].getValueBitIndex(), |
1712 | ValueBit::VariableKnownToBeZero) |
1713 | : ValueBit(ValueBit::ConstZero); |
1714 | |
1715 | return std::make_pair(Interesting, &Bits); |
1716 | } |
1717 | case ISD::LOAD: |
1718 | LoadSDNode *LD = cast<LoadSDNode>(V); |
1719 | if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { |
1720 | EVT VT = LD->getMemoryVT(); |
1721 | const unsigned NumValidBits = VT.getSizeInBits(); |
1722 | |
1723 | for (unsigned i = 0; i < NumValidBits; ++i) |
1724 | Bits[i] = ValueBit(V, i); |
1725 | |
1726 | // These bits are known to be zero. |
1727 | for (unsigned i = NumValidBits; i < NumBits; ++i) |
1728 | Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); |
1729 | |
1730 | // Zero-extending load itself cannot be optimized. So, it is not |
1731 | // interesting by itself though it gives useful information. |
1732 | return std::make_pair(Interesting = false, &Bits); |
1733 | } |
1734 | break; |
1735 | } |
1736 | |
1737 | for (unsigned i = 0; i < NumBits; ++i) |
1738 | Bits[i] = ValueBit(V, i); |
1739 | |
1740 | return std::make_pair(Interesting = false, &Bits); |
1741 | } |
1742 | |
1743 | // For each value (except the constant ones), compute the left-rotate amount |
1744 | // to get it from its original to final position. |
1745 | void computeRotationAmounts() { |
1746 | NeedMask = false; |
1747 | RLAmt.resize(Bits.size()); |
1748 | for (unsigned i = 0; i < Bits.size(); ++i) |
1749 | if (Bits[i].hasValue()) { |
1750 | unsigned VBI = Bits[i].getValueBitIndex(); |
1751 | if (i >= VBI) |
1752 | RLAmt[i] = i - VBI; |
1753 | else |
1754 | RLAmt[i] = Bits.size() - (VBI - i); |
1755 | } else if (Bits[i].isZero()) { |
1756 | NeedMask = true; |
1757 | RLAmt[i] = UINT32_MAX(4294967295U); |
1758 | } else { |
1759 | llvm_unreachable("Unknown value bit type")::llvm::llvm_unreachable_internal("Unknown value bit type", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 1759); |
1760 | } |
1761 | } |
1762 | |
1763 | // Collect groups of consecutive bits with the same underlying value and |
1764 | // rotation factor. If we're doing late masking, we ignore zeros, otherwise |
1765 | // they break up groups. |
1766 | void collectBitGroups(bool LateMask) { |
1767 | BitGroups.clear(); |
1768 | |
1769 | unsigned LastRLAmt = RLAmt[0]; |
1770 | SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); |
1771 | unsigned LastGroupStartIdx = 0; |
1772 | bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); |
1773 | for (unsigned i = 1; i < Bits.size(); ++i) { |
1774 | unsigned ThisRLAmt = RLAmt[i]; |
1775 | SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); |
1776 | if (LateMask && !ThisValue) { |
1777 | ThisValue = LastValue; |
1778 | ThisRLAmt = LastRLAmt; |
1779 | // If we're doing late masking, then the first bit group always starts |
1780 | // at zero (even if the first bits were zero). |
1781 | if (BitGroups.empty()) |
1782 | LastGroupStartIdx = 0; |
1783 | } |
1784 | |
1785 | // If this bit is known to be zero and the current group is a bit group |
1786 | // of zeros, we do not need to terminate the current bit group even the |
1787 | // Value or RLAmt does not match here. Instead, we terminate this group |
1788 | // when the first non-zero bit appears later. |
1789 | if (IsGroupOfZeros && Bits[i].isZero()) |
1790 | continue; |
1791 | |
1792 | // If this bit has the same underlying value and the same rotate factor as |
1793 | // the last one, then they're part of the same group. |
1794 | if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) |
1795 | // We cannot continue the current group if this bits is not known to |
1796 | // be zero in a bit group of zeros. |
1797 | if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) |
1798 | continue; |
1799 | |
1800 | if (LastValue.getNode()) |
1801 | BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, |
1802 | i-1)); |
1803 | LastRLAmt = ThisRLAmt; |
1804 | LastValue = ThisValue; |
1805 | LastGroupStartIdx = i; |
1806 | IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); |
1807 | } |
1808 | if (LastValue.getNode()) |
1809 | BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, |
1810 | Bits.size()-1)); |
1811 | |
1812 | if (BitGroups.empty()) |
1813 | return; |
1814 | |
1815 | // We might be able to combine the first and last groups. |
1816 | if (BitGroups.size() > 1) { |
1817 | // If the first and last groups are the same, then remove the first group |
1818 | // in favor of the last group, making the ending index of the last group |
1819 | // equal to the ending index of the to-be-removed first group. |
1820 | if (BitGroups[0].StartIdx == 0 && |
1821 | BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && |
1822 | BitGroups[0].V == BitGroups[BitGroups.size()-1].V && |
1823 | BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { |
1824 | LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining final bit group with initial one\n" ; } } while (false); |
1825 | BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; |
1826 | BitGroups.erase(BitGroups.begin()); |
1827 | } |
1828 | } |
1829 | } |
1830 | |
1831 | // Take all (SDValue, RLAmt) pairs and sort them by the number of groups |
1832 | // associated with each. If the number of groups are same, we prefer a group |
1833 | // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate |
1834 | // instruction. If there is a degeneracy, pick the one that occurs |
1835 | // first (in the final value). |
1836 | void collectValueRotInfo() { |
1837 | ValueRots.clear(); |
1838 | |
1839 | for (auto &BG : BitGroups) { |
1840 | unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); |
1841 | ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; |
1842 | VRI.V = BG.V; |
1843 | VRI.RLAmt = BG.RLAmt; |
1844 | VRI.Repl32 = BG.Repl32; |
1845 | VRI.NumGroups += 1; |
1846 | VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); |
1847 | } |
1848 | |
1849 | // Now that we've collected the various ValueRotInfo instances, we need to |
1850 | // sort them. |
1851 | ValueRotsVec.clear(); |
1852 | for (auto &I : ValueRots) { |
1853 | ValueRotsVec.push_back(I.second); |
1854 | } |
1855 | llvm::sort(ValueRotsVec); |
1856 | } |
1857 | |
1858 | // In 64-bit mode, rlwinm and friends have a rotation operator that |
1859 | // replicates the low-order 32 bits into the high-order 32-bits. The mask |
1860 | // indices of these instructions can only be in the lower 32 bits, so they |
1861 | // can only represent some 64-bit bit groups. However, when they can be used, |
1862 | // the 32-bit replication can be used to represent, as a single bit group, |
1863 | // otherwise separate bit groups. We'll convert to replicated-32-bit bit |
1864 | // groups when possible. Returns true if any of the bit groups were |
1865 | // converted. |
1866 | void assignRepl32BitGroups() { |
1867 | // If we have bits like this: |
1868 | // |
1869 | // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
1870 | // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 |
1871 | // Groups: | RLAmt = 8 | RLAmt = 40 | |
1872 | // |
1873 | // But, making use of a 32-bit operation that replicates the low-order 32 |
1874 | // bits into the high-order 32 bits, this can be one bit group with a RLAmt |
1875 | // of 8. |
1876 | |
1877 | auto IsAllLow32 = [this](BitGroup & BG) { |
1878 | if (BG.StartIdx <= BG.EndIdx) { |
1879 | for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { |
1880 | if (!Bits[i].hasValue()) |
1881 | continue; |
1882 | if (Bits[i].getValueBitIndex() >= 32) |
1883 | return false; |
1884 | } |
1885 | } else { |
1886 | for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { |
1887 | if (!Bits[i].hasValue()) |
1888 | continue; |
1889 | if (Bits[i].getValueBitIndex() >= 32) |
1890 | return false; |
1891 | } |
1892 | for (unsigned i = 0; i <= BG.EndIdx; ++i) { |
1893 | if (!Bits[i].hasValue()) |
1894 | continue; |
1895 | if (Bits[i].getValueBitIndex() >= 32) |
1896 | return false; |
1897 | } |
1898 | } |
1899 | |
1900 | return true; |
1901 | }; |
1902 | |
1903 | for (auto &BG : BitGroups) { |
1904 | // If this bit group has RLAmt of 0 and will not be merged with |
1905 | // another bit group, we don't benefit from Repl32. We don't mark |
1906 | // such group to give more freedom for later instruction selection. |
1907 | if (BG.RLAmt == 0) { |
1908 | auto PotentiallyMerged = [this](BitGroup & BG) { |
1909 | for (auto &BG2 : BitGroups) |
1910 | if (&BG != &BG2 && BG.V == BG2.V && |
1911 | (BG2.RLAmt == 0 || BG2.RLAmt == 32)) |
1912 | return true; |
1913 | return false; |
1914 | }; |
1915 | if (!PotentiallyMerged(BG)) |
1916 | continue; |
1917 | } |
1918 | if (BG.StartIdx < 32 && BG.EndIdx < 32) { |
1919 | if (IsAllLow32(BG)) { |
1920 | if (BG.RLAmt >= 32) { |
1921 | BG.RLAmt -= 32; |
1922 | BG.Repl32CR = true; |
1923 | } |
1924 | |
1925 | BG.Repl32 = true; |
1926 | |
1927 | LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t32-bit replicated bit group for " << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" << BG.StartIdx << ", " << BG .EndIdx << "]\n"; } } while (false) |
1928 | << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t32-bit replicated bit group for " << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" << BG.StartIdx << ", " << BG .EndIdx << "]\n"; } } while (false) |
1929 | << BG.StartIdx << ", " << BG.EndIdx << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t32-bit replicated bit group for " << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" << BG.StartIdx << ", " << BG .EndIdx << "]\n"; } } while (false); |
1930 | } |
1931 | } |
1932 | } |
1933 | |
1934 | // Now walk through the bit groups, consolidating where possible. |
1935 | for (auto I = BitGroups.begin(); I != BitGroups.end();) { |
1936 | // We might want to remove this bit group by merging it with the previous |
1937 | // group (which might be the ending group). |
1938 | auto IP = (I == BitGroups.begin()) ? |
1939 | std::prev(BitGroups.end()) : std::prev(I); |
1940 | if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && |
1941 | I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { |
1942 | |
1943 | LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I-> RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP ->StartIdx << ", " << IP->EndIdx << "]\n" ; } } while (false) |
1944 | << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I-> RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP ->StartIdx << ", " << IP->EndIdx << "]\n" ; } } while (false) |
1945 | << I->StartIdx << ", " << I->EndIdxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I-> RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP ->StartIdx << ", " << IP->EndIdx << "]\n" ; } } while (false) |
1946 | << "] with group with range [" << IP->StartIdx << ", "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I-> RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP ->StartIdx << ", " << IP->EndIdx << "]\n" ; } } while (false) |
1947 | << IP->EndIdx << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I-> RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP ->StartIdx << ", " << IP->EndIdx << "]\n" ; } } while (false); |
1948 | |
1949 | IP->EndIdx = I->EndIdx; |
1950 | IP->Repl32CR = IP->Repl32CR || I->Repl32CR; |
1951 | IP->Repl32Coalesced = true; |
1952 | I = BitGroups.erase(I); |
1953 | continue; |
1954 | } else { |
1955 | // There is a special case worth handling: If there is a single group |
1956 | // covering the entire upper 32 bits, and it can be merged with both |
1957 | // the next and previous groups (which might be the same group), then |
1958 | // do so. If it is the same group (so there will be only one group in |
1959 | // total), then we need to reverse the order of the range so that it |
1960 | // covers the entire 64 bits. |
1961 | if (I->StartIdx == 32 && I->EndIdx == 63) { |
1962 | assert(std::next(I) == BitGroups.end() &&(static_cast <bool> (std::next(I) == BitGroups.end() && "bit group ends at index 63 but there is another?") ? void ( 0) : __assert_fail ("std::next(I) == BitGroups.end() && \"bit group ends at index 63 but there is another?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1963, __extension__ __PRETTY_FUNCTION__)) |
1963 | "bit group ends at index 63 but there is another?")(static_cast <bool> (std::next(I) == BitGroups.end() && "bit group ends at index 63 but there is another?") ? void ( 0) : __assert_fail ("std::next(I) == BitGroups.end() && \"bit group ends at index 63 but there is another?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1963, __extension__ __PRETTY_FUNCTION__)); |
1964 | auto IN = BitGroups.begin(); |
1965 | |
1966 | if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && |
1967 | (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && |
1968 | IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && |
1969 | IsAllLow32(*I)) { |
1970 | |
1971 | LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false) |
1972 | << " RLAmt = " << I->RLAmt << " [" << I->StartIdxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false) |
1973 | << ", " << I->EndIdxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false) |
1974 | << "] with 32-bit replicated groups with ranges ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false) |
1975 | << IP->StartIdx << ", " << IP->EndIdx << "] and ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false) |
1976 | << IN->StartIdx << ", " << IN->EndIdx << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false); |
1977 | |
1978 | if (IP == IN) { |
1979 | // There is only one other group; change it to cover the whole |
1980 | // range (backward, so that it can still be Repl32 but cover the |
1981 | // whole 64-bit range). |
1982 | IP->StartIdx = 31; |
1983 | IP->EndIdx = 30; |
1984 | IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; |
1985 | IP->Repl32Coalesced = true; |
1986 | I = BitGroups.erase(I); |
1987 | } else { |
1988 | // There are two separate groups, one before this group and one |
1989 | // after us (at the beginning). We're going to remove this group, |
1990 | // but also the group at the very beginning. |
1991 | IP->EndIdx = IN->EndIdx; |
1992 | IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; |
1993 | IP->Repl32Coalesced = true; |
1994 | I = BitGroups.erase(I); |
Value stored to 'I' is never read | |
1995 | BitGroups.erase(BitGroups.begin()); |
1996 | } |
1997 | |
1998 | // This must be the last group in the vector (and we might have |
1999 | // just invalidated the iterator above), so break here. |
2000 | break; |
2001 | } |
2002 | } |
2003 | } |
2004 | |
2005 | ++I; |
2006 | } |
2007 | } |
2008 | |
2009 | SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { |
2010 | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
2011 | } |
2012 | |
2013 | uint64_t getZerosMask() { |
2014 | uint64_t Mask = 0; |
2015 | for (unsigned i = 0; i < Bits.size(); ++i) { |
2016 | if (Bits[i].hasValue()) |
2017 | continue; |
2018 | Mask |= (UINT64_C(1)1UL << i); |
2019 | } |
2020 | |
2021 | return ~Mask; |
2022 | } |
2023 | |
2024 | // This method extends an input value to 64 bit if input is 32-bit integer. |
2025 | // While selecting instructions in BitPermutationSelector in 64-bit mode, |
2026 | // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. |
2027 | // In such case, we extend it to 64 bit to be consistent with other values. |
2028 | SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { |
2029 | if (V.getValueSizeInBits() == 64) |
2030 | return V; |
2031 | |
2032 | assert(V.getValueSizeInBits() == 32)(static_cast <bool> (V.getValueSizeInBits() == 32) ? void (0) : __assert_fail ("V.getValueSizeInBits() == 32", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 2032, __extension__ __PRETTY_FUNCTION__)); |
2033 | SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
2034 | SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, |
2035 | MVT::i64), 0); |
2036 | SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, |
2037 | MVT::i64, ImDef, V, |
2038 | SubRegIdx), 0); |
2039 | return ExtVal; |
2040 | } |
2041 | |
2042 | SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { |
2043 | if (V.getValueSizeInBits() == 32) |
2044 | return V; |
2045 | |
2046 | assert(V.getValueSizeInBits() == 64)(static_cast <bool> (V.getValueSizeInBits() == 64) ? void (0) : __assert_fail ("V.getValueSizeInBits() == 64", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 2046, __extension__ __PRETTY_FUNCTION__)); |
2047 | SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
2048 | SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, |
2049 | MVT::i32, V, SubRegIdx), 0); |
2050 | return SubVal; |
2051 | } |
2052 | |
2053 | // Depending on the number of groups for a particular value, it might be |
2054 | // better to rotate, mask explicitly (using andi/andis), and then or the |
2055 | // result. Select this part of the result first. |
2056 | void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { |
2057 | if (BPermRewriterNoMasking) |
2058 | return; |
2059 | |
2060 | for (ValueRotInfo &VRI : ValueRotsVec) { |
2061 | unsigned Mask = 0; |
2062 | for (unsigned i = 0; i < Bits.size(); ++i) { |
2063 | if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) |
2064 | continue; |
2065 | if (RLAmt[i] != VRI.RLAmt) |
2066 | continue; |
2067 | Mask |= (1u << i); |
2068 | } |
2069 | |
2070 | // Compute the masks for andi/andis that would be necessary. |
2071 | unsigned ANDIMask = (Mask & UINT16_MAX(65535)), ANDISMask = Mask >> 16; |
2072 | assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask for value bit groups") ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask for value bit groups\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2073, __extension__ __PRETTY_FUNCTION__)) |
2073 | "No set bits in mask for value bit groups")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask for value bit groups") ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask for value bit groups\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2073, __extension__ __PRETTY_FUNCTION__)); |
2074 | bool NeedsRotate = VRI.RLAmt != 0; |
2075 | |
2076 | // We're trying to minimize the number of instructions. If we have one |
2077 | // group, using one of andi/andis can break even. If we have three |
2078 | // groups, we can use both andi and andis and break even (to use both |
2079 | // andi and andis we also need to or the results together). We need four |
2080 | // groups if we also need to rotate. To use andi/andis we need to do more |
2081 | // than break even because rotate-and-mask instructions tend to be easier |
2082 | // to schedule. |
2083 | |
2084 | // FIXME: We've biased here against using andi/andis, which is right for |
2085 | // POWER cores, but not optimal everywhere. For example, on the A2, |
2086 | // andi/andis have single-cycle latency whereas the rotate-and-mask |
2087 | // instructions take two cycles, and it would be better to bias toward |
2088 | // andi/andis in break-even cases. |
2089 | |
2090 | unsigned NumAndInsts = (unsigned) NeedsRotate + |
2091 | (unsigned) (ANDIMask != 0) + |
2092 | (unsigned) (ANDISMask != 0) + |
2093 | (unsigned) (ANDIMask != 0 && ANDISMask != 0) + |
2094 | (unsigned) (bool) Res; |
2095 | |
2096 | LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << ":" << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << VRI.NumGroups << "\n" ; } } while (false) |
2097 | << " RL: " << VRI.RLAmt << ":"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << ":" << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << VRI.NumGroups << "\n" ; } } while (false) |
2098 | << "\n\t\t\tisel using masking: " << NumAndInstsdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << ":" << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << VRI.NumGroups << "\n" ; } } while (false) |
2099 | << " using rotates: " << VRI.NumGroups << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << ":" << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << VRI.NumGroups << "\n" ; } } while (false); |
2100 | |
2101 | if (NumAndInsts >= VRI.NumGroups) |
2102 | continue; |
2103 | |
2104 | LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\t\t\tusing masking\n"; } } while (false); |
2105 | |
2106 | if (InstCnt) *InstCnt += NumAndInsts; |
2107 | |
2108 | SDValue VRot; |
2109 | if (VRI.RLAmt) { |
2110 | SDValue Ops[] = |
2111 | { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), |
2112 | getI32Imm(0, dl), getI32Imm(31, dl) }; |
2113 | VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
2114 | Ops), 0); |
2115 | } else { |
2116 | VRot = TruncateToInt32(VRI.V, dl); |
2117 | } |
2118 | |
2119 | SDValue ANDIVal, ANDISVal; |
2120 | if (ANDIMask != 0) |
2121 | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, |
2122 | VRot, getI32Imm(ANDIMask, dl)), |
2123 | 0); |
2124 | if (ANDISMask != 0) |
2125 | ANDISVal = |
2126 | SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot, |
2127 | getI32Imm(ANDISMask, dl)), |
2128 | 0); |
2129 | |
2130 | SDValue TotalVal; |
2131 | if (!ANDIVal) |
2132 | TotalVal = ANDISVal; |
2133 | else if (!ANDISVal) |
2134 | TotalVal = ANDIVal; |
2135 | else |
2136 | TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, |
2137 | ANDIVal, ANDISVal), 0); |
2138 | |
2139 | if (!Res) |
2140 | Res = TotalVal; |
2141 | else |
2142 | Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, |
2143 | Res, TotalVal), 0); |
2144 | |
2145 | // Now, remove all groups with this underlying value and rotation |
2146 | // factor. |
2147 | eraseMatchingBitGroups([VRI](const BitGroup &BG) { |
2148 | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; |
2149 | }); |
2150 | } |
2151 | } |
2152 | |
2153 | // Instruction selection for the 32-bit case. |
2154 | SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { |
2155 | SDLoc dl(N); |
2156 | SDValue Res; |
2157 | |
2158 | if (InstCnt) *InstCnt = 0; |
2159 | |
2160 | // Take care of cases that should use andi/andis first. |
2161 | SelectAndParts32(dl, Res, InstCnt); |
2162 | |
2163 | // If we've not yet selected a 'starting' instruction, and we have no zeros |
2164 | // to fill in, select the (Value, RLAmt) with the highest priority (largest |
2165 | // number of groups), and start with this rotated value. |
2166 | if ((!NeedMask || LateMask) && !Res) { |
2167 | ValueRotInfo &VRI = ValueRotsVec[0]; |
2168 | if (VRI.RLAmt) { |
2169 | if (InstCnt) *InstCnt += 1; |
2170 | SDValue Ops[] = |
2171 | { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), |
2172 | getI32Imm(0, dl), getI32Imm(31, dl) }; |
2173 | Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), |
2174 | 0); |
2175 | } else { |
2176 | Res = TruncateToInt32(VRI.V, dl); |
2177 | } |
2178 | |
2179 | // Now, remove all groups with this underlying value and rotation factor. |
2180 | eraseMatchingBitGroups([VRI](const BitGroup &BG) { |
2181 | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; |
2182 | }); |
2183 | } |
2184 | |
2185 | if (InstCnt) *InstCnt += BitGroups.size(); |
2186 | |
2187 | // Insert the other groups (one at a time). |
2188 | for (auto &BG : BitGroups) { |
2189 | if (!Res) { |
2190 | SDValue Ops[] = |
2191 | { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), |
2192 | getI32Imm(Bits.size() - BG.EndIdx - 1, dl), |
2193 | getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; |
2194 | Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
2195 | } else { |
2196 | SDValue Ops[] = |
