| File: | build/source/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp |
| Warning: | line 1994, column 15 Value stored to 'I' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines a pattern matching instruction selector for PowerPC, |
| 10 | // converting from a legalized dag to a PPC dag. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "MCTargetDesc/PPCMCTargetDesc.h" |
| 15 | #include "MCTargetDesc/PPCPredicates.h" |
| 16 | #include "PPC.h" |
| 17 | #include "PPCISelLowering.h" |
| 18 | #include "PPCMachineFunctionInfo.h" |
| 19 | #include "PPCSubtarget.h" |
| 20 | #include "PPCTargetMachine.h" |
| 21 | #include "llvm/ADT/APInt.h" |
| 22 | #include "llvm/ADT/DenseMap.h" |
| 23 | #include "llvm/ADT/STLExtras.h" |
| 24 | #include "llvm/ADT/SmallPtrSet.h" |
| 25 | #include "llvm/ADT/SmallVector.h" |
| 26 | #include "llvm/ADT/Statistic.h" |
| 27 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 28 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| 29 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 30 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 31 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 32 | #include "llvm/CodeGen/MachineFunction.h" |
| 33 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 34 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 35 | #include "llvm/CodeGen/MachineValueType.h" |
| 36 | #include "llvm/CodeGen/SelectionDAG.h" |
| 37 | #include "llvm/CodeGen/SelectionDAGISel.h" |
| 38 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 39 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 40 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 41 | #include "llvm/CodeGen/ValueTypes.h" |
| 42 | #include "llvm/IR/BasicBlock.h" |
| 43 | #include "llvm/IR/DebugLoc.h" |
| 44 | #include "llvm/IR/Function.h" |
| 45 | #include "llvm/IR/GlobalValue.h" |
| 46 | #include "llvm/IR/InlineAsm.h" |
| 47 | #include "llvm/IR/InstrTypes.h" |
| 48 | #include "llvm/IR/IntrinsicsPowerPC.h" |
| 49 | #include "llvm/IR/Module.h" |
| 50 | #include "llvm/Support/Casting.h" |
| 51 | #include "llvm/Support/CodeGen.h" |
| 52 | #include "llvm/Support/CommandLine.h" |
| 53 | #include "llvm/Support/Compiler.h" |
| 54 | #include "llvm/Support/Debug.h" |
| 55 | #include "llvm/Support/ErrorHandling.h" |
| 56 | #include "llvm/Support/KnownBits.h" |
| 57 | #include "llvm/Support/MathExtras.h" |
| 58 | #include "llvm/Support/raw_ostream.h" |
| 59 | #include <algorithm> |
| 60 | #include <cassert> |
| 61 | #include <cstdint> |
| 62 | #include <iterator> |
| 63 | #include <limits> |
| 64 | #include <memory> |
| 65 | #include <new> |
| 66 | #include <tuple> |
| 67 | #include <utility> |
| 68 | |
| 69 | using namespace llvm; |
| 70 | |
| 71 | #define DEBUG_TYPE"ppc-isel" "ppc-isel" |
| 72 | #define PASS_NAME"PowerPC DAG->DAG Pattern Instruction Selection" "PowerPC DAG->DAG Pattern Instruction Selection" |
| 73 | |
| 74 | STATISTIC(NumSextSetcc,static llvm::Statistic NumSextSetcc = {"ppc-isel", "NumSextSetcc" , "Number of (sext(setcc)) nodes expanded into GPR sequence." } |
| 75 | "Number of (sext(setcc)) nodes expanded into GPR sequence.")static llvm::Statistic NumSextSetcc = {"ppc-isel", "NumSextSetcc" , "Number of (sext(setcc)) nodes expanded into GPR sequence." }; |
| 76 | STATISTIC(NumZextSetcc,static llvm::Statistic NumZextSetcc = {"ppc-isel", "NumZextSetcc" , "Number of (zext(setcc)) nodes expanded into GPR sequence." } |
| 77 | "Number of (zext(setcc)) nodes expanded into GPR sequence.")static llvm::Statistic NumZextSetcc = {"ppc-isel", "NumZextSetcc" , "Number of (zext(setcc)) nodes expanded into GPR sequence." }; |
| 78 | STATISTIC(SignExtensionsAdded,static llvm::Statistic SignExtensionsAdded = {"ppc-isel", "SignExtensionsAdded" , "Number of sign extensions for compare inputs added."} |
| 79 | "Number of sign extensions for compare inputs added.")static llvm::Statistic SignExtensionsAdded = {"ppc-isel", "SignExtensionsAdded" , "Number of sign extensions for compare inputs added."}; |
| 80 | STATISTIC(ZeroExtensionsAdded,static llvm::Statistic ZeroExtensionsAdded = {"ppc-isel", "ZeroExtensionsAdded" , "Number of zero extensions for compare inputs added."} |
| 81 | "Number of zero extensions for compare inputs added.")static llvm::Statistic ZeroExtensionsAdded = {"ppc-isel", "ZeroExtensionsAdded" , "Number of zero extensions for compare inputs added."}; |
| 82 | STATISTIC(NumLogicOpsOnComparison,static llvm::Statistic NumLogicOpsOnComparison = {"ppc-isel", "NumLogicOpsOnComparison", "Number of logical ops on i1 values calculated in GPR." } |
| 83 | "Number of logical ops on i1 values calculated in GPR.")static llvm::Statistic NumLogicOpsOnComparison = {"ppc-isel", "NumLogicOpsOnComparison", "Number of logical ops on i1 values calculated in GPR." }; |
| 84 | STATISTIC(OmittedForNonExtendUses,static llvm::Statistic OmittedForNonExtendUses = {"ppc-isel", "OmittedForNonExtendUses", "Number of compares not eliminated as they have non-extending uses." } |
| 85 | "Number of compares not eliminated as they have non-extending uses.")static llvm::Statistic OmittedForNonExtendUses = {"ppc-isel", "OmittedForNonExtendUses", "Number of compares not eliminated as they have non-extending uses." }; |
| 86 | STATISTIC(NumP9Setb,static llvm::Statistic NumP9Setb = {"ppc-isel", "NumP9Setb", "Number of compares lowered to setb." } |
| 87 | "Number of compares lowered to setb.")static llvm::Statistic NumP9Setb = {"ppc-isel", "NumP9Setb", "Number of compares lowered to setb." }; |
| 88 | |
| 89 | // FIXME: Remove this once the bug has been fixed! |
| 90 | cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", |
| 91 | cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); |
| 92 | |
| 93 | static cl::opt<bool> |
| 94 | UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), |
| 95 | cl::desc("use aggressive ppc isel for bit permutations"), |
| 96 | cl::Hidden); |
| 97 | static cl::opt<bool> BPermRewriterNoMasking( |
| 98 | "ppc-bit-perm-rewriter-stress-rotates", |
| 99 | cl::desc("stress rotate selection in aggressive ppc isel for " |
| 100 | "bit permutations"), |
| 101 | cl::Hidden); |
| 102 | |
| 103 | static cl::opt<bool> EnableBranchHint( |
| 104 | "ppc-use-branch-hint", cl::init(true), |
| 105 | cl::desc("Enable static hinting of branches on ppc"), |
| 106 | cl::Hidden); |
| 107 | |
| 108 | static cl::opt<bool> EnableTLSOpt( |
| 109 | "ppc-tls-opt", cl::init(true), |
| 110 | cl::desc("Enable tls optimization peephole"), |
| 111 | cl::Hidden); |
| 112 | |
| 113 | enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, |
| 114 | ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, |
| 115 | ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; |
| 116 | |
| 117 | static cl::opt<ICmpInGPRType> CmpInGPR( |
| 118 | "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), |
| 119 | cl::desc("Specify the types of comparisons to emit GPR-only code for."), |
| 120 | cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons.")llvm::cl::OptionEnumValue { "none", int(ICGPR_None), "Do not modify integer comparisons." }, |
| 121 | clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs.")llvm::cl::OptionEnumValue { "all", int(ICGPR_All), "All possible int comparisons in GPRs." }, |
| 122 | clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs.")llvm::cl::OptionEnumValue { "i32", int(ICGPR_I32), "Only i32 comparisons in GPRs." }, |
| 123 | clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs.")llvm::cl::OptionEnumValue { "i64", int(ICGPR_I64), "Only i64 comparisons in GPRs." }, |
| 124 | clEnumValN(ICGPR_NonExtIn, "nonextin",llvm::cl::OptionEnumValue { "nonextin", int(ICGPR_NonExtIn), "Only comparisons where inputs don't need [sz]ext." } |
| 125 | "Only comparisons where inputs don't need [sz]ext.")llvm::cl::OptionEnumValue { "nonextin", int(ICGPR_NonExtIn), "Only comparisons where inputs don't need [sz]ext." }, |
| 126 | clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result.")llvm::cl::OptionEnumValue { "zext", int(ICGPR_Zext), "Only comparisons with zext result." }, |
| 127 | clEnumValN(ICGPR_ZextI32, "zexti32",llvm::cl::OptionEnumValue { "zexti32", int(ICGPR_ZextI32), "Only i32 comparisons with zext result." } |
| 128 | "Only i32 comparisons with zext result.")llvm::cl::OptionEnumValue { "zexti32", int(ICGPR_ZextI32), "Only i32 comparisons with zext result." }, |
| 129 | clEnumValN(ICGPR_ZextI64, "zexti64",llvm::cl::OptionEnumValue { "zexti64", int(ICGPR_ZextI64), "Only i64 comparisons with zext result." } |
| 130 | "Only i64 comparisons with zext result.")llvm::cl::OptionEnumValue { "zexti64", int(ICGPR_ZextI64), "Only i64 comparisons with zext result." }, |
| 131 | clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result.")llvm::cl::OptionEnumValue { "sext", int(ICGPR_Sext), "Only comparisons with sext result." }, |
| 132 | clEnumValN(ICGPR_SextI32, "sexti32",llvm::cl::OptionEnumValue { "sexti32", int(ICGPR_SextI32), "Only i32 comparisons with sext result." } |
| 133 | "Only i32 comparisons with sext result.")llvm::cl::OptionEnumValue { "sexti32", int(ICGPR_SextI32), "Only i32 comparisons with sext result." }, |
| 134 | clEnumValN(ICGPR_SextI64, "sexti64",llvm::cl::OptionEnumValue { "sexti64", int(ICGPR_SextI64), "Only i64 comparisons with sext result." } |
| 135 | "Only i64 comparisons with sext result.")llvm::cl::OptionEnumValue { "sexti64", int(ICGPR_SextI64), "Only i64 comparisons with sext result." })); |
| 136 | namespace { |
| 137 | |
| 138 | //===--------------------------------------------------------------------===// |
| 139 | /// PPCDAGToDAGISel - PPC specific code to select PPC machine |
| 140 | /// instructions for SelectionDAG operations. |
| 141 | /// |
| 142 | class PPCDAGToDAGISel : public SelectionDAGISel { |
| 143 | const PPCTargetMachine &TM; |
| 144 | const PPCSubtarget *Subtarget = nullptr; |
| 145 | const PPCTargetLowering *PPCLowering = nullptr; |
| 146 | unsigned GlobalBaseReg = 0; |
| 147 | |
| 148 | public: |
| 149 | static char ID; |
| 150 | |
| 151 | PPCDAGToDAGISel() = delete; |
| 152 | |
| 153 | explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) |
| 154 | : SelectionDAGISel(ID, tm, OptLevel), TM(tm) {} |
| 155 | |
| 156 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 157 | // Make sure we re-emit a set of the global base reg if necessary |
| 158 | GlobalBaseReg = 0; |
| 159 | Subtarget = &MF.getSubtarget<PPCSubtarget>(); |
| 160 | PPCLowering = Subtarget->getTargetLowering(); |
| 161 | if (Subtarget->hasROPProtect()) { |
| 162 | // Create a place on the stack for the ROP Protection Hash. |
| 163 | // The ROP Protection Hash will always be 8 bytes and aligned to 8 |
| 164 | // bytes. |
| 165 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 166 | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| 167 | const int Result = MFI.CreateStackObject(8, Align(8), false); |
| 168 | FI->setROPProtectionHashSaveIndex(Result); |
| 169 | } |
| 170 | SelectionDAGISel::runOnMachineFunction(MF); |
| 171 | |
| 172 | return true; |
| 173 | } |
| 174 | |
| 175 | void PreprocessISelDAG() override; |
| 176 | void PostprocessISelDAG() override; |
| 177 | |
| 178 | /// getI16Imm - Return a target constant with the specified value, of type |
| 179 | /// i16. |
| 180 | inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { |
| 181 | return CurDAG->getTargetConstant(Imm, dl, MVT::i16); |
| 182 | } |
| 183 | |
| 184 | /// getI32Imm - Return a target constant with the specified value, of type |
| 185 | /// i32. |
| 186 | inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { |
| 187 | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
| 188 | } |
| 189 | |
| 190 | /// getI64Imm - Return a target constant with the specified value, of type |
| 191 | /// i64. |
| 192 | inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { |
| 193 | return CurDAG->getTargetConstant(Imm, dl, MVT::i64); |
| 194 | } |
| 195 | |
| 196 | /// getSmallIPtrImm - Return a target constant of pointer type. |
| 197 | inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) { |
| 198 | return CurDAG->getTargetConstant( |
| 199 | Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); |
| 200 | } |
| 201 | |
| 202 | /// isRotateAndMask - Returns true if Mask and Shift can be folded into a |
| 203 | /// rotate and mask opcode and mask operation. |
| 204 | static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, |
| 205 | unsigned &SH, unsigned &MB, unsigned &ME); |
| 206 | |
| 207 | /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC |
| 208 | /// base register. Return the virtual register that holds this value. |
| 209 | SDNode *getGlobalBaseReg(); |
| 210 | |
| 211 | void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0); |
| 212 | |
| 213 | // Select - Convert the specified operand from a target-independent to a |
| 214 | // target-specific node if it hasn't already been changed. |
| 215 | void Select(SDNode *N) override; |
| 216 | |
| 217 | bool tryBitfieldInsert(SDNode *N); |
| 218 | bool tryBitPermutation(SDNode *N); |
| 219 | bool tryIntCompareInGPR(SDNode *N); |
| 220 | |
| 221 | // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into |
| 222 | // an X-Form load instruction with the offset being a relocation coming from |
| 223 | // the PPCISD::ADD_TLS. |
| 224 | bool tryTLSXFormLoad(LoadSDNode *N); |
| 225 | // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into |
| 226 | // an X-Form store instruction with the offset being a relocation coming from |
| 227 | // the PPCISD::ADD_TLS. |
| 228 | bool tryTLSXFormStore(StoreSDNode *N); |
| 229 | /// SelectCC - Select a comparison of the specified values with the |
| 230 | /// specified condition code, returning the CR# of the expression. |
| 231 | SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| 232 | const SDLoc &dl, SDValue Chain = SDValue()); |
| 233 | |
| 234 | /// SelectAddrImmOffs - Return true if the operand is valid for a preinc |
| 235 | /// immediate field. Note that the operand at this point is already the |
| 236 | /// result of a prior SelectAddressRegImm call. |
| 237 | bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { |
| 238 | if (N.getOpcode() == ISD::TargetConstant || |
| 239 | N.getOpcode() == ISD::TargetGlobalAddress) { |
| 240 | Out = N; |
| 241 | return true; |
| 242 | } |
| 243 | |
| 244 | return false; |
| 245 | } |
| 246 | |
| 247 | /// SelectDSForm - Returns true if address N can be represented by the |
| 248 | /// addressing mode of DSForm instructions (a base register, plus a signed |
| 249 | /// 16-bit displacement that is a multiple of 4. |
| 250 | bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { |
| 251 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
| 252 | Align(4)) == PPC::AM_DSForm; |
| 253 | } |
| 254 | |
| 255 | /// SelectDQForm - Returns true if address N can be represented by the |
| 256 | /// addressing mode of DQForm instructions (a base register, plus a signed |
| 257 | /// 16-bit displacement that is a multiple of 16. |
| 258 | bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { |
| 259 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
| 260 | Align(16)) == PPC::AM_DQForm; |
| 261 | } |
| 262 | |
| 263 | /// SelectDForm - Returns true if address N can be represented by |
| 264 | /// the addressing mode of DForm instructions (a base register, plus a |
| 265 | /// signed 16-bit immediate. |
| 266 | bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { |
| 267 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
| 268 | std::nullopt) == PPC::AM_DForm; |
| 269 | } |
| 270 | |
| 271 | /// SelectPCRelForm - Returns true if address N can be represented by |
| 272 | /// PC-Relative addressing mode. |
| 273 | bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp, |
| 274 | SDValue &Base) { |
| 275 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
| 276 | std::nullopt) == PPC::AM_PCRel; |
| 277 | } |
| 278 | |
| 279 | /// SelectPDForm - Returns true if address N can be represented by Prefixed |
| 280 | /// DForm addressing mode (a base register, plus a signed 34-bit immediate. |
| 281 | bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { |
| 282 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
| 283 | std::nullopt) == |
| 284 | PPC::AM_PrefixDForm; |
| 285 | } |
| 286 | |
| 287 | /// SelectXForm - Returns true if address N can be represented by the |
| 288 | /// addressing mode of XForm instructions (an indexed [r+r] operation). |
| 289 | bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { |
| 290 | return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, |
| 291 | std::nullopt) == PPC::AM_XForm; |
| 292 | } |
| 293 | |
| 294 | /// SelectForceXForm - Given the specified address, force it to be |
| 295 | /// represented as an indexed [r+r] operation (an XForm instruction). |
| 296 | bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp, |
| 297 | SDValue &Base) { |
| 298 | return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) == |
| 299 | PPC::AM_XForm; |
| 300 | } |
| 301 | |
| 302 | /// SelectAddrIdx - Given the specified address, check to see if it can be |
| 303 | /// represented as an indexed [r+r] operation. |
| 304 | /// This is for xform instructions whose associated displacement form is D. |
| 305 | /// The last parameter \p 0 means associated D form has no requirment for 16 |
| 306 | /// bit signed displacement. |
| 307 | /// Returns false if it can be represented by [r+imm], which are preferred. |
| 308 | bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { |
| 309 | return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, |
| 310 | std::nullopt); |
| 311 | } |
| 312 | |
| 313 | /// SelectAddrIdx4 - Given the specified address, check to see if it can be |
| 314 | /// represented as an indexed [r+r] operation. |
| 315 | /// This is for xform instructions whose associated displacement form is DS. |
| 316 | /// The last parameter \p 4 means associated DS form 16 bit signed |
| 317 | /// displacement must be a multiple of 4. |
| 318 | /// Returns false if it can be represented by [r+imm], which are preferred. |
| 319 | bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { |
| 320 | return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, |
| 321 | Align(4)); |
| 322 | } |
| 323 | |
| 324 | /// SelectAddrIdx16 - Given the specified address, check to see if it can be |
| 325 | /// represented as an indexed [r+r] operation. |
| 326 | /// This is for xform instructions whose associated displacement form is DQ. |
| 327 | /// The last parameter \p 16 means associated DQ form 16 bit signed |
| 328 | /// displacement must be a multiple of 16. |
| 329 | /// Returns false if it can be represented by [r+imm], which are preferred. |
| 330 | bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { |
| 331 | return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, |
| 332 | Align(16)); |
| 333 | } |
| 334 | |
| 335 | /// SelectAddrIdxOnly - Given the specified address, force it to be |
| 336 | /// represented as an indexed [r+r] operation. |
| 337 | bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { |
| 338 | return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); |
| 339 | } |
| 340 | |
| 341 | /// SelectAddrImm - Returns true if the address N can be represented by |
| 342 | /// a base register plus a signed 16-bit displacement [r+imm]. |
| 343 | /// The last parameter \p 0 means D form has no requirment for 16 bit signed |
| 344 | /// displacement. |
| 345 | bool SelectAddrImm(SDValue N, SDValue &Disp, |
| 346 | SDValue &Base) { |
| 347 | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, |
| 348 | std::nullopt); |
| 349 | } |
| 350 | |
| 351 | /// SelectAddrImmX4 - Returns true if the address N can be represented by |
| 352 | /// a base register plus a signed 16-bit displacement that is a multiple of |
| 353 | /// 4 (last parameter). Suitable for use by STD and friends. |
| 354 | bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { |
| 355 | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4)); |
| 356 | } |
| 357 | |
| 358 | /// SelectAddrImmX16 - Returns true if the address N can be represented by |
| 359 | /// a base register plus a signed 16-bit displacement that is a multiple of |
| 360 | /// 16(last parameter). Suitable for use by STXV and friends. |
| 361 | bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { |
| 362 | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, |
| 363 | Align(16)); |
| 364 | } |
| 365 | |
| 366 | /// SelectAddrImmX34 - Returns true if the address N can be represented by |
| 367 | /// a base register plus a signed 34-bit displacement. Suitable for use by |
| 368 | /// PSTXVP and friends. |
| 369 | bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) { |
| 370 | return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG); |
| 371 | } |
| 372 | |
| 373 | // Select an address into a single register. |
| 374 | bool SelectAddr(SDValue N, SDValue &Base) { |
| 375 | Base = N; |
| 376 | return true; |
| 377 | } |
| 378 | |
| 379 | bool SelectAddrPCRel(SDValue N, SDValue &Base) { |
| 380 | return PPCLowering->SelectAddressPCRel(N, Base); |
| 381 | } |
| 382 | |
| 383 | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| 384 | /// inline asm expressions. It is always correct to compute the value into |
| 385 | /// a register. The case of adding a (possibly relocatable) constant to a |
| 386 | /// register can be improved, but it is wrong to substitute Reg+Reg for |
| 387 | /// Reg in an asm, because the load or store opcode would have to change. |
| 388 | bool SelectInlineAsmMemoryOperand(const SDValue &Op, |
| 389 | unsigned ConstraintID, |
| 390 | std::vector<SDValue> &OutOps) override { |
| 391 | switch(ConstraintID) { |
| 392 | default: |
| 393 | errs() << "ConstraintID: " << ConstraintID << "\n"; |
| 394 | llvm_unreachable("Unexpected asm memory constraint")::llvm::llvm_unreachable_internal("Unexpected asm memory constraint" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 394); |
| 395 | case InlineAsm::Constraint_es: |
| 396 | case InlineAsm::Constraint_m: |
| 397 | case InlineAsm::Constraint_o: |
| 398 | case InlineAsm::Constraint_Q: |
| 399 | case InlineAsm::Constraint_Z: |
| 400 | case InlineAsm::Constraint_Zy: |
| 401 | // We need to make sure that this one operand does not end up in r0 |
| 402 | // (because we might end up lowering this as 0(%op)). |
| 403 | const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| 404 | const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); |
| 405 | SDLoc dl(Op); |
| 406 | SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); |
| 407 | SDValue NewOp = |
| 408 | SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, |
| 409 | dl, Op.getValueType(), |
| 410 | Op, RC), 0); |
| 411 | |
| 412 | OutOps.push_back(NewOp); |
| 413 | return false; |
| 414 | } |
| 415 | return true; |
| 416 | } |
| 417 | |
| 418 | // Include the pieces autogenerated from the target description. |
| 419 | #include "PPCGenDAGISel.inc" |
| 420 | |
| 421 | private: |
| 422 | bool trySETCC(SDNode *N); |
| 423 | bool tryFoldSWTestBRCC(SDNode *N); |
| 424 | bool trySelectLoopCountIntrinsic(SDNode *N); |
| 425 | bool tryAsSingleRLDICL(SDNode *N); |
| 426 | bool tryAsSingleRLDICR(SDNode *N); |
| 427 | bool tryAsSingleRLWINM(SDNode *N); |
| 428 | bool tryAsSingleRLWINM8(SDNode *N); |
| 429 | bool tryAsSingleRLWIMI(SDNode *N); |
| 430 | bool tryAsPairOfRLDICL(SDNode *N); |
| 431 | bool tryAsSingleRLDIMI(SDNode *N); |
| 432 | |
| 433 | void PeepholePPC64(); |
| 434 | void PeepholePPC64ZExt(); |
| 435 | void PeepholeCROps(); |
| 436 | |
| 437 | SDValue combineToCMPB(SDNode *N); |
| 438 | void foldBoolExts(SDValue &Res, SDNode *&N); |
| 439 | |
| 440 | bool AllUsersSelectZero(SDNode *N); |
| 441 | void SwapAllSelectUsers(SDNode *N); |
| 442 | |
| 443 | bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; |
| 444 | void transferMemOperands(SDNode *N, SDNode *Result); |
| 445 | }; |
| 446 | |
| 447 | } // end anonymous namespace |
| 448 | |
| 449 | char PPCDAGToDAGISel::ID = 0; |
| 450 | |
| 451 | INITIALIZE_PASS(PPCDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)static void *initializePPCDAGToDAGISelPassOnce(PassRegistry & Registry) { PassInfo *PI = new PassInfo( "PowerPC DAG->DAG Pattern Instruction Selection" , "ppc-isel", &PPCDAGToDAGISel::ID, PassInfo::NormalCtor_t (callDefaultCtor<PPCDAGToDAGISel>), false, false); Registry .registerPass(*PI, true); return PI; } static llvm::once_flag InitializePPCDAGToDAGISelPassFlag; void llvm::initializePPCDAGToDAGISelPass (PassRegistry &Registry) { llvm::call_once(InitializePPCDAGToDAGISelPassFlag , initializePPCDAGToDAGISelPassOnce, std::ref(Registry)); } |
| 452 | |
| 453 | /// getGlobalBaseReg - Output the instructions required to put the |
| 454 | /// base address to use for accessing globals into a register. |
| 455 | /// |
| 456 | SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { |
| 457 | if (!GlobalBaseReg) { |
| 458 | const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); |
| 459 | // Insert the set of GlobalBaseReg into the first MBB of the function |
| 460 | MachineBasicBlock &FirstMBB = MF->front(); |
| 461 | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| 462 | const Module *M = MF->getFunction().getParent(); |
| 463 | DebugLoc dl; |
| 464 | |
| 465 | if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { |
| 466 | if (Subtarget->isTargetELF()) { |
| 467 | GlobalBaseReg = PPC::R30; |
| 468 | if (!Subtarget->isSecurePlt() && |
| 469 | M->getPICLevel() == PICLevel::SmallPIC) { |
| 470 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); |
| 471 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); |
| 472 | MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); |
| 473 | } else { |
| 474 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); |
| 475 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); |
| 476 | Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); |
| 477 | BuildMI(FirstMBB, MBBI, dl, |
| 478 | TII.get(PPC::UpdateGBR), GlobalBaseReg) |
| 479 | .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); |
| 480 | MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); |
| 481 | } |
| 482 | } else { |
| 483 | GlobalBaseReg = |
| 484 | RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); |
| 485 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); |
| 486 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); |
| 487 | } |
| 488 | } else { |
| 489 | // We must ensure that this sequence is dominated by the prologue. |
| 490 | // FIXME: This is a bit of a big hammer since we don't get the benefits |
| 491 | // of shrink-wrapping whenever we emit this instruction. Considering |
| 492 | // this is used in any function where we emit a jump table, this may be |
| 493 | // a significant limitation. We should consider inserting this in the |
| 494 | // block where it is used and then commoning this sequence up if it |
| 495 | // appears in multiple places. |
| 496 | // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of |
| 497 | // MovePCtoLR8. |
| 498 | MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); |
| 499 | GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); |
| 500 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); |
| 501 | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); |
| 502 | } |
| 503 | } |
| 504 | return CurDAG->getRegister(GlobalBaseReg, |
| 505 | PPCLowering->getPointerTy(CurDAG->getDataLayout())) |
| 506 | .getNode(); |
| 507 | } |
| 508 | |
| 509 | // Check if a SDValue has the toc-data attribute. |
| 510 | static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) { |
| 511 | GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val); |
| 512 | if (!GA) |
| 513 | return false; |
| 514 | |
| 515 | const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal()); |
| 516 | if (!GV) |
| 517 | return false; |
| 518 | |
| 519 | if (!GV->hasAttribute("toc-data")) |
| 520 | return false; |
| 521 | |
| 522 | // TODO: These asserts should be updated as more support for the toc data |
| 523 | // transformation is added (struct support, etc.). |
| 524 | |
| 525 | assert((static_cast <bool> (PointerSize >= GV->getAlign( ).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry " "size not supported by the toc data transformation.") ? void (0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__ __PRETTY_FUNCTION__)) |
| 526 | PointerSize >= GV->getAlign().valueOrOne().value() &&(static_cast <bool> (PointerSize >= GV->getAlign( ).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry " "size not supported by the toc data transformation.") ? void (0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__ __PRETTY_FUNCTION__)) |
| 527 | "GlobalVariables with an alignment requirement stricter than TOC entry "(static_cast <bool> (PointerSize >= GV->getAlign( ).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry " "size not supported by the toc data transformation.") ? void (0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__ __PRETTY_FUNCTION__)) |
| 528 | "size not supported by the toc data transformation.")(static_cast <bool> (PointerSize >= GV->getAlign( ).valueOrOne().value() && "GlobalVariables with an alignment requirement stricter than TOC entry " "size not supported by the toc data transformation.") ? void (0) : __assert_fail ("PointerSize >= GV->getAlign().valueOrOne().value() && \"GlobalVariables with an alignment requirement stricter than TOC entry \" \"size not supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 528, __extension__ __PRETTY_FUNCTION__)); |
| 529 | |
| 530 | Type *GVType = GV->getValueType(); |
| 531 | |
| 532 | assert(GVType->isSized() && "A GlobalVariable's size must be known to be "(static_cast <bool> (GVType->isSized() && "A GlobalVariable's size must be known to be " "supported by the toc data transformation.") ? void (0) : __assert_fail ("GVType->isSized() && \"A GlobalVariable's size must be known to be \" \"supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 533, __extension__ __PRETTY_FUNCTION__)) |
| 533 | "supported by the toc data transformation.")(static_cast <bool> (GVType->isSized() && "A GlobalVariable's size must be known to be " "supported by the toc data transformation.") ? void (0) : __assert_fail ("GVType->isSized() && \"A GlobalVariable's size must be known to be \" \"supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 533, __extension__ __PRETTY_FUNCTION__)); |
| 534 | |
| 535 | if (GVType->isVectorTy()) |
| 536 | report_fatal_error("A GlobalVariable of Vector type is not currently " |
| 537 | "supported by the toc data transformation."); |
| 538 | |
| 539 | if (GVType->isArrayTy()) |
| 540 | report_fatal_error("A GlobalVariable of Array type is not currently " |
| 541 | "supported by the toc data transformation."); |
| 542 | |
| 543 | if (GVType->isStructTy()) |
| 544 | report_fatal_error("A GlobalVariable of Struct type is not currently " |
| 545 | "supported by the toc data transformation."); |
| 546 | |
| 547 | assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&(static_cast <bool> (GVType->getPrimitiveSizeInBits( ) <= PointerSize * 8 && "A GlobalVariable with size larger than a TOC entry is not currently " "supported by the toc data transformation.") ? void (0) : __assert_fail ("GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && \"A GlobalVariable with size larger than a TOC entry is not currently \" \"supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 549, __extension__ __PRETTY_FUNCTION__)) |
| 548 | "A GlobalVariable with size larger than a TOC entry is not currently "(static_cast <bool> (GVType->getPrimitiveSizeInBits( ) <= PointerSize * 8 && "A GlobalVariable with size larger than a TOC entry is not currently " "supported by the toc data transformation.") ? void (0) : __assert_fail ("GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && \"A GlobalVariable with size larger than a TOC entry is not currently \" \"supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 549, __extension__ __PRETTY_FUNCTION__)) |
| 549 | "supported by the toc data transformation.")(static_cast <bool> (GVType->getPrimitiveSizeInBits( ) <= PointerSize * 8 && "A GlobalVariable with size larger than a TOC entry is not currently " "supported by the toc data transformation.") ? void (0) : __assert_fail ("GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && \"A GlobalVariable with size larger than a TOC entry is not currently \" \"supported by the toc data transformation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 549, __extension__ __PRETTY_FUNCTION__)); |
| 550 | |
| 551 | if (GV->hasLocalLinkage() || GV->hasPrivateLinkage()) |
| 552 | report_fatal_error("A GlobalVariable with private or local linkage is not " |
| 553 | "currently supported by the toc data transformation."); |
| 554 | |
| 555 | assert(!GV->hasCommonLinkage() &&(static_cast <bool> (!GV->hasCommonLinkage() && "Tentative definitions cannot have the mapping class XMC_TD." ) ? void (0) : __assert_fail ("!GV->hasCommonLinkage() && \"Tentative definitions cannot have the mapping class XMC_TD.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 556, __extension__ __PRETTY_FUNCTION__)) |
| 556 | "Tentative definitions cannot have the mapping class XMC_TD.")(static_cast <bool> (!GV->hasCommonLinkage() && "Tentative definitions cannot have the mapping class XMC_TD." ) ? void (0) : __assert_fail ("!GV->hasCommonLinkage() && \"Tentative definitions cannot have the mapping class XMC_TD.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 556, __extension__ __PRETTY_FUNCTION__)); |
| 557 | |
| 558 | return true; |
| 559 | } |
| 560 | |
| 561 | /// isInt32Immediate - This method tests to see if the node is a 32-bit constant |
| 562 | /// operand. If so Imm will receive the 32-bit value. |
| 563 | static bool isInt32Immediate(SDNode *N, unsigned &Imm) { |
| 564 | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { |
| 565 | Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| 566 | return true; |
| 567 | } |
| 568 | return false; |
| 569 | } |
| 570 | |
| 571 | /// isInt64Immediate - This method tests to see if the node is a 64-bit constant |
| 572 | /// operand. If so Imm will receive the 64-bit value. |
| 573 | static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { |
| 574 | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { |
| 575 | Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| 576 | return true; |
| 577 | } |
| 578 | return false; |
| 579 | } |
| 580 | |
| 581 | // isInt32Immediate - This method tests to see if a constant operand. |
| 582 | // If so Imm will receive the 32 bit value. |
| 583 | static bool isInt32Immediate(SDValue N, unsigned &Imm) { |
| 584 | return isInt32Immediate(N.getNode(), Imm); |
| 585 | } |
| 586 | |
| 587 | /// isInt64Immediate - This method tests to see if the value is a 64-bit |
| 588 | /// constant operand. If so Imm will receive the 64-bit value. |
| 589 | static bool isInt64Immediate(SDValue N, uint64_t &Imm) { |
| 590 | return isInt64Immediate(N.getNode(), Imm); |
| 591 | } |
| 592 | |
| 593 | static unsigned getBranchHint(unsigned PCC, |
| 594 | const FunctionLoweringInfo &FuncInfo, |
| 595 | const SDValue &DestMBB) { |
| 596 | assert(isa<BasicBlockSDNode>(DestMBB))(static_cast <bool> (isa<BasicBlockSDNode>(DestMBB )) ? void (0) : __assert_fail ("isa<BasicBlockSDNode>(DestMBB)" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 596, __extension__ __PRETTY_FUNCTION__)); |
| 597 | |
| 598 | if (!FuncInfo.BPI) return PPC::BR_NO_HINT; |
| 599 | |
| 600 | const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); |
| 601 | const Instruction *BBTerm = BB->getTerminator(); |
| 602 | |
| 603 | if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; |
| 604 | |
| 605 | const BasicBlock *TBB = BBTerm->getSuccessor(0); |
| 606 | const BasicBlock *FBB = BBTerm->getSuccessor(1); |
| 607 | |
| 608 | auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB); |
| 609 | auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB); |
| 610 | |
| 611 | // We only want to handle cases which are easy to predict at static time, e.g. |
| 612 | // C++ throw statement, that is very likely not taken, or calling never |
| 613 | // returned function, e.g. stdlib exit(). So we set Threshold to filter |
| 614 | // unwanted cases. |
| 615 | // |
| 616 | // Below is LLVM branch weight table, we only want to handle case 1, 2 |
| 617 | // |
| 618 | // Case Taken:Nontaken Example |
| 619 | // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), |
| 620 | // 2. Invoke-terminating 1:1048575 |
| 621 | // 3. Coldblock 4:64 __builtin_expect |
| 622 | // 4. Loop Branch 124:4 For loop |
| 623 | // 5. PH/ZH/FPH 20:12 |
| 624 | const uint32_t Threshold = 10000; |
| 625 | |
| 626 | if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) |
| 627 | return PPC::BR_NO_HINT; |
| 628 | |
| 629 | LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() << "::" << BB->getName () << "'\n" << " -> " << TBB->getName () << ": " << TProb << "\n" << " -> " << FBB->getName() << ": " << FProb << "\n"; } } while (false) |
| 630 | << "::" << BB->getName() << "'\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() << "::" << BB->getName () << "'\n" << " -> " << TBB->getName () << ": " << TProb << "\n" << " -> " << FBB->getName() << ": " << FProb << "\n"; } } while (false) |
| 631 | << " -> " << TBB->getName() << ": " << TProb << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() << "::" << BB->getName () << "'\n" << " -> " << TBB->getName () << ": " << TProb << "\n" << " -> " << FBB->getName() << ": " << FProb << "\n"; } } while (false) |
| 632 | << " -> " << FBB->getName() << ": " << FProb << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() << "::" << BB->getName () << "'\n" << " -> " << TBB->getName () << ": " << TProb << "\n" << " -> " << FBB->getName() << ": " << FProb << "\n"; } } while (false); |
| 633 | |
| 634 | const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); |
| 635 | |
| 636 | // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, |
| 637 | // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock |
| 638 | if (BBDN->getBasicBlock()->getBasicBlock() != TBB) |
| 639 | std::swap(TProb, FProb); |
| 640 | |
| 641 | return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; |
| 642 | } |
| 643 | |
| 644 | // isOpcWithIntImmediate - This method tests to see if the node is a specific |
| 645 | // opcode and that it has a immediate integer right operand. |
| 646 | // If so Imm will receive the 32 bit value. |
| 647 | static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { |
| 648 | return N->getOpcode() == Opc |
| 649 | && isInt32Immediate(N->getOperand(1).getNode(), Imm); |
| 650 | } |
| 651 | |
| 652 | void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) { |
| 653 | SDLoc dl(SN); |
| 654 | int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| 655 | SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); |
| 656 | unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; |
| 657 | if (SN->hasOneUse()) |
| 658 | CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, |
| 659 | getSmallIPtrImm(Offset, dl)); |
| 660 | else |
| 661 | ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, |
| 662 | getSmallIPtrImm(Offset, dl))); |
| 663 | } |
| 664 | |
| 665 | bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, |
| 666 | bool isShiftMask, unsigned &SH, |
| 667 | unsigned &MB, unsigned &ME) { |
| 668 | // Don't even go down this path for i64, since different logic will be |
| 669 | // necessary for rldicl/rldicr/rldimi. |
| 670 | if (N->getValueType(0) != MVT::i32) |
| 671 | return false; |
| 672 | |
| 673 | unsigned Shift = 32; |
| 674 | unsigned Indeterminant = ~0; // bit mask marking indeterminant results |
| 675 | unsigned Opcode = N->getOpcode(); |
| 676 | if (N->getNumOperands() != 2 || |
| 677 | !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) |
| 678 | return false; |
| 679 | |
| 680 | if (Opcode == ISD::SHL) { |
| 681 | // apply shift left to mask if it comes first |
| 682 | if (isShiftMask) Mask = Mask << Shift; |
| 683 | // determine which bits are made indeterminant by shift |
| 684 | Indeterminant = ~(0xFFFFFFFFu << Shift); |
| 685 | } else if (Opcode == ISD::SRL) { |
| 686 | // apply shift right to mask if it comes first |
| 687 | if (isShiftMask) Mask = Mask >> Shift; |
| 688 | // determine which bits are made indeterminant by shift |
| 689 | Indeterminant = ~(0xFFFFFFFFu >> Shift); |
| 690 | // adjust for the left rotate |
| 691 | Shift = 32 - Shift; |
| 692 | } else if (Opcode == ISD::ROTL) { |
| 693 | Indeterminant = 0; |
| 694 | } else { |
| 695 | return false; |
| 696 | } |
| 697 | |
| 698 | // if the mask doesn't intersect any Indeterminant bits |
| 699 | if (Mask && !(Mask & Indeterminant)) { |
| 700 | SH = Shift & 31; |
| 701 | // make sure the mask is still a mask (wrap arounds may not be) |
| 702 | return isRunOfOnes(Mask, MB, ME); |
| 703 | } |
| 704 | return false; |
| 705 | } |
| 706 | |
| 707 | bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { |
| 708 | SDValue Base = ST->getBasePtr(); |
| 709 | if (Base.getOpcode() != PPCISD::ADD_TLS) |
| 710 | return false; |
| 711 | SDValue Offset = ST->getOffset(); |
| 712 | if (!Offset.isUndef()) |
| 713 | return false; |
| 714 | if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) |
| 715 | return false; |
| 716 | |
| 717 | SDLoc dl(ST); |
| 718 | EVT MemVT = ST->getMemoryVT(); |
| 719 | EVT RegVT = ST->getValue().getValueType(); |
| 720 | |
| 721 | unsigned Opcode; |
| 722 | switch (MemVT.getSimpleVT().SimpleTy) { |
| 723 | default: |
| 724 | return false; |
| 725 | case MVT::i8: { |
| 726 | Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; |
| 727 | break; |
| 728 | } |
| 729 | case MVT::i16: { |
| 730 | Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; |
| 731 | break; |
| 732 | } |
| 733 | case MVT::i32: { |
| 734 | Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; |
| 735 | break; |
| 736 | } |
| 737 | case MVT::i64: { |
| 738 | Opcode = PPC::STDXTLS; |
| 739 | break; |
| 740 | } |
| 741 | } |
| 742 | SDValue Chain = ST->getChain(); |
| 743 | SDVTList VTs = ST->getVTList(); |
| 744 | SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), |
| 745 | Chain}; |
| 746 | SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); |
| 747 | transferMemOperands(ST, MN); |
| 748 | ReplaceNode(ST, MN); |
| 749 | return true; |
| 750 | } |
| 751 | |
| 752 | bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { |
| 753 | SDValue Base = LD->getBasePtr(); |
| 754 | if (Base.getOpcode() != PPCISD::ADD_TLS) |
| 755 | return false; |
| 756 | SDValue Offset = LD->getOffset(); |
| 757 | if (!Offset.isUndef()) |
| 758 | return false; |
| 759 | if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) |
| 760 | return false; |
| 761 | |
| 762 | SDLoc dl(LD); |
| 763 | EVT MemVT = LD->getMemoryVT(); |
| 764 | EVT RegVT = LD->getValueType(0); |
| 765 | unsigned Opcode; |
| 766 | switch (MemVT.getSimpleVT().SimpleTy) { |
| 767 | default: |
| 768 | return false; |
| 769 | case MVT::i8: { |
| 770 | Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; |
| 771 | break; |
| 772 | } |
| 773 | case MVT::i16: { |
| 774 | Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS; |
| 775 | break; |
| 776 | } |
| 777 | case MVT::i32: { |
| 778 | Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS; |
| 779 | break; |
| 780 | } |
| 781 | case MVT::i64: { |
| 782 | Opcode = PPC::LDXTLS; |
| 783 | break; |
| 784 | } |
| 785 | } |
| 786 | SDValue Chain = LD->getChain(); |
| 787 | SDVTList VTs = LD->getVTList(); |
| 788 | SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; |
| 789 | SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); |
| 790 | transferMemOperands(LD, MN); |
| 791 | ReplaceNode(LD, MN); |
| 792 | return true; |
| 793 | } |
| 794 | |
| 795 | /// Turn an or of two masked values into the rotate left word immediate then |
| 796 | /// mask insert (rlwimi) instruction. |
| 797 | bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { |
| 798 | SDValue Op0 = N->getOperand(0); |
| 799 | SDValue Op1 = N->getOperand(1); |
| 800 | SDLoc dl(N); |
| 801 | |
| 802 | KnownBits LKnown = CurDAG->computeKnownBits(Op0); |
| 803 | KnownBits RKnown = CurDAG->computeKnownBits(Op1); |
| 804 | |
| 805 | unsigned TargetMask = LKnown.Zero.getZExtValue(); |
| 806 | unsigned InsertMask = RKnown.Zero.getZExtValue(); |
| 807 | |
| 808 | if ((TargetMask | InsertMask) == 0xFFFFFFFF) { |
| 809 | unsigned Op0Opc = Op0.getOpcode(); |
| 810 | unsigned Op1Opc = Op1.getOpcode(); |
| 811 | unsigned Value, SH = 0; |
| 812 | TargetMask = ~TargetMask; |
| 813 | InsertMask = ~InsertMask; |
| 814 | |
| 815 | // If the LHS has a foldable shift and the RHS does not, then swap it to the |
| 816 | // RHS so that we can fold the shift into the insert. |
| 817 | if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { |
| 818 | if (Op0.getOperand(0).getOpcode() == ISD::SHL || |
| 819 | Op0.getOperand(0).getOpcode() == ISD::SRL) { |
| 820 | if (Op1.getOperand(0).getOpcode() != ISD::SHL && |
| 821 | Op1.getOperand(0).getOpcode() != ISD::SRL) { |
| 822 | std::swap(Op0, Op1); |
| 823 | std::swap(Op0Opc, Op1Opc); |
| 824 | std::swap(TargetMask, InsertMask); |
| 825 | } |
| 826 | } |
| 827 | } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { |
| 828 | if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && |
| 829 | Op1.getOperand(0).getOpcode() != ISD::SRL) { |
| 830 | std::swap(Op0, Op1); |
| 831 | std::swap(Op0Opc, Op1Opc); |
| 832 | std::swap(TargetMask, InsertMask); |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | unsigned MB, ME; |
| 837 | if (isRunOfOnes(InsertMask, MB, ME)) { |
| 838 | if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && |
| 839 | isInt32Immediate(Op1.getOperand(1), Value)) { |
| 840 | Op1 = Op1.getOperand(0); |
| 841 | SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; |
| 842 | } |
| 843 | if (Op1Opc == ISD::AND) { |
| 844 | // The AND mask might not be a constant, and we need to make sure that |
| 845 | // if we're going to fold the masking with the insert, all bits not |
| 846 | // know to be zero in the mask are known to be one. |
