| File: | build/source/llvm/lib/Target/PowerPC/PPCISelLowering.cpp |
| Warning: | line 17152, column 9 Assigned value is garbage or undefined |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// | ||||
| 2 | // | ||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
| 6 | // | ||||
| 7 | //===----------------------------------------------------------------------===// | ||||
| 8 | // | ||||
| 9 | // This file implements the PPCISelLowering class. | ||||
| 10 | // | ||||
| 11 | //===----------------------------------------------------------------------===// | ||||
| 12 | |||||
| 13 | #include "PPCISelLowering.h" | ||||
| 14 | #include "MCTargetDesc/PPCPredicates.h" | ||||
| 15 | #include "PPC.h" | ||||
| 16 | #include "PPCCCState.h" | ||||
| 17 | #include "PPCCallingConv.h" | ||||
| 18 | #include "PPCFrameLowering.h" | ||||
| 19 | #include "PPCInstrInfo.h" | ||||
| 20 | #include "PPCMachineFunctionInfo.h" | ||||
| 21 | #include "PPCPerfectShuffle.h" | ||||
| 22 | #include "PPCRegisterInfo.h" | ||||
| 23 | #include "PPCSubtarget.h" | ||||
| 24 | #include "PPCTargetMachine.h" | ||||
| 25 | #include "llvm/ADT/APFloat.h" | ||||
| 26 | #include "llvm/ADT/APInt.h" | ||||
| 27 | #include "llvm/ADT/ArrayRef.h" | ||||
| 28 | #include "llvm/ADT/DenseMap.h" | ||||
| 29 | #include "llvm/ADT/STLExtras.h" | ||||
| 30 | #include "llvm/ADT/SmallPtrSet.h" | ||||
| 31 | #include "llvm/ADT/SmallSet.h" | ||||
| 32 | #include "llvm/ADT/SmallVector.h" | ||||
| 33 | #include "llvm/ADT/Statistic.h" | ||||
| 34 | #include "llvm/ADT/StringRef.h" | ||||
| 35 | #include "llvm/ADT/StringSwitch.h" | ||||
| 36 | #include "llvm/CodeGen/CallingConvLower.h" | ||||
| 37 | #include "llvm/CodeGen/ISDOpcodes.h" | ||||
| 38 | #include "llvm/CodeGen/MachineBasicBlock.h" | ||||
| 39 | #include "llvm/CodeGen/MachineFrameInfo.h" | ||||
| 40 | #include "llvm/CodeGen/MachineFunction.h" | ||||
| 41 | #include "llvm/CodeGen/MachineInstr.h" | ||||
| 42 | #include "llvm/CodeGen/MachineInstrBuilder.h" | ||||
| 43 | #include "llvm/CodeGen/MachineJumpTableInfo.h" | ||||
| 44 | #include "llvm/CodeGen/MachineLoopInfo.h" | ||||
| 45 | #include "llvm/CodeGen/MachineMemOperand.h" | ||||
| 46 | #include "llvm/CodeGen/MachineModuleInfo.h" | ||||
| 47 | #include "llvm/CodeGen/MachineOperand.h" | ||||
| 48 | #include "llvm/CodeGen/MachineRegisterInfo.h" | ||||
| 49 | #include "llvm/CodeGen/MachineValueType.h" | ||||
| 50 | #include "llvm/CodeGen/RuntimeLibcalls.h" | ||||
| 51 | #include "llvm/CodeGen/SelectionDAG.h" | ||||
| 52 | #include "llvm/CodeGen/SelectionDAGNodes.h" | ||||
| 53 | #include "llvm/CodeGen/TargetInstrInfo.h" | ||||
| 54 | #include "llvm/CodeGen/TargetLowering.h" | ||||
| 55 | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" | ||||
| 56 | #include "llvm/CodeGen/TargetRegisterInfo.h" | ||||
| 57 | #include "llvm/CodeGen/ValueTypes.h" | ||||
| 58 | #include "llvm/IR/CallingConv.h" | ||||
| 59 | #include "llvm/IR/Constant.h" | ||||
| 60 | #include "llvm/IR/Constants.h" | ||||
| 61 | #include "llvm/IR/DataLayout.h" | ||||
| 62 | #include "llvm/IR/DebugLoc.h" | ||||
| 63 | #include "llvm/IR/DerivedTypes.h" | ||||
| 64 | #include "llvm/IR/Function.h" | ||||
| 65 | #include "llvm/IR/GlobalValue.h" | ||||
| 66 | #include "llvm/IR/IRBuilder.h" | ||||
| 67 | #include "llvm/IR/Instructions.h" | ||||
| 68 | #include "llvm/IR/Intrinsics.h" | ||||
| 69 | #include "llvm/IR/IntrinsicsPowerPC.h" | ||||
| 70 | #include "llvm/IR/Module.h" | ||||
| 71 | #include "llvm/IR/Type.h" | ||||
| 72 | #include "llvm/IR/Use.h" | ||||
| 73 | #include "llvm/IR/Value.h" | ||||
| 74 | #include "llvm/MC/MCContext.h" | ||||
| 75 | #include "llvm/MC/MCExpr.h" | ||||
| 76 | #include "llvm/MC/MCRegisterInfo.h" | ||||
| 77 | #include "llvm/MC/MCSectionXCOFF.h" | ||||
| 78 | #include "llvm/MC/MCSymbolXCOFF.h" | ||||
| 79 | #include "llvm/Support/AtomicOrdering.h" | ||||
| 80 | #include "llvm/Support/BranchProbability.h" | ||||
| 81 | #include "llvm/Support/Casting.h" | ||||
| 82 | #include "llvm/Support/CodeGen.h" | ||||
| 83 | #include "llvm/Support/CommandLine.h" | ||||
| 84 | #include "llvm/Support/Compiler.h" | ||||
| 85 | #include "llvm/Support/Debug.h" | ||||
| 86 | #include "llvm/Support/ErrorHandling.h" | ||||
| 87 | #include "llvm/Support/Format.h" | ||||
| 88 | #include "llvm/Support/KnownBits.h" | ||||
| 89 | #include "llvm/Support/MathExtras.h" | ||||
| 90 | #include "llvm/Support/raw_ostream.h" | ||||
| 91 | #include "llvm/Target/TargetMachine.h" | ||||
| 92 | #include "llvm/Target/TargetOptions.h" | ||||
| 93 | #include <algorithm> | ||||
| 94 | #include <cassert> | ||||
| 95 | #include <cstdint> | ||||
| 96 | #include <iterator> | ||||
| 97 | #include <list> | ||||
| 98 | #include <optional> | ||||
| 99 | #include <utility> | ||||
| 100 | #include <vector> | ||||
| 101 | |||||
| 102 | using namespace llvm; | ||||
| 103 | |||||
| 104 | #define DEBUG_TYPE"ppc-lowering" "ppc-lowering" | ||||
| 105 | |||||
| 106 | static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", | ||||
| 107 | cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); | ||||
| 108 | |||||
| 109 | static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", | ||||
| 110 | cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); | ||||
| 111 | |||||
| 112 | static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", | ||||
| 113 | cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); | ||||
| 114 | |||||
| 115 | static cl::opt<bool> DisableSCO("disable-ppc-sco", | ||||
| 116 | cl::desc("disable sibling call optimization on ppc"), cl::Hidden); | ||||
| 117 | |||||
| 118 | static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", | ||||
| 119 | cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); | ||||
| 120 | |||||
| 121 | static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", | ||||
| 122 | cl::desc("use absolute jump tables on ppc"), cl::Hidden); | ||||
| 123 | |||||
| 124 | static cl::opt<bool> EnableQuadwordAtomics( | ||||
| 125 | "ppc-quadword-atomics", | ||||
| 126 | cl::desc("enable quadword lock-free atomic operations"), cl::init(false), | ||||
| 127 | cl::Hidden); | ||||
| 128 | |||||
| 129 | static cl::opt<bool> | ||||
| 130 | DisablePerfectShuffle("ppc-disable-perfect-shuffle", | ||||
| 131 | cl::desc("disable vector permute decomposition"), | ||||
| 132 | cl::init(true), cl::Hidden); | ||||
| 133 | |||||
| 134 | cl::opt<bool> DisableAutoPairedVecSt( | ||||
| 135 | "disable-auto-paired-vec-st", | ||||
| 136 | cl::desc("disable automatically generated 32byte paired vector stores"), | ||||
| 137 | cl::init(true), cl::Hidden); | ||||
| 138 | |||||
| 139 | STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = {"ppc-lowering", "NumTailCalls" , "Number of tail calls"}; | ||||
| 140 | STATISTIC(NumSiblingCalls, "Number of sibling calls")static llvm::Statistic NumSiblingCalls = {"ppc-lowering", "NumSiblingCalls" , "Number of sibling calls"}; | ||||
| 141 | STATISTIC(ShufflesHandledWithVPERM,static llvm::Statistic ShufflesHandledWithVPERM = {"ppc-lowering" , "ShufflesHandledWithVPERM", "Number of shuffles lowered to a VPERM or XXPERM" } | ||||
| 142 | "Number of shuffles lowered to a VPERM or XXPERM")static llvm::Statistic ShufflesHandledWithVPERM = {"ppc-lowering" , "ShufflesHandledWithVPERM", "Number of shuffles lowered to a VPERM or XXPERM" }; | ||||
| 143 | STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed")static llvm::Statistic NumDynamicAllocaProbed = {"ppc-lowering" , "NumDynamicAllocaProbed", "Number of dynamic stack allocation probed" }; | ||||
| 144 | |||||
| 145 | static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); | ||||
| 146 | |||||
| 147 | static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); | ||||
| 148 | |||||
| 149 | static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; | ||||
| 150 | |||||
| 151 | // FIXME: Remove this once the bug has been fixed! | ||||
| 152 | extern cl::opt<bool> ANDIGlueBug; | ||||
| 153 | |||||
| 154 | PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, | ||||
| 155 | const PPCSubtarget &STI) | ||||
| 156 | : TargetLowering(TM), Subtarget(STI) { | ||||
| 157 | // Initialize map that relates the PPC addressing modes to the computed flags | ||||
| 158 | // of a load/store instruction. The map is used to determine the optimal | ||||
| 159 | // addressing mode when selecting load and stores. | ||||
| 160 | initializeAddrModeMap(); | ||||
| 161 | // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all | ||||
| 162 | // arguments are at least 4/8 bytes aligned. | ||||
| 163 | bool isPPC64 = Subtarget.isPPC64(); | ||||
| 164 | setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); | ||||
| 165 | |||||
| 166 | // Set up the register classes. | ||||
| 167 | addRegisterClass(MVT::i32, &PPC::GPRCRegClass); | ||||
| 168 | if (!useSoftFloat()) { | ||||
| 169 | if (hasSPE()) { | ||||
| 170 | addRegisterClass(MVT::f32, &PPC::GPRCRegClass); | ||||
| 171 | // EFPU2 APU only supports f32 | ||||
| 172 | if (!Subtarget.hasEFPU2()) | ||||
| 173 | addRegisterClass(MVT::f64, &PPC::SPERCRegClass); | ||||
| 174 | } else { | ||||
| 175 | addRegisterClass(MVT::f32, &PPC::F4RCRegClass); | ||||
| 176 | addRegisterClass(MVT::f64, &PPC::F8RCRegClass); | ||||
| 177 | } | ||||
| 178 | } | ||||
| 179 | |||||
| 180 | // Match BITREVERSE to customized fast code sequence in the td file. | ||||
| 181 | setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); | ||||
| 182 | setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); | ||||
| 183 | |||||
| 184 | // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. | ||||
| 185 | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); | ||||
| 186 | |||||
| 187 | // Custom lower inline assembly to check for special registers. | ||||
| 188 | setOperationAction(ISD::INLINEASM, MVT::Other, Custom); | ||||
| 189 | setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); | ||||
| 190 | |||||
| 191 | // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. | ||||
| 192 | for (MVT VT : MVT::integer_valuetypes()) { | ||||
| 193 | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); | ||||
| 194 | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); | ||||
| 195 | } | ||||
| 196 | |||||
| 197 | if (Subtarget.isISA3_0()) { | ||||
| 198 | setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); | ||||
| 199 | setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); | ||||
| 200 | setTruncStoreAction(MVT::f64, MVT::f16, Legal); | ||||
| 201 | setTruncStoreAction(MVT::f32, MVT::f16, Legal); | ||||
| 202 | } else { | ||||
| 203 | // No extending loads from f16 or HW conversions back and forth. | ||||
| 204 | setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); | ||||
| 205 | setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); | ||||
| 206 | setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); | ||||
| 207 | setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); | ||||
| 208 | setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); | ||||
| 209 | setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); | ||||
| 210 | setTruncStoreAction(MVT::f64, MVT::f16, Expand); | ||||
| 211 | setTruncStoreAction(MVT::f32, MVT::f16, Expand); | ||||
| 212 | } | ||||
| 213 | |||||
| 214 | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | ||||
| 215 | |||||
| 216 | // PowerPC has pre-inc load and store's. | ||||
| 217 | setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); | ||||
| 218 | setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); | ||||
| 219 | setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); | ||||
| 220 | setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); | ||||
| 221 | setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); | ||||
| 222 | setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); | ||||
| 223 | setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); | ||||
| 224 | setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); | ||||
| 225 | setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); | ||||
| 226 | setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); | ||||
| 227 | if (!Subtarget.hasSPE()) { | ||||
| 228 | setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); | ||||
| 229 | setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); | ||||
| 230 | setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); | ||||
| 231 | setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); | ||||
| 232 | } | ||||
| 233 | |||||
| 234 | // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. | ||||
| 235 | const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; | ||||
| 236 | for (MVT VT : ScalarIntVTs) { | ||||
| 237 | setOperationAction(ISD::ADDC, VT, Legal); | ||||
| 238 | setOperationAction(ISD::ADDE, VT, Legal); | ||||
| 239 | setOperationAction(ISD::SUBC, VT, Legal); | ||||
| 240 | setOperationAction(ISD::SUBE, VT, Legal); | ||||
| 241 | } | ||||
| 242 | |||||
| 243 | if (Subtarget.useCRBits()) { | ||||
| 244 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); | ||||
| 245 | |||||
| 246 | if (isPPC64 || Subtarget.hasFPCVT()) { | ||||
| 247 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); | ||||
| 248 | AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, | ||||
| 249 | isPPC64 ? MVT::i64 : MVT::i32); | ||||
| 250 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); | ||||
| 251 | AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, | ||||
| 252 | isPPC64 ? MVT::i64 : MVT::i32); | ||||
| 253 | |||||
| 254 | setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); | ||||
| 255 | AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, | ||||
| 256 | isPPC64 ? MVT::i64 : MVT::i32); | ||||
| 257 | setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); | ||||
| 258 | AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, | ||||
| 259 | isPPC64 ? MVT::i64 : MVT::i32); | ||||
| 260 | |||||
| 261 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); | ||||
| 262 | AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, | ||||
| 263 | isPPC64 ? MVT::i64 : MVT::i32); | ||||
| 264 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); | ||||
| 265 | AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, | ||||
| 266 | isPPC64 ? MVT::i64 : MVT::i32); | ||||
| 267 | |||||
| 268 | setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); | ||||
| 269 | AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, | ||||
| 270 | isPPC64 ? MVT::i64 : MVT::i32); | ||||
| 271 | setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); | ||||
| 272 | AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, | ||||
| 273 | isPPC64 ? MVT::i64 : MVT::i32); | ||||
| 274 | } else { | ||||
| 275 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); | ||||
| 276 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); | ||||
| 277 | setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); | ||||
| 278 | setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); | ||||
| 279 | } | ||||
| 280 | |||||
| 281 | // PowerPC does not support direct load/store of condition registers. | ||||
| 282 | setOperationAction(ISD::LOAD, MVT::i1, Custom); | ||||
| 283 | setOperationAction(ISD::STORE, MVT::i1, Custom); | ||||
| 284 | |||||
| 285 | // FIXME: Remove this once the ANDI glue bug is fixed: | ||||
| 286 | if (ANDIGlueBug) | ||||
| 287 | setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); | ||||
| 288 | |||||
| 289 | for (MVT VT : MVT::integer_valuetypes()) { | ||||
| 290 | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); | ||||
| 291 | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); | ||||
| 292 | setTruncStoreAction(VT, MVT::i1, Expand); | ||||
| 293 | } | ||||
| 294 | |||||
| 295 | addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); | ||||
| 296 | } | ||||
| 297 | |||||
| 298 | // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on | ||||
| 299 | // PPC (the libcall is not available). | ||||
| 300 | setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); | ||||
| 301 | setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); | ||||
| 302 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); | ||||
| 303 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); | ||||
| 304 | |||||
| 305 | // We do not currently implement these libm ops for PowerPC. | ||||
| 306 | setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); | ||||
| 307 | setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); | ||||
| 308 | setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); | ||||
| 309 | setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); | ||||
| 310 | setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); | ||||
| 311 | setOperationAction(ISD::FREM, MVT::ppcf128, Expand); | ||||
| 312 | |||||
| 313 | // PowerPC has no SREM/UREM instructions unless we are on P9 | ||||
| 314 | // On P9 we may use a hardware instruction to compute the remainder. | ||||
| 315 | // When the result of both the remainder and the division is required it is | ||||
| 316 | // more efficient to compute the remainder from the result of the division | ||||
| 317 | // rather than use the remainder instruction. The instructions are legalized | ||||
| 318 | // directly because the DivRemPairsPass performs the transformation at the IR | ||||
| 319 | // level. | ||||
| 320 | if (Subtarget.isISA3_0()) { | ||||
| 321 | setOperationAction(ISD::SREM, MVT::i32, Legal); | ||||
| 322 | setOperationAction(ISD::UREM, MVT::i32, Legal); | ||||
| 323 | setOperationAction(ISD::SREM, MVT::i64, Legal); | ||||
| 324 | setOperationAction(ISD::UREM, MVT::i64, Legal); | ||||
| 325 | } else { | ||||
| 326 | setOperationAction(ISD::SREM, MVT::i32, Expand); | ||||
| 327 | setOperationAction(ISD::UREM, MVT::i32, Expand); | ||||
| 328 | setOperationAction(ISD::SREM, MVT::i64, Expand); | ||||
| 329 | setOperationAction(ISD::UREM, MVT::i64, Expand); | ||||
| 330 | } | ||||
| 331 | |||||
| 332 | // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. | ||||
| 333 | setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); | ||||
| 334 | setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); | ||||
| 335 | setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); | ||||
| 336 | setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); | ||||
| 337 | setOperationAction(ISD::UDIVREM, MVT::i32, Expand); | ||||
| 338 | setOperationAction(ISD::SDIVREM, MVT::i32, Expand); | ||||
| 339 | setOperationAction(ISD::UDIVREM, MVT::i64, Expand); | ||||
| 340 | setOperationAction(ISD::SDIVREM, MVT::i64, Expand); | ||||
| 341 | |||||
| 342 | // Handle constrained floating-point operations of scalar. | ||||
| 343 | // TODO: Handle SPE specific operation. | ||||
| 344 | setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); | ||||
| 345 | setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); | ||||
| 346 | setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); | ||||
| 347 | setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); | ||||
| 348 | setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); | ||||
| 349 | |||||
| 350 | setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); | ||||
| 351 | setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); | ||||
| 352 | setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); | ||||
| 353 | setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); | ||||
| 354 | |||||
| 355 | if (!Subtarget.hasSPE()) { | ||||
| 356 | setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); | ||||
| 357 | setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); | ||||
| 358 | } | ||||
| 359 | |||||
| 360 | if (Subtarget.hasVSX()) { | ||||
| 361 | setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); | ||||
| 362 | setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); | ||||
| 363 | } | ||||
| 364 | |||||
| 365 | if (Subtarget.hasFSQRT()) { | ||||
| 366 | setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); | ||||
| 367 | setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); | ||||
| 368 | } | ||||
| 369 | |||||
| 370 | if (Subtarget.hasFPRND()) { | ||||
| 371 | setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); | ||||
| 372 | setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); | ||||
| 373 | setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); | ||||
| 374 | setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); | ||||
| 375 | |||||
| 376 | setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); | ||||
| 377 | setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); | ||||
| 378 | setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); | ||||
| 379 | setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); | ||||
| 380 | } | ||||
| 381 | |||||
| 382 | // We don't support sin/cos/sqrt/fmod/pow | ||||
| 383 | setOperationAction(ISD::FSIN , MVT::f64, Expand); | ||||
| 384 | setOperationAction(ISD::FCOS , MVT::f64, Expand); | ||||
| 385 | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); | ||||
| 386 | setOperationAction(ISD::FREM , MVT::f64, Expand); | ||||
| 387 | setOperationAction(ISD::FPOW , MVT::f64, Expand); | ||||
| 388 | setOperationAction(ISD::FSIN , MVT::f32, Expand); | ||||
| 389 | setOperationAction(ISD::FCOS , MVT::f32, Expand); | ||||
| 390 | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); | ||||
| 391 | setOperationAction(ISD::FREM , MVT::f32, Expand); | ||||
| 392 | setOperationAction(ISD::FPOW , MVT::f32, Expand); | ||||
| 393 | |||||
| 394 | // MASS transformation for LLVM intrinsics with replicating fast-math flag | ||||
| 395 | // to be consistent to PPCGenScalarMASSEntries pass | ||||
| 396 | if (TM.getOptLevel() == CodeGenOpt::Aggressive) { | ||||
| 397 | setOperationAction(ISD::FSIN , MVT::f64, Custom); | ||||
| 398 | setOperationAction(ISD::FCOS , MVT::f64, Custom); | ||||
| 399 | setOperationAction(ISD::FPOW , MVT::f64, Custom); | ||||
| 400 | setOperationAction(ISD::FLOG, MVT::f64, Custom); | ||||
| 401 | setOperationAction(ISD::FLOG10, MVT::f64, Custom); | ||||
| 402 | setOperationAction(ISD::FEXP, MVT::f64, Custom); | ||||
| 403 | setOperationAction(ISD::FSIN , MVT::f32, Custom); | ||||
| 404 | setOperationAction(ISD::FCOS , MVT::f32, Custom); | ||||
| 405 | setOperationAction(ISD::FPOW , MVT::f32, Custom); | ||||
| 406 | setOperationAction(ISD::FLOG, MVT::f32, Custom); | ||||
| 407 | setOperationAction(ISD::FLOG10, MVT::f32, Custom); | ||||
| 408 | setOperationAction(ISD::FEXP, MVT::f32, Custom); | ||||
| 409 | } | ||||
| 410 | |||||
| 411 | if (Subtarget.hasSPE()) { | ||||
| 412 | setOperationAction(ISD::FMA , MVT::f64, Expand); | ||||
| 413 | setOperationAction(ISD::FMA , MVT::f32, Expand); | ||||
| 414 | } else { | ||||
| 415 | setOperationAction(ISD::FMA , MVT::f64, Legal); | ||||
| 416 | setOperationAction(ISD::FMA , MVT::f32, Legal); | ||||
| 417 | } | ||||
| 418 | |||||
| 419 | if (Subtarget.hasSPE()) | ||||
| 420 | setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); | ||||
| 421 | |||||
| 422 | setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); | ||||
| 423 | |||||
| 424 | // If we're enabling GP optimizations, use hardware square root | ||||
| 425 | if (!Subtarget.hasFSQRT() && | ||||
| 426 | !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && | ||||
| 427 | Subtarget.hasFRE())) | ||||
| 428 | setOperationAction(ISD::FSQRT, MVT::f64, Expand); | ||||
| 429 | |||||
| 430 | if (!Subtarget.hasFSQRT() && | ||||
| 431 | !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && | ||||
| 432 | Subtarget.hasFRES())) | ||||
| 433 | setOperationAction(ISD::FSQRT, MVT::f32, Expand); | ||||
| 434 | |||||
| 435 | if (Subtarget.hasFCPSGN()) { | ||||
| 436 | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); | ||||
| 437 | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); | ||||
| 438 | } else { | ||||
| 439 | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | ||||
| 440 | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | ||||
| 441 | } | ||||
| 442 | |||||
| 443 | if (Subtarget.hasFPRND()) { | ||||
| 444 | setOperationAction(ISD::FFLOOR, MVT::f64, Legal); | ||||
| 445 | setOperationAction(ISD::FCEIL, MVT::f64, Legal); | ||||
| 446 | setOperationAction(ISD::FTRUNC, MVT::f64, Legal); | ||||
| 447 | setOperationAction(ISD::FROUND, MVT::f64, Legal); | ||||
| 448 | |||||
| 449 | setOperationAction(ISD::FFLOOR, MVT::f32, Legal); | ||||
| 450 | setOperationAction(ISD::FCEIL, MVT::f32, Legal); | ||||
| 451 | setOperationAction(ISD::FTRUNC, MVT::f32, Legal); | ||||
| 452 | setOperationAction(ISD::FROUND, MVT::f32, Legal); | ||||
| 453 | } | ||||
| 454 | |||||
| 455 | // Prior to P10, PowerPC does not have BSWAP, but we can use vector BSWAP | ||||
| 456 | // instruction xxbrd to speed up scalar BSWAP64. | ||||
| 457 | if (Subtarget.isISA3_1()) { | ||||
| 458 | setOperationAction(ISD::BSWAP, MVT::i32, Legal); | ||||
| 459 | setOperationAction(ISD::BSWAP, MVT::i64, Legal); | ||||
| 460 | } else { | ||||
| 461 | setOperationAction(ISD::BSWAP, MVT::i32, Expand); | ||||
| 462 | setOperationAction( | ||||
| 463 | ISD::BSWAP, MVT::i64, | ||||
| 464 | (Subtarget.hasP9Vector() && Subtarget.isPPC64()) ? Custom : Expand); | ||||
| 465 | } | ||||
| 466 | |||||
| 467 | // CTPOP or CTTZ were introduced in P8/P9 respectively | ||||
| 468 | if (Subtarget.isISA3_0()) { | ||||
| 469 | setOperationAction(ISD::CTTZ , MVT::i32 , Legal); | ||||
| 470 | setOperationAction(ISD::CTTZ , MVT::i64 , Legal); | ||||
| 471 | } else { | ||||
| 472 | setOperationAction(ISD::CTTZ , MVT::i32 , Expand); | ||||
| 473 | setOperationAction(ISD::CTTZ , MVT::i64 , Expand); | ||||
| 474 | } | ||||
| 475 | |||||
| 476 | if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { | ||||
| 477 | setOperationAction(ISD::CTPOP, MVT::i32 , Legal); | ||||
| 478 | setOperationAction(ISD::CTPOP, MVT::i64 , Legal); | ||||
| 479 | } else { | ||||
| 480 | setOperationAction(ISD::CTPOP, MVT::i32 , Expand); | ||||
| 481 | setOperationAction(ISD::CTPOP, MVT::i64 , Expand); | ||||
| 482 | } | ||||
| 483 | |||||
| 484 | // PowerPC does not have ROTR | ||||
| 485 | setOperationAction(ISD::ROTR, MVT::i32 , Expand); | ||||
| 486 | setOperationAction(ISD::ROTR, MVT::i64 , Expand); | ||||
| 487 | |||||
| 488 | if (!Subtarget.useCRBits()) { | ||||
| 489 | // PowerPC does not have Select | ||||
| 490 | setOperationAction(ISD::SELECT, MVT::i32, Expand); | ||||
| 491 | setOperationAction(ISD::SELECT, MVT::i64, Expand); | ||||
| 492 | setOperationAction(ISD::SELECT, MVT::f32, Expand); | ||||
| 493 | setOperationAction(ISD::SELECT, MVT::f64, Expand); | ||||
| 494 | } | ||||
| 495 | |||||
| 496 | // PowerPC wants to turn select_cc of FP into fsel when possible. | ||||
| 497 | setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); | ||||
| 498 | setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); | ||||
| 499 | |||||
| 500 | // PowerPC wants to optimize integer setcc a bit | ||||
| 501 | if (!Subtarget.useCRBits()) | ||||
| 502 | setOperationAction(ISD::SETCC, MVT::i32, Custom); | ||||
| 503 | |||||
| 504 | if (Subtarget.hasFPU()) { | ||||
| 505 | setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); | ||||
| 506 | setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); | ||||
| 507 | setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); | ||||
| 508 | |||||
| 509 | setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); | ||||
| 510 | setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); | ||||
| 511 | setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); | ||||
| 512 | } | ||||
| 513 | |||||
| 514 | // PowerPC does not have BRCOND which requires SetCC | ||||
| 515 | if (!Subtarget.useCRBits()) | ||||
| 516 | setOperationAction(ISD::BRCOND, MVT::Other, Expand); | ||||
| 517 | |||||
| 518 | setOperationAction(ISD::BR_JT, MVT::Other, Expand); | ||||
| 519 | |||||
| 520 | if (Subtarget.hasSPE()) { | ||||
| 521 | // SPE has built-in conversions | ||||
| 522 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); | ||||
| 523 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); | ||||
| 524 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); | ||||
| 525 | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); | ||||
| 526 | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); | ||||
| 527 | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); | ||||
| 528 | |||||
| 529 | // SPE supports signaling compare of f32/f64. | ||||
| 530 | setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); | ||||
| 531 | setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); | ||||
| 532 | } else { | ||||
| 533 | // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. | ||||
| 534 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); | ||||
| 535 | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | ||||
| 536 | |||||
| 537 | // PowerPC does not have [U|S]INT_TO_FP | ||||
| 538 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); | ||||
| 539 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); | ||||
| 540 | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); | ||||
| 541 | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); | ||||
| 542 | } | ||||
| 543 | |||||
| 544 | if (Subtarget.hasDirectMove() && isPPC64) { | ||||
| 545 | setOperationAction(ISD::BITCAST, MVT::f32, Legal); | ||||
| 546 | setOperationAction(ISD::BITCAST, MVT::i32, Legal); | ||||
| 547 | setOperationAction(ISD::BITCAST, MVT::i64, Legal); | ||||
| 548 | setOperationAction(ISD::BITCAST, MVT::f64, Legal); | ||||
| 549 | if (TM.Options.UnsafeFPMath) { | ||||
| 550 | setOperationAction(ISD::LRINT, MVT::f64, Legal); | ||||
| 551 | setOperationAction(ISD::LRINT, MVT::f32, Legal); | ||||
| 552 | setOperationAction(ISD::LLRINT, MVT::f64, Legal); | ||||
| 553 | setOperationAction(ISD::LLRINT, MVT::f32, Legal); | ||||
| 554 | setOperationAction(ISD::LROUND, MVT::f64, Legal); | ||||
| 555 | setOperationAction(ISD::LROUND, MVT::f32, Legal); | ||||
| 556 | setOperationAction(ISD::LLROUND, MVT::f64, Legal); | ||||
| 557 | setOperationAction(ISD::LLROUND, MVT::f32, Legal); | ||||
| 558 | } | ||||
| 559 | } else { | ||||
| 560 | setOperationAction(ISD::BITCAST, MVT::f32, Expand); | ||||
| 561 | setOperationAction(ISD::BITCAST, MVT::i32, Expand); | ||||
| 562 | setOperationAction(ISD::BITCAST, MVT::i64, Expand); | ||||
| 563 | setOperationAction(ISD::BITCAST, MVT::f64, Expand); | ||||
| 564 | } | ||||
| 565 | |||||
| 566 | // We cannot sextinreg(i1). Expand to shifts. | ||||
| 567 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); | ||||
| 568 | |||||
| 569 | // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support | ||||
| 570 | // SjLj exception handling but a light-weight setjmp/longjmp replacement to | ||||
| 571 | // support continuation, user-level threading, and etc.. As a result, no | ||||
| 572 | // other SjLj exception interfaces are implemented and please don't build | ||||
| 573 | // your own exception handling based on them. | ||||
| 574 | // LLVM/Clang supports zero-cost DWARF exception handling. | ||||
| 575 | setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); | ||||
| 576 | setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); | ||||
| 577 | |||||
| 578 | // We want to legalize GlobalAddress and ConstantPool nodes into the | ||||
| 579 | // appropriate instructions to materialize the address. | ||||
| 580 | setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); | ||||
| 581 | setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); | ||||
| 582 | setOperationAction(ISD::BlockAddress, MVT::i32, Custom); | ||||
| 583 | setOperationAction(ISD::ConstantPool, MVT::i32, Custom); | ||||
| 584 | setOperationAction(ISD::JumpTable, MVT::i32, Custom); | ||||
| 585 | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); | ||||
| 586 | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); | ||||
| 587 | setOperationAction(ISD::BlockAddress, MVT::i64, Custom); | ||||
| 588 | setOperationAction(ISD::ConstantPool, MVT::i64, Custom); | ||||
| 589 | setOperationAction(ISD::JumpTable, MVT::i64, Custom); | ||||
| 590 | |||||
| 591 | // TRAP is legal. | ||||
| 592 | setOperationAction(ISD::TRAP, MVT::Other, Legal); | ||||
| 593 | |||||
| 594 | // TRAMPOLINE is custom lowered. | ||||
| 595 | setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); | ||||
| 596 | setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); | ||||
| 597 | |||||
| 598 | // VASTART needs to be custom lowered to use the VarArgsFrameIndex | ||||
| 599 | setOperationAction(ISD::VASTART , MVT::Other, Custom); | ||||
| 600 | |||||
| 601 | if (Subtarget.is64BitELFABI()) { | ||||
| 602 | // VAARG always uses double-word chunks, so promote anything smaller. | ||||
| 603 | setOperationAction(ISD::VAARG, MVT::i1, Promote); | ||||
| 604 | AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); | ||||
| 605 | setOperationAction(ISD::VAARG, MVT::i8, Promote); | ||||
| 606 | AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); | ||||
| 607 | setOperationAction(ISD::VAARG, MVT::i16, Promote); | ||||
| 608 | AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); | ||||
| 609 | setOperationAction(ISD::VAARG, MVT::i32, Promote); | ||||
| 610 | AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); | ||||
| 611 | setOperationAction(ISD::VAARG, MVT::Other, Expand); | ||||
| 612 | } else if (Subtarget.is32BitELFABI()) { | ||||
| 613 | // VAARG is custom lowered with the 32-bit SVR4 ABI. | ||||
| 614 | setOperationAction(ISD::VAARG, MVT::Other, Custom); | ||||
| 615 | setOperationAction(ISD::VAARG, MVT::i64, Custom); | ||||
| 616 | } else | ||||
| 617 | setOperationAction(ISD::VAARG, MVT::Other, Expand); | ||||
| 618 | |||||
| 619 | // VACOPY is custom lowered with the 32-bit SVR4 ABI. | ||||
| 620 | if (Subtarget.is32BitELFABI()) | ||||
| 621 | setOperationAction(ISD::VACOPY , MVT::Other, Custom); | ||||
| 622 | else | ||||
| 623 | setOperationAction(ISD::VACOPY , MVT::Other, Expand); | ||||
| 624 | |||||
| 625 | // Use the default implementation. | ||||
| 626 | setOperationAction(ISD::VAEND , MVT::Other, Expand); | ||||
| 627 | setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); | ||||
| 628 | setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); | ||||
| 629 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); | ||||
| 630 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); | ||||
| 631 | setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); | ||||
| 632 | setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); | ||||
| 633 | setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); | ||||
| 634 | setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); | ||||
| 635 | |||||
| 636 | // We want to custom lower some of our intrinsics. | ||||
| 637 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | ||||
| 638 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); | ||||
| 639 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); | ||||
| 640 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); | ||||
| 641 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom); | ||||
| 642 | |||||
| 643 | // To handle counter-based loop conditions. | ||||
| 644 | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); | ||||
| 645 | |||||
| 646 | setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); | ||||
| 647 | setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); | ||||
| 648 | setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); | ||||
| 649 | setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); | ||||
| 650 | |||||
| 651 | // Comparisons that require checking two conditions. | ||||
| 652 | if (Subtarget.hasSPE()) { | ||||
| 653 | setCondCodeAction(ISD::SETO, MVT::f32, Expand); | ||||
| 654 | setCondCodeAction(ISD::SETO, MVT::f64, Expand); | ||||
| 655 | setCondCodeAction(ISD::SETUO, MVT::f32, Expand); | ||||
| 656 | setCondCodeAction(ISD::SETUO, MVT::f64, Expand); | ||||
| 657 | } | ||||
| 658 | setCondCodeAction(ISD::SETULT, MVT::f32, Expand); | ||||
| 659 | setCondCodeAction(ISD::SETULT, MVT::f64, Expand); | ||||
| 660 | setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); | ||||
| 661 | setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); | ||||
| 662 | setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); | ||||
| 663 | setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); | ||||
| 664 | setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); | ||||
| 665 | setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); | ||||
| 666 | setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); | ||||
| 667 | setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); | ||||
| 668 | setCondCodeAction(ISD::SETONE, MVT::f32, Expand); | ||||
| 669 | setCondCodeAction(ISD::SETONE, MVT::f64, Expand); | ||||
| 670 | |||||
| 671 | setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); | ||||
| 672 | setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); | ||||
| 673 | |||||
| 674 | if (Subtarget.has64BitSupport()) { | ||||
| 675 | // They also have instructions for converting between i64 and fp. | ||||
| 676 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); | ||||
| 677 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); | ||||
| 678 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); | ||||
| 679 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); | ||||
| 680 | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); | ||||
| 681 | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); | ||||
| 682 | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); | ||||
| 683 | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); | ||||
| 684 | // This is just the low 32 bits of a (signed) fp->i64 conversion. | ||||
| 685 | // We cannot do this with Promote because i64 is not a legal type. | ||||
| 686 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); | ||||
| 687 | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); | ||||
| 688 | |||||
| 689 | if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { | ||||
| 690 | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | ||||
| 691 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); | ||||
| 692 | } | ||||
| 693 | } else { | ||||
| 694 | // PowerPC does not have FP_TO_UINT on 32-bit implementations. | ||||
| 695 | if (Subtarget.hasSPE()) { | ||||
| 696 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); | ||||
| 697 | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); | ||||
| 698 | } else { | ||||
| 699 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); | ||||
| 700 | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); | ||||
| 701 | } | ||||
| 702 | } | ||||
| 703 | |||||
| 704 | // With the instructions enabled under FPCVT, we can do everything. | ||||
| 705 | if (Subtarget.hasFPCVT()) { | ||||
| 706 | if (Subtarget.has64BitSupport()) { | ||||
| 707 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); | ||||
| 708 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); | ||||
| 709 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); | ||||
| 710 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); | ||||
| 711 | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); | ||||
| 712 | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); | ||||
| 713 | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); | ||||
| 714 | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); | ||||
| 715 | } | ||||
| 716 | |||||
| 717 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); | ||||
| 718 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); | ||||
| 719 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); | ||||
| 720 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); | ||||
| 721 | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | ||||
| 722 | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); | ||||
| 723 | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | ||||
| 724 | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); | ||||
| 725 | } | ||||
| 726 | |||||
| 727 | if (Subtarget.use64BitRegs()) { | ||||
| 728 | // 64-bit PowerPC implementations can support i64 types directly | ||||
| 729 | addRegisterClass(MVT::i64, &PPC::G8RCRegClass); | ||||
| 730 | // BUILD_PAIR can't be handled natively, and should be expanded to shl/or | ||||
| 731 | setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); | ||||
| 732 | // 64-bit PowerPC wants to expand i128 shifts itself. | ||||
| 733 | setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); | ||||
| 734 | setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); | ||||
| 735 | setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); | ||||
| 736 | } else { | ||||
| 737 | // 32-bit PowerPC wants to expand i64 shifts itself. | ||||
| 738 | setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); | ||||
| 739 | setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); | ||||
| 740 | setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); | ||||
| 741 | } | ||||
| 742 | |||||
| 743 | // PowerPC has better expansions for funnel shifts than the generic | ||||
| 744 | // TargetLowering::expandFunnelShift. | ||||
| 745 | if (Subtarget.has64BitSupport()) { | ||||
| 746 | setOperationAction(ISD::FSHL, MVT::i64, Custom); | ||||
| 747 | setOperationAction(ISD::FSHR, MVT::i64, Custom); | ||||
| 748 | } | ||||
| 749 | setOperationAction(ISD::FSHL, MVT::i32, Custom); | ||||
| 750 | setOperationAction(ISD::FSHR, MVT::i32, Custom); | ||||
| 751 | |||||
| 752 | if (Subtarget.hasVSX()) { | ||||
| 753 | setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); | ||||
| 754 | setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); | ||||
| 755 | setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); | ||||
| 756 | setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); | ||||
| 757 | } | ||||
| 758 | |||||
| 759 | if (Subtarget.hasAltivec()) { | ||||
| 760 | for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { | ||||
| 761 | setOperationAction(ISD::SADDSAT, VT, Legal); | ||||
| 762 | setOperationAction(ISD::SSUBSAT, VT, Legal); | ||||
| 763 | setOperationAction(ISD::UADDSAT, VT, Legal); | ||||
| 764 | setOperationAction(ISD::USUBSAT, VT, Legal); | ||||
| 765 | } | ||||
| 766 | // First set operation action for all vector types to expand. Then we | ||||
| 767 | // will selectively turn on ones that can be effectively codegen'd. | ||||
| 768 | for (MVT VT : MVT::fixedlen_vector_valuetypes()) { | ||||
| 769 | // add/sub are legal for all supported vector VT's. | ||||
| 770 | setOperationAction(ISD::ADD, VT, Legal); | ||||
| 771 | setOperationAction(ISD::SUB, VT, Legal); | ||||
| 772 | |||||
| 773 | // For v2i64, these are only valid with P8Vector. This is corrected after | ||||
| 774 | // the loop. | ||||
| 775 | if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { | ||||
| 776 | setOperationAction(ISD::SMAX, VT, Legal); | ||||
| 777 | setOperationAction(ISD::SMIN, VT, Legal); | ||||
| 778 | setOperationAction(ISD::UMAX, VT, Legal); | ||||
| 779 | setOperationAction(ISD::UMIN, VT, Legal); | ||||
| 780 | } | ||||
| 781 | else { | ||||
| 782 | setOperationAction(ISD::SMAX, VT, Expand); | ||||
| 783 | setOperationAction(ISD::SMIN, VT, Expand); | ||||
| 784 | setOperationAction(ISD::UMAX, VT, Expand); | ||||
| 785 | setOperationAction(ISD::UMIN, VT, Expand); | ||||
| 786 | } | ||||
| 787 | |||||
| 788 | if (Subtarget.hasVSX()) { | ||||
| 789 | setOperationAction(ISD::FMAXNUM, VT, Legal); | ||||
| 790 | setOperationAction(ISD::FMINNUM, VT, Legal); | ||||
| 791 | } | ||||
| 792 | |||||
| 793 | // Vector instructions introduced in P8 | ||||
| 794 | if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { | ||||
| 795 | setOperationAction(ISD::CTPOP, VT, Legal); | ||||
| 796 | setOperationAction(ISD::CTLZ, VT, Legal); | ||||
| 797 | } | ||||
| 798 | else { | ||||
| 799 | setOperationAction(ISD::CTPOP, VT, Expand); | ||||
| 800 | setOperationAction(ISD::CTLZ, VT, Expand); | ||||
| 801 | } | ||||
| 802 | |||||
| 803 | // Vector instructions introduced in P9 | ||||
| 804 | if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) | ||||
| 805 | setOperationAction(ISD::CTTZ, VT, Legal); | ||||
| 806 | else | ||||
| 807 | setOperationAction(ISD::CTTZ, VT, Expand); | ||||
| 808 | |||||
| 809 | // We promote all shuffles to v16i8. | ||||
| 810 | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); | ||||
| 811 | AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); | ||||
| 812 | |||||
| 813 | // We promote all non-typed operations to v4i32. | ||||
| 814 | setOperationAction(ISD::AND , VT, Promote); | ||||
| 815 | AddPromotedToType (ISD::AND , VT, MVT::v4i32); | ||||
| 816 | setOperationAction(ISD::OR , VT, Promote); | ||||
| 817 | AddPromotedToType (ISD::OR , VT, MVT::v4i32); | ||||
| 818 | setOperationAction(ISD::XOR , VT, Promote); | ||||
| 819 | AddPromotedToType (ISD::XOR , VT, MVT::v4i32); | ||||
| 820 | setOperationAction(ISD::LOAD , VT, Promote); | ||||
| 821 | AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); | ||||
| 822 | setOperationAction(ISD::SELECT, VT, Promote); | ||||
| 823 | AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); | ||||
| 824 | setOperationAction(ISD::VSELECT, VT, Legal); | ||||
| 825 | setOperationAction(ISD::SELECT_CC, VT, Promote); | ||||
| 826 | AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); | ||||
| 827 | setOperationAction(ISD::STORE, VT, Promote); | ||||
| 828 | AddPromotedToType (ISD::STORE, VT, MVT::v4i32); | ||||
| 829 | |||||
| 830 | // No other operations are legal. | ||||
| 831 | setOperationAction(ISD::MUL , VT, Expand); | ||||
| 832 | setOperationAction(ISD::SDIV, VT, Expand); | ||||
| 833 | setOperationAction(ISD::SREM, VT, Expand); | ||||
| 834 | setOperationAction(ISD::UDIV, VT, Expand); | ||||
| 835 | setOperationAction(ISD::UREM, VT, Expand); | ||||
| 836 | setOperationAction(ISD::FDIV, VT, Expand); | ||||
| 837 | setOperationAction(ISD::FREM, VT, Expand); | ||||
| 838 | setOperationAction(ISD::FNEG, VT, Expand); | ||||
| 839 | setOperationAction(ISD::FSQRT, VT, Expand); | ||||
| 840 | setOperationAction(ISD::FLOG, VT, Expand); | ||||
| 841 | setOperationAction(ISD::FLOG10, VT, Expand); | ||||
| 842 | setOperationAction(ISD::FLOG2, VT, Expand); | ||||
| 843 | setOperationAction(ISD::FEXP, VT, Expand); | ||||
| 844 | setOperationAction(ISD::FEXP2, VT, Expand); | ||||
| 845 | setOperationAction(ISD::FSIN, VT, Expand); | ||||
| 846 | setOperationAction(ISD::FCOS, VT, Expand); | ||||
| 847 | setOperationAction(ISD::FABS, VT, Expand); | ||||
| 848 | setOperationAction(ISD::FFLOOR, VT, Expand); | ||||
| 849 | setOperationAction(ISD::FCEIL, VT, Expand); | ||||
| 850 | setOperationAction(ISD::FTRUNC, VT, Expand); | ||||
| 851 | setOperationAction(ISD::FRINT, VT, Expand); | ||||
| 852 | setOperationAction(ISD::FNEARBYINT, VT, Expand); | ||||
| 853 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); | ||||
| 854 | setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); | ||||
| 855 | setOperationAction(ISD::BUILD_VECTOR, VT, Expand); | ||||
| 856 | setOperationAction(ISD::MULHU, VT, Expand); | ||||
| 857 | setOperationAction(ISD::MULHS, VT, Expand); | ||||
| 858 | setOperationAction(ISD::UMUL_LOHI, VT, Expand); | ||||
| 859 | setOperationAction(ISD::SMUL_LOHI, VT, Expand); | ||||
| 860 | setOperationAction(ISD::UDIVREM, VT, Expand); | ||||
| 861 | setOperationAction(ISD::SDIVREM, VT, Expand); | ||||
| 862 | setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); | ||||
| 863 | setOperationAction(ISD::FPOW, VT, Expand); | ||||
| 864 | setOperationAction(ISD::BSWAP, VT, Expand); | ||||
| 865 | setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); | ||||
| 866 | setOperationAction(ISD::ROTL, VT, Expand); | ||||
| 867 | setOperationAction(ISD::ROTR, VT, Expand); | ||||
| 868 | |||||
| 869 | for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { | ||||
| 870 | setTruncStoreAction(VT, InnerVT, Expand); | ||||
| 871 | setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); | ||||
| 872 | setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); | ||||
| 873 | setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); | ||||
| 874 | } | ||||
| 875 | } | ||||
| 876 | setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); | ||||
| 877 | if (!Subtarget.hasP8Vector()) { | ||||
| 878 | setOperationAction(ISD::SMAX, MVT::v2i64, Expand); | ||||
| 879 | setOperationAction(ISD::SMIN, MVT::v2i64, Expand); | ||||
| 880 | setOperationAction(ISD::UMAX, MVT::v2i64, Expand); | ||||
| 881 | setOperationAction(ISD::UMIN, MVT::v2i64, Expand); | ||||
| 882 | } | ||||
| 883 | |||||
| 884 | // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle | ||||
| 885 | // with merges, splats, etc. | ||||
| 886 | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); | ||||
| 887 | |||||
| 888 | // Vector truncates to sub-word integer that fit in an Altivec/VSX register | ||||
| 889 | // are cheap, so handle them before they get expanded to scalar. | ||||
| 890 | setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); | ||||
| 891 | setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); | ||||
| 892 | setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); | ||||
| 893 | setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); | ||||
| 894 | setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); | ||||
| 895 | |||||
| 896 | setOperationAction(ISD::AND , MVT::v4i32, Legal); | ||||
| 897 | setOperationAction(ISD::OR , MVT::v4i32, Legal); | ||||
| 898 | setOperationAction(ISD::XOR , MVT::v4i32, Legal); | ||||
| 899 | setOperationAction(ISD::LOAD , MVT::v4i32, Legal); | ||||
| 900 | setOperationAction(ISD::SELECT, MVT::v4i32, | ||||
| 901 | Subtarget.useCRBits() ? Legal : Expand); | ||||
| 902 | setOperationAction(ISD::STORE , MVT::v4i32, Legal); | ||||
| 903 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); | ||||
| 904 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); | ||||
| 905 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); | ||||
| 906 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); | ||||
| 907 | setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); | ||||
| 908 | setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); | ||||
| 909 | setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); | ||||
| 910 | setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); | ||||
| 911 | setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); | ||||
| 912 | setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); | ||||
| 913 | setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); | ||||
| 914 | setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); | ||||
| 915 | |||||
| 916 | // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. | ||||
| 917 | setOperationAction(ISD::ROTL, MVT::v1i128, Custom); | ||||
| 918 | // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). | ||||
| 919 | if (Subtarget.hasAltivec()) | ||||
| 920 | for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) | ||||
| 921 | setOperationAction(ISD::ROTL, VT, Legal); | ||||
| 922 | // With hasP8Altivec set, we can lower ISD::ROTL to vrld. | ||||
| 923 | if (Subtarget.hasP8Altivec()) | ||||
| 924 | setOperationAction(ISD::ROTL, MVT::v2i64, Legal); | ||||
| 925 | |||||
| 926 | addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); | ||||
| 927 | addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); | ||||
| 928 | addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); | ||||
| 929 | addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); | ||||
| 930 | |||||
| 931 | setOperationAction(ISD::MUL, MVT::v4f32, Legal); | ||||
| 932 | setOperationAction(ISD::FMA, MVT::v4f32, Legal); | ||||
| 933 | |||||
| 934 | if (Subtarget.hasVSX()) { | ||||
| 935 | setOperationAction(ISD::FDIV, MVT::v4f32, Legal); | ||||
| 936 | setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); | ||||
| 937 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); | ||||
| 938 | } | ||||
| 939 | |||||
| 940 | if (Subtarget.hasP8Altivec()) | ||||
| 941 | setOperationAction(ISD::MUL, MVT::v4i32, Legal); | ||||
| 942 | else | ||||
| 943 | setOperationAction(ISD::MUL, MVT::v4i32, Custom); | ||||
| 944 | |||||
| 945 | if (Subtarget.isISA3_1()) { | ||||
| 946 | setOperationAction(ISD::MUL, MVT::v2i64, Legal); | ||||
| 947 | setOperationAction(ISD::MULHS, MVT::v2i64, Legal); | ||||
| 948 | setOperationAction(ISD::MULHU, MVT::v2i64, Legal); | ||||
| 949 | setOperationAction(ISD::MULHS, MVT::v4i32, Legal); | ||||
| 950 | setOperationAction(ISD::MULHU, MVT::v4i32, Legal); | ||||
| 951 | setOperationAction(ISD::UDIV, MVT::v2i64, Legal); | ||||
| 952 | setOperationAction(ISD::SDIV, MVT::v2i64, Legal); | ||||
| 953 | setOperationAction(ISD::UDIV, MVT::v4i32, Legal); | ||||
| 954 | setOperationAction(ISD::SDIV, MVT::v4i32, Legal); | ||||
| 955 | setOperationAction(ISD::UREM, MVT::v2i64, Legal); | ||||
| 956 | setOperationAction(ISD::SREM, MVT::v2i64, Legal); | ||||
| 957 | setOperationAction(ISD::UREM, MVT::v4i32, Legal); | ||||
| 958 | setOperationAction(ISD::SREM, MVT::v4i32, Legal); | ||||
| 959 | setOperationAction(ISD::UREM, MVT::v1i128, Legal); | ||||
| 960 | setOperationAction(ISD::SREM, MVT::v1i128, Legal); | ||||
| 961 | setOperationAction(ISD::UDIV, MVT::v1i128, Legal); | ||||
| 962 | setOperationAction(ISD::SDIV, MVT::v1i128, Legal); | ||||
| 963 | setOperationAction(ISD::ROTL, MVT::v1i128, Legal); | ||||
| 964 | } | ||||
| 965 | |||||
| 966 | setOperationAction(ISD::MUL, MVT::v8i16, Legal); | ||||
| 967 | setOperationAction(ISD::MUL, MVT::v16i8, Custom); | ||||
| 968 | |||||
| 969 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); | ||||
| 970 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); | ||||
| 971 | |||||
| 972 | setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); | ||||
| 973 | setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); | ||||
| 974 | setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); | ||||
| 975 | setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); | ||||
| 976 | |||||
| 977 | // Altivec does not contain unordered floating-point compare instructions | ||||
| 978 | setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); | ||||
| 979 | setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); | ||||
| 980 | setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); | ||||
| 981 | setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); | ||||
| 982 | |||||
| 983 | if (Subtarget.hasVSX()) { | ||||
| 984 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); | ||||
| 985 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); | ||||
| 986 | if (Subtarget.hasP8Vector()) { | ||||
| 987 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); | ||||
| 988 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); | ||||
| 989 | } | ||||
| 990 | if (Subtarget.hasDirectMove() && isPPC64) { | ||||
| 991 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); | ||||
| 992 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); | ||||
| 993 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); | ||||
| 994 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); | ||||
| 995 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); | ||||
| 996 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); | ||||
| 997 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); | ||||
| 998 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); | ||||
| 999 | } | ||||
| 1000 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); | ||||
| 1001 | |||||
| 1002 | // The nearbyint variants are not allowed to raise the inexact exception | ||||
| 1003 | // so we can only code-gen them with unsafe math. | ||||
| 1004 | if (TM.Options.UnsafeFPMath) { | ||||
| 1005 | setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); | ||||
| 1006 | setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); | ||||
| 1007 | } | ||||
| 1008 | |||||
| 1009 | setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); | ||||
| 1010 | setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); | ||||
| 1011 | setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); | ||||
| 1012 | setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); | ||||
| 1013 | setOperationAction(ISD::FRINT, MVT::v2f64, Legal); | ||||
| 1014 | setOperationAction(ISD::FROUND, MVT::v2f64, Legal); | ||||
| 1015 | setOperationAction(ISD::FROUND, MVT::f64, Legal); | ||||
| 1016 | setOperationAction(ISD::FRINT, MVT::f64, Legal); | ||||
| 1017 | |||||
| 1018 | setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); | ||||
| 1019 | setOperationAction(ISD::FRINT, MVT::v4f32, Legal); | ||||
| 1020 | setOperationAction(ISD::FROUND, MVT::v4f32, Legal); | ||||
| 1021 | setOperationAction(ISD::FROUND, MVT::f32, Legal); | ||||
| 1022 | setOperationAction(ISD::FRINT, MVT::f32, Legal); | ||||
| 1023 | |||||
| 1024 | setOperationAction(ISD::MUL, MVT::v2f64, Legal); | ||||
| 1025 | setOperationAction(ISD::FMA, MVT::v2f64, Legal); | ||||
| 1026 | |||||
| 1027 | setOperationAction(ISD::FDIV, MVT::v2f64, Legal); | ||||
| 1028 | setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); | ||||
| 1029 | |||||
| 1030 | // Share the Altivec comparison restrictions. | ||||
| 1031 | setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); | ||||
| 1032 | setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); | ||||
| 1033 | setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); | ||||
| 1034 | setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); | ||||
| 1035 | |||||
| 1036 | setOperationAction(ISD::LOAD, MVT::v2f64, Legal); | ||||
| 1037 | setOperationAction(ISD::STORE, MVT::v2f64, Legal); | ||||
| 1038 | |||||
| 1039 | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); | ||||
| 1040 | |||||
| 1041 | if (Subtarget.hasP8Vector()) | ||||
| 1042 | addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); | ||||
| 1043 | |||||
| 1044 | addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); | ||||
| 1045 | |||||
| 1046 | addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); | ||||
| 1047 | addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); | ||||
| 1048 | addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); | ||||
| 1049 | |||||
| 1050 | if (Subtarget.hasP8Altivec()) { | ||||
| 1051 | setOperationAction(ISD::SHL, MVT::v2i64, Legal); | ||||
| 1052 | setOperationAction(ISD::SRA, MVT::v2i64, Legal); | ||||
| 1053 | setOperationAction(ISD::SRL, MVT::v2i64, Legal); | ||||
| 1054 | |||||
| 1055 | // 128 bit shifts can be accomplished via 3 instructions for SHL and | ||||
| 1056 | // SRL, but not for SRA because of the instructions available: | ||||
| 1057 | // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth | ||||
| 1058 | // doing | ||||
| 1059 | setOperationAction(ISD::SHL, MVT::v1i128, Expand); | ||||
| 1060 | setOperationAction(ISD::SRL, MVT::v1i128, Expand); | ||||
| 1061 | setOperationAction(ISD::SRA, MVT::v1i128, Expand); | ||||
| 1062 | |||||
| 1063 | setOperationAction(ISD::SETCC, MVT::v2i64, Legal); | ||||
| 1064 | } | ||||
| 1065 | else { | ||||
| 1066 | setOperationAction(ISD::SHL, MVT::v2i64, Expand); | ||||
| 1067 | setOperationAction(ISD::SRA, MVT::v2i64, Expand); | ||||
| 1068 | setOperationAction(ISD::SRL, MVT::v2i64, Expand); | ||||
| 1069 | |||||
| 1070 | setOperationAction(ISD::SETCC, MVT::v2i64, Custom); | ||||
| 1071 | |||||
| 1072 | // VSX v2i64 only supports non-arithmetic operations. | ||||
| 1073 | setOperationAction(ISD::ADD, MVT::v2i64, Expand); | ||||
| 1074 | setOperationAction(ISD::SUB, MVT::v2i64, Expand); | ||||
| 1075 | } | ||||
| 1076 | |||||
| 1077 | if (Subtarget.isISA3_1()) | ||||
| 1078 | setOperationAction(ISD::SETCC, MVT::v1i128, Legal); | ||||
| 1079 | else | ||||
| 1080 | setOperationAction(ISD::SETCC, MVT::v1i128, Expand); | ||||
| 1081 | |||||
| 1082 | setOperationAction(ISD::LOAD, MVT::v2i64, Promote); | ||||
| 1083 | AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); | ||||
| 1084 | setOperationAction(ISD::STORE, MVT::v2i64, Promote); | ||||
| 1085 | AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); | ||||
| 1086 | |||||
| 1087 | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); | ||||
| 1088 | |||||
| 1089 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); | ||||
| 1090 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); | ||||
| 1091 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); | ||||
| 1092 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); | ||||
| 1093 | setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); | ||||
| 1094 | setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); | ||||
| 1095 | setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); | ||||
| 1096 | setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); | ||||
| 1097 | |||||
| 1098 | // Custom handling for partial vectors of integers converted to | ||||
| 1099 | // floating point. We already have optimal handling for v2i32 through | ||||
| 1100 | // the DAG combine, so those aren't necessary. | ||||
| 1101 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); | ||||
| 1102 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); | ||||
| 1103 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); | ||||
| 1104 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); | ||||
| 1105 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); | ||||
| 1106 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); | ||||
| 1107 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); | ||||
| 1108 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); | ||||
| 1109 | setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); | ||||
| 1110 | setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); | ||||
| 1111 | setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); | ||||
| 1112 | setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); | ||||
| 1113 | setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); | ||||
| 1114 | setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); | ||||
| 1115 | setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); | ||||
| 1116 | setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); | ||||
| 1117 | |||||
| 1118 | setOperationAction(ISD::FNEG, MVT::v4f32, Legal); | ||||
| 1119 | setOperationAction(ISD::FNEG, MVT::v2f64, Legal); | ||||
| 1120 | setOperationAction(ISD::FABS, MVT::v4f32, Legal); | ||||
| 1121 | setOperationAction(ISD::FABS, MVT::v2f64, Legal); | ||||
| 1122 | setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); | ||||
| 1123 | setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); | ||||
| 1124 | |||||
| 1125 | setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); | ||||
| 1126 | setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); | ||||
| 1127 | |||||
| 1128 | // Handle constrained floating-point operations of vector. | ||||
| 1129 | // The predictor is `hasVSX` because altivec instruction has | ||||
| 1130 | // no exception but VSX vector instruction has. | ||||
| 1131 | setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); | ||||
| 1132 | setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); | ||||
| 1133 | setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); | ||||
| 1134 | setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); | ||||
| 1135 | setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); | ||||
| 1136 | setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); | ||||
| 1137 | setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); | ||||
| 1138 | setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); | ||||
| 1139 | setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); | ||||
| 1140 | setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); | ||||
| 1141 | setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); | ||||
| 1142 | setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); | ||||
| 1143 | setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); | ||||
| 1144 | |||||
| 1145 | setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); | ||||
| 1146 | setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); | ||||
| 1147 | setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); | ||||
| 1148 | setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); | ||||
| 1149 | setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); | ||||
| 1150 | setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); | ||||
| 1151 | setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); | ||||
| 1152 | setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); | ||||
| 1153 | setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); | ||||
| 1154 | setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); | ||||
| 1155 | setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); | ||||
| 1156 | setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); | ||||
| 1157 | setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); | ||||
| 1158 | |||||
| 1159 | addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); | ||||
| 1160 | addRegisterClass(MVT::f128, &PPC::VRRCRegClass); | ||||
| 1161 | |||||
| 1162 | for (MVT FPT : MVT::fp_valuetypes()) | ||||
| 1163 | setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); | ||||
| 1164 | |||||
| 1165 | // Expand the SELECT to SELECT_CC | ||||
| 1166 | setOperationAction(ISD::SELECT, MVT::f128, Expand); | ||||
| 1167 | |||||
| 1168 | setTruncStoreAction(MVT::f128, MVT::f64, Expand); | ||||
| 1169 | setTruncStoreAction(MVT::f128, MVT::f32, Expand); | ||||
| 1170 | |||||
| 1171 | // No implementation for these ops for PowerPC. | ||||
| 1172 | setOperationAction(ISD::FSIN, MVT::f128, Expand); | ||||
| 1173 | setOperationAction(ISD::FCOS, MVT::f128, Expand); | ||||
| 1174 | setOperationAction(ISD::FPOW, MVT::f128, Expand); | ||||
| 1175 | setOperationAction(ISD::FPOWI, MVT::f128, Expand); | ||||
| 1176 | setOperationAction(ISD::FREM, MVT::f128, Expand); | ||||
| 1177 | } | ||||
| 1178 | |||||
| 1179 | if (Subtarget.hasP8Altivec()) { | ||||
| 1180 | addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); | ||||
| 1181 | addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); | ||||
| 1182 | } | ||||
| 1183 | |||||
| 1184 | if (Subtarget.hasP9Vector()) { | ||||
| 1185 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); | ||||
| 1186 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); | ||||
| 1187 | |||||
| 1188 | // Test data class instructions store results in CR bits. | ||||
| 1189 | if (Subtarget.useCRBits()) { | ||||
| 1190 | setOperationAction(ISD::IS_FPCLASS, MVT::f32, Custom); | ||||
| 1191 | setOperationAction(ISD::IS_FPCLASS, MVT::f64, Custom); | ||||
| 1192 | setOperationAction(ISD::IS_FPCLASS, MVT::f128, Custom); | ||||
| 1193 | } | ||||
| 1194 | |||||
| 1195 | // 128 bit shifts can be accomplished via 3 instructions for SHL and | ||||
| 1196 | // SRL, but not for SRA because of the instructions available: | ||||
| 1197 | // VS{RL} and VS{RL}O. | ||||
| 1198 | setOperationAction(ISD::SHL, MVT::v1i128, Legal); | ||||
| 1199 | setOperationAction(ISD::SRL, MVT::v1i128, Legal); | ||||
| 1200 | setOperationAction(ISD::SRA, MVT::v1i128, Expand); | ||||
| 1201 | |||||
| 1202 | setOperationAction(ISD::FADD, MVT::f128, Legal); | ||||
| 1203 | setOperationAction(ISD::FSUB, MVT::f128, Legal); | ||||
| 1204 | setOperationAction(ISD::FDIV, MVT::f128, Legal); | ||||
| 1205 | setOperationAction(ISD::FMUL, MVT::f128, Legal); | ||||
| 1206 | setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); | ||||
| 1207 | |||||
| 1208 | setOperationAction(ISD::FMA, MVT::f128, Legal); | ||||
| 1209 | setCondCodeAction(ISD::SETULT, MVT::f128, Expand); | ||||
| 1210 | setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); | ||||
| 1211 | setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); | ||||
| 1212 | setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); | ||||
| 1213 | setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); | ||||
| 1214 | setCondCodeAction(ISD::SETONE, MVT::f128, Expand); | ||||
| 1215 | |||||
| 1216 | setOperationAction(ISD::FTRUNC, MVT::f128, Legal); | ||||
| 1217 | setOperationAction(ISD::FRINT, MVT::f128, Legal); | ||||
| 1218 | setOperationAction(ISD::FFLOOR, MVT::f128, Legal); | ||||
| 1219 | setOperationAction(ISD::FCEIL, MVT::f128, Legal); | ||||
| 1220 | setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); | ||||
| 1221 | setOperationAction(ISD::FROUND, MVT::f128, Legal); | ||||
| 1222 | |||||
| 1223 | setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); | ||||
| 1224 | setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); | ||||
| 1225 | setOperationAction(ISD::BITCAST, MVT::i128, Custom); | ||||
| 1226 | |||||
| 1227 | // Handle constrained floating-point operations of fp128 | ||||
| 1228 | setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); | ||||
| 1229 | setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); | ||||
| 1230 | setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); | ||||
| 1231 | setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); | ||||
| 1232 | setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); | ||||
| 1233 | setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); | ||||
| 1234 | setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); | ||||
| 1235 | setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); | ||||
| 1236 | setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); | ||||
| 1237 | setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); | ||||
| 1238 | setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); | ||||
| 1239 | setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); | ||||
| 1240 | setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); | ||||
| 1241 | setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); | ||||
| 1242 | setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); | ||||
| 1243 | setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); | ||||
| 1244 | setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); | ||||
| 1245 | setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); | ||||
| 1246 | setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); | ||||
| 1247 | setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); | ||||
| 1248 | } else if (Subtarget.hasVSX()) { | ||||
| 1249 | setOperationAction(ISD::LOAD, MVT::f128, Promote); | ||||
| 1250 | setOperationAction(ISD::STORE, MVT::f128, Promote); | ||||
| 1251 | |||||
| 1252 | AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); | ||||
| 1253 | AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); | ||||
| 1254 | |||||
| 1255 | // Set FADD/FSUB as libcall to avoid the legalizer to expand the | ||||
| 1256 | // fp_to_uint and int_to_fp. | ||||
| 1257 | setOperationAction(ISD::FADD, MVT::f128, LibCall); | ||||
| 1258 | setOperationAction(ISD::FSUB, MVT::f128, LibCall); | ||||
| 1259 | |||||
| 1260 | setOperationAction(ISD::FMUL, MVT::f128, Expand); | ||||
| 1261 | setOperationAction(ISD::FDIV, MVT::f128, Expand); | ||||
| 1262 | setOperationAction(ISD::FNEG, MVT::f128, Expand); | ||||
| 1263 | setOperationAction(ISD::FABS, MVT::f128, Expand); | ||||
| 1264 | setOperationAction(ISD::FSQRT, MVT::f128, Expand); | ||||
| 1265 | setOperationAction(ISD::FMA, MVT::f128, Expand); | ||||
| 1266 | setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); | ||||
| 1267 | |||||
| 1268 | // Expand the fp_extend if the target type is fp128. | ||||
| 1269 | setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); | ||||
| 1270 | setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); | ||||
| 1271 | |||||
| 1272 | // Expand the fp_round if the source type is fp128. | ||||
| 1273 | for (MVT VT : {MVT::f32, MVT::f64}) { | ||||
| 1274 | setOperationAction(ISD::FP_ROUND, VT, Custom); | ||||
| 1275 | setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); | ||||
| 1276 | } | ||||
| 1277 | |||||
| 1278 | setOperationAction(ISD::SETCC, MVT::f128, Custom); | ||||
| 1279 | setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); | ||||
| 1280 | setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); | ||||
| 1281 | setOperationAction(ISD::BR_CC, MVT::f128, Expand); | ||||
| 1282 | |||||
| 1283 | // Lower following f128 select_cc pattern: | ||||
| 1284 | // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE | ||||
| 1285 | setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); | ||||
| 1286 | |||||
| 1287 | // We need to handle f128 SELECT_CC with integer result type. | ||||
| 1288 | setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); | ||||
| 1289 | setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); | ||||
| 1290 | } | ||||
| 1291 | |||||
| 1292 | if (Subtarget.hasP9Altivec()) { | ||||
| 1293 | if (Subtarget.isISA3_1()) { | ||||
| 1294 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); | ||||
| 1295 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); | ||||
| 1296 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); | ||||
| 1297 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); | ||||
| 1298 | } else { | ||||
| 1299 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); | ||||
| 1300 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); | ||||
| 1301 | } | ||||
| 1302 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); | ||||
| 1303 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); | ||||
| 1304 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); | ||||
| 1305 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); | ||||
| 1306 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); | ||||
| 1307 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); | ||||
| 1308 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); | ||||
| 1309 | |||||
| 1310 | setOperationAction(ISD::ABDU, MVT::v16i8, Legal); | ||||
| 1311 | setOperationAction(ISD::ABDU, MVT::v8i16, Legal); | ||||
| 1312 | setOperationAction(ISD::ABDU, MVT::v4i32, Legal); | ||||
| 1313 | setOperationAction(ISD::ABDS, MVT::v4i32, Legal); | ||||
| 1314 | } | ||||
| 1315 | |||||
| 1316 | if (Subtarget.hasP10Vector()) { | ||||
| 1317 | setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); | ||||
| 1318 | } | ||||
| 1319 | } | ||||
| 1320 | |||||
| 1321 | if (Subtarget.pairedVectorMemops()) { | ||||
| 1322 | addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); | ||||
| 1323 | setOperationAction(ISD::LOAD, MVT::v256i1, Custom); | ||||
| 1324 | setOperationAction(ISD::STORE, MVT::v256i1, Custom); | ||||
| 1325 | } | ||||
| 1326 | if (Subtarget.hasMMA()) { | ||||
| 1327 | if (Subtarget.isISAFuture()) | ||||
| 1328 | addRegisterClass(MVT::v512i1, &PPC::WACCRCRegClass); | ||||
| 1329 | else | ||||
| 1330 | addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); | ||||
| 1331 | setOperationAction(ISD::LOAD, MVT::v512i1, Custom); | ||||
| 1332 | setOperationAction(ISD::STORE, MVT::v512i1, Custom); | ||||
| 1333 | setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); | ||||
| 1334 | } | ||||
| 1335 | |||||
| 1336 | if (Subtarget.has64BitSupport()) | ||||
| 1337 | setOperationAction(ISD::PREFETCH, MVT::Other, Legal); | ||||
| 1338 | |||||
| 1339 | if (Subtarget.isISA3_1()) | ||||
| 1340 | setOperationAction(ISD::SRA, MVT::v1i128, Legal); | ||||
| 1341 | |||||
| 1342 | setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); | ||||
| 1343 | |||||
| 1344 | if (!isPPC64) { | ||||
| 1345 | setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); | ||||
| 1346 | setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); | ||||
| 1347 | } | ||||
| 1348 | |||||
| 1349 | if (shouldInlineQuadwordAtomics()) { | ||||
| 1350 | setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); | ||||
| 1351 | setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); | ||||
| 1352 | setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); | ||||
| 1353 | } | ||||
| 1354 | |||||
| 1355 | setBooleanContents(ZeroOrOneBooleanContent); | ||||
| 1356 | |||||
| 1357 | if (Subtarget.hasAltivec()) { | ||||
| 1358 | // Altivec instructions set fields to all zeros or all ones. | ||||
| 1359 | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); | ||||
| 1360 | } | ||||
| 1361 | |||||
| 1362 | setLibcallName(RTLIB::MULO_I128, nullptr); | ||||
| 1363 | if (!isPPC64) { | ||||
| 1364 | // These libcalls are not available in 32-bit. | ||||
| 1365 | setLibcallName(RTLIB::SHL_I128, nullptr); | ||||
| 1366 | setLibcallName(RTLIB::SRL_I128, nullptr); | ||||
| 1367 | setLibcallName(RTLIB::SRA_I128, nullptr); | ||||
| 1368 | setLibcallName(RTLIB::MUL_I128, nullptr); | ||||
| 1369 | setLibcallName(RTLIB::MULO_I64, nullptr); | ||||
| 1370 | } | ||||
| 1371 | |||||
| 1372 | if (!isPPC64) | ||||
| 1373 | setMaxAtomicSizeInBitsSupported(32); | ||||
| 1374 | else if (shouldInlineQuadwordAtomics()) | ||||
| 1375 | setMaxAtomicSizeInBitsSupported(128); | ||||
| 1376 | else | ||||
| 1377 | setMaxAtomicSizeInBitsSupported(64); | ||||
| 1378 | |||||
| 1379 | setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); | ||||
| 1380 | |||||
| 1381 | // We have target-specific dag combine patterns for the following nodes: | ||||
| 1382 | setTargetDAGCombine({ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, ISD::MUL, | ||||
| 1383 | ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR}); | ||||
| 1384 | if (Subtarget.hasFPCVT()) | ||||
| 1385 | setTargetDAGCombine(ISD::UINT_TO_FP); | ||||
| 1386 | setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC}); | ||||
| 1387 | if (Subtarget.useCRBits()) | ||||
| 1388 | setTargetDAGCombine(ISD::BRCOND); | ||||
| 1389 | setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN, | ||||
| 1390 | ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}); | ||||
| 1391 | |||||
| 1392 | setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND}); | ||||
| 1393 | |||||
| 1394 | setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE}); | ||||
| 1395 | |||||
| 1396 | if (Subtarget.useCRBits()) { | ||||
| 1397 | setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC}); | ||||
| 1398 | } | ||||
| 1399 | |||||
| 1400 | setLibcallName(RTLIB::LOG_F128, "logf128"); | ||||
| 1401 | setLibcallName(RTLIB::LOG2_F128, "log2f128"); | ||||
| 1402 | setLibcallName(RTLIB::LOG10_F128, "log10f128"); | ||||
| 1403 | setLibcallName(RTLIB::EXP_F128, "expf128"); | ||||
| 1404 | setLibcallName(RTLIB::EXP2_F128, "exp2f128"); | ||||
| 1405 | setLibcallName(RTLIB::SIN_F128, "sinf128"); | ||||
| 1406 | setLibcallName(RTLIB::COS_F128, "cosf128"); | ||||
| 1407 | setLibcallName(RTLIB::POW_F128, "powf128"); | ||||
| 1408 | setLibcallName(RTLIB::FMIN_F128, "fminf128"); | ||||
| 1409 | setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); | ||||
| 1410 | setLibcallName(RTLIB::REM_F128, "fmodf128"); | ||||
| 1411 | setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); | ||||
| 1412 | setLibcallName(RTLIB::CEIL_F128, "ceilf128"); | ||||
| 1413 | setLibcallName(RTLIB::FLOOR_F128, "floorf128"); | ||||
| 1414 | setLibcallName(RTLIB::TRUNC_F128, "truncf128"); | ||||
| 1415 | setLibcallName(RTLIB::ROUND_F128, "roundf128"); | ||||
| 1416 | setLibcallName(RTLIB::LROUND_F128, "lroundf128"); | ||||
| 1417 | setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); | ||||
| 1418 | setLibcallName(RTLIB::RINT_F128, "rintf128"); | ||||
| 1419 | setLibcallName(RTLIB::LRINT_F128, "lrintf128"); | ||||
| 1420 | setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); | ||||
| 1421 | setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); | ||||
| 1422 | setLibcallName(RTLIB::FMA_F128, "fmaf128"); | ||||
| 1423 | |||||
| 1424 | if (Subtarget.isAIXABI()) { | ||||
| 1425 | setLibcallName(RTLIB::MEMCPY, isPPC64 ? "___memmove64" : "___memmove"); | ||||
| 1426 | setLibcallName(RTLIB::MEMMOVE, isPPC64 ? "___memmove64" : "___memmove"); | ||||
| 1427 | setLibcallName(RTLIB::MEMSET, isPPC64 ? "___memset64" : "___memset"); | ||||
| 1428 | setLibcallName(RTLIB::BZERO, isPPC64 ? "___bzero64" : "___bzero"); | ||||
| 1429 | } | ||||
| 1430 | |||||
| 1431 | // With 32 condition bits, we don't need to sink (and duplicate) compares | ||||
| 1432 | // aggressively in CodeGenPrep. | ||||
| 1433 | if (Subtarget.useCRBits()) { | ||||
| 1434 | setHasMultipleConditionRegisters(); | ||||
| 1435 | setJumpIsExpensive(); | ||||
| 1436 | } | ||||
| 1437 | |||||
| 1438 | setMinFunctionAlignment(Align(4)); | ||||
| 1439 | |||||
| 1440 | switch (Subtarget.getCPUDirective()) { | ||||
| 1441 | default: break; | ||||
| 1442 | case PPC::DIR_970: | ||||
| 1443 | case PPC::DIR_A2: | ||||
| 1444 | case PPC::DIR_E500: | ||||
| 1445 | case PPC::DIR_E500mc: | ||||
| 1446 | case PPC::DIR_E5500: | ||||
| 1447 | case PPC::DIR_PWR4: | ||||
| 1448 | case PPC::DIR_PWR5: | ||||
| 1449 | case PPC::DIR_PWR5X: | ||||
| 1450 | case PPC::DIR_PWR6: | ||||
| 1451 | case PPC::DIR_PWR6X: | ||||
| 1452 | case PPC::DIR_PWR7: | ||||
| 1453 | case PPC::DIR_PWR8: | ||||
| 1454 | case PPC::DIR_PWR9: | ||||
| 1455 | case PPC::DIR_PWR10: | ||||
| 1456 | case PPC::DIR_PWR_FUTURE: | ||||
| 1457 | setPrefLoopAlignment(Align(16)); | ||||
| 1458 | setPrefFunctionAlignment(Align(16)); | ||||
| 1459 | break; | ||||
| 1460 | } | ||||
| 1461 | |||||
| 1462 | if (Subtarget.enableMachineScheduler()) | ||||
| 1463 | setSchedulingPreference(Sched::Source); | ||||
| 1464 | else | ||||
| 1465 | setSchedulingPreference(Sched::Hybrid); | ||||
| 1466 | |||||
| 1467 | computeRegisterProperties(STI.getRegisterInfo()); | ||||
| 1468 | |||||
| 1469 | // The Freescale cores do better with aggressive inlining of memcpy and | ||||
| 1470 | // friends. GCC uses same threshold of 128 bytes (= 32 word stores). | ||||
| 1471 | if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || | ||||
| 1472 | Subtarget.getCPUDirective() == PPC::DIR_E5500) { | ||||
| 1473 | MaxStoresPerMemset = 32; | ||||
| 1474 | MaxStoresPerMemsetOptSize = 16; | ||||
| 1475 | MaxStoresPerMemcpy = 32; | ||||
| 1476 | MaxStoresPerMemcpyOptSize = 8; | ||||
| 1477 | MaxStoresPerMemmove = 32; | ||||
| 1478 | MaxStoresPerMemmoveOptSize = 8; | ||||
| 1479 | } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { | ||||
| 1480 | // The A2 also benefits from (very) aggressive inlining of memcpy and | ||||
| 1481 | // friends. The overhead of a the function call, even when warm, can be | ||||
| 1482 | // over one hundred cycles. | ||||
| 1483 | MaxStoresPerMemset = 128; | ||||
| 1484 | MaxStoresPerMemcpy = 128; | ||||
| 1485 | MaxStoresPerMemmove = 128; | ||||
| 1486 | MaxLoadsPerMemcmp = 128; | ||||
| 1487 | } else { | ||||
| 1488 | MaxLoadsPerMemcmp = 8; | ||||
| 1489 | MaxLoadsPerMemcmpOptSize = 4; | ||||
| 1490 | } | ||||
| 1491 | |||||
| 1492 | IsStrictFPEnabled = true; | ||||
| 1493 | |||||
| 1494 | // Let the subtarget (CPU) decide if a predictable select is more expensive | ||||
| 1495 | // than the corresponding branch. This information is used in CGP to decide | ||||
| 1496 | // when to convert selects into branches. | ||||
| 1497 | PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); | ||||
| 1498 | } | ||||
| 1499 | |||||
| 1500 | // *********************************** NOTE ************************************ | ||||
| 1501 | // For selecting load and store instructions, the addressing modes are defined | ||||
| 1502 | // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD | ||||
| 1503 | // patterns to match the load the store instructions. | ||||
| 1504 | // | ||||
| 1505 | // The TD definitions for the addressing modes correspond to their respective | ||||
| 1506 | // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely | ||||
| 1507 | // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the | ||||
| 1508 | // address mode flags of a particular node. Afterwards, the computed address | ||||
| 1509 | // flags are passed into getAddrModeForFlags() in order to retrieve the optimal | ||||
| 1510 | // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement | ||||
| 1511 | // accordingly, based on the preferred addressing mode. | ||||
| 1512 | // | ||||
| 1513 | // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. | ||||
| 1514 | // MemOpFlags contains all the possible flags that can be used to compute the | ||||
| 1515 | // optimal addressing mode for load and store instructions. | ||||
| 1516 | // AddrMode contains all the possible load and store addressing modes available | ||||
| 1517 | // on Power (such as DForm, DSForm, DQForm, XForm, etc.) | ||||
| 1518 | // | ||||
| 1519 | // When adding new load and store instructions, it is possible that new address | ||||
| 1520 | // flags may need to be added into MemOpFlags, and a new addressing mode will | ||||
| 1521 | // need to be added to AddrMode. An entry of the new addressing mode (consisting | ||||
| 1522 | // of the minimal and main distinguishing address flags for the new load/store | ||||
| 1523 | // instructions) will need to be added into initializeAddrModeMap() below. | ||||
| 1524 | // Finally, when adding new addressing modes, the getAddrModeForFlags() will | ||||
| 1525 | // need to be updated to account for selecting the optimal addressing mode. | ||||
| 1526 | // ***************************************************************************** | ||||
| 1527 | /// Initialize the map that relates the different addressing modes of the load | ||||
| 1528 | /// and store instructions to a set of flags. This ensures the load/store | ||||
| 1529 | /// instruction is correctly matched during instruction selection. | ||||
| 1530 | void PPCTargetLowering::initializeAddrModeMap() { | ||||
| 1531 | AddrModesMap[PPC::AM_DForm] = { | ||||
| 1532 | // LWZ, STW | ||||
| 1533 | PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, | ||||
| 1534 | PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, | ||||
| 1535 | PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, | ||||
| 1536 | PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, | ||||
| 1537 | // LBZ, LHZ, STB, STH | ||||
| 1538 | PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, | ||||
| 1539 | PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, | ||||
| 1540 | PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, | ||||
| 1541 | PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, | ||||
| 1542 | // LHA | ||||
| 1543 | PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, | ||||
| 1544 | PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, | ||||
| 1545 | PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, | ||||
| 1546 | PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, | ||||
| 1547 | // LFS, LFD, STFS, STFD | ||||
| 1548 | PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, | ||||
| 1549 | PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, | ||||
| 1550 | PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, | ||||
| 1551 | PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, | ||||
| 1552 | }; | ||||
| 1553 | AddrModesMap[PPC::AM_DSForm] = { | ||||
| 1554 | // LWA | ||||
| 1555 | PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, | ||||
| 1556 | PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, | ||||
| 1557 | PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, | ||||
| 1558 | // LD, STD | ||||
| 1559 | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, | ||||
| 1560 | PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, | ||||
| 1561 | PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, | ||||
| 1562 | // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 | ||||
| 1563 | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, | ||||
| 1564 | PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, | ||||
| 1565 | PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, | ||||
| 1566 | }; | ||||
| 1567 | AddrModesMap[PPC::AM_DQForm] = { | ||||
| 1568 | // LXV, STXV | ||||
| 1569 | PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, | ||||
| 1570 | PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, | ||||
| 1571 | PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, | ||||
| 1572 | }; | ||||
| 1573 | AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | | ||||
| 1574 | PPC::MOF_SubtargetP10}; | ||||
| 1575 | // TODO: Add mapping for quadword load/store. | ||||
| 1576 | } | ||||
| 1577 | |||||
| 1578 | /// getMaxByValAlign - Helper for getByValTypeAlignment to determine | ||||
| 1579 | /// the desired ByVal argument alignment. | ||||
| 1580 | static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { | ||||
| 1581 | if (MaxAlign == MaxMaxAlign) | ||||
| 1582 | return; | ||||
| 1583 | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { | ||||
| 1584 | if (MaxMaxAlign >= 32 && | ||||
| 1585 | VTy->getPrimitiveSizeInBits().getFixedValue() >= 256) | ||||
| 1586 | MaxAlign = Align(32); | ||||
| 1587 | else if (VTy->getPrimitiveSizeInBits().getFixedValue() >= 128 && | ||||
| 1588 | MaxAlign < 16) | ||||
| 1589 | MaxAlign = Align(16); | ||||
| 1590 | } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | ||||
| 1591 | Align EltAlign; | ||||
| 1592 | getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); | ||||
| 1593 | if (EltAlign > MaxAlign) | ||||
| 1594 | MaxAlign = EltAlign; | ||||
| 1595 | } else if (StructType *STy = dyn_cast<StructType>(Ty)) { | ||||
| 1596 | for (auto *EltTy : STy->elements()) { | ||||
| 1597 | Align EltAlign; | ||||
| 1598 | getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); | ||||
| 1599 | if (EltAlign > MaxAlign) | ||||
| 1600 | MaxAlign = EltAlign; | ||||
| 1601 | if (MaxAlign == MaxMaxAlign) | ||||
| 1602 | break; | ||||
| 1603 | } | ||||
| 1604 | } | ||||
| 1605 | } | ||||
| 1606 | |||||
| 1607 | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | ||||
| 1608 | /// function arguments in the caller parameter area. | ||||
| 1609 | uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, | ||||
| 1610 | const DataLayout &DL) const { | ||||
| 1611 | // 16byte and wider vectors are passed on 16byte boundary. | ||||
| 1612 | // The rest is 8 on PPC64 and 4 on PPC32 boundary. | ||||
| 1613 | Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); | ||||
| 1614 | if (Subtarget.hasAltivec()) | ||||
| 1615 | getMaxByValAlign(Ty, Alignment, Align(16)); | ||||
| 1616 | return Alignment.value(); | ||||
| 1617 | } | ||||
| 1618 | |||||
| 1619 | bool PPCTargetLowering::useSoftFloat() const { | ||||
| 1620 | return Subtarget.useSoftFloat(); | ||||
| 1621 | } | ||||
| 1622 | |||||
| 1623 | bool PPCTargetLowering::hasSPE() const { | ||||
| 1624 | return Subtarget.hasSPE(); | ||||
| 1625 | } | ||||
| 1626 | |||||
| 1627 | bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { | ||||
| 1628 | return VT.isScalarInteger(); | ||||
| 1629 | } | ||||
| 1630 | |||||
| 1631 | const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { | ||||
| 1632 | switch ((PPCISD::NodeType)Opcode) { | ||||
| 1633 | case PPCISD::FIRST_NUMBER: break; | ||||
| 1634 | case PPCISD::FSEL: return "PPCISD::FSEL"; | ||||
| 1635 | case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; | ||||
| 1636 | case PPCISD::XSMINC: return "PPCISD::XSMINC"; | ||||
| 1637 | case PPCISD::FCFID: return "PPCISD::FCFID"; | ||||
| 1638 | case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; | ||||
| 1639 | case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; | ||||
| 1640 | case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; | ||||
| 1641 | case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; | ||||
| 1642 | case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; | ||||
| 1643 | case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; | ||||
| 1644 | case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; | ||||
| 1645 | case PPCISD::FP_TO_UINT_IN_VSR: | ||||
| 1646 | return "PPCISD::FP_TO_UINT_IN_VSR,"; | ||||
| 1647 | case PPCISD::FP_TO_SINT_IN_VSR: | ||||
| 1648 | return "PPCISD::FP_TO_SINT_IN_VSR"; | ||||
| 1649 | case PPCISD::FRE: return "PPCISD::FRE"; | ||||
| 1650 | case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; | ||||
| 1651 | case PPCISD::FTSQRT: | ||||
| 1652 | return "PPCISD::FTSQRT"; | ||||
| 1653 | case PPCISD::FSQRT: | ||||
| 1654 | return "PPCISD::FSQRT"; | ||||
| 1655 | case PPCISD::STFIWX: return "PPCISD::STFIWX"; | ||||
| 1656 | case PPCISD::VPERM: return "PPCISD::VPERM"; | ||||
| 1657 | case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; | ||||
| 1658 | case PPCISD::XXSPLTI_SP_TO_DP: | ||||
| 1659 | return "PPCISD::XXSPLTI_SP_TO_DP"; | ||||
| 1660 | case PPCISD::XXSPLTI32DX: | ||||
| 1661 | return "PPCISD::XXSPLTI32DX"; | ||||
| 1662 | case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; | ||||
| 1663 | case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; | ||||
| 1664 | case PPCISD::XXPERM: | ||||
| 1665 | return "PPCISD::XXPERM"; | ||||
| 1666 | case PPCISD::VECSHL: return "PPCISD::VECSHL"; | ||||
| 1667 | case PPCISD::CMPB: return "PPCISD::CMPB"; | ||||
| 1668 | case PPCISD::Hi: return "PPCISD::Hi"; | ||||
| 1669 | case PPCISD::Lo: return "PPCISD::Lo"; | ||||
| 1670 | case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; | ||||
| 1671 | case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; | ||||
| 1672 | case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; | ||||
| 1673 | case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; | ||||
| 1674 | case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; | ||||
| 1675 | case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; | ||||
| 1676 | case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; | ||||
| 1677 | case PPCISD::SRL: return "PPCISD::SRL"; | ||||
| 1678 | case PPCISD::SRA: return "PPCISD::SRA"; | ||||
| 1679 | case PPCISD::SHL: return "PPCISD::SHL"; | ||||
| 1680 | case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; | ||||
| 1681 | case PPCISD::CALL: return "PPCISD::CALL"; | ||||
| 1682 | case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; | ||||
| 1683 | case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; | ||||
| 1684 | case PPCISD::CALL_RM: | ||||
| 1685 | return "PPCISD::CALL_RM"; | ||||
| 1686 | case PPCISD::CALL_NOP_RM: | ||||
| 1687 | return "PPCISD::CALL_NOP_RM"; | ||||
| 1688 | case PPCISD::CALL_NOTOC_RM: | ||||
| 1689 | return "PPCISD::CALL_NOTOC_RM"; | ||||
| 1690 | case PPCISD::MTCTR: return "PPCISD::MTCTR"; | ||||
| 1691 | case PPCISD::BCTRL: return "PPCISD::BCTRL"; | ||||
| 1692 | case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; | ||||
| 1693 | case PPCISD::BCTRL_RM: | ||||
| 1694 | return "PPCISD::BCTRL_RM"; | ||||
| 1695 | case PPCISD::BCTRL_LOAD_TOC_RM: | ||||
| 1696 | return "PPCISD::BCTRL_LOAD_TOC_RM"; | ||||
| 1697 | case PPCISD::RET_GLUE: return "PPCISD::RET_GLUE"; | ||||
| 1698 | case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; | ||||
| 1699 | case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; | ||||
| 1700 | case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; | ||||
| 1701 | case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; | ||||
| 1702 | case PPCISD::MFVSR: return "PPCISD::MFVSR"; | ||||
| 1703 | case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; | ||||
| 1704 | case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; | ||||
| 1705 | case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; | ||||
| 1706 | case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; | ||||
| 1707 | case PPCISD::SCALAR_TO_VECTOR_PERMUTED: | ||||
| 1708 | return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; | ||||
| 1709 | case PPCISD::ANDI_rec_1_EQ_BIT: | ||||
| 1710 | return "PPCISD::ANDI_rec_1_EQ_BIT"; | ||||
| 1711 | case PPCISD::ANDI_rec_1_GT_BIT: | ||||
| 1712 | return "PPCISD::ANDI_rec_1_GT_BIT"; | ||||
| 1713 | case PPCISD::VCMP: return "PPCISD::VCMP"; | ||||
| 1714 | case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; | ||||
| 1715 | case PPCISD::LBRX: return "PPCISD::LBRX"; | ||||
| 1716 | case PPCISD::STBRX: return "PPCISD::STBRX"; | ||||
| 1717 | case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; | ||||
| 1718 | case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; | ||||
| 1719 | case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; | ||||
| 1720 | case PPCISD::STXSIX: return "PPCISD::STXSIX"; | ||||
| 1721 | case PPCISD::VEXTS: return "PPCISD::VEXTS"; | ||||
| 1722 | case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; | ||||
| 1723 | case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; | ||||
| 1724 | case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; | ||||
| 1725 | case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; | ||||
| 1726 | case PPCISD::ST_VSR_SCAL_INT: | ||||
| 1727 | return "PPCISD::ST_VSR_SCAL_INT"; | ||||
| 1728 | case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; | ||||
| 1729 | case PPCISD::BDNZ: return "PPCISD::BDNZ"; | ||||
| 1730 | case PPCISD::BDZ: return "PPCISD::BDZ"; | ||||
| 1731 | case PPCISD::MFFS: return "PPCISD::MFFS"; | ||||
| 1732 | case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; | ||||
| 1733 | case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; | ||||
| 1734 | case PPCISD::CR6SET: return "PPCISD::CR6SET"; | ||||
| 1735 | case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; | ||||
| 1736 | case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; | ||||
| 1737 | case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; | ||||
| 1738 | case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; | ||||
| 1739 | case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; | ||||
| 1740 | case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; | ||||
| 1741 | case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; | ||||
| 1742 | case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; | ||||
| 1743 | case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; | ||||
| 1744 | case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; | ||||
| 1745 | case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; | ||||
| 1746 | case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; | ||||
| 1747 | case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; | ||||
| 1748 | case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; | ||||
| 1749 | case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; | ||||
| 1750 | case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; | ||||
| 1751 | case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; | ||||
| 1752 | case PPCISD::PADDI_DTPREL: | ||||
| 1753 | return "PPCISD::PADDI_DTPREL"; | ||||
| 1754 | case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; | ||||
| 1755 | case PPCISD::SC: return "PPCISD::SC"; | ||||
| 1756 | case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; | ||||
| 1757 | case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; | ||||
| 1758 | case PPCISD::RFEBB: return "PPCISD::RFEBB"; | ||||
| 1759 | case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; | ||||
| 1760 | case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; | ||||
| 1761 | case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; | ||||
| 1762 | case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; | ||||
| 1763 | case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; | ||||
| 1764 | case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; | ||||
| 1765 | case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; | ||||
| 1766 | case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; | ||||
| 1767 | case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; | ||||
| 1768 | case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: | ||||
| 1769 | return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; | ||||
| 1770 | case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: | ||||
| 1771 | return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; | ||||
| 1772 | case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; | ||||
| 1773 | case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; | ||||
| 1774 | case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; | ||||
| 1775 | case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; | ||||
| 1776 | case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; | ||||
| 1777 | case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; | ||||
| 1778 | case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; | ||||
| 1779 | case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; | ||||
| 1780 | case PPCISD::STRICT_FADDRTZ: | ||||
| 1781 | return "PPCISD::STRICT_FADDRTZ"; | ||||
| 1782 | case PPCISD::STRICT_FCTIDZ: | ||||
| 1783 | return "PPCISD::STRICT_FCTIDZ"; | ||||
| 1784 | case PPCISD::STRICT_FCTIWZ: | ||||
| 1785 | return "PPCISD::STRICT_FCTIWZ"; | ||||
| 1786 | case PPCISD::STRICT_FCTIDUZ: | ||||
| 1787 | return "PPCISD::STRICT_FCTIDUZ"; | ||||
| 1788 | case PPCISD::STRICT_FCTIWUZ: | ||||
| 1789 | return "PPCISD::STRICT_FCTIWUZ"; | ||||
| 1790 | case PPCISD::STRICT_FCFID: | ||||
| 1791 | return "PPCISD::STRICT_FCFID"; | ||||
| 1792 | case PPCISD::STRICT_FCFIDU: | ||||
| 1793 | return "PPCISD::STRICT_FCFIDU"; | ||||
| 1794 | case PPCISD::STRICT_FCFIDS: | ||||
| 1795 | return "PPCISD::STRICT_FCFIDS"; | ||||
| 1796 | case PPCISD::STRICT_FCFIDUS: | ||||
| 1797 | return "PPCISD::STRICT_FCFIDUS"; | ||||
| 1798 | case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; | ||||
| 1799 | case PPCISD::STORE_COND: | ||||
| 1800 | return "PPCISD::STORE_COND"; | ||||
| 1801 | } | ||||
| 1802 | return nullptr; | ||||
| 1803 | } | ||||
| 1804 | |||||
| 1805 | EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, | ||||
| 1806 | EVT VT) const { | ||||
| 1807 | if (!VT.isVector()) | ||||
| 1808 | return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; | ||||
| 1809 | |||||
| 1810 | return VT.changeVectorElementTypeToInteger(); | ||||
| 1811 | } | ||||
| 1812 | |||||
| 1813 | bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { | ||||
| 1814 | assert(VT.isFloatingPoint() && "Non-floating-point FMA?")(static_cast <bool> (VT.isFloatingPoint() && "Non-floating-point FMA?" ) ? void (0) : __assert_fail ("VT.isFloatingPoint() && \"Non-floating-point FMA?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 1814, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1815 | return true; | ||||
| 1816 | } | ||||
| 1817 | |||||
| 1818 | //===----------------------------------------------------------------------===// | ||||
| 1819 | // Node matching predicates, for use by the tblgen matching code. | ||||
| 1820 | //===----------------------------------------------------------------------===// | ||||
| 1821 | |||||
| 1822 | /// isFloatingPointZero - Return true if this is 0.0 or -0.0. | ||||
| 1823 | static bool isFloatingPointZero(SDValue Op) { | ||||
| 1824 | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) | ||||
| 1825 | return CFP->getValueAPF().isZero(); | ||||
| 1826 | else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { | ||||
| 1827 | // Maybe this has already been legalized into the constant pool? | ||||
| 1828 | if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) | ||||
| 1829 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) | ||||
| 1830 | return CFP->getValueAPF().isZero(); | ||||
| 1831 | } | ||||
| 1832 | return false; | ||||
| 1833 | } | ||||
| 1834 | |||||
| 1835 | /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return | ||||
| 1836 | /// true if Op is undef or if it matches the specified value. | ||||
| 1837 | static bool isConstantOrUndef(int Op, int Val) { | ||||
| 1838 | return Op < 0 || Op == Val; | ||||
| 1839 | } | ||||
| 1840 | |||||
| 1841 | /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a | ||||
| 1842 | /// VPKUHUM instruction. | ||||
| 1843 | /// The ShuffleKind distinguishes between big-endian operations with | ||||
| 1844 | /// two different inputs (0), either-endian operations with two identical | ||||
| 1845 | /// inputs (1), and little-endian operations with two different inputs (2). | ||||
| 1846 | /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). | ||||
| 1847 | bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | ||||
| 1848 | SelectionDAG &DAG) { | ||||
| 1849 | bool IsLE = DAG.getDataLayout().isLittleEndian(); | ||||
| 1850 | if (ShuffleKind == 0) { | ||||
| 1851 | if (IsLE) | ||||
| 1852 | return false; | ||||
| 1853 | for (unsigned i = 0; i != 16; ++i) | ||||
| 1854 | if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) | ||||
| 1855 | return false; | ||||
| 1856 | } else if (ShuffleKind == 2) { | ||||
| 1857 | if (!IsLE) | ||||
| 1858 | return false; | ||||
| 1859 | for (unsigned i = 0; i != 16; ++i) | ||||
| 1860 | if (!isConstantOrUndef(N->getMaskElt(i), i*2)) | ||||
| 1861 | return false; | ||||
| 1862 | } else if (ShuffleKind == 1) { | ||||
| 1863 | unsigned j = IsLE ? 0 : 1; | ||||
| 1864 | for (unsigned i = 0; i != 8; ++i) | ||||
| 1865 | if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || | ||||
| 1866 | !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) | ||||
| 1867 | return false; | ||||
| 1868 | } | ||||
| 1869 | return true; | ||||
| 1870 | } | ||||
| 1871 | |||||
| 1872 | /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a | ||||
| 1873 | /// VPKUWUM instruction. | ||||
| 1874 | /// The ShuffleKind distinguishes between big-endian operations with | ||||
| 1875 | /// two different inputs (0), either-endian operations with two identical | ||||
| 1876 | /// inputs (1), and little-endian operations with two different inputs (2). | ||||
| 1877 | /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). | ||||
| 1878 | bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | ||||
| 1879 | SelectionDAG &DAG) { | ||||
| 1880 | bool IsLE = DAG.getDataLayout().isLittleEndian(); | ||||
| 1881 | if (ShuffleKind == 0) { | ||||
| 1882 | if (IsLE) | ||||
| 1883 | return false; | ||||
| 1884 | for (unsigned i = 0; i != 16; i += 2) | ||||
| 1885 | if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || | ||||
| 1886 | !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) | ||||
| 1887 | return false; | ||||
| 1888 | } else if (ShuffleKind == 2) { | ||||
| 1889 | if (!IsLE) | ||||
| 1890 | return false; | ||||
| 1891 | for (unsigned i = 0; i != 16; i += 2) | ||||
| 1892 | if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || | ||||
| 1893 | !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) | ||||
| 1894 | return false; | ||||
| 1895 | } else if (ShuffleKind == 1) { | ||||
| 1896 | unsigned j = IsLE ? 0 : 2; | ||||
| 1897 | for (unsigned i = 0; i != 8; i += 2) | ||||
| 1898 | if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || | ||||
| 1899 | !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || | ||||
| 1900 | !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || | ||||
| 1901 | !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) | ||||
| 1902 | return false; | ||||
| 1903 | } | ||||
| 1904 | return true; | ||||
| 1905 | } | ||||
| 1906 | |||||
| 1907 | /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a | ||||
| 1908 | /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the | ||||
| 1909 | /// current subtarget. | ||||
| 1910 | /// | ||||
| 1911 | /// The ShuffleKind distinguishes between big-endian operations with | ||||
| 1912 | /// two different inputs (0), either-endian operations with two identical | ||||
| 1913 | /// inputs (1), and little-endian operations with two different inputs (2). | ||||
| 1914 | /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). | ||||
| 1915 | bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | ||||
| 1916 | SelectionDAG &DAG) { | ||||
| 1917 | const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); | ||||
| 1918 | if (!Subtarget.hasP8Vector()) | ||||
| 1919 | return false; | ||||
| 1920 | |||||
| 1921 | bool IsLE = DAG.getDataLayout().isLittleEndian(); | ||||
| 1922 | if (ShuffleKind == 0) { | ||||
| 1923 | if (IsLE) | ||||
| 1924 | return false; | ||||
| 1925 | for (unsigned i = 0; i != 16; i += 4) | ||||
| 1926 | if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || | ||||
| 1927 | !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || | ||||
| 1928 | !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || | ||||
| 1929 | !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) | ||||
| 1930 | return false; | ||||
| 1931 | } else if (ShuffleKind == 2) { | ||||
| 1932 | if (!IsLE) | ||||
| 1933 | return false; | ||||
| 1934 | for (unsigned i = 0; i != 16; i += 4) | ||||
| 1935 | if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || | ||||
| 1936 | !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || | ||||
| 1937 | !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || | ||||
| 1938 | !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) | ||||
| 1939 | return false; | ||||
| 1940 | } else if (ShuffleKind == 1) { | ||||
| 1941 | unsigned j = IsLE ? 0 : 4; | ||||
| 1942 | for (unsigned i = 0; i != 8; i += 4) | ||||
| 1943 | if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || | ||||
| 1944 | !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || | ||||
| 1945 | !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || | ||||
| 1946 | !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || | ||||
| 1947 | !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || | ||||
| 1948 | !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || | ||||
| 1949 | !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || | ||||
| 1950 | !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) | ||||
| 1951 | return false; | ||||
| 1952 | } | ||||
| 1953 | return true; | ||||
| 1954 | } | ||||
| 1955 | |||||
| 1956 | /// isVMerge - Common function, used to match vmrg* shuffles. | ||||
| 1957 | /// | ||||
| 1958 | static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, | ||||
| 1959 | unsigned LHSStart, unsigned RHSStart) { | ||||
| 1960 | if (N->getValueType(0) != MVT::v16i8) | ||||
| 1961 | return false; | ||||
| 1962 | assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&(static_cast <bool> ((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && "Unsupported merge size!") ? void ( 0) : __assert_fail ("(UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && \"Unsupported merge size!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 1963, __extension__ __PRETTY_FUNCTION__)) | ||||
| 1963 | "Unsupported merge size!")(static_cast <bool> ((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && "Unsupported merge size!") ? void ( 0) : __assert_fail ("(UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && \"Unsupported merge size!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 1963, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1964 | |||||
| 1965 | for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units | ||||
| 1966 | for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit | ||||
| 1967 | if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), | ||||
| 1968 | LHSStart+j+i*UnitSize) || | ||||
| 1969 | !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), | ||||
| 1970 | RHSStart+j+i*UnitSize)) | ||||
| 1971 | return false; | ||||
| 1972 | } | ||||
| 1973 | return true; | ||||
| 1974 | } | ||||
| 1975 | |||||
| 1976 | /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for | ||||
| 1977 | /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). | ||||
| 1978 | /// The ShuffleKind distinguishes between big-endian merges with two | ||||
| 1979 | /// different inputs (0), either-endian merges with two identical inputs (1), | ||||
| 1980 | /// and little-endian merges with two different inputs (2). For the latter, | ||||
| 1981 | /// the input operands are swapped (see PPCInstrAltivec.td). | ||||
| 1982 | bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, | ||||
| 1983 | unsigned ShuffleKind, SelectionDAG &DAG) { | ||||
| 1984 | if (DAG.getDataLayout().isLittleEndian()) { | ||||
| 1985 | if (ShuffleKind == 1) // unary | ||||
| 1986 | return isVMerge(N, UnitSize, 0, 0); | ||||
| 1987 | else if (ShuffleKind == 2) // swapped | ||||
| 1988 | return isVMerge(N, UnitSize, 0, 16); | ||||
| 1989 | else | ||||
| 1990 | return false; | ||||
| 1991 | } else { | ||||
| 1992 | if (ShuffleKind == 1) // unary | ||||
| 1993 | return isVMerge(N, UnitSize, 8, 8); | ||||
| 1994 | else if (ShuffleKind == 0) // normal | ||||
| 1995 | return isVMerge(N, UnitSize, 8, 24); | ||||
| 1996 | else | ||||
| 1997 | return false; | ||||
| 1998 | } | ||||
| 1999 | } | ||||
| 2000 | |||||
| 2001 | /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for | ||||
| 2002 | /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). | ||||
| 2003 | /// The ShuffleKind distinguishes between big-endian merges with two | ||||
| 2004 | /// different inputs (0), either-endian merges with two identical inputs (1), | ||||
| 2005 | /// and little-endian merges with two different inputs (2). For the latter, | ||||
| 2006 | /// the input operands are swapped (see PPCInstrAltivec.td). | ||||
| 2007 | bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, | ||||
| 2008 | unsigned ShuffleKind, SelectionDAG &DAG) { | ||||
| 2009 | if (DAG.getDataLayout().isLittleEndian()) { | ||||
| 2010 | if (ShuffleKind == 1) // unary | ||||
| 2011 | return isVMerge(N, UnitSize, 8, 8); | ||||
| 2012 | else if (ShuffleKind == 2) // swapped | ||||
| 2013 | return isVMerge(N, UnitSize, 8, 24); | ||||
| 2014 | else | ||||
| 2015 | return false; | ||||
| 2016 | } else { | ||||
| 2017 | if (ShuffleKind == 1) // unary | ||||
| 2018 | return isVMerge(N, UnitSize, 0, 0); | ||||
| 2019 | else if (ShuffleKind == 0) // normal | ||||
| 2020 | return isVMerge(N, UnitSize, 0, 16); | ||||
| 2021 | else | ||||
| 2022 | return false; | ||||
| 2023 | } | ||||
| 2024 | } | ||||
| 2025 | |||||
| 2026 | /** | ||||
| 2027 | * Common function used to match vmrgew and vmrgow shuffles | ||||
| 2028 | * | ||||
| 2029 | * The indexOffset determines whether to look for even or odd words in | ||||
| 2030 | * the shuffle mask. This is based on the of the endianness of the target | ||||
| 2031 | * machine. | ||||
| 2032 | * - Little Endian: | ||||
| 2033 | * - Use offset of 0 to check for odd elements | ||||
| 2034 | * - Use offset of 4 to check for even elements | ||||
| 2035 | * - Big Endian: | ||||
| 2036 | * - Use offset of 0 to check for even elements | ||||
| 2037 | * - Use offset of 4 to check for odd elements | ||||
| 2038 | * A detailed description of the vector element ordering for little endian and | ||||
| 2039 | * big endian can be found at | ||||
| 2040 | * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html | ||||
| 2041 | * Targeting your applications - what little endian and big endian IBM XL C/C++ | ||||
| 2042 | * compiler differences mean to you | ||||
| 2043 | * | ||||
| 2044 | * The mask to the shuffle vector instruction specifies the indices of the | ||||
| 2045 | * elements from the two input vectors to place in the result. The elements are | ||||
| 2046 | * numbered in array-access order, starting with the first vector. These vectors | ||||
| 2047 | * are always of type v16i8, thus each vector will contain 16 elements of size | ||||
| 2048 | * 8. More info on the shuffle vector can be found in the | ||||
| 2049 | * http://llvm.org/docs/LangRef.html#shufflevector-instruction | ||||
| 2050 | * Language Reference. | ||||
| 2051 | * | ||||
| 2052 | * The RHSStartValue indicates whether the same input vectors are used (unary) | ||||
| 2053 | * or two different input vectors are used, based on the following: | ||||
| 2054 | * - If the instruction uses the same vector for both inputs, the range of the | ||||
| 2055 | * indices will be 0 to 15. In this case, the RHSStart value passed should | ||||
| 2056 | * be 0. | ||||
| 2057 | * - If the instruction has two different vectors then the range of the | ||||
| 2058 | * indices will be 0 to 31. In this case, the RHSStart value passed should | ||||
| 2059 | * be 16 (indices 0-15 specify elements in the first vector while indices 16 | ||||
| 2060 | * to 31 specify elements in the second vector). | ||||
| 2061 | * | ||||
| 2062 | * \param[in] N The shuffle vector SD Node to analyze | ||||
| 2063 | * \param[in] IndexOffset Specifies whether to look for even or odd elements | ||||
| 2064 | * \param[in] RHSStartValue Specifies the starting index for the righthand input | ||||
| 2065 | * vector to the shuffle_vector instruction | ||||
| 2066 | * \return true iff this shuffle vector represents an even or odd word merge | ||||
| 2067 | */ | ||||
| 2068 | static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, | ||||
| 2069 | unsigned RHSStartValue) { | ||||
| 2070 | if (N->getValueType(0) != MVT::v16i8) | ||||
| 2071 | return false; | ||||
| 2072 | |||||
| 2073 | for (unsigned i = 0; i < 2; ++i) | ||||
| 2074 | for (unsigned j = 0; j < 4; ++j) | ||||
| 2075 | if (!isConstantOrUndef(N->getMaskElt(i*4+j), | ||||
| 2076 | i*RHSStartValue+j+IndexOffset) || | ||||
| 2077 | !isConstantOrUndef(N->getMaskElt(i*4+j+8), | ||||
| 2078 | i*RHSStartValue+j+IndexOffset+8)) | ||||
| 2079 | return false; | ||||
| 2080 | return true; | ||||
| 2081 | } | ||||
| 2082 | |||||
| 2083 | /** | ||||
| 2084 | * Determine if the specified shuffle mask is suitable for the vmrgew or | ||||
| 2085 | * vmrgow instructions. | ||||
| 2086 | * | ||||
| 2087 | * \param[in] N The shuffle vector SD Node to analyze | ||||
| 2088 | * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) | ||||
| 2089 | * \param[in] ShuffleKind Identify the type of merge: | ||||
| 2090 | * - 0 = big-endian merge with two different inputs; | ||||
| 2091 | * - 1 = either-endian merge with two identical inputs; | ||||
| 2092 | * - 2 = little-endian merge with two different inputs (inputs are swapped for | ||||
| 2093 | * little-endian merges). | ||||
| 2094 | * \param[in] DAG The current SelectionDAG | ||||
| 2095 | * \return true iff this shuffle mask | ||||
| 2096 | */ | ||||
| 2097 | bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, | ||||
| 2098 | unsigned ShuffleKind, SelectionDAG &DAG) { | ||||
| 2099 | if (DAG.getDataLayout().isLittleEndian()) { | ||||
| 2100 | unsigned indexOffset = CheckEven ? 4 : 0; | ||||
| 2101 | if (ShuffleKind == 1) // Unary | ||||
| 2102 | return isVMerge(N, indexOffset, 0); | ||||
| 2103 | else if (ShuffleKind == 2) // swapped | ||||
| 2104 | return isVMerge(N, indexOffset, 16); | ||||
| 2105 | else | ||||
| 2106 | return false; | ||||
| 2107 | } | ||||
| 2108 | else { | ||||
| 2109 | unsigned indexOffset = CheckEven ? 0 : 4; | ||||
| 2110 | if (ShuffleKind == 1) // Unary | ||||
| 2111 | return isVMerge(N, indexOffset, 0); | ||||
| 2112 | else if (ShuffleKind == 0) // Normal | ||||
| 2113 | return isVMerge(N, indexOffset, 16); | ||||
| 2114 | else | ||||
| 2115 | return false; | ||||
| 2116 | } | ||||
| 2117 | return false; | ||||
| 2118 | } | ||||
| 2119 | |||||
| 2120 | /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift | ||||
| 2121 | /// amount, otherwise return -1. | ||||
| 2122 | /// The ShuffleKind distinguishes between big-endian operations with two | ||||
| 2123 | /// different inputs (0), either-endian operations with two identical inputs | ||||
| 2124 | /// (1), and little-endian operations with two different inputs (2). For the | ||||
| 2125 | /// latter, the input operands are swapped (see PPCInstrAltivec.td). | ||||
| 2126 | int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, | ||||
| 2127 | SelectionDAG &DAG) { | ||||
| 2128 | if (N->getValueType(0) != MVT::v16i8) | ||||
| 2129 | return -1; | ||||
| 2130 | |||||
| 2131 | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | ||||
| 2132 | |||||
| 2133 | // Find the first non-undef value in the shuffle mask. | ||||
| 2134 | unsigned i; | ||||
| 2135 | for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) | ||||
| 2136 | /*search*/; | ||||
| 2137 | |||||
| 2138 | if (i == 16) return -1; // all undef. | ||||
| 2139 | |||||
| 2140 | // Otherwise, check to see if the rest of the elements are consecutively | ||||
| 2141 | // numbered from this value. | ||||
| 2142 | unsigned ShiftAmt = SVOp->getMaskElt(i); | ||||
| 2143 | if (ShiftAmt < i) return -1; | ||||
| 2144 | |||||
| 2145 | ShiftAmt -= i; | ||||
| 2146 | bool isLE = DAG.getDataLayout().isLittleEndian(); | ||||
| 2147 | |||||
| 2148 | if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { | ||||
| 2149 | // Check the rest of the elements to see if they are consecutive. | ||||
| 2150 | for (++i; i != 16; ++i) | ||||
| 2151 | if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) | ||||
| 2152 | return -1; | ||||
| 2153 | } else if (ShuffleKind == 1) { | ||||
| 2154 | // Check the rest of the elements to see if they are consecutive. | ||||
| 2155 | for (++i; i != 16; ++i) | ||||
| 2156 | if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) | ||||
| 2157 | return -1; | ||||
| 2158 | } else | ||||
| 2159 | return -1; | ||||
| 2160 | |||||
| 2161 | if (isLE) | ||||
| 2162 | ShiftAmt = 16 - ShiftAmt; | ||||
| 2163 | |||||
| 2164 | return ShiftAmt; | ||||
| 2165 | } | ||||
| 2166 | |||||
| 2167 | /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand | ||||
| 2168 | /// specifies a splat of a single element that is suitable for input to | ||||
| 2169 | /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). | ||||
| 2170 | bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { | ||||
| 2171 | EVT VT = N->getValueType(0); | ||||
| 2172 | if (VT == MVT::v2i64 || VT == MVT::v2f64) | ||||
| 2173 | return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1); | ||||
| 2174 | |||||
| 2175 | assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) &&(static_cast <bool> (VT == MVT::v16i8 && isPowerOf2_32 (EltSize) && EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes" ) ? void (0) : __assert_fail ("VT == MVT::v16i8 && isPowerOf2_32(EltSize) && EltSize <= 8 && \"Can only handle 1,2,4,8 byte element sizes\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2176, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2176 | EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes")(static_cast <bool> (VT == MVT::v16i8 && isPowerOf2_32 (EltSize) && EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes" ) ? void (0) : __assert_fail ("VT == MVT::v16i8 && isPowerOf2_32(EltSize) && EltSize <= 8 && \"Can only handle 1,2,4,8 byte element sizes\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2176, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2177 | |||||
| 2178 | // The consecutive indices need to specify an element, not part of two | ||||
| 2179 | // different elements. So abandon ship early if this isn't the case. | ||||
| 2180 | if (N->getMaskElt(0) % EltSize != 0) | ||||
| 2181 | return false; | ||||
| 2182 | |||||
| 2183 | // This is a splat operation if each element of the permute is the same, and | ||||
| 2184 | // if the value doesn't reference the second vector. | ||||
| 2185 | unsigned ElementBase = N->getMaskElt(0); | ||||
| 2186 | |||||
| 2187 | // FIXME: Handle UNDEF elements too! | ||||
| 2188 | if (ElementBase >= 16) | ||||
| 2189 | return false; | ||||
| 2190 | |||||
| 2191 | // Check that the indices are consecutive, in the case of a multi-byte element | ||||
| 2192 | // splatted with a v16i8 mask. | ||||
| 2193 | for (unsigned i = 1; i != EltSize; ++i) | ||||
| 2194 | if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) | ||||
| 2195 | return false; | ||||
| 2196 | |||||
| 2197 | for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { | ||||
| 2198 | if (N->getMaskElt(i) < 0) continue; | ||||
| 2199 | for (unsigned j = 0; j != EltSize; ++j) | ||||
| 2200 | if (N->getMaskElt(i+j) != N->getMaskElt(j)) | ||||
| 2201 | return false; | ||||
| 2202 | } | ||||
| 2203 | return true; | ||||
| 2204 | } | ||||
| 2205 | |||||
| 2206 | /// Check that the mask is shuffling N byte elements. Within each N byte | ||||
| 2207 | /// element of the mask, the indices could be either in increasing or | ||||
| 2208 | /// decreasing order as long as they are consecutive. | ||||
| 2209 | /// \param[in] N the shuffle vector SD Node to analyze | ||||
| 2210 | /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ | ||||
| 2211 | /// Word/DoubleWord/QuadWord). | ||||
| 2212 | /// \param[in] StepLen the delta indices number among the N byte element, if | ||||
| 2213 | /// the mask is in increasing/decreasing order then it is 1/-1. | ||||
| 2214 | /// \return true iff the mask is shuffling N byte elements. | ||||
| 2215 | static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, | ||||
| 2216 | int StepLen) { | ||||
| 2217 | assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&(static_cast <bool> ((Width == 2 || Width == 4 || Width == 8 || Width == 16) && "Unexpected element width.") ? void (0) : __assert_fail ("(Width == 2 || Width == 4 || Width == 8 || Width == 16) && \"Unexpected element width.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2218, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2218 | "Unexpected element width.")(static_cast <bool> ((Width == 2 || Width == 4 || Width == 8 || Width == 16) && "Unexpected element width.") ? void (0) : __assert_fail ("(Width == 2 || Width == 4 || Width == 8 || Width == 16) && \"Unexpected element width.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2218, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2219 | assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.")(static_cast <bool> ((StepLen == 1 || StepLen == -1) && "Unexpected element width.") ? void (0) : __assert_fail ("(StepLen == 1 || StepLen == -1) && \"Unexpected element width.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2219, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2220 | |||||
| 2221 | unsigned NumOfElem = 16 / Width; | ||||
| 2222 | unsigned MaskVal[16]; // Width is never greater than 16 | ||||
| 2223 | for (unsigned i = 0; i < NumOfElem; ++i) { | ||||
| 2224 | MaskVal[0] = N->getMaskElt(i * Width); | ||||
| 2225 | if ((StepLen == 1) && (MaskVal[0] % Width)) { | ||||
| 2226 | return false; | ||||
| 2227 | } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { | ||||
| 2228 | return false; | ||||
| 2229 | } | ||||
| 2230 | |||||
| 2231 | for (unsigned int j = 1; j < Width; ++j) { | ||||
| 2232 | MaskVal[j] = N->getMaskElt(i * Width + j); | ||||
| 2233 | if (MaskVal[j] != MaskVal[j-1] + StepLen) { | ||||
| 2234 | return false; | ||||
| 2235 | } | ||||
| 2236 | } | ||||
| 2237 | } | ||||
| 2238 | |||||
| 2239 | return true; | ||||
| 2240 | } | ||||
| 2241 | |||||
| 2242 | bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, | ||||
| 2243 | unsigned &InsertAtByte, bool &Swap, bool IsLE) { | ||||
| 2244 | if (!isNByteElemShuffleMask(N, 4, 1)) | ||||
| 2245 | return false; | ||||
| 2246 | |||||
| 2247 | // Now we look at mask elements 0,4,8,12 | ||||
| 2248 | unsigned M0 = N->getMaskElt(0) / 4; | ||||
| 2249 | unsigned M1 = N->getMaskElt(4) / 4; | ||||
| 2250 | unsigned M2 = N->getMaskElt(8) / 4; | ||||
| 2251 | unsigned M3 = N->getMaskElt(12) / 4; | ||||
| 2252 | unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; | ||||
| 2253 | unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; | ||||
| 2254 | |||||
| 2255 | // Below, let H and L be arbitrary elements of the shuffle mask | ||||
| 2256 | // where H is in the range [4,7] and L is in the range [0,3]. | ||||
| 2257 | // H, 1, 2, 3 or L, 5, 6, 7 | ||||
| 2258 | if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || | ||||
| 2259 | (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { | ||||
| 2260 | ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; | ||||
| 2261 | InsertAtByte = IsLE ? 12 : 0; | ||||
| 2262 | Swap = M0 < 4; | ||||
| 2263 | return true; | ||||
| 2264 | } | ||||
| 2265 | // 0, H, 2, 3 or 4, L, 6, 7 | ||||
| 2266 | if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || | ||||
| 2267 | (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { | ||||
| 2268 | ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; | ||||
| 2269 | InsertAtByte = IsLE ? 8 : 4; | ||||
| 2270 | Swap = M1 < 4; | ||||
| 2271 | return true; | ||||
| 2272 | } | ||||
| 2273 | // 0, 1, H, 3 or 4, 5, L, 7 | ||||
| 2274 | if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || | ||||
| 2275 | (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { | ||||
| 2276 | ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; | ||||
| 2277 | InsertAtByte = IsLE ? 4 : 8; | ||||
| 2278 | Swap = M2 < 4; | ||||
| 2279 | return true; | ||||
| 2280 | } | ||||
| 2281 | // 0, 1, 2, H or 4, 5, 6, L | ||||
| 2282 | if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || | ||||
| 2283 | (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { | ||||
| 2284 | ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; | ||||
| 2285 | InsertAtByte = IsLE ? 0 : 12; | ||||
| 2286 | Swap = M3 < 4; | ||||
| 2287 | return true; | ||||
| 2288 | } | ||||
| 2289 | |||||
| 2290 | // If both vector operands for the shuffle are the same vector, the mask will | ||||
| 2291 | // contain only elements from the first one and the second one will be undef. | ||||
| 2292 | if (N->getOperand(1).isUndef()) { | ||||
| 2293 | ShiftElts = 0; | ||||
| 2294 | Swap = true; | ||||
| 2295 | unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; | ||||
| 2296 | if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { | ||||
| 2297 | InsertAtByte = IsLE ? 12 : 0; | ||||
| 2298 | return true; | ||||
| 2299 | } | ||||
| 2300 | if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { | ||||
| 2301 | InsertAtByte = IsLE ? 8 : 4; | ||||
| 2302 | return true; | ||||
| 2303 | } | ||||
| 2304 | if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { | ||||
| 2305 | InsertAtByte = IsLE ? 4 : 8; | ||||
| 2306 | return true; | ||||
| 2307 | } | ||||
| 2308 | if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { | ||||
| 2309 | InsertAtByte = IsLE ? 0 : 12; | ||||
| 2310 | return true; | ||||
| 2311 | } | ||||
| 2312 | } | ||||
| 2313 | |||||
| 2314 | return false; | ||||
| 2315 | } | ||||
| 2316 | |||||
| 2317 | bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, | ||||
| 2318 | bool &Swap, bool IsLE) { | ||||
| 2319 | assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8")(static_cast <bool> (N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8") ? void (0) : __assert_fail ("N->getValueType(0) == MVT::v16i8 && \"Shuffle vector expects v16i8\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2319, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2320 | // Ensure each byte index of the word is consecutive. | ||||
| 2321 | if (!isNByteElemShuffleMask(N, 4, 1)) | ||||
| 2322 | return false; | ||||
| 2323 | |||||
| 2324 | // Now we look at mask elements 0,4,8,12, which are the beginning of words. | ||||
| 2325 | unsigned M0 = N->getMaskElt(0) / 4; | ||||
| 2326 | unsigned M1 = N->getMaskElt(4) / 4; | ||||
| 2327 | unsigned M2 = N->getMaskElt(8) / 4; | ||||
| 2328 | unsigned M3 = N->getMaskElt(12) / 4; | ||||
| 2329 | |||||
| 2330 | // If both vector operands for the shuffle are the same vector, the mask will | ||||
| 2331 | // contain only elements from the first one and the second one will be undef. | ||||
| 2332 | if (N->getOperand(1).isUndef()) { | ||||
| 2333 | assert(M0 < 4 && "Indexing into an undef vector?")(static_cast <bool> (M0 < 4 && "Indexing into an undef vector?" ) ? void (0) : __assert_fail ("M0 < 4 && \"Indexing into an undef vector?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2333, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2334 | if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) | ||||
| 2335 | return false; | ||||
| 2336 | |||||
| 2337 | ShiftElts = IsLE ? (4 - M0) % 4 : M0; | ||||
| 2338 | Swap = false; | ||||
| 2339 | return true; | ||||
| 2340 | } | ||||
| 2341 | |||||
