Bug Summary

File:lib/Target/PowerPC/PPCInstrInfo.cpp
Warning:line 1775, column 20
Value stored to 'NewPred' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name PPCInstrInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Target/PowerPC -I /build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Target/PowerPC -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp -faddrsig
1//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the PowerPC implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "PPCInstrInfo.h"
14#include "MCTargetDesc/PPCPredicates.h"
15#include "PPC.h"
16#include "PPCHazardRecognizers.h"
17#include "PPCInstrBuilder.h"
18#include "PPCMachineFunctionInfo.h"
19#include "PPCTargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/LiveIntervals.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunctionPass.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineMemOperand.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/PseudoSourceValue.h"
29#include "llvm/CodeGen/ScheduleDAG.h"
30#include "llvm/CodeGen/SlotIndexes.h"
31#include "llvm/CodeGen/StackMaps.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/MC/MCInst.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/TargetRegistry.h"
38#include "llvm/Support/raw_ostream.h"
39
40using namespace llvm;
41
42#define DEBUG_TYPE"ppc-instr-info" "ppc-instr-info"
43
44#define GET_INSTRMAP_INFO
45#define GET_INSTRINFO_CTOR_DTOR
46#include "PPCGenInstrInfo.inc"
47
48STATISTIC(NumStoreSPILLVSRRCAsVec,static llvm::Statistic NumStoreSPILLVSRRCAsVec = {"ppc-instr-info"
, "NumStoreSPILLVSRRCAsVec", "Number of spillvsrrc spilled to stack as vec"
, {0}, {false}}
49 "Number of spillvsrrc spilled to stack as vec")static llvm::Statistic NumStoreSPILLVSRRCAsVec = {"ppc-instr-info"
, "NumStoreSPILLVSRRCAsVec", "Number of spillvsrrc spilled to stack as vec"
, {0}, {false}}
;
50STATISTIC(NumStoreSPILLVSRRCAsGpr,static llvm::Statistic NumStoreSPILLVSRRCAsGpr = {"ppc-instr-info"
, "NumStoreSPILLVSRRCAsGpr", "Number of spillvsrrc spilled to stack as gpr"
, {0}, {false}}
51 "Number of spillvsrrc spilled to stack as gpr")static llvm::Statistic NumStoreSPILLVSRRCAsGpr = {"ppc-instr-info"
, "NumStoreSPILLVSRRCAsGpr", "Number of spillvsrrc spilled to stack as gpr"
, {0}, {false}}
;
52STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc")static llvm::Statistic NumGPRtoVSRSpill = {"ppc-instr-info", "NumGPRtoVSRSpill"
, "Number of gpr spills to spillvsrrc", {0}, {false}}
;
53STATISTIC(CmpIselsConverted,static llvm::Statistic CmpIselsConverted = {"ppc-instr-info",
"CmpIselsConverted", "Number of ISELs that depend on comparison of constants converted"
, {0}, {false}}
54 "Number of ISELs that depend on comparison of constants converted")static llvm::Statistic CmpIselsConverted = {"ppc-instr-info",
"CmpIselsConverted", "Number of ISELs that depend on comparison of constants converted"
, {0}, {false}}
;
55STATISTIC(MissedConvertibleImmediateInstrs,static llvm::Statistic MissedConvertibleImmediateInstrs = {"ppc-instr-info"
, "MissedConvertibleImmediateInstrs", "Number of compare-immediate instructions fed by constants"
, {0}, {false}}
56 "Number of compare-immediate instructions fed by constants")static llvm::Statistic MissedConvertibleImmediateInstrs = {"ppc-instr-info"
, "MissedConvertibleImmediateInstrs", "Number of compare-immediate instructions fed by constants"
, {0}, {false}}
;
57STATISTIC(NumRcRotatesConvertedToRcAnd,static llvm::Statistic NumRcRotatesConvertedToRcAnd = {"ppc-instr-info"
, "NumRcRotatesConvertedToRcAnd", "Number of record-form rotates converted to record-form andi"
, {0}, {false}}
58 "Number of record-form rotates converted to record-form andi")static llvm::Statistic NumRcRotatesConvertedToRcAnd = {"ppc-instr-info"
, "NumRcRotatesConvertedToRcAnd", "Number of record-form rotates converted to record-form andi"
, {0}, {false}}
;
59
60static cl::
61opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62 cl::desc("Disable analysis for CTR loops"));
63
64static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65cl::desc("Disable compare instruction optimization"), cl::Hidden);
66
67static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69cl::Hidden);
70
71static cl::opt<bool>
72UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73 cl::desc("Use the old (incorrect) instruction latency calculation"));
74
75// Index into the OpcodesForSpill array.