| 847 | KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); |
| 848 | bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); |
| 849 | |
| 850 | unsigned SHOpc = Op1.getOperand(0).getOpcode(); |
| 851 | if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && |
| 852 | isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { |
| 853 | // Note that Value must be in range here (less than 32) because |
| 854 | // otherwise there would not be any bits set in InsertMask. |
| 855 | Op1 = Op1.getOperand(0).getOperand(0); |
| 856 | SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; |
| 857 | } |
| 858 | } |
| 859 | |
| 860 | SH &= 31; |
| 861 | SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), |
| 862 | getI32Imm(ME, dl) }; |
| 863 | ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); |
| 864 | return true; |
| 865 | } |
| 866 | } |
| 867 | return false; |
| 868 | } |
| 869 | |
| 870 | static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { |
| 871 | unsigned MaxTruncation = 0; |
| 872 | // Cannot use range-based for loop here as we need the actual use (i.e. we |
| 873 | // need the operand number corresponding to the use). A range-based for |
| 874 | // will unbox the use and provide an SDNode*. |
| 875 | for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); |
| 876 | Use != UseEnd; ++Use) { |
| 877 | unsigned Opc = |
| 878 | Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); |
| 879 | switch (Opc) { |
| 880 | default: return 0; |
| 881 | case ISD::TRUNCATE: |
| 882 | if (Use->isMachineOpcode()) |
| 883 | return 0; |
| 884 | MaxTruncation = |
| 885 | std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits()); |
| 886 | continue; |
| 887 | case ISD::STORE: { |
| 888 | if (Use->isMachineOpcode()) |
| 889 | return 0; |
| 890 | StoreSDNode *STN = cast<StoreSDNode>(*Use); |
| 891 | unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); |
| 892 | if (MemVTSize == 64 || Use.getOperandNo() != 0) |
| 893 | return 0; |
| 894 | MaxTruncation = std::max(MaxTruncation, MemVTSize); |
| 895 | continue; |
| 896 | } |
| 897 | case PPC::STW8: |
| 898 | case PPC::STWX8: |
| 899 | case PPC::STWU8: |
| 900 | case PPC::STWUX8: |
| 901 | if (Use.getOperandNo() != 0) |
| 902 | return 0; |
| 903 | MaxTruncation = std::max(MaxTruncation, 32u); |
| 904 | continue; |
| 905 | case PPC::STH8: |
| 906 | case PPC::STHX8: |
| 907 | case PPC::STHU8: |
| 908 | case PPC::STHUX8: |
| 909 | if (Use.getOperandNo() != 0) |
| 910 | return 0; |
| 911 | MaxTruncation = std::max(MaxTruncation, 16u); |
| 912 | continue; |
| 913 | case PPC::STB8: |
| 914 | case PPC::STBX8: |
| 915 | case PPC::STBU8: |
| 916 | case PPC::STBUX8: |
| 917 | if (Use.getOperandNo() != 0) |
| 918 | return 0; |
| 919 | MaxTruncation = std::max(MaxTruncation, 8u); |
| 920 | continue; |
| 921 | } |
| 922 | } |
| 923 | return MaxTruncation; |
| 924 | } |
| 925 | |
| 926 | // For any 32 < Num < 64, check if the Imm contains at least Num consecutive |
| 927 | // zeros and return the number of bits by the left of these consecutive zeros. |
| 928 | static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) { |
| 929 | unsigned HiTZ = llvm::countr_zero<uint32_t>(Hi_32(Imm)); |
| 930 | unsigned LoLZ = llvm::countl_zero<uint32_t>(Lo_32(Imm)); |
| 931 | if ((HiTZ + LoLZ) >= Num) |
| 932 | return (32 + HiTZ); |
| 933 | return 0; |
| 934 | } |
| 935 | |
| 936 | // Direct materialization of 64-bit constants by enumerated patterns. |
| 937 | static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, |
| 938 | uint64_t Imm, unsigned &InstCnt) { |
| 939 | unsigned TZ = llvm::countr_zero<uint64_t>(Imm); |
| 940 | unsigned LZ = llvm::countl_zero<uint64_t>(Imm); |
| 941 | unsigned TO = llvm::countr_one<uint64_t>(Imm); |
| 942 | unsigned LO = llvm::countl_one<uint64_t>(Imm); |
| 943 | unsigned Hi32 = Hi_32(Imm); |
| 944 | unsigned Lo32 = Lo_32(Imm); |
| 945 | SDNode *Result = nullptr; |
| 946 | unsigned Shift = 0; |
| 947 | |
| 948 | auto getI32Imm = [CurDAG, dl](unsigned Imm) { |
| 949 | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
| 950 | }; |
| 951 | |
| 952 | // Following patterns use 1 instructions to materialize the Imm. |
| 953 | InstCnt = 1; |
| 954 | // 1-1) Patterns : {zeros}{15-bit valve} |
| 955 | // {ones}{15-bit valve} |
| 956 | if (isInt<16>(Imm)) { |
| 957 | SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64); |
| 958 | return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); |
| 959 | } |
| 960 | // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros} |
| 961 | // {ones}{15-bit valve}{16 zeros} |
| 962 | if (TZ > 15 && (LZ > 32 || LO > 32)) |
| 963 | return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, |
| 964 | getI32Imm((Imm >> 16) & 0xffff)); |
| 965 | |
| 966 | // Following patterns use 2 instructions to materialize the Imm. |
| 967 | InstCnt = 2; |
| 968 | assert(LZ < 64 && "Unexpected leading zeros here.")(static_cast <bool> (LZ < 64 && "Unexpected leading zeros here." ) ? void (0) : __assert_fail ("LZ < 64 && \"Unexpected leading zeros here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 968, __extension__ __PRETTY_FUNCTION__)); |
| 969 | // Count of ones follwing the leading zeros. |
| 970 | unsigned FO = llvm::countl_one<uint64_t>(Imm << LZ); |
| 971 | // 2-1) Patterns : {zeros}{31-bit value} |
| 972 | // {ones}{31-bit value} |
| 973 | if (isInt<32>(Imm)) { |
| 974 | uint64_t ImmHi16 = (Imm >> 16) & 0xffff; |
| 975 | unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; |
| 976 | Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); |
| 977 | return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
| 978 | getI32Imm(Imm & 0xffff)); |
| 979 | } |
| 980 | // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros} |
| 981 | // {zeros}{15-bit value}{zeros} |
| 982 | // {zeros}{ones}{15-bit value} |
| 983 | // {ones}{15-bit value}{zeros} |
| 984 | // We can take advantage of LI's sign-extension semantics to generate leading |
| 985 | // ones, and then use RLDIC to mask off the ones in both sides after rotation. |
| 986 | if ((LZ + FO + TZ) > 48) { |
| 987 | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, |
| 988 | getI32Imm((Imm >> TZ) & 0xffff)); |
| 989 | return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), |
| 990 | getI32Imm(TZ), getI32Imm(LZ)); |
| 991 | } |
| 992 | // 2-3) Pattern : {zeros}{15-bit value}{ones} |
| 993 | // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value, |
| 994 | // therefore we can take advantage of LI's sign-extension semantics, and then |
| 995 | // mask them off after rotation. |
| 996 | // |
| 997 | // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+ |
| 998 | // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| |
| 999 | // +------------------------+ +------------------------+ |
| 1000 | // 63 0 63 0 |
| 1001 | // Imm (Imm >> (48 - LZ) & 0xffff) |
| 1002 | // +----sext-----|--16-bit--+ +clear-|-----------------+ |
| 1003 | // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| |
| 1004 | // +------------------------+ +------------------------+ |
| 1005 | // 63 0 63 0 |
| 1006 | // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ |
| 1007 | if ((LZ + TO) > 48) { |
| 1008 | // Since the immediates with (LZ > 32) have been handled by previous |
| 1009 | // patterns, here we have (LZ <= 32) to make sure we will not shift right |
| 1010 | // the Imm by a negative value. |
| 1011 | assert(LZ <= 32 && "Unexpected shift value.")(static_cast <bool> (LZ <= 32 && "Unexpected shift value." ) ? void (0) : __assert_fail ("LZ <= 32 && \"Unexpected shift value.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1011, __extension__ __PRETTY_FUNCTION__)); |
| 1012 | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, |
| 1013 | getI32Imm((Imm >> (48 - LZ) & 0xffff))); |
| 1014 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
| 1015 | getI32Imm(48 - LZ), getI32Imm(LZ)); |
| 1016 | } |
| 1017 | // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones} |
| 1018 | // {ones}{15-bit value}{ones} |
| 1019 | // We can take advantage of LI's sign-extension semantics to generate leading |
| 1020 | // ones, and then use RLDICL to mask off the ones in left sides (if required) |
| 1021 | // after rotation. |
| 1022 | // |
| 1023 | // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+ |
| 1024 | // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb| |
| 1025 | // +------------------------+ +------------------------+ |
| 1026 | // 63 0 63 0 |
| 1027 | // Imm (Imm >> TO) & 0xffff |
| 1028 | // +----sext-----|--16-bit--+ +LZ|---------------------+ |
| 1029 | // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111| |
| 1030 | // +------------------------+ +------------------------+ |
| 1031 | // 63 0 63 0 |
| 1032 | // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ |
| 1033 | if ((LZ + FO + TO) > 48) { |
| 1034 | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, |
| 1035 | getI32Imm((Imm >> TO) & 0xffff)); |
| 1036 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
| 1037 | getI32Imm(TO), getI32Imm(LZ)); |
| 1038 | } |
| 1039 | // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value} |
| 1040 | // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit |
| 1041 | // value, we can use LI for Lo16 without generating leading ones then add the |
| 1042 | // Hi16(in Lo32). |
| 1043 | if (LZ == 32 && ((Lo32 & 0x8000) == 0)) { |
| 1044 | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, |
| 1045 | getI32Imm(Lo32 & 0xffff)); |
| 1046 | return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0), |
| 1047 | getI32Imm(Lo32 >> 16)); |
| 1048 | } |
| 1049 | // 2-6) Patterns : {******}{49 zeros}{******} |
| 1050 | // {******}{49 ones}{******} |
| 1051 | // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15 |
| 1052 | // bits remain on both sides. Rotate right the Imm to construct an int<16> |
| 1053 | // value, use LI for int<16> value and then use RLDICL without mask to rotate |
| 1054 | // it back. |
| 1055 | // |
| 1056 | // 1) findContiguousZerosAtLeast(Imm, 49) |
| 1057 | // +------|--zeros-|------+ +---ones--||---15 bit--+ |
| 1058 | // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb| |
| 1059 | // +----------------------+ +----------------------+ |
| 1060 | // 63 0 63 0 |
| 1061 | // |
| 1062 | // 2) findContiguousZerosAtLeast(~Imm, 49) |
| 1063 | // +------|--ones--|------+ +---ones--||---15 bit--+ |
| 1064 | // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| |
| 1065 | // +----------------------+ +----------------------+ |
| 1066 | // 63 0 63 0 |
| 1067 | if ((Shift = findContiguousZerosAtLeast(Imm, 49)) || |
| 1068 | (Shift = findContiguousZerosAtLeast(~Imm, 49))) { |
| 1069 | uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); |
| 1070 | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, |
| 1071 | getI32Imm(RotImm & 0xffff)); |
| 1072 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
| 1073 | getI32Imm(Shift), getI32Imm(0)); |
| 1074 | } |
| 1075 | |
| 1076 | // Following patterns use 3 instructions to materialize the Imm. |
| 1077 | InstCnt = 3; |
| 1078 | // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros} |
| 1079 | // {zeros}{31-bit value}{zeros} |
| 1080 | // {zeros}{ones}{31-bit value} |
| 1081 | // {ones}{31-bit value}{zeros} |
| 1082 | // We can take advantage of LIS's sign-extension semantics to generate leading |
| 1083 | // ones, add the remaining bits with ORI, and then use RLDIC to mask off the |
| 1084 | // ones in both sides after rotation. |
| 1085 | if ((LZ + FO + TZ) > 32) { |
| 1086 | uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff; |
| 1087 | unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; |
| 1088 | Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); |
| 1089 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
| 1090 | getI32Imm((Imm >> TZ) & 0xffff)); |
| 1091 | return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), |
| 1092 | getI32Imm(TZ), getI32Imm(LZ)); |
| 1093 | } |
| 1094 | // 3-2) Pattern : {zeros}{31-bit value}{ones} |
| 1095 | // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits |
| 1096 | // value, therefore we can take advantage of LIS's sign-extension semantics, |
| 1097 | // add the remaining bits with ORI, and then mask them off after rotation. |
| 1098 | // This is similar to Pattern 2-3, please refer to the diagram there. |
| 1099 | if ((LZ + TO) > 32) { |
| 1100 | // Since the immediates with (LZ > 32) have been handled by previous |
| 1101 | // patterns, here we have (LZ <= 32) to make sure we will not shift right |
| 1102 | // the Imm by a negative value. |
| 1103 | assert(LZ <= 32 && "Unexpected shift value.")(static_cast <bool> (LZ <= 32 && "Unexpected shift value." ) ? void (0) : __assert_fail ("LZ <= 32 && \"Unexpected shift value.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1103, __extension__ __PRETTY_FUNCTION__)); |
| 1104 | Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, |
| 1105 | getI32Imm((Imm >> (48 - LZ)) & 0xffff)); |
| 1106 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
| 1107 | getI32Imm((Imm >> (32 - LZ)) & 0xffff)); |
| 1108 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
| 1109 | getI32Imm(32 - LZ), getI32Imm(LZ)); |
| 1110 | } |
| 1111 | // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones} |
| 1112 | // {ones}{31-bit value}{ones} |
| 1113 | // We can take advantage of LIS's sign-extension semantics to generate leading |
| 1114 | // ones, add the remaining bits with ORI, and then use RLDICL to mask off the |
| 1115 | // ones in left sides (if required) after rotation. |
| 1116 | // This is similar to Pattern 2-4, please refer to the diagram there. |
| 1117 | if ((LZ + FO + TO) > 32) { |
| 1118 | Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, |
| 1119 | getI32Imm((Imm >> (TO + 16)) & 0xffff)); |
| 1120 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
| 1121 | getI32Imm((Imm >> TO) & 0xffff)); |
| 1122 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
| 1123 | getI32Imm(TO), getI32Imm(LZ)); |
| 1124 | } |
| 1125 | // 3-4) Patterns : High word == Low word |
| 1126 | if (Hi32 == Lo32) { |
| 1127 | // Handle the first 32 bits. |
| 1128 | uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff; |
| 1129 | unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; |
| 1130 | Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); |
| 1131 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
| 1132 | getI32Imm(Lo32 & 0xffff)); |
| 1133 | // Use rldimi to insert the Low word into High word. |
| 1134 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), |
| 1135 | getI32Imm(0)}; |
| 1136 | return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
| 1137 | } |
| 1138 | // 3-5) Patterns : {******}{33 zeros}{******} |
| 1139 | // {******}{33 ones}{******} |
| 1140 | // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31 |
| 1141 | // bits remain on both sides. Rotate right the Imm to construct an int<32> |
| 1142 | // value, use LIS + ORI for int<32> value and then use RLDICL without mask to |
| 1143 | // rotate it back. |
| 1144 | // This is similar to Pattern 2-6, please refer to the diagram there. |
| 1145 | if ((Shift = findContiguousZerosAtLeast(Imm, 33)) || |
| 1146 | (Shift = findContiguousZerosAtLeast(~Imm, 33))) { |
| 1147 | uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); |
| 1148 | uint64_t ImmHi16 = (RotImm >> 16) & 0xffff; |
| 1149 | unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; |
| 1150 | Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); |
| 1151 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
| 1152 | getI32Imm(RotImm & 0xffff)); |
| 1153 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
| 1154 | getI32Imm(Shift), getI32Imm(0)); |
| 1155 | } |
| 1156 | |
| 1157 | InstCnt = 0; |
| 1158 | return nullptr; |
| 1159 | } |
| 1160 | |
| 1161 | // Try to select instructions to generate a 64 bit immediate using prefix as |
| 1162 | // well as non prefix instructions. The function will return the SDNode |
| 1163 | // to materialize that constant or it will return nullptr if it does not |
| 1164 | // find one. The variable InstCnt is set to the number of instructions that |
| 1165 | // were selected. |
| 1166 | static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl, |
| 1167 | uint64_t Imm, unsigned &InstCnt) { |
| 1168 | unsigned TZ = llvm::countr_zero<uint64_t>(Imm); |
| 1169 | unsigned LZ = llvm::countl_zero<uint64_t>(Imm); |
| 1170 | unsigned TO = llvm::countr_one<uint64_t>(Imm); |
| 1171 | unsigned FO = llvm::countl_one<uint64_t>(LZ == 64 ? 0 : (Imm << LZ)); |
| 1172 | unsigned Hi32 = Hi_32(Imm); |
| 1173 | unsigned Lo32 = Lo_32(Imm); |
| 1174 | |
| 1175 | auto getI32Imm = [CurDAG, dl](unsigned Imm) { |
| 1176 | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
| 1177 | }; |
| 1178 | |
| 1179 | auto getI64Imm = [CurDAG, dl](uint64_t Imm) { |
| 1180 | return CurDAG->getTargetConstant(Imm, dl, MVT::i64); |
| 1181 | }; |
| 1182 | |
| 1183 | // Following patterns use 1 instruction to materialize Imm. |
| 1184 | InstCnt = 1; |
| 1185 | |
| 1186 | // The pli instruction can materialize up to 34 bits directly. |
| 1187 | // If a constant fits within 34-bits, emit the pli instruction here directly. |
| 1188 | if (isInt<34>(Imm)) |
| 1189 | return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, |
| 1190 | CurDAG->getTargetConstant(Imm, dl, MVT::i64)); |
| 1191 | |
| 1192 | // Require at least two instructions. |
| 1193 | InstCnt = 2; |
| 1194 | SDNode *Result = nullptr; |
| 1195 | // Patterns : {zeros}{ones}{33-bit value}{zeros} |
| 1196 | // {zeros}{33-bit value}{zeros} |
| 1197 | // {zeros}{ones}{33-bit value} |
| 1198 | // {ones}{33-bit value}{zeros} |
| 1199 | // We can take advantage of PLI's sign-extension semantics to generate leading |
| 1200 | // ones, and then use RLDIC to mask off the ones on both sides after rotation. |
| 1201 | if ((LZ + FO + TZ) > 30) { |
| 1202 | APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff); |
| 1203 | APInt Extended = SignedInt34.sext(64); |
| 1204 | Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, |
| 1205 | getI64Imm(*Extended.getRawData())); |
| 1206 | return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), |
| 1207 | getI32Imm(TZ), getI32Imm(LZ)); |
| 1208 | } |
| 1209 | // Pattern : {zeros}{33-bit value}{ones} |
| 1210 | // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value, |
| 1211 | // therefore we can take advantage of PLI's sign-extension semantics, and then |
| 1212 | // mask them off after rotation. |
| 1213 | // |
| 1214 | // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+ |
| 1215 | // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| |
| 1216 | // +------------------------+ +------------------------+ |
| 1217 | // 63 0 63 0 |
| 1218 | // |
| 1219 | // +----sext-----|--34-bit--+ +clear-|-----------------+ |
| 1220 | // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| |
| 1221 | // +------------------------+ +------------------------+ |
| 1222 | // 63 0 63 0 |
| 1223 | if ((LZ + TO) > 30) { |
| 1224 | APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff); |
| 1225 | APInt Extended = SignedInt34.sext(64); |
| 1226 | Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, |
| 1227 | getI64Imm(*Extended.getRawData())); |
| 1228 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
| 1229 | getI32Imm(30 - LZ), getI32Imm(LZ)); |
| 1230 | } |
| 1231 | // Patterns : {zeros}{ones}{33-bit value}{ones} |
| 1232 | // {ones}{33-bit value}{ones} |
| 1233 | // Similar to LI we can take advantage of PLI's sign-extension semantics to |
| 1234 | // generate leading ones, and then use RLDICL to mask off the ones in left |
| 1235 | // sides (if required) after rotation. |
| 1236 | if ((LZ + FO + TO) > 30) { |
| 1237 | APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff); |
| 1238 | APInt Extended = SignedInt34.sext(64); |
| 1239 | Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, |
| 1240 | getI64Imm(*Extended.getRawData())); |
| 1241 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), |
| 1242 | getI32Imm(TO), getI32Imm(LZ)); |
| 1243 | } |
| 1244 | // Patterns : {******}{31 zeros}{******} |
| 1245 | // : {******}{31 ones}{******} |
| 1246 | // If Imm contains 31 consecutive zeros/ones then the remaining bit count |
| 1247 | // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI |
| 1248 | // for the int<33> value and then use RLDICL without a mask to rotate it back. |
| 1249 | // |
| 1250 | // +------|--ones--|------+ +---ones--||---33 bit--+ |
| 1251 | // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| |
| 1252 | // +----------------------+ +----------------------+ |
| 1253 | // 63 0 63 0 |
| 1254 | for (unsigned Shift = 0; Shift < 63; ++Shift) { |
| 1255 | uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); |
| 1256 | if (isInt<34>(RotImm)) { |
| 1257 | Result = |
| 1258 | CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm)); |
| 1259 | return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| 1260 | SDValue(Result, 0), getI32Imm(Shift), |
| 1261 | getI32Imm(0)); |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | // Patterns : High word == Low word |
| 1266 | // This is basically a splat of a 32 bit immediate. |
| 1267 | if (Hi32 == Lo32) { |
| 1268 | Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); |
| 1269 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), |
| 1270 | getI32Imm(0)}; |
| 1271 | return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
| 1272 | } |
| 1273 | |
| 1274 | InstCnt = 3; |
| 1275 | // Catch-all |
| 1276 | // This pattern can form any 64 bit immediate in 3 instructions. |
| 1277 | SDNode *ResultHi = |
| 1278 | CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); |
| 1279 | SDNode *ResultLo = |
| 1280 | CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32)); |
| 1281 | SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32), |
| 1282 | getI32Imm(0)}; |
| 1283 | return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
| 1284 | } |
| 1285 | |
| 1286 | static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm, |
| 1287 | unsigned *InstCnt = nullptr) { |
| 1288 | unsigned InstCntDirect = 0; |
| 1289 | // No more than 3 instructions are used if we can select the i64 immediate |
| 1290 | // directly. |
| 1291 | SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect); |
| 1292 | |
| 1293 | const PPCSubtarget &Subtarget = |
| 1294 | CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>(); |
| 1295 | |
| 1296 | // If we have prefixed instructions and there is a chance we can |
| 1297 | // materialize the constant with fewer prefixed instructions than |
| 1298 | // non-prefixed, try that. |
| 1299 | if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) { |
| 1300 | unsigned InstCntDirectP = 0; |
| 1301 | SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP); |
| 1302 | // Use the prefix case in either of two cases: |
| 1303 | // 1) We have no result from the non-prefix case to use. |
| 1304 | // 2) The non-prefix case uses more instructions than the prefix case. |
| 1305 | // If the prefix and non-prefix cases use the same number of instructions |
| 1306 | // we will prefer the non-prefix case. |
| 1307 | if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) { |
| 1308 | if (InstCnt) |
| 1309 | *InstCnt = InstCntDirectP; |
| 1310 | return ResultP; |
| 1311 | } |
| 1312 | } |
| 1313 | |
| 1314 | if (Result) { |
| 1315 | if (InstCnt) |
| 1316 | *InstCnt = InstCntDirect; |
| 1317 | return Result; |
| 1318 | } |
| 1319 | auto getI32Imm = [CurDAG, dl](unsigned Imm) { |
| 1320 | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
| 1321 | }; |
| 1322 | |
| 1323 | uint32_t Hi16OfLo32 = (Lo_32(Imm) >> 16) & 0xffff; |
| 1324 | uint32_t Lo16OfLo32 = Lo_32(Imm) & 0xffff; |
| 1325 | |
| 1326 | // Try to use 4 instructions to materialize the immediate which is "almost" a |
| 1327 | // splat of a 32 bit immediate. |
| 1328 | if (Hi16OfLo32 && Lo16OfLo32) { |
| 1329 | uint32_t Hi16OfHi32 = (Hi_32(Imm) >> 16) & 0xffff; |
| 1330 | uint32_t Lo16OfHi32 = Hi_32(Imm) & 0xffff; |
| 1331 | bool IsSelected = false; |
| 1332 | |
| 1333 | auto getSplat = [CurDAG, dl, getI32Imm](uint32_t Hi16, uint32_t Lo16) { |
| 1334 | SDNode *Result = |
| 1335 | CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi16)); |
| 1336 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, |
| 1337 | SDValue(Result, 0), getI32Imm(Lo16)); |
| 1338 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), |
| 1339 | getI32Imm(0)}; |
| 1340 | return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
| 1341 | }; |
| 1342 | |
| 1343 | if (Hi16OfHi32 == Lo16OfHi32 && Lo16OfHi32 == Lo16OfLo32) { |
| 1344 | IsSelected = true; |
| 1345 | Result = getSplat(Hi16OfLo32, Lo16OfLo32); |
| 1346 | // Modify Hi16OfHi32. |
| 1347 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(48), |
| 1348 | getI32Imm(0)}; |
| 1349 | Result = CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
| 1350 | } else if (Hi16OfHi32 == Hi16OfLo32 && Hi16OfLo32 == Lo16OfLo32) { |
| 1351 | IsSelected = true; |
| 1352 | Result = getSplat(Hi16OfHi32, Lo16OfHi32); |
| 1353 | // Modify Lo16OfLo32. |
| 1354 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16), |
| 1355 | getI32Imm(16), getI32Imm(31)}; |
| 1356 | Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops); |
| 1357 | } else if (Lo16OfHi32 == Lo16OfLo32 && Hi16OfLo32 == Lo16OfLo32) { |
| 1358 | IsSelected = true; |
| 1359 | Result = getSplat(Hi16OfHi32, Lo16OfHi32); |
| 1360 | // Modify Hi16OfLo32. |
| 1361 | SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16), |
| 1362 | getI32Imm(0), getI32Imm(15)}; |
| 1363 | Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops); |
| 1364 | } |
| 1365 | if (IsSelected == true) { |
| 1366 | if (InstCnt) |
| 1367 | *InstCnt = 4; |
| 1368 | return Result; |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | // Handle the upper 32 bit value. |
| 1373 | Result = |
| 1374 | selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect); |
| 1375 | // Add in the last bits as required. |
| 1376 | if (Hi16OfLo32) { |
| 1377 | Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, |
| 1378 | SDValue(Result, 0), getI32Imm(Hi16OfLo32)); |
| 1379 | ++InstCntDirect; |
| 1380 | } |
| 1381 | if (Lo16OfLo32) { |
| 1382 | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), |
| 1383 | getI32Imm(Lo16OfLo32)); |
| 1384 | ++InstCntDirect; |
| 1385 | } |
| 1386 | if (InstCnt) |
| 1387 | *InstCnt = InstCntDirect; |
| 1388 | return Result; |
| 1389 | } |
| 1390 | |
| 1391 | // Select a 64-bit constant. |
| 1392 | static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { |
| 1393 | SDLoc dl(N); |
| 1394 | |
| 1395 | // Get 64 bit value. |
| 1396 | int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| 1397 | if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { |
| 1398 | uint64_t SextImm = SignExtend64(Imm, MinSize); |
| 1399 | SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); |
| 1400 | if (isInt<16>(SextImm)) |
| 1401 | return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); |
| 1402 | } |
| 1403 | return selectI64Imm(CurDAG, dl, Imm); |
| 1404 | } |
| 1405 | |
| 1406 | namespace { |
| 1407 | |
| 1408 | class BitPermutationSelector { |
| 1409 | struct ValueBit { |
| 1410 | SDValue V; |
| 1411 | |
| 1412 | // The bit number in the value, using a convention where bit 0 is the |
| 1413 | // lowest-order bit. |
| 1414 | unsigned Idx; |
| 1415 | |
| 1416 | // ConstZero means a bit we need to mask off. |
| 1417 | // Variable is a bit comes from an input variable. |
| 1418 | // VariableKnownToBeZero is also a bit comes from an input variable, |
| 1419 | // but it is known to be already zero. So we do not need to mask them. |
| 1420 | enum Kind { |
| 1421 | ConstZero, |
| 1422 | Variable, |
| 1423 | VariableKnownToBeZero |
| 1424 | } K; |
| 1425 | |
| 1426 | ValueBit(SDValue V, unsigned I, Kind K = Variable) |
| 1427 | : V(V), Idx(I), K(K) {} |
| 1428 | ValueBit(Kind K = Variable) : Idx(UINT32_MAX(4294967295U)), K(K) {} |
| 1429 | |
| 1430 | bool isZero() const { |
| 1431 | return K == ConstZero || K == VariableKnownToBeZero; |
| 1432 | } |
| 1433 | |
| 1434 | bool hasValue() const { |
| 1435 | return K == Variable || K == VariableKnownToBeZero; |
| 1436 | } |
| 1437 | |
| 1438 | SDValue getValue() const { |
| 1439 | assert(hasValue() && "Cannot get the value of a constant bit")(static_cast <bool> (hasValue() && "Cannot get the value of a constant bit" ) ? void (0) : __assert_fail ("hasValue() && \"Cannot get the value of a constant bit\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1439, __extension__ __PRETTY_FUNCTION__)); |
| 1440 | return V; |
| 1441 | } |
| 1442 | |
| 1443 | unsigned getValueBitIndex() const { |
| 1444 | assert(hasValue() && "Cannot get the value bit index of a constant bit")(static_cast <bool> (hasValue() && "Cannot get the value bit index of a constant bit" ) ? void (0) : __assert_fail ("hasValue() && \"Cannot get the value bit index of a constant bit\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1444, __extension__ __PRETTY_FUNCTION__)); |
| 1445 | return Idx; |
| 1446 | } |
| 1447 | }; |
| 1448 | |
| 1449 | // A bit group has the same underlying value and the same rotate factor. |
| 1450 | struct BitGroup { |
| 1451 | SDValue V; |
| 1452 | unsigned RLAmt; |
| 1453 | unsigned StartIdx, EndIdx; |
| 1454 | |
| 1455 | // This rotation amount assumes that the lower 32 bits of the quantity are |
| 1456 | // replicated in the high 32 bits by the rotation operator (which is done |
| 1457 | // by rlwinm and friends in 64-bit mode). |
| 1458 | bool Repl32; |
| 1459 | // Did converting to Repl32 == true change the rotation factor? If it did, |
| 1460 | // it decreased it by 32. |
| 1461 | bool Repl32CR; |
| 1462 | // Was this group coalesced after setting Repl32 to true? |
| 1463 | bool Repl32Coalesced; |
| 1464 | |
| 1465 | BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) |
| 1466 | : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), |
| 1467 | Repl32Coalesced(false) { |
| 1468 | LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << Rdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tbit group for " << V .getNode() << " RLAmt = " << R << " [" << S << ", " << E << "]\n"; } } while (false) |
| 1469 | << " [" << S << ", " << E << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tbit group for " << V .getNode() << " RLAmt = " << R << " [" << S << ", " << E << "]\n"; } } while (false); |
| 1470 | } |
| 1471 | }; |
| 1472 | |
| 1473 | // Information on each (Value, RLAmt) pair (like the number of groups |
| 1474 | // associated with each) used to choose the lowering method. |
| 1475 | struct ValueRotInfo { |
| 1476 | SDValue V; |
| 1477 | unsigned RLAmt = std::numeric_limits<unsigned>::max(); |
| 1478 | unsigned NumGroups = 0; |
| 1479 | unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); |
| 1480 | bool Repl32 = false; |
| 1481 | |
| 1482 | ValueRotInfo() = default; |
| 1483 | |
| 1484 | // For sorting (in reverse order) by NumGroups, and then by |
| 1485 | // FirstGroupStartIdx. |
| 1486 | bool operator < (const ValueRotInfo &Other) const { |
| 1487 | // We need to sort so that the non-Repl32 come first because, when we're |
| 1488 | // doing masking, the Repl32 bit groups might be subsumed into the 64-bit |
| 1489 | // masking operation. |
| 1490 | if (Repl32 < Other.Repl32) |
| 1491 | return true; |
| 1492 | else if (Repl32 > Other.Repl32) |
| 1493 | return false; |
| 1494 | else if (NumGroups > Other.NumGroups) |
| 1495 | return true; |
| 1496 | else if (NumGroups < Other.NumGroups) |
| 1497 | return false; |
| 1498 | else if (RLAmt == 0 && Other.RLAmt != 0) |
| 1499 | return true; |
| 1500 | else if (RLAmt != 0 && Other.RLAmt == 0) |
| 1501 | return false; |
| 1502 | else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) |
| 1503 | return true; |
| 1504 | return false; |
| 1505 | } |
| 1506 | }; |
| 1507 | |
| 1508 | using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; |
| 1509 | using ValueBitsMemoizer = |
| 1510 | DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; |
| 1511 | ValueBitsMemoizer Memoizer; |
| 1512 | |
| 1513 | // Return a pair of bool and a SmallVector pointer to a memoization entry. |
| 1514 | // The bool is true if something interesting was deduced, otherwise if we're |
| 1515 | // providing only a generic representation of V (or something else likewise |
| 1516 | // uninteresting for instruction selection) through the SmallVector. |
| 1517 | std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, |
| 1518 | unsigned NumBits) { |
| 1519 | auto &ValueEntry = Memoizer[V]; |
| 1520 | if (ValueEntry) |
| 1521 | return std::make_pair(ValueEntry->first, &ValueEntry->second); |
| 1522 | ValueEntry.reset(new ValueBitsMemoizedValue()); |
| 1523 | bool &Interesting = ValueEntry->first; |
| 1524 | SmallVector<ValueBit, 64> &Bits = ValueEntry->second; |
| 1525 | Bits.resize(NumBits); |
| 1526 | |
| 1527 | switch (V.getOpcode()) { |
| 1528 | default: break; |
| 1529 | case ISD::ROTL: |
| 1530 | if (isa<ConstantSDNode>(V.getOperand(1))) { |
| 1531 | unsigned RotAmt = V.getConstantOperandVal(1); |
| 1532 | |
| 1533 | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
| 1534 | |
| 1535 | for (unsigned i = 0; i < NumBits; ++i) |
| 1536 | Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; |
| 1537 | |
| 1538 | return std::make_pair(Interesting = true, &Bits); |
| 1539 | } |
| 1540 | break; |
| 1541 | case ISD::SHL: |
| 1542 | case PPCISD::SHL: |
| 1543 | if (isa<ConstantSDNode>(V.getOperand(1))) { |
| 1544 | unsigned ShiftAmt = V.getConstantOperandVal(1); |
| 1545 | |
| 1546 | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
| 1547 | |
| 1548 | for (unsigned i = ShiftAmt; i < NumBits; ++i) |
| 1549 | Bits[i] = LHSBits[i - ShiftAmt]; |
| 1550 | |
| 1551 | for (unsigned i = 0; i < ShiftAmt; ++i) |
| 1552 | Bits[i] = ValueBit(ValueBit::ConstZero); |
| 1553 | |
| 1554 | return std::make_pair(Interesting = true, &Bits); |
| 1555 | } |
| 1556 | break; |
| 1557 | case ISD::SRL: |
| 1558 | case PPCISD::SRL: |
| 1559 | if (isa<ConstantSDNode>(V.getOperand(1))) { |
| 1560 | unsigned ShiftAmt = V.getConstantOperandVal(1); |
| 1561 | |
| 1562 | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
| 1563 | |
| 1564 | for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) |
| 1565 | Bits[i] = LHSBits[i + ShiftAmt]; |
| 1566 | |
| 1567 | for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) |
| 1568 | Bits[i] = ValueBit(ValueBit::ConstZero); |
| 1569 | |
| 1570 | return std::make_pair(Interesting = true, &Bits); |
| 1571 | } |
| 1572 | break; |
| 1573 | case ISD::AND: |
| 1574 | if (isa<ConstantSDNode>(V.getOperand(1))) { |
| 1575 | uint64_t Mask = V.getConstantOperandVal(1); |
| 1576 | |
| 1577 | const SmallVector<ValueBit, 64> *LHSBits; |
| 1578 | // Mark this as interesting, only if the LHS was also interesting. This |
| 1579 | // prevents the overall procedure from matching a single immediate 'and' |
| 1580 | // (which is non-optimal because such an and might be folded with other |
| 1581 | // things if we don't select it here). |
| 1582 | std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); |
| 1583 | |
| 1584 | for (unsigned i = 0; i < NumBits; ++i) |
| 1585 | if (((Mask >> i) & 1) == 1) |
| 1586 | Bits[i] = (*LHSBits)[i]; |
| 1587 | else { |
| 1588 | // AND instruction masks this bit. If the input is already zero, |
| 1589 | // we have nothing to do here. Otherwise, make the bit ConstZero. |
| 1590 | if ((*LHSBits)[i].isZero()) |
| 1591 | Bits[i] = (*LHSBits)[i]; |
| 1592 | else |
| 1593 | Bits[i] = ValueBit(ValueBit::ConstZero); |
| 1594 | } |
| 1595 | |
| 1596 | return std::make_pair(Interesting, &Bits); |
| 1597 | } |
| 1598 | break; |
| 1599 | case ISD::OR: { |
| 1600 | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
| 1601 | const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; |
| 1602 | |
| 1603 | bool AllDisjoint = true; |
| 1604 | SDValue LastVal = SDValue(); |
| 1605 | unsigned LastIdx = 0; |
| 1606 | for (unsigned i = 0; i < NumBits; ++i) { |
| 1607 | if (LHSBits[i].isZero() && RHSBits[i].isZero()) { |
| 1608 | // If both inputs are known to be zero and one is ConstZero and |
| 1609 | // another is VariableKnownToBeZero, we can select whichever |
| 1610 | // we like. To minimize the number of bit groups, we select |
| 1611 | // VariableKnownToBeZero if this bit is the next bit of the same |
| 1612 | // input variable from the previous bit. Otherwise, we select |
| 1613 | // ConstZero. |
| 1614 | if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && |
| 1615 | LHSBits[i].getValueBitIndex() == LastIdx + 1) |
| 1616 | Bits[i] = LHSBits[i]; |
| 1617 | else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && |
| 1618 | RHSBits[i].getValueBitIndex() == LastIdx + 1) |
| 1619 | Bits[i] = RHSBits[i]; |
| 1620 | else |
| 1621 | Bits[i] = ValueBit(ValueBit::ConstZero); |
| 1622 | } |
| 1623 | else if (LHSBits[i].isZero()) |
| 1624 | Bits[i] = RHSBits[i]; |
| 1625 | else if (RHSBits[i].isZero()) |
| 1626 | Bits[i] = LHSBits[i]; |
| 1627 | else { |
| 1628 | AllDisjoint = false; |
| 1629 | break; |
| 1630 | } |
| 1631 | // We remember the value and bit index of this bit. |
| 1632 | if (Bits[i].hasValue()) { |
| 1633 | LastVal = Bits[i].getValue(); |
| 1634 | LastIdx = Bits[i].getValueBitIndex(); |
| 1635 | } |
| 1636 | else { |
| 1637 | if (LastVal) LastVal = SDValue(); |
| 1638 | LastIdx = 0; |
| 1639 | } |
| 1640 | } |
| 1641 | |
| 1642 | if (!AllDisjoint) |
| 1643 | break; |
| 1644 | |
| 1645 | return std::make_pair(Interesting = true, &Bits); |
| 1646 | } |
| 1647 | case ISD::ZERO_EXTEND: { |
| 1648 | // We support only the case with zero extension from i32 to i64 so far. |
| 1649 | if (V.getValueType() != MVT::i64 || |
| 1650 | V.getOperand(0).getValueType() != MVT::i32) |
| 1651 | break; |
| 1652 | |
| 1653 | const SmallVector<ValueBit, 64> *LHSBits; |
| 1654 | const unsigned NumOperandBits = 32; |
| 1655 | std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), |
| 1656 | NumOperandBits); |
| 1657 | |
| 1658 | for (unsigned i = 0; i < NumOperandBits; ++i) |
| 1659 | Bits[i] = (*LHSBits)[i]; |
| 1660 | |
| 1661 | for (unsigned i = NumOperandBits; i < NumBits; ++i) |
| 1662 | Bits[i] = ValueBit(ValueBit::ConstZero); |
| 1663 | |
| 1664 | return std::make_pair(Interesting, &Bits); |
| 1665 | } |
| 1666 | case ISD::TRUNCATE: { |
| 1667 | EVT FromType = V.getOperand(0).getValueType(); |
| 1668 | EVT ToType = V.getValueType(); |
| 1669 | // We support only the case with truncate from i64 to i32. |
| 1670 | if (FromType != MVT::i64 || ToType != MVT::i32) |
| 1671 | break; |
| 1672 | const unsigned NumAllBits = FromType.getSizeInBits(); |
| 1673 | SmallVector<ValueBit, 64> *InBits; |
| 1674 | std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), |
| 1675 | NumAllBits); |
| 1676 | const unsigned NumValidBits = ToType.getSizeInBits(); |
| 1677 | |
| 1678 | // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. |
| 1679 | // So, we cannot include this truncate. |
| 1680 | bool UseUpper32bit = false; |
| 1681 | for (unsigned i = 0; i < NumValidBits; ++i) |
| 1682 | if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { |
| 1683 | UseUpper32bit = true; |
| 1684 | break; |
| 1685 | } |
| 1686 | if (UseUpper32bit) |
| 1687 | break; |
| 1688 | |
| 1689 | for (unsigned i = 0; i < NumValidBits; ++i) |
| 1690 | Bits[i] = (*InBits)[i]; |
| 1691 | |
| 1692 | return std::make_pair(Interesting, &Bits); |
| 1693 | } |
| 1694 | case ISD::AssertZext: { |
| 1695 | // For AssertZext, we look through the operand and |
| 1696 | // mark the bits known to be zero. |
| 1697 | const SmallVector<ValueBit, 64> *LHSBits; |
| 1698 | std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), |
| 1699 | NumBits); |
| 1700 | |
| 1701 | EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); |
| 1702 | const unsigned NumValidBits = FromType.getSizeInBits(); |
| 1703 | for (unsigned i = 0; i < NumValidBits; ++i) |
| 1704 | Bits[i] = (*LHSBits)[i]; |
| 1705 | |
| 1706 | // These bits are known to be zero but the AssertZext may be from a value |
| 1707 | // that already has some constant zero bits (i.e. from a masking and). |
| 1708 | for (unsigned i = NumValidBits; i < NumBits; ++i) |
| 1709 | Bits[i] = (*LHSBits)[i].hasValue() |
| 1710 | ? ValueBit((*LHSBits)[i].getValue(), |
| 1711 | (*LHSBits)[i].getValueBitIndex(), |
| 1712 | ValueBit::VariableKnownToBeZero) |
| 1713 | : ValueBit(ValueBit::ConstZero); |
| 1714 | |
| 1715 | return std::make_pair(Interesting, &Bits); |
| 1716 | } |
| 1717 | case ISD::LOAD: |
| 1718 | LoadSDNode *LD = cast<LoadSDNode>(V); |
| 1719 | if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { |
| 1720 | EVT VT = LD->getMemoryVT(); |
| 1721 | const unsigned NumValidBits = VT.getSizeInBits(); |
| 1722 | |
| 1723 | for (unsigned i = 0; i < NumValidBits; ++i) |
| 1724 | Bits[i] = ValueBit(V, i); |
| 1725 | |
| 1726 | // These bits are known to be zero. |
| 1727 | for (unsigned i = NumValidBits; i < NumBits; ++i) |
| 1728 | Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); |
| 1729 | |
| 1730 | // Zero-extending load itself cannot be optimized. So, it is not |
| 1731 | // interesting by itself though it gives useful information. |
| 1732 | return std::make_pair(Interesting = false, &Bits); |
| 1733 | } |
| 1734 | break; |
| 1735 | } |
| 1736 | |
| 1737 | for (unsigned i = 0; i < NumBits; ++i) |
| 1738 | Bits[i] = ValueBit(V, i); |
| 1739 | |
| 1740 | return std::make_pair(Interesting = false, &Bits); |
| 1741 | } |
| 1742 | |
| 1743 | // For each value (except the constant ones), compute the left-rotate amount |
| 1744 | // to get it from its original to final position. |
| 1745 | void computeRotationAmounts() { |
| 1746 | NeedMask = false; |
| 1747 | RLAmt.resize(Bits.size()); |
| 1748 | for (unsigned i = 0; i < Bits.size(); ++i) |
| 1749 | if (Bits[i].hasValue()) { |
| 1750 | unsigned VBI = Bits[i].getValueBitIndex(); |
| 1751 | if (i >= VBI) |
| 1752 | RLAmt[i] = i - VBI; |
| 1753 | else |
| 1754 | RLAmt[i] = Bits.size() - (VBI - i); |
| 1755 | } else if (Bits[i].isZero()) { |
| 1756 | NeedMask = true; |
| 1757 | RLAmt[i] = UINT32_MAX(4294967295U); |
| 1758 | } else { |
| 1759 | llvm_unreachable("Unknown value bit type")::llvm::llvm_unreachable_internal("Unknown value bit type", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 1759); |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | // Collect groups of consecutive bits with the same underlying value and |
| 1764 | // rotation factor. If we're doing late masking, we ignore zeros, otherwise |
| 1765 | // they break up groups. |
| 1766 | void collectBitGroups(bool LateMask) { |
| 1767 | BitGroups.clear(); |
| 1768 | |
| 1769 | unsigned LastRLAmt = RLAmt[0]; |
| 1770 | SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); |
| 1771 | unsigned LastGroupStartIdx = 0; |
| 1772 | bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); |
| 1773 | for (unsigned i = 1; i < Bits.size(); ++i) { |
| 1774 | unsigned ThisRLAmt = RLAmt[i]; |
| 1775 | SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); |
| 1776 | if (LateMask && !ThisValue) { |
| 1777 | ThisValue = LastValue; |
| 1778 | ThisRLAmt = LastRLAmt; |
| 1779 | // If we're doing late masking, then the first bit group always starts |
| 1780 | // at zero (even if the first bits were zero). |
| 1781 | if (BitGroups.empty()) |
| 1782 | LastGroupStartIdx = 0; |
| 1783 | } |
| 1784 | |
| 1785 | // If this bit is known to be zero and the current group is a bit group |
| 1786 | // of zeros, we do not need to terminate the current bit group even the |
| 1787 | // Value or RLAmt does not match here. Instead, we terminate this group |
| 1788 | // when the first non-zero bit appears later. |
| 1789 | if (IsGroupOfZeros && Bits[i].isZero()) |
| 1790 | continue; |
| 1791 | |
| 1792 | // If this bit has the same underlying value and the same rotate factor as |
| 1793 | // the last one, then they're part of the same group. |
| 1794 | if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) |
| 1795 | // We cannot continue the current group if this bits is not known to |
| 1796 | // be zero in a bit group of zeros. |
| 1797 | if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) |
| 1798 | continue; |
| 1799 | |
| 1800 | if (LastValue.getNode()) |
| 1801 | BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, |
| 1802 | i-1)); |
| 1803 | LastRLAmt = ThisRLAmt; |
| 1804 | LastValue = ThisValue; |
| 1805 | LastGroupStartIdx = i; |
| 1806 | IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); |
| 1807 | } |
| 1808 | if (LastValue.getNode()) |
| 1809 | BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, |
| 1810 | Bits.size()-1)); |
| 1811 | |
| 1812 | if (BitGroups.empty()) |
| 1813 | return; |
| 1814 | |
| 1815 | // We might be able to combine the first and last groups. |
| 1816 | if (BitGroups.size() > 1) { |
| 1817 | // If the first and last groups are the same, then remove the first group |
| 1818 | // in favor of the last group, making the ending index of the last group |
| 1819 | // equal to the ending index of the to-be-removed first group. |
| 1820 | if (BitGroups[0].StartIdx == 0 && |
| 1821 | BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && |
| 1822 | BitGroups[0].V == BitGroups[BitGroups.size()-1].V && |
| 1823 | BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { |
| 1824 | LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining final bit group with initial one\n" ; } } while (false); |
| 1825 | BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; |
| 1826 | BitGroups.erase(BitGroups.begin()); |
| 1827 | } |
| 1828 | } |
| 1829 | } |
| 1830 | |
| 1831 | // Take all (SDValue, RLAmt) pairs and sort them by the number of groups |
| 1832 | // associated with each. If the number of groups are same, we prefer a group |
| 1833 | // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate |
| 1834 | // instruction. If there is a degeneracy, pick the one that occurs |
| 1835 | // first (in the final value). |
| 1836 | void collectValueRotInfo() { |
| 1837 | ValueRots.clear(); |
| 1838 | |
| 1839 | for (auto &BG : BitGroups) { |