| 2342 | // Ensure each word index of the ShuffleVector Mask is consecutive. | ||||
| 2343 | if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) | ||||
| 2344 | return false; | ||||
| 2345 | |||||
| 2346 | if (IsLE) { | ||||
| 2347 | if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { | ||||
| 2348 | // Input vectors don't need to be swapped if the leading element | ||||
| 2349 | // of the result is one of the 3 left elements of the second vector | ||||
| 2350 | // (or if there is no shift to be done at all). | ||||
| 2351 | Swap = false; | ||||
| 2352 | ShiftElts = (8 - M0) % 8; | ||||
| 2353 | } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { | ||||
| 2354 | // Input vectors need to be swapped if the leading element | ||||
| 2355 | // of the result is one of the 3 left elements of the first vector | ||||
| 2356 | // (or if we're shifting by 4 - thereby simply swapping the vectors). | ||||
| 2357 | Swap = true; | ||||
| 2358 | ShiftElts = (4 - M0) % 4; | ||||
| 2359 | } | ||||
| 2360 | |||||
| 2361 | return true; | ||||
| 2362 | } else { // BE | ||||
| 2363 | if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { | ||||
| 2364 | // Input vectors don't need to be swapped if the leading element | ||||
| 2365 | // of the result is one of the 4 elements of the first vector. | ||||
| 2366 | Swap = false; | ||||
| 2367 | ShiftElts = M0; | ||||
| 2368 | } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { | ||||
| 2369 | // Input vectors need to be swapped if the leading element | ||||
| 2370 | // of the result is one of the 4 elements of the right vector. | ||||
| 2371 | Swap = true; | ||||
| 2372 | ShiftElts = M0 - 4; | ||||
| 2373 | } | ||||
| 2374 | |||||
| 2375 | return true; | ||||
| 2376 | } | ||||
| 2377 | } | ||||
| 2378 | |||||
| 2379 | bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { | ||||
| 2380 | assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8")(static_cast <bool> (N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8") ? void (0) : __assert_fail ("N->getValueType(0) == MVT::v16i8 && \"Shuffle vector expects v16i8\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2380, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2381 | |||||
| 2382 | if (!isNByteElemShuffleMask(N, Width, -1)) | ||||
| 2383 | return false; | ||||
| 2384 | |||||
| 2385 | for (int i = 0; i < 16; i += Width) | ||||
| 2386 | if (N->getMaskElt(i) != i + Width - 1) | ||||
| 2387 | return false; | ||||
| 2388 | |||||
| 2389 | return true; | ||||
| 2390 | } | ||||
| 2391 | |||||
| 2392 | bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { | ||||
| 2393 | return isXXBRShuffleMaskHelper(N, 2); | ||||
| 2394 | } | ||||
| 2395 | |||||
| 2396 | bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { | ||||
| 2397 | return isXXBRShuffleMaskHelper(N, 4); | ||||
| 2398 | } | ||||
| 2399 | |||||
| 2400 | bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { | ||||
| 2401 | return isXXBRShuffleMaskHelper(N, 8); | ||||
| 2402 | } | ||||
| 2403 | |||||
| 2404 | bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { | ||||
| 2405 | return isXXBRShuffleMaskHelper(N, 16); | ||||
| 2406 | } | ||||
| 2407 | |||||
| 2408 | /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap | ||||
| 2409 | /// if the inputs to the instruction should be swapped and set \p DM to the | ||||
| 2410 | /// value for the immediate. | ||||
| 2411 | /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI | ||||
| 2412 | /// AND element 0 of the result comes from the first input (LE) or second input | ||||
| 2413 | /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. | ||||
| 2414 | /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle | ||||
| 2415 | /// mask. | ||||
| 2416 | bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, | ||||
| 2417 | bool &Swap, bool IsLE) { | ||||
| 2418 | assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8")(static_cast <bool> (N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8") ? void (0) : __assert_fail ("N->getValueType(0) == MVT::v16i8 && \"Shuffle vector expects v16i8\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2418, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2419 | |||||
| 2420 | // Ensure each byte index of the double word is consecutive. | ||||
| 2421 | if (!isNByteElemShuffleMask(N, 8, 1)) | ||||
| 2422 | return false; | ||||
| 2423 | |||||
| 2424 | unsigned M0 = N->getMaskElt(0) / 8; | ||||
| 2425 | unsigned M1 = N->getMaskElt(8) / 8; | ||||
| 2426 | assert(((M0 | M1) < 4) && "A mask element out of bounds?")(static_cast <bool> (((M0 | M1) < 4) && "A mask element out of bounds?" ) ? void (0) : __assert_fail ("((M0 | M1) < 4) && \"A mask element out of bounds?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2426, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2427 | |||||
| 2428 | // If both vector operands for the shuffle are the same vector, the mask will | ||||
| 2429 | // contain only elements from the first one and the second one will be undef. | ||||
| 2430 | if (N->getOperand(1).isUndef()) { | ||||
| 2431 | if ((M0 | M1) < 2) { | ||||
| 2432 | DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); | ||||
| 2433 | Swap = false; | ||||
| 2434 | return true; | ||||
| 2435 | } else | ||||
| 2436 | return false; | ||||
| 2437 | } | ||||
| 2438 | |||||
| 2439 | if (IsLE) { | ||||
| 2440 | if (M0 > 1 && M1 < 2) { | ||||
| 2441 | Swap = false; | ||||
| 2442 | } else if (M0 < 2 && M1 > 1) { | ||||
| 2443 | M0 = (M0 + 2) % 4; | ||||
| 2444 | M1 = (M1 + 2) % 4; | ||||
| 2445 | Swap = true; | ||||
| 2446 | } else | ||||
| 2447 | return false; | ||||
| 2448 | |||||
| 2449 | // Note: if control flow comes here that means Swap is already set above | ||||
| 2450 | DM = (((~M1) & 1) << 1) + ((~M0) & 1); | ||||
| 2451 | return true; | ||||
| 2452 | } else { // BE | ||||
| 2453 | if (M0 < 2 && M1 > 1) { | ||||
| 2454 | Swap = false; | ||||
| 2455 | } else if (M0 > 1 && M1 < 2) { | ||||
| 2456 | M0 = (M0 + 2) % 4; | ||||
| 2457 | M1 = (M1 + 2) % 4; | ||||
| 2458 | Swap = true; | ||||
| 2459 | } else | ||||
| 2460 | return false; | ||||
| 2461 | |||||
| 2462 | // Note: if control flow comes here that means Swap is already set above | ||||
| 2463 | DM = (M0 << 1) + (M1 & 1); | ||||
| 2464 | return true; | ||||
| 2465 | } | ||||
| 2466 | } | ||||
| 2467 | |||||
| 2468 | |||||
| 2469 | /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is | ||||
| 2470 | /// appropriate for PPC mnemonics (which have a big endian bias - namely | ||||
| 2471 | /// elements are counted from the left of the vector register). | ||||
| 2472 | unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, | ||||
| 2473 | SelectionDAG &DAG) { | ||||
| 2474 | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | ||||
| 2475 | assert(isSplatShuffleMask(SVOp, EltSize))(static_cast <bool> (isSplatShuffleMask(SVOp, EltSize)) ? void (0) : __assert_fail ("isSplatShuffleMask(SVOp, EltSize)" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2475, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2476 | EVT VT = SVOp->getValueType(0); | ||||
| 2477 | |||||
| 2478 | if (VT == MVT::v2i64 || VT == MVT::v2f64) | ||||
| 2479 | return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0) | ||||
| 2480 | : SVOp->getMaskElt(0); | ||||
| 2481 | |||||
| 2482 | if (DAG.getDataLayout().isLittleEndian()) | ||||
| 2483 | return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); | ||||
| 2484 | else | ||||
| 2485 | return SVOp->getMaskElt(0) / EltSize; | ||||
| 2486 | } | ||||
| 2487 | |||||
| 2488 | /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed | ||||
| 2489 | /// by using a vspltis[bhw] instruction of the specified element size, return | ||||
| 2490 | /// the constant being splatted. The ByteSize field indicates the number of | ||||
| 2491 | /// bytes of each element [124] -> [bhw]. | ||||
| 2492 | SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { | ||||
| 2493 | SDValue OpVal; | ||||
| 2494 | |||||
| 2495 | // If ByteSize of the splat is bigger than the element size of the | ||||
| 2496 | // build_vector, then we have a case where we are checking for a splat where | ||||
| 2497 | // multiple elements of the buildvector are folded together into a single | ||||
| 2498 | // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). | ||||
| 2499 | unsigned EltSize = 16/N->getNumOperands(); | ||||
| 2500 | if (EltSize < ByteSize) { | ||||
| 2501 | unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. | ||||
| 2502 | SDValue UniquedVals[4]; | ||||
| 2503 | assert(Multiple > 1 && Multiple <= 4 && "How can this happen?")(static_cast <bool> (Multiple > 1 && Multiple <= 4 && "How can this happen?") ? void (0) : __assert_fail ("Multiple > 1 && Multiple <= 4 && \"How can this happen?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2503, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2504 | |||||
| 2505 | // See if all of the elements in the buildvector agree across. | ||||
| 2506 | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | ||||
| 2507 | if (N->getOperand(i).isUndef()) continue; | ||||
| 2508 | // If the element isn't a constant, bail fully out. | ||||
| 2509 | if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); | ||||
| 2510 | |||||
| 2511 | if (!UniquedVals[i&(Multiple-1)].getNode()) | ||||
| 2512 | UniquedVals[i&(Multiple-1)] = N->getOperand(i); | ||||
| 2513 | else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) | ||||
| 2514 | return SDValue(); // no match. | ||||
| 2515 | } | ||||
| 2516 | |||||
| 2517 | // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains | ||||
| 2518 | // either constant or undef values that are identical for each chunk. See | ||||
| 2519 | // if these chunks can form into a larger vspltis*. | ||||
| 2520 | |||||
| 2521 | // Check to see if all of the leading entries are either 0 or -1. If | ||||
| 2522 | // neither, then this won't fit into the immediate field. | ||||
| 2523 | bool LeadingZero = true; | ||||
| 2524 | bool LeadingOnes = true; | ||||
| 2525 | for (unsigned i = 0; i != Multiple-1; ++i) { | ||||
| 2526 | if (!UniquedVals[i].getNode()) continue; // Must have been undefs. | ||||
| 2527 | |||||
| 2528 | LeadingZero &= isNullConstant(UniquedVals[i]); | ||||
| 2529 | LeadingOnes &= isAllOnesConstant(UniquedVals[i]); | ||||
| 2530 | } | ||||
| 2531 | // Finally, check the least significant entry. | ||||
| 2532 | if (LeadingZero) { | ||||
| 2533 | if (!UniquedVals[Multiple-1].getNode()) | ||||
| 2534 | return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef | ||||
| 2535 | int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); | ||||
| 2536 | if (Val < 16) // 0,0,0,4 -> vspltisw(4) | ||||
| 2537 | return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); | ||||
| 2538 | } | ||||
| 2539 | if (LeadingOnes) { | ||||
| 2540 | if (!UniquedVals[Multiple-1].getNode()) | ||||
| 2541 | return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef | ||||
| 2542 | int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); | ||||
| 2543 | if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) | ||||
| 2544 | return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); | ||||
| 2545 | } | ||||
| 2546 | |||||
| 2547 | return SDValue(); | ||||
| 2548 | } | ||||
| 2549 | |||||
| 2550 | // Check to see if this buildvec has a single non-undef value in its elements. | ||||
| 2551 | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | ||||
| 2552 | if (N->getOperand(i).isUndef()) continue; | ||||
| 2553 | if (!OpVal.getNode()) | ||||
| 2554 | OpVal = N->getOperand(i); | ||||
| 2555 | else if (OpVal != N->getOperand(i)) | ||||
| 2556 | return SDValue(); | ||||
| 2557 | } | ||||
| 2558 | |||||
| 2559 | if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. | ||||
| 2560 | |||||
| 2561 | unsigned ValSizeInBytes = EltSize; | ||||
| 2562 | uint64_t Value = 0; | ||||
| 2563 | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { | ||||
| 2564 | Value = CN->getZExtValue(); | ||||
| 2565 | } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { | ||||
| 2566 | assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!")(static_cast <bool> (CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!") ? void (0) : __assert_fail ("CN->getValueType(0) == MVT::f32 && \"Only one legal FP vector type!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2566, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2567 | Value = llvm::bit_cast<uint32_t>(CN->getValueAPF().convertToFloat()); | ||||
| 2568 | } | ||||
| 2569 | |||||
| 2570 | // If the splat value is larger than the element value, then we can never do | ||||
| 2571 | // this splat. The only case that we could fit the replicated bits into our | ||||
| 2572 | // immediate field for would be zero, and we prefer to use vxor for it. | ||||
| 2573 | if (ValSizeInBytes < ByteSize) return SDValue(); | ||||
| 2574 | |||||
| 2575 | // If the element value is larger than the splat value, check if it consists | ||||
| 2576 | // of a repeated bit pattern of size ByteSize. | ||||
| 2577 | if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) | ||||
| 2578 | return SDValue(); | ||||
| 2579 | |||||
| 2580 | // Properly sign extend the value. | ||||
| 2581 | int MaskVal = SignExtend32(Value, ByteSize * 8); | ||||
| 2582 | |||||
| 2583 | // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. | ||||
| 2584 | if (MaskVal == 0) return SDValue(); | ||||
| 2585 | |||||
| 2586 | // Finally, if this value fits in a 5 bit sext field, return it | ||||
| 2587 | if (SignExtend32<5>(MaskVal) == MaskVal) | ||||
| 2588 | return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); | ||||
| 2589 | return SDValue(); | ||||
| 2590 | } | ||||
| 2591 | |||||
| 2592 | //===----------------------------------------------------------------------===// | ||||
| 2593 | // Addressing Mode Selection | ||||
| 2594 | //===----------------------------------------------------------------------===// | ||||
| 2595 | |||||
| 2596 | /// isIntS16Immediate - This method tests to see if the node is either a 32-bit | ||||
| 2597 | /// or 64-bit immediate, and if the value can be accurately represented as a | ||||
| 2598 | /// sign extension from a 16-bit value. If so, this returns true and the | ||||
| 2599 | /// immediate. | ||||
| 2600 | bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { | ||||
| 2601 | if (!isa<ConstantSDNode>(N)) | ||||
| 2602 | return false; | ||||
| 2603 | |||||
| 2604 | Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); | ||||
| 2605 | if (N->getValueType(0) == MVT::i32) | ||||
| 2606 | return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); | ||||
| 2607 | else | ||||
| 2608 | return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); | ||||
| 2609 | } | ||||
| 2610 | bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { | ||||
| 2611 | return isIntS16Immediate(Op.getNode(), Imm); | ||||
| 2612 | } | ||||
| 2613 | |||||
| 2614 | /// Used when computing address flags for selecting loads and stores. | ||||
| 2615 | /// If we have an OR, check if the LHS and RHS are provably disjoint. | ||||
| 2616 | /// An OR of two provably disjoint values is equivalent to an ADD. | ||||
| 2617 | /// Most PPC load/store instructions compute the effective address as a sum, | ||||
| 2618 | /// so doing this conversion is useful. | ||||
| 2619 | static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { | ||||
| 2620 | if (N.getOpcode() != ISD::OR) | ||||
| 2621 | return false; | ||||
| 2622 | KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); | ||||
| 2623 | if (!LHSKnown.Zero.getBoolValue()) | ||||
| 2624 | return false; | ||||
| 2625 | KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); | ||||
| 2626 | return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); | ||||
| 2627 | } | ||||
| 2628 | |||||
| 2629 | /// SelectAddressEVXRegReg - Given the specified address, check to see if it can | ||||
| 2630 | /// be represented as an indexed [r+r] operation. | ||||
| 2631 | bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, | ||||
| 2632 | SDValue &Index, | ||||
| 2633 | SelectionDAG &DAG) const { | ||||
| 2634 | for (SDNode *U : N->uses()) { | ||||
| 2635 | if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { | ||||
| 2636 | if (Memop->getMemoryVT() == MVT::f64) { | ||||
| 2637 | Base = N.getOperand(0); | ||||
| 2638 | Index = N.getOperand(1); | ||||
| 2639 | return true; | ||||
| 2640 | } | ||||
| 2641 | } | ||||
| 2642 | } | ||||
| 2643 | return false; | ||||
| 2644 | } | ||||
| 2645 | |||||
| 2646 | /// isIntS34Immediate - This method tests if value of node given can be | ||||
| 2647 | /// accurately represented as a sign extension from a 34-bit value. If so, | ||||
| 2648 | /// this returns true and the immediate. | ||||
| 2649 | bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { | ||||
| 2650 | if (!isa<ConstantSDNode>(N)) | ||||
| 2651 | return false; | ||||
| 2652 | |||||
| 2653 | Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); | ||||
| 2654 | return isInt<34>(Imm); | ||||
| 2655 | } | ||||
| 2656 | bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { | ||||
| 2657 | return isIntS34Immediate(Op.getNode(), Imm); | ||||
| 2658 | } | ||||
| 2659 | |||||
| 2660 | /// SelectAddressRegReg - Given the specified addressed, check to see if it | ||||
| 2661 | /// can be represented as an indexed [r+r] operation. Returns false if it | ||||
| 2662 | /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is | ||||
| 2663 | /// non-zero and N can be represented by a base register plus a signed 16-bit | ||||
| 2664 | /// displacement, make a more precise judgement by checking (displacement % \p | ||||
| 2665 | /// EncodingAlignment). | ||||
| 2666 | bool PPCTargetLowering::SelectAddressRegReg( | ||||
| 2667 | SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, | ||||
| 2668 | MaybeAlign EncodingAlignment) const { | ||||
| 2669 | // If we have a PC Relative target flag don't select as [reg+reg]. It will be | ||||
| 2670 | // a [pc+imm]. | ||||
| 2671 | if (SelectAddressPCRel(N, Base)) | ||||
| 2672 | return false; | ||||
| 2673 | |||||
| 2674 | int16_t Imm = 0; | ||||
| 2675 | if (N.getOpcode() == ISD::ADD) { | ||||
| 2676 | // Is there any SPE load/store (f64), which can't handle 16bit offset? | ||||
| 2677 | // SPE load/store can only handle 8-bit offsets. | ||||
| 2678 | if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) | ||||
| 2679 | return true; | ||||
| 2680 | if (isIntS16Immediate(N.getOperand(1), Imm) && | ||||
| 2681 | (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) | ||||
| 2682 | return false; // r+i | ||||
| 2683 | if (N.getOperand(1).getOpcode() == PPCISD::Lo) | ||||
| 2684 | return false; // r+i | ||||
| 2685 | |||||
| 2686 | Base = N.getOperand(0); | ||||
| 2687 | Index = N.getOperand(1); | ||||
| 2688 | return true; | ||||
| 2689 | } else if (N.getOpcode() == ISD::OR) { | ||||
| 2690 | if (isIntS16Immediate(N.getOperand(1), Imm) && | ||||
| 2691 | (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) | ||||
| 2692 | return false; // r+i can fold it if we can. | ||||
| 2693 | |||||
| 2694 | // If this is an or of disjoint bitfields, we can codegen this as an add | ||||
| 2695 | // (for better address arithmetic) if the LHS and RHS of the OR are provably | ||||
| 2696 | // disjoint. | ||||
| 2697 | KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); | ||||
| 2698 | |||||
| 2699 | if (LHSKnown.Zero.getBoolValue()) { | ||||
| 2700 | KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); | ||||
| 2701 | // If all of the bits are known zero on the LHS or RHS, the add won't | ||||
| 2702 | // carry. | ||||
| 2703 | if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { | ||||
| 2704 | Base = N.getOperand(0); | ||||
| 2705 | Index = N.getOperand(1); | ||||
| 2706 | return true; | ||||
| 2707 | } | ||||
| 2708 | } | ||||
| 2709 | } | ||||
| 2710 | |||||
| 2711 | return false; | ||||
| 2712 | } | ||||
| 2713 | |||||
| 2714 | // If we happen to be doing an i64 load or store into a stack slot that has | ||||
| 2715 | // less than a 4-byte alignment, then the frame-index elimination may need to | ||||
| 2716 | // use an indexed load or store instruction (because the offset may not be a | ||||
| 2717 | // multiple of 4). The extra register needed to hold the offset comes from the | ||||
| 2718 | // register scavenger, and it is possible that the scavenger will need to use | ||||
| 2719 | // an emergency spill slot. As a result, we need to make sure that a spill slot | ||||
| 2720 | // is allocated when doing an i64 load/store into a less-than-4-byte-aligned | ||||
| 2721 | // stack slot. | ||||
| 2722 | static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { | ||||
| 2723 | // FIXME: This does not handle the LWA case. | ||||
| 2724 | if (VT != MVT::i64) | ||||
| 2725 | return; | ||||
| 2726 | |||||
| 2727 | // NOTE: We'll exclude negative FIs here, which come from argument | ||||
| 2728 | // lowering, because there are no known test cases triggering this problem | ||||
| 2729 | // using packed structures (or similar). We can remove this exclusion if | ||||
| 2730 | // we find such a test case. The reason why this is so test-case driven is | ||||
| 2731 | // because this entire 'fixup' is only to prevent crashes (from the | ||||
| 2732 | // register scavenger) on not-really-valid inputs. For example, if we have: | ||||
| 2733 | // %a = alloca i1 | ||||
| 2734 | // %b = bitcast i1* %a to i64* | ||||
| 2735 | // store i64* a, i64 b | ||||
| 2736 | // then the store should really be marked as 'align 1', but is not. If it | ||||
| 2737 | // were marked as 'align 1' then the indexed form would have been | ||||
| 2738 | // instruction-selected initially, and the problem this 'fixup' is preventing | ||||
| 2739 | // won't happen regardless. | ||||
| 2740 | if (FrameIdx < 0) | ||||
| 2741 | return; | ||||
| 2742 | |||||
| 2743 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 2744 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 2745 | |||||
| 2746 | if (MFI.getObjectAlign(FrameIdx) >= Align(4)) | ||||
| 2747 | return; | ||||
| 2748 | |||||
| 2749 | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | ||||
| 2750 | FuncInfo->setHasNonRISpills(); | ||||
| 2751 | } | ||||
| 2752 | |||||
| 2753 | /// Returns true if the address N can be represented by a base register plus | ||||
| 2754 | /// a signed 16-bit displacement [r+imm], and if it is not better | ||||
| 2755 | /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept | ||||
| 2756 | /// displacements that are multiples of that value. | ||||
| 2757 | bool PPCTargetLowering::SelectAddressRegImm( | ||||
| 2758 | SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, | ||||
| 2759 | MaybeAlign EncodingAlignment) const { | ||||
| 2760 | // FIXME dl should come from parent load or store, not from address | ||||
| 2761 | SDLoc dl(N); | ||||
| 2762 | |||||
| 2763 | // If we have a PC Relative target flag don't select as [reg+imm]. It will be | ||||
| 2764 | // a [pc+imm]. | ||||
| 2765 | if (SelectAddressPCRel(N, Base)) | ||||
| 2766 | return false; | ||||
| 2767 | |||||
| 2768 | // If this can be more profitably realized as r+r, fail. | ||||
| 2769 | if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) | ||||
| 2770 | return false; | ||||
| 2771 | |||||
| 2772 | if (N.getOpcode() == ISD::ADD) { | ||||
| 2773 | int16_t imm = 0; | ||||
| 2774 | if (isIntS16Immediate(N.getOperand(1), imm) && | ||||
| 2775 | (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { | ||||
| 2776 | Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); | ||||
| 2777 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { | ||||
| 2778 | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | ||||
| 2779 | fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); | ||||
| 2780 | } else { | ||||
| 2781 | Base = N.getOperand(0); | ||||
| 2782 | } | ||||
| 2783 | return true; // [r+i] | ||||
| 2784 | } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { | ||||
| 2785 | // Match LOAD (ADD (X, Lo(G))). | ||||
| 2786 | assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()(static_cast <bool> (!cast<ConstantSDNode>(N.getOperand (1).getOperand(1))->getZExtValue() && "Cannot handle constant offsets yet!" ) ? void (0) : __assert_fail ("!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() && \"Cannot handle constant offsets yet!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2787, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2787 | && "Cannot handle constant offsets yet!")(static_cast <bool> (!cast<ConstantSDNode>(N.getOperand (1).getOperand(1))->getZExtValue() && "Cannot handle constant offsets yet!" ) ? void (0) : __assert_fail ("!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() && \"Cannot handle constant offsets yet!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2787, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2788 | Disp = N.getOperand(1).getOperand(0); // The global address. | ||||
| 2789 | assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||(static_cast <bool> (Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode () == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable ) ? void (0) : __assert_fail ("Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2792, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2790 | Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||(static_cast <bool> (Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode () == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable ) ? void (0) : __assert_fail ("Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2792, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2791 | Disp.getOpcode() == ISD::TargetConstantPool ||(static_cast <bool> (Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode () == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable ) ? void (0) : __assert_fail ("Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2792, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2792 | Disp.getOpcode() == ISD::TargetJumpTable)(static_cast <bool> (Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode () == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable ) ? void (0) : __assert_fail ("Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 2792, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2793 | Base = N.getOperand(0); | ||||
| 2794 | return true; // [&g+r] | ||||
| 2795 | } | ||||
| 2796 | } else if (N.getOpcode() == ISD::OR) { | ||||
| 2797 | int16_t imm = 0; | ||||
| 2798 | if (isIntS16Immediate(N.getOperand(1), imm) && | ||||
| 2799 | (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { | ||||
| 2800 | // If this is an or of disjoint bitfields, we can codegen this as an add | ||||
| 2801 | // (for better address arithmetic) if the LHS and RHS of the OR are | ||||
| 2802 | // provably disjoint. | ||||
| 2803 | KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); | ||||
| 2804 | |||||
| 2805 | if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { | ||||
| 2806 | // If all of the bits are known zero on the LHS or RHS, the add won't | ||||
| 2807 | // carry. | ||||
| 2808 | if (FrameIndexSDNode *FI = | ||||
| 2809 | dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { | ||||
| 2810 | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | ||||
| 2811 | fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); | ||||
| 2812 | } else { | ||||
| 2813 | Base = N.getOperand(0); | ||||
| 2814 | } | ||||
| 2815 | Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); | ||||
| 2816 | return true; | ||||
| 2817 | } | ||||
| 2818 | } | ||||
| 2819 | } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | ||||
| 2820 | // Loading from a constant address. | ||||
| 2821 | |||||
| 2822 | // If this address fits entirely in a 16-bit sext immediate field, codegen | ||||
| 2823 | // this as "d, 0" | ||||
| 2824 | int16_t Imm; | ||||
| 2825 | if (isIntS16Immediate(CN, Imm) && | ||||
| 2826 | (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { | ||||
| 2827 | Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); | ||||
| 2828 | Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, | ||||
| 2829 | CN->getValueType(0)); | ||||
| 2830 | return true; | ||||
| 2831 | } | ||||
| 2832 | |||||
| 2833 | // Handle 32-bit sext immediates with LIS + addr mode. | ||||
| 2834 | if ((CN->getValueType(0) == MVT::i32 || | ||||
| 2835 | (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && | ||||
| 2836 | (!EncodingAlignment || | ||||
| 2837 | isAligned(*EncodingAlignment, CN->getZExtValue()))) { | ||||
| 2838 | int Addr = (int)CN->getZExtValue(); | ||||
| 2839 | |||||
| 2840 | // Otherwise, break this down into an LIS + disp. | ||||
| 2841 | Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); | ||||
| 2842 | |||||
| 2843 | Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, | ||||
| 2844 | MVT::i32); | ||||
| 2845 | unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; | ||||
| 2846 | Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); | ||||
| 2847 | return true; | ||||
| 2848 | } | ||||
| 2849 | } | ||||
| 2850 | |||||
| 2851 | Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); | ||||
| 2852 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { | ||||
| 2853 | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | ||||
| 2854 | fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); | ||||
| 2855 | } else | ||||
| 2856 | Base = N; | ||||
| 2857 | return true; // [r+0] | ||||
| 2858 | } | ||||
| 2859 | |||||
| 2860 | /// Similar to the 16-bit case but for instructions that take a 34-bit | ||||
| 2861 | /// displacement field (prefixed loads/stores). | ||||
| 2862 | bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, | ||||
| 2863 | SDValue &Base, | ||||
| 2864 | SelectionDAG &DAG) const { | ||||
| 2865 | // Only on 64-bit targets. | ||||
| 2866 | if (N.getValueType() != MVT::i64) | ||||
| 2867 | return false; | ||||
| 2868 | |||||
| 2869 | SDLoc dl(N); | ||||
| 2870 | int64_t Imm = 0; | ||||
| 2871 | |||||
| 2872 | if (N.getOpcode() == ISD::ADD) { | ||||
| 2873 | if (!isIntS34Immediate(N.getOperand(1), Imm)) | ||||
| 2874 | return false; | ||||
| 2875 | Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); | ||||
| 2876 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) | ||||
| 2877 | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | ||||
| 2878 | else | ||||
| 2879 | Base = N.getOperand(0); | ||||
| 2880 | return true; | ||||
| 2881 | } | ||||
| 2882 | |||||
| 2883 | if (N.getOpcode() == ISD::OR) { | ||||
| 2884 | if (!isIntS34Immediate(N.getOperand(1), Imm)) | ||||
| 2885 | return false; | ||||
| 2886 | // If this is an or of disjoint bitfields, we can codegen this as an add | ||||
| 2887 | // (for better address arithmetic) if the LHS and RHS of the OR are | ||||
| 2888 | // provably disjoint. | ||||
| 2889 | KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); | ||||
| 2890 | if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) | ||||
| 2891 | return false; | ||||
| 2892 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) | ||||
| 2893 | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | ||||
| 2894 | else | ||||
| 2895 | Base = N.getOperand(0); | ||||
| 2896 | Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); | ||||
| 2897 | return true; | ||||
| 2898 | } | ||||
| 2899 | |||||
| 2900 | if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. | ||||
| 2901 | Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); | ||||
| 2902 | Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); | ||||
| 2903 | return true; | ||||
| 2904 | } | ||||
| 2905 | |||||
| 2906 | return false; | ||||
| 2907 | } | ||||
| 2908 | |||||
| 2909 | /// SelectAddressRegRegOnly - Given the specified addressed, force it to be | ||||
| 2910 | /// represented as an indexed [r+r] operation. | ||||
| 2911 | bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, | ||||
| 2912 | SDValue &Index, | ||||
| 2913 | SelectionDAG &DAG) const { | ||||
| 2914 | // Check to see if we can easily represent this as an [r+r] address. This | ||||
| 2915 | // will fail if it thinks that the address is more profitably represented as | ||||
| 2916 | // reg+imm, e.g. where imm = 0. | ||||
| 2917 | if (SelectAddressRegReg(N, Base, Index, DAG)) | ||||
| 2918 | return true; | ||||
| 2919 | |||||
| 2920 | // If the address is the result of an add, we will utilize the fact that the | ||||
| 2921 | // address calculation includes an implicit add. However, we can reduce | ||||
| 2922 | // register pressure if we do not materialize a constant just for use as the | ||||
| 2923 | // index register. We only get rid of the add if it is not an add of a | ||||
| 2924 | // value and a 16-bit signed constant and both have a single use. | ||||
| 2925 | int16_t imm = 0; | ||||
| 2926 | if (N.getOpcode() == ISD::ADD && | ||||
| 2927 | (!isIntS16Immediate(N.getOperand(1), imm) || | ||||
| 2928 | !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { | ||||
| 2929 | Base = N.getOperand(0); | ||||
| 2930 | Index = N.getOperand(1); | ||||
| 2931 | return true; | ||||
| 2932 | } | ||||
| 2933 | |||||
| 2934 | // Otherwise, do it the hard way, using R0 as the base register. | ||||
| 2935 | Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, | ||||
| 2936 | N.getValueType()); | ||||
| 2937 | Index = N; | ||||
| 2938 | return true; | ||||
| 2939 | } | ||||
| 2940 | |||||
| 2941 | template <typename Ty> static bool isValidPCRelNode(SDValue N) { | ||||
| 2942 | Ty *PCRelCand = dyn_cast<Ty>(N); | ||||
| 2943 | return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); | ||||
| 2944 | } | ||||
| 2945 | |||||
| 2946 | /// Returns true if this address is a PC Relative address. | ||||
| 2947 | /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG | ||||
| 2948 | /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. | ||||
| 2949 | bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { | ||||
| 2950 | // This is a materialize PC Relative node. Always select this as PC Relative. | ||||
| 2951 | Base = N; | ||||
| 2952 | if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) | ||||
| 2953 | return true; | ||||
| 2954 | if (isValidPCRelNode<ConstantPoolSDNode>(N) || | ||||
| 2955 | isValidPCRelNode<GlobalAddressSDNode>(N) || | ||||
| 2956 | isValidPCRelNode<JumpTableSDNode>(N) || | ||||
| 2957 | isValidPCRelNode<BlockAddressSDNode>(N)) | ||||
| 2958 | return true; | ||||
| 2959 | return false; | ||||
| 2960 | } | ||||
| 2961 | |||||
| 2962 | /// Returns true if we should use a direct load into vector instruction | ||||
| 2963 | /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. | ||||
| 2964 | static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { | ||||
| 2965 | |||||
| 2966 | // If there are any other uses other than scalar to vector, then we should | ||||
| 2967 | // keep it as a scalar load -> direct move pattern to prevent multiple | ||||
| 2968 | // loads. | ||||
| 2969 | LoadSDNode *LD = dyn_cast<LoadSDNode>(N); | ||||
| 2970 | if (!LD) | ||||
| 2971 | return false; | ||||
| 2972 | |||||
| 2973 | EVT MemVT = LD->getMemoryVT(); | ||||
| 2974 | if (!MemVT.isSimple()) | ||||
| 2975 | return false; | ||||
| 2976 | switch(MemVT.getSimpleVT().SimpleTy) { | ||||
| 2977 | case MVT::i64: | ||||
| 2978 | break; | ||||
| 2979 | case MVT::i32: | ||||
| 2980 | if (!ST.hasP8Vector()) | ||||
| 2981 | return false; | ||||
| 2982 | break; | ||||
| 2983 | case MVT::i16: | ||||
| 2984 | case MVT::i8: | ||||
| 2985 | if (!ST.hasP9Vector()) | ||||
| 2986 | return false; | ||||
| 2987 | break; | ||||
| 2988 | default: | ||||
| 2989 | return false; | ||||
| 2990 | } | ||||
| 2991 | |||||
| 2992 | SDValue LoadedVal(N, 0); | ||||
| 2993 | if (!LoadedVal.hasOneUse()) | ||||
| 2994 | return false; | ||||
| 2995 | |||||
| 2996 | for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); | ||||
| 2997 | UI != UE; ++UI) | ||||
| 2998 | if (UI.getUse().get().getResNo() == 0 && | ||||
| 2999 | UI->getOpcode() != ISD::SCALAR_TO_VECTOR && | ||||
| 3000 | UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) | ||||
| 3001 | return false; | ||||
| 3002 | |||||
| 3003 | return true; | ||||
| 3004 | } | ||||
| 3005 | |||||
| 3006 | /// getPreIndexedAddressParts - returns true by value, base pointer and | ||||
| 3007 | /// offset pointer and addressing mode by reference if the node's address | ||||
| 3008 | /// can be legally represented as pre-indexed load / store address. | ||||
| 3009 | bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, | ||||
| 3010 | SDValue &Offset, | ||||
| 3011 | ISD::MemIndexedMode &AM, | ||||
| 3012 | SelectionDAG &DAG) const { | ||||
| 3013 | if (DisablePPCPreinc) return false; | ||||
| 3014 | |||||
| 3015 | bool isLoad = true; | ||||
| 3016 | SDValue Ptr; | ||||
| 3017 | EVT VT; | ||||
| 3018 | Align Alignment; | ||||
| 3019 | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | ||||
| 3020 | Ptr = LD->getBasePtr(); | ||||
| 3021 | VT = LD->getMemoryVT(); | ||||
| 3022 | Alignment = LD->getAlign(); | ||||
| 3023 | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | ||||
| 3024 | Ptr = ST->getBasePtr(); | ||||
| 3025 | VT = ST->getMemoryVT(); | ||||
| 3026 | Alignment = ST->getAlign(); | ||||
| 3027 | isLoad = false; | ||||
| 3028 | } else | ||||
| 3029 | return false; | ||||
| 3030 | |||||
| 3031 | // Do not generate pre-inc forms for specific loads that feed scalar_to_vector | ||||
| 3032 | // instructions because we can fold these into a more efficient instruction | ||||
| 3033 | // instead, (such as LXSD). | ||||
| 3034 | if (isLoad && usePartialVectorLoads(N, Subtarget)) { | ||||
| 3035 | return false; | ||||
| 3036 | } | ||||
| 3037 | |||||
| 3038 | // PowerPC doesn't have preinc load/store instructions for vectors | ||||
| 3039 | if (VT.isVector()) | ||||
| 3040 | return false; | ||||
| 3041 | |||||
| 3042 | if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { | ||||
| 3043 | // Common code will reject creating a pre-inc form if the base pointer | ||||
| 3044 | // is a frame index, or if N is a store and the base pointer is either | ||||
| 3045 | // the same as or a predecessor of the value being stored. Check for | ||||
| 3046 | // those situations here, and try with swapped Base/Offset instead. | ||||
| 3047 | bool Swap = false; | ||||
| 3048 | |||||
| 3049 | if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) | ||||
| 3050 | Swap = true; | ||||
| 3051 | else if (!isLoad) { | ||||
| 3052 | SDValue Val = cast<StoreSDNode>(N)->getValue(); | ||||
| 3053 | if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) | ||||
| 3054 | Swap = true; | ||||
| 3055 | } | ||||
| 3056 | |||||
| 3057 | if (Swap) | ||||
| 3058 | std::swap(Base, Offset); | ||||
| 3059 | |||||
| 3060 | AM = ISD::PRE_INC; | ||||
| 3061 | return true; | ||||
| 3062 | } | ||||
| 3063 | |||||
| 3064 | // LDU/STU can only handle immediates that are a multiple of 4. | ||||
| 3065 | if (VT != MVT::i64) { | ||||
| 3066 | if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, std::nullopt)) | ||||
| 3067 | return false; | ||||
| 3068 | } else { | ||||
| 3069 | // LDU/STU need an address with at least 4-byte alignment. | ||||
| 3070 | if (Alignment < Align(4)) | ||||
| 3071 | return false; | ||||
| 3072 | |||||
| 3073 | if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) | ||||
| 3074 | return false; | ||||
| 3075 | } | ||||
| 3076 | |||||
| 3077 | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | ||||
| 3078 | // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of | ||||
| 3079 | // sext i32 to i64 when addr mode is r+i. | ||||
| 3080 | if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && | ||||
| 3081 | LD->getExtensionType() == ISD::SEXTLOAD && | ||||
| 3082 | isa<ConstantSDNode>(Offset)) | ||||
| 3083 | return false; | ||||
| 3084 | } | ||||
| 3085 | |||||
| 3086 | AM = ISD::PRE_INC; | ||||
| 3087 | return true; | ||||
| 3088 | } | ||||
| 3089 | |||||
| 3090 | //===----------------------------------------------------------------------===// | ||||
| 3091 | // LowerOperation implementation | ||||
| 3092 | //===----------------------------------------------------------------------===// | ||||
| 3093 | |||||
| 3094 | /// Return true if we should reference labels using a PICBase, set the HiOpFlags | ||||
| 3095 | /// and LoOpFlags to the target MO flags. | ||||
| 3096 | static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, | ||||
| 3097 | unsigned &HiOpFlags, unsigned &LoOpFlags, | ||||
| 3098 | const GlobalValue *GV = nullptr) { | ||||
| 3099 | HiOpFlags = PPCII::MO_HA; | ||||
| 3100 | LoOpFlags = PPCII::MO_LO; | ||||
| 3101 | |||||
| 3102 | // Don't use the pic base if not in PIC relocation model. | ||||
| 3103 | if (IsPIC) { | ||||
| 3104 | HiOpFlags |= PPCII::MO_PIC_FLAG; | ||||
| 3105 | LoOpFlags |= PPCII::MO_PIC_FLAG; | ||||
| 3106 | } | ||||
| 3107 | } | ||||
| 3108 | |||||
| 3109 | static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, | ||||
| 3110 | SelectionDAG &DAG) { | ||||
| 3111 | SDLoc DL(HiPart); | ||||
| 3112 | EVT PtrVT = HiPart.getValueType(); | ||||
| 3113 | SDValue Zero = DAG.getConstant(0, DL, PtrVT); | ||||
| 3114 | |||||
| 3115 | SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); | ||||
| 3116 | SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); | ||||
| 3117 | |||||
| 3118 | // With PIC, the first instruction is actually "GR+hi(&G)". | ||||
| 3119 | if (isPIC) | ||||
| 3120 | Hi = DAG.getNode(ISD::ADD, DL, PtrVT, | ||||
| 3121 | DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); | ||||
| 3122 | |||||
| 3123 | // Generate non-pic code that has direct accesses to the constant pool. | ||||
| 3124 | // The address of the global is just (hi(&g)+lo(&g)). | ||||
| 3125 | return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); | ||||
| 3126 | } | ||||
| 3127 | |||||
| 3128 | static void setUsesTOCBasePtr(MachineFunction &MF) { | ||||
| 3129 | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | ||||
| 3130 | FuncInfo->setUsesTOCBasePtr(); | ||||
| 3131 | } | ||||
| 3132 | |||||
| 3133 | static void setUsesTOCBasePtr(SelectionDAG &DAG) { | ||||
| 3134 | setUsesTOCBasePtr(DAG.getMachineFunction()); | ||||
| 3135 | } | ||||
| 3136 | |||||
| 3137 | SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, | ||||
| 3138 | SDValue GA) const { | ||||
| 3139 | const bool Is64Bit = Subtarget.isPPC64(); | ||||
| 3140 | EVT VT = Is64Bit ? MVT::i64 : MVT::i32; | ||||
| 3141 | SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) | ||||
| 3142 | : Subtarget.isAIXABI() | ||||
| 3143 | ? DAG.getRegister(PPC::R2, VT) | ||||
| 3144 | : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); | ||||
| 3145 | SDValue Ops[] = { GA, Reg }; | ||||
| 3146 | return DAG.getMemIntrinsicNode( | ||||
| 3147 | PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, | ||||
| 3148 | MachinePointerInfo::getGOT(DAG.getMachineFunction()), std::nullopt, | ||||
| 3149 | MachineMemOperand::MOLoad); | ||||
| 3150 | } | ||||
| 3151 | |||||
| 3152 | SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, | ||||
| 3153 | SelectionDAG &DAG) const { | ||||
| 3154 | EVT PtrVT = Op.getValueType(); | ||||
| 3155 | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | ||||
| 3156 | const Constant *C = CP->getConstVal(); | ||||
| 3157 | |||||
| 3158 | // 64-bit SVR4 ABI and AIX ABI code are always position-independent. | ||||
| 3159 | // The actual address of the GlobalValue is stored in the TOC. | ||||
| 3160 | if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { | ||||
| 3161 | if (Subtarget.isUsingPCRelativeCalls()) { | ||||
| 3162 | SDLoc DL(CP); | ||||
| 3163 | EVT Ty = getPointerTy(DAG.getDataLayout()); | ||||
| 3164 | SDValue ConstPool = DAG.getTargetConstantPool( | ||||
| 3165 | C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); | ||||
| 3166 | return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); | ||||
| 3167 | } | ||||
| 3168 | setUsesTOCBasePtr(DAG); | ||||
| 3169 | SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); | ||||
| 3170 | return getTOCEntry(DAG, SDLoc(CP), GA); | ||||
| 3171 | } | ||||
| 3172 | |||||
| 3173 | unsigned MOHiFlag, MOLoFlag; | ||||
| 3174 | bool IsPIC = isPositionIndependent(); | ||||
| 3175 | getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); | ||||
| 3176 | |||||
| 3177 | if (IsPIC && Subtarget.isSVR4ABI()) { | ||||
| 3178 | SDValue GA = | ||||
| 3179 | DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); | ||||
| 3180 | return getTOCEntry(DAG, SDLoc(CP), GA); | ||||
| 3181 | } | ||||
| 3182 | |||||
| 3183 | SDValue CPIHi = | ||||
| 3184 | DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); | ||||
| 3185 | SDValue CPILo = | ||||
| 3186 | DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); | ||||
| 3187 | return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); | ||||
| 3188 | } | ||||
| 3189 | |||||
| 3190 | // For 64-bit PowerPC, prefer the more compact relative encodings. | ||||
| 3191 | // This trades 32 bits per jump table entry for one or two instructions | ||||
| 3192 | // on the jump site. | ||||
| 3193 | unsigned PPCTargetLowering::getJumpTableEncoding() const { | ||||
| 3194 | if (isJumpTableRelative()) | ||||
| 3195 | return MachineJumpTableInfo::EK_LabelDifference32; | ||||
| 3196 | |||||
| 3197 | return TargetLowering::getJumpTableEncoding(); | ||||
| 3198 | } | ||||
| 3199 | |||||
| 3200 | bool PPCTargetLowering::isJumpTableRelative() const { | ||||
| 3201 | if (UseAbsoluteJumpTables) | ||||
| 3202 | return false; | ||||
| 3203 | if (Subtarget.isPPC64() || Subtarget.isAIXABI()) | ||||
| 3204 | return true; | ||||
| 3205 | return TargetLowering::isJumpTableRelative(); | ||||
| 3206 | } | ||||
| 3207 | |||||
| 3208 | SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, | ||||
| 3209 | SelectionDAG &DAG) const { | ||||
| 3210 | if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) | ||||
| 3211 | return TargetLowering::getPICJumpTableRelocBase(Table, DAG); | ||||
| 3212 | |||||
| 3213 | switch (getTargetMachine().getCodeModel()) { | ||||
| 3214 | case CodeModel::Small: | ||||
| 3215 | case CodeModel::Medium: | ||||
| 3216 | return TargetLowering::getPICJumpTableRelocBase(Table, DAG); | ||||
| 3217 | default: | ||||
| 3218 | return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), | ||||
| 3219 | getPointerTy(DAG.getDataLayout())); | ||||
| 3220 | } | ||||
| 3221 | } | ||||
| 3222 | |||||
| 3223 | const MCExpr * | ||||
| 3224 | PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, | ||||
| 3225 | unsigned JTI, | ||||
| 3226 | MCContext &Ctx) const { | ||||
| 3227 | if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) | ||||
| 3228 | return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); | ||||
| 3229 | |||||
| 3230 | switch (getTargetMachine().getCodeModel()) { | ||||
| 3231 | case CodeModel::Small: | ||||
| 3232 | case CodeModel::Medium: | ||||
| 3233 | return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); | ||||
| 3234 | default: | ||||
| 3235 | return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); | ||||
| 3236 | } | ||||
| 3237 | } | ||||
| 3238 | |||||
| 3239 | SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { | ||||
| 3240 | EVT PtrVT = Op.getValueType(); | ||||
| 3241 | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | ||||
| 3242 | |||||
| 3243 | // isUsingPCRelativeCalls() returns true when PCRelative is enabled | ||||
| 3244 | if (Subtarget.isUsingPCRelativeCalls()) { | ||||
| 3245 | SDLoc DL(JT); | ||||
| 3246 | EVT Ty = getPointerTy(DAG.getDataLayout()); | ||||
| 3247 | SDValue GA = | ||||
| 3248 | DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); | ||||
| 3249 | SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); | ||||
| 3250 | return MatAddr; | ||||
| 3251 | } | ||||
| 3252 | |||||
| 3253 | // 64-bit SVR4 ABI and AIX ABI code are always position-independent. | ||||
| 3254 | // The actual address of the GlobalValue is stored in the TOC. | ||||
| 3255 | if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { | ||||
| 3256 | setUsesTOCBasePtr(DAG); | ||||
| 3257 | SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); | ||||
| 3258 | return getTOCEntry(DAG, SDLoc(JT), GA); | ||||
| 3259 | } | ||||
| 3260 | |||||
| 3261 | unsigned MOHiFlag, MOLoFlag; | ||||
| 3262 | bool IsPIC = isPositionIndependent(); | ||||
| 3263 | getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); | ||||
| 3264 | |||||
| 3265 | if (IsPIC && Subtarget.isSVR4ABI()) { | ||||
| 3266 | SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, | ||||
| 3267 | PPCII::MO_PIC_FLAG); | ||||
| 3268 | return getTOCEntry(DAG, SDLoc(GA), GA); | ||||
| 3269 | } | ||||
| 3270 | |||||
| 3271 | SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); | ||||
| 3272 | SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); | ||||
| 3273 | return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); | ||||
| 3274 | } | ||||
| 3275 | |||||
| 3276 | SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, | ||||
| 3277 | SelectionDAG &DAG) const { | ||||
| 3278 | EVT PtrVT = Op.getValueType(); | ||||
| 3279 | BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); | ||||
| 3280 | const BlockAddress *BA = BASDN->getBlockAddress(); | ||||
| 3281 | |||||
| 3282 | // isUsingPCRelativeCalls() returns true when PCRelative is enabled | ||||
| 3283 | if (Subtarget.isUsingPCRelativeCalls()) { | ||||
| 3284 | SDLoc DL(BASDN); | ||||
| 3285 | EVT Ty = getPointerTy(DAG.getDataLayout()); | ||||
| 3286 | SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), | ||||
| 3287 | PPCII::MO_PCREL_FLAG); | ||||
| 3288 | SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); | ||||
| 3289 | return MatAddr; | ||||
| 3290 | } | ||||
| 3291 | |||||
| 3292 | // 64-bit SVR4 ABI and AIX ABI code are always position-independent. | ||||
| 3293 | // The actual BlockAddress is stored in the TOC. | ||||
| 3294 | if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { | ||||
| 3295 | setUsesTOCBasePtr(DAG); | ||||
| 3296 | SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); | ||||
| 3297 | return getTOCEntry(DAG, SDLoc(BASDN), GA); | ||||
| 3298 | } | ||||
| 3299 | |||||
| 3300 | // 32-bit position-independent ELF stores the BlockAddress in the .got. | ||||
| 3301 | if (Subtarget.is32BitELFABI() && isPositionIndependent()) | ||||
| 3302 | return getTOCEntry( | ||||
| 3303 | DAG, SDLoc(BASDN), | ||||
| 3304 | DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); | ||||
| 3305 | |||||
| 3306 | unsigned MOHiFlag, MOLoFlag; | ||||
| 3307 | bool IsPIC = isPositionIndependent(); | ||||
| 3308 | getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); | ||||
| 3309 | SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); | ||||
| 3310 | SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); | ||||
| 3311 | return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); | ||||
| 3312 | } | ||||
| 3313 | |||||
| 3314 | SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, | ||||
| 3315 | SelectionDAG &DAG) const { | ||||
| 3316 | if (Subtarget.isAIXABI()) | ||||
| 3317 | return LowerGlobalTLSAddressAIX(Op, DAG); | ||||
| 3318 | |||||
| 3319 | return LowerGlobalTLSAddressLinux(Op, DAG); | ||||
| 3320 | } | ||||
| 3321 | |||||
| 3322 | SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, | ||||
| 3323 | SelectionDAG &DAG) const { | ||||
| 3324 | GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | ||||
| 3325 | |||||
| 3326 | if (DAG.getTarget().useEmulatedTLS()) | ||||
| 3327 | report_fatal_error("Emulated TLS is not yet supported on AIX"); | ||||
| 3328 | |||||
| 3329 | SDLoc dl(GA); | ||||
| 3330 | const GlobalValue *GV = GA->getGlobal(); | ||||
| 3331 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 3332 | |||||
| 3333 | // The general-dynamic model is the only access model supported for now, so | ||||
| 3334 | // all the GlobalTLSAddress nodes are lowered with this model. | ||||
| 3335 | // We need to generate two TOC entries, one for the variable offset, one for | ||||
| 3336 | // the region handle. The global address for the TOC entry of the region | ||||
| 3337 | // handle is created with the MO_TLSGDM_FLAG flag and the global address | ||||
| 3338 | // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. | ||||
| 3339 | SDValue VariableOffsetTGA = | ||||
| 3340 | DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); | ||||
| 3341 | SDValue RegionHandleTGA = | ||||
| 3342 | DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); | ||||
| 3343 | SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); | ||||
| 3344 | SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); | ||||
| 3345 | return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, | ||||
| 3346 | RegionHandle); | ||||
| 3347 | } | ||||
| 3348 | |||||
| 3349 | SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, | ||||
| 3350 | SelectionDAG &DAG) const { | ||||
| 3351 | // FIXME: TLS addresses currently use medium model code sequences, | ||||
| 3352 | // which is the most useful form. Eventually support for small and | ||||
| 3353 | // large models could be added if users need it, at the cost of | ||||
| 3354 | // additional complexity. | ||||
| 3355 | GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | ||||
| 3356 | if (DAG.getTarget().useEmulatedTLS()) | ||||
| 3357 | return LowerToTLSEmulatedModel(GA, DAG); | ||||
| 3358 | |||||
| 3359 | SDLoc dl(GA); | ||||
| 3360 | const GlobalValue *GV = GA->getGlobal(); | ||||
| 3361 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 3362 | bool is64bit = Subtarget.isPPC64(); | ||||
| 3363 | const Module *M = DAG.getMachineFunction().getFunction().getParent(); | ||||
| 3364 | PICLevel::Level picLevel = M->getPICLevel(); | ||||
| 3365 | |||||
| 3366 | const TargetMachine &TM = getTargetMachine(); | ||||
| 3367 | TLSModel::Model Model = TM.getTLSModel(GV); | ||||
| 3368 | |||||
| 3369 | if (Model == TLSModel::LocalExec) { | ||||
| 3370 | if (Subtarget.isUsingPCRelativeCalls()) { | ||||
| 3371 | SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); | ||||
| 3372 | SDValue TGA = DAG.getTargetGlobalAddress( | ||||
| 3373 | GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); | ||||
| 3374 | SDValue MatAddr = | ||||
| 3375 | DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); | ||||
| 3376 | return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); | ||||
| 3377 | } | ||||
| 3378 | |||||
| 3379 | SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, | ||||
| 3380 | PPCII::MO_TPREL_HA); | ||||
| 3381 | SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, | ||||
| 3382 | PPCII::MO_TPREL_LO); | ||||
| 3383 | SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) | ||||
| 3384 | : DAG.getRegister(PPC::R2, MVT::i32); | ||||
| 3385 | |||||
| 3386 | SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); | ||||
| 3387 | return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); | ||||
| 3388 | } | ||||
| 3389 | |||||
| 3390 | if (Model == TLSModel::InitialExec) { | ||||
| 3391 | bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); | ||||
| 3392 | SDValue TGA = DAG.getTargetGlobalAddress( | ||||
| 3393 | GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); | ||||
| 3394 | SDValue TGATLS = DAG.getTargetGlobalAddress( | ||||
| 3395 | GV, dl, PtrVT, 0, | ||||
| 3396 | IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); | ||||
| 3397 | SDValue TPOffset; | ||||
| 3398 | if (IsPCRel) { | ||||
| 3399 | SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); | ||||
| 3400 | TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, | ||||
| 3401 | MachinePointerInfo()); | ||||
| 3402 | } else { | ||||
| 3403 | SDValue GOTPtr; | ||||
| 3404 | if (is64bit) { | ||||
| 3405 | setUsesTOCBasePtr(DAG); | ||||
| 3406 | SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); | ||||
| 3407 | GOTPtr = | ||||
| 3408 | DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); | ||||
| 3409 | } else { | ||||
| 3410 | if (!TM.isPositionIndependent()) | ||||
| 3411 | GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); | ||||
| 3412 | else if (picLevel == PICLevel::SmallPIC) | ||||
| 3413 | GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); | ||||
| 3414 | else | ||||
| 3415 | GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); | ||||
| 3416 | } | ||||
| 3417 | TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); | ||||
| 3418 | } | ||||
| 3419 | return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); | ||||
| 3420 | } | ||||
| 3421 | |||||
| 3422 | if (Model == TLSModel::GeneralDynamic) { | ||||
| 3423 | if (Subtarget.isUsingPCRelativeCalls()) { | ||||
| 3424 | SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, | ||||
| 3425 | PPCII::MO_GOT_TLSGD_PCREL_FLAG); | ||||
| 3426 | return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); | ||||
| 3427 | } | ||||
| 3428 | |||||
| 3429 | SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); | ||||
| 3430 | SDValue GOTPtr; | ||||
| 3431 | if (is64bit) { | ||||
| 3432 | setUsesTOCBasePtr(DAG); | ||||
| 3433 | SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); | ||||
| 3434 | GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, | ||||
| 3435 | GOTReg, TGA); | ||||
| 3436 | } else { | ||||
| 3437 | if (picLevel == PICLevel::SmallPIC) | ||||
| 3438 | GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); | ||||
| 3439 | else | ||||
| 3440 | GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); | ||||
| 3441 | } | ||||
| 3442 | return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, | ||||
| 3443 | GOTPtr, TGA, TGA); | ||||
| 3444 | } | ||||
| 3445 | |||||
| 3446 | if (Model == TLSModel::LocalDynamic) { | ||||
| 3447 | if (Subtarget.isUsingPCRelativeCalls()) { | ||||
| 3448 | SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, | ||||
| 3449 | PPCII::MO_GOT_TLSLD_PCREL_FLAG); | ||||
| 3450 | SDValue MatPCRel = | ||||
| 3451 | DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); | ||||
| 3452 | return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); | ||||
| 3453 | } | ||||
| 3454 | |||||
| 3455 | SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); | ||||
| 3456 | SDValue GOTPtr; | ||||
| 3457 | if (is64bit) { | ||||
| 3458 | setUsesTOCBasePtr(DAG); | ||||
| 3459 | SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); | ||||
| 3460 | GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, | ||||
| 3461 | GOTReg, TGA); | ||||
| 3462 | } else { | ||||
| 3463 | if (picLevel == PICLevel::SmallPIC) | ||||
| 3464 | GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); | ||||
| 3465 | else | ||||
| 3466 | GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); | ||||
| 3467 | } | ||||
| 3468 | SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, | ||||
| 3469 | PtrVT, GOTPtr, TGA, TGA); | ||||
| 3470 | SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, | ||||
| 3471 | PtrVT, TLSAddr, TGA); | ||||
| 3472 | return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); | ||||
| 3473 | } | ||||
| 3474 | |||||
| 3475 | llvm_unreachable("Unknown TLS model!")::llvm::llvm_unreachable_internal("Unknown TLS model!", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 3475); | ||||
| 3476 | } | ||||
| 3477 | |||||
| 3478 | SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, | ||||
| 3479 | SelectionDAG &DAG) const { | ||||
| 3480 | EVT PtrVT = Op.getValueType(); | ||||
| 3481 | GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); | ||||
| 3482 | SDLoc DL(GSDN); | ||||
| 3483 | const GlobalValue *GV = GSDN->getGlobal(); | ||||
| 3484 | |||||
| 3485 | // 64-bit SVR4 ABI & AIX ABI code is always position-independent. | ||||
| 3486 | // The actual address of the GlobalValue is stored in the TOC. | ||||
| 3487 | if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { | ||||
| 3488 | if (Subtarget.isUsingPCRelativeCalls()) { | ||||
| 3489 | EVT Ty = getPointerTy(DAG.getDataLayout()); | ||||
| 3490 | if (isAccessedAsGotIndirect(Op)) { | ||||
| 3491 | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), | ||||
| 3492 | PPCII::MO_PCREL_FLAG | | ||||
| 3493 | PPCII::MO_GOT_FLAG); | ||||
| 3494 | SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); | ||||
| 3495 | SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, | ||||
| 3496 | MachinePointerInfo()); | ||||
| 3497 | return Load; | ||||
| 3498 | } else { | ||||
| 3499 | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), | ||||
| 3500 | PPCII::MO_PCREL_FLAG); | ||||
| 3501 | return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); | ||||
| 3502 | } | ||||
| 3503 | } | ||||
| 3504 | setUsesTOCBasePtr(DAG); | ||||
| 3505 | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); | ||||
| 3506 | return getTOCEntry(DAG, DL, GA); | ||||
| 3507 | } | ||||
| 3508 | |||||
| 3509 | unsigned MOHiFlag, MOLoFlag; | ||||
| 3510 | bool IsPIC = isPositionIndependent(); | ||||
| 3511 | getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); | ||||
| 3512 | |||||
| 3513 | if (IsPIC && Subtarget.isSVR4ABI()) { | ||||
| 3514 | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, | ||||
| 3515 | GSDN->getOffset(), | ||||
| 3516 | PPCII::MO_PIC_FLAG); | ||||
| 3517 | return getTOCEntry(DAG, DL, GA); | ||||
| 3518 | } | ||||
| 3519 | |||||
| 3520 | SDValue GAHi = | ||||
| 3521 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); | ||||
| 3522 | SDValue GALo = | ||||
| 3523 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); | ||||
| 3524 | |||||
| 3525 | return LowerLabelRef(GAHi, GALo, IsPIC, DAG); | ||||
| 3526 | } | ||||
| 3527 | |||||
| 3528 | SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { | ||||
| 3529 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 3530 | ISD::CondCode CC = | ||||
| 3531 | cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); | ||||
| 3532 | SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); | ||||
| 3533 | SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); | ||||
| 3534 | SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); | ||||
| 3535 | EVT LHSVT = LHS.getValueType(); | ||||
| 3536 | SDLoc dl(Op); | ||||
| 3537 | |||||
| 3538 | // Soften the setcc with libcall if it is fp128. | ||||
| 3539 | if (LHSVT == MVT::f128) { | ||||
| 3540 | assert(!Subtarget.hasP9Vector() &&(static_cast <bool> (!Subtarget.hasP9Vector() && "SETCC for f128 is already legal under Power9!") ? void (0) : __assert_fail ("!Subtarget.hasP9Vector() && \"SETCC for f128 is already legal under Power9!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 3541, __extension__ __PRETTY_FUNCTION__)) | ||||
| 3541 | "SETCC for f128 is already legal under Power9!")(static_cast <bool> (!Subtarget.hasP9Vector() && "SETCC for f128 is already legal under Power9!") ? void (0) : __assert_fail ("!Subtarget.hasP9Vector() && \"SETCC for f128 is already legal under Power9!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 3541, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3542 | softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, | ||||
| 3543 | Op->getOpcode() == ISD::STRICT_FSETCCS); | ||||
| 3544 | if (RHS.getNode()) | ||||
| 3545 | LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, | ||||
| 3546 | DAG.getCondCode(CC)); | ||||
| 3547 | if (IsStrict) | ||||
| 3548 | return DAG.getMergeValues({LHS, Chain}, dl); | ||||
| 3549 | return LHS; | ||||
| 3550 | } | ||||
| 3551 | |||||
| 3552 | assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!")(static_cast <bool> (!IsStrict && "Don't know how to handle STRICT_FSETCC!" ) ? void (0) : __assert_fail ("!IsStrict && \"Don't know how to handle STRICT_FSETCC!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 3552, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3553 | |||||
| 3554 | if (Op.getValueType() == MVT::v2i64) { | ||||
| 3555 | // When the operands themselves are v2i64 values, we need to do something | ||||
| 3556 | // special because VSX has no underlying comparison operations for these. | ||||
| 3557 | if (LHS.getValueType() == MVT::v2i64) { | ||||
| 3558 | // Equality can be handled by casting to the legal type for Altivec | ||||
| 3559 | // comparisons, everything else needs to be expanded. | ||||
| 3560 | if (CC != ISD::SETEQ && CC != ISD::SETNE) | ||||
| 3561 | return SDValue(); | ||||
| 3562 | SDValue SetCC32 = DAG.getSetCC( | ||||
| 3563 | dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), | ||||
| 3564 | DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); | ||||
| 3565 | int ShuffV[] = {1, 0, 3, 2}; | ||||
| 3566 | SDValue Shuff = | ||||
| 3567 | DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); | ||||
| 3568 | return DAG.getBitcast(MVT::v2i64, | ||||
| 3569 | DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, | ||||
| 3570 | dl, MVT::v4i32, Shuff, SetCC32)); | ||||
| 3571 | } | ||||
| 3572 | |||||
| 3573 | // We handle most of these in the usual way. | ||||
| 3574 | return Op; | ||||
| 3575 | } | ||||
| 3576 | |||||
| 3577 | // If we're comparing for equality to zero, expose the fact that this is | ||||
| 3578 | // implemented as a ctlz/srl pair on ppc, so that the dag combiner can | ||||
| 3579 | // fold the new nodes. | ||||
| 3580 | if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) | ||||
| 3581 | return V; | ||||
| 3582 | |||||
| 3583 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { | ||||
| 3584 | // Leave comparisons against 0 and -1 alone for now, since they're usually | ||||
| 3585 | // optimized. FIXME: revisit this when we can custom lower all setcc | ||||
| 3586 | // optimizations. | ||||
| 3587 | if (C->isAllOnes() || C->isZero()) | ||||
| 3588 | return SDValue(); | ||||
| 3589 | } | ||||
| 3590 | |||||
| 3591 | // If we have an integer seteq/setne, turn it into a compare against zero | ||||
| 3592 | // by xor'ing the rhs with the lhs, which is faster than setting a | ||||
| 3593 | // condition register, reading it back out, and masking the correct bit. The | ||||
| 3594 | // normal approach here uses sub to do this instead of xor. Using xor exposes | ||||
| 3595 | // the result to other bit-twiddling opportunities. | ||||
| 3596 | if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { | ||||
| 3597 | EVT VT = Op.getValueType(); | ||||
| 3598 | SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); | ||||
| 3599 | return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); | ||||
| 3600 | } | ||||
| 3601 | return SDValue(); | ||||
| 3602 | } | ||||
| 3603 | |||||
| 3604 | SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { | ||||
| 3605 | SDNode *Node = Op.getNode(); | ||||
| 3606 | EVT VT = Node->getValueType(0); | ||||
| 3607 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 3608 | SDValue InChain = Node->getOperand(0); | ||||
| 3609 | SDValue VAListPtr = Node->getOperand(1); | ||||
| 3610 | const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); | ||||
| 3611 | SDLoc dl(Node); | ||||
| 3612 | |||||
| 3613 | assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only")(static_cast <bool> (!Subtarget.isPPC64() && "LowerVAARG is PPC32 only" ) ? void (0) : __assert_fail ("!Subtarget.isPPC64() && \"LowerVAARG is PPC32 only\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 3613, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3614 | |||||
| 3615 | // gpr_index | ||||
| 3616 | SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, | ||||
| 3617 | VAListPtr, MachinePointerInfo(SV), MVT::i8); | ||||
| 3618 | InChain = GprIndex.getValue(1); | ||||
| 3619 | |||||
| 3620 | if (VT == MVT::i64) { | ||||
| 3621 | // Check if GprIndex is even | ||||
| 3622 | SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, | ||||
| 3623 | DAG.getConstant(1, dl, MVT::i32)); | ||||
| 3624 | SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, | ||||
| 3625 | DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); | ||||
| 3626 | SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, | ||||
| 3627 | DAG.getConstant(1, dl, MVT::i32)); | ||||
| 3628 | // Align GprIndex to be even if it isn't | ||||
| 3629 | GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, | ||||
| 3630 | GprIndex); | ||||
| 3631 | } | ||||
| 3632 | |||||
| 3633 | // fpr index is 1 byte after gpr | ||||
| 3634 | SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, | ||||
| 3635 | DAG.getConstant(1, dl, MVT::i32)); | ||||
| 3636 | |||||
| 3637 | // fpr | ||||
| 3638 | SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, | ||||
| 3639 | FprPtr, MachinePointerInfo(SV), MVT::i8); | ||||
| 3640 | InChain = FprIndex.getValue(1); | ||||
| 3641 | |||||
| 3642 | SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, | ||||
| 3643 | DAG.getConstant(8, dl, MVT::i32)); | ||||
| 3644 | |||||
| 3645 | SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, | ||||
| 3646 | DAG.getConstant(4, dl, MVT::i32)); | ||||
| 3647 | |||||
| 3648 | // areas | ||||
| 3649 | SDValue OverflowArea = | ||||
| 3650 | DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); | ||||
| 3651 | InChain = OverflowArea.getValue(1); | ||||
| 3652 | |||||
| 3653 | SDValue RegSaveArea = | ||||
| 3654 | DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); | ||||
| 3655 | InChain = RegSaveArea.getValue(1); | ||||
| 3656 | |||||
| 3657 | // select overflow_area if index > 8 | ||||
| 3658 | SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, | ||||
| 3659 | DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); | ||||
| 3660 | |||||
| 3661 | // adjustment constant gpr_index * 4/8 | ||||
| 3662 | SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, | ||||
| 3663 | VT.isInteger() ? GprIndex : FprIndex, | ||||
| 3664 | DAG.getConstant(VT.isInteger() ? 4 : 8, dl, | ||||
| 3665 | MVT::i32)); | ||||
| 3666 | |||||
| 3667 | // OurReg = RegSaveArea + RegConstant | ||||
| 3668 | SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, | ||||
| 3669 | RegConstant); | ||||
| 3670 | |||||
| 3671 | // Floating types are 32 bytes into RegSaveArea | ||||
| 3672 | if (VT.isFloatingPoint()) | ||||
| 3673 | OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, | ||||
| 3674 | DAG.getConstant(32, dl, MVT::i32)); | ||||
| 3675 | |||||
| 3676 | // increase {f,g}pr_index by 1 (or 2 if VT is i64) | ||||
| 3677 | SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, | ||||
| 3678 | VT.isInteger() ? GprIndex : FprIndex, | ||||
| 3679 | DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, | ||||
| 3680 | MVT::i32)); | ||||
| 3681 | |||||
| 3682 | InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, | ||||
| 3683 | VT.isInteger() ? VAListPtr : FprPtr, | ||||
| 3684 | MachinePointerInfo(SV), MVT::i8); | ||||
| 3685 | |||||
| 3686 | // determine if we should load from reg_save_area or overflow_area | ||||
| 3687 | SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); | ||||
| 3688 | |||||
| 3689 | // increase overflow_area by 4/8 if gpr/fpr > 8 | ||||
| 3690 | SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, | ||||
| 3691 | DAG.getConstant(VT.isInteger() ? 4 : 8, | ||||
| 3692 | dl, MVT::i32)); | ||||
| 3693 | |||||
| 3694 | OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, | ||||
| 3695 | OverflowAreaPlusN); | ||||
| 3696 | |||||
| 3697 | InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, | ||||
| 3698 | MachinePointerInfo(), MVT::i32); | ||||
| 3699 | |||||
| 3700 | return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); | ||||
| 3701 | } | ||||
| 3702 | |||||
| 3703 | SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { | ||||
| 3704 | assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only")(static_cast <bool> (!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only" ) ? void (0) : __assert_fail ("!Subtarget.isPPC64() && \"LowerVACOPY is PPC32 only\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 3704, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3705 | |||||
| 3706 | // We have to copy the entire va_list struct: | ||||
| 3707 | // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte | ||||
| 3708 | return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), | ||||
| 3709 | DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), | ||||
| 3710 | false, true, false, MachinePointerInfo(), | ||||
| 3711 | MachinePointerInfo()); | ||||
| 3712 | } | ||||
| 3713 | |||||
| 3714 | SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, | ||||
| 3715 | SelectionDAG &DAG) const { | ||||
| 3716 | if (Subtarget.isAIXABI()) | ||||
| 3717 | report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); | ||||
| 3718 | |||||
| 3719 | return Op.getOperand(0); | ||||
| 3720 | } | ||||
| 3721 | |||||
| 3722 | SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { | ||||
| 3723 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 3724 | PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); | ||||
| 3725 | |||||
| 3726 | assert((Op.getOpcode() == ISD::INLINEASM ||(static_cast <bool> ((Op.getOpcode() == ISD::INLINEASM || Op.getOpcode() == ISD::INLINEASM_BR) && "Expecting Inline ASM node." ) ? void (0) : __assert_fail ("(Op.getOpcode() == ISD::INLINEASM || Op.getOpcode() == ISD::INLINEASM_BR) && \"Expecting Inline ASM node.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 3728, __extension__ __PRETTY_FUNCTION__)) | ||||
| 3727 | Op.getOpcode() == ISD::INLINEASM_BR) &&(static_cast <bool> ((Op.getOpcode() == ISD::INLINEASM || Op.getOpcode() == ISD::INLINEASM_BR) && "Expecting Inline ASM node." ) ? void (0) : __assert_fail ("(Op.getOpcode() == ISD::INLINEASM || Op.getOpcode() == ISD::INLINEASM_BR) && \"Expecting Inline ASM node.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 3728, __extension__ __PRETTY_FUNCTION__)) | ||||
| 3728 | "Expecting Inline ASM node.")(static_cast <bool> ((Op.getOpcode() == ISD::INLINEASM || Op.getOpcode() == ISD::INLINEASM_BR) && "Expecting Inline ASM node." ) ? void (0) : __assert_fail ("(Op.getOpcode() == ISD::INLINEASM || Op.getOpcode() == ISD::INLINEASM_BR) && \"Expecting Inline ASM node.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 3728, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3729 | |||||
| 3730 | // If an LR store is already known to be required then there is not point in | ||||
| 3731 | // checking this ASM as well. | ||||
| 3732 | if (MFI.isLRStoreRequired()) | ||||
| 3733 | return Op; | ||||
| 3734 | |||||
| 3735 | // Inline ASM nodes have an optional last operand that is an incoming Flag of | ||||
| 3736 | // type MVT::Glue. We want to ignore this last operand if that is the case. | ||||
| 3737 | unsigned NumOps = Op.getNumOperands(); | ||||
| 3738 | if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) | ||||
| 3739 | --NumOps; | ||||
| 3740 | |||||
| 3741 | // Check all operands that may contain the LR. | ||||
| 3742 | for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { | ||||
| 3743 | unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); | ||||
| 3744 | unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); | ||||
| 3745 | ++i; // Skip the ID value. | ||||
| 3746 | |||||
| 3747 | switch (InlineAsm::getKind(Flags)) { | ||||
| 3748 | default: | ||||
| 3749 | llvm_unreachable("Bad flags!")::llvm::llvm_unreachable_internal("Bad flags!", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 3749); | ||||
| 3750 | case InlineAsm::Kind_RegUse: | ||||
| 3751 | case InlineAsm::Kind_Imm: | ||||
| 3752 | case InlineAsm::Kind_Mem: | ||||
| 3753 | i += NumVals; | ||||
| 3754 | break; | ||||
| 3755 | case InlineAsm::Kind_Clobber: | ||||
| 3756 | case InlineAsm::Kind_RegDef: | ||||
| 3757 | case InlineAsm::Kind_RegDefEarlyClobber: { | ||||
| 3758 | for (; NumVals; --NumVals, ++i) { | ||||
| 3759 | Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); | ||||
| 3760 | if (Reg != PPC::LR && Reg != PPC::LR8) | ||||
| 3761 | continue; | ||||
| 3762 | MFI.setLRStoreRequired(); | ||||
| 3763 | return Op; | ||||
| 3764 | } | ||||
| 3765 | break; | ||||
| 3766 | } | ||||
| 3767 | } | ||||
| 3768 | } | ||||
| 3769 | |||||
| 3770 | return Op; | ||||
| 3771 | } | ||||
| 3772 | |||||
| 3773 | SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, | ||||
| 3774 | SelectionDAG &DAG) const { | ||||
| 3775 | if (Subtarget.isAIXABI()) | ||||
| 3776 | report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); | ||||
| 3777 | |||||
| 3778 | SDValue Chain = Op.getOperand(0); | ||||
| 3779 | SDValue Trmp = Op.getOperand(1); // trampoline | ||||
| 3780 | SDValue FPtr = Op.getOperand(2); // nested function | ||||
| 3781 | SDValue Nest = Op.getOperand(3); // 'nest' parameter value | ||||
| 3782 | SDLoc dl(Op); | ||||
| 3783 | |||||
| 3784 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 3785 | bool isPPC64 = (PtrVT == MVT::i64); | ||||
| 3786 | Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); | ||||
| 3787 | |||||
| 3788 | TargetLowering::ArgListTy Args; | ||||
| 3789 | TargetLowering::ArgListEntry Entry; | ||||
| 3790 | |||||
| 3791 | Entry.Ty = IntPtrTy; | ||||
| 3792 | Entry.Node = Trmp; Args.push_back(Entry); | ||||
| 3793 | |||||
| 3794 | // TrampSize == (isPPC64 ? 48 : 40); | ||||
| 3795 | Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, | ||||
| 3796 | isPPC64 ? MVT::i64 : MVT::i32); | ||||
| 3797 | Args.push_back(Entry); | ||||
| 3798 | |||||
| 3799 | Entry.Node = FPtr; Args.push_back(Entry); | ||||
| 3800 | Entry.Node = Nest; Args.push_back(Entry); | ||||
| 3801 | |||||
| 3802 | // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) | ||||
| 3803 | TargetLowering::CallLoweringInfo CLI(DAG); | ||||
| 3804 | CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( | ||||
| 3805 | CallingConv::C, Type::getVoidTy(*DAG.getContext()), | ||||
| 3806 | DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); | ||||
| 3807 | |||||
| 3808 | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); | ||||
| 3809 | return CallResult.second; | ||||
| 3810 | } | ||||
| 3811 | |||||
| 3812 | SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { | ||||
| 3813 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 3814 | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | ||||
| 3815 | EVT PtrVT = getPointerTy(MF.getDataLayout()); | ||||
| 3816 | |||||
| 3817 | SDLoc dl(Op); | ||||
| 3818 | |||||
| 3819 | if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { | ||||
| 3820 | // vastart just stores the address of the VarArgsFrameIndex slot into the | ||||
| 3821 | // memory location argument. | ||||
| 3822 | SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | ||||
| 3823 | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | ||||
| 3824 | return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), | ||||
| 3825 | MachinePointerInfo(SV)); | ||||
| 3826 | } | ||||
| 3827 | |||||
| 3828 | // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. | ||||
| 3829 | // We suppose the given va_list is already allocated. | ||||
| 3830 | // | ||||
| 3831 | // typedef struct { | ||||
| 3832 | // char gpr; /* index into the array of 8 GPRs | ||||
| 3833 | // * stored in the register save area | ||||
| 3834 | // * gpr=0 corresponds to r3, | ||||
| 3835 | // * gpr=1 to r4, etc. | ||||
| 3836 | // */ | ||||
| 3837 | // char fpr; /* index into the array of 8 FPRs | ||||
| 3838 | // * stored in the register save area | ||||
| 3839 | // * fpr=0 corresponds to f1, | ||||
| 3840 | // * fpr=1 to f2, etc. | ||||
| 3841 | // */ | ||||
| 3842 | // char *overflow_arg_area; | ||||
| 3843 | // /* location on stack that holds | ||||
| 3844 | // * the next overflow argument | ||||
| 3845 | // */ | ||||
| 3846 | // char *reg_save_area; | ||||
| 3847 | // /* where r3:r10 and f1:f8 (if saved) | ||||
| 3848 | // * are stored | ||||
| 3849 | // */ | ||||
| 3850 | // } va_list[1]; | ||||
| 3851 | |||||
| 3852 | SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); | ||||
| 3853 | SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); | ||||
| 3854 | SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), | ||||
| 3855 | PtrVT); | ||||
| 3856 | SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), | ||||
| 3857 | PtrVT); | ||||
| 3858 | |||||
| 3859 | uint64_t FrameOffset = PtrVT.getSizeInBits()/8; | ||||
| 3860 | SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); | ||||
| 3861 | |||||
| 3862 | uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; | ||||
| 3863 | SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); | ||||
| 3864 | |||||
| 3865 | uint64_t FPROffset = 1; | ||||
| 3866 | SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); | ||||
| 3867 | |||||
| 3868 | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | ||||
| 3869 | |||||
| 3870 | // Store first byte : number of int regs | ||||
| 3871 | SDValue firstStore = | ||||
| 3872 | DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), | ||||
| 3873 | MachinePointerInfo(SV), MVT::i8); | ||||
| 3874 | uint64_t nextOffset = FPROffset; | ||||
| 3875 | SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), | ||||
| 3876 | ConstFPROffset); | ||||
| 3877 | |||||
| 3878 | // Store second byte : number of float regs | ||||
| 3879 | SDValue secondStore = | ||||
| 3880 | DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, | ||||
| 3881 | MachinePointerInfo(SV, nextOffset), MVT::i8); | ||||
| 3882 | nextOffset += StackOffset; | ||||
| 3883 | nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); | ||||
| 3884 | |||||
| 3885 | // Store second word : arguments given on stack | ||||
| 3886 | SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, | ||||
| 3887 | MachinePointerInfo(SV, nextOffset)); | ||||
| 3888 | nextOffset += FrameOffset; | ||||
| 3889 | nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); | ||||
| 3890 | |||||
| 3891 | // Store third word : arguments given in registers | ||||
| 3892 | return DAG.getStore(thirdStore, dl, FR, nextPtr, | ||||
| 3893 | MachinePointerInfo(SV, nextOffset)); | ||||
| 3894 | } | ||||
| 3895 | |||||
| 3896 | /// FPR - The set of FP registers that should be allocated for arguments | ||||
| 3897 | /// on Darwin and AIX. | ||||
| 3898 | static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, | ||||
| 3899 | PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, | ||||
| 3900 | PPC::F11, PPC::F12, PPC::F13}; | ||||
| 3901 | |||||
| 3902 | /// CalculateStackSlotSize - Calculates the size reserved for this argument on | ||||
| 3903 | /// the stack. | ||||
| 3904 | static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, | ||||
| 3905 | unsigned PtrByteSize) { | ||||
| 3906 | unsigned ArgSize = ArgVT.getStoreSize(); | ||||
| 3907 | if (Flags.isByVal()) | ||||
| 3908 | ArgSize = Flags.getByValSize(); | ||||
| 3909 | |||||
| 3910 | // Round up to multiples of the pointer size, except for array members, | ||||
| 3911 | // which are always packed. | ||||
| 3912 | if (!Flags.isInConsecutiveRegs()) | ||||
| 3913 | ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | ||||
| 3914 | |||||
| 3915 | return ArgSize; | ||||
| 3916 | } | ||||
| 3917 | |||||
| 3918 | /// CalculateStackSlotAlignment - Calculates the alignment of this argument | ||||
| 3919 | /// on the stack. | ||||
| 3920 | static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, | ||||
| 3921 | ISD::ArgFlagsTy Flags, | ||||
| 3922 | unsigned PtrByteSize) { | ||||
| 3923 | Align Alignment(PtrByteSize); | ||||
| 3924 | |||||
| 3925 | // Altivec parameters are padded to a 16 byte boundary. | ||||
| 3926 | if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || | ||||
| 3927 | ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || | ||||
| 3928 | ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || | ||||
| 3929 | ArgVT == MVT::v1i128 || ArgVT == MVT::f128) | ||||
| 3930 | Alignment = Align(16); | ||||
| 3931 | |||||
| 3932 | // ByVal parameters are aligned as requested. | ||||
| 3933 | if (Flags.isByVal()) { | ||||
| 3934 | auto BVAlign = Flags.getNonZeroByValAlign(); | ||||
| 3935 | if (BVAlign > PtrByteSize) { | ||||
| 3936 | if (BVAlign.value() % PtrByteSize != 0) | ||||
| 3937 | llvm_unreachable(::llvm::llvm_unreachable_internal("ByVal alignment is not a multiple of the pointer size" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 3938) | ||||
| 3938 | "ByVal alignment is not a multiple of the pointer size")::llvm::llvm_unreachable_internal("ByVal alignment is not a multiple of the pointer size" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 3938); | ||||
| 3939 | |||||
| 3940 | Alignment = BVAlign; | ||||
| 3941 | } | ||||
| 3942 | } | ||||
| 3943 | |||||
| 3944 | // Array members are always packed to their original alignment. | ||||
| 3945 | if (Flags.isInConsecutiveRegs()) { | ||||
| 3946 | // If the array member was split into multiple registers, the first | ||||
| 3947 | // needs to be aligned to the size of the full type. (Except for | ||||
| 3948 | // ppcf128, which is only aligned as its f64 components.) | ||||
| 3949 | if (Flags.isSplit() && OrigVT != MVT::ppcf128) | ||||
| 3950 | Alignment = Align(OrigVT.getStoreSize()); | ||||
| 3951 | else | ||||
| 3952 | Alignment = Align(ArgVT.getStoreSize()); | ||||
| 3953 | } | ||||
| 3954 | |||||
| 3955 | return Alignment; | ||||
| 3956 | } | ||||
| 3957 | |||||
| 3958 | /// CalculateStackSlotUsed - Return whether this argument will use its | ||||
| 3959 | /// stack slot (instead of being passed in registers). ArgOffset, | ||||
| 3960 | /// AvailableFPRs, and AvailableVRs must hold the current argument | ||||
| 3961 | /// position, and will be updated to account for this argument. | ||||
| 3962 | static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, | ||||
| 3963 | unsigned PtrByteSize, unsigned LinkageSize, | ||||
| 3964 | unsigned ParamAreaSize, unsigned &ArgOffset, | ||||
| 3965 | unsigned &AvailableFPRs, | ||||
| 3966 | unsigned &AvailableVRs) { | ||||
| 3967 | bool UseMemory = false; | ||||
| 3968 | |||||
| 3969 | // Respect alignment of argument on the stack. | ||||
| 3970 | Align Alignment = | ||||
| 3971 | CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); | ||||
| 3972 | ArgOffset = alignTo(ArgOffset, Alignment); | ||||
| 3973 | // If there's no space left in the argument save area, we must | ||||
| 3974 | // use memory (this check also catches zero-sized arguments). | ||||
| 3975 | if (ArgOffset >= LinkageSize + ParamAreaSize) | ||||
| 3976 | UseMemory = true; | ||||
| 3977 | |||||
| 3978 | // Allocate argument on the stack. | ||||
| 3979 | ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); | ||||
| 3980 | if (Flags.isInConsecutiveRegsLast()) | ||||
| 3981 | ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | ||||
| 3982 | // If we overran the argument save area, we must use memory | ||||
| 3983 | // (this check catches arguments passed partially in memory) | ||||
| 3984 | if (ArgOffset > LinkageSize + ParamAreaSize) | ||||
| 3985 | UseMemory = true; | ||||
| 3986 | |||||
| 3987 | // However, if the argument is actually passed in an FPR or a VR, | ||||
| 3988 | // we don't use memory after all. | ||||
| 3989 | if (!Flags.isByVal()) { | ||||
| 3990 | if (ArgVT == MVT::f32 || ArgVT == MVT::f64) | ||||
| 3991 | if (AvailableFPRs > 0) { | ||||
| 3992 | --AvailableFPRs; | ||||
| 3993 | return false; | ||||
| 3994 | } | ||||
| 3995 | if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || | ||||
| 3996 | ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || | ||||
| 3997 | ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || | ||||
| 3998 | ArgVT == MVT::v1i128 || ArgVT == MVT::f128) | ||||
| 3999 | if (AvailableVRs > 0) { | ||||
| 4000 | --AvailableVRs; | ||||
| 4001 | return false; | ||||
| 4002 | } | ||||
| 4003 | } | ||||
| 4004 | |||||
| 4005 | return UseMemory; | ||||
| 4006 | } | ||||
| 4007 | |||||
| 4008 | /// EnsureStackAlignment - Round stack frame size up from NumBytes to | ||||
| 4009 | /// ensure minimum alignment required for target. | ||||
| 4010 | static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, | ||||
| 4011 | unsigned NumBytes) { | ||||
| 4012 | return alignTo(NumBytes, Lowering->getStackAlign()); | ||||
| 4013 | } | ||||
| 4014 | |||||
| 4015 | SDValue PPCTargetLowering::LowerFormalArguments( | ||||
| 4016 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | ||||
| 4017 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | ||||
| 4018 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | ||||
| 4019 | if (Subtarget.isAIXABI()) | ||||
| 4020 | return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, | ||||
| 4021 | InVals); | ||||
| 4022 | if (Subtarget.is64BitELFABI()) | ||||
| 4023 | return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, | ||||
| 4024 | InVals); | ||||
| 4025 | assert(Subtarget.is32BitELFABI())(static_cast <bool> (Subtarget.is32BitELFABI()) ? void ( 0) : __assert_fail ("Subtarget.is32BitELFABI()", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 4025, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4026 | return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, | ||||
| 4027 | InVals); | ||||
| 4028 | } | ||||
| 4029 | |||||
| 4030 | SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( | ||||
| 4031 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | ||||
| 4032 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | ||||
| 4033 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | ||||
| 4034 | |||||
| 4035 | // 32-bit SVR4 ABI Stack Frame Layout: | ||||
| 4036 | // +-----------------------------------+ | ||||
| 4037 | // +--> | Back chain | | ||||
| 4038 | // | +-----------------------------------+ | ||||
| 4039 | // | | Floating-point register save area | | ||||
| 4040 | // | +-----------------------------------+ | ||||
| 4041 | // | | General register save area | | ||||
| 4042 | // | +-----------------------------------+ | ||||
| 4043 | // | | CR save word | | ||||
| 4044 | // | +-----------------------------------+ | ||||
| 4045 | // | | VRSAVE save word | | ||||
| 4046 | // | +-----------------------------------+ | ||||
| 4047 | // | | Alignment padding | | ||||
| 4048 | // | +-----------------------------------+ | ||||
| 4049 | // | | Vector register save area | | ||||
| 4050 | // | +-----------------------------------+ | ||||
| 4051 | // | | Local variable space | | ||||
| 4052 | // | +-----------------------------------+ | ||||
| 4053 | // | | Parameter list area | | ||||
| 4054 | // | +-----------------------------------+ | ||||
| 4055 | // | | LR save word | | ||||
| 4056 | // | +-----------------------------------+ | ||||
| 4057 | // SP--> +--- | Back chain | | ||||
| 4058 | // +-----------------------------------+ | ||||
| 4059 | // | ||||
| 4060 | // Specifications: | ||||
| 4061 | // System V Application Binary Interface PowerPC Processor Supplement | ||||
| 4062 | // AltiVec Technology Programming Interface Manual | ||||
| 4063 | |||||
| 4064 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 4065 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 4066 | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | ||||
| 4067 | |||||
| 4068 | EVT PtrVT = getPointerTy(MF.getDataLayout()); | ||||
| 4069 | // Potential tail calls could cause overwriting of argument stack slots. | ||||
| 4070 | bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && | ||||
| 4071 | (CallConv == CallingConv::Fast)); | ||||
| 4072 | const Align PtrAlign(4); | ||||
| 4073 | |||||
| 4074 | // Assign locations to all of the incoming arguments. | ||||
| 4075 | SmallVector<CCValAssign, 16> ArgLocs; | ||||
| 4076 | PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, | ||||
| 4077 | *DAG.getContext()); | ||||
| 4078 | |||||
| 4079 | // Reserve space for the linkage area on the stack. | ||||
| 4080 | unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); | ||||
| 4081 | CCInfo.AllocateStack(LinkageSize, PtrAlign); | ||||
| 4082 | if (useSoftFloat()) | ||||
| 4083 | CCInfo.PreAnalyzeFormalArguments(Ins); | ||||
| 4084 | |||||
| 4085 | CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); | ||||
| 4086 | CCInfo.clearWasPPCF128(); | ||||
| 4087 | |||||
| 4088 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | ||||
| 4089 | CCValAssign &VA = ArgLocs[i]; | ||||
| 4090 | |||||
| 4091 | // Arguments stored in registers. | ||||
| 4092 | if (VA.isRegLoc()) { | ||||
| 4093 | const TargetRegisterClass *RC; | ||||
| 4094 | EVT ValVT = VA.getValVT(); | ||||
| 4095 | |||||
| 4096 | switch (ValVT.getSimpleVT().SimpleTy) { | ||||
| 4097 | default: | ||||
| 4098 | llvm_unreachable("ValVT not supported by formal arguments Lowering")::llvm::llvm_unreachable_internal("ValVT not supported by formal arguments Lowering" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 4098); | ||||
| 4099 | case MVT::i1: | ||||
| 4100 | case MVT::i32: | ||||
| 4101 | RC = &PPC::GPRCRegClass; | ||||
| 4102 | break; | ||||
| 4103 | case MVT::f32: | ||||
| 4104 | if (Subtarget.hasP8Vector()) | ||||
| 4105 | RC = &PPC::VSSRCRegClass; | ||||
| 4106 | else if (Subtarget.hasSPE()) | ||||
| 4107 | RC = &PPC::GPRCRegClass; | ||||
| 4108 | else | ||||
| 4109 | RC = &PPC::F4RCRegClass; | ||||
| 4110 | break; | ||||
| 4111 | case MVT::f64: | ||||
| 4112 | if (Subtarget.hasVSX()) | ||||
| 4113 | RC = &PPC::VSFRCRegClass; | ||||
| 4114 | else if (Subtarget.hasSPE()) | ||||
| 4115 | // SPE passes doubles in GPR pairs. | ||||
| 4116 | RC = &PPC::GPRCRegClass; | ||||
| 4117 | else | ||||
| 4118 | RC = &PPC::F8RCRegClass; | ||||
| 4119 | break; | ||||
| 4120 | case MVT::v16i8: | ||||
| 4121 | case MVT::v8i16: | ||||
| 4122 | case MVT::v4i32: | ||||
| 4123 | RC = &PPC::VRRCRegClass; | ||||
| 4124 | break; | ||||
| 4125 | case MVT::v4f32: | ||||
| 4126 | RC = &PPC::VRRCRegClass; | ||||
| 4127 | break; | ||||
| 4128 | case MVT::v2f64: | ||||
| 4129 | case MVT::v2i64: | ||||
| 4130 | RC = &PPC::VRRCRegClass; | ||||
| 4131 | break; | ||||
| 4132 | } | ||||
| 4133 | |||||
| 4134 | SDValue ArgValue; | ||||
| 4135 | // Transform the arguments stored in physical registers into | ||||
| 4136 | // virtual ones. | ||||
| 4137 | if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { | ||||
| 4138 | assert(i + 1 < e && "No second half of double precision argument")(static_cast <bool> (i + 1 < e && "No second half of double precision argument" ) ? void (0) : __assert_fail ("i + 1 < e && \"No second half of double precision argument\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 4138, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4139 | Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); | ||||
| 4140 | Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); | ||||
| 4141 | SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); | ||||
| 4142 | SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); | ||||
| 4143 | if (!Subtarget.isLittleEndian()) | ||||
| 4144 | std::swap (ArgValueLo, ArgValueHi); | ||||
| 4145 | ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, | ||||
| 4146 | ArgValueHi); | ||||
| 4147 | } else { | ||||
| 4148 | Register Reg = MF.addLiveIn(VA.getLocReg(), RC); | ||||
| 4149 | ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, | ||||
| 4150 | ValVT == MVT::i1 ? MVT::i32 : ValVT); | ||||
| 4151 | if (ValVT == MVT::i1) | ||||
| 4152 | ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); | ||||
| 4153 | } | ||||
| 4154 | |||||
| 4155 | InVals.push_back(ArgValue); | ||||
| 4156 | } else { | ||||
| 4157 | // Argument stored in memory. | ||||
| 4158 | assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail ("VA.isMemLoc()", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 4158, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4159 | |||||
| 4160 | // Get the extended size of the argument type in stack | ||||
| 4161 | unsigned ArgSize = VA.getLocVT().getStoreSize(); | ||||
| 4162 | // Get the actual size of the argument type | ||||
| 4163 | unsigned ObjSize = VA.getValVT().getStoreSize(); | ||||
| 4164 | unsigned ArgOffset = VA.getLocMemOffset(); | ||||
| 4165 | // Stack objects in PPC32 are right justified. | ||||
| 4166 | ArgOffset += ArgSize - ObjSize; | ||||
| 4167 | int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); | ||||
| 4168 | |||||
| 4169 | // Create load nodes to retrieve arguments from the stack. | ||||
| 4170 | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | ||||
| 4171 | InVals.push_back( | ||||
| 4172 | DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); | ||||
| 4173 | } | ||||
| 4174 | } | ||||
| 4175 | |||||
| 4176 | // Assign locations to all of the incoming aggregate by value arguments. | ||||
| 4177 | // Aggregates passed by value are stored in the local variable space of the | ||||
| 4178 | // caller's stack frame, right above the parameter list area. | ||||
| 4179 | SmallVector<CCValAssign, 16> ByValArgLocs; | ||||
| 4180 | CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), | ||||
| 4181 | ByValArgLocs, *DAG.getContext()); | ||||
| 4182 | |||||
| 4183 | // Reserve stack space for the allocations in CCInfo. | ||||
| 4184 | CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); | ||||
| 4185 | |||||
| 4186 | CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); | ||||
| 4187 | |||||
| 4188 | // Area that is at least reserved in the caller of this function. | ||||
| 4189 | unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); | ||||
| 4190 | MinReservedArea = std::max(MinReservedArea, LinkageSize); | ||||
| 4191 | |||||
| 4192 | // Set the size that is at least reserved in caller of this function. Tail | ||||
| 4193 | // call optimized function's reserved stack space needs to be aligned so that | ||||
| 4194 | // taking the difference between two stack areas will result in an aligned | ||||
| 4195 | // stack. | ||||
| 4196 | MinReservedArea = | ||||
| 4197 | EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); | ||||
| 4198 | FuncInfo->setMinReservedArea(MinReservedArea); | ||||
| 4199 | |||||
| 4200 | SmallVector<SDValue, 8> MemOps; | ||||
| 4201 | |||||
| 4202 | // If the function takes variable number of arguments, make a frame index for | ||||
| 4203 | // the start of the first vararg value... for expansion of llvm.va_start. | ||||
| 4204 | if (isVarArg) { | ||||
| 4205 | static const MCPhysReg GPArgRegs[] = { | ||||
| 4206 | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | ||||
| 4207 | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | ||||
| 4208 | }; | ||||
| 4209 | const unsigned NumGPArgRegs = std::size(GPArgRegs); | ||||
| 4210 | |||||
| 4211 | static const MCPhysReg FPArgRegs[] = { | ||||
| 4212 | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | ||||
| 4213 | PPC::F8 | ||||
| 4214 | }; | ||||
| 4215 | unsigned NumFPArgRegs = std::size(FPArgRegs); | ||||
| 4216 | |||||
| 4217 | if (useSoftFloat() || hasSPE()) | ||||
| 4218 | NumFPArgRegs = 0; | ||||
| 4219 | |||||
| 4220 | FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); | ||||
| 4221 | FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); | ||||
| 4222 | |||||
| 4223 | // Make room for NumGPArgRegs and NumFPArgRegs. | ||||
| 4224 | int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + | ||||
| 4225 | NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; | ||||
| 4226 | |||||
| 4227 | FuncInfo->setVarArgsStackOffset( | ||||
| 4228 | MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, | ||||
| 4229 | CCInfo.getNextStackOffset(), true)); | ||||
| 4230 | |||||
| 4231 | FuncInfo->setVarArgsFrameIndex( | ||||
| 4232 | MFI.CreateStackObject(Depth, Align(8), false)); | ||||
| 4233 | SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | ||||
| 4234 | |||||
| 4235 | // The fixed integer arguments of a variadic function are stored to the | ||||
| 4236 | // VarArgsFrameIndex on the stack so that they may be loaded by | ||||
| 4237 | // dereferencing the result of va_next. | ||||
| 4238 | for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { | ||||
| 4239 | // Get an existing live-in vreg, or add a new one. | ||||
| 4240 | Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); | ||||
| 4241 | if (!VReg) | ||||
| 4242 | VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); | ||||
| 4243 | |||||
| 4244 | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | ||||
| 4245 | SDValue Store = | ||||
| 4246 | DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); | ||||
| 4247 | MemOps.push_back(Store); | ||||
| 4248 | // Increment the address by four for the next argument to store | ||||
| 4249 | SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); | ||||
| 4250 | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | ||||
| 4251 | } | ||||
| 4252 | |||||
| 4253 | // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 | ||||
| 4254 | // is set. | ||||
| 4255 | // The double arguments are stored to the VarArgsFrameIndex | ||||
| 4256 | // on the stack. | ||||
| 4257 | for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { | ||||
| 4258 | // Get an existing live-in vreg, or add a new one. | ||||
| 4259 | Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); | ||||
| 4260 | if (!VReg) | ||||
| 4261 | VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); | ||||
| 4262 | |||||
| 4263 | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); | ||||
| 4264 | SDValue Store = | ||||
| 4265 | DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); | ||||
| 4266 | MemOps.push_back(Store); | ||||
| 4267 | // Increment the address by eight for the next argument to store | ||||
| 4268 | SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, | ||||
| 4269 | PtrVT); | ||||
| 4270 | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | ||||
| 4271 | } | ||||
| 4272 | } | ||||
| 4273 | |||||
| 4274 | if (!MemOps.empty()) | ||||
| 4275 | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); | ||||
| 4276 | |||||
| 4277 | return Chain; | ||||
| 4278 | } | ||||
| 4279 | |||||
| 4280 | // PPC64 passes i8, i16, and i32 values in i64 registers. Promote | ||||
| 4281 | // value to MVT::i64 and then truncate to the correct register size. | ||||
| 4282 | SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, | ||||
| 4283 | EVT ObjectVT, SelectionDAG &DAG, | ||||
| 4284 | SDValue ArgVal, | ||||
| 4285 | const SDLoc &dl) const { | ||||
| 4286 | if (Flags.isSExt()) | ||||
| 4287 | ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, | ||||
| 4288 | DAG.getValueType(ObjectVT)); | ||||
| 4289 | else if (Flags.isZExt()) | ||||
| 4290 | ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, | ||||
| 4291 | DAG.getValueType(ObjectVT)); | ||||
| 4292 | |||||
| 4293 | return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); | ||||
| 4294 | } | ||||
| 4295 | |||||
| 4296 | SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( | ||||
| 4297 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | ||||
| 4298 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | ||||
| 4299 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | ||||
| 4300 | // TODO: add description of PPC stack frame format, or at least some docs. | ||||
| 4301 | // | ||||
| 4302 | bool isELFv2ABI = Subtarget.isELFv2ABI(); | ||||
| 4303 | bool isLittleEndian = Subtarget.isLittleEndian(); | ||||
| 4304 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 4305 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 4306 | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | ||||
| 4307 | |||||
| 4308 | assert(!(CallConv == CallingConv::Fast && isVarArg) &&(static_cast <bool> (!(CallConv == CallingConv::Fast && isVarArg) && "fastcc not supported on varargs functions" ) ? void (0) : __assert_fail ("!(CallConv == CallingConv::Fast && isVarArg) && \"fastcc not supported on varargs functions\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 4309, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4309 | "fastcc not supported on varargs functions")(static_cast <bool> (!(CallConv == CallingConv::Fast && isVarArg) && "fastcc not supported on varargs functions" ) ? void (0) : __assert_fail ("!(CallConv == CallingConv::Fast && isVarArg) && \"fastcc not supported on varargs functions\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 4309, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4310 | |||||
| 4311 | EVT PtrVT = getPointerTy(MF.getDataLayout()); | ||||
| 4312 | // Potential tail calls could cause overwriting of argument stack slots. | ||||
| 4313 | bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && | ||||
| 4314 | (CallConv == CallingConv::Fast)); | ||||
| 4315 | unsigned PtrByteSize = 8; | ||||
| 4316 | unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); | ||||
| 4317 | |||||
| 4318 | static const MCPhysReg GPR[] = { | ||||
| 4319 | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | ||||
| 4320 | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | ||||
| 4321 | }; | ||||
| 4322 | static const MCPhysReg VR[] = { | ||||
| 4323 | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | ||||
| 4324 | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | ||||
| 4325 | }; | ||||
| 4326 | |||||
| 4327 | const unsigned Num_GPR_Regs = std::size(GPR); | ||||
| 4328 | const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; | ||||
| 4329 | const unsigned Num_VR_Regs = std::size(VR); | ||||
| 4330 | |||||
| 4331 | // Do a first pass over the arguments to determine whether the ABI | ||||
| 4332 | // guarantees that our caller has allocated the parameter save area | ||||
| 4333 | // on its stack frame. In the ELFv1 ABI, this is always the case; | ||||
| 4334 | // in the ELFv2 ABI, it is true if this is a vararg function or if | ||||
| 4335 | // any parameter is located in a stack slot. | ||||
| 4336 | |||||
| 4337 | bool HasParameterArea = !isELFv2ABI || isVarArg; | ||||
| 4338 | unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; | ||||
| 4339 | unsigned NumBytes = LinkageSize; | ||||
| 4340 | unsigned AvailableFPRs = Num_FPR_Regs; | ||||
| 4341 | unsigned AvailableVRs = Num_VR_Regs; | ||||
| 4342 | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | ||||
| 4343 | if (Ins[i].Flags.isNest()) | ||||
| 4344 | continue; | ||||
| 4345 | |||||
| 4346 | if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, | ||||
| 4347 | PtrByteSize, LinkageSize, ParamAreaSize, | ||||
| 4348 | NumBytes, AvailableFPRs, AvailableVRs)) | ||||
| 4349 | HasParameterArea = true; | ||||
| 4350 | } | ||||
| 4351 | |||||
| 4352 | // Add DAG nodes to load the arguments or copy them out of registers. On | ||||
| 4353 | // entry to a function on PPC, the arguments start after the linkage area, | ||||
| 4354 | // although the first ones are often in registers. | ||||
| 4355 | |||||
| 4356 | unsigned ArgOffset = LinkageSize; | ||||
| 4357 | unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; | ||||
| 4358 | SmallVector<SDValue, 8> MemOps; | ||||
| 4359 | Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); | ||||
| 4360 | unsigned CurArgIdx = 0; | ||||
| 4361 | for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { | ||||
| 4362 | SDValue ArgVal; | ||||
| 4363 | bool needsLoad = false; | ||||
| 4364 | EVT ObjectVT = Ins[ArgNo].VT; | ||||
| 4365 | EVT OrigVT = Ins[ArgNo].ArgVT; | ||||
| 4366 | unsigned ObjSize = ObjectVT.getStoreSize(); | ||||
| 4367 | unsigned ArgSize = ObjSize; | ||||
| 4368 | ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; | ||||
| 4369 | if (Ins[ArgNo].isOrigArg()) { | ||||
| 4370 | std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); | ||||
| 4371 | CurArgIdx = Ins[ArgNo].getOrigArgIndex(); | ||||
| 4372 | } | ||||
| 4373 | // We re-align the argument offset for each argument, except when using the | ||||
| 4374 | // fast calling convention, when we need to make sure we do that only when | ||||
| 4375 | // we'll actually use a stack slot. | ||||
| 4376 | unsigned CurArgOffset; | ||||
| 4377 | Align Alignment; | ||||
| 4378 | auto ComputeArgOffset = [&]() { | ||||
| 4379 | /* Respect alignment of argument on the stack. */ | ||||
| 4380 | Alignment = | ||||
| 4381 | CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); | ||||
| 4382 | ArgOffset = alignTo(ArgOffset, Alignment); | ||||
| 4383 | CurArgOffset = ArgOffset; | ||||
| 4384 | }; | ||||
| 4385 | |||||
| 4386 | if (CallConv != CallingConv::Fast) { | ||||
| 4387 | ComputeArgOffset(); | ||||
| 4388 | |||||
| 4389 | /* Compute GPR index associated with argument offset. */ | ||||
| 4390 | GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; | ||||
| 4391 | GPR_idx = std::min(GPR_idx, Num_GPR_Regs); | ||||
| 4392 | } | ||||
| 4393 | |||||
| 4394 | // FIXME the codegen can be much improved in some cases. | ||||
| 4395 | // We do not have to keep everything in memory. | ||||
| 4396 | if (Flags.isByVal()) { | ||||
| 4397 | assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit")(static_cast <bool> (Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit" ) ? void (0) : __assert_fail ("Ins[ArgNo].isOrigArg() && \"Byval arguments cannot be implicit\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 4397, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4398 | |||||
| 4399 | if (CallConv == CallingConv::Fast) | ||||
| 4400 | ComputeArgOffset(); | ||||
| 4401 | |||||
| 4402 | // ObjSize is the true size, ArgSize rounded up to multiple of registers. | ||||
| 4403 | ObjSize = Flags.getByValSize(); | ||||
| 4404 | ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | ||||
| 4405 | // Empty aggregate parameters do not take up registers. Examples: | ||||
| 4406 | // struct { } a; | ||||
| 4407 | // union { } b; | ||||
| 4408 | // int c[0]; | ||||
| 4409 | // etc. However, we have to provide a place-holder in InVals, so | ||||
| 4410 | // pretend we have an 8-byte item at the current address for that | ||||
| 4411 | // purpose. | ||||
| 4412 | if (!ObjSize) { | ||||
| 4413 | int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); | ||||
| 4414 | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | ||||
| 4415 | InVals.push_back(FIN); | ||||
| 4416 | continue; | ||||
| 4417 | } | ||||
| 4418 | |||||
| 4419 | // Create a stack object covering all stack doublewords occupied | ||||
| 4420 | // by the argument. If the argument is (fully or partially) on | ||||
| 4421 | // the stack, or if the argument is fully in registers but the | ||||
| 4422 | // caller has allocated the parameter save anyway, we can refer | ||||
| 4423 | // directly to the caller's stack frame. Otherwise, create a | ||||
| 4424 | // local copy in our own frame. | ||||
| 4425 | int FI; | ||||
| 4426 | if (HasParameterArea || | ||||
| 4427 | ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) | ||||
| 4428 | FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); | ||||
| 4429 | else | ||||
| 4430 | FI = MFI.CreateStackObject(ArgSize, Alignment, false); | ||||
| 4431 | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | ||||
| 4432 | |||||
| 4433 | // Handle aggregates smaller than 8 bytes. | ||||
| 4434 | if (ObjSize < PtrByteSize) { | ||||
| 4435 | // The value of the object is its address, which differs from the | ||||
| 4436 | // address of the enclosing doubleword on big-endian systems. | ||||
| 4437 | SDValue Arg = FIN; | ||||
| 4438 | if (!isLittleEndian) { | ||||
| 4439 | SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); | ||||
| 4440 | Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); | ||||
| 4441 | } | ||||
| 4442 | InVals.push_back(Arg); | ||||
| 4443 | |||||
| 4444 | if (GPR_idx != Num_GPR_Regs) { | ||||
| 4445 | Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); | ||||
| 4446 | FuncInfo->addLiveInAttr(VReg, Flags); | ||||
| 4447 | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | ||||
| 4448 | EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); | ||||
| 4449 | SDValue Store = | ||||
| 4450 | DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, | ||||
| 4451 | MachinePointerInfo(&*FuncArg), ObjType); | ||||
| 4452 | MemOps.push_back(Store); | ||||
| 4453 | } | ||||
| 4454 | // Whether we copied from a register or not, advance the offset | ||||
| 4455 | // into the parameter save area by a full doubleword. | ||||
| 4456 | ArgOffset += PtrByteSize; | ||||
| 4457 | continue; | ||||
| 4458 | } | ||||
| 4459 | |||||
| 4460 | // The value of the object is its address, which is the address of | ||||
| 4461 | // its first stack doubleword. | ||||
| 4462 | InVals.push_back(FIN); | ||||
| 4463 | |||||
| 4464 | // Store whatever pieces of the object are in registers to memory. | ||||
| 4465 | for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { | ||||
| 4466 | if (GPR_idx == Num_GPR_Regs) | ||||
| 4467 | break; | ||||
| 4468 | |||||
| 4469 | Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | ||||
| 4470 | FuncInfo->addLiveInAttr(VReg, Flags); | ||||
| 4471 | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | ||||
| 4472 | SDValue Addr = FIN; | ||||
| 4473 | if (j) { | ||||
| 4474 | SDValue Off = DAG.getConstant(j, dl, PtrVT); | ||||
| 4475 | Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); | ||||
| 4476 | } | ||||
| 4477 | unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8; | ||||
| 4478 | EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits); | ||||
| 4479 | SDValue Store = | ||||
| 4480 | DAG.getTruncStore(Val.getValue(1), dl, Val, Addr, | ||||
| 4481 | MachinePointerInfo(&*FuncArg, j), ObjType); | ||||
| 4482 | MemOps.push_back(Store); | ||||
| 4483 | ++GPR_idx; | ||||
| 4484 | } | ||||
| 4485 | ArgOffset += ArgSize; | ||||
| 4486 | continue; | ||||
| 4487 | } | ||||
| 4488 | |||||
| 4489 | switch (ObjectVT.getSimpleVT().SimpleTy) { | ||||
| 4490 | default: llvm_unreachable("Unhandled argument type!")::llvm::llvm_unreachable_internal("Unhandled argument type!", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 4490); | ||||
| 4491 | case MVT::i1: | ||||
| 4492 | case MVT::i32: | ||||
| 4493 | case MVT::i64: | ||||
| 4494 | if (Flags.isNest()) { | ||||
| 4495 | // The 'nest' parameter, if any, is passed in R11. | ||||
| 4496 | Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); | ||||
| 4497 | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); | ||||
| 4498 | |||||
| 4499 | if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) | ||||
| 4500 | ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); | ||||
| 4501 | |||||
| 4502 | break; | ||||
| 4503 | } | ||||
| 4504 | |||||
| 4505 | // These can be scalar arguments or elements of an integer array type | ||||
| 4506 | // passed directly. Clang may use those instead of "byval" aggregate | ||||
| 4507 | // types to avoid forcing arguments to memory unnecessarily. | ||||
| 4508 | if (GPR_idx != Num_GPR_Regs) { | ||||
| 4509 | Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); | ||||
| 4510 | FuncInfo->addLiveInAttr(VReg, Flags); | ||||
| 4511 | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); | ||||
| 4512 | |||||
| 4513 | if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) | ||||
| 4514 | // PPC64 passes i8, i16, and i32 values in i64 registers. Promote | ||||
| 4515 | // value to MVT::i64 and then truncate to the correct register size. | ||||
| 4516 | ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); | ||||
| 4517 | } else { | ||||
| 4518 | if (CallConv == CallingConv::Fast) | ||||
| 4519 | ComputeArgOffset(); | ||||
| 4520 | |||||
| 4521 | needsLoad = true; | ||||
| 4522 | ArgSize = PtrByteSize; | ||||
| 4523 | } | ||||
| 4524 | if (CallConv != CallingConv::Fast || needsLoad) | ||||
| 4525 | ArgOffset += 8; | ||||
| 4526 | break; | ||||
| 4527 | |||||
| 4528 | case MVT::f32: | ||||
| 4529 | case MVT::f64: | ||||
| 4530 | // These can be scalar arguments or elements of a float array type | ||||
| 4531 | // passed directly. The latter are used to implement ELFv2 homogenous | ||||
| 4532 | // float aggregates. | ||||
| 4533 | if (FPR_idx != Num_FPR_Regs) { | ||||
| 4534 | unsigned VReg; | ||||
| 4535 | |||||
| 4536 | if (ObjectVT == MVT::f32) | ||||
| 4537 | VReg = MF.addLiveIn(FPR[FPR_idx], | ||||
| 4538 | Subtarget.hasP8Vector() | ||||
| 4539 | ? &PPC::VSSRCRegClass | ||||
| 4540 | : &PPC::F4RCRegClass); | ||||
| 4541 | else | ||||
| 4542 | VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() | ||||
| 4543 | ? &PPC::VSFRCRegClass | ||||
| 4544 | : &PPC::F8RCRegClass); | ||||
| 4545 | |||||
| 4546 | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); | ||||
| 4547 | ++FPR_idx; | ||||
| 4548 | } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { | ||||
| 4549 | // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 | ||||
| 4550 | // once we support fp <-> gpr moves. | ||||
| 4551 | |||||
| 4552 | // This can only ever happen in the presence of f32 array types, | ||||
| 4553 | // since otherwise we never run out of FPRs before running out | ||||
| 4554 | // of GPRs. | ||||
| 4555 | Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); | ||||
| 4556 | FuncInfo->addLiveInAttr(VReg, Flags); | ||||
| 4557 | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); | ||||
| 4558 | |||||
| 4559 | if (ObjectVT == MVT::f32) { | ||||
| 4560 | if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) | ||||
| 4561 | ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, | ||||
| 4562 | DAG.getConstant(32, dl, MVT::i32)); | ||||
| 4563 | ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); | ||||
| 4564 | } | ||||
| 4565 | |||||
| 4566 | ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); | ||||
| 4567 | } else { | ||||
| 4568 | if (CallConv == CallingConv::Fast) | ||||
| 4569 | ComputeArgOffset(); | ||||
| 4570 | |||||
| 4571 | needsLoad = true; | ||||
| 4572 | } | ||||
| 4573 | |||||
| 4574 | // When passing an array of floats, the array occupies consecutive | ||||
| 4575 | // space in the argument area; only round up to the next doubleword | ||||
| 4576 | // at the end of the array. Otherwise, each float takes 8 bytes. | ||||
| 4577 | if (CallConv != CallingConv::Fast || needsLoad) { | ||||
| 4578 | ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; | ||||
| 4579 | ArgOffset += ArgSize; | ||||
| 4580 | if (Flags.isInConsecutiveRegsLast()) | ||||
| 4581 | ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | ||||
| 4582 | } | ||||
| 4583 | break; | ||||
| 4584 | case MVT::v4f32: | ||||
| 4585 | case MVT::v4i32: | ||||
| 4586 | case MVT::v8i16: | ||||
| 4587 | case MVT::v16i8: | ||||
| 4588 | case MVT::v2f64: | ||||
| 4589 | case MVT::v2i64: | ||||
| 4590 | case MVT::v1i128: | ||||
| 4591 | case MVT::f128: | ||||
| 4592 | // These can be scalar arguments or elements of a vector array type | ||||
| 4593 | // passed directly. The latter are used to implement ELFv2 homogenous | ||||
| 4594 | // vector aggregates. | ||||
| 4595 | if (VR_idx != Num_VR_Regs) { | ||||
| 4596 | Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); | ||||
| 4597 | ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); | ||||
| 4598 | ++VR_idx; | ||||
| 4599 | } else { | ||||
| 4600 | if (CallConv == CallingConv::Fast) | ||||
| 4601 | ComputeArgOffset(); | ||||
| 4602 | needsLoad = true; | ||||
| 4603 | } | ||||
| 4604 | if (CallConv != CallingConv::Fast || needsLoad) | ||||
| 4605 | ArgOffset += 16; | ||||
| 4606 | break; | ||||
| 4607 | } | ||||
| 4608 | |||||
| 4609 | // We need to load the argument to a virtual register if we determined | ||||
| 4610 | // above that we ran out of physical registers of the appropriate type. | ||||
| 4611 | if (needsLoad) { | ||||
| 4612 | if (ObjSize < ArgSize && !isLittleEndian) | ||||
| 4613 | CurArgOffset += ArgSize - ObjSize; | ||||
| 4614 | int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); | ||||
| 4615 | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | ||||
| 4616 | ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); | ||||
| 4617 | } | ||||
| 4618 | |||||
| 4619 | InVals.push_back(ArgVal); | ||||
| 4620 | } | ||||
| 4621 | |||||
| 4622 | // Area that is at least reserved in the caller of this function. | ||||
| 4623 | unsigned MinReservedArea; | ||||
| 4624 | if (HasParameterArea) | ||||
| 4625 | MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); | ||||
| 4626 | else | ||||
| 4627 | MinReservedArea = LinkageSize; | ||||
| 4628 | |||||
| 4629 | // Set the size that is at least reserved in caller of this function. Tail | ||||
| 4630 | // call optimized functions' reserved stack space needs to be aligned so that | ||||
| 4631 | // taking the difference between two stack areas will result in an aligned | ||||
| 4632 | // stack. | ||||
| 4633 | MinReservedArea = | ||||
| 4634 | EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); | ||||
| 4635 | FuncInfo->setMinReservedArea(MinReservedArea); | ||||
| 4636 | |||||
| 4637 | // If the function takes variable number of arguments, make a frame index for | ||||
| 4638 | // the start of the first vararg value... for expansion of llvm.va_start. | ||||
| 4639 | // On ELFv2ABI spec, it writes: | ||||
| 4640 | // C programs that are intended to be *portable* across different compilers | ||||
| 4641 | // and architectures must use the header file <stdarg.h> to deal with variable | ||||
| 4642 | // argument lists. | ||||
| 4643 | if (isVarArg && MFI.hasVAStart()) { | ||||
| 4644 | int Depth = ArgOffset; | ||||
| 4645 | |||||
| 4646 | FuncInfo->setVarArgsFrameIndex( | ||||
| 4647 | MFI.CreateFixedObject(PtrByteSize, Depth, true)); | ||||
| 4648 | SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | ||||
| 4649 | |||||
| 4650 | // If this function is vararg, store any remaining integer argument regs | ||||
| 4651 | // to their spots on the stack so that they may be loaded by dereferencing | ||||
| 4652 | // the result of va_next. | ||||
| 4653 | for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; | ||||
| 4654 | GPR_idx < Num_GPR_Regs; ++GPR_idx) { | ||||
| 4655 | Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); | ||||
| 4656 | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | ||||
| 4657 | SDValue Store = | ||||
| 4658 | DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); | ||||
| 4659 | MemOps.push_back(Store); | ||||
| 4660 | // Increment the address by four for the next argument to store | ||||
| 4661 | SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); | ||||
| 4662 | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | ||||
| 4663 | } | ||||
| 4664 | } | ||||
| 4665 | |||||
| 4666 | if (!MemOps.empty()) | ||||
| 4667 | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); | ||||
| 4668 | |||||
| 4669 | return Chain; | ||||
| 4670 | } | ||||
| 4671 | |||||
| 4672 | /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be | ||||
| 4673 | /// adjusted to accommodate the arguments for the tailcall. | ||||
| 4674 | static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, | ||||
| 4675 | unsigned ParamSize) { | ||||
| 4676 | |||||
| 4677 | if (!isTailCall) return 0; | ||||
| 4678 | |||||
| 4679 | PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); | ||||
| 4680 | unsigned CallerMinReservedArea = FI->getMinReservedArea(); | ||||
| 4681 | int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; | ||||
| 4682 | // Remember only if the new adjustment is bigger. | ||||
| 4683 | if (SPDiff < FI->getTailCallSPDelta()) | ||||
| 4684 | FI->setTailCallSPDelta(SPDiff); | ||||
| 4685 | |||||
| 4686 | return SPDiff; | ||||
| 4687 | } | ||||
| 4688 | |||||
| 4689 | static bool isFunctionGlobalAddress(const GlobalValue *CalleeGV); | ||||
| 4690 | |||||
| 4691 | static bool callsShareTOCBase(const Function *Caller, | ||||
| 4692 | const GlobalValue *CalleeGV, | ||||
| 4693 | const TargetMachine &TM) { | ||||
| 4694 | // It does not make sense to call callsShareTOCBase() with a caller that | ||||
| 4695 | // is PC Relative since PC Relative callers do not have a TOC. | ||||
| 4696 | #ifndef NDEBUG | ||||
| 4697 | const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); | ||||
| 4698 | assert(!STICaller->isUsingPCRelativeCalls() &&(static_cast <bool> (!STICaller->isUsingPCRelativeCalls () && "PC Relative callers do not have a TOC and cannot share a TOC Base" ) ? void (0) : __assert_fail ("!STICaller->isUsingPCRelativeCalls() && \"PC Relative callers do not have a TOC and cannot share a TOC Base\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 4699, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4699 | "PC Relative callers do not have a TOC and cannot share a TOC Base")(static_cast <bool> (!STICaller->isUsingPCRelativeCalls () && "PC Relative callers do not have a TOC and cannot share a TOC Base" ) ? void (0) : __assert_fail ("!STICaller->isUsingPCRelativeCalls() && \"PC Relative callers do not have a TOC and cannot share a TOC Base\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 4699, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4700 | #endif | ||||
| 4701 | |||||
| 4702 | // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols | ||||
| 4703 | // don't have enough information to determine if the caller and callee share | ||||
| 4704 | // the same TOC base, so we have to pessimistically assume they don't for | ||||
| 4705 | // correctness. | ||||
| 4706 | if (!CalleeGV) | ||||
| 4707 | return false; | ||||
| 4708 | |||||
| 4709 | // If the callee is preemptable, then the static linker will use a plt-stub | ||||
| 4710 | // which saves the toc to the stack, and needs a nop after the call | ||||
| 4711 | // instruction to convert to a toc-restore. | ||||
| 4712 | if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), CalleeGV)) | ||||
| 4713 | return false; | ||||
| 4714 | |||||
| 4715 | // Functions with PC Relative enabled may clobber the TOC in the same DSO. | ||||
| 4716 | // We may need a TOC restore in the situation where the caller requires a | ||||
| 4717 | // valid TOC but the callee is PC Relative and does not. | ||||
| 4718 | const Function *F = dyn_cast<Function>(CalleeGV); | ||||
| 4719 | const GlobalAlias *Alias = dyn_cast<GlobalAlias>(CalleeGV); | ||||
| 4720 | |||||
| 4721 | // If we have an Alias we can try to get the function from there. | ||||
| 4722 | if (Alias) { | ||||
| 4723 | const GlobalObject *GlobalObj = Alias->getAliaseeObject(); | ||||
| 4724 | F = dyn_cast<Function>(GlobalObj); | ||||
| 4725 | } | ||||
| 4726 | |||||
| 4727 | // If we still have no valid function pointer we do not have enough | ||||
| 4728 | // information to determine if the callee uses PC Relative calls so we must | ||||
| 4729 | // assume that it does. | ||||
| 4730 | if (!F) | ||||
| 4731 | return false; | ||||
| 4732 | |||||
| 4733 | // If the callee uses PC Relative we cannot guarantee that the callee won't | ||||
| 4734 | // clobber the TOC of the caller and so we must assume that the two | ||||
| 4735 | // functions do not share a TOC base. | ||||
| 4736 | const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); | ||||
| 4737 | if (STICallee->isUsingPCRelativeCalls()) | ||||
| 4738 | return false; | ||||
| 4739 | |||||
| 4740 | // If the GV is not a strong definition then we need to assume it can be | ||||
| 4741 | // replaced by another function at link time. The function that replaces | ||||
| 4742 | // it may not share the same TOC as the caller since the callee may be | ||||
| 4743 | // replaced by a PC Relative version of the same function. | ||||
| 4744 | if (!CalleeGV->isStrongDefinitionForLinker()) | ||||
| 4745 | return false; | ||||
| 4746 | |||||
| 4747 | // The medium and large code models are expected to provide a sufficiently | ||||
| 4748 | // large TOC to provide all data addressing needs of a module with a | ||||
| 4749 | // single TOC. | ||||
| 4750 | if (CodeModel::Medium == TM.getCodeModel() || | ||||
| 4751 | CodeModel::Large == TM.getCodeModel()) | ||||
| 4752 | return true; | ||||
| 4753 | |||||
| 4754 | // Any explicitly-specified sections and section prefixes must also match. | ||||
| 4755 | // Also, if we're using -ffunction-sections, then each function is always in | ||||
| 4756 | // a different section (the same is true for COMDAT functions). | ||||
| 4757 | if (TM.getFunctionSections() || CalleeGV->hasComdat() || | ||||
| 4758 | Caller->hasComdat() || CalleeGV->getSection() != Caller->getSection()) | ||||
| 4759 | return false; | ||||
| 4760 | if (const auto *F = dyn_cast<Function>(CalleeGV)) { | ||||
| 4761 | if (F->getSectionPrefix() != Caller->getSectionPrefix()) | ||||
| 4762 | return false; | ||||
| 4763 | } | ||||
| 4764 | |||||
| 4765 | return true; | ||||
| 4766 | } | ||||
| 4767 | |||||
| 4768 | static bool | ||||
| 4769 | needStackSlotPassParameters(const PPCSubtarget &Subtarget, | ||||
| 4770 | const SmallVectorImpl<ISD::OutputArg> &Outs) { | ||||
| 4771 | assert(Subtarget.is64BitELFABI())(static_cast <bool> (Subtarget.is64BitELFABI()) ? void ( 0) : __assert_fail ("Subtarget.is64BitELFABI()", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 4771, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4772 | |||||
| 4773 | const unsigned PtrByteSize = 8; | ||||
| 4774 | const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); | ||||
| 4775 | |||||
| 4776 | static const MCPhysReg GPR[] = { | ||||
| 4777 | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | ||||
| 4778 | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | ||||
| 4779 | }; | ||||
| 4780 | static const MCPhysReg VR[] = { | ||||
| 4781 | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | ||||
| 4782 | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | ||||
| 4783 | }; | ||||
| 4784 | |||||
| 4785 | const unsigned NumGPRs = std::size(GPR); | ||||
| 4786 | const unsigned NumFPRs = 13; | ||||
| 4787 | const unsigned NumVRs = std::size(VR); | ||||
| 4788 | const unsigned ParamAreaSize = NumGPRs * PtrByteSize; | ||||
| 4789 | |||||
| 4790 | unsigned NumBytes = LinkageSize; | ||||
| 4791 | unsigned AvailableFPRs = NumFPRs; | ||||
| 4792 | unsigned AvailableVRs = NumVRs; | ||||
| 4793 | |||||
| 4794 | for (const ISD::OutputArg& Param : Outs) { | ||||
| 4795 | if (Param.Flags.isNest()) continue; | ||||
| 4796 | |||||
| 4797 | if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, | ||||
| 4798 | LinkageSize, ParamAreaSize, NumBytes, | ||||
| 4799 | AvailableFPRs, AvailableVRs)) | ||||
| 4800 | return true; | ||||
| 4801 | } | ||||
| 4802 | return false; | ||||
| 4803 | } | ||||
| 4804 | |||||
| 4805 | static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { | ||||
| 4806 | if (CB.arg_size() != CallerFn->arg_size()) | ||||
| 4807 | return false; | ||||
| 4808 | |||||
| 4809 | auto CalleeArgIter = CB.arg_begin(); | ||||
| 4810 | auto CalleeArgEnd = CB.arg_end(); | ||||
| 4811 | Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); | ||||
| 4812 | |||||
| 4813 | for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { | ||||
| 4814 | const Value* CalleeArg = *CalleeArgIter; | ||||
| 4815 | const Value* CallerArg = &(*CallerArgIter); | ||||
| 4816 | if (CalleeArg == CallerArg) | ||||
| 4817 | continue; | ||||
| 4818 | |||||
| 4819 | // e.g. @caller([4 x i64] %a, [4 x i64] %b) { | ||||
| 4820 | // tail call @callee([4 x i64] undef, [4 x i64] %b) | ||||
| 4821 | // } | ||||
| 4822 | // 1st argument of callee is undef and has the same type as caller. | ||||
| 4823 | if (CalleeArg->getType() == CallerArg->getType() && | ||||
| 4824 | isa<UndefValue>(CalleeArg)) | ||||
| 4825 | continue; | ||||
| 4826 | |||||
| 4827 | return false; | ||||
| 4828 | } | ||||
| 4829 | |||||
| 4830 | return true; | ||||
| 4831 | } | ||||
| 4832 | |||||
| 4833 | // Returns true if TCO is possible between the callers and callees | ||||
| 4834 | // calling conventions. | ||||
| 4835 | static bool | ||||
| 4836 | areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, | ||||
| 4837 | CallingConv::ID CalleeCC) { | ||||
| 4838 | // Tail calls are possible with fastcc and ccc. | ||||
| 4839 | auto isTailCallableCC = [] (CallingConv::ID CC){ | ||||
| 4840 | return CC == CallingConv::C || CC == CallingConv::Fast; | ||||
| 4841 | }; | ||||
| 4842 | if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) | ||||
| 4843 | return false; | ||||
| 4844 | |||||
| 4845 | // We can safely tail call both fastcc and ccc callees from a c calling | ||||