76enum SpillOpcodeKey {
77 SOK_Int4Spill,
78 SOK_Int8Spill,
79 SOK_Float8Spill,
80 SOK_Float4Spill,
81 SOK_CRSpill,
82 SOK_CRBitSpill,
83 SOK_VRVectorSpill,
84 SOK_VSXVectorSpill,
85 SOK_VectorFloat8Spill,
86 SOK_VectorFloat4Spill,
87 SOK_VRSaveSpill,
88 SOK_QuadFloat8Spill,
89 SOK_QuadFloat4Spill,
90 SOK_QuadBitSpill,
91 SOK_SpillToVSR,
92 SOK_SPESpill,
93 SOK_SPE4Spill,
94 SOK_LastOpcodeSpill // This must be last on the enum.
95};
96
97// Pin the vtable to this file.
98void PPCInstrInfo::anchor() {}
99
100PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
101 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
102 /* CatchRetOpcode */ -1,
103 STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
104 Subtarget(STI), RI(STI.getTargetMachine()) {}
105
106/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
107/// this target when scheduling the DAG.
108ScheduleHazardRecognizer *
109PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
110 const ScheduleDAG *DAG) const {
111 unsigned Directive =
112 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
113 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
114 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
115 const InstrItineraryData *II =
116 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
117 return new ScoreboardHazardRecognizer(II, DAG);
118 }
119
120 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
121}
122
123/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
124/// to use for this target when scheduling the DAG.
125ScheduleHazardRecognizer *
126PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
127 const ScheduleDAG *DAG) const {
128 unsigned Directive =
129 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
130
131 // FIXME: Leaving this as-is until we have POWER9 scheduling info
132 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
133 return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
134
135 // Most subtargets use a PPC970 recognizer.
136 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
137 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
138 assert(DAG->TII && "No InstrInfo?")((DAG->TII && "No InstrInfo?") ? static_cast<void
> (0) : __assert_fail ("DAG->TII && \"No InstrInfo?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 138, __PRETTY_FUNCTION__))
;
139
140 return new PPCHazardRecognizer970(*DAG);
141 }
142
143 return new ScoreboardHazardRecognizer(II, DAG);
144}
145
146unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
147 const MachineInstr &MI,
148 unsigned *PredCost) const {
149 if (!ItinData || UseOldLatencyCalc)
150 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
151
152 // The default implementation of getInstrLatency calls getStageLatency, but
153 // getStageLatency does not do the right thing for us. While we have
154 // itinerary, most cores are fully pipelined, and so the itineraries only
155 // express the first part of the pipeline, not every stage. Instead, we need
156 // to use the listed output operand cycle number (using operand 0 here, which
157 // is an output).
158
159 unsigned Latency = 1;
160 unsigned DefClass = MI.getDesc().getSchedClass();
161 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
162 const MachineOperand &MO = MI.getOperand(i);
163 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
164 continue;
165
166 int Cycle = ItinData->getOperandCycle(DefClass, i);
167 if (Cycle < 0)
168 continue;
169
170 Latency = std::max(Latency, (unsigned) Cycle);
171 }
172
173 return Latency;
174}
175
176int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
177 const MachineInstr &DefMI, unsigned DefIdx,
178 const MachineInstr &UseMI,
179 unsigned UseIdx) const {
180 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
181 UseMI, UseIdx);
182
183 if (!DefMI.getParent())
184 return Latency;
185
186 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
187 unsigned Reg = DefMO.getReg();
188
189 bool IsRegCR;
190 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
191 const MachineRegisterInfo *MRI =
192 &DefMI.getParent()->getParent()->getRegInfo();
193 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
194 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
195 } else {
196 IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
197 PPC::CRBITRCRegClass.contains(Reg);
198 }
199
200 if (UseMI.isBranch() && IsRegCR) {
201 if (Latency < 0)
202 Latency = getInstrLatency(ItinData, DefMI);
203
204 // On some cores, there is an additional delay between writing to a condition
205 // register, and using it from a branch.