| 1840 | unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); |
| 1841 | ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; |
| 1842 | VRI.V = BG.V; |
| 1843 | VRI.RLAmt = BG.RLAmt; |
| 1844 | VRI.Repl32 = BG.Repl32; |
| 1845 | VRI.NumGroups += 1; |
| 1846 | VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); |
| 1847 | } |
| 1848 | |
| 1849 | // Now that we've collected the various ValueRotInfo instances, we need to |
| 1850 | // sort them. |
| 1851 | ValueRotsVec.clear(); |
| 1852 | for (auto &I : ValueRots) { |
| 1853 | ValueRotsVec.push_back(I.second); |
| 1854 | } |
| 1855 | llvm::sort(ValueRotsVec); |
| 1856 | } |
| 1857 | |
| 1858 | // In 64-bit mode, rlwinm and friends have a rotation operator that |
| 1859 | // replicates the low-order 32 bits into the high-order 32-bits. The mask |
| 1860 | // indices of these instructions can only be in the lower 32 bits, so they |
| 1861 | // can only represent some 64-bit bit groups. However, when they can be used, |
| 1862 | // the 32-bit replication can be used to represent, as a single bit group, |
| 1863 | // otherwise separate bit groups. We'll convert to replicated-32-bit bit |
| 1864 | // groups when possible. Returns true if any of the bit groups were |
| 1865 | // converted. |
| 1866 | void assignRepl32BitGroups() { |
| 1867 | // If we have bits like this: |
| 1868 | // |
| 1869 | // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
| 1870 | // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 |
| 1871 | // Groups: | RLAmt = 8 | RLAmt = 40 | |
| 1872 | // |
| 1873 | // But, making use of a 32-bit operation that replicates the low-order 32 |
| 1874 | // bits into the high-order 32 bits, this can be one bit group with a RLAmt |
| 1875 | // of 8. |
| 1876 | |
| 1877 | auto IsAllLow32 = [this](BitGroup & BG) { |
| 1878 | if (BG.StartIdx <= BG.EndIdx) { |
| 1879 | for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { |
| 1880 | if (!Bits[i].hasValue()) |
| 1881 | continue; |
| 1882 | if (Bits[i].getValueBitIndex() >= 32) |
| 1883 | return false; |
| 1884 | } |
| 1885 | } else { |
| 1886 | for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { |
| 1887 | if (!Bits[i].hasValue()) |
| 1888 | continue; |
| 1889 | if (Bits[i].getValueBitIndex() >= 32) |
| 1890 | return false; |
| 1891 | } |
| 1892 | for (unsigned i = 0; i <= BG.EndIdx; ++i) { |
| 1893 | if (!Bits[i].hasValue()) |
| 1894 | continue; |
| 1895 | if (Bits[i].getValueBitIndex() >= 32) |
| 1896 | return false; |
| 1897 | } |
| 1898 | } |
| 1899 | |
| 1900 | return true; |
| 1901 | }; |
| 1902 | |
| 1903 | for (auto &BG : BitGroups) { |
| 1904 | // If this bit group has RLAmt of 0 and will not be merged with |
| 1905 | // another bit group, we don't benefit from Repl32. We don't mark |
| 1906 | // such group to give more freedom for later instruction selection. |
| 1907 | if (BG.RLAmt == 0) { |
| 1908 | auto PotentiallyMerged = [this](BitGroup & BG) { |
| 1909 | for (auto &BG2 : BitGroups) |
| 1910 | if (&BG != &BG2 && BG.V == BG2.V && |
| 1911 | (BG2.RLAmt == 0 || BG2.RLAmt == 32)) |
| 1912 | return true; |
| 1913 | return false; |
| 1914 | }; |
| 1915 | if (!PotentiallyMerged(BG)) |
| 1916 | continue; |
| 1917 | } |
| 1918 | if (BG.StartIdx < 32 && BG.EndIdx < 32) { |
| 1919 | if (IsAllLow32(BG)) { |
| 1920 | if (BG.RLAmt >= 32) { |
| 1921 | BG.RLAmt -= 32; |
| 1922 | BG.Repl32CR = true; |
| 1923 | } |
| 1924 | |
| 1925 | BG.Repl32 = true; |
| 1926 | |
| 1927 | LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t32-bit replicated bit group for " << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" << BG.StartIdx << ", " << BG .EndIdx << "]\n"; } } while (false) |
| 1928 | << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t32-bit replicated bit group for " << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" << BG.StartIdx << ", " << BG .EndIdx << "]\n"; } } while (false) |
| 1929 | << BG.StartIdx << ", " << BG.EndIdx << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t32-bit replicated bit group for " << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" << BG.StartIdx << ", " << BG .EndIdx << "]\n"; } } while (false); |
| 1930 | } |
| 1931 | } |
| 1932 | } |
| 1933 | |
| 1934 | // Now walk through the bit groups, consolidating where possible. |
| 1935 | for (auto I = BitGroups.begin(); I != BitGroups.end();) { |
| 1936 | // We might want to remove this bit group by merging it with the previous |
| 1937 | // group (which might be the ending group). |
| 1938 | auto IP = (I == BitGroups.begin()) ? |
| 1939 | std::prev(BitGroups.end()) : std::prev(I); |
| 1940 | if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && |
| 1941 | I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { |
| 1942 | |
| 1943 | LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I-> RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP ->StartIdx << ", " << IP->EndIdx << "]\n" ; } } while (false) |
| 1944 | << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I-> RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP ->StartIdx << ", " << IP->EndIdx << "]\n" ; } } while (false) |
| 1945 | << I->StartIdx << ", " << I->EndIdxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I-> RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP ->StartIdx << ", " << IP->EndIdx << "]\n" ; } } while (false) |
| 1946 | << "] with group with range [" << IP->StartIdx << ", "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I-> RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP ->StartIdx << ", " << IP->EndIdx << "]\n" ; } } while (false) |
| 1947 | << IP->EndIdx << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I-> RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP ->StartIdx << ", " << IP->EndIdx << "]\n" ; } } while (false); |
| 1948 | |
| 1949 | IP->EndIdx = I->EndIdx; |
| 1950 | IP->Repl32CR = IP->Repl32CR || I->Repl32CR; |
| 1951 | IP->Repl32Coalesced = true; |
| 1952 | I = BitGroups.erase(I); |
| 1953 | continue; |
| 1954 | } else { |
| 1955 | // There is a special case worth handling: If there is a single group |
| 1956 | // covering the entire upper 32 bits, and it can be merged with both |
| 1957 | // the next and previous groups (which might be the same group), then |
| 1958 | // do so. If it is the same group (so there will be only one group in |
| 1959 | // total), then we need to reverse the order of the range so that it |
| 1960 | // covers the entire 64 bits. |
| 1961 | if (I->StartIdx == 32 && I->EndIdx == 63) { |
| 1962 | assert(std::next(I) == BitGroups.end() &&(static_cast <bool> (std::next(I) == BitGroups.end() && "bit group ends at index 63 but there is another?") ? void ( 0) : __assert_fail ("std::next(I) == BitGroups.end() && \"bit group ends at index 63 but there is another?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1963, __extension__ __PRETTY_FUNCTION__)) |
| 1963 | "bit group ends at index 63 but there is another?")(static_cast <bool> (std::next(I) == BitGroups.end() && "bit group ends at index 63 but there is another?") ? void ( 0) : __assert_fail ("std::next(I) == BitGroups.end() && \"bit group ends at index 63 but there is another?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 1963, __extension__ __PRETTY_FUNCTION__)); |
| 1964 | auto IN = BitGroups.begin(); |
| 1965 | |
| 1966 | if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && |
| 1967 | (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && |
| 1968 | IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && |
| 1969 | IsAllLow32(*I)) { |
| 1970 | |
| 1971 | LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false) |
| 1972 | << " RLAmt = " << I->RLAmt << " [" << I->StartIdxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false) |
| 1973 | << ", " << I->EndIdxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false) |
| 1974 | << "] with 32-bit replicated groups with ranges ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false) |
| 1975 | << IP->StartIdx << ", " << IP->EndIdx << "] and ["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false) |
| 1976 | << IN->StartIdx << ", " << IN->EndIdx << "]\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN ->EndIdx << "]\n"; } } while (false); |
| 1977 | |
| 1978 | if (IP == IN) { |
| 1979 | // There is only one other group; change it to cover the whole |
| 1980 | // range (backward, so that it can still be Repl32 but cover the |
| 1981 | // whole 64-bit range). |
| 1982 | IP->StartIdx = 31; |
| 1983 | IP->EndIdx = 30; |
| 1984 | IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; |
| 1985 | IP->Repl32Coalesced = true; |
| 1986 | I = BitGroups.erase(I); |
| 1987 | } else { |
| 1988 | // There are two separate groups, one before this group and one |
| 1989 | // after us (at the beginning). We're going to remove this group, |
| 1990 | // but also the group at the very beginning. |
| 1991 | IP->EndIdx = IN->EndIdx; |
| 1992 | IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; |
| 1993 | IP->Repl32Coalesced = true; |
| 1994 | I = BitGroups.erase(I); |
Value stored to 'I' is never read | |
| 1995 | BitGroups.erase(BitGroups.begin()); |
| 1996 | } |
| 1997 | |
| 1998 | // This must be the last group in the vector (and we might have |
| 1999 | // just invalidated the iterator above), so break here. |
| 2000 | break; |
| 2001 | } |
| 2002 | } |
| 2003 | } |
| 2004 | |
| 2005 | ++I; |
| 2006 | } |
| 2007 | } |
| 2008 | |
| 2009 | SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { |
| 2010 | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
| 2011 | } |
| 2012 | |
| 2013 | uint64_t getZerosMask() { |
| 2014 | uint64_t Mask = 0; |
| 2015 | for (unsigned i = 0; i < Bits.size(); ++i) { |
| 2016 | if (Bits[i].hasValue()) |
| 2017 | continue; |
| 2018 | Mask |= (UINT64_C(1)1UL << i); |
| 2019 | } |
| 2020 | |
| 2021 | return ~Mask; |
| 2022 | } |
| 2023 | |
| 2024 | // This method extends an input value to 64 bit if input is 32-bit integer. |
| 2025 | // While selecting instructions in BitPermutationSelector in 64-bit mode, |
| 2026 | // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. |
| 2027 | // In such case, we extend it to 64 bit to be consistent with other values. |
| 2028 | SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { |
| 2029 | if (V.getValueSizeInBits() == 64) |
| 2030 | return V; |
| 2031 | |
| 2032 | assert(V.getValueSizeInBits() == 32)(static_cast <bool> (V.getValueSizeInBits() == 32) ? void (0) : __assert_fail ("V.getValueSizeInBits() == 32", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 2032, __extension__ __PRETTY_FUNCTION__)); |
| 2033 | SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
| 2034 | SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, |
| 2035 | MVT::i64), 0); |
| 2036 | SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, |
| 2037 | MVT::i64, ImDef, V, |
| 2038 | SubRegIdx), 0); |
| 2039 | return ExtVal; |
| 2040 | } |
| 2041 | |
| 2042 | SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { |
| 2043 | if (V.getValueSizeInBits() == 32) |
| 2044 | return V; |
| 2045 | |
| 2046 | assert(V.getValueSizeInBits() == 64)(static_cast <bool> (V.getValueSizeInBits() == 64) ? void (0) : __assert_fail ("V.getValueSizeInBits() == 64", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 2046, __extension__ __PRETTY_FUNCTION__)); |
| 2047 | SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
| 2048 | SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, |
| 2049 | MVT::i32, V, SubRegIdx), 0); |
| 2050 | return SubVal; |
| 2051 | } |
| 2052 | |
| 2053 | // Depending on the number of groups for a particular value, it might be |
| 2054 | // better to rotate, mask explicitly (using andi/andis), and then or the |
| 2055 | // result. Select this part of the result first. |
| 2056 | void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { |
| 2057 | if (BPermRewriterNoMasking) |
| 2058 | return; |
| 2059 | |
| 2060 | for (ValueRotInfo &VRI : ValueRotsVec) { |
| 2061 | unsigned Mask = 0; |
| 2062 | for (unsigned i = 0; i < Bits.size(); ++i) { |
| 2063 | if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) |
| 2064 | continue; |
| 2065 | if (RLAmt[i] != VRI.RLAmt) |
| 2066 | continue; |
| 2067 | Mask |= (1u << i); |
| 2068 | } |
| 2069 | |
| 2070 | // Compute the masks for andi/andis that would be necessary. |
| 2071 | unsigned ANDIMask = (Mask & UINT16_MAX(65535)), ANDISMask = Mask >> 16; |
| 2072 | assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask for value bit groups") ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask for value bit groups\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2073, __extension__ __PRETTY_FUNCTION__)) |
| 2073 | "No set bits in mask for value bit groups")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask for value bit groups") ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask for value bit groups\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2073, __extension__ __PRETTY_FUNCTION__)); |
| 2074 | bool NeedsRotate = VRI.RLAmt != 0; |
| 2075 | |
| 2076 | // We're trying to minimize the number of instructions. If we have one |
| 2077 | // group, using one of andi/andis can break even. If we have three |
| 2078 | // groups, we can use both andi and andis and break even (to use both |
| 2079 | // andi and andis we also need to or the results together). We need four |
| 2080 | // groups if we also need to rotate. To use andi/andis we need to do more |
| 2081 | // than break even because rotate-and-mask instructions tend to be easier |
| 2082 | // to schedule. |
| 2083 | |
| 2084 | // FIXME: We've biased here against using andi/andis, which is right for |
| 2085 | // POWER cores, but not optimal everywhere. For example, on the A2, |
| 2086 | // andi/andis have single-cycle latency whereas the rotate-and-mask |
| 2087 | // instructions take two cycles, and it would be better to bias toward |
| 2088 | // andi/andis in break-even cases. |
| 2089 | |
| 2090 | unsigned NumAndInsts = (unsigned) NeedsRotate + |
| 2091 | (unsigned) (ANDIMask != 0) + |
| 2092 | (unsigned) (ANDISMask != 0) + |
| 2093 | (unsigned) (ANDIMask != 0 && ANDISMask != 0) + |
| 2094 | (unsigned) (bool) Res; |
| 2095 | |
| 2096 | LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << ":" << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << VRI.NumGroups << "\n" ; } } while (false) |
| 2097 | << " RL: " << VRI.RLAmt << ":"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << ":" << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << VRI.NumGroups << "\n" ; } } while (false) |
| 2098 | << "\n\t\t\tisel using masking: " << NumAndInstsdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << ":" << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << VRI.NumGroups << "\n" ; } } while (false) |
| 2099 | << " using rotates: " << VRI.NumGroups << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << ":" << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << VRI.NumGroups << "\n" ; } } while (false); |
| 2100 | |
| 2101 | if (NumAndInsts >= VRI.NumGroups) |
| 2102 | continue; |
| 2103 | |
| 2104 | LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\t\t\tusing masking\n"; } } while (false); |
| 2105 | |
| 2106 | if (InstCnt) *InstCnt += NumAndInsts; |
| 2107 | |
| 2108 | SDValue VRot; |
| 2109 | if (VRI.RLAmt) { |
| 2110 | SDValue Ops[] = |
| 2111 | { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), |
| 2112 | getI32Imm(0, dl), getI32Imm(31, dl) }; |
| 2113 | VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
| 2114 | Ops), 0); |
| 2115 | } else { |
| 2116 | VRot = TruncateToInt32(VRI.V, dl); |
| 2117 | } |
| 2118 | |
| 2119 | SDValue ANDIVal, ANDISVal; |
| 2120 | if (ANDIMask != 0) |
| 2121 | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, |
| 2122 | VRot, getI32Imm(ANDIMask, dl)), |
| 2123 | 0); |
| 2124 | if (ANDISMask != 0) |
| 2125 | ANDISVal = |
| 2126 | SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot, |
| 2127 | getI32Imm(ANDISMask, dl)), |
| 2128 | 0); |
| 2129 | |
| 2130 | SDValue TotalVal; |
| 2131 | if (!ANDIVal) |
| 2132 | TotalVal = ANDISVal; |
| 2133 | else if (!ANDISVal) |
| 2134 | TotalVal = ANDIVal; |
| 2135 | else |
| 2136 | TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, |
| 2137 | ANDIVal, ANDISVal), 0); |
| 2138 | |
| 2139 | if (!Res) |
| 2140 | Res = TotalVal; |
| 2141 | else |
| 2142 | Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, |
| 2143 | Res, TotalVal), 0); |
| 2144 | |
| 2145 | // Now, remove all groups with this underlying value and rotation |
| 2146 | // factor. |
| 2147 | eraseMatchingBitGroups([VRI](const BitGroup &BG) { |
| 2148 | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; |
| 2149 | }); |
| 2150 | } |
| 2151 | } |
| 2152 | |
| 2153 | // Instruction selection for the 32-bit case. |
| 2154 | SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { |
| 2155 | SDLoc dl(N); |
| 2156 | SDValue Res; |
| 2157 | |
| 2158 | if (InstCnt) *InstCnt = 0; |
| 2159 | |
| 2160 | // Take care of cases that should use andi/andis first. |
| 2161 | SelectAndParts32(dl, Res, InstCnt); |
| 2162 | |
| 2163 | // If we've not yet selected a 'starting' instruction, and we have no zeros |
| 2164 | // to fill in, select the (Value, RLAmt) with the highest priority (largest |
| 2165 | // number of groups), and start with this rotated value. |
| 2166 | if ((!NeedMask || LateMask) && !Res) { |
| 2167 | ValueRotInfo &VRI = ValueRotsVec[0]; |
| 2168 | if (VRI.RLAmt) { |
| 2169 | if (InstCnt) *InstCnt += 1; |
| 2170 | SDValue Ops[] = |
| 2171 | { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), |
| 2172 | getI32Imm(0, dl), getI32Imm(31, dl) }; |
| 2173 | Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), |
| 2174 | 0); |
| 2175 | } else { |
| 2176 | Res = TruncateToInt32(VRI.V, dl); |
| 2177 | } |
| 2178 | |
| 2179 | // Now, remove all groups with this underlying value and rotation factor. |
| 2180 | eraseMatchingBitGroups([VRI](const BitGroup &BG) { |
| 2181 | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; |
| 2182 | }); |
| 2183 | } |
| 2184 | |
| 2185 | if (InstCnt) *InstCnt += BitGroups.size(); |
| 2186 | |
| 2187 | // Insert the other groups (one at a time). |
| 2188 | for (auto &BG : BitGroups) { |
| 2189 | if (!Res) { |
| 2190 | SDValue Ops[] = |
| 2191 | { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), |
| 2192 | getI32Imm(Bits.size() - BG.EndIdx - 1, dl), |
| 2193 | getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; |
| 2194 | Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
| 2195 | } else { |
| 2196 | SDValue Ops[] = |
| 2197 | { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), |
| 2198 | getI32Imm(Bits.size() - BG.EndIdx - 1, dl), |
| 2199 | getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; |
| 2200 | Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); |
| 2201 | } |
| 2202 | } |
| 2203 | |
| 2204 | if (LateMask) { |
| 2205 | unsigned Mask = (unsigned) getZerosMask(); |
| 2206 | |
| 2207 | unsigned ANDIMask = (Mask & UINT16_MAX(65535)), ANDISMask = Mask >> 16; |
| 2208 | assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in zeros mask?") ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in zeros mask?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2209, __extension__ __PRETTY_FUNCTION__)) |
| 2209 | "No set bits in zeros mask?")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in zeros mask?") ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in zeros mask?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2209, __extension__ __PRETTY_FUNCTION__)); |
| 2210 | |
| 2211 | if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + |
| 2212 | (unsigned) (ANDISMask != 0) + |
| 2213 | (unsigned) (ANDIMask != 0 && ANDISMask != 0); |
| 2214 | |
| 2215 | SDValue ANDIVal, ANDISVal; |
| 2216 | if (ANDIMask != 0) |
| 2217 | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, |
| 2218 | Res, getI32Imm(ANDIMask, dl)), |
| 2219 | 0); |
| 2220 | if (ANDISMask != 0) |
| 2221 | ANDISVal = |
| 2222 | SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res, |
| 2223 | getI32Imm(ANDISMask, dl)), |
| 2224 | 0); |
| 2225 | |
| 2226 | if (!ANDIVal) |
| 2227 | Res = ANDISVal; |
| 2228 | else if (!ANDISVal) |
| 2229 | Res = ANDIVal; |
| 2230 | else |
| 2231 | Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, |
| 2232 | ANDIVal, ANDISVal), 0); |
| 2233 | } |
| 2234 | |
| 2235 | return Res.getNode(); |
| 2236 | } |
| 2237 | |
| 2238 | unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, |
| 2239 | unsigned MaskStart, unsigned MaskEnd, |
| 2240 | bool IsIns) { |
| 2241 | // In the notation used by the instructions, 'start' and 'end' are reversed |
| 2242 | // because bits are counted from high to low order. |
| 2243 | unsigned InstMaskStart = 64 - MaskEnd - 1, |
| 2244 | InstMaskEnd = 64 - MaskStart - 1; |
| 2245 | |
| 2246 | if (Repl32) |
| 2247 | return 1; |
| 2248 | |
| 2249 | if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || |
| 2250 | InstMaskEnd == 63 - RLAmt) |
| 2251 | return 1; |
| 2252 | |
| 2253 | return 2; |
| 2254 | } |
| 2255 | |
| 2256 | // For 64-bit values, not all combinations of rotates and masks are |
| 2257 | // available. Produce one if it is available. |
| 2258 | SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, |
| 2259 | bool Repl32, unsigned MaskStart, unsigned MaskEnd, |
| 2260 | unsigned *InstCnt = nullptr) { |
| 2261 | // In the notation used by the instructions, 'start' and 'end' are reversed |
| 2262 | // because bits are counted from high to low order. |
| 2263 | unsigned InstMaskStart = 64 - MaskEnd - 1, |
| 2264 | InstMaskEnd = 64 - MaskStart - 1; |
| 2265 | |
| 2266 | if (InstCnt) *InstCnt += 1; |
| 2267 | |
| 2268 | if (Repl32) { |
| 2269 | // This rotation amount assumes that the lower 32 bits of the quantity |
| 2270 | // are replicated in the high 32 bits by the rotation operator (which is |
| 2271 | // done by rlwinm and friends). |
| 2272 | assert(InstMaskStart >= 32 && "Mask cannot start out of range")(static_cast <bool> (InstMaskStart >= 32 && "Mask cannot start out of range" ) ? void (0) : __assert_fail ("InstMaskStart >= 32 && \"Mask cannot start out of range\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2272, __extension__ __PRETTY_FUNCTION__)); |
| 2273 | assert(InstMaskEnd >= 32 && "Mask cannot end out of range")(static_cast <bool> (InstMaskEnd >= 32 && "Mask cannot end out of range" ) ? void (0) : __assert_fail ("InstMaskEnd >= 32 && \"Mask cannot end out of range\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2273, __extension__ __PRETTY_FUNCTION__)); |
| 2274 | SDValue Ops[] = |
| 2275 | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| 2276 | getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; |
| 2277 | return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, |
| 2278 | Ops), 0); |
| 2279 | } |
| 2280 | |
| 2281 | if (InstMaskEnd == 63) { |
| 2282 | SDValue Ops[] = |
| 2283 | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| 2284 | getI32Imm(InstMaskStart, dl) }; |
| 2285 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); |
| 2286 | } |
| 2287 | |
| 2288 | if (InstMaskStart == 0) { |
| 2289 | SDValue Ops[] = |
| 2290 | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| 2291 | getI32Imm(InstMaskEnd, dl) }; |
| 2292 | return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); |
| 2293 | } |
| 2294 | |
| 2295 | if (InstMaskEnd == 63 - RLAmt) { |
| 2296 | SDValue Ops[] = |
| 2297 | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| 2298 | getI32Imm(InstMaskStart, dl) }; |
| 2299 | return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); |
| 2300 | } |
| 2301 | |
| 2302 | // We cannot do this with a single instruction, so we'll use two. The |
| 2303 | // problem is that we're not free to choose both a rotation amount and mask |
| 2304 | // start and end independently. We can choose an arbitrary mask start and |
| 2305 | // end, but then the rotation amount is fixed. Rotation, however, can be |
| 2306 | // inverted, and so by applying an "inverse" rotation first, we can get the |
| 2307 | // desired result. |
| 2308 | if (InstCnt) *InstCnt += 1; |
| 2309 | |
| 2310 | // The rotation mask for the second instruction must be MaskStart. |
| 2311 | unsigned RLAmt2 = MaskStart; |
| 2312 | // The first instruction must rotate V so that the overall rotation amount |
| 2313 | // is RLAmt. |
| 2314 | unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; |
| 2315 | if (RLAmt1) |
| 2316 | V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); |
| 2317 | return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); |
| 2318 | } |
| 2319 | |
| 2320 | // For 64-bit values, not all combinations of rotates and masks are |
| 2321 | // available. Produce a rotate-mask-and-insert if one is available. |
| 2322 | SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, |
| 2323 | unsigned RLAmt, bool Repl32, unsigned MaskStart, |
| 2324 | unsigned MaskEnd, unsigned *InstCnt = nullptr) { |
| 2325 | // In the notation used by the instructions, 'start' and 'end' are reversed |
| 2326 | // because bits are counted from high to low order. |
| 2327 | unsigned InstMaskStart = 64 - MaskEnd - 1, |
| 2328 | InstMaskEnd = 64 - MaskStart - 1; |
| 2329 | |
| 2330 | if (InstCnt) *InstCnt += 1; |
| 2331 | |
| 2332 | if (Repl32) { |
| 2333 | // This rotation amount assumes that the lower 32 bits of the quantity |
| 2334 | // are replicated in the high 32 bits by the rotation operator (which is |
| 2335 | // done by rlwinm and friends). |
| 2336 | assert(InstMaskStart >= 32 && "Mask cannot start out of range")(static_cast <bool> (InstMaskStart >= 32 && "Mask cannot start out of range" ) ? void (0) : __assert_fail ("InstMaskStart >= 32 && \"Mask cannot start out of range\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2336, __extension__ __PRETTY_FUNCTION__)); |
| 2337 | assert(InstMaskEnd >= 32 && "Mask cannot end out of range")(static_cast <bool> (InstMaskEnd >= 32 && "Mask cannot end out of range" ) ? void (0) : __assert_fail ("InstMaskEnd >= 32 && \"Mask cannot end out of range\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2337, __extension__ __PRETTY_FUNCTION__)); |
| 2338 | SDValue Ops[] = |
| 2339 | { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| 2340 | getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; |
| 2341 | return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, |
| 2342 | Ops), 0); |
| 2343 | } |
| 2344 | |
| 2345 | if (InstMaskEnd == 63 - RLAmt) { |
| 2346 | SDValue Ops[] = |
| 2347 | { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| 2348 | getI32Imm(InstMaskStart, dl) }; |
| 2349 | return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); |
| 2350 | } |
| 2351 | |
| 2352 | // We cannot do this with a single instruction, so we'll use two. The |
| 2353 | // problem is that we're not free to choose both a rotation amount and mask |
| 2354 | // start and end independently. We can choose an arbitrary mask start and |
| 2355 | // end, but then the rotation amount is fixed. Rotation, however, can be |
| 2356 | // inverted, and so by applying an "inverse" rotation first, we can get the |
| 2357 | // desired result. |
| 2358 | if (InstCnt) *InstCnt += 1; |
| 2359 | |
| 2360 | // The rotation mask for the second instruction must be MaskStart. |
| 2361 | unsigned RLAmt2 = MaskStart; |
| 2362 | // The first instruction must rotate V so that the overall rotation amount |
| 2363 | // is RLAmt. |
| 2364 | unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; |
| 2365 | if (RLAmt1) |
| 2366 | V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); |
| 2367 | return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); |
| 2368 | } |
| 2369 | |
| 2370 | void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { |
| 2371 | if (BPermRewriterNoMasking) |
| 2372 | return; |
| 2373 | |
| 2374 | // The idea here is the same as in the 32-bit version, but with additional |
| 2375 | // complications from the fact that Repl32 might be true. Because we |
| 2376 | // aggressively convert bit groups to Repl32 form (which, for small |
| 2377 | // rotation factors, involves no other change), and then coalesce, it might |
| 2378 | // be the case that a single 64-bit masking operation could handle both |
| 2379 | // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 |
| 2380 | // form allowed coalescing, then we must use a 32-bit rotaton in order to |
| 2381 | // completely capture the new combined bit group. |
| 2382 | |
| 2383 | for (ValueRotInfo &VRI : ValueRotsVec) { |
| 2384 | uint64_t Mask = 0; |
| 2385 | |
| 2386 | // We need to add to the mask all bits from the associated bit groups. |
| 2387 | // If Repl32 is false, we need to add bits from bit groups that have |
| 2388 | // Repl32 true, but are trivially convertable to Repl32 false. Such a |
| 2389 | // group is trivially convertable if it overlaps only with the lower 32 |
| 2390 | // bits, and the group has not been coalesced. |
| 2391 | auto MatchingBG = [VRI](const BitGroup &BG) { |
| 2392 | if (VRI.V != BG.V) |
| 2393 | return false; |
| 2394 | |
| 2395 | unsigned EffRLAmt = BG.RLAmt; |
| 2396 | if (!VRI.Repl32 && BG.Repl32) { |
| 2397 | if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && |
| 2398 | !BG.Repl32Coalesced) { |
| 2399 | if (BG.Repl32CR) |
| 2400 | EffRLAmt += 32; |
| 2401 | } else { |
| 2402 | return false; |
| 2403 | } |
| 2404 | } else if (VRI.Repl32 != BG.Repl32) { |
| 2405 | return false; |
| 2406 | } |
| 2407 | |
| 2408 | return VRI.RLAmt == EffRLAmt; |
| 2409 | }; |
| 2410 | |
| 2411 | for (auto &BG : BitGroups) { |
| 2412 | if (!MatchingBG(BG)) |
| 2413 | continue; |
| 2414 | |
| 2415 | if (BG.StartIdx <= BG.EndIdx) { |
| 2416 | for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) |
| 2417 | Mask |= (UINT64_C(1)1UL << i); |
| 2418 | } else { |
| 2419 | for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) |
| 2420 | Mask |= (UINT64_C(1)1UL << i); |
| 2421 | for (unsigned i = 0; i <= BG.EndIdx; ++i) |
| 2422 | Mask |= (UINT64_C(1)1UL << i); |
| 2423 | } |
| 2424 | } |
| 2425 | |
| 2426 | // We can use the 32-bit andi/andis technique if the mask does not |
| 2427 | // require any higher-order bits. This can save an instruction compared |
| 2428 | // to always using the general 64-bit technique. |
| 2429 | bool Use32BitInsts = isUInt<32>(Mask); |
| 2430 | // Compute the masks for andi/andis that would be necessary. |
| 2431 | unsigned ANDIMask = (Mask & UINT16_MAX(65535)), |
| 2432 | ANDISMask = (Mask >> 16) & UINT16_MAX(65535); |
| 2433 | |
| 2434 | bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); |
| 2435 | |
| 2436 | unsigned NumAndInsts = (unsigned) NeedsRotate + |
| 2437 | (unsigned) (bool) Res; |
| 2438 | unsigned NumOfSelectInsts = 0; |
| 2439 | selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts); |
| 2440 | assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.")(static_cast <bool> (NumOfSelectInsts > 0 && "Failed to select an i64 constant.") ? void (0) : __assert_fail ("NumOfSelectInsts > 0 && \"Failed to select an i64 constant.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2440, __extension__ __PRETTY_FUNCTION__)); |
| 2441 | if (Use32BitInsts) |
| 2442 | NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + |
| 2443 | (unsigned) (ANDIMask != 0 && ANDISMask != 0); |
| 2444 | else |
| 2445 | NumAndInsts += NumOfSelectInsts + /* and */ 1; |
| 2446 | |
| 2447 | unsigned NumRLInsts = 0; |
| 2448 | bool FirstBG = true; |
| 2449 | bool MoreBG = false; |
| 2450 | for (auto &BG : BitGroups) { |
| 2451 | if (!MatchingBG(BG)) { |
| 2452 | MoreBG = true; |
| 2453 | continue; |
| 2454 | } |
| 2455 | NumRLInsts += |
| 2456 | SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, |
| 2457 | !FirstBG); |
| 2458 | FirstBG = false; |
| 2459 | } |
| 2460 | |
| 2461 | LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << NumRLInsts << "\n"; } } while (false) |
| 2462 | << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << NumRLInsts << "\n"; } } while (false) |
| 2463 | << "\n\t\t\tisel using masking: " << NumAndInstsdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << NumRLInsts << "\n"; } } while (false) |
| 2464 | << " using rotates: " << NumRLInsts << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << NumRLInsts << "\n"; } } while (false); |
| 2465 | |
| 2466 | // When we'd use andi/andis, we bias toward using the rotates (andi only |
| 2467 | // has a record form, and is cracked on POWER cores). However, when using |
| 2468 | // general 64-bit constant formation, bias toward the constant form, |
| 2469 | // because that exposes more opportunities for CSE. |
| 2470 | if (NumAndInsts > NumRLInsts) |
| 2471 | continue; |
| 2472 | // When merging multiple bit groups, instruction or is used. |
| 2473 | // But when rotate is used, rldimi can inert the rotated value into any |
| 2474 | // register, so instruction or can be avoided. |
| 2475 | if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) |
| 2476 | continue; |
| 2477 | |
| 2478 | LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\t\t\tusing masking\n"; } } while (false); |
| 2479 | |
| 2480 | if (InstCnt) *InstCnt += NumAndInsts; |
| 2481 | |
| 2482 | SDValue VRot; |
| 2483 | // We actually need to generate a rotation if we have a non-zero rotation |
| 2484 | // factor or, in the Repl32 case, if we care about any of the |
| 2485 | // higher-order replicated bits. In the latter case, we generate a mask |
| 2486 | // backward so that it actually includes the entire 64 bits. |
| 2487 | if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) |
| 2488 | VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, |
| 2489 | VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); |
| 2490 | else |
| 2491 | VRot = VRI.V; |
| 2492 | |
| 2493 | SDValue TotalVal; |
| 2494 | if (Use32BitInsts) { |
| 2495 | assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value" ) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2496, __extension__ __PRETTY_FUNCTION__)) |
| 2496 | "No set bits in mask when using 32-bit ands for 64-bit value")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value" ) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2496, __extension__ __PRETTY_FUNCTION__)); |
| 2497 | |
| 2498 | SDValue ANDIVal, ANDISVal; |
| 2499 | if (ANDIMask != 0) |
| 2500 | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, |
| 2501 | ExtendToInt64(VRot, dl), |
| 2502 | getI32Imm(ANDIMask, dl)), |
| 2503 | 0); |
| 2504 | if (ANDISMask != 0) |
| 2505 | ANDISVal = |
| 2506 | SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, |
| 2507 | ExtendToInt64(VRot, dl), |
| 2508 | getI32Imm(ANDISMask, dl)), |
| 2509 | 0); |
| 2510 | |
| 2511 | if (!ANDIVal) |
| 2512 | TotalVal = ANDISVal; |
| 2513 | else if (!ANDISVal) |
| 2514 | TotalVal = ANDIVal; |
| 2515 | else |
| 2516 | TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
| 2517 | ExtendToInt64(ANDIVal, dl), ANDISVal), 0); |
| 2518 | } else { |
| 2519 | TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); |
| 2520 | TotalVal = |
| 2521 | SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, |
| 2522 | ExtendToInt64(VRot, dl), TotalVal), |
| 2523 | 0); |
| 2524 | } |
| 2525 | |
| 2526 | if (!Res) |
| 2527 | Res = TotalVal; |
| 2528 | else |
| 2529 | Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
| 2530 | ExtendToInt64(Res, dl), TotalVal), |
| 2531 | 0); |
| 2532 | |
| 2533 | // Now, remove all groups with this underlying value and rotation |
| 2534 | // factor. |
| 2535 | eraseMatchingBitGroups(MatchingBG); |
| 2536 | } |
| 2537 | } |
| 2538 | |
| 2539 | // Instruction selection for the 64-bit case. |
| 2540 | SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { |
| 2541 | SDLoc dl(N); |
| 2542 | SDValue Res; |
| 2543 | |
| 2544 | if (InstCnt) *InstCnt = 0; |
| 2545 | |
| 2546 | // Take care of cases that should use andi/andis first. |
| 2547 | SelectAndParts64(dl, Res, InstCnt); |
| 2548 | |
| 2549 | // If we've not yet selected a 'starting' instruction, and we have no zeros |
| 2550 | // to fill in, select the (Value, RLAmt) with the highest priority (largest |
| 2551 | // number of groups), and start with this rotated value. |
| 2552 | if ((!NeedMask || LateMask) && !Res) { |
| 2553 | // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 |
| 2554 | // groups will come first, and so the VRI representing the largest number |
| 2555 | // of groups might not be first (it might be the first Repl32 groups). |
| 2556 | unsigned MaxGroupsIdx = 0; |
| 2557 | if (!ValueRotsVec[0].Repl32) { |
| 2558 | for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) |
| 2559 | if (ValueRotsVec[i].Repl32) { |
| 2560 | if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) |
| 2561 | MaxGroupsIdx = i; |
| 2562 | break; |
| 2563 | } |
| 2564 | } |
| 2565 | |
| 2566 | ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; |
| 2567 | bool NeedsRotate = false; |
| 2568 | if (VRI.RLAmt) { |
| 2569 | NeedsRotate = true; |
| 2570 | } else if (VRI.Repl32) { |
| 2571 | for (auto &BG : BitGroups) { |
| 2572 | if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || |
| 2573 | BG.Repl32 != VRI.Repl32) |
| 2574 | continue; |
| 2575 | |
| 2576 | // We don't need a rotate if the bit group is confined to the lower |
| 2577 | // 32 bits. |
| 2578 | if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) |
| 2579 | continue; |
| 2580 | |
| 2581 | NeedsRotate = true; |
| 2582 | break; |
| 2583 | } |
| 2584 | } |
| 2585 | |
| 2586 | if (NeedsRotate) |
| 2587 | Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, |
| 2588 | VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, |
| 2589 | InstCnt); |
| 2590 | else |
| 2591 | Res = VRI.V; |
| 2592 | |
| 2593 | // Now, remove all groups with this underlying value and rotation factor. |
| 2594 | if (Res) |
| 2595 | eraseMatchingBitGroups([VRI](const BitGroup &BG) { |
| 2596 | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && |
| 2597 | BG.Repl32 == VRI.Repl32; |
| 2598 | }); |
| 2599 | } |
| 2600 | |
| 2601 | // Because 64-bit rotates are more flexible than inserts, we might have a |
| 2602 | // preference regarding which one we do first (to save one instruction). |
| 2603 | if (!Res) |
| 2604 | for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { |
| 2605 | if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, |
| 2606 | false) < |
| 2607 | SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, |
| 2608 | true)) { |
| 2609 | if (I != BitGroups.begin()) { |
| 2610 | BitGroup BG = *I; |
| 2611 | BitGroups.erase(I); |
| 2612 | BitGroups.insert(BitGroups.begin(), BG); |
| 2613 | } |
| 2614 | |
| 2615 | break; |
| 2616 | } |
| 2617 | } |
| 2618 | |
| 2619 | // Insert the other groups (one at a time). |
| 2620 | for (auto &BG : BitGroups) { |
| 2621 | if (!Res) |
| 2622 | Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, |
| 2623 | BG.EndIdx, InstCnt); |
| 2624 | else |
| 2625 | Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, |
| 2626 | BG.StartIdx, BG.EndIdx, InstCnt); |
| 2627 | } |
| 2628 | |
| 2629 | if (LateMask) { |
| 2630 | uint64_t Mask = getZerosMask(); |
| 2631 | |
| 2632 | // We can use the 32-bit andi/andis technique if the mask does not |
| 2633 | // require any higher-order bits. This can save an instruction compared |
| 2634 | // to always using the general 64-bit technique. |
| 2635 | bool Use32BitInsts = isUInt<32>(Mask); |
| 2636 | // Compute the masks for andi/andis that would be necessary. |
| 2637 | unsigned ANDIMask = (Mask & UINT16_MAX(65535)), |
| 2638 | ANDISMask = (Mask >> 16) & UINT16_MAX(65535); |
| 2639 | |
| 2640 | if (Use32BitInsts) { |
| 2641 | assert((ANDIMask != 0 || ANDISMask != 0) &&(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value" ) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2642, __extension__ __PRETTY_FUNCTION__)) |
| 2642 | "No set bits in mask when using 32-bit ands for 64-bit value")(static_cast <bool> ((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value" ) ? void (0) : __assert_fail ("(ANDIMask != 0 || ANDISMask != 0) && \"No set bits in mask when using 32-bit ands for 64-bit value\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2642, __extension__ __PRETTY_FUNCTION__)); |
| 2643 | |
| 2644 | if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + |
| 2645 | (unsigned) (ANDISMask != 0) + |
| 2646 | (unsigned) (ANDIMask != 0 && ANDISMask != 0); |
| 2647 | |
| 2648 | SDValue ANDIVal, ANDISVal; |
| 2649 | if (ANDIMask != 0) |
| 2650 | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, |
| 2651 | ExtendToInt64(Res, dl), |
| 2652 | getI32Imm(ANDIMask, dl)), |
| 2653 | 0); |
| 2654 | if (ANDISMask != 0) |
| 2655 | ANDISVal = |
| 2656 | SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, |
| 2657 | ExtendToInt64(Res, dl), |
| 2658 | getI32Imm(ANDISMask, dl)), |
| 2659 | 0); |
| 2660 | |
| 2661 | if (!ANDIVal) |
| 2662 | Res = ANDISVal; |
| 2663 | else if (!ANDISVal) |
| 2664 | Res = ANDIVal; |
| 2665 | else |
| 2666 | Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
| 2667 | ExtendToInt64(ANDIVal, dl), ANDISVal), 0); |
| 2668 | } else { |
| 2669 | unsigned NumOfSelectInsts = 0; |
| 2670 | SDValue MaskVal = |
| 2671 | SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0); |
| 2672 | Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, |
| 2673 | ExtendToInt64(Res, dl), MaskVal), |
| 2674 | 0); |
| 2675 | if (InstCnt) |
| 2676 | *InstCnt += NumOfSelectInsts + /* and */ 1; |
| 2677 | } |
| 2678 | } |
| 2679 | |
| 2680 | return Res.getNode(); |
| 2681 | } |
| 2682 | |
| 2683 | SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { |
| 2684 | // Fill in BitGroups. |
| 2685 | collectBitGroups(LateMask); |
| 2686 | if (BitGroups.empty()) |
| 2687 | return nullptr; |
| 2688 | |
| 2689 | // For 64-bit values, figure out when we can use 32-bit instructions. |
| 2690 | if (Bits.size() == 64) |
| 2691 | assignRepl32BitGroups(); |
| 2692 | |
| 2693 | // Fill in ValueRotsVec. |
| 2694 | collectValueRotInfo(); |
| 2695 | |
| 2696 | if (Bits.size() == 32) { |
| 2697 | return Select32(N, LateMask, InstCnt); |
| 2698 | } else { |
| 2699 | assert(Bits.size() == 64 && "Not 64 bits here?")(static_cast <bool> (Bits.size() == 64 && "Not 64 bits here?" ) ? void (0) : __assert_fail ("Bits.size() == 64 && \"Not 64 bits here?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2699, __extension__ __PRETTY_FUNCTION__)); |
| 2700 | return Select64(N, LateMask, InstCnt); |
| 2701 | } |
| 2702 | |
| 2703 | return nullptr; |
| 2704 | } |
| 2705 | |
| 2706 | void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { |
| 2707 | erase_if(BitGroups, F); |
| 2708 | } |
| 2709 | |
| 2710 | SmallVector<ValueBit, 64> Bits; |
| 2711 | |
| 2712 | bool NeedMask = false; |
| 2713 | SmallVector<unsigned, 64> RLAmt; |
| 2714 | |
| 2715 | SmallVector<BitGroup, 16> BitGroups; |
| 2716 | |
| 2717 | DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; |
| 2718 | SmallVector<ValueRotInfo, 16> ValueRotsVec; |
| 2719 | |
| 2720 | SelectionDAG *CurDAG = nullptr; |
| 2721 | |
| 2722 | public: |
| 2723 | BitPermutationSelector(SelectionDAG *DAG) |
| 2724 | : CurDAG(DAG) {} |
| 2725 | |
| 2726 | // Here we try to match complex bit permutations into a set of |
| 2727 | // rotate-and-shift/shift/and/or instructions, using a set of heuristics |
| 2728 | // known to produce optimal code for common cases (like i32 byte swapping). |
| 2729 | SDNode *Select(SDNode *N) { |
| 2730 | Memoizer.clear(); |
| 2731 | auto Result = |
| 2732 | getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); |
| 2733 | if (!Result.first) |
| 2734 | return nullptr; |
| 2735 | Bits = std::move(*Result.second); |
| 2736 | |
| 2737 | LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Considering bit-permutation-based instruction" " selection for: "; } } while (false) |
| 2738 | " selection for: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Considering bit-permutation-based instruction" " selection for: "; } } while (false); |
| 2739 | LLVM_DEBUG(N->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { N->dump(CurDAG); } } while (false); |
| 2740 | |
| 2741 | // Fill it RLAmt and set NeedMask. |
| 2742 | computeRotationAmounts(); |
| 2743 | |
| 2744 | if (!NeedMask) |
| 2745 | return Select(N, false); |
| 2746 | |
| 2747 | // We currently have two techniques for handling results with zeros: early |
| 2748 | // masking (the default) and late masking. Late masking is sometimes more |
| 2749 | // efficient, but because the structure of the bit groups is different, it |
| 2750 | // is hard to tell without generating both and comparing the results. With |
| 2751 | // late masking, we ignore zeros in the resulting value when inserting each |
| 2752 | // set of bit groups, and then mask in the zeros at the end. With early |
| 2753 | // masking, we only insert the non-zero parts of the result at every step. |
| 2754 | |
| 2755 | unsigned InstCnt = 0, InstCntLateMask = 0; |
| 2756 | LLVM_DEBUG(dbgs() << "\tEarly masking:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tEarly masking:\n"; } } while (false); |
| 2757 | SDNode *RN = Select(N, false, &InstCnt); |
| 2758 | LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"; } } while (false); |
| 2759 | |
| 2760 | LLVM_DEBUG(dbgs() << "\tLate masking:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tLate masking:\n"; } } while (false); |
| 2761 | SDNode *RNLM = Select(N, true, &InstCntLateMask); |
| 2762 | LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMaskdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\tisel would use " << InstCntLateMask << " instructions\n"; } } while (false ) |
| 2763 | << " instructions\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\t\tisel would use " << InstCntLateMask << " instructions\n"; } } while (false ); |
| 2764 | |
| 2765 | if (InstCnt <= InstCntLateMask) { |
| 2766 | LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tUsing early-masking for isel\n" ; } } while (false); |
| 2767 | return RN; |
| 2768 | } |
| 2769 | |
| 2770 | LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\tUsing late-masking for isel\n" ; } } while (false); |
| 2771 | return RNLM; |
| 2772 | } |
| 2773 | }; |
| 2774 | |
| 2775 | class IntegerCompareEliminator { |