| 4846 | // convention caller. If the caller is fastcc, we may have less stack space | ||||
| 4847 | // than a non-fastcc caller with the same signature so disable tail-calls in | ||||
| 4848 | // that case. | ||||
| 4849 | return CallerCC == CallingConv::C || CallerCC == CalleeCC; | ||||
| 4850 | } | ||||
| 4851 | |||||
| 4852 | bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( | ||||
| 4853 | const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, | ||||
| 4854 | CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg, | ||||
| 4855 | const SmallVectorImpl<ISD::OutputArg> &Outs, | ||||
| 4856 | const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc, | ||||
| 4857 | bool isCalleeExternalSymbol) const { | ||||
| 4858 | bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; | ||||
| 4859 | |||||
| 4860 | if (DisableSCO && !TailCallOpt) return false; | ||||
| 4861 | |||||
| 4862 | // Variadic argument functions are not supported. | ||||
| 4863 | if (isVarArg) return false; | ||||
| 4864 | |||||
| 4865 | // Check that the calling conventions are compatible for tco. | ||||
| 4866 | if (!areCallingConvEligibleForTCO_64SVR4(CallerCC, CalleeCC)) | ||||
| 4867 | return false; | ||||
| 4868 | |||||
| 4869 | // Caller contains any byval parameter is not supported. | ||||
| 4870 | if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) | ||||
| 4871 | return false; | ||||
| 4872 | |||||
| 4873 | // Callee contains any byval parameter is not supported, too. | ||||
| 4874 | // Note: This is a quick work around, because in some cases, e.g. | ||||
| 4875 | // caller's stack size > callee's stack size, we are still able to apply | ||||
| 4876 | // sibling call optimization. For example, gcc is able to do SCO for caller1 | ||||
| 4877 | // in the following example, but not for caller2. | ||||
| 4878 | // struct test { | ||||
| 4879 | // long int a; | ||||
| 4880 | // char ary[56]; | ||||
| 4881 | // } gTest; | ||||
| 4882 | // __attribute__((noinline)) int callee(struct test v, struct test *b) { | ||||
| 4883 | // b->a = v.a; | ||||
| 4884 | // return 0; | ||||
| 4885 | // } | ||||
| 4886 | // void caller1(struct test a, struct test c, struct test *b) { | ||||
| 4887 | // callee(gTest, b); } | ||||
| 4888 | // void caller2(struct test *b) { callee(gTest, b); } | ||||
| 4889 | if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) | ||||
| 4890 | return false; | ||||
| 4891 | |||||
| 4892 | // If callee and caller use different calling conventions, we cannot pass | ||||
| 4893 | // parameters on stack since offsets for the parameter area may be different. | ||||
| 4894 | if (CallerCC != CalleeCC && needStackSlotPassParameters(Subtarget, Outs)) | ||||
| 4895 | return false; | ||||
| 4896 | |||||
| 4897 | // All variants of 64-bit ELF ABIs without PC-Relative addressing require that | ||||
| 4898 | // the caller and callee share the same TOC for TCO/SCO. If the caller and | ||||
| 4899 | // callee potentially have different TOC bases then we cannot tail call since | ||||
| 4900 | // we need to restore the TOC pointer after the call. | ||||
| 4901 | // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 | ||||
| 4902 | // We cannot guarantee this for indirect calls or calls to external functions. | ||||
| 4903 | // When PC-Relative addressing is used, the concept of the TOC is no longer | ||||
| 4904 | // applicable so this check is not required. | ||||
| 4905 | // Check first for indirect calls. | ||||
| 4906 | if (!Subtarget.isUsingPCRelativeCalls() && | ||||
| 4907 | !isFunctionGlobalAddress(CalleeGV) && !isCalleeExternalSymbol) | ||||
| 4908 | return false; | ||||
| 4909 | |||||
| 4910 | // Check if we share the TOC base. | ||||
| 4911 | if (!Subtarget.isUsingPCRelativeCalls() && | ||||
| 4912 | !callsShareTOCBase(CallerFunc, CalleeGV, getTargetMachine())) | ||||
| 4913 | return false; | ||||
| 4914 | |||||
| 4915 | // TCO allows altering callee ABI, so we don't have to check further. | ||||
| 4916 | if (CalleeCC == CallingConv::Fast && TailCallOpt) | ||||
| 4917 | return true; | ||||
| 4918 | |||||
| 4919 | if (DisableSCO) return false; | ||||
| 4920 | |||||
| 4921 | // If callee use the same argument list that caller is using, then we can | ||||
| 4922 | // apply SCO on this case. If it is not, then we need to check if callee needs | ||||
| 4923 | // stack for passing arguments. | ||||
| 4924 | // PC Relative tail calls may not have a CallBase. | ||||
| 4925 | // If there is no CallBase we cannot verify if we have the same argument | ||||
| 4926 | // list so assume that we don't have the same argument list. | ||||
| 4927 | if (CB && !hasSameArgumentList(CallerFunc, *CB) && | ||||
| 4928 | needStackSlotPassParameters(Subtarget, Outs)) | ||||
| 4929 | return false; | ||||
| 4930 | else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) | ||||
| 4931 | return false; | ||||
| 4932 | |||||
| 4933 | return true; | ||||
| 4934 | } | ||||
| 4935 | |||||
| 4936 | /// IsEligibleForTailCallOptimization - Check whether the call is eligible | ||||
| 4937 | /// for tail call optimization. Targets which want to do tail call | ||||
| 4938 | /// optimization should implement this function. | ||||
| 4939 | bool PPCTargetLowering::IsEligibleForTailCallOptimization( | ||||
| 4940 | const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, | ||||
| 4941 | CallingConv::ID CallerCC, bool isVarArg, | ||||
| 4942 | const SmallVectorImpl<ISD::InputArg> &Ins) const { | ||||
| 4943 | if (!getTargetMachine().Options.GuaranteedTailCallOpt) | ||||
| 4944 | return false; | ||||
| 4945 | |||||
| 4946 | // Variable argument functions are not supported. | ||||
| 4947 | if (isVarArg) | ||||
| 4948 | return false; | ||||
| 4949 | |||||
| 4950 | if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { | ||||
| 4951 | // Functions containing by val parameters are not supported. | ||||
| 4952 | if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) | ||||
| 4953 | return false; | ||||
| 4954 | |||||
| 4955 | // Non-PIC/GOT tail calls are supported. | ||||
| 4956 | if (getTargetMachine().getRelocationModel() != Reloc::PIC_) | ||||
| 4957 | return true; | ||||
| 4958 | |||||
| 4959 | // At the moment we can only do local tail calls (in same module, hidden | ||||
| 4960 | // or protected) if we are generating PIC. | ||||
| 4961 | if (CalleeGV) | ||||
| 4962 | return CalleeGV->hasHiddenVisibility() || | ||||
| 4963 | CalleeGV->hasProtectedVisibility(); | ||||
| 4964 | } | ||||
| 4965 | |||||
| 4966 | return false; | ||||
| 4967 | } | ||||
| 4968 | |||||
| 4969 | /// isCallCompatibleAddress - Return the immediate to use if the specified | ||||
| 4970 | /// 32-bit value is representable in the immediate field of a BxA instruction. | ||||
| 4971 | static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { | ||||
| 4972 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | ||||
| 4973 | if (!C) return nullptr; | ||||
| 4974 | |||||
| 4975 | int Addr = C->getZExtValue(); | ||||
| 4976 | if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. | ||||
| 4977 | SignExtend32<26>(Addr) != Addr) | ||||
| 4978 | return nullptr; // Top 6 bits have to be sext of immediate. | ||||
| 4979 | |||||
| 4980 | return DAG | ||||
| 4981 | .getConstant( | ||||
| 4982 | (int)C->getZExtValue() >> 2, SDLoc(Op), | ||||
| 4983 | DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) | ||||
| 4984 | .getNode(); | ||||
| 4985 | } | ||||
| 4986 | |||||
| 4987 | namespace { | ||||
| 4988 | |||||
| 4989 | struct TailCallArgumentInfo { | ||||
| 4990 | SDValue Arg; | ||||
| 4991 | SDValue FrameIdxOp; | ||||
| 4992 | int FrameIdx = 0; | ||||
| 4993 | |||||
| 4994 | TailCallArgumentInfo() = default; | ||||
| 4995 | }; | ||||
| 4996 | |||||
| 4997 | } // end anonymous namespace | ||||
| 4998 | |||||
| 4999 | /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. | ||||
| 5000 | static void StoreTailCallArgumentsToStackSlot( | ||||
| 5001 | SelectionDAG &DAG, SDValue Chain, | ||||
| 5002 | const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, | ||||
| 5003 | SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { | ||||
| 5004 | for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { | ||||
| 5005 | SDValue Arg = TailCallArgs[i].Arg; | ||||
| 5006 | SDValue FIN = TailCallArgs[i].FrameIdxOp; | ||||
| 5007 | int FI = TailCallArgs[i].FrameIdx; | ||||
| 5008 | // Store relative to framepointer. | ||||
| 5009 | MemOpChains.push_back(DAG.getStore( | ||||
| 5010 | Chain, dl, Arg, FIN, | ||||
| 5011 | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); | ||||
| 5012 | } | ||||
| 5013 | } | ||||
| 5014 | |||||
| 5015 | /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to | ||||
| 5016 | /// the appropriate stack slot for the tail call optimized function call. | ||||
| 5017 | static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, | ||||
| 5018 | SDValue OldRetAddr, SDValue OldFP, | ||||
| 5019 | int SPDiff, const SDLoc &dl) { | ||||
| 5020 | if (SPDiff) { | ||||
| 5021 | // Calculate the new stack slot for the return address. | ||||
| 5022 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 5023 | const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); | ||||
| 5024 | const PPCFrameLowering *FL = Subtarget.getFrameLowering(); | ||||
| 5025 | bool isPPC64 = Subtarget.isPPC64(); | ||||
| 5026 | int SlotSize = isPPC64 ? 8 : 4; | ||||
| 5027 | int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); | ||||
| 5028 | int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, | ||||
| 5029 | NewRetAddrLoc, true); | ||||
| 5030 | EVT VT = isPPC64 ? MVT::i64 : MVT::i32; | ||||
| 5031 | SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); | ||||
| 5032 | Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, | ||||
| 5033 | MachinePointerInfo::getFixedStack(MF, NewRetAddr)); | ||||
| 5034 | } | ||||
| 5035 | return Chain; | ||||
| 5036 | } | ||||
| 5037 | |||||
| 5038 | /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate | ||||
| 5039 | /// the position of the argument. | ||||
| 5040 | static void | ||||
| 5041 | CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, | ||||
| 5042 | SDValue Arg, int SPDiff, unsigned ArgOffset, | ||||
| 5043 | SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { | ||||
| 5044 | int Offset = ArgOffset + SPDiff; | ||||
| 5045 | uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; | ||||
| 5046 | int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); | ||||
| 5047 | EVT VT = isPPC64 ? MVT::i64 : MVT::i32; | ||||
| 5048 | SDValue FIN = DAG.getFrameIndex(FI, VT); | ||||
| 5049 | TailCallArgumentInfo Info; | ||||
| 5050 | Info.Arg = Arg; | ||||
| 5051 | Info.FrameIdxOp = FIN; | ||||
| 5052 | Info.FrameIdx = FI; | ||||
| 5053 | TailCallArguments.push_back(Info); | ||||
| 5054 | } | ||||
| 5055 | |||||
| 5056 | /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address | ||||
| 5057 | /// stack slot. Returns the chain as result and the loaded frame pointers in | ||||
| 5058 | /// LROpOut/FPOpout. Used when tail calling. | ||||
| 5059 | SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( | ||||
| 5060 | SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, | ||||
| 5061 | SDValue &FPOpOut, const SDLoc &dl) const { | ||||
| 5062 | if (SPDiff) { | ||||
| 5063 | // Load the LR and FP stack slot for later adjusting. | ||||
| 5064 | EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; | ||||
| 5065 | LROpOut = getReturnAddrFrameIndex(DAG); | ||||
| 5066 | LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); | ||||
| 5067 | Chain = SDValue(LROpOut.getNode(), 1); | ||||
| 5068 | } | ||||
| 5069 | return Chain; | ||||
| 5070 | } | ||||
| 5071 | |||||
| 5072 | /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified | ||||
| 5073 | /// by "Src" to address "Dst" of size "Size". Alignment information is | ||||
| 5074 | /// specified by the specific parameter attribute. The copy will be passed as | ||||
| 5075 | /// a byval function parameter. | ||||
| 5076 | /// Sometimes what we are copying is the end of a larger object, the part that | ||||
| 5077 | /// does not fit in registers. | ||||
| 5078 | static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, | ||||
| 5079 | SDValue Chain, ISD::ArgFlagsTy Flags, | ||||
| 5080 | SelectionDAG &DAG, const SDLoc &dl) { | ||||
| 5081 | SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); | ||||
| 5082 | return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, | ||||
| 5083 | Flags.getNonZeroByValAlign(), false, false, false, | ||||
| 5084 | MachinePointerInfo(), MachinePointerInfo()); | ||||
| 5085 | } | ||||
| 5086 | |||||
| 5087 | /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of | ||||
| 5088 | /// tail calls. | ||||
| 5089 | static void LowerMemOpCallTo( | ||||
| 5090 | SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, | ||||
| 5091 | SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, | ||||
| 5092 | bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, | ||||
| 5093 | SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { | ||||
| 5094 | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); | ||||
| 5095 | if (!isTailCall) { | ||||
| 5096 | if (isVector) { | ||||
| 5097 | SDValue StackPtr; | ||||
| 5098 | if (isPPC64) | ||||
| 5099 | StackPtr = DAG.getRegister(PPC::X1, MVT::i64); | ||||
| 5100 | else | ||||
| 5101 | StackPtr = DAG.getRegister(PPC::R1, MVT::i32); | ||||
| 5102 | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, | ||||
| 5103 | DAG.getConstant(ArgOffset, dl, PtrVT)); | ||||
| 5104 | } | ||||
| 5105 | MemOpChains.push_back( | ||||
| 5106 | DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); | ||||
| 5107 | // Calculate and remember argument location. | ||||
| 5108 | } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, | ||||
| 5109 | TailCallArguments); | ||||
| 5110 | } | ||||
| 5111 | |||||
| 5112 | static void | ||||
| 5113 | PrepareTailCall(SelectionDAG &DAG, SDValue &InGlue, SDValue &Chain, | ||||
| 5114 | const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, | ||||
| 5115 | SDValue FPOp, | ||||
| 5116 | SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { | ||||
| 5117 | // Emit a sequence of copyto/copyfrom virtual registers for arguments that | ||||
| 5118 | // might overwrite each other in case of tail call optimization. | ||||
| 5119 | SmallVector<SDValue, 8> MemOpChains2; | ||||
| 5120 | // Do not flag preceding copytoreg stuff together with the following stuff. | ||||
| 5121 | InGlue = SDValue(); | ||||
| 5122 | StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, | ||||
| 5123 | MemOpChains2, dl); | ||||
| 5124 | if (!MemOpChains2.empty()) | ||||
| 5125 | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); | ||||
| 5126 | |||||
| 5127 | // Store the return address to the appropriate stack slot. | ||||
| 5128 | Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); | ||||
| 5129 | |||||
| 5130 | // Emit callseq_end just before tailcall node. | ||||
| 5131 | Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, dl); | ||||
| 5132 | InGlue = Chain.getValue(1); | ||||
| 5133 | } | ||||
| 5134 | |||||
| 5135 | // Is this global address that of a function that can be called by name? (as | ||||
| 5136 | // opposed to something that must hold a descriptor for an indirect call). | ||||
| 5137 | static bool isFunctionGlobalAddress(const GlobalValue *GV) { | ||||
| 5138 | if (GV) { | ||||
| 5139 | if (GV->isThreadLocal()) | ||||
| 5140 | return false; | ||||
| 5141 | |||||
| 5142 | return GV->getValueType()->isFunctionTy(); | ||||
| 5143 | } | ||||
| 5144 | |||||
| 5145 | return false; | ||||
| 5146 | } | ||||
| 5147 | |||||
| 5148 | SDValue PPCTargetLowering::LowerCallResult( | ||||
| 5149 | SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, | ||||
| 5150 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | ||||
| 5151 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | ||||
| 5152 | SmallVector<CCValAssign, 16> RVLocs; | ||||
| 5153 | CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | ||||
| 5154 | *DAG.getContext()); | ||||
| 5155 | |||||
| 5156 | CCRetInfo.AnalyzeCallResult( | ||||
| 5157 | Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) | ||||
| 5158 | ? RetCC_PPC_Cold | ||||
| 5159 | : RetCC_PPC); | ||||
| 5160 | |||||
| 5161 | // Copy all of the result registers out of their specified physreg. | ||||
| 5162 | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { | ||||
| 5163 | CCValAssign &VA = RVLocs[i]; | ||||
| 5164 | assert(VA.isRegLoc() && "Can only return in registers!")(static_cast <bool> (VA.isRegLoc() && "Can only return in registers!" ) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5164, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5165 | |||||
| 5166 | SDValue Val; | ||||
| 5167 | |||||
| 5168 | if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { | ||||
| 5169 | SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, | ||||
| 5170 | InGlue); | ||||
| 5171 | Chain = Lo.getValue(1); | ||||
| 5172 | InGlue = Lo.getValue(2); | ||||
| 5173 | VA = RVLocs[++i]; // skip ahead to next loc | ||||
| 5174 | SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, | ||||
| 5175 | InGlue); | ||||
| 5176 | Chain = Hi.getValue(1); | ||||
| 5177 | InGlue = Hi.getValue(2); | ||||
| 5178 | if (!Subtarget.isLittleEndian()) | ||||
| 5179 | std::swap (Lo, Hi); | ||||
| 5180 | Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); | ||||
| 5181 | } else { | ||||
| 5182 | Val = DAG.getCopyFromReg(Chain, dl, | ||||
| 5183 | VA.getLocReg(), VA.getLocVT(), InGlue); | ||||
| 5184 | Chain = Val.getValue(1); | ||||
| 5185 | InGlue = Val.getValue(2); | ||||
| 5186 | } | ||||
| 5187 | |||||
| 5188 | switch (VA.getLocInfo()) { | ||||
| 5189 | default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 5189); | ||||
| 5190 | case CCValAssign::Full: break; | ||||
| 5191 | case CCValAssign::AExt: | ||||
| 5192 | Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); | ||||
| 5193 | break; | ||||
| 5194 | case CCValAssign::ZExt: | ||||
| 5195 | Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, | ||||
| 5196 | DAG.getValueType(VA.getValVT())); | ||||
| 5197 | Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); | ||||
| 5198 | break; | ||||
| 5199 | case CCValAssign::SExt: | ||||
| 5200 | Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, | ||||
| 5201 | DAG.getValueType(VA.getValVT())); | ||||
| 5202 | Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); | ||||
| 5203 | break; | ||||
| 5204 | } | ||||
| 5205 | |||||
| 5206 | InVals.push_back(Val); | ||||
| 5207 | } | ||||
| 5208 | |||||
| 5209 | return Chain; | ||||
| 5210 | } | ||||
| 5211 | |||||
| 5212 | static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, | ||||
| 5213 | const PPCSubtarget &Subtarget, bool isPatchPoint) { | ||||
| 5214 | auto *G = dyn_cast<GlobalAddressSDNode>(Callee); | ||||
| 5215 | const GlobalValue *GV = G ? G->getGlobal() : nullptr; | ||||
| 5216 | |||||
| 5217 | // PatchPoint calls are not indirect. | ||||
| 5218 | if (isPatchPoint) | ||||
| 5219 | return false; | ||||
| 5220 | |||||
| 5221 | if (isFunctionGlobalAddress(GV) || isa<ExternalSymbolSDNode>(Callee)) | ||||
| 5222 | return false; | ||||
| 5223 | |||||
| 5224 | // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not | ||||
| 5225 | // becuase the immediate function pointer points to a descriptor instead of | ||||
| 5226 | // a function entry point. The ELFv2 ABI cannot use a BLA because the function | ||||
| 5227 | // pointer immediate points to the global entry point, while the BLA would | ||||
| 5228 | // need to jump to the local entry point (see rL211174). | ||||
| 5229 | if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && | ||||
| 5230 | isBLACompatibleAddress(Callee, DAG)) | ||||
| 5231 | return false; | ||||
| 5232 | |||||
| 5233 | return true; | ||||
| 5234 | } | ||||
| 5235 | |||||
| 5236 | // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. | ||||
| 5237 | static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { | ||||
| 5238 | return Subtarget.isAIXABI() || | ||||
| 5239 | (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); | ||||
| 5240 | } | ||||
| 5241 | |||||
| 5242 | static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, | ||||
| 5243 | const Function &Caller, const SDValue &Callee, | ||||
| 5244 | const PPCSubtarget &Subtarget, | ||||
| 5245 | const TargetMachine &TM, | ||||
| 5246 | bool IsStrictFPCall = false) { | ||||
| 5247 | if (CFlags.IsTailCall) | ||||
| 5248 | return PPCISD::TC_RETURN; | ||||
| 5249 | |||||
| 5250 | unsigned RetOpc = 0; | ||||
| 5251 | // This is a call through a function pointer. | ||||
| 5252 | if (CFlags.IsIndirect) { | ||||
| 5253 | // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross | ||||
| 5254 | // indirect calls. The save of the caller's TOC pointer to the stack will be | ||||
| 5255 | // inserted into the DAG as part of call lowering. The restore of the TOC | ||||
| 5256 | // pointer is modeled by using a pseudo instruction for the call opcode that | ||||
| 5257 | // represents the 2 instruction sequence of an indirect branch and link, | ||||
| 5258 | // immediately followed by a load of the TOC pointer from the the stack save | ||||
| 5259 | // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC | ||||
| 5260 | // as it is not saved or used. | ||||
| 5261 | RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC | ||||
| 5262 | : PPCISD::BCTRL; | ||||
| 5263 | } else if (Subtarget.isUsingPCRelativeCalls()) { | ||||
| 5264 | assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.")(static_cast <bool> (Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.") ? void (0) : __assert_fail ("Subtarget.is64BitELFABI() && \"PC Relative is only on ELF ABI.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5264, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5265 | RetOpc = PPCISD::CALL_NOTOC; | ||||
| 5266 | } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) { | ||||
| 5267 | // The ABIs that maintain a TOC pointer accross calls need to have a nop | ||||
| 5268 | // immediately following the call instruction if the caller and callee may | ||||
| 5269 | // have different TOC bases. At link time if the linker determines the calls | ||||
| 5270 | // may not share a TOC base, the call is redirected to a trampoline inserted | ||||
| 5271 | // by the linker. The trampoline will (among other things) save the callers | ||||
| 5272 | // TOC pointer at an ABI designated offset in the linkage area and the | ||||
| 5273 | // linker will rewrite the nop to be a load of the TOC pointer from the | ||||
| 5274 | // linkage area into gpr2. | ||||
| 5275 | auto *G = dyn_cast<GlobalAddressSDNode>(Callee); | ||||
| 5276 | const GlobalValue *GV = G ? G->getGlobal() : nullptr; | ||||
| 5277 | RetOpc = | ||||
| 5278 | callsShareTOCBase(&Caller, GV, TM) ? PPCISD::CALL : PPCISD::CALL_NOP; | ||||
| 5279 | } else | ||||
| 5280 | RetOpc = PPCISD::CALL; | ||||
| 5281 | if (IsStrictFPCall) { | ||||
| 5282 | switch (RetOpc) { | ||||
| 5283 | default: | ||||
| 5284 | llvm_unreachable("Unknown call opcode")::llvm::llvm_unreachable_internal("Unknown call opcode", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 5284); | ||||
| 5285 | case PPCISD::BCTRL_LOAD_TOC: | ||||
| 5286 | RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; | ||||
| 5287 | break; | ||||
| 5288 | case PPCISD::BCTRL: | ||||
| 5289 | RetOpc = PPCISD::BCTRL_RM; | ||||
| 5290 | break; | ||||
| 5291 | case PPCISD::CALL_NOTOC: | ||||
| 5292 | RetOpc = PPCISD::CALL_NOTOC_RM; | ||||
| 5293 | break; | ||||
| 5294 | case PPCISD::CALL: | ||||
| 5295 | RetOpc = PPCISD::CALL_RM; | ||||
| 5296 | break; | ||||
| 5297 | case PPCISD::CALL_NOP: | ||||
| 5298 | RetOpc = PPCISD::CALL_NOP_RM; | ||||
| 5299 | break; | ||||
| 5300 | } | ||||
| 5301 | } | ||||
| 5302 | return RetOpc; | ||||
| 5303 | } | ||||
| 5304 | |||||
| 5305 | static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, | ||||
| 5306 | const SDLoc &dl, const PPCSubtarget &Subtarget) { | ||||
| 5307 | if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) | ||||
| 5308 | if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) | ||||
| 5309 | return SDValue(Dest, 0); | ||||
| 5310 | |||||
| 5311 | // Returns true if the callee is local, and false otherwise. | ||||
| 5312 | auto isLocalCallee = [&]() { | ||||
| 5313 | const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); | ||||
| 5314 | const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); | ||||
| 5315 | const GlobalValue *GV = G ? G->getGlobal() : nullptr; | ||||
| 5316 | |||||
| 5317 | return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && | ||||
| 5318 | !isa_and_nonnull<GlobalIFunc>(GV); | ||||
| 5319 | }; | ||||
| 5320 | |||||
| 5321 | // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in | ||||
| 5322 | // a static relocation model causes some versions of GNU LD (2.17.50, at | ||||
| 5323 | // least) to force BSS-PLT, instead of secure-PLT, even if all objects are | ||||
| 5324 | // built with secure-PLT. | ||||
| 5325 | bool UsePlt = | ||||
| 5326 | Subtarget.is32BitELFABI() && !isLocalCallee() && | ||||
| 5327 | Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; | ||||
| 5328 | |||||
| 5329 | const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { | ||||
| 5330 | const TargetMachine &TM = Subtarget.getTargetMachine(); | ||||
| 5331 | const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); | ||||
| 5332 | MCSymbolXCOFF *S = | ||||
| 5333 | cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); | ||||
| 5334 | |||||
| 5335 | MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); | ||||
| 5336 | return DAG.getMCSymbol(S, PtrVT); | ||||
| 5337 | }; | ||||
| 5338 | |||||
| 5339 | auto *G = dyn_cast<GlobalAddressSDNode>(Callee); | ||||
| 5340 | const GlobalValue *GV = G ? G->getGlobal() : nullptr; | ||||
| 5341 | if (isFunctionGlobalAddress(GV)) { | ||||
| 5342 | const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); | ||||
| 5343 | |||||
| 5344 | if (Subtarget.isAIXABI()) { | ||||
| 5345 | assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.")(static_cast <bool> (!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.") ? void (0) : __assert_fail ("!isa<GlobalIFunc>(GV) && \"IFunc is not supported on AIX.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5345, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5346 | return getAIXFuncEntryPointSymbolSDNode(GV); | ||||
| 5347 | } | ||||
| 5348 | return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, | ||||
| 5349 | UsePlt ? PPCII::MO_PLT : 0); | ||||
| 5350 | } | ||||
| 5351 | |||||
| 5352 | if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { | ||||
| 5353 | const char *SymName = S->getSymbol(); | ||||
| 5354 | if (Subtarget.isAIXABI()) { | ||||
| 5355 | // If there exists a user-declared function whose name is the same as the | ||||
| 5356 | // ExternalSymbol's, then we pick up the user-declared version. | ||||
| 5357 | const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); | ||||
| 5358 | if (const Function *F = | ||||
| 5359 | dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) | ||||
| 5360 | return getAIXFuncEntryPointSymbolSDNode(F); | ||||
| 5361 | |||||
| 5362 | // On AIX, direct function calls reference the symbol for the function's | ||||
| 5363 | // entry point, which is named by prepending a "." before the function's | ||||
| 5364 | // C-linkage name. A Qualname is returned here because an external | ||||
| 5365 | // function entry point is a csect with XTY_ER property. | ||||
| 5366 | const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { | ||||
| 5367 | auto &Context = DAG.getMachineFunction().getMMI().getContext(); | ||||
| 5368 | MCSectionXCOFF *Sec = Context.getXCOFFSection( | ||||
| 5369 | (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), | ||||
| 5370 | XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); | ||||
| 5371 | return Sec->getQualNameSymbol(); | ||||
| 5372 | }; | ||||
| 5373 | |||||
| 5374 | SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); | ||||
| 5375 | } | ||||
| 5376 | return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), | ||||
| 5377 | UsePlt ? PPCII::MO_PLT : 0); | ||||
| 5378 | } | ||||
| 5379 | |||||
| 5380 | // No transformation needed. | ||||
| 5381 | assert(Callee.getNode() && "What no callee?")(static_cast <bool> (Callee.getNode() && "What no callee?" ) ? void (0) : __assert_fail ("Callee.getNode() && \"What no callee?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5381, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5382 | return Callee; | ||||
| 5383 | } | ||||
| 5384 | |||||
| 5385 | static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { | ||||
| 5386 | assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&(static_cast <bool> (CallSeqStart.getOpcode() == ISD::CALLSEQ_START && "Expected a CALLSEQ_STARTSDNode.") ? void (0) : __assert_fail ("CallSeqStart.getOpcode() == ISD::CALLSEQ_START && \"Expected a CALLSEQ_STARTSDNode.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5387, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5387 | "Expected a CALLSEQ_STARTSDNode.")(static_cast <bool> (CallSeqStart.getOpcode() == ISD::CALLSEQ_START && "Expected a CALLSEQ_STARTSDNode.") ? void (0) : __assert_fail ("CallSeqStart.getOpcode() == ISD::CALLSEQ_START && \"Expected a CALLSEQ_STARTSDNode.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5387, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5388 | |||||
| 5389 | // The last operand is the chain, except when the node has glue. If the node | ||||
| 5390 | // has glue, then the last operand is the glue, and the chain is the second | ||||
| 5391 | // last operand. | ||||
| 5392 | SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); | ||||
| 5393 | if (LastValue.getValueType() != MVT::Glue) | ||||
| 5394 | return LastValue; | ||||
| 5395 | |||||
| 5396 | return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); | ||||
| 5397 | } | ||||
| 5398 | |||||
| 5399 | // Creates the node that moves a functions address into the count register | ||||
| 5400 | // to prepare for an indirect call instruction. | ||||
| 5401 | static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, | ||||
| 5402 | SDValue &Glue, SDValue &Chain, | ||||
| 5403 | const SDLoc &dl) { | ||||
| 5404 | SDValue MTCTROps[] = {Chain, Callee, Glue}; | ||||
| 5405 | EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; | ||||
| 5406 | Chain = DAG.getNode(PPCISD::MTCTR, dl, ArrayRef(ReturnTypes, 2), | ||||
| 5407 | ArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); | ||||
| 5408 | // The glue is the second value produced. | ||||
| 5409 | Glue = Chain.getValue(1); | ||||
| 5410 | } | ||||
| 5411 | |||||
| 5412 | static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, | ||||
| 5413 | SDValue &Glue, SDValue &Chain, | ||||
| 5414 | SDValue CallSeqStart, | ||||
| 5415 | const CallBase *CB, const SDLoc &dl, | ||||
| 5416 | bool hasNest, | ||||
| 5417 | const PPCSubtarget &Subtarget) { | ||||
| 5418 | // Function pointers in the 64-bit SVR4 ABI do not point to the function | ||||
| 5419 | // entry point, but to the function descriptor (the function entry point | ||||
| 5420 | // address is part of the function descriptor though). | ||||
| 5421 | // The function descriptor is a three doubleword structure with the | ||||
| 5422 | // following fields: function entry point, TOC base address and | ||||
| 5423 | // environment pointer. | ||||
| 5424 | // Thus for a call through a function pointer, the following actions need | ||||
| 5425 | // to be performed: | ||||
| 5426 | // 1. Save the TOC of the caller in the TOC save area of its stack | ||||
| 5427 | // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). | ||||
| 5428 | // 2. Load the address of the function entry point from the function | ||||
| 5429 | // descriptor. | ||||
| 5430 | // 3. Load the TOC of the callee from the function descriptor into r2. | ||||
| 5431 | // 4. Load the environment pointer from the function descriptor into | ||||
| 5432 | // r11. | ||||
| 5433 | // 5. Branch to the function entry point address. | ||||
| 5434 | // 6. On return of the callee, the TOC of the caller needs to be | ||||
| 5435 | // restored (this is done in FinishCall()). | ||||
| 5436 | // | ||||
| 5437 | // The loads are scheduled at the beginning of the call sequence, and the | ||||
| 5438 | // register copies are flagged together to ensure that no other | ||||
| 5439 | // operations can be scheduled in between. E.g. without flagging the | ||||
| 5440 | // copies together, a TOC access in the caller could be scheduled between | ||||
| 5441 | // the assignment of the callee TOC and the branch to the callee, which leads | ||||
| 5442 | // to incorrect code. | ||||
| 5443 | |||||
| 5444 | // Start by loading the function address from the descriptor. | ||||
| 5445 | SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); | ||||
| 5446 | auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() | ||||
| 5447 | ? (MachineMemOperand::MODereferenceable | | ||||
| 5448 | MachineMemOperand::MOInvariant) | ||||
| 5449 | : MachineMemOperand::MONone; | ||||
| 5450 | |||||
| 5451 | MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); | ||||
| 5452 | |||||
| 5453 | // Registers used in building the DAG. | ||||
| 5454 | const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); | ||||
| 5455 | const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); | ||||
| 5456 | |||||
| 5457 | // Offsets of descriptor members. | ||||
| 5458 | const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); | ||||
| 5459 | const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); | ||||
| 5460 | |||||
| 5461 | const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; | ||||
| 5462 | const Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); | ||||
| 5463 | |||||
| 5464 | // One load for the functions entry point address. | ||||
| 5465 | SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, | ||||
| 5466 | Alignment, MMOFlags); | ||||
| 5467 | |||||
| 5468 | // One for loading the TOC anchor for the module that contains the called | ||||
| 5469 | // function. | ||||
| 5470 | SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); | ||||
| 5471 | SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); | ||||
| 5472 | SDValue TOCPtr = | ||||
| 5473 | DAG.getLoad(RegVT, dl, LDChain, AddTOC, | ||||
| 5474 | MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); | ||||
| 5475 | |||||
| 5476 | // One for loading the environment pointer. | ||||
| 5477 | SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); | ||||
| 5478 | SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); | ||||
| 5479 | SDValue LoadEnvPtr = | ||||
| 5480 | DAG.getLoad(RegVT, dl, LDChain, AddPtr, | ||||
| 5481 | MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); | ||||
| 5482 | |||||
| 5483 | |||||
| 5484 | // Then copy the newly loaded TOC anchor to the TOC pointer. | ||||
| 5485 | SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); | ||||
| 5486 | Chain = TOCVal.getValue(0); | ||||
| 5487 | Glue = TOCVal.getValue(1); | ||||
| 5488 | |||||
| 5489 | // If the function call has an explicit 'nest' parameter, it takes the | ||||
| 5490 | // place of the environment pointer. | ||||
| 5491 | assert((!hasNest || !Subtarget.isAIXABI()) &&(static_cast <bool> ((!hasNest || !Subtarget.isAIXABI() ) && "Nest parameter is not supported on AIX.") ? void (0) : __assert_fail ("(!hasNest || !Subtarget.isAIXABI()) && \"Nest parameter is not supported on AIX.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5492, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5492 | "Nest parameter is not supported on AIX.")(static_cast <bool> ((!hasNest || !Subtarget.isAIXABI() ) && "Nest parameter is not supported on AIX.") ? void (0) : __assert_fail ("(!hasNest || !Subtarget.isAIXABI()) && \"Nest parameter is not supported on AIX.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5492, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5493 | if (!hasNest) { | ||||
| 5494 | SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); | ||||
| 5495 | Chain = EnvVal.getValue(0); | ||||
| 5496 | Glue = EnvVal.getValue(1); | ||||
| 5497 | } | ||||
| 5498 | |||||
| 5499 | // The rest of the indirect call sequence is the same as the non-descriptor | ||||
| 5500 | // DAG. | ||||
| 5501 | prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); | ||||
| 5502 | } | ||||
| 5503 | |||||
| 5504 | static void | ||||
| 5505 | buildCallOperands(SmallVectorImpl<SDValue> &Ops, | ||||
| 5506 | PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, | ||||
| 5507 | SelectionDAG &DAG, | ||||
| 5508 | SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, | ||||
| 5509 | SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, | ||||
| 5510 | const PPCSubtarget &Subtarget) { | ||||
| 5511 | const bool IsPPC64 = Subtarget.isPPC64(); | ||||
| 5512 | // MVT for a general purpose register. | ||||
| 5513 | const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; | ||||
| 5514 | |||||
| 5515 | // First operand is always the chain. | ||||
| 5516 | Ops.push_back(Chain); | ||||
| 5517 | |||||
| 5518 | // If it's a direct call pass the callee as the second operand. | ||||
| 5519 | if (!CFlags.IsIndirect) | ||||
| 5520 | Ops.push_back(Callee); | ||||
| 5521 | else { | ||||
| 5522 | assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.")(static_cast <bool> (!CFlags.IsPatchPoint && "Patch point calls are not indirect." ) ? void (0) : __assert_fail ("!CFlags.IsPatchPoint && \"Patch point calls are not indirect.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5522, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5523 | |||||
| 5524 | // For the TOC based ABIs, we have saved the TOC pointer to the linkage area | ||||
| 5525 | // on the stack (this would have been done in `LowerCall_64SVR4` or | ||||
| 5526 | // `LowerCall_AIX`). The call instruction is a pseudo instruction that | ||||
| 5527 | // represents both the indirect branch and a load that restores the TOC | ||||
| 5528 | // pointer from the linkage area. The operand for the TOC restore is an add | ||||
| 5529 | // of the TOC save offset to the stack pointer. This must be the second | ||||
| 5530 | // operand: after the chain input but before any other variadic arguments. | ||||
| 5531 | // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not | ||||
| 5532 | // saved or used. | ||||
| 5533 | if (isTOCSaveRestoreRequired(Subtarget)) { | ||||
| 5534 | const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); | ||||
| 5535 | |||||
| 5536 | SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); | ||||
| 5537 | unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); | ||||
| 5538 | SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); | ||||
| 5539 | SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); | ||||
| 5540 | Ops.push_back(AddTOC); | ||||
| 5541 | } | ||||
| 5542 | |||||
| 5543 | // Add the register used for the environment pointer. | ||||
| 5544 | if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) | ||||
| 5545 | Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), | ||||
| 5546 | RegVT)); | ||||
| 5547 | |||||
| 5548 | |||||
| 5549 | // Add CTR register as callee so a bctr can be emitted later. | ||||
| 5550 | if (CFlags.IsTailCall) | ||||
| 5551 | Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); | ||||
| 5552 | } | ||||
| 5553 | |||||
| 5554 | // If this is a tail call add stack pointer delta. | ||||
| 5555 | if (CFlags.IsTailCall) | ||||
| 5556 | Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); | ||||
| 5557 | |||||
| 5558 | // Add argument registers to the end of the list so that they are known live | ||||
| 5559 | // into the call. | ||||
| 5560 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) | ||||
| 5561 | Ops.push_back(DAG.getRegister(RegsToPass[i].first, | ||||
| 5562 | RegsToPass[i].second.getValueType())); | ||||
| 5563 | |||||
| 5564 | // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is | ||||
| 5565 | // no way to mark dependencies as implicit here. | ||||
| 5566 | // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. | ||||
| 5567 | if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && | ||||
| 5568 | !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) | ||||
| 5569 | Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); | ||||
| 5570 | |||||
| 5571 | // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls | ||||
| 5572 | if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) | ||||
| 5573 | Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); | ||||
| 5574 | |||||
| 5575 | // Add a register mask operand representing the call-preserved registers. | ||||
| 5576 | const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); | ||||
| 5577 | const uint32_t *Mask = | ||||
| 5578 | TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); | ||||
| 5579 | assert(Mask && "Missing call preserved mask for calling convention")(static_cast <bool> (Mask && "Missing call preserved mask for calling convention" ) ? void (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5579, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5580 | Ops.push_back(DAG.getRegisterMask(Mask)); | ||||
| 5581 | |||||
| 5582 | // If the glue is valid, it is the last operand. | ||||
| 5583 | if (Glue.getNode()) | ||||
| 5584 | Ops.push_back(Glue); | ||||
| 5585 | } | ||||
| 5586 | |||||
| 5587 | SDValue PPCTargetLowering::FinishCall( | ||||
| 5588 | CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, | ||||
| 5589 | SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, | ||||
| 5590 | SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, | ||||
| 5591 | unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, | ||||
| 5592 | SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { | ||||
| 5593 | |||||
| 5594 | if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || | ||||
| 5595 | Subtarget.isAIXABI()) | ||||
| 5596 | setUsesTOCBasePtr(DAG); | ||||
| 5597 | |||||
| 5598 | unsigned CallOpc = | ||||
| 5599 | getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, | ||||
| 5600 | Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); | ||||
| 5601 | |||||
| 5602 | if (!CFlags.IsIndirect) | ||||
| 5603 | Callee = transformCallee(Callee, DAG, dl, Subtarget); | ||||
| 5604 | else if (Subtarget.usesFunctionDescriptors()) | ||||
| 5605 | prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, | ||||
| 5606 | dl, CFlags.HasNest, Subtarget); | ||||
| 5607 | else | ||||
| 5608 | prepareIndirectCall(DAG, Callee, Glue, Chain, dl); | ||||
| 5609 | |||||
| 5610 | // Build the operand list for the call instruction. | ||||
| 5611 | SmallVector<SDValue, 8> Ops; | ||||
| 5612 | buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, | ||||
| 5613 | SPDiff, Subtarget); | ||||
| 5614 | |||||
| 5615 | // Emit tail call. | ||||
| 5616 | if (CFlags.IsTailCall) { | ||||
| 5617 | // Indirect tail call when using PC Relative calls do not have the same | ||||
| 5618 | // constraints. | ||||
| 5619 | assert(((Callee.getOpcode() == ISD::Register &&(static_cast <bool> (((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa< ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget .isUsingPCRelativeCalls())) && "Expecting a global address, external symbol, absolute value, " "register or an indirect tail call when PC Relative calls are " "used.") ? void (0) : __assert_fail ("((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa<ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && \"Expecting a global address, external symbol, absolute value, \" \"register or an indirect tail call when PC Relative calls are \" \"used.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5627, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5620 | cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||(static_cast <bool> (((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa< ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget .isUsingPCRelativeCalls())) && "Expecting a global address, external symbol, absolute value, " "register or an indirect tail call when PC Relative calls are " "used.") ? void (0) : __assert_fail ("((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa<ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && \"Expecting a global address, external symbol, absolute value, \" \"register or an indirect tail call when PC Relative calls are \" \"used.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5627, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5621 | Callee.getOpcode() == ISD::TargetExternalSymbol ||(static_cast <bool> (((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa< ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget .isUsingPCRelativeCalls())) && "Expecting a global address, external symbol, absolute value, " "register or an indirect tail call when PC Relative calls are " "used.") ? void (0) : __assert_fail ("((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa<ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && \"Expecting a global address, external symbol, absolute value, \" \"register or an indirect tail call when PC Relative calls are \" \"used.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5627, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5622 | Callee.getOpcode() == ISD::TargetGlobalAddress ||(static_cast <bool> (((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa< ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget .isUsingPCRelativeCalls())) && "Expecting a global address, external symbol, absolute value, " "register or an indirect tail call when PC Relative calls are " "used.") ? void (0) : __assert_fail ("((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa<ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && \"Expecting a global address, external symbol, absolute value, \" \"register or an indirect tail call when PC Relative calls are \" \"used.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5627, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5623 | isa<ConstantSDNode>(Callee) ||(static_cast <bool> (((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa< ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget .isUsingPCRelativeCalls())) && "Expecting a global address, external symbol, absolute value, " "register or an indirect tail call when PC Relative calls are " "used.") ? void (0) : __assert_fail ("((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa<ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && \"Expecting a global address, external symbol, absolute value, \" \"register or an indirect tail call when PC Relative calls are \" \"used.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5627, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5624 | (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&(static_cast <bool> (((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa< ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget .isUsingPCRelativeCalls())) && "Expecting a global address, external symbol, absolute value, " "register or an indirect tail call when PC Relative calls are " "used.") ? void (0) : __assert_fail ("((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa<ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && \"Expecting a global address, external symbol, absolute value, \" \"register or an indirect tail call when PC Relative calls are \" \"used.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5627, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5625 | "Expecting a global address, external symbol, absolute value, "(static_cast <bool> (((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa< ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget .isUsingPCRelativeCalls())) && "Expecting a global address, external symbol, absolute value, " "register or an indirect tail call when PC Relative calls are " "used.") ? void (0) : __assert_fail ("((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa<ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && \"Expecting a global address, external symbol, absolute value, \" \"register or an indirect tail call when PC Relative calls are \" \"used.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5627, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5626 | "register or an indirect tail call when PC Relative calls are "(static_cast <bool> (((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa< ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget .isUsingPCRelativeCalls())) && "Expecting a global address, external symbol, absolute value, " "register or an indirect tail call when PC Relative calls are " "used.") ? void (0) : __assert_fail ("((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa<ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && \"Expecting a global address, external symbol, absolute value, \" \"register or an indirect tail call when PC Relative calls are \" \"used.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5627, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5627 | "used.")(static_cast <bool> (((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa< ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget .isUsingPCRelativeCalls())) && "Expecting a global address, external symbol, absolute value, " "register or an indirect tail call when PC Relative calls are " "used.") ? void (0) : __assert_fail ("((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa<ConstantSDNode>(Callee) || (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && \"Expecting a global address, external symbol, absolute value, \" \"register or an indirect tail call when PC Relative calls are \" \"used.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5627, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5628 | // PC Relative calls also use TC_RETURN as the way to mark tail calls. | ||||
| 5629 | assert(CallOpc == PPCISD::TC_RETURN &&(static_cast <bool> (CallOpc == PPCISD::TC_RETURN && "Unexpected call opcode for a tail call.") ? void (0) : __assert_fail ("CallOpc == PPCISD::TC_RETURN && \"Unexpected call opcode for a tail call.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5630, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5630 | "Unexpected call opcode for a tail call.")(static_cast <bool> (CallOpc == PPCISD::TC_RETURN && "Unexpected call opcode for a tail call.") ? void (0) : __assert_fail ("CallOpc == PPCISD::TC_RETURN && \"Unexpected call opcode for a tail call.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5630, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5631 | DAG.getMachineFunction().getFrameInfo().setHasTailCall(); | ||||
| 5632 | return DAG.getNode(CallOpc, dl, MVT::Other, Ops); | ||||
| 5633 | } | ||||
| 5634 | |||||
| 5635 | std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; | ||||
| 5636 | Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); | ||||
| 5637 | DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); | ||||
| 5638 | Glue = Chain.getValue(1); | ||||
| 5639 | |||||
| 5640 | // When performing tail call optimization the callee pops its arguments off | ||||
| 5641 | // the stack. Account for this here so these bytes can be pushed back on in | ||||
| 5642 | // PPCFrameLowering::eliminateCallFramePseudoInstr. | ||||
| 5643 | int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && | ||||
| 5644 | getTargetMachine().Options.GuaranteedTailCallOpt) | ||||
| 5645 | ? NumBytes | ||||
| 5646 | : 0; | ||||
| 5647 | |||||
| 5648 | Chain = DAG.getCALLSEQ_END(Chain, NumBytes, BytesCalleePops, Glue, dl); | ||||
| 5649 | Glue = Chain.getValue(1); | ||||
| 5650 | |||||
| 5651 | return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, | ||||
| 5652 | DAG, InVals); | ||||
| 5653 | } | ||||
| 5654 | |||||
| 5655 | bool PPCTargetLowering::supportsTailCallFor(const CallBase *CB) const { | ||||
| 5656 | CallingConv::ID CalleeCC = CB->getCallingConv(); | ||||
| 5657 | const Function *CallerFunc = CB->getCaller(); | ||||
| 5658 | CallingConv::ID CallerCC = CallerFunc->getCallingConv(); | ||||
| 5659 | const Function *CalleeFunc = CB->getCalledFunction(); | ||||
| 5660 | if (!CalleeFunc) | ||||
| 5661 | return false; | ||||
| 5662 | const GlobalValue *CalleeGV = dyn_cast<GlobalValue>(CalleeFunc); | ||||
| 5663 | |||||
| 5664 | SmallVector<ISD::OutputArg, 2> Outs; | ||||
| 5665 | SmallVector<ISD::InputArg, 2> Ins; | ||||
| 5666 | |||||
| 5667 | GetReturnInfo(CalleeCC, CalleeFunc->getReturnType(), | ||||
| 5668 | CalleeFunc->getAttributes(), Outs, *this, | ||||
| 5669 | CalleeFunc->getParent()->getDataLayout()); | ||||
| 5670 | |||||
| 5671 | return isEligibleForTCO(CalleeGV, CalleeCC, CallerCC, CB, | ||||
| 5672 | CalleeFunc->isVarArg(), Outs, Ins, CallerFunc, | ||||
| 5673 | false /*isCalleeExternalSymbol*/); | ||||
| 5674 | } | ||||
| 5675 | |||||
| 5676 | bool PPCTargetLowering::isEligibleForTCO( | ||||
| 5677 | const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, | ||||
| 5678 | CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg, | ||||
| 5679 | const SmallVectorImpl<ISD::OutputArg> &Outs, | ||||
| 5680 | const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc, | ||||
| 5681 | bool isCalleeExternalSymbol) const { | ||||
| 5682 | if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) | ||||
| 5683 | return false; | ||||
| 5684 | |||||
| 5685 | if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) | ||||
| 5686 | return IsEligibleForTailCallOptimization_64SVR4( | ||||
| 5687 | CalleeGV, CalleeCC, CallerCC, CB, isVarArg, Outs, Ins, CallerFunc, | ||||
| 5688 | isCalleeExternalSymbol); | ||||
| 5689 | else | ||||
| 5690 | return IsEligibleForTailCallOptimization(CalleeGV, CalleeCC, CallerCC, | ||||
| 5691 | isVarArg, Ins); | ||||
| 5692 | } | ||||
| 5693 | |||||
| 5694 | SDValue | ||||
| 5695 | PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, | ||||
| 5696 | SmallVectorImpl<SDValue> &InVals) const { | ||||
| 5697 | SelectionDAG &DAG = CLI.DAG; | ||||
| 5698 | SDLoc &dl = CLI.DL; | ||||
| 5699 | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; | ||||
| 5700 | SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; | ||||
| 5701 | SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; | ||||
| 5702 | SDValue Chain = CLI.Chain; | ||||
| 5703 | SDValue Callee = CLI.Callee; | ||||
| 5704 | bool &isTailCall = CLI.IsTailCall; | ||||
| 5705 | CallingConv::ID CallConv = CLI.CallConv; | ||||
| 5706 | bool isVarArg = CLI.IsVarArg; | ||||
| 5707 | bool isPatchPoint = CLI.IsPatchPoint; | ||||
| 5708 | const CallBase *CB = CLI.CB; | ||||
| 5709 | |||||
| 5710 | if (isTailCall) { | ||||
| 5711 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 5712 | CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); | ||||
| 5713 | auto *G = dyn_cast<GlobalAddressSDNode>(Callee); | ||||
| 5714 | const GlobalValue *GV = G ? G->getGlobal() : nullptr; | ||||
| 5715 | bool IsCalleeExternalSymbol = isa<ExternalSymbolSDNode>(Callee); | ||||
| 5716 | |||||
| 5717 | isTailCall = | ||||
| 5718 | isEligibleForTCO(GV, CallConv, CallerCC, CB, isVarArg, Outs, Ins, | ||||
| 5719 | &(MF.getFunction()), IsCalleeExternalSymbol); | ||||
| 5720 | if (isTailCall) { | ||||
| 5721 | ++NumTailCalls; | ||||
| 5722 | if (!getTargetMachine().Options.GuaranteedTailCallOpt) | ||||
| 5723 | ++NumSiblingCalls; | ||||
| 5724 | |||||
| 5725 | // PC Relative calls no longer guarantee that the callee is a Global | ||||
| 5726 | // Address Node. The callee could be an indirect tail call in which | ||||
| 5727 | // case the SDValue for the callee could be a load (to load the address | ||||
| 5728 | // of a function pointer) or it may be a register copy (to move the | ||||
| 5729 | // address of the callee from a function parameter into a virtual | ||||
| 5730 | // register). It may also be an ExternalSymbolSDNode (ex memcopy). | ||||
| 5731 | assert((Subtarget.isUsingPCRelativeCalls() ||(static_cast <bool> ((Subtarget.isUsingPCRelativeCalls( ) || isa<GlobalAddressSDNode>(Callee)) && "Callee should be an llvm::Function object." ) ? void (0) : __assert_fail ("(Subtarget.isUsingPCRelativeCalls() || isa<GlobalAddressSDNode>(Callee)) && \"Callee should be an llvm::Function object.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5733, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5732 | isa<GlobalAddressSDNode>(Callee)) &&(static_cast <bool> ((Subtarget.isUsingPCRelativeCalls( ) || isa<GlobalAddressSDNode>(Callee)) && "Callee should be an llvm::Function object." ) ? void (0) : __assert_fail ("(Subtarget.isUsingPCRelativeCalls() || isa<GlobalAddressSDNode>(Callee)) && \"Callee should be an llvm::Function object.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5733, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5733 | "Callee should be an llvm::Function object.")(static_cast <bool> ((Subtarget.isUsingPCRelativeCalls( ) || isa<GlobalAddressSDNode>(Callee)) && "Callee should be an llvm::Function object." ) ? void (0) : __assert_fail ("(Subtarget.isUsingPCRelativeCalls() || isa<GlobalAddressSDNode>(Callee)) && \"Callee should be an llvm::Function object.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5733, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5734 | |||||
| 5735 | LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { dbgs() << "TCO caller: " << DAG .getMachineFunction().getName() << "\nTCO callee: "; } } while (false) | ||||
| 5736 | << "\nTCO callee: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { dbgs() << "TCO caller: " << DAG .getMachineFunction().getName() << "\nTCO callee: "; } } while (false); | ||||
| 5737 | LLVM_DEBUG(Callee.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { Callee.dump(); } } while (false); | ||||
| 5738 | } | ||||
| 5739 | } | ||||
| 5740 | |||||
| 5741 | if (!isTailCall && CB && CB->isMustTailCall()) | ||||
| 5742 | report_fatal_error("failed to perform tail call elimination on a call " | ||||
| 5743 | "site marked musttail"); | ||||
| 5744 | |||||
| 5745 | // When long calls (i.e. indirect calls) are always used, calls are always | ||||
| 5746 | // made via function pointer. If we have a function name, first translate it | ||||
| 5747 | // into a pointer. | ||||
| 5748 | if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && | ||||
| 5749 | !isTailCall) | ||||
| 5750 | Callee = LowerGlobalAddress(Callee, DAG); | ||||
| 5751 | |||||
| 5752 | CallFlags CFlags( | ||||
| 5753 | CallConv, isTailCall, isVarArg, isPatchPoint, | ||||
| 5754 | isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), | ||||
| 5755 | // hasNest | ||||
| 5756 | Subtarget.is64BitELFABI() && | ||||
| 5757 | any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), | ||||
| 5758 | CLI.NoMerge); | ||||
| 5759 | |||||
| 5760 | if (Subtarget.isAIXABI()) | ||||
| 5761 | return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, | ||||
| 5762 | InVals, CB); | ||||
| 5763 | |||||
| 5764 | assert(Subtarget.isSVR4ABI())(static_cast <bool> (Subtarget.isSVR4ABI()) ? void (0) : __assert_fail ("Subtarget.isSVR4ABI()", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 5764, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5765 | if (Subtarget.isPPC64()) | ||||
| 5766 | return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, | ||||
| 5767 | InVals, CB); | ||||
| 5768 | return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, | ||||
| 5769 | InVals, CB); | ||||
| 5770 | } | ||||
| 5771 | |||||
| 5772 | SDValue PPCTargetLowering::LowerCall_32SVR4( | ||||
| 5773 | SDValue Chain, SDValue Callee, CallFlags CFlags, | ||||
| 5774 | const SmallVectorImpl<ISD::OutputArg> &Outs, | ||||
| 5775 | const SmallVectorImpl<SDValue> &OutVals, | ||||
| 5776 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | ||||
| 5777 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, | ||||
| 5778 | const CallBase *CB) const { | ||||
| 5779 | // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description | ||||
| 5780 | // of the 32-bit SVR4 ABI stack frame layout. | ||||
| 5781 | |||||
| 5782 | const CallingConv::ID CallConv = CFlags.CallConv; | ||||
| 5783 | const bool IsVarArg = CFlags.IsVarArg; | ||||
| 5784 | const bool IsTailCall = CFlags.IsTailCall; | ||||
| 5785 | |||||
| 5786 | assert((CallConv == CallingConv::C ||(static_cast <bool> ((CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && "Unknown calling convention!") ? void (0) : __assert_fail ("(CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && \"Unknown calling convention!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5788, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5787 | CallConv == CallingConv::Cold ||(static_cast <bool> ((CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && "Unknown calling convention!") ? void (0) : __assert_fail ("(CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && \"Unknown calling convention!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5788, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5788 | CallConv == CallingConv::Fast) && "Unknown calling convention!")(static_cast <bool> ((CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && "Unknown calling convention!") ? void (0) : __assert_fail ("(CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && \"Unknown calling convention!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5788, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5789 | |||||
| 5790 | const Align PtrAlign(4); | ||||
| 5791 | |||||
| 5792 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 5793 | |||||
| 5794 | // Mark this function as potentially containing a function that contains a | ||||
| 5795 | // tail call. As a consequence the frame pointer will be used for dynamicalloc | ||||
| 5796 | // and restoring the callers stack pointer in this functions epilog. This is | ||||
| 5797 | // done because by tail calling the called function might overwrite the value | ||||
| 5798 | // in this function's (MF) stack pointer stack slot 0(SP). | ||||
| 5799 | if (getTargetMachine().Options.GuaranteedTailCallOpt && | ||||
| 5800 | CallConv == CallingConv::Fast) | ||||
| 5801 | MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); | ||||
| 5802 | |||||
| 5803 | // Count how many bytes are to be pushed on the stack, including the linkage | ||||
| 5804 | // area, parameter list area and the part of the local variable space which | ||||
| 5805 | // contains copies of aggregates which are passed by value. | ||||
| 5806 | |||||
| 5807 | // Assign locations to all of the outgoing arguments. | ||||
| 5808 | SmallVector<CCValAssign, 16> ArgLocs; | ||||
| 5809 | PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); | ||||
| 5810 | |||||
| 5811 | // Reserve space for the linkage area on the stack. | ||||
| 5812 | CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), | ||||
| 5813 | PtrAlign); | ||||
| 5814 | if (useSoftFloat()) | ||||
| 5815 | CCInfo.PreAnalyzeCallOperands(Outs); | ||||
| 5816 | |||||
| 5817 | if (IsVarArg) { | ||||
| 5818 | // Handle fixed and variable vector arguments differently. | ||||
| 5819 | // Fixed vector arguments go into registers as long as registers are | ||||
| 5820 | // available. Variable vector arguments always go into memory. | ||||
| 5821 | unsigned NumArgs = Outs.size(); | ||||
| 5822 | |||||
| 5823 | for (unsigned i = 0; i != NumArgs; ++i) { | ||||
| 5824 | MVT ArgVT = Outs[i].VT; | ||||
| 5825 | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; | ||||
| 5826 | bool Result; | ||||
| 5827 | |||||
| 5828 | if (Outs[i].IsFixed) { | ||||
| 5829 | Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, | ||||
| 5830 | CCInfo); | ||||
| 5831 | } else { | ||||
| 5832 | Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, | ||||
| 5833 | ArgFlags, CCInfo); | ||||
| 5834 | } | ||||
| 5835 | |||||
| 5836 | if (Result) { | ||||
| 5837 | #ifndef NDEBUG | ||||
| 5838 | errs() << "Call operand #" << i << " has unhandled type " | ||||
| 5839 | << ArgVT << "\n"; | ||||
| 5840 | #endif | ||||
| 5841 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 5841); | ||||
| 5842 | } | ||||
| 5843 | } | ||||
| 5844 | } else { | ||||
| 5845 | // All arguments are treated the same. | ||||
| 5846 | CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); | ||||
| 5847 | } | ||||
| 5848 | CCInfo.clearWasPPCF128(); | ||||
| 5849 | |||||
| 5850 | // Assign locations to all of the outgoing aggregate by value arguments. | ||||
| 5851 | SmallVector<CCValAssign, 16> ByValArgLocs; | ||||
| 5852 | CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); | ||||
| 5853 | |||||
| 5854 | // Reserve stack space for the allocations in CCInfo. | ||||
| 5855 | CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); | ||||
| 5856 | |||||
| 5857 | CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); | ||||
| 5858 | |||||
| 5859 | // Size of the linkage area, parameter list area and the part of the local | ||||
| 5860 | // space variable where copies of aggregates which are passed by value are | ||||
| 5861 | // stored. | ||||
| 5862 | unsigned NumBytes = CCByValInfo.getNextStackOffset(); | ||||
| 5863 | |||||
| 5864 | // Calculate by how many bytes the stack has to be adjusted in case of tail | ||||
| 5865 | // call optimization. | ||||
| 5866 | int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); | ||||
| 5867 | |||||
| 5868 | // Adjust the stack pointer for the new arguments... | ||||
| 5869 | // These operations are automatically eliminated by the prolog/epilog pass | ||||
| 5870 | Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); | ||||
| 5871 | SDValue CallSeqStart = Chain; | ||||
| 5872 | |||||
| 5873 | // Load the return address and frame pointer so it can be moved somewhere else | ||||
| 5874 | // later. | ||||
| 5875 | SDValue LROp, FPOp; | ||||
| 5876 | Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); | ||||
| 5877 | |||||
| 5878 | // Set up a copy of the stack pointer for use loading and storing any | ||||
| 5879 | // arguments that may not fit in the registers available for argument | ||||
| 5880 | // passing. | ||||
| 5881 | SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); | ||||
| 5882 | |||||
| 5883 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | ||||
| 5884 | SmallVector<TailCallArgumentInfo, 8> TailCallArguments; | ||||
| 5885 | SmallVector<SDValue, 8> MemOpChains; | ||||
| 5886 | |||||
| 5887 | bool seenFloatArg = false; | ||||
| 5888 | // Walk the register/memloc assignments, inserting copies/loads. | ||||
| 5889 | // i - Tracks the index into the list of registers allocated for the call | ||||
| 5890 | // RealArgIdx - Tracks the index into the list of actual function arguments | ||||
| 5891 | // j - Tracks the index into the list of byval arguments | ||||
| 5892 | for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); | ||||
| 5893 | i != e; | ||||
| 5894 | ++i, ++RealArgIdx) { | ||||
| 5895 | CCValAssign &VA = ArgLocs[i]; | ||||
| 5896 | SDValue Arg = OutVals[RealArgIdx]; | ||||
| 5897 | ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; | ||||
| 5898 | |||||
| 5899 | if (Flags.isByVal()) { | ||||
| 5900 | // Argument is an aggregate which is passed by value, thus we need to | ||||
| 5901 | // create a copy of it in the local variable space of the current stack | ||||
| 5902 | // frame (which is the stack frame of the caller) and pass the address of | ||||
| 5903 | // this copy to the callee. | ||||
| 5904 | assert((j < ByValArgLocs.size()) && "Index out of bounds!")(static_cast <bool> ((j < ByValArgLocs.size()) && "Index out of bounds!") ? void (0) : __assert_fail ("(j < ByValArgLocs.size()) && \"Index out of bounds!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5904, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5905 | CCValAssign &ByValVA = ByValArgLocs[j++]; | ||||
| 5906 | assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!")(static_cast <bool> ((VA.getValNo() == ByValVA.getValNo ()) && "ValNo mismatch!") ? void (0) : __assert_fail ( "(VA.getValNo() == ByValVA.getValNo()) && \"ValNo mismatch!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 5906, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5907 | |||||
| 5908 | // Memory reserved in the local variable space of the callers stack frame. | ||||
| 5909 | unsigned LocMemOffset = ByValVA.getLocMemOffset(); | ||||
| 5910 | |||||
| 5911 | SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); | ||||
| 5912 | PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), | ||||
| 5913 | StackPtr, PtrOff); | ||||
| 5914 | |||||
| 5915 | // Create a copy of the argument in the local area of the current | ||||
| 5916 | // stack frame. | ||||
| 5917 | SDValue MemcpyCall = | ||||
| 5918 | CreateCopyOfByValArgument(Arg, PtrOff, | ||||
| 5919 | CallSeqStart.getNode()->getOperand(0), | ||||
| 5920 | Flags, DAG, dl); | ||||
| 5921 | |||||
| 5922 | // This must go outside the CALLSEQ_START..END. | ||||
| 5923 | SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, | ||||
| 5924 | SDLoc(MemcpyCall)); | ||||
| 5925 | DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), | ||||
| 5926 | NewCallSeqStart.getNode()); | ||||
| 5927 | Chain = CallSeqStart = NewCallSeqStart; | ||||
| 5928 | |||||
| 5929 | // Pass the address of the aggregate copy on the stack either in a | ||||
| 5930 | // physical register or in the parameter list area of the current stack | ||||
| 5931 | // frame to the callee. | ||||
| 5932 | Arg = PtrOff; | ||||
| 5933 | } | ||||
| 5934 | |||||
| 5935 | // When useCRBits() is true, there can be i1 arguments. | ||||
| 5936 | // It is because getRegisterType(MVT::i1) => MVT::i1, | ||||
| 5937 | // and for other integer types getRegisterType() => MVT::i32. | ||||
| 5938 | // Extend i1 and ensure callee will get i32. | ||||
| 5939 | if (Arg.getValueType() == MVT::i1) | ||||
| 5940 | Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, | ||||
| 5941 | dl, MVT::i32, Arg); | ||||
| 5942 | |||||
| 5943 | if (VA.isRegLoc()) { | ||||
| 5944 | seenFloatArg |= VA.getLocVT().isFloatingPoint(); | ||||
| 5945 | // Put argument in a physical register. | ||||
| 5946 | if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { | ||||
| 5947 | bool IsLE = Subtarget.isLittleEndian(); | ||||
| 5948 | SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, | ||||
| 5949 | DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); | ||||
| 5950 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); | ||||
| 5951 | SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, | ||||
| 5952 | DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); | ||||
| 5953 | RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), | ||||
| 5954 | SVal.getValue(0))); | ||||
| 5955 | } else | ||||
| 5956 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | ||||
| 5957 | } else { | ||||
| 5958 | // Put argument in the parameter list area of the current stack frame. | ||||
| 5959 | assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail ("VA.isMemLoc()", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 5959, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5960 | unsigned LocMemOffset = VA.getLocMemOffset(); | ||||
| 5961 | |||||
| 5962 | if (!IsTailCall) { | ||||
| 5963 | SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); | ||||
| 5964 | PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), | ||||
| 5965 | StackPtr, PtrOff); | ||||
| 5966 | |||||
| 5967 | MemOpChains.push_back( | ||||
| 5968 | DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); | ||||
| 5969 | } else { | ||||
| 5970 | // Calculate and remember argument location. | ||||
| 5971 | CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, | ||||
| 5972 | TailCallArguments); | ||||
| 5973 | } | ||||
| 5974 | } | ||||
| 5975 | } | ||||
| 5976 | |||||
| 5977 | if (!MemOpChains.empty()) | ||||
| 5978 | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); | ||||
| 5979 | |||||
| 5980 | // Build a sequence of copy-to-reg nodes chained together with token chain | ||||
| 5981 | // and flag operands which copy the outgoing args into the appropriate regs. | ||||
| 5982 | SDValue InGlue; | ||||
| 5983 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | ||||
| 5984 | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | ||||
| 5985 | RegsToPass[i].second, InGlue); | ||||
| 5986 | InGlue = Chain.getValue(1); | ||||
| 5987 | } | ||||
| 5988 | |||||
| 5989 | // Set CR bit 6 to true if this is a vararg call with floating args passed in | ||||
| 5990 | // registers. | ||||
| 5991 | if (IsVarArg) { | ||||
| 5992 | SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); | ||||
| 5993 | SDValue Ops[] = { Chain, InGlue }; | ||||
| 5994 | |||||
| 5995 | Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, dl, | ||||
| 5996 | VTs, ArrayRef(Ops, InGlue.getNode() ? 2 : 1)); | ||||
| 5997 | |||||
| 5998 | InGlue = Chain.getValue(1); | ||||
| 5999 | } | ||||
| 6000 | |||||
| 6001 | if (IsTailCall) | ||||
| 6002 | PrepareTailCall(DAG, InGlue, Chain, dl, SPDiff, NumBytes, LROp, FPOp, | ||||
| 6003 | TailCallArguments); | ||||
| 6004 | |||||
| 6005 | return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, | ||||
| 6006 | Callee, SPDiff, NumBytes, Ins, InVals, CB); | ||||
| 6007 | } | ||||
| 6008 | |||||
| 6009 | // Copy an argument into memory, being careful to do this outside the | ||||
| 6010 | // call sequence for the call to which the argument belongs. | ||||
| 6011 | SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( | ||||
| 6012 | SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, | ||||
| 6013 | SelectionDAG &DAG, const SDLoc &dl) const { | ||||
| 6014 | SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, | ||||
| 6015 | CallSeqStart.getNode()->getOperand(0), | ||||
| 6016 | Flags, DAG, dl); | ||||
| 6017 | // The MEMCPY must go outside the CALLSEQ_START..END. | ||||
| 6018 | int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); | ||||
| 6019 | SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, | ||||
| 6020 | SDLoc(MemcpyCall)); | ||||
| 6021 | DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), | ||||
| 6022 | NewCallSeqStart.getNode()); | ||||
| 6023 | return NewCallSeqStart; | ||||
| 6024 | } | ||||
| 6025 | |||||
| 6026 | SDValue PPCTargetLowering::LowerCall_64SVR4( | ||||
| 6027 | SDValue Chain, SDValue Callee, CallFlags CFlags, | ||||
| 6028 | const SmallVectorImpl<ISD::OutputArg> &Outs, | ||||
| 6029 | const SmallVectorImpl<SDValue> &OutVals, | ||||
| 6030 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | ||||
| 6031 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, | ||||
| 6032 | const CallBase *CB) const { | ||||
| 6033 | bool isELFv2ABI = Subtarget.isELFv2ABI(); | ||||
| 6034 | bool isLittleEndian = Subtarget.isLittleEndian(); | ||||
| 6035 | unsigned NumOps = Outs.size(); | ||||
| 6036 | bool IsSibCall = false; | ||||
| 6037 | bool IsFastCall = CFlags.CallConv == CallingConv::Fast; | ||||
| 6038 | |||||
| 6039 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 6040 | unsigned PtrByteSize = 8; | ||||
| 6041 | |||||
| 6042 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 6043 | |||||
| 6044 | if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) | ||||
| 6045 | IsSibCall = true; | ||||
| 6046 | |||||
| 6047 | // Mark this function as potentially containing a function that contains a | ||||
| 6048 | // tail call. As a consequence the frame pointer will be used for dynamicalloc | ||||
| 6049 | // and restoring the callers stack pointer in this functions epilog. This is | ||||
| 6050 | // done because by tail calling the called function might overwrite the value | ||||
| 6051 | // in this function's (MF) stack pointer stack slot 0(SP). | ||||
| 6052 | if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) | ||||
| 6053 | MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); | ||||
| 6054 | |||||
| 6055 | assert(!(IsFastCall && CFlags.IsVarArg) &&(static_cast <bool> (!(IsFastCall && CFlags.IsVarArg ) && "fastcc not supported on varargs functions") ? void (0) : __assert_fail ("!(IsFastCall && CFlags.IsVarArg) && \"fastcc not supported on varargs functions\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6056, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6056 | "fastcc not supported on varargs functions")(static_cast <bool> (!(IsFastCall && CFlags.IsVarArg ) && "fastcc not supported on varargs functions") ? void (0) : __assert_fail ("!(IsFastCall && CFlags.IsVarArg) && \"fastcc not supported on varargs functions\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6056, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6057 | |||||
| 6058 | // Count how many bytes are to be pushed on the stack, including the linkage | ||||
| 6059 | // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes | ||||
| 6060 | // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage | ||||
| 6061 | // area is 32 bytes reserved space for [SP][CR][LR][TOC]. | ||||
| 6062 | unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); | ||||
| 6063 | unsigned NumBytes = LinkageSize; | ||||
| 6064 | unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; | ||||
| 6065 | |||||
| 6066 | static const MCPhysReg GPR[] = { | ||||
| 6067 | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | ||||
| 6068 | PPC::X7, PPC::X8, PPC::X9, PPC::X10, | ||||
| 6069 | }; | ||||
| 6070 | static const MCPhysReg VR[] = { | ||||
| 6071 | PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, | ||||
| 6072 | PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 | ||||
| 6073 | }; | ||||
| 6074 | |||||
| 6075 | const unsigned NumGPRs = std::size(GPR); | ||||
| 6076 | const unsigned NumFPRs = useSoftFloat() ? 0 : 13; | ||||
| 6077 | const unsigned NumVRs = std::size(VR); | ||||
| 6078 | |||||
| 6079 | // On ELFv2, we can avoid allocating the parameter area if all the arguments | ||||
| 6080 | // can be passed to the callee in registers. | ||||
| 6081 | // For the fast calling convention, there is another check below. | ||||
| 6082 | // Note: We should keep consistent with LowerFormalArguments_64SVR4() | ||||
| 6083 | bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; | ||||
| 6084 | if (!HasParameterArea) { | ||||
| 6085 | unsigned ParamAreaSize = NumGPRs * PtrByteSize; | ||||
| 6086 | unsigned AvailableFPRs = NumFPRs; | ||||
| 6087 | unsigned AvailableVRs = NumVRs; | ||||
| 6088 | unsigned NumBytesTmp = NumBytes; | ||||
| 6089 | for (unsigned i = 0; i != NumOps; ++i) { | ||||
| 6090 | if (Outs[i].Flags.isNest()) continue; | ||||
| 6091 | if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, | ||||
| 6092 | PtrByteSize, LinkageSize, ParamAreaSize, | ||||
| 6093 | NumBytesTmp, AvailableFPRs, AvailableVRs)) | ||||
| 6094 | HasParameterArea = true; | ||||
| 6095 | } | ||||
| 6096 | } | ||||
| 6097 | |||||
| 6098 | // When using the fast calling convention, we don't provide backing for | ||||
| 6099 | // arguments that will be in registers. | ||||
| 6100 | unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; | ||||
| 6101 | |||||
| 6102 | // Avoid allocating parameter area for fastcc functions if all the arguments | ||||
| 6103 | // can be passed in the registers. | ||||
| 6104 | if (IsFastCall) | ||||
| 6105 | HasParameterArea = false; | ||||
| 6106 | |||||
| 6107 | // Add up all the space actually used. | ||||
| 6108 | for (unsigned i = 0; i != NumOps; ++i) { | ||||
| 6109 | ISD::ArgFlagsTy Flags = Outs[i].Flags; | ||||
| 6110 | EVT ArgVT = Outs[i].VT; | ||||
| 6111 | EVT OrigVT = Outs[i].ArgVT; | ||||
| 6112 | |||||
| 6113 | if (Flags.isNest()) | ||||
| 6114 | continue; | ||||
| 6115 | |||||
| 6116 | if (IsFastCall) { | ||||
| 6117 | if (Flags.isByVal()) { | ||||
| 6118 | NumGPRsUsed += (Flags.getByValSize()+7)/8; | ||||
| 6119 | if (NumGPRsUsed > NumGPRs) | ||||
| 6120 | HasParameterArea = true; | ||||
| 6121 | } else { | ||||
| 6122 | switch (ArgVT.getSimpleVT().SimpleTy) { | ||||
| 6123 | default: llvm_unreachable("Unexpected ValueType for argument!")::llvm::llvm_unreachable_internal("Unexpected ValueType for argument!" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6123); | ||||
| 6124 | case MVT::i1: | ||||
| 6125 | case MVT::i32: | ||||
| 6126 | case MVT::i64: | ||||
| 6127 | if (++NumGPRsUsed <= NumGPRs) | ||||
| 6128 | continue; | ||||
| 6129 | break; | ||||
| 6130 | case MVT::v4i32: | ||||
| 6131 | case MVT::v8i16: | ||||
| 6132 | case MVT::v16i8: | ||||
| 6133 | case MVT::v2f64: | ||||
| 6134 | case MVT::v2i64: | ||||
| 6135 | case MVT::v1i128: | ||||
| 6136 | case MVT::f128: | ||||
| 6137 | if (++NumVRsUsed <= NumVRs) | ||||
| 6138 | continue; | ||||
| 6139 | break; | ||||
| 6140 | case MVT::v4f32: | ||||
| 6141 | if (++NumVRsUsed <= NumVRs) | ||||
| 6142 | continue; | ||||
| 6143 | break; | ||||
| 6144 | case MVT::f32: | ||||
| 6145 | case MVT::f64: | ||||
| 6146 | if (++NumFPRsUsed <= NumFPRs) | ||||
| 6147 | continue; | ||||
| 6148 | break; | ||||
| 6149 | } | ||||
| 6150 | HasParameterArea = true; | ||||
| 6151 | } | ||||
| 6152 | } | ||||
| 6153 | |||||
| 6154 | /* Respect alignment of argument on the stack. */ | ||||
| 6155 | auto Alignement = | ||||
| 6156 | CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); | ||||
| 6157 | NumBytes = alignTo(NumBytes, Alignement); | ||||
| 6158 | |||||
| 6159 | NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); | ||||
| 6160 | if (Flags.isInConsecutiveRegsLast()) | ||||
| 6161 | NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | ||||
| 6162 | } | ||||
| 6163 | |||||
| 6164 | unsigned NumBytesActuallyUsed = NumBytes; | ||||
| 6165 | |||||
| 6166 | // In the old ELFv1 ABI, | ||||
| 6167 | // the prolog code of the callee may store up to 8 GPR argument registers to | ||||
| 6168 | // the stack, allowing va_start to index over them in memory if its varargs. | ||||
| 6169 | // Because we cannot tell if this is needed on the caller side, we have to | ||||
| 6170 | // conservatively assume that it is needed. As such, make sure we have at | ||||
| 6171 | // least enough stack space for the caller to store the 8 GPRs. | ||||
| 6172 | // In the ELFv2 ABI, we allocate the parameter area iff a callee | ||||
| 6173 | // really requires memory operands, e.g. a vararg function. | ||||
| 6174 | if (HasParameterArea) | ||||
| 6175 | NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); | ||||
| 6176 | else | ||||
| 6177 | NumBytes = LinkageSize; | ||||
| 6178 | |||||
| 6179 | // Tail call needs the stack to be aligned. | ||||
| 6180 | if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) | ||||
| 6181 | NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); | ||||
| 6182 | |||||
| 6183 | int SPDiff = 0; | ||||
| 6184 | |||||
| 6185 | // Calculate by how many bytes the stack has to be adjusted in case of tail | ||||
| 6186 | // call optimization. | ||||
| 6187 | if (!IsSibCall) | ||||
| 6188 | SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); | ||||
| 6189 | |||||
| 6190 | // To protect arguments on the stack from being clobbered in a tail call, | ||||
| 6191 | // force all the loads to happen before doing any other lowering. | ||||
| 6192 | if (CFlags.IsTailCall) | ||||
| 6193 | Chain = DAG.getStackArgumentTokenFactor(Chain); | ||||
| 6194 | |||||
| 6195 | // Adjust the stack pointer for the new arguments... | ||||
| 6196 | // These operations are automatically eliminated by the prolog/epilog pass | ||||
| 6197 | if (!IsSibCall) | ||||
| 6198 | Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); | ||||
| 6199 | SDValue CallSeqStart = Chain; | ||||
| 6200 | |||||
| 6201 | // Load the return address and frame pointer so it can be move somewhere else | ||||
| 6202 | // later. | ||||
| 6203 | SDValue LROp, FPOp; | ||||
| 6204 | Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); | ||||
| 6205 | |||||
| 6206 | // Set up a copy of the stack pointer for use loading and storing any | ||||
| 6207 | // arguments that may not fit in the registers available for argument | ||||
| 6208 | // passing. | ||||
| 6209 | SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); | ||||
| 6210 | |||||
| 6211 | // Figure out which arguments are going to go in registers, and which in | ||||
| 6212 | // memory. Also, if this is a vararg function, floating point operations | ||||
| 6213 | // must be stored to our stack, and loaded into integer regs as well, if | ||||
| 6214 | // any integer regs are available for argument passing. | ||||
| 6215 | unsigned ArgOffset = LinkageSize; | ||||
| 6216 | |||||
| 6217 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | ||||
| 6218 | SmallVector<TailCallArgumentInfo, 8> TailCallArguments; | ||||
| 6219 | |||||
| 6220 | SmallVector<SDValue, 8> MemOpChains; | ||||
| 6221 | for (unsigned i = 0; i != NumOps; ++i) { | ||||
| 6222 | SDValue Arg = OutVals[i]; | ||||
| 6223 | ISD::ArgFlagsTy Flags = Outs[i].Flags; | ||||
| 6224 | EVT ArgVT = Outs[i].VT; | ||||
| 6225 | EVT OrigVT = Outs[i].ArgVT; | ||||
| 6226 | |||||
| 6227 | // PtrOff will be used to store the current argument to the stack if a | ||||
| 6228 | // register cannot be found for it. | ||||
| 6229 | SDValue PtrOff; | ||||
| 6230 | |||||
| 6231 | // We re-align the argument offset for each argument, except when using the | ||||
| 6232 | // fast calling convention, when we need to make sure we do that only when | ||||
| 6233 | // we'll actually use a stack slot. | ||||
| 6234 | auto ComputePtrOff = [&]() { | ||||
| 6235 | /* Respect alignment of argument on the stack. */ | ||||
| 6236 | auto Alignment = | ||||
| 6237 | CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); | ||||
| 6238 | ArgOffset = alignTo(ArgOffset, Alignment); | ||||
| 6239 | |||||
| 6240 | PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); | ||||
| 6241 | |||||
| 6242 | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); | ||||
| 6243 | }; | ||||
| 6244 | |||||
| 6245 | if (!IsFastCall) { | ||||
| 6246 | ComputePtrOff(); | ||||
| 6247 | |||||
| 6248 | /* Compute GPR index associated with argument offset. */ | ||||
| 6249 | GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; | ||||
| 6250 | GPR_idx = std::min(GPR_idx, NumGPRs); | ||||
| 6251 | } | ||||
| 6252 | |||||
| 6253 | // Promote integers to 64-bit values. | ||||
| 6254 | if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { | ||||
| 6255 | // FIXME: Should this use ANY_EXTEND if neither sext nor zext? | ||||
| 6256 | unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | ||||
| 6257 | Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); | ||||
| 6258 | } | ||||
| 6259 | |||||
| 6260 | // FIXME memcpy is used way more than necessary. Correctness first. | ||||
| 6261 | // Note: "by value" is code for passing a structure by value, not | ||||
| 6262 | // basic types. | ||||
| 6263 | if (Flags.isByVal()) { | ||||
| 6264 | // Note: Size includes alignment padding, so | ||||
| 6265 | // struct x { short a; char b; } | ||||
| 6266 | // will have Size = 4. With #pragma pack(1), it will have Size = 3. | ||||
| 6267 | // These are the proper values we need for right-justifying the | ||||
| 6268 | // aggregate in a parameter register. | ||||
| 6269 | unsigned Size = Flags.getByValSize(); | ||||
| 6270 | |||||
| 6271 | // An empty aggregate parameter takes up no storage and no | ||||
| 6272 | // registers. | ||||
| 6273 | if (Size == 0) | ||||
| 6274 | continue; | ||||
| 6275 | |||||
| 6276 | if (IsFastCall) | ||||
| 6277 | ComputePtrOff(); | ||||
| 6278 | |||||
| 6279 | // All aggregates smaller than 8 bytes must be passed right-justified. | ||||
| 6280 | if (Size==1 || Size==2 || Size==4) { | ||||
| 6281 | EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); | ||||
| 6282 | if (GPR_idx != NumGPRs) { | ||||
| 6283 | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, | ||||
| 6284 | MachinePointerInfo(), VT); | ||||
| 6285 | MemOpChains.push_back(Load.getValue(1)); | ||||
| 6286 | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | ||||
| 6287 | |||||
| 6288 | ArgOffset += PtrByteSize; | ||||
| 6289 | continue; | ||||
| 6290 | } | ||||
| 6291 | } | ||||
| 6292 | |||||
| 6293 | if (GPR_idx == NumGPRs && Size < 8) { | ||||
| 6294 | SDValue AddPtr = PtrOff; | ||||
| 6295 | if (!isLittleEndian) { | ||||
| 6296 | SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, | ||||
| 6297 | PtrOff.getValueType()); | ||||
| 6298 | AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); | ||||
| 6299 | } | ||||
| 6300 | Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, | ||||
| 6301 | CallSeqStart, | ||||
| 6302 | Flags, DAG, dl); | ||||
| 6303 | ArgOffset += PtrByteSize; | ||||
| 6304 | continue; | ||||
| 6305 | } | ||||
| 6306 | // Copy the object to parameter save area if it can not be entirely passed | ||||
| 6307 | // by registers. | ||||
| 6308 | // FIXME: we only need to copy the parts which need to be passed in | ||||
| 6309 | // parameter save area. For the parts passed by registers, we don't need | ||||
| 6310 | // to copy them to the stack although we need to allocate space for them | ||||
| 6311 | // in parameter save area. | ||||
| 6312 | if ((NumGPRs - GPR_idx) * PtrByteSize < Size) | ||||
| 6313 | Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, | ||||
| 6314 | CallSeqStart, | ||||
| 6315 | Flags, DAG, dl); | ||||
| 6316 | |||||
| 6317 | // When a register is available, pass a small aggregate right-justified. | ||||
| 6318 | if (Size < 8 && GPR_idx != NumGPRs) { | ||||
| 6319 | // The easiest way to get this right-justified in a register | ||||
| 6320 | // is to copy the structure into the rightmost portion of a | ||||
| 6321 | // local variable slot, then load the whole slot into the | ||||
| 6322 | // register. | ||||
| 6323 | // FIXME: The memcpy seems to produce pretty awful code for | ||||
| 6324 | // small aggregates, particularly for packed ones. | ||||
| 6325 | // FIXME: It would be preferable to use the slot in the | ||||
| 6326 | // parameter save area instead of a new local variable. | ||||
| 6327 | SDValue AddPtr = PtrOff; | ||||
| 6328 | if (!isLittleEndian) { | ||||
| 6329 | SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); | ||||
| 6330 | AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); | ||||
| 6331 | } | ||||
| 6332 | Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, | ||||
| 6333 | CallSeqStart, | ||||
| 6334 | Flags, DAG, dl); | ||||
| 6335 | |||||
| 6336 | // Load the slot into the register. | ||||
| 6337 | SDValue Load = | ||||
| 6338 | DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); | ||||
| 6339 | MemOpChains.push_back(Load.getValue(1)); | ||||
| 6340 | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | ||||
| 6341 | |||||
| 6342 | // Done with this argument. | ||||
| 6343 | ArgOffset += PtrByteSize; | ||||
| 6344 | continue; | ||||
| 6345 | } | ||||
| 6346 | |||||
| 6347 | // For aggregates larger than PtrByteSize, copy the pieces of the | ||||
| 6348 | // object that fit into registers from the parameter save area. | ||||
| 6349 | for (unsigned j=0; j<Size; j+=PtrByteSize) { | ||||
| 6350 | SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); | ||||
| 6351 | SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); | ||||
| 6352 | if (GPR_idx != NumGPRs) { | ||||
| 6353 | unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8; | ||||
| 6354 | EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits); | ||||
| 6355 | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg, | ||||
| 6356 | MachinePointerInfo(), ObjType); | ||||
| 6357 | |||||
| 6358 | MemOpChains.push_back(Load.getValue(1)); | ||||
| 6359 | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | ||||
| 6360 | ArgOffset += PtrByteSize; | ||||
| 6361 | } else { | ||||
| 6362 | ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; | ||||
| 6363 | break; | ||||
| 6364 | } | ||||
| 6365 | } | ||||
| 6366 | continue; | ||||
| 6367 | } | ||||
| 6368 | |||||
| 6369 | switch (Arg.getSimpleValueType().SimpleTy) { | ||||
| 6370 | default: llvm_unreachable("Unexpected ValueType for argument!")::llvm::llvm_unreachable_internal("Unexpected ValueType for argument!" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6370); | ||||
| 6371 | case MVT::i1: | ||||
| 6372 | case MVT::i32: | ||||
| 6373 | case MVT::i64: | ||||
| 6374 | if (Flags.isNest()) { | ||||
| 6375 | // The 'nest' parameter, if any, is passed in R11. | ||||
| 6376 | RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); | ||||
| 6377 | break; | ||||
| 6378 | } | ||||
| 6379 | |||||
| 6380 | // These can be scalar arguments or elements of an integer array type | ||||
| 6381 | // passed directly. Clang may use those instead of "byval" aggregate | ||||
| 6382 | // types to avoid forcing arguments to memory unnecessarily. | ||||
| 6383 | if (GPR_idx != NumGPRs) { | ||||
| 6384 | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); | ||||
| 6385 | } else { | ||||
| 6386 | if (IsFastCall) | ||||
| 6387 | ComputePtrOff(); | ||||
| 6388 | |||||
| 6389 | assert(HasParameterArea &&(static_cast <bool> (HasParameterArea && "Parameter area must exist to pass an argument in memory." ) ? void (0) : __assert_fail ("HasParameterArea && \"Parameter area must exist to pass an argument in memory.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6390, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6390 | "Parameter area must exist to pass an argument in memory.")(static_cast <bool> (HasParameterArea && "Parameter area must exist to pass an argument in memory." ) ? void (0) : __assert_fail ("HasParameterArea && \"Parameter area must exist to pass an argument in memory.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6390, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6391 | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | ||||
| 6392 | true, CFlags.IsTailCall, false, MemOpChains, | ||||
| 6393 | TailCallArguments, dl); | ||||
| 6394 | if (IsFastCall) | ||||
| 6395 | ArgOffset += PtrByteSize; | ||||
| 6396 | } | ||||
| 6397 | if (!IsFastCall) | ||||
| 6398 | ArgOffset += PtrByteSize; | ||||
| 6399 | break; | ||||
| 6400 | case MVT::f32: | ||||
| 6401 | case MVT::f64: { | ||||
| 6402 | // These can be scalar arguments or elements of a float array type | ||||
| 6403 | // passed directly. The latter are used to implement ELFv2 homogenous | ||||
| 6404 | // float aggregates. | ||||
| 6405 | |||||
| 6406 | // Named arguments go into FPRs first, and once they overflow, the | ||||
| 6407 | // remaining arguments go into GPRs and then the parameter save area. | ||||
| 6408 | // Unnamed arguments for vararg functions always go to GPRs and | ||||
| 6409 | // then the parameter save area. For now, put all arguments to vararg | ||||
| 6410 | // routines always in both locations (FPR *and* GPR or stack slot). | ||||
| 6411 | bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; | ||||
| 6412 | bool NeededLoad = false; | ||||
| 6413 | |||||
| 6414 | // First load the argument into the next available FPR. | ||||
| 6415 | if (FPR_idx != NumFPRs) | ||||
| 6416 | RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); | ||||
| 6417 | |||||
| 6418 | // Next, load the argument into GPR or stack slot if needed. | ||||
| 6419 | if (!NeedGPROrStack) | ||||
| 6420 | ; | ||||
| 6421 | else if (GPR_idx != NumGPRs && !IsFastCall) { | ||||
| 6422 | // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 | ||||
| 6423 | // once we support fp <-> gpr moves. | ||||
| 6424 | |||||
| 6425 | // In the non-vararg case, this can only ever happen in the | ||||
| 6426 | // presence of f32 array types, since otherwise we never run | ||||
| 6427 | // out of FPRs before running out of GPRs. | ||||
| 6428 | SDValue ArgVal; | ||||
| 6429 | |||||
| 6430 | // Double values are always passed in a single GPR. | ||||
| 6431 | if (Arg.getValueType() != MVT::f32) { | ||||
| 6432 | ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); | ||||
| 6433 | |||||
| 6434 | // Non-array float values are extended and passed in a GPR. | ||||
| 6435 | } else if (!Flags.isInConsecutiveRegs()) { | ||||
| 6436 | ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); | ||||
| 6437 | ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); | ||||
| 6438 | |||||
| 6439 | // If we have an array of floats, we collect every odd element | ||||
| 6440 | // together with its predecessor into one GPR. | ||||
| 6441 | } else if (ArgOffset % PtrByteSize != 0) { | ||||
| 6442 | SDValue Lo, Hi; | ||||
| 6443 | Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); | ||||
| 6444 | Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); | ||||
| 6445 | if (!isLittleEndian) | ||||
| 6446 | std::swap(Lo, Hi); | ||||
| 6447 | ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); | ||||
| 6448 | |||||
| 6449 | // The final element, if even, goes into the first half of a GPR. | ||||
| 6450 | } else if (Flags.isInConsecutiveRegsLast()) { | ||||
| 6451 | ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); | ||||
| 6452 | ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); | ||||
| 6453 | if (!isLittleEndian) | ||||
| 6454 | ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, | ||||
| 6455 | DAG.getConstant(32, dl, MVT::i32)); | ||||
| 6456 | |||||
| 6457 | // Non-final even elements are skipped; they will be handled | ||||
| 6458 | // together the with subsequent argument on the next go-around. | ||||
| 6459 | } else | ||||
| 6460 | ArgVal = SDValue(); | ||||
| 6461 | |||||
| 6462 | if (ArgVal.getNode()) | ||||
| 6463 | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); | ||||
| 6464 | } else { | ||||
| 6465 | if (IsFastCall) | ||||
| 6466 | ComputePtrOff(); | ||||
| 6467 | |||||
| 6468 | // Single-precision floating-point values are mapped to the | ||||
| 6469 | // second (rightmost) word of the stack doubleword. | ||||
| 6470 | if (Arg.getValueType() == MVT::f32 && | ||||
| 6471 | !isLittleEndian && !Flags.isInConsecutiveRegs()) { | ||||
| 6472 | SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); | ||||
| 6473 | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); | ||||
| 6474 | } | ||||
| 6475 | |||||
| 6476 | assert(HasParameterArea &&(static_cast <bool> (HasParameterArea && "Parameter area must exist to pass an argument in memory." ) ? void (0) : __assert_fail ("HasParameterArea && \"Parameter area must exist to pass an argument in memory.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6477, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6477 | "Parameter area must exist to pass an argument in memory.")(static_cast <bool> (HasParameterArea && "Parameter area must exist to pass an argument in memory." ) ? void (0) : __assert_fail ("HasParameterArea && \"Parameter area must exist to pass an argument in memory.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6477, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6478 | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | ||||
| 6479 | true, CFlags.IsTailCall, false, MemOpChains, | ||||
| 6480 | TailCallArguments, dl); | ||||
| 6481 | |||||
| 6482 | NeededLoad = true; | ||||
| 6483 | } | ||||
| 6484 | // When passing an array of floats, the array occupies consecutive | ||||
| 6485 | // space in the argument area; only round up to the next doubleword | ||||
| 6486 | // at the end of the array. Otherwise, each float takes 8 bytes. | ||||
| 6487 | if (!IsFastCall || NeededLoad) { | ||||
| 6488 | ArgOffset += (Arg.getValueType() == MVT::f32 && | ||||
| 6489 | Flags.isInConsecutiveRegs()) ? 4 : 8; | ||||
| 6490 | if (Flags.isInConsecutiveRegsLast()) | ||||
| 6491 | ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; | ||||
| 6492 | } | ||||
| 6493 | break; | ||||
| 6494 | } | ||||
| 6495 | case MVT::v4f32: | ||||
| 6496 | case MVT::v4i32: | ||||
| 6497 | case MVT::v8i16: | ||||
| 6498 | case MVT::v16i8: | ||||
| 6499 | case MVT::v2f64: | ||||
| 6500 | case MVT::v2i64: | ||||
| 6501 | case MVT::v1i128: | ||||
| 6502 | case MVT::f128: | ||||
| 6503 | // These can be scalar arguments or elements of a vector array type | ||||
| 6504 | // passed directly. The latter are used to implement ELFv2 homogenous | ||||
| 6505 | // vector aggregates. | ||||
| 6506 | |||||
| 6507 | // For a varargs call, named arguments go into VRs or on the stack as | ||||
| 6508 | // usual; unnamed arguments always go to the stack or the corresponding | ||||
| 6509 | // GPRs when within range. For now, we always put the value in both | ||||
| 6510 | // locations (or even all three). | ||||
| 6511 | if (CFlags.IsVarArg) { | ||||
| 6512 | assert(HasParameterArea &&(static_cast <bool> (HasParameterArea && "Parameter area must exist if we have a varargs call." ) ? void (0) : __assert_fail ("HasParameterArea && \"Parameter area must exist if we have a varargs call.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6513, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6513 | "Parameter area must exist if we have a varargs call.")(static_cast <bool> (HasParameterArea && "Parameter area must exist if we have a varargs call." ) ? void (0) : __assert_fail ("HasParameterArea && \"Parameter area must exist if we have a varargs call.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6513, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6514 | // We could elide this store in the case where the object fits | ||||
| 6515 | // entirely in R registers. Maybe later. | ||||
| 6516 | SDValue Store = | ||||
| 6517 | DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); | ||||
| 6518 | MemOpChains.push_back(Store); | ||||
| 6519 | if (VR_idx != NumVRs) { | ||||
| 6520 | SDValue Load = | ||||
| 6521 | DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); | ||||
| 6522 | MemOpChains.push_back(Load.getValue(1)); | ||||
| 6523 | RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); | ||||
| 6524 | } | ||||
| 6525 | ArgOffset += 16; | ||||
| 6526 | for (unsigned i=0; i<16; i+=PtrByteSize) { | ||||
| 6527 | if (GPR_idx == NumGPRs) | ||||
| 6528 | break; | ||||
| 6529 | SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, | ||||
| 6530 | DAG.getConstant(i, dl, PtrVT)); | ||||
| 6531 | SDValue Load = | ||||
| 6532 | DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); | ||||
| 6533 | MemOpChains.push_back(Load.getValue(1)); | ||||
| 6534 | RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); | ||||
| 6535 | } | ||||
| 6536 | break; | ||||
| 6537 | } | ||||
| 6538 | |||||
| 6539 | // Non-varargs Altivec params go into VRs or on the stack. | ||||
| 6540 | if (VR_idx != NumVRs) { | ||||
| 6541 | RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); | ||||
| 6542 | } else { | ||||
| 6543 | if (IsFastCall) | ||||
| 6544 | ComputePtrOff(); | ||||
| 6545 | |||||
| 6546 | assert(HasParameterArea &&(static_cast <bool> (HasParameterArea && "Parameter area must exist to pass an argument in memory." ) ? void (0) : __assert_fail ("HasParameterArea && \"Parameter area must exist to pass an argument in memory.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6547, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6547 | "Parameter area must exist to pass an argument in memory.")(static_cast <bool> (HasParameterArea && "Parameter area must exist to pass an argument in memory." ) ? void (0) : __assert_fail ("HasParameterArea && \"Parameter area must exist to pass an argument in memory.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6547, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6548 | LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, | ||||
| 6549 | true, CFlags.IsTailCall, true, MemOpChains, | ||||
| 6550 | TailCallArguments, dl); | ||||
| 6551 | if (IsFastCall) | ||||
| 6552 | ArgOffset += 16; | ||||
| 6553 | } | ||||
| 6554 | |||||
| 6555 | if (!IsFastCall) | ||||
| 6556 | ArgOffset += 16; | ||||
| 6557 | break; | ||||
| 6558 | } | ||||
| 6559 | } | ||||
| 6560 | |||||
| 6561 | assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&(static_cast <bool> ((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && "mismatch in size of parameter area" ) ? void (0) : __assert_fail ("(!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && \"mismatch in size of parameter area\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6562, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6562 | "mismatch in size of parameter area")(static_cast <bool> ((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && "mismatch in size of parameter area" ) ? void (0) : __assert_fail ("(!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && \"mismatch in size of parameter area\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6562, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6563 | (void)NumBytesActuallyUsed; | ||||
| 6564 | |||||
| 6565 | if (!MemOpChains.empty()) | ||||
| 6566 | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); | ||||
| 6567 | |||||
| 6568 | // Check if this is an indirect call (MTCTR/BCTRL). | ||||
| 6569 | // See prepareDescriptorIndirectCall and buildCallOperands for more | ||||
| 6570 | // information about calls through function pointers in the 64-bit SVR4 ABI. | ||||
| 6571 | if (CFlags.IsIndirect) { | ||||
| 6572 | // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the | ||||
| 6573 | // caller in the TOC save area. | ||||
| 6574 | if (isTOCSaveRestoreRequired(Subtarget)) { | ||||
| 6575 | assert(!CFlags.IsTailCall && "Indirect tails calls not supported")(static_cast <bool> (!CFlags.IsTailCall && "Indirect tails calls not supported" ) ? void (0) : __assert_fail ("!CFlags.IsTailCall && \"Indirect tails calls not supported\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6575, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6576 | // Load r2 into a virtual register and store it to the TOC save area. | ||||
| 6577 | setUsesTOCBasePtr(DAG); | ||||
| 6578 | SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); | ||||
| 6579 | // TOC save area offset. | ||||
| 6580 | unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); | ||||
| 6581 | SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); | ||||
| 6582 | SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); | ||||
| 6583 | Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, | ||||
| 6584 | MachinePointerInfo::getStack( | ||||
| 6585 | DAG.getMachineFunction(), TOCSaveOffset)); | ||||
| 6586 | } | ||||
| 6587 | // In the ELFv2 ABI, R12 must contain the address of an indirect callee. | ||||
| 6588 | // This does not mean the MTCTR instruction must use R12; it's easier | ||||
| 6589 | // to model this as an extra parameter, so do that. | ||||
| 6590 | if (isELFv2ABI && !CFlags.IsPatchPoint) | ||||
| 6591 | RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); | ||||
| 6592 | } | ||||
| 6593 | |||||
| 6594 | // Build a sequence of copy-to-reg nodes chained together with token chain | ||||
| 6595 | // and flag operands which copy the outgoing args into the appropriate regs. | ||||
| 6596 | SDValue InGlue; | ||||
| 6597 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | ||||
| 6598 | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | ||||
| 6599 | RegsToPass[i].second, InGlue); | ||||
| 6600 | InGlue = Chain.getValue(1); | ||||
| 6601 | } | ||||
| 6602 | |||||
| 6603 | if (CFlags.IsTailCall && !IsSibCall) | ||||
| 6604 | PrepareTailCall(DAG, InGlue, Chain, dl, SPDiff, NumBytes, LROp, FPOp, | ||||
| 6605 | TailCallArguments); | ||||
| 6606 | |||||
| 6607 | return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, | ||||
| 6608 | Callee, SPDiff, NumBytes, Ins, InVals, CB); | ||||
| 6609 | } | ||||
| 6610 | |||||
| 6611 | // Returns true when the shadow of a general purpose argument register | ||||
| 6612 | // in the parameter save area is aligned to at least 'RequiredAlign'. | ||||
| 6613 | static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { | ||||
| 6614 | assert(RequiredAlign.value() <= 16 &&(static_cast <bool> (RequiredAlign.value() <= 16 && "Required alignment greater than stack alignment.") ? void ( 0) : __assert_fail ("RequiredAlign.value() <= 16 && \"Required alignment greater than stack alignment.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6615, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6615 | "Required alignment greater than stack alignment.")(static_cast <bool> (RequiredAlign.value() <= 16 && "Required alignment greater than stack alignment.") ? void ( 0) : __assert_fail ("RequiredAlign.value() <= 16 && \"Required alignment greater than stack alignment.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6615, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6616 | switch (Reg) { | ||||
| 6617 | default: | ||||
| 6618 | report_fatal_error("called on invalid register."); | ||||
| 6619 | case PPC::R5: | ||||
| 6620 | case PPC::R9: | ||||
| 6621 | case PPC::X3: | ||||
| 6622 | case PPC::X5: | ||||
| 6623 | case PPC::X7: | ||||
| 6624 | case PPC::X9: | ||||
| 6625 | // These registers are 16 byte aligned which is the most strict aligment | ||||
| 6626 | // we can support. | ||||
| 6627 | return true; | ||||
| 6628 | case PPC::R3: | ||||
| 6629 | case PPC::R7: | ||||
| 6630 | case PPC::X4: | ||||
| 6631 | case PPC::X6: | ||||
| 6632 | case PPC::X8: | ||||
| 6633 | case PPC::X10: | ||||
| 6634 | // The shadow of these registers in the PSA is 8 byte aligned. | ||||
| 6635 | return RequiredAlign <= 8; | ||||
| 6636 | case PPC::R4: | ||||
| 6637 | case PPC::R6: | ||||
| 6638 | case PPC::R8: | ||||
| 6639 | case PPC::R10: | ||||
| 6640 | return RequiredAlign <= 4; | ||||
| 6641 | } | ||||
| 6642 | } | ||||
| 6643 | |||||
| 6644 | static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, | ||||
| 6645 | CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, | ||||
| 6646 | CCState &S) { | ||||
| 6647 | AIXCCState &State = static_cast<AIXCCState &>(S); | ||||
| 6648 | const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( | ||||
| 6649 | State.getMachineFunction().getSubtarget()); | ||||
| 6650 | const bool IsPPC64 = Subtarget.isPPC64(); | ||||
| 6651 | const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); | ||||
| 6652 | const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; | ||||
| 6653 | |||||
| 6654 | if (ValVT == MVT::f128) | ||||
| 6655 | report_fatal_error("f128 is unimplemented on AIX."); | ||||
| 6656 | |||||
| 6657 | if (ArgFlags.isNest()) | ||||
| 6658 | report_fatal_error("Nest arguments are unimplemented."); | ||||
| 6659 | |||||
| 6660 | static const MCPhysReg GPR_32[] = {// 32-bit registers. | ||||
| 6661 | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | ||||
| 6662 | PPC::R7, PPC::R8, PPC::R9, PPC::R10}; | ||||
| 6663 | static const MCPhysReg GPR_64[] = {// 64-bit registers. | ||||
| 6664 | PPC::X3, PPC::X4, PPC::X5, PPC::X6, | ||||
| 6665 | PPC::X7, PPC::X8, PPC::X9, PPC::X10}; | ||||
| 6666 | |||||
| 6667 | static const MCPhysReg VR[] = {// Vector registers. | ||||
| 6668 | PPC::V2, PPC::V3, PPC::V4, PPC::V5, | ||||
| 6669 | PPC::V6, PPC::V7, PPC::V8, PPC::V9, | ||||
| 6670 | PPC::V10, PPC::V11, PPC::V12, PPC::V13}; | ||||
| 6671 | |||||
| 6672 | if (ArgFlags.isByVal()) { | ||||
| 6673 | if (ArgFlags.getNonZeroByValAlign() > PtrAlign) | ||||
| 6674 | report_fatal_error("Pass-by-value arguments with alignment greater than " | ||||
| 6675 | "register width are not supported."); | ||||
| 6676 | |||||
| 6677 | const unsigned ByValSize = ArgFlags.getByValSize(); | ||||
| 6678 | |||||
| 6679 | // An empty aggregate parameter takes up no storage and no registers, | ||||
| 6680 | // but needs a MemLoc for a stack slot for the formal arguments side. | ||||
| 6681 | if (ByValSize == 0) { | ||||
| 6682 | State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, | ||||
| 6683 | State.getNextStackOffset(), RegVT, | ||||
| 6684 | LocInfo)); | ||||
| 6685 | return false; | ||||
| 6686 | } | ||||
| 6687 | |||||
| 6688 | const unsigned StackSize = alignTo(ByValSize, PtrAlign); | ||||
| 6689 | unsigned Offset = State.AllocateStack(StackSize, PtrAlign); | ||||
| 6690 | for (const unsigned E = Offset + StackSize; Offset < E; | ||||
| 6691 | Offset += PtrAlign.value()) { | ||||
| 6692 | if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) | ||||
| 6693 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); | ||||
| 6694 | else { | ||||
| 6695 | State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, | ||||
| 6696 | Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, | ||||
| 6697 | LocInfo)); | ||||
| 6698 | break; | ||||
| 6699 | } | ||||
| 6700 | } | ||||
| 6701 | return false; | ||||
| 6702 | } | ||||
| 6703 | |||||
| 6704 | // Arguments always reserve parameter save area. | ||||
| 6705 | switch (ValVT.SimpleTy) { | ||||
| 6706 | default: | ||||
| 6707 | report_fatal_error("Unhandled value type for argument."); | ||||
| 6708 | case MVT::i64: | ||||
| 6709 | // i64 arguments should have been split to i32 for PPC32. | ||||
| 6710 | assert(IsPPC64 && "PPC32 should have split i64 values.")(static_cast <bool> (IsPPC64 && "PPC32 should have split i64 values." ) ? void (0) : __assert_fail ("IsPPC64 && \"PPC32 should have split i64 values.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6710, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6711 | [[fallthrough]]; | ||||
| 6712 | case MVT::i1: | ||||
| 6713 | case MVT::i32: { | ||||
| 6714 | const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); | ||||
| 6715 | // AIX integer arguments are always passed in register width. | ||||
| 6716 | if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) | ||||
| 6717 | LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt | ||||
| 6718 | : CCValAssign::LocInfo::ZExt; | ||||
| 6719 | if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) | ||||
| 6720 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); | ||||
| 6721 | else | ||||
| 6722 | State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); | ||||
| 6723 | |||||
| 6724 | return false; | ||||
| 6725 | } | ||||
| 6726 | case MVT::f32: | ||||
| 6727 | case MVT::f64: { | ||||
| 6728 | // Parameter save area (PSA) is reserved even if the float passes in fpr. | ||||
| 6729 | const unsigned StoreSize = LocVT.getStoreSize(); | ||||
| 6730 | // Floats are always 4-byte aligned in the PSA on AIX. | ||||
| 6731 | // This includes f64 in 64-bit mode for ABI compatibility. | ||||
| 6732 | const unsigned Offset = | ||||
| 6733 | State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); | ||||
| 6734 | unsigned FReg = State.AllocateReg(FPR); | ||||
| 6735 | if (FReg) | ||||
| 6736 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); | ||||
| 6737 | |||||
| 6738 | // Reserve and initialize GPRs or initialize the PSA as required. | ||||
| 6739 | for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { | ||||
| 6740 | if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { | ||||
| 6741 | assert(FReg && "An FPR should be available when a GPR is reserved.")(static_cast <bool> (FReg && "An FPR should be available when a GPR is reserved." ) ? void (0) : __assert_fail ("FReg && \"An FPR should be available when a GPR is reserved.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6741, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6742 | if (State.isVarArg()) { | ||||
| 6743 | // Successfully reserved GPRs are only initialized for vararg calls. | ||||
| 6744 | // Custom handling is required for: | ||||
| 6745 | // f64 in PPC32 needs to be split into 2 GPRs. | ||||
| 6746 | // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. | ||||
| 6747 | State.addLoc( | ||||
| 6748 | CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); | ||||
| 6749 | } | ||||
| 6750 | } else { | ||||
| 6751 | // If there are insufficient GPRs, the PSA needs to be initialized. | ||||
| 6752 | // Initialization occurs even if an FPR was initialized for | ||||
| 6753 | // compatibility with the AIX XL compiler. The full memory for the | ||||
| 6754 | // argument will be initialized even if a prior word is saved in GPR. | ||||
| 6755 | // A custom memLoc is used when the argument also passes in FPR so | ||||
| 6756 | // that the callee handling can skip over it easily. | ||||
| 6757 | State.addLoc( | ||||
| 6758 | FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, | ||||
| 6759 | LocInfo) | ||||
| 6760 | : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | ||||
| 6761 | break; | ||||
| 6762 | } | ||||
| 6763 | } | ||||
| 6764 | |||||
| 6765 | return false; | ||||
| 6766 | } | ||||
| 6767 | case MVT::v4f32: | ||||
| 6768 | case MVT::v4i32: | ||||
| 6769 | case MVT::v8i16: | ||||
| 6770 | case MVT::v16i8: | ||||
| 6771 | case MVT::v2i64: | ||||
| 6772 | case MVT::v2f64: | ||||
| 6773 | case MVT::v1i128: { | ||||
| 6774 | const unsigned VecSize = 16; | ||||
| 6775 | const Align VecAlign(VecSize); | ||||
| 6776 | |||||
| 6777 | if (!State.isVarArg()) { | ||||
| 6778 | // If there are vector registers remaining we don't consume any stack | ||||
| 6779 | // space. | ||||
| 6780 | if (unsigned VReg = State.AllocateReg(VR)) { | ||||
| 6781 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); | ||||
| 6782 | return false; | ||||
| 6783 | } | ||||
| 6784 | // Vectors passed on the stack do not shadow GPRs or FPRs even though they | ||||
| 6785 | // might be allocated in the portion of the PSA that is shadowed by the | ||||
| 6786 | // GPRs. | ||||
| 6787 | const unsigned Offset = State.AllocateStack(VecSize, VecAlign); | ||||
| 6788 | State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | ||||
| 6789 | return false; | ||||
| 6790 | } | ||||
| 6791 | |||||
| 6792 | const unsigned PtrSize = IsPPC64 ? 8 : 4; | ||||
| 6793 | ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; | ||||
| 6794 | |||||
| 6795 | unsigned NextRegIndex = State.getFirstUnallocated(GPRs); | ||||
| 6796 | // Burn any underaligned registers and their shadowed stack space until | ||||
| 6797 | // we reach the required alignment. | ||||
| 6798 | while (NextRegIndex != GPRs.size() && | ||||
| 6799 | !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { | ||||
| 6800 | // Shadow allocate register and its stack shadow. | ||||
| 6801 | unsigned Reg = State.AllocateReg(GPRs); | ||||
| 6802 | State.AllocateStack(PtrSize, PtrAlign); | ||||
| 6803 | assert(Reg && "Allocating register unexpectedly failed.")(static_cast <bool> (Reg && "Allocating register unexpectedly failed." ) ? void (0) : __assert_fail ("Reg && \"Allocating register unexpectedly failed.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6803, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6804 | (void)Reg; | ||||
| 6805 | NextRegIndex = State.getFirstUnallocated(GPRs); | ||||
| 6806 | } | ||||
| 6807 | |||||
| 6808 | // Vectors that are passed as fixed arguments are handled differently. | ||||
| 6809 | // They are passed in VRs if any are available (unlike arguments passed | ||||
| 6810 | // through ellipses) and shadow GPRs (unlike arguments to non-vaarg | ||||
| 6811 | // functions) | ||||
| 6812 | if (State.isFixed(ValNo)) { | ||||
| 6813 | if (unsigned VReg = State.AllocateReg(VR)) { | ||||
| 6814 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); | ||||
| 6815 | // Shadow allocate GPRs and stack space even though we pass in a VR. | ||||
| 6816 | for (unsigned I = 0; I != VecSize; I += PtrSize) | ||||
| 6817 | State.AllocateReg(GPRs); | ||||
| 6818 | State.AllocateStack(VecSize, VecAlign); | ||||
| 6819 | return false; | ||||
| 6820 | } | ||||
| 6821 | // No vector registers remain so pass on the stack. | ||||
| 6822 | const unsigned Offset = State.AllocateStack(VecSize, VecAlign); | ||||
| 6823 | State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | ||||
| 6824 | return false; | ||||
| 6825 | } | ||||
| 6826 | |||||
| 6827 | // If all GPRS are consumed then we pass the argument fully on the stack. | ||||
| 6828 | if (NextRegIndex == GPRs.size()) { | ||||
| 6829 | const unsigned Offset = State.AllocateStack(VecSize, VecAlign); | ||||
| 6830 | State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | ||||
| 6831 | return false; | ||||
| 6832 | } | ||||
| 6833 | |||||
| 6834 | // Corner case for 32-bit codegen. We have 2 registers to pass the first | ||||
| 6835 | // half of the argument, and then need to pass the remaining half on the | ||||
| 6836 | // stack. | ||||
| 6837 | if (GPRs[NextRegIndex] == PPC::R9) { | ||||
| 6838 | const unsigned Offset = State.AllocateStack(VecSize, VecAlign); | ||||
| 6839 | State.addLoc( | ||||
| 6840 | CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | ||||
| 6841 | |||||
| 6842 | const unsigned FirstReg = State.AllocateReg(PPC::R9); | ||||
| 6843 | const unsigned SecondReg = State.AllocateReg(PPC::R10); | ||||
| 6844 | assert(FirstReg && SecondReg &&(static_cast <bool> (FirstReg && SecondReg && "Allocating R9 or R10 unexpectedly failed.") ? void (0) : __assert_fail ("FirstReg && SecondReg && \"Allocating R9 or R10 unexpectedly failed.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6845, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6845 | "Allocating R9 or R10 unexpectedly failed.")(static_cast <bool> (FirstReg && SecondReg && "Allocating R9 or R10 unexpectedly failed.") ? void (0) : __assert_fail ("FirstReg && SecondReg && \"Allocating R9 or R10 unexpectedly failed.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6845, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6846 | State.addLoc( | ||||
| 6847 | CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); | ||||
| 6848 | State.addLoc( | ||||
| 6849 | CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); | ||||
| 6850 | return false; | ||||
| 6851 | } | ||||
| 6852 | |||||
| 6853 | // We have enough GPRs to fully pass the vector argument, and we have | ||||
| 6854 | // already consumed any underaligned registers. Start with the custom | ||||
| 6855 | // MemLoc and then the custom RegLocs. | ||||
| 6856 | const unsigned Offset = State.AllocateStack(VecSize, VecAlign); | ||||
| 6857 | State.addLoc( | ||||
| 6858 | CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | ||||
| 6859 | for (unsigned I = 0; I != VecSize; I += PtrSize) { | ||||
| 6860 | const unsigned Reg = State.AllocateReg(GPRs); | ||||
| 6861 | assert(Reg && "Failed to allocated register for vararg vector argument")(static_cast <bool> (Reg && "Failed to allocated register for vararg vector argument" ) ? void (0) : __assert_fail ("Reg && \"Failed to allocated register for vararg vector argument\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6861, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6862 | State.addLoc( | ||||
| 6863 | CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); | ||||
| 6864 | } | ||||
| 6865 | return false; | ||||
| 6866 | } | ||||
| 6867 | } | ||||
| 6868 | return true; | ||||
| 6869 | } | ||||
| 6870 | |||||
| 6871 | // So far, this function is only used by LowerFormalArguments_AIX() | ||||
| 6872 | static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, | ||||
| 6873 | bool IsPPC64, | ||||
| 6874 | bool HasP8Vector, | ||||
| 6875 | bool HasVSX) { | ||||
| 6876 | assert((IsPPC64 || SVT != MVT::i64) &&(static_cast <bool> ((IsPPC64 || SVT != MVT::i64) && "i64 should have been split for 32-bit codegen.") ? void (0) : __assert_fail ("(IsPPC64 || SVT != MVT::i64) && \"i64 should have been split for 32-bit codegen.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6877, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6877 | "i64 should have been split for 32-bit codegen.")(static_cast <bool> ((IsPPC64 || SVT != MVT::i64) && "i64 should have been split for 32-bit codegen.") ? void (0) : __assert_fail ("(IsPPC64 || SVT != MVT::i64) && \"i64 should have been split for 32-bit codegen.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6877, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6878 | |||||
| 6879 | switch (SVT) { | ||||
| 6880 | default: | ||||
| 6881 | report_fatal_error("Unexpected value type for formal argument"); | ||||
| 6882 | case MVT::i1: | ||||
| 6883 | case MVT::i32: | ||||
| 6884 | case MVT::i64: | ||||
| 6885 | return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; | ||||
| 6886 | case MVT::f32: | ||||
| 6887 | return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; | ||||
| 6888 | case MVT::f64: | ||||
| 6889 | return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; | ||||
| 6890 | case MVT::v4f32: | ||||
| 6891 | case MVT::v4i32: | ||||
| 6892 | case MVT::v8i16: | ||||
| 6893 | case MVT::v16i8: | ||||
| 6894 | case MVT::v2i64: | ||||
| 6895 | case MVT::v2f64: | ||||
| 6896 | case MVT::v1i128: | ||||
| 6897 | return &PPC::VRRCRegClass; | ||||
| 6898 | } | ||||
| 6899 | } | ||||
| 6900 | |||||
| 6901 | static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, | ||||
| 6902 | SelectionDAG &DAG, SDValue ArgValue, | ||||
| 6903 | MVT LocVT, const SDLoc &dl) { | ||||
| 6904 | assert(ValVT.isScalarInteger() && LocVT.isScalarInteger())(static_cast <bool> (ValVT.isScalarInteger() && LocVT.isScalarInteger()) ? void (0) : __assert_fail ("ValVT.isScalarInteger() && LocVT.isScalarInteger()" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6904, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6905 | assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())(static_cast <bool> (ValVT.getFixedSizeInBits() < LocVT .getFixedSizeInBits()) ? void (0) : __assert_fail ("ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6905, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6906 | |||||
| 6907 | if (Flags.isSExt()) | ||||
| 6908 | ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, | ||||
| 6909 | DAG.getValueType(ValVT)); | ||||
| 6910 | else if (Flags.isZExt()) | ||||
| 6911 | ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, | ||||
| 6912 | DAG.getValueType(ValVT)); | ||||
| 6913 | |||||
| 6914 | return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); | ||||
| 6915 | } | ||||
| 6916 | |||||
| 6917 | static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { | ||||
| 6918 | const unsigned LASize = FL->getLinkageSize(); | ||||
| 6919 | |||||
| 6920 | if (PPC::GPRCRegClass.contains(Reg)) { | ||||
| 6921 | assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&(static_cast <bool> (Reg >= PPC::R3 && Reg <= PPC::R10 && "Reg must be a valid argument register!" ) ? void (0) : __assert_fail ("Reg >= PPC::R3 && Reg <= PPC::R10 && \"Reg must be a valid argument register!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6922, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6922 | "Reg must be a valid argument register!")(static_cast <bool> (Reg >= PPC::R3 && Reg <= PPC::R10 && "Reg must be a valid argument register!" ) ? void (0) : __assert_fail ("Reg >= PPC::R3 && Reg <= PPC::R10 && \"Reg must be a valid argument register!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6922, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6923 | return LASize + 4 * (Reg - PPC::R3); | ||||
| 6924 | } | ||||
| 6925 | |||||
| 6926 | if (PPC::G8RCRegClass.contains(Reg)) { | ||||
| 6927 | assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&(static_cast <bool> (Reg >= PPC::X3 && Reg <= PPC::X10 && "Reg must be a valid argument register!" ) ? void (0) : __assert_fail ("Reg >= PPC::X3 && Reg <= PPC::X10 && \"Reg must be a valid argument register!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6928, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6928 | "Reg must be a valid argument register!")(static_cast <bool> (Reg >= PPC::X3 && Reg <= PPC::X10 && "Reg must be a valid argument register!" ) ? void (0) : __assert_fail ("Reg >= PPC::X3 && Reg <= PPC::X10 && \"Reg must be a valid argument register!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6928, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6929 | return LASize + 8 * (Reg - PPC::X3); | ||||
| 6930 | } | ||||
| 6931 | |||||
| 6932 | llvm_unreachable("Only general purpose registers expected.")::llvm::llvm_unreachable_internal("Only general purpose registers expected." , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6932); | ||||
| 6933 | } | ||||
| 6934 | |||||
| 6935 | // AIX ABI Stack Frame Layout: | ||||
| 6936 | // | ||||
| 6937 | // Low Memory +--------------------------------------------+ | ||||
| 6938 | // SP +---> | Back chain | ---+ | ||||
| 6939 | // | +--------------------------------------------+ | | ||||
| 6940 | // | | Saved Condition Register | | | ||||
| 6941 | // | +--------------------------------------------+ | | ||||
| 6942 | // | | Saved Linkage Register | | | ||||
| 6943 | // | +--------------------------------------------+ | Linkage Area | ||||
| 6944 | // | | Reserved for compilers | | | ||||
| 6945 | // | +--------------------------------------------+ | | ||||
| 6946 | // | | Reserved for binders | | | ||||
| 6947 | // | +--------------------------------------------+ | | ||||
| 6948 | // | | Saved TOC pointer | ---+ | ||||
| 6949 | // | +--------------------------------------------+ | ||||
| 6950 | // | | Parameter save area | | ||||
| 6951 | // | +--------------------------------------------+ | ||||
| 6952 | // | | Alloca space | | ||||
| 6953 | // | +--------------------------------------------+ | ||||
| 6954 | // | | Local variable space | | ||||
| 6955 | // | +--------------------------------------------+ | ||||
| 6956 | // | | Float/int conversion temporary | | ||||
| 6957 | // | +--------------------------------------------+ | ||||
| 6958 | // | | Save area for AltiVec registers | | ||||
| 6959 | // | +--------------------------------------------+ | ||||
| 6960 | // | | AltiVec alignment padding | | ||||
| 6961 | // | +--------------------------------------------+ | ||||
| 6962 | // | | Save area for VRSAVE register | | ||||
| 6963 | // | +--------------------------------------------+ | ||||
| 6964 | // | | Save area for General Purpose registers | | ||||
| 6965 | // | +--------------------------------------------+ | ||||
| 6966 | // | | Save area for Floating Point registers | | ||||
| 6967 | // | +--------------------------------------------+ | ||||
| 6968 | // +---- | Back chain | | ||||
| 6969 | // High Memory +--------------------------------------------+ | ||||
| 6970 | // | ||||
| 6971 | // Specifications: | ||||
| 6972 | // AIX 7.2 Assembler Language Reference | ||||
| 6973 | // Subroutine linkage convention | ||||
| 6974 | |||||
| 6975 | SDValue PPCTargetLowering::LowerFormalArguments_AIX( | ||||
| 6976 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | ||||
| 6977 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | ||||
| 6978 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | ||||
| 6979 | |||||
| 6980 | assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||(static_cast <bool> ((CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && "Unexpected calling convention!") ? void (0) : __assert_fail ("(CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && \"Unexpected calling convention!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6982, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6981 | CallConv == CallingConv::Fast) &&(static_cast <bool> ((CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && "Unexpected calling convention!") ? void (0) : __assert_fail ("(CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && \"Unexpected calling convention!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6982, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6982 | "Unexpected calling convention!")(static_cast <bool> ((CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && "Unexpected calling convention!") ? void (0) : __assert_fail ("(CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && \"Unexpected calling convention!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 6982, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6983 | |||||
| 6984 | if (getTargetMachine().Options.GuaranteedTailCallOpt) | ||||