206 unsigned Directive = Subtarget.getDarwinDirective();
207 switch (Directive) {
208 default: break;
209 case PPC::DIR_7400:
210 case PPC::DIR_750:
211 case PPC::DIR_970:
212 case PPC::DIR_E5500:
213 case PPC::DIR_PWR4:
214 case PPC::DIR_PWR5:
215 case PPC::DIR_PWR5X:
216 case PPC::DIR_PWR6:
217 case PPC::DIR_PWR6X:
218 case PPC::DIR_PWR7:
219 case PPC::DIR_PWR8:
220 // FIXME: Is this needed for POWER9?
221 Latency += 2;
222 break;
223 }
224 }
225
226 return Latency;
227}
228
229// This function does not list all associative and commutative operations, but
230// only those worth feeding through the machine combiner in an attempt to
231// reduce the critical path. Mostly, this means floating-point operations,
232// because they have high latencies (compared to other operations, such and
233// and/or, which are also associative and commutative, but have low latencies).
234bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
235 switch (Inst.getOpcode()) {
236 // FP Add:
237 case PPC::FADD:
238 case PPC::FADDS:
239 // FP Multiply:
240 case PPC::FMUL:
241 case PPC::FMULS:
242 // Altivec Add:
243 case PPC::VADDFP:
244 // VSX Add:
245 case PPC::XSADDDP:
246 case PPC::XVADDDP:
247 case PPC::XVADDSP:
248 case PPC::XSADDSP:
249 // VSX Multiply:
250 case PPC::XSMULDP:
251 case PPC::XVMULDP:
252 case PPC::XVMULSP:
253 case PPC::XSMULSP:
254 // QPX Add:
255 case PPC::QVFADD:
256 case PPC::QVFADDS:
257 case PPC::QVFADDSs:
258 // QPX Multiply:
259 case PPC::QVFMUL:
260 case PPC::QVFMULS:
261 case PPC::QVFMULSs:
262 return true;
263 default:
264 return false;
265 }
266}
267
268bool PPCInstrInfo::getMachineCombinerPatterns(
269 MachineInstr &Root,
270 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
271 // Using the machine combiner in this way is potentially expensive, so
272 // restrict to when aggressive optimizations are desired.
273 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
274 return false;
275
276 // FP reassociation is only legal when we don't need strict IEEE semantics.
277 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
278 return false;
279
280 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
281}
282
283// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
284bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
285 unsigned &SrcReg, unsigned &DstReg,
286 unsigned &SubIdx) const {
287 switch (MI.getOpcode()) {
288 default: return false;
289 case PPC::EXTSW:
290 case PPC::EXTSW_32:
291 case PPC::EXTSW_32_64:
292 SrcReg = MI.getOperand(1).getReg();
293 DstReg = MI.getOperand(0).getReg();
294 SubIdx = PPC::sub_32;
295 return true;
296 }
297}
298
299unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
300 int &FrameIndex) const {
301 unsigned Opcode = MI.getOpcode();
302 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
303 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
304
305 if (End != std::find(OpcodesForSpill, End, Opcode)) {
306 // Check for the operands added by addFrameReference (the immediate is the
307 // offset which defaults to 0).
308 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
309 MI.getOperand(2).isFI()) {
310 FrameIndex = MI.getOperand(2).getIndex();
311 return MI.getOperand(0).getReg();
312 }
313 }
314 return 0;
315}
316
317// For opcodes with the ReMaterializable flag set, this function is called to
318// verify the instruction is really rematable.
319bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
320 AliasAnalysis *AA) const {
321 switch (MI.getOpcode()) {
322 default:
323 // This function should only be called for opcodes with the ReMaterializable
324 // flag set.