| 2776 | SelectionDAG *CurDAG; |
| 2777 | PPCDAGToDAGISel *S; |
| 2778 | // Conversion type for interpreting results of a 32-bit instruction as |
| 2779 | // a 64-bit value or vice versa. |
| 2780 | enum ExtOrTruncConversion { Ext, Trunc }; |
| 2781 | |
| 2782 | // Modifiers to guide how an ISD::SETCC node's result is to be computed |
| 2783 | // in a GPR. |
| 2784 | // ZExtOrig - use the original condition code, zero-extend value |
| 2785 | // ZExtInvert - invert the condition code, zero-extend value |
| 2786 | // SExtOrig - use the original condition code, sign-extend value |
| 2787 | // SExtInvert - invert the condition code, sign-extend value |
| 2788 | enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; |
| 2789 | |
| 2790 | // Comparisons against zero to emit GPR code sequences for. Each of these |
| 2791 | // sequences may need to be emitted for two or more equivalent patterns. |
| 2792 | // For example (a >= 0) == (a > -1). The direction of the comparison (</>) |
| 2793 | // matters as well as the extension type: sext (-1/0), zext (1/0). |
| 2794 | // GEZExt - (zext (LHS >= 0)) |
| 2795 | // GESExt - (sext (LHS >= 0)) |
| 2796 | // LEZExt - (zext (LHS <= 0)) |
| 2797 | // LESExt - (sext (LHS <= 0)) |
| 2798 | enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; |
| 2799 | |
| 2800 | SDNode *tryEXTEND(SDNode *N); |
| 2801 | SDNode *tryLogicOpOfCompares(SDNode *N); |
| 2802 | SDValue computeLogicOpInGPR(SDValue LogicOp); |
| 2803 | SDValue signExtendInputIfNeeded(SDValue Input); |
| 2804 | SDValue zeroExtendInputIfNeeded(SDValue Input); |
| 2805 | SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); |
| 2806 | SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, |
| 2807 | ZeroCompare CmpTy); |
| 2808 | SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| 2809 | int64_t RHSValue, SDLoc dl); |
| 2810 | SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| 2811 | int64_t RHSValue, SDLoc dl); |
| 2812 | SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| 2813 | int64_t RHSValue, SDLoc dl); |
| 2814 | SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| 2815 | int64_t RHSValue, SDLoc dl); |
| 2816 | SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); |
| 2817 | |
| 2818 | public: |
| 2819 | IntegerCompareEliminator(SelectionDAG *DAG, |
| 2820 | PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { |
| 2821 | assert(CurDAG->getTargetLoweringInfo()(static_cast <bool> (CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && "Only expecting to use this on 64 bit targets." ) ? void (0) : __assert_fail ("CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && \"Only expecting to use this on 64 bit targets.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2823, __extension__ __PRETTY_FUNCTION__)) |
| 2822 | .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&(static_cast <bool> (CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && "Only expecting to use this on 64 bit targets." ) ? void (0) : __assert_fail ("CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && \"Only expecting to use this on 64 bit targets.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2823, __extension__ __PRETTY_FUNCTION__)) |
| 2823 | "Only expecting to use this on 64 bit targets.")(static_cast <bool> (CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && "Only expecting to use this on 64 bit targets." ) ? void (0) : __assert_fail ("CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && \"Only expecting to use this on 64 bit targets.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2823, __extension__ __PRETTY_FUNCTION__)); |
| 2824 | } |
| 2825 | SDNode *Select(SDNode *N) { |
| 2826 | if (CmpInGPR == ICGPR_None) |
| 2827 | return nullptr; |
| 2828 | switch (N->getOpcode()) { |
| 2829 | default: break; |
| 2830 | case ISD::ZERO_EXTEND: |
| 2831 | if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || |
| 2832 | CmpInGPR == ICGPR_SextI64) |
| 2833 | return nullptr; |
| 2834 | [[fallthrough]]; |
| 2835 | case ISD::SIGN_EXTEND: |
| 2836 | if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || |
| 2837 | CmpInGPR == ICGPR_ZextI64) |
| 2838 | return nullptr; |
| 2839 | return tryEXTEND(N); |
| 2840 | case ISD::AND: |
| 2841 | case ISD::OR: |
| 2842 | case ISD::XOR: |
| 2843 | return tryLogicOpOfCompares(N); |
| 2844 | } |
| 2845 | return nullptr; |
| 2846 | } |
| 2847 | }; |
| 2848 | |
| 2849 | // The obvious case for wanting to keep the value in a GPR. Namely, the |
| 2850 | // result of the comparison is actually needed in a GPR. |
| 2851 | SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { |
| 2852 | assert((N->getOpcode() == ISD::ZERO_EXTEND ||(static_cast <bool> ((N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && "Expecting a zero/sign extend node!" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && \"Expecting a zero/sign extend node!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2854, __extension__ __PRETTY_FUNCTION__)) |
| 2853 | N->getOpcode() == ISD::SIGN_EXTEND) &&(static_cast <bool> ((N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && "Expecting a zero/sign extend node!" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && \"Expecting a zero/sign extend node!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2854, __extension__ __PRETTY_FUNCTION__)) |
| 2854 | "Expecting a zero/sign extend node!")(static_cast <bool> ((N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && "Expecting a zero/sign extend node!" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && \"Expecting a zero/sign extend node!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2854, __extension__ __PRETTY_FUNCTION__)); |
| 2855 | SDValue WideRes; |
| 2856 | // If we are zero-extending the result of a logical operation on i1 |
| 2857 | // values, we can keep the values in GPRs. |
| 2858 | if (ISD::isBitwiseLogicOp(N->getOperand(0).getOpcode()) && |
| 2859 | N->getOperand(0).getValueType() == MVT::i1 && |
| 2860 | N->getOpcode() == ISD::ZERO_EXTEND) |
| 2861 | WideRes = computeLogicOpInGPR(N->getOperand(0)); |
| 2862 | else if (N->getOperand(0).getOpcode() != ISD::SETCC) |
| 2863 | return nullptr; |
| 2864 | else |
| 2865 | WideRes = |
| 2866 | getSETCCInGPR(N->getOperand(0), |
| 2867 | N->getOpcode() == ISD::SIGN_EXTEND ? |
| 2868 | SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); |
| 2869 | |
| 2870 | if (!WideRes) |
| 2871 | return nullptr; |
| 2872 | |
| 2873 | SDLoc dl(N); |
| 2874 | bool Input32Bit = WideRes.getValueType() == MVT::i32; |
| 2875 | bool Output32Bit = N->getValueType(0) == MVT::i32; |
| 2876 | |
| 2877 | NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; |
| 2878 | NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; |
| 2879 | |
| 2880 | SDValue ConvOp = WideRes; |
| 2881 | if (Input32Bit != Output32Bit) |
| 2882 | ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : |
| 2883 | ExtOrTruncConversion::Trunc); |
| 2884 | return ConvOp.getNode(); |
| 2885 | } |
| 2886 | |
| 2887 | // Attempt to perform logical operations on the results of comparisons while |
| 2888 | // keeping the values in GPRs. Without doing so, these would end up being |
| 2889 | // lowered to CR-logical operations which suffer from significant latency and |
| 2890 | // low ILP. |
| 2891 | SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { |
| 2892 | if (N->getValueType(0) != MVT::i1) |
| 2893 | return nullptr; |
| 2894 | assert(ISD::isBitwiseLogicOp(N->getOpcode()) &&(static_cast <bool> (ISD::isBitwiseLogicOp(N->getOpcode ()) && "Expected a logic operation on setcc results." ) ? void (0) : __assert_fail ("ISD::isBitwiseLogicOp(N->getOpcode()) && \"Expected a logic operation on setcc results.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2895, __extension__ __PRETTY_FUNCTION__)) |
| 2895 | "Expected a logic operation on setcc results.")(static_cast <bool> (ISD::isBitwiseLogicOp(N->getOpcode ()) && "Expected a logic operation on setcc results." ) ? void (0) : __assert_fail ("ISD::isBitwiseLogicOp(N->getOpcode()) && \"Expected a logic operation on setcc results.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2895, __extension__ __PRETTY_FUNCTION__)); |
| 2896 | SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); |
| 2897 | if (!LoweredLogical) |
| 2898 | return nullptr; |
| 2899 | |
| 2900 | SDLoc dl(N); |
| 2901 | bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; |
| 2902 | unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; |
| 2903 | SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); |
| 2904 | SDValue LHS = LoweredLogical.getOperand(0); |
| 2905 | SDValue RHS = LoweredLogical.getOperand(1); |
| 2906 | SDValue WideOp; |
| 2907 | SDValue OpToConvToRecForm; |
| 2908 | |
| 2909 | // Look through any 32-bit to 64-bit implicit extend nodes to find the |
| 2910 | // opcode that is input to the XORI. |
| 2911 | if (IsBitwiseNegate && |
| 2912 | LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) |
| 2913 | OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); |
| 2914 | else if (IsBitwiseNegate) |
| 2915 | // If the input to the XORI isn't an extension, that's what we're after. |
| 2916 | OpToConvToRecForm = LoweredLogical.getOperand(0); |
| 2917 | else |
| 2918 | // If this is not an XORI, it is a reg-reg logical op and we can convert |
| 2919 | // it to record-form. |
| 2920 | OpToConvToRecForm = LoweredLogical; |
| 2921 | |
| 2922 | // Get the record-form version of the node we're looking to use to get the |
| 2923 | // CR result from. |
| 2924 | uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); |
| 2925 | int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); |
| 2926 | |
| 2927 | // Convert the right node to record-form. This is either the logical we're |
| 2928 | // looking at or it is the input node to the negation (if we're looking at |
| 2929 | // a bitwise negation). |
| 2930 | if (NewOpc != -1 && IsBitwiseNegate) { |
| 2931 | // The input to the XORI has a record-form. Use it. |
| 2932 | assert(LoweredLogical.getConstantOperandVal(1) == 1 &&(static_cast <bool> (LoweredLogical.getConstantOperandVal (1) == 1 && "Expected a PPC::XORI8 only for bitwise negation." ) ? void (0) : __assert_fail ("LoweredLogical.getConstantOperandVal(1) == 1 && \"Expected a PPC::XORI8 only for bitwise negation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2933, __extension__ __PRETTY_FUNCTION__)) |
| 2933 | "Expected a PPC::XORI8 only for bitwise negation.")(static_cast <bool> (LoweredLogical.getConstantOperandVal (1) == 1 && "Expected a PPC::XORI8 only for bitwise negation." ) ? void (0) : __assert_fail ("LoweredLogical.getConstantOperandVal(1) == 1 && \"Expected a PPC::XORI8 only for bitwise negation.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2933, __extension__ __PRETTY_FUNCTION__)); |
| 2934 | // Emit the record-form instruction. |
| 2935 | std::vector<SDValue> Ops; |
| 2936 | for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) |
| 2937 | Ops.push_back(OpToConvToRecForm.getOperand(i)); |
| 2938 | |
| 2939 | WideOp = |
| 2940 | SDValue(CurDAG->getMachineNode(NewOpc, dl, |
| 2941 | OpToConvToRecForm.getValueType(), |
| 2942 | MVT::Glue, Ops), 0); |
| 2943 | } else { |
| 2944 | assert((NewOpc != -1 || !IsBitwiseNegate) &&(static_cast <bool> ((NewOpc != -1 || !IsBitwiseNegate) && "No record form available for AND8/OR8/XOR8?") ? void (0) : __assert_fail ("(NewOpc != -1 || !IsBitwiseNegate) && \"No record form available for AND8/OR8/XOR8?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2945, __extension__ __PRETTY_FUNCTION__)) |
| 2945 | "No record form available for AND8/OR8/XOR8?")(static_cast <bool> ((NewOpc != -1 || !IsBitwiseNegate) && "No record form available for AND8/OR8/XOR8?") ? void (0) : __assert_fail ("(NewOpc != -1 || !IsBitwiseNegate) && \"No record form available for AND8/OR8/XOR8?\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2945, __extension__ __PRETTY_FUNCTION__)); |
| 2946 | WideOp = |
| 2947 | SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc, |
| 2948 | dl, MVT::i64, MVT::Glue, LHS, RHS), |
| 2949 | 0); |
| 2950 | } |
| 2951 | |
| 2952 | // Select this node to a single bit from CR0 set by the record-form node |
| 2953 | // just created. For bitwise negation, use the EQ bit which is the equivalent |
| 2954 | // of negating the result (i.e. it is a bit set when the result of the |
| 2955 | // operation is zero). |
| 2956 | SDValue SRIdxVal = |
| 2957 | CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); |
| 2958 | SDValue CRBit = |
| 2959 | SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, |
| 2960 | MVT::i1, CR0Reg, SRIdxVal, |
| 2961 | WideOp.getValue(1)), 0); |
| 2962 | return CRBit.getNode(); |
| 2963 | } |
| 2964 | |
| 2965 | // Lower a logical operation on i1 values into a GPR sequence if possible. |
| 2966 | // The result can be kept in a GPR if requested. |
| 2967 | // Three types of inputs can be handled: |
| 2968 | // - SETCC |
| 2969 | // - TRUNCATE |
| 2970 | // - Logical operation (AND/OR/XOR) |
| 2971 | // There is also a special case that is handled (namely a complement operation |
| 2972 | // achieved with xor %a, -1). |
| 2973 | SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { |
| 2974 | assert(ISD::isBitwiseLogicOp(LogicOp.getOpcode()) &&(static_cast <bool> (ISD::isBitwiseLogicOp(LogicOp.getOpcode ()) && "Can only handle logic operations here.") ? void (0) : __assert_fail ("ISD::isBitwiseLogicOp(LogicOp.getOpcode()) && \"Can only handle logic operations here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2975, __extension__ __PRETTY_FUNCTION__)) |
| 2975 | "Can only handle logic operations here.")(static_cast <bool> (ISD::isBitwiseLogicOp(LogicOp.getOpcode ()) && "Can only handle logic operations here.") ? void (0) : __assert_fail ("ISD::isBitwiseLogicOp(LogicOp.getOpcode()) && \"Can only handle logic operations here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2975, __extension__ __PRETTY_FUNCTION__)); |
| 2976 | assert(LogicOp.getValueType() == MVT::i1 &&(static_cast <bool> (LogicOp.getValueType() == MVT::i1 && "Can only handle logic operations on i1 values here.") ? void (0) : __assert_fail ("LogicOp.getValueType() == MVT::i1 && \"Can only handle logic operations on i1 values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2977, __extension__ __PRETTY_FUNCTION__)) |
| 2977 | "Can only handle logic operations on i1 values here.")(static_cast <bool> (LogicOp.getValueType() == MVT::i1 && "Can only handle logic operations on i1 values here.") ? void (0) : __assert_fail ("LogicOp.getValueType() == MVT::i1 && \"Can only handle logic operations on i1 values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 2977, __extension__ __PRETTY_FUNCTION__)); |
| 2978 | SDLoc dl(LogicOp); |
| 2979 | SDValue LHS, RHS; |
| 2980 | |
| 2981 | // Special case: xor %a, -1 |
| 2982 | bool IsBitwiseNegation = isBitwiseNot(LogicOp); |
| 2983 | |
| 2984 | // Produces a GPR sequence for each operand of the binary logic operation. |
| 2985 | // For SETCC, it produces the respective comparison, for TRUNCATE it truncates |
| 2986 | // the value in a GPR and for logic operations, it will recursively produce |
| 2987 | // a GPR sequence for the operation. |
| 2988 | auto getLogicOperand = [&] (SDValue Operand) -> SDValue { |
| 2989 | unsigned OperandOpcode = Operand.getOpcode(); |
| 2990 | if (OperandOpcode == ISD::SETCC) |
| 2991 | return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); |
| 2992 | else if (OperandOpcode == ISD::TRUNCATE) { |
| 2993 | SDValue InputOp = Operand.getOperand(0); |
| 2994 | EVT InVT = InputOp.getValueType(); |
| 2995 | return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : |
| 2996 | PPC::RLDICL, dl, InVT, InputOp, |
| 2997 | S->getI64Imm(0, dl), |
| 2998 | S->getI64Imm(63, dl)), 0); |
| 2999 | } else if (ISD::isBitwiseLogicOp(OperandOpcode)) |
| 3000 | return computeLogicOpInGPR(Operand); |
| 3001 | return SDValue(); |
| 3002 | }; |
| 3003 | LHS = getLogicOperand(LogicOp.getOperand(0)); |
| 3004 | RHS = getLogicOperand(LogicOp.getOperand(1)); |
| 3005 | |
| 3006 | // If a GPR sequence can't be produced for the LHS we can't proceed. |
| 3007 | // Not producing a GPR sequence for the RHS is only a problem if this isn't |
| 3008 | // a bitwise negation operation. |
| 3009 | if (!LHS || (!RHS && !IsBitwiseNegation)) |
| 3010 | return SDValue(); |
| 3011 | |
| 3012 | NumLogicOpsOnComparison++; |
| 3013 | |
| 3014 | // We will use the inputs as 64-bit values. |
| 3015 | if (LHS.getValueType() == MVT::i32) |
| 3016 | LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); |
| 3017 | if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) |
| 3018 | RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); |
| 3019 | |
| 3020 | unsigned NewOpc; |
| 3021 | switch (LogicOp.getOpcode()) { |
| 3022 | default: llvm_unreachable("Unknown logic operation.")::llvm::llvm_unreachable_internal("Unknown logic operation.", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3022); |
| 3023 | case ISD::AND: NewOpc = PPC::AND8; break; |
| 3024 | case ISD::OR: NewOpc = PPC::OR8; break; |
| 3025 | case ISD::XOR: NewOpc = PPC::XOR8; break; |
| 3026 | } |
| 3027 | |
| 3028 | if (IsBitwiseNegation) { |
| 3029 | RHS = S->getI64Imm(1, dl); |
| 3030 | NewOpc = PPC::XORI8; |
| 3031 | } |
| 3032 | |
| 3033 | return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); |
| 3034 | |
| 3035 | } |
| 3036 | |
| 3037 | /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. |
| 3038 | /// Otherwise just reinterpret it as a 64-bit value. |
| 3039 | /// Useful when emitting comparison code for 32-bit values without using |
| 3040 | /// the compare instruction (which only considers the lower 32-bits). |
| 3041 | SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { |
| 3042 | assert(Input.getValueType() == MVT::i32 &&(static_cast <bool> (Input.getValueType() == MVT::i32 && "Can only sign-extend 32-bit values here.") ? void (0) : __assert_fail ("Input.getValueType() == MVT::i32 && \"Can only sign-extend 32-bit values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3043, __extension__ __PRETTY_FUNCTION__)) |
| 3043 | "Can only sign-extend 32-bit values here.")(static_cast <bool> (Input.getValueType() == MVT::i32 && "Can only sign-extend 32-bit values here.") ? void (0) : __assert_fail ("Input.getValueType() == MVT::i32 && \"Can only sign-extend 32-bit values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3043, __extension__ __PRETTY_FUNCTION__)); |
| 3044 | unsigned Opc = Input.getOpcode(); |
| 3045 | |
| 3046 | // The value was sign extended and then truncated to 32-bits. No need to |
| 3047 | // sign extend it again. |
| 3048 | if (Opc == ISD::TRUNCATE && |
| 3049 | (Input.getOperand(0).getOpcode() == ISD::AssertSext || |
| 3050 | Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) |
| 3051 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| 3052 | |
| 3053 | LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); |
| 3054 | // The input is a sign-extending load. All ppc sign-extending loads |
| 3055 | // sign-extend to the full 64-bits. |
| 3056 | if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) |
| 3057 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| 3058 | |
| 3059 | ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); |
| 3060 | // We don't sign-extend constants. |
| 3061 | if (InputConst) |
| 3062 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| 3063 | |
| 3064 | SDLoc dl(Input); |
| 3065 | SignExtensionsAdded++; |
| 3066 | return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, |
| 3067 | MVT::i64, Input), 0); |
| 3068 | } |
| 3069 | |
| 3070 | /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. |
| 3071 | /// Otherwise just reinterpret it as a 64-bit value. |
| 3072 | /// Useful when emitting comparison code for 32-bit values without using |
| 3073 | /// the compare instruction (which only considers the lower 32-bits). |
| 3074 | SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { |
| 3075 | assert(Input.getValueType() == MVT::i32 &&(static_cast <bool> (Input.getValueType() == MVT::i32 && "Can only zero-extend 32-bit values here.") ? void (0) : __assert_fail ("Input.getValueType() == MVT::i32 && \"Can only zero-extend 32-bit values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3076, __extension__ __PRETTY_FUNCTION__)) |
| 3076 | "Can only zero-extend 32-bit values here.")(static_cast <bool> (Input.getValueType() == MVT::i32 && "Can only zero-extend 32-bit values here.") ? void (0) : __assert_fail ("Input.getValueType() == MVT::i32 && \"Can only zero-extend 32-bit values here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3076, __extension__ __PRETTY_FUNCTION__)); |
| 3077 | unsigned Opc = Input.getOpcode(); |
| 3078 | |
| 3079 | // The only condition under which we can omit the actual extend instruction: |
| 3080 | // - The value is a positive constant |
| 3081 | // - The value comes from a load that isn't a sign-extending load |
| 3082 | // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. |
| 3083 | bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && |
| 3084 | (Input.getOperand(0).getOpcode() == ISD::AssertZext || |
| 3085 | Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); |
| 3086 | if (IsTruncateOfZExt) |
| 3087 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| 3088 | |
| 3089 | ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); |
| 3090 | if (InputConst && InputConst->getSExtValue() >= 0) |
| 3091 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| 3092 | |
| 3093 | LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); |
| 3094 | // The input is a load that doesn't sign-extend (it will be zero-extended). |
| 3095 | if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) |
| 3096 | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| 3097 | |
| 3098 | // None of the above, need to zero-extend. |
| 3099 | SDLoc dl(Input); |
| 3100 | ZeroExtensionsAdded++; |
| 3101 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, |
| 3102 | S->getI64Imm(0, dl), |
| 3103 | S->getI64Imm(32, dl)), 0); |
| 3104 | } |
| 3105 | |
| 3106 | // Handle a 32-bit value in a 64-bit register and vice-versa. These are of |
| 3107 | // course not actual zero/sign extensions that will generate machine code, |
| 3108 | // they're just a way to reinterpret a 32 bit value in a register as a |
| 3109 | // 64 bit value and vice-versa. |
| 3110 | SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, |
| 3111 | ExtOrTruncConversion Conv) { |
| 3112 | SDLoc dl(NatWidthRes); |
| 3113 | |
| 3114 | // For reinterpreting 32-bit values as 64 bit values, we generate |
| 3115 | // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> |
| 3116 | if (Conv == ExtOrTruncConversion::Ext) { |
| 3117 | SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); |
| 3118 | SDValue SubRegIdx = |
| 3119 | CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
| 3120 | return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, |
| 3121 | ImDef, NatWidthRes, SubRegIdx), 0); |
| 3122 | } |
| 3123 | |
| 3124 | assert(Conv == ExtOrTruncConversion::Trunc &&(static_cast <bool> (Conv == ExtOrTruncConversion::Trunc && "Unknown convertion between 32 and 64 bit values." ) ? void (0) : __assert_fail ("Conv == ExtOrTruncConversion::Trunc && \"Unknown convertion between 32 and 64 bit values.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3125, __extension__ __PRETTY_FUNCTION__)) |
| 3125 | "Unknown convertion between 32 and 64 bit values.")(static_cast <bool> (Conv == ExtOrTruncConversion::Trunc && "Unknown convertion between 32 and 64 bit values." ) ? void (0) : __assert_fail ("Conv == ExtOrTruncConversion::Trunc && \"Unknown convertion between 32 and 64 bit values.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3125, __extension__ __PRETTY_FUNCTION__)); |
| 3126 | // For reinterpreting 64-bit values as 32-bit values, we just need to |
| 3127 | // EXTRACT_SUBREG (i.e. extract the low word). |
| 3128 | SDValue SubRegIdx = |
| 3129 | CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
| 3130 | return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, |
| 3131 | NatWidthRes, SubRegIdx), 0); |
| 3132 | } |
| 3133 | |
| 3134 | // Produce a GPR sequence for compound comparisons (<=, >=) against zero. |
| 3135 | // Handle both zero-extensions and sign-extensions. |
| 3136 | SDValue |
| 3137 | IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, |
| 3138 | ZeroCompare CmpTy) { |
| 3139 | EVT InVT = LHS.getValueType(); |
| 3140 | bool Is32Bit = InVT == MVT::i32; |
| 3141 | SDValue ToExtend; |
| 3142 | |
| 3143 | // Produce the value that needs to be either zero or sign extended. |
| 3144 | switch (CmpTy) { |
| 3145 | case ZeroCompare::GEZExt: |
| 3146 | case ZeroCompare::GESExt: |
| 3147 | ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, |
| 3148 | dl, InVT, LHS, LHS), 0); |
| 3149 | break; |
| 3150 | case ZeroCompare::LEZExt: |
| 3151 | case ZeroCompare::LESExt: { |
| 3152 | if (Is32Bit) { |
| 3153 | // Upper 32 bits cannot be undefined for this sequence. |
| 3154 | LHS = signExtendInputIfNeeded(LHS); |
| 3155 | SDValue Neg = |
| 3156 | SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); |
| 3157 | ToExtend = |
| 3158 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| 3159 | Neg, S->getI64Imm(1, dl), |
| 3160 | S->getI64Imm(63, dl)), 0); |
| 3161 | } else { |
| 3162 | SDValue Addi = |
| 3163 | SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, |
| 3164 | S->getI64Imm(~0ULL, dl)), 0); |
| 3165 | ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
| 3166 | Addi, LHS), 0); |
| 3167 | } |
| 3168 | break; |
| 3169 | } |
| 3170 | } |
| 3171 | |
| 3172 | // For 64-bit sequences, the extensions are the same for the GE/LE cases. |
| 3173 | if (!Is32Bit && |
| 3174 | (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) |
| 3175 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| 3176 | ToExtend, S->getI64Imm(1, dl), |
| 3177 | S->getI64Imm(63, dl)), 0); |
| 3178 | if (!Is32Bit && |
| 3179 | (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) |
| 3180 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, |
| 3181 | S->getI64Imm(63, dl)), 0); |
| 3182 | |
| 3183 | assert(Is32Bit && "Should have handled the 32-bit sequences above.")(static_cast <bool> (Is32Bit && "Should have handled the 32-bit sequences above." ) ? void (0) : __assert_fail ("Is32Bit && \"Should have handled the 32-bit sequences above.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3183, __extension__ __PRETTY_FUNCTION__)); |
| 3184 | // For 32-bit sequences, the extensions differ between GE/LE cases. |
| 3185 | switch (CmpTy) { |
| 3186 | case ZeroCompare::GEZExt: { |
| 3187 | SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), |
| 3188 | S->getI32Imm(31, dl) }; |
| 3189 | return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
| 3190 | ShiftOps), 0); |
| 3191 | } |
| 3192 | case ZeroCompare::GESExt: |
| 3193 | return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, |
| 3194 | S->getI32Imm(31, dl)), 0); |
| 3195 | case ZeroCompare::LEZExt: |
| 3196 | return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, |
| 3197 | S->getI32Imm(1, dl)), 0); |
| 3198 | case ZeroCompare::LESExt: |
| 3199 | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, |
| 3200 | S->getI32Imm(-1, dl)), 0); |
| 3201 | } |
| 3202 | |
| 3203 | // The above case covers all the enumerators so it can't have a default clause |
| 3204 | // to avoid compiler warnings. |
| 3205 | llvm_unreachable("Unknown zero-comparison type.")::llvm::llvm_unreachable_internal("Unknown zero-comparison type." , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3205); |
| 3206 | } |
| 3207 | |
| 3208 | /// Produces a zero-extended result of comparing two 32-bit values according to |
| 3209 | /// the passed condition code. |
| 3210 | SDValue |
| 3211 | IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, |
| 3212 | ISD::CondCode CC, |
| 3213 | int64_t RHSValue, SDLoc dl) { |
| 3214 | if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || |
| 3215 | CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) |
| 3216 | return SDValue(); |
| 3217 | bool IsRHSZero = RHSValue == 0; |
| 3218 | bool IsRHSOne = RHSValue == 1; |
| 3219 | bool IsRHSNegOne = RHSValue == -1LL; |
| 3220 | switch (CC) { |
| 3221 | default: return SDValue(); |
| 3222 | case ISD::SETEQ: { |
| 3223 | // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) |
| 3224 | // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) |
| 3225 | SDValue Xor = IsRHSZero ? LHS : |
| 3226 | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
| 3227 | SDValue Clz = |
| 3228 | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); |
| 3229 | SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), |
| 3230 | S->getI32Imm(31, dl) }; |
| 3231 | return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
| 3232 | ShiftOps), 0); |
| 3233 | } |
| 3234 | case ISD::SETNE: { |
| 3235 | // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) |
| 3236 | // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) |
| 3237 | SDValue Xor = IsRHSZero ? LHS : |
| 3238 | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
| 3239 | SDValue Clz = |
| 3240 | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); |
| 3241 | SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), |
| 3242 | S->getI32Imm(31, dl) }; |
| 3243 | SDValue Shift = |
| 3244 | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); |
| 3245 | return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, |
| 3246 | S->getI32Imm(1, dl)), 0); |
| 3247 | } |
| 3248 | case ISD::SETGE: { |
| 3249 | // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) |
| 3250 | // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) |
| 3251 | if(IsRHSZero) |
| 3252 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
| 3253 | |
| 3254 | // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) |
| 3255 | // by swapping inputs and falling through. |
| 3256 | std::swap(LHS, RHS); |
| 3257 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| 3258 | IsRHSZero = RHSConst && RHSConst->isZero(); |
| 3259 | [[fallthrough]]; |
| 3260 | } |
| 3261 | case ISD::SETLE: { |
| 3262 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3263 | return SDValue(); |
| 3264 | // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) |
| 3265 | // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) |
| 3266 | if(IsRHSZero) { |
| 3267 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3268 | return SDValue(); |
| 3269 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
| 3270 | } |
| 3271 | |
| 3272 | // The upper 32-bits of the register can't be undefined for this sequence. |
| 3273 | LHS = signExtendInputIfNeeded(LHS); |
| 3274 | RHS = signExtendInputIfNeeded(RHS); |
| 3275 | SDValue Sub = |
| 3276 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); |
| 3277 | SDValue Shift = |
| 3278 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, |
| 3279 | S->getI64Imm(1, dl), S->getI64Imm(63, dl)), |
| 3280 | 0); |
| 3281 | return |
| 3282 | SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, |
| 3283 | MVT::i64, Shift, S->getI32Imm(1, dl)), 0); |
| 3284 | } |
| 3285 | case ISD::SETGT: { |
| 3286 | // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) |
| 3287 | // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) |
| 3288 | // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) |
| 3289 | // Handle SETLT -1 (which is equivalent to SETGE 0). |
| 3290 | if (IsRHSNegOne) |
| 3291 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
| 3292 | |
| 3293 | if (IsRHSZero) { |
| 3294 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3295 | return SDValue(); |
| 3296 | // The upper 32-bits of the register can't be undefined for this sequence. |
| 3297 | LHS = signExtendInputIfNeeded(LHS); |
| 3298 | RHS = signExtendInputIfNeeded(RHS); |
| 3299 | SDValue Neg = |
| 3300 | SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); |
| 3301 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| 3302 | Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); |
| 3303 | } |
| 3304 | // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as |
| 3305 | // (%b < %a) by swapping inputs and falling through. |
| 3306 | std::swap(LHS, RHS); |
| 3307 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| 3308 | IsRHSZero = RHSConst && RHSConst->isZero(); |
| 3309 | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
| 3310 | [[fallthrough]]; |
| 3311 | } |
| 3312 | case ISD::SETLT: { |
| 3313 | // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) |
| 3314 | // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) |
| 3315 | // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) |
| 3316 | // Handle SETLT 1 (which is equivalent to SETLE 0). |
| 3317 | if (IsRHSOne) { |
| 3318 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3319 | return SDValue(); |
| 3320 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
| 3321 | } |
| 3322 | |
| 3323 | if (IsRHSZero) { |
| 3324 | SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), |
| 3325 | S->getI32Imm(31, dl) }; |
| 3326 | return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
| 3327 | ShiftOps), 0); |
| 3328 | } |
| 3329 | |
| 3330 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3331 | return SDValue(); |
| 3332 | // The upper 32-bits of the register can't be undefined for this sequence. |
| 3333 | LHS = signExtendInputIfNeeded(LHS); |
| 3334 | RHS = signExtendInputIfNeeded(RHS); |
| 3335 | SDValue SUBFNode = |
| 3336 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
| 3337 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| 3338 | SUBFNode, S->getI64Imm(1, dl), |
| 3339 | S->getI64Imm(63, dl)), 0); |
| 3340 | } |
| 3341 | case ISD::SETUGE: |
| 3342 | // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) |
| 3343 | // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) |
| 3344 | std::swap(LHS, RHS); |
| 3345 | [[fallthrough]]; |
| 3346 | case ISD::SETULE: { |
| 3347 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3348 | return SDValue(); |
| 3349 | // The upper 32-bits of the register can't be undefined for this sequence. |
| 3350 | LHS = zeroExtendInputIfNeeded(LHS); |
| 3351 | RHS = zeroExtendInputIfNeeded(RHS); |
| 3352 | SDValue Subtract = |
| 3353 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); |
| 3354 | SDValue SrdiNode = |
| 3355 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| 3356 | Subtract, S->getI64Imm(1, dl), |
| 3357 | S->getI64Imm(63, dl)), 0); |
| 3358 | return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, |
| 3359 | S->getI32Imm(1, dl)), 0); |
| 3360 | } |
| 3361 | case ISD::SETUGT: |
| 3362 | // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) |
| 3363 | // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) |
| 3364 | std::swap(LHS, RHS); |
| 3365 | [[fallthrough]]; |
| 3366 | case ISD::SETULT: { |
| 3367 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3368 | return SDValue(); |
| 3369 | // The upper 32-bits of the register can't be undefined for this sequence. |
| 3370 | LHS = zeroExtendInputIfNeeded(LHS); |
| 3371 | RHS = zeroExtendInputIfNeeded(RHS); |
| 3372 | SDValue Subtract = |
| 3373 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
| 3374 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| 3375 | Subtract, S->getI64Imm(1, dl), |
| 3376 | S->getI64Imm(63, dl)), 0); |
| 3377 | } |
| 3378 | } |
| 3379 | } |
| 3380 | |
| 3381 | /// Produces a sign-extended result of comparing two 32-bit values according to |
| 3382 | /// the passed condition code. |
| 3383 | SDValue |
| 3384 | IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, |
| 3385 | ISD::CondCode CC, |
| 3386 | int64_t RHSValue, SDLoc dl) { |
| 3387 | if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || |
| 3388 | CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) |
| 3389 | return SDValue(); |
| 3390 | bool IsRHSZero = RHSValue == 0; |
| 3391 | bool IsRHSOne = RHSValue == 1; |
| 3392 | bool IsRHSNegOne = RHSValue == -1LL; |
| 3393 | |
| 3394 | switch (CC) { |
| 3395 | default: return SDValue(); |
| 3396 | case ISD::SETEQ: { |
| 3397 | // (sext (setcc %a, %b, seteq)) -> |
| 3398 | // (ashr (shl (ctlz (xor %a, %b)), 58), 63) |
| 3399 | // (sext (setcc %a, 0, seteq)) -> |
| 3400 | // (ashr (shl (ctlz %a), 58), 63) |
| 3401 | SDValue CountInput = IsRHSZero ? LHS : |
| 3402 | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
| 3403 | SDValue Cntlzw = |
| 3404 | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); |
| 3405 | SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), |
| 3406 | S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; |
| 3407 | SDValue Slwi = |
| 3408 | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); |
| 3409 | return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); |
| 3410 | } |
| 3411 | case ISD::SETNE: { |
| 3412 | // Bitwise xor the operands, count leading zeros, shift right by 5 bits and |
| 3413 | // flip the bit, finally take 2's complement. |
| 3414 | // (sext (setcc %a, %b, setne)) -> |
| 3415 | // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) |
| 3416 | // Same as above, but the first xor is not needed. |
| 3417 | // (sext (setcc %a, 0, setne)) -> |
| 3418 | // (neg (xor (lshr (ctlz %a), 5), 1)) |
| 3419 | SDValue Xor = IsRHSZero ? LHS : |
| 3420 | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
| 3421 | SDValue Clz = |
| 3422 | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); |
| 3423 | SDValue ShiftOps[] = |
| 3424 | { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; |
| 3425 | SDValue Shift = |
| 3426 | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); |
| 3427 | SDValue Xori = |
| 3428 | SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, |
| 3429 | S->getI32Imm(1, dl)), 0); |
| 3430 | return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); |
| 3431 | } |
| 3432 | case ISD::SETGE: { |
| 3433 | // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) |
| 3434 | // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) |
| 3435 | if (IsRHSZero) |
| 3436 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
| 3437 | |
| 3438 | // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) |
| 3439 | // by swapping inputs and falling through. |
| 3440 | std::swap(LHS, RHS); |
| 3441 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| 3442 | IsRHSZero = RHSConst && RHSConst->isZero(); |
| 3443 | [[fallthrough]]; |
| 3444 | } |
| 3445 | case ISD::SETLE: { |
| 3446 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3447 | return SDValue(); |
| 3448 | // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) |
| 3449 | // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) |
| 3450 | if (IsRHSZero) |
| 3451 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
| 3452 | |
| 3453 | // The upper 32-bits of the register can't be undefined for this sequence. |
| 3454 | LHS = signExtendInputIfNeeded(LHS); |
| 3455 | RHS = signExtendInputIfNeeded(RHS); |
| 3456 | SDValue SUBFNode = |
| 3457 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, |
| 3458 | LHS, RHS), 0); |
| 3459 | SDValue Srdi = |
| 3460 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| 3461 | SUBFNode, S->getI64Imm(1, dl), |
| 3462 | S->getI64Imm(63, dl)), 0); |
| 3463 | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, |
| 3464 | S->getI32Imm(-1, dl)), 0); |
| 3465 | } |
| 3466 | case ISD::SETGT: { |
| 3467 | // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) |
| 3468 | // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) |
| 3469 | // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) |
| 3470 | if (IsRHSNegOne) |
| 3471 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
| 3472 | if (IsRHSZero) { |
| 3473 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3474 | return SDValue(); |
| 3475 | // The upper 32-bits of the register can't be undefined for this sequence. |
| 3476 | LHS = signExtendInputIfNeeded(LHS); |
| 3477 | RHS = signExtendInputIfNeeded(RHS); |
| 3478 | SDValue Neg = |
| 3479 | SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); |
| 3480 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, |
| 3481 | S->getI64Imm(63, dl)), 0); |
| 3482 | } |
| 3483 | // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as |
| 3484 | // (%b < %a) by swapping inputs and falling through. |
| 3485 | std::swap(LHS, RHS); |
| 3486 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| 3487 | IsRHSZero = RHSConst && RHSConst->isZero(); |
| 3488 | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
| 3489 | [[fallthrough]]; |
| 3490 | } |
| 3491 | case ISD::SETLT: { |
| 3492 | // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) |
| 3493 | // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) |
| 3494 | // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) |
| 3495 | if (IsRHSOne) { |
| 3496 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3497 | return SDValue(); |
| 3498 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
| 3499 | } |
| 3500 | if (IsRHSZero) |
| 3501 | return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, |
| 3502 | S->getI32Imm(31, dl)), 0); |
| 3503 | |
| 3504 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3505 | return SDValue(); |
| 3506 | // The upper 32-bits of the register can't be undefined for this sequence. |
| 3507 | LHS = signExtendInputIfNeeded(LHS); |
| 3508 | RHS = signExtendInputIfNeeded(RHS); |
| 3509 | SDValue SUBFNode = |
| 3510 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
| 3511 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
| 3512 | SUBFNode, S->getI64Imm(63, dl)), 0); |
| 3513 | } |
| 3514 | case ISD::SETUGE: |
| 3515 | // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) |
| 3516 | // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) |
| 3517 | std::swap(LHS, RHS); |
| 3518 | [[fallthrough]]; |
| 3519 | case ISD::SETULE: { |
| 3520 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3521 | return SDValue(); |
| 3522 | // The upper 32-bits of the register can't be undefined for this sequence. |
| 3523 | LHS = zeroExtendInputIfNeeded(LHS); |
| 3524 | RHS = zeroExtendInputIfNeeded(RHS); |
| 3525 | SDValue Subtract = |
| 3526 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); |
| 3527 | SDValue Shift = |
| 3528 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, |
| 3529 | S->getI32Imm(1, dl), S->getI32Imm(63,dl)), |
| 3530 | 0); |
| 3531 | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, |
| 3532 | S->getI32Imm(-1, dl)), 0); |
| 3533 | } |
| 3534 | case ISD::SETUGT: |
| 3535 | // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) |
| 3536 | // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) |
| 3537 | std::swap(LHS, RHS); |
| 3538 | [[fallthrough]]; |
| 3539 | case ISD::SETULT: { |
| 3540 | if (CmpInGPR == ICGPR_NonExtIn) |
| 3541 | return SDValue(); |
| 3542 | // The upper 32-bits of the register can't be undefined for this sequence. |
| 3543 | LHS = zeroExtendInputIfNeeded(LHS); |
| 3544 | RHS = zeroExtendInputIfNeeded(RHS); |
| 3545 | SDValue Subtract = |
| 3546 | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
| 3547 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
| 3548 | Subtract, S->getI64Imm(63, dl)), 0); |
| 3549 | } |
| 3550 | } |
| 3551 | } |
| 3552 | |
| 3553 | /// Produces a zero-extended result of comparing two 64-bit values according to |
| 3554 | /// the passed condition code. |
| 3555 | SDValue |
| 3556 | IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, |
| 3557 | ISD::CondCode CC, |
| 3558 | int64_t RHSValue, SDLoc dl) { |
| 3559 | if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || |
| 3560 | CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) |
| 3561 | return SDValue(); |
| 3562 | bool IsRHSZero = RHSValue == 0; |
| 3563 | bool IsRHSOne = RHSValue == 1; |
| 3564 | bool IsRHSNegOne = RHSValue == -1LL; |
| 3565 | switch (CC) { |
| 3566 | default: return SDValue(); |
| 3567 | case ISD::SETEQ: { |
| 3568 | // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) |
| 3569 | // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) |
| 3570 | SDValue Xor = IsRHSZero ? LHS : |
| 3571 | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
| 3572 | SDValue Clz = |
| 3573 | SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); |
| 3574 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, |
| 3575 | S->getI64Imm(58, dl), |
| 3576 | S->getI64Imm(63, dl)), 0); |
| 3577 | } |
| 3578 | case ISD::SETNE: { |
| 3579 | // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) |
| 3580 | // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) |
| 3581 | // {addcz.reg, addcz.CA} = (addcarry %a, -1) |
| 3582 | // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) |
| 3583 | SDValue Xor = IsRHSZero ? LHS : |
| 3584 | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
| 3585 | SDValue AC = |
| 3586 | SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, |
| 3587 | Xor, S->getI32Imm(~0U, dl)), 0); |
| 3588 | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, |
| 3589 | Xor, AC.getValue(1)), 0); |
| 3590 | } |
| 3591 | case ISD::SETGE: { |
| 3592 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
| 3593 | // (zext (setcc %a, %b, setge)) -> |
| 3594 | // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) |
| 3595 | // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) |
| 3596 | if (IsRHSZero) |
| 3597 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
| 3598 | std::swap(LHS, RHS); |
| 3599 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| 3600 | IsRHSZero = RHSConst && RHSConst->isZero(); |
| 3601 | [[fallthrough]]; |
| 3602 | } |
| 3603 | case ISD::SETLE: { |
| 3604 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
| 3605 | // (zext (setcc %a, %b, setge)) -> |
| 3606 | // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) |
| 3607 | // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) |
| 3608 | if (IsRHSZero) |
| 3609 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
| 3610 | SDValue ShiftL = |
| 3611 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, |
| 3612 | S->getI64Imm(1, dl), |
| 3613 | S->getI64Imm(63, dl)), 0); |