2197 | { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), |
2198 | getI32Imm(Bits.size() - BG.EndIdx - 1, dl), |
2199 | getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; |
2200 | Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); |
2201 | } |
2202 | } |
2203 | |
2204 | if (LateMask) { |
2205 | unsigned Mask = (unsigned) getZerosMask(); |
2206 | |
2207 | unsigned ANDIMask = (Mask & UINT16_MAX(65535)), ANDISMask = Mask >> 16; |
2208 | assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in zeros mask?") ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in zeros mask?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2209, __extension__ __PRETTY_FUNCTION__)) |
2209 | "No set bits in zeros mask?")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in zeros mask?") ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in zeros mask?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2209, __extension__ __PRETTY_FUNCTION__)); |
2210 | |
2211 | if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + |
2212 | (unsigned) (ANDISMask != 0) + |
2213 | (unsigned) (ANDIMask != 0 && ANDISMask != 0); |
2214 | |
2215 | SDValue ANDIVal, ANDISVal; |
2216 | if (ANDIMask != 0) |
2217 | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, |
2218 | Res, getI32Imm(ANDIMask, dl)), |
2219 | 0); |
2220 | if (ANDISMask != 0) |
2221 | ANDISVal = |
2222 | SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res, |
2223 | getI32Imm(ANDISMask, dl)), |
2224 | 0); |
2225 | |
2226 | if (!ANDIVal) |
2227 | Res = ANDISVal; |
2228 | else if (!ANDISVal) |
2229 | Res = ANDIVal; |
2230 | else |
2231 | Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, |
2232 | ANDIVal, ANDISVal), 0); |
2233 | } |
2234 | |
2235 | return Res.getNode(); |
2236 | } |
2237 | |
2238 | unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, |
2239 | unsigned MaskStart, unsigned MaskEnd, |
2240 | bool IsIns) { |
2241 | // In the notation used by the instructions, 'start' and 'end' are reversed |
2242 | // because bits are counted from high to low order. |
2243 | unsigned InstMaskStart = 64 - MaskEnd - 1, |
2244 | InstMaskEnd = 64 - MaskStart - 1; |
2245 | |
2246 | if (Repl32) |
2247 | return 1; |
2248 | |
2249 | if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || |
2250 | InstMaskEnd == 63 - RLAmt) |
2251 | return 1; |
2252 | |
2253 | return 2; |
2254 | } |
2255 | |
2256 | // For 64-bit values, not all combinations of rotates and masks are |
2257 | // available. Produce one if it is available. |
2258 | SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, |
2259 | bool Repl32, unsigned MaskStart, unsigned MaskEnd, |
2260 | unsigned *InstCnt = nullptr) { |
2261 | // In the notation used by the instructions, 'start' and 'end' are reversed |
2262 | // because bits are counted from high to low order. |
2263 | unsigned InstMaskStart = 64 - MaskEnd - 1, |
2264 | InstMaskEnd = 64 - MaskStart - 1; |
2265 | |
2266 | if (InstCnt) *InstCnt += 1; |
2267 | |
2268 | if (Repl32) { |
2269 | // This rotation amount assumes that the lower 32 bits of the quantity |
2270 | // are replicated in the high 32 bits by the rotation operator (which is |
2271 | // done by rlwinm and friends). |
2272 | assert(InstMaskStart >= 32 && "Mask cannot start out of range")(static_cast <bool> (InstMaskStart >= 32 && "Mask cannot start out of range" ) ? void (0) : __assert_fail ("InstMaskStart >= 32 && \"Mask cannot start out of range\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2272, __extension__ __PRETTY_FUNCTION__)); |
2273 | assert(InstMaskEnd >= 32 && "Mask cannot end out of range")(static_cast <bool> (InstMaskEnd >= 32 && "Mask cannot end out of range" ) ? void (0) : __assert_fail ("InstMaskEnd >= 32 && \"Mask cannot end out of range\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2273, __extension__ __PRETTY_FUNCTION__)); |
2274 | SDValue Ops[] = |
2275 | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
2276 | getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; |
2277 | return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, |
2278 | Ops), 0); |
2279 | } |
2280 | |
2281 | if (InstMaskEnd == 63) { |
2282 | SDValue Ops[] = |
2283 | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
2284 | getI32Imm(InstMaskStart, dl) }; |
2285 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); |
2286 | } |
2287 | |
2288 | if (InstMaskStart == 0) { |
2289 | SDValue Ops[] = |
2290 | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
2291 | getI32Imm(InstMaskEnd, dl) }; |
2292 | return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); |
2293 | } |
2294 | |
2295 | if (InstMaskEnd == 63 - RLAmt) { |
2296 | SDValue Ops[] = |
2297 | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
2298 | getI32Imm(InstMaskStart, dl) }; |
2299 | return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); |
2300 | } |
2301 | |
2302 | // We cannot do this with a single instruction, so we'll use two. The |
2303 | // problem is that we're not free to choose both a rotation amount and mask |
2304 | // start and end independently. We can choose an arbitrary mask start and |
2305 | // end, but then the rotation amount is fixed. Rotation, however, can be |
2306 | // inverted, and so by applying an "inverse" rotation first, we can get the |
2307 | // desired result. |
2308 | if (InstCnt) *InstCnt += 1; |
2309 | |
2310 | // The rotation mask for the second instruction must be MaskStart. |
2311 | unsigned RLAmt2 = MaskStart; |
2312 | // The first instruction must rotate V so that the overall rotation amount |
2313 | // is RLAmt. |
2314 | unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; |
2315 | if (RLAmt1) |
2316 | V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); |
2317 | return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); |
2318 | } |
2319 | |
2320 | // For 64-bit values, not all combinations of rotates and masks are |
2321 | // available. Produce a rotate-mask-and-insert if one is available. |
2322 | SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, |
2323 | unsigned RLAmt, bool Repl32, unsigned MaskStart, |
2324 | unsigned MaskEnd, unsigned *InstCnt = nullptr) { |
2325 | // In the notation used by the instructions, 'start' and 'end' are reversed |
2326 | // because bits are counted from high to low order. |
2327 | unsigned InstMaskStart = 64 - MaskEnd - 1, |
2328 | InstMaskEnd = 64 - MaskStart - 1; |
2329 | |
2330 | if (InstCnt) *InstCnt += 1; |
2331 | |
2332 | if (Repl32) { |
2333 | // This rotation amount assumes that the lower 32 bits of the quantity |
2334 | // are replicated in the high 32 bits by the rotation operator (which is |
2335 | // done by rlwinm and friends). |
2336 | assert(InstMaskStart >= 32 && "Mask cannot start out of range")(static_cast <bool> (InstMaskStart >= 32 && "Mask cannot start out of range" ) ? void (0) : __assert_fail ("InstMaskStart >= 32 && \"Mask cannot start out of range\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2336, __extension__ __PRETTY_FUNCTION__)); |
2337 | assert(InstMaskEnd >= 32 && "Mask cannot end out of range")(static_cast <bool> (InstMaskEnd >= 32 && "Mask cannot end out of range" ) ? void (0) : __assert_fail ("InstMaskEnd >= 32 && \"Mask cannot end out of range\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2337, __extension__ __PRETTY_FUNCTION__)); |
2338 | SDValue Ops[] = |
2339 | { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
2340 | getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; |
2341 | return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, |
2342 | Ops), 0); |
2343 | } |
2344 | |
2345 | if (InstMaskEnd == 63 - RLAmt) { |
2346 | SDValue Ops[] = |
2347 | { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
2348 | getI32Imm(InstMaskStart, dl) }; |
2349 | return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); |
2350 | } |
2351 | |
2352 | // We cannot do this with a single instruction, so we'll use two. The |
2353 | // problem is that we're not free to choose both a rotation amount and mask |
2354 | // start and end independently. We can choose an arbitrary mask start and |
2355 | // end, but then the rotation amount is fixed. Rotation, however, can be |
2356 | // inverted, and so by applying an "inverse" rotation first, we can get the |
2357 | // desired result. |
2358 | if (InstCnt) *InstCnt += 1; |
2359 | |
2360 | // The rotation mask for the second instruction must be MaskStart. |
2361 | unsigned RLAmt2 = MaskStart; |
2362 | // The first instruction must rotate V so that the overall rotation amount |
2363 | // is RLAmt. |
2364 | unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; |
2365 | if (RLAmt1) |
2366 | V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); |
2367 | return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); |
2368 | } |
2369 | |
2370 | void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { |
2371 | if (BPermRewriterNoMasking) |
2372 | return; |
2373 | |
2374 | // The idea here is the same as in the 32-bit version, but with additional |
2375 | // complications from the fact that Repl32 might be true. Because we |
2376 | // aggressively convert bit groups to Repl32 form (which, for small |
2377 | // rotation factors, involves no other change), and then coalesce, it might |
2378 | // be the case that a single 64-bit masking operation could handle both |
2379 | // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 |
2380 | // form allowed coalescing, then we must use a 32-bit rotaton in order to |
2381 | // completely capture the new combined bit group. |
2382 | |
2383 | for (ValueRotInfo &VRI : ValueRotsVec) { |
2384 | uint64_t Mask = 0; |
2385 | |
2386 | // We need to add to the mask all bits from the associated bit groups. |
2387 | // If Repl32 is false, we need to add bits from bit groups that have |
2388 | // Repl32 true, but are trivially convertable to Repl32 false. Such a |
2389 | // group is trivially convertable if it overlaps only with the lower 32 |
2390 | // bits, and the group has not been coalesced. |
2391 | auto MatchingBG = [VRI](const BitGroup &BG) { |
2392 | if (VRI.V != BG.V) |
2393 | return false; |
2394 | |
2395 | unsigned EffRLAmt = BG.RLAmt; |
2396 | if (!VRI.Repl32 && BG.Repl32) { |
2397 | if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && |
2398 | !BG.Repl32Coalesced) { |
2399 | if (BG.Repl32CR) |
2400 | EffRLAmt += 32; |
2401 | } else { |
2402 | return false; |
2403 | } |
2404 | } else if (VRI.Repl32 != BG.Repl32) { |
2405 | return false; |
2406 | } |
2407 | |
2408 | return VRI.RLAmt == EffRLAmt; |
2409 | }; |
2410 | |
2411 | for (auto &BG : BitGroups) { |
2412 | if (!MatchingBG(BG)) |
2413 | continue; |
2414 | |
2415 | if (BG.StartIdx <= BG.EndIdx) { |
2416 | for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) |
2417 | Mask |= (UINT64_C(1)1UL << i); |
2418 | } else { |
2419 | for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) |
2420 | Mask |= (UINT64_C(1)1UL << i); |
2421 | for (unsigned i = 0; i <= BG.EndIdx; ++i) |
2422 | Mask |= (UINT64_C(1)1UL << i); |
2423 | } |
2424 | } |
2425 | |
2426 | // We can use the 32-bit andi/andis technique if the mask does not |
2427 | // require any higher-order bits. This can save an instruction compared |
2428 | // to always using the general 64-bit technique. |
2429 | bool Use32BitInsts = isUInt<32>(Mask); |
2430 | // Compute the masks for andi/andis that would be necessary. |
2431 | unsigned ANDIMask = (Mask & UINT16_MAX(65535)), |
2432 | ANDISMask = (Mask >> 16) & UINT16_MAX(65535); |
2433 | |
2434 | bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); |
2435 | |
2436 | unsigned NumAndInsts = (unsigned) NeedsRotate + |
2437 | (unsigned) (bool) Res; |
2438 | unsigned NumOfSelectInsts = 0; |
2439 | selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts); |
2440 | assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.")(static_cast <bool> (NumOfSelectInsts > 0 && "Failed to select an i64 constant.") ? void (0) : __assert_fail ("NumOfSelectInsts > 0 && \"Failed to select an i64 constant.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2440, __extension__ __PRETTY_FUNCTION__)); |
2441 | if (Use32BitInsts) |
2442 | NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + |
2443 | (unsigned) (ANDIMask != 0 && ANDISMask != 0); |
2444 | else |
2445 | NumAndInsts += NumOfSelectInsts + /* and */ 1; |
2446 | |
2447 | unsigned NumRLInsts = 0; |
2448 | bool FirstBG = true; |
2449 | bool MoreBG = false; |
2450 | for (auto &BG : BitGroups) { |
2451 | if (!MatchingBG(BG)) { |
2452 | MoreBG = true; |
2453 | continue; |
2454 | } |
2455 | NumRLInsts += |
2456 | SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, |
2457 | !FirstBG); |
2458 | FirstBG = false; |
2459 | } |
2460 | |
2461 | LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << NumRLInsts << "\n"; } } while (false) |
2462 | << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << NumRLInsts << "\n"; } } while (false) |
2463 | << "\n\t\t\tisel using masking: " << NumAndInstsdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << NumRLInsts << "\n"; } } while (false) |
2464 | << " using rotates: " << NumRLInsts << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << NumRLInsts << "\n"; } } while (false); |
2465 | |
2466 | // When we'd use andi/andis, we bias toward using the rotates (andi only |
2467 | // has a record form, and is cracked on POWER cores). However, when using |
2468 | // general 64-bit constant formation, bias toward the constant form, |
2469 | // because that exposes more opportunities for CSE. |
2470 | if (NumAndInsts > NumRLInsts) |
2471 | continue; |
2472 | // When merging multiple bit groups, instruction or is used. |
2473 | // But when rotate is used, rldimi can inert the rotated value into any |
2474 | // register, so instruction or can be avoided. |
2475 | if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) |
2476 | continue; |
2477 | |
2478 | LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\t\t\tusing masking\n"; } } while (false); |
2479 | |
2480 | if (InstCnt) *InstCnt += NumAndInsts; |
2481 | |
2482 | SDValue VRot; |
2483 | // We actually need to generate a rotation if we have a non-zero rotation |
2484 | // factor or, in the Repl32 case, if we care about any of the |
2485 | // higher-order replicated bits. In the latter case, we generate a mask |
2486 | // backward so that it actually includes the entire 64 bits. |
2487 | if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) |
2488 | VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, |
2489 | VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); |
2490 | else |
2491 | VRot = VRI.V; |
2492 | |
2493 | SDValue TotalVal; |
2494 | if (Use32BitInsts) { |
2495 | assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value" ) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2496, __extension__ __PRETTY_FUNCTION__)) |
2496 | "No set bits in mask when using 32-bit ands for 64-bit value")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value" ) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2496, __extension__ __PRETTY_FUNCTION__)); |
2497 | |
2498 | SDValue ANDIVal, ANDISVal; |
2499 | if (ANDIMask != 0) |
2500 | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, |
2501 | ExtendToInt64(VRot, dl), |
2502 | getI32Imm(ANDIMask, dl)), |
2503 | 0); |
2504 | if (ANDISMask != 0) |
2505 | ANDISVal = |
2506 | SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, |
2507 | ExtendToInt64(VRot, dl), |
2508 | getI32Imm(ANDISMask, dl)), |
2509 | 0); |
2510 | |
2511 | if (!ANDIVal) |
2512 | TotalVal = ANDISVal; |
2513 | else if (!ANDISVal) |
2514 | TotalVal = ANDIVal; |
2515 | else |
2516 | TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
2517 | ExtendToInt64(ANDIVal, dl), ANDISVal), 0); |
2518 | } else { |
2519 | TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); |
2520 | TotalVal = |
2521 | SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, |
2522 | ExtendToInt64(VRot, dl), TotalVal), |
2523 | 0); |
2524 | } |
2525 | |
2526 | if (!Res) |
2527 | Res = TotalVal; |
2528 | else |
2529 | Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
2530 | ExtendToInt64(Res, dl), TotalVal), |
2531 | 0); |
2532 | |
2533 | // Now, remove all groups with this underlying value and rotation |
2534 | // factor. |
2535 | eraseMatchingBitGroups(MatchingBG); |
2536 | } |
2537 | } |
2538 | |
2539 | // Instruction selection for the 64-bit case. |
2540 | SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { |
2541 | SDLoc dl(N); |
2542 | SDValue Res; |
2543 | |
2544 | if (InstCnt) *InstCnt = 0; |
2545 | |
2546 | // Take care of cases that should use andi/andis first. |
2547 | SelectAndParts64(dl, Res, InstCnt); |
2548 | |
2549 | // If we've not yet selected a 'starting' instruction, and we have no zeros |
2550 | // to fill in, select the (Value, RLAmt) with the highest priority (largest |
2551 | // number of groups), and start with this rotated value. |
2552 | if ((!NeedMask || LateMask) && !Res) { |
2553 | // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 |
2554 | // groups will come first, and so the VRI representing the largest number |
2555 | // of groups might not be first (it might be the first Repl32 groups). |
2556 | unsigned MaxGroupsIdx = 0; |
2557 | if (!ValueRotsVec[0].Repl32) { |
2558 | for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) |
2559 | if (ValueRotsVec[i].Repl32) { |
2560 | if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) |
2561 | MaxGroupsIdx = i; |
2562 | break; |
2563 | } |
2564 | } |
2565 | |
2566 | ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; |
2567 | bool NeedsRotate = false; |
2568 | if (VRI.RLAmt) { |
2569 | NeedsRotate = true; |
2570 | } else if (VRI.Repl32) { |
2571 | for (auto &BG : BitGroups) { |
2572 | if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || |
2573 | BG.Repl32 != VRI.Repl32) |
2574 | continue; |
2575 | |
2576 | // We don't need a rotate if the bit group is confined to the lower |
2577 | // 32 bits. |
2578 | if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) |
2579 | continue; |
2580 | |
2581 | NeedsRotate = true; |
2582 | break; |
2583 | } |
2584 | } |
2585 | |
2586 | if (NeedsRotate) |
2587 | Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, |
2588 | VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, |
2589 | InstCnt); |
2590 | else |
2591 | Res = VRI.V; |
2592 | |
2593 | // Now, remove all groups with this underlying value and rotation factor. |
2594 | if (Res) |
2595 | eraseMatchingBitGroups([VRI](const BitGroup &BG) { |
2596 | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && |
2597 | BG.Repl32 == VRI.Repl32; |
2598 | }); |
2599 | } |
2600 | |
2601 | // Because 64-bit rotates are more flexible than inserts, we might have a |
2602 | // preference regarding which one we do first (to save one instruction). |
2603 | if (!Res) |
2604 | for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { |
2605 | if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, |
2606 | false) < |
2607 | SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, |
2608 | true)) { |
2609 | if (I != BitGroups.begin()) { |
2610 | BitGroup BG = *I; |
2611 | BitGroups.erase(I); |
2612 | BitGroups.insert(BitGroups.begin(), BG); |
2613 | } |
2614 | |
2615 | break; |
2616 | } |
2617 | } |
2618 | |
2619 | // Insert the other groups (one at a time). |
2620 | for (auto &BG : BitGroups) { |
2621 | if (!Res) |
2622 | Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, |
2623 | BG.EndIdx, InstCnt); |
2624 | else |
2625 | Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, |
2626 | BG.StartIdx, BG.EndIdx, InstCnt); |
2627 | } |
2628 | |
2629 | if (LateMask) { |
2630 | uint64_t Mask = getZerosMask(); |
2631 | |
2632 | // We can use the 32-bit andi/andis technique if the mask does not |
2633 | // require any higher-order bits. This can save an instruction compared |
2634 | // to always using the general 64-bit technique. |
2635 | bool Use32BitInsts = isUInt<32>(Mask); |
2636 | // Compute the masks for andi/andis that would be necessary. |
2637 | unsigned ANDIMask = (Mask & UINT16_MAX(65535)), |
2638 | ANDISMask = (Mask >> 16) & UINT16_MAX(65535); |
2639 | |
2640 | if (Use32BitInsts) { |
2641 | assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value" ) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2642, __extension__ __PRETTY_FUNCTION__)) |
2642 | "No set bits in mask when using 32-bit ands for 64-bit value")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value" ) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2642, __extension__ __PRETTY_FUNCTION__)); |
2643 | |
2644 | if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + |
2645 | (unsigned) (ANDISMask != 0) + |
2646 | (unsigned) (ANDIMask != 0 && ANDISMask != 0); |
2647 | |
2648 | SDValue ANDIVal, ANDISVal; |
2649 | if (ANDIMask != 0) |
2650 | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, |
2651 | ExtendToInt64(Res, dl), |
2652 | getI32Imm(ANDIMask, dl)), |
2653 | 0); |
2654 | if (ANDISMask != 0) |
2655 | ANDISVal = |
2656 | SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, |
2657 | ExtendToInt64(Res, dl), |
2658 | getI32Imm(ANDISMask, dl)), |
2659 | 0); |
2660 | |
2661 | if (!ANDIVal) |
2662 | Res = ANDISVal; |
2663 | else if (!ANDISVal) |
2664 | Res = ANDIVal; |
2665 | else |
2666 | Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
2667 | ExtendToInt64(ANDIVal, dl), ANDISVal), 0); |
2668 | } else { |
2669 | unsigned NumOfSelectInsts = 0; |
2670 | SDValue MaskVal = |
2671 | SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0); |
2672 | Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, |
2673 | ExtendToInt64(Res, dl), MaskVal), |
2674 | 0); |
2675 | if (InstCnt) |
2676 | *InstCnt += NumOfSelectInsts + /* and */ 1; |
2677 | } |
2678 | } |
2679 | |
2680 | return Res.getNode(); |
2681 | } |
2682 | |
2683 | SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { |
2684 | // Fill in BitGroups. |
2685 | collectBitGroups(LateMask); |
2686 | if (BitGroups.empty()) |
2687 | return nullptr; |
2688 | |
2689 | // For 64-bit values, figure out when we can use 32-bit instructions. |
2690 | if (Bits.size() == 64) |
2691 | assignRepl32BitGroups(); |
2692 | |
2693 | // Fill in ValueRotsVec. |
2694 | collectValueRotInfo(); |
2695 | |
2696 | if (Bits.size() == 32) { |
2697 | return Select32(N, LateMask, InstCnt); |
2698 | } else { |
2699 | assert(Bits.size() == 64 && "Not 64 bits here?")(static_cast <bool> (Bits.size() == 64 && "Not 64 bits here?" ) ? void (0) : __assert_fail ("Bits.size() == 64 && \"Not 64 bits here?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2699, __extension__ __PRETTY_FUNCTION__)); |
2700 | return Select64(N, LateMask, InstCnt); |
2701 | } |
2702 | |
2703 | return nullptr; |
2704 | } |
2705 | |
2706 | void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { |
2707 | erase_if(BitGroups, F); |
2708 | } |
2709 | |
2710 | SmallVector<ValueBit, 64> Bits; |
2711 | |
2712 | bool NeedMask = false; |
2713 | SmallVector<unsigned, 64> RLAmt; |
2714 | |
2715 | SmallVector<BitGroup, 16> BitGroups; |
2716 | |
2717 | DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; |
2718 | SmallVector<ValueRotInfo, 16> ValueRotsVec; |
2719 | |
2720 | SelectionDAG *CurDAG = nullptr; |
2721 | |
2722 | public: |
2723 | BitPermutationSelector(SelectionDAG *DAG) |
2724 | : CurDAG(DAG) {} |
2725 | |
2726 | // Here we try to match complex bit permutations into a set of |