325 llvm_unreachable("Unknown rematerializable operation!")::llvm::llvm_unreachable_internal("Unknown rematerializable operation!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 325)
;
326 break;
327 case PPC::LI:
328 case PPC::LI8:
329 case PPC::LIS:
330 case PPC::LIS8:
331 case PPC::QVGPCI:
332 case PPC::ADDIStocHA:
333 case PPC::ADDItocL:
334 case PPC::LOAD_STACK_GUARD:
335 case PPC::XXLXORz:
336 case PPC::XXLXORspz:
337 case PPC::XXLXORdpz:
338 case PPC::V_SET0B:
339 case PPC::V_SET0H:
340 case PPC::V_SET0:
341 case PPC::V_SETALLONESB:
342 case PPC::V_SETALLONESH:
343 case PPC::V_SETALLONES:
344 case PPC::CRSET:
345 case PPC::CRUNSET:
346 return true;
347 }
348 return false;
349}
350
351unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
352 int &FrameIndex) const {
353 unsigned Opcode = MI.getOpcode();
354 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
355 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
356
357 if (End != std::find(OpcodesForSpill, End, Opcode)) {
358 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
359 MI.getOperand(2).isFI()) {
360 FrameIndex = MI.getOperand(2).getIndex();
361 return MI.getOperand(0).getReg();
362 }
363 }
364 return 0;
365}
366
367MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
368 unsigned OpIdx1,
369 unsigned OpIdx2) const {
370 MachineFunction &MF = *MI.getParent()->getParent();
371
372 // Normal instructions can be commuted the obvious way.
373 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
374 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
375 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
376 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
377 // changing the relative order of the mask operands might change what happens
378 // to the high-bits of the mask (and, thus, the result).
379
380 // Cannot commute if it has a non-zero rotate count.
381 if (MI.getOperand(3).getImm() != 0)
382 return nullptr;
383
384 // If we have a zero rotate count, we have:
385 // M = mask(MB,ME)
386 // Op0 = (Op1 & ~M) | (Op2 & M)
387 // Change this to:
388 // M = mask((ME+1)&31, (MB-1)&31)
389 // Op0 = (Op2 & ~M) | (Op1 & M)
390
391 // Swap op1/op2
392 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&((((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 &&
OpIdx2 == 1)) && "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."
) ? static_cast<void> (0) : __assert_fail ("((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && \"Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 393, __PRETTY_FUNCTION__))
393 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.")((((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 &&
OpIdx2 == 1)) && "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."
) ? static_cast<void> (0) : __assert_fail ("((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && \"Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 393, __PRETTY_FUNCTION__))
;
394 unsigned Reg0 = MI.getOperand(0).getReg();
395 unsigned Reg1 = MI.getOperand(1).getReg();
396 unsigned Reg2 = MI.getOperand(2).getReg();
397 unsigned SubReg1 = MI.getOperand(1).getSubReg();
398 unsigned SubReg2 = MI.getOperand(2).getSubReg();
399 bool Reg1IsKill = MI.getOperand(1).isKill();
400 bool Reg2IsKill = MI.getOperand(2).isKill();
401 bool ChangeReg0 = false;
402 // If machine instrs are no longer in two-address forms, update
403 // destination register as well.
404 if (Reg0 == Reg1) {
405 // Must be two address instruction!
406 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&((MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
"Expecting a two-address instruction!") ? static_cast<void
> (0) : __assert_fail ("MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && \"Expecting a two-address instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 407, __PRETTY_FUNCTION__))
407 "Expecting a two-address instruction!")((MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
"Expecting a two-address instruction!") ? static_cast<void
> (0) : __assert_fail ("MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && \"Expecting a two-address instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 407, __PRETTY_FUNCTION__))
;
408 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch")((MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"
) ? static_cast<void> (0) : __assert_fail ("MI.getOperand(0).getSubReg() == SubReg1 && \"Tied subreg mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 408, __PRETTY_FUNCTION__))
;
409 Reg2IsKill = false;
410 ChangeReg0 = true;
411 }
412
413 // Masks.
414 unsigned MB = MI.getOperand(4).getImm();
415 unsigned ME = MI.getOperand(5).getImm();
416
417 // We can't commute a trivial mask (there is no way to represent an all-zero
418 // mask).
419 if (MB == 0 && ME == 31)
420 return nullptr;
421
422 if (NewMI) {
423 // Create a new instruction.
424 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
425 bool Reg0IsDead = MI.getOperand(0).isDead();
426 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
427 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
428 .addReg(Reg2, getKillRegState(Reg2IsKill))
429 .addReg(Reg1, getKillRegState(Reg1IsKill))
430 .addImm((ME + 1) & 31)
431 .addImm((MB - 1) & 31);
432 }
433
434 if (ChangeReg0) {
435 MI.getOperand(0).setReg(Reg2);
436 MI.getOperand(0).setSubReg(SubReg2);
437 }
438 MI.getOperand(2).setReg(Reg1);
439 MI.getOperand(1).setReg(Reg2);
440 MI.getOperand(2).setSubReg(SubReg1);
441 MI.getOperand(1).setSubReg(SubReg2);
442 MI.getOperand(2).setIsKill(Reg1IsKill);
443 MI.getOperand(1).setIsKill(Reg2IsKill);
444
445 // Swap the mask around.