| 3614 | SDValue ShiftR = |
| 3615 | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, |
| 3616 | S->getI64Imm(63, dl)), 0); |
| 3617 | SDValue SubtractCarry = |
| 3618 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| 3619 | LHS, RHS), 1); |
| 3620 | return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, |
| 3621 | ShiftR, ShiftL, SubtractCarry), 0); |
| 3622 | } |
| 3623 | case ISD::SETGT: { |
| 3624 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
| 3625 | // (zext (setcc %a, %b, setgt)) -> |
| 3626 | // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) |
| 3627 | // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) |
| 3628 | if (IsRHSNegOne) |
| 3629 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
| 3630 | if (IsRHSZero) { |
| 3631 | SDValue Addi = |
| 3632 | SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, |
| 3633 | S->getI64Imm(~0ULL, dl)), 0); |
| 3634 | SDValue Nor = |
| 3635 | SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); |
| 3636 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, |
| 3637 | S->getI64Imm(1, dl), |
| 3638 | S->getI64Imm(63, dl)), 0); |
| 3639 | } |
| 3640 | std::swap(LHS, RHS); |
| 3641 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| 3642 | IsRHSZero = RHSConst && RHSConst->isZero(); |
| 3643 | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
| 3644 | [[fallthrough]]; |
| 3645 | } |
| 3646 | case ISD::SETLT: { |
| 3647 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
| 3648 | // (zext (setcc %a, %b, setlt)) -> |
| 3649 | // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) |
| 3650 | // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) |
| 3651 | if (IsRHSOne) |
| 3652 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
| 3653 | if (IsRHSZero) |
| 3654 | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, |
| 3655 | S->getI64Imm(1, dl), |
| 3656 | S->getI64Imm(63, dl)), 0); |
| 3657 | SDValue SRADINode = |
| 3658 | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
| 3659 | LHS, S->getI64Imm(63, dl)), 0); |
| 3660 | SDValue SRDINode = |
| 3661 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| 3662 | RHS, S->getI64Imm(1, dl), |
| 3663 | S->getI64Imm(63, dl)), 0); |
| 3664 | SDValue SUBFC8Carry = |
| 3665 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| 3666 | RHS, LHS), 1); |
| 3667 | SDValue ADDE8Node = |
| 3668 | SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, |
| 3669 | SRDINode, SRADINode, SUBFC8Carry), 0); |
| 3670 | return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, |
| 3671 | ADDE8Node, S->getI64Imm(1, dl)), 0); |
| 3672 | } |
| 3673 | case ISD::SETUGE: |
| 3674 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
| 3675 | // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) |
| 3676 | std::swap(LHS, RHS); |
| 3677 | [[fallthrough]]; |
| 3678 | case ISD::SETULE: { |
| 3679 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
| 3680 | // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) |
| 3681 | SDValue SUBFC8Carry = |
| 3682 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| 3683 | LHS, RHS), 1); |
| 3684 | SDValue SUBFE8Node = |
| 3685 | SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, |
| 3686 | LHS, LHS, SUBFC8Carry), 0); |
| 3687 | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, |
| 3688 | SUBFE8Node, S->getI64Imm(1, dl)), 0); |
| 3689 | } |
| 3690 | case ISD::SETUGT: |
| 3691 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
| 3692 | // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) |
| 3693 | std::swap(LHS, RHS); |
| 3694 | [[fallthrough]]; |
| 3695 | case ISD::SETULT: { |
| 3696 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
| 3697 | // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) |
| 3698 | SDValue SubtractCarry = |
| 3699 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| 3700 | RHS, LHS), 1); |
| 3701 | SDValue ExtSub = |
| 3702 | SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, |
| 3703 | LHS, LHS, SubtractCarry), 0); |
| 3704 | return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, |
| 3705 | ExtSub), 0); |
| 3706 | } |
| 3707 | } |
| 3708 | } |
| 3709 | |
| 3710 | /// Produces a sign-extended result of comparing two 64-bit values according to |
| 3711 | /// the passed condition code. |
| 3712 | SDValue |
| 3713 | IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, |
| 3714 | ISD::CondCode CC, |
| 3715 | int64_t RHSValue, SDLoc dl) { |
| 3716 | if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || |
| 3717 | CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) |
| 3718 | return SDValue(); |
| 3719 | bool IsRHSZero = RHSValue == 0; |
| 3720 | bool IsRHSOne = RHSValue == 1; |
| 3721 | bool IsRHSNegOne = RHSValue == -1LL; |
| 3722 | switch (CC) { |
| 3723 | default: return SDValue(); |
| 3724 | case ISD::SETEQ: { |
| 3725 | // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) |
| 3726 | // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) |
| 3727 | // {addcz.reg, addcz.CA} = (addcarry %a, -1) |
| 3728 | // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) |
| 3729 | SDValue AddInput = IsRHSZero ? LHS : |
| 3730 | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
| 3731 | SDValue Addic = |
| 3732 | SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, |
| 3733 | AddInput, S->getI32Imm(~0U, dl)), 0); |
| 3734 | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, |
| 3735 | Addic, Addic.getValue(1)), 0); |
| 3736 | } |
| 3737 | case ISD::SETNE: { |
| 3738 | // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) |
| 3739 | // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) |
| 3740 | // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) |
| 3741 | // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) |
| 3742 | SDValue Xor = IsRHSZero ? LHS : |
| 3743 | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
| 3744 | SDValue SC = |
| 3745 | SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, |
| 3746 | Xor, S->getI32Imm(0, dl)), 0); |
| 3747 | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, |
| 3748 | SC, SC.getValue(1)), 0); |
| 3749 | } |
| 3750 | case ISD::SETGE: { |
| 3751 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
| 3752 | // (zext (setcc %a, %b, setge)) -> |
| 3753 | // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) |
| 3754 | // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) |
| 3755 | if (IsRHSZero) |
| 3756 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
| 3757 | std::swap(LHS, RHS); |
| 3758 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| 3759 | IsRHSZero = RHSConst && RHSConst->isZero(); |
| 3760 | [[fallthrough]]; |
| 3761 | } |
| 3762 | case ISD::SETLE: { |
| 3763 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
| 3764 | // (zext (setcc %a, %b, setge)) -> |
| 3765 | // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) |
| 3766 | // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) |
| 3767 | if (IsRHSZero) |
| 3768 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
| 3769 | SDValue ShiftR = |
| 3770 | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, |
| 3771 | S->getI64Imm(63, dl)), 0); |
| 3772 | SDValue ShiftL = |
| 3773 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, |
| 3774 | S->getI64Imm(1, dl), |
| 3775 | S->getI64Imm(63, dl)), 0); |
| 3776 | SDValue SubtractCarry = |
| 3777 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| 3778 | LHS, RHS), 1); |
| 3779 | SDValue Adde = |
| 3780 | SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, |
| 3781 | ShiftR, ShiftL, SubtractCarry), 0); |
| 3782 | return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); |
| 3783 | } |
| 3784 | case ISD::SETGT: { |
| 3785 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
| 3786 | // (zext (setcc %a, %b, setgt)) -> |
| 3787 | // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) |
| 3788 | // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) |
| 3789 | if (IsRHSNegOne) |
| 3790 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
| 3791 | if (IsRHSZero) { |
| 3792 | SDValue Add = |
| 3793 | SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, |
| 3794 | S->getI64Imm(-1, dl)), 0); |
| 3795 | SDValue Nor = |
| 3796 | SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); |
| 3797 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, |
| 3798 | S->getI64Imm(63, dl)), 0); |
| 3799 | } |
| 3800 | std::swap(LHS, RHS); |
| 3801 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| 3802 | IsRHSZero = RHSConst && RHSConst->isZero(); |
| 3803 | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
| 3804 | [[fallthrough]]; |
| 3805 | } |
| 3806 | case ISD::SETLT: { |
| 3807 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
| 3808 | // (zext (setcc %a, %b, setlt)) -> |
| 3809 | // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) |
| 3810 | // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) |
| 3811 | if (IsRHSOne) |
| 3812 | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
| 3813 | if (IsRHSZero) { |
| 3814 | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, |
| 3815 | S->getI64Imm(63, dl)), 0); |
| 3816 | } |
| 3817 | SDValue SRADINode = |
| 3818 | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
| 3819 | LHS, S->getI64Imm(63, dl)), 0); |
| 3820 | SDValue SRDINode = |
| 3821 | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| 3822 | RHS, S->getI64Imm(1, dl), |
| 3823 | S->getI64Imm(63, dl)), 0); |
| 3824 | SDValue SUBFC8Carry = |
| 3825 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| 3826 | RHS, LHS), 1); |
| 3827 | SDValue ADDE8Node = |
| 3828 | SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, |
| 3829 | SRDINode, SRADINode, SUBFC8Carry), 0); |
| 3830 | SDValue XORI8Node = |
| 3831 | SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, |
| 3832 | ADDE8Node, S->getI64Imm(1, dl)), 0); |
| 3833 | return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, |
| 3834 | XORI8Node), 0); |
| 3835 | } |
| 3836 | case ISD::SETUGE: |
| 3837 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
| 3838 | // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) |
| 3839 | std::swap(LHS, RHS); |
| 3840 | [[fallthrough]]; |
| 3841 | case ISD::SETULE: { |
| 3842 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
| 3843 | // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) |
| 3844 | SDValue SubtractCarry = |
| 3845 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| 3846 | LHS, RHS), 1); |
| 3847 | SDValue ExtSub = |
| 3848 | SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, |
| 3849 | LHS, SubtractCarry), 0); |
| 3850 | return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, |
| 3851 | ExtSub, ExtSub), 0); |
| 3852 | } |
| 3853 | case ISD::SETUGT: |
| 3854 | // {subc.reg, subc.CA} = (subcarry %b, %a) |
| 3855 | // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) |
| 3856 | std::swap(LHS, RHS); |
| 3857 | [[fallthrough]]; |
| 3858 | case ISD::SETULT: { |
| 3859 | // {subc.reg, subc.CA} = (subcarry %a, %b) |
| 3860 | // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) |
| 3861 | SDValue SubCarry = |
| 3862 | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| 3863 | RHS, LHS), 1); |
| 3864 | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, |
| 3865 | LHS, LHS, SubCarry), 0); |
| 3866 | } |
| 3867 | } |
| 3868 | } |
| 3869 | |
| 3870 | /// Do all uses of this SDValue need the result in a GPR? |
| 3871 | /// This is meant to be used on values that have type i1 since |
| 3872 | /// it is somewhat meaningless to ask if values of other types |
| 3873 | /// should be kept in GPR's. |
| 3874 | static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { |
| 3875 | assert(Compare.getOpcode() == ISD::SETCC &&(static_cast <bool> (Compare.getOpcode() == ISD::SETCC && "An ISD::SETCC node required here.") ? void (0) : __assert_fail ("Compare.getOpcode() == ISD::SETCC && \"An ISD::SETCC node required here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3876, __extension__ __PRETTY_FUNCTION__)) |
| 3876 | "An ISD::SETCC node required here.")(static_cast <bool> (Compare.getOpcode() == ISD::SETCC && "An ISD::SETCC node required here.") ? void (0) : __assert_fail ("Compare.getOpcode() == ISD::SETCC && \"An ISD::SETCC node required here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3876, __extension__ __PRETTY_FUNCTION__)); |
| 3877 | |
| 3878 | // For values that have a single use, the caller should obviously already have |
| 3879 | // checked if that use is an extending use. We check the other uses here. |
| 3880 | if (Compare.hasOneUse()) |
| 3881 | return true; |
| 3882 | // We want the value in a GPR if it is being extended, used for a select, or |
| 3883 | // used in logical operations. |
| 3884 | for (auto *CompareUse : Compare.getNode()->uses()) |
| 3885 | if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && |
| 3886 | CompareUse->getOpcode() != ISD::ZERO_EXTEND && |
| 3887 | CompareUse->getOpcode() != ISD::SELECT && |
| 3888 | !ISD::isBitwiseLogicOp(CompareUse->getOpcode())) { |
| 3889 | OmittedForNonExtendUses++; |
| 3890 | return false; |
| 3891 | } |
| 3892 | return true; |
| 3893 | } |
| 3894 | |
| 3895 | /// Returns an equivalent of a SETCC node but with the result the same width as |
| 3896 | /// the inputs. This can also be used for SELECT_CC if either the true or false |
| 3897 | /// values is a power of two while the other is zero. |
| 3898 | SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, |
| 3899 | SetccInGPROpts ConvOpts) { |
| 3900 | assert((Compare.getOpcode() == ISD::SETCC ||(static_cast <bool> ((Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && "An ISD::SETCC node required here." ) ? void (0) : __assert_fail ("(Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && \"An ISD::SETCC node required here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3902, __extension__ __PRETTY_FUNCTION__)) |
| 3901 | Compare.getOpcode() == ISD::SELECT_CC) &&(static_cast <bool> ((Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && "An ISD::SETCC node required here." ) ? void (0) : __assert_fail ("(Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && \"An ISD::SETCC node required here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3902, __extension__ __PRETTY_FUNCTION__)) |
| 3902 | "An ISD::SETCC node required here.")(static_cast <bool> ((Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && "An ISD::SETCC node required here." ) ? void (0) : __assert_fail ("(Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && \"An ISD::SETCC node required here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 3902, __extension__ __PRETTY_FUNCTION__)); |
| 3903 | |
| 3904 | // Don't convert this comparison to a GPR sequence because there are uses |
| 3905 | // of the i1 result (i.e. uses that require the result in the CR). |
| 3906 | if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) |
| 3907 | return SDValue(); |
| 3908 | |
| 3909 | SDValue LHS = Compare.getOperand(0); |
| 3910 | SDValue RHS = Compare.getOperand(1); |
| 3911 | |
| 3912 | // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. |
| 3913 | int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; |
| 3914 | ISD::CondCode CC = |
| 3915 | cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); |
| 3916 | EVT InputVT = LHS.getValueType(); |
| 3917 | if (InputVT != MVT::i32 && InputVT != MVT::i64) |
| 3918 | return SDValue(); |
| 3919 | |
| 3920 | if (ConvOpts == SetccInGPROpts::ZExtInvert || |
| 3921 | ConvOpts == SetccInGPROpts::SExtInvert) |
| 3922 | CC = ISD::getSetCCInverse(CC, InputVT); |
| 3923 | |
| 3924 | bool Inputs32Bit = InputVT == MVT::i32; |
| 3925 | |
| 3926 | SDLoc dl(Compare); |
| 3927 | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| 3928 | int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX(9223372036854775807L); |
| 3929 | bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || |
| 3930 | ConvOpts == SetccInGPROpts::SExtInvert; |
| 3931 | |
| 3932 | if (IsSext && Inputs32Bit) |
| 3933 | return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); |
| 3934 | else if (Inputs32Bit) |
| 3935 | return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); |
| 3936 | else if (IsSext) |
| 3937 | return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); |
| 3938 | return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); |
| 3939 | } |
| 3940 | |
| 3941 | } // end anonymous namespace |
| 3942 | |
| 3943 | bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { |
| 3944 | if (N->getValueType(0) != MVT::i32 && |
| 3945 | N->getValueType(0) != MVT::i64) |
| 3946 | return false; |
| 3947 | |
| 3948 | // This optimization will emit code that assumes 64-bit registers |
| 3949 | // so we don't want to run it in 32-bit mode. Also don't run it |
| 3950 | // on functions that are not to be optimized. |
| 3951 | if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) |
| 3952 | return false; |
| 3953 | |
| 3954 | // For POWER10, it is more profitable to use the set boolean extension |
| 3955 | // instructions rather than the integer compare elimination codegen. |
| 3956 | // Users can override this via the command line option, `--ppc-gpr-icmps`. |
| 3957 | if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1()) |
| 3958 | return false; |
| 3959 | |
| 3960 | switch (N->getOpcode()) { |
| 3961 | default: break; |
| 3962 | case ISD::ZERO_EXTEND: |
| 3963 | case ISD::SIGN_EXTEND: |
| 3964 | case ISD::AND: |
| 3965 | case ISD::OR: |
| 3966 | case ISD::XOR: { |
| 3967 | IntegerCompareEliminator ICmpElim(CurDAG, this); |
| 3968 | if (SDNode *New = ICmpElim.Select(N)) { |
| 3969 | ReplaceNode(N, New); |
| 3970 | return true; |
| 3971 | } |
| 3972 | } |
| 3973 | } |
| 3974 | return false; |
| 3975 | } |
| 3976 | |
| 3977 | bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { |
| 3978 | if (N->getValueType(0) != MVT::i32 && |
| 3979 | N->getValueType(0) != MVT::i64) |
| 3980 | return false; |
| 3981 | |
| 3982 | if (!UseBitPermRewriter) |
| 3983 | return false; |
| 3984 | |
| 3985 | switch (N->getOpcode()) { |
| 3986 | default: break; |
| 3987 | case ISD::SRL: |
| 3988 | // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that |
| 3989 | // uses the BRH instruction. |
| 3990 | if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 && |
| 3991 | N->getOperand(0).getOpcode() == ISD::BSWAP) { |
| 3992 | auto &OpRight = N->getOperand(1); |
| 3993 | ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight); |
| 3994 | if (SRLConst && SRLConst->getSExtValue() == 16) |
| 3995 | return false; |
| 3996 | } |
| 3997 | LLVM_FALLTHROUGH[[fallthrough]]; |
| 3998 | case ISD::ROTL: |
| 3999 | case ISD::SHL: |
| 4000 | case ISD::AND: |
| 4001 | case ISD::OR: { |
| 4002 | BitPermutationSelector BPS(CurDAG); |
| 4003 | if (SDNode *New = BPS.Select(N)) { |
| 4004 | ReplaceNode(N, New); |
| 4005 | return true; |
| 4006 | } |
| 4007 | return false; |
| 4008 | } |
| 4009 | } |
| 4010 | |
| 4011 | return false; |
| 4012 | } |
| 4013 | |
| 4014 | /// SelectCC - Select a comparison of the specified values with the specified |
| 4015 | /// condition code, returning the CR# of the expression. |
| 4016 | SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| 4017 | const SDLoc &dl, SDValue Chain) { |
| 4018 | // Always select the LHS. |
| 4019 | unsigned Opc; |
| 4020 | |
| 4021 | if (LHS.getValueType() == MVT::i32) { |
| 4022 | unsigned Imm; |
| 4023 | if (CC == ISD::SETEQ || CC == ISD::SETNE) { |
| 4024 | if (isInt32Immediate(RHS, Imm)) { |
| 4025 | // SETEQ/SETNE comparison with 16-bit immediate, fold it. |
| 4026 | if (isUInt<16>(Imm)) |
| 4027 | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, |
| 4028 | getI32Imm(Imm & 0xFFFF, dl)), |
| 4029 | 0); |
| 4030 | // If this is a 16-bit signed immediate, fold it. |
| 4031 | if (isInt<16>((int)Imm)) |
| 4032 | return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, |
| 4033 | getI32Imm(Imm & 0xFFFF, dl)), |
| 4034 | 0); |
| 4035 | |
| 4036 | // For non-equality comparisons, the default code would materialize the |
| 4037 | // constant, then compare against it, like this: |
| 4038 | // lis r2, 4660 |
| 4039 | // ori r2, r2, 22136 |
| 4040 | // cmpw cr0, r3, r2 |
| 4041 | // Since we are just comparing for equality, we can emit this instead: |
| 4042 | // xoris r0,r3,0x1234 |
| 4043 | // cmplwi cr0,r0,0x5678 |
| 4044 | // beq cr0,L6 |
| 4045 | SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, |
| 4046 | getI32Imm(Imm >> 16, dl)), 0); |
| 4047 | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, |
| 4048 | getI32Imm(Imm & 0xFFFF, dl)), 0); |
| 4049 | } |
| 4050 | Opc = PPC::CMPLW; |
| 4051 | } else if (ISD::isUnsignedIntSetCC(CC)) { |
| 4052 | if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) |
| 4053 | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, |
| 4054 | getI32Imm(Imm & 0xFFFF, dl)), 0); |
| 4055 | Opc = PPC::CMPLW; |
| 4056 | } else { |
| 4057 | int16_t SImm; |
| 4058 | if (isIntS16Immediate(RHS, SImm)) |
| 4059 | return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, |
| 4060 | getI32Imm((int)SImm & 0xFFFF, |
| 4061 | dl)), |
| 4062 | 0); |
| 4063 | Opc = PPC::CMPW; |
| 4064 | } |
| 4065 | } else if (LHS.getValueType() == MVT::i64) { |
| 4066 | uint64_t Imm; |
| 4067 | if (CC == ISD::SETEQ || CC == ISD::SETNE) { |
| 4068 | if (isInt64Immediate(RHS.getNode(), Imm)) { |
| 4069 | // SETEQ/SETNE comparison with 16-bit immediate, fold it. |
| 4070 | if (isUInt<16>(Imm)) |
| 4071 | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, |
| 4072 | getI32Imm(Imm & 0xFFFF, dl)), |
| 4073 | 0); |
| 4074 | // If this is a 16-bit signed immediate, fold it. |
| 4075 | if (isInt<16>(Imm)) |
| 4076 | return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, |
| 4077 | getI32Imm(Imm & 0xFFFF, dl)), |
| 4078 | 0); |
| 4079 | |
| 4080 | // For non-equality comparisons, the default code would materialize the |
| 4081 | // constant, then compare against it, like this: |
| 4082 | // lis r2, 4660 |
| 4083 | // ori r2, r2, 22136 |
| 4084 | // cmpd cr0, r3, r2 |
| 4085 | // Since we are just comparing for equality, we can emit this instead: |
| 4086 | // xoris r0,r3,0x1234 |
| 4087 | // cmpldi cr0,r0,0x5678 |
| 4088 | // beq cr0,L6 |
| 4089 | if (isUInt<32>(Imm)) { |
| 4090 | SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, |
| 4091 | getI64Imm(Imm >> 16, dl)), 0); |
| 4092 | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, |
| 4093 | getI64Imm(Imm & 0xFFFF, dl)), |
| 4094 | 0); |
| 4095 | } |
| 4096 | } |
| 4097 | Opc = PPC::CMPLD; |
| 4098 | } else if (ISD::isUnsignedIntSetCC(CC)) { |
| 4099 | if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) |
| 4100 | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, |
| 4101 | getI64Imm(Imm & 0xFFFF, dl)), 0); |
| 4102 | Opc = PPC::CMPLD; |
| 4103 | } else { |
| 4104 | int16_t SImm; |
| 4105 | if (isIntS16Immediate(RHS, SImm)) |
| 4106 | return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, |
| 4107 | getI64Imm(SImm & 0xFFFF, dl)), |
| 4108 | 0); |
| 4109 | Opc = PPC::CMPD; |
| 4110 | } |
| 4111 | } else if (LHS.getValueType() == MVT::f32) { |
| 4112 | if (Subtarget->hasSPE()) { |
| 4113 | switch (CC) { |
| 4114 | default: |
| 4115 | case ISD::SETEQ: |
| 4116 | case ISD::SETNE: |
| 4117 | Opc = PPC::EFSCMPEQ; |
| 4118 | break; |
| 4119 | case ISD::SETLT: |
| 4120 | case ISD::SETGE: |
| 4121 | case ISD::SETOLT: |
| 4122 | case ISD::SETOGE: |
| 4123 | case ISD::SETULT: |
| 4124 | case ISD::SETUGE: |
| 4125 | Opc = PPC::EFSCMPLT; |
| 4126 | break; |
| 4127 | case ISD::SETGT: |
| 4128 | case ISD::SETLE: |
| 4129 | case ISD::SETOGT: |
| 4130 | case ISD::SETOLE: |
| 4131 | case ISD::SETUGT: |
| 4132 | case ISD::SETULE: |
| 4133 | Opc = PPC::EFSCMPGT; |
| 4134 | break; |
| 4135 | } |
| 4136 | } else |
| 4137 | Opc = PPC::FCMPUS; |
| 4138 | } else if (LHS.getValueType() == MVT::f64) { |
| 4139 | if (Subtarget->hasSPE()) { |
| 4140 | switch (CC) { |
| 4141 | default: |
| 4142 | case ISD::SETEQ: |
| 4143 | case ISD::SETNE: |
| 4144 | Opc = PPC::EFDCMPEQ; |
| 4145 | break; |
| 4146 | case ISD::SETLT: |
| 4147 | case ISD::SETGE: |
| 4148 | case ISD::SETOLT: |
| 4149 | case ISD::SETOGE: |
| 4150 | case ISD::SETULT: |
| 4151 | case ISD::SETUGE: |
| 4152 | Opc = PPC::EFDCMPLT; |
| 4153 | break; |
| 4154 | case ISD::SETGT: |
| 4155 | case ISD::SETLE: |
| 4156 | case ISD::SETOGT: |
| 4157 | case ISD::SETOLE: |
| 4158 | case ISD::SETUGT: |
| 4159 | case ISD::SETULE: |
| 4160 | Opc = PPC::EFDCMPGT; |
| 4161 | break; |
| 4162 | } |
| 4163 | } else |
| 4164 | Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; |
| 4165 | } else { |
| 4166 | assert(LHS.getValueType() == MVT::f128 && "Unknown vt!")(static_cast <bool> (LHS.getValueType() == MVT::f128 && "Unknown vt!") ? void (0) : __assert_fail ("LHS.getValueType() == MVT::f128 && \"Unknown vt!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4166, __extension__ __PRETTY_FUNCTION__)); |
| 4167 | assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector")(static_cast <bool> (Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector") ? void (0) : __assert_fail ("Subtarget->hasP9Vector() && \"XSCMPUQP requires Power9 Vector\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4167, __extension__ __PRETTY_FUNCTION__)); |
| 4168 | Opc = PPC::XSCMPUQP; |
| 4169 | } |
| 4170 | if (Chain) |
| 4171 | return SDValue( |
| 4172 | CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain), |
| 4173 | 0); |
| 4174 | else |
| 4175 | return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); |
| 4176 | } |
| 4177 | |
| 4178 | static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT, |
| 4179 | const PPCSubtarget *Subtarget) { |
| 4180 | // For SPE instructions, the result is in GT bit of the CR |
| 4181 | bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint(); |
| 4182 | |
| 4183 | switch (CC) { |
| 4184 | case ISD::SETUEQ: |
| 4185 | case ISD::SETONE: |
| 4186 | case ISD::SETOLE: |
| 4187 | case ISD::SETOGE: |
| 4188 | llvm_unreachable("Should be lowered by legalize!")::llvm::llvm_unreachable_internal("Should be lowered by legalize!" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4188); |
| 4189 | default: llvm_unreachable("Unknown condition!")::llvm::llvm_unreachable_internal("Unknown condition!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 4189); |
| 4190 | case ISD::SETOEQ: |
| 4191 | case ISD::SETEQ: |
| 4192 | return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ; |
| 4193 | case ISD::SETUNE: |
| 4194 | case ISD::SETNE: |
| 4195 | return UseSPE ? PPC::PRED_LE : PPC::PRED_NE; |
| 4196 | case ISD::SETOLT: |
| 4197 | case ISD::SETLT: |
| 4198 | return UseSPE ? PPC::PRED_GT : PPC::PRED_LT; |
| 4199 | case ISD::SETULE: |
| 4200 | case ISD::SETLE: |
| 4201 | return PPC::PRED_LE; |
| 4202 | case ISD::SETOGT: |
| 4203 | case ISD::SETGT: |
| 4204 | return PPC::PRED_GT; |
| 4205 | case ISD::SETUGE: |
| 4206 | case ISD::SETGE: |
| 4207 | return UseSPE ? PPC::PRED_LE : PPC::PRED_GE; |
| 4208 | case ISD::SETO: return PPC::PRED_NU; |
| 4209 | case ISD::SETUO: return PPC::PRED_UN; |
| 4210 | // These two are invalid for floating point. Assume we have int. |
| 4211 | case ISD::SETULT: return PPC::PRED_LT; |
| 4212 | case ISD::SETUGT: return PPC::PRED_GT; |
| 4213 | } |
| 4214 | } |
| 4215 | |
| 4216 | /// getCRIdxForSetCC - Return the index of the condition register field |
| 4217 | /// associated with the SetCC condition, and whether or not the field is |
| 4218 | /// treated as inverted. That is, lt = 0; ge = 0 inverted. |
| 4219 | static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { |
| 4220 | Invert = false; |
| 4221 | switch (CC) { |
| 4222 | default: llvm_unreachable("Unknown condition!")::llvm::llvm_unreachable_internal("Unknown condition!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 4222); |
| 4223 | case ISD::SETOLT: |
| 4224 | case ISD::SETLT: return 0; // Bit #0 = SETOLT |
| 4225 | case ISD::SETOGT: |
| 4226 | case ISD::SETGT: return 1; // Bit #1 = SETOGT |
| 4227 | case ISD::SETOEQ: |
| 4228 | case ISD::SETEQ: return 2; // Bit #2 = SETOEQ |
| 4229 | case ISD::SETUO: return 3; // Bit #3 = SETUO |
| 4230 | case ISD::SETUGE: |
| 4231 | case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE |
| 4232 | case ISD::SETULE: |
| 4233 | case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE |
| 4234 | case ISD::SETUNE: |
| 4235 | case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE |
| 4236 | case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO |
| 4237 | case ISD::SETUEQ: |
| 4238 | case ISD::SETOGE: |
| 4239 | case ISD::SETOLE: |
| 4240 | case ISD::SETONE: |
| 4241 | llvm_unreachable("Invalid branch code: should be expanded by legalize")::llvm::llvm_unreachable_internal("Invalid branch code: should be expanded by legalize" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4241); |
| 4242 | // These are invalid for floating point. Assume integer. |
| 4243 | case ISD::SETULT: return 0; |
| 4244 | case ISD::SETUGT: return 1; |
| 4245 | } |
| 4246 | } |
| 4247 | |
| 4248 | // getVCmpInst: return the vector compare instruction for the specified |
| 4249 | // vector type and condition code. Since this is for altivec specific code, |
| 4250 | // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128, |
| 4251 | // and v4f32). |
| 4252 | static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, |
| 4253 | bool HasVSX, bool &Swap, bool &Negate) { |
| 4254 | Swap = false; |
| 4255 | Negate = false; |
| 4256 | |
| 4257 | if (VecVT.isFloatingPoint()) { |
| 4258 | /* Handle some cases by swapping input operands. */ |
| 4259 | switch (CC) { |
| 4260 | case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; |
| 4261 | case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; |
| 4262 | case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; |
| 4263 | case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; |
| 4264 | case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; |
| 4265 | case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; |
| 4266 | default: break; |
| 4267 | } |
| 4268 | /* Handle some cases by negating the result. */ |
| 4269 | switch (CC) { |
| 4270 | case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; |
| 4271 | case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; |
| 4272 | case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; |
| 4273 | case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; |
| 4274 | default: break; |
| 4275 | } |
| 4276 | /* We have instructions implementing the remaining cases. */ |
| 4277 | switch (CC) { |
| 4278 | case ISD::SETEQ: |
| 4279 | case ISD::SETOEQ: |
| 4280 | if (VecVT == MVT::v4f32) |
| 4281 | return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; |
| 4282 | else if (VecVT == MVT::v2f64) |
| 4283 | return PPC::XVCMPEQDP; |
| 4284 | break; |
| 4285 | case ISD::SETGT: |
| 4286 | case ISD::SETOGT: |
| 4287 | if (VecVT == MVT::v4f32) |
| 4288 | return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; |
| 4289 | else if (VecVT == MVT::v2f64) |
| 4290 | return PPC::XVCMPGTDP; |
| 4291 | break; |
| 4292 | case ISD::SETGE: |
| 4293 | case ISD::SETOGE: |
| 4294 | if (VecVT == MVT::v4f32) |
| 4295 | return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; |
| 4296 | else if (VecVT == MVT::v2f64) |
| 4297 | return PPC::XVCMPGEDP; |
| 4298 | break; |
| 4299 | default: |
| 4300 | break; |
| 4301 | } |
| 4302 | llvm_unreachable("Invalid floating-point vector compare condition")::llvm::llvm_unreachable_internal("Invalid floating-point vector compare condition" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4302); |
| 4303 | } else { |
| 4304 | /* Handle some cases by swapping input operands. */ |
| 4305 | switch (CC) { |
| 4306 | case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; |
| 4307 | case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; |
| 4308 | case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; |
| 4309 | case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; |
| 4310 | default: break; |
| 4311 | } |
| 4312 | /* Handle some cases by negating the result. */ |
| 4313 | switch (CC) { |
| 4314 | case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; |
| 4315 | case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; |
| 4316 | case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; |
| 4317 | case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; |
| 4318 | default: break; |
| 4319 | } |
| 4320 | /* We have instructions implementing the remaining cases. */ |
| 4321 | switch (CC) { |
| 4322 | case ISD::SETEQ: |
| 4323 | case ISD::SETUEQ: |
| 4324 | if (VecVT == MVT::v16i8) |
| 4325 | return PPC::VCMPEQUB; |
| 4326 | else if (VecVT == MVT::v8i16) |
| 4327 | return PPC::VCMPEQUH; |
| 4328 | else if (VecVT == MVT::v4i32) |
| 4329 | return PPC::VCMPEQUW; |
| 4330 | else if (VecVT == MVT::v2i64) |
| 4331 | return PPC::VCMPEQUD; |
| 4332 | else if (VecVT == MVT::v1i128) |
| 4333 | return PPC::VCMPEQUQ; |
| 4334 | break; |
| 4335 | case ISD::SETGT: |
| 4336 | if (VecVT == MVT::v16i8) |
| 4337 | return PPC::VCMPGTSB; |
| 4338 | else if (VecVT == MVT::v8i16) |
| 4339 | return PPC::VCMPGTSH; |
| 4340 | else if (VecVT == MVT::v4i32) |
| 4341 | return PPC::VCMPGTSW; |
| 4342 | else if (VecVT == MVT::v2i64) |
| 4343 | return PPC::VCMPGTSD; |
| 4344 | else if (VecVT == MVT::v1i128) |
| 4345 | return PPC::VCMPGTSQ; |
| 4346 | break; |
| 4347 | case ISD::SETUGT: |
| 4348 | if (VecVT == MVT::v16i8) |
| 4349 | return PPC::VCMPGTUB; |
| 4350 | else if (VecVT == MVT::v8i16) |
| 4351 | return PPC::VCMPGTUH; |
| 4352 | else if (VecVT == MVT::v4i32) |
| 4353 | return PPC::VCMPGTUW; |
| 4354 | else if (VecVT == MVT::v2i64) |
| 4355 | return PPC::VCMPGTUD; |
| 4356 | else if (VecVT == MVT::v1i128) |
| 4357 | return PPC::VCMPGTUQ; |
| 4358 | break; |
| 4359 | default: |
| 4360 | break; |
| 4361 | } |
| 4362 | llvm_unreachable("Invalid integer vector compare condition")::llvm::llvm_unreachable_internal("Invalid integer vector compare condition" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4362); |
| 4363 | } |
| 4364 | } |
| 4365 | |
| 4366 | bool PPCDAGToDAGISel::trySETCC(SDNode *N) { |
| 4367 | SDLoc dl(N); |
| 4368 | unsigned Imm; |
| 4369 | bool IsStrict = N->isStrictFPOpcode(); |
| 4370 | ISD::CondCode CC = |
| 4371 | cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get(); |
| 4372 | EVT PtrVT = |
| 4373 | CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); |
| 4374 | bool isPPC64 = (PtrVT == MVT::i64); |
| 4375 | SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); |
| 4376 | |
| 4377 | SDValue LHS = N->getOperand(IsStrict ? 1 : 0); |
| 4378 | SDValue RHS = N->getOperand(IsStrict ? 2 : 1); |
| 4379 | |
| 4380 | if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) { |
| 4381 | // We can codegen setcc op, imm very efficiently compared to a brcond. |
| 4382 | // Check for those cases here. |
| 4383 | // setcc op, 0 |
| 4384 | if (Imm == 0) { |
| 4385 | SDValue Op = LHS; |
| 4386 | switch (CC) { |
| 4387 | default: break; |
| 4388 | case ISD::SETEQ: { |
| 4389 | Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); |
| 4390 | SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), |
| 4391 | getI32Imm(31, dl) }; |
| 4392 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 4393 | return true; |
| 4394 | } |
| 4395 | case ISD::SETNE: { |
| 4396 | if (isPPC64) break; |
| 4397 | SDValue AD = |
| 4398 | SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| 4399 | Op, getI32Imm(~0U, dl)), 0); |
| 4400 | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); |
| 4401 | return true; |
| 4402 | } |
| 4403 | case ISD::SETLT: { |
| 4404 | SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), |
| 4405 | getI32Imm(31, dl) }; |
| 4406 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 4407 | return true; |
| 4408 | } |
| 4409 | case ISD::SETGT: { |
| 4410 | SDValue T = |
| 4411 | SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); |
| 4412 | T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); |
| 4413 | SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), |
| 4414 | getI32Imm(31, dl) }; |
| 4415 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 4416 | return true; |
| 4417 | } |
| 4418 | } |
| 4419 | } else if (Imm == ~0U) { // setcc op, -1 |
| 4420 | SDValue Op = LHS; |
| 4421 | switch (CC) { |
| 4422 | default: break; |
| 4423 | case ISD::SETEQ: |
| 4424 | if (isPPC64) break; |
| 4425 | Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| 4426 | Op, getI32Imm(1, dl)), 0); |
| 4427 | CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, |
| 4428 | SDValue(CurDAG->getMachineNode(PPC::LI, dl, |
| 4429 | MVT::i32, |
| 4430 | getI32Imm(0, dl)), |
| 4431 | 0), Op.getValue(1)); |
| 4432 | return true; |
| 4433 | case ISD::SETNE: { |
| 4434 | if (isPPC64) break; |
| 4435 | Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); |
| 4436 | SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| 4437 | Op, getI32Imm(~0U, dl)); |
| 4438 | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, |
| 4439 | SDValue(AD, 1)); |
| 4440 | return true; |
| 4441 | } |
| 4442 | case ISD::SETLT: { |
| 4443 | SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, |
| 4444 | getI32Imm(1, dl)), 0); |
| 4445 | SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, |
| 4446 | Op), 0); |
| 4447 | SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), |
| 4448 | getI32Imm(31, dl) }; |
| 4449 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 4450 | return true; |
| 4451 | } |
| 4452 | case ISD::SETGT: { |
| 4453 | SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), |
| 4454 | getI32Imm(31, dl) }; |
| 4455 | Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
| 4456 | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); |
| 4457 | return true; |
| 4458 | } |
| 4459 | } |
| 4460 | } |
| 4461 | } |
| 4462 | |
| 4463 | // Altivec Vector compare instructions do not set any CR register by default and |
| 4464 | // vector compare operations return the same type as the operands. |
| 4465 | if (!IsStrict && LHS.getValueType().isVector()) { |
| 4466 | if (Subtarget->hasSPE()) |
| 4467 | return false; |
| 4468 | |
| 4469 | EVT VecVT = LHS.getValueType(); |
| 4470 | bool Swap, Negate; |
| 4471 | unsigned int VCmpInst = |
| 4472 | getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate); |
| 4473 | if (Swap) |
| 4474 | std::swap(LHS, RHS); |
| 4475 | |
| 4476 | EVT ResVT = VecVT.changeVectorElementTypeToInteger(); |
| 4477 | if (Negate) { |
| 4478 | SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); |
| 4479 | CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, |
| 4480 | ResVT, VCmp, VCmp); |
| 4481 | return true; |
| 4482 | } |
| 4483 | |
| 4484 | CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); |
| 4485 | return true; |
| 4486 | } |
| 4487 | |
| 4488 | if (Subtarget->useCRBits()) |
| 4489 | return false; |
| 4490 | |
| 4491 | bool Inv; |
| 4492 | unsigned Idx = getCRIdxForSetCC(CC, Inv); |
| 4493 | SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain); |
| 4494 | if (IsStrict) |
| 4495 | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1)); |
| 4496 | SDValue IntCR; |
| 4497 | |
| 4498 | // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that |
| 4499 | // The correct compare instruction is already set by SelectCC() |
| 4500 | if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { |
| 4501 | Idx = 1; |
| 4502 | } |
| 4503 | |
| 4504 | // Force the ccreg into CR7. |
| 4505 | SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); |
| 4506 | |
| 4507 | SDValue InGlue; // Null incoming flag value. |
| 4508 | CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, |
| 4509 | InGlue).getValue(1); |
| 4510 | |
| 4511 | IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, |
| 4512 | CCReg), 0); |
| 4513 | |
| 4514 | SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), |
| 4515 | getI32Imm(31, dl), getI32Imm(31, dl) }; |
| 4516 | if (!Inv) { |
| 4517 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 4518 | return true; |
| 4519 | } |
| 4520 | |
| 4521 | // Get the specified bit. |
| 4522 | SDValue Tmp = |
| 4523 | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
| 4524 | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); |
| 4525 | return true; |
| 4526 | } |
| 4527 | |
| 4528 | /// Does this node represent a load/store node whose address can be represented |
| 4529 | /// with a register plus an immediate that's a multiple of \p Val: |
| 4530 | bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { |
| 4531 | LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); |
| 4532 | StoreSDNode *STN = dyn_cast<StoreSDNode>(N); |
| 4533 | MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N); |
| 4534 | SDValue AddrOp; |
| 4535 | if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT)) |
| 4536 | AddrOp = N->getOperand(1); |
| 4537 | else if (STN) |
| 4538 | AddrOp = STN->getOperand(2); |
| 4539 | |
| 4540 | // If the address points a frame object or a frame object with an offset, |
| 4541 | // we need to check the object alignment. |
| 4542 | short Imm = 0; |
| 4543 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( |
| 4544 | AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : |
| 4545 | AddrOp)) { |
| 4546 | // If op0 is a frame index that is under aligned, we can't do it either, |
| 4547 | // because it is translated to r31 or r1 + slot + offset. We won't know the |
| 4548 | // slot number until the stack frame is finalized. |
| 4549 | const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); |
| 4550 | unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value(); |
| 4551 | if ((SlotAlign % Val) != 0) |
| 4552 | return false; |
| 4553 | |
| 4554 | // If we have an offset, we need further check on the offset. |
| 4555 | if (AddrOp.getOpcode() != ISD::ADD) |
| 4556 | return true; |
| 4557 | } |
| 4558 | |
| 4559 | if (AddrOp.getOpcode() == ISD::ADD) |
| 4560 | return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); |
| 4561 | |
| 4562 | // If the address comes from the outside, the offset will be zero. |
| 4563 | return AddrOp.getOpcode() == ISD::CopyFromReg; |
| 4564 | } |
| 4565 | |
| 4566 | void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { |
| 4567 | // Transfer memoperands. |
| 4568 | MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); |
| 4569 | CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); |
| 4570 | } |
| 4571 | |
| 4572 | static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, |
| 4573 | bool &NeedSwapOps, bool &IsUnCmp) { |
| 4574 | |
| 4575 | assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.")(static_cast <bool> (N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.") ? void (0) : __assert_fail ("N->getOpcode() == ISD::SELECT_CC && \"Expecting a SELECT_CC here.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4575, __extension__ __PRETTY_FUNCTION__)); |
| 4576 | |
| 4577 | SDValue LHS = N->getOperand(0); |
| 4578 | SDValue RHS = N->getOperand(1); |
| 4579 | SDValue TrueRes = N->getOperand(2); |
| 4580 | SDValue FalseRes = N->getOperand(3); |
| 4581 | ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); |
| 4582 | if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 && |
| 4583 | N->getSimpleValueType(0) != MVT::i32)) |
| 4584 | return false; |
| 4585 | |
| 4586 | // We are looking for any of: |
| 4587 | // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) |
| 4588 | // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) |
| 4589 | // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) |
| 4590 | // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) |
| 4591 | int64_t TrueResVal = TrueConst->getSExtValue(); |
| 4592 | if ((TrueResVal < -1 || TrueResVal > 1) || |
| 4593 | (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || |
| 4594 | (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || |
| 4595 | (TrueResVal == 0 && |
| 4596 | (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) |
| 4597 | return false; |
| 4598 | |
| 4599 | SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC |
| 4600 | ? FalseRes |
| 4601 | : FalseRes.getOperand(0); |
| 4602 | bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC; |
| 4603 | if (SetOrSelCC.getOpcode() != ISD::SETCC && |
| 4604 | SetOrSelCC.getOpcode() != ISD::SELECT_CC) |
| 4605 | return false; |
| 4606 | |
| 4607 | // Without this setb optimization, the outer SELECT_CC will be manually |
| 4608 | // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass |
| 4609 | // transforms pseudo instruction to isel instruction. When there are more than |
| 4610 | // one use for result like zext/sext, with current optimization we only see |
| 4611 | // isel is replaced by setb but can't see any significant gain. Since |
| 4612 | // setb has longer latency than original isel, we should avoid this. Another |
| 4613 | // point is that setb requires comparison always kept, it can break the |
| 4614 | // opportunity to get the comparison away if we have in future. |
| 4615 | if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) |
| 4616 | return false; |
| 4617 | |
| 4618 | SDValue InnerLHS = SetOrSelCC.getOperand(0); |
| 4619 | SDValue InnerRHS = SetOrSelCC.getOperand(1); |
| 4620 | ISD::CondCode InnerCC = |
| 4621 | cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); |
| 4622 | // If the inner comparison is a select_cc, make sure the true/false values are |
| 4623 | // 1/-1 and canonicalize it if needed. |
| 4624 | if (InnerIsSel) { |
| 4625 | ConstantSDNode *SelCCTrueConst = |
| 4626 | dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); |
| 4627 | ConstantSDNode *SelCCFalseConst = |
| 4628 | dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); |
| 4629 | if (!SelCCTrueConst || !SelCCFalseConst) |
| 4630 | return false; |
| 4631 | int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); |
| 4632 | int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); |
| 4633 | // The values must be -1/1 (requiring a swap) or 1/-1. |
| 4634 | if (SelCCTVal == -1 && SelCCFVal == 1) { |
| 4635 | std::swap(InnerLHS, InnerRHS); |
| 4636 | } else if (SelCCTVal != 1 || SelCCFVal != -1) |
| 4637 | return false; |
| 4638 | } |