2727 | // rotate-and-shift/shift/and/or instructions, using a set of heuristics |
2728 | // known to produce optimal code for common cases (like i32 byte swapping). |
2729 | SDNode *Select(SDNode *N) { |
2730 | Memoizer.clear(); |
2731 | auto Result = |
2732 | getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); |
2733 | if (!Result.first) |
2734 | return nullptr; |
2735 | Bits = std::move(*Result.second); |
2736 | |
2737 | LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Considering bit-permutation-based instruction" " selection for: "; } } while (false) |
2738 | " selection for: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Considering bit-permutation-based instruction" " selection for: "; } } while (false); |
2739 | LLVM_DEBUG(N->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { N->dump(CurDAG); } } while (false); |
2740 | |
2741 | // Fill it RLAmt and set NeedMask. |
2742 | computeRotationAmounts(); |
2743 | |
2744 | if (!NeedMask) |
2745 | return Select(N, false); |
2746 | |
2747 | // We currently have two techniques for handling results with zeros: early |
2748 | // masking (the default) and late masking. Late masking is sometimes more |
2749 | // efficient, but because the structure of the bit groups is different, it |
2750 | // is hard to tell without generating both and comparing the results. With |
2751 | // late masking, we ignore zeros in the resulting value when inserting each |
2752 | // set of bit groups, and then mask in the zeros at the end. With early |
2753 | // masking, we only insert the non-zero parts of the result at every step. |
2754 | |
2755 | unsigned InstCnt = 0, InstCntLateMask = 0; |
2756 | LLVM_DEBUG(dbgs() << "\tEarly masking:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tEarly masking:\n"; } } while (false); |
2757 | SDNode *RN = Select(N, false, &InstCnt); |
2758 | LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"; } } while (false); |
2759 | |
2760 | LLVM_DEBUG(dbgs() << "\tLate masking:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tLate masking:\n"; } } while (false); |
2761 | SDNode *RNLM = Select(N, true, &InstCntLateMask); |
2762 | LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMaskdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\tisel would use " << InstCntLateMask << " instructions\n"; } } while (false ) |
2763 | << " instructions\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\tisel would use " << InstCntLateMask << " instructions\n"; } } while (false ); |
2764 | |
2765 | if (InstCnt <= InstCntLateMask) { |
2766 | LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tUsing early-masking for isel\n" ; } } while (false); |
2767 | return RN; |
2768 | } |
2769 | |
2770 | LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tUsing late-masking for isel\n" ; } } while (false); |
2771 | return RNLM; |
2772 | } |
2773 | }; |
2774 | |
2775 | class IntegerCompareEliminator { |
2776 | SelectionDAG *CurDAG; |
2777 | PPCDAGToDAGISel *S; |
2778 | // Conversion type for interpreting results of a 32-bit instruction as |
2779 | // a 64-bit value or vice versa. |
2780 | enum ExtOrTruncConversion { Ext, Trunc }; |
2781 | |
2782 | // Modifiers to guide how an ISD::SETCC node's result is to be computed |
2783 | // in a GPR. |
2784 | // ZExtOrig - use the original condition code, zero-extend value |
2785 | // ZExtInvert - invert the condition code, zero-extend value |
2786 | // SExtOrig - use the original condition code, sign-extend value |
2787 | // SExtInvert - invert the condition code, sign-extend value |
2788 | enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; |
2789 | |
2790 | // Comparisons against zero to emit GPR code sequences for. Each of these |
2791 | // sequences may need to be emitted for two or more equivalent patterns. |
2792 | // For example (a >= 0) == (a > -1). The direction of the comparison (</>) |
2793 | // matters as well as the extension type: sext (-1/0), zext (1/0). |
2794 | // GEZExt - (zext (LHS >= 0)) |
2795 | // GESExt - (sext (LHS >= 0)) |
2796 | // LEZExt - (zext (LHS <= 0)) |
2797 | // LESExt - (sext (LHS <= 0)) |
2798 | enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; |
2799 | |
2800 | SDNode *tryEXTEND(SDNode *N); |
2801 | SDNode *tryLogicOpOfCompares(SDNode *N); |
2802 | SDValue computeLogicOpInGPR(SDValue LogicOp); |
2803 | SDValue signExtendInputIfNeeded(SDValue Input); |
2804 | SDValue zeroExtendInputIfNeeded(SDValue Input); |
2805 | SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); |
2806 | SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, |
2807 | ZeroCompare CmpTy); |
2808 | SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
2809 | int64_t RHSValue, SDLoc dl); |
2810 | SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
2811 | int64_t RHSValue, SDLoc dl); |
2812 | SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
2813 | int64_t RHSValue, SDLoc dl); |
2814 | SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
2815 | int64_t RHSValue, SDLoc dl); |
2816 | SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); |
2817 | |
2818 | public: |
2819 | IntegerCompareEliminator(SelectionDAG *DAG, |
2820 | PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { |
2821 | assert(CurDAG->getTargetLoweringInfo()(static_cast <bool> (CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && "Only expecting to use this on 64 bit targets." ) ? void (0) : __assert_fail ("CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && \"Only expecting to use this on 64 bit targets.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2823, __extension__ __PRETTY_FUNCTION__)) |
2822 | .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&(static_cast <bool> (CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && "Only expecting to use this on 64 bit targets." ) ? void (0) : __assert_fail ("CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && \"Only expecting to use this on 64 bit targets.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2823, __extension__ __PRETTY_FUNCTION__)) |
2823 | "Only expecting to use this on 64 bit targets.")(static_cast <bool> (CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && "Only expecting to use this on 64 bit targets." ) ? void (0) : __assert_fail ("CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && \"Only expecting to use this on 64 bit targets.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2823, __extension__ __PRETTY_FUNCTION__)); |
2824 | } |
2825 | SDNode *Select(SDNode *N) { |
2826 | if (CmpInGPR == ICGPR_None) |
2827 | return nullptr; |
2828 | switch (N->getOpcode()) { |
2829 | default: break; |
2830 | case ISD::ZERO_EXTEND: |
2831 | if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || |
2832 | CmpInGPR == ICGPR_SextI64) |
2833 | return nullptr; |
2834 | [[fallthrough]]; |
2835 | case ISD::SIGN_EXTEND: |
2836 | if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || |
2837 | CmpInGPR == ICGPR_ZextI64) |
2838 | return nullptr; |
2839 | return tryEXTEND(N); |
2840 | case ISD::AND: |
2841 | case ISD::OR: |
2842 | case ISD::XOR: |
2843 | return tryLogicOpOfCompares(N); |
2844 | } |
2845 | return nullptr; |
2846 | } |
2847 | }; |
2848 | |
2849 | // The obvious case for wanting to keep the value in a GPR. Namely, the |
2850 | // result of the comparison is actually needed in a GPR. |
2851 | SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { |
2852 | assert((N->getOpcode() == ISD::ZERO_EXTEND ||(static_cast <bool> ((N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && "Expecting a zero/sign extend node!" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && \"Expecting a zero/sign extend node!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2854, __extension__ __PRETTY_FUNCTION__)) |
2853 | N->getOpcode() == ISD::SIGN_EXTEND) &&(static_cast <bool> ((N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && "Expecting a zero/sign extend node!" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && \"Expecting a zero/sign extend node!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2854, __extension__ __PRETTY_FUNCTION__)) |
2854 | "Expecting a zero/sign extend node!")(static_cast <bool> ((N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && "Expecting a zero/sign extend node!" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && \"Expecting a zero/sign extend node!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2854, __extension__ __PRETTY_FUNCTION__)); |
2855 | SDValue WideRes; |
2856 | // If we are zero-extending the result of a logical operation on i1 |
2857 | // values, we can keep the values in GPRs. |
2858 | if (ISD::isBitwiseLogicOp(N->getOperand(0).getOpcode()) && |
2859 | N->getOperand(0).getValueType() == MVT::i1 && |
2860 | N->getOpcode() == ISD::ZERO_EXTEND) |
2861 | WideRes = computeLogicOpInGPR(N->getOperand(0)); |
2862 | else if (N->getOperand(0).getOpcode() != ISD::SETCC) |
2863 | return nullptr; |
2864 | else |
2865 | WideRes = |
2866 | getSETCCInGPR(N->getOperand(0), |
2867 | N->getOpcode() == ISD::SIGN_EXTEND ? |
2868 | SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); |
2869 | |
2870 | if (!WideRes) |
2871 | return nullptr; |
2872 | |
2873 | SDLoc dl(N); |
2874 | bool Input32Bit = WideRes.getValueType() == MVT::i32; |
2875 | bool Output32Bit = N->getValueType(0) == MVT::i32; |
2876 | |
2877 | NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; |
2878 | NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; |
2879 | |
2880 | SDValue ConvOp = WideRes; |
2881 | if (Input32Bit != Output32Bit) |
2882 | ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : |
2883 | ExtOrTruncConversion::Trunc); |
2884 | return ConvOp.getNode(); |
2885 | } |
2886 | |
2887 | // Attempt to perform logical operations on the results of comparisons while |
2888 | // keeping the values in GPRs. Without doing so, these would end up being |
2889 | // lowered to CR-logical operations which suffer from significant latency and |
2890 | // low ILP. |
2891 | SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { |
2892 | if (N->getValueType(0) != MVT::i1) |
2893 | return nullptr; |
2894 | assert(ISD::isBitwiseLogicOp(N->getOpcode()) &&(static_cast <bool> (ISD::isBitwiseLogicOp(N->getOpcode ()) && "Expected a logic operation on setcc results." ) ? void (0) : __assert_fail ("ISD::isBitwiseLogicOp(N->getOpcode()) && \"Expected a logic operation on setcc results.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2895, __extension__ __PRETTY_FUNCTION__)) |
2895 | "Expected a logic operation on setcc results.")(static_cast <bool> (ISD::isBitwiseLogicOp(N->getOpcode ()) && "Expected a logic operation on setcc results." ) ? void (0) : __assert_fail ("ISD::isBitwiseLogicOp(N->getOpcode()) && \"Expected a logic operation on setcc results.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2895, __extension__ __PRETTY_FUNCTION__)); |
2896 | SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); |
2897 | if (!LoweredLogical) |
2898 | return nullptr; |
2899 | |
2900 | SDLoc dl(N); |
2901 | bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; |
2902 | unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; |
2903 | SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); |
2904 | SDValue LHS = LoweredLogical.getOperand(0); |
2905 | SDValue RHS = LoweredLogical.getOperand(1); |
2906 | SDValue WideOp; |
2907 | SDValue OpToConvToRecForm; |
2908 | |
2909 | // Look through any 32-bit to 64-bit implicit extend nodes to find the |
2910 | // opcode that is input to the XORI. |
2911 | if (IsBitwiseNegate && |
2912 | LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) |
2913 | OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); |
2914 | else if (IsBitwiseNegate) |
2915 | // If the input to the XORI isn't an extension, that's what we're after. |
2916 | OpToConvToRecForm = LoweredLogical.getOperand(0); |
2917 | else |
2918 | // If this is not an XORI, it is a reg-reg logical op and we can convert |
2919 | // it to record-form. |
2920 | OpToConvToRecForm = LoweredLogical; |
2921 | |
2922 | // Get the record-form version of the node we're looking to use to get the |
2923 | // CR result from. |
2924 | uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); |
2925 | int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); |
2926 | |
2927 | // Convert the right node to record-form. This is either the logical we're |
2928 | // looking at or it is the input node to the negation (if we're looking at |
2929 | // a bitwise negation). |
2930 | if (NewOpc != -1 && IsBitwiseNegate) { |
2931 | // The input to the XORI has a record-form. Use it. |
2932 | assert(LoweredLogical.getConstantOperandVal(1) == 1 &&(static_cast <bool> (LoweredLogical.getConstantOperandVal (1) == 1 && "Expected a PPC::XORI8 only for bitwise negation." ) ? void (0) : __assert_fail ("LoweredLogical.getConstantOperandVal(1) == 1 && \"Expected a PPC::XORI8 only for bitwise negation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2933, __extension__ __PRETTY_FUNCTION__)) |
2933 | "Expected a PPC::XORI8 only for bitwise negation.")(static_cast <bool> (LoweredLogical.getConstantOperandVal (1) == 1 && "Expected a PPC::XORI8 only for bitwise negation." ) ? void (0) : __assert_fail ("LoweredLogical.getConstantOperandVal(1) == 1 && \"Expected a PPC::XORI8 only for bitwise negation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2933, __extension__ __PRETTY_FUNCTION__)); |
2934 | // Emit the record-form instruction. |
2935 | std::vector<SDValue> Ops; |
2936 | for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) |
2937 | Ops.push_back(OpToConvToRecForm.getOperand(i)); |
2938 | |
2939 | WideOp = |
2940 | SDValue(CurDAG->getMachineNode(NewOpc, dl, |
2941 | OpToConvToRecForm.getValueType(), |
2942 | MVT::Glue, Ops), 0); |
2943 | } else { |
2944 | assert((NewOpc != -1 || !IsBitwiseNegate) &&(static_cast <bool> ((NewOpc != -1 || !IsBitwiseNegate) && "No record form available for AND8/OR8/XOR8?") ? void (0) : __assert_fail ("(NewOpc != -1 || !IsBitwiseNegate) && \"No record form available for AND8/OR8/XOR8?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2945, __extension__ __PRETTY_FUNCTION__)) |
2945 | "No record form available for AND8/OR8/XOR8?")(static_cast <bool> ((NewOpc != -1 || !IsBitwiseNegate) && "No record form available for AND8/OR8/XOR8?") ? void (0) : __assert_fail ("(NewOpc != -1 || !IsBitwiseNegate) && \"No record form available for AND8/OR8/XOR8?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2945, __extension__ __PRETTY_FUNCTION__)); |
2946 | WideOp = |
2947 | SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc, |
2948 | dl, MVT::i64, MVT::Glue, LHS, RHS), |
2949 | 0); |
2950 | } |
2951 | |
2952 | // Select this node to a single bit from CR0 set by the record-form node |
2953 | // just created. For bitwise negation, use the EQ bit which is the equivalent |
2954 | // of negating the result (i.e. it is a bit set when the result of the |
2955 | // operation is zero). |
2956 | SDValue SRIdxVal = |
2957 | CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); |
2958 | SDValue CRBit = |
2959 | SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, |
2960 | MVT::i1, CR0Reg, SRIdxVal, |
2961 | WideOp.getValue(1)), 0); |
2962 | return CRBit.getNode(); |
2963 | } |
2964 | |
2965 | // Lower a logical operation on i1 values into a GPR sequence if possible. |
2966 | // The result can be kept in a GPR if requested. |
2967 | // Three types of inputs can be handled: |
2968 | // - SETCC |
2969 | // - TRUNCATE |
2970 | // - Logical operation (AND/OR/XOR) |
2971 | // There is also a special case that is handled (namely a complement operation |
2972 | // achieved with xor %a, -1). |
2973 | SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { |
2974 | assert(ISD::isBitwiseLogicOp(LogicOp.getOpcode()) &&(static_cast <bool> (ISD::isBitwiseLogicOp(LogicOp.getOpcode ()) && "Can only handle logic operations here.") ? void (0) : __assert_fail ("ISD::isBitwiseLogicOp(LogicOp.getOpcode()) && \"Can only handle logic operations here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2975, __extension__ __PRETTY_FUNCTION__)) |
2975 | "Can only handle logic operations here.")(static_cast <bool> (ISD::isBitwiseLogicOp(LogicOp.getOpcode ()) && "Can only handle logic operations here.") ? void (0) : __assert_fail ("ISD::isBitwiseLogicOp(LogicOp.getOpcode()) && \"Can only handle logic operations here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2975, __extension__ __PRETTY_FUNCTION__)); |
2976 | assert(LogicOp.getValueType() == MVT::i1 &&(static_cast <bool> (LogicOp.getValueType() == MVT::i1 && "Can only handle logic operations on i1 values here.") ? void (0) : __assert_fail ("LogicOp.getValueType() == MVT::i1 && \"Can only handle logic operations on i1 values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2977, __extension__ __PRETTY_FUNCTION__)) |
2977 | "Can only handle logic operations on i1 values here.")(static_cast <bool> (LogicOp.getValueType() == MVT::i1 && "Can only handle logic operations on i1 values here.") ? void (0) : __assert_fail ("LogicOp.getValueType() == MVT::i1 && \"Can only handle logic operations on i1 values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2977, __extension__ __PRETTY_FUNCTION__)); |
2978 | SDLoc dl(LogicOp); |
2979 | SDValue LHS, RHS; |
2980 | |
2981 | // Special case: xor %a, -1 |
2982 | bool IsBitwiseNegation = isBitwiseNot(LogicOp); |
2983 | |
2984 | // Produces a GPR sequence for each operand of the binary logic operation. |
2985 | // For SETCC, it produces the respective comparison, for TRUNCATE it truncates |
2986 | // the value in a GPR and for logic operations, it will recursively produce |
2987 | // a GPR sequence for the operation. |
2988 | auto getLogicOperand = [&] (SDValue Operand) -> SDValue { |
2989 | unsigned OperandOpcode = Operand.getOpcode(); |
2990 | if (OperandOpcode == ISD::SETCC) |
2991 | return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); |
2992 | else if (OperandOpcode == ISD::TRUNCATE) { |
2993 | SDValue InputOp = Operand.getOperand(0); |
2994 | EVT InVT = InputOp.getValueType(); |
2995 | return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : |
2996 | PPC::RLDICL, dl, InVT, InputOp, |
2997 | S->getI64Imm(0, dl), |
2998 | S->getI64Imm(63, dl)), 0); |
2999 | } else if (ISD::isBitwiseLogicOp(OperandOpcode)) |
3000 | return computeLogicOpInGPR(Operand); |
3001 | return SDValue(); |
3002 | }; |
3003 | LHS = getLogicOperand(LogicOp.getOperand(0)); |
3004 | RHS = getLogicOperand(LogicOp.getOperand(1)); |
3005 | |
3006 | // If a GPR sequence can't be produced for the LHS we can't proceed. |
3007 | // Not producing a GPR sequence for the RHS is only a problem if this isn't |
3008 | // a bitwise negation operation. |
3009 | if (!LHS || (!RHS && !IsBitwiseNegation)) |
3010 | return SDValue(); |
3011 | |
3012 | NumLogicOpsOnComparison++; |
3013 | |
3014 | // We will use the inputs as 64-bit values. |
3015 | if (LHS.getValueType() == MVT::i32) |
3016 | LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); |
3017 | if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) |
3018 | RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); |
3019 | |
3020 | unsigned NewOpc; |
3021 | switch (LogicOp.getOpcode()) { |
3022 | default: llvm_unreachable("Unknown logic operation.")::llvm::llvm_unreachable_internal("Unknown logic operation.", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3022); |
3023 | case ISD::AND: NewOpc = PPC::AND8; break; |
3024 | case ISD::OR: NewOpc = PPC::OR8; break; |
3025 | case ISD::XOR: NewOpc = PPC::XOR8; break; |
3026 | } |
3027 | |
3028 | if (IsBitwiseNegation) { |
3029 | RHS = S->getI64Imm(1, dl); |
3030 | NewOpc = PPC::XORI8; |
3031 | } |
3032 | |
3033 | return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); |
3034 | |
3035 | } |
3036 | |
3037 | /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. |
3038 | /// Otherwise just reinterpret it as a 64-bit value. |
3039 | /// Useful when emitting comparison code for 32-bit values without using |
3040 | /// the compare instruction (which only considers the lower 32-bits). |
3041 | SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { |
3042 | assert(Input.getValueType() == MVT::i32 &&(static_cast <bool> (Input.getValueType() == MVT::i32 && "Can only sign-extend 32-bit values here.") ? void (0) : __assert_fail ("Input.getValueType() == MVT::i32 && \"Can only sign-extend 32-bit values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3043, __extension__ __PRETTY_FUNCTION__)) |
3043 | "Can only sign-extend 32-bit values here.")(static_cast <bool> (Input.getValueType() == MVT::i32 && "Can only sign-extend 32-bit values here.") ? void (0) : __assert_fail ("Input.getValueType() == MVT::i32 && \"Can only sign-extend 32-bit values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3043, __extension__ __PRETTY_FUNCTION__)); |
3044 | unsigned Opc = Input.getOpcode(); |
3045 | |
3046 | // The value was sign extended and then truncated to 32-bits. No need to |
3047 | // sign extend it again. |
3048 | if (Opc == ISD::TRUNCATE && |
3049 | (Input.getOperand(0).getOpcode() == ISD::AssertSext || |
3050 | Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) |
3051 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
3052 | |
3053 | LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); |
3054 | // The input is a sign-extending load. All ppc sign-extending loads |
3055 | // sign-extend to the full 64-bits. |
3056 | if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) |
3057 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
3058 | |
3059 | ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); |
3060 | // We don't sign-extend constants. |
3061 | if (InputConst) |
3062 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
3063 | |
3064 | SDLoc dl(Input); |
3065 | SignExtensionsAdded++; |
3066 | return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, |
3067 | MVT::i64, Input), 0); |
3068 | } |
3069 | |
3070 | /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. |
3071 | /// Otherwise just reinterpret it as a 64-bit value. |
3072 | /// Useful when emitting comparison code for 32-bit values without using |
3073 | /// the compare instruction (which only considers the lower 32-bits). |
3074 | SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { |
3075 | assert(Input.getValueType() == MVT::i32 &&(static_cast <bool> (Input.getValueType() == MVT::i32 && "Can only zero-extend 32-bit values here.") ? void (0) : __assert_fail ("Input.getValueType() == MVT::i32 && \"Can only zero-extend 32-bit values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3076, __extension__ __PRETTY_FUNCTION__)) |
3076 | "Can only zero-extend 32-bit values here.")(static_cast <bool> (Input.getValueType() == MVT::i32 && "Can only zero-extend 32-bit values here.") ? void (0) : __assert_fail ("Input.getValueType() == MVT::i32 && \"Can only zero-extend 32-bit values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3076, __extension__ __PRETTY_FUNCTION__)); |
3077 | unsigned Opc = Input.getOpcode(); |
3078 | |
3079 | // The only condition under which we can omit the actual extend instruction: |
3080 | // - The value is a positive constant |
3081 | // - The value comes from a load that isn't a sign-extending load |
3082 | // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. |