| 6985 | report_fatal_error("Tail call support is unimplemented on AIX."); | ||||
| 6986 | |||||
| 6987 | if (useSoftFloat()) | ||||
| 6988 | report_fatal_error("Soft float support is unimplemented on AIX."); | ||||
| 6989 | |||||
| 6990 | const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); | ||||
| 6991 | |||||
| 6992 | const bool IsPPC64 = Subtarget.isPPC64(); | ||||
| 6993 | const unsigned PtrByteSize = IsPPC64 ? 8 : 4; | ||||
| 6994 | |||||
| 6995 | // Assign locations to all of the incoming arguments. | ||||
| 6996 | SmallVector<CCValAssign, 16> ArgLocs; | ||||
| 6997 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 6998 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 6999 | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | ||||
| 7000 | AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); | ||||
| 7001 | |||||
| 7002 | const EVT PtrVT = getPointerTy(MF.getDataLayout()); | ||||
| 7003 | // Reserve space for the linkage area on the stack. | ||||
| 7004 | const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); | ||||
| 7005 | CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); | ||||
| 7006 | CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); | ||||
| 7007 | |||||
| 7008 | SmallVector<SDValue, 8> MemOps; | ||||
| 7009 | |||||
| 7010 | for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { | ||||
| 7011 | CCValAssign &VA = ArgLocs[I++]; | ||||
| 7012 | MVT LocVT = VA.getLocVT(); | ||||
| 7013 | MVT ValVT = VA.getValVT(); | ||||
| 7014 | ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; | ||||
| 7015 | // For compatibility with the AIX XL compiler, the float args in the | ||||
| 7016 | // parameter save area are initialized even if the argument is available | ||||
| 7017 | // in register. The caller is required to initialize both the register | ||||
| 7018 | // and memory, however, the callee can choose to expect it in either. | ||||
| 7019 | // The memloc is dismissed here because the argument is retrieved from | ||||
| 7020 | // the register. | ||||
| 7021 | if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) | ||||
| 7022 | continue; | ||||
| 7023 | |||||
| 7024 | auto HandleMemLoc = [&]() { | ||||
| 7025 | const unsigned LocSize = LocVT.getStoreSize(); | ||||
| 7026 | const unsigned ValSize = ValVT.getStoreSize(); | ||||
| 7027 | assert((ValSize <= LocSize) &&(static_cast <bool> ((ValSize <= LocSize) && "Object size is larger than size of MemLoc") ? void (0) : __assert_fail ("(ValSize <= LocSize) && \"Object size is larger than size of MemLoc\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7028, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7028 | "Object size is larger than size of MemLoc")(static_cast <bool> ((ValSize <= LocSize) && "Object size is larger than size of MemLoc") ? void (0) : __assert_fail ("(ValSize <= LocSize) && \"Object size is larger than size of MemLoc\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7028, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7029 | int CurArgOffset = VA.getLocMemOffset(); | ||||
| 7030 | // Objects are right-justified because AIX is big-endian. | ||||
| 7031 | if (LocSize > ValSize) | ||||
| 7032 | CurArgOffset += LocSize - ValSize; | ||||
| 7033 | // Potential tail calls could cause overwriting of argument stack slots. | ||||
| 7034 | const bool IsImmutable = | ||||
| 7035 | !(getTargetMachine().Options.GuaranteedTailCallOpt && | ||||
| 7036 | (CallConv == CallingConv::Fast)); | ||||
| 7037 | int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); | ||||
| 7038 | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | ||||
| 7039 | SDValue ArgValue = | ||||
| 7040 | DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); | ||||
| 7041 | InVals.push_back(ArgValue); | ||||
| 7042 | }; | ||||
| 7043 | |||||
| 7044 | // Vector arguments to VaArg functions are passed both on the stack, and | ||||
| 7045 | // in any available GPRs. Load the value from the stack and add the GPRs | ||||
| 7046 | // as live ins. | ||||
| 7047 | if (VA.isMemLoc() && VA.needsCustom()) { | ||||
| 7048 | assert(ValVT.isVector() && "Unexpected Custom MemLoc type.")(static_cast <bool> (ValVT.isVector() && "Unexpected Custom MemLoc type." ) ? void (0) : __assert_fail ("ValVT.isVector() && \"Unexpected Custom MemLoc type.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7048, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7049 | assert(isVarArg && "Only use custom memloc for vararg.")(static_cast <bool> (isVarArg && "Only use custom memloc for vararg." ) ? void (0) : __assert_fail ("isVarArg && \"Only use custom memloc for vararg.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7049, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7050 | // ValNo of the custom MemLoc, so we can compare it to the ValNo of the | ||||
| 7051 | // matching custom RegLocs. | ||||
| 7052 | const unsigned OriginalValNo = VA.getValNo(); | ||||
| 7053 | (void)OriginalValNo; | ||||
| 7054 | |||||
| 7055 | auto HandleCustomVecRegLoc = [&]() { | ||||
| 7056 | assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&(static_cast <bool> (I != End && ArgLocs[I].isRegLoc () && ArgLocs[I].needsCustom() && "Missing custom RegLoc." ) ? void (0) : __assert_fail ("I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && \"Missing custom RegLoc.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7057, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7057 | "Missing custom RegLoc.")(static_cast <bool> (I != End && ArgLocs[I].isRegLoc () && ArgLocs[I].needsCustom() && "Missing custom RegLoc." ) ? void (0) : __assert_fail ("I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && \"Missing custom RegLoc.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7057, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7058 | VA = ArgLocs[I++]; | ||||
| 7059 | assert(VA.getValVT().isVector() &&(static_cast <bool> (VA.getValVT().isVector() && "Unexpected Val type for custom RegLoc.") ? void (0) : __assert_fail ("VA.getValVT().isVector() && \"Unexpected Val type for custom RegLoc.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7060, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7060 | "Unexpected Val type for custom RegLoc.")(static_cast <bool> (VA.getValVT().isVector() && "Unexpected Val type for custom RegLoc.") ? void (0) : __assert_fail ("VA.getValVT().isVector() && \"Unexpected Val type for custom RegLoc.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7060, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7061 | assert(VA.getValNo() == OriginalValNo &&(static_cast <bool> (VA.getValNo() == OriginalValNo && "ValNo mismatch between custom MemLoc and RegLoc.") ? void ( 0) : __assert_fail ("VA.getValNo() == OriginalValNo && \"ValNo mismatch between custom MemLoc and RegLoc.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7062, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7062 | "ValNo mismatch between custom MemLoc and RegLoc.")(static_cast <bool> (VA.getValNo() == OriginalValNo && "ValNo mismatch between custom MemLoc and RegLoc.") ? void ( 0) : __assert_fail ("VA.getValNo() == OriginalValNo && \"ValNo mismatch between custom MemLoc and RegLoc.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7062, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7063 | MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; | ||||
| 7064 | MF.addLiveIn(VA.getLocReg(), | ||||
| 7065 | getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), | ||||
| 7066 | Subtarget.hasVSX())); | ||||
| 7067 | }; | ||||
| 7068 | |||||
| 7069 | HandleMemLoc(); | ||||
| 7070 | // In 64-bit there will be exactly 2 custom RegLocs that follow, and in | ||||
| 7071 | // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and | ||||
| 7072 | // R10. | ||||
| 7073 | HandleCustomVecRegLoc(); | ||||
| 7074 | HandleCustomVecRegLoc(); | ||||
| 7075 | |||||
| 7076 | // If we are targeting 32-bit, there might be 2 extra custom RegLocs if | ||||
| 7077 | // we passed the vector in R5, R6, R7 and R8. | ||||
| 7078 | if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { | ||||
| 7079 | assert(!IsPPC64 &&(static_cast <bool> (!IsPPC64 && "Only 2 custom RegLocs expected for 64-bit codegen." ) ? void (0) : __assert_fail ("!IsPPC64 && \"Only 2 custom RegLocs expected for 64-bit codegen.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7080, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7080 | "Only 2 custom RegLocs expected for 64-bit codegen.")(static_cast <bool> (!IsPPC64 && "Only 2 custom RegLocs expected for 64-bit codegen." ) ? void (0) : __assert_fail ("!IsPPC64 && \"Only 2 custom RegLocs expected for 64-bit codegen.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7080, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7081 | HandleCustomVecRegLoc(); | ||||
| 7082 | HandleCustomVecRegLoc(); | ||||
| 7083 | } | ||||
| 7084 | |||||
| 7085 | continue; | ||||
| 7086 | } | ||||
| 7087 | |||||
| 7088 | if (VA.isRegLoc()) { | ||||
| 7089 | if (VA.getValVT().isScalarInteger()) | ||||
| 7090 | FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); | ||||
| 7091 | else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { | ||||
| 7092 | switch (VA.getValVT().SimpleTy) { | ||||
| 7093 | default: | ||||
| 7094 | report_fatal_error("Unhandled value type for argument."); | ||||
| 7095 | case MVT::f32: | ||||
| 7096 | FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); | ||||
| 7097 | break; | ||||
| 7098 | case MVT::f64: | ||||
| 7099 | FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); | ||||
| 7100 | break; | ||||
| 7101 | } | ||||
| 7102 | } else if (VA.getValVT().isVector()) { | ||||
| 7103 | switch (VA.getValVT().SimpleTy) { | ||||
| 7104 | default: | ||||
| 7105 | report_fatal_error("Unhandled value type for argument."); | ||||
| 7106 | case MVT::v16i8: | ||||
| 7107 | FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); | ||||
| 7108 | break; | ||||
| 7109 | case MVT::v8i16: | ||||
| 7110 | FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); | ||||
| 7111 | break; | ||||
| 7112 | case MVT::v4i32: | ||||
| 7113 | case MVT::v2i64: | ||||
| 7114 | case MVT::v1i128: | ||||
| 7115 | FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); | ||||
| 7116 | break; | ||||
| 7117 | case MVT::v4f32: | ||||
| 7118 | case MVT::v2f64: | ||||
| 7119 | FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); | ||||
| 7120 | break; | ||||
| 7121 | } | ||||
| 7122 | } | ||||
| 7123 | } | ||||
| 7124 | |||||
| 7125 | if (Flags.isByVal() && VA.isMemLoc()) { | ||||
| 7126 | const unsigned Size = | ||||
| 7127 | alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, | ||||
| 7128 | PtrByteSize); | ||||
| 7129 | const int FI = MF.getFrameInfo().CreateFixedObject( | ||||
| 7130 | Size, VA.getLocMemOffset(), /* IsImmutable */ false, | ||||
| 7131 | /* IsAliased */ true); | ||||
| 7132 | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | ||||
| 7133 | InVals.push_back(FIN); | ||||
| 7134 | |||||
| 7135 | continue; | ||||
| 7136 | } | ||||
| 7137 | |||||
| 7138 | if (Flags.isByVal()) { | ||||
| 7139 | assert(VA.isRegLoc() && "MemLocs should already be handled.")(static_cast <bool> (VA.isRegLoc() && "MemLocs should already be handled." ) ? void (0) : __assert_fail ("VA.isRegLoc() && \"MemLocs should already be handled.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7139, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7140 | |||||
| 7141 | const MCPhysReg ArgReg = VA.getLocReg(); | ||||
| 7142 | const PPCFrameLowering *FL = Subtarget.getFrameLowering(); | ||||
| 7143 | |||||
| 7144 | if (Flags.getNonZeroByValAlign() > PtrByteSize) | ||||
| 7145 | report_fatal_error("Over aligned byvals not supported yet."); | ||||
| 7146 | |||||
| 7147 | const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); | ||||
| 7148 | const int FI = MF.getFrameInfo().CreateFixedObject( | ||||
| 7149 | StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, | ||||
| 7150 | /* IsAliased */ true); | ||||
| 7151 | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); | ||||
| 7152 | InVals.push_back(FIN); | ||||
| 7153 | |||||
| 7154 | // Add live ins for all the RegLocs for the same ByVal. | ||||
| 7155 | const TargetRegisterClass *RegClass = | ||||
| 7156 | IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; | ||||
| 7157 | |||||
| 7158 | auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, | ||||
| 7159 | unsigned Offset) { | ||||
| 7160 | const Register VReg = MF.addLiveIn(PhysReg, RegClass); | ||||
| 7161 | // Since the callers side has left justified the aggregate in the | ||||
| 7162 | // register, we can simply store the entire register into the stack | ||||
| 7163 | // slot. | ||||
| 7164 | SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); | ||||
| 7165 | // The store to the fixedstack object is needed becuase accessing a | ||||
| 7166 | // field of the ByVal will use a gep and load. Ideally we will optimize | ||||
| 7167 | // to extracting the value from the register directly, and elide the | ||||
| 7168 | // stores when the arguments address is not taken, but that will need to | ||||
| 7169 | // be future work. | ||||
| 7170 | SDValue Store = DAG.getStore( | ||||
| 7171 | CopyFrom.getValue(1), dl, CopyFrom, | ||||
| 7172 | DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), | ||||
| 7173 | MachinePointerInfo::getFixedStack(MF, FI, Offset)); | ||||
| 7174 | |||||
| 7175 | MemOps.push_back(Store); | ||||
| 7176 | }; | ||||
| 7177 | |||||
| 7178 | unsigned Offset = 0; | ||||
| 7179 | HandleRegLoc(VA.getLocReg(), Offset); | ||||
| 7180 | Offset += PtrByteSize; | ||||
| 7181 | for (; Offset != StackSize && ArgLocs[I].isRegLoc(); | ||||
| 7182 | Offset += PtrByteSize) { | ||||
| 7183 | assert(ArgLocs[I].getValNo() == VA.getValNo() &&(static_cast <bool> (ArgLocs[I].getValNo() == VA.getValNo () && "RegLocs should be for ByVal argument.") ? void (0) : __assert_fail ("ArgLocs[I].getValNo() == VA.getValNo() && \"RegLocs should be for ByVal argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7184, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7184 | "RegLocs should be for ByVal argument.")(static_cast <bool> (ArgLocs[I].getValNo() == VA.getValNo () && "RegLocs should be for ByVal argument.") ? void (0) : __assert_fail ("ArgLocs[I].getValNo() == VA.getValNo() && \"RegLocs should be for ByVal argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7184, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7185 | |||||
| 7186 | const CCValAssign RL = ArgLocs[I++]; | ||||
| 7187 | HandleRegLoc(RL.getLocReg(), Offset); | ||||
| 7188 | FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); | ||||
| 7189 | } | ||||
| 7190 | |||||
| 7191 | if (Offset != StackSize) { | ||||
| 7192 | assert(ArgLocs[I].getValNo() == VA.getValNo() &&(static_cast <bool> (ArgLocs[I].getValNo() == VA.getValNo () && "Expected MemLoc for remaining bytes.") ? void ( 0) : __assert_fail ("ArgLocs[I].getValNo() == VA.getValNo() && \"Expected MemLoc for remaining bytes.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7193, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7193 | "Expected MemLoc for remaining bytes.")(static_cast <bool> (ArgLocs[I].getValNo() == VA.getValNo () && "Expected MemLoc for remaining bytes.") ? void ( 0) : __assert_fail ("ArgLocs[I].getValNo() == VA.getValNo() && \"Expected MemLoc for remaining bytes.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7193, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7194 | assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.")(static_cast <bool> (ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes." ) ? void (0) : __assert_fail ("ArgLocs[I].isMemLoc() && \"Expected MemLoc for remaining bytes.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7194, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7195 | // Consume the MemLoc.The InVal has already been emitted, so nothing | ||||
| 7196 | // more needs to be done. | ||||
| 7197 | ++I; | ||||
| 7198 | } | ||||
| 7199 | |||||
| 7200 | continue; | ||||
| 7201 | } | ||||
| 7202 | |||||
| 7203 | if (VA.isRegLoc() && !VA.needsCustom()) { | ||||
| 7204 | MVT::SimpleValueType SVT = ValVT.SimpleTy; | ||||
| 7205 | Register VReg = | ||||
| 7206 | MF.addLiveIn(VA.getLocReg(), | ||||
| 7207 | getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), | ||||
| 7208 | Subtarget.hasVSX())); | ||||
| 7209 | SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); | ||||
| 7210 | if (ValVT.isScalarInteger() && | ||||
| 7211 | (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { | ||||
| 7212 | ArgValue = | ||||
| 7213 | truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); | ||||
| 7214 | } | ||||
| 7215 | InVals.push_back(ArgValue); | ||||
| 7216 | continue; | ||||
| 7217 | } | ||||
| 7218 | if (VA.isMemLoc()) { | ||||
| 7219 | HandleMemLoc(); | ||||
| 7220 | continue; | ||||
| 7221 | } | ||||
| 7222 | } | ||||
| 7223 | |||||
| 7224 | // On AIX a minimum of 8 words is saved to the parameter save area. | ||||
| 7225 | const unsigned MinParameterSaveArea = 8 * PtrByteSize; | ||||
| 7226 | // Area that is at least reserved in the caller of this function. | ||||
| 7227 | unsigned CallerReservedArea = | ||||
| 7228 | std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); | ||||
| 7229 | |||||
| 7230 | // Set the size that is at least reserved in caller of this function. Tail | ||||
| 7231 | // call optimized function's reserved stack space needs to be aligned so | ||||
| 7232 | // that taking the difference between two stack areas will result in an | ||||
| 7233 | // aligned stack. | ||||
| 7234 | CallerReservedArea = | ||||
| 7235 | EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); | ||||
| 7236 | FuncInfo->setMinReservedArea(CallerReservedArea); | ||||
| 7237 | |||||
| 7238 | if (isVarArg) { | ||||
| 7239 | FuncInfo->setVarArgsFrameIndex( | ||||
| 7240 | MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); | ||||
| 7241 | SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | ||||
| 7242 | |||||
| 7243 | static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, | ||||
| 7244 | PPC::R7, PPC::R8, PPC::R9, PPC::R10}; | ||||
| 7245 | |||||
| 7246 | static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, | ||||
| 7247 | PPC::X7, PPC::X8, PPC::X9, PPC::X10}; | ||||
| 7248 | const unsigned NumGPArgRegs = std::size(IsPPC64 ? GPR_64 : GPR_32); | ||||
| 7249 | |||||
| 7250 | // The fixed integer arguments of a variadic function are stored to the | ||||
| 7251 | // VarArgsFrameIndex on the stack so that they may be loaded by | ||||
| 7252 | // dereferencing the result of va_next. | ||||
| 7253 | for (unsigned GPRIndex = | ||||
| 7254 | (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; | ||||
| 7255 | GPRIndex < NumGPArgRegs; ++GPRIndex) { | ||||
| 7256 | |||||
| 7257 | const Register VReg = | ||||
| 7258 | IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) | ||||
| 7259 | : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); | ||||
| 7260 | |||||
| 7261 | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); | ||||
| 7262 | SDValue Store = | ||||
| 7263 | DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); | ||||
| 7264 | MemOps.push_back(Store); | ||||
| 7265 | // Increment the address for the next argument to store. | ||||
| 7266 | SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); | ||||
| 7267 | FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); | ||||
| 7268 | } | ||||
| 7269 | } | ||||
| 7270 | |||||
| 7271 | if (!MemOps.empty()) | ||||
| 7272 | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); | ||||
| 7273 | |||||
| 7274 | return Chain; | ||||
| 7275 | } | ||||
| 7276 | |||||
| 7277 | SDValue PPCTargetLowering::LowerCall_AIX( | ||||
| 7278 | SDValue Chain, SDValue Callee, CallFlags CFlags, | ||||
| 7279 | const SmallVectorImpl<ISD::OutputArg> &Outs, | ||||
| 7280 | const SmallVectorImpl<SDValue> &OutVals, | ||||
| 7281 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | ||||
| 7282 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, | ||||
| 7283 | const CallBase *CB) const { | ||||
| 7284 | // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the | ||||
| 7285 | // AIX ABI stack frame layout. | ||||
| 7286 | |||||
| 7287 | assert((CFlags.CallConv == CallingConv::C ||(static_cast <bool> ((CFlags.CallConv == CallingConv::C || CFlags.CallConv == CallingConv::Cold || CFlags.CallConv == CallingConv::Fast) && "Unexpected calling convention!" ) ? void (0) : __assert_fail ("(CFlags.CallConv == CallingConv::C || CFlags.CallConv == CallingConv::Cold || CFlags.CallConv == CallingConv::Fast) && \"Unexpected calling convention!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7290, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7288 | CFlags.CallConv == CallingConv::Cold ||(static_cast <bool> ((CFlags.CallConv == CallingConv::C || CFlags.CallConv == CallingConv::Cold || CFlags.CallConv == CallingConv::Fast) && "Unexpected calling convention!" ) ? void (0) : __assert_fail ("(CFlags.CallConv == CallingConv::C || CFlags.CallConv == CallingConv::Cold || CFlags.CallConv == CallingConv::Fast) && \"Unexpected calling convention!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7290, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7289 | CFlags.CallConv == CallingConv::Fast) &&(static_cast <bool> ((CFlags.CallConv == CallingConv::C || CFlags.CallConv == CallingConv::Cold || CFlags.CallConv == CallingConv::Fast) && "Unexpected calling convention!" ) ? void (0) : __assert_fail ("(CFlags.CallConv == CallingConv::C || CFlags.CallConv == CallingConv::Cold || CFlags.CallConv == CallingConv::Fast) && \"Unexpected calling convention!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7290, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7290 | "Unexpected calling convention!")(static_cast <bool> ((CFlags.CallConv == CallingConv::C || CFlags.CallConv == CallingConv::Cold || CFlags.CallConv == CallingConv::Fast) && "Unexpected calling convention!" ) ? void (0) : __assert_fail ("(CFlags.CallConv == CallingConv::C || CFlags.CallConv == CallingConv::Cold || CFlags.CallConv == CallingConv::Fast) && \"Unexpected calling convention!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7290, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7291 | |||||
| 7292 | if (CFlags.IsPatchPoint) | ||||
| 7293 | report_fatal_error("This call type is unimplemented on AIX."); | ||||
| 7294 | |||||
| 7295 | const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); | ||||
| 7296 | |||||
| 7297 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 7298 | SmallVector<CCValAssign, 16> ArgLocs; | ||||
| 7299 | AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, | ||||
| 7300 | *DAG.getContext()); | ||||
| 7301 | |||||
| 7302 | // Reserve space for the linkage save area (LSA) on the stack. | ||||
| 7303 | // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: | ||||
| 7304 | // [SP][CR][LR][2 x reserved][TOC]. | ||||
| 7305 | // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. | ||||
| 7306 | const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); | ||||
| 7307 | const bool IsPPC64 = Subtarget.isPPC64(); | ||||
| 7308 | const EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 7309 | const unsigned PtrByteSize = IsPPC64 ? 8 : 4; | ||||
| 7310 | CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); | ||||
| 7311 | CCInfo.AnalyzeCallOperands(Outs, CC_AIX); | ||||
| 7312 | |||||
| 7313 | // The prolog code of the callee may store up to 8 GPR argument registers to | ||||
| 7314 | // the stack, allowing va_start to index over them in memory if the callee | ||||
| 7315 | // is variadic. | ||||
| 7316 | // Because we cannot tell if this is needed on the caller side, we have to | ||||
| 7317 | // conservatively assume that it is needed. As such, make sure we have at | ||||
| 7318 | // least enough stack space for the caller to store the 8 GPRs. | ||||
| 7319 | const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; | ||||
| 7320 | const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, | ||||
| 7321 | CCInfo.getNextStackOffset()); | ||||
| 7322 | |||||
| 7323 | // Adjust the stack pointer for the new arguments... | ||||
| 7324 | // These operations are automatically eliminated by the prolog/epilog pass. | ||||
| 7325 | Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); | ||||
| 7326 | SDValue CallSeqStart = Chain; | ||||
| 7327 | |||||
| 7328 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | ||||
| 7329 | SmallVector<SDValue, 8> MemOpChains; | ||||
| 7330 | |||||
| 7331 | // Set up a copy of the stack pointer for loading and storing any | ||||
| 7332 | // arguments that may not fit in the registers available for argument | ||||
| 7333 | // passing. | ||||
| 7334 | const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) | ||||
| 7335 | : DAG.getRegister(PPC::R1, MVT::i32); | ||||
| 7336 | |||||
| 7337 | for (unsigned I = 0, E = ArgLocs.size(); I != E;) { | ||||
| 7338 | const unsigned ValNo = ArgLocs[I].getValNo(); | ||||
| 7339 | SDValue Arg = OutVals[ValNo]; | ||||
| 7340 | ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; | ||||
| 7341 | |||||
| 7342 | if (Flags.isByVal()) { | ||||
| 7343 | const unsigned ByValSize = Flags.getByValSize(); | ||||
| 7344 | |||||
| 7345 | // Nothing to do for zero-sized ByVals on the caller side. | ||||
| 7346 | if (!ByValSize) { | ||||
| 7347 | ++I; | ||||
| 7348 | continue; | ||||
| 7349 | } | ||||
| 7350 | |||||
| 7351 | auto GetLoad = [&](EVT VT, unsigned LoadOffset) { | ||||
| 7352 | return DAG.getExtLoad( | ||||
| 7353 | ISD::ZEXTLOAD, dl, PtrVT, Chain, | ||||
| 7354 | (LoadOffset != 0) | ||||
| 7355 | ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) | ||||
| 7356 | : Arg, | ||||
| 7357 | MachinePointerInfo(), VT); | ||||
| 7358 | }; | ||||
| 7359 | |||||
| 7360 | unsigned LoadOffset = 0; | ||||
| 7361 | |||||
| 7362 | // Initialize registers, which are fully occupied by the by-val argument. | ||||
| 7363 | while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { | ||||
| 7364 | SDValue Load = GetLoad(PtrVT, LoadOffset); | ||||
| 7365 | MemOpChains.push_back(Load.getValue(1)); | ||||
| 7366 | LoadOffset += PtrByteSize; | ||||
| 7367 | const CCValAssign &ByValVA = ArgLocs[I++]; | ||||
| 7368 | assert(ByValVA.getValNo() == ValNo &&(static_cast <bool> (ByValVA.getValNo() == ValNo && "Unexpected location for pass-by-value argument.") ? void (0 ) : __assert_fail ("ByValVA.getValNo() == ValNo && \"Unexpected location for pass-by-value argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7369, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7369 | "Unexpected location for pass-by-value argument.")(static_cast <bool> (ByValVA.getValNo() == ValNo && "Unexpected location for pass-by-value argument.") ? void (0 ) : __assert_fail ("ByValVA.getValNo() == ValNo && \"Unexpected location for pass-by-value argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7369, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7370 | RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); | ||||
| 7371 | } | ||||
| 7372 | |||||
| 7373 | if (LoadOffset == ByValSize) | ||||
| 7374 | continue; | ||||
| 7375 | |||||
| 7376 | // There must be one more loc to handle the remainder. | ||||
| 7377 | assert(ArgLocs[I].getValNo() == ValNo &&(static_cast <bool> (ArgLocs[I].getValNo() == ValNo && "Expected additional location for by-value argument.") ? void (0) : __assert_fail ("ArgLocs[I].getValNo() == ValNo && \"Expected additional location for by-value argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7378, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7378 | "Expected additional location for by-value argument.")(static_cast <bool> (ArgLocs[I].getValNo() == ValNo && "Expected additional location for by-value argument.") ? void (0) : __assert_fail ("ArgLocs[I].getValNo() == ValNo && \"Expected additional location for by-value argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7378, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7379 | |||||
| 7380 | if (ArgLocs[I].isMemLoc()) { | ||||
| 7381 | assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.")(static_cast <bool> (LoadOffset < ByValSize && "Unexpected memloc for by-val arg.") ? void (0) : __assert_fail ("LoadOffset < ByValSize && \"Unexpected memloc for by-val arg.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7381, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7382 | const CCValAssign &ByValVA = ArgLocs[I++]; | ||||
| 7383 | ISD::ArgFlagsTy MemcpyFlags = Flags; | ||||
| 7384 | // Only memcpy the bytes that don't pass in register. | ||||
| 7385 | MemcpyFlags.setByValSize(ByValSize - LoadOffset); | ||||
| 7386 | Chain = CallSeqStart = createMemcpyOutsideCallSeq( | ||||
| 7387 | (LoadOffset != 0) | ||||
| 7388 | ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) | ||||
| 7389 | : Arg, | ||||
| 7390 | DAG.getObjectPtrOffset(dl, StackPtr, | ||||
| 7391 | TypeSize::Fixed(ByValVA.getLocMemOffset())), | ||||
| 7392 | CallSeqStart, MemcpyFlags, DAG, dl); | ||||
| 7393 | continue; | ||||
| 7394 | } | ||||
| 7395 | |||||
| 7396 | // Initialize the final register residue. | ||||
| 7397 | // Any residue that occupies the final by-val arg register must be | ||||
| 7398 | // left-justified on AIX. Loads must be a power-of-2 size and cannot be | ||||
| 7399 | // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, | ||||
| 7400 | // 2 and 1 byte loads. | ||||
| 7401 | const unsigned ResidueBytes = ByValSize % PtrByteSize; | ||||
| 7402 | assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&(static_cast <bool> (ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && "Unexpected register residue for by-value argument." ) ? void (0) : __assert_fail ("ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && \"Unexpected register residue for by-value argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7403, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7403 | "Unexpected register residue for by-value argument.")(static_cast <bool> (ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && "Unexpected register residue for by-value argument." ) ? void (0) : __assert_fail ("ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && \"Unexpected register residue for by-value argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7403, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7404 | SDValue ResidueVal; | ||||
| 7405 | for (unsigned Bytes = 0; Bytes != ResidueBytes;) { | ||||
| 7406 | const unsigned N = llvm::bit_floor(ResidueBytes - Bytes); | ||||
| 7407 | const MVT VT = | ||||
| 7408 | N == 1 ? MVT::i8 | ||||
| 7409 | : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); | ||||
| 7410 | SDValue Load = GetLoad(VT, LoadOffset); | ||||
| 7411 | MemOpChains.push_back(Load.getValue(1)); | ||||
| 7412 | LoadOffset += N; | ||||
| 7413 | Bytes += N; | ||||
| 7414 | |||||
| 7415 | // By-val arguments are passed left-justfied in register. | ||||
| 7416 | // Every load here needs to be shifted, otherwise a full register load | ||||
| 7417 | // should have been used. | ||||
| 7418 | assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&(static_cast <bool> (PtrVT.getSimpleVT().getSizeInBits( ) > (Bytes * 8) && "Unexpected load emitted during handling of pass-by-value " "argument.") ? void (0) : __assert_fail ("PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && \"Unexpected load emitted during handling of pass-by-value \" \"argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7420, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7419 | "Unexpected load emitted during handling of pass-by-value "(static_cast <bool> (PtrVT.getSimpleVT().getSizeInBits( ) > (Bytes * 8) && "Unexpected load emitted during handling of pass-by-value " "argument.") ? void (0) : __assert_fail ("PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && \"Unexpected load emitted during handling of pass-by-value \" \"argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7420, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7420 | "argument.")(static_cast <bool> (PtrVT.getSimpleVT().getSizeInBits( ) > (Bytes * 8) && "Unexpected load emitted during handling of pass-by-value " "argument.") ? void (0) : __assert_fail ("PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && \"Unexpected load emitted during handling of pass-by-value \" \"argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7420, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7421 | unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); | ||||
| 7422 | EVT ShiftAmountTy = | ||||
| 7423 | getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); | ||||
| 7424 | SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); | ||||
| 7425 | SDValue ShiftedLoad = | ||||
| 7426 | DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); | ||||
| 7427 | ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, | ||||
| 7428 | ShiftedLoad) | ||||
| 7429 | : ShiftedLoad; | ||||
| 7430 | } | ||||
| 7431 | |||||
| 7432 | const CCValAssign &ByValVA = ArgLocs[I++]; | ||||
| 7433 | RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); | ||||
| 7434 | continue; | ||||
| 7435 | } | ||||
| 7436 | |||||
| 7437 | CCValAssign &VA = ArgLocs[I++]; | ||||
| 7438 | const MVT LocVT = VA.getLocVT(); | ||||
| 7439 | const MVT ValVT = VA.getValVT(); | ||||
| 7440 | |||||
| 7441 | switch (VA.getLocInfo()) { | ||||
| 7442 | default: | ||||
| 7443 | report_fatal_error("Unexpected argument extension type."); | ||||
| 7444 | case CCValAssign::Full: | ||||
| 7445 | break; | ||||
| 7446 | case CCValAssign::ZExt: | ||||
| 7447 | Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); | ||||
| 7448 | break; | ||||
| 7449 | case CCValAssign::SExt: | ||||
| 7450 | Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); | ||||
| 7451 | break; | ||||
| 7452 | } | ||||
| 7453 | |||||
| 7454 | if (VA.isRegLoc() && !VA.needsCustom()) { | ||||
| 7455 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | ||||
| 7456 | continue; | ||||
| 7457 | } | ||||
| 7458 | |||||
| 7459 | // Vector arguments passed to VarArg functions need custom handling when | ||||
| 7460 | // they are passed (at least partially) in GPRs. | ||||
| 7461 | if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { | ||||
| 7462 | assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.")(static_cast <bool> (CFlags.IsVarArg && "Custom MemLocs only used for Vector args." ) ? void (0) : __assert_fail ("CFlags.IsVarArg && \"Custom MemLocs only used for Vector args.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7462, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7463 | // Store value to its stack slot. | ||||
| 7464 | SDValue PtrOff = | ||||
| 7465 | DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); | ||||
| 7466 | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); | ||||
| 7467 | SDValue Store = | ||||
| 7468 | DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); | ||||
| 7469 | MemOpChains.push_back(Store); | ||||
| 7470 | const unsigned OriginalValNo = VA.getValNo(); | ||||
| 7471 | // Then load the GPRs from the stack | ||||
| 7472 | unsigned LoadOffset = 0; | ||||
| 7473 | auto HandleCustomVecRegLoc = [&]() { | ||||
| 7474 | assert(I != E && "Unexpected end of CCvalAssigns.")(static_cast <bool> (I != E && "Unexpected end of CCvalAssigns." ) ? void (0) : __assert_fail ("I != E && \"Unexpected end of CCvalAssigns.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7474, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7475 | assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&(static_cast <bool> (ArgLocs[I].isRegLoc() && ArgLocs [I].needsCustom() && "Expected custom RegLoc.") ? void (0) : __assert_fail ("ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && \"Expected custom RegLoc.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7476, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7476 | "Expected custom RegLoc.")(static_cast <bool> (ArgLocs[I].isRegLoc() && ArgLocs [I].needsCustom() && "Expected custom RegLoc.") ? void (0) : __assert_fail ("ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && \"Expected custom RegLoc.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7476, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7477 | CCValAssign RegVA = ArgLocs[I++]; | ||||
| 7478 | assert(RegVA.getValNo() == OriginalValNo &&(static_cast <bool> (RegVA.getValNo() == OriginalValNo && "Custom MemLoc ValNo and custom RegLoc ValNo must match.") ? void (0) : __assert_fail ("RegVA.getValNo() == OriginalValNo && \"Custom MemLoc ValNo and custom RegLoc ValNo must match.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7479, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7479 | "Custom MemLoc ValNo and custom RegLoc ValNo must match.")(static_cast <bool> (RegVA.getValNo() == OriginalValNo && "Custom MemLoc ValNo and custom RegLoc ValNo must match.") ? void (0) : __assert_fail ("RegVA.getValNo() == OriginalValNo && \"Custom MemLoc ValNo and custom RegLoc ValNo must match.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7479, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7480 | SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, | ||||
| 7481 | DAG.getConstant(LoadOffset, dl, PtrVT)); | ||||
| 7482 | SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); | ||||
| 7483 | MemOpChains.push_back(Load.getValue(1)); | ||||
| 7484 | RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); | ||||
| 7485 | LoadOffset += PtrByteSize; | ||||
| 7486 | }; | ||||
| 7487 | |||||
| 7488 | // In 64-bit there will be exactly 2 custom RegLocs that follow, and in | ||||
| 7489 | // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and | ||||
| 7490 | // R10. | ||||
| 7491 | HandleCustomVecRegLoc(); | ||||
| 7492 | HandleCustomVecRegLoc(); | ||||
| 7493 | |||||
| 7494 | if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && | ||||
| 7495 | ArgLocs[I].getValNo() == OriginalValNo) { | ||||
| 7496 | assert(!IsPPC64 &&(static_cast <bool> (!IsPPC64 && "Only 2 custom RegLocs expected for 64-bit codegen." ) ? void (0) : __assert_fail ("!IsPPC64 && \"Only 2 custom RegLocs expected for 64-bit codegen.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7497, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7497 | "Only 2 custom RegLocs expected for 64-bit codegen.")(static_cast <bool> (!IsPPC64 && "Only 2 custom RegLocs expected for 64-bit codegen." ) ? void (0) : __assert_fail ("!IsPPC64 && \"Only 2 custom RegLocs expected for 64-bit codegen.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7497, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7498 | HandleCustomVecRegLoc(); | ||||
| 7499 | HandleCustomVecRegLoc(); | ||||
| 7500 | } | ||||
| 7501 | |||||
| 7502 | continue; | ||||
| 7503 | } | ||||
| 7504 | |||||
| 7505 | if (VA.isMemLoc()) { | ||||
| 7506 | SDValue PtrOff = | ||||
| 7507 | DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); | ||||
| 7508 | PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); | ||||
| 7509 | MemOpChains.push_back( | ||||
| 7510 | DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); | ||||
| 7511 | |||||
| 7512 | continue; | ||||
| 7513 | } | ||||
| 7514 | |||||
| 7515 | if (!ValVT.isFloatingPoint()) | ||||
| 7516 | report_fatal_error( | ||||
| 7517 | "Unexpected register handling for calling convention."); | ||||
| 7518 | |||||
| 7519 | // Custom handling is used for GPR initializations for vararg float | ||||
| 7520 | // arguments. | ||||
| 7521 | assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&(static_cast <bool> (VA.isRegLoc() && VA.needsCustom () && CFlags.IsVarArg && LocVT.isInteger() && "Custom register handling only expected for VarArg.") ? void (0) : __assert_fail ("VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && LocVT.isInteger() && \"Custom register handling only expected for VarArg.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7523, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7522 | LocVT.isInteger() &&(static_cast <bool> (VA.isRegLoc() && VA.needsCustom () && CFlags.IsVarArg && LocVT.isInteger() && "Custom register handling only expected for VarArg.") ? void (0) : __assert_fail ("VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && LocVT.isInteger() && \"Custom register handling only expected for VarArg.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7523, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7523 | "Custom register handling only expected for VarArg.")(static_cast <bool> (VA.isRegLoc() && VA.needsCustom () && CFlags.IsVarArg && LocVT.isInteger() && "Custom register handling only expected for VarArg.") ? void (0) : __assert_fail ("VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && LocVT.isInteger() && \"Custom register handling only expected for VarArg.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7523, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7524 | |||||
| 7525 | SDValue ArgAsInt = | ||||
| 7526 | DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); | ||||
| 7527 | |||||
| 7528 | if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) | ||||
| 7529 | // f32 in 32-bit GPR | ||||
| 7530 | // f64 in 64-bit GPR | ||||
| 7531 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); | ||||
| 7532 | else if (Arg.getValueType().getFixedSizeInBits() < | ||||
| 7533 | LocVT.getFixedSizeInBits()) | ||||
| 7534 | // f32 in 64-bit GPR. | ||||
| 7535 | RegsToPass.push_back(std::make_pair( | ||||
| 7536 | VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); | ||||
| 7537 | else { | ||||
| 7538 | // f64 in two 32-bit GPRs | ||||
| 7539 | // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. | ||||
| 7540 | assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&(static_cast <bool> (Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && "Unexpected custom register for argument!" ) ? void (0) : __assert_fail ("Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && \"Unexpected custom register for argument!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7541, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7541 | "Unexpected custom register for argument!")(static_cast <bool> (Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && "Unexpected custom register for argument!" ) ? void (0) : __assert_fail ("Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && \"Unexpected custom register for argument!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7541, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7542 | CCValAssign &GPR1 = VA; | ||||
| 7543 | SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, | ||||
| 7544 | DAG.getConstant(32, dl, MVT::i8)); | ||||
| 7545 | RegsToPass.push_back(std::make_pair( | ||||
| 7546 | GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); | ||||
| 7547 | |||||
| 7548 | if (I != E) { | ||||
| 7549 | // If only 1 GPR was available, there will only be one custom GPR and | ||||
| 7550 | // the argument will also pass in memory. | ||||
| 7551 | CCValAssign &PeekArg = ArgLocs[I]; | ||||
| 7552 | if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { | ||||
| 7553 | assert(PeekArg.needsCustom() && "A second custom GPR is expected.")(static_cast <bool> (PeekArg.needsCustom() && "A second custom GPR is expected." ) ? void (0) : __assert_fail ("PeekArg.needsCustom() && \"A second custom GPR is expected.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7553, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7554 | CCValAssign &GPR2 = ArgLocs[I++]; | ||||
| 7555 | RegsToPass.push_back(std::make_pair( | ||||
| 7556 | GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); | ||||
| 7557 | } | ||||
| 7558 | } | ||||
| 7559 | } | ||||
| 7560 | } | ||||
| 7561 | |||||
| 7562 | if (!MemOpChains.empty()) | ||||
| 7563 | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); | ||||
| 7564 | |||||
| 7565 | // For indirect calls, we need to save the TOC base to the stack for | ||||
| 7566 | // restoration after the call. | ||||
| 7567 | if (CFlags.IsIndirect) { | ||||
| 7568 | assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.")(static_cast <bool> (!CFlags.IsTailCall && "Indirect tail-calls not supported." ) ? void (0) : __assert_fail ("!CFlags.IsTailCall && \"Indirect tail-calls not supported.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7568, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7569 | const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); | ||||
| 7570 | const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); | ||||
| 7571 | const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; | ||||
| 7572 | const unsigned TOCSaveOffset = | ||||
| 7573 | Subtarget.getFrameLowering()->getTOCSaveOffset(); | ||||
| 7574 | |||||
| 7575 | setUsesTOCBasePtr(DAG); | ||||
| 7576 | SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); | ||||
| 7577 | SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); | ||||
| 7578 | SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); | ||||
| 7579 | SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); | ||||
| 7580 | Chain = DAG.getStore( | ||||
| 7581 | Val.getValue(1), dl, Val, AddPtr, | ||||
| 7582 | MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); | ||||
| 7583 | } | ||||
| 7584 | |||||
| 7585 | // Build a sequence of copy-to-reg nodes chained together with token chain | ||||
| 7586 | // and flag operands which copy the outgoing args into the appropriate regs. | ||||
| 7587 | SDValue InGlue; | ||||
| 7588 | for (auto Reg : RegsToPass) { | ||||
| 7589 | Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InGlue); | ||||
| 7590 | InGlue = Chain.getValue(1); | ||||
| 7591 | } | ||||
| 7592 | |||||
| 7593 | const int SPDiff = 0; | ||||
| 7594 | return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, | ||||
| 7595 | Callee, SPDiff, NumBytes, Ins, InVals, CB); | ||||
| 7596 | } | ||||
| 7597 | |||||
| 7598 | bool | ||||
| 7599 | PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, | ||||
| 7600 | MachineFunction &MF, bool isVarArg, | ||||
| 7601 | const SmallVectorImpl<ISD::OutputArg> &Outs, | ||||
| 7602 | LLVMContext &Context) const { | ||||
| 7603 | SmallVector<CCValAssign, 16> RVLocs; | ||||
| 7604 | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); | ||||
| 7605 | return CCInfo.CheckReturn( | ||||
| 7606 | Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) | ||||
| 7607 | ? RetCC_PPC_Cold | ||||
| 7608 | : RetCC_PPC); | ||||
| 7609 | } | ||||
| 7610 | |||||
| 7611 | SDValue | ||||
| 7612 | PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | ||||
| 7613 | bool isVarArg, | ||||
| 7614 | const SmallVectorImpl<ISD::OutputArg> &Outs, | ||||
| 7615 | const SmallVectorImpl<SDValue> &OutVals, | ||||
| 7616 | const SDLoc &dl, SelectionDAG &DAG) const { | ||||
| 7617 | SmallVector<CCValAssign, 16> RVLocs; | ||||
| 7618 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | ||||
| 7619 | *DAG.getContext()); | ||||
| 7620 | CCInfo.AnalyzeReturn(Outs, | ||||
| 7621 | (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) | ||||
| 7622 | ? RetCC_PPC_Cold | ||||
| 7623 | : RetCC_PPC); | ||||
| 7624 | |||||
| 7625 | SDValue Glue; | ||||
| 7626 | SmallVector<SDValue, 4> RetOps(1, Chain); | ||||
| 7627 | |||||
| 7628 | // Copy the result values into the output registers. | ||||
| 7629 | for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { | ||||
| 7630 | CCValAssign &VA = RVLocs[i]; | ||||
| 7631 | assert(VA.isRegLoc() && "Can only return in registers!")(static_cast <bool> (VA.isRegLoc() && "Can only return in registers!" ) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7631, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7632 | |||||
| 7633 | SDValue Arg = OutVals[RealResIdx]; | ||||
| 7634 | |||||
| 7635 | switch (VA.getLocInfo()) { | ||||
| 7636 | default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 7636); | ||||
| 7637 | case CCValAssign::Full: break; | ||||
| 7638 | case CCValAssign::AExt: | ||||
| 7639 | Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); | ||||
| 7640 | break; | ||||
| 7641 | case CCValAssign::ZExt: | ||||
| 7642 | Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); | ||||
| 7643 | break; | ||||
| 7644 | case CCValAssign::SExt: | ||||
| 7645 | Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); | ||||
| 7646 | break; | ||||
| 7647 | } | ||||
| 7648 | if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { | ||||
| 7649 | bool isLittleEndian = Subtarget.isLittleEndian(); | ||||
| 7650 | // Legalize ret f64 -> ret 2 x i32. | ||||
| 7651 | SDValue SVal = | ||||
| 7652 | DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, | ||||
| 7653 | DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); | ||||
| 7654 | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Glue); | ||||
| 7655 | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | ||||
| 7656 | SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, | ||||
| 7657 | DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); | ||||
| 7658 | Glue = Chain.getValue(1); | ||||
| 7659 | VA = RVLocs[++i]; // skip ahead to next loc | ||||
| 7660 | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Glue); | ||||
| 7661 | } else | ||||
| 7662 | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Glue); | ||||
| 7663 | Glue = Chain.getValue(1); | ||||
| 7664 | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | ||||
| 7665 | } | ||||
| 7666 | |||||
| 7667 | RetOps[0] = Chain; // Update chain. | ||||
| 7668 | |||||
| 7669 | // Add the glue if we have it. | ||||
| 7670 | if (Glue.getNode()) | ||||
| 7671 | RetOps.push_back(Glue); | ||||
| 7672 | |||||
| 7673 | return DAG.getNode(PPCISD::RET_GLUE, dl, MVT::Other, RetOps); | ||||
| 7674 | } | ||||
| 7675 | |||||
| 7676 | SDValue | ||||
| 7677 | PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, | ||||
| 7678 | SelectionDAG &DAG) const { | ||||
| 7679 | SDLoc dl(Op); | ||||
| 7680 | |||||
| 7681 | // Get the correct type for integers. | ||||
| 7682 | EVT IntVT = Op.getValueType(); | ||||
| 7683 | |||||
| 7684 | // Get the inputs. | ||||
| 7685 | SDValue Chain = Op.getOperand(0); | ||||
| 7686 | SDValue FPSIdx = getFramePointerFrameIndex(DAG); | ||||
| 7687 | // Build a DYNAREAOFFSET node. | ||||
| 7688 | SDValue Ops[2] = {Chain, FPSIdx}; | ||||
| 7689 | SDVTList VTs = DAG.getVTList(IntVT); | ||||
| 7690 | return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); | ||||
| 7691 | } | ||||
| 7692 | |||||
| 7693 | SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, | ||||
| 7694 | SelectionDAG &DAG) const { | ||||
| 7695 | // When we pop the dynamic allocation we need to restore the SP link. | ||||
| 7696 | SDLoc dl(Op); | ||||
| 7697 | |||||
| 7698 | // Get the correct type for pointers. | ||||
| 7699 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 7700 | |||||
| 7701 | // Construct the stack pointer operand. | ||||
| 7702 | bool isPPC64 = Subtarget.isPPC64(); | ||||
| 7703 | unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; | ||||
| 7704 | SDValue StackPtr = DAG.getRegister(SP, PtrVT); | ||||
| 7705 | |||||
| 7706 | // Get the operands for the STACKRESTORE. | ||||
| 7707 | SDValue Chain = Op.getOperand(0); | ||||
| 7708 | SDValue SaveSP = Op.getOperand(1); | ||||
| 7709 | |||||
| 7710 | // Load the old link SP. | ||||
| 7711 | SDValue LoadLinkSP = | ||||
| 7712 | DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); | ||||
| 7713 | |||||
| 7714 | // Restore the stack pointer. | ||||
| 7715 | Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); | ||||
| 7716 | |||||
| 7717 | // Store the old link SP. | ||||
| 7718 | return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); | ||||
| 7719 | } | ||||
| 7720 | |||||
| 7721 | SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { | ||||
| 7722 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 7723 | bool isPPC64 = Subtarget.isPPC64(); | ||||
| 7724 | EVT PtrVT = getPointerTy(MF.getDataLayout()); | ||||
| 7725 | |||||
| 7726 | // Get current frame pointer save index. The users of this index will be | ||||
| 7727 | // primarily DYNALLOC instructions. | ||||
| 7728 | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); | ||||
| 7729 | int RASI = FI->getReturnAddrSaveIndex(); | ||||
| 7730 | |||||
| 7731 | // If the frame pointer save index hasn't been defined yet. | ||||
| 7732 | if (!RASI) { | ||||
| 7733 | // Find out what the fix offset of the frame pointer save area. | ||||
| 7734 | int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); | ||||
| 7735 | // Allocate the frame index for frame pointer save area. | ||||
| 7736 | RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); | ||||
| 7737 | // Save the result. | ||||
| 7738 | FI->setReturnAddrSaveIndex(RASI); | ||||
| 7739 | } | ||||
| 7740 | return DAG.getFrameIndex(RASI, PtrVT); | ||||
| 7741 | } | ||||
| 7742 | |||||
| 7743 | SDValue | ||||
| 7744 | PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { | ||||
| 7745 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 7746 | bool isPPC64 = Subtarget.isPPC64(); | ||||
| 7747 | EVT PtrVT = getPointerTy(MF.getDataLayout()); | ||||
| 7748 | |||||
| 7749 | // Get current frame pointer save index. The users of this index will be | ||||
| 7750 | // primarily DYNALLOC instructions. | ||||
| 7751 | PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); | ||||
| 7752 | int FPSI = FI->getFramePointerSaveIndex(); | ||||
| 7753 | |||||
| 7754 | // If the frame pointer save index hasn't been defined yet. | ||||
| 7755 | if (!FPSI) { | ||||
| 7756 | // Find out what the fix offset of the frame pointer save area. | ||||
| 7757 | int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); | ||||
| 7758 | // Allocate the frame index for frame pointer save area. | ||||
| 7759 | FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); | ||||
| 7760 | // Save the result. | ||||
| 7761 | FI->setFramePointerSaveIndex(FPSI); | ||||
| 7762 | } | ||||
| 7763 | return DAG.getFrameIndex(FPSI, PtrVT); | ||||
| 7764 | } | ||||
| 7765 | |||||
| 7766 | SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | ||||
| 7767 | SelectionDAG &DAG) const { | ||||
| 7768 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 7769 | // Get the inputs. | ||||
| 7770 | SDValue Chain = Op.getOperand(0); | ||||
| 7771 | SDValue Size = Op.getOperand(1); | ||||
| 7772 | SDLoc dl(Op); | ||||
| 7773 | |||||
| 7774 | // Get the correct type for pointers. | ||||
| 7775 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 7776 | // Negate the size. | ||||
| 7777 | SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, | ||||
| 7778 | DAG.getConstant(0, dl, PtrVT), Size); | ||||
| 7779 | // Construct a node for the frame pointer save index. | ||||
| 7780 | SDValue FPSIdx = getFramePointerFrameIndex(DAG); | ||||
| 7781 | SDValue Ops[3] = { Chain, NegSize, FPSIdx }; | ||||
| 7782 | SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); | ||||
| 7783 | if (hasInlineStackProbe(MF)) | ||||
| 7784 | return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); | ||||
| 7785 | return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); | ||||
| 7786 | } | ||||
| 7787 | |||||
| 7788 | SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, | ||||
| 7789 | SelectionDAG &DAG) const { | ||||
| 7790 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 7791 | |||||
| 7792 | bool isPPC64 = Subtarget.isPPC64(); | ||||
| 7793 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 7794 | |||||
| 7795 | int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); | ||||
| 7796 | return DAG.getFrameIndex(FI, PtrVT); | ||||
| 7797 | } | ||||
| 7798 | |||||
| 7799 | SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, | ||||
| 7800 | SelectionDAG &DAG) const { | ||||
| 7801 | SDLoc DL(Op); | ||||
| 7802 | return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, | ||||
| 7803 | DAG.getVTList(MVT::i32, MVT::Other), | ||||
| 7804 | Op.getOperand(0), Op.getOperand(1)); | ||||
| 7805 | } | ||||
| 7806 | |||||
| 7807 | SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, | ||||
| 7808 | SelectionDAG &DAG) const { | ||||
| 7809 | SDLoc DL(Op); | ||||
| 7810 | return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, | ||||
| 7811 | Op.getOperand(0), Op.getOperand(1)); | ||||
| 7812 | } | ||||
| 7813 | |||||
| 7814 | SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { | ||||
| 7815 | if (Op.getValueType().isVector()) | ||||
| 7816 | return LowerVectorLoad(Op, DAG); | ||||
| 7817 | |||||
| 7818 | assert(Op.getValueType() == MVT::i1 &&(static_cast <bool> (Op.getValueType() == MVT::i1 && "Custom lowering only for i1 loads") ? void (0) : __assert_fail ("Op.getValueType() == MVT::i1 && \"Custom lowering only for i1 loads\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7819, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7819 | "Custom lowering only for i1 loads")(static_cast <bool> (Op.getValueType() == MVT::i1 && "Custom lowering only for i1 loads") ? void (0) : __assert_fail ("Op.getValueType() == MVT::i1 && \"Custom lowering only for i1 loads\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7819, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7820 | |||||
| 7821 | // First, load 8 bits into 32 bits, then truncate to 1 bit. | ||||
| 7822 | |||||
| 7823 | SDLoc dl(Op); | ||||
| 7824 | LoadSDNode *LD = cast<LoadSDNode>(Op); | ||||
| 7825 | |||||
| 7826 | SDValue Chain = LD->getChain(); | ||||
| 7827 | SDValue BasePtr = LD->getBasePtr(); | ||||
| 7828 | MachineMemOperand *MMO = LD->getMemOperand(); | ||||
| 7829 | |||||
| 7830 | SDValue NewLD = | ||||
| 7831 | DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, | ||||
| 7832 | BasePtr, MVT::i8, MMO); | ||||
| 7833 | SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); | ||||
| 7834 | |||||
| 7835 | SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; | ||||
| 7836 | return DAG.getMergeValues(Ops, dl); | ||||
| 7837 | } | ||||
| 7838 | |||||
| 7839 | SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { | ||||
| 7840 | if (Op.getOperand(1).getValueType().isVector()) | ||||
| 7841 | return LowerVectorStore(Op, DAG); | ||||
| 7842 | |||||
| 7843 | assert(Op.getOperand(1).getValueType() == MVT::i1 &&(static_cast <bool> (Op.getOperand(1).getValueType() == MVT::i1 && "Custom lowering only for i1 stores") ? void (0) : __assert_fail ("Op.getOperand(1).getValueType() == MVT::i1 && \"Custom lowering only for i1 stores\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7844, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7844 | "Custom lowering only for i1 stores")(static_cast <bool> (Op.getOperand(1).getValueType() == MVT::i1 && "Custom lowering only for i1 stores") ? void (0) : __assert_fail ("Op.getOperand(1).getValueType() == MVT::i1 && \"Custom lowering only for i1 stores\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7844, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7845 | |||||
| 7846 | // First, zero extend to 32 bits, then use a truncating store to 8 bits. | ||||
| 7847 | |||||
| 7848 | SDLoc dl(Op); | ||||
| 7849 | StoreSDNode *ST = cast<StoreSDNode>(Op); | ||||
| 7850 | |||||
| 7851 | SDValue Chain = ST->getChain(); | ||||
| 7852 | SDValue BasePtr = ST->getBasePtr(); | ||||
| 7853 | SDValue Value = ST->getValue(); | ||||
| 7854 | MachineMemOperand *MMO = ST->getMemOperand(); | ||||
| 7855 | |||||
| 7856 | Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), | ||||
| 7857 | Value); | ||||
| 7858 | return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); | ||||
| 7859 | } | ||||
| 7860 | |||||
| 7861 | // FIXME: Remove this once the ANDI glue bug is fixed: | ||||
| 7862 | SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { | ||||
| 7863 | assert(Op.getValueType() == MVT::i1 &&(static_cast <bool> (Op.getValueType() == MVT::i1 && "Custom lowering only for i1 results") ? void (0) : __assert_fail ("Op.getValueType() == MVT::i1 && \"Custom lowering only for i1 results\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7864, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7864 | "Custom lowering only for i1 results")(static_cast <bool> (Op.getValueType() == MVT::i1 && "Custom lowering only for i1 results") ? void (0) : __assert_fail ("Op.getValueType() == MVT::i1 && \"Custom lowering only for i1 results\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7864, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7865 | |||||
| 7866 | SDLoc DL(Op); | ||||
| 7867 | return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); | ||||
| 7868 | } | ||||
| 7869 | |||||
| 7870 | SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, | ||||
| 7871 | SelectionDAG &DAG) const { | ||||
| 7872 | |||||
| 7873 | // Implements a vector truncate that fits in a vector register as a shuffle. | ||||
| 7874 | // We want to legalize vector truncates down to where the source fits in | ||||
| 7875 | // a vector register (and target is therefore smaller than vector register | ||||
| 7876 | // size). At that point legalization will try to custom lower the sub-legal | ||||
| 7877 | // result and get here - where we can contain the truncate as a single target | ||||
| 7878 | // operation. | ||||
| 7879 | |||||
| 7880 | // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: | ||||
| 7881 | // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> | ||||
| 7882 | // | ||||
| 7883 | // We will implement it for big-endian ordering as this (where x denotes | ||||
| 7884 | // undefined): | ||||
| 7885 | // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to | ||||
| 7886 | // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> | ||||
| 7887 | // | ||||
| 7888 | // The same operation in little-endian ordering will be: | ||||
| 7889 | // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to | ||||
| 7890 | // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> | ||||
| 7891 | |||||
| 7892 | EVT TrgVT = Op.getValueType(); | ||||
| 7893 | assert(TrgVT.isVector() && "Vector type expected.")(static_cast <bool> (TrgVT.isVector() && "Vector type expected." ) ? void (0) : __assert_fail ("TrgVT.isVector() && \"Vector type expected.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 7893, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7894 | unsigned TrgNumElts = TrgVT.getVectorNumElements(); | ||||
| 7895 | EVT EltVT = TrgVT.getVectorElementType(); | ||||
| 7896 | if (!isOperationCustom(Op.getOpcode(), TrgVT) || | ||||
| 7897 | TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || | ||||
| 7898 | !llvm::has_single_bit<uint32_t>(EltVT.getSizeInBits())) | ||||
| 7899 | return SDValue(); | ||||
| 7900 | |||||
| 7901 | SDValue N1 = Op.getOperand(0); | ||||
| 7902 | EVT SrcVT = N1.getValueType(); | ||||
| 7903 | unsigned SrcSize = SrcVT.getSizeInBits(); | ||||
| 7904 | if (SrcSize > 256 || !isPowerOf2_32(SrcVT.getVectorNumElements()) || | ||||
| 7905 | !llvm::has_single_bit<uint32_t>( | ||||
| 7906 | SrcVT.getVectorElementType().getSizeInBits())) | ||||
| 7907 | return SDValue(); | ||||
| 7908 | if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) | ||||
| 7909 | return SDValue(); | ||||
| 7910 | |||||
| 7911 | unsigned WideNumElts = 128 / EltVT.getSizeInBits(); | ||||
| 7912 | EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); | ||||
| 7913 | |||||
| 7914 | SDLoc DL(Op); | ||||
| 7915 | SDValue Op1, Op2; | ||||
| 7916 | if (SrcSize == 256) { | ||||
| 7917 | EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); | ||||
| 7918 | EVT SplitVT = | ||||
| 7919 | N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); | ||||
| 7920 | unsigned SplitNumElts = SplitVT.getVectorNumElements(); | ||||
| 7921 | Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, | ||||
| 7922 | DAG.getConstant(0, DL, VecIdxTy)); | ||||
| 7923 | Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, | ||||
| 7924 | DAG.getConstant(SplitNumElts, DL, VecIdxTy)); | ||||
| 7925 | } | ||||
| 7926 | else { | ||||
| 7927 | Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); | ||||
| 7928 | Op2 = DAG.getUNDEF(WideVT); | ||||
| 7929 | } | ||||
| 7930 | |||||
| 7931 | // First list the elements we want to keep. | ||||
| 7932 | unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); | ||||
| 7933 | SmallVector<int, 16> ShuffV; | ||||
| 7934 | if (Subtarget.isLittleEndian()) | ||||
| 7935 | for (unsigned i = 0; i < TrgNumElts; ++i) | ||||
| 7936 | ShuffV.push_back(i * SizeMult); | ||||
| 7937 | else | ||||
| 7938 | for (unsigned i = 1; i <= TrgNumElts; ++i) | ||||
| 7939 | ShuffV.push_back(i * SizeMult - 1); | ||||
| 7940 | |||||
| 7941 | // Populate the remaining elements with undefs. | ||||
| 7942 | for (unsigned i = TrgNumElts; i < WideNumElts; ++i) | ||||
| 7943 | // ShuffV.push_back(i + WideNumElts); | ||||
| 7944 | ShuffV.push_back(WideNumElts + 1); | ||||
| 7945 | |||||
| 7946 | Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); | ||||
| 7947 | Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); | ||||
| 7948 | return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); | ||||
| 7949 | } | ||||
| 7950 | |||||
| 7951 | /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when | ||||
| 7952 | /// possible. | ||||
| 7953 | SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { | ||||
| 7954 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); | ||||
| 7955 | EVT ResVT = Op.getValueType(); | ||||
| 7956 | EVT CmpVT = Op.getOperand(0).getValueType(); | ||||
| 7957 | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | ||||
| 7958 | SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); | ||||
| 7959 | SDLoc dl(Op); | ||||
| 7960 | |||||
| 7961 | // Without power9-vector, we don't have native instruction for f128 comparison. | ||||
| 7962 | // Following transformation to libcall is needed for setcc: | ||||
| 7963 | // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE | ||||
| 7964 | if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { | ||||
| 7965 | SDValue Z = DAG.getSetCC( | ||||
| 7966 | dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), | ||||
| 7967 | LHS, RHS, CC); | ||||
| 7968 | SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); | ||||
| 7969 | return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); | ||||
| 7970 | } | ||||
| 7971 | |||||
| 7972 | // Not FP, or using SPE? Not a fsel. | ||||
| 7973 | if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || | ||||
| 7974 | Subtarget.hasSPE()) | ||||
| 7975 | return Op; | ||||
| 7976 | |||||
| 7977 | SDNodeFlags Flags = Op.getNode()->getFlags(); | ||||
| 7978 | |||||
| 7979 | // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the | ||||
| 7980 | // presence of infinities. | ||||
| 7981 | if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { | ||||
| 7982 | switch (CC) { | ||||
| 7983 | default: | ||||
| 7984 | break; | ||||
| 7985 | case ISD::SETOGT: | ||||
| 7986 | case ISD::SETGT: | ||||
| 7987 | return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); | ||||
| 7988 | case ISD::SETOLT: | ||||
| 7989 | case ISD::SETLT: | ||||
| 7990 | return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); | ||||
| 7991 | } | ||||
| 7992 | } | ||||
| 7993 | |||||
| 7994 | // We might be able to do better than this under some circumstances, but in | ||||
| 7995 | // general, fsel-based lowering of select is a finite-math-only optimization. | ||||
| 7996 | // For more information, see section F.3 of the 2.06 ISA specification. | ||||
| 7997 | // With ISA 3.0 | ||||
| 7998 | if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || | ||||
| 7999 | (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) | ||||
| 8000 | return Op; | ||||
| 8001 | |||||
| 8002 | // If the RHS of the comparison is a 0.0, we don't need to do the | ||||
| 8003 | // subtraction at all. | ||||
| 8004 | SDValue Sel1; | ||||
| 8005 | if (isFloatingPointZero(RHS)) | ||||
| 8006 | switch (CC) { | ||||
| 8007 | default: break; // SETUO etc aren't handled by fsel. | ||||
| 8008 | case ISD::SETNE: | ||||
| 8009 | std::swap(TV, FV); | ||||
| 8010 | [[fallthrough]]; | ||||
| 8011 | case ISD::SETEQ: | ||||
| 8012 | if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits | ||||
| 8013 | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); | ||||
| 8014 | Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); | ||||
| 8015 | if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits | ||||
| 8016 | Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); | ||||
| 8017 | return DAG.getNode(PPCISD::FSEL, dl, ResVT, | ||||
| 8018 | DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); | ||||
| 8019 | case ISD::SETULT: | ||||
| 8020 | case ISD::SETLT: | ||||
| 8021 | std::swap(TV, FV); // fsel is natively setge, swap operands for setlt | ||||
| 8022 | [[fallthrough]]; | ||||
| 8023 | case ISD::SETOGE: | ||||
| 8024 | case ISD::SETGE: | ||||
| 8025 | if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits | ||||
| 8026 | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); | ||||
| 8027 | return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); | ||||
| 8028 | case ISD::SETUGT: | ||||
| 8029 | case ISD::SETGT: | ||||
| 8030 | std::swap(TV, FV); // fsel is natively setge, swap operands for setlt | ||||
| 8031 | [[fallthrough]]; | ||||
| 8032 | case ISD::SETOLE: | ||||
| 8033 | case ISD::SETLE: | ||||
| 8034 | if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits | ||||
| 8035 | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); | ||||
| 8036 | return DAG.getNode(PPCISD::FSEL, dl, ResVT, | ||||
| 8037 | DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); | ||||
| 8038 | } | ||||
| 8039 | |||||
| 8040 | SDValue Cmp; | ||||
| 8041 | switch (CC) { | ||||
| 8042 | default: break; // SETUO etc aren't handled by fsel. | ||||
| 8043 | case ISD::SETNE: | ||||
| 8044 | std::swap(TV, FV); | ||||
| 8045 | [[fallthrough]]; | ||||
| 8046 | case ISD::SETEQ: | ||||
| 8047 | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); | ||||
| 8048 | if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits | ||||
| 8049 | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | ||||
| 8050 | Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); | ||||
| 8051 | if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits | ||||
| 8052 | Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); | ||||
| 8053 | return DAG.getNode(PPCISD::FSEL, dl, ResVT, | ||||
| 8054 | DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); | ||||
| 8055 | case ISD::SETULT: | ||||
| 8056 | case ISD::SETLT: | ||||
| 8057 | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); | ||||
| 8058 | if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits | ||||
| 8059 | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | ||||
| 8060 | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); | ||||
| 8061 | case ISD::SETOGE: | ||||
| 8062 | case ISD::SETGE: | ||||
| 8063 | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); | ||||
| 8064 | if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits | ||||
| 8065 | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | ||||
| 8066 | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); | ||||
| 8067 | case ISD::SETUGT: | ||||
| 8068 | case ISD::SETGT: | ||||
| 8069 | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); | ||||
| 8070 | if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits | ||||
| 8071 | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | ||||
| 8072 | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); | ||||
| 8073 | case ISD::SETOLE: | ||||
| 8074 | case ISD::SETLE: | ||||
| 8075 | Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); | ||||
| 8076 | if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits | ||||
| 8077 | Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); | ||||
| 8078 | return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); | ||||
| 8079 | } | ||||
| 8080 | return Op; | ||||
| 8081 | } | ||||
| 8082 | |||||
| 8083 | static unsigned getPPCStrictOpcode(unsigned Opc) { | ||||
| 8084 | switch (Opc) { | ||||
| 8085 | default: | ||||
| 8086 | llvm_unreachable("No strict version of this opcode!")::llvm::llvm_unreachable_internal("No strict version of this opcode!" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8086); | ||||
| 8087 | case PPCISD::FCTIDZ: | ||||
| 8088 | return PPCISD::STRICT_FCTIDZ; | ||||
| 8089 | case PPCISD::FCTIWZ: | ||||
| 8090 | return PPCISD::STRICT_FCTIWZ; | ||||
| 8091 | case PPCISD::FCTIDUZ: | ||||
| 8092 | return PPCISD::STRICT_FCTIDUZ; | ||||
| 8093 | case PPCISD::FCTIWUZ: | ||||
| 8094 | return PPCISD::STRICT_FCTIWUZ; | ||||
| 8095 | case PPCISD::FCFID: | ||||
| 8096 | return PPCISD::STRICT_FCFID; | ||||
| 8097 | case PPCISD::FCFIDU: | ||||
| 8098 | return PPCISD::STRICT_FCFIDU; | ||||
| 8099 | case PPCISD::FCFIDS: | ||||
| 8100 | return PPCISD::STRICT_FCFIDS; | ||||
| 8101 | case PPCISD::FCFIDUS: | ||||
| 8102 | return PPCISD::STRICT_FCFIDUS; | ||||
| 8103 | } | ||||
| 8104 | } | ||||
| 8105 | |||||
| 8106 | static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, | ||||
| 8107 | const PPCSubtarget &Subtarget) { | ||||
| 8108 | SDLoc dl(Op); | ||||
| 8109 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 8110 | bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || | ||||
| 8111 | Op.getOpcode() == ISD::STRICT_FP_TO_SINT; | ||||
| 8112 | |||||
| 8113 | // TODO: Any other flags to propagate? | ||||
| 8114 | SDNodeFlags Flags; | ||||
| 8115 | Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); | ||||
| 8116 | |||||
| 8117 | // For strict nodes, source is the second operand. | ||||
| 8118 | SDValue Src = Op.getOperand(IsStrict ? 1 : 0); | ||||
| 8119 | SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); | ||||
| 8120 | assert(Src.getValueType().isFloatingPoint())(static_cast <bool> (Src.getValueType().isFloatingPoint ()) ? void (0) : __assert_fail ("Src.getValueType().isFloatingPoint()" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8120, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8121 | if (Src.getValueType() == MVT::f32) { | ||||
| 8122 | if (IsStrict) { | ||||
| 8123 | Src = | ||||
| 8124 | DAG.getNode(ISD::STRICT_FP_EXTEND, dl, | ||||
| 8125 | DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); | ||||
| 8126 | Chain = Src.getValue(1); | ||||
| 8127 | } else | ||||
| 8128 | Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); | ||||
| 8129 | } | ||||
| 8130 | SDValue Conv; | ||||
| 8131 | unsigned Opc = ISD::DELETED_NODE; | ||||
| 8132 | switch (Op.getSimpleValueType().SimpleTy) { | ||||
| 8133 | default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!")::llvm::llvm_unreachable_internal("Unhandled FP_TO_INT type in custom expander!" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8133); | ||||
| 8134 | case MVT::i32: | ||||
| 8135 | Opc = IsSigned ? PPCISD::FCTIWZ | ||||
| 8136 | : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); | ||||
| 8137 | break; | ||||
| 8138 | case MVT::i64: | ||||
| 8139 | assert((IsSigned || Subtarget.hasFPCVT()) &&(static_cast <bool> ((IsSigned || Subtarget.hasFPCVT()) && "i64 FP_TO_UINT is supported only with FPCVT") ? void (0) : __assert_fail ("(IsSigned || Subtarget.hasFPCVT()) && \"i64 FP_TO_UINT is supported only with FPCVT\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8140, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8140 | "i64 FP_TO_UINT is supported only with FPCVT")(static_cast <bool> ((IsSigned || Subtarget.hasFPCVT()) && "i64 FP_TO_UINT is supported only with FPCVT") ? void (0) : __assert_fail ("(IsSigned || Subtarget.hasFPCVT()) && \"i64 FP_TO_UINT is supported only with FPCVT\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8140, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8141 | Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; | ||||
| 8142 | } | ||||
| 8143 | if (IsStrict) { | ||||
| 8144 | Opc = getPPCStrictOpcode(Opc); | ||||
| 8145 | Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), | ||||
| 8146 | {Chain, Src}, Flags); | ||||
| 8147 | } else { | ||||
| 8148 | Conv = DAG.getNode(Opc, dl, MVT::f64, Src); | ||||
| 8149 | } | ||||
| 8150 | return Conv; | ||||
| 8151 | } | ||||
| 8152 | |||||
| 8153 | void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, | ||||
| 8154 | SelectionDAG &DAG, | ||||
| 8155 | const SDLoc &dl) const { | ||||
| 8156 | SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); | ||||
| 8157 | bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || | ||||
| 8158 | Op.getOpcode() == ISD::STRICT_FP_TO_SINT; | ||||
| 8159 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 8160 | |||||
| 8161 | // Convert the FP value to an int value through memory. | ||||
| 8162 | bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && | ||||
| 8163 | (IsSigned || Subtarget.hasFPCVT()); | ||||
| 8164 | SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); | ||||
| 8165 | int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); | ||||
| 8166 | MachinePointerInfo MPI = | ||||
| 8167 | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); | ||||
| 8168 | |||||
| 8169 | // Emit a store to the stack slot. | ||||
| 8170 | SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); | ||||
| 8171 | Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); | ||||
| 8172 | if (i32Stack) { | ||||
| 8173 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 8174 | Alignment = Align(4); | ||||
| 8175 | MachineMemOperand *MMO = | ||||
| 8176 | MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); | ||||
| 8177 | SDValue Ops[] = { Chain, Tmp, FIPtr }; | ||||
| 8178 | Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, | ||||
| 8179 | DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); | ||||
| 8180 | } else | ||||
| 8181 | Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); | ||||
| 8182 | |||||
| 8183 | // Result is a load from the stack slot. If loading 4 bytes, make sure to | ||||
| 8184 | // add in a bias on big endian. | ||||
| 8185 | if (Op.getValueType() == MVT::i32 && !i32Stack) { | ||||
| 8186 | FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, | ||||
| 8187 | DAG.getConstant(4, dl, FIPtr.getValueType())); | ||||
| 8188 | MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); | ||||
| 8189 | } | ||||
| 8190 | |||||
| 8191 | RLI.Chain = Chain; | ||||
| 8192 | RLI.Ptr = FIPtr; | ||||
| 8193 | RLI.MPI = MPI; | ||||
| 8194 | RLI.Alignment = Alignment; | ||||
| 8195 | } | ||||
| 8196 | |||||
| 8197 | /// Custom lowers floating point to integer conversions to use | ||||
| 8198 | /// the direct move instructions available in ISA 2.07 to avoid the | ||||
| 8199 | /// need for load/store combinations. | ||||
| 8200 | SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, | ||||
| 8201 | SelectionDAG &DAG, | ||||
| 8202 | const SDLoc &dl) const { | ||||
| 8203 | SDValue Conv = convertFPToInt(Op, DAG, Subtarget); | ||||
| 8204 | SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); | ||||
| 8205 | if (Op->isStrictFPOpcode()) | ||||
| 8206 | return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); | ||||
| 8207 | else | ||||
| 8208 | return Mov; | ||||
| 8209 | } | ||||
| 8210 | |||||
| 8211 | SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, | ||||
| 8212 | const SDLoc &dl) const { | ||||
| 8213 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 8214 | bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || | ||||
| 8215 | Op.getOpcode() == ISD::STRICT_FP_TO_SINT; | ||||
| 8216 | SDValue Src = Op.getOperand(IsStrict ? 1 : 0); | ||||
| 8217 | EVT SrcVT = Src.getValueType(); | ||||
| 8218 | EVT DstVT = Op.getValueType(); | ||||
| 8219 | |||||
| 8220 | // FP to INT conversions are legal for f128. | ||||
| 8221 | if (SrcVT == MVT::f128) | ||||
| 8222 | return Subtarget.hasP9Vector() ? Op : SDValue(); | ||||
| 8223 | |||||
| 8224 | // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on | ||||
| 8225 | // PPC (the libcall is not available). | ||||
| 8226 | if (SrcVT == MVT::ppcf128) { | ||||
| 8227 | if (DstVT == MVT::i32) { | ||||
| 8228 | // TODO: Conservatively pass only nofpexcept flag here. Need to check and | ||||
| 8229 | // set other fast-math flags to FP operations in both strict and | ||||
| 8230 | // non-strict cases. (FP_TO_SINT, FSUB) | ||||
| 8231 | SDNodeFlags Flags; | ||||
| 8232 | Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); | ||||
| 8233 | |||||
| 8234 | if (IsSigned) { | ||||
| 8235 | SDValue Lo, Hi; | ||||
| 8236 | std::tie(Lo, Hi) = DAG.SplitScalar(Src, dl, MVT::f64, MVT::f64); | ||||
| 8237 | |||||
| 8238 | // Add the two halves of the long double in round-to-zero mode, and use | ||||
| 8239 | // a smaller FP_TO_SINT. | ||||
| 8240 | if (IsStrict) { | ||||
| 8241 | SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, | ||||
| 8242 | DAG.getVTList(MVT::f64, MVT::Other), | ||||
| 8243 | {Op.getOperand(0), Lo, Hi}, Flags); | ||||
| 8244 | return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, | ||||
| 8245 | DAG.getVTList(MVT::i32, MVT::Other), | ||||
| 8246 | {Res.getValue(1), Res}, Flags); | ||||
| 8247 | } else { | ||||
| 8248 | SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); | ||||
| 8249 | return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); | ||||
| 8250 | } | ||||
| 8251 | } else { | ||||
| 8252 | const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; | ||||
| 8253 | APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); | ||||
| 8254 | SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); | ||||
| 8255 | SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); | ||||
| 8256 | if (IsStrict) { | ||||
| 8257 | // Sel = Src < 0x80000000 | ||||
| 8258 | // FltOfs = select Sel, 0.0, 0x80000000 | ||||
| 8259 | // IntOfs = select Sel, 0, 0x80000000 | ||||
| 8260 | // Result = fp_to_sint(Src - FltOfs) ^ IntOfs | ||||
| 8261 | SDValue Chain = Op.getOperand(0); | ||||
| 8262 | EVT SetCCVT = | ||||
| 8263 | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); | ||||
| 8264 | EVT DstSetCCVT = | ||||
| 8265 | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); | ||||
| 8266 | SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, | ||||
| 8267 | Chain, true); | ||||
| 8268 | Chain = Sel.getValue(1); | ||||
| 8269 | |||||
| 8270 | SDValue FltOfs = DAG.getSelect( | ||||
| 8271 | dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); | ||||
| 8272 | Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); | ||||
| 8273 | |||||
| 8274 | SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, | ||||
| 8275 | DAG.getVTList(SrcVT, MVT::Other), | ||||
| 8276 | {Chain, Src, FltOfs}, Flags); | ||||
| 8277 | Chain = Val.getValue(1); | ||||
| 8278 | SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, | ||||
| 8279 | DAG.getVTList(DstVT, MVT::Other), | ||||
| 8280 | {Chain, Val}, Flags); | ||||
| 8281 | Chain = SInt.getValue(1); | ||||
| 8282 | SDValue IntOfs = DAG.getSelect( | ||||
| 8283 | dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); | ||||
| 8284 | SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); | ||||
| 8285 | return DAG.getMergeValues({Result, Chain}, dl); | ||||
| 8286 | } else { | ||||
| 8287 | // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X | ||||
| 8288 | // FIXME: generated code sucks. | ||||
| 8289 | SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); | ||||
| 8290 | True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); | ||||
| 8291 | True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); | ||||
| 8292 | SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); | ||||
| 8293 | return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); | ||||
| 8294 | } | ||||
| 8295 | } | ||||
| 8296 | } | ||||
| 8297 | |||||
| 8298 | return SDValue(); | ||||
| 8299 | } | ||||
| 8300 | |||||
| 8301 | if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) | ||||
| 8302 | return LowerFP_TO_INTDirectMove(Op, DAG, dl); | ||||
| 8303 | |||||
| 8304 | ReuseLoadInfo RLI; | ||||
| 8305 | LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); | ||||
| 8306 | |||||
| 8307 | return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, | ||||
| 8308 | RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); | ||||
| 8309 | } | ||||
| 8310 | |||||
| 8311 | // We're trying to insert a regular store, S, and then a load, L. If the | ||||
| 8312 | // incoming value, O, is a load, we might just be able to have our load use the | ||||
| 8313 | // address used by O. However, we don't know if anything else will store to | ||||
| 8314 | // that address before we can load from it. To prevent this situation, we need | ||||
| 8315 | // to insert our load, L, into the chain as a peer of O. To do this, we give L | ||||
| 8316 | // the same chain operand as O, we create a token factor from the chain results | ||||
| 8317 | // of O and L, and we replace all uses of O's chain result with that token | ||||
| 8318 | // factor (see spliceIntoChain below for this last part). | ||||
| 8319 | bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, | ||||
| 8320 | ReuseLoadInfo &RLI, | ||||
| 8321 | SelectionDAG &DAG, | ||||
| 8322 | ISD::LoadExtType ET) const { | ||||
| 8323 | // Conservatively skip reusing for constrained FP nodes. | ||||
| 8324 | if (Op->isStrictFPOpcode()) | ||||
| 8325 | return false; | ||||
| 8326 | |||||
| 8327 | SDLoc dl(Op); | ||||
| 8328 | bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && | ||||
| 8329 | (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); | ||||
| 8330 | if (ET == ISD::NON_EXTLOAD && | ||||
| 8331 | (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && | ||||
| 8332 | isOperationLegalOrCustom(Op.getOpcode(), | ||||
| 8333 | Op.getOperand(0).getValueType())) { | ||||
| 8334 | |||||
| 8335 | LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); | ||||
| 8336 | return true; | ||||
| 8337 | } | ||||
| 8338 | |||||
| 8339 | LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); | ||||
| 8340 | if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || | ||||
| 8341 | LD->isNonTemporal()) | ||||
| 8342 | return false; | ||||
| 8343 | if (LD->getMemoryVT() != MemVT) | ||||
| 8344 | return false; | ||||
| 8345 | |||||
| 8346 | // If the result of the load is an illegal type, then we can't build a | ||||
| 8347 | // valid chain for reuse since the legalised loads and token factor node that | ||||
| 8348 | // ties the legalised loads together uses a different output chain then the | ||||
| 8349 | // illegal load. | ||||
| 8350 | if (!isTypeLegal(LD->getValueType(0))) | ||||
| 8351 | return false; | ||||
| 8352 | |||||
| 8353 | RLI.Ptr = LD->getBasePtr(); | ||||
| 8354 | if (LD->isIndexed() && !LD->getOffset().isUndef()) { | ||||
| 8355 | assert(LD->getAddressingMode() == ISD::PRE_INC &&(static_cast <bool> (LD->getAddressingMode() == ISD:: PRE_INC && "Non-pre-inc AM on PPC?") ? void (0) : __assert_fail ("LD->getAddressingMode() == ISD::PRE_INC && \"Non-pre-inc AM on PPC?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8356, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8356 | "Non-pre-inc AM on PPC?")(static_cast <bool> (LD->getAddressingMode() == ISD:: PRE_INC && "Non-pre-inc AM on PPC?") ? void (0) : __assert_fail ("LD->getAddressingMode() == ISD::PRE_INC && \"Non-pre-inc AM on PPC?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8356, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8357 | RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, | ||||
| 8358 | LD->getOffset()); | ||||
| 8359 | } | ||||
| 8360 | |||||
| 8361 | RLI.Chain = LD->getChain(); | ||||
| 8362 | RLI.MPI = LD->getPointerInfo(); | ||||
| 8363 | RLI.IsDereferenceable = LD->isDereferenceable(); | ||||
| 8364 | RLI.IsInvariant = LD->isInvariant(); | ||||
| 8365 | RLI.Alignment = LD->getAlign(); | ||||
| 8366 | RLI.AAInfo = LD->getAAInfo(); | ||||
| 8367 | RLI.Ranges = LD->getRanges(); | ||||
| 8368 | |||||
| 8369 | RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); | ||||
| 8370 | return true; | ||||
| 8371 | } | ||||
| 8372 | |||||
| 8373 | // Given the head of the old chain, ResChain, insert a token factor containing | ||||
| 8374 | // it and NewResChain, and make users of ResChain now be users of that token | ||||
| 8375 | // factor. | ||||
| 8376 | // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. | ||||
| 8377 | void PPCTargetLowering::spliceIntoChain(SDValue ResChain, | ||||
| 8378 | SDValue NewResChain, | ||||
| 8379 | SelectionDAG &DAG) const { | ||||
| 8380 | if (!ResChain) | ||||
| 8381 | return; | ||||
| 8382 | |||||
| 8383 | SDLoc dl(NewResChain); | ||||
| 8384 | |||||
| 8385 | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | ||||
| 8386 | NewResChain, DAG.getUNDEF(MVT::Other)); | ||||
| 8387 | assert(TF.getNode() != NewResChain.getNode() &&(static_cast <bool> (TF.getNode() != NewResChain.getNode () && "A new TF really is required here") ? void (0) : __assert_fail ("TF.getNode() != NewResChain.getNode() && \"A new TF really is required here\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8388, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8388 | "A new TF really is required here")(static_cast <bool> (TF.getNode() != NewResChain.getNode () && "A new TF really is required here") ? void (0) : __assert_fail ("TF.getNode() != NewResChain.getNode() && \"A new TF really is required here\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8388, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8389 | |||||
| 8390 | DAG.ReplaceAllUsesOfValueWith(ResChain, TF); | ||||
| 8391 | DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); | ||||
| 8392 | } | ||||
| 8393 | |||||
| 8394 | /// Analyze profitability of direct move | ||||
| 8395 | /// prefer float load to int load plus direct move | ||||
| 8396 | /// when there is no integer use of int load | ||||
| 8397 | bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { | ||||
| 8398 | SDNode *Origin = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0).getNode(); | ||||
| 8399 | if (Origin->getOpcode() != ISD::LOAD) | ||||
| 8400 | return true; | ||||
| 8401 | |||||
| 8402 | // If there is no LXSIBZX/LXSIHZX, like Power8, | ||||
| 8403 | // prefer direct move if the memory size is 1 or 2 bytes. | ||||
| 8404 | MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); | ||||
| 8405 | if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) | ||||
| 8406 | return true; | ||||
| 8407 | |||||
| 8408 | for (SDNode::use_iterator UI = Origin->use_begin(), | ||||
| 8409 | UE = Origin->use_end(); | ||||
| 8410 | UI != UE; ++UI) { | ||||
| 8411 | |||||
| 8412 | // Only look at the users of the loaded value. | ||||
| 8413 | if (UI.getUse().get().getResNo() != 0) | ||||
| 8414 | continue; | ||||
| 8415 | |||||
| 8416 | if (UI->getOpcode() != ISD::SINT_TO_FP && | ||||
| 8417 | UI->getOpcode() != ISD::UINT_TO_FP && | ||||
| 8418 | UI->getOpcode() != ISD::STRICT_SINT_TO_FP && | ||||
| 8419 | UI->getOpcode() != ISD::STRICT_UINT_TO_FP) | ||||
| 8420 | return true; | ||||
| 8421 | } | ||||
| 8422 | |||||
| 8423 | return false; | ||||
| 8424 | } | ||||
| 8425 | |||||
| 8426 | static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, | ||||
| 8427 | const PPCSubtarget &Subtarget, | ||||
| 8428 | SDValue Chain = SDValue()) { | ||||
| 8429 | bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || | ||||
| 8430 | Op.getOpcode() == ISD::STRICT_SINT_TO_FP; | ||||
| 8431 | SDLoc dl(Op); | ||||
| 8432 | |||||
| 8433 | // TODO: Any other flags to propagate? | ||||
| 8434 | SDNodeFlags Flags; | ||||
| 8435 | Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); | ||||
| 8436 | |||||
| 8437 | // If we have FCFIDS, then use it when converting to single-precision. | ||||
| 8438 | // Otherwise, convert to double-precision and then round. | ||||
| 8439 | bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); | ||||
| 8440 | unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) | ||||
| 8441 | : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); | ||||
| 8442 | EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; | ||||
| 8443 | if (Op->isStrictFPOpcode()) { | ||||
| 8444 | if (!Chain) | ||||
| 8445 | Chain = Op.getOperand(0); | ||||
| 8446 | return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, | ||||
| 8447 | DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); | ||||
| 8448 | } else | ||||
| 8449 | return DAG.getNode(ConvOpc, dl, ConvTy, Src); | ||||
| 8450 | } | ||||
| 8451 | |||||
| 8452 | /// Custom lowers integer to floating point conversions to use | ||||
| 8453 | /// the direct move instructions available in ISA 2.07 to avoid the | ||||
| 8454 | /// need for load/store combinations. | ||||
| 8455 | SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, | ||||
| 8456 | SelectionDAG &DAG, | ||||
| 8457 | const SDLoc &dl) const { | ||||
| 8458 | assert((Op.getValueType() == MVT::f32 ||(static_cast <bool> ((Op.getValueType() == MVT::f32 || Op .getValueType() == MVT::f64) && "Invalid floating point type as target of conversion" ) ? void (0) : __assert_fail ("(Op.getValueType() == MVT::f32 || Op.getValueType() == MVT::f64) && \"Invalid floating point type as target of conversion\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8460, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8459 | Op.getValueType() == MVT::f64) &&(static_cast <bool> ((Op.getValueType() == MVT::f32 || Op .getValueType() == MVT::f64) && "Invalid floating point type as target of conversion" ) ? void (0) : __assert_fail ("(Op.getValueType() == MVT::f32 || Op.getValueType() == MVT::f64) && \"Invalid floating point type as target of conversion\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8460, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8460 | "Invalid floating point type as target of conversion")(static_cast <bool> ((Op.getValueType() == MVT::f32 || Op .getValueType() == MVT::f64) && "Invalid floating point type as target of conversion" ) ? void (0) : __assert_fail ("(Op.getValueType() == MVT::f32 || Op.getValueType() == MVT::f64) && \"Invalid floating point type as target of conversion\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8460, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8461 | assert(Subtarget.hasFPCVT() &&(static_cast <bool> (Subtarget.hasFPCVT() && "Int to FP conversions with direct moves require FPCVT" ) ? void (0) : __assert_fail ("Subtarget.hasFPCVT() && \"Int to FP conversions with direct moves require FPCVT\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8462, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8462 | "Int to FP conversions with direct moves require FPCVT")(static_cast <bool> (Subtarget.hasFPCVT() && "Int to FP conversions with direct moves require FPCVT" ) ? void (0) : __assert_fail ("Subtarget.hasFPCVT() && \"Int to FP conversions with direct moves require FPCVT\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8462, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8463 | SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); | ||||
| 8464 | bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; | ||||
| 8465 | bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || | ||||
| 8466 | Op.getOpcode() == ISD::STRICT_SINT_TO_FP; | ||||
| 8467 | unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; | ||||
| 8468 | SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); | ||||
| 8469 | return convertIntToFP(Op, Mov, DAG, Subtarget); | ||||
| 8470 | } | ||||
| 8471 | |||||
| 8472 | static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { | ||||
| 8473 | |||||
| 8474 | EVT VecVT = Vec.getValueType(); | ||||
| 8475 | assert(VecVT.isVector() && "Expected a vector type.")(static_cast <bool> (VecVT.isVector() && "Expected a vector type." ) ? void (0) : __assert_fail ("VecVT.isVector() && \"Expected a vector type.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8475, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8476 | assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.")(static_cast <bool> (VecVT.getSizeInBits() < 128 && "Vector is already full width.") ? void (0) : __assert_fail ( "VecVT.getSizeInBits() < 128 && \"Vector is already full width.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8476, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8477 | |||||
| 8478 | EVT EltVT = VecVT.getVectorElementType(); | ||||
| 8479 | unsigned WideNumElts = 128 / EltVT.getSizeInBits(); | ||||
| 8480 | EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); | ||||
| 8481 | |||||
| 8482 | unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); | ||||
| 8483 | SmallVector<SDValue, 16> Ops(NumConcat); | ||||
| 8484 | Ops[0] = Vec; | ||||
| 8485 | SDValue UndefVec = DAG.getUNDEF(VecVT); | ||||
| 8486 | for (unsigned i = 1; i < NumConcat; ++i) | ||||
| 8487 | Ops[i] = UndefVec; | ||||
| 8488 | |||||
| 8489 | return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); | ||||
| 8490 | } | ||||
| 8491 | |||||
| 8492 | SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, | ||||
| 8493 | const SDLoc &dl) const { | ||||
| 8494 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 8495 | unsigned Opc = Op.getOpcode(); | ||||
| 8496 | SDValue Src = Op.getOperand(IsStrict ? 1 : 0); | ||||
| 8497 | assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||(static_cast <bool> ((Opc == ISD::UINT_TO_FP || Opc == ISD ::SINT_TO_FP || Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD:: STRICT_SINT_TO_FP) && "Unexpected conversion type") ? void (0) : __assert_fail ("(Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && \"Unexpected conversion type\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8499, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8498 | Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&(static_cast <bool> ((Opc == ISD::UINT_TO_FP || Opc == ISD ::SINT_TO_FP || Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD:: STRICT_SINT_TO_FP) && "Unexpected conversion type") ? void (0) : __assert_fail ("(Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && \"Unexpected conversion type\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8499, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8499 | "Unexpected conversion type")(static_cast <bool> ((Opc == ISD::UINT_TO_FP || Opc == ISD ::SINT_TO_FP || Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD:: STRICT_SINT_TO_FP) && "Unexpected conversion type") ? void (0) : __assert_fail ("(Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && \"Unexpected conversion type\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8499, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8500 | assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&(static_cast <bool> ((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && "Supports conversions to v2f64/v4f32 only." ) ? void (0) : __assert_fail ("(Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && \"Supports conversions to v2f64/v4f32 only.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8501, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8501 | "Supports conversions to v2f64/v4f32 only.")(static_cast <bool> ((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && "Supports conversions to v2f64/v4f32 only." ) ? void (0) : __assert_fail ("(Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && \"Supports conversions to v2f64/v4f32 only.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8501, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8502 | |||||
| 8503 | // TODO: Any other flags to propagate? | ||||
| 8504 | SDNodeFlags Flags; | ||||
| 8505 | Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); | ||||
| 8506 | |||||
| 8507 | bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; | ||||
| 8508 | bool FourEltRes = Op.getValueType() == MVT::v4f32; | ||||
| 8509 | |||||
| 8510 | SDValue Wide = widenVec(DAG, Src, dl); | ||||
| 8511 | EVT WideVT = Wide.getValueType(); | ||||
| 8512 | unsigned WideNumElts = WideVT.getVectorNumElements(); | ||||
| 8513 | MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; | ||||
| 8514 | |||||
| 8515 | SmallVector<int, 16> ShuffV; | ||||
| 8516 | for (unsigned i = 0; i < WideNumElts; ++i) | ||||
| 8517 | ShuffV.push_back(i + WideNumElts); | ||||
| 8518 | |||||
| 8519 | int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; | ||||
| 8520 | int SaveElts = FourEltRes ? 4 : 2; | ||||
| 8521 | if (Subtarget.isLittleEndian()) | ||||
| 8522 | for (int i = 0; i < SaveElts; i++) | ||||
| 8523 | ShuffV[i * Stride] = i; | ||||
| 8524 | else | ||||
| 8525 | for (int i = 1; i <= SaveElts; i++) | ||||
| 8526 | ShuffV[i * Stride - 1] = i - 1; | ||||
| 8527 | |||||
| 8528 | SDValue ShuffleSrc2 = | ||||
| 8529 | SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); | ||||
| 8530 | SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); | ||||
| 8531 | |||||
| 8532 | SDValue Extend; | ||||
| 8533 | if (SignedConv) { | ||||
| 8534 | Arrange = DAG.getBitcast(IntermediateVT, Arrange); | ||||
| 8535 | EVT ExtVT = Src.getValueType(); | ||||
| 8536 | if (Subtarget.hasP9Altivec()) | ||||
| 8537 | ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), | ||||
| 8538 | IntermediateVT.getVectorNumElements()); | ||||
| 8539 | |||||
| 8540 | Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, | ||||
| 8541 | DAG.getValueType(ExtVT)); | ||||
| 8542 | } else | ||||
| 8543 | Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); | ||||
| 8544 | |||||
| 8545 | if (IsStrict) | ||||
| 8546 | return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), | ||||
| 8547 | {Op.getOperand(0), Extend}, Flags); | ||||
| 8548 | |||||
| 8549 | return DAG.getNode(Opc, dl, Op.getValueType(), Extend); | ||||
| 8550 | } | ||||
| 8551 | |||||
| 8552 | SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, | ||||
| 8553 | SelectionDAG &DAG) const { | ||||
| 8554 | SDLoc dl(Op); | ||||
| 8555 | bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || | ||||
| 8556 | Op.getOpcode() == ISD::STRICT_SINT_TO_FP; | ||||
| 8557 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 8558 | SDValue Src = Op.getOperand(IsStrict ? 1 : 0); | ||||
| 8559 | SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); | ||||
| 8560 | |||||
| 8561 | // TODO: Any other flags to propagate? | ||||
| 8562 | SDNodeFlags Flags; | ||||
| 8563 | Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); | ||||
| 8564 | |||||
| 8565 | EVT InVT = Src.getValueType(); | ||||
| 8566 | EVT OutVT = Op.getValueType(); | ||||
| 8567 | if (OutVT.isVector() && OutVT.isFloatingPoint() && | ||||
| 8568 | isOperationCustom(Op.getOpcode(), InVT)) | ||||
| 8569 | return LowerINT_TO_FPVector(Op, DAG, dl); | ||||
| 8570 | |||||
| 8571 | // Conversions to f128 are legal. | ||||
| 8572 | if (Op.getValueType() == MVT::f128) | ||||
| 8573 | return Subtarget.hasP9Vector() ? Op : SDValue(); | ||||
| 8574 | |||||
| 8575 | // Don't handle ppc_fp128 here; let it be lowered to a libcall. | ||||
| 8576 | if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) | ||||
| 8577 | return SDValue(); | ||||
| 8578 | |||||
| 8579 | if (Src.getValueType() == MVT::i1) { | ||||
| 8580 | SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, | ||||
| 8581 | DAG.getConstantFP(1.0, dl, Op.getValueType()), | ||||
| 8582 | DAG.getConstantFP(0.0, dl, Op.getValueType())); | ||||
| 8583 | if (IsStrict) | ||||
| 8584 | return DAG.getMergeValues({Sel, Chain}, dl); | ||||
| 8585 | else | ||||
| 8586 | return Sel; | ||||
| 8587 | } | ||||
| 8588 | |||||
| 8589 | // If we have direct moves, we can do all the conversion, skip the store/load | ||||
| 8590 | // however, without FPCVT we can't do most conversions. | ||||
| 8591 | if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && | ||||
| 8592 | Subtarget.isPPC64() && Subtarget.hasFPCVT()) | ||||
| 8593 | return LowerINT_TO_FPDirectMove(Op, DAG, dl); | ||||
| 8594 | |||||
| 8595 | assert((IsSigned || Subtarget.hasFPCVT()) &&(static_cast <bool> ((IsSigned || Subtarget.hasFPCVT()) && "UINT_TO_FP is supported only with FPCVT") ? void (0) : __assert_fail ("(IsSigned || Subtarget.hasFPCVT()) && \"UINT_TO_FP is supported only with FPCVT\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8596, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8596 | "UINT_TO_FP is supported only with FPCVT")(static_cast <bool> ((IsSigned || Subtarget.hasFPCVT()) && "UINT_TO_FP is supported only with FPCVT") ? void (0) : __assert_fail ("(IsSigned || Subtarget.hasFPCVT()) && \"UINT_TO_FP is supported only with FPCVT\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8596, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8597 | |||||
| 8598 | if (Src.getValueType() == MVT::i64) { | ||||
| 8599 | SDValue SINT = Src; | ||||
| 8600 | // When converting to single-precision, we actually need to convert | ||||
| 8601 | // to double-precision first and then round to single-precision. | ||||
| 8602 | // To avoid double-rounding effects during that operation, we have | ||||
| 8603 | // to prepare the input operand. Bits that might be truncated when | ||||
| 8604 | // converting to double-precision are replaced by a bit that won't | ||||
| 8605 | // be lost at this stage, but is below the single-precision rounding | ||||
| 8606 | // position. | ||||
| 8607 | // | ||||
| 8608 | // However, if -enable-unsafe-fp-math is in effect, accept double | ||||
| 8609 | // rounding to avoid the extra overhead. | ||||
| 8610 | if (Op.getValueType() == MVT::f32 && | ||||
| 8611 | !Subtarget.hasFPCVT() && | ||||
| 8612 | !DAG.getTarget().Options.UnsafeFPMath) { | ||||
| 8613 | |||||
| 8614 | // Twiddle input to make sure the low 11 bits are zero. (If this | ||||
| 8615 | // is the case, we are guaranteed the value will fit into the 53 bit | ||||
| 8616 | // mantissa of an IEEE double-precision value without rounding.) | ||||
| 8617 | // If any of those low 11 bits were not zero originally, make sure | ||||
| 8618 | // bit 12 (value 2048) is set instead, so that the final rounding | ||||
| 8619 | // to single-precision gets the correct result. | ||||
| 8620 | SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, | ||||
| 8621 | SINT, DAG.getConstant(2047, dl, MVT::i64)); | ||||
| 8622 | Round = DAG.getNode(ISD::ADD, dl, MVT::i64, | ||||
| 8623 | Round, DAG.getConstant(2047, dl, MVT::i64)); | ||||
| 8624 | Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); | ||||
| 8625 | Round = DAG.getNode(ISD::AND, dl, MVT::i64, | ||||
| 8626 | Round, DAG.getConstant(-2048, dl, MVT::i64)); | ||||
| 8627 | |||||
| 8628 | // However, we cannot use that value unconditionally: if the magnitude | ||||
| 8629 | // of the input value is small, the bit-twiddling we did above might | ||||
| 8630 | // end up visibly changing the output. Fortunately, in that case, we | ||||
| 8631 | // don't need to twiddle bits since the original input will convert | ||||
| 8632 | // exactly to double-precision floating-point already. Therefore, | ||||
| 8633 | // construct a conditional to use the original value if the top 11 | ||||
| 8634 | // bits are all sign-bit copies, and use the rounded value computed | ||||
| 8635 | // above otherwise. | ||||
| 8636 | SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, | ||||
| 8637 | SINT, DAG.getConstant(53, dl, MVT::i32)); | ||||
| 8638 | Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, | ||||
| 8639 | Cond, DAG.getConstant(1, dl, MVT::i64)); | ||||
| 8640 | Cond = DAG.getSetCC( | ||||
| 8641 | dl, | ||||
| 8642 | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), | ||||
| 8643 | Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); | ||||
| 8644 | |||||
| 8645 | SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); | ||||
| 8646 | } | ||||
| 8647 | |||||
| 8648 | ReuseLoadInfo RLI; | ||||
| 8649 | SDValue Bits; | ||||
| 8650 | |||||
| 8651 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 8652 | if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { | ||||
| 8653 | Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, | ||||
| 8654 | RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); | ||||
| 8655 | spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); | ||||
| 8656 | } else if (Subtarget.hasLFIWAX() && | ||||
| 8657 | canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { | ||||
| 8658 | MachineMemOperand *MMO = | ||||
| 8659 | MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, | ||||
| 8660 | RLI.Alignment, RLI.AAInfo, RLI.Ranges); | ||||
| 8661 | SDValue Ops[] = { RLI.Chain, RLI.Ptr }; | ||||
| 8662 | Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, | ||||
| 8663 | DAG.getVTList(MVT::f64, MVT::Other), | ||||
| 8664 | Ops, MVT::i32, MMO); | ||||
| 8665 | spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); | ||||
| 8666 | } else if (Subtarget.hasFPCVT() && | ||||
| 8667 | canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { | ||||
| 8668 | MachineMemOperand *MMO = | ||||
| 8669 | MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, | ||||
| 8670 | RLI.Alignment, RLI.AAInfo, RLI.Ranges); | ||||
| 8671 | SDValue Ops[] = { RLI.Chain, RLI.Ptr }; | ||||
| 8672 | Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, | ||||
| 8673 | DAG.getVTList(MVT::f64, MVT::Other), | ||||
| 8674 | Ops, MVT::i32, MMO); | ||||
| 8675 | spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); | ||||
| 8676 | } else if (((Subtarget.hasLFIWAX() && | ||||
| 8677 | SINT.getOpcode() == ISD::SIGN_EXTEND) || | ||||
| 8678 | (Subtarget.hasFPCVT() && | ||||
| 8679 | SINT.getOpcode() == ISD::ZERO_EXTEND)) && | ||||
| 8680 | SINT.getOperand(0).getValueType() == MVT::i32) { | ||||
| 8681 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 8682 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 8683 | |||||
| 8684 | int FrameIdx = MFI.CreateStackObject(4, Align(4), false); | ||||
| 8685 | SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | ||||
| 8686 | |||||
| 8687 | SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, | ||||
| 8688 | MachinePointerInfo::getFixedStack( | ||||
| 8689 | DAG.getMachineFunction(), FrameIdx)); | ||||
| 8690 | Chain = Store; | ||||
| 8691 | |||||
| 8692 | assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&(static_cast <bool> (cast<StoreSDNode>(Store)-> getMemoryVT() == MVT::i32 && "Expected an i32 store") ? void (0) : __assert_fail ("cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && \"Expected an i32 store\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8693, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8693 | "Expected an i32 store")(static_cast <bool> (cast<StoreSDNode>(Store)-> getMemoryVT() == MVT::i32 && "Expected an i32 store") ? void (0) : __assert_fail ("cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && \"Expected an i32 store\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8693, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8694 | |||||
| 8695 | RLI.Ptr = FIdx; | ||||
| 8696 | RLI.Chain = Chain; | ||||
| 8697 | RLI.MPI = | ||||
| 8698 | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); | ||||
| 8699 | RLI.Alignment = Align(4); | ||||
| 8700 | |||||
| 8701 | MachineMemOperand *MMO = | ||||
| 8702 | MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, | ||||
| 8703 | RLI.Alignment, RLI.AAInfo, RLI.Ranges); | ||||
| 8704 | SDValue Ops[] = { RLI.Chain, RLI.Ptr }; | ||||
| 8705 | Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? | ||||
| 8706 | PPCISD::LFIWZX : PPCISD::LFIWAX, | ||||
| 8707 | dl, DAG.getVTList(MVT::f64, MVT::Other), | ||||
| 8708 | Ops, MVT::i32, MMO); | ||||
| 8709 | Chain = Bits.getValue(1); | ||||
| 8710 | } else | ||||
| 8711 | Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); | ||||
| 8712 | |||||
| 8713 | SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); | ||||
| 8714 | if (IsStrict) | ||||
| 8715 | Chain = FP.getValue(1); | ||||
| 8716 | |||||
| 8717 | if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { | ||||
| 8718 | if (IsStrict) | ||||
| 8719 | FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, | ||||
| 8720 | DAG.getVTList(MVT::f32, MVT::Other), | ||||
| 8721 | {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); | ||||
| 8722 | else | ||||
| 8723 | FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, | ||||
| 8724 | DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); | ||||
| 8725 | } | ||||
| 8726 | return FP; | ||||
| 8727 | } | ||||
| 8728 | |||||
| 8729 | assert(Src.getValueType() == MVT::i32 &&(static_cast <bool> (Src.getValueType() == MVT::i32 && "Unhandled INT_TO_FP type in custom expander!") ? void (0) : __assert_fail ("Src.getValueType() == MVT::i32 && \"Unhandled INT_TO_FP type in custom expander!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8730, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8730 | "Unhandled INT_TO_FP type in custom expander!")(static_cast <bool> (Src.getValueType() == MVT::i32 && "Unhandled INT_TO_FP type in custom expander!") ? void (0) : __assert_fail ("Src.getValueType() == MVT::i32 && \"Unhandled INT_TO_FP type in custom expander!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8730, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8731 | // Since we only generate this in 64-bit mode, we can take advantage of | ||||
| 8732 | // 64-bit registers. In particular, sign extend the input value into the | ||||
| 8733 | // 64-bit register with extsw, store the WHOLE 64-bit value into the stack | ||||
| 8734 | // then lfd it and fcfid it. | ||||
| 8735 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 8736 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 8737 | EVT PtrVT = getPointerTy(MF.getDataLayout()); | ||||
| 8738 | |||||
| 8739 | SDValue Ld; | ||||
| 8740 | if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { | ||||
| 8741 | ReuseLoadInfo RLI; | ||||
| 8742 | bool ReusingLoad; | ||||
| 8743 | if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { | ||||
| 8744 | int FrameIdx = MFI.CreateStackObject(4, Align(4), false); | ||||
| 8745 | SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | ||||
| 8746 | |||||
| 8747 | SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, | ||||
| 8748 | MachinePointerInfo::getFixedStack( | ||||
| 8749 | DAG.getMachineFunction(), FrameIdx)); | ||||
| 8750 | Chain = Store; | ||||
| 8751 | |||||
| 8752 | assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&(static_cast <bool> (cast<StoreSDNode>(Store)-> getMemoryVT() == MVT::i32 && "Expected an i32 store") ? void (0) : __assert_fail ("cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && \"Expected an i32 store\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8753, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8753 | "Expected an i32 store")(static_cast <bool> (cast<StoreSDNode>(Store)-> getMemoryVT() == MVT::i32 && "Expected an i32 store") ? void (0) : __assert_fail ("cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && \"Expected an i32 store\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8753, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8754 | |||||
| 8755 | RLI.Ptr = FIdx; | ||||
| 8756 | RLI.Chain = Chain; | ||||
| 8757 | RLI.MPI = | ||||
| 8758 | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); | ||||
| 8759 | RLI.Alignment = Align(4); | ||||
| 8760 | } | ||||
| 8761 | |||||
| 8762 | MachineMemOperand *MMO = | ||||
| 8763 | MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, | ||||
| 8764 | RLI.Alignment, RLI.AAInfo, RLI.Ranges); | ||||
| 8765 | SDValue Ops[] = { RLI.Chain, RLI.Ptr }; | ||||
| 8766 | Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, | ||||
| 8767 | DAG.getVTList(MVT::f64, MVT::Other), Ops, | ||||
| 8768 | MVT::i32, MMO); | ||||
| 8769 | Chain = Ld.getValue(1); | ||||
| 8770 | if (ReusingLoad) | ||||
| 8771 | spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); | ||||
| 8772 | } else { | ||||
| 8773 | assert(Subtarget.isPPC64() &&(static_cast <bool> (Subtarget.isPPC64() && "i32->FP without LFIWAX supported only on PPC64" ) ? void (0) : __assert_fail ("Subtarget.isPPC64() && \"i32->FP without LFIWAX supported only on PPC64\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8774, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8774 | "i32->FP without LFIWAX supported only on PPC64")(static_cast <bool> (Subtarget.isPPC64() && "i32->FP without LFIWAX supported only on PPC64" ) ? void (0) : __assert_fail ("Subtarget.isPPC64() && \"i32->FP without LFIWAX supported only on PPC64\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8774, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8775 | |||||
| 8776 | int FrameIdx = MFI.CreateStackObject(8, Align(8), false); | ||||
| 8777 | SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | ||||
| 8778 | |||||
| 8779 | SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); | ||||
| 8780 | |||||
| 8781 | // STD the extended value into the stack slot. | ||||
| 8782 | SDValue Store = DAG.getStore( | ||||
| 8783 | Chain, dl, Ext64, FIdx, | ||||
| 8784 | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); | ||||
| 8785 | Chain = Store; | ||||
| 8786 | |||||
| 8787 | // Load the value as a double. | ||||
| 8788 | Ld = DAG.getLoad( | ||||
| 8789 | MVT::f64, dl, Chain, FIdx, | ||||
| 8790 | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); | ||||
| 8791 | Chain = Ld.getValue(1); | ||||
| 8792 | } | ||||
| 8793 | |||||
| 8794 | // FCFID it and return it. | ||||
| 8795 | SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); | ||||
| 8796 | if (IsStrict) | ||||
| 8797 | Chain = FP.getValue(1); | ||||
| 8798 | if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { | ||||
| 8799 | if (IsStrict) | ||||
| 8800 | FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, | ||||
| 8801 | DAG.getVTList(MVT::f32, MVT::Other), | ||||
| 8802 | {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); | ||||
| 8803 | else | ||||
| 8804 | FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, | ||||
| 8805 | DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); | ||||
| 8806 | } | ||||
| 8807 | return FP; | ||||
| 8808 | } | ||||
| 8809 | |||||
| 8810 | SDValue PPCTargetLowering::LowerGET_ROUNDING(SDValue Op, | ||||
| 8811 | SelectionDAG &DAG) const { | ||||
| 8812 | SDLoc dl(Op); | ||||
| 8813 | /* | ||||
| 8814 | The rounding mode is in bits 30:31 of FPSR, and has the following | ||||
| 8815 | settings: | ||||
| 8816 | 00 Round to nearest | ||||
| 8817 | 01 Round to 0 | ||||
| 8818 | 10 Round to +inf | ||||
| 8819 | 11 Round to -inf | ||||
| 8820 | |||||
| 8821 | GET_ROUNDING, on the other hand, expects the following: | ||||
| 8822 | -1 Undefined | ||||
| 8823 | 0 Round to 0 | ||||
| 8824 | 1 Round to nearest | ||||
| 8825 | 2 Round to +inf | ||||
| 8826 | 3 Round to -inf | ||||
| 8827 | |||||
| 8828 | To perform the conversion, we do: | ||||
| 8829 | ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) | ||||
| 8830 | */ | ||||
| 8831 | |||||
| 8832 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 8833 | EVT VT = Op.getValueType(); | ||||
| 8834 | EVT PtrVT = getPointerTy(MF.getDataLayout()); | ||||
| 8835 | |||||
| 8836 | // Save FP Control Word to register | ||||
| 8837 | SDValue Chain = Op.getOperand(0); | ||||
| 8838 | SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); | ||||
| 8839 | Chain = MFFS.getValue(1); | ||||
| 8840 | |||||
| 8841 | SDValue CWD; | ||||
| 8842 | if (isTypeLegal(MVT::i64)) { | ||||
| 8843 | CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, | ||||
| 8844 | DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); | ||||
| 8845 | } else { | ||||
| 8846 | // Save FP register to stack slot | ||||
| 8847 | int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); | ||||
| 8848 | SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); | ||||
| 8849 | Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); | ||||
| 8850 | |||||
| 8851 | // Load FP Control Word from low 32 bits of stack slot. | ||||
| 8852 | assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&(static_cast <bool> (hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && "Stack slot adjustment is valid only on big endian subtargets!" ) ? void (0) : __assert_fail ("hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && \"Stack slot adjustment is valid only on big endian subtargets!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8853, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8853 | "Stack slot adjustment is valid only on big endian subtargets!")(static_cast <bool> (hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && "Stack slot adjustment is valid only on big endian subtargets!" ) ? void (0) : __assert_fail ("hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && \"Stack slot adjustment is valid only on big endian subtargets!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8853, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8854 | SDValue Four = DAG.getConstant(4, dl, PtrVT); | ||||
| 8855 | SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); | ||||
| 8856 | CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); | ||||
| 8857 | Chain = CWD.getValue(1); | ||||
| 8858 | } | ||||
| 8859 | |||||
| 8860 | // Transform as necessary | ||||
| 8861 | SDValue CWD1 = | ||||
| 8862 | DAG.getNode(ISD::AND, dl, MVT::i32, | ||||
| 8863 | CWD, DAG.getConstant(3, dl, MVT::i32)); | ||||
| 8864 | SDValue CWD2 = | ||||
| 8865 | DAG.getNode(ISD::SRL, dl, MVT::i32, | ||||
| 8866 | DAG.getNode(ISD::AND, dl, MVT::i32, | ||||
| 8867 | DAG.getNode(ISD::XOR, dl, MVT::i32, | ||||
| 8868 | CWD, DAG.getConstant(3, dl, MVT::i32)), | ||||
| 8869 | DAG.getConstant(3, dl, MVT::i32)), | ||||
| 8870 | DAG.getConstant(1, dl, MVT::i32)); | ||||
| 8871 | |||||
| 8872 | SDValue RetVal = | ||||
| 8873 | DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); | ||||
| 8874 | |||||
| 8875 | RetVal = | ||||
| 8876 | DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), | ||||
| 8877 | dl, VT, RetVal); | ||||
| 8878 | |||||
| 8879 | return DAG.getMergeValues({RetVal, Chain}, dl); | ||||
| 8880 | } | ||||
| 8881 | |||||
| 8882 | SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { | ||||
| 8883 | EVT VT = Op.getValueType(); | ||||
| 8884 | unsigned BitWidth = VT.getSizeInBits(); | ||||
| 8885 | SDLoc dl(Op); | ||||
| 8886 | assert(Op.getNumOperands() == 3 &&(static_cast <bool> (Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SHL!" ) ? void (0) : __assert_fail ("Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && \"Unexpected SHL!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8888, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8887 | VT == Op.getOperand(1).getValueType() &&(static_cast <bool> (Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SHL!" ) ? void (0) : __assert_fail ("Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && \"Unexpected SHL!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8888, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8888 | "Unexpected SHL!")(static_cast <bool> (Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SHL!" ) ? void (0) : __assert_fail ("Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && \"Unexpected SHL!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8888, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8889 | |||||
| 8890 | // Expand into a bunch of logical ops. Note that these ops | ||||
| 8891 | // depend on the PPC behavior for oversized shift amounts. | ||||
| 8892 | SDValue Lo = Op.getOperand(0); | ||||
| 8893 | SDValue Hi = Op.getOperand(1); | ||||
| 8894 | SDValue Amt = Op.getOperand(2); | ||||
| 8895 | EVT AmtVT = Amt.getValueType(); | ||||
| 8896 | |||||
| 8897 | SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, | ||||
| 8898 | DAG.getConstant(BitWidth, dl, AmtVT), Amt); | ||||
| 8899 | SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); | ||||
| 8900 | SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); | ||||
| 8901 | SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); | ||||
| 8902 | SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, | ||||
| 8903 | DAG.getConstant(-BitWidth, dl, AmtVT)); | ||||
| 8904 | SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); | ||||
| 8905 | SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); | ||||
| 8906 | SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); | ||||
| 8907 | SDValue OutOps[] = { OutLo, OutHi }; | ||||
| 8908 | return DAG.getMergeValues(OutOps, dl); | ||||
| 8909 | } | ||||
| 8910 | |||||
| 8911 | SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { | ||||
| 8912 | EVT VT = Op.getValueType(); | ||||
| 8913 | SDLoc dl(Op); | ||||
| 8914 | unsigned BitWidth = VT.getSizeInBits(); | ||||
| 8915 | assert(Op.getNumOperands() == 3 &&(static_cast <bool> (Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRL!" ) ? void (0) : __assert_fail ("Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && \"Unexpected SRL!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8917, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8916 | VT == Op.getOperand(1).getValueType() &&(static_cast <bool> (Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRL!" ) ? void (0) : __assert_fail ("Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && \"Unexpected SRL!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8917, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8917 | "Unexpected SRL!")(static_cast <bool> (Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRL!" ) ? void (0) : __assert_fail ("Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && \"Unexpected SRL!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8917, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8918 | |||||
| 8919 | // Expand into a bunch of logical ops. Note that these ops | ||||
| 8920 | // depend on the PPC behavior for oversized shift amounts. | ||||
| 8921 | SDValue Lo = Op.getOperand(0); | ||||
| 8922 | SDValue Hi = Op.getOperand(1); | ||||
| 8923 | SDValue Amt = Op.getOperand(2); | ||||
| 8924 | EVT AmtVT = Amt.getValueType(); | ||||
| 8925 | |||||
| 8926 | SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, | ||||
| 8927 | DAG.getConstant(BitWidth, dl, AmtVT), Amt); | ||||
| 8928 | SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); | ||||
| 8929 | SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); | ||||
| 8930 | SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); | ||||
| 8931 | SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, | ||||
| 8932 | DAG.getConstant(-BitWidth, dl, AmtVT)); | ||||
| 8933 | SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); | ||||
| 8934 | SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); | ||||
| 8935 | SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); | ||||
| 8936 | SDValue OutOps[] = { OutLo, OutHi }; | ||||
| 8937 | return DAG.getMergeValues(OutOps, dl); | ||||
| 8938 | } | ||||
| 8939 | |||||
| 8940 | SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { | ||||
| 8941 | SDLoc dl(Op); | ||||
| 8942 | EVT VT = Op.getValueType(); | ||||
| 8943 | unsigned BitWidth = VT.getSizeInBits(); | ||||
| 8944 | assert(Op.getNumOperands() == 3 &&(static_cast <bool> (Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRA!" ) ? void (0) : __assert_fail ("Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && \"Unexpected SRA!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8946, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8945 | VT == Op.getOperand(1).getValueType() &&(static_cast <bool> (Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRA!" ) ? void (0) : __assert_fail ("Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && \"Unexpected SRA!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8946, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8946 | "Unexpected SRA!")(static_cast <bool> (Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRA!" ) ? void (0) : __assert_fail ("Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && \"Unexpected SRA!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 8946, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8947 | |||||
| 8948 | // Expand into a bunch of logical ops, followed by a select_cc. | ||||
| 8949 | SDValue Lo = Op.getOperand(0); | ||||
| 8950 | SDValue Hi = Op.getOperand(1); | ||||
| 8951 | SDValue Amt = Op.getOperand(2); | ||||
| 8952 | EVT AmtVT = Amt.getValueType(); | ||||
| 8953 | |||||
| 8954 | SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, | ||||
| 8955 | DAG.getConstant(BitWidth, dl, AmtVT), Amt); | ||||
| 8956 | SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); | ||||
| 8957 | SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); | ||||
| 8958 | SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); | ||||
| 8959 | SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, | ||||
| 8960 | DAG.getConstant(-BitWidth, dl, AmtVT)); | ||||
| 8961 | SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); | ||||
| 8962 | SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); | ||||
| 8963 | SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), | ||||
| 8964 | Tmp4, Tmp6, ISD::SETLE); | ||||
| 8965 | SDValue OutOps[] = { OutLo, OutHi }; | ||||
| 8966 | return DAG.getMergeValues(OutOps, dl); | ||||
| 8967 | } | ||||
| 8968 | |||||
| 8969 | SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, | ||||
| 8970 | SelectionDAG &DAG) const { | ||||
| 8971 | SDLoc dl(Op); | ||||
| 8972 | EVT VT = Op.getValueType(); | ||||
| 8973 | unsigned BitWidth = VT.getSizeInBits(); | ||||
| 8974 | |||||
| 8975 | bool IsFSHL = Op.getOpcode() == ISD::FSHL; | ||||
| 8976 | SDValue X = Op.getOperand(0); | ||||
| 8977 | SDValue Y = Op.getOperand(1); | ||||
| 8978 | SDValue Z = Op.getOperand(2); | ||||
| 8979 | EVT AmtVT = Z.getValueType(); | ||||
| 8980 | |||||
| 8981 | // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) | ||||
| 8982 | // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) | ||||
| 8983 | // This is simpler than TargetLowering::expandFunnelShift because we can rely | ||||
| 8984 | // on PowerPC shift by BW being well defined. | ||||
| 8985 | Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, | ||||
| 8986 | DAG.getConstant(BitWidth - 1, dl, AmtVT)); | ||||
| 8987 | SDValue SubZ = | ||||
| 8988 | DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); | ||||
| 8989 | X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); | ||||
| 8990 | Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); | ||||
| 8991 | return DAG.getNode(ISD::OR, dl, VT, X, Y); | ||||
| 8992 | } | ||||
| 8993 | |||||
| 8994 | //===----------------------------------------------------------------------===// | ||||
| 8995 | // Vector related lowering. | ||||
| 8996 | // | ||||
| 8997 | |||||
| 8998 | /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an | ||||
| 8999 | /// element size of SplatSize. Cast the result to VT. | ||||
| 9000 | static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, | ||||
| 9001 | SelectionDAG &DAG, const SDLoc &dl) { | ||||
| 9002 | static const MVT VTys[] = { // canonical VT to use for each size. | ||||
| 9003 | MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 | ||||
| 9004 | }; | ||||
| 9005 | |||||
| 9006 | EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; | ||||
| 9007 | |||||
| 9008 | // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. | ||||
| 9009 | if (Val == ((1LLU << (SplatSize * 8)) - 1)) { | ||||
| 9010 | SplatSize = 1; | ||||
| 9011 | Val = 0xFF; | ||||
| 9012 | } | ||||
| 9013 | |||||
| 9014 | EVT CanonicalVT = VTys[SplatSize-1]; | ||||
| 9015 | |||||
| 9016 | // Build a canonical splat for this value. | ||||
| 9017 | return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); | ||||
| 9018 | } | ||||
| 9019 | |||||
| 9020 | /// BuildIntrinsicOp - Return a unary operator intrinsic node with the | ||||
| 9021 | /// specified intrinsic ID. | ||||
| 9022 | static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, | ||||