| 4639 | |
| 4640 | // Canonicalize unsigned case |
| 4641 | if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { |
| 4642 | IsUnCmp = true; |
| 4643 | InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; |
| 4644 | } |
| 4645 | |
| 4646 | bool InnerSwapped = false; |
| 4647 | if (LHS == InnerRHS && RHS == InnerLHS) |
| 4648 | InnerSwapped = true; |
| 4649 | else if (LHS != InnerLHS || RHS != InnerRHS) |
| 4650 | return false; |
| 4651 | |
| 4652 | switch (CC) { |
| 4653 | // (select_cc lhs, rhs, 0, \ |
| 4654 | // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) |
| 4655 | case ISD::SETEQ: |
| 4656 | if (!InnerIsSel) |
| 4657 | return false; |
| 4658 | if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) |
| 4659 | return false; |
| 4660 | NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; |
| 4661 | break; |
| 4662 | |
| 4663 | // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) |
| 4664 | // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) |
| 4665 | // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) |
| 4666 | // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) |
| 4667 | // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) |
| 4668 | // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) |
| 4669 | case ISD::SETULT: |
| 4670 | if (!IsUnCmp && InnerCC != ISD::SETNE) |
| 4671 | return false; |
| 4672 | IsUnCmp = true; |
| 4673 | [[fallthrough]]; |
| 4674 | case ISD::SETLT: |
| 4675 | if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || |
| 4676 | (InnerCC == ISD::SETLT && InnerSwapped)) |
| 4677 | NeedSwapOps = (TrueResVal == 1); |
| 4678 | else |
| 4679 | return false; |
| 4680 | break; |
| 4681 | |
| 4682 | // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) |
| 4683 | // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) |
| 4684 | // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) |
| 4685 | // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) |
| 4686 | // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) |
| 4687 | // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) |
| 4688 | case ISD::SETUGT: |
| 4689 | if (!IsUnCmp && InnerCC != ISD::SETNE) |
| 4690 | return false; |
| 4691 | IsUnCmp = true; |
| 4692 | [[fallthrough]]; |
| 4693 | case ISD::SETGT: |
| 4694 | if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || |
| 4695 | (InnerCC == ISD::SETGT && InnerSwapped)) |
| 4696 | NeedSwapOps = (TrueResVal == -1); |
| 4697 | else |
| 4698 | return false; |
| 4699 | break; |
| 4700 | |
| 4701 | default: |
| 4702 | return false; |
| 4703 | } |
| 4704 | |
| 4705 | LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Found a node that can be lowered to a SETB: " ; } } while (false); |
| 4706 | LLVM_DEBUG(N->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { N->dump(); } } while (false); |
| 4707 | |
| 4708 | return true; |
| 4709 | } |
| 4710 | |
| 4711 | // Return true if it's a software square-root/divide operand. |
| 4712 | static bool isSWTestOp(SDValue N) { |
| 4713 | if (N.getOpcode() == PPCISD::FTSQRT) |
| 4714 | return true; |
| 4715 | if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) || |
| 4716 | N.getOpcode() != ISD::INTRINSIC_WO_CHAIN) |
| 4717 | return false; |
| 4718 | switch (N.getConstantOperandVal(0)) { |
| 4719 | case Intrinsic::ppc_vsx_xvtdivdp: |
| 4720 | case Intrinsic::ppc_vsx_xvtdivsp: |
| 4721 | case Intrinsic::ppc_vsx_xvtsqrtdp: |
| 4722 | case Intrinsic::ppc_vsx_xvtsqrtsp: |
| 4723 | return true; |
| 4724 | } |
| 4725 | return false; |
| 4726 | } |
| 4727 | |
| 4728 | bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) { |
| 4729 | assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.")(static_cast <bool> (N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.") ? void (0) : __assert_fail ("N->getOpcode() == ISD::BR_CC && \"ISD::BR_CC is expected.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4729, __extension__ __PRETTY_FUNCTION__)); |
| 4730 | // We are looking for following patterns, where `truncate to i1` actually has |
| 4731 | // the same semantic with `and 1`. |
| 4732 | // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp) |
| 4733 | // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp) |
| 4734 | // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp) |
| 4735 | // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp) |
| 4736 | // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp) |
| 4737 | // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp) |
| 4738 | // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp) |
| 4739 | // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp) |
| 4740 | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
| 4741 | if (CC != ISD::SETEQ && CC != ISD::SETNE) |
| 4742 | return false; |
| 4743 | |
| 4744 | SDValue CmpRHS = N->getOperand(3); |
| 4745 | if (!isa<ConstantSDNode>(CmpRHS) || |
| 4746 | cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0) |
| 4747 | return false; |
| 4748 | |
| 4749 | SDValue CmpLHS = N->getOperand(2); |
| 4750 | if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0))) |
| 4751 | return false; |
| 4752 | |
| 4753 | unsigned PCC = 0; |
| 4754 | bool IsCCNE = CC == ISD::SETNE; |
| 4755 | if (CmpLHS.getOpcode() == ISD::AND && |
| 4756 | isa<ConstantSDNode>(CmpLHS.getOperand(1))) |
| 4757 | switch (CmpLHS.getConstantOperandVal(1)) { |
| 4758 | case 1: |
| 4759 | PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; |
| 4760 | break; |
| 4761 | case 2: |
| 4762 | PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE; |
| 4763 | break; |
| 4764 | case 4: |
| 4765 | PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE; |
| 4766 | break; |
| 4767 | case 8: |
| 4768 | PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE; |
| 4769 | break; |
| 4770 | default: |
| 4771 | return false; |
| 4772 | } |
| 4773 | else if (CmpLHS.getOpcode() == ISD::TRUNCATE && |
| 4774 | CmpLHS.getValueType() == MVT::i1) |
| 4775 | PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; |
| 4776 | |
| 4777 | if (PCC) { |
| 4778 | SDLoc dl(N); |
| 4779 | SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4), |
| 4780 | N->getOperand(0)}; |
| 4781 | CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); |
| 4782 | return true; |
| 4783 | } |
| 4784 | return false; |
| 4785 | } |
| 4786 | |
| 4787 | bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) { |
| 4788 | // Sometimes the promoted value of the intrinsic is ANDed by some non-zero |
| 4789 | // value, for example when crbits is disabled. If so, select the |
| 4790 | // loop_decrement intrinsics now. |
| 4791 | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
| 4792 | SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); |
| 4793 | |
| 4794 | if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) || |
| 4795 | isNullConstant(LHS.getOperand(1))) |
| 4796 | return false; |
| 4797 | |
| 4798 | if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN || |
| 4799 | cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() != |
| 4800 | Intrinsic::loop_decrement) |
| 4801 | return false; |
| 4802 | |
| 4803 | if (!isa<ConstantSDNode>(RHS)) |
| 4804 | return false; |
| 4805 | |
| 4806 | assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&(static_cast <bool> ((CC == ISD::SETEQ || CC == ISD::SETNE ) && "Counter decrement comparison is not EQ or NE") ? void (0) : __assert_fail ("(CC == ISD::SETEQ || CC == ISD::SETNE) && \"Counter decrement comparison is not EQ or NE\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4807, __extension__ __PRETTY_FUNCTION__)) |
| 4807 | "Counter decrement comparison is not EQ or NE")(static_cast <bool> ((CC == ISD::SETEQ || CC == ISD::SETNE ) && "Counter decrement comparison is not EQ or NE") ? void (0) : __assert_fail ("(CC == ISD::SETEQ || CC == ISD::SETNE) && \"Counter decrement comparison is not EQ or NE\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4807, __extension__ __PRETTY_FUNCTION__)); |
| 4808 | |
| 4809 | SDValue OldDecrement = LHS.getOperand(0); |
| 4810 | assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!")(static_cast <bool> (OldDecrement.hasOneUse() && "loop decrement has more than one use!") ? void (0) : __assert_fail ("OldDecrement.hasOneUse() && \"loop decrement has more than one use!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4810, __extension__ __PRETTY_FUNCTION__)); |
| 4811 | |
| 4812 | SDLoc DecrementLoc(OldDecrement); |
| 4813 | SDValue ChainInput = OldDecrement.getOperand(0); |
| 4814 | SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc) |
| 4815 | : getI32Imm(1, DecrementLoc)}; |
| 4816 | unsigned DecrementOpcode = |
| 4817 | Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop; |
| 4818 | SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc, |
| 4819 | MVT::i1, DecrementOps); |
| 4820 | |
| 4821 | unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); |
| 4822 | bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val); |
| 4823 | unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn; |
| 4824 | |
| 4825 | ReplaceUses(LHS.getValue(0), LHS.getOperand(1)); |
| 4826 | CurDAG->RemoveDeadNode(LHS.getNode()); |
| 4827 | |
| 4828 | // Mark the old loop_decrement intrinsic as dead. |
| 4829 | ReplaceUses(OldDecrement.getValue(1), ChainInput); |
| 4830 | CurDAG->RemoveDeadNode(OldDecrement.getNode()); |
| 4831 | |
| 4832 | SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, |
| 4833 | ChainInput, N->getOperand(0)); |
| 4834 | |
| 4835 | CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0), |
| 4836 | N->getOperand(4), Chain); |
| 4837 | return true; |
| 4838 | } |
| 4839 | |
| 4840 | bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) { |
| 4841 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4841, __extension__ __PRETTY_FUNCTION__)); |
| 4842 | unsigned Imm; |
| 4843 | if (!isInt32Immediate(N->getOperand(1), Imm)) |
| 4844 | return false; |
| 4845 | |
| 4846 | SDLoc dl(N); |
| 4847 | SDValue Val = N->getOperand(0); |
| 4848 | unsigned SH, MB, ME; |
| 4849 | // If this is an and of a value rotated between 0 and 31 bits and then and'd |
| 4850 | // with a mask, emit rlwinm |
| 4851 | if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) { |
| 4852 | Val = Val.getOperand(0); |
| 4853 | SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl), |
| 4854 | getI32Imm(ME, dl)}; |
| 4855 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 4856 | return true; |
| 4857 | } |
| 4858 | |
| 4859 | // If this is just a masked value where the input is not handled, and |
| 4860 | // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm |
| 4861 | if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) { |
| 4862 | SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl), |
| 4863 | getI32Imm(ME, dl)}; |
| 4864 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 4865 | return true; |
| 4866 | } |
| 4867 | |
| 4868 | // AND X, 0 -> 0, not "rlwinm 32". |
| 4869 | if (Imm == 0) { |
| 4870 | ReplaceUses(SDValue(N, 0), N->getOperand(1)); |
| 4871 | return true; |
| 4872 | } |
| 4873 | |
| 4874 | return false; |
| 4875 | } |
| 4876 | |
| 4877 | bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) { |
| 4878 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4878, __extension__ __PRETTY_FUNCTION__)); |
| 4879 | uint64_t Imm64; |
| 4880 | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) |
| 4881 | return false; |
| 4882 | |
| 4883 | unsigned MB, ME; |
| 4884 | if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) { |
| 4885 | // MB ME |
| 4886 | // +----------------------+ |
| 4887 | // |xxxxxxxxxxx00011111000| |
| 4888 | // +----------------------+ |
| 4889 | // 0 32 64 |
| 4890 | // We can only do it if the MB is larger than 32 and MB <= ME |
| 4891 | // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even |
| 4892 | // we didn't rotate it. |
| 4893 | SDLoc dl(N); |
| 4894 | SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl), |
| 4895 | getI64Imm(ME - 32, dl)}; |
| 4896 | CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops); |
| 4897 | return true; |
| 4898 | } |
| 4899 | |
| 4900 | return false; |
| 4901 | } |
| 4902 | |
| 4903 | bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) { |
| 4904 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4904, __extension__ __PRETTY_FUNCTION__)); |
| 4905 | uint64_t Imm64; |
| 4906 | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) |
| 4907 | return false; |
| 4908 | |
| 4909 | // Do nothing if it is 16-bit imm as the pattern in the .td file handle |
| 4910 | // it well with "andi.". |
| 4911 | if (isUInt<16>(Imm64)) |
| 4912 | return false; |
| 4913 | |
| 4914 | SDLoc Loc(N); |
| 4915 | SDValue Val = N->getOperand(0); |
| 4916 | |
| 4917 | // Optimized with two rldicl's as follows: |
| 4918 | // Add missing bits on left to the mask and check that the mask is a |
| 4919 | // wrapped run of ones, i.e. |
| 4920 | // Change pattern |0001111100000011111111| |
| 4921 | // to |1111111100000011111111|. |
| 4922 | unsigned NumOfLeadingZeros = llvm::countl_zero(Imm64); |
| 4923 | if (NumOfLeadingZeros != 0) |
| 4924 | Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros); |
| 4925 | |
| 4926 | unsigned MB, ME; |
| 4927 | if (!isRunOfOnes64(Imm64, MB, ME)) |
| 4928 | return false; |
| 4929 | |
| 4930 | // ME MB MB-ME+63 |
| 4931 | // +----------------------+ +----------------------+ |
| 4932 | // |1111111100000011111111| -> |0000001111111111111111| |
| 4933 | // +----------------------+ +----------------------+ |
| 4934 | // 0 63 0 63 |
| 4935 | // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between. |
| 4936 | unsigned OnesOnLeft = ME + 1; |
| 4937 | unsigned ZerosInBetween = (MB - ME + 63) & 63; |
| 4938 | // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear |
| 4939 | // on the left the bits that are already zeros in the mask. |
| 4940 | Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val, |
| 4941 | getI64Imm(OnesOnLeft, Loc), |
| 4942 | getI64Imm(ZerosInBetween, Loc)), |
| 4943 | 0); |
| 4944 | // MB-ME+63 ME MB |
| 4945 | // +----------------------+ +----------------------+ |
| 4946 | // |0000001111111111111111| -> |0001111100000011111111| |
| 4947 | // +----------------------+ +----------------------+ |
| 4948 | // 0 63 0 63 |
| 4949 | // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the |
| 4950 | // left the number of ones we previously added. |
| 4951 | SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc), |
| 4952 | getI64Imm(NumOfLeadingZeros, Loc)}; |
| 4953 | CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); |
| 4954 | return true; |
| 4955 | } |
| 4956 | |
| 4957 | bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) { |
| 4958 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4958, __extension__ __PRETTY_FUNCTION__)); |
| 4959 | unsigned Imm; |
| 4960 | if (!isInt32Immediate(N->getOperand(1), Imm)) |
| 4961 | return false; |
| 4962 | |
| 4963 | SDValue Val = N->getOperand(0); |
| 4964 | unsigned Imm2; |
| 4965 | // ISD::OR doesn't get all the bitfield insertion fun. |
| 4966 | // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a |
| 4967 | // bitfield insert. |
| 4968 | if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2)) |
| 4969 | return false; |
| 4970 | |
| 4971 | // The idea here is to check whether this is equivalent to: |
| 4972 | // (c1 & m) | (x & ~m) |
| 4973 | // where m is a run-of-ones mask. The logic here is that, for each bit in |
| 4974 | // c1 and c2: |
| 4975 | // - if both are 1, then the output will be 1. |
| 4976 | // - if both are 0, then the output will be 0. |
| 4977 | // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will |
| 4978 | // come from x. |
| 4979 | // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will |
| 4980 | // be 0. |
| 4981 | // If that last condition is never the case, then we can form m from the |
| 4982 | // bits that are the same between c1 and c2. |
| 4983 | unsigned MB, ME; |
| 4984 | if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) { |
| 4985 | SDLoc dl(N); |
| 4986 | SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl), |
| 4987 | getI32Imm(MB, dl), getI32Imm(ME, dl)}; |
| 4988 | ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); |
| 4989 | return true; |
| 4990 | } |
| 4991 | |
| 4992 | return false; |
| 4993 | } |
| 4994 | |
| 4995 | bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) { |
| 4996 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 4996, __extension__ __PRETTY_FUNCTION__)); |
| 4997 | uint64_t Imm64; |
| 4998 | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64)) |
| 4999 | return false; |
| 5000 | |
| 5001 | // If this is a 64-bit zero-extension mask, emit rldicl. |
| 5002 | unsigned MB = 64 - llvm::countr_one(Imm64); |
| 5003 | unsigned SH = 0; |
| 5004 | unsigned Imm; |
| 5005 | SDValue Val = N->getOperand(0); |
| 5006 | SDLoc dl(N); |
| 5007 | |
| 5008 | if (Val.getOpcode() == ISD::ANY_EXTEND) { |
| 5009 | auto Op0 = Val.getOperand(0); |
| 5010 | if (Op0.getOpcode() == ISD::SRL && |
| 5011 | isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { |
| 5012 | |
| 5013 | auto ResultType = Val.getNode()->getValueType(0); |
| 5014 | auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType); |
| 5015 | SDValue IDVal(ImDef, 0); |
| 5016 | |
| 5017 | Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType, |
| 5018 | IDVal, Op0.getOperand(0), |
| 5019 | getI32Imm(1, dl)), |
| 5020 | 0); |
| 5021 | SH = 64 - Imm; |
| 5022 | } |
| 5023 | } |
| 5024 | |
| 5025 | // If the operand is a logical right shift, we can fold it into this |
| 5026 | // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) |
| 5027 | // for n <= mb. The right shift is really a left rotate followed by a |
| 5028 | // mask, and this mask is a more-restrictive sub-mask of the mask implied |
| 5029 | // by the shift. |
| 5030 | if (Val.getOpcode() == ISD::SRL && |
| 5031 | isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { |
| 5032 | assert(Imm < 64 && "Illegal shift amount")(static_cast <bool> (Imm < 64 && "Illegal shift amount" ) ? void (0) : __assert_fail ("Imm < 64 && \"Illegal shift amount\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5032, __extension__ __PRETTY_FUNCTION__)); |
| 5033 | Val = Val.getOperand(0); |
| 5034 | SH = 64 - Imm; |
| 5035 | } |
| 5036 | |
| 5037 | SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)}; |
| 5038 | CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); |
| 5039 | return true; |
| 5040 | } |
| 5041 | |
| 5042 | bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) { |
| 5043 | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::AND && "ISD::AND SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"ISD::AND SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5043, __extension__ __PRETTY_FUNCTION__)); |
| 5044 | uint64_t Imm64; |
| 5045 | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || |
| 5046 | !isMask_64(~Imm64)) |
| 5047 | return false; |
| 5048 | |
| 5049 | // If this is a negated 64-bit zero-extension mask, |
| 5050 | // i.e. the immediate is a sequence of ones from most significant side |
| 5051 | // and all zero for reminder, we should use rldicr. |
| 5052 | unsigned MB = 63 - llvm::countr_one(~Imm64); |
| 5053 | unsigned SH = 0; |
| 5054 | SDLoc dl(N); |
| 5055 | SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)}; |
| 5056 | CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); |
| 5057 | return true; |
| 5058 | } |
| 5059 | |
| 5060 | bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) { |
| 5061 | assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected")(static_cast <bool> (N->getOpcode() == ISD::OR && "ISD::OR SDNode expected") ? void (0) : __assert_fail ("N->getOpcode() == ISD::OR && \"ISD::OR SDNode expected\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5061, __extension__ __PRETTY_FUNCTION__)); |
| 5062 | uint64_t Imm64; |
| 5063 | unsigned MB, ME; |
| 5064 | SDValue N0 = N->getOperand(0); |
| 5065 | |
| 5066 | // We won't get fewer instructions if the imm is 32-bit integer. |
| 5067 | // rldimi requires the imm to have consecutive ones with both sides zero. |
| 5068 | // Also, make sure the first Op has only one use, otherwise this may increase |
| 5069 | // register pressure since rldimi is destructive. |
| 5070 | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || |
| 5071 | isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse()) |
| 5072 | return false; |
| 5073 | |
| 5074 | unsigned SH = 63 - ME; |
| 5075 | SDLoc Dl(N); |
| 5076 | // Use select64Imm for making LI instr instead of directly putting Imm64 |
| 5077 | SDValue Ops[] = { |
| 5078 | N->getOperand(0), |
| 5079 | SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0), |
| 5080 | getI32Imm(SH, Dl), getI32Imm(MB, Dl)}; |
| 5081 | CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops); |
| 5082 | return true; |
| 5083 | } |
| 5084 | |
| 5085 | // Select - Convert the specified operand from a target-independent to a |
| 5086 | // target-specific node if it hasn't already been changed. |
| 5087 | void PPCDAGToDAGISel::Select(SDNode *N) { |
| 5088 | SDLoc dl(N); |
| 5089 | if (N->isMachineOpcode()) { |
| 5090 | N->setNodeId(-1); |
| 5091 | return; // Already selected. |
| 5092 | } |
| 5093 | |
| 5094 | // In case any misguided DAG-level optimizations form an ADD with a |
| 5095 | // TargetConstant operand, crash here instead of miscompiling (by selecting |
| 5096 | // an r+r add instead of some kind of r+i add). |
| 5097 | if (N->getOpcode() == ISD::ADD && |
| 5098 | N->getOperand(1).getOpcode() == ISD::TargetConstant) |
| 5099 | llvm_unreachable("Invalid ADD with TargetConstant operand")::llvm::llvm_unreachable_internal("Invalid ADD with TargetConstant operand" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5099); |
| 5100 | |
| 5101 | // Try matching complex bit permutations before doing anything else. |
| 5102 | if (tryBitPermutation(N)) |
| 5103 | return; |
| 5104 | |
| 5105 | // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). |
| 5106 | if (tryIntCompareInGPR(N)) |
| 5107 | return; |
| 5108 | |
| 5109 | switch (N->getOpcode()) { |
| 5110 | default: break; |
| 5111 | |
| 5112 | case ISD::Constant: |
| 5113 | if (N->getValueType(0) == MVT::i64) { |
| 5114 | ReplaceNode(N, selectI64Imm(CurDAG, N)); |
| 5115 | return; |
| 5116 | } |
| 5117 | break; |
| 5118 | |
| 5119 | case ISD::INTRINSIC_VOID: { |
| 5120 | auto IntrinsicID = N->getConstantOperandVal(1); |
| 5121 | if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw && |
| 5122 | IntrinsicID != Intrinsic::ppc_trapd && |
| 5123 | IntrinsicID != Intrinsic::ppc_trap) |
| 5124 | break; |
| 5125 | unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw || |
| 5126 | IntrinsicID == Intrinsic::ppc_trapd) |
| 5127 | ? PPC::TDI |
| 5128 | : PPC::TWI; |
| 5129 | SmallVector<SDValue, 4> OpsWithMD; |
| 5130 | unsigned MDIndex; |
| 5131 | if (IntrinsicID == Intrinsic::ppc_tdw || |
| 5132 | IntrinsicID == Intrinsic::ppc_tw) { |
| 5133 | SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)}; |
| 5134 | int16_t SImmOperand2; |
| 5135 | int16_t SImmOperand3; |
| 5136 | int16_t SImmOperand4; |
| 5137 | bool isOperand2IntS16Immediate = |
| 5138 | isIntS16Immediate(N->getOperand(2), SImmOperand2); |
| 5139 | bool isOperand3IntS16Immediate = |
| 5140 | isIntS16Immediate(N->getOperand(3), SImmOperand3); |
| 5141 | // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg + |
| 5142 | // reg or imm + imm. The imm + imm form will be optimized to either an |
| 5143 | // unconditional trap or a nop in a later pass. |
| 5144 | if (isOperand2IntS16Immediate == isOperand3IntS16Immediate) |
| 5145 | Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW; |
| 5146 | else if (isOperand3IntS16Immediate) |
| 5147 | // The 2nd and 3rd operands are reg + imm. |
| 5148 | Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl); |
| 5149 | else { |
| 5150 | // The 2nd and 3rd operands are imm + reg. |
| 5151 | bool isOperand4IntS16Immediate = |
| 5152 | isIntS16Immediate(N->getOperand(4), SImmOperand4); |
| 5153 | (void)isOperand4IntS16Immediate; |
| 5154 | assert(isOperand4IntS16Immediate &&(static_cast <bool> (isOperand4IntS16Immediate && "The 4th operand is not an Immediate") ? void (0) : __assert_fail ("isOperand4IntS16Immediate && \"The 4th operand is not an Immediate\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5155, __extension__ __PRETTY_FUNCTION__)) |
| 5155 | "The 4th operand is not an Immediate")(static_cast <bool> (isOperand4IntS16Immediate && "The 4th operand is not an Immediate") ? void (0) : __assert_fail ("isOperand4IntS16Immediate && \"The 4th operand is not an Immediate\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5155, __extension__ __PRETTY_FUNCTION__)); |
| 5156 | // We need to flip the condition immediate TO. |
| 5157 | int16_t TO = int(SImmOperand4) & 0x1F; |
| 5158 | // We swap the first and second bit of TO if they are not same. |
| 5159 | if ((TO & 0x1) != ((TO & 0x2) >> 1)) |
| 5160 | TO = (TO & 0x1) ? TO + 1 : TO - 1; |
| 5161 | // We swap the fourth and fifth bit of TO if they are not same. |
| 5162 | if ((TO & 0x8) != ((TO & 0x10) >> 1)) |
| 5163 | TO = (TO & 0x8) ? TO + 8 : TO - 8; |
| 5164 | Ops[0] = getI32Imm(TO, dl); |
| 5165 | Ops[1] = N->getOperand(3); |
| 5166 | Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl); |
| 5167 | } |
| 5168 | OpsWithMD = {Ops[0], Ops[1], Ops[2]}; |
| 5169 | MDIndex = 5; |
| 5170 | } else { |
| 5171 | OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)}; |
| 5172 | MDIndex = 3; |
| 5173 | } |
| 5174 | |
| 5175 | if (N->getNumOperands() > MDIndex) { |
| 5176 | SDValue MDV = N->getOperand(MDIndex); |
| 5177 | const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); |
| 5178 | assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!")(static_cast <bool> (MD->getNumOperands() != 0 && "Empty MDNode in operands!") ? void (0) : __assert_fail ("MD->getNumOperands() != 0 && \"Empty MDNode in operands!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5178, __extension__ __PRETTY_FUNCTION__)); |
| 5179 | assert((isa<MDString>(MD->getOperand(0)) && cast<MDString>((static_cast <bool> ((isa<MDString>(MD->getOperand (0)) && cast<MDString>( MD->getOperand(0))-> getString().equals("ppc-trap-reason")) && "Unsupported annotation data type!" ) ? void (0) : __assert_fail ("(isa<MDString>(MD->getOperand(0)) && cast<MDString>( MD->getOperand(0))->getString().equals(\"ppc-trap-reason\")) && \"Unsupported annotation data type!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5181, __extension__ __PRETTY_FUNCTION__)) |
| 5180 | MD->getOperand(0))->getString().equals("ppc-trap-reason"))(static_cast <bool> ((isa<MDString>(MD->getOperand (0)) && cast<MDString>( MD->getOperand(0))-> getString().equals("ppc-trap-reason")) && "Unsupported annotation data type!" ) ? void (0) : __assert_fail ("(isa<MDString>(MD->getOperand(0)) && cast<MDString>( MD->getOperand(0))->getString().equals(\"ppc-trap-reason\")) && \"Unsupported annotation data type!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5181, __extension__ __PRETTY_FUNCTION__)) |
| 5181 | && "Unsupported annotation data type!")(static_cast <bool> ((isa<MDString>(MD->getOperand (0)) && cast<MDString>( MD->getOperand(0))-> getString().equals("ppc-trap-reason")) && "Unsupported annotation data type!" ) ? void (0) : __assert_fail ("(isa<MDString>(MD->getOperand(0)) && cast<MDString>( MD->getOperand(0))->getString().equals(\"ppc-trap-reason\")) && \"Unsupported annotation data type!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5181, __extension__ __PRETTY_FUNCTION__)); |
| 5182 | for (unsigned i = 1; i < MD->getNumOperands(); i++) { |
| 5183 | assert(isa<MDString>(MD->getOperand(i)) &&(static_cast <bool> (isa<MDString>(MD->getOperand (i)) && "Invalid data type for annotation ppc-trap-reason!" ) ? void (0) : __assert_fail ("isa<MDString>(MD->getOperand(i)) && \"Invalid data type for annotation ppc-trap-reason!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5184, __extension__ __PRETTY_FUNCTION__)) |
| 5184 | "Invalid data type for annotation ppc-trap-reason!")(static_cast <bool> (isa<MDString>(MD->getOperand (i)) && "Invalid data type for annotation ppc-trap-reason!" ) ? void (0) : __assert_fail ("isa<MDString>(MD->getOperand(i)) && \"Invalid data type for annotation ppc-trap-reason!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5184, __extension__ __PRETTY_FUNCTION__)); |
| 5185 | OpsWithMD.push_back( |
| 5186 | getI32Imm(std::stoi(cast<MDString>( |
| 5187 | MD->getOperand(i))->getString().str()), dl)); |
| 5188 | } |
| 5189 | } |
| 5190 | OpsWithMD.push_back(N->getOperand(0)); // chain |
| 5191 | CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD); |
| 5192 | return; |
| 5193 | } |
| 5194 | |
| 5195 | case ISD::INTRINSIC_WO_CHAIN: { |
| 5196 | // We emit the PPC::FSELS instruction here because of type conflicts with |
| 5197 | // the comparison operand. The FSELS instruction is defined to use an 8-byte |
| 5198 | // comparison like the FSELD version. The fsels intrinsic takes a 4-byte |
| 5199 | // value for the comparison. When selecting through a .td file, a type |
| 5200 | // error is raised. Must check this first so we never break on the |
| 5201 | // !Subtarget->isISA3_1() check. |
| 5202 | auto IntID = N->getConstantOperandVal(0); |
| 5203 | if (IntID == Intrinsic::ppc_fsels) { |
| 5204 | SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)}; |
| 5205 | CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops); |
| 5206 | return; |
| 5207 | } |
| 5208 | |
| 5209 | if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) { |
| 5210 | auto Pred = N->getConstantOperandVal(1); |
| 5211 | unsigned Opcode = |
| 5212 | IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec; |
| 5213 | unsigned SubReg = 0; |
| 5214 | unsigned ShiftVal = 0; |
| 5215 | bool Reverse = false; |
| 5216 | switch (Pred) { |
| 5217 | case 0: |
| 5218 | SubReg = PPC::sub_eq; |
| 5219 | ShiftVal = 1; |
| 5220 | break; |
| 5221 | case 1: |
| 5222 | SubReg = PPC::sub_eq; |
| 5223 | ShiftVal = 1; |
| 5224 | Reverse = true; |
| 5225 | break; |
| 5226 | case 2: |
| 5227 | SubReg = PPC::sub_lt; |
| 5228 | ShiftVal = 3; |
| 5229 | break; |
| 5230 | case 3: |
| 5231 | SubReg = PPC::sub_lt; |
| 5232 | ShiftVal = 3; |
| 5233 | Reverse = true; |
| 5234 | break; |
| 5235 | case 4: |
| 5236 | SubReg = PPC::sub_gt; |
| 5237 | ShiftVal = 2; |
| 5238 | break; |
| 5239 | case 5: |
| 5240 | SubReg = PPC::sub_gt; |
| 5241 | ShiftVal = 2; |
| 5242 | Reverse = true; |
| 5243 | break; |
| 5244 | case 6: |
| 5245 | SubReg = PPC::sub_un; |
| 5246 | break; |
| 5247 | case 7: |
| 5248 | SubReg = PPC::sub_un; |
| 5249 | Reverse = true; |
| 5250 | break; |
| 5251 | } |
| 5252 | |
| 5253 | EVT VTs[] = {MVT::v16i8, MVT::Glue}; |
| 5254 | SDValue Ops[] = {N->getOperand(2), N->getOperand(3), |
| 5255 | CurDAG->getTargetConstant(0, dl, MVT::i32)}; |
| 5256 | SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0); |
| 5257 | SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); |
| 5258 | // On Power10, we can use SETBC[R]. On prior architectures, we have to use |
| 5259 | // MFOCRF and shift/negate the value. |
| 5260 | if (Subtarget->isISA3_1()) { |
| 5261 | SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32); |
| 5262 | SDValue CRBit = SDValue( |
| 5263 | CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, |
| 5264 | CR6Reg, SubRegIdx, BCDOp.getValue(1)), |
| 5265 | 0); |
| 5266 | CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32, |
| 5267 | CRBit); |
| 5268 | } else { |
| 5269 | SDValue Move = |
| 5270 | SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg, |
| 5271 | BCDOp.getValue(1)), |
| 5272 | 0); |
| 5273 | SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl), |
| 5274 | getI32Imm(31, dl), getI32Imm(31, dl)}; |
| 5275 | if (!Reverse) |
| 5276 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 5277 | else { |
| 5278 | SDValue Shift = SDValue( |
| 5279 | CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
| 5280 | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl)); |
| 5281 | } |
| 5282 | } |
| 5283 | return; |
| 5284 | } |
| 5285 | |
| 5286 | if (!Subtarget->isISA3_1()) |
| 5287 | break; |
| 5288 | unsigned Opcode = 0; |
| 5289 | switch (IntID) { |
| 5290 | default: |
| 5291 | break; |
| 5292 | case Intrinsic::ppc_altivec_vstribr_p: |
| 5293 | Opcode = PPC::VSTRIBR_rec; |
| 5294 | break; |
| 5295 | case Intrinsic::ppc_altivec_vstribl_p: |
| 5296 | Opcode = PPC::VSTRIBL_rec; |
| 5297 | break; |
| 5298 | case Intrinsic::ppc_altivec_vstrihr_p: |
| 5299 | Opcode = PPC::VSTRIHR_rec; |
| 5300 | break; |
| 5301 | case Intrinsic::ppc_altivec_vstrihl_p: |
| 5302 | Opcode = PPC::VSTRIHL_rec; |
| 5303 | break; |
| 5304 | } |
| 5305 | if (!Opcode) |
| 5306 | break; |
| 5307 | |
| 5308 | // Generate the appropriate vector string isolate intrinsic to match. |
| 5309 | EVT VTs[] = {MVT::v16i8, MVT::Glue}; |
| 5310 | SDValue VecStrOp = |
| 5311 | SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0); |
| 5312 | // Vector string isolate instructions update the EQ bit of CR6. |
| 5313 | // Generate a SETBC instruction to extract the bit and place it in a GPR. |
| 5314 | SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32); |
| 5315 | SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); |
| 5316 | SDValue CRBit = SDValue( |
| 5317 | CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, |
| 5318 | CR6Reg, SubRegIdx, VecStrOp.getValue(1)), |
| 5319 | 0); |
| 5320 | CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit); |
| 5321 | return; |
| 5322 | } |
| 5323 | |
| 5324 | case ISD::SETCC: |
| 5325 | case ISD::STRICT_FSETCC: |
| 5326 | case ISD::STRICT_FSETCCS: |
| 5327 | if (trySETCC(N)) |
| 5328 | return; |
| 5329 | break; |
| 5330 | // These nodes will be transformed into GETtlsADDR32 node, which |
| 5331 | // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT |
| 5332 | case PPCISD::ADDI_TLSLD_L_ADDR: |
| 5333 | case PPCISD::ADDI_TLSGD_L_ADDR: { |
| 5334 | const Module *Mod = MF->getFunction().getParent(); |
| 5335 | if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || |
| 5336 | !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() || |
| 5337 | Mod->getPICLevel() == PICLevel::SmallPIC) |
| 5338 | break; |
| 5339 | // Attach global base pointer on GETtlsADDR32 node in order to |
| 5340 | // generate secure plt code for TLS symbols. |
| 5341 | getGlobalBaseReg(); |
| 5342 | } break; |
| 5343 | case PPCISD::CALL: { |
| 5344 | if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || |
| 5345 | !TM.isPositionIndependent() || !Subtarget->isSecurePlt() || |
| 5346 | !Subtarget->isTargetELF()) |
| 5347 | break; |
| 5348 | |
| 5349 | SDValue Op = N->getOperand(1); |
| 5350 | |
| 5351 | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { |
| 5352 | if (GA->getTargetFlags() == PPCII::MO_PLT) |
| 5353 | getGlobalBaseReg(); |
| 5354 | } |
| 5355 | else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { |
| 5356 | if (ES->getTargetFlags() == PPCII::MO_PLT) |
| 5357 | getGlobalBaseReg(); |
| 5358 | } |
| 5359 | } |
| 5360 | break; |
| 5361 | |
| 5362 | case PPCISD::GlobalBaseReg: |
| 5363 | ReplaceNode(N, getGlobalBaseReg()); |
| 5364 | return; |
| 5365 | |
| 5366 | case ISD::FrameIndex: |
| 5367 | selectFrameIndex(N, N); |
| 5368 | return; |
| 5369 | |
| 5370 | case PPCISD::MFOCRF: { |
| 5371 | SDValue InGlue = N->getOperand(1); |
| 5372 | ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, |
| 5373 | N->getOperand(0), InGlue)); |
| 5374 | return; |
| 5375 | } |
| 5376 | |
| 5377 | case PPCISD::READ_TIME_BASE: |
| 5378 | ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, |
| 5379 | MVT::Other, N->getOperand(0))); |
| 5380 | return; |
| 5381 | |
| 5382 | case PPCISD::SRA_ADDZE: { |
| 5383 | SDValue N0 = N->getOperand(0); |
| 5384 | SDValue ShiftAmt = |
| 5385 | CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> |
| 5386 | getConstantIntValue(), dl, |
| 5387 | N->getValueType(0)); |
| 5388 | if (N->getValueType(0) == MVT::i64) { |
| 5389 | SDNode *Op = |
| 5390 | CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, |
| 5391 | N0, ShiftAmt); |
| 5392 | CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), |
| 5393 | SDValue(Op, 1)); |
| 5394 | return; |
| 5395 | } else { |
| 5396 | assert(N->getValueType(0) == MVT::i32 &&(static_cast <bool> (N->getValueType(0) == MVT::i32 && "Expecting i64 or i32 in PPCISD::SRA_ADDZE") ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i32 && \"Expecting i64 or i32 in PPCISD::SRA_ADDZE\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5397, __extension__ __PRETTY_FUNCTION__)) |
| 5397 | "Expecting i64 or i32 in PPCISD::SRA_ADDZE")(static_cast <bool> (N->getValueType(0) == MVT::i32 && "Expecting i64 or i32 in PPCISD::SRA_ADDZE") ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i32 && \"Expecting i64 or i32 in PPCISD::SRA_ADDZE\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5397, __extension__ __PRETTY_FUNCTION__)); |
| 5398 | SDNode *Op = |
| 5399 | CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, |
| 5400 | N0, ShiftAmt); |
| 5401 | CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), |
| 5402 | SDValue(Op, 1)); |
| 5403 | return; |
| 5404 | } |
| 5405 | } |
| 5406 | |
| 5407 | case ISD::STORE: { |
| 5408 | // Change TLS initial-exec D-form stores to X-form stores. |
| 5409 | StoreSDNode *ST = cast<StoreSDNode>(N); |
| 5410 | if (EnableTLSOpt && Subtarget->isELFv2ABI() && |
| 5411 | ST->getAddressingMode() != ISD::PRE_INC) |
| 5412 | if (tryTLSXFormStore(ST)) |
| 5413 | return; |
| 5414 | break; |
| 5415 | } |
| 5416 | case ISD::LOAD: { |
| 5417 | // Handle preincrement loads. |
| 5418 | LoadSDNode *LD = cast<LoadSDNode>(N); |
| 5419 | EVT LoadedVT = LD->getMemoryVT(); |
| 5420 | |
| 5421 | // Normal loads are handled by code generated from the .td file. |
| 5422 | if (LD->getAddressingMode() != ISD::PRE_INC) { |
| 5423 | // Change TLS initial-exec D-form loads to X-form loads. |
| 5424 | if (EnableTLSOpt && Subtarget->isELFv2ABI()) |
| 5425 | if (tryTLSXFormLoad(LD)) |
| 5426 | return; |
| 5427 | break; |
| 5428 | } |
| 5429 | |
| 5430 | SDValue Offset = LD->getOffset(); |
| 5431 | if (Offset.getOpcode() == ISD::TargetConstant || |
| 5432 | Offset.getOpcode() == ISD::TargetGlobalAddress) { |
| 5433 | |
| 5434 | unsigned Opcode; |
| 5435 | bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; |
| 5436 | if (LD->getValueType(0) != MVT::i64) { |
| 5437 | // Handle PPC32 integer and normal FP loads. |
| 5438 | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16) && \"Invalid sext update load\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5438, __extension__ __PRETTY_FUNCTION__)); |
| 5439 | switch (LoadedVT.getSimpleVT().SimpleTy) { |
| 5440 | default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 5440); |
| 5441 | case MVT::f64: Opcode = PPC::LFDU; break; |
| 5442 | case MVT::f32: Opcode = PPC::LFSU; break; |
| 5443 | case MVT::i32: Opcode = PPC::LWZU; break; |
| 5444 | case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; |
| 5445 | case MVT::i1: |
| 5446 | case MVT::i8: Opcode = PPC::LBZU; break; |
| 5447 | } |
| 5448 | } else { |
| 5449 | assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!")(static_cast <bool> (LD->getValueType(0) == MVT::i64 && "Unknown load result type!") ? void (0) : __assert_fail ("LD->getValueType(0) == MVT::i64 && \"Unknown load result type!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5449, __extension__ __PRETTY_FUNCTION__)); |
| 5450 | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16) && \"Invalid sext update load\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5450, __extension__ __PRETTY_FUNCTION__)); |
| 5451 | switch (LoadedVT.getSimpleVT().SimpleTy) { |
| 5452 | default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 5452); |
| 5453 | case MVT::i64: Opcode = PPC::LDU; break; |
| 5454 | case MVT::i32: Opcode = PPC::LWZU8; break; |
| 5455 | case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; |
| 5456 | case MVT::i1: |
| 5457 | case MVT::i8: Opcode = PPC::LBZU8; break; |
| 5458 | } |
| 5459 | } |
| 5460 | |
| 5461 | SDValue Chain = LD->getChain(); |
| 5462 | SDValue Base = LD->getBasePtr(); |
| 5463 | SDValue Ops[] = { Offset, Base, Chain }; |
| 5464 | SDNode *MN = CurDAG->getMachineNode( |
| 5465 | Opcode, dl, LD->getValueType(0), |
| 5466 | PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); |
| 5467 | transferMemOperands(N, MN); |
| 5468 | ReplaceNode(N, MN); |
| 5469 | return; |
| 5470 | } else { |
| 5471 | unsigned Opcode; |
| 5472 | bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; |
| 5473 | if (LD->getValueType(0) != MVT::i64) { |
| 5474 | // Handle PPC32 integer and normal FP loads. |
| 5475 | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16) && \"Invalid sext update load\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5475, __extension__ __PRETTY_FUNCTION__)); |
| 5476 | switch (LoadedVT.getSimpleVT().SimpleTy) { |
| 5477 | default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 5477); |
| 5478 | case MVT::f64: Opcode = PPC::LFDUX; break; |
| 5479 | case MVT::f32: Opcode = PPC::LFSUX; break; |
| 5480 | case MVT::i32: Opcode = PPC::LWZUX; break; |
| 5481 | case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; |
| 5482 | case MVT::i1: |
| 5483 | case MVT::i8: Opcode = PPC::LBZUX; break; |
| 5484 | } |
| 5485 | } else { |
| 5486 | assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!")(static_cast <bool> (LD->getValueType(0) == MVT::i64 && "Unknown load result type!") ? void (0) : __assert_fail ("LD->getValueType(0) == MVT::i64 && \"Unknown load result type!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5486, __extension__ __PRETTY_FUNCTION__)); |
| 5487 | assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && "Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && \"Invalid sext update load\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5488, __extension__ __PRETTY_FUNCTION__)) |
| 5488 | "Invalid sext update load")(static_cast <bool> ((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && "Invalid sext update load") ? void (0) : __assert_fail ("(!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && \"Invalid sext update load\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5488, __extension__ __PRETTY_FUNCTION__)); |
| 5489 | switch (LoadedVT.getSimpleVT().SimpleTy) { |
| 5490 | default: llvm_unreachable("Invalid PPC load type!")::llvm::llvm_unreachable_internal("Invalid PPC load type!", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 5490); |
| 5491 | case MVT::i64: Opcode = PPC::LDUX; break; |
| 5492 | case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; |
| 5493 | case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; |
| 5494 | case MVT::i1: |
| 5495 | case MVT::i8: Opcode = PPC::LBZUX8; break; |
| 5496 | } |
| 5497 | } |
| 5498 | |
| 5499 | SDValue Chain = LD->getChain(); |
| 5500 | SDValue Base = LD->getBasePtr(); |
| 5501 | SDValue Ops[] = { Base, Offset, Chain }; |
| 5502 | SDNode *MN = CurDAG->getMachineNode( |
| 5503 | Opcode, dl, LD->getValueType(0), |
| 5504 | PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); |
| 5505 | transferMemOperands(N, MN); |
| 5506 | ReplaceNode(N, MN); |
| 5507 | return; |
| 5508 | } |
| 5509 | } |
| 5510 | |
| 5511 | case ISD::AND: |
| 5512 | // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr |
| 5513 | if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) || |
| 5514 | tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N)) |
| 5515 | return; |
| 5516 | |
| 5517 | // Other cases are autogenerated. |
| 5518 | break; |
| 5519 | case ISD::OR: { |
| 5520 | if (N->getValueType(0) == MVT::i32) |
| 5521 | if (tryBitfieldInsert(N)) |
| 5522 | return; |
| 5523 | |
| 5524 | int16_t Imm; |
| 5525 | if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && |
| 5526 | isIntS16Immediate(N->getOperand(1), Imm)) { |
| 5527 | KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); |
| 5528 | |
| 5529 | // If this is equivalent to an add, then we can fold it with the |
| 5530 | // FrameIndex calculation. |
| 5531 | if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { |
| 5532 | selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm); |
| 5533 | return; |
| 5534 | } |
| 5535 | } |
| 5536 | |
| 5537 | // If this is 'or' against an imm with consecutive ones and both sides zero, |
| 5538 | // try to emit rldimi |
| 5539 | if (tryAsSingleRLDIMI(N)) |
| 5540 | return; |
| 5541 | |
| 5542 | // OR with a 32-bit immediate can be handled by ori + oris |
| 5543 | // without creating an immediate in a GPR. |
| 5544 | uint64_t Imm64 = 0; |
| 5545 | bool IsPPC64 = Subtarget->isPPC64(); |
| 5546 | if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && |
| 5547 | (Imm64 & ~0xFFFFFFFFuLL) == 0) { |
| 5548 | // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. |
| 5549 | uint64_t ImmHi = Imm64 >> 16; |
| 5550 | uint64_t ImmLo = Imm64 & 0xFFFF; |
| 5551 | if (ImmHi != 0 && ImmLo != 0) { |
| 5552 | SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, |
| 5553 | N->getOperand(0), |
| 5554 | getI16Imm(ImmLo, dl)); |
| 5555 | SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; |
| 5556 | CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); |
| 5557 | return; |
| 5558 | } |
| 5559 | } |
| 5560 | |
| 5561 | // Other cases are autogenerated. |
| 5562 | break; |
| 5563 | } |
| 5564 | case ISD::XOR: { |
| 5565 | // XOR with a 32-bit immediate can be handled by xori + xoris |
| 5566 | // without creating an immediate in a GPR. |
| 5567 | uint64_t Imm64 = 0; |
| 5568 | bool IsPPC64 = Subtarget->isPPC64(); |
| 5569 | if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && |
| 5570 | (Imm64 & ~0xFFFFFFFFuLL) == 0) { |
| 5571 | // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. |
| 5572 | uint64_t ImmHi = Imm64 >> 16; |
| 5573 | uint64_t ImmLo = Imm64 & 0xFFFF; |
| 5574 | if (ImmHi != 0 && ImmLo != 0) { |
| 5575 | SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, |
| 5576 | N->getOperand(0), |
| 5577 | getI16Imm(ImmLo, dl)); |
| 5578 | SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; |
| 5579 | CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); |