3083 | bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && |
3084 | (Input.getOperand(0).getOpcode() == ISD::AssertZext || |
3085 | Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); |
3086 | if (IsTruncateOfZExt) |
3087 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
3088 | |
3089 | ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); |
3090 | if (InputConst && InputConst->getSExtValue() >= 0) |
3091 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
3092 | |
3093 | LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); |
3094 | // The input is a load that doesn't sign-extend (it will be zero-extended). |
3095 | if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) |
3096 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
3097 | |
3098 | // None of the above, need to zero-extend. |
3099 | SDLoc dl(Input); |
3100 | ZeroExtensionsAdded++; |
3101 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, |
3102 | S->getI64Imm(0, dl), |
3103 | S->getI64Imm(32, dl)), 0); |
3104 | } |
3105 | |
3106 | // Handle a 32-bit value in a 64-bit register and vice-versa. These are of |
3107 | // course not actual zero/sign extensions that will generate machine code, |
3108 | // they're just a way to reinterpret a 32 bit value in a register as a |
3109 | // 64 bit value and vice-versa. |
3110 | SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, |
3111 | ExtOrTruncConversion Conv) { |
3112 | SDLoc dl(NatWidthRes); |
3113 | |
3114 | // For reinterpreting 32-bit values as 64 bit values, we generate |
3115 | // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> |
3116 | if (Conv == ExtOrTruncConversion::Ext) { |
3117 | SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); |
3118 | SDValue SubRegIdx = |
3119 | CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
3120 | return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, |
3121 | ImDef, NatWidthRes, SubRegIdx), 0); |
3122 | } |
3123 | |
3124 | assert(Conv == ExtOrTruncConversion::Trunc &&(static_cast <bool> (Conv == ExtOrTruncConversion::Trunc && "Unknown convertion between 32 and 64 bit values." ) ? void (0) : __assert_fail ("Conv == ExtOrTruncConversion::Trunc && \"Unknown convertion between 32 and 64 bit values.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3125, __extension__ __PRETTY_FUNCTION__)) |
3125 | "Unknown convertion between 32 and 64 bit values.")(static_cast <bool> (Conv == ExtOrTruncConversion::Trunc && "Unknown convertion between 32 and 64 bit values." ) ? void (0) : __assert_fail ("Conv == ExtOrTruncConversion::Trunc && \"Unknown convertion between 32 and 64 bit values.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3125, __extension__ __PRETTY_FUNCTION__)); |
3126 | // For reinterpreting 64-bit values as 32-bit values, we just need to |
3127 | // EXTRACT_SUBREG (i.e. extract the low word). |
3128 | SDValue SubRegIdx = |
3129 | CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
3130 | return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, |
3131 | NatWidthRes, SubRegIdx), 0); |
3132 | } |
3133 | |
3134 | // Produce a GPR sequence for compound comparisons (<=, >=) against zero. |
3135 | // Handle both zero-extensions and sign-extensions. |
3136 | SDValue |
3137 | IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, |
3138 | ZeroCompare CmpTy) { |
3139 | EVT InVT = LHS.getValueType(); |
3140 | bool Is32Bit = InVT == MVT::i32; |
3141 | SDValue ToExtend; |
3142 | |
3143 | // Produce the value that needs to be either zero or sign extended. |
3144 | switch (CmpTy) { |
3145 | case ZeroCompare::GEZExt: |
3146 | case ZeroCompare::GESExt: |
3147 | ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, |
3148 | dl, InVT, LHS, LHS), 0); |
3149 | break; |
3150 | case ZeroCompare::LEZExt: |
3151 | case ZeroCompare::LESExt: { |
3152 | if (Is32Bit) { |
3153 | // Upper 32 bits cannot be undefined for this sequence. |
3154 | LHS = signExtendInputIfNeeded(LHS); |
3155 | SDValue Neg = |
3156 | SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); |
3157 | ToExtend = |
3158 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
3159 | Neg, S->getI64Imm(1, dl), |
3160 | S->getI64Imm(63, dl)), 0); |
3161 | } else { |
3162 | SDValue Addi = |
3163 | SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, |
3164 | S->getI64Imm(~0ULL, dl)), 0); |
3165 | ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
3166 | Addi, LHS), 0); |
3167 | } |
3168 | break; |
3169 | } |
3170 | } |
3171 | |
3172 | // For 64-bit sequences, the extensions are the same for the GE/LE cases. |
3173 | if (!Is32Bit && |
3174 | (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) |
3175 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
3176 | ToExtend, S->getI64Imm(1, dl), |
3177 | S->getI64Imm(63, dl)), 0); |
3178 | if (!Is32Bit && |
3179 | (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) |
3180 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, |
3181 | S->getI64Imm(63, dl)), 0); |
3182 | |
3183 | assert(Is32Bit && "Should have handled the 32-bit sequences above.")(static_cast <bool> (Is32Bit && "Should have handled the 32-bit sequences above." ) ? void (0) : __assert_fail ("Is32Bit && \"Should have handled the 32-bit sequences above.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3183, __extension__ __PRETTY_FUNCTION__)); |
3184 | // For 32-bit sequences, the extensions differ between GE/LE cases. |
3185 | switch (CmpTy) { |
3186 | case ZeroCompare::GEZExt: { |
3187 | SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), |
3188 | S->getI32Imm(31, dl) }; |
3189 | return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
3190 | ShiftOps), 0); |
3191 | } |
3192 | case ZeroCompare::GESExt: |
3193 | return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, |
3194 | S->getI32Imm(31, dl)), 0); |
3195 | case ZeroCompare::LEZExt: |
3196 | return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, |
3197 | S->getI32Imm(1, dl)), 0); |
3198 | case ZeroCompare::LESExt: |
3199 | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, |
3200 | S->getI32Imm(-1, dl)), 0); |
3201 | } |
3202 | |
3203 | // The above case covers all the enumerators so it can't have a default clause |
3204 | // to avoid compiler warnings. |
3205 | llvm_unreachable("Unknown zero-comparison type.")::llvm::llvm_unreachable_internal("Unknown zero-comparison type." , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3205); |
3206 | } |
3207 | |
3208 | /// Produces a zero-extended result of comparing two 32-bit values according to |
3209 | /// the passed condition code. |
3210 | SDValue |
3211 | IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, |
3212 | ISD::CondCode CC, |
3213 | int64_t RHSValue, SDLoc dl) { |
3214 | if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || |
3215 | CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) |
3216 | return SDValue(); |
3217 | bool IsRHSZero = RHSValue == 0; |
3218 | bool IsRHSOne = RHSValue == 1; |
3219 | bool IsRHSNegOne = RHSValue == -1LL; |
3220 | switch (CC) { |
3221 | default: return SDValue(); |
3222 | case ISD::SETEQ: { |
3223 | // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) |
3224 | // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) |
3225 | SDValue Xor = IsRHSZero ? LHS : |
3226 | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
3227 | SDValue Clz = |
3228 | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); |
3229 | SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), |
3230 | S->getI32Imm(31, dl) }; |
3231 | return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
3232 | ShiftOps), 0); |
3233 | } |
3234 | case ISD::SETNE: { |
3235 | // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) |
3236 | // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) |
3237 | SDValue Xor = IsRHSZero ? LHS : |
3238 | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
3239 | SDValue Clz = |
3240 | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); |
3241 | SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), |
3242 | S->getI32Imm(31, dl) }; |
3243 | SDValue Shift = |
3244 | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); |
3245 | return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, |
3246 | S->getI32Imm(1, dl)), 0); |
3247 | } |
3248 | case ISD::SETGE: { |
3249 | // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) |
3250 | // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) |
3251 | if(IsRHSZero) |
3252 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
3253 | |
3254 | // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) |
3255 | // by swapping inputs and falling through. |
3256 | std::swap(LHS, RHS); |
3257 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
3258 | IsRHSZero = RHSConst && RHSConst->isZero(); |
3259 | [[fallthrough]]; |
3260 | } |
3261 | case ISD::SETLE: { |
3262 | if (CmpInGPR == ICGPR_NonExtIn) |
3263 | return SDValue(); |
3264 | // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) |
3265 | // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) |
3266 | if(IsRHSZero) { |
3267 | if (CmpInGPR == ICGPR_NonExtIn) |
3268 | return SDValue(); |
3269 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
3270 | } |
3271 | |
3272 | // The upper 32-bits of the register can't be undefined for this sequence. |
3273 | LHS = signExtendInputIfNeeded(LHS); |
3274 | RHS = signExtendInputIfNeeded(RHS); |
3275 | SDValue Sub = |
3276 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); |
3277 | SDValue Shift = |
3278 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, |
3279 | S->getI64Imm(1, dl), S->getI64Imm(63, dl)), |
3280 | 0); |
3281 | return |
3282 | SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, |
3283 | MVT::i64, Shift, S->getI32Imm(1, dl)), 0); |
3284 | } |
3285 | case ISD::SETGT: { |
3286 | // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) |
3287 | // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) |
3288 | // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) |
3289 | // Handle SETLT -1 (which is equivalent to SETGE 0). |
3290 | if (IsRHSNegOne) |
3291 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
3292 | |
3293 | if (IsRHSZero) { |
3294 | if (CmpInGPR == ICGPR_NonExtIn) |
3295 | return SDValue(); |
3296 | // The upper 32-bits of the register can't be undefined for this sequence. |
3297 | LHS = signExtendInputIfNeeded(LHS); |
3298 | RHS = signExtendInputIfNeeded(RHS); |
3299 | SDValue Neg = |
3300 | SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); |
3301 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
3302 | Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); |
3303 | } |
3304 | // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as |
3305 | // (%b < %a) by swapping inputs and falling through. |
3306 | std::swap(LHS, RHS); |
3307 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
3308 | IsRHSZero = RHSConst && RHSConst->isZero(); |
3309 | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
3310 | [[fallthrough]]; |
3311 | } |
3312 | case ISD::SETLT: { |
3313 | // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) |
3314 | // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) |
3315 | // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) |
3316 | // Handle SETLT 1 (which is equivalent to SETLE 0). |
3317 | if (IsRHSOne) { |
3318 | if (CmpInGPR == ICGPR_NonExtIn) |
3319 | return SDValue(); |
3320 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
3321 | } |
3322 | |
3323 | if (IsRHSZero) { |
3324 | SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), |
3325 | S->getI32Imm(31, dl) }; |
3326 | return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
3327 | ShiftOps), 0); |
3328 | } |
3329 | |
3330 | if (CmpInGPR == ICGPR_NonExtIn) |
3331 | return SDValue(); |
3332 | // The upper 32-bits of the register can't be undefined for this sequence. |
3333 | LHS = signExtendInputIfNeeded(LHS); |
3334 | RHS = signExtendInputIfNeeded(RHS); |
3335 | SDValue SUBFNode = |
3336 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
3337 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
3338 | SUBFNode, S->getI64Imm(1, dl), |
3339 | S->getI64Imm(63, dl)), 0); |
3340 | } |
3341 | case ISD::SETUGE: |
3342 | // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) |
3343 | // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) |
3344 | std::swap(LHS, RHS); |
3345 | [[fallthrough]]; |
3346 | case ISD::SETULE: { |
3347 | if (CmpInGPR == ICGPR_NonExtIn) |
3348 | return SDValue(); |
3349 | // The upper 32-bits of the register can't be undefined for this sequence. |
3350 | LHS = zeroExtendInputIfNeeded(LHS); |
3351 | RHS = zeroExtendInputIfNeeded(RHS); |
3352 | SDValue Subtract = |
3353 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); |
3354 | SDValue SrdiNode = |
3355 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
3356 | Subtract, S->getI64Imm(1, dl), |
3357 | S->getI64Imm(63, dl)), 0); |
3358 | return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, |
3359 | S->getI32Imm(1, dl)), 0); |
3360 | } |
3361 | case ISD::SETUGT: |
3362 | // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) |
3363 | // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) |
3364 | std::swap(LHS, RHS); |
3365 | [[fallthrough]]; |
3366 | case ISD::SETULT: { |
3367 | if (CmpInGPR == ICGPR_NonExtIn) |
3368 | return SDValue(); |
3369 | // The upper 32-bits of the register can't be undefined for this sequence. |
3370 | LHS = zeroExtendInputIfNeeded(LHS); |
3371 | RHS = zeroExtendInputIfNeeded(RHS); |
3372 | SDValue Subtract = |
3373 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
3374 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
3375 | Subtract, S->getI64Imm(1, dl), |
3376 | S->getI64Imm(63, dl)), 0); |
3377 | } |
3378 | } |
3379 | } |
3380 | |
3381 | /// Produces a sign-extended result of comparing two 32-bit values according to |
3382 | /// the passed condition code. |
3383 | SDValue |
3384 | IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, |
3385 | ISD::CondCode CC, |
3386 | int64_t RHSValue, SDLoc dl) { |
3387 | if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || |
3388 | CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) |
3389 | return SDValue(); |
3390 | bool IsRHSZero = RHSValue == 0; |
3391 | bool IsRHSOne = RHSValue == 1; |
3392 | bool IsRHSNegOne = RHSValue == -1LL; |
3393 | |
3394 | switch (CC) { |
3395 | default: return SDValue(); |
3396 | case ISD::SETEQ: { |
3397 | // (sext (setcc %a, %b, seteq)) -> |
3398 | // (ashr (shl (ctlz (xor %a, %b)), 58), 63) |
3399 | // (sext (setcc %a, 0, seteq)) -> |
3400 | // (ashr (shl (ctlz %a), 58), 63) |
3401 | SDValue CountInput = IsRHSZero ? LHS : |
3402 | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
3403 | SDValue Cntlzw = |
3404 | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); |
3405 | SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), |
3406 | S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; |
3407 | SDValue Slwi = |
3408 | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); |
3409 | return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); |
3410 | } |
3411 | case ISD::SETNE: { |
3412 | // Bitwise xor the operands, count leading zeros, shift right by 5 bits and |
3413 | // flip the bit, finally take 2's complement. |
3414 | // (sext (setcc %a, %b, setne)) -> |
3415 | // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) |
3416 | // Same as above, but the first xor is not needed. |
3417 | // (sext (setcc %a, 0, setne)) -> |
3418 | // (neg (xor (lshr (ctlz %a), 5), 1)) |
3419 | SDValue Xor = IsRHSZero ? LHS : |
3420 | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
3421 | SDValue Clz = |
3422 | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); |
3423 | SDValue ShiftOps[] = |
3424 | { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; |
3425 | SDValue Shift = |
3426 | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); |
3427 | SDValue Xori = |
3428 | SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, |
3429 | S->getI32Imm(1, dl)), 0); |
3430 | return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); |
3431 | } |
3432 | case ISD::SETGE: { |
3433 | // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) |
3434 | // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) |
3435 | if (IsRHSZero) |
3436 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
3437 | |
3438 | // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) |
3439 | // by swapping inputs and falling through. |
3440 | std::swap(LHS, RHS); |
3441 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
3442 | IsRHSZero = RHSConst && RHSConst->isZero(); |
3443 | [[fallthrough]]; |
3444 | } |
3445 | case ISD::SETLE: { |
3446 | if (CmpInGPR == ICGPR_NonExtIn) |
3447 | return SDValue(); |
3448 | // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) |
3449 | // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) |
3450 | if (IsRHSZero) |
3451 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
3452 | |
3453 | // The upper 32-bits of the register can't be undefined for this sequence. |
3454 | LHS = signExtendInputIfNeeded(LHS); |
3455 | RHS = signExtendInputIfNeeded(RHS); |
3456 | SDValue SUBFNode = |
3457 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, |
3458 | LHS, RHS), 0); |
3459 | SDValue Srdi = |
3460 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
3461 | SUBFNode, S->getI64Imm(1, dl), |
3462 | S->getI64Imm(63, dl)), 0); |
3463 | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, |
3464 | S->getI32Imm(-1, dl)), 0); |
3465 | } |
3466 | case ISD::SETGT: { |
3467 | // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) |
3468 | // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) |
3469 | // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) |
3470 | if (IsRHSNegOne) |
3471 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
3472 | if (IsRHSZero) { |
3473 | if (CmpInGPR == ICGPR_NonExtIn) |
3474 | return SDValue(); |
3475 | // The upper 32-bits of the register can't be undefined for this sequence. |
3476 | LHS = signExtendInputIfNeeded(LHS); |
3477 | RHS = signExtendInputIfNeeded(RHS); |
3478 | SDValue Neg = |
3479 | SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); |
3480 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, |
3481 | S->getI64Imm(63, dl)), 0); |
3482 | } |
3483 | // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as |
3484 | // (%b < %a) by swapping inputs and falling through. |
3485 | std::swap(LHS, RHS); |
3486 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
3487 | IsRHSZero = RHSConst && RHSConst->isZero(); |
3488 | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
3489 | [[fallthrough]]; |
3490 | } |
3491 | case ISD::SETLT: { |
3492 | // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) |
3493 | // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) |
3494 | // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) |
3495 | if (IsRHSOne) { |
3496 | if (CmpInGPR == ICGPR_NonExtIn) |
3497 | return SDValue(); |
3498 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
3499 | } |
3500 | if (IsRHSZero) |
3501 | return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, |
3502 | S->getI32Imm(31, dl)), 0); |
3503 | |
3504 | if (CmpInGPR == ICGPR_NonExtIn) |
3505 | return SDValue(); |
3506 | // The upper 32-bits of the register can't be undefined for this sequence. |
3507 | LHS = signExtendInputIfNeeded(LHS); |
3508 | RHS = signExtendInputIfNeeded(RHS); |
3509 | SDValue SUBFNode = |
3510 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
3511 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
3512 | SUBFNode, S->getI64Imm(63, dl)), 0); |
3513 | } |
3514 | case ISD::SETUGE: |
3515 | // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) |
3516 | // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) |
3517 | std::swap(LHS, RHS); |
3518 | [[fallthrough]]; |
3519 | case ISD::SETULE: { |
3520 | if (CmpInGPR == ICGPR_NonExtIn) |
3521 | return SDValue(); |
3522 | // The upper 32-bits of the register can't be undefined for this sequence. |
3523 | LHS = zeroExtendInputIfNeeded(LHS); |
3524 | RHS = zeroExtendInputIfNeeded(RHS); |
3525 | SDValue Subtract = |
3526 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); |
3527 | SDValue Shift = |
3528 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, |
3529 | S->getI32Imm(1, dl), S->getI32Imm(63,dl)), |
3530 | 0); |
3531 | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, |
3532 | S->getI32Imm(-1, dl)), 0); |
3533 | } |
3534 | case ISD::SETUGT: |
3535 | // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) |
3536 | // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) |
3537 | std::swap(LHS, RHS); |
3538 | [[fallthrough]]; |
3539 | case ISD::SETULT: { |
3540 | if (CmpInGPR == ICGPR_NonExtIn) |
3541 | return SDValue(); |
3542 | // The upper 32-bits of the register can't be undefined for this sequence. |
3543 | LHS = zeroExtendInputIfNeeded(LHS); |
3544 | RHS = zeroExtendInputIfNeeded(RHS); |
3545 | SDValue Subtract = |
3546 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
3547 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
3548 | Subtract, S->getI64Imm(63, dl)), 0); |
3549 | } |
3550 | } |
3551 | } |
3552 | |
3553 | /// Produces a zero-extended result of comparing two 64-bit values according to |
3554 | /// the passed condition code. |
3555 | SDValue |
3556 | IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, |
3557 | ISD::CondCode CC, |
3558 | int64_t RHSValue, SDLoc dl) { |
3559 | if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || |
3560 | CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) |
3561 | return SDValue(); |
3562 | bool IsRHSZero = RHSValue == 0; |
3563 | bool IsRHSOne = RHSValue == 1; |
3564 | bool IsRHSNegOne = RHSValue == -1LL; |
3565 | switch (CC) { |
3566 | default: return SDValue(); |
3567 | case ISD::SETEQ: { |
3568 | // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) |
3569 | // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) |
3570 | SDValue Xor = IsRHSZero ? LHS : |
3571 | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
3572 | SDValue Clz = |
3573 | SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); |
3574 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, |
3575 | S->getI64Imm(58, dl), |
3576 | S->getI64Imm(63, dl)), 0); |
3577 | } |
3578 | case ISD::SETNE: { |
3579 | // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) |
3580 | // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) |
3581 | // {addcz.reg, addcz.CA} = (addcarry %a, -1) |
3582 | // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) |
3583 | SDValue Xor = IsRHSZero ? LHS : |
3584 | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
3585 | SDValue AC = |
3586 | SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, |
3587 | Xor, S->getI32Imm(~0U, dl)), 0); |
3588 | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, |
3589 | Xor, AC.getValue(1)), 0); |
3590 | } |
3591 | case ISD::SETGE: { |
3592 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
3593 | // (zext (setcc %a, %b, setge)) -> |
3594 | // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) |
3595 | // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) |
3596 | if (IsRHSZero) |
3597 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
3598 | std::swap(LHS, RHS); |
3599 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