446 MI.getOperand(4).setImm((ME + 1) & 31);
447 MI.getOperand(5).setImm((MB - 1) & 31);
448 return &MI;
449}
450
451bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
452 unsigned &SrcOpIdx2) const {
453 // For VSX A-Type FMA instructions, it is the first two operands that can be
454 // commuted, however, because the non-encoded tied input operand is listed
455 // first, the operands to swap are actually the second and third.
456
457 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
458 if (AltOpc == -1)
459 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
460
461 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
462 // and SrcOpIdx2.
463 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
464}
465
466void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
467 MachineBasicBlock::iterator MI) const {
468 // This function is used for scheduling, and the nop wanted here is the type
469 // that terminates dispatch groups on the POWER cores.
470 unsigned Directive = Subtarget.getDarwinDirective();
471 unsigned Opcode;
472 switch (Directive) {
473 default: Opcode = PPC::NOP; break;
474 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
475 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
476 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
477 // FIXME: Update when POWER9 scheduling model is ready.
478 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
479 }
480
481 DebugLoc DL;
482 BuildMI(MBB, MI, DL, get(Opcode));
483}
484
485/// Return the noop instruction to use for a noop.
486void PPCInstrInfo::getNoop(MCInst &NopInst) const {
487 NopInst.setOpcode(PPC::NOP);
488}
489
490// Branch analysis.
491// Note: If the condition register is set to CTR or CTR8 then this is a
492// BDNZ (imm == 1) or BDZ (imm == 0) branch.
493bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
494 MachineBasicBlock *&TBB,
495 MachineBasicBlock *&FBB,
496 SmallVectorImpl<MachineOperand> &Cond,
497 bool AllowModify) const {
498 bool isPPC64 = Subtarget.isPPC64();
499
500 // If the block has no terminators, it just falls into the block after it.
501 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
502 if (I == MBB.end())
503 return false;
504
505 if (!isUnpredicatedTerminator(*I))
506 return false;
507
508 if (AllowModify) {
509 // If the BB ends with an unconditional branch to the fallthrough BB,
510 // we eliminate the branch instruction.
511 if (I->getOpcode() == PPC::B &&
512 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
513 I->eraseFromParent();
514
515 // We update iterator after deleting the last branch.
516 I = MBB.getLastNonDebugInstr();
517 if (I == MBB.end() || !isUnpredicatedTerminator(*I))
518 return false;
519 }
520 }
521
522 // Get the last instruction in the block.
523 MachineInstr &LastInst = *I;
524
525 // If there is only one terminator instruction, process it.
526 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
527 if (LastInst.getOpcode() == PPC::B) {
528 if (!LastInst.getOperand(0).isMBB())
529 return true;
530 TBB = LastInst.getOperand(0).getMBB();
531 return false;
532 } else if (LastInst.getOpcode() == PPC::BCC) {
533 if (!LastInst.getOperand(2).isMBB())
534 return true;
535 // Block ends with fall-through condbranch.
536 TBB = LastInst.getOperand(2).getMBB();
537 Cond.push_back(LastInst.getOperand(0));
538 Cond.push_back(LastInst.getOperand(1));
539 return false;
540 } else if (LastInst.getOpcode() == PPC::BC) {
541 if (!LastInst.getOperand(1).isMBB())
542 return true;
543 // Block ends with fall-through condbranch.
544 TBB = LastInst.getOperand(1).getMBB();
545 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
546 Cond.push_back(LastInst.getOperand(0));
547 return false;
548 } else if (LastInst.getOpcode() == PPC::BCn) {
549 if (!LastInst.getOperand(1).isMBB())
550 return true;
551 // Block ends with fall-through condbranch.