| 9023 | const SDLoc &dl, EVT DestVT = MVT::Other) { | ||||
| 9024 | if (DestVT == MVT::Other) DestVT = Op.getValueType(); | ||||
| 9025 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, | ||||
| 9026 | DAG.getConstant(IID, dl, MVT::i32), Op); | ||||
| 9027 | } | ||||
| 9028 | |||||
| 9029 | /// BuildIntrinsicOp - Return a binary operator intrinsic node with the | ||||
| 9030 | /// specified intrinsic ID. | ||||
| 9031 | static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, | ||||
| 9032 | SelectionDAG &DAG, const SDLoc &dl, | ||||
| 9033 | EVT DestVT = MVT::Other) { | ||||
| 9034 | if (DestVT == MVT::Other) DestVT = LHS.getValueType(); | ||||
| 9035 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, | ||||
| 9036 | DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); | ||||
| 9037 | } | ||||
| 9038 | |||||
| 9039 | /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the | ||||
| 9040 | /// specified intrinsic ID. | ||||
| 9041 | static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, | ||||
| 9042 | SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, | ||||
| 9043 | EVT DestVT = MVT::Other) { | ||||
| 9044 | if (DestVT == MVT::Other) DestVT = Op0.getValueType(); | ||||
| 9045 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, | ||||
| 9046 | DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); | ||||
| 9047 | } | ||||
| 9048 | |||||
| 9049 | /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified | ||||
| 9050 | /// amount. The result has the specified value type. | ||||
| 9051 | static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, | ||||
| 9052 | SelectionDAG &DAG, const SDLoc &dl) { | ||||
| 9053 | // Force LHS/RHS to be the right type. | ||||
| 9054 | LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); | ||||
| 9055 | RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); | ||||
| 9056 | |||||
| 9057 | int Ops[16]; | ||||
| 9058 | for (unsigned i = 0; i != 16; ++i) | ||||
| 9059 | Ops[i] = i + Amt; | ||||
| 9060 | SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); | ||||
| 9061 | return DAG.getNode(ISD::BITCAST, dl, VT, T); | ||||
| 9062 | } | ||||
| 9063 | |||||
| 9064 | /// Do we have an efficient pattern in a .td file for this node? | ||||
| 9065 | /// | ||||
| 9066 | /// \param V - pointer to the BuildVectorSDNode being matched | ||||
| 9067 | /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? | ||||
| 9068 | /// | ||||
| 9069 | /// There are some patterns where it is beneficial to keep a BUILD_VECTOR | ||||
| 9070 | /// node as a BUILD_VECTOR node rather than expanding it. The patterns where | ||||
| 9071 | /// the opposite is true (expansion is beneficial) are: | ||||
| 9072 | /// - The node builds a vector out of integers that are not 32 or 64-bits | ||||
| 9073 | /// - The node builds a vector out of constants | ||||
| 9074 | /// - The node is a "load-and-splat" | ||||
| 9075 | /// In all other cases, we will choose to keep the BUILD_VECTOR. | ||||
| 9076 | static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, | ||||
| 9077 | bool HasDirectMove, | ||||
| 9078 | bool HasP8Vector) { | ||||
| 9079 | EVT VecVT = V->getValueType(0); | ||||
| 9080 | bool RightType = VecVT == MVT::v2f64 || | ||||
| 9081 | (HasP8Vector && VecVT == MVT::v4f32) || | ||||
| 9082 | (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); | ||||
| 9083 | if (!RightType) | ||||
| 9084 | return false; | ||||
| 9085 | |||||
| 9086 | bool IsSplat = true; | ||||
| 9087 | bool IsLoad = false; | ||||
| 9088 | SDValue Op0 = V->getOperand(0); | ||||
| 9089 | |||||
| 9090 | // This function is called in a block that confirms the node is not a constant | ||||
| 9091 | // splat. So a constant BUILD_VECTOR here means the vector is built out of | ||||
| 9092 | // different constants. | ||||
| 9093 | if (V->isConstant()) | ||||
| 9094 | return false; | ||||
| 9095 | for (int i = 0, e = V->getNumOperands(); i < e; ++i) { | ||||
| 9096 | if (V->getOperand(i).isUndef()) | ||||
| 9097 | return false; | ||||
| 9098 | // We want to expand nodes that represent load-and-splat even if the | ||||
| 9099 | // loaded value is a floating point truncation or conversion to int. | ||||
| 9100 | if (V->getOperand(i).getOpcode() == ISD::LOAD || | ||||
| 9101 | (V->getOperand(i).getOpcode() == ISD::FP_ROUND && | ||||
| 9102 | V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || | ||||
| 9103 | (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && | ||||
| 9104 | V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || | ||||
| 9105 | (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && | ||||
| 9106 | V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) | ||||
| 9107 | IsLoad = true; | ||||
| 9108 | // If the operands are different or the input is not a load and has more | ||||
| 9109 | // uses than just this BV node, then it isn't a splat. | ||||
| 9110 | if (V->getOperand(i) != Op0 || | ||||
| 9111 | (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) | ||||
| 9112 | IsSplat = false; | ||||
| 9113 | } | ||||
| 9114 | return !(IsSplat && IsLoad); | ||||
| 9115 | } | ||||
| 9116 | |||||
| 9117 | // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. | ||||
| 9118 | SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { | ||||
| 9119 | |||||
| 9120 | SDLoc dl(Op); | ||||
| 9121 | SDValue Op0 = Op->getOperand(0); | ||||
| 9122 | |||||
| 9123 | if ((Op.getValueType() != MVT::f128) || | ||||
| 9124 | (Op0.getOpcode() != ISD::BUILD_PAIR) || | ||||
| 9125 | (Op0.getOperand(0).getValueType() != MVT::i64) || | ||||
| 9126 | (Op0.getOperand(1).getValueType() != MVT::i64)) | ||||
| 9127 | return SDValue(); | ||||
| 9128 | |||||
| 9129 | return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), | ||||
| 9130 | Op0.getOperand(1)); | ||||
| 9131 | } | ||||
| 9132 | |||||
| 9133 | static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { | ||||
| 9134 | const SDValue *InputLoad = &Op; | ||||
| 9135 | while (InputLoad->getOpcode() == ISD::BITCAST) | ||||
| 9136 | InputLoad = &InputLoad->getOperand(0); | ||||
| 9137 | if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || | ||||
| 9138 | InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { | ||||
| 9139 | IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; | ||||
| 9140 | InputLoad = &InputLoad->getOperand(0); | ||||
| 9141 | } | ||||
| 9142 | if (InputLoad->getOpcode() != ISD::LOAD) | ||||
| 9143 | return nullptr; | ||||
| 9144 | LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); | ||||
| 9145 | return ISD::isNormalLoad(LD) ? InputLoad : nullptr; | ||||
| 9146 | } | ||||
| 9147 | |||||
| 9148 | // Convert the argument APFloat to a single precision APFloat if there is no | ||||
| 9149 | // loss in information during the conversion to single precision APFloat and the | ||||
| 9150 | // resulting number is not a denormal number. Return true if successful. | ||||
| 9151 | bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { | ||||
| 9152 | APFloat APFloatToConvert = ArgAPFloat; | ||||
| 9153 | bool LosesInfo = true; | ||||
| 9154 | APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, | ||||
| 9155 | &LosesInfo); | ||||
| 9156 | bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); | ||||
| 9157 | if (Success) | ||||
| 9158 | ArgAPFloat = APFloatToConvert; | ||||
| 9159 | return Success; | ||||
| 9160 | } | ||||
| 9161 | |||||
| 9162 | // Bitcast the argument APInt to a double and convert it to a single precision | ||||
| 9163 | // APFloat, bitcast the APFloat to an APInt and assign it to the original | ||||
| 9164 | // argument if there is no loss in information during the conversion from | ||||
| 9165 | // double to single precision APFloat and the resulting number is not a denormal | ||||
| 9166 | // number. Return true if successful. | ||||
| 9167 | bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { | ||||
| 9168 | double DpValue = ArgAPInt.bitsToDouble(); | ||||
| 9169 | APFloat APFloatDp(DpValue); | ||||
| 9170 | bool Success = convertToNonDenormSingle(APFloatDp); | ||||
| 9171 | if (Success) | ||||
| 9172 | ArgAPInt = APFloatDp.bitcastToAPInt(); | ||||
| 9173 | return Success; | ||||
| 9174 | } | ||||
| 9175 | |||||
| 9176 | // Nondestructive check for convertTonNonDenormSingle. | ||||
| 9177 | bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { | ||||
| 9178 | // Only convert if it loses info, since XXSPLTIDP should | ||||
| 9179 | // handle the other case. | ||||
| 9180 | APFloat APFloatToConvert = ArgAPFloat; | ||||
| 9181 | bool LosesInfo = true; | ||||
| 9182 | APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, | ||||
| 9183 | &LosesInfo); | ||||
| 9184 | |||||
| 9185 | return (!LosesInfo && !APFloatToConvert.isDenormal()); | ||||
| 9186 | } | ||||
| 9187 | |||||
| 9188 | static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, | ||||
| 9189 | unsigned &Opcode) { | ||||
| 9190 | LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); | ||||
| 9191 | if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) | ||||
| 9192 | return false; | ||||
| 9193 | |||||
| 9194 | EVT Ty = Op->getValueType(0); | ||||
| 9195 | // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending | ||||
| 9196 | // as we cannot handle extending loads for these types. | ||||
| 9197 | if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && | ||||
| 9198 | ISD::isNON_EXTLoad(InputNode)) | ||||
| 9199 | return true; | ||||
| 9200 | |||||
| 9201 | EVT MemVT = InputNode->getMemoryVT(); | ||||
| 9202 | // For v8i16 and v16i8 types, extending loads can be handled as long as the | ||||
| 9203 | // memory VT is the same vector element VT type. | ||||
| 9204 | // The loads feeding into the v8i16 and v16i8 types will be extending because | ||||
| 9205 | // scalar i8/i16 are not legal types. | ||||
| 9206 | if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && | ||||
| 9207 | (MemVT == Ty.getVectorElementType())) | ||||
| 9208 | return true; | ||||
| 9209 | |||||
| 9210 | if (Ty == MVT::v2i64) { | ||||
| 9211 | // Check the extend type, when the input type is i32, and the output vector | ||||
| 9212 | // type is v2i64. | ||||
| 9213 | if (MemVT == MVT::i32) { | ||||
| 9214 | if (ISD::isZEXTLoad(InputNode)) | ||||
| 9215 | Opcode = PPCISD::ZEXT_LD_SPLAT; | ||||
| 9216 | if (ISD::isSEXTLoad(InputNode)) | ||||
| 9217 | Opcode = PPCISD::SEXT_LD_SPLAT; | ||||
| 9218 | } | ||||
| 9219 | return true; | ||||
| 9220 | } | ||||
| 9221 | return false; | ||||
| 9222 | } | ||||
| 9223 | |||||
| 9224 | // If this is a case we can't handle, return null and let the default | ||||
| 9225 | // expansion code take care of it. If we CAN select this case, and if it | ||||
| 9226 | // selects to a single instruction, return Op. Otherwise, if we can codegen | ||||
| 9227 | // this case more efficiently than a constant pool load, lower it to the | ||||
| 9228 | // sequence of ops that should be used. | ||||
| 9229 | SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, | ||||
| 9230 | SelectionDAG &DAG) const { | ||||
| 9231 | SDLoc dl(Op); | ||||
| 9232 | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); | ||||
| 9233 | assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR")(static_cast <bool> (BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR" ) ? void (0) : __assert_fail ("BVN && \"Expected a BuildVectorSDNode in LowerBUILD_VECTOR\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9233, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9234 | |||||
| 9235 | // Check if this is a splat of a constant value. | ||||
| 9236 | APInt APSplatBits, APSplatUndef; | ||||
| 9237 | unsigned SplatBitSize; | ||||
| 9238 | bool HasAnyUndefs; | ||||
| 9239 | bool BVNIsConstantSplat = | ||||
| 9240 | BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, | ||||
| 9241 | HasAnyUndefs, 0, !Subtarget.isLittleEndian()); | ||||
| 9242 | |||||
| 9243 | // If it is a splat of a double, check if we can shrink it to a 32 bit | ||||
| 9244 | // non-denormal float which when converted back to double gives us the same | ||||
| 9245 | // double. This is to exploit the XXSPLTIDP instruction. | ||||
| 9246 | // If we lose precision, we use XXSPLTI32DX. | ||||
| 9247 | if (BVNIsConstantSplat && (SplatBitSize == 64) && | ||||
| 9248 | Subtarget.hasPrefixInstrs()) { | ||||
| 9249 | // Check the type first to short-circuit so we don't modify APSplatBits if | ||||
| 9250 | // this block isn't executed. | ||||
| 9251 | if ((Op->getValueType(0) == MVT::v2f64) && | ||||
| 9252 | convertToNonDenormSingle(APSplatBits)) { | ||||
| 9253 | SDValue SplatNode = DAG.getNode( | ||||
| 9254 | PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, | ||||
| 9255 | DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); | ||||
| 9256 | return DAG.getBitcast(Op.getValueType(), SplatNode); | ||||
| 9257 | } else { | ||||
| 9258 | // We may lose precision, so we have to use XXSPLTI32DX. | ||||
| 9259 | |||||
| 9260 | uint32_t Hi = | ||||
| 9261 | (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); | ||||
| 9262 | uint32_t Lo = | ||||
| 9263 | (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); | ||||
| 9264 | SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); | ||||
| 9265 | |||||
| 9266 | if (!Hi || !Lo) | ||||
| 9267 | // If either load is 0, then we should generate XXLXOR to set to 0. | ||||
| 9268 | SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); | ||||
| 9269 | |||||
| 9270 | if (Hi) | ||||
| 9271 | SplatNode = DAG.getNode( | ||||
| 9272 | PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, | ||||
| 9273 | DAG.getTargetConstant(0, dl, MVT::i32), | ||||
| 9274 | DAG.getTargetConstant(Hi, dl, MVT::i32)); | ||||
| 9275 | |||||
| 9276 | if (Lo) | ||||
| 9277 | SplatNode = | ||||
| 9278 | DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, | ||||
| 9279 | DAG.getTargetConstant(1, dl, MVT::i32), | ||||
| 9280 | DAG.getTargetConstant(Lo, dl, MVT::i32)); | ||||
| 9281 | |||||
| 9282 | return DAG.getBitcast(Op.getValueType(), SplatNode); | ||||
| 9283 | } | ||||
| 9284 | } | ||||
| 9285 | |||||
| 9286 | if (!BVNIsConstantSplat || SplatBitSize > 32) { | ||||
| 9287 | unsigned NewOpcode = PPCISD::LD_SPLAT; | ||||
| 9288 | |||||
| 9289 | // Handle load-and-splat patterns as we have instructions that will do this | ||||
| 9290 | // in one go. | ||||
| 9291 | if (DAG.isSplatValue(Op, true) && | ||||
| 9292 | isValidSplatLoad(Subtarget, Op, NewOpcode)) { | ||||
| 9293 | const SDValue *InputLoad = &Op.getOperand(0); | ||||
| 9294 | LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); | ||||
| 9295 | |||||
| 9296 | // If the input load is an extending load, it will be an i32 -> i64 | ||||
| 9297 | // extending load and isValidSplatLoad() will update NewOpcode. | ||||
| 9298 | unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); | ||||
| 9299 | unsigned ElementSize = | ||||
| 9300 | MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); | ||||
| 9301 | |||||
| 9302 | assert(((ElementSize == 2 * MemorySize)(static_cast <bool> (((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD:: SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && "Unmatched element size and opcode!\n" ) ? void (0) : __assert_fail ("((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD::SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && \"Unmatched element size and opcode!\\n\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9306, __extension__ __PRETTY_FUNCTION__)) | ||||
| 9303 | ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT ||(static_cast <bool> (((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD:: SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && "Unmatched element size and opcode!\n" ) ? void (0) : __assert_fail ("((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD::SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && \"Unmatched element size and opcode!\\n\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9306, __extension__ __PRETTY_FUNCTION__)) | ||||
| 9304 | NewOpcode == PPCISD::SEXT_LD_SPLAT)(static_cast <bool> (((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD:: SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && "Unmatched element size and opcode!\n" ) ? void (0) : __assert_fail ("((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD::SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && \"Unmatched element size and opcode!\\n\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9306, __extension__ __PRETTY_FUNCTION__)) | ||||
| 9305 | : (NewOpcode == PPCISD::LD_SPLAT)) &&(static_cast <bool> (((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD:: SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && "Unmatched element size and opcode!\n" ) ? void (0) : __assert_fail ("((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD::SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && \"Unmatched element size and opcode!\\n\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9306, __extension__ __PRETTY_FUNCTION__)) | ||||
| 9306 | "Unmatched element size and opcode!\n")(static_cast <bool> (((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD:: SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && "Unmatched element size and opcode!\n" ) ? void (0) : __assert_fail ("((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD::SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && \"Unmatched element size and opcode!\\n\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9306, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9307 | |||||
| 9308 | // Checking for a single use of this load, we have to check for vector | ||||
| 9309 | // width (128 bits) / ElementSize uses (since each operand of the | ||||
| 9310 | // BUILD_VECTOR is a separate use of the value. | ||||
| 9311 | unsigned NumUsesOfInputLD = 128 / ElementSize; | ||||
| 9312 | for (SDValue BVInOp : Op->ops()) | ||||
| 9313 | if (BVInOp.isUndef()) | ||||
| 9314 | NumUsesOfInputLD--; | ||||
| 9315 | |||||
| 9316 | // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: | ||||
| 9317 | // Below cases should also happen for "lfiwzx/lfiwax + LE target + index | ||||
| 9318 | // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index | ||||
| 9319 | // 15", but function IsValidSplatLoad() now will only return true when | ||||
| 9320 | // the data at index 0 is not nullptr. So we will not get into trouble for | ||||
| 9321 | // these cases. | ||||
| 9322 | // | ||||
| 9323 | // case 1 - lfiwzx/lfiwax | ||||
| 9324 | // 1.1: load result is i32 and is sign/zero extend to i64; | ||||
| 9325 | // 1.2: build a v2i64 vector type with above loaded value; | ||||
| 9326 | // 1.3: the vector has only one value at index 0, others are all undef; | ||||
| 9327 | // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. | ||||
| 9328 | if (NumUsesOfInputLD == 1 && | ||||
| 9329 | (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && | ||||
| 9330 | !Subtarget.isLittleEndian() && Subtarget.hasVSX() && | ||||
| 9331 | Subtarget.hasLFIWAX())) | ||||
| 9332 | return SDValue(); | ||||
| 9333 | |||||
| 9334 | // case 2 - lxvr[hb]x | ||||
| 9335 | // 2.1: load result is at most i16; | ||||
| 9336 | // 2.2: build a vector with above loaded value; | ||||
| 9337 | // 2.3: the vector has only one value at index 0, others are all undef; | ||||
| 9338 | // 2.4: on LE target, so that lxvr[hb]x does not need any permute. | ||||
| 9339 | if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && | ||||
| 9340 | Subtarget.isISA3_1() && ElementSize <= 16) | ||||
| 9341 | return SDValue(); | ||||
| 9342 | |||||
| 9343 | assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?")(static_cast <bool> (NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?") ? void (0) : __assert_fail ("NumUsesOfInputLD > 0 && \"No uses of input LD of a build_vector?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9343, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9344 | if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && | ||||
| 9345 | Subtarget.hasVSX()) { | ||||
| 9346 | SDValue Ops[] = { | ||||
| 9347 | LD->getChain(), // Chain | ||||
| 9348 | LD->getBasePtr(), // Ptr | ||||
| 9349 | DAG.getValueType(Op.getValueType()) // VT | ||||
| 9350 | }; | ||||
| 9351 | SDValue LdSplt = DAG.getMemIntrinsicNode( | ||||
| 9352 | NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, | ||||
| 9353 | LD->getMemoryVT(), LD->getMemOperand()); | ||||
| 9354 | // Replace all uses of the output chain of the original load with the | ||||
| 9355 | // output chain of the new load. | ||||
| 9356 | DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), | ||||
| 9357 | LdSplt.getValue(1)); | ||||
| 9358 | return LdSplt; | ||||
| 9359 | } | ||||
| 9360 | } | ||||
| 9361 | |||||
| 9362 | // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to | ||||
| 9363 | // 32-bits can be lowered to VSX instructions under certain conditions. | ||||
| 9364 | // Without VSX, there is no pattern more efficient than expanding the node. | ||||
| 9365 | if (Subtarget.hasVSX() && Subtarget.isPPC64() && | ||||
| 9366 | haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), | ||||
| 9367 | Subtarget.hasP8Vector())) | ||||
| 9368 | return Op; | ||||
| 9369 | return SDValue(); | ||||
| 9370 | } | ||||
| 9371 | |||||
| 9372 | uint64_t SplatBits = APSplatBits.getZExtValue(); | ||||
| 9373 | uint64_t SplatUndef = APSplatUndef.getZExtValue(); | ||||
| 9374 | unsigned SplatSize = SplatBitSize / 8; | ||||
| 9375 | |||||
| 9376 | // First, handle single instruction cases. | ||||
| 9377 | |||||
| 9378 | // All zeros? | ||||
| 9379 | if (SplatBits == 0) { | ||||
| 9380 | // Canonicalize all zero vectors to be v4i32. | ||||
| 9381 | if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { | ||||
| 9382 | SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); | ||||
| 9383 | Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); | ||||
| 9384 | } | ||||
| 9385 | return Op; | ||||
| 9386 | } | ||||
| 9387 | |||||
| 9388 | // We have XXSPLTIW for constant splats four bytes wide. | ||||
| 9389 | // Given vector length is a multiple of 4, 2-byte splats can be replaced | ||||
| 9390 | // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to | ||||
| 9391 | // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be | ||||
| 9392 | // turned into a 4-byte splat of 0xABABABAB. | ||||
| 9393 | if (Subtarget.hasPrefixInstrs() && SplatSize == 2) | ||||
| 9394 | return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, | ||||
| 9395 | Op.getValueType(), DAG, dl); | ||||
| 9396 | |||||
| 9397 | if (Subtarget.hasPrefixInstrs() && SplatSize == 4) | ||||
| 9398 | return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, | ||||
| 9399 | dl); | ||||
| 9400 | |||||
| 9401 | // We have XXSPLTIB for constant splats one byte wide. | ||||
| 9402 | if (Subtarget.hasP9Vector() && SplatSize == 1) | ||||
| 9403 | return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, | ||||
| 9404 | dl); | ||||
| 9405 | |||||
| 9406 | // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. | ||||
| 9407 | int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> | ||||
| 9408 | (32-SplatBitSize)); | ||||
| 9409 | if (SextVal >= -16 && SextVal <= 15) | ||||
| 9410 | return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, | ||||
| 9411 | dl); | ||||
| 9412 | |||||
| 9413 | // Two instruction sequences. | ||||
| 9414 | |||||
| 9415 | // If this value is in the range [-32,30] and is even, use: | ||||
| 9416 | // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) | ||||
| 9417 | // If this value is in the range [17,31] and is odd, use: | ||||
| 9418 | // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) | ||||
| 9419 | // If this value is in the range [-31,-17] and is odd, use: | ||||
| 9420 | // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) | ||||
| 9421 | // Note the last two are three-instruction sequences. | ||||
| 9422 | if (SextVal >= -32 && SextVal <= 31) { | ||||
| 9423 | // To avoid having these optimizations undone by constant folding, | ||||
| 9424 | // we convert to a pseudo that will be expanded later into one of | ||||
| 9425 | // the above forms. | ||||
| 9426 | SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); | ||||
| 9427 | EVT VT = (SplatSize == 1 ? MVT::v16i8 : | ||||
| 9428 | (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); | ||||
| 9429 | SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); | ||||
| 9430 | SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); | ||||
| 9431 | if (VT == Op.getValueType()) | ||||
| 9432 | return RetVal; | ||||
| 9433 | else | ||||
| 9434 | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); | ||||
| 9435 | } | ||||
| 9436 | |||||
| 9437 | // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is | ||||
| 9438 | // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important | ||||
| 9439 | // for fneg/fabs. | ||||
| 9440 | if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { | ||||
| 9441 | // Make -1 and vspltisw -1: | ||||
| 9442 | SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); | ||||
| 9443 | |||||
| 9444 | // Make the VSLW intrinsic, computing 0x8000_0000. | ||||
| 9445 | SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, | ||||
| 9446 | OnesV, DAG, dl); | ||||
| 9447 | |||||
| 9448 | // xor by OnesV to invert it. | ||||
| 9449 | Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); | ||||
| 9450 | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); | ||||
| 9451 | } | ||||
| 9452 | |||||
| 9453 | // Check to see if this is a wide variety of vsplti*, binop self cases. | ||||
| 9454 | static const signed char SplatCsts[] = { | ||||
| 9455 | -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, | ||||
| 9456 | -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 | ||||
| 9457 | }; | ||||
| 9458 | |||||
| 9459 | for (unsigned idx = 0; idx < std::size(SplatCsts); ++idx) { | ||||
| 9460 | // Indirect through the SplatCsts array so that we favor 'vsplti -1' for | ||||
| 9461 | // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' | ||||
| 9462 | int i = SplatCsts[idx]; | ||||
| 9463 | |||||
| 9464 | // Figure out what shift amount will be used by altivec if shifted by i in | ||||
| 9465 | // this splat size. | ||||
| 9466 | unsigned TypeShiftAmt = i & (SplatBitSize-1); | ||||
| 9467 | |||||
| 9468 | // vsplti + shl self. | ||||
| 9469 | if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { | ||||
| 9470 | SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); | ||||
| 9471 | static const unsigned IIDs[] = { // Intrinsic to use for each size. | ||||
| 9472 | Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, | ||||
| 9473 | Intrinsic::ppc_altivec_vslw | ||||
| 9474 | }; | ||||
| 9475 | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | ||||
| 9476 | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); | ||||
| 9477 | } | ||||
| 9478 | |||||
| 9479 | // vsplti + srl self. | ||||
| 9480 | if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { | ||||
| 9481 | SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); | ||||
| 9482 | static const unsigned IIDs[] = { // Intrinsic to use for each size. | ||||
| 9483 | Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, | ||||
| 9484 | Intrinsic::ppc_altivec_vsrw | ||||
| 9485 | }; | ||||
| 9486 | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | ||||
| 9487 | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); | ||||
| 9488 | } | ||||
| 9489 | |||||
| 9490 | // vsplti + rol self. | ||||
| 9491 | if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | | ||||
| 9492 | ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { | ||||
| 9493 | SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); | ||||
| 9494 | static const unsigned IIDs[] = { // Intrinsic to use for each size. | ||||
| 9495 | Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, | ||||
| 9496 | Intrinsic::ppc_altivec_vrlw | ||||
| 9497 | }; | ||||
| 9498 | Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); | ||||
| 9499 | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); | ||||
| 9500 | } | ||||
| 9501 | |||||
| 9502 | // t = vsplti c, result = vsldoi t, t, 1 | ||||
| 9503 | if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { | ||||
| 9504 | SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); | ||||
| 9505 | unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; | ||||
| 9506 | return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); | ||||
| 9507 | } | ||||
| 9508 | // t = vsplti c, result = vsldoi t, t, 2 | ||||
| 9509 | if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { | ||||
| 9510 | SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); | ||||
| 9511 | unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; | ||||
| 9512 | return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); | ||||
| 9513 | } | ||||
| 9514 | // t = vsplti c, result = vsldoi t, t, 3 | ||||
| 9515 | if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { | ||||
| 9516 | SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); | ||||
| 9517 | unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; | ||||
| 9518 | return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); | ||||
| 9519 | } | ||||
| 9520 | } | ||||
| 9521 | |||||
| 9522 | return SDValue(); | ||||
| 9523 | } | ||||
| 9524 | |||||
| 9525 | /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit | ||||
| 9526 | /// the specified operations to build the shuffle. | ||||
| 9527 | static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, | ||||
| 9528 | SDValue RHS, SelectionDAG &DAG, | ||||
| 9529 | const SDLoc &dl) { | ||||
| 9530 | unsigned OpNum = (PFEntry >> 26) & 0x0F; | ||||
| 9531 | unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); | ||||
| 9532 | unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); | ||||
| 9533 | |||||
| 9534 | enum { | ||||
| 9535 | OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> | ||||
| 9536 | OP_VMRGHW, | ||||
| 9537 | OP_VMRGLW, | ||||
| 9538 | OP_VSPLTISW0, | ||||
| 9539 | OP_VSPLTISW1, | ||||
| 9540 | OP_VSPLTISW2, | ||||
| 9541 | OP_VSPLTISW3, | ||||
| 9542 | OP_VSLDOI4, | ||||
| 9543 | OP_VSLDOI8, | ||||
| 9544 | OP_VSLDOI12 | ||||
| 9545 | }; | ||||
| 9546 | |||||
| 9547 | if (OpNum == OP_COPY) { | ||||
| 9548 | if (LHSID == (1*9+2)*9+3) return LHS; | ||||
| 9549 | assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!")(static_cast <bool> (LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!") ? void (0) : __assert_fail ("LHSID == ((4*9+5)*9+6)*9+7 && \"Illegal OP_COPY!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9549, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9550 | return RHS; | ||||
| 9551 | } | ||||
| 9552 | |||||
| 9553 | SDValue OpLHS, OpRHS; | ||||
| 9554 | OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); | ||||
| 9555 | OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); | ||||
| 9556 | |||||
| 9557 | int ShufIdxs[16]; | ||||
| 9558 | switch (OpNum) { | ||||
| 9559 | default: llvm_unreachable("Unknown i32 permute!")::llvm::llvm_unreachable_internal("Unknown i32 permute!", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 9559); | ||||
| 9560 | case OP_VMRGHW: | ||||
| 9561 | ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; | ||||
| 9562 | ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; | ||||
| 9563 | ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; | ||||
| 9564 | ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; | ||||
| 9565 | break; | ||||
| 9566 | case OP_VMRGLW: | ||||
| 9567 | ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; | ||||
| 9568 | ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; | ||||
| 9569 | ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; | ||||
| 9570 | ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; | ||||
| 9571 | break; | ||||
| 9572 | case OP_VSPLTISW0: | ||||
| 9573 | for (unsigned i = 0; i != 16; ++i) | ||||
| 9574 | ShufIdxs[i] = (i&3)+0; | ||||
| 9575 | break; | ||||
| 9576 | case OP_VSPLTISW1: | ||||
| 9577 | for (unsigned i = 0; i != 16; ++i) | ||||
| 9578 | ShufIdxs[i] = (i&3)+4; | ||||
| 9579 | break; | ||||
| 9580 | case OP_VSPLTISW2: | ||||
| 9581 | for (unsigned i = 0; i != 16; ++i) | ||||
| 9582 | ShufIdxs[i] = (i&3)+8; | ||||
| 9583 | break; | ||||
| 9584 | case OP_VSPLTISW3: | ||||
| 9585 | for (unsigned i = 0; i != 16; ++i) | ||||
| 9586 | ShufIdxs[i] = (i&3)+12; | ||||
| 9587 | break; | ||||
| 9588 | case OP_VSLDOI4: | ||||
| 9589 | return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); | ||||
| 9590 | case OP_VSLDOI8: | ||||
| 9591 | return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); | ||||
| 9592 | case OP_VSLDOI12: | ||||
| 9593 | return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); | ||||
| 9594 | } | ||||
| 9595 | EVT VT = OpLHS.getValueType(); | ||||
| 9596 | OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); | ||||
| 9597 | OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); | ||||
| 9598 | SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); | ||||
| 9599 | return DAG.getNode(ISD::BITCAST, dl, VT, T); | ||||
| 9600 | } | ||||
| 9601 | |||||
| 9602 | /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled | ||||
| 9603 | /// by the VINSERTB instruction introduced in ISA 3.0, else just return default | ||||
| 9604 | /// SDValue. | ||||
| 9605 | SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, | ||||
| 9606 | SelectionDAG &DAG) const { | ||||
| 9607 | const unsigned BytesInVector = 16; | ||||
| 9608 | bool IsLE = Subtarget.isLittleEndian(); | ||||
| 9609 | SDLoc dl(N); | ||||
| 9610 | SDValue V1 = N->getOperand(0); | ||||
| 9611 | SDValue V2 = N->getOperand(1); | ||||
| 9612 | unsigned ShiftElts = 0, InsertAtByte = 0; | ||||
| 9613 | bool Swap = false; | ||||
| 9614 | |||||
| 9615 | // Shifts required to get the byte we want at element 7. | ||||
| 9616 | unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, | ||||
| 9617 | 0, 15, 14, 13, 12, 11, 10, 9}; | ||||
| 9618 | unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, | ||||
| 9619 | 1, 2, 3, 4, 5, 6, 7, 8}; | ||||
| 9620 | |||||
| 9621 | ArrayRef<int> Mask = N->getMask(); | ||||
| 9622 | int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; | ||||
| 9623 | |||||
| 9624 | // For each mask element, find out if we're just inserting something | ||||
| 9625 | // from V2 into V1 or vice versa. | ||||
| 9626 | // Possible permutations inserting an element from V2 into V1: | ||||
| 9627 | // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | ||||
| 9628 | // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | ||||
| 9629 | // ... | ||||
| 9630 | // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X | ||||
| 9631 | // Inserting from V1 into V2 will be similar, except mask range will be | ||||
| 9632 | // [16,31]. | ||||
| 9633 | |||||
| 9634 | bool FoundCandidate = false; | ||||
| 9635 | // If both vector operands for the shuffle are the same vector, the mask | ||||
| 9636 | // will contain only elements from the first one and the second one will be | ||||
| 9637 | // undef. | ||||
| 9638 | unsigned VINSERTBSrcElem = IsLE ? 8 : 7; | ||||
| 9639 | // Go through the mask of half-words to find an element that's being moved | ||||
| 9640 | // from one vector to the other. | ||||
| 9641 | for (unsigned i = 0; i < BytesInVector; ++i) { | ||||
| 9642 | unsigned CurrentElement = Mask[i]; | ||||
| 9643 | // If 2nd operand is undefined, we should only look for element 7 in the | ||||
| 9644 | // Mask. | ||||
| 9645 | if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) | ||||
| 9646 | continue; | ||||
| 9647 | |||||
| 9648 | bool OtherElementsInOrder = true; | ||||
| 9649 | // Examine the other elements in the Mask to see if they're in original | ||||
| 9650 | // order. | ||||
| 9651 | for (unsigned j = 0; j < BytesInVector; ++j) { | ||||
| 9652 | if (j == i) | ||||
| 9653 | continue; | ||||
| 9654 | // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be | ||||
| 9655 | // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, | ||||
| 9656 | // in which we always assume we're always picking from the 1st operand. | ||||
| 9657 | int MaskOffset = | ||||
| 9658 | (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; | ||||
| 9659 | if (Mask[j] != OriginalOrder[j] + MaskOffset) { | ||||
| 9660 | OtherElementsInOrder = false; | ||||
| 9661 | break; | ||||
| 9662 | } | ||||
| 9663 | } | ||||
| 9664 | // If other elements are in original order, we record the number of shifts | ||||
| 9665 | // we need to get the element we want into element 7. Also record which byte | ||||
| 9666 | // in the vector we should insert into. | ||||
| 9667 | if (OtherElementsInOrder) { | ||||
| 9668 | // If 2nd operand is undefined, we assume no shifts and no swapping. | ||||
| 9669 | if (V2.isUndef()) { | ||||
| 9670 | ShiftElts = 0; | ||||
| 9671 | Swap = false; | ||||
| 9672 | } else { | ||||
| 9673 | // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. | ||||
| 9674 | ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] | ||||
| 9675 | : BigEndianShifts[CurrentElement & 0xF]; | ||||
| 9676 | Swap = CurrentElement < BytesInVector; | ||||
| 9677 | } | ||||
| 9678 | InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; | ||||
| 9679 | FoundCandidate = true; | ||||
| 9680 | break; | ||||
| 9681 | } | ||||
| 9682 | } | ||||
| 9683 | |||||
| 9684 | if (!FoundCandidate) | ||||
| 9685 | return SDValue(); | ||||
| 9686 | |||||
| 9687 | // Candidate found, construct the proper SDAG sequence with VINSERTB, | ||||
| 9688 | // optionally with VECSHL if shift is required. | ||||
| 9689 | if (Swap) | ||||
| 9690 | std::swap(V1, V2); | ||||
| 9691 | if (V2.isUndef()) | ||||
| 9692 | V2 = V1; | ||||
| 9693 | if (ShiftElts) { | ||||
| 9694 | SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, | ||||
| 9695 | DAG.getConstant(ShiftElts, dl, MVT::i32)); | ||||
| 9696 | return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, | ||||
| 9697 | DAG.getConstant(InsertAtByte, dl, MVT::i32)); | ||||
| 9698 | } | ||||
| 9699 | return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, | ||||
| 9700 | DAG.getConstant(InsertAtByte, dl, MVT::i32)); | ||||
| 9701 | } | ||||
| 9702 | |||||
| 9703 | /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled | ||||
| 9704 | /// by the VINSERTH instruction introduced in ISA 3.0, else just return default | ||||
| 9705 | /// SDValue. | ||||
| 9706 | SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, | ||||
| 9707 | SelectionDAG &DAG) const { | ||||
| 9708 | const unsigned NumHalfWords = 8; | ||||
| 9709 | const unsigned BytesInVector = NumHalfWords * 2; | ||||
| 9710 | // Check that the shuffle is on half-words. | ||||
| 9711 | if (!isNByteElemShuffleMask(N, 2, 1)) | ||||
| 9712 | return SDValue(); | ||||
| 9713 | |||||
| 9714 | bool IsLE = Subtarget.isLittleEndian(); | ||||
| 9715 | SDLoc dl(N); | ||||
| 9716 | SDValue V1 = N->getOperand(0); | ||||
| 9717 | SDValue V2 = N->getOperand(1); | ||||
| 9718 | unsigned ShiftElts = 0, InsertAtByte = 0; | ||||
| 9719 | bool Swap = false; | ||||
| 9720 | |||||
| 9721 | // Shifts required to get the half-word we want at element 3. | ||||
| 9722 | unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; | ||||
| 9723 | unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; | ||||
| 9724 | |||||
| 9725 | uint32_t Mask = 0; | ||||
| 9726 | uint32_t OriginalOrderLow = 0x1234567; | ||||
| 9727 | uint32_t OriginalOrderHigh = 0x89ABCDEF; | ||||
| 9728 | // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a | ||||
| 9729 | // 32-bit space, only need 4-bit nibbles per element. | ||||
| 9730 | for (unsigned i = 0; i < NumHalfWords; ++i) { | ||||
| 9731 | unsigned MaskShift = (NumHalfWords - 1 - i) * 4; | ||||
| 9732 | Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); | ||||
| 9733 | } | ||||
| 9734 | |||||
| 9735 | // For each mask element, find out if we're just inserting something | ||||
| 9736 | // from V2 into V1 or vice versa. Possible permutations inserting an element | ||||
| 9737 | // from V2 into V1: | ||||
| 9738 | // X, 1, 2, 3, 4, 5, 6, 7 | ||||
| 9739 | // 0, X, 2, 3, 4, 5, 6, 7 | ||||
| 9740 | // 0, 1, X, 3, 4, 5, 6, 7 | ||||
| 9741 | // 0, 1, 2, X, 4, 5, 6, 7 | ||||
| 9742 | // 0, 1, 2, 3, X, 5, 6, 7 | ||||
| 9743 | // 0, 1, 2, 3, 4, X, 6, 7 | ||||
| 9744 | // 0, 1, 2, 3, 4, 5, X, 7 | ||||
| 9745 | // 0, 1, 2, 3, 4, 5, 6, X | ||||
| 9746 | // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. | ||||
| 9747 | |||||
| 9748 | bool FoundCandidate = false; | ||||
| 9749 | // Go through the mask of half-words to find an element that's being moved | ||||
| 9750 | // from one vector to the other. | ||||
| 9751 | for (unsigned i = 0; i < NumHalfWords; ++i) { | ||||
| 9752 | unsigned MaskShift = (NumHalfWords - 1 - i) * 4; | ||||
| 9753 | uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; | ||||
| 9754 | uint32_t MaskOtherElts = ~(0xF << MaskShift); | ||||
| 9755 | uint32_t TargetOrder = 0x0; | ||||
| 9756 | |||||
| 9757 | // If both vector operands for the shuffle are the same vector, the mask | ||||
| 9758 | // will contain only elements from the first one and the second one will be | ||||
| 9759 | // undef. | ||||
| 9760 | if (V2.isUndef()) { | ||||
| 9761 | ShiftElts = 0; | ||||
| 9762 | unsigned VINSERTHSrcElem = IsLE ? 4 : 3; | ||||
| 9763 | TargetOrder = OriginalOrderLow; | ||||
| 9764 | Swap = false; | ||||
| 9765 | // Skip if not the correct element or mask of other elements don't equal | ||||
| 9766 | // to our expected order. | ||||
| 9767 | if (MaskOneElt == VINSERTHSrcElem && | ||||
| 9768 | (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { | ||||
| 9769 | InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; | ||||
| 9770 | FoundCandidate = true; | ||||
| 9771 | break; | ||||
| 9772 | } | ||||
| 9773 | } else { // If both operands are defined. | ||||
| 9774 | // Target order is [8,15] if the current mask is between [0,7]. | ||||
| 9775 | TargetOrder = | ||||
| 9776 | (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; | ||||
| 9777 | // Skip if mask of other elements don't equal our expected order. | ||||
| 9778 | if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { | ||||
| 9779 | // We only need the last 3 bits for the number of shifts. | ||||
| 9780 | ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] | ||||
| 9781 | : BigEndianShifts[MaskOneElt & 0x7]; | ||||
| 9782 | InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; | ||||
| 9783 | Swap = MaskOneElt < NumHalfWords; | ||||
| 9784 | FoundCandidate = true; | ||||
| 9785 | break; | ||||
| 9786 | } | ||||
| 9787 | } | ||||
| 9788 | } | ||||
| 9789 | |||||
| 9790 | if (!FoundCandidate) | ||||
| 9791 | return SDValue(); | ||||
| 9792 | |||||
| 9793 | // Candidate found, construct the proper SDAG sequence with VINSERTH, | ||||
| 9794 | // optionally with VECSHL if shift is required. | ||||
| 9795 | if (Swap) | ||||
| 9796 | std::swap(V1, V2); | ||||
| 9797 | if (V2.isUndef()) | ||||
| 9798 | V2 = V1; | ||||
| 9799 | SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); | ||||
| 9800 | if (ShiftElts) { | ||||
| 9801 | // Double ShiftElts because we're left shifting on v16i8 type. | ||||
| 9802 | SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, | ||||
| 9803 | DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); | ||||
| 9804 | SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); | ||||
| 9805 | SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, | ||||
| 9806 | DAG.getConstant(InsertAtByte, dl, MVT::i32)); | ||||
| 9807 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); | ||||
| 9808 | } | ||||
| 9809 | SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); | ||||
| 9810 | SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, | ||||
| 9811 | DAG.getConstant(InsertAtByte, dl, MVT::i32)); | ||||
| 9812 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); | ||||
| 9813 | } | ||||
| 9814 | |||||
| 9815 | /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be | ||||
| 9816 | /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise | ||||
| 9817 | /// return the default SDValue. | ||||
| 9818 | SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, | ||||
| 9819 | SelectionDAG &DAG) const { | ||||
| 9820 | // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles | ||||
| 9821 | // to v16i8. Peek through the bitcasts to get the actual operands. | ||||
| 9822 | SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); | ||||
| 9823 | SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); | ||||
| 9824 | |||||
| 9825 | auto ShuffleMask = SVN->getMask(); | ||||
| 9826 | SDValue VecShuffle(SVN, 0); | ||||
| 9827 | SDLoc DL(SVN); | ||||
| 9828 | |||||
| 9829 | // Check that we have a four byte shuffle. | ||||
| 9830 | if (!isNByteElemShuffleMask(SVN, 4, 1)) | ||||
| 9831 | return SDValue(); | ||||
| 9832 | |||||
| 9833 | // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. | ||||
| 9834 | if (RHS->getOpcode() != ISD::BUILD_VECTOR) { | ||||
| 9835 | std::swap(LHS, RHS); | ||||
| 9836 | VecShuffle = peekThroughBitcasts(DAG.getCommutedVectorShuffle(*SVN)); | ||||
| 9837 | ShuffleVectorSDNode *CommutedSV = dyn_cast<ShuffleVectorSDNode>(VecShuffle); | ||||
| 9838 | if (!CommutedSV) | ||||
| 9839 | return SDValue(); | ||||
| 9840 | ShuffleMask = CommutedSV->getMask(); | ||||
| 9841 | } | ||||
| 9842 | |||||
| 9843 | // Ensure that the RHS is a vector of constants. | ||||
| 9844 | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); | ||||
| 9845 | if (!BVN) | ||||
| 9846 | return SDValue(); | ||||
| 9847 | |||||
| 9848 | // Check if RHS is a splat of 4-bytes (or smaller). | ||||
| 9849 | APInt APSplatValue, APSplatUndef; | ||||
| 9850 | unsigned SplatBitSize; | ||||
| 9851 | bool HasAnyUndefs; | ||||
| 9852 | if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, | ||||
| 9853 | HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || | ||||
| 9854 | SplatBitSize > 32) | ||||
| 9855 | return SDValue(); | ||||
| 9856 | |||||
| 9857 | // Check that the shuffle mask matches the semantics of XXSPLTI32DX. | ||||
| 9858 | // The instruction splats a constant C into two words of the source vector | ||||
| 9859 | // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. | ||||
| 9860 | // Thus we check that the shuffle mask is the equivalent of | ||||
| 9861 | // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. | ||||
| 9862 | // Note: the check above of isNByteElemShuffleMask() ensures that the bytes | ||||
| 9863 | // within each word are consecutive, so we only need to check the first byte. | ||||
| 9864 | SDValue Index; | ||||
| 9865 | bool IsLE = Subtarget.isLittleEndian(); | ||||
| 9866 | if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && | ||||
| 9867 | (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && | ||||
| 9868 | ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) | ||||
| 9869 | Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); | ||||
| 9870 | else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && | ||||
| 9871 | (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && | ||||
| 9872 | ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) | ||||
| 9873 | Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); | ||||
| 9874 | else | ||||
| 9875 | return SDValue(); | ||||
| 9876 | |||||
| 9877 | // If the splat is narrower than 32-bits, we need to get the 32-bit value | ||||
| 9878 | // for XXSPLTI32DX. | ||||
| 9879 | unsigned SplatVal = APSplatValue.getZExtValue(); | ||||
| 9880 | for (; SplatBitSize < 32; SplatBitSize <<= 1) | ||||
| 9881 | SplatVal |= (SplatVal << SplatBitSize); | ||||
| 9882 | |||||
| 9883 | SDValue SplatNode = DAG.getNode( | ||||
| 9884 | PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), | ||||
| 9885 | Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); | ||||
| 9886 | return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); | ||||
| 9887 | } | ||||
| 9888 | |||||
| 9889 | /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). | ||||
| 9890 | /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is | ||||
| 9891 | /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) | ||||
| 9892 | /// i.e (or (shl x, C1), (srl x, 128-C1)). | ||||
| 9893 | SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { | ||||
| 9894 | assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL")(static_cast <bool> (Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL") ? void (0) : __assert_fail ("Op.getOpcode() == ISD::ROTL && \"Should only be called for ISD::ROTL\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9894, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9895 | assert(Op.getValueType() == MVT::v1i128 &&(static_cast <bool> (Op.getValueType() == MVT::v1i128 && "Only set v1i128 as custom, other type shouldn't reach here!" ) ? void (0) : __assert_fail ("Op.getValueType() == MVT::v1i128 && \"Only set v1i128 as custom, other type shouldn't reach here!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9896, __extension__ __PRETTY_FUNCTION__)) | ||||
| 9896 | "Only set v1i128 as custom, other type shouldn't reach here!")(static_cast <bool> (Op.getValueType() == MVT::v1i128 && "Only set v1i128 as custom, other type shouldn't reach here!" ) ? void (0) : __assert_fail ("Op.getValueType() == MVT::v1i128 && \"Only set v1i128 as custom, other type shouldn't reach here!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9896, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9897 | SDLoc dl(Op); | ||||
| 9898 | SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); | ||||
| 9899 | SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); | ||||
| 9900 | unsigned SHLAmt = N1.getConstantOperandVal(0); | ||||
| 9901 | if (SHLAmt % 8 == 0) { | ||||
| 9902 | std::array<int, 16> Mask; | ||||
| 9903 | std::iota(Mask.begin(), Mask.end(), 0); | ||||
| 9904 | std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); | ||||
| 9905 | if (SDValue Shuffle = | ||||
| 9906 | DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), | ||||
| 9907 | DAG.getUNDEF(MVT::v16i8), Mask)) | ||||
| 9908 | return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); | ||||
| 9909 | } | ||||
| 9910 | SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); | ||||
| 9911 | SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, | ||||
| 9912 | DAG.getConstant(SHLAmt, dl, MVT::i32)); | ||||
| 9913 | SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, | ||||
| 9914 | DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); | ||||
| 9915 | SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); | ||||
| 9916 | return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); | ||||
| 9917 | } | ||||
| 9918 | |||||
| 9919 | /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this | ||||
| 9920 | /// is a shuffle we can handle in a single instruction, return it. Otherwise, | ||||
| 9921 | /// return the code it can be lowered into. Worst case, it can always be | ||||
| 9922 | /// lowered into a vperm. | ||||
| 9923 | SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, | ||||
| 9924 | SelectionDAG &DAG) const { | ||||
| 9925 | SDLoc dl(Op); | ||||
| 9926 | SDValue V1 = Op.getOperand(0); | ||||
| 9927 | SDValue V2 = Op.getOperand(1); | ||||
| 9928 | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | ||||
| 9929 | |||||
| 9930 | // Any nodes that were combined in the target-independent combiner prior | ||||
| 9931 | // to vector legalization will not be sent to the target combine. Try to | ||||
| 9932 | // combine it here. | ||||
| 9933 | if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { | ||||
| 9934 | if (!isa<ShuffleVectorSDNode>(NewShuffle)) | ||||
| 9935 | return NewShuffle; | ||||
| 9936 | Op = NewShuffle; | ||||
| 9937 | SVOp = cast<ShuffleVectorSDNode>(Op); | ||||
| 9938 | V1 = Op.getOperand(0); | ||||
| 9939 | V2 = Op.getOperand(1); | ||||
| 9940 | } | ||||
| 9941 | EVT VT = Op.getValueType(); | ||||
| 9942 | bool isLittleEndian = Subtarget.isLittleEndian(); | ||||
| 9943 | |||||
| 9944 | unsigned ShiftElts, InsertAtByte; | ||||
| 9945 | bool Swap = false; | ||||
| 9946 | |||||
| 9947 | // If this is a load-and-splat, we can do that with a single instruction | ||||
| 9948 | // in some cases. However if the load has multiple uses, we don't want to | ||||
| 9949 | // combine it because that will just produce multiple loads. | ||||
| 9950 | bool IsPermutedLoad = false; | ||||
| 9951 | const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); | ||||
| 9952 | if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && | ||||
| 9953 | (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && | ||||
| 9954 | InputLoad->hasOneUse()) { | ||||
| 9955 | bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); | ||||
| 9956 | int SplatIdx = | ||||
| 9957 | PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); | ||||
| 9958 | |||||
| 9959 | // The splat index for permuted loads will be in the left half of the vector | ||||
| 9960 | // which is strictly wider than the loaded value by 8 bytes. So we need to | ||||
| 9961 | // adjust the splat index to point to the correct address in memory. | ||||
| 9962 | if (IsPermutedLoad) { | ||||
| 9963 | assert((isLittleEndian || IsFourByte) &&(static_cast <bool> ((isLittleEndian || IsFourByte) && "Unexpected size for permuted load on big endian target") ? void (0) : __assert_fail ("(isLittleEndian || IsFourByte) && \"Unexpected size for permuted load on big endian target\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9964, __extension__ __PRETTY_FUNCTION__)) | ||||
| 9964 | "Unexpected size for permuted load on big endian target")(static_cast <bool> ((isLittleEndian || IsFourByte) && "Unexpected size for permuted load on big endian target") ? void (0) : __assert_fail ("(isLittleEndian || IsFourByte) && \"Unexpected size for permuted load on big endian target\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9964, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9965 | SplatIdx += IsFourByte ? 2 : 1; | ||||
| 9966 | assert((SplatIdx < (IsFourByte ? 4 : 2)) &&(static_cast <bool> ((SplatIdx < (IsFourByte ? 4 : 2 )) && "Splat of a value outside of the loaded memory" ) ? void (0) : __assert_fail ("(SplatIdx < (IsFourByte ? 4 : 2)) && \"Splat of a value outside of the loaded memory\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9967, __extension__ __PRETTY_FUNCTION__)) | ||||
| 9967 | "Splat of a value outside of the loaded memory")(static_cast <bool> ((SplatIdx < (IsFourByte ? 4 : 2 )) && "Splat of a value outside of the loaded memory" ) ? void (0) : __assert_fail ("(SplatIdx < (IsFourByte ? 4 : 2)) && \"Splat of a value outside of the loaded memory\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 9967, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9968 | } | ||||
| 9969 | |||||
| 9970 | LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); | ||||
| 9971 | // For 4-byte load-and-splat, we need Power9. | ||||
| 9972 | if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { | ||||
| 9973 | uint64_t Offset = 0; | ||||
| 9974 | if (IsFourByte) | ||||
| 9975 | Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; | ||||
| 9976 | else | ||||
| 9977 | Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; | ||||
| 9978 | |||||
| 9979 | // If the width of the load is the same as the width of the splat, | ||||
| 9980 | // loading with an offset would load the wrong memory. | ||||
| 9981 | if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) | ||||
| 9982 | Offset = 0; | ||||
| 9983 | |||||
| 9984 | SDValue BasePtr = LD->getBasePtr(); | ||||
| 9985 | if (Offset != 0) | ||||
| 9986 | BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), | ||||
| 9987 | BasePtr, DAG.getIntPtrConstant(Offset, dl)); | ||||
| 9988 | SDValue Ops[] = { | ||||
| 9989 | LD->getChain(), // Chain | ||||
| 9990 | BasePtr, // BasePtr | ||||
| 9991 | DAG.getValueType(Op.getValueType()) // VT | ||||
| 9992 | }; | ||||
| 9993 | SDVTList VTL = | ||||
| 9994 | DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); | ||||
| 9995 | SDValue LdSplt = | ||||
| 9996 | DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, | ||||
| 9997 | Ops, LD->getMemoryVT(), LD->getMemOperand()); | ||||
| 9998 | DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); | ||||
| 9999 | if (LdSplt.getValueType() != SVOp->getValueType(0)) | ||||
| 10000 | LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); | ||||
| 10001 | return LdSplt; | ||||
| 10002 | } | ||||
| 10003 | } | ||||
| 10004 | |||||
| 10005 | // All v2i64 and v2f64 shuffles are legal | ||||
| 10006 | if (VT == MVT::v2i64 || VT == MVT::v2f64) | ||||
| 10007 | return Op; | ||||
| 10008 | |||||
| 10009 | if (Subtarget.hasP9Vector() && | ||||
| 10010 | PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, | ||||
| 10011 | isLittleEndian)) { | ||||
| 10012 | if (Swap) | ||||
| 10013 | std::swap(V1, V2); | ||||
| 10014 | SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); | ||||
| 10015 | SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); | ||||
| 10016 | if (ShiftElts) { | ||||
| 10017 | SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, | ||||
| 10018 | DAG.getConstant(ShiftElts, dl, MVT::i32)); | ||||
| 10019 | SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, | ||||
| 10020 | DAG.getConstant(InsertAtByte, dl, MVT::i32)); | ||||
| 10021 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); | ||||
| 10022 | } | ||||
| 10023 | SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, | ||||
| 10024 | DAG.getConstant(InsertAtByte, dl, MVT::i32)); | ||||
| 10025 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); | ||||
| 10026 | } | ||||
| 10027 | |||||
| 10028 | if (Subtarget.hasPrefixInstrs()) { | ||||
| 10029 | SDValue SplatInsertNode; | ||||
| 10030 | if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) | ||||
| 10031 | return SplatInsertNode; | ||||
| 10032 | } | ||||
| 10033 | |||||
| 10034 | if (Subtarget.hasP9Altivec()) { | ||||
| 10035 | SDValue NewISDNode; | ||||
| 10036 | if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) | ||||
| 10037 | return NewISDNode; | ||||
| 10038 | |||||
| 10039 | if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) | ||||
| 10040 | return NewISDNode; | ||||
| 10041 | } | ||||
| 10042 | |||||
| 10043 | if (Subtarget.hasVSX() && | ||||
| 10044 | PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { | ||||
| 10045 | if (Swap) | ||||
| 10046 | std::swap(V1, V2); | ||||
| 10047 | SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); | ||||
| 10048 | SDValue Conv2 = | ||||
| 10049 | DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); | ||||
| 10050 | |||||
| 10051 | SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, | ||||
| 10052 | DAG.getConstant(ShiftElts, dl, MVT::i32)); | ||||
| 10053 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); | ||||
| 10054 | } | ||||
| 10055 | |||||
| 10056 | if (Subtarget.hasVSX() && | ||||
| 10057 | PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { | ||||
| 10058 | if (Swap) | ||||
| 10059 | std::swap(V1, V2); | ||||
| 10060 | SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); | ||||
| 10061 | SDValue Conv2 = | ||||
| 10062 | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); | ||||
| 10063 | |||||
| 10064 | SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, | ||||
| 10065 | DAG.getConstant(ShiftElts, dl, MVT::i32)); | ||||
| 10066 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); | ||||
| 10067 | } | ||||
| 10068 | |||||
| 10069 | if (Subtarget.hasP9Vector()) { | ||||
| 10070 | if (PPC::isXXBRHShuffleMask(SVOp)) { | ||||
| 10071 | SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); | ||||
| 10072 | SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); | ||||
| 10073 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); | ||||
| 10074 | } else if (PPC::isXXBRWShuffleMask(SVOp)) { | ||||
| 10075 | SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); | ||||
| 10076 | SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); | ||||
| 10077 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); | ||||
| 10078 | } else if (PPC::isXXBRDShuffleMask(SVOp)) { | ||||
| 10079 | SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); | ||||
| 10080 | SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); | ||||
| 10081 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); | ||||
| 10082 | } else if (PPC::isXXBRQShuffleMask(SVOp)) { | ||||
| 10083 | SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); | ||||
| 10084 | SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); | ||||
| 10085 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); | ||||
| 10086 | } | ||||
| 10087 | } | ||||
| 10088 | |||||
| 10089 | if (Subtarget.hasVSX()) { | ||||
| 10090 | if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { | ||||
| 10091 | int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); | ||||
| 10092 | |||||
| 10093 | SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); | ||||
| 10094 | SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, | ||||
| 10095 | DAG.getConstant(SplatIdx, dl, MVT::i32)); | ||||
| 10096 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); | ||||
| 10097 | } | ||||
| 10098 | |||||
| 10099 | // Left shifts of 8 bytes are actually swaps. Convert accordingly. | ||||
| 10100 | if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { | ||||
| 10101 | SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); | ||||
| 10102 | SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); | ||||
| 10103 | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); | ||||
| 10104 | } | ||||
| 10105 | } | ||||
| 10106 | |||||
| 10107 | // Cases that are handled by instructions that take permute immediates | ||||
| 10108 | // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be | ||||
| 10109 | // selected by the instruction selector. | ||||
| 10110 | if (V2.isUndef()) { | ||||
| 10111 | if (PPC::isSplatShuffleMask(SVOp, 1) || | ||||
| 10112 | PPC::isSplatShuffleMask(SVOp, 2) || | ||||
| 10113 | PPC::isSplatShuffleMask(SVOp, 4) || | ||||
| 10114 | PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || | ||||
| 10115 | PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || | ||||
| 10116 | PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || | ||||
| 10117 | PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || | ||||
| 10118 | PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || | ||||
| 10119 | PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || | ||||
| 10120 | PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || | ||||
| 10121 | PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || | ||||
| 10122 | PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || | ||||
| 10123 | (Subtarget.hasP8Altivec() && ( | ||||
| 10124 | PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || | ||||
| 10125 | PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || | ||||
| 10126 | PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { | ||||
| 10127 | return Op; | ||||
| 10128 | } | ||||
| 10129 | } | ||||
| 10130 | |||||
| 10131 | // Altivec has a variety of "shuffle immediates" that take two vector inputs | ||||
| 10132 | // and produce a fixed permutation. If any of these match, do not lower to | ||||
| 10133 | // VPERM. | ||||
| 10134 | unsigned int ShuffleKind = isLittleEndian ? 2 : 0; | ||||
| 10135 | if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || | ||||
| 10136 | PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || | ||||
| 10137 | PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || | ||||
| 10138 | PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || | ||||
| 10139 | PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || | ||||
| 10140 | PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || | ||||
| 10141 | PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || | ||||
| 10142 | PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || | ||||
| 10143 | PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || | ||||
| 10144 | (Subtarget.hasP8Altivec() && ( | ||||
| 10145 | PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || | ||||
| 10146 | PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || | ||||
| 10147 | PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) | ||||
| 10148 | return Op; | ||||
| 10149 | |||||
| 10150 | // Check to see if this is a shuffle of 4-byte values. If so, we can use our | ||||
| 10151 | // perfect shuffle table to emit an optimal matching sequence. | ||||
| 10152 | ArrayRef<int> PermMask = SVOp->getMask(); | ||||
| 10153 | |||||
| 10154 | if (!DisablePerfectShuffle && !isLittleEndian) { | ||||
| 10155 | unsigned PFIndexes[4]; | ||||
| 10156 | bool isFourElementShuffle = true; | ||||
| 10157 | for (unsigned i = 0; i != 4 && isFourElementShuffle; | ||||
| 10158 | ++i) { // Element number | ||||
| 10159 | unsigned EltNo = 8; // Start out undef. | ||||
| 10160 | for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. | ||||
| 10161 | if (PermMask[i * 4 + j] < 0) | ||||
| 10162 | continue; // Undef, ignore it. | ||||
| 10163 | |||||
| 10164 | unsigned ByteSource = PermMask[i * 4 + j]; | ||||
| 10165 | if ((ByteSource & 3) != j) { | ||||
| 10166 | isFourElementShuffle = false; | ||||
| 10167 | break; | ||||
| 10168 | } | ||||
| 10169 | |||||
| 10170 | if (EltNo == 8) { | ||||
| 10171 | EltNo = ByteSource / 4; | ||||
| 10172 | } else if (EltNo != ByteSource / 4) { | ||||
| 10173 | isFourElementShuffle = false; | ||||
| 10174 | break; | ||||
| 10175 | } | ||||
| 10176 | } | ||||
| 10177 | PFIndexes[i] = EltNo; | ||||
| 10178 | } | ||||
| 10179 | |||||
| 10180 | // If this shuffle can be expressed as a shuffle of 4-byte elements, use the | ||||
| 10181 | // perfect shuffle vector to determine if it is cost effective to do this as | ||||
| 10182 | // discrete instructions, or whether we should use a vperm. | ||||
| 10183 | // For now, we skip this for little endian until such time as we have a | ||||
| 10184 | // little-endian perfect shuffle table. | ||||
| 10185 | if (isFourElementShuffle) { | ||||
| 10186 | // Compute the index in the perfect shuffle table. | ||||
| 10187 | unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + | ||||
| 10188 | PFIndexes[2] * 9 + PFIndexes[3]; | ||||
| 10189 | |||||
| 10190 | unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; | ||||
| 10191 | unsigned Cost = (PFEntry >> 30); | ||||
| 10192 | |||||
| 10193 | // Determining when to avoid vperm is tricky. Many things affect the cost | ||||
| 10194 | // of vperm, particularly how many times the perm mask needs to be | ||||
| 10195 | // computed. For example, if the perm mask can be hoisted out of a loop or | ||||
| 10196 | // is already used (perhaps because there are multiple permutes with the | ||||
| 10197 | // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the | ||||
| 10198 | // permute mask out of the loop requires an extra register. | ||||
| 10199 | // | ||||
| 10200 | // As a compromise, we only emit discrete instructions if the shuffle can | ||||
| 10201 | // be generated in 3 or fewer operations. When we have loop information | ||||
| 10202 | // available, if this block is within a loop, we should avoid using vperm | ||||
| 10203 | // for 3-operation perms and use a constant pool load instead. | ||||
| 10204 | if (Cost < 3) | ||||
| 10205 | return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); | ||||
| 10206 | } | ||||
| 10207 | } | ||||
| 10208 | |||||
| 10209 | // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant | ||||
| 10210 | // vector that will get spilled to the constant pool. | ||||
| 10211 | if (V2.isUndef()) V2 = V1; | ||||
| 10212 | |||||
| 10213 | return LowerVPERM(Op, DAG, PermMask, VT, V1, V2); | ||||
| 10214 | } | ||||
| 10215 | |||||
| 10216 | SDValue PPCTargetLowering::LowerVPERM(SDValue Op, SelectionDAG &DAG, | ||||
| 10217 | ArrayRef<int> PermMask, EVT VT, | ||||
| 10218 | SDValue V1, SDValue V2) const { | ||||
| 10219 | unsigned Opcode = PPCISD::VPERM; | ||||
| 10220 | EVT ValType = V1.getValueType(); | ||||
| 10221 | SDLoc dl(Op); | ||||
| 10222 | bool NeedSwap = false; | ||||
| 10223 | bool isLittleEndian = Subtarget.isLittleEndian(); | ||||
| 10224 | bool isPPC64 = Subtarget.isPPC64(); | ||||
| 10225 | |||||
| 10226 | // Only need to place items backwards in LE, | ||||
| 10227 | // the mask will be properly calculated. | ||||
| 10228 | if (isLittleEndian) | ||||
| 10229 | std::swap(V1, V2); | ||||
| 10230 | |||||
| 10231 | if (Subtarget.hasVSX() && Subtarget.hasP9Vector() && | ||||
| 10232 | (V1->hasOneUse() || V2->hasOneUse())) { | ||||
| 10233 | LLVM_DEBUG(dbgs() << "At least one of two input vectors are dead - using "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { dbgs() << "At least one of two input vectors are dead - using " "XXPERM instead\n"; } } while (false) | ||||
| 10234 | "XXPERM instead\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { dbgs() << "At least one of two input vectors are dead - using " "XXPERM instead\n"; } } while (false); | ||||
| 10235 | Opcode = PPCISD::XXPERM; | ||||
| 10236 | |||||
| 10237 | // The second input to XXPERM is also an output so if the second input has | ||||
| 10238 | // multiple uses then copying is necessary, as a result we want the | ||||
| 10239 | // single-use operand to be used as the second input to prevent copying. | ||||
| 10240 | if (!V2->hasOneUse() && V1->hasOneUse()) { | ||||
| 10241 | std::swap(V1, V2); | ||||
| 10242 | NeedSwap = !NeedSwap; | ||||
| 10243 | } | ||||
| 10244 | } | ||||
| 10245 | |||||
| 10246 | // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except | ||||
| 10247 | // that it is in input element units, not in bytes. Convert now. | ||||
| 10248 | |||||
| 10249 | // For little endian, the order of the input vectors is reversed, and | ||||
| 10250 | // the permutation mask is complemented with respect to 31. This is | ||||
| 10251 | // necessary to produce proper semantics with the big-endian-based vperm | ||||
| 10252 | // instruction. | ||||
| 10253 | EVT EltVT = V1.getValueType().getVectorElementType(); | ||||
| 10254 | unsigned BytesPerElement = EltVT.getSizeInBits() / 8; | ||||
| 10255 | |||||
| 10256 | bool V1HasXXSWAPD = V1->getOperand(0)->getOpcode() == PPCISD::XXSWAPD; | ||||
| 10257 | bool V2HasXXSWAPD = V2->getOperand(0)->getOpcode() == PPCISD::XXSWAPD; | ||||
| 10258 | |||||
| 10259 | /* | ||||
| 10260 | Vectors will be appended like so: [ V1 | v2 ] | ||||
| 10261 | XXSWAPD on V1: | ||||
| 10262 | [ A | B | C | D ] -> [ C | D | A | B ] | ||||
| 10263 | 0-3 4-7 8-11 12-15 0-3 4-7 8-11 12-15 | ||||
| 10264 | i.e. index of A, B += 8, and index of C, D -= 8. | ||||
| 10265 | XXSWAPD on V2: | ||||
| 10266 | [ E | F | G | H ] -> [ G | H | E | F ] | ||||
| 10267 | 16-19 20-23 24-27 28-31 16-19 20-23 24-27 28-31 | ||||
| 10268 | i.e. index of E, F += 8, index of G, H -= 8 | ||||
| 10269 | Swap V1 and V2: | ||||
| 10270 | [ V1 | V2 ] -> [ V2 | V1 ] | ||||
| 10271 | 0-15 16-31 0-15 16-31 | ||||
| 10272 | i.e. index of V1 += 16, index of V2 -= 16 | ||||
| 10273 | */ | ||||
| 10274 | |||||
| 10275 | SmallVector<SDValue, 16> ResultMask; | ||||
| 10276 | for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { | ||||
| 10277 | unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; | ||||
| 10278 | |||||
| 10279 | if (Opcode == PPCISD::XXPERM) { | ||||
| 10280 | if (V1HasXXSWAPD) { | ||||
| 10281 | if (SrcElt < 8) | ||||
| 10282 | SrcElt += 8; | ||||
| 10283 | else if (SrcElt < 16) | ||||
| 10284 | SrcElt -= 8; | ||||
| 10285 | } | ||||
| 10286 | if (V2HasXXSWAPD) { | ||||
| 10287 | if (SrcElt > 23) | ||||
| 10288 | SrcElt -= 8; | ||||
| 10289 | else if (SrcElt > 15) | ||||
| 10290 | SrcElt += 8; | ||||
| 10291 | } | ||||
| 10292 | if (NeedSwap) { | ||||
| 10293 | if (SrcElt < 16) | ||||
| 10294 | SrcElt += 16; | ||||
| 10295 | else | ||||
| 10296 | SrcElt -= 16; | ||||
| 10297 | } | ||||
| 10298 | } | ||||
| 10299 | |||||
| 10300 | for (unsigned j = 0; j != BytesPerElement; ++j) | ||||
| 10301 | if (isLittleEndian) | ||||
| 10302 | ResultMask.push_back( | ||||
| 10303 | DAG.getConstant(31 - (SrcElt * BytesPerElement + j), dl, MVT::i32)); | ||||
| 10304 | else | ||||
| 10305 | ResultMask.push_back( | ||||
| 10306 | DAG.getConstant(SrcElt * BytesPerElement + j, dl, MVT::i32)); | ||||
| 10307 | } | ||||
| 10308 | |||||
| 10309 | if (Opcode == PPCISD::XXPERM && (V1HasXXSWAPD || V2HasXXSWAPD)) { | ||||
| 10310 | if (V1HasXXSWAPD) { | ||||
| 10311 | dl = SDLoc(V1->getOperand(0)); | ||||
| 10312 | V1 = V1->getOperand(0)->getOperand(1); | ||||
| 10313 | } | ||||
| 10314 | if (V2HasXXSWAPD) { | ||||
| 10315 | dl = SDLoc(V2->getOperand(0)); | ||||
| 10316 | V2 = V2->getOperand(0)->getOperand(1); | ||||
| 10317 | } | ||||
| 10318 | if (isPPC64 && ValType != MVT::v2f64) | ||||
| 10319 | V1 = DAG.getBitcast(MVT::v2f64, V1); | ||||
| 10320 | if (isPPC64 && V2.getValueType() != MVT::v2f64) | ||||
| 10321 | V2 = DAG.getBitcast(MVT::v2f64, V2); | ||||
| 10322 | } | ||||
| 10323 | |||||
| 10324 | ShufflesHandledWithVPERM++; | ||||
| 10325 | SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); | ||||
| 10326 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false) | ||||
| 10327 | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false) | ||||
| 10328 | if (Opcode == PPCISD::XXPERM) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false) | ||||
| 10329 | dbgs() << "Emitting a XXPERM for the following shuffle:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false) | ||||
| 10330 | } else {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false) | ||||
| 10331 | dbgs() << "Emitting a VPERM for the following shuffle:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false) | ||||
| 10332 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false) | ||||
| 10333 | SVOp->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false) | ||||
| 10334 | dbgs() << "With the following permute control vector:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false) | ||||
| 10335 | VPermMask.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false) | ||||
| 10336 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("ppc-lowering")) { { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode >(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n" ; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n" ; } SVOp->dump(); dbgs() << "With the following permute control vector:\n" ; VPermMask.dump(); }; } } while (false); | ||||
| 10337 | |||||
| 10338 | if (Opcode == PPCISD::XXPERM) | ||||
| 10339 | VPermMask = DAG.getBitcast(MVT::v4i32, VPermMask); | ||||
| 10340 | |||||
| 10341 | SDValue VPERMNode = | ||||
| 10342 | DAG.getNode(Opcode, dl, V1.getValueType(), V1, V2, VPermMask); | ||||
| 10343 | |||||
| 10344 | VPERMNode = DAG.getBitcast(ValType, VPERMNode); | ||||
| 10345 | return VPERMNode; | ||||
| 10346 | } | ||||
| 10347 | |||||
| 10348 | /// getVectorCompareInfo - Given an intrinsic, return false if it is not a | ||||
| 10349 | /// vector comparison. If it is, return true and fill in Opc/isDot with | ||||
| 10350 | /// information about the intrinsic. | ||||
| 10351 | static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, | ||||
| 10352 | bool &isDot, const PPCSubtarget &Subtarget) { | ||||
| 10353 | unsigned IntrinsicID = | ||||
| 10354 | cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); | ||||
| 10355 | CompareOpc = -1; | ||||
| 10356 | isDot = false; | ||||
| 10357 | switch (IntrinsicID) { | ||||
| 10358 | default: | ||||
| 10359 | return false; | ||||
| 10360 | // Comparison predicates. | ||||
| 10361 | case Intrinsic::ppc_altivec_vcmpbfp_p: | ||||
| 10362 | CompareOpc = 966; | ||||
| 10363 | isDot = true; | ||||
| 10364 | break; | ||||
| 10365 | case Intrinsic::ppc_altivec_vcmpeqfp_p: | ||||
| 10366 | CompareOpc = 198; | ||||
| 10367 | isDot = true; | ||||
| 10368 | break; | ||||
| 10369 | case Intrinsic::ppc_altivec_vcmpequb_p: | ||||
| 10370 | CompareOpc = 6; | ||||
| 10371 | isDot = true; | ||||
| 10372 | break; | ||||
| 10373 | case Intrinsic::ppc_altivec_vcmpequh_p: | ||||
| 10374 | CompareOpc = 70; | ||||
| 10375 | isDot = true; | ||||
| 10376 | break; | ||||
| 10377 | case Intrinsic::ppc_altivec_vcmpequw_p: | ||||
| 10378 | CompareOpc = 134; | ||||
| 10379 | isDot = true; | ||||
| 10380 | break; | ||||
| 10381 | case Intrinsic::ppc_altivec_vcmpequd_p: | ||||
| 10382 | if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { | ||||
| 10383 | CompareOpc = 199; | ||||
| 10384 | isDot = true; | ||||
| 10385 | } else | ||||
| 10386 | return false; | ||||
| 10387 | break; | ||||
| 10388 | case Intrinsic::ppc_altivec_vcmpneb_p: | ||||
| 10389 | case Intrinsic::ppc_altivec_vcmpneh_p: | ||||
| 10390 | case Intrinsic::ppc_altivec_vcmpnew_p: | ||||
| 10391 | case Intrinsic::ppc_altivec_vcmpnezb_p: | ||||
| 10392 | case Intrinsic::ppc_altivec_vcmpnezh_p: | ||||
| 10393 | case Intrinsic::ppc_altivec_vcmpnezw_p: | ||||
| 10394 | if (Subtarget.hasP9Altivec()) { | ||||
| 10395 | switch (IntrinsicID) { | ||||
| 10396 | default: | ||||
| 10397 | llvm_unreachable("Unknown comparison intrinsic.")::llvm::llvm_unreachable_internal("Unknown comparison intrinsic." , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10397); | ||||
| 10398 | case Intrinsic::ppc_altivec_vcmpneb_p: | ||||
| 10399 | CompareOpc = 7; | ||||
| 10400 | break; | ||||
| 10401 | case Intrinsic::ppc_altivec_vcmpneh_p: | ||||
| 10402 | CompareOpc = 71; | ||||
| 10403 | break; | ||||
| 10404 | case Intrinsic::ppc_altivec_vcmpnew_p: | ||||
| 10405 | CompareOpc = 135; | ||||
| 10406 | break; | ||||
| 10407 | case Intrinsic::ppc_altivec_vcmpnezb_p: | ||||
| 10408 | CompareOpc = 263; | ||||
| 10409 | break; | ||||
| 10410 | case Intrinsic::ppc_altivec_vcmpnezh_p: | ||||
| 10411 | CompareOpc = 327; | ||||
| 10412 | break; | ||||
| 10413 | case Intrinsic::ppc_altivec_vcmpnezw_p: | ||||
| 10414 | CompareOpc = 391; | ||||
| 10415 | break; | ||||
| 10416 | } | ||||
| 10417 | isDot = true; | ||||
| 10418 | } else | ||||
| 10419 | return false; | ||||
| 10420 | break; | ||||
| 10421 | case Intrinsic::ppc_altivec_vcmpgefp_p: | ||||
| 10422 | CompareOpc = 454; | ||||
| 10423 | isDot = true; | ||||
| 10424 | break; | ||||
| 10425 | case Intrinsic::ppc_altivec_vcmpgtfp_p: | ||||
| 10426 | CompareOpc = 710; | ||||
| 10427 | isDot = true; | ||||
| 10428 | break; | ||||
| 10429 | case Intrinsic::ppc_altivec_vcmpgtsb_p: | ||||
| 10430 | CompareOpc = 774; | ||||
| 10431 | isDot = true; | ||||
| 10432 | break; | ||||
| 10433 | case Intrinsic::ppc_altivec_vcmpgtsh_p: | ||||
| 10434 | CompareOpc = 838; | ||||
| 10435 | isDot = true; | ||||
| 10436 | break; | ||||
| 10437 | case Intrinsic::ppc_altivec_vcmpgtsw_p: | ||||
| 10438 | CompareOpc = 902; | ||||
| 10439 | isDot = true; | ||||
| 10440 | break; | ||||
| 10441 | case Intrinsic::ppc_altivec_vcmpgtsd_p: | ||||
| 10442 | if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { | ||||
| 10443 | CompareOpc = 967; | ||||
| 10444 | isDot = true; | ||||
| 10445 | } else | ||||
| 10446 | return false; | ||||
| 10447 | break; | ||||
| 10448 | case Intrinsic::ppc_altivec_vcmpgtub_p: | ||||
| 10449 | CompareOpc = 518; | ||||
| 10450 | isDot = true; | ||||
| 10451 | break; | ||||
| 10452 | case Intrinsic::ppc_altivec_vcmpgtuh_p: | ||||
| 10453 | CompareOpc = 582; | ||||
| 10454 | isDot = true; | ||||
| 10455 | break; | ||||
| 10456 | case Intrinsic::ppc_altivec_vcmpgtuw_p: | ||||
| 10457 | CompareOpc = 646; | ||||
| 10458 | isDot = true; | ||||
| 10459 | break; | ||||
| 10460 | case Intrinsic::ppc_altivec_vcmpgtud_p: | ||||
| 10461 | if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { | ||||
| 10462 | CompareOpc = 711; | ||||
| 10463 | isDot = true; | ||||
| 10464 | } else | ||||
| 10465 | return false; | ||||
| 10466 | break; | ||||
| 10467 | |||||
| 10468 | case Intrinsic::ppc_altivec_vcmpequq: | ||||
| 10469 | case Intrinsic::ppc_altivec_vcmpgtsq: | ||||
| 10470 | case Intrinsic::ppc_altivec_vcmpgtuq: | ||||
| 10471 | if (!Subtarget.isISA3_1()) | ||||
| 10472 | return false; | ||||
| 10473 | switch (IntrinsicID) { | ||||
| 10474 | default: | ||||
| 10475 | llvm_unreachable("Unknown comparison intrinsic.")::llvm::llvm_unreachable_internal("Unknown comparison intrinsic." , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10475); | ||||
| 10476 | case Intrinsic::ppc_altivec_vcmpequq: | ||||
| 10477 | CompareOpc = 455; | ||||
| 10478 | break; | ||||
| 10479 | case Intrinsic::ppc_altivec_vcmpgtsq: | ||||
| 10480 | CompareOpc = 903; | ||||
| 10481 | break; | ||||
| 10482 | case Intrinsic::ppc_altivec_vcmpgtuq: | ||||
| 10483 | CompareOpc = 647; | ||||
| 10484 | break; | ||||
| 10485 | } | ||||
| 10486 | break; | ||||
| 10487 | |||||
| 10488 | // VSX predicate comparisons use the same infrastructure | ||||
| 10489 | case Intrinsic::ppc_vsx_xvcmpeqdp_p: | ||||
| 10490 | case Intrinsic::ppc_vsx_xvcmpgedp_p: | ||||
| 10491 | case Intrinsic::ppc_vsx_xvcmpgtdp_p: | ||||
| 10492 | case Intrinsic::ppc_vsx_xvcmpeqsp_p: | ||||
| 10493 | case Intrinsic::ppc_vsx_xvcmpgesp_p: | ||||
| 10494 | case Intrinsic::ppc_vsx_xvcmpgtsp_p: | ||||
| 10495 | if (Subtarget.hasVSX()) { | ||||
| 10496 | switch (IntrinsicID) { | ||||
| 10497 | case Intrinsic::ppc_vsx_xvcmpeqdp_p: | ||||
| 10498 | CompareOpc = 99; | ||||
| 10499 | break; | ||||
| 10500 | case Intrinsic::ppc_vsx_xvcmpgedp_p: | ||||
| 10501 | CompareOpc = 115; | ||||
| 10502 | break; | ||||
| 10503 | case Intrinsic::ppc_vsx_xvcmpgtdp_p: | ||||
| 10504 | CompareOpc = 107; | ||||
| 10505 | break; | ||||
| 10506 | case Intrinsic::ppc_vsx_xvcmpeqsp_p: | ||||
| 10507 | CompareOpc = 67; | ||||
| 10508 | break; | ||||
| 10509 | case Intrinsic::ppc_vsx_xvcmpgesp_p: | ||||
| 10510 | CompareOpc = 83; | ||||
| 10511 | break; | ||||
| 10512 | case Intrinsic::ppc_vsx_xvcmpgtsp_p: | ||||
| 10513 | CompareOpc = 75; | ||||
| 10514 | break; | ||||
| 10515 | } | ||||
| 10516 | isDot = true; | ||||
| 10517 | } else | ||||
| 10518 | return false; | ||||
| 10519 | break; | ||||
| 10520 | |||||
| 10521 | // Normal Comparisons. | ||||
| 10522 | case Intrinsic::ppc_altivec_vcmpbfp: | ||||
| 10523 | CompareOpc = 966; | ||||
| 10524 | break; | ||||
| 10525 | case Intrinsic::ppc_altivec_vcmpeqfp: | ||||
| 10526 | CompareOpc = 198; | ||||
| 10527 | break; | ||||
| 10528 | case Intrinsic::ppc_altivec_vcmpequb: | ||||
| 10529 | CompareOpc = 6; | ||||
| 10530 | break; | ||||
| 10531 | case Intrinsic::ppc_altivec_vcmpequh: | ||||
| 10532 | CompareOpc = 70; | ||||
| 10533 | break; | ||||
| 10534 | case Intrinsic::ppc_altivec_vcmpequw: | ||||
| 10535 | CompareOpc = 134; | ||||
| 10536 | break; | ||||
| 10537 | case Intrinsic::ppc_altivec_vcmpequd: | ||||
| 10538 | if (Subtarget.hasP8Altivec()) | ||||
| 10539 | CompareOpc = 199; | ||||
| 10540 | else | ||||
| 10541 | return false; | ||||
| 10542 | break; | ||||
| 10543 | case Intrinsic::ppc_altivec_vcmpneb: | ||||
| 10544 | case Intrinsic::ppc_altivec_vcmpneh: | ||||
| 10545 | case Intrinsic::ppc_altivec_vcmpnew: | ||||
| 10546 | case Intrinsic::ppc_altivec_vcmpnezb: | ||||
| 10547 | case Intrinsic::ppc_altivec_vcmpnezh: | ||||
| 10548 | case Intrinsic::ppc_altivec_vcmpnezw: | ||||
| 10549 | if (Subtarget.hasP9Altivec()) | ||||
| 10550 | switch (IntrinsicID) { | ||||
| 10551 | default: | ||||
| 10552 | llvm_unreachable("Unknown comparison intrinsic.")::llvm::llvm_unreachable_internal("Unknown comparison intrinsic." , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10552); | ||||
| 10553 | case Intrinsic::ppc_altivec_vcmpneb: | ||||
| 10554 | CompareOpc = 7; | ||||
| 10555 | break; | ||||
| 10556 | case Intrinsic::ppc_altivec_vcmpneh: | ||||
| 10557 | CompareOpc = 71; | ||||
| 10558 | break; | ||||
| 10559 | case Intrinsic::ppc_altivec_vcmpnew: | ||||
| 10560 | CompareOpc = 135; | ||||
| 10561 | break; | ||||
| 10562 | case Intrinsic::ppc_altivec_vcmpnezb: | ||||
| 10563 | CompareOpc = 263; | ||||
| 10564 | break; | ||||
| 10565 | case Intrinsic::ppc_altivec_vcmpnezh: | ||||
| 10566 | CompareOpc = 327; | ||||
| 10567 | break; | ||||
| 10568 | case Intrinsic::ppc_altivec_vcmpnezw: | ||||
| 10569 | CompareOpc = 391; | ||||
| 10570 | break; | ||||
| 10571 | } | ||||
| 10572 | else | ||||
| 10573 | return false; | ||||
| 10574 | break; | ||||
| 10575 | case Intrinsic::ppc_altivec_vcmpgefp: | ||||
| 10576 | CompareOpc = 454; | ||||
| 10577 | break; | ||||
| 10578 | case Intrinsic::ppc_altivec_vcmpgtfp: | ||||
| 10579 | CompareOpc = 710; | ||||
| 10580 | break; | ||||
| 10581 | case Intrinsic::ppc_altivec_vcmpgtsb: | ||||
| 10582 | CompareOpc = 774; | ||||
| 10583 | break; | ||||
| 10584 | case Intrinsic::ppc_altivec_vcmpgtsh: | ||||
| 10585 | CompareOpc = 838; | ||||
| 10586 | break; | ||||
| 10587 | case Intrinsic::ppc_altivec_vcmpgtsw: | ||||
| 10588 | CompareOpc = 902; | ||||
| 10589 | break; | ||||
| 10590 | case Intrinsic::ppc_altivec_vcmpgtsd: | ||||
| 10591 | if (Subtarget.hasP8Altivec()) | ||||
| 10592 | CompareOpc = 967; | ||||
| 10593 | else | ||||
| 10594 | return false; | ||||
| 10595 | break; | ||||
| 10596 | case Intrinsic::ppc_altivec_vcmpgtub: | ||||
| 10597 | CompareOpc = 518; | ||||
| 10598 | break; | ||||
| 10599 | case Intrinsic::ppc_altivec_vcmpgtuh: | ||||
| 10600 | CompareOpc = 582; | ||||
| 10601 | break; | ||||
| 10602 | case Intrinsic::ppc_altivec_vcmpgtuw: | ||||
| 10603 | CompareOpc = 646; | ||||
| 10604 | break; | ||||
| 10605 | case Intrinsic::ppc_altivec_vcmpgtud: | ||||
| 10606 | if (Subtarget.hasP8Altivec()) | ||||
| 10607 | CompareOpc = 711; | ||||
| 10608 | else | ||||
| 10609 | return false; | ||||
| 10610 | break; | ||||
| 10611 | case Intrinsic::ppc_altivec_vcmpequq_p: | ||||
| 10612 | case Intrinsic::ppc_altivec_vcmpgtsq_p: | ||||
| 10613 | case Intrinsic::ppc_altivec_vcmpgtuq_p: | ||||
| 10614 | if (!Subtarget.isISA3_1()) | ||||
| 10615 | return false; | ||||
| 10616 | switch (IntrinsicID) { | ||||
| 10617 | default: | ||||
| 10618 | llvm_unreachable("Unknown comparison intrinsic.")::llvm::llvm_unreachable_internal("Unknown comparison intrinsic." , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10618); | ||||
| 10619 | case Intrinsic::ppc_altivec_vcmpequq_p: | ||||
| 10620 | CompareOpc = 455; | ||||
| 10621 | break; | ||||
| 10622 | case Intrinsic::ppc_altivec_vcmpgtsq_p: | ||||
| 10623 | CompareOpc = 903; | ||||
| 10624 | break; | ||||
| 10625 | case Intrinsic::ppc_altivec_vcmpgtuq_p: | ||||
| 10626 | CompareOpc = 647; | ||||
| 10627 | break; | ||||
| 10628 | } | ||||
| 10629 | isDot = true; | ||||
| 10630 | break; | ||||
| 10631 | } | ||||
| 10632 | return true; | ||||
| 10633 | } | ||||
| 10634 | |||||
| 10635 | /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom | ||||
| 10636 | /// lower, do it, otherwise return null. | ||||
| 10637 | SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, | ||||
| 10638 | SelectionDAG &DAG) const { | ||||
| 10639 | unsigned IntrinsicID = | ||||
| 10640 | cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | ||||
| 10641 | |||||
| 10642 | SDLoc dl(Op); | ||||
| 10643 | |||||
| 10644 | switch (IntrinsicID) { | ||||
| 10645 | case Intrinsic::thread_pointer: | ||||
| 10646 | // Reads the thread pointer register, used for __builtin_thread_pointer. | ||||
| 10647 | if (Subtarget.isPPC64()) | ||||
| 10648 | return DAG.getRegister(PPC::X13, MVT::i64); | ||||
| 10649 | return DAG.getRegister(PPC::R2, MVT::i32); | ||||
| 10650 | |||||
| 10651 | case Intrinsic::ppc_mma_disassemble_acc: { | ||||
| 10652 | if (Subtarget.isISAFuture()) { | ||||
| 10653 | EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1}; | ||||
| 10654 | SDValue WideVec = SDValue(DAG.getMachineNode(PPC::DMXXEXTFDMR512, dl, | ||||
| 10655 | ArrayRef(ReturnTypes, 2), | ||||
| 10656 | Op.getOperand(1)), | ||||
| 10657 | 0); | ||||
| 10658 | SmallVector<SDValue, 4> RetOps; | ||||
| 10659 | SDValue Value = SDValue(WideVec.getNode(), 0); | ||||
| 10660 | SDValue Value2 = SDValue(WideVec.getNode(), 1); | ||||
| 10661 | |||||
| 10662 | SDValue Extract; | ||||
| 10663 | Extract = DAG.getNode( | ||||
| 10664 | PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, | ||||
| 10665 | Subtarget.isLittleEndian() ? Value2 : Value, | ||||
| 10666 | DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0, | ||||
| 10667 | dl, getPointerTy(DAG.getDataLayout()))); | ||||
| 10668 | RetOps.push_back(Extract); | ||||
| 10669 | Extract = DAG.getNode( | ||||
| 10670 | PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, | ||||
| 10671 | Subtarget.isLittleEndian() ? Value2 : Value, | ||||
| 10672 | DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1, | ||||
| 10673 | dl, getPointerTy(DAG.getDataLayout()))); | ||||
| 10674 | RetOps.push_back(Extract); | ||||
| 10675 | Extract = DAG.getNode( | ||||
| 10676 | PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, | ||||
| 10677 | Subtarget.isLittleEndian() ? Value : Value2, | ||||
| 10678 | DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0, | ||||
| 10679 | dl, getPointerTy(DAG.getDataLayout()))); | ||||
| 10680 | RetOps.push_back(Extract); | ||||
| 10681 | Extract = DAG.getNode( | ||||
| 10682 | PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, | ||||
| 10683 | Subtarget.isLittleEndian() ? Value : Value2, | ||||
| 10684 | DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1, | ||||
| 10685 | dl, getPointerTy(DAG.getDataLayout()))); | ||||
| 10686 | RetOps.push_back(Extract); | ||||
| 10687 | return DAG.getMergeValues(RetOps, dl); | ||||
| 10688 | } | ||||
| 10689 | LLVM_FALLTHROUGH[[fallthrough]]; | ||||
| 10690 | } | ||||
| 10691 | case Intrinsic::ppc_vsx_disassemble_pair: { | ||||
| 10692 | int NumVecs = 2; | ||||
| 10693 | SDValue WideVec = Op.getOperand(1); | ||||
| 10694 | if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { | ||||
| 10695 | NumVecs = 4; | ||||
| 10696 | WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); | ||||
| 10697 | } | ||||
| 10698 | SmallVector<SDValue, 4> RetOps; | ||||
| 10699 | for (int VecNo = 0; VecNo < NumVecs; VecNo++) { | ||||
| 10700 | SDValue Extract = DAG.getNode( | ||||
| 10701 | PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, | ||||
| 10702 | DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo | ||||
| 10703 | : VecNo, | ||||
| 10704 | dl, getPointerTy(DAG.getDataLayout()))); | ||||
| 10705 | RetOps.push_back(Extract); | ||||
| 10706 | } | ||||
| 10707 | return DAG.getMergeValues(RetOps, dl); | ||||
| 10708 | } | ||||
| 10709 | |||||
| 10710 | case Intrinsic::ppc_unpack_longdouble: { | ||||
| 10711 | auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | ||||
| 10712 | assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) &&(static_cast <bool> (Idx && (Idx->getSExtValue () == 0 || Idx->getSExtValue() == 1) && "Argument of long double unpack must be 0 or 1!" ) ? void (0) : __assert_fail ("Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && \"Argument of long double unpack must be 0 or 1!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10713, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10713 | "Argument of long double unpack must be 0 or 1!")(static_cast <bool> (Idx && (Idx->getSExtValue () == 0 || Idx->getSExtValue() == 1) && "Argument of long double unpack must be 0 or 1!" ) ? void (0) : __assert_fail ("Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && \"Argument of long double unpack must be 0 or 1!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10713, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10714 | return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), | ||||
| 10715 | DAG.getConstant(!!(Idx->getSExtValue()), dl, | ||||
| 10716 | Idx->getValueType(0))); | ||||
| 10717 | } | ||||
| 10718 | |||||
| 10719 | case Intrinsic::ppc_compare_exp_lt: | ||||
| 10720 | case Intrinsic::ppc_compare_exp_gt: | ||||
| 10721 | case Intrinsic::ppc_compare_exp_eq: | ||||
| 10722 | case Intrinsic::ppc_compare_exp_uo: { | ||||
| 10723 | unsigned Pred; | ||||
| 10724 | switch (IntrinsicID) { | ||||
| 10725 | case Intrinsic::ppc_compare_exp_lt: | ||||
| 10726 | Pred = PPC::PRED_LT; | ||||
| 10727 | break; | ||||
| 10728 | case Intrinsic::ppc_compare_exp_gt: | ||||
| 10729 | Pred = PPC::PRED_GT; | ||||
| 10730 | break; | ||||
| 10731 | case Intrinsic::ppc_compare_exp_eq: | ||||
| 10732 | Pred = PPC::PRED_EQ; | ||||
| 10733 | break; | ||||
| 10734 | case Intrinsic::ppc_compare_exp_uo: | ||||
| 10735 | Pred = PPC::PRED_UN; | ||||
| 10736 | break; | ||||
| 10737 | } | ||||
| 10738 | return SDValue( | ||||
| 10739 | DAG.getMachineNode( | ||||
| 10740 | PPC::SELECT_CC_I4, dl, MVT::i32, | ||||
| 10741 | {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, | ||||
| 10742 | Op.getOperand(1), Op.getOperand(2)), | ||||
| 10743 | 0), | ||||
| 10744 | DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), | ||||
| 10745 | DAG.getTargetConstant(Pred, dl, MVT::i32)}), | ||||
| 10746 | 0); | ||||
| 10747 | } | ||||
| 10748 | case Intrinsic::ppc_test_data_class: { | ||||
| 10749 | EVT OpVT = Op.getOperand(1).getValueType(); | ||||
| 10750 | unsigned CmprOpc = OpVT == MVT::f128 ? PPC::XSTSTDCQP | ||||
| 10751 | : (OpVT == MVT::f64 ? PPC::XSTSTDCDP | ||||
| 10752 | : PPC::XSTSTDCSP); | ||||
| 10753 | return SDValue( | ||||
| 10754 | DAG.getMachineNode( | ||||
| 10755 | PPC::SELECT_CC_I4, dl, MVT::i32, | ||||
| 10756 | {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), | ||||
| 10757 | Op.getOperand(1)), | ||||
| 10758 | 0), | ||||
| 10759 | DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), | ||||
| 10760 | DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), | ||||
| 10761 | 0); | ||||
| 10762 | } | ||||
| 10763 | case Intrinsic::ppc_fnmsub: { | ||||
| 10764 | EVT VT = Op.getOperand(1).getValueType(); | ||||
| 10765 | if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128)) | ||||
| 10766 | return DAG.getNode( | ||||
| 10767 | ISD::FNEG, dl, VT, | ||||
| 10768 | DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2), | ||||
| 10769 | DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3)))); | ||||
| 10770 | return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1), | ||||
| 10771 | Op.getOperand(2), Op.getOperand(3)); | ||||
| 10772 | } | ||||
| 10773 | case Intrinsic::ppc_convert_f128_to_ppcf128: | ||||
| 10774 | case Intrinsic::ppc_convert_ppcf128_to_f128: { | ||||
| 10775 | RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 | ||||
| 10776 | ? RTLIB::CONVERT_PPCF128_F128 | ||||
| 10777 | : RTLIB::CONVERT_F128_PPCF128; | ||||
| 10778 | MakeLibCallOptions CallOptions; | ||||
| 10779 | std::pair<SDValue, SDValue> Result = | ||||
| 10780 | makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, | ||||
| 10781 | dl, SDValue()); | ||||
| 10782 | return Result.first; | ||||
| 10783 | } | ||||
| 10784 | case Intrinsic::ppc_maxfe: | ||||
| 10785 | case Intrinsic::ppc_maxfl: | ||||
| 10786 | case Intrinsic::ppc_maxfs: | ||||
| 10787 | case Intrinsic::ppc_minfe: | ||||
| 10788 | case Intrinsic::ppc_minfl: | ||||
| 10789 | case Intrinsic::ppc_minfs: { | ||||
| 10790 | EVT VT = Op.getValueType(); | ||||
| 10791 | assert((static_cast <bool> (all_of(Op->ops().drop_front(4), [VT](const SDUse &Use) { return Use.getValueType() == VT ; }) && "ppc_[max|min]f[e|l|s] must have uniform type arguments" ) ? void (0) : __assert_fail ("all_of(Op->ops().drop_front(4), [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && \"ppc_[max|min]f[e|l|s] must have uniform type arguments\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10794, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10792 | all_of(Op->ops().drop_front(4),(static_cast <bool> (all_of(Op->ops().drop_front(4), [VT](const SDUse &Use) { return Use.getValueType() == VT ; }) && "ppc_[max|min]f[e|l|s] must have uniform type arguments" ) ? void (0) : __assert_fail ("all_of(Op->ops().drop_front(4), [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && \"ppc_[max|min]f[e|l|s] must have uniform type arguments\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10794, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10793 | [VT](const SDUse &Use) { return Use.getValueType() == VT; }) &&(static_cast <bool> (all_of(Op->ops().drop_front(4), [VT](const SDUse &Use) { return Use.getValueType() == VT ; }) && "ppc_[max|min]f[e|l|s] must have uniform type arguments" ) ? void (0) : __assert_fail ("all_of(Op->ops().drop_front(4), [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && \"ppc_[max|min]f[e|l|s] must have uniform type arguments\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10794, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10794 | "ppc_[max|min]f[e|l|s] must have uniform type arguments")(static_cast <bool> (all_of(Op->ops().drop_front(4), [VT](const SDUse &Use) { return Use.getValueType() == VT ; }) && "ppc_[max|min]f[e|l|s] must have uniform type arguments" ) ? void (0) : __assert_fail ("all_of(Op->ops().drop_front(4), [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && \"ppc_[max|min]f[e|l|s] must have uniform type arguments\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10794, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10795 | (void)VT; | ||||
| 10796 | ISD::CondCode CC = ISD::SETGT; | ||||
| 10797 | if (IntrinsicID == Intrinsic::ppc_minfe || | ||||
| 10798 | IntrinsicID == Intrinsic::ppc_minfl || | ||||
| 10799 | IntrinsicID == Intrinsic::ppc_minfs) | ||||
| 10800 | CC = ISD::SETLT; | ||||
| 10801 | unsigned I = Op.getNumOperands() - 2, Cnt = I; | ||||
| 10802 | SDValue Res = Op.getOperand(I); | ||||
| 10803 | for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) { | ||||
| 10804 | Res = | ||||
| 10805 | DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC); | ||||
| 10806 | } | ||||
| 10807 | return Res; | ||||
| 10808 | } | ||||
| 10809 | } | ||||
| 10810 | |||||
| 10811 | // If this is a lowered altivec predicate compare, CompareOpc is set to the | ||||
| 10812 | // opcode number of the comparison. | ||||
| 10813 | int CompareOpc; | ||||
| 10814 | bool isDot; | ||||
| 10815 | if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) | ||||
| 10816 | return SDValue(); // Don't custom lower most intrinsics. | ||||
| 10817 | |||||
| 10818 | // If this is a non-dot comparison, make the VCMP node and we are done. | ||||
| 10819 | if (!isDot) { | ||||
| 10820 | SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), | ||||
| 10821 | Op.getOperand(1), Op.getOperand(2), | ||||
| 10822 | DAG.getConstant(CompareOpc, dl, MVT::i32)); | ||||
| 10823 | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); | ||||
| 10824 | } | ||||
| 10825 | |||||
| 10826 | // Create the PPCISD altivec 'dot' comparison node. | ||||
| 10827 | SDValue Ops[] = { | ||||
| 10828 | Op.getOperand(2), // LHS | ||||
| 10829 | Op.getOperand(3), // RHS | ||||
| 10830 | DAG.getConstant(CompareOpc, dl, MVT::i32) | ||||
| 10831 | }; | ||||
| 10832 | EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; | ||||
| 10833 | SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); | ||||
| 10834 | |||||
| 10835 | // Now that we have the comparison, emit a copy from the CR to a GPR. | ||||
| 10836 | // This is flagged to the above dot comparison. | ||||
| 10837 | SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, | ||||
| 10838 | DAG.getRegister(PPC::CR6, MVT::i32), | ||||
| 10839 | CompNode.getValue(1)); | ||||
| 10840 | |||||
| 10841 | // Unpack the result based on how the target uses it. | ||||
| 10842 | unsigned BitNo; // Bit # of CR6. | ||||
| 10843 | bool InvertBit; // Invert result? | ||||
| 10844 | switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { | ||||
| 10845 | default: // Can't happen, don't crash on invalid number though. | ||||
| 10846 | case 0: // Return the value of the EQ bit of CR6. | ||||
| 10847 | BitNo = 0; InvertBit = false; | ||||
| 10848 | break; | ||||
| 10849 | case 1: // Return the inverted value of the EQ bit of CR6. | ||||
| 10850 | BitNo = 0; InvertBit = true; | ||||
| 10851 | break; | ||||
| 10852 | case 2: // Return the value of the LT bit of CR6. | ||||
| 10853 | BitNo = 2; InvertBit = false; | ||||
| 10854 | break; | ||||
| 10855 | case 3: // Return the inverted value of the LT bit of CR6. | ||||
| 10856 | BitNo = 2; InvertBit = true; | ||||
| 10857 | break; | ||||
| 10858 | } | ||||
| 10859 | |||||
| 10860 | // Shift the bit into the low position. | ||||
| 10861 | Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, | ||||
| 10862 | DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); | ||||
| 10863 | // Isolate the bit. | ||||
| 10864 | Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, | ||||
| 10865 | DAG.getConstant(1, dl, MVT::i32)); | ||||
| 10866 | |||||
| 10867 | // If we are supposed to, toggle the bit. | ||||
| 10868 | if (InvertBit) | ||||
| 10869 | Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, | ||||
| 10870 | DAG.getConstant(1, dl, MVT::i32)); | ||||
| 10871 | return Flags; | ||||
| 10872 | } | ||||
| 10873 | |||||
| 10874 | SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, | ||||
| 10875 | SelectionDAG &DAG) const { | ||||
| 10876 | // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to | ||||
| 10877 | // the beginning of the argument list. | ||||
| 10878 | int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; | ||||
| 10879 | SDLoc DL(Op); | ||||
| 10880 | switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { | ||||
| 10881 | case Intrinsic::ppc_cfence: { | ||||
| 10882 | assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.")(static_cast <bool> (ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument." ) ? void (0) : __assert_fail ("ArgStart == 1 && \"llvm.ppc.cfence must carry a chain argument.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10882, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10883 | assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.")(static_cast <bool> (Subtarget.isPPC64() && "Only 64-bit is supported for now." ) ? void (0) : __assert_fail ("Subtarget.isPPC64() && \"Only 64-bit is supported for now.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10883, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10884 | SDValue Val = Op.getOperand(ArgStart + 1); | ||||
| 10885 | EVT Ty = Val.getValueType(); | ||||
| 10886 | if (Ty == MVT::i128) { | ||||
| 10887 | // FIXME: Testing one of two paired registers is sufficient to guarantee | ||||
| 10888 | // ordering? | ||||
| 10889 | Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); | ||||
| 10890 | } | ||||
| 10891 | return SDValue( | ||||
| 10892 | DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, | ||||
| 10893 | DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), | ||||
| 10894 | Op.getOperand(0)), | ||||
| 10895 | 0); | ||||
| 10896 | } | ||||
| 10897 | default: | ||||
| 10898 | break; | ||||
| 10899 | } | ||||
| 10900 | return SDValue(); | ||||
| 10901 | } | ||||
| 10902 | |||||
| 10903 | // Lower scalar BSWAP64 to xxbrd. | ||||
| 10904 | SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { | ||||
| 10905 | SDLoc dl(Op); | ||||
| 10906 | if (!Subtarget.isPPC64()) | ||||
| 10907 | return Op; | ||||
| 10908 | // MTVSRDD | ||||
| 10909 | Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), | ||||
| 10910 | Op.getOperand(0)); | ||||
| 10911 | // XXBRD | ||||
| 10912 | Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); | ||||
| 10913 | // MFVSRD | ||||
| 10914 | int VectorIndex = 0; | ||||
| 10915 | if (Subtarget.isLittleEndian()) | ||||
| 10916 | VectorIndex = 1; | ||||
| 10917 | Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, | ||||
| 10918 | DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); | ||||
| 10919 | return Op; | ||||
| 10920 | } | ||||
| 10921 | |||||
| 10922 | // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be | ||||
| 10923 | // compared to a value that is atomically loaded (atomic loads zero-extend). | ||||
| 10924 | SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, | ||||
| 10925 | SelectionDAG &DAG) const { | ||||
| 10926 | assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&(static_cast <bool> (Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && "Expecting an atomic compare-and-swap here.") ? void (0) : __assert_fail ("Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && \"Expecting an atomic compare-and-swap here.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10927, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10927 | "Expecting an atomic compare-and-swap here.")(static_cast <bool> (Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && "Expecting an atomic compare-and-swap here.") ? void (0) : __assert_fail ("Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && \"Expecting an atomic compare-and-swap here.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10927, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10928 | SDLoc dl(Op); | ||||
| 10929 | auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); | ||||
| 10930 | EVT MemVT = AtomicNode->getMemoryVT(); | ||||
| 10931 | if (MemVT.getSizeInBits() >= 32) | ||||
| 10932 | return Op; | ||||
| 10933 | |||||
| 10934 | SDValue CmpOp = Op.getOperand(2); | ||||
| 10935 | // If this is already correctly zero-extended, leave it alone. | ||||
| 10936 | auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); | ||||
| 10937 | if (DAG.MaskedValueIsZero(CmpOp, HighBits)) | ||||
| 10938 | return Op; | ||||
| 10939 | |||||
| 10940 | // Clear the high bits of the compare operand. | ||||
| 10941 | unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; | ||||
| 10942 | SDValue NewCmpOp = | ||||
| 10943 | DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, | ||||
| 10944 | DAG.getConstant(MaskVal, dl, MVT::i32)); | ||||
| 10945 | |||||
| 10946 | // Replace the existing compare operand with the properly zero-extended one. | ||||
| 10947 | SmallVector<SDValue, 4> Ops; | ||||
| 10948 | for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) | ||||
| 10949 | Ops.push_back(AtomicNode->getOperand(i)); | ||||
| 10950 | Ops[2] = NewCmpOp; | ||||
| 10951 | MachineMemOperand *MMO = AtomicNode->getMemOperand(); | ||||
| 10952 | SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); | ||||
| 10953 | auto NodeTy = | ||||
| 10954 | (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; | ||||
| 10955 | return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); | ||||
| 10956 | } | ||||
| 10957 | |||||
| 10958 | SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, | ||||
| 10959 | SelectionDAG &DAG) const { | ||||
| 10960 | AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); | ||||
| 10961 | EVT MemVT = N->getMemoryVT(); | ||||
| 10962 | assert(MemVT.getSimpleVT() == MVT::i128 &&(static_cast <bool> (MemVT.getSimpleVT() == MVT::i128 && "Expect quadword atomic operations") ? void (0) : __assert_fail ("MemVT.getSimpleVT() == MVT::i128 && \"Expect quadword atomic operations\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10963, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10963 | "Expect quadword atomic operations")(static_cast <bool> (MemVT.getSimpleVT() == MVT::i128 && "Expect quadword atomic operations") ? void (0) : __assert_fail ("MemVT.getSimpleVT() == MVT::i128 && \"Expect quadword atomic operations\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 10963, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10964 | SDLoc dl(N); | ||||
| 10965 | unsigned Opc = N->getOpcode(); | ||||
| 10966 | switch (Opc) { | ||||
| 10967 | case ISD::ATOMIC_LOAD: { | ||||
| 10968 | // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be | ||||
| 10969 | // lowered to ppc instructions by pattern matching instruction selector. | ||||
| 10970 | SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); | ||||
| 10971 | SmallVector<SDValue, 4> Ops{ | ||||
| 10972 | N->getOperand(0), | ||||
| 10973 | DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; | ||||
| 10974 | for (int I = 1, E = N->getNumOperands(); I < E; ++I) | ||||
| 10975 | Ops.push_back(N->getOperand(I)); | ||||
| 10976 | SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, | ||||
| 10977 | Ops, MemVT, N->getMemOperand()); | ||||
| 10978 | SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); | ||||
| 10979 | SDValue ValHi = | ||||
| 10980 | DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); | ||||
| 10981 | ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, | ||||
| 10982 | DAG.getConstant(64, dl, MVT::i32)); | ||||
| 10983 | SDValue Val = | ||||
| 10984 | DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); | ||||
| 10985 | return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, | ||||
| 10986 | {Val, LoadedVal.getValue(2)}); | ||||
| 10987 | } | ||||
| 10988 | case ISD::ATOMIC_STORE: { | ||||
| 10989 | // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be | ||||
| 10990 | // lowered to ppc instructions by pattern matching instruction selector. | ||||
| 10991 | SDVTList Tys = DAG.getVTList(MVT::Other); | ||||
| 10992 | SmallVector<SDValue, 4> Ops{ | ||||
| 10993 | N->getOperand(0), | ||||
| 10994 | DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; | ||||
| 10995 | SDValue Val = N->getOperand(2); | ||||
| 10996 | SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); | ||||
| 10997 | SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, | ||||
| 10998 | DAG.getConstant(64, dl, MVT::i32)); | ||||
| 10999 | ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); | ||||
| 11000 | Ops.push_back(ValLo); | ||||
| 11001 | Ops.push_back(ValHi); | ||||
| 11002 | Ops.push_back(N->getOperand(1)); | ||||
| 11003 | return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, | ||||
| 11004 | N->getMemOperand()); | ||||
| 11005 | } | ||||
| 11006 | default: | ||||
| 11007 | llvm_unreachable("Unexpected atomic opcode")::llvm::llvm_unreachable_internal("Unexpected atomic opcode", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11007); | ||||
| 11008 | } | ||||
| 11009 | } | ||||
| 11010 | |||||
| 11011 | static SDValue getDataClassTest(SDValue Op, FPClassTest Mask, const SDLoc &Dl, | ||||
| 11012 | SelectionDAG &DAG, | ||||
| 11013 | const PPCSubtarget &Subtarget) { | ||||
| 11014 | assert(Mask <= fcAllFlags && "Invalid fp_class flags!")(static_cast <bool> (Mask <= fcAllFlags && "Invalid fp_class flags!" ) ? void (0) : __assert_fail ("Mask <= fcAllFlags && \"Invalid fp_class flags!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11014, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11015 | |||||
| 11016 | enum DataClassMask { | ||||
| 11017 | DC_NAN = 1 << 6, | ||||
| 11018 | DC_NEG_INF = 1 << 4, | ||||
| 11019 | DC_POS_INF = 1 << 5, | ||||
| 11020 | DC_NEG_ZERO = 1 << 2, | ||||
| 11021 | DC_POS_ZERO = 1 << 3, | ||||
| 11022 | DC_NEG_SUBNORM = 1, | ||||
| 11023 | DC_POS_SUBNORM = 1 << 1, | ||||
| 11024 | }; | ||||
| 11025 | |||||
| 11026 | EVT VT = Op.getValueType(); | ||||
| 11027 | |||||
| 11028 | unsigned TestOp = VT == MVT::f128 ? PPC::XSTSTDCQP | ||||
| 11029 | : VT == MVT::f64 ? PPC::XSTSTDCDP | ||||
| 11030 | : PPC::XSTSTDCSP; | ||||
| 11031 | |||||
| 11032 | if (Mask == fcAllFlags) | ||||
| 11033 | return DAG.getBoolConstant(true, Dl, MVT::i1, VT); | ||||
| 11034 | if (Mask == 0) | ||||
| 11035 | return DAG.getBoolConstant(false, Dl, MVT::i1, VT); | ||||
| 11036 | |||||
| 11037 | // When it's cheaper or necessary to test reverse flags. | ||||
| 11038 | if ((Mask & fcNormal) == fcNormal || Mask == ~fcQNan || Mask == ~fcSNan) { | ||||
| 11039 | SDValue Rev = getDataClassTest(Op, ~Mask, Dl, DAG, Subtarget); | ||||
| 11040 | return DAG.getNOT(Dl, Rev, MVT::i1); | ||||
| 11041 | } | ||||
| 11042 | |||||
| 11043 | // Power doesn't support testing whether a value is 'normal'. Test the rest | ||||
| 11044 | // first, and test if it's 'not not-normal' with expected sign. | ||||
| 11045 | if (Mask & fcNormal) { | ||||
| 11046 | SDValue Rev(DAG.getMachineNode( | ||||
| 11047 | TestOp, Dl, MVT::i32, | ||||
| 11048 | DAG.getTargetConstant(DC_NAN | DC_NEG_INF | DC_POS_INF | | ||||
| 11049 | DC_NEG_ZERO | DC_POS_ZERO | | ||||
| 11050 | DC_NEG_SUBNORM | DC_POS_SUBNORM, | ||||
| 11051 | Dl, MVT::i32), | ||||
| 11052 | Op), | ||||
| 11053 | 0); | ||||
| 11054 | // Sign are stored in CR bit 0, result are in CR bit 2. | ||||
| 11055 | SDValue Sign( | ||||
| 11056 | DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev, | ||||
| 11057 | DAG.getTargetConstant(PPC::sub_lt, Dl, MVT::i32)), | ||||
| 11058 | 0); | ||||
| 11059 | SDValue Normal(DAG.getNOT( | ||||
| 11060 | Dl, | ||||
| 11061 | SDValue(DAG.getMachineNode( | ||||
| 11062 | TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev, | ||||
| 11063 | DAG.getTargetConstant(PPC::sub_eq, Dl, MVT::i32)), | ||||
| 11064 | 0), | ||||
| 11065 | MVT::i1)); | ||||
| 11066 | if (Mask & fcPosNormal) | ||||
| 11067 | Sign = DAG.getNOT(Dl, Sign, MVT::i1); | ||||
| 11068 | SDValue Result = DAG.getNode(ISD::AND, Dl, MVT::i1, Sign, Normal); | ||||
| 11069 | if (Mask == fcPosNormal || Mask == fcNegNormal) | ||||
| 11070 | return Result; | ||||
| 11071 | |||||
| 11072 | return DAG.getNode( | ||||
| 11073 | ISD::OR, Dl, MVT::i1, | ||||
| 11074 | getDataClassTest(Op, Mask & ~fcNormal, Dl, DAG, Subtarget), Result); | ||||
| 11075 | } | ||||
| 11076 | |||||
| 11077 | // The instruction doesn't differentiate between signaling or quiet NaN. Test | ||||
| 11078 | // the rest first, and test if it 'is NaN and is signaling/quiet'. | ||||
| 11079 | if ((Mask & fcNan) == fcQNan || (Mask & fcNan) == fcSNan) { | ||||
| 11080 | bool IsQuiet = Mask & fcQNan; | ||||
| 11081 | SDValue NanCheck = getDataClassTest(Op, fcNan, Dl, DAG, Subtarget); | ||||
| 11082 | |||||
| 11083 | // Quietness is determined by the first bit in fraction field. | ||||
| 11084 | uint64_t QuietMask = 0; | ||||
| 11085 | SDValue HighWord; | ||||
| 11086 | if (VT == MVT::f128) { | ||||
| 11087 | HighWord = DAG.getNode( | ||||
| 11088 | ISD::EXTRACT_VECTOR_ELT, Dl, MVT::i32, DAG.getBitcast(MVT::v4i32, Op), | ||||
| 11089 | DAG.getVectorIdxConstant(Subtarget.isLittleEndian() ? 3 : 0, Dl)); | ||||
| 11090 | QuietMask = 0x8000; | ||||
| 11091 | } else if (VT == MVT::f64) { | ||||
| 11092 | if (Subtarget.isPPC64()) { | ||||
| 11093 | HighWord = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, | ||||
| 11094 | DAG.getBitcast(MVT::i64, Op), | ||||
| 11095 | DAG.getConstant(1, Dl, MVT::i32)); | ||||
| 11096 | } else { | ||||
| 11097 | SDValue Vec = DAG.getBitcast( | ||||
| 11098 | MVT::v4i32, DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v2f64, Op)); | ||||
| 11099 | HighWord = DAG.getNode( | ||||
| 11100 | ISD::EXTRACT_VECTOR_ELT, Dl, MVT::i32, Vec, | ||||
| 11101 | DAG.getVectorIdxConstant(Subtarget.isLittleEndian() ? 1 : 0, Dl)); | ||||
| 11102 | } | ||||
| 11103 | QuietMask = 0x80000; | ||||
| 11104 | } else if (VT == MVT::f32) { | ||||
| 11105 | HighWord = DAG.getBitcast(MVT::i32, Op); | ||||
| 11106 | QuietMask = 0x400000; | ||||
| 11107 | } | ||||
| 11108 | SDValue NanRes = DAG.getSetCC( | ||||
| 11109 | Dl, MVT::i1, | ||||
| 11110 | DAG.getNode(ISD::AND, Dl, MVT::i32, HighWord, | ||||
| 11111 | DAG.getConstant(QuietMask, Dl, MVT::i32)), | ||||
| 11112 | DAG.getConstant(0, Dl, MVT::i32), IsQuiet ? ISD::SETNE : ISD::SETEQ); | ||||
| 11113 | NanRes = DAG.getNode(ISD::AND, Dl, MVT::i1, NanCheck, NanRes); | ||||
| 11114 | if (Mask == fcQNan || Mask == fcSNan) | ||||
| 11115 | return NanRes; | ||||
| 11116 | |||||
| 11117 | return DAG.getNode(ISD::OR, Dl, MVT::i1, | ||||
| 11118 | getDataClassTest(Op, Mask & ~fcNan, Dl, DAG, Subtarget), | ||||
| 11119 | NanRes); | ||||
| 11120 | } | ||||
| 11121 | |||||
| 11122 | unsigned NativeMask = 0; | ||||
| 11123 | if ((Mask & fcNan) == fcNan) | ||||
| 11124 | NativeMask |= DC_NAN; | ||||
| 11125 | if (Mask & fcNegInf) | ||||
| 11126 | NativeMask |= DC_NEG_INF; | ||||
| 11127 | if (Mask & fcPosInf) | ||||
| 11128 | NativeMask |= DC_POS_INF; | ||||
| 11129 | if (Mask & fcNegZero) | ||||
| 11130 | NativeMask |= DC_NEG_ZERO; | ||||
| 11131 | if (Mask & fcPosZero) | ||||
| 11132 | NativeMask |= DC_POS_ZERO; | ||||
| 11133 | if (Mask & fcNegSubnormal) | ||||
| 11134 | NativeMask |= DC_NEG_SUBNORM; | ||||
| 11135 | if (Mask & fcPosSubnormal) | ||||
| 11136 | NativeMask |= DC_POS_SUBNORM; | ||||
| 11137 | return SDValue( | ||||
| 11138 | DAG.getMachineNode( | ||||
| 11139 | TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, | ||||
| 11140 | SDValue(DAG.getMachineNode( | ||||
| 11141 | TestOp, Dl, MVT::i32, | ||||
| 11142 | DAG.getTargetConstant(NativeMask, Dl, MVT::i32), Op), | ||||
| 11143 | 0), | ||||
| 11144 | DAG.getTargetConstant(PPC::sub_eq, Dl, MVT::i32)), | ||||
| 11145 | 0); | ||||
| 11146 | } | ||||
| 11147 | |||||
| 11148 | SDValue PPCTargetLowering::LowerIS_FPCLASS(SDValue Op, | ||||
| 11149 | SelectionDAG &DAG) const { | ||||
| 11150 | assert(Subtarget.hasP9Vector() && "Test data class requires Power9")(static_cast <bool> (Subtarget.hasP9Vector() && "Test data class requires Power9") ? void (0) : __assert_fail ("Subtarget.hasP9Vector() && \"Test data class requires Power9\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11150, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11151 | SDValue LHS = Op.getOperand(0); | ||||
| 11152 | const auto *RHS = cast<ConstantSDNode>(Op.getOperand(1)); | ||||
| 11153 | SDLoc Dl(Op); | ||||
| 11154 | FPClassTest Category = static_cast<FPClassTest>(RHS->getZExtValue()); | ||||
| 11155 | return getDataClassTest(LHS, Category, Dl, DAG, Subtarget); | ||||
| 11156 | } | ||||
| 11157 | |||||
| 11158 | SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, | ||||
| 11159 | SelectionDAG &DAG) const { | ||||
| 11160 | SDLoc dl(Op); | ||||
| 11161 | // Create a stack slot that is 16-byte aligned. | ||||
| 11162 | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | ||||
| 11163 | int FrameIdx = MFI.CreateStackObject(16, Align(16), false); | ||||
| 11164 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 11165 | SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); | ||||
| 11166 | |||||
| 11167 | // Store the input value into Value#0 of the stack slot. | ||||
| 11168 | SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, | ||||
| 11169 | MachinePointerInfo()); | ||||
| 11170 | // Load it out. | ||||
| 11171 | return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); | ||||
| 11172 | } | ||||
| 11173 | |||||
| 11174 | SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, | ||||
| 11175 | SelectionDAG &DAG) const { | ||||
| 11176 | assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&(static_cast <bool> (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Should only be called for ISD::INSERT_VECTOR_ELT" ) ? void (0) : __assert_fail ("Op.getOpcode() == ISD::INSERT_VECTOR_ELT && \"Should only be called for ISD::INSERT_VECTOR_ELT\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11177, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11177 | "Should only be called for ISD::INSERT_VECTOR_ELT")(static_cast <bool> (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Should only be called for ISD::INSERT_VECTOR_ELT" ) ? void (0) : __assert_fail ("Op.getOpcode() == ISD::INSERT_VECTOR_ELT && \"Should only be called for ISD::INSERT_VECTOR_ELT\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11177, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11178 | |||||
| 11179 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | ||||
| 11180 | |||||
| 11181 | EVT VT = Op.getValueType(); | ||||
| 11182 | SDLoc dl(Op); | ||||
| 11183 | SDValue V1 = Op.getOperand(0); | ||||
| 11184 | SDValue V2 = Op.getOperand(1); | ||||
| 11185 | |||||
| 11186 | if (VT == MVT::v2f64 && C) | ||||
| 11187 | return Op; | ||||
| 11188 | |||||
| 11189 | if (Subtarget.hasP9Vector()) { | ||||
| 11190 | // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way | ||||
| 11191 | // because on P10, it allows this specific insert_vector_elt load pattern to | ||||
| 11192 | // utilize the refactored load and store infrastructure in order to exploit | ||||
| 11193 | // prefixed loads. | ||||
| 11194 | // On targets with inexpensive direct moves (Power9 and up), a | ||||
| 11195 | // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer | ||||
| 11196 | // load since a single precision load will involve conversion to double | ||||
| 11197 | // precision on the load followed by another conversion to single precision. | ||||
| 11198 | if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && | ||||
| 11199 | (isa<LoadSDNode>(V2))) { | ||||
| 11200 | SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); | ||||
| 11201 | SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); | ||||
| 11202 | SDValue InsVecElt = | ||||
| 11203 | DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, | ||||
| 11204 | BitcastLoad, Op.getOperand(2)); | ||||
| 11205 | return DAG.getBitcast(MVT::v4f32, InsVecElt); | ||||
| 11206 | } | ||||
| 11207 | } | ||||
| 11208 | |||||
| 11209 | if (Subtarget.isISA3_1()) { | ||||
| 11210 | if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) | ||||
| 11211 | return SDValue(); | ||||
| 11212 | // On P10, we have legal lowering for constant and variable indices for | ||||
| 11213 | // all vectors. | ||||
| 11214 | if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || | ||||
| 11215 | VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) | ||||
| 11216 | return Op; | ||||
| 11217 | } | ||||
| 11218 | |||||
| 11219 | // Before P10, we have legal lowering for constant indices but not for | ||||
| 11220 | // variable ones. | ||||
| 11221 | if (!C) | ||||
| 11222 | return SDValue(); | ||||
| 11223 | |||||
| 11224 | // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. | ||||
| 11225 | if (VT == MVT::v8i16 || VT == MVT::v16i8) { | ||||
| 11226 | SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); | ||||
| 11227 | unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; | ||||
| 11228 | unsigned InsertAtElement = C->getZExtValue(); | ||||
| 11229 | unsigned InsertAtByte = InsertAtElement * BytesInEachElement; | ||||
| 11230 | if (Subtarget.isLittleEndian()) { | ||||
| 11231 | InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; | ||||
| 11232 | } | ||||
| 11233 | return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, | ||||
| 11234 | DAG.getConstant(InsertAtByte, dl, MVT::i32)); | ||||
| 11235 | } | ||||
| 11236 | return Op; | ||||
| 11237 | } | ||||
| 11238 | |||||
| 11239 | SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, | ||||
| 11240 | SelectionDAG &DAG) const { | ||||
| 11241 | SDLoc dl(Op); | ||||
| 11242 | LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); | ||||
| 11243 | SDValue LoadChain = LN->getChain(); | ||||
| 11244 | SDValue BasePtr = LN->getBasePtr(); | ||||
| 11245 | EVT VT = Op.getValueType(); | ||||
| 11246 | |||||
| 11247 | if (VT != MVT::v256i1 && VT != MVT::v512i1) | ||||
| 11248 | return Op; | ||||
| 11249 | |||||
| 11250 | // Type v256i1 is used for pairs and v512i1 is used for accumulators. | ||||
| 11251 | // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in | ||||
| 11252 | // 2 or 4 vsx registers. | ||||
| 11253 | assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&(static_cast <bool> ((VT != MVT::v512i1 || Subtarget.hasMMA ()) && "Type unsupported without MMA") ? void (0) : __assert_fail ("(VT != MVT::v512i1 || Subtarget.hasMMA()) && \"Type unsupported without MMA\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11254, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11254 | "Type unsupported without MMA")(static_cast <bool> ((VT != MVT::v512i1 || Subtarget.hasMMA ()) && "Type unsupported without MMA") ? void (0) : __assert_fail ("(VT != MVT::v512i1 || Subtarget.hasMMA()) && \"Type unsupported without MMA\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11254, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11255 | assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&(static_cast <bool> ((VT != MVT::v256i1 || Subtarget.pairedVectorMemops ()) && "Type unsupported without paired vector support" ) ? void (0) : __assert_fail ("(VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && \"Type unsupported without paired vector support\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11256, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11256 | "Type unsupported without paired vector support")(static_cast <bool> ((VT != MVT::v256i1 || Subtarget.pairedVectorMemops ()) && "Type unsupported without paired vector support" ) ? void (0) : __assert_fail ("(VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && \"Type unsupported without paired vector support\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11256, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11257 | Align Alignment = LN->getAlign(); | ||||
| 11258 | SmallVector<SDValue, 4> Loads; | ||||
| 11259 | SmallVector<SDValue, 4> LoadChains; | ||||
| 11260 | unsigned NumVecs = VT.getSizeInBits() / 128; | ||||
| 11261 | for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { | ||||
| 11262 | SDValue Load = | ||||
| 11263 | DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, | ||||
| 11264 | LN->getPointerInfo().getWithOffset(Idx * 16), | ||||
| 11265 | commonAlignment(Alignment, Idx * 16), | ||||
| 11266 | LN->getMemOperand()->getFlags(), LN->getAAInfo()); | ||||
| 11267 | BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, | ||||
| 11268 | DAG.getConstant(16, dl, BasePtr.getValueType())); | ||||
| 11269 | Loads.push_back(Load); | ||||
| 11270 | LoadChains.push_back(Load.getValue(1)); | ||||
| 11271 | } | ||||
| 11272 | if (Subtarget.isLittleEndian()) { | ||||
| 11273 | std::reverse(Loads.begin(), Loads.end()); | ||||
| 11274 | std::reverse(LoadChains.begin(), LoadChains.end()); | ||||
| 11275 | } | ||||
| 11276 | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); | ||||
| 11277 | SDValue Value = | ||||
| 11278 | DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, | ||||
| 11279 | dl, VT, Loads); | ||||
| 11280 | SDValue RetOps[] = {Value, TF}; | ||||
| 11281 | return DAG.getMergeValues(RetOps, dl); | ||||
| 11282 | } | ||||
| 11283 | |||||
| 11284 | SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, | ||||
| 11285 | SelectionDAG &DAG) const { | ||||
| 11286 | SDLoc dl(Op); | ||||
| 11287 | StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); | ||||
| 11288 | SDValue StoreChain = SN->getChain(); | ||||
| 11289 | SDValue BasePtr = SN->getBasePtr(); | ||||
| 11290 | SDValue Value = SN->getValue(); | ||||
| 11291 | SDValue Value2 = SN->getValue(); | ||||
| 11292 | EVT StoreVT = Value.getValueType(); | ||||
| 11293 | |||||
| 11294 | if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) | ||||
| 11295 | return Op; | ||||
| 11296 | |||||
| 11297 | // Type v256i1 is used for pairs and v512i1 is used for accumulators. | ||||
| 11298 | // Here we create 2 or 4 v16i8 stores to store the pair or accumulator | ||||
| 11299 | // underlying registers individually. | ||||
| 11300 | assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&(static_cast <bool> ((StoreVT != MVT::v512i1 || Subtarget .hasMMA()) && "Type unsupported without MMA") ? void ( 0) : __assert_fail ("(StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && \"Type unsupported without MMA\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11301, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11301 | "Type unsupported without MMA")(static_cast <bool> ((StoreVT != MVT::v512i1 || Subtarget .hasMMA()) && "Type unsupported without MMA") ? void ( 0) : __assert_fail ("(StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && \"Type unsupported without MMA\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11301, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11302 | assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&(static_cast <bool> ((StoreVT != MVT::v256i1 || Subtarget .pairedVectorMemops()) && "Type unsupported without paired vector support" ) ? void (0) : __assert_fail ("(StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && \"Type unsupported without paired vector support\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11303, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11303 | "Type unsupported without paired vector support")(static_cast <bool> ((StoreVT != MVT::v256i1 || Subtarget .pairedVectorMemops()) && "Type unsupported without paired vector support" ) ? void (0) : __assert_fail ("(StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && \"Type unsupported without paired vector support\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11303, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11304 | Align Alignment = SN->getAlign(); | ||||
| 11305 | SmallVector<SDValue, 4> Stores; | ||||
| 11306 | unsigned NumVecs = 2; | ||||
| 11307 | if (StoreVT == MVT::v512i1) { | ||||
| 11308 | if (Subtarget.isISAFuture()) { | ||||
| 11309 | EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1}; | ||||
| 11310 | MachineSDNode *ExtNode = DAG.getMachineNode( | ||||
| 11311 | PPC::DMXXEXTFDMR512, dl, ArrayRef(ReturnTypes, 2), Op.getOperand(1)); | ||||
| 11312 | |||||
| 11313 | Value = SDValue(ExtNode, 0); | ||||
| 11314 | Value2 = SDValue(ExtNode, 1); | ||||
| 11315 | } else | ||||
| 11316 | Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); | ||||
| 11317 | NumVecs = 4; | ||||
| 11318 | } | ||||
| 11319 | for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { | ||||
| 11320 | unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; | ||||
| 11321 | SDValue Elt; | ||||
| 11322 | if (Subtarget.isISAFuture()) { | ||||
| 11323 | VecNum = Subtarget.isLittleEndian() ? 1 - (Idx % 2) : (Idx % 2); | ||||
| 11324 | Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, | ||||
| 11325 | Idx > 1 ? Value2 : Value, | ||||
| 11326 | DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); | ||||
| 11327 | } else | ||||
| 11328 | Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, | ||||
| 11329 | DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); | ||||
| 11330 | |||||
| 11331 | SDValue Store = | ||||
| 11332 | DAG.getStore(StoreChain, dl, Elt, BasePtr, | ||||
| 11333 | SN->getPointerInfo().getWithOffset(Idx * 16), | ||||
| 11334 | commonAlignment(Alignment, Idx * 16), | ||||
| 11335 | SN->getMemOperand()->getFlags(), SN->getAAInfo()); | ||||
| 11336 | BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, | ||||
| 11337 | DAG.getConstant(16, dl, BasePtr.getValueType())); | ||||
| 11338 | Stores.push_back(Store); | ||||
| 11339 | } | ||||
| 11340 | SDValue TF = DAG.getTokenFactor(dl, Stores); | ||||
| 11341 | return TF; | ||||
| 11342 | } | ||||
| 11343 | |||||
| 11344 | SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { | ||||
| 11345 | SDLoc dl(Op); | ||||
| 11346 | if (Op.getValueType() == MVT::v4i32) { | ||||
| 11347 | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | ||||
| 11348 | |||||
| 11349 | SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); | ||||
| 11350 | // +16 as shift amt. | ||||
| 11351 | SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); | ||||
| 11352 | SDValue RHSSwap = // = vrlw RHS, 16 | ||||
| 11353 | BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); | ||||
| 11354 | |||||
| 11355 | // Shrinkify inputs to v8i16. | ||||
| 11356 | LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); | ||||
| 11357 | RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); | ||||
| 11358 | RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); | ||||
| 11359 | |||||
| 11360 | // Low parts multiplied together, generating 32-bit results (we ignore the | ||||
| 11361 | // top parts). | ||||
| 11362 | SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, | ||||
| 11363 | LHS, RHS, DAG, dl, MVT::v4i32); | ||||
| 11364 | |||||