3600 | IsRHSZero = RHSConst && RHSConst->isZero(); |
3601 | [[fallthrough]]; |
3602 | } |
3603 | case ISD::SETLE: { |
3604 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
3605 | // (zext (setcc %a, %b, setge)) -> |
3606 | // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) |
3607 | // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) |
3608 | if (IsRHSZero) |
3609 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
3610 | SDValue ShiftL = |
3611 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, |
3612 | S->getI64Imm(1, dl), |
3613 | S->getI64Imm(63, dl)), 0); |
3614 | SDValue ShiftR = |
3615 | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, |
3616 | S->getI64Imm(63, dl)), 0); |
3617 | SDValue SubtractCarry = |
3618 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
3619 | LHS, RHS), 1); |
3620 | return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, |
3621 | ShiftR, ShiftL, SubtractCarry), 0); |
3622 | } |
3623 | case ISD::SETGT: { |
3624 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
3625 | // (zext (setcc %a, %b, setgt)) -> |
3626 | // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) |
3627 | // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) |
3628 | if (IsRHSNegOne) |
3629 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
3630 | if (IsRHSZero) { |
3631 | SDValue Addi = |
3632 | SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, |
3633 | S->getI64Imm(~0ULL, dl)), 0); |
3634 | SDValue Nor = |
3635 | SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); |
3636 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, |
3637 | S->getI64Imm(1, dl), |
3638 | S->getI64Imm(63, dl)), 0); |
3639 | } |
3640 | std::swap(LHS, RHS); |
3641 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
3642 | IsRHSZero = RHSConst && RHSConst->isZero(); |
3643 | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
3644 | [[fallthrough]]; |
3645 | } |
3646 | case ISD::SETLT: { |
3647 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
3648 | // (zext (setcc %a, %b, setlt)) -> |
3649 | // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) |
3650 | // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) |
3651 | if (IsRHSOne) |
3652 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
3653 | if (IsRHSZero) |
3654 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, |
3655 | S->getI64Imm(1, dl), |
3656 | S->getI64Imm(63, dl)), 0); |
3657 | SDValue SRADINode = |
3658 | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
3659 | LHS, S->getI64Imm(63, dl)), 0); |
3660 | SDValue SRDINode = |
3661 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
3662 | RHS, S->getI64Imm(1, dl), |
3663 | S->getI64Imm(63, dl)), 0); |
3664 | SDValue SUBFC8Carry = |
3665 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
3666 | RHS, LHS), 1); |
3667 | SDValue ADDE8Node = |
3668 | SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, |
3669 | SRDINode, SRADINode, SUBFC8Carry), 0); |
3670 | return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, |
3671 | ADDE8Node, S->getI64Imm(1, dl)), 0); |
3672 | } |
3673 | case ISD::SETUGE: |
3674 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
3675 | // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) |
3676 | std::swap(LHS, RHS); |
3677 | [[fallthrough]]; |
3678 | case ISD::SETULE: { |
3679 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
3680 | // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) |
3681 | SDValue SUBFC8Carry = |
3682 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
3683 | LHS, RHS), 1); |
3684 | SDValue SUBFE8Node = |
3685 | SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, |
3686 | LHS, LHS, SUBFC8Carry), 0); |
3687 | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, |
3688 | SUBFE8Node, S->getI64Imm(1, dl)), 0); |
3689 | } |
3690 | case ISD::SETUGT: |
3691 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
3692 | // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) |
3693 | std::swap(LHS, RHS); |
3694 | [[fallthrough]]; |
3695 | case ISD::SETULT: { |
3696 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
3697 | // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) |
3698 | SDValue SubtractCarry = |
3699 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
3700 | RHS, LHS), 1); |
3701 | SDValue ExtSub = |
3702 | SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, |
3703 | LHS, LHS, SubtractCarry), 0); |
3704 | return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, |
3705 | ExtSub), 0); |
3706 | } |
3707 | } |
3708 | } |
3709 | |
3710 | /// Produces a sign-extended result of comparing two 64-bit values according to |
3711 | /// the passed condition code. |
3712 | SDValue |
3713 | IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, |
3714 | ISD::CondCode CC, |
3715 | int64_t RHSValue, SDLoc dl) { |
3716 | if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || |
3717 | CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) |
3718 | return SDValue(); |
3719 | bool IsRHSZero = RHSValue == 0; |
3720 | bool IsRHSOne = RHSValue == 1; |
3721 | bool IsRHSNegOne = RHSValue == -1LL; |
3722 | switch (CC) { |
3723 | default: return SDValue(); |
3724 | case ISD::SETEQ: { |
3725 | // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) |
3726 | // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) |
3727 | // {addcz.reg, addcz.CA} = (addcarry %a, -1) |
3728 | // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) |
3729 | SDValue AddInput = IsRHSZero ? LHS : |
3730 | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
3731 | SDValue Addic = |
3732 | SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, |
3733 | AddInput, S->getI32Imm(~0U, dl)), 0); |
3734 | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, |
3735 | Addic, Addic.getValue(1)), 0); |
3736 | } |
3737 | case ISD::SETNE: { |
3738 | // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) |
3739 | // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) |
3740 | // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) |
3741 | // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) |
3742 | SDValue Xor = IsRHSZero ? LHS : |
3743 | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
3744 | SDValue SC = |
3745 | SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, |
3746 | Xor, S->getI32Imm(0, dl)), 0); |
3747 | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, |
3748 | SC, SC.getValue(1)), 0); |
3749 | } |
3750 | case ISD::SETGE: { |
3751 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
3752 | // (zext (setcc %a, %b, setge)) -> |
3753 | // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) |
3754 | // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) |
3755 | if (IsRHSZero) |
3756 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
3757 | std::swap(LHS, RHS); |
3758 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
3759 | IsRHSZero = RHSConst && RHSConst->isZero(); |
3760 | [[fallthrough]]; |
3761 | } |
3762 | case ISD::SETLE: { |
3763 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
3764 | // (zext (setcc %a, %b, setge)) -> |
3765 | // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) |
3766 | // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) |
3767 | if (IsRHSZero) |
3768 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
3769 | SDValue ShiftR = |
3770 | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, |
3771 | S->getI64Imm(63, dl)), 0); |
3772 | SDValue ShiftL = |
3773 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, |
3774 | S->getI64Imm(1, dl), |
3775 | S->getI64Imm(63, dl)), 0); |
3776 | SDValue SubtractCarry = |
3777 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
3778 | LHS, RHS), 1); |
3779 | SDValue Adde = |
3780 | SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, |
3781 | ShiftR, ShiftL, SubtractCarry), 0); |
3782 | return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); |
3783 | } |
3784 | case ISD::SETGT: { |
3785 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
3786 | // (zext (setcc %a, %b, setgt)) -> |
3787 | // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) |
3788 | // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) |
3789 | if (IsRHSNegOne) |
3790 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
3791 | if (IsRHSZero) { |
3792 | SDValue Add = |
3793 | SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, |
3794 | S->getI64Imm(-1, dl)), 0); |
3795 | SDValue Nor = |
3796 | SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); |
3797 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, |
3798 | S->getI64Imm(63, dl)), 0); |
3799 | } |
3800 | std::swap(LHS, RHS); |
3801 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
3802 | IsRHSZero = RHSConst && RHSConst->isZero(); |
3803 | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
3804 | [[fallthrough]]; |
3805 | } |
3806 | case ISD::SETLT: { |
3807 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
3808 | // (zext (setcc %a, %b, setlt)) -> |
3809 | // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) |
3810 | // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) |
3811 | if (IsRHSOne) |
3812 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
3813 | if (IsRHSZero) { |
3814 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, |
3815 | S->getI64Imm(63, dl)), 0); |
3816 | } |
3817 | SDValue SRADINode = |
3818 | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
3819 | LHS, S->getI64Imm(63, dl)), 0); |
3820 | SDValue SRDINode = |
3821 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
3822 | RHS, S->getI64Imm(1, dl), |
3823 | S->getI64Imm(63, dl)), 0); |
3824 | SDValue SUBFC8Carry = |
3825 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
3826 | RHS, LHS), 1); |
3827 | SDValue ADDE8Node = |
3828 | SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, |
3829 | SRDINode, SRADINode, SUBFC8Carry), 0); |
3830 | SDValue XORI8Node = |
3831 | SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, |
3832 | ADDE8Node, S->getI64Imm(1, dl)), 0); |
3833 | return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, |
3834 | XORI8Node), 0); |
3835 | } |
3836 | case ISD::SETUGE: |
3837 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
3838 | // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) |
3839 | std::swap(LHS, RHS); |
3840 | [[fallthrough]]; |
3841 | case ISD::SETULE: { |
3842 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
3843 | // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) |
3844 | SDValue SubtractCarry = |
3845 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
3846 | LHS, RHS), 1); |
3847 | SDValue ExtSub = |
3848 | SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, |
3849 | LHS, SubtractCarry), 0); |
3850 | return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, |
3851 | ExtSub, ExtSub), 0); |
3852 | } |
3853 | case ISD::SETUGT: |
3854 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
3855 | // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) |
3856 | std::swap(LHS, RHS); |
3857 | [[fallthrough]]; |
3858 | case ISD::SETULT: { |
3859 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
3860 | // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) |
3861 | SDValue SubCarry = |
3862 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
3863 | RHS, LHS), 1); |
3864 | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, |
3865 | LHS, LHS, SubCarry), 0); |
3866 | } |
3867 | } |
3868 | } |
3869 | |
3870 | /// Do all uses of this SDValue need the result in a GPR? |
3871 | /// This is meant to be used on values that have type i1 since |
3872 | /// it is somewhat meaningless to ask if values of other types |
3873 | /// should be kept in GPR's. |
3874 | static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { |
3875 | assert(Compare.getOpcode() == ISD::SETCC &&(static_cast <bool> (Compare.getOpcode() == ISD::SETCC && "An ISD::SETCC node required here.") ? void (0) : __assert_fail ("Compare.getOpcode() == ISD::SETCC && \"An ISD::SETCC node required here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3876, __extension__ __PRETTY_FUNCTION__)) |
3876 | "An ISD::SETCC node required here.")(static_cast <bool> (Compare.getOpcode() == ISD::SETCC && "An ISD::SETCC node required here.") ? void (0) : __assert_fail ("Compare.getOpcode() == ISD::SETCC && \"An ISD::SETCC node required here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3876, __extension__ __PRETTY_FUNCTION__)); |
3877 | |
3878 | // For values that have a single use, the caller should obviously already have |
3879 | // checked if that use is an extending use. We check the other uses here. |
3880 | if (Compare.hasOneUse()) |
3881 | return true; |
3882 | // We want the value in a GPR if it is being extended, used for a select, or |
3883 | // used in logical operations. |
3884 | for (auto *CompareUse : Compare.getNode()->uses()) |
3885 | if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && |
3886 | CompareUse->getOpcode() != ISD::ZERO_EXTEND && |
3887 | CompareUse->getOpcode() != ISD::SELECT && |
3888 | !ISD::isBitwiseLogicOp(CompareUse->getOpcode())) { |
3889 | OmittedForNonExtendUses++; |
3890 | return false; |
3891 | } |
3892 | return true; |
3893 | } |
3894 | |
3895 | /// Returns an equivalent of a SETCC node but with the result the same width as |
3896 | /// the inputs. This can also be used for SELECT_CC if either the true or false |
3897 | /// values is a power of two while the other is zero. |
3898 | SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, |
3899 | SetccInGPROpts ConvOpts) { |
3900 | assert((Compare.getOpcode() == ISD::SETCC ||(static_cast <bool> ((Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && "An ISD::SETCC node required here." ) ? void (0) : __assert_fail ("(Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && \"An ISD::SETCC node required here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3902, __extension__ __PRETTY_FUNCTION__)) |
3901 | Compare.getOpcode() == ISD::SELECT_CC) &&(static_cast <bool> ((Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && "An ISD::SETCC node required here." ) ? void (0) : __assert_fail ("(Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && \"An ISD::SETCC node required here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3902, __extension__ __PRETTY_FUNCTION__)) |
3902 | "An ISD::SETCC node required here.")(static_cast <bool> ((Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && "An ISD::SETCC node required here." ) ? void (0) : __assert_fail ("(Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && \"An ISD::SETCC node required here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3902, __extension__ __PRETTY_FUNCTION__)); |
3903 | |
3904 | // Don't convert this comparison to a GPR sequence because there are uses |
3905 | // of the i1 result (i.e. uses that require the result in the CR). |
3906 | if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) |
3907 | return SDValue(); |
3908 | |
3909 | SDValue LHS = Compare.getOperand(0); |
3910 | SDValue RHS = Compare.getOperand(1); |
3911 | |
3912 | // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. |
3913 | int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; |
3914 | ISD::CondCode CC = |
3915 | cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); |
3916 | EVT InputVT = LHS.getValueType(); |
3917 | if (InputVT != MVT::i32 && InputVT != MVT::i64) |
3918 | return SDValue(); |
3919 | |
3920 | if (ConvOpts == SetccInGPROpts::ZExtInvert || |
3921 | ConvOpts == SetccInGPROpts::SExtInvert) |
3922 | CC = ISD::getSetCCInverse(CC, InputVT); |
3923 | |
3924 | bool Inputs32Bit = InputVT == MVT::i32; |
3925 | |
3926 | SDLoc dl(Compare); |
3927 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
3928 | int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX(9223372036854775807L); |
3929 | bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || |
3930 | ConvOpts == SetccInGPROpts::SExtInvert; |
3931 | |
3932 | if (IsSext && Inputs32Bit) |
3933 | return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); |
3934 | else if (Inputs32Bit) |
3935 | return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); |
3936 | else if (IsSext) |
3937 | return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); |
3938 | return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); |
3939 | } |
3940 | |
3941 | } // end anonymous namespace |
3942 | |
3943 | bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { |
3944 | if (N->getValueType(0) != MVT::i32 && |
3945 | N->getValueType(0) != MVT::i64) |
3946 | return false; |
3947 | |
3948 | // This optimization will emit code that assumes 64-bit registers |
3949 | // so we don't want to run it in 32-bit mode. Also don't run it |
3950 | // on functions that are not to be optimized. |
3951 | if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) |
3952 | return false; |
3953 | |
3954 | // For POWER10, it is more profitable to use the set boolean extension |
3955 | // instructions rather than the integer compare elimination codegen. |
3956 | // Users can override this via the command line option, `--ppc-gpr-icmps`. |
3957 | if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1()) |
3958 | return false; |
3959 | |
3960 | switch (N->getOpcode()) { |
3961 | default: break; |
3962 | case ISD::ZERO_EXTEND: |
3963 | case ISD::SIGN_EXTEND: |
3964 | case ISD::AND: |
3965 | case ISD::OR: |
3966 | case ISD::XOR: { |
3967 | IntegerCompareEliminator ICmpElim(CurDAG, this); |
3968 | if (SDNode *New = ICmpElim.Select(N)) { |
3969 | ReplaceNode(N, New); |
3970 | return true; |
3971 | } |
3972 | } |
3973 | } |
3974 | return false; |
3975 | } |
3976 | |
3977 | bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { |
3978 | if (N->getValueType(0) != MVT::i32 && |
3979 | N->getValueType(0) != MVT::i64) |
3980 | return false; |
3981 | |
3982 | if (!UseBitPermRewriter) |
3983 | return false; |
3984 | |
3985 | switch (N->getOpcode()) { |
3986 | default: break; |
3987 | case ISD::SRL: |
3988 | // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that |
3989 | // uses the BRH instruction. |
3990 | if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 && |
3991 | N->getOperand(0).getOpcode() == ISD::BSWAP) { |
3992 | auto &OpRight = N->getOperand(1); |
3993 | ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight); |
3994 | if (SRLConst && SRLConst->getSExtValue() == 16) |
3995 | return false; |
3996 | } |
3997 | LLVM_FALLTHROUGH[[fallthrough]]; |
3998 | case ISD::ROTL: |
3999 | case ISD::SHL: |
4000 | case ISD::AND: |
4001 | case ISD::OR: { |
4002 | BitPermutationSelector BPS(CurDAG); |
4003 | if (SDNode *New = BPS.Select(N)) { |
4004 | ReplaceNode(N, New); |
4005 | return true; |
4006 | } |
4007 | return false; |
4008 | } |
4009 | } |
4010 | |
4011 | return false; |
4012 | } |
4013 | |
4014 | /// SelectCC - Select a comparison of the specified values with the specified |
4015 | /// condition code, returning the CR# of the expression. |
4016 | SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
4017 | const SDLoc &dl, SDValue Chain) { |
4018 | // Always select the LHS. |
4019 | unsigned Opc; |
4020 | |
4021 | if (LHS.getValueType() == MVT::i32) { |
4022 | unsigned Imm; |
4023 | if (CC == ISD::SETEQ || CC == ISD::SETNE) { |
4024 | if (isInt32Immediate(RHS, Imm)) { |
4025 | // SETEQ/SETNE comparison with 16-bit immediate, fold it. |
4026 | if (isUInt<16>(Imm)) |
4027 | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, |
4028 | getI32Imm(Imm & 0xFFFF, dl)), |
4029 | 0); |
4030 | // If this is a 16-bit signed immediate, fold it. |
4031 | if (isInt<16>((int)Imm)) |
4032 | return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, |
4033 | getI32Imm(Imm & 0xFFFF, dl)), |
4034 | 0); |
4035 | |
4036 | // For non-equality comparisons, the default code would materialize the |
4037 | // constant, then compare against it, like this: |
4038 | // lis r2, 4660 |
4039 | // ori r2, r2, 22136 |
4040 | // cmpw cr0, r3, r2 |
4041 | // Since we are just comparing for equality, we can emit this instead: |
4042 | // xoris r0,r3,0x1234 |
4043 | // cmplwi cr0,r0,0x5678 |
4044 | // beq cr0,L6 |
4045 | SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, |
4046 | getI32Imm(Imm >> 16, dl)), 0); |
4047 | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, |
4048 | getI32Imm(Imm & 0xFFFF, dl)), 0); |
4049 | } |
4050 | Opc = PPC::CMPLW; |
4051 | } else if (ISD::isUnsignedIntSetCC(CC)) { |
4052 | if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) |
4053 | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, |
4054 | getI32Imm(Imm & 0xFFFF, dl)), 0); |
4055 | Opc = PPC::CMPLW; |
4056 | } else { |
4057 | int16_t SImm; |
4058 | if (isIntS16Immediate(RHS, SImm)) |
4059 | return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, |
4060 | getI32Imm((int)SImm & 0xFFFF, |
4061 | dl)), |
4062 | 0); |
4063 | Opc = PPC::CMPW; |
4064 | } |
4065 | } else if (LHS.getValueType() == MVT::i64) { |
4066 | uint64_t Imm; |
4067 | if (CC == ISD::SETEQ || CC == ISD::SETNE) { |
4068 | if (isInt64Immediate(RHS.getNode(), Imm)) { |
4069 | // SETEQ/SETNE comparison with 16-bit immediate, fold it. |
4070 | if (isUInt<16>(Imm)) |
4071 | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, |
4072 | getI32Imm(Imm & 0xFFFF, dl)), |
4073 | 0); |
4074 | // If this is a 16-bit signed immediate, fold it. |
4075 | if (isInt<16>(Imm)) |
4076 | return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, |
4077 | getI32Imm(Imm & 0xFFFF, dl)), |
4078 | 0); |
4079 | |
4080 | // For non-equality comparisons, the default code would materialize the |
4081 | // constant, then compare against it, like this: |
4082 | // lis r2, 4660 |
4083 | // ori r2, r2, 22136 |
4084 | // cmpd cr0, r3, r2 |
4085 | // Since we are just comparing for equality, we can emit this instead: |
4086 | // xoris r0,r3,0x1234 |
4087 | // cmpldi cr0,r0,0x5678 |
4088 | // beq cr0,L6 |
4089 | if (isUInt<32>(Imm)) { |
4090 | SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, |
4091 | getI64Imm(Imm >> 16, dl)), 0); |
4092 | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, |
4093 | getI64Imm(Imm & 0xFFFF, dl)), |
4094 | 0); |
4095 | } |
4096 | } |
4097 | Opc = PPC::CMPLD; |
4098 | } else if (ISD::isUnsignedIntSetCC(CC)) { |
4099 | if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) |
4100 | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, |
4101 | getI64Imm(Imm & 0xFFFF, dl)), 0); |
4102 | Opc = PPC::CMPLD; |
4103 | } else { |
4104 | int16_t SImm; |
4105 | if (isIntS16Immediate(RHS, SImm)) |
4106 | return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, |
4107 | getI64Imm(SImm & 0xFFFF, dl)), |
4108 | 0); |
4109 | Opc = PPC::CMPD; |
4110 | } |
4111 | } else if (LHS.getValueType() == MVT::f32) { |
4112 | if (Subtarget->hasSPE()) { |
4113 | switch (CC) { |
4114 | default: |
4115 | case ISD::SETEQ: |
4116 | case ISD::SETNE: |
4117 | Opc = PPC::EFSCMPEQ; |
4118 | break; |
4119 | case ISD::SETLT: |
4120 | case ISD::SETGE: |
4121 | case ISD::SETOLT: |
4122 | case ISD::SETOGE: |
4123 | case ISD::SETULT: |
4124 | case ISD::SETUGE: |
4125 | Opc = PPC::EFSCMPLT; |
4126 | break; |
4127 | case ISD::SETGT: |
4128 | case ISD::SETLE: |
4129 | case ISD::SETOGT: |
4130 | case ISD::SETOLE: |
4131 | case ISD::SETUGT: |
4132 | case ISD::SETULE: |
4133 | Opc = PPC::EFSCMPGT; |
4134 | break; |
4135 | } |