| 5580 | return; |
| 5581 | } |
| 5582 | } |
| 5583 | |
| 5584 | break; |
| 5585 | } |
| 5586 | case ISD::ADD: { |
| 5587 | int16_t Imm; |
| 5588 | if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && |
| 5589 | isIntS16Immediate(N->getOperand(1), Imm)) { |
| 5590 | selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm); |
| 5591 | return; |
| 5592 | } |
| 5593 | |
| 5594 | break; |
| 5595 | } |
| 5596 | case ISD::SHL: { |
| 5597 | unsigned Imm, SH, MB, ME; |
| 5598 | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && |
| 5599 | isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
| 5600 | SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| 5601 | getI32Imm(SH, dl), getI32Imm(MB, dl), |
| 5602 | getI32Imm(ME, dl) }; |
| 5603 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 5604 | return; |
| 5605 | } |
| 5606 | |
| 5607 | // Other cases are autogenerated. |
| 5608 | break; |
| 5609 | } |
| 5610 | case ISD::SRL: { |
| 5611 | unsigned Imm, SH, MB, ME; |
| 5612 | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && |
| 5613 | isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
| 5614 | SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| 5615 | getI32Imm(SH, dl), getI32Imm(MB, dl), |
| 5616 | getI32Imm(ME, dl) }; |
| 5617 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 5618 | return; |
| 5619 | } |
| 5620 | |
| 5621 | // Other cases are autogenerated. |
| 5622 | break; |
| 5623 | } |
| 5624 | case ISD::MUL: { |
| 5625 | SDValue Op1 = N->getOperand(1); |
| 5626 | if (Op1.getOpcode() != ISD::Constant || |
| 5627 | (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32)) |
| 5628 | break; |
| 5629 | |
| 5630 | // If the multiplier fits int16, we can handle it with mulli. |
| 5631 | int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue(); |
| 5632 | unsigned Shift = llvm::countr_zero<uint64_t>(Imm); |
| 5633 | if (isInt<16>(Imm) || !Shift) |
| 5634 | break; |
| 5635 | |
| 5636 | // If the shifted value fits int16, we can do this transformation: |
| 5637 | // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to |
| 5638 | // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2). |
| 5639 | uint64_t ImmSh = Imm >> Shift; |
| 5640 | if (!isInt<16>(ImmSh)) |
| 5641 | break; |
| 5642 | |
| 5643 | uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16); |
| 5644 | if (Op1.getValueType() == MVT::i64) { |
| 5645 | SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); |
| 5646 | SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64, |
| 5647 | N->getOperand(0), SDImm); |
| 5648 | |
| 5649 | SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl), |
| 5650 | getI32Imm(63 - Shift, dl)}; |
| 5651 | CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); |
| 5652 | return; |
| 5653 | } else { |
| 5654 | SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32); |
| 5655 | SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32, |
| 5656 | N->getOperand(0), SDImm); |
| 5657 | |
| 5658 | SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl), |
| 5659 | getI32Imm(0, dl), getI32Imm(31 - Shift, dl)}; |
| 5660 | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| 5661 | return; |
| 5662 | } |
| 5663 | break; |
| 5664 | } |
| 5665 | // FIXME: Remove this once the ANDI glue bug is fixed: |
| 5666 | case PPCISD::ANDI_rec_1_EQ_BIT: |
| 5667 | case PPCISD::ANDI_rec_1_GT_BIT: { |
| 5668 | if (!ANDIGlueBug) |
| 5669 | break; |
| 5670 | |
| 5671 | EVT InVT = N->getOperand(0).getValueType(); |
| 5672 | assert((InVT == MVT::i64 || InVT == MVT::i32) &&(static_cast <bool> ((InVT == MVT::i64 || InVT == MVT:: i32) && "Invalid input type for ANDI_rec_1_EQ_BIT") ? void (0) : __assert_fail ("(InVT == MVT::i64 || InVT == MVT::i32) && \"Invalid input type for ANDI_rec_1_EQ_BIT\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5673, __extension__ __PRETTY_FUNCTION__)) |
| 5673 | "Invalid input type for ANDI_rec_1_EQ_BIT")(static_cast <bool> ((InVT == MVT::i64 || InVT == MVT:: i32) && "Invalid input type for ANDI_rec_1_EQ_BIT") ? void (0) : __assert_fail ("(InVT == MVT::i64 || InVT == MVT::i32) && \"Invalid input type for ANDI_rec_1_EQ_BIT\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5673, __extension__ __PRETTY_FUNCTION__)); |
| 5674 | |
| 5675 | unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec; |
| 5676 | SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, |
| 5677 | N->getOperand(0), |
| 5678 | CurDAG->getTargetConstant(1, dl, InVT)), |
| 5679 | 0); |
| 5680 | SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); |
| 5681 | SDValue SRIdxVal = CurDAG->getTargetConstant( |
| 5682 | N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, |
| 5683 | dl, MVT::i32); |
| 5684 | |
| 5685 | CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, |
| 5686 | SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); |
| 5687 | return; |
| 5688 | } |
| 5689 | case ISD::SELECT_CC: { |
| 5690 | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); |
| 5691 | EVT PtrVT = |
| 5692 | CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); |
| 5693 | bool isPPC64 = (PtrVT == MVT::i64); |
| 5694 | |
| 5695 | // If this is a select of i1 operands, we'll pattern match it. |
| 5696 | if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1) |
| 5697 | break; |
| 5698 | |
| 5699 | if (Subtarget->isISA3_0() && Subtarget->isPPC64()) { |
| 5700 | bool NeedSwapOps = false; |
| 5701 | bool IsUnCmp = false; |
| 5702 | if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { |
| 5703 | SDValue LHS = N->getOperand(0); |
| 5704 | SDValue RHS = N->getOperand(1); |
| 5705 | if (NeedSwapOps) |
| 5706 | std::swap(LHS, RHS); |
| 5707 | |
| 5708 | // Make use of SelectCC to generate the comparison to set CR bits, for |
| 5709 | // equality comparisons having one literal operand, SelectCC probably |
| 5710 | // doesn't need to materialize the whole literal and just use xoris to |
| 5711 | // check it first, it leads the following comparison result can't |
| 5712 | // exactly represent GT/LT relationship. So to avoid this we specify |
| 5713 | // SETGT/SETUGT here instead of SETEQ. |
| 5714 | SDValue GenCC = |
| 5715 | SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); |
| 5716 | CurDAG->SelectNodeTo( |
| 5717 | N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, |
| 5718 | N->getValueType(0), GenCC); |
| 5719 | NumP9Setb++; |
| 5720 | return; |
| 5721 | } |
| 5722 | } |
| 5723 | |
| 5724 | // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc |
| 5725 | if (!isPPC64 && isNullConstant(N->getOperand(1)) && |
| 5726 | isOneConstant(N->getOperand(2)) && isNullConstant(N->getOperand(3)) && |
| 5727 | CC == ISD::SETNE && |
| 5728 | // FIXME: Implement this optzn for PPC64. |
| 5729 | N->getValueType(0) == MVT::i32) { |
| 5730 | SDNode *Tmp = |
| 5731 | CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| 5732 | N->getOperand(0), getI32Imm(~0U, dl)); |
| 5733 | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), |
| 5734 | N->getOperand(0), SDValue(Tmp, 1)); |
| 5735 | return; |
| 5736 | } |
| 5737 | |
| 5738 | SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); |
| 5739 | |
| 5740 | if (N->getValueType(0) == MVT::i1) { |
| 5741 | // An i1 select is: (c & t) | (!c & f). |
| 5742 | bool Inv; |
| 5743 | unsigned Idx = getCRIdxForSetCC(CC, Inv); |
| 5744 | |
| 5745 | unsigned SRI; |
| 5746 | switch (Idx) { |
| 5747 | default: llvm_unreachable("Invalid CC index")::llvm::llvm_unreachable_internal("Invalid CC index", "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp" , 5747); |
| 5748 | case 0: SRI = PPC::sub_lt; break; |
| 5749 | case 1: SRI = PPC::sub_gt; break; |
| 5750 | case 2: SRI = PPC::sub_eq; break; |
| 5751 | case 3: SRI = PPC::sub_un; break; |
| 5752 | } |
| 5753 | |
| 5754 | SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); |
| 5755 | |
| 5756 | SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, |
| 5757 | CCBit, CCBit), 0); |
| 5758 | SDValue C = Inv ? NotCCBit : CCBit, |
| 5759 | NotC = Inv ? CCBit : NotCCBit; |
| 5760 | |
| 5761 | SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, |
| 5762 | C, N->getOperand(2)), 0); |
| 5763 | SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, |
| 5764 | NotC, N->getOperand(3)), 0); |
| 5765 | |
| 5766 | CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); |
| 5767 | return; |
| 5768 | } |
| 5769 | |
| 5770 | unsigned BROpc = |
| 5771 | getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget); |
| 5772 | |
| 5773 | unsigned SelectCCOp; |
| 5774 | if (N->getValueType(0) == MVT::i32) |
| 5775 | SelectCCOp = PPC::SELECT_CC_I4; |
| 5776 | else if (N->getValueType(0) == MVT::i64) |
| 5777 | SelectCCOp = PPC::SELECT_CC_I8; |
| 5778 | else if (N->getValueType(0) == MVT::f32) { |
| 5779 | if (Subtarget->hasP8Vector()) |
| 5780 | SelectCCOp = PPC::SELECT_CC_VSSRC; |
| 5781 | else if (Subtarget->hasSPE()) |
| 5782 | SelectCCOp = PPC::SELECT_CC_SPE4; |
| 5783 | else |
| 5784 | SelectCCOp = PPC::SELECT_CC_F4; |
| 5785 | } else if (N->getValueType(0) == MVT::f64) { |
| 5786 | if (Subtarget->hasVSX()) |
| 5787 | SelectCCOp = PPC::SELECT_CC_VSFRC; |
| 5788 | else if (Subtarget->hasSPE()) |
| 5789 | SelectCCOp = PPC::SELECT_CC_SPE; |
| 5790 | else |
| 5791 | SelectCCOp = PPC::SELECT_CC_F8; |
| 5792 | } else if (N->getValueType(0) == MVT::f128) |
| 5793 | SelectCCOp = PPC::SELECT_CC_F16; |
| 5794 | else if (Subtarget->hasSPE()) |
| 5795 | SelectCCOp = PPC::SELECT_CC_SPE; |
| 5796 | else if (N->getValueType(0) == MVT::v2f64 || |
| 5797 | N->getValueType(0) == MVT::v2i64) |
| 5798 | SelectCCOp = PPC::SELECT_CC_VSRC; |
| 5799 | else |
| 5800 | SelectCCOp = PPC::SELECT_CC_VRRC; |
| 5801 | |
| 5802 | SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), |
| 5803 | getI32Imm(BROpc, dl) }; |
| 5804 | CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); |
| 5805 | return; |
| 5806 | } |
| 5807 | case ISD::VECTOR_SHUFFLE: |
| 5808 | if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || |
| 5809 | N->getValueType(0) == MVT::v2i64)) { |
| 5810 | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| 5811 | |
| 5812 | SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), |
| 5813 | Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); |
| 5814 | unsigned DM[2]; |
| 5815 | |
| 5816 | for (int i = 0; i < 2; ++i) |
| 5817 | if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) |
| 5818 | DM[i] = 0; |
| 5819 | else |
| 5820 | DM[i] = 1; |
| 5821 | |
| 5822 | if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && |
| 5823 | Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| 5824 | isa<LoadSDNode>(Op1.getOperand(0))) { |
| 5825 | LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); |
| 5826 | SDValue Base, Offset; |
| 5827 | |
| 5828 | if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && |
| 5829 | (LD->getMemoryVT() == MVT::f64 || |
| 5830 | LD->getMemoryVT() == MVT::i64) && |
| 5831 | SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { |
| 5832 | SDValue Chain = LD->getChain(); |
| 5833 | SDValue Ops[] = { Base, Offset, Chain }; |
| 5834 | MachineMemOperand *MemOp = LD->getMemOperand(); |
| 5835 | SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, |
| 5836 | N->getValueType(0), Ops); |
| 5837 | CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); |
| 5838 | return; |
| 5839 | } |
| 5840 | } |
| 5841 | |
| 5842 | // For little endian, we must swap the input operands and adjust |
| 5843 | // the mask elements (reverse and invert them). |
| 5844 | if (Subtarget->isLittleEndian()) { |
| 5845 | std::swap(Op1, Op2); |
| 5846 | unsigned tmp = DM[0]; |
| 5847 | DM[0] = 1 - DM[1]; |
| 5848 | DM[1] = 1 - tmp; |
| 5849 | } |
| 5850 | |
| 5851 | SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, |
| 5852 | MVT::i32); |
| 5853 | SDValue Ops[] = { Op1, Op2, DMV }; |
| 5854 | CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); |
| 5855 | return; |
| 5856 | } |
| 5857 | |
| 5858 | break; |
| 5859 | case PPCISD::BDNZ: |
| 5860 | case PPCISD::BDZ: { |
| 5861 | bool IsPPC64 = Subtarget->isPPC64(); |
| 5862 | SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; |
| 5863 | CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ |
| 5864 | ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) |
| 5865 | : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), |
| 5866 | MVT::Other, Ops); |
| 5867 | return; |
| 5868 | } |
| 5869 | case PPCISD::COND_BRANCH: { |
| 5870 | // Op #0 is the Chain. |
| 5871 | // Op #1 is the PPC::PRED_* number. |
| 5872 | // Op #2 is the CR# |
| 5873 | // Op #3 is the Dest MBB |
| 5874 | // Op #4 is the Flag. |
| 5875 | // Prevent PPC::PRED_* from being selected into LI. |
| 5876 | unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| 5877 | if (EnableBranchHint) |
| 5878 | PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3)); |
| 5879 | |
| 5880 | SDValue Pred = getI32Imm(PCC, dl); |
| 5881 | SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), |
| 5882 | N->getOperand(0), N->getOperand(4) }; |
| 5883 | CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); |
| 5884 | return; |
| 5885 | } |
| 5886 | case ISD::BR_CC: { |
| 5887 | if (tryFoldSWTestBRCC(N)) |
| 5888 | return; |
| 5889 | if (trySelectLoopCountIntrinsic(N)) |
| 5890 | return; |
| 5891 | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
| 5892 | unsigned PCC = |
| 5893 | getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget); |
| 5894 | |
| 5895 | if (N->getOperand(2).getValueType() == MVT::i1) { |
| 5896 | unsigned Opc; |
| 5897 | bool Swap; |
| 5898 | switch (PCC) { |
| 5899 | default: llvm_unreachable("Unexpected Boolean-operand predicate")::llvm::llvm_unreachable_internal("Unexpected Boolean-operand predicate" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5899); |
| 5900 | case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; |
| 5901 | case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; |
| 5902 | case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; |
| 5903 | case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; |
| 5904 | case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; |
| 5905 | case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; |
| 5906 | } |
| 5907 | |
| 5908 | // A signed comparison of i1 values produces the opposite result to an |
| 5909 | // unsigned one if the condition code includes less-than or greater-than. |
| 5910 | // This is because 1 is the most negative signed i1 number and the most |
| 5911 | // positive unsigned i1 number. The CR-logical operations used for such |
| 5912 | // comparisons are non-commutative so for signed comparisons vs. unsigned |
| 5913 | // ones, the input operands just need to be swapped. |
| 5914 | if (ISD::isSignedIntSetCC(CC)) |
| 5915 | Swap = !Swap; |
| 5916 | |
| 5917 | SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, |
| 5918 | N->getOperand(Swap ? 3 : 2), |
| 5919 | N->getOperand(Swap ? 2 : 3)), 0); |
| 5920 | CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), |
| 5921 | N->getOperand(0)); |
| 5922 | return; |
| 5923 | } |
| 5924 | |
| 5925 | if (EnableBranchHint) |
| 5926 | PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4)); |
| 5927 | |
| 5928 | SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); |
| 5929 | SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, |
| 5930 | N->getOperand(4), N->getOperand(0) }; |
| 5931 | CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); |
| 5932 | return; |
| 5933 | } |
| 5934 | case ISD::BRIND: { |
| 5935 | // FIXME: Should custom lower this. |
| 5936 | SDValue Chain = N->getOperand(0); |
| 5937 | SDValue Target = N->getOperand(1); |
| 5938 | unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; |
| 5939 | unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; |
| 5940 | Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, |
| 5941 | Chain), 0); |
| 5942 | CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); |
| 5943 | return; |
| 5944 | } |
| 5945 | case PPCISD::TOC_ENTRY: { |
| 5946 | const bool isPPC64 = Subtarget->isPPC64(); |
| 5947 | const bool isELFABI = Subtarget->isSVR4ABI(); |
| 5948 | const bool isAIXABI = Subtarget->isAIXABI(); |
| 5949 | |
| 5950 | // PowerPC only support small, medium and large code model. |
| 5951 | const CodeModel::Model CModel = TM.getCodeModel(); |
| 5952 | assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&(static_cast <bool> (!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && "PowerPC doesn't support tiny or kernel code models." ) ? void (0) : __assert_fail ("!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && \"PowerPC doesn't support tiny or kernel code models.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5953, __extension__ __PRETTY_FUNCTION__)) |
| 5953 | "PowerPC doesn't support tiny or kernel code models.")(static_cast <bool> (!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && "PowerPC doesn't support tiny or kernel code models." ) ? void (0) : __assert_fail ("!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && \"PowerPC doesn't support tiny or kernel code models.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5953, __extension__ __PRETTY_FUNCTION__)); |
| 5954 | |
| 5955 | if (isAIXABI && CModel == CodeModel::Medium) |
| 5956 | report_fatal_error("Medium code model is not supported on AIX."); |
| 5957 | |
| 5958 | // For 64-bit ELF small code model, we allow SelectCodeCommon to handle |
| 5959 | // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX |
| 5960 | // small code model, we need to check for a toc-data attribute. |
| 5961 | if (isPPC64 && !isAIXABI && CModel == CodeModel::Small) |
| 5962 | break; |
| 5963 | |
| 5964 | auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry, |
| 5965 | EVT OperandTy) { |
| 5966 | SDValue GA = TocEntry->getOperand(0); |
| 5967 | SDValue TocBase = TocEntry->getOperand(1); |
| 5968 | SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase); |
| 5969 | transferMemOperands(TocEntry, MN); |
| 5970 | ReplaceNode(TocEntry, MN); |
| 5971 | }; |
| 5972 | |
| 5973 | // Handle 32-bit small code model. |
| 5974 | if (!isPPC64 && CModel == CodeModel::Small) { |
| 5975 | // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either |
| 5976 | // PPC::ADDItoc, or PPC::LWZtoc |
| 5977 | if (isELFABI) { |
| 5978 | assert(TM.isPositionIndependent() &&(static_cast <bool> (TM.isPositionIndependent() && "32-bit ELF can only have TOC entries in position independent" " code.") ? void (0) : __assert_fail ("TM.isPositionIndependent() && \"32-bit ELF can only have TOC entries in position independent\" \" code.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5980, __extension__ __PRETTY_FUNCTION__)) |
| 5979 | "32-bit ELF can only have TOC entries in position independent"(static_cast <bool> (TM.isPositionIndependent() && "32-bit ELF can only have TOC entries in position independent" " code.") ? void (0) : __assert_fail ("TM.isPositionIndependent() && \"32-bit ELF can only have TOC entries in position independent\" \" code.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5980, __extension__ __PRETTY_FUNCTION__)) |
| 5980 | " code.")(static_cast <bool> (TM.isPositionIndependent() && "32-bit ELF can only have TOC entries in position independent" " code.") ? void (0) : __assert_fail ("TM.isPositionIndependent() && \"32-bit ELF can only have TOC entries in position independent\" \" code.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5980, __extension__ __PRETTY_FUNCTION__)); |
| 5981 | // 32-bit ELF always uses a small code model toc access. |
| 5982 | replaceWith(PPC::LWZtoc, N, MVT::i32); |
| 5983 | return; |
| 5984 | } |
| 5985 | |
| 5986 | assert(isAIXABI && "ELF ABI already handled")(static_cast <bool> (isAIXABI && "ELF ABI already handled" ) ? void (0) : __assert_fail ("isAIXABI && \"ELF ABI already handled\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5986, __extension__ __PRETTY_FUNCTION__)); |
| 5987 | |
| 5988 | if (hasTocDataAttr(N->getOperand(0), |
| 5989 | CurDAG->getDataLayout().getPointerSize())) { |
| 5990 | replaceWith(PPC::ADDItoc, N, MVT::i32); |
| 5991 | return; |
| 5992 | } |
| 5993 | |
| 5994 | replaceWith(PPC::LWZtoc, N, MVT::i32); |
| 5995 | return; |
| 5996 | } |
| 5997 | |
| 5998 | if (isPPC64 && CModel == CodeModel::Small) { |
| 5999 | assert(isAIXABI && "ELF ABI handled in common SelectCode")(static_cast <bool> (isAIXABI && "ELF ABI handled in common SelectCode" ) ? void (0) : __assert_fail ("isAIXABI && \"ELF ABI handled in common SelectCode\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 5999, __extension__ __PRETTY_FUNCTION__)); |
| 6000 | |
| 6001 | if (hasTocDataAttr(N->getOperand(0), |
| 6002 | CurDAG->getDataLayout().getPointerSize())) { |
| 6003 | replaceWith(PPC::ADDItoc8, N, MVT::i64); |
| 6004 | return; |
| 6005 | } |
| 6006 | // Break if it doesn't have toc data attribute. Proceed with common |
| 6007 | // SelectCode. |
| 6008 | break; |
| 6009 | } |
| 6010 | |
| 6011 | assert(CModel != CodeModel::Small && "All small code models handled.")(static_cast <bool> (CModel != CodeModel::Small && "All small code models handled.") ? void (0) : __assert_fail ("CModel != CodeModel::Small && \"All small code models handled.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6011, __extension__ __PRETTY_FUNCTION__)); |
| 6012 | |
| 6013 | assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"(static_cast <bool> ((isPPC64 || (isAIXABI && ! isPPC64)) && "We are dealing with 64-bit" " ELF/AIX or 32-bit AIX in the following." ) ? void (0) : __assert_fail ("(isPPC64 || (isAIXABI && !isPPC64)) && \"We are dealing with 64-bit\" \" ELF/AIX or 32-bit AIX in the following.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6014, __extension__ __PRETTY_FUNCTION__)) |
| 6014 | " ELF/AIX or 32-bit AIX in the following.")(static_cast <bool> ((isPPC64 || (isAIXABI && ! isPPC64)) && "We are dealing with 64-bit" " ELF/AIX or 32-bit AIX in the following." ) ? void (0) : __assert_fail ("(isPPC64 || (isAIXABI && !isPPC64)) && \"We are dealing with 64-bit\" \" ELF/AIX or 32-bit AIX in the following.\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6014, __extension__ __PRETTY_FUNCTION__)); |
| 6015 | |
| 6016 | // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode |
| 6017 | // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We |
| 6018 | // generate two instructions as described below. The first source operand |
| 6019 | // is a symbol reference. If it must be toc-referenced according to |
| 6020 | // Subtarget, we generate: |
| 6021 | // [32-bit AIX] |
| 6022 | // LWZtocL(@sym, ADDIStocHA(%r2, @sym)) |
| 6023 | // [64-bit ELF/AIX] |
| 6024 | // LDtocL(@sym, ADDIStocHA8(%x2, @sym)) |
| 6025 | // Otherwise we generate: |
| 6026 | // ADDItocL(ADDIStocHA8(%x2, @sym), @sym) |
| 6027 | SDValue GA = N->getOperand(0); |
| 6028 | SDValue TOCbase = N->getOperand(1); |
| 6029 | |
| 6030 | EVT VT = isPPC64 ? MVT::i64 : MVT::i32; |
| 6031 | SDNode *Tmp = CurDAG->getMachineNode( |
| 6032 | isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA); |
| 6033 | |
| 6034 | if (PPCLowering->isAccessedAsGotIndirect(GA)) { |
| 6035 | // If it is accessed as got-indirect, we need an extra LWZ/LD to load |
| 6036 | // the address. |
| 6037 | SDNode *MN = CurDAG->getMachineNode( |
| 6038 | isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0)); |
| 6039 | |
| 6040 | transferMemOperands(N, MN); |
| 6041 | ReplaceNode(N, MN); |
| 6042 | return; |
| 6043 | } |
| 6044 | |
| 6045 | // Build the address relative to the TOC-pointer. |
| 6046 | ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, |
| 6047 | SDValue(Tmp, 0), GA)); |
| 6048 | return; |
| 6049 | } |
| 6050 | case PPCISD::PPC32_PICGOT: |
| 6051 | // Generate a PIC-safe GOT reference. |
| 6052 | assert(Subtarget->is32BitELFABI() &&(static_cast <bool> (Subtarget->is32BitELFABI() && "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4") ? void (0) : __assert_fail ("Subtarget->is32BitELFABI() && \"PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6053, __extension__ __PRETTY_FUNCTION__)) |
| 6053 | "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4")(static_cast <bool> (Subtarget->is32BitELFABI() && "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4") ? void (0) : __assert_fail ("Subtarget->is32BitELFABI() && \"PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6053, __extension__ __PRETTY_FUNCTION__)); |
| 6054 | CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, |
| 6055 | PPCLowering->getPointerTy(CurDAG->getDataLayout()), |
| 6056 | MVT::i32); |
| 6057 | return; |
| 6058 | |
| 6059 | case PPCISD::VADD_SPLAT: { |
| 6060 | // This expands into one of three sequences, depending on whether |
| 6061 | // the first operand is odd or even, positive or negative. |
| 6062 | assert(isa<ConstantSDNode>(N->getOperand(0)) &&(static_cast <bool> (isa<ConstantSDNode>(N->getOperand (0)) && isa<ConstantSDNode>(N->getOperand(1) ) && "Invalid operand on VADD_SPLAT!") ? void (0) : __assert_fail ("isa<ConstantSDNode>(N->getOperand(0)) && isa<ConstantSDNode>(N->getOperand(1)) && \"Invalid operand on VADD_SPLAT!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6064, __extension__ __PRETTY_FUNCTION__)) |
| 6063 | isa<ConstantSDNode>(N->getOperand(1)) &&(static_cast <bool> (isa<ConstantSDNode>(N->getOperand (0)) && isa<ConstantSDNode>(N->getOperand(1) ) && "Invalid operand on VADD_SPLAT!") ? void (0) : __assert_fail ("isa<ConstantSDNode>(N->getOperand(0)) && isa<ConstantSDNode>(N->getOperand(1)) && \"Invalid operand on VADD_SPLAT!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6064, __extension__ __PRETTY_FUNCTION__)) |
| 6064 | "Invalid operand on VADD_SPLAT!")(static_cast <bool> (isa<ConstantSDNode>(N->getOperand (0)) && isa<ConstantSDNode>(N->getOperand(1) ) && "Invalid operand on VADD_SPLAT!") ? void (0) : __assert_fail ("isa<ConstantSDNode>(N->getOperand(0)) && isa<ConstantSDNode>(N->getOperand(1)) && \"Invalid operand on VADD_SPLAT!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6064, __extension__ __PRETTY_FUNCTION__)); |
| 6065 | |
| 6066 | int Elt = N->getConstantOperandVal(0); |
| 6067 | int EltSize = N->getConstantOperandVal(1); |
| 6068 | unsigned Opc1, Opc2, Opc3; |
| 6069 | EVT VT; |
| 6070 | |
| 6071 | if (EltSize == 1) { |
| 6072 | Opc1 = PPC::VSPLTISB; |
| 6073 | Opc2 = PPC::VADDUBM; |
| 6074 | Opc3 = PPC::VSUBUBM; |
| 6075 | VT = MVT::v16i8; |
| 6076 | } else if (EltSize == 2) { |
| 6077 | Opc1 = PPC::VSPLTISH; |
| 6078 | Opc2 = PPC::VADDUHM; |
| 6079 | Opc3 = PPC::VSUBUHM; |
| 6080 | VT = MVT::v8i16; |
| 6081 | } else { |
| 6082 | assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!")(static_cast <bool> (EltSize == 4 && "Invalid element size on VADD_SPLAT!" ) ? void (0) : __assert_fail ("EltSize == 4 && \"Invalid element size on VADD_SPLAT!\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6082, __extension__ __PRETTY_FUNCTION__)); |
| 6083 | Opc1 = PPC::VSPLTISW; |
| 6084 | Opc2 = PPC::VADDUWM; |
| 6085 | Opc3 = PPC::VSUBUWM; |
| 6086 | VT = MVT::v4i32; |
| 6087 | } |
| 6088 | |
| 6089 | if ((Elt & 1) == 0) { |
| 6090 | // Elt is even, in the range [-32,-18] + [16,30]. |
| 6091 | // |
| 6092 | // Convert: VADD_SPLAT elt, size |
| 6093 | // Into: tmp = VSPLTIS[BHW] elt |
| 6094 | // VADDU[BHW]M tmp, tmp |
| 6095 | // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 |
| 6096 | SDValue EltVal = getI32Imm(Elt >> 1, dl); |
| 6097 | SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); |
| 6098 | SDValue TmpVal = SDValue(Tmp, 0); |
| 6099 | ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); |
| 6100 | return; |
| 6101 | } else if (Elt > 0) { |
| 6102 | // Elt is odd and positive, in the range [17,31]. |
| 6103 | // |
| 6104 | // Convert: VADD_SPLAT elt, size |
| 6105 | // Into: tmp1 = VSPLTIS[BHW] elt-16 |
| 6106 | // tmp2 = VSPLTIS[BHW] -16 |
| 6107 | // VSUBU[BHW]M tmp1, tmp2 |
| 6108 | SDValue EltVal = getI32Imm(Elt - 16, dl); |
| 6109 | SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); |
| 6110 | EltVal = getI32Imm(-16, dl); |
| 6111 | SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); |
| 6112 | ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), |
| 6113 | SDValue(Tmp2, 0))); |
| 6114 | return; |
| 6115 | } else { |
| 6116 | // Elt is odd and negative, in the range [-31,-17]. |
| 6117 | // |
| 6118 | // Convert: VADD_SPLAT elt, size |
| 6119 | // Into: tmp1 = VSPLTIS[BHW] elt+16 |
| 6120 | // tmp2 = VSPLTIS[BHW] -16 |
| 6121 | // VADDU[BHW]M tmp1, tmp2 |
| 6122 | SDValue EltVal = getI32Imm(Elt + 16, dl); |
| 6123 | SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); |
| 6124 | EltVal = getI32Imm(-16, dl); |
| 6125 | SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); |
| 6126 | ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), |
| 6127 | SDValue(Tmp2, 0))); |
| 6128 | return; |
| 6129 | } |
| 6130 | } |
| 6131 | case PPCISD::LD_SPLAT: { |
| 6132 | // Here we want to handle splat load for type v16i8 and v8i16 when there is |
| 6133 | // no direct move, we don't need to use stack for this case. If target has |
| 6134 | // direct move, we should be able to get the best selection in the .td file. |
| 6135 | if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove()) |
| 6136 | break; |
| 6137 | |
| 6138 | EVT Type = N->getValueType(0); |
| 6139 | if (Type != MVT::v16i8 && Type != MVT::v8i16) |
| 6140 | break; |
| 6141 | |
| 6142 | // If the alignment for the load is 16 or bigger, we don't need the |
| 6143 | // permutated mask to get the required value. The value must be the 0 |
| 6144 | // element in big endian target or 7/15 in little endian target in the |
| 6145 | // result vsx register of lvx instruction. |
| 6146 | // Select the instruction in the .td file. |
| 6147 | if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) && |
| 6148 | isOffsetMultipleOf(N, 16)) |
| 6149 | break; |
| 6150 | |
| 6151 | SDValue ZeroReg = |
| 6152 | CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO, |
| 6153 | Subtarget->isPPC64() ? MVT::i64 : MVT::i32); |
| 6154 | unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI; |
| 6155 | // v16i8 LD_SPLAT addr |
| 6156 | // ======> |
| 6157 | // Mask = LVSR/LVSL 0, addr |
| 6158 | // LoadLow = LVX 0, addr |
| 6159 | // Perm = VPERM LoadLow, LoadLow, Mask |
| 6160 | // Splat = VSPLTB 15/0, Perm |
| 6161 | // |
| 6162 | // v8i16 LD_SPLAT addr |
| 6163 | // ======> |
| 6164 | // Mask = LVSR/LVSL 0, addr |
| 6165 | // LoadLow = LVX 0, addr |
| 6166 | // LoadHigh = LVX (LI, 1), addr |
| 6167 | // Perm = VPERM LoadLow, LoadHigh, Mask |
| 6168 | // Splat = VSPLTH 7/0, Perm |
| 6169 | unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH; |
| 6170 | unsigned SplatElemIndex = |
| 6171 | Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0; |
| 6172 | |
| 6173 | SDNode *Mask = CurDAG->getMachineNode( |
| 6174 | Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg, |
| 6175 | N->getOperand(1)); |
| 6176 | |
| 6177 | SDNode *LoadLow = |
| 6178 | CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other, |
| 6179 | {ZeroReg, N->getOperand(1), N->getOperand(0)}); |
| 6180 | |
| 6181 | SDNode *LoadHigh = LoadLow; |
| 6182 | if (Type == MVT::v8i16) { |
| 6183 | LoadHigh = CurDAG->getMachineNode( |
| 6184 | PPC::LVX, dl, MVT::v16i8, MVT::Other, |
| 6185 | {SDValue(CurDAG->getMachineNode( |
| 6186 | LIOpcode, dl, MVT::i32, |
| 6187 | CurDAG->getTargetConstant(1, dl, MVT::i8)), |
| 6188 | 0), |
| 6189 | N->getOperand(1), SDValue(LoadLow, 1)}); |
| 6190 | } |
| 6191 | |
| 6192 | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1)); |
| 6193 | transferMemOperands(N, LoadHigh); |
| 6194 | |
| 6195 | SDNode *Perm = |
| 6196 | CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0), |
| 6197 | SDValue(LoadHigh, 0), SDValue(Mask, 0)); |
| 6198 | CurDAG->SelectNodeTo(N, SplatOp, Type, |
| 6199 | CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8), |
| 6200 | SDValue(Perm, 0)); |
| 6201 | return; |
| 6202 | } |
| 6203 | } |
| 6204 | |
| 6205 | SelectCode(N); |
| 6206 | } |
| 6207 | |
| 6208 | // If the target supports the cmpb instruction, do the idiom recognition here. |
| 6209 | // We don't do this as a DAG combine because we don't want to do it as nodes |
| 6210 | // are being combined (because we might miss part of the eventual idiom). We |
| 6211 | // don't want to do it during instruction selection because we want to reuse |
| 6212 | // the logic for lowering the masking operations already part of the |
| 6213 | // instruction selector. |
| 6214 | SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { |
| 6215 | SDLoc dl(N); |
| 6216 | |
| 6217 | assert(N->getOpcode() == ISD::OR &&(static_cast <bool> (N->getOpcode() == ISD::OR && "Only OR nodes are supported for CMPB") ? void (0) : __assert_fail ("N->getOpcode() == ISD::OR && \"Only OR nodes are supported for CMPB\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6218, __extension__ __PRETTY_FUNCTION__)) |
| 6218 | "Only OR nodes are supported for CMPB")(static_cast <bool> (N->getOpcode() == ISD::OR && "Only OR nodes are supported for CMPB") ? void (0) : __assert_fail ("N->getOpcode() == ISD::OR && \"Only OR nodes are supported for CMPB\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6218, __extension__ __PRETTY_FUNCTION__)); |
| 6219 | |
| 6220 | SDValue Res; |
| 6221 | if (!Subtarget->hasCMPB()) |
| 6222 | return Res; |
| 6223 | |
| 6224 | if (N->getValueType(0) != MVT::i32 && |
| 6225 | N->getValueType(0) != MVT::i64) |
| 6226 | return Res; |
| 6227 | |
| 6228 | EVT VT = N->getValueType(0); |
| 6229 | |
| 6230 | SDValue RHS, LHS; |
| 6231 | bool BytesFound[8] = {false, false, false, false, false, false, false, false}; |
| 6232 | uint64_t Mask = 0, Alt = 0; |
| 6233 | |
| 6234 | auto IsByteSelectCC = [this](SDValue O, unsigned &b, |
| 6235 | uint64_t &Mask, uint64_t &Alt, |
| 6236 | SDValue &LHS, SDValue &RHS) { |
| 6237 | if (O.getOpcode() != ISD::SELECT_CC) |
| 6238 | return false; |
| 6239 | ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); |
| 6240 | |
| 6241 | if (!isa<ConstantSDNode>(O.getOperand(2)) || |
| 6242 | !isa<ConstantSDNode>(O.getOperand(3))) |
| 6243 | return false; |
| 6244 | |
| 6245 | uint64_t PM = O.getConstantOperandVal(2); |
| 6246 | uint64_t PAlt = O.getConstantOperandVal(3); |
| 6247 | for (b = 0; b < 8; ++b) { |
| 6248 | uint64_t Mask = UINT64_C(0xFF)0xFFUL << (8*b); |
| 6249 | if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) |
| 6250 | break; |
| 6251 | } |
| 6252 | |
| 6253 | if (b == 8) |
| 6254 | return false; |
| 6255 | Mask |= PM; |
| 6256 | Alt |= PAlt; |
| 6257 | |
| 6258 | if (!isa<ConstantSDNode>(O.getOperand(1)) || |
| 6259 | O.getConstantOperandVal(1) != 0) { |
| 6260 | SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); |
| 6261 | if (Op0.getOpcode() == ISD::TRUNCATE) |
| 6262 | Op0 = Op0.getOperand(0); |
| 6263 | if (Op1.getOpcode() == ISD::TRUNCATE) |
| 6264 | Op1 = Op1.getOperand(0); |
| 6265 | |
| 6266 | if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && |
| 6267 | Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && |
| 6268 | isa<ConstantSDNode>(Op0.getOperand(1))) { |
| 6269 | |
| 6270 | unsigned Bits = Op0.getValueSizeInBits(); |
| 6271 | if (b != Bits/8-1) |
| 6272 | return false; |
| 6273 | if (Op0.getConstantOperandVal(1) != Bits-8) |
| 6274 | return false; |
| 6275 | |
| 6276 | LHS = Op0.getOperand(0); |
| 6277 | RHS = Op1.getOperand(0); |
| 6278 | return true; |
| 6279 | } |
| 6280 | |
| 6281 | // When we have small integers (i16 to be specific), the form present |
| 6282 | // post-legalization uses SETULT in the SELECT_CC for the |
| 6283 | // higher-order byte, depending on the fact that the |
| 6284 | // even-higher-order bytes are known to all be zero, for example: |
| 6285 | // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult |
| 6286 | // (so when the second byte is the same, because all higher-order |
| 6287 | // bits from bytes 3 and 4 are known to be zero, the result of the |
| 6288 | // xor can be at most 255) |
| 6289 | if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && |
| 6290 | isa<ConstantSDNode>(O.getOperand(1))) { |
| 6291 | |
| 6292 | uint64_t ULim = O.getConstantOperandVal(1); |
| 6293 | if (ULim != (UINT64_C(1)1UL << b*8)) |
| 6294 | return false; |
| 6295 | |
| 6296 | // Now we need to make sure that the upper bytes are known to be |
| 6297 | // zero. |
| 6298 | unsigned Bits = Op0.getValueSizeInBits(); |
| 6299 | if (!CurDAG->MaskedValueIsZero( |
| 6300 | Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) |
| 6301 | return false; |
| 6302 | |
| 6303 | LHS = Op0.getOperand(0); |
| 6304 | RHS = Op0.getOperand(1); |
| 6305 | return true; |
| 6306 | } |
| 6307 | |
| 6308 | return false; |
| 6309 | } |
| 6310 | |
| 6311 | if (CC != ISD::SETEQ) |
| 6312 | return false; |
| 6313 | |
| 6314 | SDValue Op = O.getOperand(0); |
| 6315 | if (Op.getOpcode() == ISD::AND) { |
| 6316 | if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| 6317 | return false; |
| 6318 | if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF)0xFFUL << (8*b))) |
| 6319 | return false; |
| 6320 | |
| 6321 | SDValue XOR = Op.getOperand(0); |
| 6322 | if (XOR.getOpcode() == ISD::TRUNCATE) |
| 6323 | XOR = XOR.getOperand(0); |
| 6324 | if (XOR.getOpcode() != ISD::XOR) |
| 6325 | return false; |
| 6326 | |
| 6327 | LHS = XOR.getOperand(0); |
| 6328 | RHS = XOR.getOperand(1); |
| 6329 | return true; |
| 6330 | } else if (Op.getOpcode() == ISD::SRL) { |
| 6331 | if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| 6332 | return false; |
| 6333 | unsigned Bits = Op.getValueSizeInBits(); |
| 6334 | if (b != Bits/8-1) |
| 6335 | return false; |
| 6336 | if (Op.getConstantOperandVal(1) != Bits-8) |
| 6337 | return false; |
| 6338 | |
| 6339 | SDValue XOR = Op.getOperand(0); |
| 6340 | if (XOR.getOpcode() == ISD::TRUNCATE) |
| 6341 | XOR = XOR.getOperand(0); |
| 6342 | if (XOR.getOpcode() != ISD::XOR) |
| 6343 | return false; |
| 6344 | |
| 6345 | LHS = XOR.getOperand(0); |
| 6346 | RHS = XOR.getOperand(1); |
| 6347 | return true; |
| 6348 | } |
| 6349 | |
| 6350 | return false; |
| 6351 | }; |
| 6352 | |
| 6353 | SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); |
| 6354 | while (!Queue.empty()) { |
| 6355 | SDValue V = Queue.pop_back_val(); |
| 6356 | |
| 6357 | for (const SDValue &O : V.getNode()->ops()) { |
| 6358 | unsigned b = 0; |
| 6359 | uint64_t M = 0, A = 0; |
| 6360 | SDValue OLHS, ORHS; |
| 6361 | if (O.getOpcode() == ISD::OR) { |
| 6362 | Queue.push_back(O); |
| 6363 | } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { |
| 6364 | if (!LHS) { |
| 6365 | LHS = OLHS; |
| 6366 | RHS = ORHS; |
| 6367 | BytesFound[b] = true; |
| 6368 | Mask |= M; |
| 6369 | Alt |= A; |
| 6370 | } else if ((LHS == ORHS && RHS == OLHS) || |
| 6371 | (RHS == ORHS && LHS == OLHS)) { |
| 6372 | BytesFound[b] = true; |
| 6373 | Mask |= M; |
| 6374 | Alt |= A; |
| 6375 | } else { |
| 6376 | return Res; |
| 6377 | } |
| 6378 | } else { |
| 6379 | return Res; |
| 6380 | } |
| 6381 | } |
| 6382 | } |
| 6383 | |
| 6384 | unsigned LastB = 0, BCnt = 0; |
| 6385 | for (unsigned i = 0; i < 8; ++i) |
| 6386 | if (BytesFound[LastB]) { |
| 6387 | ++BCnt; |
| 6388 | LastB = i; |
| 6389 | } |
| 6390 | |
| 6391 | if (!LastB || BCnt < 2) |
| 6392 | return Res; |
| 6393 | |
| 6394 | // Because we'll be zero-extending the output anyway if don't have a specific |
| 6395 | // value for each input byte (via the Mask), we can 'anyext' the inputs. |
| 6396 | if (LHS.getValueType() != VT) { |
| 6397 | LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); |
| 6398 | RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); |
| 6399 | } |
| 6400 | |
| 6401 | Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); |
| 6402 | |
| 6403 | bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1)-1L; |
| 6404 | if (NonTrivialMask && !Alt) { |
| 6405 | // Res = Mask & CMPB |
| 6406 | Res = CurDAG->getNode(ISD::AND, dl, VT, Res, |
| 6407 | CurDAG->getConstant(Mask, dl, VT)); |
| 6408 | } else if (Alt) { |
| 6409 | // Res = (CMPB & Mask) | (~CMPB & Alt) |
| 6410 | // Which, as suggested here: |
| 6411 | // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge |
| 6412 | // can be written as: |
| 6413 | // Res = Alt ^ ((Alt ^ Mask) & CMPB) |
| 6414 | // useful because the (Alt ^ Mask) can be pre-computed. |
| 6415 | Res = CurDAG->getNode(ISD::AND, dl, VT, Res, |
| 6416 | CurDAG->getConstant(Mask ^ Alt, dl, VT)); |
| 6417 | Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, |
| 6418 | CurDAG->getConstant(Alt, dl, VT)); |
| 6419 | } |
| 6420 | |
| 6421 | return Res; |
| 6422 | } |
| 6423 | |
| 6424 | // When CR bit registers are enabled, an extension of an i1 variable to a i32 |
| 6425 | // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus |
| 6426 | // involves constant materialization of a 0 or a 1 or both. If the result of |
| 6427 | // the extension is then operated upon by some operator that can be constant |
| 6428 | // folded with a constant 0 or 1, and that constant can be materialized using |
| 6429 | // only one instruction (like a zero or one), then we should fold in those |
| 6430 | // operations with the select. |
| 6431 | void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { |
| 6432 | if (!Subtarget->useCRBits()) |
| 6433 | return; |
| 6434 | |
| 6435 | if (N->getOpcode() != ISD::ZERO_EXTEND && |
| 6436 | N->getOpcode() != ISD::SIGN_EXTEND && |
| 6437 | N->getOpcode() != ISD::ANY_EXTEND) |
| 6438 | return; |
| 6439 | |
| 6440 | if (N->getOperand(0).getValueType() != MVT::i1) |
| 6441 | return; |
| 6442 | |
| 6443 | if (!N->hasOneUse()) |
| 6444 | return; |
| 6445 | |
| 6446 | SDLoc dl(N); |
| 6447 | EVT VT = N->getValueType(0); |
| 6448 | SDValue Cond = N->getOperand(0); |
| 6449 | SDValue ConstTrue = |
| 6450 | CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); |
| 6451 | SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); |
| 6452 | |
| 6453 | do { |
| 6454 | SDNode *User = *N->use_begin(); |
| 6455 | if (User->getNumOperands() != 2) |
| 6456 | break; |
| 6457 | |
| 6458 | auto TryFold = [this, N, User, dl](SDValue Val) { |
| 6459 | SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); |
| 6460 | SDValue O0 = UserO0.getNode() == N ? Val : UserO0; |
| 6461 | SDValue O1 = UserO1.getNode() == N ? Val : UserO1; |
| 6462 | |
| 6463 | return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, |
| 6464 | User->getValueType(0), {O0, O1}); |
| 6465 | }; |
| 6466 | |
| 6467 | // FIXME: When the semantics of the interaction between select and undef |
| 6468 | // are clearly defined, it may turn out to be unnecessary to break here. |
| 6469 | SDValue TrueRes = TryFold(ConstTrue); |
| 6470 | if (!TrueRes || TrueRes.isUndef()) |
| 6471 | break; |
| 6472 | SDValue FalseRes = TryFold(ConstFalse); |
| 6473 | if (!FalseRes || FalseRes.isUndef()) |
| 6474 | break; |
| 6475 | |
| 6476 | // For us to materialize these using one instruction, we must be able to |
| 6477 | // represent them as signed 16-bit integers. |
| 6478 | uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), |
| 6479 | False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); |
| 6480 | if (!isInt<16>(True) || !isInt<16>(False)) |
| 6481 | break; |
| 6482 | |
| 6483 | // We can replace User with a new SELECT node, and try again to see if we |
| 6484 | // can fold the select with its user. |
| 6485 | Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); |
| 6486 | N = User; |
| 6487 | ConstTrue = TrueRes; |
| 6488 | ConstFalse = FalseRes; |
| 6489 | } while (N->hasOneUse()); |
| 6490 | } |
| 6491 | |
| 6492 | void PPCDAGToDAGISel::PreprocessISelDAG() { |
| 6493 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| 6494 | |
| 6495 | bool MadeChange = false; |
| 6496 | while (Position != CurDAG->allnodes_begin()) { |
| 6497 | SDNode *N = &*--Position; |
| 6498 | if (N->use_empty()) |
| 6499 | continue; |
| 6500 | |
| 6501 | SDValue Res; |
| 6502 | switch (N->getOpcode()) { |
| 6503 | default: break; |
| 6504 | case ISD::OR: |
| 6505 | Res = combineToCMPB(N); |
| 6506 | break; |
| 6507 | } |
| 6508 | |
| 6509 | if (!Res) |
| 6510 | foldBoolExts(Res, N); |
| 6511 | |
| 6512 | if (Res) { |
| 6513 | LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "PPC DAG preprocessing replacing:\nOld: " ; } } while (false); |
| 6514 | LLVM_DEBUG(N->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { N->dump(CurDAG); } } while (false); |
| 6515 | LLVM_DEBUG(dbgs() << "\nNew: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\nNew: "; } } while (false); |
| 6516 | LLVM_DEBUG(Res.getNode()->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { Res.getNode()->dump(CurDAG); } } while (false ); |
| 6517 | LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\n"; } } while (false); |
| 6518 | |
| 6519 | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); |
| 6520 | MadeChange = true; |
| 6521 | } |
| 6522 | } |
| 6523 | |
| 6524 | if (MadeChange) |
| 6525 | CurDAG->RemoveDeadNodes(); |
| 6526 | } |
| 6527 | |
| 6528 | /// PostprocessISelDAG - Perform some late peephole optimizations |
| 6529 | /// on the DAG representation. |
| 6530 | void PPCDAGToDAGISel::PostprocessISelDAG() { |
| 6531 | // Skip peepholes at -O0. |
| 6532 | if (TM.getOptLevel() == CodeGenOpt::None) |
| 6533 | return; |
| 6534 | |
| 6535 | PeepholePPC64(); |
| 6536 | PeepholeCROps(); |
| 6537 | PeepholePPC64ZExt(); |
| 6538 | } |
| 6539 | |
| 6540 | // Check if all users of this node will become isel where the second operand |
| 6541 | // is the constant zero. If this is so, and if we can negate the condition, |
| 6542 | // then we can flip the true and false operands. This will allow the zero to |
| 6543 | // be folded with the isel so that we don't need to materialize a register |
| 6544 | // containing zero. |
| 6545 | bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { |
| 6546 | for (const SDNode *User : N->uses()) { |
| 6547 | if (!User->isMachineOpcode()) |
| 6548 | return false; |
| 6549 | if (User->getMachineOpcode() != PPC::SELECT_I4 && |
| 6550 | User->getMachineOpcode() != PPC::SELECT_I8) |
| 6551 | return false; |
| 6552 | |
| 6553 | SDNode *Op1 = User->getOperand(1).getNode(); |
| 6554 | SDNode *Op2 = User->getOperand(2).getNode(); |