| 11365 | SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, | ||||
| 11366 | LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); | ||||
| 11367 | // Shift the high parts up 16 bits. | ||||
| 11368 | HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, | ||||
| 11369 | Neg16, DAG, dl); | ||||
| 11370 | return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); | ||||
| 11371 | } else if (Op.getValueType() == MVT::v16i8) { | ||||
| 11372 | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); | ||||
| 11373 | bool isLittleEndian = Subtarget.isLittleEndian(); | ||||
| 11374 | |||||
| 11375 | // Multiply the even 8-bit parts, producing 16-bit sums. | ||||
| 11376 | SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, | ||||
| 11377 | LHS, RHS, DAG, dl, MVT::v8i16); | ||||
| 11378 | EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); | ||||
| 11379 | |||||
| 11380 | // Multiply the odd 8-bit parts, producing 16-bit sums. | ||||
| 11381 | SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, | ||||
| 11382 | LHS, RHS, DAG, dl, MVT::v8i16); | ||||
| 11383 | OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); | ||||
| 11384 | |||||
| 11385 | // Merge the results together. Because vmuleub and vmuloub are | ||||
| 11386 | // instructions with a big-endian bias, we must reverse the | ||||
| 11387 | // element numbering and reverse the meaning of "odd" and "even" | ||||
| 11388 | // when generating little endian code. | ||||
| 11389 | int Ops[16]; | ||||
| 11390 | for (unsigned i = 0; i != 8; ++i) { | ||||
| 11391 | if (isLittleEndian) { | ||||
| 11392 | Ops[i*2 ] = 2*i; | ||||
| 11393 | Ops[i*2+1] = 2*i+16; | ||||
| 11394 | } else { | ||||
| 11395 | Ops[i*2 ] = 2*i+1; | ||||
| 11396 | Ops[i*2+1] = 2*i+1+16; | ||||
| 11397 | } | ||||
| 11398 | } | ||||
| 11399 | if (isLittleEndian) | ||||
| 11400 | return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); | ||||
| 11401 | else | ||||
| 11402 | return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); | ||||
| 11403 | } else { | ||||
| 11404 | llvm_unreachable("Unknown mul to lower!")::llvm::llvm_unreachable_internal("Unknown mul to lower!", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 11404); | ||||
| 11405 | } | ||||
| 11406 | } | ||||
| 11407 | |||||
| 11408 | SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { | ||||
| 11409 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 11410 | if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && | ||||
| 11411 | !Subtarget.hasP9Vector()) | ||||
| 11412 | return SDValue(); | ||||
| 11413 | |||||
| 11414 | return Op; | ||||
| 11415 | } | ||||
| 11416 | |||||
| 11417 | // Custom lowering for fpext vf32 to v2f64 | ||||
| 11418 | SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { | ||||
| 11419 | |||||
| 11420 | assert(Op.getOpcode() == ISD::FP_EXTEND &&(static_cast <bool> (Op.getOpcode() == ISD::FP_EXTEND && "Should only be called for ISD::FP_EXTEND") ? void (0) : __assert_fail ("Op.getOpcode() == ISD::FP_EXTEND && \"Should only be called for ISD::FP_EXTEND\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11421, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11421 | "Should only be called for ISD::FP_EXTEND")(static_cast <bool> (Op.getOpcode() == ISD::FP_EXTEND && "Should only be called for ISD::FP_EXTEND") ? void (0) : __assert_fail ("Op.getOpcode() == ISD::FP_EXTEND && \"Should only be called for ISD::FP_EXTEND\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11421, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11422 | |||||
| 11423 | // FIXME: handle extends from half precision float vectors on P9. | ||||
| 11424 | // We only want to custom lower an extend from v2f32 to v2f64. | ||||
| 11425 | if (Op.getValueType() != MVT::v2f64 || | ||||
| 11426 | Op.getOperand(0).getValueType() != MVT::v2f32) | ||||
| 11427 | return SDValue(); | ||||
| 11428 | |||||
| 11429 | SDLoc dl(Op); | ||||
| 11430 | SDValue Op0 = Op.getOperand(0); | ||||
| 11431 | |||||
| 11432 | switch (Op0.getOpcode()) { | ||||
| 11433 | default: | ||||
| 11434 | return SDValue(); | ||||
| 11435 | case ISD::EXTRACT_SUBVECTOR: { | ||||
| 11436 | assert(Op0.getNumOperands() == 2 &&(static_cast <bool> (Op0.getNumOperands() == 2 && isa<ConstantSDNode>(Op0->getOperand(1)) && "Node should have 2 operands with second one being a constant!" ) ? void (0) : __assert_fail ("Op0.getNumOperands() == 2 && isa<ConstantSDNode>(Op0->getOperand(1)) && \"Node should have 2 operands with second one being a constant!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11438, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11437 | isa<ConstantSDNode>(Op0->getOperand(1)) &&(static_cast <bool> (Op0.getNumOperands() == 2 && isa<ConstantSDNode>(Op0->getOperand(1)) && "Node should have 2 operands with second one being a constant!" ) ? void (0) : __assert_fail ("Op0.getNumOperands() == 2 && isa<ConstantSDNode>(Op0->getOperand(1)) && \"Node should have 2 operands with second one being a constant!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11438, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11438 | "Node should have 2 operands with second one being a constant!")(static_cast <bool> (Op0.getNumOperands() == 2 && isa<ConstantSDNode>(Op0->getOperand(1)) && "Node should have 2 operands with second one being a constant!" ) ? void (0) : __assert_fail ("Op0.getNumOperands() == 2 && isa<ConstantSDNode>(Op0->getOperand(1)) && \"Node should have 2 operands with second one being a constant!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11438, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11439 | |||||
| 11440 | if (Op0.getOperand(0).getValueType() != MVT::v4f32) | ||||
| 11441 | return SDValue(); | ||||
| 11442 | |||||
| 11443 | // Custom lower is only done for high or low doubleword. | ||||
| 11444 | int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); | ||||
| 11445 | if (Idx % 2 != 0) | ||||
| 11446 | return SDValue(); | ||||
| 11447 | |||||
| 11448 | // Since input is v4f32, at this point Idx is either 0 or 2. | ||||
| 11449 | // Shift to get the doubleword position we want. | ||||
| 11450 | int DWord = Idx >> 1; | ||||
| 11451 | |||||
| 11452 | // High and low word positions are different on little endian. | ||||
| 11453 | if (Subtarget.isLittleEndian()) | ||||
| 11454 | DWord ^= 0x1; | ||||
| 11455 | |||||
| 11456 | return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, | ||||
| 11457 | Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); | ||||
| 11458 | } | ||||
| 11459 | case ISD::FADD: | ||||
| 11460 | case ISD::FMUL: | ||||
| 11461 | case ISD::FSUB: { | ||||
| 11462 | SDValue NewLoad[2]; | ||||
| 11463 | for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { | ||||
| 11464 | // Ensure both input are loads. | ||||
| 11465 | SDValue LdOp = Op0.getOperand(i); | ||||
| 11466 | if (LdOp.getOpcode() != ISD::LOAD) | ||||
| 11467 | return SDValue(); | ||||
| 11468 | // Generate new load node. | ||||
| 11469 | LoadSDNode *LD = cast<LoadSDNode>(LdOp); | ||||
| 11470 | SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; | ||||
| 11471 | NewLoad[i] = DAG.getMemIntrinsicNode( | ||||
| 11472 | PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, | ||||
| 11473 | LD->getMemoryVT(), LD->getMemOperand()); | ||||
| 11474 | } | ||||
| 11475 | SDValue NewOp = | ||||
| 11476 | DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], | ||||
| 11477 | NewLoad[1], Op0.getNode()->getFlags()); | ||||
| 11478 | return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, | ||||
| 11479 | DAG.getConstant(0, dl, MVT::i32)); | ||||
| 11480 | } | ||||
| 11481 | case ISD::LOAD: { | ||||
| 11482 | LoadSDNode *LD = cast<LoadSDNode>(Op0); | ||||
| 11483 | SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; | ||||
| 11484 | SDValue NewLd = DAG.getMemIntrinsicNode( | ||||
| 11485 | PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, | ||||
| 11486 | LD->getMemoryVT(), LD->getMemOperand()); | ||||
| 11487 | return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, | ||||
| 11488 | DAG.getConstant(0, dl, MVT::i32)); | ||||
| 11489 | } | ||||
| 11490 | } | ||||
| 11491 | llvm_unreachable("ERROR:Should return for all cases within swtich.")::llvm::llvm_unreachable_internal("ERROR:Should return for all cases within swtich." , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11491); | ||||
| 11492 | } | ||||
| 11493 | |||||
| 11494 | /// LowerOperation - Provide custom lowering hooks for some operations. | ||||
| 11495 | /// | ||||
| 11496 | SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | ||||
| 11497 | switch (Op.getOpcode()) { | ||||
| 11498 | default: llvm_unreachable("Wasn't expecting to be able to lower this!")::llvm::llvm_unreachable_internal("Wasn't expecting to be able to lower this!" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11498); | ||||
| 11499 | case ISD::FPOW: return lowerPow(Op, DAG); | ||||
| 11500 | case ISD::FSIN: return lowerSin(Op, DAG); | ||||
| 11501 | case ISD::FCOS: return lowerCos(Op, DAG); | ||||
| 11502 | case ISD::FLOG: return lowerLog(Op, DAG); | ||||
| 11503 | case ISD::FLOG10: return lowerLog10(Op, DAG); | ||||
| 11504 | case ISD::FEXP: return lowerExp(Op, DAG); | ||||
| 11505 | case ISD::ConstantPool: return LowerConstantPool(Op, DAG); | ||||
| 11506 | case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); | ||||
| 11507 | case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); | ||||
| 11508 | case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); | ||||
| 11509 | case ISD::JumpTable: return LowerJumpTable(Op, DAG); | ||||
| 11510 | case ISD::STRICT_FSETCC: | ||||
| 11511 | case ISD::STRICT_FSETCCS: | ||||
| 11512 | case ISD::SETCC: return LowerSETCC(Op, DAG); | ||||
| 11513 | case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); | ||||
| 11514 | case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); | ||||
| 11515 | |||||
| 11516 | case ISD::INLINEASM: | ||||
| 11517 | case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); | ||||
| 11518 | // Variable argument lowering. | ||||
| 11519 | case ISD::VASTART: return LowerVASTART(Op, DAG); | ||||
| 11520 | case ISD::VAARG: return LowerVAARG(Op, DAG); | ||||
| 11521 | case ISD::VACOPY: return LowerVACOPY(Op, DAG); | ||||
| 11522 | |||||
| 11523 | case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); | ||||
| 11524 | case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); | ||||
| 11525 | case ISD::GET_DYNAMIC_AREA_OFFSET: | ||||
| 11526 | return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); | ||||
| 11527 | |||||
| 11528 | // Exception handling lowering. | ||||
| 11529 | case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); | ||||
| 11530 | case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); | ||||
| 11531 | case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); | ||||
| 11532 | |||||
| 11533 | case ISD::LOAD: return LowerLOAD(Op, DAG); | ||||
| 11534 | case ISD::STORE: return LowerSTORE(Op, DAG); | ||||
| 11535 | case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); | ||||
| 11536 | case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); | ||||
| 11537 | case ISD::STRICT_FP_TO_UINT: | ||||
| 11538 | case ISD::STRICT_FP_TO_SINT: | ||||
| 11539 | case ISD::FP_TO_UINT: | ||||
| 11540 | case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); | ||||
| 11541 | case ISD::STRICT_UINT_TO_FP: | ||||
| 11542 | case ISD::STRICT_SINT_TO_FP: | ||||
| 11543 | case ISD::UINT_TO_FP: | ||||
| 11544 | case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); | ||||
| 11545 | case ISD::GET_ROUNDING: return LowerGET_ROUNDING(Op, DAG); | ||||
| 11546 | |||||
| 11547 | // Lower 64-bit shifts. | ||||
| 11548 | case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); | ||||
| 11549 | case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); | ||||
| 11550 | case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); | ||||
| 11551 | |||||
| 11552 | case ISD::FSHL: return LowerFunnelShift(Op, DAG); | ||||
| 11553 | case ISD::FSHR: return LowerFunnelShift(Op, DAG); | ||||
| 11554 | |||||
| 11555 | // Vector-related lowering. | ||||
| 11556 | case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); | ||||
| 11557 | case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); | ||||
| 11558 | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | ||||
| 11559 | case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); | ||||
| 11560 | case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); | ||||
| 11561 | case ISD::MUL: return LowerMUL(Op, DAG); | ||||
| 11562 | case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); | ||||
| 11563 | case ISD::STRICT_FP_ROUND: | ||||
| 11564 | case ISD::FP_ROUND: | ||||
| 11565 | return LowerFP_ROUND(Op, DAG); | ||||
| 11566 | case ISD::ROTL: return LowerROTL(Op, DAG); | ||||
| 11567 | |||||
| 11568 | // For counter-based loop handling. | ||||
| 11569 | case ISD::INTRINSIC_W_CHAIN: return SDValue(); | ||||
| 11570 | |||||
| 11571 | case ISD::BITCAST: return LowerBITCAST(Op, DAG); | ||||
| 11572 | |||||
| 11573 | // Frame & Return address. | ||||
| 11574 | case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); | ||||
| 11575 | case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); | ||||
| 11576 | |||||
| 11577 | case ISD::INTRINSIC_VOID: | ||||
| 11578 | return LowerINTRINSIC_VOID(Op, DAG); | ||||
| 11579 | case ISD::BSWAP: | ||||
| 11580 | return LowerBSWAP(Op, DAG); | ||||
| 11581 | case ISD::ATOMIC_CMP_SWAP: | ||||
| 11582 | return LowerATOMIC_CMP_SWAP(Op, DAG); | ||||
| 11583 | case ISD::ATOMIC_STORE: | ||||
| 11584 | return LowerATOMIC_LOAD_STORE(Op, DAG); | ||||
| 11585 | case ISD::IS_FPCLASS: | ||||
| 11586 | return LowerIS_FPCLASS(Op, DAG); | ||||
| 11587 | } | ||||
| 11588 | } | ||||
| 11589 | |||||
| 11590 | void PPCTargetLowering::ReplaceNodeResults(SDNode *N, | ||||
| 11591 | SmallVectorImpl<SDValue>&Results, | ||||
| 11592 | SelectionDAG &DAG) const { | ||||
| 11593 | SDLoc dl(N); | ||||
| 11594 | switch (N->getOpcode()) { | ||||
| 11595 | default: | ||||
| 11596 | llvm_unreachable("Do not know how to custom type legalize this operation!")::llvm::llvm_unreachable_internal("Do not know how to custom type legalize this operation!" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11596); | ||||
| 11597 | case ISD::ATOMIC_LOAD: { | ||||
| 11598 | SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); | ||||
| 11599 | Results.push_back(Res); | ||||
| 11600 | Results.push_back(Res.getValue(1)); | ||||
| 11601 | break; | ||||
| 11602 | } | ||||
| 11603 | case ISD::READCYCLECOUNTER: { | ||||
| 11604 | SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); | ||||
| 11605 | SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); | ||||
| 11606 | |||||
| 11607 | Results.push_back( | ||||
| 11608 | DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); | ||||
| 11609 | Results.push_back(RTB.getValue(2)); | ||||
| 11610 | break; | ||||
| 11611 | } | ||||
| 11612 | case ISD::INTRINSIC_W_CHAIN: { | ||||
| 11613 | if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != | ||||
| 11614 | Intrinsic::loop_decrement) | ||||
| 11615 | break; | ||||
| 11616 | |||||
| 11617 | assert(N->getValueType(0) == MVT::i1 &&(static_cast <bool> (N->getValueType(0) == MVT::i1 && "Unexpected result type for CTR decrement intrinsic") ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i1 && \"Unexpected result type for CTR decrement intrinsic\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11618, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11618 | "Unexpected result type for CTR decrement intrinsic")(static_cast <bool> (N->getValueType(0) == MVT::i1 && "Unexpected result type for CTR decrement intrinsic") ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i1 && \"Unexpected result type for CTR decrement intrinsic\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11618, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11619 | EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), | ||||
| 11620 | N->getValueType(0)); | ||||
| 11621 | SDVTList VTs = DAG.getVTList(SVT, MVT::Other); | ||||
| 11622 | SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), | ||||
| 11623 | N->getOperand(1)); | ||||
| 11624 | |||||
| 11625 | Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); | ||||
| 11626 | Results.push_back(NewInt.getValue(1)); | ||||
| 11627 | break; | ||||
| 11628 | } | ||||
| 11629 | case ISD::INTRINSIC_WO_CHAIN: { | ||||
| 11630 | switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { | ||||
| 11631 | case Intrinsic::ppc_pack_longdouble: | ||||
| 11632 | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, | ||||
| 11633 | N->getOperand(2), N->getOperand(1))); | ||||
| 11634 | break; | ||||
| 11635 | case Intrinsic::ppc_maxfe: | ||||
| 11636 | case Intrinsic::ppc_minfe: | ||||
| 11637 | case Intrinsic::ppc_fnmsub: | ||||
| 11638 | case Intrinsic::ppc_convert_f128_to_ppcf128: | ||||
| 11639 | Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); | ||||
| 11640 | break; | ||||
| 11641 | } | ||||
| 11642 | break; | ||||
| 11643 | } | ||||
| 11644 | case ISD::VAARG: { | ||||
| 11645 | if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) | ||||
| 11646 | return; | ||||
| 11647 | |||||
| 11648 | EVT VT = N->getValueType(0); | ||||
| 11649 | |||||
| 11650 | if (VT == MVT::i64) { | ||||
| 11651 | SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); | ||||
| 11652 | |||||
| 11653 | Results.push_back(NewNode); | ||||
| 11654 | Results.push_back(NewNode.getValue(1)); | ||||
| 11655 | } | ||||
| 11656 | return; | ||||
| 11657 | } | ||||
| 11658 | case ISD::STRICT_FP_TO_SINT: | ||||
| 11659 | case ISD::STRICT_FP_TO_UINT: | ||||
| 11660 | case ISD::FP_TO_SINT: | ||||
| 11661 | case ISD::FP_TO_UINT: { | ||||
| 11662 | // LowerFP_TO_INT() can only handle f32 and f64. | ||||
| 11663 | if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == | ||||
| 11664 | MVT::ppcf128) | ||||
| 11665 | return; | ||||
| 11666 | SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); | ||||
| 11667 | Results.push_back(LoweredValue); | ||||
| 11668 | if (N->isStrictFPOpcode()) | ||||
| 11669 | Results.push_back(LoweredValue.getValue(1)); | ||||
| 11670 | return; | ||||
| 11671 | } | ||||
| 11672 | case ISD::TRUNCATE: { | ||||
| 11673 | if (!N->getValueType(0).isVector()) | ||||
| 11674 | return; | ||||
| 11675 | SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); | ||||
| 11676 | if (Lowered) | ||||
| 11677 | Results.push_back(Lowered); | ||||
| 11678 | return; | ||||
| 11679 | } | ||||
| 11680 | case ISD::FSHL: | ||||
| 11681 | case ISD::FSHR: | ||||
| 11682 | // Don't handle funnel shifts here. | ||||
| 11683 | return; | ||||
| 11684 | case ISD::BITCAST: | ||||
| 11685 | // Don't handle bitcast here. | ||||
| 11686 | return; | ||||
| 11687 | case ISD::FP_EXTEND: | ||||
| 11688 | SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); | ||||
| 11689 | if (Lowered) | ||||
| 11690 | Results.push_back(Lowered); | ||||
| 11691 | return; | ||||
| 11692 | } | ||||
| 11693 | } | ||||
| 11694 | |||||
| 11695 | //===----------------------------------------------------------------------===// | ||||
| 11696 | // Other Lowering Code | ||||
| 11697 | //===----------------------------------------------------------------------===// | ||||
| 11698 | |||||
| 11699 | static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { | ||||
| 11700 | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); | ||||
| 11701 | Function *Func = Intrinsic::getDeclaration(M, Id); | ||||
| 11702 | return Builder.CreateCall(Func, {}); | ||||
| 11703 | } | ||||
| 11704 | |||||
| 11705 | // The mappings for emitLeading/TrailingFence is taken from | ||||
| 11706 | // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html | ||||
| 11707 | Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, | ||||
| 11708 | Instruction *Inst, | ||||
| 11709 | AtomicOrdering Ord) const { | ||||
| 11710 | if (Ord == AtomicOrdering::SequentiallyConsistent) | ||||
| 11711 | return callIntrinsic(Builder, Intrinsic::ppc_sync); | ||||
| 11712 | if (isReleaseOrStronger(Ord)) | ||||
| 11713 | return callIntrinsic(Builder, Intrinsic::ppc_lwsync); | ||||
| 11714 | return nullptr; | ||||
| 11715 | } | ||||
| 11716 | |||||
| 11717 | Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, | ||||
| 11718 | Instruction *Inst, | ||||
| 11719 | AtomicOrdering Ord) const { | ||||
| 11720 | if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { | ||||
| 11721 | // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and | ||||
| 11722 | // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html | ||||
| 11723 | // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. | ||||
| 11724 | if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) | ||||
| 11725 | return Builder.CreateCall( | ||||
| 11726 | Intrinsic::getDeclaration( | ||||
| 11727 | Builder.GetInsertBlock()->getParent()->getParent(), | ||||
| 11728 | Intrinsic::ppc_cfence, {Inst->getType()}), | ||||
| 11729 | {Inst}); | ||||
| 11730 | // FIXME: Can use isync for rmw operation. | ||||
| 11731 | return callIntrinsic(Builder, Intrinsic::ppc_lwsync); | ||||
| 11732 | } | ||||
| 11733 | return nullptr; | ||||
| 11734 | } | ||||
| 11735 | |||||
| 11736 | MachineBasicBlock * | ||||
| 11737 | PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, | ||||
| 11738 | unsigned AtomicSize, | ||||
| 11739 | unsigned BinOpcode, | ||||
| 11740 | unsigned CmpOpcode, | ||||
| 11741 | unsigned CmpPred) const { | ||||
| 11742 | // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. | ||||
| 11743 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | ||||
| 11744 | |||||
| 11745 | auto LoadMnemonic = PPC::LDARX; | ||||
| 11746 | auto StoreMnemonic = PPC::STDCX; | ||||
| 11747 | switch (AtomicSize) { | ||||
| 11748 | default: | ||||
| 11749 | llvm_unreachable("Unexpected size of atomic entity")::llvm::llvm_unreachable_internal("Unexpected size of atomic entity" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11749); | ||||
| 11750 | case 1: | ||||
| 11751 | LoadMnemonic = PPC::LBARX; | ||||
| 11752 | StoreMnemonic = PPC::STBCX; | ||||
| 11753 | assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4")(static_cast <bool> (Subtarget.hasPartwordAtomics() && "Call this only with size >=4") ? void (0) : __assert_fail ("Subtarget.hasPartwordAtomics() && \"Call this only with size >=4\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11753, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11754 | break; | ||||
| 11755 | case 2: | ||||
| 11756 | LoadMnemonic = PPC::LHARX; | ||||
| 11757 | StoreMnemonic = PPC::STHCX; | ||||
| 11758 | assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4")(static_cast <bool> (Subtarget.hasPartwordAtomics() && "Call this only with size >=4") ? void (0) : __assert_fail ("Subtarget.hasPartwordAtomics() && \"Call this only with size >=4\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 11758, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11759 | break; | ||||
| 11760 | case 4: | ||||
| 11761 | LoadMnemonic = PPC::LWARX; | ||||
| 11762 | StoreMnemonic = PPC::STWCX; | ||||
| 11763 | break; | ||||
| 11764 | case 8: | ||||
| 11765 | LoadMnemonic = PPC::LDARX; | ||||
| 11766 | StoreMnemonic = PPC::STDCX; | ||||
| 11767 | break; | ||||
| 11768 | } | ||||
| 11769 | |||||
| 11770 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | ||||
| 11771 | MachineFunction *F = BB->getParent(); | ||||
| 11772 | MachineFunction::iterator It = ++BB->getIterator(); | ||||
| 11773 | |||||
| 11774 | Register dest = MI.getOperand(0).getReg(); | ||||
| 11775 | Register ptrA = MI.getOperand(1).getReg(); | ||||
| 11776 | Register ptrB = MI.getOperand(2).getReg(); | ||||
| 11777 | Register incr = MI.getOperand(3).getReg(); | ||||
| 11778 | DebugLoc dl = MI.getDebugLoc(); | ||||
| 11779 | |||||
| 11780 | MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 11781 | MachineBasicBlock *loop2MBB = | ||||
| 11782 | CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; | ||||
| 11783 | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 11784 | F->insert(It, loopMBB); | ||||
| 11785 | if (CmpOpcode) | ||||
| 11786 | F->insert(It, loop2MBB); | ||||
| 11787 | F->insert(It, exitMBB); | ||||
| 11788 | exitMBB->splice(exitMBB->begin(), BB, | ||||
| 11789 | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | ||||
| 11790 | exitMBB->transferSuccessorsAndUpdatePHIs(BB); | ||||
| 11791 | |||||
| 11792 | MachineRegisterInfo &RegInfo = F->getRegInfo(); | ||||
| 11793 | Register TmpReg = (!BinOpcode) ? incr : | ||||
| 11794 | RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass | ||||
| 11795 | : &PPC::GPRCRegClass); | ||||
| 11796 | |||||
| 11797 | // thisMBB: | ||||
| 11798 | // ... | ||||
| 11799 | // fallthrough --> loopMBB | ||||
| 11800 | BB->addSuccessor(loopMBB); | ||||
| 11801 | |||||
| 11802 | // loopMBB: | ||||
| 11803 | // l[wd]arx dest, ptr | ||||
| 11804 | // add r0, dest, incr | ||||
| 11805 | // st[wd]cx. r0, ptr | ||||
| 11806 | // bne- loopMBB | ||||
| 11807 | // fallthrough --> exitMBB | ||||
| 11808 | |||||
| 11809 | // For max/min... | ||||
| 11810 | // loopMBB: | ||||
| 11811 | // l[wd]arx dest, ptr | ||||
| 11812 | // cmpl?[wd] dest, incr | ||||
| 11813 | // bgt exitMBB | ||||
| 11814 | // loop2MBB: | ||||
| 11815 | // st[wd]cx. dest, ptr | ||||
| 11816 | // bne- loopMBB | ||||
| 11817 | // fallthrough --> exitMBB | ||||
| 11818 | |||||
| 11819 | BB = loopMBB; | ||||
| 11820 | BuildMI(BB, dl, TII->get(LoadMnemonic), dest) | ||||
| 11821 | .addReg(ptrA).addReg(ptrB); | ||||
| 11822 | if (BinOpcode) | ||||
| 11823 | BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); | ||||
| 11824 | if (CmpOpcode) { | ||||
| 11825 | Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); | ||||
| 11826 | // Signed comparisons of byte or halfword values must be sign-extended. | ||||
| 11827 | if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { | ||||
| 11828 | Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); | ||||
| 11829 | BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), | ||||
| 11830 | ExtReg).addReg(dest); | ||||
| 11831 | BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ExtReg).addReg(incr); | ||||
| 11832 | } else | ||||
| 11833 | BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(dest).addReg(incr); | ||||
| 11834 | |||||
| 11835 | BuildMI(BB, dl, TII->get(PPC::BCC)) | ||||
| 11836 | .addImm(CmpPred) | ||||
| 11837 | .addReg(CrReg) | ||||
| 11838 | .addMBB(exitMBB); | ||||
| 11839 | BB->addSuccessor(loop2MBB); | ||||
| 11840 | BB->addSuccessor(exitMBB); | ||||
| 11841 | BB = loop2MBB; | ||||
| 11842 | } | ||||
| 11843 | BuildMI(BB, dl, TII->get(StoreMnemonic)) | ||||
| 11844 | .addReg(TmpReg).addReg(ptrA).addReg(ptrB); | ||||
| 11845 | BuildMI(BB, dl, TII->get(PPC::BCC)) | ||||
| 11846 | .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); | ||||
| 11847 | BB->addSuccessor(loopMBB); | ||||
| 11848 | BB->addSuccessor(exitMBB); | ||||
| 11849 | |||||
| 11850 | // exitMBB: | ||||
| 11851 | // ... | ||||
| 11852 | BB = exitMBB; | ||||
| 11853 | return BB; | ||||
| 11854 | } | ||||
| 11855 | |||||
| 11856 | static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { | ||||
| 11857 | switch(MI.getOpcode()) { | ||||
| 11858 | default: | ||||
| 11859 | return false; | ||||
| 11860 | case PPC::COPY: | ||||
| 11861 | return TII->isSignExtended(MI.getOperand(1).getReg(), | ||||
| 11862 | &MI.getMF()->getRegInfo()); | ||||
| 11863 | case PPC::LHA: | ||||
| 11864 | case PPC::LHA8: | ||||
| 11865 | case PPC::LHAU: | ||||
| 11866 | case PPC::LHAU8: | ||||
| 11867 | case PPC::LHAUX: | ||||
| 11868 | case PPC::LHAUX8: | ||||
| 11869 | case PPC::LHAX: | ||||
| 11870 | case PPC::LHAX8: | ||||
| 11871 | case PPC::LWA: | ||||
| 11872 | case PPC::LWAUX: | ||||
| 11873 | case PPC::LWAX: | ||||
| 11874 | case PPC::LWAX_32: | ||||
| 11875 | case PPC::LWA_32: | ||||
| 11876 | case PPC::PLHA: | ||||
| 11877 | case PPC::PLHA8: | ||||
| 11878 | case PPC::PLHA8pc: | ||||
| 11879 | case PPC::PLHApc: | ||||
| 11880 | case PPC::PLWA: | ||||
| 11881 | case PPC::PLWA8: | ||||
| 11882 | case PPC::PLWA8pc: | ||||
| 11883 | case PPC::PLWApc: | ||||
| 11884 | case PPC::EXTSB: | ||||
| 11885 | case PPC::EXTSB8: | ||||
| 11886 | case PPC::EXTSB8_32_64: | ||||
| 11887 | case PPC::EXTSB8_rec: | ||||
| 11888 | case PPC::EXTSB_rec: | ||||
| 11889 | case PPC::EXTSH: | ||||
| 11890 | case PPC::EXTSH8: | ||||
| 11891 | case PPC::EXTSH8_32_64: | ||||
| 11892 | case PPC::EXTSH8_rec: | ||||
| 11893 | case PPC::EXTSH_rec: | ||||
| 11894 | case PPC::EXTSW: | ||||
| 11895 | case PPC::EXTSWSLI: | ||||
| 11896 | case PPC::EXTSWSLI_32_64: | ||||
| 11897 | case PPC::EXTSWSLI_32_64_rec: | ||||
| 11898 | case PPC::EXTSWSLI_rec: | ||||
| 11899 | case PPC::EXTSW_32: | ||||
| 11900 | case PPC::EXTSW_32_64: | ||||
| 11901 | case PPC::EXTSW_32_64_rec: | ||||
| 11902 | case PPC::EXTSW_rec: | ||||
| 11903 | case PPC::SRAW: | ||||
| 11904 | case PPC::SRAWI: | ||||
| 11905 | case PPC::SRAWI_rec: | ||||
| 11906 | case PPC::SRAW_rec: | ||||
| 11907 | return true; | ||||
| 11908 | } | ||||
| 11909 | return false; | ||||
| 11910 | } | ||||
| 11911 | |||||
| 11912 | MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( | ||||
| 11913 | MachineInstr &MI, MachineBasicBlock *BB, | ||||
| 11914 | bool is8bit, // operation | ||||
| 11915 | unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { | ||||
| 11916 | // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. | ||||
| 11917 | const PPCInstrInfo *TII = Subtarget.getInstrInfo(); | ||||
| 11918 | |||||
| 11919 | // If this is a signed comparison and the value being compared is not known | ||||
| 11920 | // to be sign extended, sign extend it here. | ||||
| 11921 | DebugLoc dl = MI.getDebugLoc(); | ||||
| 11922 | MachineFunction *F = BB->getParent(); | ||||
| 11923 | MachineRegisterInfo &RegInfo = F->getRegInfo(); | ||||
| 11924 | Register incr = MI.getOperand(3).getReg(); | ||||
| 11925 | bool IsSignExtended = | ||||
| 11926 | incr.isVirtual() && isSignExtended(*RegInfo.getVRegDef(incr), TII); | ||||
| 11927 | |||||
| 11928 | if (CmpOpcode == PPC::CMPW && !IsSignExtended) { | ||||
| 11929 | Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); | ||||
| 11930 | BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) | ||||
| 11931 | .addReg(MI.getOperand(3).getReg()); | ||||
| 11932 | MI.getOperand(3).setReg(ValueReg); | ||||
| 11933 | incr = ValueReg; | ||||
| 11934 | } | ||||
| 11935 | // If we support part-word atomic mnemonics, just use them | ||||
| 11936 | if (Subtarget.hasPartwordAtomics()) | ||||
| 11937 | return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, | ||||
| 11938 | CmpPred); | ||||
| 11939 | |||||
| 11940 | // In 64 bit mode we have to use 64 bits for addresses, even though the | ||||
| 11941 | // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address | ||||
| 11942 | // registers without caring whether they're 32 or 64, but here we're | ||||
| 11943 | // doing actual arithmetic on the addresses. | ||||
| 11944 | bool is64bit = Subtarget.isPPC64(); | ||||
| 11945 | bool isLittleEndian = Subtarget.isLittleEndian(); | ||||
| 11946 | unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; | ||||
| 11947 | |||||
| 11948 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | ||||
| 11949 | MachineFunction::iterator It = ++BB->getIterator(); | ||||
| 11950 | |||||
| 11951 | Register dest = MI.getOperand(0).getReg(); | ||||
| 11952 | Register ptrA = MI.getOperand(1).getReg(); | ||||
| 11953 | Register ptrB = MI.getOperand(2).getReg(); | ||||
| 11954 | |||||
| 11955 | MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 11956 | MachineBasicBlock *loop2MBB = | ||||
| 11957 | CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; | ||||
| 11958 | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 11959 | F->insert(It, loopMBB); | ||||
| 11960 | if (CmpOpcode) | ||||
| 11961 | F->insert(It, loop2MBB); | ||||
| 11962 | F->insert(It, exitMBB); | ||||
| 11963 | exitMBB->splice(exitMBB->begin(), BB, | ||||
| 11964 | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | ||||
| 11965 | exitMBB->transferSuccessorsAndUpdatePHIs(BB); | ||||
| 11966 | |||||
| 11967 | const TargetRegisterClass *RC = | ||||
| 11968 | is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; | ||||
| 11969 | const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; | ||||
| 11970 | |||||
| 11971 | Register PtrReg = RegInfo.createVirtualRegister(RC); | ||||
| 11972 | Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 11973 | Register ShiftReg = | ||||
| 11974 | isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); | ||||
| 11975 | Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 11976 | Register MaskReg = RegInfo.createVirtualRegister(GPRC); | ||||
| 11977 | Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 11978 | Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 11979 | Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 11980 | Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 11981 | Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 11982 | Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); | ||||
| 11983 | Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); | ||||
| 11984 | Register Ptr1Reg; | ||||
| 11985 | Register TmpReg = | ||||
| 11986 | (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); | ||||
| 11987 | |||||
| 11988 | // thisMBB: | ||||
| 11989 | // ... | ||||
| 11990 | // fallthrough --> loopMBB | ||||
| 11991 | BB->addSuccessor(loopMBB); | ||||
| 11992 | |||||
| 11993 | // The 4-byte load must be aligned, while a char or short may be | ||||
| 11994 | // anywhere in the word. Hence all this nasty bookkeeping code. | ||||
| 11995 | // add ptr1, ptrA, ptrB [copy if ptrA==0] | ||||
| 11996 | // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] | ||||
| 11997 | // xori shift, shift1, 24 [16] | ||||
| 11998 | // rlwinm ptr, ptr1, 0, 0, 29 | ||||
| 11999 | // slw incr2, incr, shift | ||||
| 12000 | // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] | ||||
| 12001 | // slw mask, mask2, shift | ||||
| 12002 | // loopMBB: | ||||
| 12003 | // lwarx tmpDest, ptr | ||||
| 12004 | // add tmp, tmpDest, incr2 | ||||
| 12005 | // andc tmp2, tmpDest, mask | ||||
| 12006 | // and tmp3, tmp, mask | ||||
| 12007 | // or tmp4, tmp3, tmp2 | ||||
| 12008 | // stwcx. tmp4, ptr | ||||
| 12009 | // bne- loopMBB | ||||
| 12010 | // fallthrough --> exitMBB | ||||
| 12011 | // srw SrwDest, tmpDest, shift | ||||
| 12012 | // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 | ||||
| 12013 | if (ptrA != ZeroReg) { | ||||
| 12014 | Ptr1Reg = RegInfo.createVirtualRegister(RC); | ||||
| 12015 | BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) | ||||
| 12016 | .addReg(ptrA) | ||||
| 12017 | .addReg(ptrB); | ||||
| 12018 | } else { | ||||
| 12019 | Ptr1Reg = ptrB; | ||||
| 12020 | } | ||||
| 12021 | // We need use 32-bit subregister to avoid mismatch register class in 64-bit | ||||
| 12022 | // mode. | ||||
| 12023 | BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) | ||||
| 12024 | .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) | ||||
| 12025 | .addImm(3) | ||||
| 12026 | .addImm(27) | ||||
| 12027 | .addImm(is8bit ? 28 : 27); | ||||
| 12028 | if (!isLittleEndian) | ||||
| 12029 | BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) | ||||
| 12030 | .addReg(Shift1Reg) | ||||
| 12031 | .addImm(is8bit ? 24 : 16); | ||||
| 12032 | if (is64bit) | ||||
| 12033 | BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) | ||||
| 12034 | .addReg(Ptr1Reg) | ||||
| 12035 | .addImm(0) | ||||
| 12036 | .addImm(61); | ||||
| 12037 | else | ||||
| 12038 | BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) | ||||
| 12039 | .addReg(Ptr1Reg) | ||||
| 12040 | .addImm(0) | ||||
| 12041 | .addImm(0) | ||||
| 12042 | .addImm(29); | ||||
| 12043 | BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); | ||||
| 12044 | if (is8bit) | ||||
| 12045 | BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); | ||||
| 12046 | else { | ||||
| 12047 | BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); | ||||
| 12048 | BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) | ||||
| 12049 | .addReg(Mask3Reg) | ||||
| 12050 | .addImm(65535); | ||||
| 12051 | } | ||||
| 12052 | BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) | ||||
| 12053 | .addReg(Mask2Reg) | ||||
| 12054 | .addReg(ShiftReg); | ||||
| 12055 | |||||
| 12056 | BB = loopMBB; | ||||
| 12057 | BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) | ||||
| 12058 | .addReg(ZeroReg) | ||||
| 12059 | .addReg(PtrReg); | ||||
| 12060 | if (BinOpcode) | ||||
| 12061 | BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) | ||||
| 12062 | .addReg(Incr2Reg) | ||||
| 12063 | .addReg(TmpDestReg); | ||||
| 12064 | BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) | ||||
| 12065 | .addReg(TmpDestReg) | ||||
| 12066 | .addReg(MaskReg); | ||||
| 12067 | BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); | ||||
| 12068 | if (CmpOpcode) { | ||||
| 12069 | // For unsigned comparisons, we can directly compare the shifted values. | ||||
| 12070 | // For signed comparisons we shift and sign extend. | ||||
| 12071 | Register SReg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12072 | Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); | ||||
| 12073 | BuildMI(BB, dl, TII->get(PPC::AND), SReg) | ||||
| 12074 | .addReg(TmpDestReg) | ||||
| 12075 | .addReg(MaskReg); | ||||
| 12076 | unsigned ValueReg = SReg; | ||||
| 12077 | unsigned CmpReg = Incr2Reg; | ||||
| 12078 | if (CmpOpcode == PPC::CMPW) { | ||||
| 12079 | ValueReg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12080 | BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) | ||||
| 12081 | .addReg(SReg) | ||||
| 12082 | .addReg(ShiftReg); | ||||
| 12083 | Register ValueSReg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12084 | BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) | ||||
| 12085 | .addReg(ValueReg); | ||||
| 12086 | ValueReg = ValueSReg; | ||||
| 12087 | CmpReg = incr; | ||||
| 12088 | } | ||||
| 12089 | BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ValueReg).addReg(CmpReg); | ||||
| 12090 | BuildMI(BB, dl, TII->get(PPC::BCC)) | ||||
| 12091 | .addImm(CmpPred) | ||||
| 12092 | .addReg(CrReg) | ||||
| 12093 | .addMBB(exitMBB); | ||||
| 12094 | BB->addSuccessor(loop2MBB); | ||||
| 12095 | BB->addSuccessor(exitMBB); | ||||
| 12096 | BB = loop2MBB; | ||||
| 12097 | } | ||||
| 12098 | BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); | ||||
| 12099 | BuildMI(BB, dl, TII->get(PPC::STWCX)) | ||||
| 12100 | .addReg(Tmp4Reg) | ||||
| 12101 | .addReg(ZeroReg) | ||||
| 12102 | .addReg(PtrReg); | ||||
| 12103 | BuildMI(BB, dl, TII->get(PPC::BCC)) | ||||
| 12104 | .addImm(PPC::PRED_NE) | ||||
| 12105 | .addReg(PPC::CR0) | ||||
| 12106 | .addMBB(loopMBB); | ||||
| 12107 | BB->addSuccessor(loopMBB); | ||||
| 12108 | BB->addSuccessor(exitMBB); | ||||
| 12109 | |||||
| 12110 | // exitMBB: | ||||
| 12111 | // ... | ||||
| 12112 | BB = exitMBB; | ||||
| 12113 | // Since the shift amount is not a constant, we need to clear | ||||
| 12114 | // the upper bits with a separate RLWINM. | ||||
| 12115 | BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) | ||||
| 12116 | .addReg(SrwDestReg) | ||||
| 12117 | .addImm(0) | ||||
| 12118 | .addImm(is8bit ? 24 : 16) | ||||
| 12119 | .addImm(31); | ||||
| 12120 | BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) | ||||
| 12121 | .addReg(TmpDestReg) | ||||
| 12122 | .addReg(ShiftReg); | ||||
| 12123 | return BB; | ||||
| 12124 | } | ||||
| 12125 | |||||
| 12126 | llvm::MachineBasicBlock * | ||||
| 12127 | PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, | ||||
| 12128 | MachineBasicBlock *MBB) const { | ||||
| 12129 | DebugLoc DL = MI.getDebugLoc(); | ||||
| 12130 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | ||||
| 12131 | const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); | ||||
| 12132 | |||||
| 12133 | MachineFunction *MF = MBB->getParent(); | ||||
| 12134 | MachineRegisterInfo &MRI = MF->getRegInfo(); | ||||
| 12135 | |||||
| 12136 | const BasicBlock *BB = MBB->getBasicBlock(); | ||||
| 12137 | MachineFunction::iterator I = ++MBB->getIterator(); | ||||
| 12138 | |||||
| 12139 | Register DstReg = MI.getOperand(0).getReg(); | ||||
| 12140 | const TargetRegisterClass *RC = MRI.getRegClass(DstReg); | ||||
| 12141 | assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!")(static_cast <bool> (TRI->isTypeLegalForClass(*RC, MVT ::i32) && "Invalid destination!") ? void (0) : __assert_fail ("TRI->isTypeLegalForClass(*RC, MVT::i32) && \"Invalid destination!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12141, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12142 | Register mainDstReg = MRI.createVirtualRegister(RC); | ||||
| 12143 | Register restoreDstReg = MRI.createVirtualRegister(RC); | ||||
| 12144 | |||||
| 12145 | MVT PVT = getPointerTy(MF->getDataLayout()); | ||||
| 12146 | assert((PVT == MVT::i64 || PVT == MVT::i32) &&(static_cast <bool> ((PVT == MVT::i64 || PVT == MVT::i32 ) && "Invalid Pointer Size!") ? void (0) : __assert_fail ("(PVT == MVT::i64 || PVT == MVT::i32) && \"Invalid Pointer Size!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12147, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12147 | "Invalid Pointer Size!")(static_cast <bool> ((PVT == MVT::i64 || PVT == MVT::i32 ) && "Invalid Pointer Size!") ? void (0) : __assert_fail ("(PVT == MVT::i64 || PVT == MVT::i32) && \"Invalid Pointer Size!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12147, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12148 | // For v = setjmp(buf), we generate | ||||
| 12149 | // | ||||
| 12150 | // thisMBB: | ||||
| 12151 | // SjLjSetup mainMBB | ||||
| 12152 | // bl mainMBB | ||||
| 12153 | // v_restore = 1 | ||||
| 12154 | // b sinkMBB | ||||
| 12155 | // | ||||
| 12156 | // mainMBB: | ||||
| 12157 | // buf[LabelOffset] = LR | ||||
| 12158 | // v_main = 0 | ||||
| 12159 | // | ||||
| 12160 | // sinkMBB: | ||||
| 12161 | // v = phi(main, restore) | ||||
| 12162 | // | ||||
| 12163 | |||||
| 12164 | MachineBasicBlock *thisMBB = MBB; | ||||
| 12165 | MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); | ||||
| 12166 | MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); | ||||
| 12167 | MF->insert(I, mainMBB); | ||||
| 12168 | MF->insert(I, sinkMBB); | ||||
| 12169 | |||||
| 12170 | MachineInstrBuilder MIB; | ||||
| 12171 | |||||
| 12172 | // Transfer the remainder of BB and its successor edges to sinkMBB. | ||||
| 12173 | sinkMBB->splice(sinkMBB->begin(), MBB, | ||||
| 12174 | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | ||||
| 12175 | sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); | ||||
| 12176 | |||||
| 12177 | // Note that the structure of the jmp_buf used here is not compatible | ||||
| 12178 | // with that used by libc, and is not designed to be. Specifically, it | ||||
| 12179 | // stores only those 'reserved' registers that LLVM does not otherwise | ||||
| 12180 | // understand how to spill. Also, by convention, by the time this | ||||
| 12181 | // intrinsic is called, Clang has already stored the frame address in the | ||||
| 12182 | // first slot of the buffer and stack address in the third. Following the | ||||
| 12183 | // X86 target code, we'll store the jump address in the second slot. We also | ||||
| 12184 | // need to save the TOC pointer (R2) to handle jumps between shared | ||||
| 12185 | // libraries, and that will be stored in the fourth slot. The thread | ||||
| 12186 | // identifier (R13) is not affected. | ||||
| 12187 | |||||
| 12188 | // thisMBB: | ||||
| 12189 | const int64_t LabelOffset = 1 * PVT.getStoreSize(); | ||||
| 12190 | const int64_t TOCOffset = 3 * PVT.getStoreSize(); | ||||
| 12191 | const int64_t BPOffset = 4 * PVT.getStoreSize(); | ||||
| 12192 | |||||
| 12193 | // Prepare IP either in reg. | ||||
| 12194 | const TargetRegisterClass *PtrRC = getRegClassFor(PVT); | ||||
| 12195 | Register LabelReg = MRI.createVirtualRegister(PtrRC); | ||||
| 12196 | Register BufReg = MI.getOperand(1).getReg(); | ||||
| 12197 | |||||
| 12198 | if (Subtarget.is64BitELFABI()) { | ||||
| 12199 | setUsesTOCBasePtr(*MBB->getParent()); | ||||
| 12200 | MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) | ||||
| 12201 | .addReg(PPC::X2) | ||||
| 12202 | .addImm(TOCOffset) | ||||
| 12203 | .addReg(BufReg) | ||||
| 12204 | .cloneMemRefs(MI); | ||||
| 12205 | } | ||||
| 12206 | |||||
| 12207 | // Naked functions never have a base pointer, and so we use r1. For all | ||||
| 12208 | // other functions, this decision must be delayed until during PEI. | ||||
| 12209 | unsigned BaseReg; | ||||
| 12210 | if (MF->getFunction().hasFnAttribute(Attribute::Naked)) | ||||
| 12211 | BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; | ||||
| 12212 | else | ||||
| 12213 | BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; | ||||
| 12214 | |||||
| 12215 | MIB = BuildMI(*thisMBB, MI, DL, | ||||
| 12216 | TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) | ||||
| 12217 | .addReg(BaseReg) | ||||
| 12218 | .addImm(BPOffset) | ||||
| 12219 | .addReg(BufReg) | ||||
| 12220 | .cloneMemRefs(MI); | ||||
| 12221 | |||||
| 12222 | // Setup | ||||
| 12223 | MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); | ||||
| 12224 | MIB.addRegMask(TRI->getNoPreservedMask()); | ||||
| 12225 | |||||
| 12226 | BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); | ||||
| 12227 | |||||
| 12228 | MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) | ||||
| 12229 | .addMBB(mainMBB); | ||||
| 12230 | MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); | ||||
| 12231 | |||||
| 12232 | thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); | ||||
| 12233 | thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); | ||||
| 12234 | |||||
| 12235 | // mainMBB: | ||||
| 12236 | // mainDstReg = 0 | ||||
| 12237 | MIB = | ||||
| 12238 | BuildMI(mainMBB, DL, | ||||
| 12239 | TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); | ||||
| 12240 | |||||
| 12241 | // Store IP | ||||
| 12242 | if (Subtarget.isPPC64()) { | ||||
| 12243 | MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) | ||||
| 12244 | .addReg(LabelReg) | ||||
| 12245 | .addImm(LabelOffset) | ||||
| 12246 | .addReg(BufReg); | ||||
| 12247 | } else { | ||||
| 12248 | MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) | ||||
| 12249 | .addReg(LabelReg) | ||||
| 12250 | .addImm(LabelOffset) | ||||
| 12251 | .addReg(BufReg); | ||||
| 12252 | } | ||||
| 12253 | MIB.cloneMemRefs(MI); | ||||
| 12254 | |||||
| 12255 | BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); | ||||
| 12256 | mainMBB->addSuccessor(sinkMBB); | ||||
| 12257 | |||||
| 12258 | // sinkMBB: | ||||
| 12259 | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | ||||
| 12260 | TII->get(PPC::PHI), DstReg) | ||||
| 12261 | .addReg(mainDstReg).addMBB(mainMBB) | ||||
| 12262 | .addReg(restoreDstReg).addMBB(thisMBB); | ||||
| 12263 | |||||
| 12264 | MI.eraseFromParent(); | ||||
| 12265 | return sinkMBB; | ||||
| 12266 | } | ||||
| 12267 | |||||
| 12268 | MachineBasicBlock * | ||||
| 12269 | PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, | ||||
| 12270 | MachineBasicBlock *MBB) const { | ||||
| 12271 | DebugLoc DL = MI.getDebugLoc(); | ||||
| 12272 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | ||||
| 12273 | |||||
| 12274 | MachineFunction *MF = MBB->getParent(); | ||||
| 12275 | MachineRegisterInfo &MRI = MF->getRegInfo(); | ||||
| 12276 | |||||
| 12277 | MVT PVT = getPointerTy(MF->getDataLayout()); | ||||
| 12278 | assert((PVT == MVT::i64 || PVT == MVT::i32) &&(static_cast <bool> ((PVT == MVT::i64 || PVT == MVT::i32 ) && "Invalid Pointer Size!") ? void (0) : __assert_fail ("(PVT == MVT::i64 || PVT == MVT::i32) && \"Invalid Pointer Size!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12279, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12279 | "Invalid Pointer Size!")(static_cast <bool> ((PVT == MVT::i64 || PVT == MVT::i32 ) && "Invalid Pointer Size!") ? void (0) : __assert_fail ("(PVT == MVT::i64 || PVT == MVT::i32) && \"Invalid Pointer Size!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12279, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12280 | |||||
| 12281 | const TargetRegisterClass *RC = | ||||
| 12282 | (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; | ||||
| 12283 | Register Tmp = MRI.createVirtualRegister(RC); | ||||
| 12284 | // Since FP is only updated here but NOT referenced, it's treated as GPR. | ||||
| 12285 | unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; | ||||
| 12286 | unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; | ||||
| 12287 | unsigned BP = | ||||
| 12288 | (PVT == MVT::i64) | ||||
| 12289 | ? PPC::X30 | ||||
| 12290 | : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 | ||||
| 12291 | : PPC::R30); | ||||
| 12292 | |||||
| 12293 | MachineInstrBuilder MIB; | ||||
| 12294 | |||||
| 12295 | const int64_t LabelOffset = 1 * PVT.getStoreSize(); | ||||
| 12296 | const int64_t SPOffset = 2 * PVT.getStoreSize(); | ||||
| 12297 | const int64_t TOCOffset = 3 * PVT.getStoreSize(); | ||||
| 12298 | const int64_t BPOffset = 4 * PVT.getStoreSize(); | ||||
| 12299 | |||||
| 12300 | Register BufReg = MI.getOperand(0).getReg(); | ||||
| 12301 | |||||
| 12302 | // Reload FP (the jumped-to function may not have had a | ||||
| 12303 | // frame pointer, and if so, then its r31 will be restored | ||||
| 12304 | // as necessary). | ||||
| 12305 | if (PVT == MVT::i64) { | ||||
| 12306 | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) | ||||
| 12307 | .addImm(0) | ||||
| 12308 | .addReg(BufReg); | ||||
| 12309 | } else { | ||||
| 12310 | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) | ||||
| 12311 | .addImm(0) | ||||
| 12312 | .addReg(BufReg); | ||||
| 12313 | } | ||||
| 12314 | MIB.cloneMemRefs(MI); | ||||
| 12315 | |||||
| 12316 | // Reload IP | ||||
| 12317 | if (PVT == MVT::i64) { | ||||
| 12318 | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) | ||||
| 12319 | .addImm(LabelOffset) | ||||
| 12320 | .addReg(BufReg); | ||||
| 12321 | } else { | ||||
| 12322 | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) | ||||
| 12323 | .addImm(LabelOffset) | ||||
| 12324 | .addReg(BufReg); | ||||
| 12325 | } | ||||
| 12326 | MIB.cloneMemRefs(MI); | ||||
| 12327 | |||||
| 12328 | // Reload SP | ||||
| 12329 | if (PVT == MVT::i64) { | ||||
| 12330 | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) | ||||
| 12331 | .addImm(SPOffset) | ||||
| 12332 | .addReg(BufReg); | ||||
| 12333 | } else { | ||||
| 12334 | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) | ||||
| 12335 | .addImm(SPOffset) | ||||
| 12336 | .addReg(BufReg); | ||||
| 12337 | } | ||||
| 12338 | MIB.cloneMemRefs(MI); | ||||
| 12339 | |||||
| 12340 | // Reload BP | ||||
| 12341 | if (PVT == MVT::i64) { | ||||
| 12342 | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) | ||||
| 12343 | .addImm(BPOffset) | ||||
| 12344 | .addReg(BufReg); | ||||
| 12345 | } else { | ||||
| 12346 | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) | ||||
| 12347 | .addImm(BPOffset) | ||||
| 12348 | .addReg(BufReg); | ||||
| 12349 | } | ||||
| 12350 | MIB.cloneMemRefs(MI); | ||||
| 12351 | |||||
| 12352 | // Reload TOC | ||||
| 12353 | if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { | ||||
| 12354 | setUsesTOCBasePtr(*MBB->getParent()); | ||||
| 12355 | MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) | ||||
| 12356 | .addImm(TOCOffset) | ||||
| 12357 | .addReg(BufReg) | ||||
| 12358 | .cloneMemRefs(MI); | ||||
| 12359 | } | ||||
| 12360 | |||||
| 12361 | // Jump | ||||
| 12362 | BuildMI(*MBB, MI, DL, | ||||
| 12363 | TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); | ||||
| 12364 | BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); | ||||
| 12365 | |||||
| 12366 | MI.eraseFromParent(); | ||||
| 12367 | return MBB; | ||||
| 12368 | } | ||||
| 12369 | |||||
| 12370 | bool PPCTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { | ||||
| 12371 | // If the function specifically requests inline stack probes, emit them. | ||||
| 12372 | if (MF.getFunction().hasFnAttribute("probe-stack")) | ||||
| 12373 | return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == | ||||
| 12374 | "inline-asm"; | ||||
| 12375 | return false; | ||||
| 12376 | } | ||||
| 12377 | |||||
| 12378 | unsigned PPCTargetLowering::getStackProbeSize(const MachineFunction &MF) const { | ||||
| 12379 | const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); | ||||
| 12380 | unsigned StackAlign = TFI->getStackAlignment(); | ||||
| 12381 | assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&(static_cast <bool> (StackAlign >= 1 && isPowerOf2_32 (StackAlign) && "Unexpected stack alignment") ? void ( 0) : __assert_fail ("StackAlign >= 1 && isPowerOf2_32(StackAlign) && \"Unexpected stack alignment\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12382, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12382 | "Unexpected stack alignment")(static_cast <bool> (StackAlign >= 1 && isPowerOf2_32 (StackAlign) && "Unexpected stack alignment") ? void ( 0) : __assert_fail ("StackAlign >= 1 && isPowerOf2_32(StackAlign) && \"Unexpected stack alignment\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12382, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12383 | // The default stack probe size is 4096 if the function has no | ||||
| 12384 | // stack-probe-size attribute. | ||||
| 12385 | const Function &Fn = MF.getFunction(); | ||||
| 12386 | unsigned StackProbeSize = | ||||
| 12387 | Fn.getFnAttributeAsParsedInteger("stack-probe-size", 4096); | ||||
| 12388 | // Round down to the stack alignment. | ||||
| 12389 | StackProbeSize &= ~(StackAlign - 1); | ||||
| 12390 | return StackProbeSize ? StackProbeSize : StackAlign; | ||||
| 12391 | } | ||||
| 12392 | |||||
| 12393 | // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted | ||||
| 12394 | // into three phases. In the first phase, it uses pseudo instruction | ||||
| 12395 | // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and | ||||
| 12396 | // FinalStackPtr. In the second phase, it generates a loop for probing blocks. | ||||
| 12397 | // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of | ||||
| 12398 | // MaxCallFrameSize so that it can calculate correct data area pointer. | ||||
| 12399 | MachineBasicBlock * | ||||
| 12400 | PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, | ||||
| 12401 | MachineBasicBlock *MBB) const { | ||||
| 12402 | const bool isPPC64 = Subtarget.isPPC64(); | ||||
| 12403 | MachineFunction *MF = MBB->getParent(); | ||||
| 12404 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | ||||
| 12405 | DebugLoc DL = MI.getDebugLoc(); | ||||
| 12406 | const unsigned ProbeSize = getStackProbeSize(*MF); | ||||
| 12407 | const BasicBlock *ProbedBB = MBB->getBasicBlock(); | ||||
| 12408 | MachineRegisterInfo &MRI = MF->getRegInfo(); | ||||
| 12409 | // The CFG of probing stack looks as | ||||
| 12410 | // +-----+ | ||||
| 12411 | // | MBB | | ||||
| 12412 | // +--+--+ | ||||
| 12413 | // | | ||||
| 12414 | // +----v----+ | ||||
| 12415 | // +--->+ TestMBB +---+ | ||||
| 12416 | // | +----+----+ | | ||||
| 12417 | // | | | | ||||
| 12418 | // | +-----v----+ | | ||||
| 12419 | // +---+ BlockMBB | | | ||||
| 12420 | // +----------+ | | ||||
| 12421 | // | | ||||
| 12422 | // +---------+ | | ||||
| 12423 | // | TailMBB +<--+ | ||||
| 12424 | // +---------+ | ||||
| 12425 | // In MBB, calculate previous frame pointer and final stack pointer. | ||||
| 12426 | // In TestMBB, test if sp is equal to final stack pointer, if so, jump to | ||||
| 12427 | // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. | ||||
| 12428 | // TailMBB is spliced via \p MI. | ||||
| 12429 | MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); | ||||
| 12430 | MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); | ||||
| 12431 | MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); | ||||
| 12432 | |||||
| 12433 | MachineFunction::iterator MBBIter = ++MBB->getIterator(); | ||||
| 12434 | MF->insert(MBBIter, TestMBB); | ||||
| 12435 | MF->insert(MBBIter, BlockMBB); | ||||
| 12436 | MF->insert(MBBIter, TailMBB); | ||||
| 12437 | |||||
| 12438 | const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; | ||||
| 12439 | const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; | ||||
| 12440 | |||||
| 12441 | Register DstReg = MI.getOperand(0).getReg(); | ||||
| 12442 | Register NegSizeReg = MI.getOperand(1).getReg(); | ||||
| 12443 | Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; | ||||
| 12444 | Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); | ||||
| 12445 | Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); | ||||
| 12446 | Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); | ||||
| 12447 | |||||
| 12448 | // Since value of NegSizeReg might be realigned in prologepilog, insert a | ||||
| 12449 | // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and | ||||
| 12450 | // NegSize. | ||||
| 12451 | unsigned ProbeOpc; | ||||
| 12452 | if (!MRI.hasOneNonDBGUse(NegSizeReg)) | ||||
| 12453 | ProbeOpc = | ||||
| 12454 | isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; | ||||
| 12455 | else | ||||
| 12456 | // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg | ||||
| 12457 | // and NegSizeReg will be allocated in the same phyreg to avoid | ||||
| 12458 | // redundant copy when NegSizeReg has only one use which is current MI and | ||||
| 12459 | // will be replaced by PREPARE_PROBED_ALLOCA then. | ||||
| 12460 | ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 | ||||
| 12461 | : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; | ||||
| 12462 | BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) | ||||
| 12463 | .addDef(ActualNegSizeReg) | ||||
| 12464 | .addReg(NegSizeReg) | ||||
| 12465 | .add(MI.getOperand(2)) | ||||
| 12466 | .add(MI.getOperand(3)); | ||||
| 12467 | |||||
| 12468 | // Calculate final stack pointer, which equals to SP + ActualNegSize. | ||||
| 12469 | BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), | ||||
| 12470 | FinalStackPtr) | ||||
| 12471 | .addReg(SPReg) | ||||
| 12472 | .addReg(ActualNegSizeReg); | ||||
| 12473 | |||||
| 12474 | // Materialize a scratch register for update. | ||||
| 12475 | int64_t NegProbeSize = -(int64_t)ProbeSize; | ||||
| 12476 | assert(isInt<32>(NegProbeSize) && "Unhandled probe size!")(static_cast <bool> (isInt<32>(NegProbeSize) && "Unhandled probe size!") ? void (0) : __assert_fail ("isInt<32>(NegProbeSize) && \"Unhandled probe size!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12476, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12477 | Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); | ||||
| 12478 | if (!isInt<16>(NegProbeSize)) { | ||||
| 12479 | Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); | ||||
| 12480 | BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) | ||||
| 12481 | .addImm(NegProbeSize >> 16); | ||||
| 12482 | BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), | ||||
| 12483 | ScratchReg) | ||||
| 12484 | .addReg(TempReg) | ||||
| 12485 | .addImm(NegProbeSize & 0xFFFF); | ||||
| 12486 | } else | ||||
| 12487 | BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) | ||||
| 12488 | .addImm(NegProbeSize); | ||||
| 12489 | |||||
| 12490 | { | ||||
| 12491 | // Probing leading residual part. | ||||
| 12492 | Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); | ||||
| 12493 | BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) | ||||
| 12494 | .addReg(ActualNegSizeReg) | ||||
| 12495 | .addReg(ScratchReg); | ||||
| 12496 | Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); | ||||
| 12497 | BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) | ||||
| 12498 | .addReg(Div) | ||||
| 12499 | .addReg(ScratchReg); | ||||
| 12500 | Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); | ||||
| 12501 | BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) | ||||
| 12502 | .addReg(Mul) | ||||
| 12503 | .addReg(ActualNegSizeReg); | ||||
| 12504 | BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) | ||||
| 12505 | .addReg(FramePointer) | ||||
| 12506 | .addReg(SPReg) | ||||
| 12507 | .addReg(NegMod); | ||||
| 12508 | } | ||||
| 12509 | |||||
| 12510 | { | ||||
| 12511 | // Remaining part should be multiple of ProbeSize. | ||||
| 12512 | Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); | ||||
| 12513 | BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) | ||||
| 12514 | .addReg(SPReg) | ||||
| 12515 | .addReg(FinalStackPtr); | ||||
| 12516 | BuildMI(TestMBB, DL, TII->get(PPC::BCC)) | ||||
| 12517 | .addImm(PPC::PRED_EQ) | ||||
| 12518 | .addReg(CmpResult) | ||||
| 12519 | .addMBB(TailMBB); | ||||
| 12520 | TestMBB->addSuccessor(BlockMBB); | ||||
| 12521 | TestMBB->addSuccessor(TailMBB); | ||||
| 12522 | } | ||||
| 12523 | |||||
| 12524 | { | ||||
| 12525 | // Touch the block. | ||||
| 12526 | // |P...|P...|P... | ||||
| 12527 | BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) | ||||
| 12528 | .addReg(FramePointer) | ||||
| 12529 | .addReg(SPReg) | ||||
| 12530 | .addReg(ScratchReg); | ||||
| 12531 | BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); | ||||
| 12532 | BlockMBB->addSuccessor(TestMBB); | ||||
| 12533 | } | ||||
| 12534 | |||||
| 12535 | // Calculation of MaxCallFrameSize is deferred to prologepilog, use | ||||
| 12536 | // DYNAREAOFFSET pseudo instruction to get the future result. | ||||
| 12537 | Register MaxCallFrameSizeReg = | ||||
| 12538 | MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); | ||||
| 12539 | BuildMI(TailMBB, DL, | ||||
| 12540 | TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), | ||||
| 12541 | MaxCallFrameSizeReg) | ||||
| 12542 | .add(MI.getOperand(2)) | ||||
| 12543 | .add(MI.getOperand(3)); | ||||
| 12544 | BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) | ||||
| 12545 | .addReg(SPReg) | ||||
| 12546 | .addReg(MaxCallFrameSizeReg); | ||||
| 12547 | |||||
| 12548 | // Splice instructions after MI to TailMBB. | ||||
| 12549 | TailMBB->splice(TailMBB->end(), MBB, | ||||
| 12550 | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | ||||
| 12551 | TailMBB->transferSuccessorsAndUpdatePHIs(MBB); | ||||
| 12552 | MBB->addSuccessor(TestMBB); | ||||
| 12553 | |||||
| 12554 | // Delete the pseudo instruction. | ||||
| 12555 | MI.eraseFromParent(); | ||||
| 12556 | |||||
| 12557 | ++NumDynamicAllocaProbed; | ||||
| 12558 | return TailMBB; | ||||
| 12559 | } | ||||
| 12560 | |||||
| 12561 | MachineBasicBlock * | ||||
| 12562 | PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, | ||||
| 12563 | MachineBasicBlock *BB) const { | ||||
| 12564 | if (MI.getOpcode() == TargetOpcode::STACKMAP || | ||||
| 12565 | MI.getOpcode() == TargetOpcode::PATCHPOINT) { | ||||
| 12566 | if (Subtarget.is64BitELFABI() && | ||||
| 12567 | MI.getOpcode() == TargetOpcode::PATCHPOINT && | ||||
| 12568 | !Subtarget.isUsingPCRelativeCalls()) { | ||||
| 12569 | // Call lowering should have added an r2 operand to indicate a dependence | ||||
| 12570 | // on the TOC base pointer value. It can't however, because there is no | ||||
| 12571 | // way to mark the dependence as implicit there, and so the stackmap code | ||||
| 12572 | // will confuse it with a regular operand. Instead, add the dependence | ||||
| 12573 | // here. | ||||
| 12574 | MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); | ||||
| 12575 | } | ||||
| 12576 | |||||
| 12577 | return emitPatchPoint(MI, BB); | ||||
| 12578 | } | ||||
| 12579 | |||||
| 12580 | if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || | ||||
| 12581 | MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { | ||||
| 12582 | return emitEHSjLjSetJmp(MI, BB); | ||||
| 12583 | } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || | ||||
| 12584 | MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { | ||||
| 12585 | return emitEHSjLjLongJmp(MI, BB); | ||||
| 12586 | } | ||||
| 12587 | |||||
| 12588 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | ||||
| 12589 | |||||
| 12590 | // To "insert" these instructions we actually have to insert their | ||||
| 12591 | // control-flow patterns. | ||||
| 12592 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | ||||
| 12593 | MachineFunction::iterator It = ++BB->getIterator(); | ||||
| 12594 | |||||
| 12595 | MachineFunction *F = BB->getParent(); | ||||
| 12596 | MachineRegisterInfo &MRI = F->getRegInfo(); | ||||
| 12597 | |||||
| 12598 | if (MI.getOpcode() == PPC::SELECT_CC_I4 || | ||||
| 12599 | MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || | ||||
| 12600 | MI.getOpcode() == PPC::SELECT_I8) { | ||||
| 12601 | SmallVector<MachineOperand, 2> Cond; | ||||
| 12602 | if (MI.getOpcode() == PPC::SELECT_CC_I4 || | ||||
| 12603 | MI.getOpcode() == PPC::SELECT_CC_I8) | ||||
| 12604 | Cond.push_back(MI.getOperand(4)); | ||||
| 12605 | else | ||||
| 12606 | Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); | ||||
| 12607 | Cond.push_back(MI.getOperand(1)); | ||||
| 12608 | |||||
| 12609 | DebugLoc dl = MI.getDebugLoc(); | ||||
| 12610 | TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, | ||||
| 12611 | MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); | ||||
| 12612 | } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || | ||||
| 12613 | MI.getOpcode() == PPC::SELECT_CC_F8 || | ||||
| 12614 | MI.getOpcode() == PPC::SELECT_CC_F16 || | ||||
| 12615 | MI.getOpcode() == PPC::SELECT_CC_VRRC || | ||||
| 12616 | MI.getOpcode() == PPC::SELECT_CC_VSFRC || | ||||
| 12617 | MI.getOpcode() == PPC::SELECT_CC_VSSRC || | ||||
| 12618 | MI.getOpcode() == PPC::SELECT_CC_VSRC || | ||||
| 12619 | MI.getOpcode() == PPC::SELECT_CC_SPE4 || | ||||
| 12620 | MI.getOpcode() == PPC::SELECT_CC_SPE || | ||||
| 12621 | MI.getOpcode() == PPC::SELECT_F4 || | ||||
| 12622 | MI.getOpcode() == PPC::SELECT_F8 || | ||||
| 12623 | MI.getOpcode() == PPC::SELECT_F16 || | ||||
| 12624 | MI.getOpcode() == PPC::SELECT_SPE || | ||||
| 12625 | MI.getOpcode() == PPC::SELECT_SPE4 || | ||||
| 12626 | MI.getOpcode() == PPC::SELECT_VRRC || | ||||
| 12627 | MI.getOpcode() == PPC::SELECT_VSFRC || | ||||
| 12628 | MI.getOpcode() == PPC::SELECT_VSSRC || | ||||
| 12629 | MI.getOpcode() == PPC::SELECT_VSRC) { | ||||
| 12630 | // The incoming instruction knows the destination vreg to set, the | ||||
| 12631 | // condition code register to branch on, the true/false values to | ||||
| 12632 | // select between, and a branch opcode to use. | ||||
| 12633 | |||||
| 12634 | // thisMBB: | ||||
| 12635 | // ... | ||||
| 12636 | // TrueVal = ... | ||||
| 12637 | // cmpTY ccX, r1, r2 | ||||
| 12638 | // bCC copy1MBB | ||||
| 12639 | // fallthrough --> copy0MBB | ||||
| 12640 | MachineBasicBlock *thisMBB = BB; | ||||
| 12641 | MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 12642 | MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 12643 | DebugLoc dl = MI.getDebugLoc(); | ||||
| 12644 | F->insert(It, copy0MBB); | ||||
| 12645 | F->insert(It, sinkMBB); | ||||
| 12646 | |||||
| 12647 | // Transfer the remainder of BB and its successor edges to sinkMBB. | ||||
| 12648 | sinkMBB->splice(sinkMBB->begin(), BB, | ||||
| 12649 | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | ||||
| 12650 | sinkMBB->transferSuccessorsAndUpdatePHIs(BB); | ||||
| 12651 | |||||
| 12652 | // Next, add the true and fallthrough blocks as its successors. | ||||
| 12653 | BB->addSuccessor(copy0MBB); | ||||
| 12654 | BB->addSuccessor(sinkMBB); | ||||
| 12655 | |||||
| 12656 | if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || | ||||
| 12657 | MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || | ||||
| 12658 | MI.getOpcode() == PPC::SELECT_F16 || | ||||
| 12659 | MI.getOpcode() == PPC::SELECT_SPE4 || | ||||
| 12660 | MI.getOpcode() == PPC::SELECT_SPE || | ||||
| 12661 | MI.getOpcode() == PPC::SELECT_VRRC || | ||||
| 12662 | MI.getOpcode() == PPC::SELECT_VSFRC || | ||||
| 12663 | MI.getOpcode() == PPC::SELECT_VSSRC || | ||||
| 12664 | MI.getOpcode() == PPC::SELECT_VSRC) { | ||||
| 12665 | BuildMI(BB, dl, TII->get(PPC::BC)) | ||||
| 12666 | .addReg(MI.getOperand(1).getReg()) | ||||
| 12667 | .addMBB(sinkMBB); | ||||
| 12668 | } else { | ||||
| 12669 | unsigned SelectPred = MI.getOperand(4).getImm(); | ||||
| 12670 | BuildMI(BB, dl, TII->get(PPC::BCC)) | ||||
| 12671 | .addImm(SelectPred) | ||||
| 12672 | .addReg(MI.getOperand(1).getReg()) | ||||
| 12673 | .addMBB(sinkMBB); | ||||
| 12674 | } | ||||
| 12675 | |||||
| 12676 | // copy0MBB: | ||||
| 12677 | // %FalseValue = ... | ||||
| 12678 | // # fallthrough to sinkMBB | ||||
| 12679 | BB = copy0MBB; | ||||
| 12680 | |||||
| 12681 | // Update machine-CFG edges | ||||
| 12682 | BB->addSuccessor(sinkMBB); | ||||
| 12683 | |||||
| 12684 | // sinkMBB: | ||||
| 12685 | // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | ||||
| 12686 | // ... | ||||
| 12687 | BB = sinkMBB; | ||||
| 12688 | BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) | ||||
| 12689 | .addReg(MI.getOperand(3).getReg()) | ||||
| 12690 | .addMBB(copy0MBB) | ||||
| 12691 | .addReg(MI.getOperand(2).getReg()) | ||||
| 12692 | .addMBB(thisMBB); | ||||
| 12693 | } else if (MI.getOpcode() == PPC::ReadTB) { | ||||
| 12694 | // To read the 64-bit time-base register on a 32-bit target, we read the | ||||
| 12695 | // two halves. Should the counter have wrapped while it was being read, we | ||||
| 12696 | // need to try again. | ||||
| 12697 | // ... | ||||
| 12698 | // readLoop: | ||||
| 12699 | // mfspr Rx,TBU # load from TBU | ||||
| 12700 | // mfspr Ry,TB # load from TB | ||||
| 12701 | // mfspr Rz,TBU # load from TBU | ||||
| 12702 | // cmpw crX,Rx,Rz # check if 'old'='new' | ||||
| 12703 | // bne readLoop # branch if they're not equal | ||||
| 12704 | // ... | ||||
| 12705 | |||||
| 12706 | MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 12707 | MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 12708 | DebugLoc dl = MI.getDebugLoc(); | ||||
| 12709 | F->insert(It, readMBB); | ||||
| 12710 | F->insert(It, sinkMBB); | ||||
| 12711 | |||||
| 12712 | // Transfer the remainder of BB and its successor edges to sinkMBB. | ||||
| 12713 | sinkMBB->splice(sinkMBB->begin(), BB, | ||||
| 12714 | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | ||||
| 12715 | sinkMBB->transferSuccessorsAndUpdatePHIs(BB); | ||||
| 12716 | |||||
| 12717 | BB->addSuccessor(readMBB); | ||||
| 12718 | BB = readMBB; | ||||
| 12719 | |||||
| 12720 | MachineRegisterInfo &RegInfo = F->getRegInfo(); | ||||
| 12721 | Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); | ||||
| 12722 | Register LoReg = MI.getOperand(0).getReg(); | ||||
| 12723 | Register HiReg = MI.getOperand(1).getReg(); | ||||
| 12724 | |||||
| 12725 | BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); | ||||
| 12726 | BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); | ||||
| 12727 | BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); | ||||
| 12728 | |||||
| 12729 | Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); | ||||
| 12730 | |||||
| 12731 | BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) | ||||
| 12732 | .addReg(HiReg) | ||||
| 12733 | .addReg(ReadAgainReg); | ||||
| 12734 | BuildMI(BB, dl, TII->get(PPC::BCC)) | ||||
| 12735 | .addImm(PPC::PRED_NE) | ||||
| 12736 | .addReg(CmpReg) | ||||
| 12737 | .addMBB(readMBB); | ||||
| 12738 | |||||
| 12739 | BB->addSuccessor(readMBB); | ||||
| 12740 | BB->addSuccessor(sinkMBB); | ||||
| 12741 | } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) | ||||
| 12742 | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); | ||||
| 12743 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) | ||||
| 12744 | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); | ||||
| 12745 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) | ||||
| 12746 | BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); | ||||
| 12747 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) | ||||
| 12748 | BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); | ||||
| 12749 | |||||
| 12750 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) | ||||
| 12751 | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); | ||||
| 12752 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) | ||||
| 12753 | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); | ||||
| 12754 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) | ||||
| 12755 | BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); | ||||
| 12756 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) | ||||
| 12757 | BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); | ||||
| 12758 | |||||
| 12759 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) | ||||
| 12760 | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); | ||||
| 12761 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) | ||||
| 12762 | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); | ||||
| 12763 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) | ||||
| 12764 | BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); | ||||
| 12765 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) | ||||
| 12766 | BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); | ||||
| 12767 | |||||
| 12768 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) | ||||
| 12769 | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); | ||||
| 12770 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) | ||||
| 12771 | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); | ||||
| 12772 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) | ||||
| 12773 | BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); | ||||
| 12774 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) | ||||
| 12775 | BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); | ||||
| 12776 | |||||
| 12777 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) | ||||
| 12778 | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); | ||||
| 12779 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) | ||||
| 12780 | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); | ||||
| 12781 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) | ||||
| 12782 | BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); | ||||
| 12783 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) | ||||
| 12784 | BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); | ||||
| 12785 | |||||
| 12786 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) | ||||
| 12787 | BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); | ||||
| 12788 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) | ||||
| 12789 | BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); | ||||
| 12790 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) | ||||
| 12791 | BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); | ||||
| 12792 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) | ||||
| 12793 | BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); | ||||
| 12794 | |||||
| 12795 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) | ||||
| 12796 | BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LT); | ||||
| 12797 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) | ||||
| 12798 | BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LT); | ||||
| 12799 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) | ||||
| 12800 | BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LT); | ||||
| 12801 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) | ||||
| 12802 | BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LT); | ||||
| 12803 | |||||
| 12804 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) | ||||
| 12805 | BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GT); | ||||
| 12806 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) | ||||
| 12807 | BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GT); | ||||
| 12808 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) | ||||
| 12809 | BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GT); | ||||
| 12810 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) | ||||
| 12811 | BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GT); | ||||
| 12812 | |||||
| 12813 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) | ||||
| 12814 | BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LT); | ||||
| 12815 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) | ||||
| 12816 | BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LT); | ||||
| 12817 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) | ||||
| 12818 | BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LT); | ||||
| 12819 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) | ||||
| 12820 | BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LT); | ||||
| 12821 | |||||
| 12822 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) | ||||
| 12823 | BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GT); | ||||
| 12824 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) | ||||
| 12825 | BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GT); | ||||
| 12826 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) | ||||
| 12827 | BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GT); | ||||
| 12828 | else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) | ||||
| 12829 | BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GT); | ||||
| 12830 | |||||
| 12831 | else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) | ||||
| 12832 | BB = EmitPartwordAtomicBinary(MI, BB, true, 0); | ||||
| 12833 | else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) | ||||
| 12834 | BB = EmitPartwordAtomicBinary(MI, BB, false, 0); | ||||
| 12835 | else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) | ||||
| 12836 | BB = EmitAtomicBinary(MI, BB, 4, 0); | ||||
| 12837 | else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) | ||||
| 12838 | BB = EmitAtomicBinary(MI, BB, 8, 0); | ||||
| 12839 | else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || | ||||
| 12840 | MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || | ||||
| 12841 | (Subtarget.hasPartwordAtomics() && | ||||
| 12842 | MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || | ||||
| 12843 | (Subtarget.hasPartwordAtomics() && | ||||
| 12844 | MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { | ||||
| 12845 | bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; | ||||
| 12846 | |||||
| 12847 | auto LoadMnemonic = PPC::LDARX; | ||||
| 12848 | auto StoreMnemonic = PPC::STDCX; | ||||
| 12849 | switch (MI.getOpcode()) { | ||||
| 12850 | default: | ||||
| 12851 | llvm_unreachable("Compare and swap of unknown size")::llvm::llvm_unreachable_internal("Compare and swap of unknown size" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12851); | ||||
| 12852 | case PPC::ATOMIC_CMP_SWAP_I8: | ||||
| 12853 | LoadMnemonic = PPC::LBARX; | ||||
| 12854 | StoreMnemonic = PPC::STBCX; | ||||
| 12855 | assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.")(static_cast <bool> (Subtarget.hasPartwordAtomics() && "No support partword atomics.") ? void (0) : __assert_fail ( "Subtarget.hasPartwordAtomics() && \"No support partword atomics.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12855, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12856 | break; | ||||
| 12857 | case PPC::ATOMIC_CMP_SWAP_I16: | ||||
| 12858 | LoadMnemonic = PPC::LHARX; | ||||
| 12859 | StoreMnemonic = PPC::STHCX; | ||||
| 12860 | assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.")(static_cast <bool> (Subtarget.hasPartwordAtomics() && "No support partword atomics.") ? void (0) : __assert_fail ( "Subtarget.hasPartwordAtomics() && \"No support partword atomics.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 12860, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12861 | break; | ||||
| 12862 | case PPC::ATOMIC_CMP_SWAP_I32: | ||||
| 12863 | LoadMnemonic = PPC::LWARX; | ||||
| 12864 | StoreMnemonic = PPC::STWCX; | ||||
| 12865 | break; | ||||
| 12866 | case PPC::ATOMIC_CMP_SWAP_I64: | ||||
| 12867 | LoadMnemonic = PPC::LDARX; | ||||
| 12868 | StoreMnemonic = PPC::STDCX; | ||||
| 12869 | break; | ||||
| 12870 | } | ||||
| 12871 | MachineRegisterInfo &RegInfo = F->getRegInfo(); | ||||
| 12872 | Register dest = MI.getOperand(0).getReg(); | ||||
| 12873 | Register ptrA = MI.getOperand(1).getReg(); | ||||
| 12874 | Register ptrB = MI.getOperand(2).getReg(); | ||||
| 12875 | Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); | ||||
| 12876 | Register oldval = MI.getOperand(3).getReg(); | ||||
| 12877 | Register newval = MI.getOperand(4).getReg(); | ||||
| 12878 | DebugLoc dl = MI.getDebugLoc(); | ||||
| 12879 | |||||
| 12880 | MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 12881 | MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 12882 | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 12883 | F->insert(It, loop1MBB); | ||||
| 12884 | F->insert(It, loop2MBB); | ||||
| 12885 | F->insert(It, exitMBB); | ||||
| 12886 | exitMBB->splice(exitMBB->begin(), BB, | ||||
| 12887 | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | ||||
| 12888 | exitMBB->transferSuccessorsAndUpdatePHIs(BB); | ||||
| 12889 | |||||
| 12890 | // thisMBB: | ||||
| 12891 | // ... | ||||
| 12892 | // fallthrough --> loopMBB | ||||
| 12893 | BB->addSuccessor(loop1MBB); | ||||
| 12894 | |||||
| 12895 | // loop1MBB: | ||||
| 12896 | // l[bhwd]arx dest, ptr | ||||
| 12897 | // cmp[wd] dest, oldval | ||||
| 12898 | // bne- exitBB | ||||
| 12899 | // loop2MBB: | ||||
| 12900 | // st[bhwd]cx. newval, ptr | ||||
| 12901 | // bne- loopMBB | ||||
| 12902 | // b exitBB | ||||
| 12903 | // exitBB: | ||||
| 12904 | BB = loop1MBB; | ||||
| 12905 | BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); | ||||
| 12906 | BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), CrReg) | ||||
| 12907 | .addReg(dest) | ||||
| 12908 | .addReg(oldval); | ||||
| 12909 | BuildMI(BB, dl, TII->get(PPC::BCC)) | ||||
| 12910 | .addImm(PPC::PRED_NE) | ||||
| 12911 | .addReg(CrReg) | ||||
| 12912 | .addMBB(exitMBB); | ||||
| 12913 | BB->addSuccessor(loop2MBB); | ||||
| 12914 | BB->addSuccessor(exitMBB); | ||||
| 12915 | |||||
| 12916 | BB = loop2MBB; | ||||
| 12917 | BuildMI(BB, dl, TII->get(StoreMnemonic)) | ||||
| 12918 | .addReg(newval) | ||||
| 12919 | .addReg(ptrA) | ||||
| 12920 | .addReg(ptrB); | ||||
| 12921 | BuildMI(BB, dl, TII->get(PPC::BCC)) | ||||
| 12922 | .addImm(PPC::PRED_NE) | ||||
| 12923 | .addReg(PPC::CR0) | ||||
| 12924 | .addMBB(loop1MBB); | ||||
| 12925 | BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); | ||||
| 12926 | BB->addSuccessor(loop1MBB); | ||||
| 12927 | BB->addSuccessor(exitMBB); | ||||
| 12928 | |||||
| 12929 | // exitMBB: | ||||
| 12930 | // ... | ||||
| 12931 | BB = exitMBB; | ||||
| 12932 | } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || | ||||
| 12933 | MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { | ||||
| 12934 | // We must use 64-bit registers for addresses when targeting 64-bit, | ||||
| 12935 | // since we're actually doing arithmetic on them. Other registers | ||||
| 12936 | // can be 32-bit. | ||||
| 12937 | bool is64bit = Subtarget.isPPC64(); | ||||
| 12938 | bool isLittleEndian = Subtarget.isLittleEndian(); | ||||
| 12939 | bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; | ||||
| 12940 | |||||
| 12941 | Register dest = MI.getOperand(0).getReg(); | ||||
| 12942 | Register ptrA = MI.getOperand(1).getReg(); | ||||
| 12943 | Register ptrB = MI.getOperand(2).getReg(); | ||||
| 12944 | Register oldval = MI.getOperand(3).getReg(); | ||||
| 12945 | Register newval = MI.getOperand(4).getReg(); | ||||
| 12946 | DebugLoc dl = MI.getDebugLoc(); | ||||
| 12947 | |||||
| 12948 | MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 12949 | MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 12950 | MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); | ||||
| 12951 | F->insert(It, loop1MBB); | ||||
| 12952 | F->insert(It, loop2MBB); | ||||
| 12953 | F->insert(It, exitMBB); | ||||
| 12954 | exitMBB->splice(exitMBB->begin(), BB, | ||||
| 12955 | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | ||||
| 12956 | exitMBB->transferSuccessorsAndUpdatePHIs(BB); | ||||
| 12957 | |||||
| 12958 | MachineRegisterInfo &RegInfo = F->getRegInfo(); | ||||
| 12959 | const TargetRegisterClass *RC = | ||||
| 12960 | is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; | ||||
| 12961 | const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; | ||||
| 12962 | |||||
| 12963 | Register PtrReg = RegInfo.createVirtualRegister(RC); | ||||
| 12964 | Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12965 | Register ShiftReg = | ||||
| 12966 | isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); | ||||
| 12967 | Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12968 | Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12969 | Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12970 | Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12971 | Register MaskReg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12972 | Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12973 | Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12974 | Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12975 | Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12976 | Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12977 | Register Ptr1Reg; | ||||
| 12978 | Register TmpReg = RegInfo.createVirtualRegister(GPRC); | ||||
| 12979 | Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; | ||||
| 12980 | Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); | ||||
| 12981 | // thisMBB: | ||||
| 12982 | // ... | ||||
| 12983 | // fallthrough --> loopMBB | ||||
| 12984 | BB->addSuccessor(loop1MBB); | ||||
| 12985 | |||||
| 12986 | // The 4-byte load must be aligned, while a char or short may be | ||||
| 12987 | // anywhere in the word. Hence all this nasty bookkeeping code. | ||||
| 12988 | // add ptr1, ptrA, ptrB [copy if ptrA==0] | ||||
| 12989 | // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] | ||||
| 12990 | // xori shift, shift1, 24 [16] | ||||
| 12991 | // rlwinm ptr, ptr1, 0, 0, 29 | ||||
| 12992 | // slw newval2, newval, shift | ||||
| 12993 | // slw oldval2, oldval,shift | ||||
| 12994 | // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] | ||||
| 12995 | // slw mask, mask2, shift | ||||
| 12996 | // and newval3, newval2, mask | ||||
| 12997 | // and oldval3, oldval2, mask | ||||
| 12998 | // loop1MBB: | ||||
| 12999 | // lwarx tmpDest, ptr | ||||
| 13000 | // and tmp, tmpDest, mask | ||||
| 13001 | // cmpw tmp, oldval3 | ||||
| 13002 | // bne- exitBB | ||||
| 13003 | // loop2MBB: | ||||
| 13004 | // andc tmp2, tmpDest, mask | ||||
| 13005 | // or tmp4, tmp2, newval3 | ||||
| 13006 | // stwcx. tmp4, ptr | ||||
| 13007 | // bne- loop1MBB | ||||
| 13008 | // b exitBB | ||||
| 13009 | // exitBB: | ||||
| 13010 | // srw dest, tmpDest, shift | ||||
| 13011 | if (ptrA != ZeroReg) { | ||||
| 13012 | Ptr1Reg = RegInfo.createVirtualRegister(RC); | ||||
| 13013 | BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) | ||||
| 13014 | .addReg(ptrA) | ||||
| 13015 | .addReg(ptrB); | ||||
| 13016 | } else { | ||||
| 13017 | Ptr1Reg = ptrB; | ||||
| 13018 | } | ||||
| 13019 | |||||
| 13020 | // We need use 32-bit subregister to avoid mismatch register class in 64-bit | ||||
| 13021 | // mode. | ||||
| 13022 | BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) | ||||
| 13023 | .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) | ||||
| 13024 | .addImm(3) | ||||
| 13025 | .addImm(27) | ||||
| 13026 | .addImm(is8bit ? 28 : 27); | ||||
| 13027 | if (!isLittleEndian) | ||||
| 13028 | BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) | ||||
| 13029 | .addReg(Shift1Reg) | ||||
| 13030 | .addImm(is8bit ? 24 : 16); | ||||
| 13031 | if (is64bit) | ||||
| 13032 | BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) | ||||
| 13033 | .addReg(Ptr1Reg) | ||||
| 13034 | .addImm(0) | ||||
| 13035 | .addImm(61); | ||||
| 13036 | else | ||||
| 13037 | BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) | ||||
| 13038 | .addReg(Ptr1Reg) | ||||
| 13039 | .addImm(0) | ||||
| 13040 | .addImm(0) | ||||
| 13041 | .addImm(29); | ||||
| 13042 | BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) | ||||
| 13043 | .addReg(newval) | ||||
| 13044 | .addReg(ShiftReg); | ||||
| 13045 | BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) | ||||
| 13046 | .addReg(oldval) | ||||
| 13047 | .addReg(ShiftReg); | ||||
| 13048 | if (is8bit) | ||||
| 13049 | BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); | ||||
| 13050 | else { | ||||
| 13051 | BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); | ||||
| 13052 | BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) | ||||
| 13053 | .addReg(Mask3Reg) | ||||
| 13054 | .addImm(65535); | ||||
| 13055 | } | ||||
| 13056 | BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) | ||||
| 13057 | .addReg(Mask2Reg) | ||||
| 13058 | .addReg(ShiftReg); | ||||
| 13059 | BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) | ||||
| 13060 | .addReg(NewVal2Reg) | ||||
| 13061 | .addReg(MaskReg); | ||||
| 13062 | BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) | ||||
| 13063 | .addReg(OldVal2Reg) | ||||
| 13064 | .addReg(MaskReg); | ||||
| 13065 | |||||
| 13066 | BB = loop1MBB; | ||||
| 13067 | BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) | ||||
| 13068 | .addReg(ZeroReg) | ||||
| 13069 | .addReg(PtrReg); | ||||
| 13070 | BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) | ||||
| 13071 | .addReg(TmpDestReg) | ||||
| 13072 | .addReg(MaskReg); | ||||
| 13073 | BuildMI(BB, dl, TII->get(PPC::CMPW), CrReg) | ||||
| 13074 | .addReg(TmpReg) | ||||
| 13075 | .addReg(OldVal3Reg); | ||||
| 13076 | BuildMI(BB, dl, TII->get(PPC::BCC)) | ||||
| 13077 | .addImm(PPC::PRED_NE) | ||||
| 13078 | .addReg(CrReg) | ||||
| 13079 | .addMBB(exitMBB); | ||||
| 13080 | BB->addSuccessor(loop2MBB); | ||||
| 13081 | BB->addSuccessor(exitMBB); | ||||
| 13082 | |||||
| 13083 | BB = loop2MBB; | ||||
| 13084 | BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) | ||||
| 13085 | .addReg(TmpDestReg) | ||||
| 13086 | .addReg(MaskReg); | ||||
| 13087 | BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) | ||||
| 13088 | .addReg(Tmp2Reg) | ||||
| 13089 | .addReg(NewVal3Reg); | ||||
| 13090 | BuildMI(BB, dl, TII->get(PPC::STWCX)) | ||||
| 13091 | .addReg(Tmp4Reg) | ||||
| 13092 | .addReg(ZeroReg) | ||||
| 13093 | .addReg(PtrReg); | ||||
| 13094 | BuildMI(BB, dl, TII->get(PPC::BCC)) | ||||
| 13095 | .addImm(PPC::PRED_NE) | ||||
| 13096 | .addReg(PPC::CR0) | ||||
| 13097 | .addMBB(loop1MBB); | ||||
| 13098 | BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); | ||||
| 13099 | BB->addSuccessor(loop1MBB); | ||||
| 13100 | BB->addSuccessor(exitMBB); | ||||
| 13101 | |||||
| 13102 | // exitMBB: | ||||
| 13103 | // ... | ||||
| 13104 | BB = exitMBB; | ||||
| 13105 | BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) | ||||
| 13106 | .addReg(TmpReg) | ||||
| 13107 | .addReg(ShiftReg); | ||||
| 13108 | } else if (MI.getOpcode() == PPC::FADDrtz) { | ||||
| 13109 | // This pseudo performs an FADD with rounding mode temporarily forced | ||||
| 13110 | // to round-to-zero. We emit this via custom inserter since the FPSCR | ||||
| 13111 | // is not modeled at the SelectionDAG level. | ||||
| 13112 | Register Dest = MI.getOperand(0).getReg(); | ||||
| 13113 | Register Src1 = MI.getOperand(1).getReg(); | ||||
| 13114 | Register Src2 = MI.getOperand(2).getReg(); | ||||
| 13115 | DebugLoc dl = MI.getDebugLoc(); | ||||
| 13116 | |||||
| 13117 | MachineRegisterInfo &RegInfo = F->getRegInfo(); | ||||
| 13118 | Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); | ||||
| 13119 | |||||
| 13120 | // Save FPSCR value. | ||||
| 13121 | BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); | ||||
| 13122 | |||||
| 13123 | // Set rounding mode to round-to-zero. | ||||
| 13124 | BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) | ||||
| 13125 | .addImm(31) | ||||
| 13126 | .addReg(PPC::RM, RegState::ImplicitDefine); | ||||
| 13127 | |||||
| 13128 | BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) | ||||
| 13129 | .addImm(30) | ||||
| 13130 | .addReg(PPC::RM, RegState::ImplicitDefine); | ||||
| 13131 | |||||
| 13132 | // Perform addition. | ||||
| 13133 | auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) | ||||
| 13134 | .addReg(Src1) | ||||
| 13135 | .addReg(Src2); | ||||
| 13136 | if (MI.getFlag(MachineInstr::NoFPExcept)) | ||||
| 13137 | MIB.setMIFlag(MachineInstr::NoFPExcept); | ||||
| 13138 | |||||
| 13139 | // Restore FPSCR value. | ||||
| 13140 | BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); | ||||
| 13141 | } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || | ||||
| 13142 | MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || | ||||
| 13143 | MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || | ||||
| 13144 | MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { | ||||
| 13145 | unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || | ||||
| 13146 | MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) | ||||
| 13147 | ? PPC::ANDI8_rec | ||||
| 13148 | : PPC::ANDI_rec; | ||||
| 13149 | bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || | ||||
| 13150 | MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); | ||||
| 13151 | |||||
| 13152 | MachineRegisterInfo &RegInfo = F->getRegInfo(); | ||||
| 13153 | Register Dest = RegInfo.createVirtualRegister( | ||||
| 13154 | Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); | ||||
| 13155 | |||||
| 13156 | DebugLoc Dl = MI.getDebugLoc(); | ||||
| 13157 | BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) | ||||
| 13158 | .addReg(MI.getOperand(1).getReg()) | ||||
| 13159 | .addImm(1); | ||||
| 13160 | BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), | ||||
| 13161 | MI.getOperand(0).getReg()) | ||||
| 13162 | .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); | ||||
| 13163 | } else if (MI.getOpcode() == PPC::TCHECK_RET) { | ||||
| 13164 | DebugLoc Dl = MI.getDebugLoc(); | ||||
| 13165 | MachineRegisterInfo &RegInfo = F->getRegInfo(); | ||||
| 13166 | Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); | ||||
| 13167 | BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); | ||||
| 13168 | BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), | ||||
| 13169 | MI.getOperand(0).getReg()) | ||||
| 13170 | .addReg(CRReg); | ||||
| 13171 | } else if (MI.getOpcode() == PPC::TBEGIN_RET) { | ||||
| 13172 | DebugLoc Dl = MI.getDebugLoc(); | ||||
| 13173 | unsigned Imm = MI.getOperand(1).getImm(); | ||||
| 13174 | BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); | ||||
| 13175 | BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), | ||||
| 13176 | MI.getOperand(0).getReg()) | ||||
| 13177 | .addReg(PPC::CR0EQ); | ||||
| 13178 | } else if (MI.getOpcode() == PPC::SETRNDi) { | ||||
| 13179 | DebugLoc dl = MI.getDebugLoc(); | ||||
| 13180 | Register OldFPSCRReg = MI.getOperand(0).getReg(); | ||||
| 13181 | |||||
| 13182 | // Save FPSCR value. | ||||
| 13183 | if (MRI.use_empty(OldFPSCRReg)) | ||||
| 13184 | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); | ||||
| 13185 | else | ||||
| 13186 | BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); | ||||
| 13187 | |||||
| 13188 | // The floating point rounding mode is in the bits 62:63 of FPCSR, and has | ||||
| 13189 | // the following settings: | ||||
| 13190 | // 00 Round to nearest | ||||
| 13191 | // 01 Round to 0 | ||||
| 13192 | // 10 Round to +inf | ||||
| 13193 | // 11 Round to -inf | ||||
| 13194 | |||||
| 13195 | // When the operand is immediate, using the two least significant bits of | ||||
| 13196 | // the immediate to set the bits 62:63 of FPSCR. | ||||
| 13197 | unsigned Mode = MI.getOperand(1).getImm(); | ||||
| 13198 | BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) | ||||
| 13199 | .addImm(31) | ||||
| 13200 | .addReg(PPC::RM, RegState::ImplicitDefine); | ||||
| 13201 | |||||
| 13202 | BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) | ||||
| 13203 | .addImm(30) | ||||
| 13204 | .addReg(PPC::RM, RegState::ImplicitDefine); | ||||
| 13205 | } else if (MI.getOpcode() == PPC::SETRND) { | ||||
| 13206 | DebugLoc dl = MI.getDebugLoc(); | ||||
| 13207 | |||||
| 13208 | // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg | ||||
| 13209 | // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. | ||||
| 13210 | // If the target doesn't have DirectMove, we should use stack to do the | ||||
| 13211 | // conversion, because the target doesn't have the instructions like mtvsrd | ||||
| 13212 | // or mfvsrd to do this conversion directly. | ||||
| 13213 | auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { | ||||
| 13214 | if (Subtarget.hasDirectMove()) { | ||||
| 13215 | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) | ||||
| 13216 | .addReg(SrcReg); | ||||
| 13217 | } else { | ||||
| 13218 | // Use stack to do the register copy. | ||||
| 13219 | unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; | ||||
| 13220 | MachineRegisterInfo &RegInfo = F->getRegInfo(); | ||||
| 13221 | const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); | ||||
| 13222 | if (RC == &PPC::F8RCRegClass) { | ||||
| 13223 | // Copy register from F8RCRegClass to G8RCRegclass. | ||||
| 13224 | assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&(static_cast <bool> ((RegInfo.getRegClass(DestReg) == & PPC::G8RCRegClass) && "Unsupported RegClass.") ? void (0) : __assert_fail ("(RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && \"Unsupported RegClass.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 13225, __extension__ __PRETTY_FUNCTION__)) | ||||
| 13225 | "Unsupported RegClass.")(static_cast <bool> ((RegInfo.getRegClass(DestReg) == & PPC::G8RCRegClass) && "Unsupported RegClass.") ? void (0) : __assert_fail ("(RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && \"Unsupported RegClass.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 13225, __extension__ __PRETTY_FUNCTION__)); | ||||
| 13226 | |||||
| 13227 | StoreOp = PPC::STFD; | ||||
| 13228 | LoadOp = PPC::LD; | ||||
| 13229 | } else { | ||||
| 13230 | // Copy register from G8RCRegClass to F8RCRegclass. | ||||
| 13231 | assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&(static_cast <bool> ((RegInfo.getRegClass(SrcReg) == & PPC::G8RCRegClass) && (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && "Unsupported RegClass.") ? void (0) : __assert_fail ("(RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && \"Unsupported RegClass.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 13233, __extension__ __PRETTY_FUNCTION__)) | ||||
| 13232 | (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&(static_cast <bool> ((RegInfo.getRegClass(SrcReg) == & PPC::G8RCRegClass) && (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && "Unsupported RegClass.") ? void (0) : __assert_fail ("(RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && \"Unsupported RegClass.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 13233, __extension__ __PRETTY_FUNCTION__)) | ||||
| 13233 | "Unsupported RegClass.")(static_cast <bool> ((RegInfo.getRegClass(SrcReg) == & PPC::G8RCRegClass) && (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && "Unsupported RegClass.") ? void (0) : __assert_fail ("(RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && \"Unsupported RegClass.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 13233, __extension__ __PRETTY_FUNCTION__)); | ||||
| 13234 | } | ||||
| 13235 | |||||
| 13236 | MachineFrameInfo &MFI = F->getFrameInfo(); | ||||
| 13237 | int FrameIdx = MFI.CreateStackObject(8, Align(8), false); | ||||
| 13238 | |||||
| 13239 | MachineMemOperand *MMOStore = F->getMachineMemOperand( | ||||
| 13240 | MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), | ||||
| 13241 | MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), | ||||
| 13242 | MFI.getObjectAlign(FrameIdx)); | ||||
| 13243 | |||||
| 13244 | // Store the SrcReg into the stack. | ||||
| 13245 | BuildMI(*BB, MI, dl, TII->get(StoreOp)) | ||||
| 13246 | .addReg(SrcReg) | ||||
| 13247 | .addImm(0) | ||||
| 13248 | .addFrameIndex(FrameIdx) | ||||
| 13249 | .addMemOperand(MMOStore); | ||||
| 13250 | |||||
| 13251 | MachineMemOperand *MMOLoad = F->getMachineMemOperand( | ||||
| 13252 | MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), | ||||
| 13253 | MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), | ||||
| 13254 | MFI.getObjectAlign(FrameIdx)); | ||||
| 13255 | |||||
| 13256 | // Load from the stack where SrcReg is stored, and save to DestReg, | ||||
| 13257 | // so we have done the RegClass conversion from RegClass::SrcReg to | ||||
| 13258 | // RegClass::DestReg. | ||||
| 13259 | BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) | ||||
| 13260 | .addImm(0) | ||||
| 13261 | .addFrameIndex(FrameIdx) | ||||
| 13262 | .addMemOperand(MMOLoad); | ||||
| 13263 | } | ||||
| 13264 | }; | ||||
| 13265 | |||||
| 13266 | Register OldFPSCRReg = MI.getOperand(0).getReg(); | ||||
| 13267 | |||||
| 13268 | // Save FPSCR value. | ||||
| 13269 | BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); | ||||
| 13270 | |||||
| 13271 | // When the operand is gprc register, use two least significant bits of the | ||||
| 13272 | // register and mtfsf instruction to set the bits 62:63 of FPSCR. | ||||
| 13273 | // | ||||
| 13274 | // copy OldFPSCRTmpReg, OldFPSCRReg | ||||
| 13275 | // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) | ||||
| 13276 | // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 | ||||
| 13277 | // copy NewFPSCRReg, NewFPSCRTmpReg | ||||
| 13278 | // mtfsf 255, NewFPSCRReg | ||||
| 13279 | MachineOperand SrcOp = MI.getOperand(1); | ||||
| 13280 | MachineRegisterInfo &RegInfo = F->getRegInfo(); | ||||
| 13281 | Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); | ||||
| 13282 | |||||
| 13283 | copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); | ||||
| 13284 | |||||
| 13285 | Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); | ||||
| 13286 | Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); | ||||
| 13287 | |||||
| 13288 | // The first operand of INSERT_SUBREG should be a register which has | ||||
| 13289 | // subregisters, we only care about its RegClass, so we should use an | ||||
| 13290 | // IMPLICIT_DEF register. | ||||
| 13291 | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); | ||||
| 13292 | BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) | ||||
| 13293 | .addReg(ImDefReg) | ||||
| 13294 | .add(SrcOp) | ||||
| 13295 | .addImm(1); | ||||
| 13296 | |||||
| 13297 | Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); | ||||
| 13298 | BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) | ||||
| 13299 | .addReg(OldFPSCRTmpReg) | ||||
| 13300 | .addReg(ExtSrcReg) | ||||
| 13301 | .addImm(0) | ||||
| 13302 | .addImm(62); | ||||
| 13303 | |||||
| 13304 | Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); | ||||
| 13305 | copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); | ||||
| 13306 | |||||
| 13307 | // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 | ||||
| 13308 | // bits of FPSCR. | ||||
| 13309 | BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) | ||||
| 13310 | .addImm(255) | ||||
| 13311 | .addReg(NewFPSCRReg) | ||||
| 13312 | .addImm(0) | ||||
| 13313 | .addImm(0); | ||||
| 13314 | } else if (MI.getOpcode() == PPC::SETFLM) { | ||||
| 13315 | DebugLoc Dl = MI.getDebugLoc(); | ||||
| 13316 | |||||
| 13317 | // Result of setflm is previous FPSCR content, so we need to save it first. | ||||
| 13318 | Register OldFPSCRReg = MI.getOperand(0).getReg(); | ||||
| 13319 | if (MRI.use_empty(OldFPSCRReg)) | ||||
| 13320 | BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); | ||||
| 13321 | else | ||||
| 13322 | BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); | ||||
| 13323 | |||||
| 13324 | // Put bits in 32:63 to FPSCR. | ||||
| 13325 | Register NewFPSCRReg = MI.getOperand(1).getReg(); | ||||
| 13326 | BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) | ||||
| 13327 | .addImm(255) | ||||
| 13328 | .addReg(NewFPSCRReg) | ||||
| 13329 | .addImm(0) | ||||
| 13330 | .addImm(0); | ||||
| 13331 | } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || | ||||
| 13332 | MI.getOpcode() == PPC::PROBED_ALLOCA_64) { | ||||
| 13333 | return emitProbedAlloca(MI, BB); | ||||
| 13334 | } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { | ||||
| 13335 | DebugLoc DL = MI.getDebugLoc(); | ||||
| 13336 | Register Src = MI.getOperand(2).getReg(); | ||||
| 13337 | Register Lo = MI.getOperand(0).getReg(); | ||||
| 13338 | Register Hi = MI.getOperand(1).getReg(); | ||||
| 13339 | BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) | ||||
| 13340 | .addDef(Lo) | ||||
| 13341 | .addUse(Src, 0, PPC::sub_gp8_x1); | ||||
| 13342 | BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) | ||||
| 13343 | .addDef(Hi) | ||||
| 13344 | .addUse(Src, 0, PPC::sub_gp8_x0); | ||||
| 13345 | } else if (MI.getOpcode() == PPC::LQX_PSEUDO || | ||||
| 13346 | MI.getOpcode() == PPC::STQX_PSEUDO) { | ||||
| 13347 | DebugLoc DL = MI.getDebugLoc(); | ||||
| 13348 | // Ptr is used as the ptr_rc_no_r0 part | ||||
| 13349 | // of LQ/STQ's memory operand and adding result of RA and RB, | ||||
| 13350 | // so it has to be g8rc_and_g8rc_nox0. | ||||
| 13351 | Register Ptr = | ||||
| 13352 | F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); | ||||
| 13353 | Register Val = MI.getOperand(0).getReg(); | ||||
| 13354 | Register RA = MI.getOperand(1).getReg(); | ||||
| 13355 | Register RB = MI.getOperand(2).getReg(); | ||||
| 13356 | BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); | ||||
| 13357 | BuildMI(*BB, MI, DL, | ||||
| 13358 | MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) | ||||
| 13359 | : TII->get(PPC::STQ)) | ||||
| 13360 | .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) | ||||
| 13361 | .addImm(0) | ||||
| 13362 | .addReg(Ptr); | ||||
| 13363 | } else { | ||||
| 13364 | llvm_unreachable("Unexpected instr type to insert")::llvm::llvm_unreachable_internal("Unexpected instr type to insert" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 13364); | ||||
| 13365 | } | ||||
| 13366 | |||||
| 13367 | MI.eraseFromParent(); // The pseudo instruction is gone now. | ||||
| 13368 | return BB; | ||||
| 13369 | } | ||||
| 13370 | |||||
| 13371 | //===----------------------------------------------------------------------===// | ||||
| 13372 | // Target Optimization Hooks | ||||
| 13373 | //===----------------------------------------------------------------------===// | ||||
| 13374 | |||||
| 13375 | static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { | ||||
| 13376 | // For the estimates, convergence is quadratic, so we essentially double the | ||||
| 13377 | // number of digits correct after every iteration. For both FRE and FRSQRTE, | ||||
| 13378 | // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), | ||||
| 13379 | // this is 2^-14. IEEE float has 23 digits and double has 52 digits. | ||||
| 13380 | int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; | ||||
| 13381 | if (VT.getScalarType() == MVT::f64) | ||||
| 13382 | RefinementSteps++; | ||||
| 13383 | return RefinementSteps; | ||||
| 13384 | } | ||||
| 13385 | |||||
| 13386 | SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, | ||||
| 13387 | const DenormalMode &Mode) const { | ||||
| 13388 | // We only have VSX Vector Test for software Square Root. | ||||
| 13389 | EVT VT = Op.getValueType(); | ||||
| 13390 | if (!isTypeLegal(MVT::i1) || | ||||
| 13391 | (VT != MVT::f64 && | ||||
| 13392 | ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) | ||||
| 13393 | return TargetLowering::getSqrtInputTest(Op, DAG, Mode); | ||||
| 13394 | |||||
| 13395 | SDLoc DL(Op); | ||||
| 13396 | // The output register of FTSQRT is CR field. | ||||
| 13397 | SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); | ||||
| 13398 | // ftsqrt BF,FRB | ||||
| 13399 | // Let e_b be the unbiased exponent of the double-precision | ||||
| 13400 | // floating-point operand in register FRB. | ||||
| 13401 | // fe_flag is set to 1 if either of the following conditions occurs. | ||||
| 13402 | // - The double-precision floating-point operand in register FRB is a zero, | ||||
| 13403 | // a NaN, or an infinity, or a negative value. | ||||
| 13404 | // - e_b is less than or equal to -970. | ||||
| 13405 | // Otherwise fe_flag is set to 0. | ||||
| 13406 | // Both VSX and non-VSX versions would set EQ bit in the CR if the number is | ||||
| 13407 | // not eligible for iteration. (zero/negative/infinity/nan or unbiased | ||||
| 13408 | // exponent is less than -970) | ||||
| 13409 | SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); | ||||
| 13410 | return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, | ||||
| 13411 | FTSQRT, SRIdxVal), | ||||
| 13412 | 0); | ||||
| 13413 | } | ||||
| 13414 | |||||
| 13415 | SDValue | ||||
| 13416 | PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, | ||||
| 13417 | SelectionDAG &DAG) const { | ||||
| 13418 | // We only have VSX Vector Square Root. | ||||
| 13419 | EVT VT = Op.getValueType(); | ||||
| 13420 | if (VT != MVT::f64 && | ||||
| 13421 | ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) | ||||
| 13422 | return TargetLowering::getSqrtResultForDenormInput(Op, DAG); | ||||
| 13423 | |||||
| 13424 | return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); | ||||
| 13425 | } | ||||
| 13426 | |||||
| 13427 | SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, | ||||
| 13428 | int Enabled, int &RefinementSteps, | ||||
| 13429 | bool &UseOneConstNR, | ||||
| 13430 | bool Reciprocal) const { | ||||
| 13431 | EVT VT = Operand.getValueType(); | ||||
| 13432 | if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || | ||||
| 13433 | (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || | ||||
| 13434 | (VT == MVT::v4f32 && Subtarget.hasAltivec()) || | ||||
| 13435 | (VT == MVT::v2f64 && Subtarget.hasVSX())) { | ||||
| 13436 | if (RefinementSteps == ReciprocalEstimate::Unspecified) | ||||
| 13437 | RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); | ||||
| 13438 | |||||
| 13439 | // The Newton-Raphson computation with a single constant does not provide | ||||
| 13440 | // enough accuracy on some CPUs. | ||||
| 13441 | UseOneConstNR = !Subtarget.needsTwoConstNR(); | ||||
| 13442 | return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); | ||||
| 13443 | } | ||||
| 13444 | return SDValue(); | ||||
| 13445 | } | ||||
| 13446 | |||||
| 13447 | SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, | ||||
| 13448 | int Enabled, | ||||
| 13449 | int &RefinementSteps) const { | ||||
| 13450 | EVT VT = Operand.getValueType(); | ||||
| 13451 | if ((VT == MVT::f32 && Subtarget.hasFRES()) || | ||||
| 13452 | (VT == MVT::f64 && Subtarget.hasFRE()) || | ||||
| 13453 | (VT == MVT::v4f32 && Subtarget.hasAltivec()) || | ||||
| 13454 | (VT == MVT::v2f64 && Subtarget.hasVSX())) { | ||||
| 13455 | if (RefinementSteps == ReciprocalEstimate::Unspecified) | ||||
| 13456 | RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); | ||||
| 13457 | return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); | ||||
| 13458 | } | ||||
| 13459 | return SDValue(); | ||||
| 13460 | } | ||||
| 13461 | |||||
| 13462 | unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { | ||||
| 13463 | // Note: This functionality is used only when unsafe-fp-math is enabled, and | ||||
| 13464 | // on cores with reciprocal estimates (which are used when unsafe-fp-math is | ||||
| 13465 | // enabled for division), this functionality is redundant with the default | ||||
| 13466 | // combiner logic (once the division -> reciprocal/multiply transformation | ||||
| 13467 | // has taken place). As a result, this matters more for older cores than for | ||||
| 13468 | // newer ones. | ||||
| 13469 | |||||
| 13470 | // Combine multiple FDIVs with the same divisor into multiple FMULs by the | ||||
| 13471 | // reciprocal if there are two or more FDIVs (for embedded cores with only | ||||
| 13472 | // one FP pipeline) for three or more FDIVs (for generic OOO cores). | ||||
| 13473 | switch (Subtarget.getCPUDirective()) { | ||||
| 13474 | default: | ||||
| 13475 | return 3; | ||||
| 13476 | case PPC::DIR_440: | ||||
| 13477 | case PPC::DIR_A2: | ||||
| 13478 | case PPC::DIR_E500: | ||||
| 13479 | case PPC::DIR_E500mc: | ||||
| 13480 | case PPC::DIR_E5500: | ||||
| 13481 | return 2; | ||||
| 13482 | } | ||||
| 13483 | } | ||||
| 13484 | |||||
| 13485 | // isConsecutiveLSLoc needs to work even if all adds have not yet been | ||||
| 13486 | // collapsed, and so we need to look through chains of them. | ||||
| 13487 | static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, | ||||
| 13488 | int64_t& Offset, SelectionDAG &DAG) { | ||||
| 13489 | if (DAG.isBaseWithConstantOffset(Loc)) { | ||||
| 13490 | Base = Loc.getOperand(0); | ||||
| 13491 | Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); | ||||
| 13492 | |||||
| 13493 | // The base might itself be a base plus an offset, and if so, accumulate | ||||
| 13494 | // that as well. | ||||
| 13495 | getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); | ||||
| 13496 | } | ||||
| 13497 | } | ||||
| 13498 | |||||
| 13499 | static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, | ||||
| 13500 | unsigned Bytes, int Dist, | ||||
| 13501 | SelectionDAG &DAG) { | ||||
| 13502 | if (VT.getSizeInBits() / 8 != Bytes) | ||||
| 13503 | return false; | ||||
| 13504 | |||||
| 13505 | SDValue BaseLoc = Base->getBasePtr(); | ||||
| 13506 | if (Loc.getOpcode() == ISD::FrameIndex) { | ||||
| 13507 | if (BaseLoc.getOpcode() != ISD::FrameIndex) | ||||
| 13508 | return false; | ||||
| 13509 | const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | ||||
| 13510 | int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); | ||||
| 13511 | int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); | ||||
| 13512 | int FS = MFI.getObjectSize(FI); | ||||
| 13513 | int BFS = MFI.getObjectSize(BFI); | ||||
| 13514 | if (FS != BFS || FS != (int)Bytes) return false; | ||||
| 13515 | return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); | ||||
| 13516 | } | ||||
| 13517 | |||||
| 13518 | SDValue Base1 = Loc, Base2 = BaseLoc; | ||||
| 13519 | int64_t Offset1 = 0, Offset2 = 0; | ||||
| 13520 | getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); | ||||
| 13521 | getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); | ||||
| 13522 | if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) | ||||
| 13523 | return true; | ||||
| 13524 | |||||
| 13525 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | ||||
| 13526 | const GlobalValue *GV1 = nullptr; | ||||
| 13527 | const GlobalValue *GV2 = nullptr; | ||||
| 13528 | Offset1 = 0; | ||||
| 13529 | Offset2 = 0; | ||||
| 13530 | bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); | ||||
| 13531 | bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); | ||||
| 13532 | if (isGA1 && isGA2 && GV1 == GV2) | ||||
| 13533 | return Offset1 == (Offset2 + Dist*Bytes); | ||||
| 13534 | return false; | ||||
| 13535 | } | ||||
| 13536 | |||||
| 13537 | // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does | ||||
| 13538 | // not enforce equality of the chain operands. | ||||
| 13539 | static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, | ||||
| 13540 | unsigned Bytes, int Dist, | ||||
| 13541 | SelectionDAG &DAG) { | ||||
| 13542 | if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { | ||||
| 13543 | EVT VT = LS->getMemoryVT(); | ||||
| 13544 | SDValue Loc = LS->getBasePtr(); | ||||
| 13545 | return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); | ||||
| 13546 | } | ||||
| 13547 | |||||
| 13548 | if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { | ||||
| 13549 | EVT VT; | ||||
| 13550 | switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { | ||||
| 13551 | default: return false; | ||||
| 13552 | case Intrinsic::ppc_altivec_lvx: | ||||
| 13553 | case Intrinsic::ppc_altivec_lvxl: | ||||
| 13554 | case Intrinsic::ppc_vsx_lxvw4x: | ||||
| 13555 | case Intrinsic::ppc_vsx_lxvw4x_be: | ||||
| 13556 | VT = MVT::v4i32; | ||||
| 13557 | break; | ||||
| 13558 | case Intrinsic::ppc_vsx_lxvd2x: | ||||
| 13559 | case Intrinsic::ppc_vsx_lxvd2x_be: | ||||
| 13560 | VT = MVT::v2f64; | ||||
| 13561 | break; | ||||
| 13562 | case Intrinsic::ppc_altivec_lvebx: | ||||
| 13563 | VT = MVT::i8; | ||||
| 13564 | break; | ||||
| 13565 | case Intrinsic::ppc_altivec_lvehx: | ||||
| 13566 | VT = MVT::i16; | ||||
| 13567 | break; | ||||
| 13568 | case Intrinsic::ppc_altivec_lvewx: | ||||
| 13569 | VT = MVT::i32; | ||||
| 13570 | break; | ||||
| 13571 | } | ||||
| 13572 | |||||
| 13573 | return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); | ||||
| 13574 | } | ||||
| 13575 | |||||
| 13576 | if (N->getOpcode() == ISD::INTRINSIC_VOID) { | ||||
| 13577 | EVT VT; | ||||
| 13578 | switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { | ||||
| 13579 | default: return false; | ||||
| 13580 | case Intrinsic::ppc_altivec_stvx: | ||||
| 13581 | case Intrinsic::ppc_altivec_stvxl: | ||||
| 13582 | case Intrinsic::ppc_vsx_stxvw4x: | ||||
| 13583 | VT = MVT::v4i32; | ||||
| 13584 | break; | ||||
| 13585 | case Intrinsic::ppc_vsx_stxvd2x: | ||||
| 13586 | VT = MVT::v2f64; | ||||
| 13587 | break; | ||||
| 13588 | case Intrinsic::ppc_vsx_stxvw4x_be: | ||||
| 13589 | VT = MVT::v4i32; | ||||
| 13590 | break; | ||||
| 13591 | case Intrinsic::ppc_vsx_stxvd2x_be: | ||||
| 13592 | VT = MVT::v2f64; | ||||
| 13593 | break; | ||||
| 13594 | case Intrinsic::ppc_altivec_stvebx: | ||||
| 13595 | VT = MVT::i8; | ||||
| 13596 | break; | ||||
| 13597 | case Intrinsic::ppc_altivec_stvehx: | ||||
| 13598 | VT = MVT::i16; | ||||
| 13599 | break; | ||||
| 13600 | case Intrinsic::ppc_altivec_stvewx: | ||||
| 13601 | VT = MVT::i32; | ||||
| 13602 | break; | ||||
| 13603 | } | ||||
| 13604 | |||||
| 13605 | return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); | ||||
| 13606 | } | ||||
| 13607 | |||||
| 13608 | return false; | ||||
| 13609 | } | ||||
| 13610 | |||||
| 13611 | // Return true is there is a nearyby consecutive load to the one provided | ||||
| 13612 | // (regardless of alignment). We search up and down the chain, looking though | ||||
| 13613 | // token factors and other loads (but nothing else). As a result, a true result | ||||
| 13614 | // indicates that it is safe to create a new consecutive load adjacent to the | ||||
| 13615 | // load provided. | ||||
| 13616 | static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { | ||||
| 13617 | SDValue Chain = LD->getChain(); | ||||
| 13618 | EVT VT = LD->getMemoryVT(); | ||||
| 13619 | |||||
| 13620 | SmallSet<SDNode *, 16> LoadRoots; | ||||
| 13621 | SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); | ||||
| 13622 | SmallSet<SDNode *, 16> Visited; | ||||
| 13623 | |||||
| 13624 | // First, search up the chain, branching to follow all token-factor operands. | ||||
| 13625 | // If we find a consecutive load, then we're done, otherwise, record all | ||||
| 13626 | // nodes just above the top-level loads and token factors. | ||||
| 13627 | while (!Queue.empty()) { | ||||
| 13628 | SDNode *ChainNext = Queue.pop_back_val(); | ||||
| 13629 | if (!Visited.insert(ChainNext).second) | ||||
| 13630 | continue; | ||||
| 13631 | |||||
| 13632 | if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { | ||||
| 13633 | if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) | ||||
| 13634 | return true; | ||||
| 13635 | |||||
| 13636 | if (!Visited.count(ChainLD->getChain().getNode())) | ||||
| 13637 | Queue.push_back(ChainLD->getChain().getNode()); | ||||
| 13638 | } else if (ChainNext->getOpcode() == ISD::TokenFactor) { | ||||
| 13639 | for (const SDUse &O : ChainNext->ops()) | ||||
| 13640 | if (!Visited.count(O.getNode())) | ||||
| 13641 | Queue.push_back(O.getNode()); | ||||
| 13642 | } else | ||||
| 13643 | LoadRoots.insert(ChainNext); | ||||
| 13644 | } | ||||
| 13645 | |||||
| 13646 | // Second, search down the chain, starting from the top-level nodes recorded | ||||
| 13647 | // in the first phase. These top-level nodes are the nodes just above all | ||||
| 13648 | // loads and token factors. Starting with their uses, recursively look though | ||||
| 13649 | // all loads (just the chain uses) and token factors to find a consecutive | ||||
| 13650 | // load. | ||||
| 13651 | Visited.clear(); | ||||
| 13652 | Queue.clear(); | ||||
| 13653 | |||||
| 13654 | for (SDNode *I : LoadRoots) { | ||||
| 13655 | Queue.push_back(I); | ||||
| 13656 | |||||
| 13657 | while (!Queue.empty()) { | ||||
| 13658 | SDNode *LoadRoot = Queue.pop_back_val(); | ||||
| 13659 | if (!Visited.insert(LoadRoot).second) | ||||
| 13660 | continue; | ||||
| 13661 | |||||
| 13662 | if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) | ||||
| 13663 | if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) | ||||
| 13664 | return true; | ||||
| 13665 | |||||
| 13666 | for (SDNode *U : LoadRoot->uses()) | ||||
| 13667 | if (((isa<MemSDNode>(U) && | ||||
| 13668 | cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || | ||||
| 13669 | U->getOpcode() == ISD::TokenFactor) && | ||||
| 13670 | !Visited.count(U)) | ||||
| 13671 | Queue.push_back(U); | ||||
| 13672 | } | ||||
| 13673 | } | ||||
| 13674 | |||||
| 13675 | return false; | ||||
| 13676 | } | ||||
| 13677 | |||||
| 13678 | /// This function is called when we have proved that a SETCC node can be replaced | ||||
| 13679 | /// by subtraction (and other supporting instructions) so that the result of | ||||
| 13680 | /// comparison is kept in a GPR instead of CR. This function is purely for | ||||
| 13681 | /// codegen purposes and has some flags to guide the codegen process. | ||||
| 13682 | static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, | ||||
| 13683 | bool Swap, SDLoc &DL, SelectionDAG &DAG) { | ||||
| 13684 | assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.")(static_cast <bool> (N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.") ? void (0) : __assert_fail ("N->getOpcode() == ISD::SETCC && \"ISD::SETCC Expected.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 13684, __extension__ __PRETTY_FUNCTION__)); | ||||
| 13685 | |||||
| 13686 | // Zero extend the operands to the largest legal integer. Originally, they | ||||
| 13687 | // must be of a strictly smaller size. | ||||
| 13688 | auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), | ||||
| 13689 | DAG.getConstant(Size, DL, MVT::i32)); | ||||
| 13690 | auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), | ||||
| 13691 | DAG.getConstant(Size, DL, MVT::i32)); | ||||
| 13692 | |||||
| 13693 | // Swap if needed. Depends on the condition code. | ||||
| 13694 | if (Swap) | ||||
| 13695 | std::swap(Op0, Op1); | ||||
| 13696 | |||||
| 13697 | // Subtract extended integers. | ||||
| 13698 | auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); | ||||
| 13699 | |||||
| 13700 | // Move the sign bit to the least significant position and zero out the rest. | ||||
| 13701 | // Now the least significant bit carries the result of original comparison. | ||||
| 13702 | auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, | ||||
| 13703 | DAG.getConstant(Size - 1, DL, MVT::i32)); | ||||
| 13704 | auto Final = Shifted; | ||||
| 13705 | |||||
| 13706 | // Complement the result if needed. Based on the condition code. | ||||
| 13707 | if (Complement) | ||||
| 13708 | Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, | ||||
| 13709 | DAG.getConstant(1, DL, MVT::i64)); | ||||
| 13710 | |||||
| 13711 | return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); | ||||
| 13712 | } | ||||
| 13713 | |||||
| 13714 | SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, | ||||
| 13715 | DAGCombinerInfo &DCI) const { | ||||
| 13716 | assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.")(static_cast <bool> (N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.") ? void (0) : __assert_fail ("N->getOpcode() == ISD::SETCC && \"ISD::SETCC Expected.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 13716, __extension__ __PRETTY_FUNCTION__)); | ||||
| 13717 | |||||
| 13718 | SelectionDAG &DAG = DCI.DAG; | ||||
| 13719 | SDLoc DL(N); | ||||
| 13720 | |||||
| 13721 | // Size of integers being compared has a critical role in the following | ||||
| 13722 | // analysis, so we prefer to do this when all types are legal. | ||||
| 13723 | if (!DCI.isAfterLegalizeDAG()) | ||||
| 13724 | return SDValue(); | ||||
| 13725 | |||||
| 13726 | // If all users of SETCC extend its value to a legal integer type | ||||
| 13727 | // then we replace SETCC with a subtraction | ||||
| 13728 | for (const SDNode *U : N->uses()) | ||||
| 13729 | if (U->getOpcode() != ISD::ZERO_EXTEND) | ||||
| 13730 | return SDValue(); | ||||
| 13731 | |||||
| 13732 | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | ||||
| 13733 | auto OpSize = N->getOperand(0).getValueSizeInBits(); | ||||
| 13734 | |||||
| 13735 | unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); | ||||
| 13736 | |||||
| 13737 | if (OpSize < Size) { | ||||
| 13738 | switch (CC) { | ||||
| 13739 | default: break; | ||||
| 13740 | case ISD::SETULT: | ||||
| 13741 | return generateEquivalentSub(N, Size, false, false, DL, DAG); | ||||
| 13742 | case ISD::SETULE: | ||||
| 13743 | return generateEquivalentSub(N, Size, true, true, DL, DAG); | ||||
| 13744 | case ISD::SETUGT: | ||||
| 13745 | return generateEquivalentSub(N, Size, false, true, DL, DAG); | ||||
| 13746 | case ISD::SETUGE: | ||||
| 13747 | return generateEquivalentSub(N, Size, true, false, DL, DAG); | ||||
| 13748 | } | ||||
| 13749 | } | ||||
| 13750 | |||||
| 13751 | return SDValue(); | ||||
| 13752 | } | ||||
| 13753 | |||||
| 13754 | SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, | ||||
| 13755 | DAGCombinerInfo &DCI) const { | ||||
| 13756 | SelectionDAG &DAG = DCI.DAG; | ||||
| 13757 | SDLoc dl(N); | ||||
| 13758 | |||||
| 13759 | assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits")(static_cast <bool> (Subtarget.useCRBits() && "Expecting to be tracking CR bits" ) ? void (0) : __assert_fail ("Subtarget.useCRBits() && \"Expecting to be tracking CR bits\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 13759, __extension__ __PRETTY_FUNCTION__)); | ||||
| 13760 | // If we're tracking CR bits, we need to be careful that we don't have: | ||||
| 13761 | // trunc(binary-ops(zext(x), zext(y))) | ||||
| 13762 | // or | ||||
| 13763 | // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) | ||||
| 13764 | // such that we're unnecessarily moving things into GPRs when it would be | ||||
| 13765 | // better to keep them in CR bits. | ||||
| 13766 | |||||
| 13767 | // Note that trunc here can be an actual i1 trunc, or can be the effective | ||||
| 13768 | // truncation that comes from a setcc or select_cc. | ||||
| 13769 | if (N->getOpcode() == ISD::TRUNCATE && | ||||
| 13770 | N->getValueType(0) != MVT::i1) | ||||
| 13771 | return SDValue(); | ||||
| 13772 | |||||
| 13773 | if (N->getOperand(0).getValueType() != MVT::i32 && | ||||
| 13774 | N->getOperand(0).getValueType() != MVT::i64) | ||||
| 13775 | return SDValue(); | ||||
| 13776 | |||||
| 13777 | if (N->getOpcode() == ISD::SETCC || | ||||
| 13778 | N->getOpcode() == ISD::SELECT_CC) { | ||||
| 13779 | // If we're looking at a comparison, then we need to make sure that the | ||||
| 13780 | // high bits (all except for the first) don't matter the result. | ||||
| 13781 | ISD::CondCode CC = | ||||
| 13782 | cast<CondCodeSDNode>(N->getOperand( | ||||
| 13783 | N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); | ||||
| 13784 | unsigned OpBits = N->getOperand(0).getValueSizeInBits(); | ||||
| 13785 | |||||
| 13786 | if (ISD::isSignedIntSetCC(CC)) { | ||||
| 13787 | if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || | ||||
| 13788 | DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) | ||||
| 13789 | return SDValue(); | ||||
| 13790 | } else if (ISD::isUnsignedIntSetCC(CC)) { | ||||
| 13791 | if (!DAG.MaskedValueIsZero(N->getOperand(0), | ||||
| 13792 | APInt::getHighBitsSet(OpBits, OpBits-1)) || | ||||
| 13793 | !DAG.MaskedValueIsZero(N->getOperand(1), | ||||
| 13794 | APInt::getHighBitsSet(OpBits, OpBits-1))) | ||||
| 13795 | return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) | ||||
| 13796 | : SDValue()); | ||||
| 13797 | } else { | ||||
| 13798 | // This is neither a signed nor an unsigned comparison, just make sure | ||||
| 13799 | // that the high bits are equal. | ||||
| 13800 | KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); | ||||
| 13801 | KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); | ||||
| 13802 | |||||
| 13803 | // We don't really care about what is known about the first bit (if | ||||
| 13804 | // anything), so pretend that it is known zero for both to ensure they can | ||||
| 13805 | // be compared as constants. | ||||
| 13806 | Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); | ||||
| 13807 | Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); | ||||
| 13808 | |||||
| 13809 | if (!Op1Known.isConstant() || !Op2Known.isConstant() || | ||||
| 13810 | Op1Known.getConstant() != Op2Known.getConstant()) | ||||
| 13811 | return SDValue(); | ||||
| 13812 | } | ||||
| 13813 | } | ||||
| 13814 | |||||
| 13815 | // We now know that the higher-order bits are irrelevant, we just need to | ||||
| 13816 | // make sure that all of the intermediate operations are bit operations, and | ||||
| 13817 | // all inputs are extensions. | ||||
| 13818 | if (N->getOperand(0).getOpcode() != ISD::AND && | ||||
| 13819 | N->getOperand(0).getOpcode() != ISD::OR && | ||||
| 13820 | N->getOperand(0).getOpcode() != ISD::XOR && | ||||
| 13821 | N->getOperand(0).getOpcode() != ISD::SELECT && | ||||
| 13822 | N->getOperand(0).getOpcode() != ISD::SELECT_CC && | ||||
| 13823 | N->getOperand(0).getOpcode() != ISD::TRUNCATE && | ||||
| 13824 | N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && | ||||
| 13825 | N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && | ||||
| 13826 | N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) | ||||
| 13827 | return SDValue(); | ||||
| 13828 | |||||
| 13829 | if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && | ||||
| 13830 | N->getOperand(1).getOpcode() != ISD::AND && | ||||
| 13831 | N->getOperand(1).getOpcode() != ISD::OR && | ||||
| 13832 | N->getOperand(1).getOpcode() != ISD::XOR && | ||||
| 13833 | N->getOperand(1).getOpcode() != ISD::SELECT && | ||||
| 13834 | N->getOperand(1).getOpcode() != ISD::SELECT_CC && | ||||
| 13835 | N->getOperand(1).getOpcode() != ISD::TRUNCATE && | ||||
| 13836 | N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && | ||||
| 13837 | N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && | ||||
| 13838 | N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) | ||||
| 13839 | return SDValue(); | ||||
| 13840 | |||||
| 13841 | SmallVector<SDValue, 4> Inputs; | ||||
| 13842 | SmallVector<SDValue, 8> BinOps, PromOps; | ||||
| 13843 | SmallPtrSet<SDNode *, 16> Visited; | ||||
| 13844 | |||||
| 13845 | for (unsigned i = 0; i < 2; ++i) { | ||||
| 13846 | if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || | ||||