4136 | } else |
4137 | Opc = PPC::FCMPUS; |
4138 | } else if (LHS.getValueType() == MVT::f64) { |
4139 | if (Subtarget->hasSPE()) { |
4140 | switch (CC) { |
4141 | default: |
4142 | case ISD::SETEQ: |
4143 | case ISD::SETNE: |
4144 | Opc = PPC::EFDCMPEQ; |
4145 | break; |
4146 | case ISD::SETLT: |
4147 | case ISD::SETGE: |
4148 | case ISD::SETOLT: |
4149 | case ISD::SETOGE: |
4150 | case ISD::SETULT: |
4151 | case ISD::SETUGE: |
4152 | Opc = PPC::EFDCMPLT; |
4153 | break; |
4154 | case ISD::SETGT: |
4155 | case ISD::SETLE: |
4156 | case ISD::SETOGT: |
4157 | case ISD::SETOLE: |
4158 | case ISD::SETUGT: |
4159 | case ISD::SETULE: |
4160 | Opc = PPC::EFDCMPGT; |
4161 | break; |
4162 | } |
4163 | } else |
4164 | Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; |
4165 | } else { |
4166 | assert(LHS.getValueType() == MVT::f128 && "Unknown vt!")(static_cast <bool> (LHS.getValueType() == MVT::f128 && "Unknown vt!") ? void (0) : __assert_fail ("LHS.getValueType() == MVT::f128 && \"Unknown vt!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4166, __extension__ __PRETTY_FUNCTION__)); |
4167 | assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector")(static_cast <bool> (Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector") ? void (0) : __assert_fail ("Subtarget->hasP9Vector() && \"XSCMPUQP requires Power9 Vector\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4167, __extension__ __PRETTY_FUNCTION__)); |
4168 | Opc = PPC::XSCMPUQP; |
4169 | } |
4170 | if (Chain) |
4171 | return SDValue( |
4172 | CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain), |
4173 | 0); |
4174 | else |
4175 | return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); |
4176 | } |
4177 | |
4178 | static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT, |
4179 | const PPCSubtarget *Subtarget) { |
4180 | // For SPE instructions, the result is in GT bit of the CR |
4181 | bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint(); |
4182 | |
4183 | switch (CC) { |
4184 | case ISD::SETUEQ: |
4185 | case ISD::SETONE: |
4186 | case ISD::SETOLE: |
4187 | case ISD::SETOGE: |
4188 | llvm_unreachable("Should be lowered by legalize!")::llvm::llvm_unreachable_internal("Should be lowered by legalize!" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4188); |
4189 | default: llvm_unreachable("Unknown condition!")::llvm::llvm_unreachable_internal("Unknown condition!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 4189); |
4190 | case ISD::SETOEQ: |
4191 | case ISD::SETEQ: |
4192 | return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ; |
4193 | case ISD::SETUNE: |
4194 | case ISD::SETNE: |
4195 | return UseSPE ? PPC::PRED_LE : PPC::PRED_NE; |
4196 | case ISD::SETOLT: |
4197 | case ISD::SETLT: |
4198 | return UseSPE ? PPC::PRED_GT : PPC::PRED_LT; |
4199 | case ISD::SETULE: |
4200 | case ISD::SETLE: |
4201 | return PPC::PRED_LE; |
4202 | case ISD::SETOGT: |
4203 | case ISD::SETGT: |
4204 | return PPC::PRED_GT; |
4205 | case ISD::SETUGE: |
4206 | case ISD::SETGE: |
4207 | return UseSPE ? PPC::PRED_LE : PPC::PRED_GE; |
4208 | case ISD::SETO: return PPC::PRED_NU; |
4209 | case ISD::SETUO: return PPC::PRED_UN; |
4210 | // These two are invalid for floating point. Assume we have int. |
4211 | case ISD::SETULT: return PPC::PRED_LT; |
4212 | case ISD::SETUGT: return PPC::PRED_GT; |
4213 | } |
4214 | } |
4215 | |
4216 | /// getCRIdxForSetCC - Return the index of the condition register field |
4217 | /// associated with the SetCC condition, and whether or not the field is |
4218 | /// treated as inverted. That is, lt = 0; ge = 0 inverted. |
4219 | static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { |
4220 | Invert = false; |
4221 | switch (CC) { |
4222 | default: llvm_unreachable("Unknown condition!")::llvm::llvm_unreachable_internal("Unknown condition!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 4222); |
4223 | case ISD::SETOLT: |
4224 | case ISD::SETLT: return 0; // Bit #0 = SETOLT |
4225 | case ISD::SETOGT: |
4226 | case ISD::SETGT: return 1; // Bit #1 = SETOGT |
4227 | case ISD::SETOEQ: |
4228 | case ISD::SETEQ: return 2; // Bit #2 = SETOEQ |
4229 | case ISD::SETUO: return 3; // Bit #3 = SETUO |
4230 | case ISD::SETUGE: |
4231 | case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE |
4232 | case ISD::SETULE: |
4233 | case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE |
4234 | case ISD::SETUNE: |
4235 | case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE |
4236 | case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO |
4237 | case ISD::SETUEQ: |
4238 | case ISD::SETOGE: |
4239 | case ISD::SETOLE: |
4240 | case ISD::SETONE: |
4241 | llvm_unreachable("Invalid branch code: should be expanded by legalize")::llvm::llvm_unreachable_internal("Invalid branch code: should be expanded by legalize" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4241); |
4242 | // These are invalid for floating point. Assume integer. |
4243 | case ISD::SETULT: return 0; |
4244 | case ISD::SETUGT: return 1; |
4245 | } |
4246 | } |
4247 | |
4248 | // getVCmpInst: return the vector compare instruction for the specified |
4249 | // vector type and condition code. Since this is for altivec specific code, |
4250 | // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128, |
4251 | // and v4f32). |
4252 | static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, |
4253 | bool HasVSX, bool &Swap, bool &Negate) { |
4254 | Swap = false; |
4255 | Negate = false; |
4256 | |
4257 | if (VecVT.isFloatingPoint()) { |
4258 | /* Handle some cases by swapping input operands. */ |
4259 | switch (CC) { |
4260 | case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; |
4261 | case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; |
4262 | case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; |
4263 | case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; |
4264 | case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; |
4265 | case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; |
4266 | default: break; |
4267 | } |
4268 | /* Handle some cases by negating the result. */ |
4269 | switch (CC) { |
4270 | case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; |
4271 | case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; |
4272 | case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; |
4273 | case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; |
4274 | default: break; |
4275 | } |
4276 | /* We have instructions implementing the remaining cases. */ |
4277 | switch (CC) { |
4278 | case ISD::SETEQ: |
4279 | case ISD::SETOEQ: |
4280 | if (VecVT == MVT::v4f32) |
4281 | return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; |
4282 | else if (VecVT == MVT::v2f64) |
4283 | return PPC::XVCMPEQDP; |
4284 | break; |
4285 | case ISD::SETGT: |
4286 | case ISD::SETOGT: |
4287 | if (VecVT == MVT::v4f32) |
4288 | return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; |
4289 | else if (VecVT == MVT::v2f64) |
4290 | return PPC::XVCMPGTDP; |
4291 | break; |
4292 | case ISD::SETGE: |
4293 | case ISD::SETOGE: |
4294 | if (VecVT == MVT::v4f32) |
4295 | return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; |
4296 | else if (VecVT == MVT::v2f64) |
4297 | return PPC::XVCMPGEDP; |
4298 | break; |
4299 | default: |
4300 | break; |
4301 | } |
4302 | llvm_unreachable("Invalid floating-point vector compare condition")::llvm::llvm_unreachable_internal("Invalid floating-point vector compare condition" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4302); |
4303 | } else { |
4304 | /* Handle some cases by swapping input operands. */ |
4305 | switch (CC) { |
4306 | case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; |
4307 | case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; |
4308 | case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; |
4309 | case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; |
4310 | default: break; |
4311 | } |
4312 | /* Handle some cases by negating the result. */ |
4313 | switch (CC) { |
4314 | case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; |
4315 | case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; |
4316 | case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; |
4317 | case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; |
4318 | default: break; |
4319 | } |
4320 | /* We have instructions implementing the remaining cases. */ |
4321 | switch (CC) { |
4322 | case ISD::SETEQ: |
4323 | case ISD::SETUEQ: |
4324 | if (VecVT == MVT::v16i8) |
4325 | return PPC::VCMPEQUB; |
4326 | else if (VecVT == MVT::v8i16) |
4327 | return PPC::VCMPEQUH; |
4328 | else if (VecVT == MVT::v4i32) |
4329 | return PPC::VCMPEQUW; |
4330 | else if (VecVT == MVT::v2i64) |
4331 | return PPC::VCMPEQUD; |
4332 | else if (VecVT == MVT::v1i128) |
4333 | return PPC::VCMPEQUQ; |
4334 | break; |
4335 | case ISD::SETGT: |
4336 | if (VecVT == MVT::v16i8) |
4337 | return PPC::VCMPGTSB; |
4338 | else if (VecVT == MVT::v8i16) |
4339 | return PPC::VCMPGTSH; |
4340 | else if (VecVT == MVT::v4i32) |
4341 | return PPC::VCMPGTSW; |
4342 | else if (VecVT == MVT::v2i64) |
4343 | return PPC::VCMPGTSD; |
4344 | else if (VecVT == MVT::v1i128) |
4345 | return PPC::VCMPGTSQ; |
4346 | break; |
4347 | case ISD::SETUGT: |
4348 | if (VecVT == MVT::v16i8) |
4349 | return PPC::VCMPGTUB; |
4350 | else if (VecVT == MVT::v8i16) |
4351 | return PPC::VCMPGTUH; |
4352 | else if (VecVT == MVT::v4i32) |
4353 | return PPC::VCMPGTUW; |
4354 | else if (VecVT == MVT::v2i64) |
4355 | return PPC::VCMPGTUD; |
4356 | else if (VecVT == MVT::v1i128) |
4357 | return PPC::VCMPGTUQ; |
4358 | break; |
4359 | default: |
4360 | break; |
4361 | } |
4362 | llvm_unreachable("Invalid integer vector compare condition")::llvm::llvm_unreachable_internal("Invalid integer vector compare condition" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4362); |
4363 | } |
4364 | } |
4365 | |
4366 | bool PPCDAGToDAGISel::trySETCC(SDNode *N) { |
4367 | SDLoc dl(N); |
4368 | unsigned Imm; |
4369 | bool IsStrict = N->isStrictFPOpcode(); |
4370 | ISD::CondCode CC = |
4371 | cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get(); |
4372 | EVT PtrVT = |
4373 | CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); |
4374 | bool isPPC64 = (PtrVT == MVT::i64); |
4375 | SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); |
4376 | |
4377 | SDValue LHS = N->getOperand(IsStrict ? 1 : 0); |
4378 | SDValue RHS = N->getOperand(IsStrict ? 2 : 1); |
4379 | |
4380 | if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) { |
4381 | // We can codegen setcc op, imm very efficiently compared to a brcond. |
4382 | // Check for those cases here. |
4383 | // setcc op, 0 |
4384 | if (Imm == 0) { |
4385 | SDValue Op = LHS; |
4386 | switch (CC) { |
4387 | default: break; |
4388 | case ISD::SETEQ: { |
4389 | Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); |
4390 | SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), |
4391 | getI32Imm(31, dl) }; |
4392 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
4393 | return true; |
4394 | } |
4395 | case ISD::SETNE: { |
4396 | if (isPPC64) break; |
4397 | SDValue AD = |
4398 | SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
4399 | Op, getI32Imm(~0U, dl)), 0); |
4400 | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); |
4401 | return true; |
4402 | } |
4403 | case ISD::SETLT: { |
4404 | SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), |
4405 | getI32Imm(31, dl) }; |
4406 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
4407 | return true; |
4408 | } |
4409 | case ISD::SETGT: { |
4410 | SDValue T = |
4411 | SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); |
4412 | T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); |
4413 | SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), |
4414 | getI32Imm(31, dl) }; |
4415 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
4416 | return true; |
4417 | } |
4418 | } |
4419 | } else if (Imm == ~0U) { // setcc op, -1 |
4420 | SDValue Op = LHS; |
4421 | switch (CC) { |
4422 | default: break; |
4423 | case ISD::SETEQ: |
4424 | if (isPPC64) break; |
4425 | Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
4426 | Op, getI32Imm(1, dl)), 0); |
4427 | CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, |
4428 | SDValue(CurDAG->getMachineNode(PPC::LI, dl, |
4429 | MVT::i32, |
4430 | getI32Imm(0, dl)), |
4431 | 0), Op.getValue(1)); |
4432 | return true; |
4433 | case ISD::SETNE: { |
4434 | if (isPPC64) break; |
4435 | Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); |
4436 | SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
4437 | Op, getI32Imm(~0U, dl)); |
4438 | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, |
4439 | SDValue(AD, 1)); |
4440 | return true; |
4441 | } |
4442 | case ISD::SETLT: { |
4443 | SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, |
4444 | getI32Imm(1, dl)), 0); |
4445 | SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, |
4446 | Op), 0); |
4447 | SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), |
4448 | getI32Imm(31, dl) }; |
4449 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
4450 | return true; |
4451 | } |
4452 | case ISD::SETGT: { |
4453 | SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), |
4454 | getI32Imm(31, dl) }; |
4455 | Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
4456 | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); |
4457 | return true; |
4458 | } |
4459 | } |
4460 | } |
4461 | } |
4462 | |
4463 | // Altivec Vector compare instructions do not set any CR register by default and |
4464 | // vector compare operations return the same type as the operands. |
4465 | if (!IsStrict && LHS.getValueType().isVector()) { |
4466 | if (Subtarget->hasSPE()) |
4467 | return false; |
4468 | |
4469 | EVT VecVT = LHS.getValueType(); |
4470 | bool Swap, Negate; |
4471 | unsigned int VCmpInst = |
4472 | getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate); |
4473 | if (Swap) |
4474 | std::swap(LHS, RHS); |
4475 | |
4476 | EVT ResVT = VecVT.changeVectorElementTypeToInteger(); |
4477 | if (Negate) { |
4478 | SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); |
4479 | CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, |
4480 | ResVT, VCmp, VCmp); |
4481 | return true; |
4482 | } |
4483 | |
4484 | CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); |
4485 | return true; |
4486 | } |
4487 | |
4488 | if (Subtarget->useCRBits()) |
4489 | return false; |
4490 | |
4491 | bool Inv; |
4492 | unsigned Idx = getCRIdxForSetCC(CC, Inv); |
4493 | SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain); |
4494 | if (IsStrict) |
4495 | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1)); |
4496 | SDValue IntCR; |
4497 | |
4498 | // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that |
4499 | // The correct compare instruction is already set by SelectCC() |
4500 | if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { |
4501 | Idx = 1; |
4502 | } |
4503 | |
4504 | // Force the ccreg into CR7. |
4505 | SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); |
4506 | |
4507 | SDValue InFlag; // Null incoming flag value. |
4508 | CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, |
4509 | InFlag).getValue(1); |
4510 | |
4511 | IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, |
4512 | CCReg), 0); |
4513 | |
4514 | SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), |
4515 | getI32Imm(31, dl), getI32Imm(31, dl) }; |
4516 | if (!Inv) { |
4517 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
4518 | return true; |
4519 | } |
4520 | |
4521 | // Get the specified bit. |
4522 | SDValue Tmp = |
4523 | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
4524 | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); |
4525 | return true; |
4526 | } |
4527 | |
4528 | /// Does this node represent a load/store node whose address can be represented |
4529 | /// with a register plus an immediate that's a multiple of \p Val: |
4530 | bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { |
4531 | LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); |
4532 | StoreSDNode *STN = dyn_cast<StoreSDNode>(N); |
4533 | MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N); |
4534 | SDValue AddrOp; |
4535 | if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT)) |
4536 | AddrOp = N->getOperand(1); |
4537 | else if (STN) |
4538 | AddrOp = STN->getOperand(2); |
4539 | |
4540 | // If the address points a frame object or a frame object with an offset, |
4541 | // we need to check the object alignment. |
4542 | short Imm = 0; |
4543 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( |
4544 | AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : |
4545 | AddrOp)) { |
4546 | // If op0 is a frame index that is under aligned, we can't do it either, |
4547 | // because it is translated to r31 or r1 + slot + offset. We won't know the |
4548 | // slot number until the stack frame is finalized. |
4549 | const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); |
4550 | unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value(); |
4551 | if ((SlotAlign % Val) != 0) |
4552 | return false; |
4553 | |
4554 | // If we have an offset, we need further check on the offset. |
4555 | if (AddrOp.getOpcode() != ISD::ADD) |
4556 | return true; |
4557 | } |
4558 | |
4559 | if (AddrOp.getOpcode() == ISD::ADD) |
4560 | return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); |
4561 | |
4562 | // If the address comes from the outside, the offset will be zero. |
4563 | return AddrOp.getOpcode() == ISD::CopyFromReg; |
4564 | } |
4565 | |
4566 | void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { |
4567 | // Transfer memoperands. |
4568 | MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); |
4569 | CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); |
4570 | } |
4571 | |
4572 | static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, |
4573 | bool &NeedSwapOps, bool &IsUnCmp) { |
4574 | |
4575 | assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.")(static_cast <bool> (N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.") ? void (0) : __assert_fail ("N->getOpcode() == ISD::SELECT_CC && \"Expecting a SELECT_CC here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4575, __extension__ __PRETTY_FUNCTION__)); |
4576 | |
4577 | SDValue LHS = N->getOperand(0); |
4578 | SDValue RHS = N->getOperand(1); |
4579 | SDValue TrueRes = N->getOperand(2); |
4580 | SDValue FalseRes = N->getOperand(3); |
4581 | ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); |
4582 | if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 && |
4583 | N->getSimpleValueType(0) != MVT::i32)) |
4584 | return false; |
4585 | |
4586 | // We are looking for any of: |
4587 | // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) |
4588 | // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) |
4589 | // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) |
4590 | // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) |
4591 | int64_t TrueResVal = TrueConst->getSExtValue(); |
4592 | if ((TrueResVal < -1 || TrueResVal > 1) || |
4593 | (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || |
4594 | (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || |
4595 | (TrueResVal == 0 && |
4596 | (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) |
4597 | return false; |
4598 | |
4599 | SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC |
4600 | ? FalseRes |
4601 | : FalseRes.getOperand(0); |
4602 | bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC; |
4603 | if (SetOrSelCC.getOpcode() != ISD::SETCC && |
4604 | SetOrSelCC.getOpcode() != ISD::SELECT_CC) |
4605 | return false; |
4606 | |
4607 | // Without this setb optimization, the outer SELECT_CC will be manually |
4608 | // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass |
4609 | // transforms pseudo instruction to isel instruction. When there are more than |
4610 | // one use for result like zext/sext, with current optimization we only see |
4611 | // isel is replaced by setb but can't see any significant gain. Since |
4612 | // setb has longer latency than original isel, we should avoid this. Another |
4613 | // point is that setb requires comparison always kept, it can break the |
4614 | // opportunity to get the comparison away if we have in future. |
4615 | if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) |
4616 | return false; |
4617 | |
4618 | SDValue InnerLHS = SetOrSelCC.getOperand(0); |
4619 | SDValue InnerRHS = SetOrSelCC.getOperand(1); |
4620 | ISD::CondCode InnerCC = |
4621 | cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); |
4622 | // If the inner comparison is a select_cc, make sure the true/false values are |
4623 | // 1/-1 and canonicalize it if needed. |
4624 | if (InnerIsSel) { |
4625 | ConstantSDNode *SelCCTrueConst = |
4626 | dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); |
4627 | ConstantSDNode *SelCCFalseConst = |
4628 | dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); |
4629 | if (!SelCCTrueConst || !SelCCFalseConst) |
4630 | return false; |
4631 | int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); |
4632 | int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); |
4633 | // The values must be -1/1 (requiring a swap) or 1/-1. |
4634 | if (SelCCTVal == -1 && SelCCFVal == 1) { |
4635 | std::swap(InnerLHS, InnerRHS); |
4636 | } else if (SelCCTVal != 1 || SelCCFVal != -1) |
4637 | return false; |
4638 | } |
4639 | |
4640 | // Canonicalize unsigned case |
4641 | if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { |
4642 | IsUnCmp = true; |
4643 | InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; |
4644 | } |
4645 | |
4646 | bool InnerSwapped = false; |
4647 | if (LHS == InnerRHS && RHS == InnerLHS) |
4648 | InnerSwapped = true; |
4649 | else if (LHS != InnerLHS || RHS != InnerRHS) |
4650 | return false; |
4651 | |
4652 | switch (CC) { |
4653 | // (select_cc lhs, rhs, 0, \ |
4654 | // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) |
4655 | case ISD::SETEQ: |
4656 | if (!InnerIsSel) |
4657 | return false; |
4658 | if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) |
4659 | return false; |
4660 | NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; |
4661 | break; |
4662 | |
4663 | // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) |
4664 | // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) |
4665 | // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) |
4666 | // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) |
4667 | // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) |
4668 | // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) |
4669 | case ISD::SETULT: |
4670 | if (!IsUnCmp && InnerCC != ISD::SETNE) |
4671 | return false; |
4672 | IsUnCmp = true; |
4673 | [[fallthrough]]; |
4674 | case ISD::SETLT: |
4675 | if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || |
4676 | (InnerCC == ISD::SETLT && InnerSwapped)) |
4677 | NeedSwapOps = (TrueResVal == 1); |
4678 | else |
4679 | return false; |
4680 | break; |
4681 | |
4682 | // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) |
4683 | // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) |
4684 | // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) |
4685 | // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) |
4686 | // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) |