| 6555 | // If we have a degenerate select with two equal operands, swapping will |
| 6556 | // not do anything, and we may run into an infinite loop. |
| 6557 | if (Op1 == Op2) |
| 6558 | return false; |
| 6559 | |
| 6560 | if (!Op2->isMachineOpcode()) |
| 6561 | return false; |
| 6562 | |
| 6563 | if (Op2->getMachineOpcode() != PPC::LI && |
| 6564 | Op2->getMachineOpcode() != PPC::LI8) |
| 6565 | return false; |
| 6566 | |
| 6567 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); |
| 6568 | if (!C) |
| 6569 | return false; |
| 6570 | |
| 6571 | if (!C->isZero()) |
| 6572 | return false; |
| 6573 | } |
| 6574 | |
| 6575 | return true; |
| 6576 | } |
| 6577 | |
| 6578 | void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { |
| 6579 | SmallVector<SDNode *, 4> ToReplace; |
| 6580 | for (SDNode *User : N->uses()) { |
| 6581 | assert((User->getMachineOpcode() == PPC::SELECT_I4 ||(static_cast <bool> ((User->getMachineOpcode() == PPC ::SELECT_I4 || User->getMachineOpcode() == PPC::SELECT_I8) && "Must have all select users") ? void (0) : __assert_fail ("(User->getMachineOpcode() == PPC::SELECT_I4 || User->getMachineOpcode() == PPC::SELECT_I8) && \"Must have all select users\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6583, __extension__ __PRETTY_FUNCTION__)) |
| 6582 | User->getMachineOpcode() == PPC::SELECT_I8) &&(static_cast <bool> ((User->getMachineOpcode() == PPC ::SELECT_I4 || User->getMachineOpcode() == PPC::SELECT_I8) && "Must have all select users") ? void (0) : __assert_fail ("(User->getMachineOpcode() == PPC::SELECT_I4 || User->getMachineOpcode() == PPC::SELECT_I8) && \"Must have all select users\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6583, __extension__ __PRETTY_FUNCTION__)) |
| 6583 | "Must have all select users")(static_cast <bool> ((User->getMachineOpcode() == PPC ::SELECT_I4 || User->getMachineOpcode() == PPC::SELECT_I8) && "Must have all select users") ? void (0) : __assert_fail ("(User->getMachineOpcode() == PPC::SELECT_I4 || User->getMachineOpcode() == PPC::SELECT_I8) && \"Must have all select users\"" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 6583, __extension__ __PRETTY_FUNCTION__)); |
| 6584 | ToReplace.push_back(User); |
| 6585 | } |
| 6586 | |
| 6587 | for (SDNode *User : ToReplace) { |
| 6588 | SDNode *ResNode = |
| 6589 | CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), |
| 6590 | User->getValueType(0), User->getOperand(0), |
| 6591 | User->getOperand(2), |
| 6592 | User->getOperand(1)); |
| 6593 | |
| 6594 | LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "CR Peephole replacing:\nOld: " ; } } while (false); |
| 6595 | LLVM_DEBUG(User->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { User->dump(CurDAG); } } while (false); |
| 6596 | LLVM_DEBUG(dbgs() << "\nNew: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\nNew: "; } } while (false); |
| 6597 | LLVM_DEBUG(ResNode->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { ResNode->dump(CurDAG); } } while (false); |
| 6598 | LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\n"; } } while (false); |
| 6599 | |
| 6600 | ReplaceUses(User, ResNode); |
| 6601 | } |
| 6602 | } |
| 6603 | |
| 6604 | void PPCDAGToDAGISel::PeepholeCROps() { |
| 6605 | bool IsModified; |
| 6606 | do { |
| 6607 | IsModified = false; |
| 6608 | for (SDNode &Node : CurDAG->allnodes()) { |
| 6609 | MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); |
| 6610 | if (!MachineNode || MachineNode->use_empty()) |
| 6611 | continue; |
| 6612 | SDNode *ResNode = MachineNode; |
| 6613 | |
| 6614 | bool Op1Set = false, Op1Unset = false, |
| 6615 | Op1Not = false, |
| 6616 | Op2Set = false, Op2Unset = false, |
| 6617 | Op2Not = false; |
| 6618 | |
| 6619 | unsigned Opcode = MachineNode->getMachineOpcode(); |
| 6620 | switch (Opcode) { |
| 6621 | default: break; |
| 6622 | case PPC::CRAND: |
| 6623 | case PPC::CRNAND: |
| 6624 | case PPC::CROR: |
| 6625 | case PPC::CRXOR: |
| 6626 | case PPC::CRNOR: |
| 6627 | case PPC::CREQV: |
| 6628 | case PPC::CRANDC: |
| 6629 | case PPC::CRORC: { |
| 6630 | SDValue Op = MachineNode->getOperand(1); |
| 6631 | if (Op.isMachineOpcode()) { |
| 6632 | if (Op.getMachineOpcode() == PPC::CRSET) |
| 6633 | Op2Set = true; |
| 6634 | else if (Op.getMachineOpcode() == PPC::CRUNSET) |
| 6635 | Op2Unset = true; |
| 6636 | else if ((Op.getMachineOpcode() == PPC::CRNOR && |
| 6637 | Op.getOperand(0) == Op.getOperand(1)) || |
| 6638 | Op.getMachineOpcode() == PPC::CRNOT) |
| 6639 | Op2Not = true; |
| 6640 | } |
| 6641 | [[fallthrough]]; |
| 6642 | } |
| 6643 | case PPC::BC: |
| 6644 | case PPC::BCn: |
| 6645 | case PPC::SELECT_I4: |
| 6646 | case PPC::SELECT_I8: |
| 6647 | case PPC::SELECT_F4: |
| 6648 | case PPC::SELECT_F8: |
| 6649 | case PPC::SELECT_SPE: |
| 6650 | case PPC::SELECT_SPE4: |
| 6651 | case PPC::SELECT_VRRC: |
| 6652 | case PPC::SELECT_VSFRC: |
| 6653 | case PPC::SELECT_VSSRC: |
| 6654 | case PPC::SELECT_VSRC: { |
| 6655 | SDValue Op = MachineNode->getOperand(0); |
| 6656 | if (Op.isMachineOpcode()) { |
| 6657 | if (Op.getMachineOpcode() == PPC::CRSET) |
| 6658 | Op1Set = true; |
| 6659 | else if (Op.getMachineOpcode() == PPC::CRUNSET) |
| 6660 | Op1Unset = true; |
| 6661 | else if ((Op.getMachineOpcode() == PPC::CRNOR && |
| 6662 | Op.getOperand(0) == Op.getOperand(1)) || |
| 6663 | Op.getMachineOpcode() == PPC::CRNOT) |
| 6664 | Op1Not = true; |
| 6665 | } |
| 6666 | } |
| 6667 | break; |
| 6668 | } |
| 6669 | |
| 6670 | bool SelectSwap = false; |
| 6671 | switch (Opcode) { |
| 6672 | default: break; |
| 6673 | case PPC::CRAND: |
| 6674 | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| 6675 | // x & x = x |
| 6676 | ResNode = MachineNode->getOperand(0).getNode(); |
| 6677 | else if (Op1Set) |
| 6678 | // 1 & y = y |
| 6679 | ResNode = MachineNode->getOperand(1).getNode(); |
| 6680 | else if (Op2Set) |
| 6681 | // x & 1 = x |
| 6682 | ResNode = MachineNode->getOperand(0).getNode(); |
| 6683 | else if (Op1Unset || Op2Unset) |
| 6684 | // x & 0 = 0 & y = 0 |
| 6685 | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), |
| 6686 | MVT::i1); |
| 6687 | else if (Op1Not) |
| 6688 | // ~x & y = andc(y, x) |
| 6689 | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), |
| 6690 | MVT::i1, MachineNode->getOperand(1), |
| 6691 | MachineNode->getOperand(0). |
| 6692 | getOperand(0)); |
| 6693 | else if (Op2Not) |
| 6694 | // x & ~y = andc(x, y) |
| 6695 | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), |
| 6696 | MVT::i1, MachineNode->getOperand(0), |
| 6697 | MachineNode->getOperand(1). |
| 6698 | getOperand(0)); |
| 6699 | else if (AllUsersSelectZero(MachineNode)) { |
| 6700 | ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), |
| 6701 | MVT::i1, MachineNode->getOperand(0), |
| 6702 | MachineNode->getOperand(1)); |
| 6703 | SelectSwap = true; |
| 6704 | } |
| 6705 | break; |
| 6706 | case PPC::CRNAND: |
| 6707 | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| 6708 | // nand(x, x) -> nor(x, x) |
| 6709 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6710 | MVT::i1, MachineNode->getOperand(0), |
| 6711 | MachineNode->getOperand(0)); |
| 6712 | else if (Op1Set) |
| 6713 | // nand(1, y) -> nor(y, y) |
| 6714 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6715 | MVT::i1, MachineNode->getOperand(1), |
| 6716 | MachineNode->getOperand(1)); |
| 6717 | else if (Op2Set) |
| 6718 | // nand(x, 1) -> nor(x, x) |
| 6719 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6720 | MVT::i1, MachineNode->getOperand(0), |
| 6721 | MachineNode->getOperand(0)); |
| 6722 | else if (Op1Unset || Op2Unset) |
| 6723 | // nand(x, 0) = nand(0, y) = 1 |
| 6724 | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), |
| 6725 | MVT::i1); |
| 6726 | else if (Op1Not) |
| 6727 | // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) |
| 6728 | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), |
| 6729 | MVT::i1, MachineNode->getOperand(0). |
| 6730 | getOperand(0), |
| 6731 | MachineNode->getOperand(1)); |
| 6732 | else if (Op2Not) |
| 6733 | // nand(x, ~y) = ~x | y = orc(y, x) |
| 6734 | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), |
| 6735 | MVT::i1, MachineNode->getOperand(1). |
| 6736 | getOperand(0), |
| 6737 | MachineNode->getOperand(0)); |
| 6738 | else if (AllUsersSelectZero(MachineNode)) { |
| 6739 | ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), |
| 6740 | MVT::i1, MachineNode->getOperand(0), |
| 6741 | MachineNode->getOperand(1)); |
| 6742 | SelectSwap = true; |
| 6743 | } |
| 6744 | break; |
| 6745 | case PPC::CROR: |
| 6746 | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| 6747 | // x | x = x |
| 6748 | ResNode = MachineNode->getOperand(0).getNode(); |
| 6749 | else if (Op1Set || Op2Set) |
| 6750 | // x | 1 = 1 | y = 1 |
| 6751 | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), |
| 6752 | MVT::i1); |
| 6753 | else if (Op1Unset) |
| 6754 | // 0 | y = y |
| 6755 | ResNode = MachineNode->getOperand(1).getNode(); |
| 6756 | else if (Op2Unset) |
| 6757 | // x | 0 = x |
| 6758 | ResNode = MachineNode->getOperand(0).getNode(); |
| 6759 | else if (Op1Not) |
| 6760 | // ~x | y = orc(y, x) |
| 6761 | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), |
| 6762 | MVT::i1, MachineNode->getOperand(1), |
| 6763 | MachineNode->getOperand(0). |
| 6764 | getOperand(0)); |
| 6765 | else if (Op2Not) |
| 6766 | // x | ~y = orc(x, y) |
| 6767 | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), |
| 6768 | MVT::i1, MachineNode->getOperand(0), |
| 6769 | MachineNode->getOperand(1). |
| 6770 | getOperand(0)); |
| 6771 | else if (AllUsersSelectZero(MachineNode)) { |
| 6772 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6773 | MVT::i1, MachineNode->getOperand(0), |
| 6774 | MachineNode->getOperand(1)); |
| 6775 | SelectSwap = true; |
| 6776 | } |
| 6777 | break; |
| 6778 | case PPC::CRXOR: |
| 6779 | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| 6780 | // xor(x, x) = 0 |
| 6781 | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), |
| 6782 | MVT::i1); |
| 6783 | else if (Op1Set) |
| 6784 | // xor(1, y) -> nor(y, y) |
| 6785 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6786 | MVT::i1, MachineNode->getOperand(1), |
| 6787 | MachineNode->getOperand(1)); |
| 6788 | else if (Op2Set) |
| 6789 | // xor(x, 1) -> nor(x, x) |
| 6790 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6791 | MVT::i1, MachineNode->getOperand(0), |
| 6792 | MachineNode->getOperand(0)); |
| 6793 | else if (Op1Unset) |
| 6794 | // xor(0, y) = y |
| 6795 | ResNode = MachineNode->getOperand(1).getNode(); |
| 6796 | else if (Op2Unset) |
| 6797 | // xor(x, 0) = x |
| 6798 | ResNode = MachineNode->getOperand(0).getNode(); |
| 6799 | else if (Op1Not) |
| 6800 | // xor(~x, y) = eqv(x, y) |
| 6801 | ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), |
| 6802 | MVT::i1, MachineNode->getOperand(0). |
| 6803 | getOperand(0), |
| 6804 | MachineNode->getOperand(1)); |
| 6805 | else if (Op2Not) |
| 6806 | // xor(x, ~y) = eqv(x, y) |
| 6807 | ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), |
| 6808 | MVT::i1, MachineNode->getOperand(0), |
| 6809 | MachineNode->getOperand(1). |
| 6810 | getOperand(0)); |
| 6811 | else if (AllUsersSelectZero(MachineNode)) { |
| 6812 | ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), |
| 6813 | MVT::i1, MachineNode->getOperand(0), |
| 6814 | MachineNode->getOperand(1)); |
| 6815 | SelectSwap = true; |
| 6816 | } |
| 6817 | break; |
| 6818 | case PPC::CRNOR: |
| 6819 | if (Op1Set || Op2Set) |
| 6820 | // nor(1, y) -> 0 |
| 6821 | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), |
| 6822 | MVT::i1); |
| 6823 | else if (Op1Unset) |
| 6824 | // nor(0, y) = ~y -> nor(y, y) |
| 6825 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6826 | MVT::i1, MachineNode->getOperand(1), |
| 6827 | MachineNode->getOperand(1)); |
| 6828 | else if (Op2Unset) |
| 6829 | // nor(x, 0) = ~x |
| 6830 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6831 | MVT::i1, MachineNode->getOperand(0), |
| 6832 | MachineNode->getOperand(0)); |
| 6833 | else if (Op1Not) |
| 6834 | // nor(~x, y) = andc(x, y) |
| 6835 | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), |
| 6836 | MVT::i1, MachineNode->getOperand(0). |
| 6837 | getOperand(0), |
| 6838 | MachineNode->getOperand(1)); |
| 6839 | else if (Op2Not) |
| 6840 | // nor(x, ~y) = andc(y, x) |
| 6841 | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), |
| 6842 | MVT::i1, MachineNode->getOperand(1). |
| 6843 | getOperand(0), |
| 6844 | MachineNode->getOperand(0)); |
| 6845 | else if (AllUsersSelectZero(MachineNode)) { |
| 6846 | ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), |
| 6847 | MVT::i1, MachineNode->getOperand(0), |
| 6848 | MachineNode->getOperand(1)); |
| 6849 | SelectSwap = true; |
| 6850 | } |
| 6851 | break; |
| 6852 | case PPC::CREQV: |
| 6853 | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| 6854 | // eqv(x, x) = 1 |
| 6855 | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), |
| 6856 | MVT::i1); |
| 6857 | else if (Op1Set) |
| 6858 | // eqv(1, y) = y |
| 6859 | ResNode = MachineNode->getOperand(1).getNode(); |
| 6860 | else if (Op2Set) |
| 6861 | // eqv(x, 1) = x |
| 6862 | ResNode = MachineNode->getOperand(0).getNode(); |
| 6863 | else if (Op1Unset) |
| 6864 | // eqv(0, y) = ~y -> nor(y, y) |
| 6865 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6866 | MVT::i1, MachineNode->getOperand(1), |
| 6867 | MachineNode->getOperand(1)); |
| 6868 | else if (Op2Unset) |
| 6869 | // eqv(x, 0) = ~x |
| 6870 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6871 | MVT::i1, MachineNode->getOperand(0), |
| 6872 | MachineNode->getOperand(0)); |
| 6873 | else if (Op1Not) |
| 6874 | // eqv(~x, y) = xor(x, y) |
| 6875 | ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), |
| 6876 | MVT::i1, MachineNode->getOperand(0). |
| 6877 | getOperand(0), |
| 6878 | MachineNode->getOperand(1)); |
| 6879 | else if (Op2Not) |
| 6880 | // eqv(x, ~y) = xor(x, y) |
| 6881 | ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), |
| 6882 | MVT::i1, MachineNode->getOperand(0), |
| 6883 | MachineNode->getOperand(1). |
| 6884 | getOperand(0)); |
| 6885 | else if (AllUsersSelectZero(MachineNode)) { |
| 6886 | ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), |
| 6887 | MVT::i1, MachineNode->getOperand(0), |
| 6888 | MachineNode->getOperand(1)); |
| 6889 | SelectSwap = true; |
| 6890 | } |
| 6891 | break; |
| 6892 | case PPC::CRANDC: |
| 6893 | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| 6894 | // andc(x, x) = 0 |
| 6895 | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), |
| 6896 | MVT::i1); |
| 6897 | else if (Op1Set) |
| 6898 | // andc(1, y) = ~y |
| 6899 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6900 | MVT::i1, MachineNode->getOperand(1), |
| 6901 | MachineNode->getOperand(1)); |
| 6902 | else if (Op1Unset || Op2Set) |
| 6903 | // andc(0, y) = andc(x, 1) = 0 |
| 6904 | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), |
| 6905 | MVT::i1); |
| 6906 | else if (Op2Unset) |
| 6907 | // andc(x, 0) = x |
| 6908 | ResNode = MachineNode->getOperand(0).getNode(); |
| 6909 | else if (Op1Not) |
| 6910 | // andc(~x, y) = ~(x | y) = nor(x, y) |
| 6911 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6912 | MVT::i1, MachineNode->getOperand(0). |
| 6913 | getOperand(0), |
| 6914 | MachineNode->getOperand(1)); |
| 6915 | else if (Op2Not) |
| 6916 | // andc(x, ~y) = x & y |
| 6917 | ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), |
| 6918 | MVT::i1, MachineNode->getOperand(0), |
| 6919 | MachineNode->getOperand(1). |
| 6920 | getOperand(0)); |
| 6921 | else if (AllUsersSelectZero(MachineNode)) { |
| 6922 | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), |
| 6923 | MVT::i1, MachineNode->getOperand(1), |
| 6924 | MachineNode->getOperand(0)); |
| 6925 | SelectSwap = true; |
| 6926 | } |
| 6927 | break; |
| 6928 | case PPC::CRORC: |
| 6929 | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| 6930 | // orc(x, x) = 1 |
| 6931 | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), |
| 6932 | MVT::i1); |
| 6933 | else if (Op1Set || Op2Unset) |
| 6934 | // orc(1, y) = orc(x, 0) = 1 |
| 6935 | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), |
| 6936 | MVT::i1); |
| 6937 | else if (Op2Set) |
| 6938 | // orc(x, 1) = x |
| 6939 | ResNode = MachineNode->getOperand(0).getNode(); |
| 6940 | else if (Op1Unset) |
| 6941 | // orc(0, y) = ~y |
| 6942 | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| 6943 | MVT::i1, MachineNode->getOperand(1), |
| 6944 | MachineNode->getOperand(1)); |
| 6945 | else if (Op1Not) |
| 6946 | // orc(~x, y) = ~(x & y) = nand(x, y) |
| 6947 | ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), |
| 6948 | MVT::i1, MachineNode->getOperand(0). |
| 6949 | getOperand(0), |
| 6950 | MachineNode->getOperand(1)); |
| 6951 | else if (Op2Not) |
| 6952 | // orc(x, ~y) = x | y |
| 6953 | ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), |
| 6954 | MVT::i1, MachineNode->getOperand(0), |
| 6955 | MachineNode->getOperand(1). |
| 6956 | getOperand(0)); |
| 6957 | else if (AllUsersSelectZero(MachineNode)) { |
| 6958 | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), |
| 6959 | MVT::i1, MachineNode->getOperand(1), |
| 6960 | MachineNode->getOperand(0)); |
| 6961 | SelectSwap = true; |
| 6962 | } |
| 6963 | break; |
| 6964 | case PPC::SELECT_I4: |
| 6965 | case PPC::SELECT_I8: |
| 6966 | case PPC::SELECT_F4: |
| 6967 | case PPC::SELECT_F8: |
| 6968 | case PPC::SELECT_SPE: |
| 6969 | case PPC::SELECT_SPE4: |
| 6970 | case PPC::SELECT_VRRC: |
| 6971 | case PPC::SELECT_VSFRC: |
| 6972 | case PPC::SELECT_VSSRC: |
| 6973 | case PPC::SELECT_VSRC: |
| 6974 | if (Op1Set) |
| 6975 | ResNode = MachineNode->getOperand(1).getNode(); |
| 6976 | else if (Op1Unset) |
| 6977 | ResNode = MachineNode->getOperand(2).getNode(); |
| 6978 | else if (Op1Not) |
| 6979 | ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), |
| 6980 | SDLoc(MachineNode), |
| 6981 | MachineNode->getValueType(0), |
| 6982 | MachineNode->getOperand(0). |
| 6983 | getOperand(0), |
| 6984 | MachineNode->getOperand(2), |
| 6985 | MachineNode->getOperand(1)); |
| 6986 | break; |
| 6987 | case PPC::BC: |
| 6988 | case PPC::BCn: |
| 6989 | if (Op1Not) |
| 6990 | ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : |
| 6991 | PPC::BC, |
| 6992 | SDLoc(MachineNode), |
| 6993 | MVT::Other, |
| 6994 | MachineNode->getOperand(0). |
| 6995 | getOperand(0), |
| 6996 | MachineNode->getOperand(1), |
| 6997 | MachineNode->getOperand(2)); |
| 6998 | // FIXME: Handle Op1Set, Op1Unset here too. |
| 6999 | break; |
| 7000 | } |
| 7001 | |
| 7002 | // If we're inverting this node because it is used only by selects that |
| 7003 | // we'd like to swap, then swap the selects before the node replacement. |
| 7004 | if (SelectSwap) |
| 7005 | SwapAllSelectUsers(MachineNode); |
| 7006 | |
| 7007 | if (ResNode != MachineNode) { |
| 7008 | LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "CR Peephole replacing:\nOld: " ; } } while (false); |
| 7009 | LLVM_DEBUG(MachineNode->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { MachineNode->dump(CurDAG); } } while (false ); |
| 7010 | LLVM_DEBUG(dbgs() << "\nNew: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\nNew: "; } } while (false); |
| 7011 | LLVM_DEBUG(ResNode->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { ResNode->dump(CurDAG); } } while (false); |
| 7012 | LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\n"; } } while (false); |
| 7013 | |
| 7014 | ReplaceUses(MachineNode, ResNode); |
| 7015 | IsModified = true; |
| 7016 | } |
| 7017 | } |
| 7018 | if (IsModified) |
| 7019 | CurDAG->RemoveDeadNodes(); |
| 7020 | } while (IsModified); |
| 7021 | } |
| 7022 | |
| 7023 | // Gather the set of 32-bit operations that are known to have their |
| 7024 | // higher-order 32 bits zero, where ToPromote contains all such operations. |
| 7025 | static bool PeepholePPC64ZExtGather(SDValue Op32, |
| 7026 | SmallPtrSetImpl<SDNode *> &ToPromote) { |
| 7027 | if (!Op32.isMachineOpcode()) |
| 7028 | return false; |
| 7029 | |
| 7030 | // First, check for the "frontier" instructions (those that will clear the |
| 7031 | // higher-order 32 bits. |
| 7032 | |
| 7033 | // For RLWINM and RLWNM, we need to make sure that the mask does not wrap |
| 7034 | // around. If it does not, then these instructions will clear the |
| 7035 | // higher-order bits. |
| 7036 | if ((Op32.getMachineOpcode() == PPC::RLWINM || |
| 7037 | Op32.getMachineOpcode() == PPC::RLWNM) && |
| 7038 | Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { |
| 7039 | ToPromote.insert(Op32.getNode()); |
| 7040 | return true; |
| 7041 | } |
| 7042 | |
| 7043 | // SLW and SRW always clear the higher-order bits. |
| 7044 | if (Op32.getMachineOpcode() == PPC::SLW || |
| 7045 | Op32.getMachineOpcode() == PPC::SRW) { |
| 7046 | ToPromote.insert(Op32.getNode()); |
| 7047 | return true; |
| 7048 | } |
| 7049 | |
| 7050 | // For LI and LIS, we need the immediate to be positive (so that it is not |
| 7051 | // sign extended). |
| 7052 | if (Op32.getMachineOpcode() == PPC::LI || |
| 7053 | Op32.getMachineOpcode() == PPC::LIS) { |
| 7054 | if (!isUInt<15>(Op32.getConstantOperandVal(0))) |
| 7055 | return false; |
| 7056 | |
| 7057 | ToPromote.insert(Op32.getNode()); |
| 7058 | return true; |
| 7059 | } |
| 7060 | |
| 7061 | // LHBRX and LWBRX always clear the higher-order bits. |
| 7062 | if (Op32.getMachineOpcode() == PPC::LHBRX || |
| 7063 | Op32.getMachineOpcode() == PPC::LWBRX) { |
| 7064 | ToPromote.insert(Op32.getNode()); |
| 7065 | return true; |
| 7066 | } |
| 7067 | |
| 7068 | // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. |
| 7069 | if (Op32.getMachineOpcode() == PPC::CNTLZW || |
| 7070 | Op32.getMachineOpcode() == PPC::CNTTZW) { |
| 7071 | ToPromote.insert(Op32.getNode()); |
| 7072 | return true; |
| 7073 | } |
| 7074 | |
| 7075 | // Next, check for those instructions we can look through. |
| 7076 | |
| 7077 | // Assuming the mask does not wrap around, then the higher-order bits are |
| 7078 | // taken directly from the first operand. |
| 7079 | if (Op32.getMachineOpcode() == PPC::RLWIMI && |
| 7080 | Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { |
| 7081 | SmallPtrSet<SDNode *, 16> ToPromote1; |
| 7082 | if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) |
| 7083 | return false; |
| 7084 | |
| 7085 | ToPromote.insert(Op32.getNode()); |
| 7086 | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); |
| 7087 | return true; |
| 7088 | } |
| 7089 | |
| 7090 | // For OR, the higher-order bits are zero if that is true for both operands. |
| 7091 | // For SELECT_I4, the same is true (but the relevant operand numbers are |
| 7092 | // shifted by 1). |
| 7093 | if (Op32.getMachineOpcode() == PPC::OR || |
| 7094 | Op32.getMachineOpcode() == PPC::SELECT_I4) { |
| 7095 | unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; |
| 7096 | SmallPtrSet<SDNode *, 16> ToPromote1; |
| 7097 | if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) |
| 7098 | return false; |
| 7099 | if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) |
| 7100 | return false; |
| 7101 | |
| 7102 | ToPromote.insert(Op32.getNode()); |
| 7103 | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); |
| 7104 | return true; |
| 7105 | } |
| 7106 | |
| 7107 | // For ORI and ORIS, we need the higher-order bits of the first operand to be |
| 7108 | // zero, and also for the constant to be positive (so that it is not sign |
| 7109 | // extended). |
| 7110 | if (Op32.getMachineOpcode() == PPC::ORI || |
| 7111 | Op32.getMachineOpcode() == PPC::ORIS) { |
| 7112 | SmallPtrSet<SDNode *, 16> ToPromote1; |
| 7113 | if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) |
| 7114 | return false; |
| 7115 | if (!isUInt<15>(Op32.getConstantOperandVal(1))) |
| 7116 | return false; |
| 7117 | |
| 7118 | ToPromote.insert(Op32.getNode()); |
| 7119 | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); |
| 7120 | return true; |
| 7121 | } |
| 7122 | |
| 7123 | // The higher-order bits of AND are zero if that is true for at least one of |
| 7124 | // the operands. |
| 7125 | if (Op32.getMachineOpcode() == PPC::AND) { |
| 7126 | SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; |
| 7127 | bool Op0OK = |
| 7128 | PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); |
| 7129 | bool Op1OK = |
| 7130 | PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); |
| 7131 | if (!Op0OK && !Op1OK) |
| 7132 | return false; |
| 7133 | |
| 7134 | ToPromote.insert(Op32.getNode()); |
| 7135 | |
| 7136 | if (Op0OK) |
| 7137 | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); |
| 7138 | |
| 7139 | if (Op1OK) |
| 7140 | ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); |
| 7141 | |
| 7142 | return true; |
| 7143 | } |
| 7144 | |
| 7145 | // For ANDI and ANDIS, the higher-order bits are zero if either that is true |
| 7146 | // of the first operand, or if the second operand is positive (so that it is |
| 7147 | // not sign extended). |
| 7148 | if (Op32.getMachineOpcode() == PPC::ANDI_rec || |
| 7149 | Op32.getMachineOpcode() == PPC::ANDIS_rec) { |
| 7150 | SmallPtrSet<SDNode *, 16> ToPromote1; |
| 7151 | bool Op0OK = |
| 7152 | PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); |
| 7153 | bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); |
| 7154 | if (!Op0OK && !Op1OK) |
| 7155 | return false; |
| 7156 | |
| 7157 | ToPromote.insert(Op32.getNode()); |
| 7158 | |
| 7159 | if (Op0OK) |
| 7160 | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); |
| 7161 | |
| 7162 | return true; |
| 7163 | } |
| 7164 | |
| 7165 | return false; |
| 7166 | } |
| 7167 | |
| 7168 | void PPCDAGToDAGISel::PeepholePPC64ZExt() { |
| 7169 | if (!Subtarget->isPPC64()) |
| 7170 | return; |
| 7171 | |
| 7172 | // When we zero-extend from i32 to i64, we use a pattern like this: |
| 7173 | // def : Pat<(i64 (zext i32:$in)), |
| 7174 | // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), |
| 7175 | // 0, 32)>; |
| 7176 | // There are several 32-bit shift/rotate instructions, however, that will |
| 7177 | // clear the higher-order bits of their output, rendering the RLDICL |
| 7178 | // unnecessary. When that happens, we remove it here, and redefine the |
| 7179 | // relevant 32-bit operation to be a 64-bit operation. |
| 7180 | |
| 7181 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| 7182 | |
| 7183 | bool MadeChange = false; |
| 7184 | while (Position != CurDAG->allnodes_begin()) { |
| 7185 | SDNode *N = &*--Position; |
| 7186 | // Skip dead nodes and any non-machine opcodes. |
| 7187 | if (N->use_empty() || !N->isMachineOpcode()) |
| 7188 | continue; |
| 7189 | |
| 7190 | if (N->getMachineOpcode() != PPC::RLDICL) |
| 7191 | continue; |
| 7192 | |
| 7193 | if (N->getConstantOperandVal(1) != 0 || |
| 7194 | N->getConstantOperandVal(2) != 32) |
| 7195 | continue; |
| 7196 | |
| 7197 | SDValue ISR = N->getOperand(0); |
| 7198 | if (!ISR.isMachineOpcode() || |
| 7199 | ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) |
| 7200 | continue; |
| 7201 | |
| 7202 | if (!ISR.hasOneUse()) |
| 7203 | continue; |
| 7204 | |
| 7205 | if (ISR.getConstantOperandVal(2) != PPC::sub_32) |
| 7206 | continue; |
| 7207 | |
| 7208 | SDValue IDef = ISR.getOperand(0); |
| 7209 | if (!IDef.isMachineOpcode() || |
| 7210 | IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) |
| 7211 | continue; |
| 7212 | |
| 7213 | // We now know that we're looking at a canonical i32 -> i64 zext. See if we |
| 7214 | // can get rid of it. |
| 7215 | |
| 7216 | SDValue Op32 = ISR->getOperand(1); |
| 7217 | if (!Op32.isMachineOpcode()) |
| 7218 | continue; |
| 7219 | |
| 7220 | // There are some 32-bit instructions that always clear the high-order 32 |
| 7221 | // bits, there are also some instructions (like AND) that we can look |
| 7222 | // through. |
| 7223 | SmallPtrSet<SDNode *, 16> ToPromote; |
| 7224 | if (!PeepholePPC64ZExtGather(Op32, ToPromote)) |
| 7225 | continue; |
| 7226 | |
| 7227 | // If the ToPromote set contains nodes that have uses outside of the set |
| 7228 | // (except for the original INSERT_SUBREG), then abort the transformation. |
| 7229 | bool OutsideUse = false; |
| 7230 | for (SDNode *PN : ToPromote) { |
| 7231 | for (SDNode *UN : PN->uses()) { |
| 7232 | if (!ToPromote.count(UN) && UN != ISR.getNode()) { |
| 7233 | OutsideUse = true; |
| 7234 | break; |
| 7235 | } |
| 7236 | } |
| 7237 | |
| 7238 | if (OutsideUse) |
| 7239 | break; |
| 7240 | } |
| 7241 | if (OutsideUse) |
| 7242 | continue; |
| 7243 | |
| 7244 | MadeChange = true; |
| 7245 | |
| 7246 | // We now know that this zero extension can be removed by promoting to |
| 7247 | // nodes in ToPromote to 64-bit operations, where for operations in the |
| 7248 | // frontier of the set, we need to insert INSERT_SUBREGs for their |
| 7249 | // operands. |
| 7250 | for (SDNode *PN : ToPromote) { |
| 7251 | unsigned NewOpcode; |
| 7252 | switch (PN->getMachineOpcode()) { |
| 7253 | default: |
| 7254 | llvm_unreachable("Don't know the 64-bit variant of this instruction")::llvm::llvm_unreachable_internal("Don't know the 64-bit variant of this instruction" , "llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp", 7254); |
| 7255 | case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; |
| 7256 | case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; |
| 7257 | case PPC::SLW: NewOpcode = PPC::SLW8; break; |
| 7258 | case PPC::SRW: NewOpcode = PPC::SRW8; break; |
| 7259 | case PPC::LI: NewOpcode = PPC::LI8; break; |
| 7260 | case PPC::LIS: NewOpcode = PPC::LIS8; break; |
| 7261 | case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; |
| 7262 | case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; |
| 7263 | case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; |
| 7264 | case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; |
| 7265 | case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; |
| 7266 | case PPC::OR: NewOpcode = PPC::OR8; break; |
| 7267 | case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; |
| 7268 | case PPC::ORI: NewOpcode = PPC::ORI8; break; |
| 7269 | case PPC::ORIS: NewOpcode = PPC::ORIS8; break; |
| 7270 | case PPC::AND: NewOpcode = PPC::AND8; break; |
| 7271 | case PPC::ANDI_rec: |
| 7272 | NewOpcode = PPC::ANDI8_rec; |
| 7273 | break; |
| 7274 | case PPC::ANDIS_rec: |
| 7275 | NewOpcode = PPC::ANDIS8_rec; |
| 7276 | break; |
| 7277 | } |
| 7278 | |
| 7279 | // Note: During the replacement process, the nodes will be in an |
| 7280 | // inconsistent state (some instructions will have operands with values |
| 7281 | // of the wrong type). Once done, however, everything should be right |
| 7282 | // again. |
| 7283 | |
| 7284 | SmallVector<SDValue, 4> Ops; |
| 7285 | for (const SDValue &V : PN->ops()) { |
| 7286 | if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && |
| 7287 | !isa<ConstantSDNode>(V)) { |
| 7288 | SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; |
| 7289 | SDNode *ReplOp = |
| 7290 | CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), |
| 7291 | ISR.getNode()->getVTList(), ReplOpOps); |
| 7292 | Ops.push_back(SDValue(ReplOp, 0)); |
| 7293 | } else { |
| 7294 | Ops.push_back(V); |
| 7295 | } |
| 7296 | } |
| 7297 | |
| 7298 | // Because all to-be-promoted nodes only have users that are other |
| 7299 | // promoted nodes (or the original INSERT_SUBREG), we can safely replace |
| 7300 | // the i32 result value type with i64. |
| 7301 | |
| 7302 | SmallVector<EVT, 2> NewVTs; |
| 7303 | SDVTList VTs = PN->getVTList(); |
| 7304 | for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) |
| 7305 | if (VTs.VTs[i] == MVT::i32) |
| 7306 | NewVTs.push_back(MVT::i64); |
| 7307 | else |
| 7308 | NewVTs.push_back(VTs.VTs[i]); |
| 7309 | |
| 7310 | LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "PPC64 ZExt Peephole morphing:\nOld: " ; } } while (false); |
| 7311 | LLVM_DEBUG(PN->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { PN->dump(CurDAG); } } while (false); |
| 7312 | |
| 7313 | CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); |
| 7314 | |
| 7315 | LLVM_DEBUG(dbgs() << "\nNew: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\nNew: "; } } while (false); |
| 7316 | LLVM_DEBUG(PN->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { PN->dump(CurDAG); } } while (false); |
| 7317 | LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\n"; } } while (false); |
| 7318 | } |
| 7319 | |
| 7320 | // Now we replace the original zero extend and its associated INSERT_SUBREG |
| 7321 | // with the value feeding the INSERT_SUBREG (which has now been promoted to |
| 7322 | // return an i64). |
| 7323 | |
| 7324 | LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "PPC64 ZExt Peephole replacing:\nOld: " ; } } while (false); |
| 7325 | LLVM_DEBUG(N->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { N->dump(CurDAG); } } while (false); |
| 7326 | LLVM_DEBUG(dbgs() << "\nNew: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\nNew: "; } } while (false); |
| 7327 | LLVM_DEBUG(Op32.getNode()->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { Op32.getNode()->dump(CurDAG); } } while (false ); |
| 7328 | LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\n"; } } while (false); |
| 7329 | |
| 7330 | ReplaceUses(N, Op32.getNode()); |
| 7331 | } |
| 7332 | |
| 7333 | if (MadeChange) |
| 7334 | CurDAG->RemoveDeadNodes(); |
| 7335 | } |
| 7336 | |
| 7337 | static bool isVSXSwap(SDValue N) { |
| 7338 | if (!N->isMachineOpcode()) |
| 7339 | return false; |
| 7340 | unsigned Opc = N->getMachineOpcode(); |
| 7341 | |
| 7342 | // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate |
| 7343 | // operand is 2. |
| 7344 | if (Opc == PPC::XXPERMDIs) { |
| 7345 | return isa<ConstantSDNode>(N->getOperand(1)) && |
| 7346 | N->getConstantOperandVal(1) == 2; |
| 7347 | } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) { |
| 7348 | return N->getOperand(0) == N->getOperand(1) && |
| 7349 | isa<ConstantSDNode>(N->getOperand(2)) && |
| 7350 | N->getConstantOperandVal(2) == 2; |
| 7351 | } |
| 7352 | |
| 7353 | return false; |
| 7354 | } |
| 7355 | |
| 7356 | // TODO: Make this complete and replace with a table-gen bit. |
| 7357 | static bool isLaneInsensitive(SDValue N) { |
| 7358 | if (!N->isMachineOpcode()) |
| 7359 | return false; |
| 7360 | unsigned Opc = N->getMachineOpcode(); |
| 7361 | |
| 7362 | switch (Opc) { |
| 7363 | default: |
| 7364 | return false; |
| 7365 | case PPC::VAVGSB: |
| 7366 | case PPC::VAVGUB: |
| 7367 | case PPC::VAVGSH: |
| 7368 | case PPC::VAVGUH: |
| 7369 | case PPC::VAVGSW: |
| 7370 | case PPC::VAVGUW: |
| 7371 | case PPC::VMAXFP: |
| 7372 | case PPC::VMAXSB: |
| 7373 | case PPC::VMAXUB: |
| 7374 | case PPC::VMAXSH: |
| 7375 | case PPC::VMAXUH: |
| 7376 | case PPC::VMAXSW: |
| 7377 | case PPC::VMAXUW: |
| 7378 | case PPC::VMINFP: |
| 7379 | case PPC::VMINSB: |
| 7380 | case PPC::VMINUB: |
| 7381 | case PPC::VMINSH: |
| 7382 | case PPC::VMINUH: |
| 7383 | case PPC::VMINSW: |
| 7384 | case PPC::VMINUW: |
| 7385 | case PPC::VADDFP: |
| 7386 | case PPC::VADDUBM: |
| 7387 | case PPC::VADDUHM: |
| 7388 | case PPC::VADDUWM: |
| 7389 | case PPC::VSUBFP: |
| 7390 | case PPC::VSUBUBM: |
| 7391 | case PPC::VSUBUHM: |
| 7392 | case PPC::VSUBUWM: |
| 7393 | case PPC::VAND: |
| 7394 | case PPC::VANDC: |
| 7395 | case PPC::VOR: |
| 7396 | case PPC::VORC: |
| 7397 | case PPC::VXOR: |
| 7398 | case PPC::VNOR: |
| 7399 | case PPC::VMULUWM: |
| 7400 | return true; |
| 7401 | } |
| 7402 | } |
| 7403 | |
| 7404 | // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is |
| 7405 | // lane-insensitive. |
| 7406 | static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) { |
| 7407 | // Our desired xxswap might be source of COPY_TO_REGCLASS. |
| 7408 | // TODO: Can we put this a common method for DAG? |
| 7409 | auto SkipRCCopy = [](SDValue V) { |
| 7410 | while (V->isMachineOpcode() && |
| 7411 | V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) { |
| 7412 | // All values in the chain should have single use. |
| 7413 | if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode())) |
| 7414 | return SDValue(); |
| 7415 | V = V->getOperand(0); |
| 7416 | } |
| 7417 | return V.hasOneUse() ? V : SDValue(); |
| 7418 | }; |
| 7419 | |
| 7420 | SDValue VecOp = SkipRCCopy(N->getOperand(0)); |
| 7421 | if (!VecOp || !isLaneInsensitive(VecOp)) |
| 7422 | return; |
| 7423 | |
| 7424 | SDValue LHS = SkipRCCopy(VecOp.getOperand(0)), |
| 7425 | RHS = SkipRCCopy(VecOp.getOperand(1)); |
| 7426 | if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS)) |
| 7427 | return; |
| 7428 | |
| 7429 | // These swaps may still have chain-uses here, count on dead code elimination |
| 7430 | // in following passes to remove them. |
| 7431 | DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0)); |
| 7432 | DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0)); |
| 7433 | DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0)); |
| 7434 | } |
| 7435 | |
| 7436 | void PPCDAGToDAGISel::PeepholePPC64() { |
| 7437 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| 7438 | |
| 7439 | while (Position != CurDAG->allnodes_begin()) { |
| 7440 | SDNode *N = &*--Position; |
| 7441 | // Skip dead nodes and any non-machine opcodes. |
| 7442 | if (N->use_empty() || !N->isMachineOpcode()) |
| 7443 | continue; |
| 7444 | |
| 7445 | if (isVSXSwap(SDValue(N, 0))) |
| 7446 | reduceVSXSwap(N, CurDAG); |
| 7447 | |
| 7448 | unsigned FirstOp; |
| 7449 | unsigned StorageOpcode = N->getMachineOpcode(); |
| 7450 | bool RequiresMod4Offset = false; |
| 7451 | |
| 7452 | switch (StorageOpcode) { |
| 7453 | default: continue; |
| 7454 | |
| 7455 | case PPC::LWA: |
| 7456 | case PPC::LD: |
| 7457 | case PPC::DFLOADf64: |
| 7458 | case PPC::DFLOADf32: |
| 7459 | RequiresMod4Offset = true; |
| 7460 | [[fallthrough]]; |
| 7461 | case PPC::LBZ: |
| 7462 | case PPC::LBZ8: |
| 7463 | case PPC::LFD: |
| 7464 | case PPC::LFS: |
| 7465 | case PPC::LHA: |
| 7466 | case PPC::LHA8: |
| 7467 | case PPC::LHZ: |
| 7468 | case PPC::LHZ8: |
| 7469 | case PPC::LWZ: |
| 7470 | case PPC::LWZ8: |
| 7471 | FirstOp = 0; |
| 7472 | break; |
| 7473 | |
| 7474 | case PPC::STD: |
| 7475 | case PPC::DFSTOREf64: |
| 7476 | case PPC::DFSTOREf32: |
| 7477 | RequiresMod4Offset = true; |
| 7478 | [[fallthrough]]; |
| 7479 | case PPC::STB: |
| 7480 | case PPC::STB8: |
| 7481 | case PPC::STFD: |
| 7482 | case PPC::STFS: |
| 7483 | case PPC::STH: |
| 7484 | case PPC::STH8: |
| 7485 | case PPC::STW: |
| 7486 | case PPC::STW8: |
| 7487 | FirstOp = 1; |
| 7488 | break; |
| 7489 | } |
| 7490 | |
| 7491 | // If this is a load or store with a zero offset, or within the alignment, |
| 7492 | // we may be able to fold an add-immediate into the memory operation. |
| 7493 | // The check against alignment is below, as it can't occur until we check |
| 7494 | // the arguments to N |
| 7495 | if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) |
| 7496 | continue; |
| 7497 | |
| 7498 | SDValue Base = N->getOperand(FirstOp + 1); |
| 7499 | if (!Base.isMachineOpcode()) |
| 7500 | continue; |
| 7501 | |
| 7502 | unsigned Flags = 0; |
| 7503 | bool ReplaceFlags = true; |
| 7504 | |
| 7505 | // When the feeding operation is an add-immediate of some sort, |
| 7506 | // determine whether we need to add relocation information to the |
| 7507 | // target flags on the immediate operand when we fold it into the |
| 7508 | // load instruction. |
| 7509 | // |
| 7510 | // For something like ADDItocL, the relocation information is |
| 7511 | // inferred from the opcode; when we process it in the AsmPrinter, |
| 7512 | // we add the necessary relocation there. A load, though, can receive |
| 7513 | // relocation from various flavors of ADDIxxx, so we need to carry |
| 7514 | // the relocation information in the target flags. |
| 7515 | switch (Base.getMachineOpcode()) { |
| 7516 | default: continue; |
| 7517 | |
| 7518 | case PPC::ADDI8: |
| 7519 | case PPC::ADDI: |
| 7520 | // In some cases (such as TLS) the relocation information |
| 7521 | // is already in place on the operand, so copying the operand |
| 7522 | // is sufficient. |
| 7523 | ReplaceFlags = false; |
| 7524 | // For these cases, the immediate may not be divisible by 4, in |
| 7525 | // which case the fold is illegal for DS-form instructions. (The |
| 7526 | // other cases provide aligned addresses and are always safe.) |
| 7527 | if (RequiresMod4Offset && |
| 7528 | (!isa<ConstantSDNode>(Base.getOperand(1)) || |
| 7529 | Base.getConstantOperandVal(1) % 4 != 0)) |
| 7530 | continue; |
| 7531 | break; |
| 7532 | case PPC::ADDIdtprelL: |
| 7533 | Flags = PPCII::MO_DTPREL_LO; |
| 7534 | break; |
| 7535 | case PPC::ADDItlsldL: |
| 7536 | Flags = PPCII::MO_TLSLD_LO; |
| 7537 | break; |
| 7538 | case PPC::ADDItocL: |
| 7539 | Flags = PPCII::MO_TOC_LO; |
| 7540 | break; |
| 7541 | } |
| 7542 | |
| 7543 | SDValue ImmOpnd = Base.getOperand(1); |
| 7544 | |
| 7545 | // On PPC64, the TOC base pointer is guaranteed by the ABI only to have |
| 7546 | // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, |
| 7547 | // we might have needed different @ha relocation values for the offset |
| 7548 | // pointers). |
| 7549 | int MaxDisplacement = 7; |
| 7550 | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { |
| 7551 | const GlobalValue *GV = GA->getGlobal(); |
| 7552 | Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); |
| 7553 | MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement); |
| 7554 | } |
| 7555 | |
| 7556 | bool UpdateHBase = false; |
| 7557 | SDValue HBase = Base.getOperand(0); |
| 7558 | |
| 7559 | int Offset = N->getConstantOperandVal(FirstOp); |
| 7560 | if (ReplaceFlags) { |
| 7561 | if (Offset < 0 || Offset > MaxDisplacement) { |
| 7562 | // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only |
| 7563 | // one use, then we can do this for any offset, we just need to also |
| 7564 | // update the offset (i.e. the symbol addend) on the addis also. |
| 7565 | if (Base.getMachineOpcode() != PPC::ADDItocL) |
| 7566 | continue; |
| 7567 | |
| 7568 | if (!HBase.isMachineOpcode() || |
| 7569 | HBase.getMachineOpcode() != PPC::ADDIStocHA8) |
| 7570 | continue; |
| 7571 | |
| 7572 | if (!Base.hasOneUse() || !HBase.hasOneUse()) |
| 7573 | continue; |
| 7574 | |
| 7575 | SDValue HImmOpnd = HBase.getOperand(1); |
| 7576 | if (HImmOpnd != ImmOpnd) |
| 7577 | continue; |
| 7578 | |
| 7579 | UpdateHBase = true; |
| 7580 | } |
| 7581 | } else { |
| 7582 | // If we're directly folding the addend from an addi instruction, then: |
| 7583 | // 1. In general, the offset on the memory access must be zero. |
| 7584 | // 2. If the addend is a constant, then it can be combined with a |
| 7585 | // non-zero offset, but only if the result meets the encoding |
| 7586 | // requirements. |
| 7587 | if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { |
| 7588 | Offset += C->getSExtValue(); |
| 7589 | |
| 7590 | if (RequiresMod4Offset && (Offset % 4) != 0) |
| 7591 | continue; |
| 7592 | |
| 7593 | if (!isInt<16>(Offset)) |
| 7594 | continue; |
| 7595 | |
| 7596 | ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), |
| 7597 | ImmOpnd.getValueType()); |
| 7598 | } else if (Offset != 0) { |
| 7599 | continue; |
| 7600 | } |
| 7601 | } |
| 7602 | |
| 7603 | // We found an opportunity. Reverse the operands from the add |
| 7604 | // immediate and substitute them into the load or store. If |
| 7605 | // needed, update the target flags for the immediate operand to |
| 7606 | // reflect the necessary relocation information. |
| 7607 | LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Folding add-immediate into mem-op:\nBase: " ; } } while (false); |
| 7608 | LLVM_DEBUG(Base->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { Base->dump(CurDAG); } } while (false); |
| 7609 | LLVM_DEBUG(dbgs() << "\nN: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\nN: "; } } while (false); |
| 7610 | LLVM_DEBUG(N->dump(CurDAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { N->dump(CurDAG); } } while (false); |
| 7611 | LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "\n"; } } while (false); |
| 7612 | |
| 7613 | // If the relocation information isn't already present on the |
| 7614 | // immediate operand, add it now. |
| 7615 | if (ReplaceFlags) { |
| 7616 | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { |
| 7617 | SDLoc dl(GA); |
| 7618 | const GlobalValue *GV = GA->getGlobal(); |
| 7619 | Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); |
| 7620 | // We can't perform this optimization for data whose alignment |
| 7621 | // is insufficient for the instruction encoding. |
| 7622 | if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) { |
| 7623 | LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-isel")) { dbgs() << "Rejected this candidate for alignment.\n\n" ; } } while (false); |
| 7624 | continue; |
| 7625 | } |
| 7626 | ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); |
| 7627 | } else if (ConstantPoolSDNode *CP = |
| 7628 | dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { |
| 7629 | const Constant *C = CP->getConstVal(); |
| 7630 | ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(), |
| 7631 | Offset, Flags); |
| 7632 | } |
| 7633 | } |
| 7634 | |
| 7635 | if (FirstOp == 1) // Store |
| 7636 | (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, |
| 7637 | Base.getOperand(0), N->getOperand(3)); |
| 7638 | else // Load |
| 7639 | (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), |
| 7640 | N->getOperand(2)); |
| 7641 | |
| 7642 | if (UpdateHBase) |
| 7643 | (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), |
| 7644 | ImmOpnd); |
| 7645 | |
| 7646 | // The add-immediate may now be dead, in which case remove it. |
| 7647 | if (Base.getNode()->use_empty()) |
| 7648 | CurDAG->RemoveDeadNode(Base.getNode()); |
| 7649 | } |
| 7650 | } |
| 7651 | |
| 7652 | /// createPPCISelDag - This pass converts a legalized DAG into a |
| 7653 | /// PowerPC-specific DAG, ready for instruction scheduling. |
| 7654 | /// |
| 7655 | FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, |
| 7656 | CodeGenOpt::Level OptLevel) { |
| 7657 | return new PPCDAGToDAGISel(TM, OptLevel); |
| 7658 | } |