| 13847 | N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || | ||||
| 13848 | N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && | ||||
| 13849 | N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || | ||||
| 13850 | isa<ConstantSDNode>(N->getOperand(i))) | ||||
| 13851 | Inputs.push_back(N->getOperand(i)); | ||||
| 13852 | else | ||||
| 13853 | BinOps.push_back(N->getOperand(i)); | ||||
| 13854 | |||||
| 13855 | if (N->getOpcode() == ISD::TRUNCATE) | ||||
| 13856 | break; | ||||
| 13857 | } | ||||
| 13858 | |||||
| 13859 | // Visit all inputs, collect all binary operations (and, or, xor and | ||||
| 13860 | // select) that are all fed by extensions. | ||||
| 13861 | while (!BinOps.empty()) { | ||||
| 13862 | SDValue BinOp = BinOps.pop_back_val(); | ||||
| 13863 | |||||
| 13864 | if (!Visited.insert(BinOp.getNode()).second) | ||||
| 13865 | continue; | ||||
| 13866 | |||||
| 13867 | PromOps.push_back(BinOp); | ||||
| 13868 | |||||
| 13869 | for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { | ||||
| 13870 | // The condition of the select is not promoted. | ||||
| 13871 | if (BinOp.getOpcode() == ISD::SELECT && i == 0) | ||||
| 13872 | continue; | ||||
| 13873 | if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) | ||||
| 13874 | continue; | ||||
| 13875 | |||||
| 13876 | if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || | ||||
| 13877 | BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || | ||||
| 13878 | BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && | ||||
| 13879 | BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || | ||||
| 13880 | isa<ConstantSDNode>(BinOp.getOperand(i))) { | ||||
| 13881 | Inputs.push_back(BinOp.getOperand(i)); | ||||
| 13882 | } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || | ||||
| 13883 | BinOp.getOperand(i).getOpcode() == ISD::OR || | ||||
| 13884 | BinOp.getOperand(i).getOpcode() == ISD::XOR || | ||||
| 13885 | BinOp.getOperand(i).getOpcode() == ISD::SELECT || | ||||
| 13886 | BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || | ||||
| 13887 | BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || | ||||
| 13888 | BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || | ||||
| 13889 | BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || | ||||
| 13890 | BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { | ||||
| 13891 | BinOps.push_back(BinOp.getOperand(i)); | ||||
| 13892 | } else { | ||||
| 13893 | // We have an input that is not an extension or another binary | ||||
| 13894 | // operation; we'll abort this transformation. | ||||
| 13895 | return SDValue(); | ||||
| 13896 | } | ||||
| 13897 | } | ||||
| 13898 | } | ||||
| 13899 | |||||
| 13900 | // Make sure that this is a self-contained cluster of operations (which | ||||
| 13901 | // is not quite the same thing as saying that everything has only one | ||||
| 13902 | // use). | ||||
| 13903 | for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { | ||||
| 13904 | if (isa<ConstantSDNode>(Inputs[i])) | ||||
| 13905 | continue; | ||||
| 13906 | |||||
| 13907 | for (const SDNode *User : Inputs[i].getNode()->uses()) { | ||||
| 13908 | if (User != N && !Visited.count(User)) | ||||
| 13909 | return SDValue(); | ||||
| 13910 | |||||
| 13911 | // Make sure that we're not going to promote the non-output-value | ||||
| 13912 | // operand(s) or SELECT or SELECT_CC. | ||||
| 13913 | // FIXME: Although we could sometimes handle this, and it does occur in | ||||
| 13914 | // practice that one of the condition inputs to the select is also one of | ||||
| 13915 | // the outputs, we currently can't deal with this. | ||||
| 13916 | if (User->getOpcode() == ISD::SELECT) { | ||||
| 13917 | if (User->getOperand(0) == Inputs[i]) | ||||
| 13918 | return SDValue(); | ||||
| 13919 | } else if (User->getOpcode() == ISD::SELECT_CC) { | ||||
| 13920 | if (User->getOperand(0) == Inputs[i] || | ||||
| 13921 | User->getOperand(1) == Inputs[i]) | ||||
| 13922 | return SDValue(); | ||||
| 13923 | } | ||||
| 13924 | } | ||||
| 13925 | } | ||||
| 13926 | |||||
| 13927 | for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { | ||||
| 13928 | for (const SDNode *User : PromOps[i].getNode()->uses()) { | ||||
| 13929 | if (User != N && !Visited.count(User)) | ||||
| 13930 | return SDValue(); | ||||
| 13931 | |||||
| 13932 | // Make sure that we're not going to promote the non-output-value | ||||
| 13933 | // operand(s) or SELECT or SELECT_CC. | ||||
| 13934 | // FIXME: Although we could sometimes handle this, and it does occur in | ||||
| 13935 | // practice that one of the condition inputs to the select is also one of | ||||
| 13936 | // the outputs, we currently can't deal with this. | ||||
| 13937 | if (User->getOpcode() == ISD::SELECT) { | ||||
| 13938 | if (User->getOperand(0) == PromOps[i]) | ||||
| 13939 | return SDValue(); | ||||
| 13940 | } else if (User->getOpcode() == ISD::SELECT_CC) { | ||||
| 13941 | if (User->getOperand(0) == PromOps[i] || | ||||
| 13942 | User->getOperand(1) == PromOps[i]) | ||||
| 13943 | return SDValue(); | ||||
| 13944 | } | ||||
| 13945 | } | ||||
| 13946 | } | ||||
| 13947 | |||||
| 13948 | // Replace all inputs with the extension operand. | ||||
| 13949 | for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { | ||||
| 13950 | // Constants may have users outside the cluster of to-be-promoted nodes, | ||||
| 13951 | // and so we need to replace those as we do the promotions. | ||||
| 13952 | if (isa<ConstantSDNode>(Inputs[i])) | ||||
| 13953 | continue; | ||||
| 13954 | else | ||||
| 13955 | DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); | ||||
| 13956 | } | ||||
| 13957 | |||||
| 13958 | std::list<HandleSDNode> PromOpHandles; | ||||
| 13959 | for (auto &PromOp : PromOps) | ||||
| 13960 | PromOpHandles.emplace_back(PromOp); | ||||
| 13961 | |||||
| 13962 | // Replace all operations (these are all the same, but have a different | ||||
| 13963 | // (i1) return type). DAG.getNode will validate that the types of | ||||
| 13964 | // a binary operator match, so go through the list in reverse so that | ||||
| 13965 | // we've likely promoted both operands first. Any intermediate truncations or | ||||
| 13966 | // extensions disappear. | ||||
| 13967 | while (!PromOpHandles.empty()) { | ||||
| 13968 | SDValue PromOp = PromOpHandles.back().getValue(); | ||||
| 13969 | PromOpHandles.pop_back(); | ||||
| 13970 | |||||
| 13971 | if (PromOp.getOpcode() == ISD::TRUNCATE || | ||||
| 13972 | PromOp.getOpcode() == ISD::SIGN_EXTEND || | ||||
| 13973 | PromOp.getOpcode() == ISD::ZERO_EXTEND || | ||||
| 13974 | PromOp.getOpcode() == ISD::ANY_EXTEND) { | ||||
| 13975 | if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && | ||||
| 13976 | PromOp.getOperand(0).getValueType() != MVT::i1) { | ||||
| 13977 | // The operand is not yet ready (see comment below). | ||||
| 13978 | PromOpHandles.emplace_front(PromOp); | ||||
| 13979 | continue; | ||||
| 13980 | } | ||||
| 13981 | |||||
| 13982 | SDValue RepValue = PromOp.getOperand(0); | ||||
| 13983 | if (isa<ConstantSDNode>(RepValue)) | ||||
| 13984 | RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); | ||||
| 13985 | |||||
| 13986 | DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); | ||||
| 13987 | continue; | ||||
| 13988 | } | ||||
| 13989 | |||||
| 13990 | unsigned C; | ||||
| 13991 | switch (PromOp.getOpcode()) { | ||||
| 13992 | default: C = 0; break; | ||||
| 13993 | case ISD::SELECT: C = 1; break; | ||||
| 13994 | case ISD::SELECT_CC: C = 2; break; | ||||
| 13995 | } | ||||
| 13996 | |||||
| 13997 | if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && | ||||
| 13998 | PromOp.getOperand(C).getValueType() != MVT::i1) || | ||||
| 13999 | (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && | ||||
| 14000 | PromOp.getOperand(C+1).getValueType() != MVT::i1)) { | ||||
| 14001 | // The to-be-promoted operands of this node have not yet been | ||||
| 14002 | // promoted (this should be rare because we're going through the | ||||
| 14003 | // list backward, but if one of the operands has several users in | ||||
| 14004 | // this cluster of to-be-promoted nodes, it is possible). | ||||
| 14005 | PromOpHandles.emplace_front(PromOp); | ||||
| 14006 | continue; | ||||
| 14007 | } | ||||
| 14008 | |||||
| 14009 | SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), | ||||
| 14010 | PromOp.getNode()->op_end()); | ||||
| 14011 | |||||
| 14012 | // If there are any constant inputs, make sure they're replaced now. | ||||
| 14013 | for (unsigned i = 0; i < 2; ++i) | ||||
| 14014 | if (isa<ConstantSDNode>(Ops[C+i])) | ||||
| 14015 | Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); | ||||
| 14016 | |||||
| 14017 | DAG.ReplaceAllUsesOfValueWith(PromOp, | ||||
| 14018 | DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); | ||||
| 14019 | } | ||||
| 14020 | |||||
| 14021 | // Now we're left with the initial truncation itself. | ||||
| 14022 | if (N->getOpcode() == ISD::TRUNCATE) | ||||
| 14023 | return N->getOperand(0); | ||||
| 14024 | |||||
| 14025 | // Otherwise, this is a comparison. The operands to be compared have just | ||||
| 14026 | // changed type (to i1), but everything else is the same. | ||||
| 14027 | return SDValue(N, 0); | ||||
| 14028 | } | ||||
| 14029 | |||||
| 14030 | SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, | ||||
| 14031 | DAGCombinerInfo &DCI) const { | ||||
| 14032 | SelectionDAG &DAG = DCI.DAG; | ||||
| 14033 | SDLoc dl(N); | ||||
| 14034 | |||||
| 14035 | // If we're tracking CR bits, we need to be careful that we don't have: | ||||
| 14036 | // zext(binary-ops(trunc(x), trunc(y))) | ||||
| 14037 | // or | ||||
| 14038 | // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) | ||||
| 14039 | // such that we're unnecessarily moving things into CR bits that can more | ||||
| 14040 | // efficiently stay in GPRs. Note that if we're not certain that the high | ||||
| 14041 | // bits are set as required by the final extension, we still may need to do | ||||
| 14042 | // some masking to get the proper behavior. | ||||
| 14043 | |||||
| 14044 | // This same functionality is important on PPC64 when dealing with | ||||
| 14045 | // 32-to-64-bit extensions; these occur often when 32-bit values are used as | ||||
| 14046 | // the return values of functions. Because it is so similar, it is handled | ||||
| 14047 | // here as well. | ||||
| 14048 | |||||
| 14049 | if (N->getValueType(0) != MVT::i32 && | ||||
| 14050 | N->getValueType(0) != MVT::i64) | ||||
| 14051 | return SDValue(); | ||||
| 14052 | |||||
| 14053 | if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || | ||||
| 14054 | (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) | ||||
| 14055 | return SDValue(); | ||||
| 14056 | |||||
| 14057 | if (N->getOperand(0).getOpcode() != ISD::AND && | ||||
| 14058 | N->getOperand(0).getOpcode() != ISD::OR && | ||||
| 14059 | N->getOperand(0).getOpcode() != ISD::XOR && | ||||
| 14060 | N->getOperand(0).getOpcode() != ISD::SELECT && | ||||
| 14061 | N->getOperand(0).getOpcode() != ISD::SELECT_CC) | ||||
| 14062 | return SDValue(); | ||||
| 14063 | |||||
| 14064 | SmallVector<SDValue, 4> Inputs; | ||||
| 14065 | SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; | ||||
| 14066 | SmallPtrSet<SDNode *, 16> Visited; | ||||
| 14067 | |||||
| 14068 | // Visit all inputs, collect all binary operations (and, or, xor and | ||||
| 14069 | // select) that are all fed by truncations. | ||||
| 14070 | while (!BinOps.empty()) { | ||||
| 14071 | SDValue BinOp = BinOps.pop_back_val(); | ||||
| 14072 | |||||
| 14073 | if (!Visited.insert(BinOp.getNode()).second) | ||||
| 14074 | continue; | ||||
| 14075 | |||||
| 14076 | PromOps.push_back(BinOp); | ||||
| 14077 | |||||
| 14078 | for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { | ||||
| 14079 | // The condition of the select is not promoted. | ||||
| 14080 | if (BinOp.getOpcode() == ISD::SELECT && i == 0) | ||||
| 14081 | continue; | ||||
| 14082 | if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) | ||||
| 14083 | continue; | ||||
| 14084 | |||||
| 14085 | if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || | ||||
| 14086 | isa<ConstantSDNode>(BinOp.getOperand(i))) { | ||||
| 14087 | Inputs.push_back(BinOp.getOperand(i)); | ||||
| 14088 | } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || | ||||
| 14089 | BinOp.getOperand(i).getOpcode() == ISD::OR || | ||||
| 14090 | BinOp.getOperand(i).getOpcode() == ISD::XOR || | ||||
| 14091 | BinOp.getOperand(i).getOpcode() == ISD::SELECT || | ||||
| 14092 | BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { | ||||
| 14093 | BinOps.push_back(BinOp.getOperand(i)); | ||||
| 14094 | } else { | ||||
| 14095 | // We have an input that is not a truncation or another binary | ||||
| 14096 | // operation; we'll abort this transformation. | ||||
| 14097 | return SDValue(); | ||||
| 14098 | } | ||||
| 14099 | } | ||||
| 14100 | } | ||||
| 14101 | |||||
| 14102 | // The operands of a select that must be truncated when the select is | ||||
| 14103 | // promoted because the operand is actually part of the to-be-promoted set. | ||||
| 14104 | DenseMap<SDNode *, EVT> SelectTruncOp[2]; | ||||
| 14105 | |||||
| 14106 | // Make sure that this is a self-contained cluster of operations (which | ||||
| 14107 | // is not quite the same thing as saying that everything has only one | ||||
| 14108 | // use). | ||||
| 14109 | for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { | ||||
| 14110 | if (isa<ConstantSDNode>(Inputs[i])) | ||||
| 14111 | continue; | ||||
| 14112 | |||||
| 14113 | for (SDNode *User : Inputs[i].getNode()->uses()) { | ||||
| 14114 | if (User != N && !Visited.count(User)) | ||||
| 14115 | return SDValue(); | ||||
| 14116 | |||||
| 14117 | // If we're going to promote the non-output-value operand(s) or SELECT or | ||||
| 14118 | // SELECT_CC, record them for truncation. | ||||
| 14119 | if (User->getOpcode() == ISD::SELECT) { | ||||
| 14120 | if (User->getOperand(0) == Inputs[i]) | ||||
| 14121 | SelectTruncOp[0].insert(std::make_pair(User, | ||||
| 14122 | User->getOperand(0).getValueType())); | ||||
| 14123 | } else if (User->getOpcode() == ISD::SELECT_CC) { | ||||
| 14124 | if (User->getOperand(0) == Inputs[i]) | ||||
| 14125 | SelectTruncOp[0].insert(std::make_pair(User, | ||||
| 14126 | User->getOperand(0).getValueType())); | ||||
| 14127 | if (User->getOperand(1) == Inputs[i]) | ||||
| 14128 | SelectTruncOp[1].insert(std::make_pair(User, | ||||
| 14129 | User->getOperand(1).getValueType())); | ||||
| 14130 | } | ||||
| 14131 | } | ||||
| 14132 | } | ||||
| 14133 | |||||
| 14134 | for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { | ||||
| 14135 | for (SDNode *User : PromOps[i].getNode()->uses()) { | ||||
| 14136 | if (User != N && !Visited.count(User)) | ||||
| 14137 | return SDValue(); | ||||
| 14138 | |||||
| 14139 | // If we're going to promote the non-output-value operand(s) or SELECT or | ||||
| 14140 | // SELECT_CC, record them for truncation. | ||||
| 14141 | if (User->getOpcode() == ISD::SELECT) { | ||||
| 14142 | if (User->getOperand(0) == PromOps[i]) | ||||
| 14143 | SelectTruncOp[0].insert(std::make_pair(User, | ||||
| 14144 | User->getOperand(0).getValueType())); | ||||
| 14145 | } else if (User->getOpcode() == ISD::SELECT_CC) { | ||||
| 14146 | if (User->getOperand(0) == PromOps[i]) | ||||
| 14147 | SelectTruncOp[0].insert(std::make_pair(User, | ||||
| 14148 | User->getOperand(0).getValueType())); | ||||
| 14149 | if (User->getOperand(1) == PromOps[i]) | ||||
| 14150 | SelectTruncOp[1].insert(std::make_pair(User, | ||||
| 14151 | User->getOperand(1).getValueType())); | ||||
| 14152 | } | ||||
| 14153 | } | ||||
| 14154 | } | ||||
| 14155 | |||||
| 14156 | unsigned PromBits = N->getOperand(0).getValueSizeInBits(); | ||||
| 14157 | bool ReallyNeedsExt = false; | ||||
| 14158 | if (N->getOpcode() != ISD::ANY_EXTEND) { | ||||
| 14159 | // If all of the inputs are not already sign/zero extended, then | ||||
| 14160 | // we'll still need to do that at the end. | ||||
| 14161 | for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { | ||||
| 14162 | if (isa<ConstantSDNode>(Inputs[i])) | ||||
| 14163 | continue; | ||||
| 14164 | |||||
| 14165 | unsigned OpBits = | ||||
| 14166 | Inputs[i].getOperand(0).getValueSizeInBits(); | ||||
| 14167 | assert(PromBits < OpBits && "Truncation not to a smaller bit count?")(static_cast <bool> (PromBits < OpBits && "Truncation not to a smaller bit count?" ) ? void (0) : __assert_fail ("PromBits < OpBits && \"Truncation not to a smaller bit count?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14167, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14168 | |||||
| 14169 | if ((N->getOpcode() == ISD::ZERO_EXTEND && | ||||
| 14170 | !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), | ||||
| 14171 | APInt::getHighBitsSet(OpBits, | ||||
| 14172 | OpBits-PromBits))) || | ||||
| 14173 | (N->getOpcode() == ISD::SIGN_EXTEND && | ||||
| 14174 | DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < | ||||
| 14175 | (OpBits-(PromBits-1)))) { | ||||
| 14176 | ReallyNeedsExt = true; | ||||
| 14177 | break; | ||||
| 14178 | } | ||||
| 14179 | } | ||||
| 14180 | } | ||||
| 14181 | |||||
| 14182 | // Replace all inputs, either with the truncation operand, or a | ||||
| 14183 | // truncation or extension to the final output type. | ||||
| 14184 | for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { | ||||
| 14185 | // Constant inputs need to be replaced with the to-be-promoted nodes that | ||||
| 14186 | // use them because they might have users outside of the cluster of | ||||
| 14187 | // promoted nodes. | ||||
| 14188 | if (isa<ConstantSDNode>(Inputs[i])) | ||||
| 14189 | continue; | ||||
| 14190 | |||||
| 14191 | SDValue InSrc = Inputs[i].getOperand(0); | ||||
| 14192 | if (Inputs[i].getValueType() == N->getValueType(0)) | ||||
| 14193 | DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); | ||||
| 14194 | else if (N->getOpcode() == ISD::SIGN_EXTEND) | ||||
| 14195 | DAG.ReplaceAllUsesOfValueWith(Inputs[i], | ||||
| 14196 | DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); | ||||
| 14197 | else if (N->getOpcode() == ISD::ZERO_EXTEND) | ||||
| 14198 | DAG.ReplaceAllUsesOfValueWith(Inputs[i], | ||||
| 14199 | DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); | ||||
| 14200 | else | ||||
| 14201 | DAG.ReplaceAllUsesOfValueWith(Inputs[i], | ||||
| 14202 | DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); | ||||
| 14203 | } | ||||
| 14204 | |||||
| 14205 | std::list<HandleSDNode> PromOpHandles; | ||||
| 14206 | for (auto &PromOp : PromOps) | ||||
| 14207 | PromOpHandles.emplace_back(PromOp); | ||||
| 14208 | |||||
| 14209 | // Replace all operations (these are all the same, but have a different | ||||
| 14210 | // (promoted) return type). DAG.getNode will validate that the types of | ||||
| 14211 | // a binary operator match, so go through the list in reverse so that | ||||
| 14212 | // we've likely promoted both operands first. | ||||
| 14213 | while (!PromOpHandles.empty()) { | ||||
| 14214 | SDValue PromOp = PromOpHandles.back().getValue(); | ||||
| 14215 | PromOpHandles.pop_back(); | ||||
| 14216 | |||||
| 14217 | unsigned C; | ||||
| 14218 | switch (PromOp.getOpcode()) { | ||||
| 14219 | default: C = 0; break; | ||||
| 14220 | case ISD::SELECT: C = 1; break; | ||||
| 14221 | case ISD::SELECT_CC: C = 2; break; | ||||
| 14222 | } | ||||
| 14223 | |||||
| 14224 | if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && | ||||
| 14225 | PromOp.getOperand(C).getValueType() != N->getValueType(0)) || | ||||
| 14226 | (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && | ||||
| 14227 | PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { | ||||
| 14228 | // The to-be-promoted operands of this node have not yet been | ||||
| 14229 | // promoted (this should be rare because we're going through the | ||||
| 14230 | // list backward, but if one of the operands has several users in | ||||
| 14231 | // this cluster of to-be-promoted nodes, it is possible). | ||||
| 14232 | PromOpHandles.emplace_front(PromOp); | ||||
| 14233 | continue; | ||||
| 14234 | } | ||||
| 14235 | |||||
| 14236 | // For SELECT and SELECT_CC nodes, we do a similar check for any | ||||
| 14237 | // to-be-promoted comparison inputs. | ||||
| 14238 | if (PromOp.getOpcode() == ISD::SELECT || | ||||
| 14239 | PromOp.getOpcode() == ISD::SELECT_CC) { | ||||
| 14240 | if ((SelectTruncOp[0].count(PromOp.getNode()) && | ||||
| 14241 | PromOp.getOperand(0).getValueType() != N->getValueType(0)) || | ||||
| 14242 | (SelectTruncOp[1].count(PromOp.getNode()) && | ||||
| 14243 | PromOp.getOperand(1).getValueType() != N->getValueType(0))) { | ||||
| 14244 | PromOpHandles.emplace_front(PromOp); | ||||
| 14245 | continue; | ||||
| 14246 | } | ||||
| 14247 | } | ||||
| 14248 | |||||
| 14249 | SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), | ||||
| 14250 | PromOp.getNode()->op_end()); | ||||
| 14251 | |||||
| 14252 | // If this node has constant inputs, then they'll need to be promoted here. | ||||
| 14253 | for (unsigned i = 0; i < 2; ++i) { | ||||
| 14254 | if (!isa<ConstantSDNode>(Ops[C+i])) | ||||
| 14255 | continue; | ||||
| 14256 | if (Ops[C+i].getValueType() == N->getValueType(0)) | ||||
| 14257 | continue; | ||||
| 14258 | |||||
| 14259 | if (N->getOpcode() == ISD::SIGN_EXTEND) | ||||
| 14260 | Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); | ||||
| 14261 | else if (N->getOpcode() == ISD::ZERO_EXTEND) | ||||
| 14262 | Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); | ||||
| 14263 | else | ||||
| 14264 | Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); | ||||
| 14265 | } | ||||
| 14266 | |||||
| 14267 | // If we've promoted the comparison inputs of a SELECT or SELECT_CC, | ||||
| 14268 | // truncate them again to the original value type. | ||||
| 14269 | if (PromOp.getOpcode() == ISD::SELECT || | ||||
| 14270 | PromOp.getOpcode() == ISD::SELECT_CC) { | ||||
| 14271 | auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); | ||||
| 14272 | if (SI0 != SelectTruncOp[0].end()) | ||||
| 14273 | Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); | ||||
| 14274 | auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); | ||||
| 14275 | if (SI1 != SelectTruncOp[1].end()) | ||||
| 14276 | Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); | ||||
| 14277 | } | ||||
| 14278 | |||||
| 14279 | DAG.ReplaceAllUsesOfValueWith(PromOp, | ||||
| 14280 | DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); | ||||
| 14281 | } | ||||
| 14282 | |||||
| 14283 | // Now we're left with the initial extension itself. | ||||
| 14284 | if (!ReallyNeedsExt) | ||||
| 14285 | return N->getOperand(0); | ||||
| 14286 | |||||
| 14287 | // To zero extend, just mask off everything except for the first bit (in the | ||||
| 14288 | // i1 case). | ||||
| 14289 | if (N->getOpcode() == ISD::ZERO_EXTEND) | ||||
| 14290 | return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), | ||||
| 14291 | DAG.getConstant(APInt::getLowBitsSet( | ||||
| 14292 | N->getValueSizeInBits(0), PromBits), | ||||
| 14293 | dl, N->getValueType(0))); | ||||
| 14294 | |||||
| 14295 | assert(N->getOpcode() == ISD::SIGN_EXTEND &&(static_cast <bool> (N->getOpcode() == ISD::SIGN_EXTEND && "Invalid extension type") ? void (0) : __assert_fail ("N->getOpcode() == ISD::SIGN_EXTEND && \"Invalid extension type\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14296, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14296 | "Invalid extension type")(static_cast <bool> (N->getOpcode() == ISD::SIGN_EXTEND && "Invalid extension type") ? void (0) : __assert_fail ("N->getOpcode() == ISD::SIGN_EXTEND && \"Invalid extension type\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14296, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14297 | EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); | ||||
| 14298 | SDValue ShiftCst = | ||||
| 14299 | DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); | ||||
| 14300 | return DAG.getNode( | ||||
| 14301 | ISD::SRA, dl, N->getValueType(0), | ||||
| 14302 | DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), | ||||
| 14303 | ShiftCst); | ||||
| 14304 | } | ||||
| 14305 | |||||
| 14306 | SDValue PPCTargetLowering::combineSetCC(SDNode *N, | ||||
| 14307 | DAGCombinerInfo &DCI) const { | ||||
| 14308 | assert(N->getOpcode() == ISD::SETCC &&(static_cast <bool> (N->getOpcode() == ISD::SETCC && "Should be called with a SETCC node") ? void (0) : __assert_fail ("N->getOpcode() == ISD::SETCC && \"Should be called with a SETCC node\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14309, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14309 | "Should be called with a SETCC node")(static_cast <bool> (N->getOpcode() == ISD::SETCC && "Should be called with a SETCC node") ? void (0) : __assert_fail ("N->getOpcode() == ISD::SETCC && \"Should be called with a SETCC node\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14309, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14310 | |||||
| 14311 | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | ||||
| 14312 | if (CC == ISD::SETNE || CC == ISD::SETEQ) { | ||||
| 14313 | SDValue LHS = N->getOperand(0); | ||||
| 14314 | SDValue RHS = N->getOperand(1); | ||||
| 14315 | |||||
| 14316 | // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. | ||||
| 14317 | if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && | ||||
| 14318 | LHS.hasOneUse()) | ||||
| 14319 | std::swap(LHS, RHS); | ||||
| 14320 | |||||
| 14321 | // x == 0-y --> x+y == 0 | ||||
| 14322 | // x != 0-y --> x+y != 0 | ||||
| 14323 | if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && | ||||
| 14324 | RHS.hasOneUse()) { | ||||
| 14325 | SDLoc DL(N); | ||||
| 14326 | SelectionDAG &DAG = DCI.DAG; | ||||
| 14327 | EVT VT = N->getValueType(0); | ||||
| 14328 | EVT OpVT = LHS.getValueType(); | ||||
| 14329 | SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); | ||||
| 14330 | return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); | ||||
| 14331 | } | ||||
| 14332 | } | ||||
| 14333 | |||||
| 14334 | return DAGCombineTruncBoolExt(N, DCI); | ||||
| 14335 | } | ||||
| 14336 | |||||
| 14337 | // Is this an extending load from an f32 to an f64? | ||||
| 14338 | static bool isFPExtLoad(SDValue Op) { | ||||
| 14339 | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) | ||||
| 14340 | return LD->getExtensionType() == ISD::EXTLOAD && | ||||
| 14341 | Op.getValueType() == MVT::f64; | ||||
| 14342 | return false; | ||||
| 14343 | } | ||||
| 14344 | |||||
| 14345 | /// Reduces the number of fp-to-int conversion when building a vector. | ||||
| 14346 | /// | ||||
| 14347 | /// If this vector is built out of floating to integer conversions, | ||||
| 14348 | /// transform it to a vector built out of floating point values followed by a | ||||
| 14349 | /// single floating to integer conversion of the vector. | ||||
| 14350 | /// Namely (build_vector (fptosi $A), (fptosi $B), ...) | ||||
| 14351 | /// becomes (fptosi (build_vector ($A, $B, ...))) | ||||
| 14352 | SDValue PPCTargetLowering:: | ||||
| 14353 | combineElementTruncationToVectorTruncation(SDNode *N, | ||||
| 14354 | DAGCombinerInfo &DCI) const { | ||||
| 14355 | assert(N->getOpcode() == ISD::BUILD_VECTOR &&(static_cast <bool> (N->getOpcode() == ISD::BUILD_VECTOR && "Should be called with a BUILD_VECTOR node") ? void (0) : __assert_fail ("N->getOpcode() == ISD::BUILD_VECTOR && \"Should be called with a BUILD_VECTOR node\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14356, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14356 | "Should be called with a BUILD_VECTOR node")(static_cast <bool> (N->getOpcode() == ISD::BUILD_VECTOR && "Should be called with a BUILD_VECTOR node") ? void (0) : __assert_fail ("N->getOpcode() == ISD::BUILD_VECTOR && \"Should be called with a BUILD_VECTOR node\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14356, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14357 | |||||
| 14358 | SelectionDAG &DAG = DCI.DAG; | ||||
| 14359 | SDLoc dl(N); | ||||
| 14360 | |||||
| 14361 | SDValue FirstInput = N->getOperand(0); | ||||
| 14362 | assert(FirstInput.getOpcode() == PPCISD::MFVSR &&(static_cast <bool> (FirstInput.getOpcode() == PPCISD:: MFVSR && "The input operand must be an fp-to-int conversion." ) ? void (0) : __assert_fail ("FirstInput.getOpcode() == PPCISD::MFVSR && \"The input operand must be an fp-to-int conversion.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14363, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14363 | "The input operand must be an fp-to-int conversion.")(static_cast <bool> (FirstInput.getOpcode() == PPCISD:: MFVSR && "The input operand must be an fp-to-int conversion." ) ? void (0) : __assert_fail ("FirstInput.getOpcode() == PPCISD::MFVSR && \"The input operand must be an fp-to-int conversion.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14363, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14364 | |||||
| 14365 | // This combine happens after legalization so the fp_to_[su]i nodes are | ||||
| 14366 | // already converted to PPCSISD nodes. | ||||
| 14367 | unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); | ||||
| 14368 | if (FirstConversion == PPCISD::FCTIDZ || | ||||
| 14369 | FirstConversion == PPCISD::FCTIDUZ || | ||||
| 14370 | FirstConversion == PPCISD::FCTIWZ || | ||||
| 14371 | FirstConversion == PPCISD::FCTIWUZ) { | ||||
| 14372 | bool IsSplat = true; | ||||
| 14373 | bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || | ||||
| 14374 | FirstConversion == PPCISD::FCTIWUZ; | ||||
| 14375 | EVT SrcVT = FirstInput.getOperand(0).getValueType(); | ||||
| 14376 | SmallVector<SDValue, 4> Ops; | ||||
| 14377 | EVT TargetVT = N->getValueType(0); | ||||
| 14378 | for (int i = 0, e = N->getNumOperands(); i < e; ++i) { | ||||
| 14379 | SDValue NextOp = N->getOperand(i); | ||||
| 14380 | if (NextOp.getOpcode() != PPCISD::MFVSR) | ||||
| 14381 | return SDValue(); | ||||
| 14382 | unsigned NextConversion = NextOp.getOperand(0).getOpcode(); | ||||
| 14383 | if (NextConversion != FirstConversion) | ||||
| 14384 | return SDValue(); | ||||
| 14385 | // If we are converting to 32-bit integers, we need to add an FP_ROUND. | ||||
| 14386 | // This is not valid if the input was originally double precision. It is | ||||
| 14387 | // also not profitable to do unless this is an extending load in which | ||||
| 14388 | // case doing this combine will allow us to combine consecutive loads. | ||||
| 14389 | if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) | ||||
| 14390 | return SDValue(); | ||||
| 14391 | if (N->getOperand(i) != FirstInput) | ||||
| 14392 | IsSplat = false; | ||||
| 14393 | } | ||||
| 14394 | |||||
| 14395 | // If this is a splat, we leave it as-is since there will be only a single | ||||
| 14396 | // fp-to-int conversion followed by a splat of the integer. This is better | ||||
| 14397 | // for 32-bit and smaller ints and neutral for 64-bit ints. | ||||
| 14398 | if (IsSplat) | ||||
| 14399 | return SDValue(); | ||||
| 14400 | |||||
| 14401 | // Now that we know we have the right type of node, get its operands | ||||
| 14402 | for (int i = 0, e = N->getNumOperands(); i < e; ++i) { | ||||
| 14403 | SDValue In = N->getOperand(i).getOperand(0); | ||||
| 14404 | if (Is32Bit) { | ||||
| 14405 | // For 32-bit values, we need to add an FP_ROUND node (if we made it | ||||
| 14406 | // here, we know that all inputs are extending loads so this is safe). | ||||
| 14407 | if (In.isUndef()) | ||||
| 14408 | Ops.push_back(DAG.getUNDEF(SrcVT)); | ||||
| 14409 | else { | ||||
| 14410 | SDValue Trunc = | ||||
| 14411 | DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, In.getOperand(0), | ||||
| 14412 | DAG.getIntPtrConstant(1, dl, /*isTarget=*/true)); | ||||
| 14413 | Ops.push_back(Trunc); | ||||
| 14414 | } | ||||
| 14415 | } else | ||||
| 14416 | Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); | ||||
| 14417 | } | ||||
| 14418 | |||||
| 14419 | unsigned Opcode; | ||||
| 14420 | if (FirstConversion == PPCISD::FCTIDZ || | ||||
| 14421 | FirstConversion == PPCISD::FCTIWZ) | ||||
| 14422 | Opcode = ISD::FP_TO_SINT; | ||||
| 14423 | else | ||||
| 14424 | Opcode = ISD::FP_TO_UINT; | ||||
| 14425 | |||||
| 14426 | EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; | ||||
| 14427 | SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); | ||||
| 14428 | return DAG.getNode(Opcode, dl, TargetVT, BV); | ||||
| 14429 | } | ||||
| 14430 | return SDValue(); | ||||
| 14431 | } | ||||
| 14432 | |||||
| 14433 | /// Reduce the number of loads when building a vector. | ||||
| 14434 | /// | ||||
| 14435 | /// Building a vector out of multiple loads can be converted to a load | ||||
| 14436 | /// of the vector type if the loads are consecutive. If the loads are | ||||
| 14437 | /// consecutive but in descending order, a shuffle is added at the end | ||||
| 14438 | /// to reorder the vector. | ||||
| 14439 | static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { | ||||
| 14440 | assert(N->getOpcode() == ISD::BUILD_VECTOR &&(static_cast <bool> (N->getOpcode() == ISD::BUILD_VECTOR && "Should be called with a BUILD_VECTOR node") ? void (0) : __assert_fail ("N->getOpcode() == ISD::BUILD_VECTOR && \"Should be called with a BUILD_VECTOR node\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14441, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14441 | "Should be called with a BUILD_VECTOR node")(static_cast <bool> (N->getOpcode() == ISD::BUILD_VECTOR && "Should be called with a BUILD_VECTOR node") ? void (0) : __assert_fail ("N->getOpcode() == ISD::BUILD_VECTOR && \"Should be called with a BUILD_VECTOR node\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14441, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14442 | |||||
| 14443 | SDLoc dl(N); | ||||
| 14444 | |||||
| 14445 | // Return early for non byte-sized type, as they can't be consecutive. | ||||
| 14446 | if (!N->getValueType(0).getVectorElementType().isByteSized()) | ||||
| 14447 | return SDValue(); | ||||
| 14448 | |||||
| 14449 | bool InputsAreConsecutiveLoads = true; | ||||
| 14450 | bool InputsAreReverseConsecutive = true; | ||||
| 14451 | unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); | ||||
| 14452 | SDValue FirstInput = N->getOperand(0); | ||||
| 14453 | bool IsRoundOfExtLoad = false; | ||||
| 14454 | LoadSDNode *FirstLoad = nullptr; | ||||
| 14455 | |||||
| 14456 | if (FirstInput.getOpcode() == ISD::FP_ROUND && | ||||
| 14457 | FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { | ||||
| 14458 | FirstLoad = cast<LoadSDNode>(FirstInput.getOperand(0)); | ||||
| 14459 | IsRoundOfExtLoad = FirstLoad->getExtensionType() == ISD::EXTLOAD; | ||||
| 14460 | } | ||||
| 14461 | // Not a build vector of (possibly fp_rounded) loads. | ||||
| 14462 | if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || | ||||
| 14463 | N->getNumOperands() == 1) | ||||
| 14464 | return SDValue(); | ||||
| 14465 | |||||
| 14466 | if (!IsRoundOfExtLoad) | ||||
| 14467 | FirstLoad = cast<LoadSDNode>(FirstInput); | ||||
| 14468 | |||||
| 14469 | SmallVector<LoadSDNode *, 4> InputLoads; | ||||
| 14470 | InputLoads.push_back(FirstLoad); | ||||
| 14471 | for (int i = 1, e = N->getNumOperands(); i < e; ++i) { | ||||
| 14472 | // If any inputs are fp_round(extload), they all must be. | ||||
| 14473 | if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) | ||||
| 14474 | return SDValue(); | ||||
| 14475 | |||||
| 14476 | SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : | ||||
| 14477 | N->getOperand(i); | ||||
| 14478 | if (NextInput.getOpcode() != ISD::LOAD) | ||||
| 14479 | return SDValue(); | ||||
| 14480 | |||||
| 14481 | SDValue PreviousInput = | ||||
| 14482 | IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); | ||||
| 14483 | LoadSDNode *LD1 = cast<LoadSDNode>(PreviousInput); | ||||
| 14484 | LoadSDNode *LD2 = cast<LoadSDNode>(NextInput); | ||||
| 14485 | |||||
| 14486 | // If any inputs are fp_round(extload), they all must be. | ||||
| 14487 | if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) | ||||
| 14488 | return SDValue(); | ||||
| 14489 | |||||
| 14490 | // We only care about regular loads. The PPC-specific load intrinsics | ||||
| 14491 | // will not lead to a merge opportunity. | ||||
| 14492 | if (!DAG.areNonVolatileConsecutiveLoads(LD2, LD1, ElemSize, 1)) | ||||
| 14493 | InputsAreConsecutiveLoads = false; | ||||
| 14494 | if (!DAG.areNonVolatileConsecutiveLoads(LD1, LD2, ElemSize, 1)) | ||||
| 14495 | InputsAreReverseConsecutive = false; | ||||
| 14496 | |||||
| 14497 | // Exit early if the loads are neither consecutive nor reverse consecutive. | ||||
| 14498 | if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) | ||||
| 14499 | return SDValue(); | ||||
| 14500 | InputLoads.push_back(LD2); | ||||
| 14501 | } | ||||
| 14502 | |||||
| 14503 | assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&(static_cast <bool> (!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && "The loads cannot be both consecutive and reverse consecutive." ) ? void (0) : __assert_fail ("!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && \"The loads cannot be both consecutive and reverse consecutive.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14504, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14504 | "The loads cannot be both consecutive and reverse consecutive.")(static_cast <bool> (!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && "The loads cannot be both consecutive and reverse consecutive." ) ? void (0) : __assert_fail ("!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && \"The loads cannot be both consecutive and reverse consecutive.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14504, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14505 | |||||
| 14506 | SDValue WideLoad; | ||||
| 14507 | SDValue ReturnSDVal; | ||||
| 14508 | if (InputsAreConsecutiveLoads) { | ||||
| 14509 | assert(FirstLoad && "Input needs to be a LoadSDNode.")(static_cast <bool> (FirstLoad && "Input needs to be a LoadSDNode." ) ? void (0) : __assert_fail ("FirstLoad && \"Input needs to be a LoadSDNode.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14509, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14510 | WideLoad = DAG.getLoad(N->getValueType(0), dl, FirstLoad->getChain(), | ||||
| 14511 | FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), | ||||
| 14512 | FirstLoad->getAlign()); | ||||
| 14513 | ReturnSDVal = WideLoad; | ||||
| 14514 | } else if (InputsAreReverseConsecutive) { | ||||
| 14515 | LoadSDNode *LastLoad = InputLoads.back(); | ||||
| 14516 | assert(LastLoad && "Input needs to be a LoadSDNode.")(static_cast <bool> (LastLoad && "Input needs to be a LoadSDNode." ) ? void (0) : __assert_fail ("LastLoad && \"Input needs to be a LoadSDNode.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14516, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14517 | WideLoad = DAG.getLoad(N->getValueType(0), dl, LastLoad->getChain(), | ||||
| 14518 | LastLoad->getBasePtr(), LastLoad->getPointerInfo(), | ||||
| 14519 | LastLoad->getAlign()); | ||||
| 14520 | SmallVector<int, 16> Ops; | ||||
| 14521 | for (int i = N->getNumOperands() - 1; i >= 0; i--) | ||||
| 14522 | Ops.push_back(i); | ||||
| 14523 | |||||
| 14524 | ReturnSDVal = DAG.getVectorShuffle(N->getValueType(0), dl, WideLoad, | ||||
| 14525 | DAG.getUNDEF(N->getValueType(0)), Ops); | ||||
| 14526 | } else | ||||
| 14527 | return SDValue(); | ||||
| 14528 | |||||
| 14529 | for (auto *LD : InputLoads) | ||||
| 14530 | DAG.makeEquivalentMemoryOrdering(LD, WideLoad); | ||||
| 14531 | return ReturnSDVal; | ||||
| 14532 | } | ||||
| 14533 | |||||
| 14534 | // This function adds the required vector_shuffle needed to get | ||||
| 14535 | // the elements of the vector extract in the correct position | ||||
| 14536 | // as specified by the CorrectElems encoding. | ||||
| 14537 | static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, | ||||
| 14538 | SDValue Input, uint64_t Elems, | ||||
| 14539 | uint64_t CorrectElems) { | ||||
| 14540 | SDLoc dl(N); | ||||
| 14541 | |||||
| 14542 | unsigned NumElems = Input.getValueType().getVectorNumElements(); | ||||
| 14543 | SmallVector<int, 16> ShuffleMask(NumElems, -1); | ||||
| 14544 | |||||
| 14545 | // Knowing the element indices being extracted from the original | ||||
| 14546 | // vector and the order in which they're being inserted, just put | ||||
| 14547 | // them at element indices required for the instruction. | ||||
| 14548 | for (unsigned i = 0; i < N->getNumOperands(); i++) { | ||||
| 14549 | if (DAG.getDataLayout().isLittleEndian()) | ||||
| 14550 | ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; | ||||
| 14551 | else | ||||
| 14552 | ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; | ||||
| 14553 | CorrectElems = CorrectElems >> 8; | ||||
| 14554 | Elems = Elems >> 8; | ||||
| 14555 | } | ||||
| 14556 | |||||
| 14557 | SDValue Shuffle = | ||||
| 14558 | DAG.getVectorShuffle(Input.getValueType(), dl, Input, | ||||
| 14559 | DAG.getUNDEF(Input.getValueType()), ShuffleMask); | ||||
| 14560 | |||||
| 14561 | EVT VT = N->getValueType(0); | ||||
| 14562 | SDValue Conv = DAG.getBitcast(VT, Shuffle); | ||||
| 14563 | |||||
| 14564 | EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), | ||||
| 14565 | Input.getValueType().getVectorElementType(), | ||||
| 14566 | VT.getVectorNumElements()); | ||||
| 14567 | return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, | ||||
| 14568 | DAG.getValueType(ExtVT)); | ||||
| 14569 | } | ||||
| 14570 | |||||
| 14571 | // Look for build vector patterns where input operands come from sign | ||||
| 14572 | // extended vector_extract elements of specific indices. If the correct indices | ||||
| 14573 | // aren't used, add a vector shuffle to fix up the indices and create | ||||
| 14574 | // SIGN_EXTEND_INREG node which selects the vector sign extend instructions | ||||
| 14575 | // during instruction selection. | ||||
| 14576 | static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { | ||||
| 14577 | // This array encodes the indices that the vector sign extend instructions | ||||
| 14578 | // extract from when extending from one type to another for both BE and LE. | ||||
| 14579 | // The right nibble of each byte corresponds to the LE incides. | ||||
| 14580 | // and the left nibble of each byte corresponds to the BE incides. | ||||
| 14581 | // For example: 0x3074B8FC byte->word | ||||
| 14582 | // For LE: the allowed indices are: 0x0,0x4,0x8,0xC | ||||
| 14583 | // For BE: the allowed indices are: 0x3,0x7,0xB,0xF | ||||
| 14584 | // For example: 0x000070F8 byte->double word | ||||
| 14585 | // For LE: the allowed indices are: 0x0,0x8 | ||||
| 14586 | // For BE: the allowed indices are: 0x7,0xF | ||||
| 14587 | uint64_t TargetElems[] = { | ||||
| 14588 | 0x3074B8FC, // b->w | ||||
| 14589 | 0x000070F8, // b->d | ||||
| 14590 | 0x10325476, // h->w | ||||
| 14591 | 0x00003074, // h->d | ||||
| 14592 | 0x00001032, // w->d | ||||
| 14593 | }; | ||||
| 14594 | |||||
| 14595 | uint64_t Elems = 0; | ||||
| 14596 | int Index; | ||||
| 14597 | SDValue Input; | ||||
| 14598 | |||||
| 14599 | auto isSExtOfVecExtract = [&](SDValue Op) -> bool { | ||||
| 14600 | if (!Op) | ||||
| 14601 | return false; | ||||
| 14602 | if (Op.getOpcode() != ISD::SIGN_EXTEND && | ||||
| 14603 | Op.getOpcode() != ISD::SIGN_EXTEND_INREG) | ||||
| 14604 | return false; | ||||
| 14605 | |||||
| 14606 | // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value | ||||
| 14607 | // of the right width. | ||||
| 14608 | SDValue Extract = Op.getOperand(0); | ||||
| 14609 | if (Extract.getOpcode() == ISD::ANY_EXTEND) | ||||
| 14610 | Extract = Extract.getOperand(0); | ||||
| 14611 | if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | ||||
| 14612 | return false; | ||||
| 14613 | |||||
| 14614 | ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); | ||||
| 14615 | if (!ExtOp) | ||||
| 14616 | return false; | ||||
| 14617 | |||||
| 14618 | Index = ExtOp->getZExtValue(); | ||||
| 14619 | if (Input && Input != Extract.getOperand(0)) | ||||
| 14620 | return false; | ||||
| 14621 | |||||
| 14622 | if (!Input) | ||||
| 14623 | Input = Extract.getOperand(0); | ||||
| 14624 | |||||
| 14625 | Elems = Elems << 8; | ||||
| 14626 | Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; | ||||
| 14627 | Elems |= Index; | ||||
| 14628 | |||||
| 14629 | return true; | ||||
| 14630 | }; | ||||
| 14631 | |||||
| 14632 | // If the build vector operands aren't sign extended vector extracts, | ||||
| 14633 | // of the same input vector, then return. | ||||
| 14634 | for (unsigned i = 0; i < N->getNumOperands(); i++) { | ||||
| 14635 | if (!isSExtOfVecExtract(N->getOperand(i))) { | ||||
| 14636 | return SDValue(); | ||||
| 14637 | } | ||||
| 14638 | } | ||||
| 14639 | |||||
| 14640 | // If the vector extract indicies are not correct, add the appropriate | ||||
| 14641 | // vector_shuffle. | ||||
| 14642 | int TgtElemArrayIdx; | ||||
| 14643 | int InputSize = Input.getValueType().getScalarSizeInBits(); | ||||
| 14644 | int OutputSize = N->getValueType(0).getScalarSizeInBits(); | ||||
| 14645 | if (InputSize + OutputSize == 40) | ||||
| 14646 | TgtElemArrayIdx = 0; | ||||
| 14647 | else if (InputSize + OutputSize == 72) | ||||
| 14648 | TgtElemArrayIdx = 1; | ||||
| 14649 | else if (InputSize + OutputSize == 48) | ||||
| 14650 | TgtElemArrayIdx = 2; | ||||
| 14651 | else if (InputSize + OutputSize == 80) | ||||
| 14652 | TgtElemArrayIdx = 3; | ||||
| 14653 | else if (InputSize + OutputSize == 96) | ||||
| 14654 | TgtElemArrayIdx = 4; | ||||
| 14655 | else | ||||
| 14656 | return SDValue(); | ||||
| 14657 | |||||
| 14658 | uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; | ||||
| 14659 | CorrectElems = DAG.getDataLayout().isLittleEndian() | ||||
| 14660 | ? CorrectElems & 0x0F0F0F0F0F0F0F0F | ||||
| 14661 | : CorrectElems & 0xF0F0F0F0F0F0F0F0; | ||||
| 14662 | if (Elems != CorrectElems) { | ||||
| 14663 | return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); | ||||
| 14664 | } | ||||
| 14665 | |||||
| 14666 | // Regular lowering will catch cases where a shuffle is not needed. | ||||
| 14667 | return SDValue(); | ||||
| 14668 | } | ||||
| 14669 | |||||
| 14670 | // Look for the pattern of a load from a narrow width to i128, feeding | ||||
| 14671 | // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node | ||||
| 14672 | // (LXVRZX). This node represents a zero extending load that will be matched | ||||
| 14673 | // to the Load VSX Vector Rightmost instructions. | ||||
| 14674 | static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { | ||||
| 14675 | SDLoc DL(N); | ||||
| 14676 | |||||
| 14677 | // This combine is only eligible for a BUILD_VECTOR of v1i128. | ||||
| 14678 | if (N->getValueType(0) != MVT::v1i128) | ||||
| 14679 | return SDValue(); | ||||
| 14680 | |||||
| 14681 | SDValue Operand = N->getOperand(0); | ||||
| 14682 | // Proceed with the transformation if the operand to the BUILD_VECTOR | ||||
| 14683 | // is a load instruction. | ||||
| 14684 | if (Operand.getOpcode() != ISD::LOAD) | ||||
| 14685 | return SDValue(); | ||||
| 14686 | |||||
| 14687 | auto *LD = cast<LoadSDNode>(Operand); | ||||
| 14688 | EVT MemoryType = LD->getMemoryVT(); | ||||
| 14689 | |||||
| 14690 | // This transformation is only valid if the we are loading either a byte, | ||||
| 14691 | // halfword, word, or doubleword. | ||||
| 14692 | bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || | ||||
| 14693 | MemoryType == MVT::i32 || MemoryType == MVT::i64; | ||||
| 14694 | |||||
| 14695 | // Ensure that the load from the narrow width is being zero extended to i128. | ||||
| 14696 | if (!ValidLDType || | ||||
| 14697 | (LD->getExtensionType() != ISD::ZEXTLOAD && | ||||
| 14698 | LD->getExtensionType() != ISD::EXTLOAD)) | ||||
| 14699 | return SDValue(); | ||||
| 14700 | |||||
| 14701 | SDValue LoadOps[] = { | ||||
| 14702 | LD->getChain(), LD->getBasePtr(), | ||||
| 14703 | DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; | ||||
| 14704 | |||||
| 14705 | return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, | ||||
| 14706 | DAG.getVTList(MVT::v1i128, MVT::Other), | ||||
| 14707 | LoadOps, MemoryType, LD->getMemOperand()); | ||||
| 14708 | } | ||||
| 14709 | |||||
| 14710 | SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, | ||||
| 14711 | DAGCombinerInfo &DCI) const { | ||||
| 14712 | assert(N->getOpcode() == ISD::BUILD_VECTOR &&(static_cast <bool> (N->getOpcode() == ISD::BUILD_VECTOR && "Should be called with a BUILD_VECTOR node") ? void (0) : __assert_fail ("N->getOpcode() == ISD::BUILD_VECTOR && \"Should be called with a BUILD_VECTOR node\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14713, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14713 | "Should be called with a BUILD_VECTOR node")(static_cast <bool> (N->getOpcode() == ISD::BUILD_VECTOR && "Should be called with a BUILD_VECTOR node") ? void (0) : __assert_fail ("N->getOpcode() == ISD::BUILD_VECTOR && \"Should be called with a BUILD_VECTOR node\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14713, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14714 | |||||
| 14715 | SelectionDAG &DAG = DCI.DAG; | ||||
| 14716 | SDLoc dl(N); | ||||
| 14717 | |||||
| 14718 | if (!Subtarget.hasVSX()) | ||||
| 14719 | return SDValue(); | ||||
| 14720 | |||||
| 14721 | // The target independent DAG combiner will leave a build_vector of | ||||
| 14722 | // float-to-int conversions intact. We can generate MUCH better code for | ||||
| 14723 | // a float-to-int conversion of a vector of floats. | ||||
| 14724 | SDValue FirstInput = N->getOperand(0); | ||||
| 14725 | if (FirstInput.getOpcode() == PPCISD::MFVSR) { | ||||
| 14726 | SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); | ||||
| 14727 | if (Reduced) | ||||
| 14728 | return Reduced; | ||||
| 14729 | } | ||||
| 14730 | |||||
| 14731 | // If we're building a vector out of consecutive loads, just load that | ||||
| 14732 | // vector type. | ||||
| 14733 | SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); | ||||
| 14734 | if (Reduced) | ||||
| 14735 | return Reduced; | ||||
| 14736 | |||||
| 14737 | // If we're building a vector out of extended elements from another vector | ||||
| 14738 | // we have P9 vector integer extend instructions. The code assumes legal | ||||
| 14739 | // input types (i.e. it can't handle things like v4i16) so do not run before | ||||
| 14740 | // legalization. | ||||
| 14741 | if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { | ||||
| 14742 | Reduced = combineBVOfVecSExt(N, DAG); | ||||
| 14743 | if (Reduced) | ||||
| 14744 | return Reduced; | ||||
| 14745 | } | ||||
| 14746 | |||||
| 14747 | // On Power10, the Load VSX Vector Rightmost instructions can be utilized | ||||
| 14748 | // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR | ||||
| 14749 | // is a load from <valid narrow width> to i128. | ||||
| 14750 | if (Subtarget.isISA3_1()) { | ||||
| 14751 | SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); | ||||
| 14752 | if (BVOfZLoad) | ||||
| 14753 | return BVOfZLoad; | ||||
| 14754 | } | ||||
| 14755 | |||||
| 14756 | if (N->getValueType(0) != MVT::v2f64) | ||||
| 14757 | return SDValue(); | ||||
| 14758 | |||||
| 14759 | // Looking for: | ||||
| 14760 | // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) | ||||
| 14761 | if (FirstInput.getOpcode() != ISD::SINT_TO_FP && | ||||
| 14762 | FirstInput.getOpcode() != ISD::UINT_TO_FP) | ||||
| 14763 | return SDValue(); | ||||
| 14764 | if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && | ||||
| 14765 | N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) | ||||
| 14766 | return SDValue(); | ||||
| 14767 | if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) | ||||
| 14768 | return SDValue(); | ||||
| 14769 | |||||
| 14770 | SDValue Ext1 = FirstInput.getOperand(0); | ||||
| 14771 | SDValue Ext2 = N->getOperand(1).getOperand(0); | ||||
| 14772 | if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | ||||
| 14773 | Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | ||||
| 14774 | return SDValue(); | ||||
| 14775 | |||||
| 14776 | ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); | ||||
| 14777 | ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); | ||||
| 14778 | if (!Ext1Op || !Ext2Op) | ||||
| 14779 | return SDValue(); | ||||
| 14780 | if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || | ||||
| 14781 | Ext1.getOperand(0) != Ext2.getOperand(0)) | ||||
| 14782 | return SDValue(); | ||||
| 14783 | |||||
| 14784 | int FirstElem = Ext1Op->getZExtValue(); | ||||
| 14785 | int SecondElem = Ext2Op->getZExtValue(); | ||||
| 14786 | int SubvecIdx; | ||||
| 14787 | if (FirstElem == 0 && SecondElem == 1) | ||||
| 14788 | SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; | ||||
| 14789 | else if (FirstElem == 2 && SecondElem == 3) | ||||
| 14790 | SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; | ||||
| 14791 | else | ||||
| 14792 | return SDValue(); | ||||
| 14793 | |||||
| 14794 | SDValue SrcVec = Ext1.getOperand(0); | ||||
| 14795 | auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? | ||||
| 14796 | PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; | ||||
| 14797 | return DAG.getNode(NodeType, dl, MVT::v2f64, | ||||
| 14798 | SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); | ||||
| 14799 | } | ||||
| 14800 | |||||
| 14801 | SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, | ||||
| 14802 | DAGCombinerInfo &DCI) const { | ||||
| 14803 | assert((N->getOpcode() == ISD::SINT_TO_FP ||(static_cast <bool> ((N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) && "Need an int -> FP conversion node here" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) && \"Need an int -> FP conversion node here\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14805, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14804 | N->getOpcode() == ISD::UINT_TO_FP) &&(static_cast <bool> ((N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) && "Need an int -> FP conversion node here" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) && \"Need an int -> FP conversion node here\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14805, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14805 | "Need an int -> FP conversion node here")(static_cast <bool> ((N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) && "Need an int -> FP conversion node here" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) && \"Need an int -> FP conversion node here\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14805, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14806 | |||||
| 14807 | if (useSoftFloat() || !Subtarget.has64BitSupport()) | ||||
| 14808 | return SDValue(); | ||||
| 14809 | |||||
| 14810 | SelectionDAG &DAG = DCI.DAG; | ||||
| 14811 | SDLoc dl(N); | ||||
| 14812 | SDValue Op(N, 0); | ||||
| 14813 | |||||
| 14814 | // Don't handle ppc_fp128 here or conversions that are out-of-range capable | ||||
| 14815 | // from the hardware. | ||||
| 14816 | if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) | ||||
| 14817 | return SDValue(); | ||||
| 14818 | if (!Op.getOperand(0).getValueType().isSimple()) | ||||
| 14819 | return SDValue(); | ||||
| 14820 | if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || | ||||
| 14821 | Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) | ||||
| 14822 | return SDValue(); | ||||
| 14823 | |||||
| 14824 | SDValue FirstOperand(Op.getOperand(0)); | ||||
| 14825 | bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && | ||||
| 14826 | (FirstOperand.getValueType() == MVT::i8 || | ||||
| 14827 | FirstOperand.getValueType() == MVT::i16); | ||||
| 14828 | if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { | ||||
| 14829 | bool Signed = N->getOpcode() == ISD::SINT_TO_FP; | ||||
| 14830 | bool DstDouble = Op.getValueType() == MVT::f64; | ||||
| 14831 | unsigned ConvOp = Signed ? | ||||
| 14832 | (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : | ||||
| 14833 | (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); | ||||
| 14834 | SDValue WidthConst = | ||||
| 14835 | DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, | ||||
| 14836 | dl, false); | ||||
| 14837 | LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); | ||||
| 14838 | SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; | ||||
| 14839 | SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, | ||||
| 14840 | DAG.getVTList(MVT::f64, MVT::Other), | ||||
| 14841 | Ops, MVT::i8, LDN->getMemOperand()); | ||||
| 14842 | |||||
| 14843 | // For signed conversion, we need to sign-extend the value in the VSR | ||||
| 14844 | if (Signed) { | ||||
| 14845 | SDValue ExtOps[] = { Ld, WidthConst }; | ||||
| 14846 | SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); | ||||
| 14847 | return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); | ||||
| 14848 | } else | ||||
| 14849 | return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); | ||||
| 14850 | } | ||||
| 14851 | |||||
| 14852 | |||||
| 14853 | // For i32 intermediate values, unfortunately, the conversion functions | ||||
| 14854 | // leave the upper 32 bits of the value are undefined. Within the set of | ||||
| 14855 | // scalar instructions, we have no method for zero- or sign-extending the | ||||
| 14856 | // value. Thus, we cannot handle i32 intermediate values here. | ||||
| 14857 | if (Op.getOperand(0).getValueType() == MVT::i32) | ||||
| 14858 | return SDValue(); | ||||
| 14859 | |||||
| 14860 | assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&(static_cast <bool> ((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && "UINT_TO_FP is supported only with FPCVT" ) ? void (0) : __assert_fail ("(Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && \"UINT_TO_FP is supported only with FPCVT\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14861, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14861 | "UINT_TO_FP is supported only with FPCVT")(static_cast <bool> ((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && "UINT_TO_FP is supported only with FPCVT" ) ? void (0) : __assert_fail ("(Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && \"UINT_TO_FP is supported only with FPCVT\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14861, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14862 | |||||
| 14863 | // If we have FCFIDS, then use it when converting to single-precision. | ||||
| 14864 | // Otherwise, convert to double-precision and then round. | ||||
| 14865 | unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) | ||||
| 14866 | ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS | ||||
| 14867 | : PPCISD::FCFIDS) | ||||
| 14868 | : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU | ||||
| 14869 | : PPCISD::FCFID); | ||||
| 14870 | MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) | ||||
| 14871 | ? MVT::f32 | ||||
| 14872 | : MVT::f64; | ||||
| 14873 | |||||
| 14874 | // If we're converting from a float, to an int, and back to a float again, | ||||
| 14875 | // then we don't need the store/load pair at all. | ||||
| 14876 | if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && | ||||
| 14877 | Subtarget.hasFPCVT()) || | ||||
| 14878 | (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { | ||||
| 14879 | SDValue Src = Op.getOperand(0).getOperand(0); | ||||
| 14880 | if (Src.getValueType() == MVT::f32) { | ||||
| 14881 | Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); | ||||
| 14882 | DCI.AddToWorklist(Src.getNode()); | ||||
| 14883 | } else if (Src.getValueType() != MVT::f64) { | ||||
| 14884 | // Make sure that we don't pick up a ppc_fp128 source value. | ||||
| 14885 | return SDValue(); | ||||
| 14886 | } | ||||
| 14887 | |||||
| 14888 | unsigned FCTOp = | ||||
| 14889 | Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : | ||||
| 14890 | PPCISD::FCTIDUZ; | ||||
| 14891 | |||||
| 14892 | SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); | ||||
| 14893 | SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); | ||||
| 14894 | |||||
| 14895 | if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { | ||||
| 14896 | FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, | ||||
| 14897 | DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); | ||||
| 14898 | DCI.AddToWorklist(FP.getNode()); | ||||
| 14899 | } | ||||
| 14900 | |||||
| 14901 | return FP; | ||||
| 14902 | } | ||||
| 14903 | |||||
| 14904 | return SDValue(); | ||||
| 14905 | } | ||||
| 14906 | |||||
| 14907 | // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for | ||||
| 14908 | // builtins) into loads with swaps. | ||||
| 14909 | SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, | ||||
| 14910 | DAGCombinerInfo &DCI) const { | ||||
| 14911 | // Delay VSX load for LE combine until after LegalizeOps to prioritize other | ||||
| 14912 | // load combines. | ||||
| 14913 | if (DCI.isBeforeLegalizeOps()) | ||||
| 14914 | return SDValue(); | ||||
| 14915 | |||||
| 14916 | SelectionDAG &DAG = DCI.DAG; | ||||
| 14917 | SDLoc dl(N); | ||||
| 14918 | SDValue Chain; | ||||
| 14919 | SDValue Base; | ||||
| 14920 | MachineMemOperand *MMO; | ||||
| 14921 | |||||
| 14922 | switch (N->getOpcode()) { | ||||
| 14923 | default: | ||||
| 14924 | llvm_unreachable("Unexpected opcode for little endian VSX load")::llvm::llvm_unreachable_internal("Unexpected opcode for little endian VSX load" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14924); | ||||
| 14925 | case ISD::LOAD: { | ||||
| 14926 | LoadSDNode *LD = cast<LoadSDNode>(N); | ||||
| 14927 | Chain = LD->getChain(); | ||||
| 14928 | Base = LD->getBasePtr(); | ||||
| 14929 | MMO = LD->getMemOperand(); | ||||
| 14930 | // If the MMO suggests this isn't a load of a full vector, leave | ||||
| 14931 | // things alone. For a built-in, we have to make the change for | ||||
| 14932 | // correctness, so if there is a size problem that will be a bug. | ||||
| 14933 | if (MMO->getSize() < 16) | ||||
| 14934 | return SDValue(); | ||||
| 14935 | break; | ||||
| 14936 | } | ||||
| 14937 | case ISD::INTRINSIC_W_CHAIN: { | ||||
| 14938 | MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); | ||||
| 14939 | Chain = Intrin->getChain(); | ||||
| 14940 | // Similarly to the store case below, Intrin->getBasePtr() doesn't get | ||||
| 14941 | // us what we want. Get operand 2 instead. | ||||
| 14942 | Base = Intrin->getOperand(2); | ||||
| 14943 | MMO = Intrin->getMemOperand(); | ||||
| 14944 | break; | ||||
| 14945 | } | ||||
| 14946 | } | ||||
| 14947 | |||||
| 14948 | MVT VecTy = N->getValueType(0).getSimpleVT(); | ||||
| 14949 | |||||
| 14950 | SDValue LoadOps[] = { Chain, Base }; | ||||
| 14951 | SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, | ||||
| 14952 | DAG.getVTList(MVT::v2f64, MVT::Other), | ||||
| 14953 | LoadOps, MVT::v2f64, MMO); | ||||
| 14954 | |||||
| 14955 | DCI.AddToWorklist(Load.getNode()); | ||||
| 14956 | Chain = Load.getValue(1); | ||||
| 14957 | SDValue Swap = DAG.getNode( | ||||
| 14958 | PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); | ||||
| 14959 | DCI.AddToWorklist(Swap.getNode()); | ||||
| 14960 | |||||
| 14961 | // Add a bitcast if the resulting load type doesn't match v2f64. | ||||
| 14962 | if (VecTy != MVT::v2f64) { | ||||
| 14963 | SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); | ||||
| 14964 | DCI.AddToWorklist(N.getNode()); | ||||
| 14965 | // Package {bitcast value, swap's chain} to match Load's shape. | ||||
| 14966 | return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), | ||||
| 14967 | N, Swap.getValue(1)); | ||||
| 14968 | } | ||||
| 14969 | |||||
| 14970 | return Swap; | ||||
| 14971 | } | ||||
| 14972 | |||||
| 14973 | // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for | ||||
| 14974 | // builtins) into stores with swaps. | ||||
| 14975 | SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, | ||||
| 14976 | DAGCombinerInfo &DCI) const { | ||||
| 14977 | // Delay VSX store for LE combine until after LegalizeOps to prioritize other | ||||
| 14978 | // store combines. | ||||
| 14979 | if (DCI.isBeforeLegalizeOps()) | ||||
| 14980 | return SDValue(); | ||||
| 14981 | |||||
| 14982 | SelectionDAG &DAG = DCI.DAG; | ||||
| 14983 | SDLoc dl(N); | ||||
| 14984 | SDValue Chain; | ||||
| 14985 | SDValue Base; | ||||
| 14986 | unsigned SrcOpnd; | ||||
| 14987 | MachineMemOperand *MMO; | ||||
| 14988 | |||||
| 14989 | switch (N->getOpcode()) { | ||||
| 14990 | default: | ||||
| 14991 | llvm_unreachable("Unexpected opcode for little endian VSX store")::llvm::llvm_unreachable_internal("Unexpected opcode for little endian VSX store" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 14991); | ||||
| 14992 | case ISD::STORE: { | ||||
| 14993 | StoreSDNode *ST = cast<StoreSDNode>(N); | ||||
| 14994 | Chain = ST->getChain(); | ||||
| 14995 | Base = ST->getBasePtr(); | ||||
| 14996 | MMO = ST->getMemOperand(); | ||||
| 14997 | SrcOpnd = 1; | ||||
| 14998 | // If the MMO suggests this isn't a store of a full vector, leave | ||||
| 14999 | // things alone. For a built-in, we have to make the change for | ||||
| 15000 | // correctness, so if there is a size problem that will be a bug. | ||||
| 15001 | if (MMO->getSize() < 16) | ||||
| 15002 | return SDValue(); | ||||
| 15003 | break; | ||||
| 15004 | } | ||||
| 15005 | case ISD::INTRINSIC_VOID: { | ||||
| 15006 | MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); | ||||
| 15007 | Chain = Intrin->getChain(); | ||||
| 15008 | // Intrin->getBasePtr() oddly does not get what we want. | ||||
| 15009 | Base = Intrin->getOperand(3); | ||||
| 15010 | MMO = Intrin->getMemOperand(); | ||||
| 15011 | SrcOpnd = 2; | ||||
| 15012 | break; | ||||
| 15013 | } | ||||
| 15014 | } | ||||
| 15015 | |||||
| 15016 | SDValue Src = N->getOperand(SrcOpnd); | ||||
| 15017 | MVT VecTy = Src.getValueType().getSimpleVT(); | ||||
| 15018 | |||||
| 15019 | // All stores are done as v2f64 and possible bit cast. | ||||
| 15020 | if (VecTy != MVT::v2f64) { | ||||
| 15021 | Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); | ||||
| 15022 | DCI.AddToWorklist(Src.getNode()); | ||||
| 15023 | } | ||||
| 15024 | |||||
| 15025 | SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, | ||||
| 15026 | DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); | ||||
| 15027 | DCI.AddToWorklist(Swap.getNode()); | ||||
| 15028 | Chain = Swap.getValue(1); | ||||
| 15029 | SDValue StoreOps[] = { Chain, Swap, Base }; | ||||
| 15030 | SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, | ||||
| 15031 | DAG.getVTList(MVT::Other), | ||||
| 15032 | StoreOps, VecTy, MMO); | ||||
| 15033 | DCI.AddToWorklist(Store.getNode()); | ||||
| 15034 | return Store; | ||||
| 15035 | } | ||||
| 15036 | |||||
| 15037 | // Handle DAG combine for STORE (FP_TO_INT F). | ||||
| 15038 | SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, | ||||
| 15039 | DAGCombinerInfo &DCI) const { | ||||
| 15040 | |||||
| 15041 | SelectionDAG &DAG = DCI.DAG; | ||||
| 15042 | SDLoc dl(N); | ||||
| 15043 | unsigned Opcode = N->getOperand(1).getOpcode(); | ||||
| 15044 | |||||
| 15045 | assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)(static_cast <bool> ((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) && "Not a FP_TO_INT Instruction!" ) ? void (0) : __assert_fail ("(Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) && \"Not a FP_TO_INT Instruction!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15046, __extension__ __PRETTY_FUNCTION__)) | ||||
| 15046 | && "Not a FP_TO_INT Instruction!")(static_cast <bool> ((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) && "Not a FP_TO_INT Instruction!" ) ? void (0) : __assert_fail ("(Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) && \"Not a FP_TO_INT Instruction!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15046, __extension__ __PRETTY_FUNCTION__)); | ||||
| 15047 | |||||
| 15048 | SDValue Val = N->getOperand(1).getOperand(0); | ||||
| 15049 | EVT Op1VT = N->getOperand(1).getValueType(); | ||||
| 15050 | EVT ResVT = Val.getValueType(); | ||||
| 15051 | |||||
| 15052 | if (!isTypeLegal(ResVT)) | ||||
| 15053 | return SDValue(); | ||||
| 15054 | |||||
| 15055 | // Only perform combine for conversion to i64/i32 or power9 i16/i8. | ||||
| 15056 | bool ValidTypeForStoreFltAsInt = | ||||
| 15057 | (Op1VT == MVT::i32 || Op1VT == MVT::i64 || | ||||
| 15058 | (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); | ||||
| 15059 | |||||
| 15060 | if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) | ||||
| 15061 | return SDValue(); | ||||
| 15062 | |||||
| 15063 | if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || | ||||
| 15064 | cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) | ||||
| 15065 | return SDValue(); | ||||
| 15066 | |||||
| 15067 | // Extend f32 values to f64 | ||||
| 15068 | if (ResVT.getScalarSizeInBits() == 32) { | ||||
| 15069 | Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); | ||||
| 15070 | DCI.AddToWorklist(Val.getNode()); | ||||
| 15071 | } | ||||
| 15072 | |||||
| 15073 | // Set signed or unsigned conversion opcode. | ||||
| 15074 | unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? | ||||
| 15075 | PPCISD::FP_TO_SINT_IN_VSR : | ||||
| 15076 | PPCISD::FP_TO_UINT_IN_VSR; | ||||
| 15077 | |||||
| 15078 | Val = DAG.getNode(ConvOpcode, | ||||
| 15079 | dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); | ||||
| 15080 | DCI.AddToWorklist(Val.getNode()); | ||||
| 15081 | |||||
| 15082 | // Set number of bytes being converted. | ||||
| 15083 | unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; | ||||
| 15084 | SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), | ||||
| 15085 | DAG.getIntPtrConstant(ByteSize, dl, false), | ||||
| 15086 | DAG.getValueType(Op1VT) }; | ||||
| 15087 | |||||
| 15088 | Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, | ||||
| 15089 | DAG.getVTList(MVT::Other), Ops, | ||||
| 15090 | cast<StoreSDNode>(N)->getMemoryVT(), | ||||
| 15091 | cast<StoreSDNode>(N)->getMemOperand()); | ||||
| 15092 | |||||
| 15093 | DCI.AddToWorklist(Val.getNode()); | ||||
| 15094 | return Val; | ||||
| 15095 | } | ||||
| 15096 | |||||
| 15097 | static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { | ||||
| 15098 | // Check that the source of the element keeps flipping | ||||
| 15099 | // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). | ||||
| 15100 | bool PrevElemFromFirstVec = Mask[0] < NumElts; | ||||
| 15101 | for (int i = 1, e = Mask.size(); i < e; i++) { | ||||
| 15102 | if (PrevElemFromFirstVec && Mask[i] < NumElts) | ||||
| 15103 | return false; | ||||
| 15104 | if (!PrevElemFromFirstVec && Mask[i] >= NumElts) | ||||
| 15105 | return false; | ||||
| 15106 | PrevElemFromFirstVec = !PrevElemFromFirstVec; | ||||
| 15107 | } | ||||
| 15108 | return true; | ||||
| 15109 | } | ||||
| 15110 | |||||
| 15111 | static bool isSplatBV(SDValue Op) { | ||||
| 15112 | if (Op.getOpcode() != ISD::BUILD_VECTOR) | ||||
| 15113 | return false; | ||||
| 15114 | SDValue FirstOp; | ||||
| 15115 | |||||
| 15116 | // Find first non-undef input. | ||||
| 15117 | for (int i = 0, e = Op.getNumOperands(); i < e; i++) { | ||||
| 15118 | FirstOp = Op.getOperand(i); | ||||
| 15119 | if (!FirstOp.isUndef()) | ||||
| 15120 | break; | ||||
| 15121 | } | ||||
| 15122 | |||||
| 15123 | // All inputs are undef or the same as the first non-undef input. | ||||
| 15124 | for (int i = 1, e = Op.getNumOperands(); i < e; i++) | ||||
| 15125 | if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) | ||||
| 15126 | return false; | ||||
| 15127 | return true; | ||||
| 15128 | } | ||||
| 15129 | |||||
| 15130 | static SDValue isScalarToVec(SDValue Op) { | ||||
| 15131 | if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) | ||||
| 15132 | return Op; | ||||
| 15133 | if (Op.getOpcode() != ISD::BITCAST) | ||||
| 15134 | return SDValue(); | ||||
| 15135 | Op = Op.getOperand(0); | ||||
| 15136 | if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) | ||||
| 15137 | return Op; | ||||
| 15138 | return SDValue(); | ||||
| 15139 | } | ||||
| 15140 | |||||
| 15141 | // Fix up the shuffle mask to account for the fact that the result of | ||||
| 15142 | // scalar_to_vector is not in lane zero. This just takes all values in | ||||
| 15143 | // the ranges specified by the min/max indices and adds the number of | ||||
| 15144 | // elements required to ensure each element comes from the respective | ||||
| 15145 | // position in the valid lane. | ||||
| 15146 | // On little endian, that's just the corresponding element in the other | ||||
| 15147 | // half of the vector. On big endian, it is in the same half but right | ||||
| 15148 | // justified rather than left justified in that half. | ||||
| 15149 | static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, | ||||
| 15150 | int LHSMaxIdx, int RHSMinIdx, | ||||
| 15151 | int RHSMaxIdx, int HalfVec, | ||||
| 15152 | unsigned ValidLaneWidth, | ||||
| 15153 | const PPCSubtarget &Subtarget) { | ||||
| 15154 | for (int i = 0, e = ShuffV.size(); i < e; i++) { | ||||
| 15155 | int Idx = ShuffV[i]; | ||||
| 15156 | if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) | ||||
| 15157 | ShuffV[i] += | ||||
| 15158 | Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; | ||||
| 15159 | } | ||||
| 15160 | } | ||||
| 15161 | |||||
| 15162 | // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if | ||||
| 15163 | // the original is: | ||||
| 15164 | // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) | ||||
| 15165 | // In such a case, just change the shuffle mask to extract the element | ||||
| 15166 | // from the permuted index. | ||||
| 15167 | static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, | ||||
| 15168 | const PPCSubtarget &Subtarget) { | ||||
| 15169 | SDLoc dl(OrigSToV); | ||||
| 15170 | EVT VT = OrigSToV.getValueType(); | ||||
| 15171 | assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&(static_cast <bool> (OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && "Expecting a SCALAR_TO_VECTOR here") ? void (0) : __assert_fail ("OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && \"Expecting a SCALAR_TO_VECTOR here\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15172, __extension__ __PRETTY_FUNCTION__)) | ||||
| 15172 | "Expecting a SCALAR_TO_VECTOR here")(static_cast <bool> (OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && "Expecting a SCALAR_TO_VECTOR here") ? void (0) : __assert_fail ("OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && \"Expecting a SCALAR_TO_VECTOR here\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15172, __extension__ __PRETTY_FUNCTION__)); | ||||
| 15173 | SDValue Input = OrigSToV.getOperand(0); | ||||
| 15174 | |||||
| 15175 | if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | ||||
| 15176 | ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); | ||||
| 15177 | SDValue OrigVector = Input.getOperand(0); | ||||
| 15178 | |||||
| 15179 | // Can't handle non-const element indices or different vector types | ||||
| 15180 | // for the input to the extract and the output of the scalar_to_vector. | ||||
| 15181 | if (Idx && VT == OrigVector.getValueType()) { | ||||
| 15182 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 15183 | assert((static_cast <bool> (NumElts > 1 && "Cannot produce a permuted scalar_to_vector for one element vector" ) ? void (0) : __assert_fail ("NumElts > 1 && \"Cannot produce a permuted scalar_to_vector for one element vector\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15185, __extension__ __PRETTY_FUNCTION__)) | ||||
| 15184 | NumElts > 1 &&(static_cast <bool> (NumElts > 1 && "Cannot produce a permuted scalar_to_vector for one element vector" ) ? void (0) : __assert_fail ("NumElts > 1 && \"Cannot produce a permuted scalar_to_vector for one element vector\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15185, __extension__ __PRETTY_FUNCTION__)) | ||||
| 15185 | "Cannot produce a permuted scalar_to_vector for one element vector")(static_cast <bool> (NumElts > 1 && "Cannot produce a permuted scalar_to_vector for one element vector" ) ? void (0) : __assert_fail ("NumElts > 1 && \"Cannot produce a permuted scalar_to_vector for one element vector\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15185, __extension__ __PRETTY_FUNCTION__)); | ||||
| 15186 | SmallVector<int, 16> NewMask(NumElts, -1); | ||||
| 15187 | unsigned ResultInElt = NumElts / 2; | ||||
| 15188 | ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; | ||||
| 15189 | NewMask[ResultInElt] = Idx->getZExtValue(); | ||||
| 15190 | return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); | ||||
| 15191 | } | ||||
| 15192 | } | ||||
| 15193 | return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, | ||||
| 15194 | OrigSToV.getOperand(0)); | ||||
| 15195 | } | ||||
| 15196 | |||||
| 15197 | // On little endian subtargets, combine shuffles such as: | ||||
| 15198 | // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b | ||||
| 15199 | // into: | ||||
| 15200 | // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b | ||||
| 15201 | // because the latter can be matched to a single instruction merge. | ||||
| 15202 | // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute | ||||
| 15203 | // to put the value into element zero. Adjust the shuffle mask so that the | ||||
| 15204 | // vector can remain in permuted form (to prevent a swap prior to a shuffle). | ||||
| 15205 | // On big endian targets, this is still useful for SCALAR_TO_VECTOR | ||||
| 15206 | // nodes with elements smaller than doubleword because all the ways | ||||
| 15207 | // of getting scalar data into a vector register put the value in the | ||||
| 15208 | // rightmost element of the left half of the vector. | ||||
| 15209 | SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, | ||||
| 15210 | SelectionDAG &DAG) const { | ||||
| 15211 | SDValue LHS = SVN->getOperand(0); | ||||
| 15212 | SDValue RHS = SVN->getOperand(1); | ||||
| 15213 | auto Mask = SVN->getMask(); | ||||
| 15214 | int NumElts = LHS.getValueType().getVectorNumElements(); | ||||
| 15215 | SDValue Res(SVN, 0); | ||||
| 15216 | SDLoc dl(SVN); | ||||
| 15217 | bool IsLittleEndian = Subtarget.isLittleEndian(); | ||||
| 15218 | |||||
| 15219 | // On big endian targets this is only useful for subtargets with direct moves. | ||||
| 15220 | // On little endian targets it would be useful for all subtargets with VSX. | ||||
| 15221 | // However adding special handling for LE subtargets without direct moves | ||||
| 15222 | // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) | ||||
| 15223 | // which includes direct moves. | ||||
| 15224 | if (!Subtarget.hasDirectMove()) | ||||
| 15225 | return Res; | ||||
| 15226 | |||||
| 15227 | // If this is not a shuffle of a shuffle and the first element comes from | ||||
| 15228 | // the second vector, canonicalize to the commuted form. This will make it | ||||
| 15229 | // more likely to match one of the single instruction patterns. | ||||
| 15230 | if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && | ||||
| 15231 | RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { | ||||
| 15232 | std::swap(LHS, RHS); | ||||
| 15233 | Res = DAG.getCommutedVectorShuffle(*SVN); | ||||
| 15234 | Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); | ||||
| 15235 | } | ||||
| 15236 | |||||
| 15237 | // Adjust the shuffle mask if either input vector comes from a | ||||
| 15238 | // SCALAR_TO_VECTOR and keep the respective input vector in permuted | ||||
| 15239 | // form (to prevent the need for a swap). | ||||
| 15240 | SmallVector<int, 16> ShuffV(Mask); | ||||
| 15241 | SDValue SToVLHS = isScalarToVec(LHS); | ||||
| 15242 | SDValue SToVRHS = isScalarToVec(RHS); | ||||
| 15243 | if (SToVLHS || SToVRHS) { | ||||
| 15244 | // FIXME: If both LHS and RHS are SCALAR_TO_VECTOR, but are not the | ||||
| 15245 | // same type and have differing element sizes, then do not perform | ||||
| 15246 | // the following transformation. The current transformation for | ||||
| 15247 | // SCALAR_TO_VECTOR assumes that both input vectors have the same | ||||
| 15248 | // element size. This will be updated in the future to account for | ||||
| 15249 | // differing sizes of the LHS and RHS. | ||||
| 15250 | if (SToVLHS && SToVRHS && | ||||
| 15251 | (SToVLHS.getValueType().getScalarSizeInBits() != | ||||
| 15252 | SToVRHS.getValueType().getScalarSizeInBits())) | ||||
| 15253 | return Res; | ||||
| 15254 | |||||
| 15255 | int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() | ||||
| 15256 | : SToVRHS.getValueType().getVectorNumElements(); | ||||
| 15257 | int NumEltsOut = ShuffV.size(); | ||||
| 15258 | // The width of the "valid lane" (i.e. the lane that contains the value that | ||||
| 15259 | // is vectorized) needs to be expressed in terms of the number of elements | ||||
| 15260 | // of the shuffle. It is thereby the ratio of the values before and after | ||||
| 15261 | // any bitcast. | ||||
| 15262 | unsigned ValidLaneWidth = | ||||
| 15263 | SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / | ||||
| 15264 | LHS.getValueType().getScalarSizeInBits() | ||||
| 15265 | : SToVRHS.getValueType().getScalarSizeInBits() / | ||||
| 15266 | RHS.getValueType().getScalarSizeInBits(); | ||||
| 15267 | |||||
| 15268 | // Initially assume that neither input is permuted. These will be adjusted | ||||
| 15269 | // accordingly if either input is. | ||||
| 15270 | int LHSMaxIdx = -1; | ||||
| 15271 | int RHSMinIdx = -1; | ||||
| 15272 | int RHSMaxIdx = -1; | ||||
| 15273 | int HalfVec = LHS.getValueType().getVectorNumElements() / 2; | ||||
| 15274 | |||||
| 15275 | // Get the permuted scalar to vector nodes for the source(s) that come from | ||||
| 15276 | // ISD::SCALAR_TO_VECTOR. | ||||
| 15277 | // On big endian systems, this only makes sense for element sizes smaller | ||||
| 15278 | // than 64 bits since for 64-bit elements, all instructions already put | ||||
| 15279 | // the value into element zero. Since scalar size of LHS and RHS may differ | ||||
| 15280 | // after isScalarToVec, this should be checked using their own sizes. | ||||
| 15281 | if (SToVLHS) { | ||||
| 15282 | if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) | ||||
| 15283 | return Res; | ||||
| 15284 | // Set up the values for the shuffle vector fixup. | ||||
| 15285 | LHSMaxIdx = NumEltsOut / NumEltsIn; | ||||
| 15286 | SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); | ||||
| 15287 | if (SToVLHS.getValueType() != LHS.getValueType()) | ||||
| 15288 | SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); | ||||
| 15289 | LHS = SToVLHS; | ||||
| 15290 | } | ||||
| 15291 | if (SToVRHS) { | ||||
| 15292 | if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) | ||||
| 15293 | return Res; | ||||
| 15294 | RHSMinIdx = NumEltsOut; | ||||
| 15295 | RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; | ||||
| 15296 | SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); | ||||
| 15297 | if (SToVRHS.getValueType() != RHS.getValueType()) | ||||
| 15298 | SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); | ||||
| 15299 | RHS = SToVRHS; | ||||
| 15300 | } | ||||
| 15301 | |||||
| 15302 | // Fix up the shuffle mask to reflect where the desired element actually is. | ||||
| 15303 | // The minimum and maximum indices that correspond to element zero for both | ||||
| 15304 | // the LHS and RHS are computed and will control which shuffle mask entries | ||||
| 15305 | // are to be changed. For example, if the RHS is permuted, any shuffle mask | ||||
| 15306 | // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. | ||||
| 15307 | fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, | ||||
| 15308 | HalfVec, ValidLaneWidth, Subtarget); | ||||
| 15309 | Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); | ||||
| 15310 | |||||
| 15311 | // We may have simplified away the shuffle. We won't be able to do anything | ||||
| 15312 | // further with it here. | ||||
| 15313 | if (!isa<ShuffleVectorSDNode>(Res)) | ||||
| 15314 | return Res; | ||||
| 15315 | Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); | ||||
| 15316 | } | ||||
| 15317 | |||||
| 15318 | SDValue TheSplat = IsLittleEndian ? RHS : LHS; | ||||
| 15319 | // The common case after we commuted the shuffle is that the RHS is a splat | ||||
| 15320 | // and we have elements coming in from the splat at indices that are not | ||||
| 15321 | // conducive to using a merge. | ||||
| 15322 | // Example: | ||||
| 15323 | // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> | ||||
| 15324 | if (!isSplatBV(TheSplat)) | ||||
| 15325 | return Res; | ||||
| 15326 | |||||
| 15327 | // We are looking for a mask such that all even elements are from | ||||
| 15328 | // one vector and all odd elements from the other. | ||||
| 15329 | if (!isAlternatingShuffMask(Mask, NumElts)) | ||||
| 15330 | return Res; | ||||
| 15331 | |||||
| 15332 | // Adjust the mask so we are pulling in the same index from the splat | ||||
| 15333 | // as the index from the interesting vector in consecutive elements. | ||||
| 15334 | if (IsLittleEndian) { | ||||
| 15335 | // Example (even elements from first vector): | ||||
| 15336 | // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> | ||||
| 15337 | if (Mask[0] < NumElts) | ||||
| 15338 | for (int i = 1, e = Mask.size(); i < e; i += 2) { | ||||
| 15339 | if (ShuffV[i] < 0) | ||||
| 15340 | continue; | ||||
| 15341 | ShuffV[i] = (ShuffV[i - 1] + NumElts); | ||||
| 15342 | } | ||||
| 15343 | // Example (odd elements from first vector): | ||||
| 15344 | // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> | ||||
| 15345 | else | ||||
| 15346 | for (int i = 0, e = Mask.size(); i < e; i += 2) { | ||||
| 15347 | if (ShuffV[i] < 0) | ||||
| 15348 | continue; | ||||
| 15349 | ShuffV[i] = (ShuffV[i + 1] + NumElts); | ||||
| 15350 | } | ||||
| 15351 | } else { | ||||
| 15352 | // Example (even elements from first vector): | ||||
| 15353 | // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 | ||||
| 15354 | if (Mask[0] < NumElts) | ||||
| 15355 | for (int i = 0, e = Mask.size(); i < e; i += 2) { | ||||
| 15356 | if (ShuffV[i] < 0) | ||||
| 15357 | continue; | ||||
| 15358 | ShuffV[i] = ShuffV[i + 1] - NumElts; | ||||
| 15359 | } | ||||
| 15360 | // Example (odd elements from first vector): | ||||
| 15361 | // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 | ||||
| 15362 | else | ||||
| 15363 | for (int i = 1, e = Mask.size(); i < e; i += 2) { | ||||
| 15364 | if (ShuffV[i] < 0) | ||||
| 15365 | continue; | ||||
| 15366 | ShuffV[i] = ShuffV[i - 1] - NumElts; | ||||
| 15367 | } | ||||
| 15368 | } | ||||
| 15369 | |||||
| 15370 | // If the RHS has undefs, we need to remove them since we may have created | ||||
| 15371 | // a shuffle that adds those instead of the splat value. | ||||
| 15372 | SDValue SplatVal = | ||||
| 15373 | cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); | ||||
| 15374 | TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); | ||||
| 15375 | |||||
| 15376 | if (IsLittleEndian) | ||||
| 15377 | RHS = TheSplat; | ||||
| 15378 | else | ||||
| 15379 | LHS = TheSplat; | ||||
| 15380 | return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); | ||||
| 15381 | } | ||||
| 15382 | |||||
| 15383 | SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, | ||||
| 15384 | LSBaseSDNode *LSBase, | ||||
| 15385 | DAGCombinerInfo &DCI) const { | ||||
| 15386 | assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&(static_cast <bool> ((ISD::isNormalLoad(LSBase) || ISD:: isNormalStore(LSBase)) && "Not a reverse memop pattern!" ) ? void (0) : __assert_fail ("(ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && \"Not a reverse memop pattern!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15387, __extension__ __PRETTY_FUNCTION__)) | ||||
| 15387 | "Not a reverse memop pattern!")(static_cast <bool> ((ISD::isNormalLoad(LSBase) || ISD:: isNormalStore(LSBase)) && "Not a reverse memop pattern!" ) ? void (0) : __assert_fail ("(ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && \"Not a reverse memop pattern!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15387, __extension__ __PRETTY_FUNCTION__)); | ||||
| 15388 | |||||
| 15389 | auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { | ||||
| 15390 | auto Mask = SVN->getMask(); | ||||
| 15391 | int i = 0; | ||||
| 15392 | auto I = Mask.rbegin(); | ||||
| 15393 | auto E = Mask.rend(); | ||||
| 15394 | |||||
| 15395 | for (; I != E; ++I) { | ||||
| 15396 | if (*I != i) | ||||
| 15397 | return false; | ||||
| 15398 | i++; | ||||
| 15399 | } | ||||
| 15400 | return true; | ||||
| 15401 | }; | ||||
| 15402 | |||||
| 15403 | SelectionDAG &DAG = DCI.DAG; | ||||
| 15404 | EVT VT = SVN->getValueType(0); | ||||
| 15405 | |||||
| 15406 | if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) | ||||
| 15407 | return SDValue(); | ||||
| 15408 | |||||
| 15409 | // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. | ||||
| 15410 | // See comment in PPCVSXSwapRemoval.cpp. | ||||
| 15411 | // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. | ||||
| 15412 | if (!Subtarget.hasP9Vector()) | ||||
| 15413 | return SDValue(); | ||||
| 15414 | |||||
| 15415 | if(!IsElementReverse(SVN)) | ||||
| 15416 | return SDValue(); | ||||
| 15417 | |||||
| 15418 | if (LSBase->getOpcode() == ISD::LOAD) { | ||||
| 15419 | // If the load return value 0 has more than one user except the | ||||
| 15420 | // shufflevector instruction, it is not profitable to replace the | ||||
| 15421 | // shufflevector with a reverse load. | ||||
| 15422 | for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); | ||||
| 15423 | UI != UE; ++UI) | ||||
| 15424 | if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) | ||||
| 15425 | return SDValue(); | ||||
| 15426 | |||||
| 15427 | SDLoc dl(LSBase); | ||||
| 15428 | SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; | ||||
| 15429 | return DAG.getMemIntrinsicNode( | ||||
| 15430 | PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, | ||||
| 15431 | LSBase->getMemoryVT(), LSBase->getMemOperand()); | ||||
| 15432 | } | ||||
| 15433 | |||||
| 15434 | if (LSBase->getOpcode() == ISD::STORE) { | ||||
| 15435 | // If there are other uses of the shuffle, the swap cannot be avoided. | ||||
| 15436 | // Forcing the use of an X-Form (since swapped stores only have | ||||
| 15437 | // X-Forms) without removing the swap is unprofitable. | ||||
| 15438 | if (!SVN->hasOneUse()) | ||||
| 15439 | return SDValue(); | ||||
| 15440 | |||||
| 15441 | SDLoc dl(LSBase); | ||||
| 15442 | SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), | ||||
| 15443 | LSBase->getBasePtr()}; | ||||
| 15444 | return DAG.getMemIntrinsicNode( | ||||
| 15445 | PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, | ||||
| 15446 | LSBase->getMemoryVT(), LSBase->getMemOperand()); | ||||
| 15447 | } | ||||
| 15448 | |||||
| 15449 | llvm_unreachable("Expected a load or store node here")::llvm::llvm_unreachable_internal("Expected a load or store node here" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15449); | ||||
| 15450 | } | ||||
| 15451 | |||||
| 15452 | static bool isStoreConditional(SDValue Intrin, unsigned &StoreWidth) { | ||||
| 15453 | unsigned IntrinsicID = | ||||
| 15454 | cast<ConstantSDNode>(Intrin.getOperand(1))->getZExtValue(); | ||||
| 15455 | if (IntrinsicID == Intrinsic::ppc_stdcx) | ||||
| 15456 | StoreWidth = 8; | ||||
| 15457 | else if (IntrinsicID == Intrinsic::ppc_stwcx) | ||||
| 15458 | StoreWidth = 4; | ||||
| 15459 | else if (IntrinsicID == Intrinsic::ppc_sthcx) | ||||
| 15460 | StoreWidth = 2; | ||||
| 15461 | else if (IntrinsicID == Intrinsic::ppc_stbcx) | ||||
| 15462 | StoreWidth = 1; | ||||
| 15463 | else | ||||
| 15464 | return false; | ||||
| 15465 | return true; | ||||
| 15466 | } | ||||
| 15467 | |||||
| 15468 | SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, | ||||
| 15469 | DAGCombinerInfo &DCI) const { | ||||
| 15470 | SelectionDAG &DAG = DCI.DAG; | ||||
| 15471 | SDLoc dl(N); | ||||
| 15472 | switch (N->getOpcode()) { | ||||
| 15473 | default: break; | ||||
| 15474 | case ISD::ADD: | ||||
| 15475 | return combineADD(N, DCI); | ||||
| 15476 | case ISD::SHL: | ||||
| 15477 | return combineSHL(N, DCI); | ||||
| 15478 | case ISD::SRA: | ||||
| 15479 | return combineSRA(N, DCI); | ||||
| 15480 | case ISD::SRL: | ||||
| 15481 | return combineSRL(N, DCI); | ||||
| 15482 | case ISD::MUL: | ||||
| 15483 | return combineMUL(N, DCI); | ||||
| 15484 | case ISD::FMA: | ||||
| 15485 | case PPCISD::FNMSUB: | ||||
| 15486 | return combineFMALike(N, DCI); | ||||
| 15487 | case PPCISD::SHL: | ||||
| 15488 | if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. | ||||
| 15489 | return N->getOperand(0); | ||||
| 15490 | break; | ||||
| 15491 | case PPCISD::SRL: | ||||
| 15492 | if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. | ||||
| 15493 | return N->getOperand(0); | ||||
| 15494 | break; | ||||
| 15495 | case PPCISD::SRA: | ||||
| 15496 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | ||||
| 15497 | if (C->isZero() || // 0 >>s V -> 0. | ||||
| 15498 | C->isAllOnes()) // -1 >>s V -> -1. | ||||
| 15499 | return N->getOperand(0); | ||||
| 15500 | } | ||||
| 15501 | break; | ||||
| 15502 | case ISD::SIGN_EXTEND: | ||||
| 15503 | case ISD::ZERO_EXTEND: | ||||
| 15504 | case ISD::ANY_EXTEND: | ||||
| 15505 | return DAGCombineExtBoolTrunc(N, DCI); | ||||
| 15506 | case ISD::TRUNCATE: | ||||
| 15507 | return combineTRUNCATE(N, DCI); | ||||
| 15508 | case ISD::SETCC: | ||||
| 15509 | if (SDValue CSCC = combineSetCC(N, DCI)) | ||||
| 15510 | return CSCC; | ||||
| 15511 | [[fallthrough]]; | ||||
| 15512 | case ISD::SELECT_CC: | ||||
| 15513 | return DAGCombineTruncBoolExt(N, DCI); | ||||
| 15514 | case ISD::SINT_TO_FP: | ||||
| 15515 | case ISD::UINT_TO_FP: | ||||
| 15516 | return combineFPToIntToFP(N, DCI); | ||||
| 15517 | case ISD::VECTOR_SHUFFLE: | ||||
| 15518 | if (ISD::isNormalLoad(N->getOperand(0).getNode())) { | ||||
| 15519 | LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); | ||||
| 15520 | return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); | ||||
| 15521 | } | ||||
| 15522 | return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); | ||||
| 15523 | case ISD::STORE: { | ||||
| 15524 | |||||
| 15525 | EVT Op1VT = N->getOperand(1).getValueType(); | ||||
| 15526 | unsigned Opcode = N->getOperand(1).getOpcode(); | ||||
| 15527 | |||||
| 15528 | if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { | ||||
| 15529 | SDValue Val= combineStoreFPToInt(N, DCI); | ||||
| 15530 | if (Val) | ||||
| 15531 | return Val; | ||||
| 15532 | } | ||||
| 15533 | |||||
| 15534 | if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { | ||||
| 15535 | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); | ||||
| 15536 | SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); | ||||
| 15537 | if (Val) | ||||
| 15538 | return Val; | ||||
| 15539 | } | ||||
| 15540 | |||||
| 15541 | // Turn STORE (BSWAP) -> sthbrx/stwbrx. | ||||
| 15542 | if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && | ||||
| 15543 | N->getOperand(1).getNode()->hasOneUse() && | ||||
| 15544 | (Op1VT == MVT::i32 || Op1VT == MVT::i16 || | ||||
| 15545 | (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { | ||||
| 15546 | |||||
| 15547 | // STBRX can only handle simple types and it makes no sense to store less | ||||
| 15548 | // two bytes in byte-reversed order. | ||||
| 15549 | EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); | ||||
| 15550 | if (mVT.isExtended() || mVT.getSizeInBits() < 16) | ||||
| 15551 | break; | ||||
| 15552 | |||||
| 15553 | SDValue BSwapOp = N->getOperand(1).getOperand(0); | ||||
| 15554 | // Do an any-extend to 32-bits if this is a half-word input. | ||||
| 15555 | if (BSwapOp.getValueType() == MVT::i16) | ||||
| 15556 | BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); | ||||
| 15557 | |||||
| 15558 | // If the type of BSWAP operand is wider than stored memory width | ||||
| 15559 | // it need to be shifted to the right side before STBRX. | ||||
| 15560 | if (Op1VT.bitsGT(mVT)) { | ||||
| 15561 | int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); | ||||
| 15562 | BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, | ||||
| 15563 | DAG.getConstant(Shift, dl, MVT::i32)); | ||||
| 15564 | // Need to truncate if this is a bswap of i64 stored as i32/i16. | ||||
| 15565 | if (Op1VT == MVT::i64) | ||||
| 15566 | BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); | ||||
| 15567 | } | ||||
| 15568 | |||||
| 15569 | SDValue Ops[] = { | ||||
| 15570 | N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) | ||||
| 15571 | }; | ||||
| 15572 | return | ||||
| 15573 | DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), | ||||
| 15574 | Ops, cast<StoreSDNode>(N)->getMemoryVT(), | ||||
| 15575 | cast<StoreSDNode>(N)->getMemOperand()); | ||||
| 15576 | } | ||||
| 15577 | |||||
| 15578 | // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> | ||||
| 15579 | // So it can increase the chance of CSE constant construction. | ||||
| 15580 | if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && | ||||
| 15581 | isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { | ||||
| 15582 | // Need to sign-extended to 64-bits to handle negative values. | ||||
| 15583 | EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); | ||||
| 15584 | uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), | ||||
| 15585 | MemVT.getSizeInBits()); | ||||
| 15586 | SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); | ||||
| 15587 | |||||
| 15588 | // DAG.getTruncStore() can't be used here because it doesn't accept | ||||
| 15589 | // the general (base + offset) addressing mode. | ||||
| 15590 | // So we use UpdateNodeOperands and setTruncatingStore instead. | ||||
| 15591 | DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), | ||||
| 15592 | N->getOperand(3)); | ||||
| 15593 | cast<StoreSDNode>(N)->setTruncatingStore(true); | ||||
| 15594 | return SDValue(N, 0); | ||||
| 15595 | } | ||||
| 15596 | |||||
| 15597 | // For little endian, VSX stores require generating xxswapd/lxvd2x. | ||||
| 15598 | // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. | ||||
| 15599 | if (Op1VT.isSimple()) { | ||||
| 15600 | MVT StoreVT = Op1VT.getSimpleVT(); | ||||
| 15601 | if (Subtarget.needsSwapsForVSXMemOps() && | ||||
| 15602 | (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || | ||||
| 15603 | StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) | ||||
| 15604 | return expandVSXStoreForLE(N, DCI); | ||||
| 15605 | } | ||||
| 15606 | break; | ||||
| 15607 | } | ||||
| 15608 | case ISD::LOAD: { | ||||
| 15609 | LoadSDNode *LD = cast<LoadSDNode>(N); | ||||
| 15610 | EVT VT = LD->getValueType(0); | ||||
| 15611 | |||||
| 15612 | // For little endian, VSX loads require generating lxvd2x/xxswapd. | ||||
| 15613 | // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. | ||||
| 15614 | if (VT.isSimple()) { | ||||
| 15615 | MVT LoadVT = VT.getSimpleVT(); | ||||
| 15616 | if (Subtarget.needsSwapsForVSXMemOps() && | ||||
| 15617 | (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || | ||||
| 15618 | LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) | ||||
| 15619 | return expandVSXLoadForLE(N, DCI); | ||||
| 15620 | } | ||||
| 15621 | |||||
| 15622 | // We sometimes end up with a 64-bit integer load, from which we extract | ||||
| 15623 | // two single-precision floating-point numbers. This happens with | ||||
| 15624 | // std::complex<float>, and other similar structures, because of the way we | ||||
| 15625 | // canonicalize structure copies. However, if we lack direct moves, | ||||
| 15626 | // then the final bitcasts from the extracted integer values to the | ||||
| 15627 | // floating-point numbers turn into store/load pairs. Even with direct moves, | ||||
| 15628 | // just loading the two floating-point numbers is likely better. | ||||
| 15629 | auto ReplaceTwoFloatLoad = [&]() { | ||||
| 15630 | if (VT != MVT::i64) | ||||
| 15631 | return false; | ||||
| 15632 | |||||
| 15633 | if (LD->getExtensionType() != ISD::NON_EXTLOAD || | ||||
| 15634 | LD->isVolatile()) | ||||
| 15635 | return false; | ||||
| 15636 | |||||
| 15637 | // We're looking for a sequence like this: | ||||
| 15638 | // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 | ||||
| 15639 | // t16: i64 = srl t13, Constant:i32<32> | ||||
| 15640 | // t17: i32 = truncate t16 | ||||
| 15641 | // t18: f32 = bitcast t17 | ||||
| 15642 | // t19: i32 = truncate t13 | ||||
| 15643 | // t20: f32 = bitcast t19 | ||||
| 15644 | |||||
| 15645 | if (!LD->hasNUsesOfValue(2, 0)) | ||||
| 15646 | return false; | ||||
| 15647 | |||||
| 15648 | auto UI = LD->use_begin(); | ||||
| 15649 | while (UI.getUse().getResNo() != 0) ++UI; | ||||
| 15650 | SDNode *Trunc = *UI++; | ||||
| 15651 | while (UI.getUse().getResNo() != 0) ++UI; | ||||
| 15652 | SDNode *RightShift = *UI; | ||||
| 15653 | if (Trunc->getOpcode() != ISD::TRUNCATE) | ||||
| 15654 | std::swap(Trunc, RightShift); | ||||
| 15655 | |||||
| 15656 | if (Trunc->getOpcode() != ISD::TRUNCATE || | ||||
| 15657 | Trunc->getValueType(0) != MVT::i32 || | ||||
| 15658 | !Trunc->hasOneUse()) | ||||
| 15659 | return false; | ||||
| 15660 | if (RightShift->getOpcode() != ISD::SRL || | ||||
| 15661 | !isa<ConstantSDNode>(RightShift->getOperand(1)) || | ||||
| 15662 | RightShift->getConstantOperandVal(1) != 32 || | ||||
| 15663 | !RightShift->hasOneUse()) | ||||
| 15664 | return false; | ||||
| 15665 | |||||
| 15666 | SDNode *Trunc2 = *RightShift->use_begin(); | ||||
| 15667 | if (Trunc2->getOpcode() != ISD::TRUNCATE || | ||||
| 15668 | Trunc2->getValueType(0) != MVT::i32 || | ||||
| 15669 | !Trunc2->hasOneUse()) | ||||
| 15670 | return false; | ||||
| 15671 | |||||
| 15672 | SDNode *Bitcast = *Trunc->use_begin(); | ||||
| 15673 | SDNode *Bitcast2 = *Trunc2->use_begin(); | ||||
| 15674 | |||||
| 15675 | if (Bitcast->getOpcode() != ISD::BITCAST || | ||||
| 15676 | Bitcast->getValueType(0) != MVT::f32) | ||||
| 15677 | return false; | ||||
| 15678 | if (Bitcast2->getOpcode() != ISD::BITCAST || | ||||
| 15679 | Bitcast2->getValueType(0) != MVT::f32) | ||||
| 15680 | return false; | ||||
| 15681 | |||||
| 15682 | if (Subtarget.isLittleEndian()) | ||||
| 15683 | std::swap(Bitcast, Bitcast2); | ||||
| 15684 | |||||
| 15685 | // Bitcast has the second float (in memory-layout order) and Bitcast2 | ||||
| 15686 | // has the first one. | ||||
| 15687 | |||||
| 15688 | SDValue BasePtr = LD->getBasePtr(); | ||||
| 15689 | if (LD->isIndexed()) { | ||||
| 15690 | assert(LD->getAddressingMode() == ISD::PRE_INC &&(static_cast <bool> (LD->getAddressingMode() == ISD:: PRE_INC && "Non-pre-inc AM on PPC?") ? void (0) : __assert_fail ("LD->getAddressingMode() == ISD::PRE_INC && \"Non-pre-inc AM on PPC?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15691, __extension__ __PRETTY_FUNCTION__)) | ||||
| 15691 | "Non-pre-inc AM on PPC?")(static_cast <bool> (LD->getAddressingMode() == ISD:: PRE_INC && "Non-pre-inc AM on PPC?") ? void (0) : __assert_fail ("LD->getAddressingMode() == ISD::PRE_INC && \"Non-pre-inc AM on PPC?\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 15691, __extension__ __PRETTY_FUNCTION__)); | ||||
| 15692 | BasePtr = | ||||
| 15693 | DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, | ||||
| 15694 | LD->getOffset()); | ||||
| 15695 | } | ||||
| 15696 | |||||
| 15697 | auto MMOFlags = | ||||
| 15698 | LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; | ||||
| 15699 | SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, | ||||
| 15700 | LD->getPointerInfo(), LD->getAlign(), | ||||
| 15701 | MMOFlags, LD->getAAInfo()); | ||||
| 15702 | SDValue AddPtr = | ||||
| 15703 | DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), | ||||
| 15704 | BasePtr, DAG.getIntPtrConstant(4, dl)); | ||||
| 15705 | SDValue FloatLoad2 = DAG.getLoad( | ||||
| 15706 | MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, | ||||
| 15707 | LD->getPointerInfo().getWithOffset(4), | ||||
| 15708 | commonAlignment(LD->getAlign(), 4), MMOFlags, LD->getAAInfo()); | ||||
| 15709 | |||||
| 15710 | if (LD->isIndexed()) { | ||||
| 15711 | // Note that DAGCombine should re-form any pre-increment load(s) from | ||||
| 15712 | // what is produced here if that makes sense. | ||||
| 15713 | DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); | ||||
| 15714 | } | ||||
| 15715 | |||||
| 15716 | DCI.CombineTo(Bitcast2, FloatLoad); | ||||
| 15717 | DCI.CombineTo(Bitcast, FloatLoad2); | ||||
| 15718 | |||||
| 15719 | DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), | ||||
| 15720 | SDValue(FloatLoad2.getNode(), 1)); | ||||
| 15721 | return true; | ||||
| 15722 | }; | ||||
| 15723 | |||||
| 15724 | if (ReplaceTwoFloatLoad()) | ||||
| 15725 | return SDValue(N, 0); | ||||
| 15726 | |||||
| 15727 | EVT MemVT = LD->getMemoryVT(); | ||||
| 15728 | Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); | ||||
| 15729 | Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); | ||||
| 15730 | if (LD->isUnindexed() && VT.isVector() && | ||||
| 15731 | ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && | ||||
| 15732 | // P8 and later hardware should just use LOAD. | ||||
| 15733 | !Subtarget.hasP8Vector() && | ||||
| 15734 | (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || | ||||
| 15735 | VT == MVT::v4f32))) && | ||||
| 15736 | LD->getAlign() < ABIAlignment) { | ||||
| 15737 | // This is a type-legal unaligned Altivec load. | ||||
| 15738 | SDValue Chain = LD->getChain(); | ||||
| 15739 | SDValue Ptr = LD->getBasePtr(); | ||||
| 15740 | bool isLittleEndian = Subtarget.isLittleEndian(); | ||||
| 15741 | |||||
| 15742 | // This implements the loading of unaligned vectors as described in | ||||
| 15743 | // the venerable Apple Velocity Engine overview. Specifically: | ||||
| 15744 | // https://developer.apple.com/hardwaredrivers/ve/alignment.html | ||||
| 15745 | // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html | ||||
| 15746 | // | ||||
| 15747 | // The general idea is to expand a sequence of one or more unaligned | ||||
| 15748 | // loads into an alignment-based permutation-control instruction (lvsl | ||||
| 15749 | // or lvsr), a series of regular vector loads (which always truncate | ||||
| 15750 | // their input address to an aligned address), and a series of | ||||
| 15751 | // permutations. The results of these permutations are the requested | ||||
| 15752 | // loaded values. The trick is that the last "extra" load is not taken | ||||
| 15753 | // from the address you might suspect (sizeof(vector) bytes after the | ||||
| 15754 | // last requested load), but rather sizeof(vector) - 1 bytes after the | ||||
| 15755 | // last requested vector. The point of this is to avoid a page fault if | ||||
| 15756 | // the base address happened to be aligned. This works because if the | ||||
| 15757 | // base address is aligned, then adding less than a full vector length | ||||
| 15758 | // will cause the last vector in the sequence to be (re)loaded. | ||||
| 15759 | // Otherwise, the next vector will be fetched as you might suspect was | ||||
| 15760 | // necessary. | ||||
| 15761 | |||||
| 15762 | // We might be able to reuse the permutation generation from | ||||
| 15763 | // a different base address offset from this one by an aligned amount. | ||||
| 15764 | // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this | ||||
| 15765 | // optimization later. | ||||
| 15766 | Intrinsic::ID Intr, IntrLD, IntrPerm; | ||||
| 15767 | MVT PermCntlTy, PermTy, LDTy; | ||||
| 15768 | Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr | ||||
| 15769 | : Intrinsic::ppc_altivec_lvsl; | ||||
| 15770 | IntrLD = Intrinsic::ppc_altivec_lvx; | ||||
| 15771 | IntrPerm = Intrinsic::ppc_altivec_vperm; | ||||
| 15772 | PermCntlTy = MVT::v16i8; | ||||
| 15773 | PermTy = MVT::v4i32; | ||||
| 15774 | LDTy = MVT::v4i32; | ||||
| 15775 | |||||
| 15776 | SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); | ||||
| 15777 | |||||
| 15778 | // Create the new MMO for the new base load. It is like the original MMO, | ||||
| 15779 | // but represents an area in memory almost twice the vector size centered | ||||
| 15780 | // on the original address. If the address is unaligned, we might start | ||||
| 15781 | // reading up to (sizeof(vector)-1) bytes below the address of the | ||||
| 15782 | // original unaligned load. | ||||
| 15783 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 15784 | MachineMemOperand *BaseMMO = | ||||
| 15785 | MF.getMachineMemOperand(LD->getMemOperand(), | ||||
| 15786 | -(int64_t)MemVT.getStoreSize()+1, | ||||
| 15787 | 2*MemVT.getStoreSize()-1); | ||||
| 15788 | |||||
| 15789 | // Create the new base load. | ||||
| 15790 | SDValue LDXIntID = | ||||
| 15791 | DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); | ||||
| 15792 | SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; | ||||
| 15793 | SDValue BaseLoad = | ||||
| 15794 | DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, | ||||
| 15795 | DAG.getVTList(PermTy, MVT::Other), | ||||
| 15796 | BaseLoadOps, LDTy, BaseMMO); | ||||
| 15797 | |||||
| 15798 | // Note that the value of IncOffset (which is provided to the next | ||||
| 15799 | // load's pointer info offset value, and thus used to calculate the | ||||
| 15800 | // alignment), and the value of IncValue (which is actually used to | ||||
| 15801 | // increment the pointer value) are different! This is because we | ||||
| 15802 | // require the next load to appear to be aligned, even though it | ||||
| 15803 | // is actually offset from the base pointer by a lesser amount. | ||||
| 15804 | int IncOffset = VT.getSizeInBits() / 8; | ||||
| 15805 | int IncValue = IncOffset; | ||||
| 15806 | |||||
| 15807 | // Walk (both up and down) the chain looking for another load at the real | ||||
| 15808 | // (aligned) offset (the alignment of the other load does not matter in | ||||
| 15809 | // this case). If found, then do not use the offset reduction trick, as | ||||
| 15810 | // that will prevent the loads from being later combined (as they would | ||||
| 15811 | // otherwise be duplicates). | ||||
| 15812 | if (!findConsecutiveLoad(LD, DAG)) | ||||
| 15813 | --IncValue; | ||||
| 15814 | |||||
| 15815 | SDValue Increment = | ||||
| 15816 | DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); | ||||
| 15817 | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | ||||
| 15818 | |||||
| 15819 | MachineMemOperand *ExtraMMO = | ||||
| 15820 | MF.getMachineMemOperand(LD->getMemOperand(), | ||||
| 15821 | 1, 2*MemVT.getStoreSize()-1); | ||||
| 15822 | SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; | ||||
| 15823 | SDValue ExtraLoad = | ||||
| 15824 | DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, | ||||
| 15825 | DAG.getVTList(PermTy, MVT::Other), | ||||
| 15826 | ExtraLoadOps, LDTy, ExtraMMO); | ||||
| 15827 | |||||
| 15828 | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | ||||
| 15829 | BaseLoad.getValue(1), ExtraLoad.getValue(1)); | ||||
| 15830 | |||||
| 15831 | // Because vperm has a big-endian bias, we must reverse the order | ||||
| 15832 | // of the input vectors and complement the permute control vector | ||||
| 15833 | // when generating little endian code. We have already handled the | ||||
| 15834 | // latter by using lvsr instead of lvsl, so just reverse BaseLoad | ||||
| 15835 | // and ExtraLoad here. | ||||
| 15836 | SDValue Perm; | ||||
| 15837 | if (isLittleEndian) | ||||
| 15838 | Perm = BuildIntrinsicOp(IntrPerm, | ||||
| 15839 | ExtraLoad, BaseLoad, PermCntl, DAG, dl); | ||||
| 15840 | else | ||||
| 15841 | Perm = BuildIntrinsicOp(IntrPerm, | ||||
| 15842 | BaseLoad, ExtraLoad, PermCntl, DAG, dl); | ||||
| 15843 | |||||
| 15844 | if (VT != PermTy) | ||||
| 15845 | Perm = Subtarget.hasAltivec() | ||||
| 15846 | ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) | ||||
| 15847 | : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, | ||||
| 15848 | DAG.getTargetConstant(1, dl, MVT::i64)); | ||||
| 15849 | // second argument is 1 because this rounding | ||||
| 15850 | // is always exact. | ||||
| 15851 | |||||
| 15852 | // The output of the permutation is our loaded result, the TokenFactor is | ||||
| 15853 | // our new chain. | ||||
| 15854 | DCI.CombineTo(N, Perm, TF); | ||||
| 15855 | return SDValue(N, 0); | ||||
| 15856 | } | ||||
| 15857 | } | ||||
| 15858 | break; | ||||
| 15859 | case ISD::INTRINSIC_WO_CHAIN: { | ||||
| 15860 | bool isLittleEndian = Subtarget.isLittleEndian(); | ||||
| 15861 | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | ||||
| 15862 | Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr | ||||
| 15863 | : Intrinsic::ppc_altivec_lvsl); | ||||
| 15864 | if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { | ||||
| 15865 | SDValue Add = N->getOperand(1); | ||||
| 15866 | |||||
| 15867 | int Bits = 4 /* 16 byte alignment */; | ||||
| 15868 | |||||
| 15869 | if (DAG.MaskedValueIsZero(Add->getOperand(1), | ||||
| 15870 | APInt::getAllOnes(Bits /* alignment */) | ||||
| 15871 | .zext(Add.getScalarValueSizeInBits()))) { | ||||
| 15872 | SDNode *BasePtr = Add->getOperand(0).getNode(); | ||||
| 15873 | for (SDNode *U : BasePtr->uses()) { | ||||
| 15874 | if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && | ||||
| 15875 | cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { | ||||
| 15876 | // We've found another LVSL/LVSR, and this address is an aligned | ||||
| 15877 | // multiple of that one. The results will be the same, so use the | ||||
| 15878 | // one we've just found instead. | ||||
| 15879 | |||||
| 15880 | return SDValue(U, 0); | ||||
| 15881 | } | ||||
| 15882 | } | ||||
| 15883 | } | ||||
| 15884 | |||||
| 15885 | if (isa<ConstantSDNode>(Add->getOperand(1))) { | ||||
| 15886 | SDNode *BasePtr = Add->getOperand(0).getNode(); | ||||
| 15887 | for (SDNode *U : BasePtr->uses()) { | ||||
| 15888 | if (U->getOpcode() == ISD::ADD && | ||||
| 15889 | isa<ConstantSDNode>(U->getOperand(1)) && | ||||
| 15890 | (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - | ||||
| 15891 | cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % | ||||
| 15892 | (1ULL << Bits) == | ||||
| 15893 | 0) { | ||||
| 15894 | SDNode *OtherAdd = U; | ||||
| 15895 | for (SDNode *V : OtherAdd->uses()) { | ||||
| 15896 | if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && | ||||
| 15897 | cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == | ||||
| 15898 | IID) { | ||||
| 15899 | return SDValue(V, 0); | ||||
| 15900 | } | ||||
| 15901 | } | ||||
| 15902 | } | ||||
| 15903 | } | ||||
| 15904 | } | ||||
| 15905 | } | ||||
| 15906 | |||||
| 15907 | // Combine vmaxsw/h/b(a, a's negation) to abs(a) | ||||
| 15908 | // Expose the vabsduw/h/b opportunity for down stream | ||||
| 15909 | if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && | ||||
| 15910 | (IID == Intrinsic::ppc_altivec_vmaxsw || | ||||
| 15911 | IID == Intrinsic::ppc_altivec_vmaxsh || | ||||
| 15912 | IID == Intrinsic::ppc_altivec_vmaxsb)) { | ||||
| 15913 | SDValue V1 = N->getOperand(1); | ||||
| 15914 | SDValue V2 = N->getOperand(2); | ||||
| 15915 | if ((V1.getSimpleValueType() == MVT::v4i32 || | ||||
| 15916 | V1.getSimpleValueType() == MVT::v8i16 || | ||||
| 15917 | V1.getSimpleValueType() == MVT::v16i8) && | ||||
| 15918 | V1.getSimpleValueType() == V2.getSimpleValueType()) { | ||||
| 15919 | // (0-a, a) | ||||
| 15920 | if (V1.getOpcode() == ISD::SUB && | ||||
| 15921 | ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && | ||||
| 15922 | V1.getOperand(1) == V2) { | ||||
| 15923 | return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); | ||||
| 15924 | } | ||||
| 15925 | // (a, 0-a) | ||||
| 15926 | if (V2.getOpcode() == ISD::SUB && | ||||
| 15927 | ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && | ||||
| 15928 | V2.getOperand(1) == V1) { | ||||
| 15929 | return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); | ||||
| 15930 | } | ||||
| 15931 | // (x-y, y-x) | ||||
| 15932 | if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && | ||||
| 15933 | V1.getOperand(0) == V2.getOperand(1) && | ||||
| 15934 | V1.getOperand(1) == V2.getOperand(0)) { | ||||
| 15935 | return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); | ||||
| 15936 | } | ||||
| 15937 | } | ||||
| 15938 | } | ||||
| 15939 | } | ||||
| 15940 | |||||
| 15941 | break; | ||||
| 15942 | case ISD::INTRINSIC_W_CHAIN: | ||||
| 15943 | switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { | ||||
| 15944 | default: | ||||
| 15945 | break; | ||||
| 15946 | case Intrinsic::ppc_altivec_vsum4sbs: | ||||
| 15947 | case Intrinsic::ppc_altivec_vsum4shs: | ||||
| 15948 | case Intrinsic::ppc_altivec_vsum4ubs: { | ||||
| 15949 | // These sum-across intrinsics only have a chain due to the side effect | ||||
| 15950 | // that they may set the SAT bit. If we know the SAT bit will not be set | ||||
| 15951 | // for some inputs, we can replace any uses of their chain with the input | ||||
| 15952 | // chain. | ||||
| 15953 | if (BuildVectorSDNode *BVN = | ||||
| 15954 | dyn_cast<BuildVectorSDNode>(N->getOperand(3))) { | ||||
| 15955 | APInt APSplatBits, APSplatUndef; | ||||
| 15956 | unsigned SplatBitSize; | ||||
| 15957 | bool HasAnyUndefs; | ||||
| 15958 | bool BVNIsConstantSplat = BVN->isConstantSplat( | ||||
| 15959 | APSplatBits, APSplatUndef, SplatBitSize, HasAnyUndefs, 0, | ||||
| 15960 | !Subtarget.isLittleEndian()); | ||||
| 15961 | // If the constant splat vector is 0, the SAT bit will not be set. | ||||
| 15962 | if (BVNIsConstantSplat && APSplatBits == 0) | ||||
| 15963 | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), N->getOperand(0)); | ||||
| 15964 | } | ||||
| 15965 | return SDValue(); | ||||
| 15966 | } | ||||
| 15967 | case Intrinsic::ppc_vsx_lxvw4x: | ||||
| 15968 | case Intrinsic::ppc_vsx_lxvd2x: | ||||
| 15969 | // For little endian, VSX loads require generating lxvd2x/xxswapd. | ||||
| 15970 | // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. | ||||
| 15971 | if (Subtarget.needsSwapsForVSXMemOps()) | ||||
| 15972 | return expandVSXLoadForLE(N, DCI); | ||||
| 15973 | break; | ||||
| 15974 | } | ||||
| 15975 | break; | ||||
| 15976 | case ISD::INTRINSIC_VOID: | ||||
| 15977 | // For little endian, VSX stores require generating xxswapd/stxvd2x. | ||||
| 15978 | // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. | ||||
| 15979 | if (Subtarget.needsSwapsForVSXMemOps()) { | ||||
| 15980 | switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { | ||||
| 15981 | default: | ||||
| 15982 | break; | ||||
| 15983 | case Intrinsic::ppc_vsx_stxvw4x: | ||||
| 15984 | case Intrinsic::ppc_vsx_stxvd2x: | ||||
| 15985 | return expandVSXStoreForLE(N, DCI); | ||||
| 15986 | } | ||||
| 15987 | } | ||||
| 15988 | break; | ||||
| 15989 | case ISD::BSWAP: { | ||||
| 15990 | // Turn BSWAP (LOAD) -> lhbrx/lwbrx. | ||||
| 15991 | // For subtargets without LDBRX, we can still do better than the default | ||||
| 15992 | // expansion even for 64-bit BSWAP (LOAD). | ||||
| 15993 | bool Is64BitBswapOn64BitTgt = | ||||
| 15994 | Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; | ||||
| 15995 | bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && | ||||
| 15996 | N->getOperand(0).hasOneUse(); | ||||
| 15997 | if (IsSingleUseNormalLd && | ||||
| 15998 | (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || | ||||
| 15999 | (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { | ||||
| 16000 | SDValue Load = N->getOperand(0); | ||||
| 16001 | LoadSDNode *LD = cast<LoadSDNode>(Load); | ||||
| 16002 | // Create the byte-swapping load. | ||||
| 16003 | SDValue Ops[] = { | ||||
| 16004 | LD->getChain(), // Chain | ||||
| 16005 | LD->getBasePtr(), // Ptr | ||||
| 16006 | DAG.getValueType(N->getValueType(0)) // VT | ||||
| 16007 | }; | ||||
| 16008 | SDValue BSLoad = | ||||
| 16009 | DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, | ||||
| 16010 | DAG.getVTList(N->getValueType(0) == MVT::i64 ? | ||||
| 16011 | MVT::i64 : MVT::i32, MVT::Other), | ||||
| 16012 | Ops, LD->getMemoryVT(), LD->getMemOperand()); | ||||
| 16013 | |||||
| 16014 | // If this is an i16 load, insert the truncate. | ||||
| 16015 | SDValue ResVal = BSLoad; | ||||
| 16016 | if (N->getValueType(0) == MVT::i16) | ||||
| 16017 | ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); | ||||
| 16018 | |||||
| 16019 | // First, combine the bswap away. This makes the value produced by the | ||||
| 16020 | // load dead. | ||||
| 16021 | DCI.CombineTo(N, ResVal); | ||||
| 16022 | |||||
| 16023 | // Next, combine the load away, we give it a bogus result value but a real | ||||
| 16024 | // chain result. The result value is dead because the bswap is dead. | ||||
| 16025 | DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); | ||||
| 16026 | |||||
| 16027 | // Return N so it doesn't get rechecked! | ||||
| 16028 | return SDValue(N, 0); | ||||
| 16029 | } | ||||
| 16030 | // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only | ||||
| 16031 | // before legalization so that the BUILD_PAIR is handled correctly. | ||||
| 16032 | if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || | ||||
| 16033 | !IsSingleUseNormalLd) | ||||
| 16034 | return SDValue(); | ||||
| 16035 | LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); | ||||
| 16036 | |||||
| 16037 | // Can't split volatile or atomic loads. | ||||
| 16038 | if (!LD->isSimple()) | ||||
| 16039 | return SDValue(); | ||||
| 16040 | SDValue BasePtr = LD->getBasePtr(); | ||||
| 16041 | SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, | ||||
| 16042 | LD->getPointerInfo(), LD->getAlign()); | ||||
| 16043 | Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); | ||||
| 16044 | BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, | ||||
| 16045 | DAG.getIntPtrConstant(4, dl)); | ||||
| 16046 | MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( | ||||
| 16047 | LD->getMemOperand(), 4, 4); | ||||
| 16048 | SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); | ||||
| 16049 | Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); | ||||
| 16050 | SDValue Res; | ||||
| 16051 | if (Subtarget.isLittleEndian()) | ||||
| 16052 | Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); | ||||
| 16053 | else | ||||
| 16054 | Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); | ||||
| 16055 | SDValue TF = | ||||
| 16056 | DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | ||||
| 16057 | Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); | ||||
| 16058 | DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); | ||||
| 16059 | return Res; | ||||
| 16060 | } | ||||
| 16061 | case PPCISD::VCMP: | ||||
| 16062 | // If a VCMP_rec node already exists with exactly the same operands as this | ||||
| 16063 | // node, use its result instead of this node (VCMP_rec computes both a CR6 | ||||
| 16064 | // and a normal output). | ||||
| 16065 | // | ||||
| 16066 | if (!N->getOperand(0).hasOneUse() && | ||||
| 16067 | !N->getOperand(1).hasOneUse() && | ||||
| 16068 | !N->getOperand(2).hasOneUse()) { | ||||
| 16069 | |||||
| 16070 | // Scan all of the users of the LHS, looking for VCMP_rec's that match. | ||||
| 16071 | SDNode *VCMPrecNode = nullptr; | ||||
| 16072 | |||||
| 16073 | SDNode *LHSN = N->getOperand(0).getNode(); | ||||
| 16074 | for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); | ||||
| 16075 | UI != E; ++UI) | ||||
| 16076 | if (UI->getOpcode() == PPCISD::VCMP_rec && | ||||
| 16077 | UI->getOperand(1) == N->getOperand(1) && | ||||
| 16078 | UI->getOperand(2) == N->getOperand(2) && | ||||
| 16079 | UI->getOperand(0) == N->getOperand(0)) { | ||||
| 16080 | VCMPrecNode = *UI; | ||||
| 16081 | break; | ||||
| 16082 | } | ||||
| 16083 | |||||
| 16084 | // If there is no VCMP_rec node, or if the flag value has a single use, | ||||
| 16085 | // don't transform this. | ||||
| 16086 | if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) | ||||
| 16087 | break; | ||||
| 16088 | |||||
| 16089 | // Look at the (necessarily single) use of the flag value. If it has a | ||||
| 16090 | // chain, this transformation is more complex. Note that multiple things | ||||
| 16091 | // could use the value result, which we should ignore. | ||||
| 16092 | SDNode *FlagUser = nullptr; | ||||
| 16093 | for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); | ||||
| 16094 | FlagUser == nullptr; ++UI) { | ||||
| 16095 | assert(UI != VCMPrecNode->use_end() && "Didn't find user!")(static_cast <bool> (UI != VCMPrecNode->use_end() && "Didn't find user!") ? void (0) : __assert_fail ("UI != VCMPrecNode->use_end() && \"Didn't find user!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 16095, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16096 | SDNode *User = *UI; | ||||
| 16097 | for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { | ||||
| 16098 | if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { | ||||
| 16099 | FlagUser = User; | ||||
| 16100 | break; | ||||
| 16101 | } | ||||
| 16102 | } | ||||
| 16103 | } | ||||
| 16104 | |||||
| 16105 | // If the user is a MFOCRF instruction, we know this is safe. | ||||
| 16106 | // Otherwise we give up for right now. | ||||
| 16107 | if (FlagUser->getOpcode() == PPCISD::MFOCRF) | ||||
| 16108 | return SDValue(VCMPrecNode, 0); | ||||
| 16109 | } | ||||
| 16110 | break; | ||||
| 16111 | case ISD::BR_CC: { | ||||
| 16112 | // If this is a branch on an altivec predicate comparison, lower this so | ||||
| 16113 | // that we don't have to do a MFOCRF: instead, branch directly on CR6. This | ||||
| 16114 | // lowering is done pre-legalize, because the legalizer lowers the predicate | ||||
| 16115 | // compare down to code that is difficult to reassemble. | ||||
| 16116 | // This code also handles branches that depend on the result of a store | ||||
| 16117 | // conditional. | ||||
| 16118 | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); | ||||
| 16119 | SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); | ||||
| 16120 | |||||
| 16121 | int CompareOpc; | ||||
| 16122 | bool isDot; | ||||
| 16123 | |||||
| 16124 | if (!isa<ConstantSDNode>(RHS) || (CC != ISD::SETEQ && CC != ISD::SETNE)) | ||||
| 16125 | break; | ||||
| 16126 | |||||
| 16127 | // Since we are doing this pre-legalize, the RHS can be a constant of | ||||
| 16128 | // arbitrary bitwidth which may cause issues when trying to get the value | ||||
| 16129 | // from the underlying APInt. | ||||
| 16130 | auto RHSAPInt = cast<ConstantSDNode>(RHS)->getAPIntValue(); | ||||
| 16131 | if (!RHSAPInt.isIntN(64)) | ||||
| 16132 | break; | ||||
| 16133 | |||||
| 16134 | unsigned Val = RHSAPInt.getZExtValue(); | ||||
| 16135 | auto isImpossibleCompare = [&]() { | ||||
| 16136 | // If this is a comparison against something other than 0/1, then we know | ||||
| 16137 | // that the condition is never/always true. | ||||
| 16138 | if (Val != 0 && Val != 1) { | ||||
| 16139 | if (CC == ISD::SETEQ) // Cond never true, remove branch. | ||||
| 16140 | return N->getOperand(0); | ||||
| 16141 | // Always !=, turn it into an unconditional branch. | ||||
| 16142 | return DAG.getNode(ISD::BR, dl, MVT::Other, | ||||
| 16143 | N->getOperand(0), N->getOperand(4)); | ||||
| 16144 | } | ||||
| 16145 | return SDValue(); | ||||
| 16146 | }; | ||||
| 16147 | // Combine branches fed by store conditional instructions (st[bhwd]cx). | ||||
| 16148 | unsigned StoreWidth = 0; | ||||
| 16149 | if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && | ||||
| 16150 | isStoreConditional(LHS, StoreWidth)) { | ||||
| 16151 | if (SDValue Impossible = isImpossibleCompare()) | ||||
| 16152 | return Impossible; | ||||
| 16153 | PPC::Predicate CompOpc; | ||||
| 16154 | // eq 0 => ne | ||||
| 16155 | // ne 0 => eq | ||||
| 16156 | // eq 1 => eq | ||||
| 16157 | // ne 1 => ne | ||||
| 16158 | if (Val == 0) | ||||
| 16159 | CompOpc = CC == ISD::SETEQ ? PPC::PRED_NE : PPC::PRED_EQ; | ||||
| 16160 | else | ||||
| 16161 | CompOpc = CC == ISD::SETEQ ? PPC::PRED_EQ : PPC::PRED_NE; | ||||
| 16162 | |||||
| 16163 | SDValue Ops[] = {LHS.getOperand(0), LHS.getOperand(2), LHS.getOperand(3), | ||||
| 16164 | DAG.getConstant(StoreWidth, dl, MVT::i32)}; | ||||
| 16165 | auto *MemNode = cast<MemSDNode>(LHS); | ||||
| 16166 | SDValue ConstSt = DAG.getMemIntrinsicNode( | ||||
| 16167 | PPCISD::STORE_COND, dl, | ||||
| 16168 | DAG.getVTList(MVT::i32, MVT::Other, MVT::Glue), Ops, | ||||
| 16169 | MemNode->getMemoryVT(), MemNode->getMemOperand()); | ||||
| 16170 | |||||
| 16171 | SDValue InChain; | ||||
| 16172 | // Unchain the branch from the original store conditional. | ||||
| 16173 | if (N->getOperand(0) == LHS.getValue(1)) | ||||
| 16174 | InChain = LHS.getOperand(0); | ||||
| 16175 | else if (N->getOperand(0).getOpcode() == ISD::TokenFactor) { | ||||
| 16176 | SmallVector<SDValue, 4> InChains; | ||||
| 16177 | SDValue InTF = N->getOperand(0); | ||||
| 16178 | for (int i = 0, e = InTF.getNumOperands(); i < e; i++) | ||||
| 16179 | if (InTF.getOperand(i) != LHS.getValue(1)) | ||||
| 16180 | InChains.push_back(InTF.getOperand(i)); | ||||
| 16181 | InChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, InChains); | ||||
| 16182 | } | ||||
| 16183 | |||||
| 16184 | return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, InChain, | ||||
| 16185 | DAG.getConstant(CompOpc, dl, MVT::i32), | ||||
| 16186 | DAG.getRegister(PPC::CR0, MVT::i32), N->getOperand(4), | ||||
| 16187 | ConstSt.getValue(2)); | ||||
| 16188 | } | ||||
| 16189 | |||||
| 16190 | if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && | ||||
| 16191 | getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { | ||||
| 16192 | assert(isDot && "Can't compare against a vector result!")(static_cast <bool> (isDot && "Can't compare against a vector result!" ) ? void (0) : __assert_fail ("isDot && \"Can't compare against a vector result!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 16192, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16193 | |||||
| 16194 | if (SDValue Impossible = isImpossibleCompare()) | ||||
| 16195 | return Impossible; | ||||
| 16196 | |||||
| 16197 | bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); | ||||
| 16198 | // Create the PPCISD altivec 'dot' comparison node. | ||||
| 16199 | SDValue Ops[] = { | ||||
| 16200 | LHS.getOperand(2), // LHS of compare | ||||
| 16201 | LHS.getOperand(3), // RHS of compare | ||||
| 16202 | DAG.getConstant(CompareOpc, dl, MVT::i32) | ||||
| 16203 | }; | ||||
| 16204 | EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; | ||||
| 16205 | SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); | ||||
| 16206 | |||||
| 16207 | // Unpack the result based on how the target uses it. | ||||
| 16208 | PPC::Predicate CompOpc; | ||||
| 16209 | switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { | ||||
| 16210 | default: // Can't happen, don't crash on invalid number though. | ||||
| 16211 | case 0: // Branch on the value of the EQ bit of CR6. | ||||
| 16212 | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; | ||||
| 16213 | break; | ||||
| 16214 | case 1: // Branch on the inverted value of the EQ bit of CR6. | ||||
| 16215 | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; | ||||
| 16216 | break; | ||||
| 16217 | case 2: // Branch on the value of the LT bit of CR6. | ||||
| 16218 | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; | ||||