4687 | // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) |
4688 | case ISD::SETUGT: |
4689 | if (!IsUnCmp && InnerCC != ISD::SETNE) |
4690 | return false; |
4691 | IsUnCmp = true; |
4692 | [[fallthrough]]; |
4693 | case ISD::SETGT: |
4694 | if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || |
4695 | (InnerCC == ISD::SETGT && InnerSwapped)) |
4696 | NeedSwapOps = (TrueResVal == -1); |
4697 | else |
4698 | return false; |
4699 | break; |
4700 | |
4701 | default: |
4702 | return false; |
4703 | } |
4704 | |
4705 | LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Found a node that can be lowered to a SETB: " ; } } while (false); |
4706 | LLVM_DEBUG(N->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { N->dump(); } } while (false); |
4707 | |
4708 | return true; |
4709 | } |
4710 | |
4711 | // Return true if it's a software square-root/divide operand. |
4712 | static bool isSWTestOp(SDValue N) { |
4713 | if (N.getOpcode() == PPCISD::FTSQRT) |
4714 | return true; |
4715 | if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) || |
4716 | N.getOpcode() != ISD::INTRINSIC_WO_CHAIN) |
4717 | return false; |
4718 | switch (N.getConstantOperandVal(0)) { |
4719 | case Intrinsic::ppc_vsx_xvtdivdp: |
4720 | case Intrinsic::ppc_vsx_xvtdivsp: |
4721 | case Intrinsic::ppc_vsx_xvtsqrtdp: |
4722 | case Intrinsic::ppc_vsx_xvtsqrtsp: |
4723 | return true; |
4724 | } |
4725 | return false; |
4726 | } |
4727 | |
4728 | bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) { |
4729 | assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.")(static_cast <bool> (N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.") ? void (0) : __assert_fail ("N->getOpcode() == ISD::BR_CC && \"ISD::BR_CC is expected.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4729, __extension__ __PRETTY_FUNCTION__)); |
4730 | // We are looking for following patterns, where `truncate to i1` actually has |
4731 | // the same semantic with `and 1`. |
4732 | // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp) |
4733 | // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp) |
4734 | // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp) |
4735 | // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp) |
4736 | // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp) |
4737 | // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp) |
4738 | // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp) |
4739 | // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp) |
4740 | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
4741 | if (CC != ISD::SETEQ && CC != ISD::SETNE) |
4742 | return false; |
4743 | |
4744 | SDValue CmpRHS = N->getOperand(3); |
4745 | if (!isa<ConstantSDNode>(CmpRHS) || |
4746 | cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0) |
4747 | return false; |
4748 | |
4749 | SDValue CmpLHS = N->getOperand(2); |
4750 | if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0))) |
4751 | return false; |
4752 | |
4753 | unsigned PCC = 0; |
4754 | bool IsCCNE = CC == ISD::SETNE; |
4755 | if (CmpLHS.getOpcode() == ISD::AND && |
4756 | isa<ConstantSDNode>(CmpLHS.getOperand(1))) |
4757 | switch (CmpLHS.getConstantOperandVal(1)) { |
4758 | case 1: |
4759 | PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; |
4760 | break; |
4761 | case 2: |
4762 | PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE; |
4763 | break; |
4764 | case 4: |
4765 | PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE; |
4766 | break; |
4767 | case 8: |
4768 | PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE; |
4769 | break; |
4770 | default: |
4771 | return false; |
4772 | } |
4773 | else if (CmpLHS.getOpcode() == ISD::TRUNCATE && |
4774 | CmpLHS.getValueType() == MVT::i1) |
4775 | PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; |
4776 | |
4777 | if (PCC) { |
4778 | SDLoc dl(N); |
4779 | SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4), |
4780 | N->getOperand(0)}; |
4781 | CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); |
4782 | return true; |
4783 | } |
4784 | return false; |
4785 | } |
4786 | |
4787 | bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) { |
4788 | // Sometimes the promoted value of the intrinsic is ANDed by some non-zero |
4789 | // value, for example when crbits is disabled. If so, select the |
4790 | // loop_decrement intrinsics now. |
4791 | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
4792 | SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); |
4793 | |
4794 | if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) || |
4795 | isNullConstant(LHS.getOperand(1))) |
4796 | return false; |
4797 | |
4798 | if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN || |
4799 | cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() != |
4800 | Intrinsic::loop_decrement) |
4801 | return false; |
4802 | |
4803 | if (!isa<ConstantSDNode>(RHS)) |
4804 | return false; |
4805 | |
4806 | assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&(static_cast <bool> ((CC == ISD::SETEQ || CC == ISD::SETNE ) && "Counter decrement comparison is not EQ or NE") ? void (0) : __assert_fail ("(CC == ISD::SETEQ || CC == ISD::SETNE) && \"Counter decrement comparison is not EQ or NE\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4807, __extension__ __PRETTY_FUNCTION__)) |
4807 | "Counter decrement comparison is not EQ or NE")(static_cast <bool> ((CC == ISD::SETEQ || CC == ISD::SETNE ) && "Counter decrement comparison is not EQ or NE") ? void (0) : __assert_fail ("(CC == ISD::SETEQ || CC == ISD::SETNE) && \"Counter decrement comparison is not EQ or NE\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4807, __extension__ __PRETTY_FUNCTION__)); |
4808 | |
4809 | SDValue OldDecrement = LHS.getOperand(0); |
4810 | assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!")(static_cast <bool> (OldDecrement.hasOneUse() && "loop decrement has more than one use!") ? void (0) : __assert_fail ("OldDecrement.hasOneUse() && \"loop decrement has more than one use!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4810, __extension__ __PRETTY_FUNCTION__)); |
4811 | |
4812 | SDLoc DecrementLoc(OldDecrement); |
4813 | SDValue ChainInput = OldDecrement.getOperand(0); |
4814 | SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc) |
4815 | : getI32Imm(1, DecrementLoc)}; |
4816 | unsigned DecrementOpcode = |
4817 | Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop; |
4818 | SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc, |
4819 | MVT::i1, DecrementOps); |
4820 | |
4821 | unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); |
4822 | bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val); |
4823 | unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn; |
4824 | |
4825 | ReplaceUses(LHS.getValue(0), LHS.getOperand(1)); |
4826 | CurDAG->RemoveDeadNode(LHS.getNode()); |
4827 | |
4828 | // Mark the old loop_decrement intrinsic as dead. |
4829 | ReplaceUses(OldDecrement.getValue(1), ChainInput); |
4830 | CurDAG->RemoveDeadNode(OldDecrement.getNode()); |
4831 | |
4832 | SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, |
4833 | ChainInput, N->getOperand(0)); |
4834 | |
4835 | CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0), |
4836 | N->getOperand(4), Chain); |
4837 | return true; |
4838 | } |
4839 | |
4840 | bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) { |
4841 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4841, __extension__ __PRETTY_FUNCTION__)); |
4842 | unsigned Imm; |
4843 | if (!isInt32Immediate(N->getOperand(1), Imm)) |
4844 | return false; |
4845 | |
4846 | SDLoc dl(N); |
4847 | SDValue Val = N->getOperand(0); |
4848 | unsigned SH, MB, ME; |
4849 | // If this is an and of a value rotated between 0 and 31 bits and then and'd |
4850 | // with a mask, emit rlwinm |
4851 | if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) { |
4852 | Val = Val.getOperand(0); |
4853 | SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl), |
4854 | getI32Imm(ME, dl)}; |
4855 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
4856 | return true; |
4857 | } |
4858 | |
4859 | // If this is just a masked value where the input is not handled, and |
4860 | // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm |
4861 | if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) { |
4862 | SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl), |
4863 | getI32Imm(ME, dl)}; |
4864 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
4865 | return true; |
4866 | } |
4867 | |
4868 | // AND X, 0 -> 0, not "rlwinm 32". |
4869 | if (Imm == 0) { |
4870 | ReplaceUses(SDValue(N, 0), N->getOperand(1)); |
4871 | return true; |
4872 | } |
4873 | |
4874 | return false; |
4875 | } |
4876 | |
4877 | bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) { |
4878 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4878, __extension__ __PRETTY_FUNCTION__)); |
4879 | uint64_t Imm64; |
4880 | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) |
4881 | return false; |
4882 | |
4883 | unsigned MB, ME; |
4884 | if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) { |
4885 | // MB ME |
4886 | // +----------------------+ |
4887 | // |xxxxxxxxxxx00011111000| |
4888 | // +----------------------+ |
4889 | // 0 32 64 |
4890 | // We can only do it if the MB is larger than 32 and MB <= ME |
4891 | // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even |
4892 | // we didn't rotate it. |
4893 | SDLoc dl(N); |
4894 | SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl), |
4895 | getI64Imm(ME - 32, dl)}; |
4896 | CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops); |
4897 | return true; |
4898 | } |
4899 | |
4900 | return false; |
4901 | } |
4902 | |
4903 | bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) { |
4904 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4904, __extension__ __PRETTY_FUNCTION__)); |
4905 | uint64_t Imm64; |
4906 | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) |
4907 | return false; |
4908 | |
4909 | // Do nothing if it is 16-bit imm as the pattern in the .td file handle |
4910 | // it well with "andi.". |
4911 | if (isUInt<16>(Imm64)) |
4912 | return false; |
4913 | |
4914 | SDLoc Loc(N); |
4915 | SDValue Val = N->getOperand(0); |
4916 | |
4917 | // Optimized with two rldicl's as follows: |
4918 | // Add missing bits on left to the mask and check that the mask is a |
4919 | // wrapped run of ones, i.e. |
4920 | // Change pattern |0001111100000011111111| |
4921 | // to |1111111100000011111111|. |
4922 | unsigned NumOfLeadingZeros = llvm::countl_zero(Imm64); |
4923 | if (NumOfLeadingZeros != 0) |
4924 | Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros); |
4925 | |
4926 | unsigned MB, ME; |
4927 | if (!isRunOfOnes64(Imm64, MB, ME)) |
4928 | return false; |
4929 | |
4930 | // ME MB MB-ME+63 |
4931 | // +----------------------+ +----------------------+ |
4932 | // |1111111100000011111111| -> |0000001111111111111111| |
4933 | // +----------------------+ +----------------------+ |
4934 | // 0 63 0 63 |
4935 | // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between. |
4936 | unsigned OnesOnLeft = ME + 1; |
4937 | unsigned ZerosInBetween = (MB - ME + 63) & 63; |
4938 | // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear |
4939 | // on the left the bits that are already zeros in the mask. |
4940 | Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val, |
4941 | getI64Imm(OnesOnLeft, Loc), |
4942 | getI64Imm(ZerosInBetween, Loc)), |
4943 | 0); |
4944 | // MB-ME+63 ME MB |
4945 | // +----------------------+ +----------------------+ |
4946 | // |0000001111111111111111| -> |0001111100000011111111| |
4947 | // +----------------------+ +----------------------+ |
4948 | // 0 63 0 63 |
4949 | // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the |
4950 | // left the number of ones we previously added. |
4951 | SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc), |
4952 | getI64Imm(NumOfLeadingZeros, Loc)}; |
4953 | CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); |
4954 | return true; |
4955 | } |
4956 | |
4957 | bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) { |
4958 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4958, __extension__ __PRETTY_FUNCTION__)); |
4959 | unsigned Imm; |
4960 | if (!isInt32Immediate(N->getOperand(1), Imm)) |
4961 | return false; |
4962 | |
4963 | SDValue Val = N->getOperand(0); |
4964 | unsigned Imm2; |
4965 | // ISD::OR doesn't get all the bitfield insertion fun. |
4966 | // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a |
4967 | // bitfield insert. |
4968 | if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2)) |
4969 | return false; |
4970 | |
4971 | // The idea here is to check whether this is equivalent to: |
4972 | // (c1 & m) | (x & ~m) |
4973 | // where m is a run-of-ones mask. The logic here is that, for each bit in |
4974 | // c1 and c2: |
4975 | // - if both are 1, then the output will be 1. |
4976 | // - if both are 0, then the output will be 0. |
4977 | // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will |
4978 | // come from x. |
4979 | // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will |
4980 | // be 0. |
4981 | // If that last condition is never the case, then we can form m from the |
4982 | // bits that are the same between c1 and c2. |
4983 | unsigned MB, ME; |
4984 | if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) { |
4985 | SDLoc dl(N); |
4986 | SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl), |
4987 | getI32Imm(MB, dl), getI32Imm(ME, dl)}; |
4988 | ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); |
4989 | return true; |
4990 | } |
4991 | |
4992 | return false; |
4993 | } |
4994 | |
4995 | bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) { |
4996 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4996, __extension__ __PRETTY_FUNCTION__)); |
4997 | uint64_t Imm64; |
4998 | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64)) |
4999 | return false; |
5000 | |
5001 | // If this is a 64-bit zero-extension mask, emit rldicl. |
5002 | unsigned MB = 64 - llvm::countr_one(Imm64); |
5003 | unsigned SH = 0; |
5004 | unsigned Imm; |
5005 | SDValue Val = N->getOperand(0); |
5006 | SDLoc dl(N); |
5007 | |
5008 | if (Val.getOpcode() == ISD::ANY_EXTEND) { |
5009 | auto Op0 = Val.getOperand(0); |
5010 | if (Op0.getOpcode() == ISD::SRL && |
5011 | isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { |
5012 | |
5013 | auto ResultType = Val.getNode()->getValueType(0); |
5014 | auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType); |
5015 | SDValue IDVal(ImDef, 0); |
5016 | |
5017 | Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType, |
5018 | IDVal, Op0.getOperand(0), |
5019 | getI32Imm(1, dl)), |
5020 | 0); |
5021 | SH = 64 - Imm; |
5022 | } |
5023 | } |
5024 | |
5025 | // If the operand is a logical right shift, we can fold it into this |
5026 | // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) |
5027 | // for n <= mb. The right shift is really a left rotate followed by a |
5028 | // mask, and this mask is a more-restrictive sub-mask of the mask implied |
5029 | // by the shift. |
5030 | if (Val.getOpcode() == ISD::SRL && |
5031 | isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { |
5032 | assert(Imm < 64 && "Illegal shift amount")(static_cast <bool> (Imm < 64 && "Illegal shift amount" ) ? void (0) : __assert_fail ("Imm < 64 && \"Illegal shift amount\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5032, __extension__ __PRETTY_FUNCTION__)); |
5033 | Val = Val.getOperand(0); |
5034 | SH = 64 - Imm; |
5035 | } |
5036 | |
5037 | SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)}; |
5038 | CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); |
5039 | return true; |
5040 | } |
5041 | |
5042 | bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) { |
5043 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5043, __extension__ __PRETTY_FUNCTION__)); |
5044 | uint64_t Imm64; |
5045 | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || |
5046 | !isMask_64(~Imm64)) |
5047 | return false; |
5048 | |
5049 | // If this is a negated 64-bit zero-extension mask, |
5050 | // i.e. the immediate is a sequence of ones from most significant side |
5051 | // and all zero for reminder, we should use rldicr. |
5052 | unsigned MB = 63 - llvm::countr_one(~Imm64); |
5053 | unsigned SH = 0; |
5054 | SDLoc dl(N); |
5055 | SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)}; |
5056 | CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); |
5057 | return true; |
5058 | } |
5059 | |
5060 | bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) { |
5061 | assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::OR && "ISD::OR SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::OR && \"ISD::OR SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5061, __extension__ __PRETTY_FUNCTION__)); |
5062 | uint64_t Imm64; |
5063 | unsigned MB, ME; |
5064 | SDValue N0 = N->getOperand(0); |
5065 | |
5066 | // We won't get fewer instructions if the imm is 32-bit integer. |
5067 | // rldimi requires the imm to have consecutive ones with both sides zero. |
5068 | // Also, make sure the first Op has only one use, otherwise this may increase |
5069 | // register pressure since rldimi is destructive. |
5070 | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || |
5071 | isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse()) |
5072 | return false; |
5073 | |
5074 | unsigned SH = 63 - ME; |
5075 | SDLoc Dl(N); |
5076 | // Use select64Imm for making LI instr instead of directly putting Imm64 |
5077 | SDValue Ops[] = { |
5078 | N->getOperand(0), |
5079 | SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0), |
5080 | getI32Imm(SH, Dl), getI32Imm(MB, Dl)}; |
5081 | CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops); |
5082 | return true; |
5083 | } |
5084 | |
5085 | // Select - Convert the specified operand from a target-independent to a |
5086 | // target-specific node if it hasn't already been changed. |
5087 | void PPCDAGToDAGISel::Select(SDNode *N) { |
5088 | SDLoc dl(N); |
5089 | if (N->isMachineOpcode()) { |
5090 | N->setNodeId(-1); |
5091 | return; // Already selected. |
5092 | } |
5093 | |
5094 | // In case any misguided DAG-level optimizations form an ADD with a |
5095 | // TargetConstant operand, crash here instead of miscompiling (by selecting |
5096 | // an r+r add instead of some kind of r+i add). |
5097 | if (N->getOpcode() == ISD::ADD && |
5098 | N->getOperand(1).getOpcode() == ISD::TargetConstant) |
5099 | llvm_unreachable("Invalid ADD with TargetConstant operand")::llvm::llvm_unreachable_internal("Invalid ADD with TargetConstant operand" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5099); |
5100 | |
5101 | // Try matching complex bit permutations before doing anything else. |
5102 | if (tryBitPermutation(N)) |
5103 | return; |
5104 | |
5105 | // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). |
5106 | if (tryIntCompareInGPR(N)) |
5107 | return; |
5108 | |
5109 | switch (N->getOpcode()) { |
5110 | default: break; |
5111 | |
5112 | case ISD::Constant: |
5113 | if (N->getValueType(0) == MVT::i64) { |
5114 | ReplaceNode(N, selectI64Imm(CurDAG, N)); |
5115 | return; |
5116 | } |
5117 | break; |
5118 | |
5119 | case ISD::INTRINSIC_VOID: { |
5120 | auto IntrinsicID = N->getConstantOperandVal(1); |
5121 | if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw && |
5122 | IntrinsicID != Intrinsic::ppc_trapd && |
5123 | IntrinsicID != Intrinsic::ppc_trap) |
5124 | break; |
5125 | unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw || |
5126 | IntrinsicID == Intrinsic::ppc_trapd) |
5127 | ? PPC::TDI |
5128 | : PPC::TWI; |
5129 | SmallVector<SDValue, 4> OpsWithMD; |
5130 | unsigned MDIndex; |
5131 | if (IntrinsicID == Intrinsic::ppc_tdw || |
5132 | IntrinsicID == Intrinsic::ppc_tw) { |
5133 | SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)}; |
5134 | int16_t SImmOperand2; |
5135 | int16_t SImmOperand3; |
5136 | int16_t SImmOperand4; |
5137 | bool isOperand2IntS16Immediate = |
5138 | isIntS16Immediate(N->getOperand(2), SImmOperand2); |
5139 | bool isOperand3IntS16Immediate = |
5140 | isIntS16Immediate(N->getOperand(3), SImmOperand3); |
5141 | // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg + |
5142 | // reg or imm + imm. The imm + imm form will be optimized to either an |
5143 | // unconditional trap or a nop in a later pass. |
5144 | if (isOperand2IntS16Immediate == isOperand3IntS16Immediate) |
5145 | Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW; |
5146 | else if (isOperand3IntS16Immediate) |
5147 | // The 2nd and 3rd operands are reg + imm. |
5148 | Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl); |
5149 | else { |
5150 | // The 2nd and 3rd operands are imm + reg. |
5151 | bool isOperand4IntS16Immediate = |
5152 | isIntS16Immediate(N->getOperand(4), SImmOperand4); |
5153 | (void)isOperand4IntS16Immediate; |
5154 | assert(isOperand4IntS16Immediate &&(static_cast <bool> (isOperand4IntS16Immediate && "The 4th operand is not an Immediate") ? void (0) : __assert_fail ("isOperand4IntS16Immediate && \"The 4th operand is not an Immediate\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5155, __extension__ __PRETTY_FUNCTION__)) |
5155 | "The 4th operand is not an Immediate")(static_cast <bool> (isOperand4IntS16Immediate && "The 4th operand is not an Immediate") ? void (0) : __assert_fail ("isOperand4IntS16Immediate && \"The 4th operand is not an Immediate\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5155, __extension__ __PRETTY_FUNCTION__)); |
5156 | // We need to flip the condition immediate TO. |
5157 | int16_t TO = int(SImmOperand4) & 0x1F; |
5158 | // We swap the first and second bit of TO if they are not same. |
5159 | if ((TO & 0x1) != ((TO & 0x2) >> 1)) |
5160 | TO = (TO & 0x1) ? TO + 1 : TO - 1; |
5161 | // We swap the fourth and fifth bit of TO if they are not same. |
5162 | if ((TO & 0x8) != ((TO & 0x10) >> 1)) |
5163 | TO = (TO & 0x8) ? TO + 8 : TO - 8; |
5164 | Ops[0] = getI32Imm(TO, dl); |
5165 | Ops[1] = N->getOperand(3); |
5166 | Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl); |
5167 | } |
5168 | OpsWithMD = {Ops[0], Ops[1], Ops[2]}; |
5169 | MDIndex = 5; |
5170 | } else { |
5171 | OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)}; |
5172 | MDIndex = 3; |
5173 | } |
5174 | |
5175 | if (N->getNumOperands() > MDIndex) { |
5176 | SDValue MDV = N->getOperand(MDIndex); |
5177 | const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); |
5178 | assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!")(static_cast <bool> (MD->getNumOperands() != 0 && "Empty MDNode in operands!") ? void (0) : __assert_fail ("MD->getNumOperands() != 0 && \"Empty MDNode in operands!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5178, __extension__ __PRETTY_FUNCTION__)); |
5179 | assert((isa<MDString>(MD->getOperand(0)) && cast<MDString>((static_cast <bool> ((isa<MDString>(MD->getOperand (0)) && cast<MDString>( MD->getOperand(0))-> getString().equals("ppc-trap-reason")) && "Unsupported annotation data type!" ) ? void (0) : __assert_fail ("(isa<MDString>(MD->getOperand(0)) && cast<MDString>( MD->getOperand(0))->getString().equals(\"ppc-trap-reason\")) && \"Unsupported annotation data type!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5181, __extension__ __PRETTY_FUNCTION__)) |
5180 | MD->getOperand(0))->getString().equals("ppc-trap-reason"))(static_cast <bool> ((isa<MDString>(MD->getOperand (0)) && cast<MDString>( MD->getOperand(0))-> getString().equals("ppc-trap-reason")) && "Unsupported annotation data type!" ) ? void (0) : __assert_fail ("(isa<MDString>(MD->getOperand(0)) && cast<MDString>( MD->getOperand(0))->getString().equals(\"ppc-trap-reason\")) && \"Unsupported annotation data type!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5181, __extension__ __PRETTY_FUNCTION__)) |
5181 | && "Unsupported annotation data type!")(static_cast <bool> ((isa<MDString>(MD->getOperand (0)) && cast<MDString>( MD->getOperand(0))-> getString().equals("ppc-trap-reason")) && "Unsupported annotation data type!" ) ? void (0) : __assert_fail ("(isa<MDString>(MD->getOperand(0)) && cast<MDString>( MD->getOperand(0))->getString().equals(\"ppc-trap-reason\")) && \"Unsupported annotation data type!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5181, __extension__ __PRETTY_FUNCTION__)); |
5182 | for (unsigned i = 1; i < MD->getNumOperands(); i++) { |
5183 | assert(isa<MDString>(MD->getOperand(i)) &&(static_cast <bool> (isa<MDString>(MD->getOperand (i)) && "Invalid data type for annotation ppc-trap-reason!" ) ? void (0) : __assert_fail ("isa<MDString>(MD->getOperand(i)) && \"Invalid data type for annotation ppc-trap-reason!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5184, __extension__ __PRETTY_FUNCTION__)) |
5184 | "Invalid data type for annotation ppc-trap-reason!")(static_cast <bool> (isa<MDString>(MD->getOperand (i)) && "Invalid data type for annotation ppc-trap-reason!" ) ? void (0) : __assert_fail ("isa<MDString>(MD->getOperand(i)) && \"Invalid data type for annotation ppc-trap-reason!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5184, __extension__ __PRETTY_FUNCTION__)); |
5185 | OpsWithMD.push_back( |
5186 | getI32Imm(std::stoi(cast<MDString>( |
5187 | MD->getOperand(i))->getString().str()), dl)); |
5188 | } |
5189 | } |
5190 | OpsWithMD.push_back(N->getOperand(0)); // chain |
5191 | CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD); |
5192 | return; |
5193 | } |
5194 | |
5195 | case ISD::INTRINSIC_WO_CHAIN: { |
5196 | // We emit the PPC::FSELS instruction here because of type conflicts with |
5197 | // the comparison operand. The FSELS instruction is defined to use an 8-byte |
5198 | // comparison like the FSELD version. The fsels intrinsic takes a 4-byte |
5199 | // value for the comparison. When selecting through a .td file, a type |
5200 | // error is raised. Must check this first so we never break on the |
5201 | // !Subtarget->isISA3_1() check. |
5202 | auto IntID = N->getConstantOperandVal(0); |
5203 | if (IntID == Intrinsic::ppc_fsels) { |
5204 | SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)}; |
5205 | CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops); |
5206 | return; |
5207 | } |
5208 | |
5209 | if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) { |
5210 | auto Pred = N->getConstantOperandVal(1); |
5211 | unsigned Opcode = |
5212 | IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec; |
5213 | unsigned SubReg = 0; |
5214 | unsigned ShiftVal = 0; |
5215 | bool Reverse = false; |
5216 | switch (Pred) { |
5217 | case 0: |
5218 | SubReg = PPC::sub_eq; |
5219 | ShiftVal = 1; |
5220 | break; |
5221 | case 1: |
5222 | SubReg = PPC::sub_eq; |
5223 | ShiftVal = 1; |
5224 | Reverse = true; |
5225 | break; |
5226 | case 2: |
5227 | SubReg = PPC::sub_lt; |
5228 | ShiftVal = 3; |
5229 | break; |
5230 | case 3: |
5231 | SubReg = PPC::sub_lt; |
5232 | ShiftVal = 3; |
5233 | Reverse = true; |
5234 | break; |
5235 | case 4: |
5236 | SubReg = PPC::sub_gt; |
5237 | ShiftVal = 2; |
5238 | break; |
5239 | case 5: |
5240 | SubReg = PPC::sub_gt; |
5241 | ShiftVal = 2; |
5242 | Reverse = true; |
5243 | break; |
5244 | case 6: |
5245 | SubReg = PPC::sub_un; |
5246 | break; |
5247 | case 7: |
5248 | SubReg = PPC::sub_un; |
5249 | Reverse = true; |
5250 | break; |
5251 | } |
5252 | |
5253 | EVT VTs[] = {MVT::v16i8, MVT::Glue}; |
5254 | SDValue Ops[] = {N->getOperand(2), N->getOperand(3), |
5255 | CurDAG->getTargetConstant(0, dl, MVT::i32)}; |
5256 | SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0); |
5257 | SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); |
5258 | // On Power10, we can use SETBC[R]. On prior architectures, we have to use |
5259 | // MFOCRF and shift/negate the value. |
5260 | if (Subtarget->isISA3_1()) { |
5261 | SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32); |
5262 | SDValue CRBit = SDValue( |
5263 | CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, |
5264 | CR6Reg, SubRegIdx, BCDOp.getValue(1)), |
5265 | 0); |
5266 | CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32, |
5267 | CRBit); |
5268 | } else { |
5269 | SDValue Move = |
5270 | SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg, |
5271 | BCDOp.getValue(1)), |
5272 | 0); |
5273 | SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl), |
5274 | getI32Imm(31, dl), getI32Imm(31, dl)}; |
5275 | if (!Reverse) |
5276 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
5277 | else { |
5278 | SDValue Shift = SDValue( |
5279 | CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
5280 | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl)); |
5281 | } |
5282 | } |
5283 | return; |
5284 | } |
5285 | |
5286 | if (!Subtarget->isISA3_1()) |
5287 | break; |
5288 | unsigned Opcode = 0; |
5289 | switch (IntID) { |
5290 | default: |
5291 | break; |
5292 | case Intrinsic::ppc_altivec_vstribr_p: |
5293 | Opcode = PPC::VSTRIBR_rec; |
5294 | break; |
5295 | case Intrinsic::ppc_altivec_vstribl_p: |
5296 | Opcode = PPC::VSTRIBL_rec; |
5297 | break; |
5298 | case Intrinsic::ppc_altivec_vstrihr_p: |
5299 | Opcode = PPC::VSTRIHR_rec; |
5300 | break; |
5301 | case Intrinsic::ppc_altivec_vstrihl_p: |
5302 | Opcode = PPC::VSTRIHL_rec; |
5303 | break; |
5304 | } |
5305 | if (!Opcode) |
5306 | break; |
5307 | |
5308 | // Generate the appropriate vector string isolate intrinsic to match. |
5309 | EVT VTs[] = {MVT::v16i8, MVT::Glue}; |
5310 | SDValue VecStrOp = |
5311 | SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0); |
5312 | // Vector string isolate instructions update the EQ bit of CR6. |
5313 | // Generate a SETBC instruction to extract the bit and place it in a GPR. |
5314 | SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32); |
5315 | SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); |
5316 | SDValue CRBit = SDValue( |
5317 | CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, |
5318 | CR6Reg, SubRegIdx, VecStrOp.getValue(1)), |
5319 | 0); |
5320 | CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit); |
5321 | return; |
5322 | } |
5323 | |
5324 | case ISD::SETCC: |
5325 | case ISD::STRICT_FSETCC: |
5326 | case ISD::STRICT_FSETCCS: |
5327 | if (trySETCC(N)) |
5328 | return; |
5329 | break; |
5330 | // These nodes will be transformed into GETtlsADDR32 node, which |
5331 | // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT |
5332 | case PPCISD::ADDI_TLSLD_L_ADDR: |
5333 | case PPCISD::ADDI_TLSGD_L_ADDR: { |
5334 | const Module *Mod = MF->getFunction().getParent(); |
5335 | if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || |
5336 | !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() || |
5337 | Mod->getPICLevel() == PICLevel::SmallPIC) |
5338 | break; |
5339 | // Attach global base pointer on GETtlsADDR32 node in order to |
5340 | // generate secure plt code for TLS symbols. |
5341 | getGlobalBaseReg(); |
5342 | } break; |
5343 | case PPCISD::CALL: { |
5344 | if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || |
5345 | !TM.isPositionIndependent() || !Subtarget->isSecurePlt() || |
5346 | !Subtarget->isTargetELF()) |
5347 | break; |
5348 | |
5349 | SDValue Op = N->getOperand(1); |
5350 | |
5351 | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { |
5352 | if (GA->getTargetFlags() == PPCII::MO_PLT) |
5353 | getGlobalBaseReg(); |
5354 | } |
5355 | else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { |
5356 | if (ES->getTargetFlags() == PPCII::MO_PLT) |
5357 | getGlobalBaseReg(); |
5358 | } |
5359 | } |
5360 | break; |
5361 | |
5362 | case PPCISD::GlobalBaseReg: |
5363 | ReplaceNode(N, getGlobalBaseReg()); |
5364 | return; |
5365 | |
5366 | case ISD::FrameIndex: |
5367 | selectFrameIndex(N, N); |
5368 | return; |
5369 | |
5370 | case PPCISD::MFOCRF: { |
5371 | SDValue InFlag = N->getOperand(1); |
5372 | ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, |
5373 | N->getOperand(0), InFlag)); |
5374 | return; |
5375 | } |
5376 | |
5377 | case PPCISD::READ_TIME_BASE: |
5378 | ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, |
5379 | MVT::Other, N->getOperand(0))); |
5380 | return; |
5381 | |
5382 | case PPCISD::SRA_ADDZE: { |
5383 | SDValue N0 = N->getOperand(0); |
5384 | SDValue ShiftAmt = |
5385 | CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> |
5386 | getConstantIntValue(), dl, |
5387 | N->getValueType(0)); |
5388 | if (N->getValueType(0) == MVT::i64) { |
5389 | SDNode *Op = |
5390 | CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, |
5391 | N0, ShiftAmt); |
5392 | CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), |
5393 | SDValue(Op, 1)); |
5394 | return; |
5395 | } else { |
5396 | assert(N->getValueType(0) == MVT::i32 &&(static_cast <bool> (N->getValueType(0) == MVT::i32 && "Expecting i64 or i32 in PPCISD::SRA_ADDZE") ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i32 && \"Expecting i64 or i32 in PPCISD::SRA_ADDZE\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5397, __extension__ __PRETTY_FUNCTION__)) |
5397 | "Expecting i64 or i32 in PPCISD::SRA_ADDZE")(static_cast <bool> (N->getValueType(0) == MVT::i32 && "Expecting i64 or i32 in PPCISD::SRA_ADDZE") ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i32 && \"Expecting i64 or i32 in PPCISD::SRA_ADDZE\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5397, __extension__ __PRETTY_FUNCTION__)); |
5398 | SDNode *Op = |
5399 | CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, |
5400 | N0, ShiftAmt); |
5401 | CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), |
5402 | SDValue(Op, 1)); |
5403 | return; |
5404 | } |
5405 | } |
5406 | |
5407 | case ISD::STORE: { |
5408 | // Change TLS initial-exec D-form stores to X-form stores. |
5409 | StoreSDNode *ST = cast<StoreSDNode>(N); |
5410 | if (EnableTLSOpt && Subtarget->isELFv2ABI() && |
5411 | ST->getAddressingMode() != ISD::PRE_INC) |
5412 | if (tryTLSXFormStore(ST)) |
5413 | return; |
5414 | break; |
5415 | } |
5416 | case ISD::LOAD: { |
5417 | // Handle preincrement loads. |
5418 | LoadSDNode *LD = cast<LoadSDNode>(N); |
5419 | EVT LoadedVT = LD->getMemoryVT(); |
5420 | |
5421 | // Normal loads are handled by code generated from the .td file. |
5422 | if (LD->getAddressingMode() != ISD::PRE_INC) { |
5423 | // Change TLS initial-exec D-form loads to X-form loads. |
5424 | if (EnableTLSOpt && Subtarget->isELFv2ABI()) |
5425 | if (tryTLSXFormLoad(LD)) |
5426 | return; |
5427 | break; |
5428 | } |
5429 | |
5430 | SDValue Offset = LD->getOffset(); |
5431 | if (Offset.getOpcode() == ISD::TargetConstant || |
5432 | Offset.getOpcode() == ISD::TargetGlobalAddress) { |
5433 | |
5434 | unsigned Opcode; |
5435 | bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; |
5436 | if (LD->getValueType(0) != MVT::i64) { |
5437 | // Handle PPC32 integer and normal FP loads. |
5438 | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16) && \"Invalid sext update load\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5438, __extension__ __PRETTY_FUNCTION__)); |
5439 | switch (LoadedVT.getSimpleVT().SimpleTy) { |
5440 | default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 5440); |
5441 | case MVT::f64: Opcode = PPC::LFDU; break; |
5442 | case MVT::f32: Opcode = PPC::LFSU; break; |
5443 | case MVT::i32: Opcode = PPC::LWZU; break; |
5444 | case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; |
5445 | case MVT::i1: |
5446 | case MVT::i8: Opcode = PPC::LBZU; break; |
5447 | } |
5448 | } else { |
5449 | assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!")(static_cast <bool> (LD->getValueType(0) == MVT::i64 && "Unknown load result type!") ? void (0) : __assert_fail ("LD->getValueType(0) == MVT::i64 && \"Unknown load result type!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5449, __extension__ __PRETTY_FUNCTION__)); |
5450 | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16) && \"Invalid sext update load\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5450, __extension__ __PRETTY_FUNCTION__)); |
5451 | switch (LoadedVT.getSimpleVT().SimpleTy) { |
5452 | default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 5452); |
5453 | case MVT::i64: Opcode = PPC::LDU; break; |
5454 | case MVT::i32: Opcode = PPC::LWZU8; break; |
5455 | case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; |
5456 | case MVT::i1: |
5457 | case MVT::i8: Opcode = PPC::LBZU8; break; |
5458 | } |
5459 | } |
5460 | |
5461 | SDValue Chain = LD->getChain(); |
5462 | SDValue Base = LD->getBasePtr(); |
5463 | SDValue Ops[] = { Offset, Base, Chain }; |
5464 | SDNode *MN = CurDAG->getMachineNode( |
5465 | Opcode, dl, LD->getValueType(0), |
5466 | PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); |
5467 | transferMemOperands(N, MN); |
5468 | ReplaceNode(N, MN); |
5469 | return; |
5470 | } else { |
5471 | unsigned Opcode; |
5472 | bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; |
5473 | if (LD->getValueType(0) != MVT::i64) { |
5474 | // Handle PPC32 integer and normal FP loads. |
5475 | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16) && \"Invalid sext update load\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5475, __extension__ __PRETTY_FUNCTION__)); |
5476 | switch (LoadedVT.getSimpleVT().SimpleTy) { |
5477 | default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 5477); |
5478 | case MVT::f64: Opcode = PPC::LFDUX; break; |
5479 | case MVT::f32: Opcode = PPC::LFSUX; break; |
5480 | case MVT::i32: Opcode = PPC::LWZUX; break; |
5481 | case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; |
5482 | case MVT::i1: |
5483 | case MVT::i8: Opcode = PPC::LBZUX; break; |
5484 | } |
5485 | } else { |
5486 | assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!")(static_cast <bool> (LD->getValueType(0) == MVT::i64 && "Unknown load result type!") ? void (0) : __assert_fail ("LD->getValueType(0) == MVT::i64 && \"Unknown load result type!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5486, __extension__ __PRETTY_FUNCTION__)); |
5487 | assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && "Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && \"Invalid sext update load\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5488, __extension__ __PRETTY_FUNCTION__)) |
5488 | "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && "Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && \"Invalid sext update load\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5488, __extension__ __PRETTY_FUNCTION__)); |
5489 | switch (LoadedVT.getSimpleVT().SimpleTy) { |
5490 | default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 5490); |
5491 | case MVT::i64: Opcode = PPC::LDUX; break; |
5492 | case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; |
5493 | case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; |
5494 | case MVT::i1: |
5495 | case MVT::i8: Opcode = PPC::LBZUX8; break; |
5496 | } |
5497 | } |
5498 | |
5499 | SDValue Chain = LD->getChain(); |
5500 | SDValue Base = LD->getBasePtr(); |
5501 | SDValue Ops[] = { Base, Offset, Chain }; |
5502 | SDNode *MN = CurDAG->getMachineNode( |
5503 | Opcode, dl, LD->getValueType(0), |
5504 | PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); |
5505 | transferMemOperands(N, MN); |
5506 | ReplaceNode(N, MN); |
5507 | return; |
5508 | } |
5509 | } |
5510 | |
5511 | case ISD::AND: |
5512 | // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr |
5513 | if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) || |
5514 | tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N)) |
5515 | return; |
5516 | |
5517 | // Other cases are autogenerated. |
5518 | break; |
5519 | case ISD::OR: { |
5520 | if (N->getValueType(0) == MVT::i32) |
5521 | if (tryBitfieldInsert(N)) |
5522 | return; |
5523 | |
5524 | int16_t Imm; |
5525 | if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && |
5526 | isIntS16Immediate(N->getOperand(1), Imm)) { |
5527 | KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); |
5528 | |
5529 | // If this is equivalent to an add, then we can fold it with the |
5530 | // FrameIndex calculation. |
5531 | if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { |
5532 | selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm); |
5533 | return; |
5534 | } |
5535 | } |
5536 | |
5537 | // If this is 'or' against an imm with consecutive ones and both sides zero, |
5538 | // try to emit rldimi |
5539 | if (tryAsSingleRLDIMI(N)) |
5540 | return; |
5541 | |
5542 | // OR with a 32-bit immediate can be handled by ori + oris |
5543 | // without creating an immediate in a GPR. |
5544 | uint64_t Imm64 = 0; |
5545 | bool IsPPC64 = Subtarget->isPPC64(); |
5546 | if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && |
5547 | (Imm64 & ~0xFFFFFFFFuLL) == 0) { |
5548 | // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. |
5549 | uint64_t ImmHi = Imm64 >> 16; |
5550 | uint64_t ImmLo = Imm64 & 0xFFFF; |
5551 | if (ImmHi != 0 && ImmLo != 0) { |
5552 | SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, |
5553 | N->getOperand(0), |
5554 | getI16Imm(ImmLo, dl)); |
5555 | SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; |
5556 | CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); |
5557 | return; |
5558 | } |
5559 | } |
5560 | |
5561 | // Other cases are autogenerated. |
5562 | break; |
5563 | } |
5564 | case ISD::XOR: { |
5565 | // XOR with a 32-bit immediate can be handled by xori + xoris |
5566 | // without creating an immediate in a GPR. |
5567 | uint64_t Imm64 = 0; |
5568 | bool IsPPC64 = Subtarget->isPPC64(); |
5569 | if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && |
5570 | (Imm64 & ~0xFFFFFFFFuLL) == 0) { |
5571 | // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. |
5572 | uint64_t ImmHi = Imm64 >> 16; |
5573 | uint64_t ImmLo = Imm64 & 0xFFFF; |
5574 | if (ImmHi != 0 && ImmLo != 0) { |
5575 | SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, |
5576 | N->getOperand(0), |
5577 | getI16Imm(ImmLo, dl)); |
5578 | SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; |
5579 | CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); |
5580 | return; |
5581 | } |
5582 | } |
5583 | |
5584 | break; |
5585 | } |
5586 | case ISD::ADD: { |
5587 | int16_t Imm; |
5588 | if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && |
5589 | isIntS16Immediate(N->getOperand(1), Imm)) { |
5590 | selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm); |
5591 | return; |
5592 | } |
5593 | |
5594 | break; |
5595 | } |
5596 | case ISD::SHL: { |
5597 | unsigned Imm, SH, MB, ME; |
5598 | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && |
5599 | isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
5600 | SDValue Ops[] = { N->getOperand(0).getOperand(0), |
5601 | getI32Imm(SH, dl), getI32Imm(MB, dl), |
5602 | getI32Imm(ME, dl) }; |
5603 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
5604 | return; |
5605 | } |
5606 | |
5607 | // Other cases are autogenerated. |
5608 | break; |
5609 | } |
5610 | case ISD::SRL: { |
5611 | unsigned Imm, SH, MB, ME; |
5612 | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && |
5613 | isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
5614 | SDValue Ops[] = { N->getOperand(0).getOperand(0), |
5615 | getI32Imm(SH, dl), getI32Imm(MB, dl), |
5616 | getI32Imm(ME, dl) }; |
5617 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
5618 | return; |
5619 | } |
5620 | |
5621 | // Other cases are autogenerated. |
5622 | break; |
5623 | } |
5624 | case ISD::MUL: { |
5625 | SDValue Op1 = N->getOperand(1); |
5626 | if (Op1.getOpcode() != ISD::Constant || |
5627 | (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32)) |
5628 | break; |
5629 | |
5630 | // If the multiplier fits int16, we can handle it with mulli. |
5631 | int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue(); |
5632 | unsigned Shift = llvm::countr_zero<uint64_t>(Imm); |
5633 | if (isInt<16>(Imm) || !Shift) |
5634 | break; |
5635 | |
5636 | // If the shifted value fits int16, we can do this transformation: |
5637 | // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to |
5638 | // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2). |
5639 | uint64_t ImmSh = Imm >> Shift; |
5640 | if (!isInt<16>(ImmSh)) |
5641 | break; |
5642 | |
5643 | uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16); |
5644 | if (Op1.getValueType() == MVT::i64) { |
5645 | SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); |
5646 | SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64, |
5647 | N->getOperand(0), SDImm); |
5648 | |
5649 | SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl), |
5650 | getI32Imm(63 - Shift, dl)}; |
5651 | CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); |
5652 | return; |
5653 | } else { |
5654 | SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32); |
5655 | SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32, |
5656 | N->getOperand(0), SDImm); |
5657 | |
5658 | SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl), |
5659 | getI32Imm(0, dl), getI32Imm(31 - Shift, dl)}; |
5660 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
5661 | return; |
5662 | } |
5663 | break; |
5664 | } |
5665 | // FIXME: Remove this once the ANDI glue bug is fixed: |
5666 | case PPCISD::ANDI_rec_1_EQ_BIT: |
5667 | case PPCISD::ANDI_rec_1_GT_BIT: { |
5668 | if (!ANDIGlueBug) |
5669 | break; |
5670 | |
5671 | EVT InVT = N->getOperand(0).getValueType(); |
5672 | assert((InVT == MVT::i64 || InVT == MVT::i32) &&(static_cast <bool> ((InVT == MVT::i64 || InVT == MVT:: i32) && "Invalid input type for ANDI_rec_1_EQ_BIT") ? void (0) : __assert_fail ("(InVT == MVT::i64 || InVT == MVT::i32) && \"Invalid input type for ANDI_rec_1_EQ_BIT\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5673, __extension__ __PRETTY_FUNCTION__)) |
5673 | "Invalid input type for ANDI_rec_1_EQ_BIT")(static_cast <bool> ((InVT == MVT::i64 || InVT == MVT:: i32) && "Invalid input type for ANDI_rec_1_EQ_BIT") ? void (0) : __assert_fail ("(InVT == MVT::i64 || InVT == MVT::i32) && \"Invalid input type for ANDI_rec_1_EQ_BIT\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5673, __extension__ __PRETTY_FUNCTION__)); |
5674 | |
5675 | unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec; |
5676 | SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, |
5677 | N->getOperand(0), |
5678 | CurDAG->getTargetConstant(1, dl, InVT)), |
5679 | 0); |
5680 | SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); |
5681 | SDValue SRIdxVal = CurDAG->getTargetConstant( |
5682 | N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, |
5683 | dl, MVT::i32); |
5684 | |
5685 | CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, |
5686 | SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); |
5687 | return; |
5688 | } |
5689 | case ISD::SELECT_CC: { |