| 16219 | break; | ||||
| 16220 | case 3: // Branch on the inverted value of the LT bit of CR6. | ||||
| 16221 | CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; | ||||
| 16222 | break; | ||||
| 16223 | } | ||||
| 16224 | |||||
| 16225 | return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), | ||||
| 16226 | DAG.getConstant(CompOpc, dl, MVT::i32), | ||||
| 16227 | DAG.getRegister(PPC::CR6, MVT::i32), | ||||
| 16228 | N->getOperand(4), CompNode.getValue(1)); | ||||
| 16229 | } | ||||
| 16230 | break; | ||||
| 16231 | } | ||||
| 16232 | case ISD::BUILD_VECTOR: | ||||
| 16233 | return DAGCombineBuildVector(N, DCI); | ||||
| 16234 | } | ||||
| 16235 | |||||
| 16236 | return SDValue(); | ||||
| 16237 | } | ||||
| 16238 | |||||
| 16239 | SDValue | ||||
| 16240 | PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, | ||||
| 16241 | SelectionDAG &DAG, | ||||
| 16242 | SmallVectorImpl<SDNode *> &Created) const { | ||||
| 16243 | // fold (sdiv X, pow2) | ||||
| 16244 | EVT VT = N->getValueType(0); | ||||
| 16245 | if (VT == MVT::i64 && !Subtarget.isPPC64()) | ||||
| 16246 | return SDValue(); | ||||
| 16247 | if ((VT != MVT::i32 && VT != MVT::i64) || | ||||
| 16248 | !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) | ||||
| 16249 | return SDValue(); | ||||
| 16250 | |||||
| 16251 | SDLoc DL(N); | ||||
| 16252 | SDValue N0 = N->getOperand(0); | ||||
| 16253 | |||||
| 16254 | bool IsNegPow2 = Divisor.isNegatedPowerOf2(); | ||||
| 16255 | unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countr_zero(); | ||||
| 16256 | SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); | ||||
| 16257 | |||||
| 16258 | SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); | ||||
| 16259 | Created.push_back(Op.getNode()); | ||||
| 16260 | |||||
| 16261 | if (IsNegPow2) { | ||||
| 16262 | Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); | ||||
| 16263 | Created.push_back(Op.getNode()); | ||||
| 16264 | } | ||||
| 16265 | |||||
| 16266 | return Op; | ||||
| 16267 | } | ||||
| 16268 | |||||
| 16269 | //===----------------------------------------------------------------------===// | ||||
| 16270 | // Inline Assembly Support | ||||
| 16271 | //===----------------------------------------------------------------------===// | ||||
| 16272 | |||||
| 16273 | void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, | ||||
| 16274 | KnownBits &Known, | ||||
| 16275 | const APInt &DemandedElts, | ||||
| 16276 | const SelectionDAG &DAG, | ||||
| 16277 | unsigned Depth) const { | ||||
| 16278 | Known.resetAll(); | ||||
| 16279 | switch (Op.getOpcode()) { | ||||
| 16280 | default: break; | ||||
| 16281 | case PPCISD::LBRX: { | ||||
| 16282 | // lhbrx is known to have the top bits cleared out. | ||||
| 16283 | if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) | ||||
| 16284 | Known.Zero = 0xFFFF0000; | ||||
| 16285 | break; | ||||
| 16286 | } | ||||
| 16287 | case ISD::INTRINSIC_WO_CHAIN: { | ||||
| 16288 | switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { | ||||
| 16289 | default: break; | ||||
| 16290 | case Intrinsic::ppc_altivec_vcmpbfp_p: | ||||
| 16291 | case Intrinsic::ppc_altivec_vcmpeqfp_p: | ||||
| 16292 | case Intrinsic::ppc_altivec_vcmpequb_p: | ||||
| 16293 | case Intrinsic::ppc_altivec_vcmpequh_p: | ||||
| 16294 | case Intrinsic::ppc_altivec_vcmpequw_p: | ||||
| 16295 | case Intrinsic::ppc_altivec_vcmpequd_p: | ||||
| 16296 | case Intrinsic::ppc_altivec_vcmpequq_p: | ||||
| 16297 | case Intrinsic::ppc_altivec_vcmpgefp_p: | ||||
| 16298 | case Intrinsic::ppc_altivec_vcmpgtfp_p: | ||||
| 16299 | case Intrinsic::ppc_altivec_vcmpgtsb_p: | ||||
| 16300 | case Intrinsic::ppc_altivec_vcmpgtsh_p: | ||||
| 16301 | case Intrinsic::ppc_altivec_vcmpgtsw_p: | ||||
| 16302 | case Intrinsic::ppc_altivec_vcmpgtsd_p: | ||||
| 16303 | case Intrinsic::ppc_altivec_vcmpgtsq_p: | ||||
| 16304 | case Intrinsic::ppc_altivec_vcmpgtub_p: | ||||
| 16305 | case Intrinsic::ppc_altivec_vcmpgtuh_p: | ||||
| 16306 | case Intrinsic::ppc_altivec_vcmpgtuw_p: | ||||
| 16307 | case Intrinsic::ppc_altivec_vcmpgtud_p: | ||||
| 16308 | case Intrinsic::ppc_altivec_vcmpgtuq_p: | ||||
| 16309 | Known.Zero = ~1U; // All bits but the low one are known to be zero. | ||||
| 16310 | break; | ||||
| 16311 | } | ||||
| 16312 | break; | ||||
| 16313 | } | ||||
| 16314 | case ISD::INTRINSIC_W_CHAIN: { | ||||
| 16315 | switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { | ||||
| 16316 | default: | ||||
| 16317 | break; | ||||
| 16318 | case Intrinsic::ppc_load2r: | ||||
| 16319 | // Top bits are cleared for load2r (which is the same as lhbrx). | ||||
| 16320 | Known.Zero = 0xFFFF0000; | ||||
| 16321 | break; | ||||
| 16322 | } | ||||
| 16323 | break; | ||||
| 16324 | } | ||||
| 16325 | } | ||||
| 16326 | } | ||||
| 16327 | |||||
| 16328 | Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { | ||||
| 16329 | switch (Subtarget.getCPUDirective()) { | ||||
| 16330 | default: break; | ||||
| 16331 | case PPC::DIR_970: | ||||
| 16332 | case PPC::DIR_PWR4: | ||||
| 16333 | case PPC::DIR_PWR5: | ||||
| 16334 | case PPC::DIR_PWR5X: | ||||
| 16335 | case PPC::DIR_PWR6: | ||||
| 16336 | case PPC::DIR_PWR6X: | ||||
| 16337 | case PPC::DIR_PWR7: | ||||
| 16338 | case PPC::DIR_PWR8: | ||||
| 16339 | case PPC::DIR_PWR9: | ||||
| 16340 | case PPC::DIR_PWR10: | ||||
| 16341 | case PPC::DIR_PWR_FUTURE: { | ||||
| 16342 | if (!ML) | ||||
| 16343 | break; | ||||
| 16344 | |||||
| 16345 | if (!DisableInnermostLoopAlign32) { | ||||
| 16346 | // If the nested loop is an innermost loop, prefer to a 32-byte alignment, | ||||
| 16347 | // so that we can decrease cache misses and branch-prediction misses. | ||||
| 16348 | // Actual alignment of the loop will depend on the hotness check and other | ||||
| 16349 | // logic in alignBlocks. | ||||
| 16350 | if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) | ||||
| 16351 | return Align(32); | ||||
| 16352 | } | ||||
| 16353 | |||||
| 16354 | const PPCInstrInfo *TII = Subtarget.getInstrInfo(); | ||||
| 16355 | |||||
| 16356 | // For small loops (between 5 and 8 instructions), align to a 32-byte | ||||
| 16357 | // boundary so that the entire loop fits in one instruction-cache line. | ||||
| 16358 | uint64_t LoopSize = 0; | ||||
| 16359 | for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) | ||||
| 16360 | for (const MachineInstr &J : **I) { | ||||
| 16361 | LoopSize += TII->getInstSizeInBytes(J); | ||||
| 16362 | if (LoopSize > 32) | ||||
| 16363 | break; | ||||
| 16364 | } | ||||
| 16365 | |||||
| 16366 | if (LoopSize > 16 && LoopSize <= 32) | ||||
| 16367 | return Align(32); | ||||
| 16368 | |||||
| 16369 | break; | ||||
| 16370 | } | ||||
| 16371 | } | ||||
| 16372 | |||||
| 16373 | return TargetLowering::getPrefLoopAlignment(ML); | ||||
| 16374 | } | ||||
| 16375 | |||||
| 16376 | /// getConstraintType - Given a constraint, return the type of | ||||
| 16377 | /// constraint it is for this target. | ||||
| 16378 | PPCTargetLowering::ConstraintType | ||||
| 16379 | PPCTargetLowering::getConstraintType(StringRef Constraint) const { | ||||
| 16380 | if (Constraint.size() == 1) { | ||||
| 16381 | switch (Constraint[0]) { | ||||
| 16382 | default: break; | ||||
| 16383 | case 'b': | ||||
| 16384 | case 'r': | ||||
| 16385 | case 'f': | ||||
| 16386 | case 'd': | ||||
| 16387 | case 'v': | ||||
| 16388 | case 'y': | ||||
| 16389 | return C_RegisterClass; | ||||
| 16390 | case 'Z': | ||||
| 16391 | // FIXME: While Z does indicate a memory constraint, it specifically | ||||
| 16392 | // indicates an r+r address (used in conjunction with the 'y' modifier | ||||
| 16393 | // in the replacement string). Currently, we're forcing the base | ||||
| 16394 | // register to be r0 in the asm printer (which is interpreted as zero) | ||||
| 16395 | // and forming the complete address in the second register. This is | ||||
| 16396 | // suboptimal. | ||||
| 16397 | return C_Memory; | ||||
| 16398 | } | ||||
| 16399 | } else if (Constraint == "wc") { // individual CR bits. | ||||
| 16400 | return C_RegisterClass; | ||||
| 16401 | } else if (Constraint == "wa" || Constraint == "wd" || | ||||
| 16402 | Constraint == "wf" || Constraint == "ws" || | ||||
| 16403 | Constraint == "wi" || Constraint == "ww") { | ||||
| 16404 | return C_RegisterClass; // VSX registers. | ||||
| 16405 | } | ||||
| 16406 | return TargetLowering::getConstraintType(Constraint); | ||||
| 16407 | } | ||||
| 16408 | |||||
| 16409 | /// Examine constraint type and operand type and determine a weight value. | ||||
| 16410 | /// This object must already have been set up with the operand type | ||||
| 16411 | /// and the current alternative constraint selected. | ||||
| 16412 | TargetLowering::ConstraintWeight | ||||
| 16413 | PPCTargetLowering::getSingleConstraintMatchWeight( | ||||
| 16414 | AsmOperandInfo &info, const char *constraint) const { | ||||
| 16415 | ConstraintWeight weight = CW_Invalid; | ||||
| 16416 | Value *CallOperandVal = info.CallOperandVal; | ||||
| 16417 | // If we don't have a value, we can't do a match, | ||||
| 16418 | // but allow it at the lowest weight. | ||||
| 16419 | if (!CallOperandVal) | ||||
| 16420 | return CW_Default; | ||||
| 16421 | Type *type = CallOperandVal->getType(); | ||||
| 16422 | |||||
| 16423 | // Look at the constraint type. | ||||
| 16424 | if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) | ||||
| 16425 | return CW_Register; // an individual CR bit. | ||||
| 16426 | else if ((StringRef(constraint) == "wa" || | ||||
| 16427 | StringRef(constraint) == "wd" || | ||||
| 16428 | StringRef(constraint) == "wf") && | ||||
| 16429 | type->isVectorTy()) | ||||
| 16430 | return CW_Register; | ||||
| 16431 | else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) | ||||
| 16432 | return CW_Register; // just hold 64-bit integers data. | ||||
| 16433 | else if (StringRef(constraint) == "ws" && type->isDoubleTy()) | ||||
| 16434 | return CW_Register; | ||||
| 16435 | else if (StringRef(constraint) == "ww" && type->isFloatTy()) | ||||
| 16436 | return CW_Register; | ||||
| 16437 | |||||
| 16438 | switch (*constraint) { | ||||
| 16439 | default: | ||||
| 16440 | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); | ||||
| 16441 | break; | ||||
| 16442 | case 'b': | ||||
| 16443 | if (type->isIntegerTy()) | ||||
| 16444 | weight = CW_Register; | ||||
| 16445 | break; | ||||
| 16446 | case 'f': | ||||
| 16447 | if (type->isFloatTy()) | ||||
| 16448 | weight = CW_Register; | ||||
| 16449 | break; | ||||
| 16450 | case 'd': | ||||
| 16451 | if (type->isDoubleTy()) | ||||
| 16452 | weight = CW_Register; | ||||
| 16453 | break; | ||||
| 16454 | case 'v': | ||||
| 16455 | if (type->isVectorTy()) | ||||
| 16456 | weight = CW_Register; | ||||
| 16457 | break; | ||||
| 16458 | case 'y': | ||||
| 16459 | weight = CW_Register; | ||||
| 16460 | break; | ||||
| 16461 | case 'Z': | ||||
| 16462 | weight = CW_Memory; | ||||
| 16463 | break; | ||||
| 16464 | } | ||||
| 16465 | return weight; | ||||
| 16466 | } | ||||
| 16467 | |||||
| 16468 | std::pair<unsigned, const TargetRegisterClass *> | ||||
| 16469 | PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, | ||||
| 16470 | StringRef Constraint, | ||||
| 16471 | MVT VT) const { | ||||
| 16472 | if (Constraint.size() == 1) { | ||||
| 16473 | // GCC RS6000 Constraint Letters | ||||
| 16474 | switch (Constraint[0]) { | ||||
| 16475 | case 'b': // R1-R31 | ||||
| 16476 | if (VT == MVT::i64 && Subtarget.isPPC64()) | ||||
| 16477 | return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); | ||||
| 16478 | return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); | ||||
| 16479 | case 'r': // R0-R31 | ||||
| 16480 | if (VT == MVT::i64 && Subtarget.isPPC64()) | ||||
| 16481 | return std::make_pair(0U, &PPC::G8RCRegClass); | ||||
| 16482 | return std::make_pair(0U, &PPC::GPRCRegClass); | ||||
| 16483 | // 'd' and 'f' constraints are both defined to be "the floating point | ||||
| 16484 | // registers", where one is for 32-bit and the other for 64-bit. We don't | ||||
| 16485 | // really care overly much here so just give them all the same reg classes. | ||||
| 16486 | case 'd': | ||||
| 16487 | case 'f': | ||||
| 16488 | if (Subtarget.hasSPE()) { | ||||
| 16489 | if (VT == MVT::f32 || VT == MVT::i32) | ||||
| 16490 | return std::make_pair(0U, &PPC::GPRCRegClass); | ||||
| 16491 | if (VT == MVT::f64 || VT == MVT::i64) | ||||
| 16492 | return std::make_pair(0U, &PPC::SPERCRegClass); | ||||
| 16493 | } else { | ||||
| 16494 | if (VT == MVT::f32 || VT == MVT::i32) | ||||
| 16495 | return std::make_pair(0U, &PPC::F4RCRegClass); | ||||
| 16496 | if (VT == MVT::f64 || VT == MVT::i64) | ||||
| 16497 | return std::make_pair(0U, &PPC::F8RCRegClass); | ||||
| 16498 | } | ||||
| 16499 | break; | ||||
| 16500 | case 'v': | ||||
| 16501 | if (Subtarget.hasAltivec() && VT.isVector()) | ||||
| 16502 | return std::make_pair(0U, &PPC::VRRCRegClass); | ||||
| 16503 | else if (Subtarget.hasVSX()) | ||||
| 16504 | // Scalars in Altivec registers only make sense with VSX. | ||||
| 16505 | return std::make_pair(0U, &PPC::VFRCRegClass); | ||||
| 16506 | break; | ||||
| 16507 | case 'y': // crrc | ||||
| 16508 | return std::make_pair(0U, &PPC::CRRCRegClass); | ||||
| 16509 | } | ||||
| 16510 | } else if (Constraint == "wc" && Subtarget.useCRBits()) { | ||||
| 16511 | // An individual CR bit. | ||||
| 16512 | return std::make_pair(0U, &PPC::CRBITRCRegClass); | ||||
| 16513 | } else if ((Constraint == "wa" || Constraint == "wd" || | ||||
| 16514 | Constraint == "wf" || Constraint == "wi") && | ||||
| 16515 | Subtarget.hasVSX()) { | ||||
| 16516 | // A VSX register for either a scalar (FP) or vector. There is no | ||||
| 16517 | // support for single precision scalars on subtargets prior to Power8. | ||||
| 16518 | if (VT.isVector()) | ||||
| 16519 | return std::make_pair(0U, &PPC::VSRCRegClass); | ||||
| 16520 | if (VT == MVT::f32 && Subtarget.hasP8Vector()) | ||||
| 16521 | return std::make_pair(0U, &PPC::VSSRCRegClass); | ||||
| 16522 | return std::make_pair(0U, &PPC::VSFRCRegClass); | ||||
| 16523 | } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { | ||||
| 16524 | if (VT == MVT::f32 && Subtarget.hasP8Vector()) | ||||
| 16525 | return std::make_pair(0U, &PPC::VSSRCRegClass); | ||||
| 16526 | else | ||||
| 16527 | return std::make_pair(0U, &PPC::VSFRCRegClass); | ||||
| 16528 | } else if (Constraint == "lr") { | ||||
| 16529 | if (VT == MVT::i64) | ||||
| 16530 | return std::make_pair(0U, &PPC::LR8RCRegClass); | ||||
| 16531 | else | ||||
| 16532 | return std::make_pair(0U, &PPC::LRRCRegClass); | ||||
| 16533 | } | ||||
| 16534 | |||||
| 16535 | // Handle special cases of physical registers that are not properly handled | ||||
| 16536 | // by the base class. | ||||
| 16537 | if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { | ||||
| 16538 | // If we name a VSX register, we can't defer to the base class because it | ||||
| 16539 | // will not recognize the correct register (their names will be VSL{0-31} | ||||
| 16540 | // and V{0-31} so they won't match). So we match them here. | ||||
| 16541 | if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { | ||||
| 16542 | int VSNum = atoi(Constraint.data() + 3); | ||||
| 16543 | assert(VSNum >= 0 && VSNum <= 63 &&(static_cast <bool> (VSNum >= 0 && VSNum <= 63 && "Attempted to access a vsr out of range") ? void (0) : __assert_fail ("VSNum >= 0 && VSNum <= 63 && \"Attempted to access a vsr out of range\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 16544, __extension__ __PRETTY_FUNCTION__)) | ||||
| 16544 | "Attempted to access a vsr out of range")(static_cast <bool> (VSNum >= 0 && VSNum <= 63 && "Attempted to access a vsr out of range") ? void (0) : __assert_fail ("VSNum >= 0 && VSNum <= 63 && \"Attempted to access a vsr out of range\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 16544, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16545 | if (VSNum < 32) | ||||
| 16546 | return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); | ||||
| 16547 | return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); | ||||
| 16548 | } | ||||
| 16549 | |||||
| 16550 | // For float registers, we can't defer to the base class as it will match | ||||
| 16551 | // the SPILLTOVSRRC class. | ||||
| 16552 | if (Constraint.size() > 3 && Constraint[1] == 'f') { | ||||
| 16553 | int RegNum = atoi(Constraint.data() + 2); | ||||
| 16554 | if (RegNum > 31 || RegNum < 0) | ||||
| 16555 | report_fatal_error("Invalid floating point register number"); | ||||
| 16556 | if (VT == MVT::f32 || VT == MVT::i32) | ||||
| 16557 | return Subtarget.hasSPE() | ||||
| 16558 | ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) | ||||
| 16559 | : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); | ||||
| 16560 | if (VT == MVT::f64 || VT == MVT::i64) | ||||
| 16561 | return Subtarget.hasSPE() | ||||
| 16562 | ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) | ||||
| 16563 | : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); | ||||
| 16564 | } | ||||
| 16565 | } | ||||
| 16566 | |||||
| 16567 | std::pair<unsigned, const TargetRegisterClass *> R = | ||||
| 16568 | TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | ||||
| 16569 | |||||
| 16570 | // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers | ||||
| 16571 | // (which we call X[0-9]+). If a 64-bit value has been requested, and a | ||||
| 16572 | // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent | ||||
| 16573 | // register. | ||||
| 16574 | // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use | ||||
| 16575 | // the AsmName field from *RegisterInfo.td, then this would not be necessary. | ||||
| 16576 | if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && | ||||
| 16577 | PPC::GPRCRegClass.contains(R.first)) | ||||
| 16578 | return std::make_pair(TRI->getMatchingSuperReg(R.first, | ||||
| 16579 | PPC::sub_32, &PPC::G8RCRegClass), | ||||
| 16580 | &PPC::G8RCRegClass); | ||||
| 16581 | |||||
| 16582 | // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. | ||||
| 16583 | if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { | ||||
| 16584 | R.first = PPC::CR0; | ||||
| 16585 | R.second = &PPC::CRRCRegClass; | ||||
| 16586 | } | ||||
| 16587 | // FIXME: This warning should ideally be emitted in the front end. | ||||
| 16588 | const auto &TM = getTargetMachine(); | ||||
| 16589 | if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { | ||||
| 16590 | if (((R.first >= PPC::V20 && R.first <= PPC::V31) || | ||||
| 16591 | (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && | ||||
| 16592 | (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) | ||||
| 16593 | errs() << "warning: vector registers 20 to 32 are reserved in the " | ||||
| 16594 | "default AIX AltiVec ABI and cannot be used\n"; | ||||
| 16595 | } | ||||
| 16596 | |||||
| 16597 | return R; | ||||
| 16598 | } | ||||
| 16599 | |||||
| 16600 | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | ||||
| 16601 | /// vector. If it is invalid, don't add anything to Ops. | ||||
| 16602 | void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, | ||||
| 16603 | std::string &Constraint, | ||||
| 16604 | std::vector<SDValue>&Ops, | ||||
| 16605 | SelectionDAG &DAG) const { | ||||
| 16606 | SDValue Result; | ||||
| 16607 | |||||
| 16608 | // Only support length 1 constraints. | ||||
| 16609 | if (Constraint.length() > 1) return; | ||||
| 16610 | |||||
| 16611 | char Letter = Constraint[0]; | ||||
| 16612 | switch (Letter) { | ||||
| 16613 | default: break; | ||||
| 16614 | case 'I': | ||||
| 16615 | case 'J': | ||||
| 16616 | case 'K': | ||||
| 16617 | case 'L': | ||||
| 16618 | case 'M': | ||||
| 16619 | case 'N': | ||||
| 16620 | case 'O': | ||||
| 16621 | case 'P': { | ||||
| 16622 | ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); | ||||
| 16623 | if (!CST) return; // Must be an immediate to match. | ||||
| 16624 | SDLoc dl(Op); | ||||
| 16625 | int64_t Value = CST->getSExtValue(); | ||||
| 16626 | EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative | ||||
| 16627 | // numbers are printed as such. | ||||
| 16628 | switch (Letter) { | ||||
| 16629 | default: llvm_unreachable("Unknown constraint letter!")::llvm::llvm_unreachable_internal("Unknown constraint letter!" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 16629); | ||||
| 16630 | case 'I': // "I" is a signed 16-bit constant. | ||||
| 16631 | if (isInt<16>(Value)) | ||||
| 16632 | Result = DAG.getTargetConstant(Value, dl, TCVT); | ||||
| 16633 | break; | ||||
| 16634 | case 'J': // "J" is a constant with only the high-order 16 bits nonzero. | ||||
| 16635 | if (isShiftedUInt<16, 16>(Value)) | ||||
| 16636 | Result = DAG.getTargetConstant(Value, dl, TCVT); | ||||
| 16637 | break; | ||||
| 16638 | case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. | ||||
| 16639 | if (isShiftedInt<16, 16>(Value)) | ||||
| 16640 | Result = DAG.getTargetConstant(Value, dl, TCVT); | ||||
| 16641 | break; | ||||
| 16642 | case 'K': // "K" is a constant with only the low-order 16 bits nonzero. | ||||
| 16643 | if (isUInt<16>(Value)) | ||||
| 16644 | Result = DAG.getTargetConstant(Value, dl, TCVT); | ||||
| 16645 | break; | ||||
| 16646 | case 'M': // "M" is a constant that is greater than 31. | ||||
| 16647 | if (Value > 31) | ||||
| 16648 | Result = DAG.getTargetConstant(Value, dl, TCVT); | ||||
| 16649 | break; | ||||
| 16650 | case 'N': // "N" is a positive constant that is an exact power of two. | ||||
| 16651 | if (Value > 0 && isPowerOf2_64(Value)) | ||||
| 16652 | Result = DAG.getTargetConstant(Value, dl, TCVT); | ||||
| 16653 | break; | ||||
| 16654 | case 'O': // "O" is the constant zero. | ||||
| 16655 | if (Value == 0) | ||||
| 16656 | Result = DAG.getTargetConstant(Value, dl, TCVT); | ||||
| 16657 | break; | ||||
| 16658 | case 'P': // "P" is a constant whose negation is a signed 16-bit constant. | ||||
| 16659 | if (isInt<16>(-Value)) | ||||
| 16660 | Result = DAG.getTargetConstant(Value, dl, TCVT); | ||||
| 16661 | break; | ||||
| 16662 | } | ||||
| 16663 | break; | ||||
| 16664 | } | ||||
| 16665 | } | ||||
| 16666 | |||||
| 16667 | if (Result.getNode()) { | ||||
| 16668 | Ops.push_back(Result); | ||||
| 16669 | return; | ||||
| 16670 | } | ||||
| 16671 | |||||
| 16672 | // Handle standard constraint letters. | ||||
| 16673 | TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | ||||
| 16674 | } | ||||
| 16675 | |||||
| 16676 | void PPCTargetLowering::CollectTargetIntrinsicOperands(const CallInst &I, | ||||
| 16677 | SmallVectorImpl<SDValue> &Ops, | ||||
| 16678 | SelectionDAG &DAG) const { | ||||
| 16679 | if (I.getNumOperands() <= 1) | ||||
| 16680 | return; | ||||
| 16681 | if (!isa<ConstantSDNode>(Ops[1].getNode())) | ||||
| 16682 | return; | ||||
| 16683 | auto IntrinsicID = cast<ConstantSDNode>(Ops[1].getNode())->getZExtValue(); | ||||
| 16684 | if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw && | ||||
| 16685 | IntrinsicID != Intrinsic::ppc_trapd && IntrinsicID != Intrinsic::ppc_trap) | ||||
| 16686 | return; | ||||
| 16687 | |||||
| 16688 | if (I.hasMetadata("annotation")) { | ||||
| 16689 | MDNode *MDN = I.getMetadata("annotation"); | ||||
| 16690 | Ops.push_back(DAG.getMDNode(MDN)); | ||||
| 16691 | } | ||||
| 16692 | } | ||||
| 16693 | |||||
| 16694 | // isLegalAddressingMode - Return true if the addressing mode represented | ||||
| 16695 | // by AM is legal for this target, for a load/store of the specified type. | ||||
| 16696 | bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, | ||||
| 16697 | const AddrMode &AM, Type *Ty, | ||||
| 16698 | unsigned AS, | ||||
| 16699 | Instruction *I) const { | ||||
| 16700 | // Vector type r+i form is supported since power9 as DQ form. We don't check | ||||
| 16701 | // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, | ||||
| 16702 | // imm form is preferred and the offset can be adjusted to use imm form later | ||||
| 16703 | // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and | ||||
| 16704 | // max offset to check legal addressing mode, we should be a little aggressive | ||||
| 16705 | // to contain other offsets for that LSRUse. | ||||
| 16706 | if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) | ||||
| 16707 | return false; | ||||
| 16708 | |||||
| 16709 | // PPC allows a sign-extended 16-bit immediate field. | ||||
| 16710 | if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) | ||||
| 16711 | return false; | ||||
| 16712 | |||||
| 16713 | // No global is ever allowed as a base. | ||||
| 16714 | if (AM.BaseGV) | ||||
| 16715 | return false; | ||||
| 16716 | |||||
| 16717 | // PPC only support r+r, | ||||
| 16718 | switch (AM.Scale) { | ||||
| 16719 | case 0: // "r+i" or just "i", depending on HasBaseReg. | ||||
| 16720 | break; | ||||
| 16721 | case 1: | ||||
| 16722 | if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. | ||||
| 16723 | return false; | ||||
| 16724 | // Otherwise we have r+r or r+i. | ||||
| 16725 | break; | ||||
| 16726 | case 2: | ||||
| 16727 | if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. | ||||
| 16728 | return false; | ||||
| 16729 | // Allow 2*r as r+r. | ||||
| 16730 | break; | ||||
| 16731 | default: | ||||
| 16732 | // No other scales are supported. | ||||
| 16733 | return false; | ||||
| 16734 | } | ||||
| 16735 | |||||
| 16736 | return true; | ||||
| 16737 | } | ||||
| 16738 | |||||
| 16739 | SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, | ||||
| 16740 | SelectionDAG &DAG) const { | ||||
| 16741 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 16742 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 16743 | MFI.setReturnAddressIsTaken(true); | ||||
| 16744 | |||||
| 16745 | if (verifyReturnAddressArgumentIsConstant(Op, DAG)) | ||||
| 16746 | return SDValue(); | ||||
| 16747 | |||||
| 16748 | SDLoc dl(Op); | ||||
| 16749 | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | ||||
| 16750 | |||||
| 16751 | // Make sure the function does not optimize away the store of the RA to | ||||
| 16752 | // the stack. | ||||
| 16753 | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | ||||
| 16754 | FuncInfo->setLRStoreRequired(); | ||||
| 16755 | bool isPPC64 = Subtarget.isPPC64(); | ||||
| 16756 | auto PtrVT = getPointerTy(MF.getDataLayout()); | ||||
| 16757 | |||||
| 16758 | if (Depth > 0) { | ||||
| 16759 | // The link register (return address) is saved in the caller's frame | ||||
| 16760 | // not the callee's stack frame. So we must get the caller's frame | ||||
| 16761 | // address and load the return address at the LR offset from there. | ||||
| 16762 | SDValue FrameAddr = | ||||
| 16763 | DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), | ||||
| 16764 | LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); | ||||
| 16765 | SDValue Offset = | ||||
| 16766 | DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, | ||||
| 16767 | isPPC64 ? MVT::i64 : MVT::i32); | ||||
| 16768 | return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), | ||||
| 16769 | DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), | ||||
| 16770 | MachinePointerInfo()); | ||||
| 16771 | } | ||||
| 16772 | |||||
| 16773 | // Just load the return address off the stack. | ||||
| 16774 | SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); | ||||
| 16775 | return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, | ||||
| 16776 | MachinePointerInfo()); | ||||
| 16777 | } | ||||
| 16778 | |||||
| 16779 | SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, | ||||
| 16780 | SelectionDAG &DAG) const { | ||||
| 16781 | SDLoc dl(Op); | ||||
| 16782 | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | ||||
| 16783 | |||||
| 16784 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 16785 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 16786 | MFI.setFrameAddressIsTaken(true); | ||||
| 16787 | |||||
| 16788 | EVT PtrVT = getPointerTy(MF.getDataLayout()); | ||||
| 16789 | bool isPPC64 = PtrVT == MVT::i64; | ||||
| 16790 | |||||
| 16791 | // Naked functions never have a frame pointer, and so we use r1. For all | ||||
| 16792 | // other functions, this decision must be delayed until during PEI. | ||||
| 16793 | unsigned FrameReg; | ||||
| 16794 | if (MF.getFunction().hasFnAttribute(Attribute::Naked)) | ||||
| 16795 | FrameReg = isPPC64 ? PPC::X1 : PPC::R1; | ||||
| 16796 | else | ||||
| 16797 | FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; | ||||
| 16798 | |||||
| 16799 | SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, | ||||
| 16800 | PtrVT); | ||||
| 16801 | while (Depth--) | ||||
| 16802 | FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), | ||||
| 16803 | FrameAddr, MachinePointerInfo()); | ||||
| 16804 | return FrameAddr; | ||||
| 16805 | } | ||||
| 16806 | |||||
| 16807 | // FIXME? Maybe this could be a TableGen attribute on some registers and | ||||
| 16808 | // this table could be generated automatically from RegInfo. | ||||
| 16809 | Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, | ||||
| 16810 | const MachineFunction &MF) const { | ||||
| 16811 | bool isPPC64 = Subtarget.isPPC64(); | ||||
| 16812 | |||||
| 16813 | bool is64Bit = isPPC64 && VT == LLT::scalar(64); | ||||
| 16814 | if (!is64Bit && VT != LLT::scalar(32)) | ||||
| 16815 | report_fatal_error("Invalid register global variable type"); | ||||
| 16816 | |||||
| 16817 | Register Reg = StringSwitch<Register>(RegName) | ||||
| 16818 | .Case("r1", is64Bit ? PPC::X1 : PPC::R1) | ||||
| 16819 | .Case("r2", isPPC64 ? Register() : PPC::R2) | ||||
| 16820 | .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) | ||||
| 16821 | .Default(Register()); | ||||
| 16822 | |||||
| 16823 | if (Reg) | ||||
| 16824 | return Reg; | ||||
| 16825 | report_fatal_error("Invalid register name global variable"); | ||||
| 16826 | } | ||||
| 16827 | |||||
| 16828 | bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { | ||||
| 16829 | // 32-bit SVR4 ABI access everything as got-indirect. | ||||
| 16830 | if (Subtarget.is32BitELFABI()) | ||||
| 16831 | return true; | ||||
| 16832 | |||||
| 16833 | // AIX accesses everything indirectly through the TOC, which is similar to | ||||
| 16834 | // the GOT. | ||||
| 16835 | if (Subtarget.isAIXABI()) | ||||
| 16836 | return true; | ||||
| 16837 | |||||
| 16838 | CodeModel::Model CModel = getTargetMachine().getCodeModel(); | ||||
| 16839 | // If it is small or large code model, module locals are accessed | ||||
| 16840 | // indirectly by loading their address from .toc/.got. | ||||
| 16841 | if (CModel == CodeModel::Small || CModel == CodeModel::Large) | ||||
| 16842 | return true; | ||||
| 16843 | |||||
| 16844 | // JumpTable and BlockAddress are accessed as got-indirect. | ||||
| 16845 | if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) | ||||
| 16846 | return true; | ||||
| 16847 | |||||
| 16848 | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) | ||||
| 16849 | return Subtarget.isGVIndirectSymbol(G->getGlobal()); | ||||
| 16850 | |||||
| 16851 | return false; | ||||
| 16852 | } | ||||
| 16853 | |||||
| 16854 | bool | ||||
| 16855 | PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | ||||
| 16856 | // The PowerPC target isn't yet aware of offsets. | ||||
| 16857 | return false; | ||||
| 16858 | } | ||||
| 16859 | |||||
| 16860 | bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, | ||||
| 16861 | const CallInst &I, | ||||
| 16862 | MachineFunction &MF, | ||||
| 16863 | unsigned Intrinsic) const { | ||||
| 16864 | switch (Intrinsic) { | ||||
| 16865 | case Intrinsic::ppc_atomicrmw_xchg_i128: | ||||
| 16866 | case Intrinsic::ppc_atomicrmw_add_i128: | ||||
| 16867 | case Intrinsic::ppc_atomicrmw_sub_i128: | ||||
| 16868 | case Intrinsic::ppc_atomicrmw_nand_i128: | ||||
| 16869 | case Intrinsic::ppc_atomicrmw_and_i128: | ||||
| 16870 | case Intrinsic::ppc_atomicrmw_or_i128: | ||||
| 16871 | case Intrinsic::ppc_atomicrmw_xor_i128: | ||||
| 16872 | case Intrinsic::ppc_cmpxchg_i128: | ||||
| 16873 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 16874 | Info.memVT = MVT::i128; | ||||
| 16875 | Info.ptrVal = I.getArgOperand(0); | ||||
| 16876 | Info.offset = 0; | ||||
| 16877 | Info.align = Align(16); | ||||
| 16878 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | | ||||
| 16879 | MachineMemOperand::MOVolatile; | ||||
| 16880 | return true; | ||||
| 16881 | case Intrinsic::ppc_atomic_load_i128: | ||||
| 16882 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 16883 | Info.memVT = MVT::i128; | ||||
| 16884 | Info.ptrVal = I.getArgOperand(0); | ||||
| 16885 | Info.offset = 0; | ||||
| 16886 | Info.align = Align(16); | ||||
| 16887 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; | ||||
| 16888 | return true; | ||||
| 16889 | case Intrinsic::ppc_atomic_store_i128: | ||||
| 16890 | Info.opc = ISD::INTRINSIC_VOID; | ||||
| 16891 | Info.memVT = MVT::i128; | ||||
| 16892 | Info.ptrVal = I.getArgOperand(2); | ||||
| 16893 | Info.offset = 0; | ||||
| 16894 | Info.align = Align(16); | ||||
| 16895 | Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; | ||||
| 16896 | return true; | ||||
| 16897 | case Intrinsic::ppc_altivec_lvx: | ||||
| 16898 | case Intrinsic::ppc_altivec_lvxl: | ||||
| 16899 | case Intrinsic::ppc_altivec_lvebx: | ||||
| 16900 | case Intrinsic::ppc_altivec_lvehx: | ||||
| 16901 | case Intrinsic::ppc_altivec_lvewx: | ||||
| 16902 | case Intrinsic::ppc_vsx_lxvd2x: | ||||
| 16903 | case Intrinsic::ppc_vsx_lxvw4x: | ||||
| 16904 | case Intrinsic::ppc_vsx_lxvd2x_be: | ||||
| 16905 | case Intrinsic::ppc_vsx_lxvw4x_be: | ||||
| 16906 | case Intrinsic::ppc_vsx_lxvl: | ||||
| 16907 | case Intrinsic::ppc_vsx_lxvll: { | ||||
| 16908 | EVT VT; | ||||
| 16909 | switch (Intrinsic) { | ||||
| 16910 | case Intrinsic::ppc_altivec_lvebx: | ||||
| 16911 | VT = MVT::i8; | ||||
| 16912 | break; | ||||
| 16913 | case Intrinsic::ppc_altivec_lvehx: | ||||
| 16914 | VT = MVT::i16; | ||||
| 16915 | break; | ||||
| 16916 | case Intrinsic::ppc_altivec_lvewx: | ||||
| 16917 | VT = MVT::i32; | ||||
| 16918 | break; | ||||
| 16919 | case Intrinsic::ppc_vsx_lxvd2x: | ||||
| 16920 | case Intrinsic::ppc_vsx_lxvd2x_be: | ||||
| 16921 | VT = MVT::v2f64; | ||||
| 16922 | break; | ||||
| 16923 | default: | ||||
| 16924 | VT = MVT::v4i32; | ||||
| 16925 | break; | ||||
| 16926 | } | ||||
| 16927 | |||||
| 16928 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 16929 | Info.memVT = VT; | ||||
| 16930 | Info.ptrVal = I.getArgOperand(0); | ||||
| 16931 | Info.offset = -VT.getStoreSize()+1; | ||||
| 16932 | Info.size = 2*VT.getStoreSize()-1; | ||||
| 16933 | Info.align = Align(1); | ||||
| 16934 | Info.flags = MachineMemOperand::MOLoad; | ||||
| 16935 | return true; | ||||
| 16936 | } | ||||
| 16937 | case Intrinsic::ppc_altivec_stvx: | ||||
| 16938 | case Intrinsic::ppc_altivec_stvxl: | ||||
| 16939 | case Intrinsic::ppc_altivec_stvebx: | ||||
| 16940 | case Intrinsic::ppc_altivec_stvehx: | ||||
| 16941 | case Intrinsic::ppc_altivec_stvewx: | ||||
| 16942 | case Intrinsic::ppc_vsx_stxvd2x: | ||||
| 16943 | case Intrinsic::ppc_vsx_stxvw4x: | ||||
| 16944 | case Intrinsic::ppc_vsx_stxvd2x_be: | ||||
| 16945 | case Intrinsic::ppc_vsx_stxvw4x_be: | ||||
| 16946 | case Intrinsic::ppc_vsx_stxvl: | ||||
| 16947 | case Intrinsic::ppc_vsx_stxvll: { | ||||
| 16948 | EVT VT; | ||||
| 16949 | switch (Intrinsic) { | ||||
| 16950 | case Intrinsic::ppc_altivec_stvebx: | ||||
| 16951 | VT = MVT::i8; | ||||
| 16952 | break; | ||||
| 16953 | case Intrinsic::ppc_altivec_stvehx: | ||||
| 16954 | VT = MVT::i16; | ||||
| 16955 | break; | ||||
| 16956 | case Intrinsic::ppc_altivec_stvewx: | ||||
| 16957 | VT = MVT::i32; | ||||
| 16958 | break; | ||||
| 16959 | case Intrinsic::ppc_vsx_stxvd2x: | ||||
| 16960 | case Intrinsic::ppc_vsx_stxvd2x_be: | ||||
| 16961 | VT = MVT::v2f64; | ||||
| 16962 | break; | ||||
| 16963 | default: | ||||
| 16964 | VT = MVT::v4i32; | ||||
| 16965 | break; | ||||
| 16966 | } | ||||
| 16967 | |||||
| 16968 | Info.opc = ISD::INTRINSIC_VOID; | ||||
| 16969 | Info.memVT = VT; | ||||
| 16970 | Info.ptrVal = I.getArgOperand(1); | ||||
| 16971 | Info.offset = -VT.getStoreSize()+1; | ||||
| 16972 | Info.size = 2*VT.getStoreSize()-1; | ||||
| 16973 | Info.align = Align(1); | ||||
| 16974 | Info.flags = MachineMemOperand::MOStore; | ||||
| 16975 | return true; | ||||
| 16976 | } | ||||
| 16977 | case Intrinsic::ppc_stdcx: | ||||
| 16978 | case Intrinsic::ppc_stwcx: | ||||
| 16979 | case Intrinsic::ppc_sthcx: | ||||
| 16980 | case Intrinsic::ppc_stbcx: { | ||||
| 16981 | EVT VT; | ||||
| 16982 | auto Alignment = Align(8); | ||||
| 16983 | switch (Intrinsic) { | ||||
| 16984 | case Intrinsic::ppc_stdcx: | ||||
| 16985 | VT = MVT::i64; | ||||
| 16986 | break; | ||||
| 16987 | case Intrinsic::ppc_stwcx: | ||||
| 16988 | VT = MVT::i32; | ||||
| 16989 | Alignment = Align(4); | ||||
| 16990 | break; | ||||
| 16991 | case Intrinsic::ppc_sthcx: | ||||
| 16992 | VT = MVT::i16; | ||||
| 16993 | Alignment = Align(2); | ||||
| 16994 | break; | ||||
| 16995 | case Intrinsic::ppc_stbcx: | ||||
| 16996 | VT = MVT::i8; | ||||
| 16997 | Alignment = Align(1); | ||||
| 16998 | break; | ||||
| 16999 | } | ||||
| 17000 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 17001 | Info.memVT = VT; | ||||
| 17002 | Info.ptrVal = I.getArgOperand(0); | ||||
| 17003 | Info.offset = 0; | ||||
| 17004 | Info.align = Alignment; | ||||
| 17005 | Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; | ||||
| 17006 | return true; | ||||
| 17007 | } | ||||
| 17008 | default: | ||||
| 17009 | break; | ||||
| 17010 | } | ||||
| 17011 | |||||
| 17012 | return false; | ||||
| 17013 | } | ||||
| 17014 | |||||
| 17015 | /// It returns EVT::Other if the type should be determined using generic | ||||
| 17016 | /// target-independent logic. | ||||
| 17017 | EVT PPCTargetLowering::getOptimalMemOpType( | ||||
| 17018 | const MemOp &Op, const AttributeList &FuncAttributes) const { | ||||
| 17019 | if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { | ||||
| 17020 | // We should use Altivec/VSX loads and stores when available. For unaligned | ||||
| 17021 | // addresses, unaligned VSX loads are only fast starting with the P8. | ||||
| 17022 | if (Subtarget.hasAltivec() && Op.size() >= 16 && | ||||
| 17023 | (Op.isAligned(Align(16)) || | ||||
| 17024 | ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) | ||||
| 17025 | return MVT::v4i32; | ||||
| 17026 | } | ||||
| 17027 | |||||
| 17028 | if (Subtarget.isPPC64()) { | ||||
| 17029 | return MVT::i64; | ||||
| 17030 | } | ||||
| 17031 | |||||
| 17032 | return MVT::i32; | ||||
| 17033 | } | ||||
| 17034 | |||||
| 17035 | /// Returns true if it is beneficial to convert a load of a constant | ||||
| 17036 | /// to just the constant itself. | ||||
| 17037 | bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, | ||||
| 17038 | Type *Ty) const { | ||||
| 17039 | assert(Ty->isIntegerTy())(static_cast <bool> (Ty->isIntegerTy()) ? void (0) : __assert_fail ("Ty->isIntegerTy()", "llvm/lib/Target/PowerPC/PPCISelLowering.cpp" , 17039, __extension__ __PRETTY_FUNCTION__)); | ||||
| 17040 | |||||
| 17041 | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | ||||
| 17042 | return !(BitSize == 0 || BitSize > 64); | ||||
| 17043 | } | ||||
| 17044 | |||||
| 17045 | bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { | ||||
| 17046 | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | ||||
| 17047 | return false; | ||||
| 17048 | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); | ||||
| 17049 | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); | ||||
| 17050 | return NumBits1 == 64 && NumBits2 == 32; | ||||
| 17051 | } | ||||
| 17052 | |||||
| 17053 | bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { | ||||
| 17054 | if (!VT1.isInteger() || !VT2.isInteger()) | ||||
| 17055 | return false; | ||||
| 17056 | unsigned NumBits1 = VT1.getSizeInBits(); | ||||
| 17057 | unsigned NumBits2 = VT2.getSizeInBits(); | ||||
| 17058 | return NumBits1 == 64 && NumBits2 == 32; | ||||
| 17059 | } | ||||
| 17060 | |||||
| 17061 | bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { | ||||
| 17062 | // Generally speaking, zexts are not free, but they are free when they can be | ||||
| 17063 | // folded with other operations. | ||||
| 17064 | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { | ||||
| 17065 | EVT MemVT = LD->getMemoryVT(); | ||||
| 17066 | if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || | ||||
| 17067 | (Subtarget.isPPC64() && MemVT == MVT::i32)) && | ||||
| 17068 | (LD->getExtensionType() == ISD::NON_EXTLOAD || | ||||
| 17069 | LD->getExtensionType() == ISD::ZEXTLOAD)) | ||||
| 17070 | return true; | ||||
| 17071 | } | ||||
| 17072 | |||||
| 17073 | // FIXME: Add other cases... | ||||
| 17074 | // - 32-bit shifts with a zext to i64 | ||||
| 17075 | // - zext after ctlz, bswap, etc. | ||||
| 17076 | // - zext after and by a constant mask | ||||
| 17077 | |||||
| 17078 | return TargetLowering::isZExtFree(Val, VT2); | ||||
| 17079 | } | ||||
| 17080 | |||||
| 17081 | bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { | ||||
| 17082 | assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&(static_cast <bool> (DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && "invalid fpext types") ? void (0) : __assert_fail ("DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && \"invalid fpext types\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 17083, __extension__ __PRETTY_FUNCTION__)) | ||||
| 17083 | "invalid fpext types")(static_cast <bool> (DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && "invalid fpext types") ? void (0) : __assert_fail ("DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && \"invalid fpext types\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 17083, __extension__ __PRETTY_FUNCTION__)); | ||||
| 17084 | // Extending to float128 is not free. | ||||
| 17085 | if (DestVT == MVT::f128) | ||||
| 17086 | return false; | ||||
| 17087 | return true; | ||||
| 17088 | } | ||||
| 17089 | |||||
| 17090 | bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { | ||||
| 17091 | return isInt<16>(Imm) || isUInt<16>(Imm); | ||||
| 17092 | } | ||||
| 17093 | |||||
| 17094 | bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { | ||||
| 17095 | return isInt<16>(Imm) || isUInt<16>(Imm); | ||||
| 17096 | } | ||||
| 17097 | |||||
| 17098 | bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, | ||||
| 17099 | MachineMemOperand::Flags, | ||||
| 17100 | unsigned *Fast) const { | ||||
| 17101 | if (DisablePPCUnaligned) | ||||
| 17102 | return false; | ||||
| 17103 | |||||
| 17104 | // PowerPC supports unaligned memory access for simple non-vector types. | ||||
| 17105 | // Although accessing unaligned addresses is not as efficient as accessing | ||||
| 17106 | // aligned addresses, it is generally more efficient than manual expansion, | ||||
| 17107 | // and generally only traps for software emulation when crossing page | ||||
| 17108 | // boundaries. | ||||
| 17109 | |||||
| 17110 | if (!VT.isSimple()) | ||||
| 17111 | return false; | ||||
| 17112 | |||||
| 17113 | if (VT.isFloatingPoint() && !VT.isVector() && | ||||
| 17114 | !Subtarget.allowsUnalignedFPAccess()) | ||||
| 17115 | return false; | ||||
| 17116 | |||||
| 17117 | if (VT.getSimpleVT().isVector()) { | ||||
| 17118 | if (Subtarget.hasVSX()) { | ||||
| 17119 | if (VT != MVT::v2f64 && VT != MVT::v2i64 && | ||||
| 17120 | VT != MVT::v4f32 && VT != MVT::v4i32) | ||||
| 17121 | return false; | ||||
| 17122 | } else { | ||||
| 17123 | return false; | ||||
| 17124 | } | ||||
| 17125 | } | ||||
| 17126 | |||||
| 17127 | if (VT == MVT::ppcf128) | ||||
| 17128 | return false; | ||||
| 17129 | |||||
| 17130 | if (Fast) | ||||
| 17131 | *Fast = 1; | ||||
| 17132 | |||||
| 17133 | return true; | ||||
| 17134 | } | ||||
| 17135 | |||||
| 17136 | bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, | ||||
| 17137 | SDValue C) const { | ||||
| 17138 | // Check integral scalar types. | ||||
| 17139 | if (!VT.isScalarInteger()) | ||||
| |||||
| 17140 | return false; | ||||
| 17141 | if (auto *ConstNode
| ||||
| 17142 | if (!ConstNode->getAPIntValue().isSignedIntN(64)) | ||||
| 17143 | return false; | ||||
| 17144 | // This transformation will generate >= 2 operations. But the following | ||||
| 17145 | // cases will generate <= 2 instructions during ISEL. So exclude them. | ||||
| 17146 | // 1. If the constant multiplier fits 16 bits, it can be handled by one | ||||
| 17147 | // HW instruction, ie. MULLI | ||||
| 17148 | // 2. If the multiplier after shifted fits 16 bits, an extra shift | ||||
| 17149 | // instruction is needed than case 1, ie. MULLI and RLDICR | ||||
| 17150 | int64_t Imm = ConstNode->getSExtValue(); | ||||
| 17151 | unsigned Shift = llvm::countr_zero<uint64_t>(Imm); | ||||
| 17152 | Imm >>= Shift; | ||||
| |||||
| 17153 | if (isInt<16>(Imm)) | ||||
| 17154 | return false; | ||||
| 17155 | uint64_t UImm = static_cast<uint64_t>(Imm); | ||||
| 17156 | if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || | ||||
| 17157 | isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) | ||||
| 17158 | return true; | ||||
| 17159 | } | ||||
| 17160 | return false; | ||||
| 17161 | } | ||||
| 17162 | |||||
| 17163 | bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, | ||||
| 17164 | EVT VT) const { | ||||
| 17165 | return isFMAFasterThanFMulAndFAdd( | ||||
| 17166 | MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); | ||||
| 17167 | } | ||||
| 17168 | |||||
| 17169 | bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, | ||||
| 17170 | Type *Ty) const { | ||||
| 17171 | if (Subtarget.hasSPE()) | ||||
| 17172 | return false; | ||||
| 17173 | switch (Ty->getScalarType()->getTypeID()) { | ||||
| 17174 | case Type::FloatTyID: | ||||
| 17175 | case Type::DoubleTyID: | ||||
| 17176 | return true; | ||||
| 17177 | case Type::FP128TyID: | ||||
| 17178 | return Subtarget.hasP9Vector(); | ||||
| 17179 | default: | ||||
| 17180 | return false; | ||||
| 17181 | } | ||||
| 17182 | } | ||||
| 17183 | |||||
| 17184 | // FIXME: add more patterns which are not profitable to hoist. | ||||
| 17185 | bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { | ||||
| 17186 | if (!I->hasOneUse()) | ||||
| 17187 | return true; | ||||
| 17188 | |||||
| 17189 | Instruction *User = I->user_back(); | ||||
| 17190 | assert(User && "A single use instruction with no uses.")(static_cast <bool> (User && "A single use instruction with no uses." ) ? void (0) : __assert_fail ("User && \"A single use instruction with no uses.\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 17190, __extension__ __PRETTY_FUNCTION__)); | ||||
| 17191 | |||||
| 17192 | switch (I->getOpcode()) { | ||||
| 17193 | case Instruction::FMul: { | ||||
| 17194 | // Don't break FMA, PowerPC prefers FMA. | ||||
| 17195 | if (User->getOpcode() != Instruction::FSub && | ||||
| 17196 | User->getOpcode() != Instruction::FAdd) | ||||
| 17197 | return true; | ||||
| 17198 | |||||
| 17199 | const TargetOptions &Options = getTargetMachine().Options; | ||||
| 17200 | const Function *F = I->getFunction(); | ||||
| 17201 | const DataLayout &DL = F->getParent()->getDataLayout(); | ||||
| 17202 | Type *Ty = User->getOperand(0)->getType(); | ||||
| 17203 | |||||
| 17204 | return !( | ||||
| 17205 | isFMAFasterThanFMulAndFAdd(*F, Ty) && | ||||
| 17206 | isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && | ||||
| 17207 | (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); | ||||
| 17208 | } | ||||
| 17209 | case Instruction::Load: { | ||||
| 17210 | // Don't break "store (load float*)" pattern, this pattern will be combined | ||||
| 17211 | // to "store (load int32)" in later InstCombine pass. See function | ||||
| 17212 | // combineLoadToOperationType. On PowerPC, loading a float point takes more | ||||
| 17213 | // cycles than loading a 32 bit integer. | ||||
| 17214 | LoadInst *LI = cast<LoadInst>(I); | ||||
| 17215 | // For the loads that combineLoadToOperationType does nothing, like | ||||
| 17216 | // ordered load, it should be profitable to hoist them. | ||||
| 17217 | // For swifterror load, it can only be used for pointer to pointer type, so | ||||
| 17218 | // later type check should get rid of this case. | ||||
| 17219 | if (!LI->isUnordered()) | ||||
| 17220 | return true; | ||||
| 17221 | |||||
| 17222 | if (User->getOpcode() != Instruction::Store) | ||||
| 17223 | return true; | ||||
| 17224 | |||||
| 17225 | if (I->getType()->getTypeID() != Type::FloatTyID) | ||||
| 17226 | return true; | ||||
| 17227 | |||||
| 17228 | return false; | ||||
| 17229 | } | ||||
| 17230 | default: | ||||
| 17231 | return true; | ||||
| 17232 | } | ||||
| 17233 | return true; | ||||
| 17234 | } | ||||
| 17235 | |||||
| 17236 | const MCPhysReg * | ||||
| 17237 | PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { | ||||
| 17238 | // LR is a callee-save register, but we must treat it as clobbered by any call | ||||
| 17239 | // site. Hence we include LR in the scratch registers, which are in turn added | ||||
| 17240 | // as implicit-defs for stackmaps and patchpoints. The same reasoning applies | ||||
| 17241 | // to CTR, which is used by any indirect call. | ||||
| 17242 | static const MCPhysReg ScratchRegs[] = { | ||||
| 17243 | PPC::X12, PPC::LR8, PPC::CTR8, 0 | ||||
| 17244 | }; | ||||
| 17245 | |||||
| 17246 | return ScratchRegs; | ||||
| 17247 | } | ||||
| 17248 | |||||
| 17249 | Register PPCTargetLowering::getExceptionPointerRegister( | ||||
| 17250 | const Constant *PersonalityFn) const { | ||||
| 17251 | return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; | ||||
| 17252 | } | ||||
| 17253 | |||||
| 17254 | Register PPCTargetLowering::getExceptionSelectorRegister( | ||||
| 17255 | const Constant *PersonalityFn) const { | ||||
| 17256 | return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; | ||||
| 17257 | } | ||||
| 17258 | |||||
| 17259 | bool | ||||
| 17260 | PPCTargetLowering::shouldExpandBuildVectorWithShuffles( | ||||
| 17261 | EVT VT , unsigned DefinedValues) const { | ||||
| 17262 | if (VT == MVT::v2i64) | ||||
| 17263 | return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves | ||||
| 17264 | |||||
| 17265 | if (Subtarget.hasVSX()) | ||||
| 17266 | return true; | ||||
| 17267 | |||||
| 17268 | return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); | ||||
| 17269 | } | ||||
| 17270 | |||||
| 17271 | Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { | ||||
| 17272 | if (DisableILPPref || Subtarget.enableMachineScheduler()) | ||||
| 17273 | return TargetLowering::getSchedulingPreference(N); | ||||
| 17274 | |||||
| 17275 | return Sched::ILP; | ||||
| 17276 | } | ||||
| 17277 | |||||
| 17278 | // Create a fast isel object. | ||||
| 17279 | FastISel * | ||||
| 17280 | PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, | ||||
| 17281 | const TargetLibraryInfo *LibInfo) const { | ||||
| 17282 | return PPC::createFastISel(FuncInfo, LibInfo); | ||||
| 17283 | } | ||||
| 17284 | |||||
| 17285 | // 'Inverted' means the FMA opcode after negating one multiplicand. | ||||
| 17286 | // For example, (fma -a b c) = (fnmsub a b c) | ||||
| 17287 | static unsigned invertFMAOpcode(unsigned Opc) { | ||||
| 17288 | switch (Opc) { | ||||
| 17289 | default: | ||||
| 17290 | llvm_unreachable("Invalid FMA opcode for PowerPC!")::llvm::llvm_unreachable_internal("Invalid FMA opcode for PowerPC!" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 17290); | ||||
| 17291 | case ISD::FMA: | ||||
| 17292 | return PPCISD::FNMSUB; | ||||
| 17293 | case PPCISD::FNMSUB: | ||||
| 17294 | return ISD::FMA; | ||||
| 17295 | } | ||||
| 17296 | } | ||||
| 17297 | |||||
| 17298 | SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, | ||||
| 17299 | bool LegalOps, bool OptForSize, | ||||
| 17300 | NegatibleCost &Cost, | ||||
| 17301 | unsigned Depth) const { | ||||
| 17302 | if (Depth > SelectionDAG::MaxRecursionDepth) | ||||
| 17303 | return SDValue(); | ||||
| 17304 | |||||
| 17305 | unsigned Opc = Op.getOpcode(); | ||||
| 17306 | EVT VT = Op.getValueType(); | ||||
| 17307 | SDNodeFlags Flags = Op.getNode()->getFlags(); | ||||
| 17308 | |||||
| 17309 | switch (Opc) { | ||||
| 17310 | case PPCISD::FNMSUB: | ||||
| 17311 | if (!Op.hasOneUse() || !isTypeLegal(VT)) | ||||
| 17312 | break; | ||||
| 17313 | |||||
| 17314 | const TargetOptions &Options = getTargetMachine().Options; | ||||
| 17315 | SDValue N0 = Op.getOperand(0); | ||||
| 17316 | SDValue N1 = Op.getOperand(1); | ||||
| 17317 | SDValue N2 = Op.getOperand(2); | ||||
| 17318 | SDLoc Loc(Op); | ||||
| 17319 | |||||
| 17320 | NegatibleCost N2Cost = NegatibleCost::Expensive; | ||||
| 17321 | SDValue NegN2 = | ||||
| 17322 | getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); | ||||
| 17323 | |||||
| 17324 | if (!NegN2) | ||||
| 17325 | return SDValue(); | ||||
| 17326 | |||||
| 17327 | // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) | ||||
| 17328 | // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) | ||||
| 17329 | // These transformations may change sign of zeroes. For example, | ||||
| 17330 | // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. | ||||
| 17331 | if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { | ||||
| 17332 | // Try and choose the cheaper one to negate. | ||||
| 17333 | NegatibleCost N0Cost = NegatibleCost::Expensive; | ||||
| 17334 | SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, | ||||
| 17335 | N0Cost, Depth + 1); | ||||
| 17336 | |||||
| 17337 | NegatibleCost N1Cost = NegatibleCost::Expensive; | ||||
| 17338 | SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, | ||||
| 17339 | N1Cost, Depth + 1); | ||||
| 17340 | |||||
| 17341 | if (NegN0 && N0Cost <= N1Cost) { | ||||
| 17342 | Cost = std::min(N0Cost, N2Cost); | ||||
| 17343 | return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); | ||||
| 17344 | } else if (NegN1) { | ||||
| 17345 | Cost = std::min(N1Cost, N2Cost); | ||||
| 17346 | return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); | ||||
| 17347 | } | ||||
| 17348 | } | ||||
| 17349 | |||||
| 17350 | // (fneg (fnmsub a b c)) => (fma a b (fneg c)) | ||||
| 17351 | if (isOperationLegal(ISD::FMA, VT)) { | ||||
| 17352 | Cost = N2Cost; | ||||
| 17353 | return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); | ||||
| 17354 | } | ||||
| 17355 | |||||
| 17356 | break; | ||||
| 17357 | } | ||||
| 17358 | |||||
| 17359 | return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, | ||||
| 17360 | Cost, Depth); | ||||
| 17361 | } | ||||
| 17362 | |||||
| 17363 | // Override to enable LOAD_STACK_GUARD lowering on Linux. | ||||
| 17364 | bool PPCTargetLowering::useLoadStackGuardNode() const { | ||||
| 17365 | if (!Subtarget.isTargetLinux()) | ||||
| 17366 | return TargetLowering::useLoadStackGuardNode(); | ||||
| 17367 | return true; | ||||
| 17368 | } | ||||
| 17369 | |||||
| 17370 | // Override to disable global variable loading on Linux and insert AIX canary | ||||
| 17371 | // word declaration. | ||||
| 17372 | void PPCTargetLowering::insertSSPDeclarations(Module &M) const { | ||||
| 17373 | if (Subtarget.isAIXABI()) { | ||||
| 17374 | M.getOrInsertGlobal(AIXSSPCanaryWordName, | ||||
| 17375 | Type::getInt8PtrTy(M.getContext())); | ||||
| 17376 | return; | ||||
| 17377 | } | ||||
| 17378 | if (!Subtarget.isTargetLinux()) | ||||
| 17379 | return TargetLowering::insertSSPDeclarations(M); | ||||
| 17380 | } | ||||
| 17381 | |||||
| 17382 | Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { | ||||
| 17383 | if (Subtarget.isAIXABI()) | ||||
| 17384 | return M.getGlobalVariable(AIXSSPCanaryWordName); | ||||
| 17385 | return TargetLowering::getSDagStackGuard(M); | ||||
| 17386 | } | ||||
| 17387 | |||||
| 17388 | bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, | ||||
| 17389 | bool ForCodeSize) const { | ||||
| 17390 | if (!VT.isSimple() || !Subtarget.hasVSX()) | ||||
| 17391 | return false; | ||||
| 17392 | |||||
| 17393 | switch(VT.getSimpleVT().SimpleTy) { | ||||
| 17394 | default: | ||||
| 17395 | // For FP types that are currently not supported by PPC backend, return | ||||
| 17396 | // false. Examples: f16, f80. | ||||
| 17397 | return false; | ||||
| 17398 | case MVT::f32: | ||||
| 17399 | case MVT::f64: { | ||||
| 17400 | if (Subtarget.hasPrefixInstrs()) { | ||||
| 17401 | // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. | ||||
| 17402 | return true; | ||||
| 17403 | } | ||||
| 17404 | bool IsExact; | ||||
| 17405 | APSInt IntResult(16, false); | ||||
| 17406 | // The rounding mode doesn't really matter because we only care about floats | ||||
| 17407 | // that can be converted to integers exactly. | ||||
| 17408 | Imm.convertToInteger(IntResult, APFloat::rmTowardZero, &IsExact); | ||||
| 17409 | // For exact values in the range [-16, 15] we can materialize the float. | ||||
| 17410 | if (IsExact && IntResult <= 15 && IntResult >= -16) | ||||
| 17411 | return true; | ||||
| 17412 | return Imm.isZero(); | ||||
| 17413 | } | ||||
| 17414 | case MVT::ppcf128: | ||||
| 17415 | return Imm.isPosZero(); | ||||
| 17416 | } | ||||
| 17417 | } | ||||
| 17418 | |||||
| 17419 | // For vector shift operation op, fold | ||||
| 17420 | // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) | ||||
| 17421 | static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, | ||||
| 17422 | SelectionDAG &DAG) { | ||||
| 17423 | SDValue N0 = N->getOperand(0); | ||||
| 17424 | SDValue N1 = N->getOperand(1); | ||||
| 17425 | EVT VT = N0.getValueType(); | ||||
| 17426 | unsigned OpSizeInBits = VT.getScalarSizeInBits(); | ||||
| 17427 | unsigned Opcode = N->getOpcode(); | ||||
| 17428 | unsigned TargetOpcode; | ||||
| 17429 | |||||
| 17430 | switch (Opcode) { | ||||
| 17431 | default: | ||||
| 17432 | llvm_unreachable("Unexpected shift operation")::llvm::llvm_unreachable_internal("Unexpected shift operation" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 17432); | ||||
| 17433 | case ISD::SHL: | ||||
| 17434 | TargetOpcode = PPCISD::SHL; | ||||
| 17435 | break; | ||||
| 17436 | case ISD::SRL: | ||||
| 17437 | TargetOpcode = PPCISD::SRL; | ||||
| 17438 | break; | ||||
| 17439 | case ISD::SRA: | ||||
| 17440 | TargetOpcode = PPCISD::SRA; | ||||
| 17441 | break; | ||||
| 17442 | } | ||||
| 17443 | |||||
| 17444 | if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && | ||||
| 17445 | N1->getOpcode() == ISD::AND) | ||||
| 17446 | if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) | ||||
| 17447 | if (Mask->getZExtValue() == OpSizeInBits - 1) | ||||
| 17448 | return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); | ||||
| 17449 | |||||
| 17450 | return SDValue(); | ||||
| 17451 | } | ||||
| 17452 | |||||
| 17453 | SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { | ||||
| 17454 | if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) | ||||
| 17455 | return Value; | ||||
| 17456 | |||||
| 17457 | SDValue N0 = N->getOperand(0); | ||||
| 17458 | ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); | ||||
| 17459 | if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || | ||||
| 17460 | N0.getOpcode() != ISD::SIGN_EXTEND || | ||||
| 17461 | N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || | ||||
| 17462 | N->getValueType(0) != MVT::i64) | ||||
| 17463 | return SDValue(); | ||||
| 17464 | |||||
| 17465 | // We can't save an operation here if the value is already extended, and | ||||
| 17466 | // the existing shift is easier to combine. | ||||
| 17467 | SDValue ExtsSrc = N0.getOperand(0); | ||||
| 17468 | if (ExtsSrc.getOpcode() == ISD::TRUNCATE && | ||||
| 17469 | ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) | ||||
| 17470 | return SDValue(); | ||||
| 17471 | |||||
| 17472 | SDLoc DL(N0); | ||||
| 17473 | SDValue ShiftBy = SDValue(CN1, 0); | ||||
| 17474 | // We want the shift amount to be i32 on the extswli, but the shift could | ||||
| 17475 | // have an i64. | ||||
| 17476 | if (ShiftBy.getValueType() == MVT::i64) | ||||
| 17477 | ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); | ||||
| 17478 | |||||
| 17479 | return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), | ||||
| 17480 | ShiftBy); | ||||
| 17481 | } | ||||
| 17482 | |||||
| 17483 | SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { | ||||
| 17484 | if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) | ||||
| 17485 | return Value; | ||||
| 17486 | |||||
| 17487 | return SDValue(); | ||||
| 17488 | } | ||||
| 17489 | |||||
| 17490 | SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { | ||||
| 17491 | if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) | ||||
| 17492 | return Value; | ||||
| 17493 | |||||
| 17494 | return SDValue(); | ||||
| 17495 | } | ||||
| 17496 | |||||
| 17497 | // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) | ||||
| 17498 | // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) | ||||
| 17499 | // When C is zero, the equation (addi Z, -C) can be simplified to Z | ||||
| 17500 | // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types | ||||
| 17501 | static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, | ||||
| 17502 | const PPCSubtarget &Subtarget) { | ||||
| 17503 | if (!Subtarget.isPPC64()) | ||||
| 17504 | return SDValue(); | ||||
| 17505 | |||||
| 17506 | SDValue LHS = N->getOperand(0); | ||||
| 17507 | SDValue RHS = N->getOperand(1); | ||||
| 17508 | |||||
| 17509 | auto isZextOfCompareWithConstant = [](SDValue Op) { | ||||
| 17510 | if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || | ||||
| 17511 | Op.getValueType() != MVT::i64) | ||||
| 17512 | return false; | ||||
| 17513 | |||||
| 17514 | SDValue Cmp = Op.getOperand(0); | ||||
| 17515 | if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || | ||||
| 17516 | Cmp.getOperand(0).getValueType() != MVT::i64) | ||||
| 17517 | return false; | ||||
| 17518 | |||||
| 17519 | if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { | ||||
| 17520 | int64_t NegConstant = 0 - Constant->getSExtValue(); | ||||
| 17521 | // Due to the limitations of the addi instruction, | ||||
| 17522 | // -C is required to be [-32768, 32767]. | ||||
| 17523 | return isInt<16>(NegConstant); | ||||
| 17524 | } | ||||
| 17525 | |||||
| 17526 | return false; | ||||
| 17527 | }; | ||||
| 17528 | |||||
| 17529 | bool LHSHasPattern = isZextOfCompareWithConstant(LHS); | ||||
| 17530 | bool RHSHasPattern = isZextOfCompareWithConstant(RHS); | ||||
| 17531 | |||||
| 17532 | // If there is a pattern, canonicalize a zext operand to the RHS. | ||||
| 17533 | if (LHSHasPattern && !RHSHasPattern) | ||||
| 17534 | std::swap(LHS, RHS); | ||||
| 17535 | else if (!LHSHasPattern && !RHSHasPattern) | ||||
| 17536 | return SDValue(); | ||||
| 17537 | |||||
| 17538 | SDLoc DL(N); | ||||
| 17539 | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); | ||||
| 17540 | SDValue Cmp = RHS.getOperand(0); | ||||
| 17541 | SDValue Z = Cmp.getOperand(0); | ||||
| 17542 | auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); | ||||
| 17543 | int64_t NegConstant = 0 - Constant->getSExtValue(); | ||||
| 17544 | |||||
| 17545 | switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { | ||||
| 17546 | default: break; | ||||
| 17547 | case ISD::SETNE: { | ||||
| 17548 | // when C == 0 | ||||
| 17549 | // --> addze X, (addic Z, -1).carry | ||||
| 17550 | // / | ||||
| 17551 | // add X, (zext(setne Z, C))-- | ||||
| 17552 | // \ when -32768 <= -C <= 32767 && C != 0 | ||||
| 17553 | // --> addze X, (addic (addi Z, -C), -1).carry | ||||
| 17554 | SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, | ||||
| 17555 | DAG.getConstant(NegConstant, DL, MVT::i64)); | ||||
| 17556 | SDValue AddOrZ = NegConstant != 0 ? Add : Z; | ||||
| 17557 | SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), | ||||
| 17558 | AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); | ||||
| 17559 | return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), | ||||
| 17560 | SDValue(Addc.getNode(), 1)); | ||||
| 17561 | } | ||||
| 17562 | case ISD::SETEQ: { | ||||
| 17563 | // when C == 0 | ||||
| 17564 | // --> addze X, (subfic Z, 0).carry | ||||
| 17565 | // / | ||||
| 17566 | // add X, (zext(sete Z, C))-- | ||||
| 17567 | // \ when -32768 <= -C <= 32767 && C != 0 | ||||
| 17568 | // --> addze X, (subfic (addi Z, -C), 0).carry | ||||
| 17569 | SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, | ||||
| 17570 | DAG.getConstant(NegConstant, DL, MVT::i64)); | ||||
| 17571 | SDValue AddOrZ = NegConstant != 0 ? Add : Z; | ||||
| 17572 | SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), | ||||
| 17573 | DAG.getConstant(0, DL, MVT::i64), AddOrZ); | ||||
| 17574 | return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), | ||||
| 17575 | SDValue(Subc.getNode(), 1)); | ||||
| 17576 | } | ||||
| 17577 | } | ||||
| 17578 | |||||
| 17579 | return SDValue(); | ||||
| 17580 | } | ||||
| 17581 | |||||
| 17582 | // Transform | ||||
| 17583 | // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to | ||||
| 17584 | // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) | ||||
| 17585 | // In this case both C1 and C2 must be known constants. | ||||
| 17586 | // C1+C2 must fit into a 34 bit signed integer. | ||||
| 17587 | static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, | ||||
| 17588 | const PPCSubtarget &Subtarget) { | ||||
| 17589 | if (!Subtarget.isUsingPCRelativeCalls()) | ||||
| 17590 | return SDValue(); | ||||
| 17591 | |||||
| 17592 | // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. | ||||
| 17593 | // If we find that node try to cast the Global Address and the Constant. | ||||
| 17594 | SDValue LHS = N->getOperand(0); | ||||
| 17595 | SDValue RHS = N->getOperand(1); | ||||
| 17596 | |||||
| 17597 | if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) | ||||
| 17598 | std::swap(LHS, RHS); | ||||
| 17599 | |||||
| 17600 | if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) | ||||
| 17601 | return SDValue(); | ||||
| 17602 | |||||
| 17603 | // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. | ||||
| 17604 | GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); | ||||
| 17605 | ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); | ||||
| 17606 | |||||
| 17607 | // Check that both casts succeeded. | ||||
| 17608 | if (!GSDN || !ConstNode) | ||||
| 17609 | return SDValue(); | ||||
| 17610 | |||||
| 17611 | int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); | ||||
| 17612 | SDLoc DL(GSDN); | ||||
| 17613 | |||||
| 17614 | // The signed int offset needs to fit in 34 bits. | ||||
| 17615 | if (!isInt<34>(NewOffset)) | ||||
| 17616 | return SDValue(); | ||||
| 17617 | |||||
| 17618 | // The new global address is a copy of the old global address except | ||||
| 17619 | // that it has the updated Offset. | ||||
| 17620 | SDValue GA = | ||||
| 17621 | DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), | ||||
| 17622 | NewOffset, GSDN->getTargetFlags()); | ||||
| 17623 | SDValue MatPCRel = | ||||
| 17624 | DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); | ||||
| 17625 | return MatPCRel; | ||||
| 17626 | } | ||||
| 17627 | |||||
| 17628 | SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { | ||||
| 17629 | if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) | ||||
| 17630 | return Value; | ||||
| 17631 | |||||
| 17632 | if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) | ||||
| 17633 | return Value; | ||||
| 17634 | |||||
| 17635 | return SDValue(); | ||||
| 17636 | } | ||||
| 17637 | |||||
| 17638 | // Detect TRUNCATE operations on bitcasts of float128 values. | ||||
| 17639 | // What we are looking for here is the situtation where we extract a subset | ||||
| 17640 | // of bits from a 128 bit float. | ||||
| 17641 | // This can be of two forms: | ||||
| 17642 | // 1) BITCAST of f128 feeding TRUNCATE | ||||
| 17643 | // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE | ||||
| 17644 | // The reason this is required is because we do not have a legal i128 type | ||||
| 17645 | // and so we want to prevent having to store the f128 and then reload part | ||||
| 17646 | // of it. | ||||
| 17647 | SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, | ||||
| 17648 | DAGCombinerInfo &DCI) const { | ||||
| 17649 | // If we are using CRBits then try that first. | ||||
| 17650 | if (Subtarget.useCRBits()) { | ||||
| 17651 | // Check if CRBits did anything and return that if it did. | ||||
| 17652 | if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) | ||||
| 17653 | return CRTruncValue; | ||||
| 17654 | } | ||||
| 17655 | |||||
| 17656 | SDLoc dl(N); | ||||
| 17657 | SDValue Op0 = N->getOperand(0); | ||||
| 17658 | |||||
| 17659 | // Looking for a truncate of i128 to i64. | ||||
| 17660 | if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) | ||||
| 17661 | return SDValue(); | ||||
| 17662 | |||||
| 17663 | int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; | ||||
| 17664 | |||||
| 17665 | // SRL feeding TRUNCATE. | ||||
| 17666 | if (Op0.getOpcode() == ISD::SRL) { | ||||
| 17667 | ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); | ||||
| 17668 | // The right shift has to be by 64 bits. | ||||
| 17669 | if (!ConstNode || ConstNode->getZExtValue() != 64) | ||||
| 17670 | return SDValue(); | ||||
| 17671 | |||||
| 17672 | // Switch the element number to extract. | ||||
| 17673 | EltToExtract = EltToExtract ? 0 : 1; | ||||
| 17674 | // Update Op0 past the SRL. | ||||
| 17675 | Op0 = Op0.getOperand(0); | ||||
| 17676 | } | ||||
| 17677 | |||||
| 17678 | // BITCAST feeding a TRUNCATE possibly via SRL. | ||||
| 17679 | if (Op0.getOpcode() == ISD::BITCAST && | ||||
| 17680 | Op0.getValueType() == MVT::i128 && | ||||
| 17681 | Op0.getOperand(0).getValueType() == MVT::f128) { | ||||
| 17682 | SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); | ||||
| 17683 | return DCI.DAG.getNode( | ||||
| 17684 | ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, | ||||
| 17685 | DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); | ||||
| 17686 | } | ||||
| 17687 | return SDValue(); | ||||
| 17688 | } | ||||
| 17689 | |||||
| 17690 | SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { | ||||
| 17691 | SelectionDAG &DAG = DCI.DAG; | ||||
| 17692 | |||||
| 17693 | ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); | ||||
| 17694 | if (!ConstOpOrElement) | ||||
| 17695 | return SDValue(); | ||||
| 17696 | |||||
| 17697 | // An imul is usually smaller than the alternative sequence for legal type. | ||||
| 17698 | if (DAG.getMachineFunction().getFunction().hasMinSize() && | ||||
| 17699 | isOperationLegal(ISD::MUL, N->getValueType(0))) | ||||
| 17700 | return SDValue(); | ||||
| 17701 | |||||
| 17702 | auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { | ||||
| 17703 | switch (this->Subtarget.getCPUDirective()) { | ||||
| 17704 | default: | ||||
| 17705 | // TODO: enhance the condition for subtarget before pwr8 | ||||
| 17706 | return false; | ||||
| 17707 | case PPC::DIR_PWR8: | ||||
| 17708 | // type mul add shl | ||||
| 17709 | // scalar 4 1 1 | ||||
| 17710 | // vector 7 2 2 | ||||
| 17711 | return true; | ||||
| 17712 | case PPC::DIR_PWR9: | ||||
| 17713 | case PPC::DIR_PWR10: | ||||
| 17714 | case PPC::DIR_PWR_FUTURE: | ||||
| 17715 | // type mul add shl | ||||
| 17716 | // scalar 5 2 2 | ||||
| 17717 | // vector 7 2 2 | ||||
| 17718 | |||||
| 17719 | // The cycle RATIO of related operations are showed as a table above. | ||||
| 17720 | // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both | ||||
| 17721 | // scalar and vector type. For 2 instrs patterns, add/sub + shl | ||||
| 17722 | // are 4, it is always profitable; but for 3 instrs patterns | ||||
| 17723 | // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. | ||||
| 17724 | // So we should only do it for vector type. | ||||
| 17725 | return IsAddOne && IsNeg ? VT.isVector() : true; | ||||
| 17726 | } | ||||
| 17727 | }; | ||||
| 17728 | |||||
| 17729 | EVT VT = N->getValueType(0); | ||||
| 17730 | SDLoc DL(N); | ||||
| 17731 | |||||
| 17732 | const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); | ||||
| 17733 | bool IsNeg = MulAmt.isNegative(); | ||||
| 17734 | APInt MulAmtAbs = MulAmt.abs(); | ||||
| 17735 | |||||
| 17736 | if ((MulAmtAbs - 1).isPowerOf2()) { | ||||
| 17737 | // (mul x, 2^N + 1) => (add (shl x, N), x) | ||||
| 17738 | // (mul x, -(2^N + 1)) => -(add (shl x, N), x) | ||||
| 17739 | |||||
| 17740 | if (!IsProfitable(IsNeg, true, VT)) | ||||
| 17741 | return SDValue(); | ||||
| 17742 | |||||
| 17743 | SDValue Op0 = N->getOperand(0); | ||||
| 17744 | SDValue Op1 = | ||||
| 17745 | DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), | ||||
| 17746 | DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); | ||||
| 17747 | SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); | ||||
| 17748 | |||||
| 17749 | if (!IsNeg) | ||||
| 17750 | return Res; | ||||
| 17751 | |||||
| 17752 | return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); | ||||
| 17753 | } else if ((MulAmtAbs + 1).isPowerOf2()) { | ||||
| 17754 | // (mul x, 2^N - 1) => (sub (shl x, N), x) | ||||
| 17755 | // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) | ||||
| 17756 | |||||
| 17757 | if (!IsProfitable(IsNeg, false, VT)) | ||||
| 17758 | return SDValue(); | ||||
| 17759 | |||||
| 17760 | SDValue Op0 = N->getOperand(0); | ||||
| 17761 | SDValue Op1 = | ||||
| 17762 | DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), | ||||
| 17763 | DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); | ||||
| 17764 | |||||
| 17765 | if (!IsNeg) | ||||
| 17766 | return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); | ||||
| 17767 | else | ||||
| 17768 | return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); | ||||
| 17769 | |||||
| 17770 | } else { | ||||
| 17771 | return SDValue(); | ||||
| 17772 | } | ||||
| 17773 | } | ||||
| 17774 | |||||
| 17775 | // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this | ||||
| 17776 | // in combiner since we need to check SD flags and other subtarget features. | ||||
| 17777 | SDValue PPCTargetLowering::combineFMALike(SDNode *N, | ||||
| 17778 | DAGCombinerInfo &DCI) const { | ||||
| 17779 | SDValue N0 = N->getOperand(0); | ||||
| 17780 | SDValue N1 = N->getOperand(1); | ||||
| 17781 | SDValue N2 = N->getOperand(2); | ||||
| 17782 | SDNodeFlags Flags = N->getFlags(); | ||||
| 17783 | EVT VT = N->getValueType(0); | ||||
| 17784 | SelectionDAG &DAG = DCI.DAG; | ||||
| 17785 | const TargetOptions &Options = getTargetMachine().Options; | ||||
| 17786 | unsigned Opc = N->getOpcode(); | ||||
| 17787 | bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); | ||||
| 17788 | bool LegalOps = !DCI.isBeforeLegalizeOps(); | ||||
| 17789 | SDLoc Loc(N); | ||||
| 17790 | |||||
| 17791 | if (!isOperationLegal(ISD::FMA, VT)) | ||||
| 17792 | return SDValue(); | ||||
| 17793 | |||||
| 17794 | // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 | ||||
| 17795 | // since (fnmsub a b c)=-0 while c-ab=+0. | ||||
| 17796 | if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) | ||||
| 17797 | return SDValue(); | ||||
| 17798 | |||||
| 17799 | // (fma (fneg a) b c) => (fnmsub a b c) | ||||
| 17800 | // (fnmsub (fneg a) b c) => (fma a b c) | ||||
| 17801 | if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) | ||||
| 17802 | return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); | ||||
| 17803 | |||||
| 17804 | // (fma a (fneg b) c) => (fnmsub a b c) | ||||
| 17805 | // (fnmsub a (fneg b) c) => (fma a b c) | ||||
| 17806 | if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) | ||||
| 17807 | return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); | ||||
| 17808 | |||||
| 17809 | return SDValue(); | ||||
| 17810 | } | ||||
| 17811 | |||||
| 17812 | bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { | ||||
| 17813 | // Only duplicate to increase tail-calls for the 64bit SysV ABIs. | ||||
| 17814 | if (!Subtarget.is64BitELFABI()) | ||||
| 17815 | return false; | ||||
| 17816 | |||||
| 17817 | // If not a tail call then no need to proceed. | ||||
| 17818 | if (!CI->isTailCall()) | ||||
| 17819 | return false; | ||||
| 17820 | |||||
| 17821 | // If sibling calls have been disabled and tail-calls aren't guaranteed | ||||
| 17822 | // there is no reason to duplicate. | ||||
| 17823 | auto &TM = getTargetMachine(); | ||||
| 17824 | if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) | ||||
| 17825 | return false; | ||||
| 17826 | |||||
| 17827 | // Can't tail call a function called indirectly, or if it has variadic args. | ||||
| 17828 | const Function *Callee = CI->getCalledFunction(); | ||||
| 17829 | if (!Callee || Callee->isVarArg()) | ||||
| 17830 | return false; | ||||
| 17831 | |||||
| 17832 | // Make sure the callee and caller calling conventions are eligible for tco. | ||||
| 17833 | const Function *Caller = CI->getParent()->getParent(); | ||||
| 17834 | if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), | ||||
| 17835 | CI->getCallingConv())) | ||||
| 17836 | return false; | ||||
| 17837 | |||||
| 17838 | // If the function is local then we have a good chance at tail-calling it | ||||
| 17839 | return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); | ||||
| 17840 | } | ||||
| 17841 | |||||
| 17842 | bool PPCTargetLowering:: | ||||
| 17843 | isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { | ||||
| 17844 | const Value *Mask = AndI.getOperand(1); | ||||
| 17845 | // If the mask is suitable for andi. or andis. we should sink the and. | ||||
| 17846 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { | ||||
| 17847 | // Can't handle constants wider than 64-bits. | ||||
| 17848 | if (CI->getBitWidth() > 64) | ||||
| 17849 | return false; | ||||
| 17850 | int64_t ConstVal = CI->getZExtValue(); | ||||
| 17851 | return isUInt<16>(ConstVal) || | ||||
| 17852 | (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); | ||||
| 17853 | } | ||||
| 17854 | |||||
| 17855 | // For non-constant masks, we can always use the record-form and. | ||||
| 17856 | return true; | ||||
| 17857 | } | ||||
| 17858 | |||||
| 17859 | /// getAddrModeForFlags - Based on the set of address flags, select the most | ||||
| 17860 | /// optimal instruction format to match by. | ||||
| 17861 | PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { | ||||
| 17862 | // This is not a node we should be handling here. | ||||
| 17863 | if (Flags == PPC::MOF_None) | ||||
| 17864 | return PPC::AM_None; | ||||
| 17865 | // Unaligned D-Forms are tried first, followed by the aligned D-Forms. | ||||
| 17866 | for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) | ||||
| 17867 | if ((Flags & FlagSet) == FlagSet) | ||||
| 17868 | return PPC::AM_DForm; | ||||
| 17869 | for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) | ||||
| 17870 | if ((Flags & FlagSet) == FlagSet) | ||||
| 17871 | return PPC::AM_DSForm; | ||||
| 17872 | for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) | ||||
| 17873 | if ((Flags & FlagSet) == FlagSet) | ||||
| 17874 | return PPC::AM_DQForm; | ||||
| 17875 | for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) | ||||
| 17876 | if ((Flags & FlagSet) == FlagSet) | ||||
| 17877 | return PPC::AM_PrefixDForm; | ||||
| 17878 | // If no other forms are selected, return an X-Form as it is the most | ||||
| 17879 | // general addressing mode. | ||||
| 17880 | return PPC::AM_XForm; | ||||
| 17881 | } | ||||
| 17882 | |||||
| 17883 | /// Set alignment flags based on whether or not the Frame Index is aligned. | ||||
| 17884 | /// Utilized when computing flags for address computation when selecting | ||||
| 17885 | /// load and store instructions. | ||||
| 17886 | static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, | ||||
| 17887 | SelectionDAG &DAG) { | ||||
| 17888 | bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); | ||||
| 17889 | FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); | ||||
| 17890 | if (!FI) | ||||
| 17891 | return; | ||||
| 17892 | const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | ||||
| 17893 | unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); | ||||
| 17894 | // If this is (add $FI, $S16Imm), the alignment flags are already set | ||||
| 17895 | // based on the immediate. We just need to clear the alignment flags | ||||
| 17896 | // if the FI alignment is weaker. | ||||
| 17897 | if ((FrameIndexAlign % 4) != 0) | ||||
| 17898 | FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; | ||||
| 17899 | if ((FrameIndexAlign % 16) != 0) | ||||
| 17900 | FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; | ||||
| 17901 | // If the address is a plain FrameIndex, set alignment flags based on | ||||
| 17902 | // FI alignment. | ||||
| 17903 | if (!IsAdd) { | ||||
| 17904 | if ((FrameIndexAlign % 4) == 0) | ||||
| 17905 | FlagSet |= PPC::MOF_RPlusSImm16Mult4; | ||||
| 17906 | if ((FrameIndexAlign % 16) == 0) | ||||
| 17907 | FlagSet |= PPC::MOF_RPlusSImm16Mult16; | ||||
| 17908 | } | ||||
| 17909 | } | ||||
| 17910 | |||||
| 17911 | /// Given a node, compute flags that are used for address computation when | ||||
| 17912 | /// selecting load and store instructions. The flags computed are stored in | ||||
| 17913 | /// FlagSet. This function takes into account whether the node is a constant, | ||||
| 17914 | /// an ADD, OR, or a constant, and computes the address flags accordingly. | ||||
| 17915 | static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, | ||||
| 17916 | SelectionDAG &DAG) { | ||||
| 17917 | // Set the alignment flags for the node depending on if the node is | ||||
| 17918 | // 4-byte or 16-byte aligned. | ||||
| 17919 | auto SetAlignFlagsForImm = [&](uint64_t Imm) { | ||||
| 17920 | if ((Imm & 0x3) == 0) | ||||
| 17921 | FlagSet |= PPC::MOF_RPlusSImm16Mult4; | ||||
| 17922 | if ((Imm & 0xf) == 0) | ||||
| 17923 | FlagSet |= PPC::MOF_RPlusSImm16Mult16; | ||||
| 17924 | }; | ||||
| 17925 | |||||
| 17926 | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | ||||
| 17927 | // All 32-bit constants can be computed as LIS + Disp. | ||||
| 17928 | const APInt &ConstImm = CN->getAPIntValue(); | ||||
| 17929 | if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. | ||||
| 17930 | FlagSet |= PPC::MOF_AddrIsSImm32; | ||||
| 17931 | SetAlignFlagsForImm(ConstImm.getZExtValue()); | ||||
| 17932 | setAlignFlagsForFI(N, FlagSet, DAG); | ||||
| 17933 | } | ||||
| 17934 | if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. | ||||
| 17935 | FlagSet |= PPC::MOF_RPlusSImm34; | ||||
| 17936 | else // Let constant materialization handle large constants. | ||||
| 17937 | FlagSet |= PPC::MOF_NotAddNorCst; | ||||
| 17938 | } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { | ||||
| 17939 | // This address can be represented as an addition of: | ||||
| 17940 | // - Register + Imm16 (possibly a multiple of 4/16) | ||||
| 17941 | // - Register + Imm34 | ||||
| 17942 | // - Register + PPCISD::Lo | ||||
| 17943 | // - Register + Register | ||||
| 17944 | // In any case, we won't have to match this as Base + Zero. | ||||
| 17945 | SDValue RHS = N.getOperand(1); | ||||
| 17946 | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { | ||||
| 17947 | const APInt &ConstImm = CN->getAPIntValue(); | ||||
| 17948 | if (ConstImm.isSignedIntN(16)) { | ||||
| 17949 | FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. | ||||
| 17950 | SetAlignFlagsForImm(ConstImm.getZExtValue()); | ||||
| 17951 | setAlignFlagsForFI(N, FlagSet, DAG); | ||||
| 17952 | } | ||||
| 17953 | if (ConstImm.isSignedIntN(34)) | ||||
| 17954 | FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. | ||||
| 17955 | else | ||||
| 17956 | FlagSet |= PPC::MOF_RPlusR; // Register. | ||||
| 17957 | } else if (RHS.getOpcode() == PPCISD::Lo && | ||||
| 17958 | !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) | ||||
| 17959 | FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. | ||||
| 17960 | else | ||||
| 17961 | FlagSet |= PPC::MOF_RPlusR; | ||||
| 17962 | } else { // The address computation is not a constant or an addition. | ||||
| 17963 | setAlignFlagsForFI(N, FlagSet, DAG); | ||||
| 17964 | FlagSet |= PPC::MOF_NotAddNorCst; | ||||
| 17965 | } | ||||
| 17966 | } | ||||
| 17967 | |||||
| 17968 | static bool isPCRelNode(SDValue N) { | ||||
| 17969 | return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || | ||||
| 17970 | isValidPCRelNode<ConstantPoolSDNode>(N) || | ||||
| 17971 | isValidPCRelNode<GlobalAddressSDNode>(N) || | ||||
| 17972 | isValidPCRelNode<JumpTableSDNode>(N) || | ||||
| 17973 | isValidPCRelNode<BlockAddressSDNode>(N)); | ||||
| 17974 | } | ||||
| 17975 | |||||
| 17976 | /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute | ||||
| 17977 | /// the address flags of the load/store instruction that is to be matched. | ||||
| 17978 | unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, | ||||
| 17979 | SelectionDAG &DAG) const { | ||||
| 17980 | unsigned FlagSet = PPC::MOF_None; | ||||
| 17981 | |||||
| 17982 | // Compute subtarget flags. | ||||
| 17983 | if (!Subtarget.hasP9Vector()) | ||||
| 17984 | FlagSet |= PPC::MOF_SubtargetBeforeP9; | ||||
| 17985 | else { | ||||
| 17986 | FlagSet |= PPC::MOF_SubtargetP9; | ||||
| 17987 | if (Subtarget.hasPrefixInstrs()) | ||||
| 17988 | FlagSet |= PPC::MOF_SubtargetP10; | ||||
| 17989 | } | ||||
| 17990 | if (Subtarget.hasSPE()) | ||||
| 17991 | FlagSet |= PPC::MOF_SubtargetSPE; | ||||
| 17992 | |||||
| 17993 | // Check if we have a PCRel node and return early. | ||||
| 17994 | if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) | ||||
| 17995 | return FlagSet; | ||||
| 17996 | |||||
| 17997 | // If the node is the paired load/store intrinsics, compute flags for | ||||
| 17998 | // address computation and return early. | ||||
| 17999 | unsigned ParentOp = Parent->getOpcode(); | ||||
| 18000 | if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || | ||||
| 18001 | (ParentOp == ISD::INTRINSIC_VOID))) { | ||||
| 18002 | unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); | ||||
| 18003 | if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { | ||||
| 18004 | SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) | ||||
| 18005 | ? Parent->getOperand(2) | ||||
| 18006 | : Parent->getOperand(3); | ||||
| 18007 | computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); | ||||
| 18008 | FlagSet |= PPC::MOF_Vector; | ||||
| 18009 | return FlagSet; | ||||
| 18010 | } | ||||
| 18011 | } | ||||
| 18012 | |||||
| 18013 | // Mark this as something we don't want to handle here if it is atomic | ||||
| 18014 | // or pre-increment instruction. | ||||
| 18015 | if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) | ||||
| 18016 | if (LSB->isIndexed()) | ||||
| 18017 | return PPC::MOF_None; | ||||
| 18018 | |||||
| 18019 | // Compute in-memory type flags. This is based on if there are scalars, | ||||
| 18020 | // floats or vectors. | ||||
| 18021 | const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); | ||||
| 18022 | assert(MN && "Parent should be a MemSDNode!")(static_cast <bool> (MN && "Parent should be a MemSDNode!" ) ? void (0) : __assert_fail ("MN && \"Parent should be a MemSDNode!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18022, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18023 | EVT MemVT = MN->getMemoryVT(); | ||||
| 18024 | unsigned Size = MemVT.getSizeInBits(); | ||||
| 18025 | if (MemVT.isScalarInteger()) { | ||||
| 18026 | assert(Size <= 128 &&(static_cast <bool> (Size <= 128 && "Not expecting scalar integers larger than 16 bytes!" ) ? void (0) : __assert_fail ("Size <= 128 && \"Not expecting scalar integers larger than 16 bytes!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18027, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18027 | "Not expecting scalar integers larger than 16 bytes!")(static_cast <bool> (Size <= 128 && "Not expecting scalar integers larger than 16 bytes!" ) ? void (0) : __assert_fail ("Size <= 128 && \"Not expecting scalar integers larger than 16 bytes!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18027, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18028 | if (Size < 32) | ||||
| 18029 | FlagSet |= PPC::MOF_SubWordInt; | ||||
| 18030 | else if (Size == 32) | ||||
| 18031 | FlagSet |= PPC::MOF_WordInt; | ||||
| 18032 | else | ||||
| 18033 | FlagSet |= PPC::MOF_DoubleWordInt; | ||||
| 18034 | } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. | ||||
| 18035 | if (Size == 128) | ||||
| 18036 | FlagSet |= PPC::MOF_Vector; | ||||
| 18037 | else if (Size == 256) { | ||||
| 18038 | assert(Subtarget.pairedVectorMemops() &&(static_cast <bool> (Subtarget.pairedVectorMemops() && "256-bit vectors are only available when paired vector memops is " "enabled!") ? void (0) : __assert_fail ("Subtarget.pairedVectorMemops() && \"256-bit vectors are only available when paired vector memops is \" \"enabled!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18040, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18039 | "256-bit vectors are only available when paired vector memops is "(static_cast <bool> (Subtarget.pairedVectorMemops() && "256-bit vectors are only available when paired vector memops is " "enabled!") ? void (0) : __assert_fail ("Subtarget.pairedVectorMemops() && \"256-bit vectors are only available when paired vector memops is \" \"enabled!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18040, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18040 | "enabled!")(static_cast <bool> (Subtarget.pairedVectorMemops() && "256-bit vectors are only available when paired vector memops is " "enabled!") ? void (0) : __assert_fail ("Subtarget.pairedVectorMemops() && \"256-bit vectors are only available when paired vector memops is \" \"enabled!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18040, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18041 | FlagSet |= PPC::MOF_Vector; | ||||
| 18042 | } else | ||||
| 18043 | llvm_unreachable("Not expecting illegal vectors!")::llvm::llvm_unreachable_internal("Not expecting illegal vectors!" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18043); | ||||
| 18044 | } else { // Floating point type: can be scalar, f128 or vector types. | ||||
| 18045 | if (Size == 32 || Size == 64) | ||||
| 18046 | FlagSet |= PPC::MOF_ScalarFloat; | ||||
| 18047 | else if (MemVT == MVT::f128 || MemVT.isVector()) | ||||
| 18048 | FlagSet |= PPC::MOF_Vector; | ||||
| 18049 | else | ||||
| 18050 | llvm_unreachable("Not expecting illegal scalar floats!")::llvm::llvm_unreachable_internal("Not expecting illegal scalar floats!" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18050); | ||||
| 18051 | } | ||||
| 18052 | |||||
| 18053 | // Compute flags for address computation. | ||||
| 18054 | computeFlagsForAddressComputation(N, FlagSet, DAG); | ||||
| 18055 | |||||
| 18056 | // Compute type extension flags. | ||||
| 18057 | if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { | ||||
| 18058 | switch (LN->getExtensionType()) { | ||||
| 18059 | case ISD::SEXTLOAD: | ||||
| 18060 | FlagSet |= PPC::MOF_SExt; | ||||
| 18061 | break; | ||||
| 18062 | case ISD::EXTLOAD: | ||||
| 18063 | case ISD::ZEXTLOAD: | ||||
| 18064 | FlagSet |= PPC::MOF_ZExt; | ||||
| 18065 | break; | ||||
| 18066 | case ISD::NON_EXTLOAD: | ||||
| 18067 | FlagSet |= PPC::MOF_NoExt; | ||||
| 18068 | break; | ||||
| 18069 | } | ||||
| 18070 | } else | ||||
| 18071 | FlagSet |= PPC::MOF_NoExt; | ||||
| 18072 | |||||
| 18073 | // For integers, no extension is the same as zero extension. | ||||
| 18074 | // We set the extension mode to zero extension so we don't have | ||||
| 18075 | // to add separate entries in AddrModesMap for loads and stores. | ||||
| 18076 | if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { | ||||
| 18077 | FlagSet |= PPC::MOF_ZExt; | ||||
| 18078 | FlagSet &= ~PPC::MOF_NoExt; | ||||
| 18079 | } | ||||
| 18080 | |||||
| 18081 | // If we don't have prefixed instructions, 34-bit constants should be | ||||
| 18082 | // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. | ||||
| 18083 | bool IsNonP1034BitConst = | ||||
| 18084 | ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & | ||||
| 18085 | FlagSet) == PPC::MOF_RPlusSImm34; | ||||
| 18086 | if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && | ||||
| 18087 | IsNonP1034BitConst) | ||||
| 18088 | FlagSet |= PPC::MOF_NotAddNorCst; | ||||
| 18089 | |||||
| 18090 | return FlagSet; | ||||
| 18091 | } | ||||
| 18092 | |||||
| 18093 | /// SelectForceXFormMode - Given the specified address, force it to be | ||||
| 18094 | /// represented as an indexed [r+r] operation (an XForm instruction). | ||||
| 18095 | PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, | ||||
| 18096 | SDValue &Base, | ||||
| 18097 | SelectionDAG &DAG) const { | ||||
| 18098 | |||||
| 18099 | PPC::AddrMode Mode = PPC::AM_XForm; | ||||
| 18100 | int16_t ForceXFormImm = 0; | ||||
| 18101 | if (provablyDisjointOr(DAG, N) && | ||||
| 18102 | !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { | ||||
| 18103 | Disp = N.getOperand(0); | ||||
| 18104 | Base = N.getOperand(1); | ||||
| 18105 | return Mode; | ||||
| 18106 | } | ||||
| 18107 | |||||
| 18108 | // If the address is the result of an add, we will utilize the fact that the | ||||
| 18109 | // address calculation includes an implicit add. However, we can reduce | ||||
| 18110 | // register pressure if we do not materialize a constant just for use as the | ||||
| 18111 | // index register. We only get rid of the add if it is not an add of a | ||||
| 18112 | // value and a 16-bit signed constant and both have a single use. | ||||
| 18113 | if (N.getOpcode() == ISD::ADD && | ||||
| 18114 | (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || | ||||
| 18115 | !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { | ||||
| 18116 | Disp = N.getOperand(0); | ||||
| 18117 | Base = N.getOperand(1); | ||||
| 18118 | return Mode; | ||||
| 18119 | } | ||||
| 18120 | |||||
| 18121 | // Otherwise, use R0 as the base register. | ||||
| 18122 | Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, | ||||
| 18123 | N.getValueType()); | ||||
| 18124 | Base = N; | ||||
| 18125 | |||||
| 18126 | return Mode; | ||||
| 18127 | } | ||||
| 18128 | |||||
| 18129 | bool PPCTargetLowering::splitValueIntoRegisterParts( | ||||
| 18130 | SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, | ||||
| 18131 | unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { | ||||
| 18132 | EVT ValVT = Val.getValueType(); | ||||
| 18133 | // If we are splitting a scalar integer into f64 parts (i.e. so they | ||||
| 18134 | // can be placed into VFRC registers), we need to zero extend and | ||||
| 18135 | // bitcast the values. This will ensure the value is placed into a | ||||
| 18136 | // VSR using direct moves or stack operations as needed. | ||||
| 18137 | if (PartVT == MVT::f64 && | ||||
| 18138 | (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { | ||||
| 18139 | Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); | ||||
| 18140 | Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); | ||||
| 18141 | Parts[0] = Val; | ||||
| 18142 | return true; | ||||
| 18143 | } | ||||
| 18144 | return false; | ||||
| 18145 | } | ||||
| 18146 | |||||
| 18147 | SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, | ||||
| 18148 | SelectionDAG &DAG) const { | ||||
| 18149 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | ||||
| 18150 | TargetLowering::CallLoweringInfo CLI(DAG); | ||||
| 18151 | EVT RetVT = Op.getValueType(); | ||||
| 18152 | Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); | ||||
| 18153 | SDValue Callee = | ||||
| 18154 | DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); | ||||
| 18155 | bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); | ||||
| 18156 | TargetLowering::ArgListTy Args; | ||||
| 18157 | TargetLowering::ArgListEntry Entry; | ||||
| 18158 | for (const SDValue &N : Op->op_values()) { | ||||
| 18159 | EVT ArgVT = N.getValueType(); | ||||
| 18160 | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | ||||
| 18161 | Entry.Node = N; | ||||
| 18162 | Entry.Ty = ArgTy; | ||||
| 18163 | Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); | ||||
| 18164 | Entry.IsZExt = !Entry.IsSExt; | ||||
| 18165 | Args.push_back(Entry); | ||||
| 18166 | } | ||||
| 18167 | |||||
| 18168 | SDValue InChain = DAG.getEntryNode(); | ||||
| 18169 | SDValue TCChain = InChain; | ||||
| 18170 | const Function &F = DAG.getMachineFunction().getFunction(); | ||||
| 18171 | bool isTailCall = | ||||
| 18172 | TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && | ||||
| 18173 | (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); | ||||
| 18174 | if (isTailCall) | ||||
| 18175 | InChain = TCChain; | ||||
| 18176 | CLI.setDebugLoc(SDLoc(Op)) | ||||
| 18177 | .setChain(InChain) | ||||
| 18178 | .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)) | ||||
| 18179 | .setTailCall(isTailCall) | ||||
| 18180 | .setSExtResult(SignExtend) | ||||
| 18181 | .setZExtResult(!SignExtend) | ||||
| 18182 | .setIsPostTypeLegalization(true); | ||||
| 18183 | return TLI.LowerCallTo(CLI).first; | ||||
| 18184 | } | ||||
| 18185 | |||||
| 18186 | SDValue PPCTargetLowering::lowerLibCallBasedOnType( | ||||
| 18187 | const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, | ||||
| 18188 | SelectionDAG &DAG) const { | ||||
| 18189 | if (Op.getValueType() == MVT::f32) | ||||
| 18190 | return lowerToLibCall(LibCallFloatName, Op, DAG); | ||||
| 18191 | |||||
| 18192 | if (Op.getValueType() == MVT::f64) | ||||
| 18193 | return lowerToLibCall(LibCallDoubleName, Op, DAG); | ||||
| 18194 | |||||
| 18195 | return SDValue(); | ||||
| 18196 | } | ||||
| 18197 | |||||
| 18198 | bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { | ||||
| 18199 | SDNodeFlags Flags = Op.getNode()->getFlags(); | ||||
| 18200 | return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && | ||||
| 18201 | Flags.hasNoNaNs() && Flags.hasNoInfs(); | ||||
| 18202 | } | ||||
| 18203 | |||||
| 18204 | bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { | ||||
| 18205 | return Op.getNode()->getFlags().hasApproximateFuncs(); | ||||
| 18206 | } | ||||
| 18207 | |||||
| 18208 | bool PPCTargetLowering::isScalarMASSConversionEnabled() const { | ||||
| 18209 | return getTargetMachine().Options.PPCGenScalarMASSEntries; | ||||
| 18210 | } | ||||
| 18211 | |||||
| 18212 | SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, | ||||
| 18213 | const char *LibCallFloatName, | ||||
| 18214 | const char *LibCallDoubleNameFinite, | ||||
| 18215 | const char *LibCallFloatNameFinite, | ||||
| 18216 | SDValue Op, | ||||
| 18217 | SelectionDAG &DAG) const { | ||||
| 18218 | if (!isScalarMASSConversionEnabled() || !isLowringToMASSSafe(Op)) | ||||
| 18219 | return SDValue(); | ||||
| 18220 | |||||
| 18221 | if (!isLowringToMASSFiniteSafe(Op)) | ||||
| 18222 | return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, | ||||
| 18223 | DAG); | ||||
| 18224 | |||||
| 18225 | return lowerLibCallBasedOnType(LibCallFloatNameFinite, | ||||
| 18226 | LibCallDoubleNameFinite, Op, DAG); | ||||
| 18227 | } | ||||
| 18228 | |||||
| 18229 | SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { | ||||
| 18230 | return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", | ||||
| 18231 | "__xl_powf_finite", Op, DAG); | ||||
| 18232 | } | ||||
| 18233 | |||||
| 18234 | SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { | ||||
| 18235 | return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", | ||||
| 18236 | "__xl_sinf_finite", Op, DAG); | ||||
| 18237 | } | ||||
| 18238 | |||||
| 18239 | SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { | ||||
| 18240 | return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", | ||||
| 18241 | "__xl_cosf_finite", Op, DAG); | ||||
| 18242 | } | ||||
| 18243 | |||||
| 18244 | SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { | ||||
| 18245 | return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", | ||||
| 18246 | "__xl_logf_finite", Op, DAG); | ||||
| 18247 | } | ||||
| 18248 | |||||
| 18249 | SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { | ||||
| 18250 | return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", | ||||
| 18251 | "__xl_log10f_finite", Op, DAG); | ||||
| 18252 | } | ||||
| 18253 | |||||
| 18254 | SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { | ||||
| 18255 | return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", | ||||
| 18256 | "__xl_expf_finite", Op, DAG); | ||||
| 18257 | } | ||||
| 18258 | |||||
| 18259 | // If we happen to match to an aligned D-Form, check if the Frame Index is | ||||
| 18260 | // adequately aligned. If it is not, reset the mode to match to X-Form. | ||||
| 18261 | static void setXFormForUnalignedFI(SDValue N, unsigned Flags, | ||||
| 18262 | PPC::AddrMode &Mode) { | ||||
| 18263 | if (!isa<FrameIndexSDNode>(N)) | ||||
| 18264 | return; | ||||
| 18265 | if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || | ||||
| 18266 | (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) | ||||
| 18267 | Mode = PPC::AM_XForm; | ||||
| 18268 | } | ||||
| 18269 | |||||
| 18270 | /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), | ||||
| 18271 | /// compute the address flags of the node, get the optimal address mode based | ||||
| 18272 | /// on the flags, and set the Base and Disp based on the address mode. | ||||
| 18273 | PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, | ||||
| 18274 | SDValue N, SDValue &Disp, | ||||
| 18275 | SDValue &Base, | ||||
| 18276 | SelectionDAG &DAG, | ||||
| 18277 | MaybeAlign Align) const { | ||||
| 18278 | SDLoc DL(Parent); | ||||
| 18279 | |||||
| 18280 | // Compute the address flags. | ||||
| 18281 | unsigned Flags = computeMOFlags(Parent, N, DAG); | ||||
| 18282 | |||||
| 18283 | // Get the optimal address mode based on the Flags. | ||||
| 18284 | PPC::AddrMode Mode = getAddrModeForFlags(Flags); | ||||
| 18285 | |||||
| 18286 | // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. | ||||
| 18287 | // Select an X-Form load if it is not. | ||||
| 18288 | setXFormForUnalignedFI(N, Flags, Mode); | ||||
| 18289 | |||||
| 18290 | // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. | ||||
| 18291 | if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { | ||||
| 18292 | assert(Subtarget.isUsingPCRelativeCalls() &&(static_cast <bool> (Subtarget.isUsingPCRelativeCalls() && "Must be using PC-Relative calls when a valid PC-Relative node is " "present!") ? void (0) : __assert_fail ("Subtarget.isUsingPCRelativeCalls() && \"Must be using PC-Relative calls when a valid PC-Relative node is \" \"present!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18294, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18293 | "Must be using PC-Relative calls when a valid PC-Relative node is "(static_cast <bool> (Subtarget.isUsingPCRelativeCalls() && "Must be using PC-Relative calls when a valid PC-Relative node is " "present!") ? void (0) : __assert_fail ("Subtarget.isUsingPCRelativeCalls() && \"Must be using PC-Relative calls when a valid PC-Relative node is \" \"present!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18294, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18294 | "present!")(static_cast <bool> (Subtarget.isUsingPCRelativeCalls() && "Must be using PC-Relative calls when a valid PC-Relative node is " "present!") ? void (0) : __assert_fail ("Subtarget.isUsingPCRelativeCalls() && \"Must be using PC-Relative calls when a valid PC-Relative node is \" \"present!\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18294, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18295 | Mode = PPC::AM_PCRel; | ||||
| 18296 | } | ||||
| 18297 | |||||
| 18298 | // Set Base and Disp accordingly depending on the address mode. | ||||
| 18299 | switch (Mode) { | ||||
| 18300 | case PPC::AM_DForm: | ||||
| 18301 | case PPC::AM_DSForm: | ||||
| 18302 | case PPC::AM_DQForm: { | ||||
| 18303 | // This is a register plus a 16-bit immediate. The base will be the | ||||
| 18304 | // register and the displacement will be the immediate unless it | ||||
| 18305 | // isn't sufficiently aligned. | ||||
| 18306 | if (Flags & PPC::MOF_RPlusSImm16) { | ||||
| 18307 | SDValue Op0 = N.getOperand(0); | ||||
| 18308 | SDValue Op1 = N.getOperand(1); | ||||
| 18309 | int16_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue(); | ||||
| 18310 | if (!Align || isAligned(*Align, Imm)) { | ||||
| 18311 | Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); | ||||
| 18312 | Base = Op0; | ||||
| 18313 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { | ||||
| 18314 | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | ||||
| 18315 | fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); | ||||
| 18316 | } | ||||
| 18317 | break; | ||||
| 18318 | } | ||||
| 18319 | } | ||||
| 18320 | // This is a register plus the @lo relocation. The base is the register | ||||
| 18321 | // and the displacement is the global address. | ||||
| 18322 | else if (Flags & PPC::MOF_RPlusLo) { | ||||
| 18323 | Disp = N.getOperand(1).getOperand(0); // The global address. | ||||
| 18324 | assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||(static_cast <bool> (Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode () == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable ) ? void (0) : __assert_fail ("Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18327, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18325 | Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||(static_cast <bool> (Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode () == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable ) ? void (0) : __assert_fail ("Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18327, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18326 | Disp.getOpcode() == ISD::TargetConstantPool ||(static_cast <bool> (Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode () == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable ) ? void (0) : __assert_fail ("Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18327, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18327 | Disp.getOpcode() == ISD::TargetJumpTable)(static_cast <bool> (Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode () == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable ) ? void (0) : __assert_fail ("Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18327, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18328 | Base = N.getOperand(0); | ||||
| 18329 | break; | ||||
| 18330 | } | ||||
| 18331 | // This is a constant address at most 32 bits. The base will be | ||||
| 18332 | // zero or load-immediate-shifted and the displacement will be | ||||
| 18333 | // the low 16 bits of the address. | ||||
| 18334 | else if (Flags & PPC::MOF_AddrIsSImm32) { | ||||
| 18335 | auto *CN = cast<ConstantSDNode>(N); | ||||
| 18336 | EVT CNType = CN->getValueType(0); | ||||
| 18337 | uint64_t CNImm = CN->getZExtValue(); | ||||
| 18338 | // If this address fits entirely in a 16-bit sext immediate field, codegen | ||||
| 18339 | // this as "d, 0". | ||||
| 18340 | int16_t Imm; | ||||
| 18341 | if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { | ||||
| 18342 | Disp = DAG.getTargetConstant(Imm, DL, CNType); | ||||
| 18343 | Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, | ||||
| 18344 | CNType); | ||||
| 18345 | break; | ||||
| 18346 | } | ||||
| 18347 | // Handle 32-bit sext immediate with LIS + Addr mode. | ||||
| 18348 | if ((CNType == MVT::i32 || isInt<32>(CNImm)) && | ||||
| 18349 | (!Align || isAligned(*Align, CNImm))) { | ||||
| 18350 | int32_t Addr = (int32_t)CNImm; | ||||
| 18351 | // Otherwise, break this down into LIS + Disp. | ||||
| 18352 | Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); | ||||
| 18353 | Base = | ||||
| 18354 | DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); | ||||
| 18355 | uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; | ||||
| 18356 | Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); | ||||
| 18357 | break; | ||||
| 18358 | } | ||||
| 18359 | } | ||||
| 18360 | // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. | ||||
| 18361 | Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); | ||||
| 18362 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { | ||||
| 18363 | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | ||||
| 18364 | fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); | ||||
| 18365 | } else | ||||
| 18366 | Base = N; | ||||
| 18367 | break; | ||||
| 18368 | } | ||||
| 18369 | case PPC::AM_PrefixDForm: { | ||||
| 18370 | int64_t Imm34 = 0; | ||||
| 18371 | unsigned Opcode = N.getOpcode(); | ||||
| 18372 | if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && | ||||
| 18373 | (isIntS34Immediate(N.getOperand(1), Imm34))) { | ||||
| 18374 | // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. | ||||
| 18375 | Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); | ||||
| 18376 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) | ||||
| 18377 | Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); | ||||
| 18378 | else | ||||
| 18379 | Base = N.getOperand(0); | ||||
| 18380 | } else if (isIntS34Immediate(N, Imm34)) { | ||||
| 18381 | // The address is a 34-bit signed immediate. | ||||
| 18382 | Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); | ||||
| 18383 | Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); | ||||
| 18384 | } | ||||
| 18385 | break; | ||||
| 18386 | } | ||||
| 18387 | case PPC::AM_PCRel: { | ||||
| 18388 | // When selecting PC-Relative instructions, "Base" is not utilized as | ||||
| 18389 | // we select the address as [PC+imm]. | ||||
| 18390 | Disp = N; | ||||
| 18391 | break; | ||||
| 18392 | } | ||||
| 18393 | case PPC::AM_None: | ||||
| 18394 | break; | ||||
| 18395 | default: { // By default, X-Form is always available to be selected. | ||||
| 18396 | // When a frame index is not aligned, we also match by XForm. | ||||
| 18397 | FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); | ||||
| 18398 | Base = FI ? N : N.getOperand(1); | ||||
| 18399 | Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, | ||||
| 18400 | N.getValueType()) | ||||
| 18401 | : N.getOperand(0); | ||||
| 18402 | break; | ||||
| 18403 | } | ||||
| 18404 | } | ||||
| 18405 | return Mode; | ||||
| 18406 | } | ||||
| 18407 | |||||
| 18408 | CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, | ||||
| 18409 | bool Return, | ||||
| 18410 | bool IsVarArg) const { | ||||
| 18411 | switch (CC) { | ||||
| 18412 | case CallingConv::Cold: | ||||
| 18413 | return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF); | ||||
| 18414 | default: | ||||
| 18415 | return CC_PPC64_ELF; | ||||
| 18416 | } | ||||
| 18417 | } | ||||
| 18418 | |||||
| 18419 | bool PPCTargetLowering::shouldInlineQuadwordAtomics() const { | ||||
| 18420 | // TODO: 16-byte atomic type support for AIX is in progress; we should be able | ||||
| 18421 | // to inline 16-byte atomic ops on AIX too in the future. | ||||
| 18422 | return Subtarget.isPPC64() && | ||||
| 18423 | (EnableQuadwordAtomics || !Subtarget.getTargetTriple().isOSAIX()) && | ||||
| 18424 | Subtarget.hasQuadwordAtomics(); | ||||
| 18425 | } | ||||
| 18426 | |||||
| 18427 | TargetLowering::AtomicExpansionKind | ||||
| 18428 | PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { | ||||
| 18429 | unsigned Size = AI->getType()->getPrimitiveSizeInBits(); | ||||
| 18430 | if (shouldInlineQuadwordAtomics() && Size == 128) | ||||
| 18431 | return AtomicExpansionKind::MaskedIntrinsic; | ||||
| 18432 | |||||
| 18433 | switch (AI->getOperation()) { | ||||
| 18434 | case AtomicRMWInst::UIncWrap: | ||||
| 18435 | case AtomicRMWInst::UDecWrap: | ||||
| 18436 | return AtomicExpansionKind::CmpXChg; | ||||
| 18437 | default: | ||||
| 18438 | return TargetLowering::shouldExpandAtomicRMWInIR(AI); | ||||
| 18439 | } | ||||
| 18440 | |||||
| 18441 | llvm_unreachable("unreachable atomicrmw operation")::llvm::llvm_unreachable_internal("unreachable atomicrmw operation" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18441); | ||||
| 18442 | } | ||||
| 18443 | |||||
| 18444 | TargetLowering::AtomicExpansionKind | ||||
| 18445 | PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { | ||||
| 18446 | unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); | ||||
| 18447 | if (shouldInlineQuadwordAtomics() && Size == 128) | ||||
| 18448 | return AtomicExpansionKind::MaskedIntrinsic; | ||||
| 18449 | return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); | ||||
| 18450 | } | ||||
| 18451 | |||||
| 18452 | static Intrinsic::ID | ||||
| 18453 | getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { | ||||
| 18454 | switch (BinOp) { | ||||
| 18455 | default: | ||||
| 18456 | llvm_unreachable("Unexpected AtomicRMW BinOp")::llvm::llvm_unreachable_internal("Unexpected AtomicRMW BinOp" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18456); | ||||
| 18457 | case AtomicRMWInst::Xchg: | ||||
| 18458 | return Intrinsic::ppc_atomicrmw_xchg_i128; | ||||
| 18459 | case AtomicRMWInst::Add: | ||||
| 18460 | return Intrinsic::ppc_atomicrmw_add_i128; | ||||
| 18461 | case AtomicRMWInst::Sub: | ||||
| 18462 | return Intrinsic::ppc_atomicrmw_sub_i128; | ||||
| 18463 | case AtomicRMWInst::And: | ||||
| 18464 | return Intrinsic::ppc_atomicrmw_and_i128; | ||||
| 18465 | case AtomicRMWInst::Or: | ||||
| 18466 | return Intrinsic::ppc_atomicrmw_or_i128; | ||||
| 18467 | case AtomicRMWInst::Xor: | ||||
| 18468 | return Intrinsic::ppc_atomicrmw_xor_i128; | ||||
| 18469 | case AtomicRMWInst::Nand: | ||||
| 18470 | return Intrinsic::ppc_atomicrmw_nand_i128; | ||||
| 18471 | } | ||||
| 18472 | } | ||||
| 18473 | |||||
| 18474 | Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( | ||||
| 18475 | IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, | ||||
| 18476 | Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { | ||||
| 18477 | assert(shouldInlineQuadwordAtomics() && "Only support quadword now")(static_cast <bool> (shouldInlineQuadwordAtomics() && "Only support quadword now") ? void (0) : __assert_fail ("shouldInlineQuadwordAtomics() && \"Only support quadword now\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18477, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18478 | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); | ||||
| 18479 | Type *ValTy = Incr->getType(); | ||||
| 18480 | assert(ValTy->getPrimitiveSizeInBits() == 128)(static_cast <bool> (ValTy->getPrimitiveSizeInBits() == 128) ? void (0) : __assert_fail ("ValTy->getPrimitiveSizeInBits() == 128" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18480, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18481 | Function *RMW = Intrinsic::getDeclaration( | ||||
| 18482 | M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); | ||||
| 18483 | Type *Int64Ty = Type::getInt64Ty(M->getContext()); | ||||
| 18484 | Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); | ||||
| 18485 | Value *IncrHi = | ||||
| 18486 | Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); | ||||
| 18487 | Value *Addr = | ||||
| 18488 | Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); | ||||
| 18489 | Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); | ||||
| 18490 | Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); | ||||
| 18491 | Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); | ||||
| 18492 | Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); | ||||
| 18493 | Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); | ||||
| 18494 | return Builder.CreateOr( | ||||
| 18495 | Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); | ||||
| 18496 | } | ||||
| 18497 | |||||
| 18498 | Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( | ||||
| 18499 | IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, | ||||
| 18500 | Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { | ||||
| 18501 | assert(shouldInlineQuadwordAtomics() && "Only support quadword now")(static_cast <bool> (shouldInlineQuadwordAtomics() && "Only support quadword now") ? void (0) : __assert_fail ("shouldInlineQuadwordAtomics() && \"Only support quadword now\"" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18501, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18502 | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); | ||||
| 18503 | Type *ValTy = CmpVal->getType(); | ||||
| 18504 | assert(ValTy->getPrimitiveSizeInBits() == 128)(static_cast <bool> (ValTy->getPrimitiveSizeInBits() == 128) ? void (0) : __assert_fail ("ValTy->getPrimitiveSizeInBits() == 128" , "llvm/lib/Target/PowerPC/PPCISelLowering.cpp", 18504, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18505 | Function *IntCmpXchg = | ||||
| 18506 | Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); | ||||
| 18507 | Type *Int64Ty = Type::getInt64Ty(M->getContext()); | ||||
| 18508 | Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); | ||||
| 18509 | Value *CmpHi = | ||||
| 18510 | Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); | ||||
| 18511 | Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); | ||||
| 18512 | Value *NewHi = | ||||
| 18513 | Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); | ||||
| 18514 | Value *Addr = | ||||
| 18515 | Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); | ||||
| 18516 | emitLeadingFence(Builder, CI, Ord); | ||||
| 18517 | Value *LoHi = | ||||
| 18518 | Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); | ||||
| 18519 | emitTrailingFence(Builder, CI, Ord); | ||||
| 18520 | Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); | ||||
| 18521 | Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); | ||||
| 18522 | Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); | ||||
| 18523 | Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); | ||||
| 18524 | return Builder.CreateOr( | ||||
| 18525 | Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); | ||||
| 18526 | } |
| 1 | //===-- llvm/ADT/bit.h - C++20 <bit> ----------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements the C++20 <bit> header. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_BIT_H |
| 15 | #define LLVM_ADT_BIT_H |
| 16 | |
| 17 | #include "llvm/Support/Compiler.h" |
| 18 | #include <cstdint> |
| 19 | #include <limits> |
| 20 | #include <type_traits> |
| 21 | |
| 22 | #if !__has_builtin(__builtin_bit_cast)1 |
| 23 | #include <cstring> |
| 24 | #endif |
| 25 | |
| 26 | #if defined(_MSC_VER) && !defined(_DEBUG1) |
| 27 | #include <cstdlib> // for _byteswap_{ushort,ulong,uint64} |
| 28 | #endif |
| 29 | |
| 30 | #ifdef _MSC_VER |
| 31 | // Declare these intrinsics manually rather including intrin.h. It's very |
| 32 | // expensive, and bit.h is popular via MathExtras.h. |
| 33 | // #include <intrin.h> |
| 34 | extern "C" { |
| 35 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); |
| 36 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); |
| 37 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); |
| 38 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); |
| 39 | } |
| 40 | #endif |
| 41 | |
| 42 | namespace llvm { |
| 43 | |
| 44 | // This implementation of bit_cast is different from the C++20 one in two ways: |
| 45 | // - It isn't constexpr because that requires compiler support. |
| 46 | // - It requires trivially-constructible To, to avoid UB in the implementation. |
| 47 | template < |
| 48 | typename To, typename From, |
| 49 | typename = std::enable_if_t<sizeof(To) == sizeof(From)>, |
| 50 | typename = std::enable_if_t<std::is_trivially_constructible<To>::value>, |
| 51 | typename = std::enable_if_t<std::is_trivially_copyable<To>::value>, |
| 52 | typename = std::enable_if_t<std::is_trivially_copyable<From>::value>> |
| 53 | [[nodiscard]] inline To bit_cast(const From &from) noexcept { |
| 54 | #if __has_builtin(__builtin_bit_cast)1 |
| 55 | return __builtin_bit_cast(To, from); |
| 56 | #else |
| 57 | To to; |
| 58 | std::memcpy(&to, &from, sizeof(To)); |
| 59 | return to; |
| 60 | #endif |
| 61 | } |
| 62 | |
| 63 | /// Reverses the bytes in the given integer value V. |
| 64 | template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>> |
| 65 | [[nodiscard]] constexpr T byteswap(T V) noexcept { |
| 66 | if constexpr (sizeof(T) == 1) { |
| 67 | return V; |
| 68 | } else if constexpr (sizeof(T) == 2) { |
| 69 | uint16_t UV = V; |
| 70 | #if defined(_MSC_VER) && !defined(_DEBUG1) |
| 71 | // The DLL version of the runtime lacks these functions (bug!?), but in a |
| 72 | // release build they're replaced with BSWAP instructions anyway. |
| 73 | return _byteswap_ushort(UV); |
| 74 | #else |
| 75 | uint16_t Hi = UV << 8; |
| 76 | uint16_t Lo = UV >> 8; |
| 77 | return Hi | Lo; |
| 78 | #endif |
| 79 | } else if constexpr (sizeof(T) == 4) { |
| 80 | uint32_t UV = V; |
| 81 | #if __has_builtin(__builtin_bswap32)1 |
| 82 | return __builtin_bswap32(UV); |
| 83 | #elif defined(_MSC_VER) && !defined(_DEBUG1) |
| 84 | return _byteswap_ulong(UV); |
| 85 | #else |
| 86 | uint32_t Byte0 = UV & 0x000000FF; |
| 87 | uint32_t Byte1 = UV & 0x0000FF00; |
| 88 | uint32_t Byte2 = UV & 0x00FF0000; |
| 89 | uint32_t Byte3 = UV & 0xFF000000; |
| 90 | return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24); |
| 91 | #endif |
| 92 | } else if constexpr (sizeof(T) == 8) { |
| 93 | uint64_t UV = V; |
| 94 | #if __has_builtin(__builtin_bswap64)1 |
| 95 | return __builtin_bswap64(UV); |
| 96 | #elif defined(_MSC_VER) && !defined(_DEBUG1) |
| 97 | return _byteswap_uint64(UV); |
| 98 | #else |
| 99 | uint64_t Hi = llvm::byteswap<uint32_t>(UV); |
| 100 | uint32_t Lo = llvm::byteswap<uint32_t>(UV >> 32); |
| 101 | return (Hi << 32) | Lo; |
| 102 | #endif |
| 103 | } else { |
| 104 | static_assert(!sizeof(T *), "Don't know how to handle the given type."); |
| 105 | return 0; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
| 110 | [[nodiscard]] constexpr inline bool has_single_bit(T Value) noexcept { |
| 111 | return (Value != 0) && ((Value & (Value - 1)) == 0); |
| 112 | } |
| 113 | |
| 114 | namespace detail { |
| 115 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { |
| 116 | static unsigned count(T Val) { |
| 117 | if (!Val) |
| 118 | return std::numeric_limits<T>::digits; |
| 119 | if (Val & 0x1) |
| 120 | return 0; |
| 121 | |
| 122 | // Bisection method. |
| 123 | unsigned ZeroBits = 0; |
| 124 | T Shift = std::numeric_limits<T>::digits >> 1; |
| 125 | T Mask = std::numeric_limits<T>::max() >> Shift; |
| 126 | while (Shift) { |
| 127 | if ((Val & Mask) == 0) { |
| 128 | Val >>= Shift; |
| 129 | ZeroBits |= Shift; |
| 130 | } |
| 131 | Shift >>= 1; |
| 132 | Mask >>= Shift; |
| 133 | } |
| 134 | return ZeroBits; |
| 135 | } |
| 136 | }; |
| 137 | |
| 138 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 139 | template <typename T> struct TrailingZerosCounter<T, 4> { |
| 140 | static unsigned count(T Val) { |
| 141 | if (Val == 0) |
| 142 | return 32; |
| 143 | |
| 144 | #if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4) |
| 145 | return __builtin_ctz(Val); |
| 146 | #elif defined(_MSC_VER) |
| 147 | unsigned long Index; |
| 148 | _BitScanForward(&Index, Val); |
| 149 | return Index; |
| 150 | #endif |
| 151 | } |
| 152 | }; |
| 153 | |
| 154 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 155 | template <typename T> struct TrailingZerosCounter<T, 8> { |
| 156 | static unsigned count(T Val) { |
| 157 | if (Val == 0) |
| 158 | return 64; |
| 159 | |
| 160 | #if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4) |
| 161 | return __builtin_ctzll(Val); |
| 162 | #elif defined(_MSC_VER) |
| 163 | unsigned long Index; |
| 164 | _BitScanForward64(&Index, Val); |
| 165 | return Index; |
| 166 | #endif |
| 167 | } |
| 168 | }; |
| 169 | #endif |
| 170 | #endif |
| 171 | } // namespace detail |
| 172 | |
| 173 | /// Count number of 0's from the least significant bit to the most |
| 174 | /// stopping at the first 1. |
| 175 | /// |
| 176 | /// Only unsigned integral types are allowed. |
| 177 | /// |
| 178 | /// Returns std::numeric_limits<T>::digits on an input of 0. |
| 179 | template <typename T> [[nodiscard]] int countr_zero(T Val) { |
| 180 | static_assert(std::is_unsigned_v<T>, |
| 181 | "Only unsigned integral types are allowed."); |
| 182 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val); |
| 183 | } |
| 184 | |
| 185 | namespace detail { |
| 186 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { |
| 187 | static unsigned count(T Val) { |
| 188 | if (!Val) |
| 189 | return std::numeric_limits<T>::digits; |
| 190 | |
| 191 | // Bisection method. |
| 192 | unsigned ZeroBits = 0; |
| 193 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { |
| 194 | T Tmp = Val >> Shift; |
| 195 | if (Tmp) |
| 196 | Val = Tmp; |
| 197 | else |
| 198 | ZeroBits |= Shift; |
| 199 | } |
| 200 | return ZeroBits; |
| 201 | } |
| 202 | }; |
| 203 | |
| 204 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 205 | template <typename T> struct LeadingZerosCounter<T, 4> { |
| 206 | static unsigned count(T Val) { |
| 207 | if (Val == 0) |
| 208 | return 32; |
| 209 | |
| 210 | #if __has_builtin(__builtin_clz)1 || defined(__GNUC__4) |
| 211 | return __builtin_clz(Val); |
| 212 | #elif defined(_MSC_VER) |
| 213 | unsigned long Index; |
| 214 | _BitScanReverse(&Index, Val); |
| 215 | return Index ^ 31; |
| 216 | #endif |
| 217 | } |
| 218 | }; |
| 219 | |
| 220 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 221 | template <typename T> struct LeadingZerosCounter<T, 8> { |
| 222 | static unsigned count(T Val) { |
| 223 | if (Val == 0) |
| 224 | return 64; |
| 225 | |
| 226 | #if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4) |
| 227 | return __builtin_clzll(Val); |
| 228 | #elif defined(_MSC_VER) |
| 229 | unsigned long Index; |
| 230 | _BitScanReverse64(&Index, Val); |
| 231 | return Index ^ 63; |
| 232 | #endif |
| 233 | } |
| 234 | }; |
| 235 | #endif |
| 236 | #endif |
| 237 | } // namespace detail |
| 238 | |
| 239 | /// Count number of 0's from the most significant bit to the least |
| 240 | /// stopping at the first 1. |
| 241 | /// |
| 242 | /// Only unsigned integral types are allowed. |
| 243 | /// |
| 244 | /// Returns std::numeric_limits<T>::digits on an input of 0. |
| 245 | template <typename T> [[nodiscard]] int countl_zero(T Val) { |
| 246 | static_assert(std::is_unsigned_v<T>, |
| 247 | "Only unsigned integral types are allowed."); |
| 248 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val); |
| 249 | } |
| 250 | |
| 251 | /// Count the number of ones from the most significant bit to the first |
| 252 | /// zero bit. |
| 253 | /// |
| 254 | /// Ex. countl_one(0xFF0FFF00) == 8. |
| 255 | /// Only unsigned integral types are allowed. |
| 256 | /// |
| 257 | /// Returns std::numeric_limits<T>::digits on an input of all ones. |
| 258 | template <typename T> [[nodiscard]] int countl_one(T Value) { |
| 259 | static_assert(std::is_unsigned_v<T>, |
| 260 | "Only unsigned integral types are allowed."); |
| 261 | return llvm::countl_zero<T>(~Value); |
| 262 | } |
| 263 | |
| 264 | /// Count the number of ones from the least significant bit to the first |
| 265 | /// zero bit. |
| 266 | /// |
| 267 | /// Ex. countr_one(0x00FF00FF) == 8. |
| 268 | /// Only unsigned integral types are allowed. |
| 269 | /// |
| 270 | /// Returns std::numeric_limits<T>::digits on an input of all ones. |
| 271 | template <typename T> [[nodiscard]] int countr_one(T Value) { |
| 272 | static_assert(std::is_unsigned_v<T>, |
| 273 | "Only unsigned integral types are allowed."); |
| 274 | return llvm::countr_zero<T>(~Value); |
| 275 | } |
| 276 | |
| 277 | /// Returns the number of bits needed to represent Value if Value is nonzero. |
| 278 | /// Returns 0 otherwise. |
| 279 | /// |
| 280 | /// Ex. bit_width(5) == 3. |
| 281 | template <typename T> [[nodiscard]] int bit_width(T Value) { |
| 282 | static_assert(std::is_unsigned_v<T>, |
| 283 | "Only unsigned integral types are allowed."); |
| 284 | return std::numeric_limits<T>::digits - llvm::countl_zero(Value); |
| 285 | } |
| 286 | |
| 287 | /// Returns the largest integral power of two no greater than Value if Value is |
| 288 | /// nonzero. Returns 0 otherwise. |
| 289 | /// |
| 290 | /// Ex. bit_floor(5) == 4. |
| 291 | template <typename T> [[nodiscard]] T bit_floor(T Value) { |
| 292 | static_assert(std::is_unsigned_v<T>, |
| 293 | "Only unsigned integral types are allowed."); |
| 294 | if (!Value) |
| 295 | return 0; |
| 296 | return T(1) << (llvm::bit_width(Value) - 1); |
| 297 | } |
| 298 | |
| 299 | /// Returns the smallest integral power of two no smaller than Value if Value is |
| 300 | /// nonzero. Returns 1 otherwise. |
| 301 | /// |
| 302 | /// Ex. bit_ceil(5) == 8. |
| 303 | /// |
| 304 | /// The return value is undefined if the input is larger than the largest power |
| 305 | /// of two representable in T. |
| 306 | template <typename T> [[nodiscard]] T bit_ceil(T Value) { |
| 307 | static_assert(std::is_unsigned_v<T>, |
| 308 | "Only unsigned integral types are allowed."); |
| 309 | if (Value < 2) |
| 310 | return 1; |
| 311 | return T(1) << llvm::bit_width<T>(Value - 1u); |
| 312 | } |
| 313 | |
| 314 | namespace detail { |
| 315 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { |
| 316 | static int count(T Value) { |
| 317 | // Generic version, forward to 32 bits. |
| 318 | static_assert(SizeOfT <= 4, "Not implemented!"); |
| 319 | #if defined(__GNUC__4) |
| 320 | return (int)__builtin_popcount(Value); |
| 321 | #else |
| 322 | uint32_t v = Value; |
| 323 | v = v - ((v >> 1) & 0x55555555); |
| 324 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
| 325 | return int(((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24); |
| 326 | #endif |
| 327 | } |
| 328 | }; |
| 329 | |
| 330 | template <typename T> struct PopulationCounter<T, 8> { |
| 331 | static int count(T Value) { |
| 332 | #if defined(__GNUC__4) |
| 333 | return (int)__builtin_popcountll(Value); |
| 334 | #else |
| 335 | uint64_t v = Value; |
| 336 | v = v - ((v >> 1) & 0x5555555555555555ULL); |
| 337 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
| 338 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
| 339 | return int((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
| 340 | #endif |
| 341 | } |
| 342 | }; |
| 343 | } // namespace detail |
| 344 | |
| 345 | /// Count the number of set bits in a value. |
| 346 | /// Ex. popcount(0xF000F000) = 8 |
| 347 | /// Returns 0 if the word is zero. |
| 348 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
| 349 | [[nodiscard]] inline int popcount(T Value) noexcept { |
| 350 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); |
| 351 | } |
| 352 | |
| 353 | // Forward-declare rotr so that rotl can use it. |
| 354 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
| 355 | [[nodiscard]] constexpr T rotr(T V, int R); |
| 356 | |
| 357 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
| 358 | [[nodiscard]] constexpr T rotl(T V, int R) { |
| 359 | unsigned N = std::numeric_limits<T>::digits; |
| 360 | |
| 361 | R = R % N; |
| 362 | if (!R) |
| 363 | return V; |
| 364 | |
| 365 | if (R < 0) |
| 366 | return llvm::rotr(V, -R); |
| 367 | |
| 368 | return (V << R) | (V >> (N - R)); |
| 369 | } |
| 370 | |
| 371 | template <typename T, typename> [[nodiscard]] constexpr T rotr(T V, int R) { |
| 372 | unsigned N = std::numeric_limits<T>::digits; |
| 373 | |
| 374 | R = R % N; |
| 375 | if (!R) |
| 376 | return V; |
| 377 | |
| 378 | if (R < 0) |
| 379 | return llvm::rotl(V, -R); |
| 380 | |
| 381 | return (V >> R) | (V << (N - R)); |
| 382 | } |
| 383 | |
| 384 | } // namespace llvm |
| 385 | |
| 386 | #endif |