552 TBB = LastInst.getOperand(1).getMBB();
553 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
554 Cond.push_back(LastInst.getOperand(0));
555 return false;
556 } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
557 LastInst.getOpcode() == PPC::BDNZ) {
558 if (!LastInst.getOperand(0).isMBB())
559 return true;
560 if (DisableCTRLoopAnal)
561 return true;
562 TBB = LastInst.getOperand(0).getMBB();
563 Cond.push_back(MachineOperand::CreateImm(1));
564 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
565 true));
566 return false;
567 } else if (LastInst.getOpcode() == PPC::BDZ8 ||
568 LastInst.getOpcode() == PPC::BDZ) {
569 if (!LastInst.getOperand(0).isMBB())
570 return true;
571 if (DisableCTRLoopAnal)
572 return true;
573 TBB = LastInst.getOperand(0).getMBB();
574 Cond.push_back(MachineOperand::CreateImm(0));
575 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
576 true));
577 return false;
578 }
579
580 // Otherwise, don't know what this is.
581 return true;
582 }
583
584 // Get the instruction before it if it's a terminator.
585 MachineInstr &SecondLastInst = *I;
586
587 // If there are three terminators, we don't know what sort of block this is.
588 if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
589 return true;
590
591 // If the block ends with PPC::B and PPC:BCC, handle it.
592 if (SecondLastInst.getOpcode() == PPC::BCC &&
593 LastInst.getOpcode() == PPC::B) {
594 if (!SecondLastInst.getOperand(2).isMBB() ||
595 !LastInst.getOperand(0).isMBB())
596 return true;
597 TBB = SecondLastInst.getOperand(2).getMBB();
598 Cond.push_back(SecondLastInst.getOperand(0));
599 Cond.push_back(SecondLastInst.getOperand(1));
600 FBB = LastInst.getOperand(0).getMBB();
601 return false;
602 } else if (SecondLastInst.getOpcode() == PPC::BC &&
603 LastInst.getOpcode() == PPC::B) {
604 if (!SecondLastInst.getOperand(1).isMBB() ||
605 !LastInst.getOperand(0).isMBB())
606 return true;
607 TBB = SecondLastInst.getOperand(1).getMBB();
608 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
609 Cond.push_back(SecondLastInst.getOperand(0));
610 FBB = LastInst.getOperand(0).getMBB();
611 return false;
612 } else if (SecondLastInst.getOpcode() == PPC::BCn &&
613 LastInst.getOpcode() == PPC::B) {
614 if (!SecondLastInst.getOperand(1).isMBB() ||
615 !LastInst.getOperand(0).isMBB())
616 return true;
617 TBB = SecondLastInst.getOperand(1).getMBB();
618 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
619 Cond.push_back(SecondLastInst.getOperand(0));
620 FBB = LastInst.getOperand(0).getMBB();
621 return false;
622 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
623 SecondLastInst.getOpcode() == PPC::BDNZ) &&
624 LastInst.getOpcode() == PPC::B) {
625 if (!SecondLastInst.getOperand(0).isMBB() ||
626 !LastInst.getOperand(0).isMBB())
627 return true;
628 if (DisableCTRLoopAnal)
629 return true;
630 TBB = SecondLastInst.getOperand(0).getMBB();
631 Cond.push_back(MachineOperand::CreateImm(1));
632 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
633 true));
634 FBB = LastInst.getOperand(0).getMBB();
635 return false;
636 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
637 SecondLastInst.getOpcode() == PPC::BDZ) &&
638 LastInst.getOpcode() == PPC::B) {
639 if (!SecondLastInst.getOperand(0).isMBB() ||
640 !LastInst.getOperand(0).isMBB())
641 return true;
642 if (DisableCTRLoopAnal)
643 return true;
644 TBB = SecondLastInst.getOperand(0).getMBB();
645 Cond.push_back(MachineOperand::CreateImm(0));
646 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
647 true));
648 FBB = LastInst.getOperand(0).getMBB();
649 return false;
650 }
651
652 // If the block ends with two PPC:Bs, handle it. The second one is not
653 // executed, so remove it.
654 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
655 if (!SecondLastInst.getOperand(0).isMBB())
656 return true;
657 TBB = SecondLastInst.getOperand(0).getMBB();
658 I = LastInst;
659 if (AllowModify)
660 I->eraseFromParent();
661 return false;
662 }
663
664 // Otherwise, can't handle this.
665 return true;
666}
667
668unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
669 int *BytesRemoved) const {
670 assert(!BytesRemoved && "code size not handled")((!BytesRemoved && "code size not handled") ? static_cast
<void> (0) : __assert_fail ("!BytesRemoved && \"code size not handled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 670, __PRETTY_FUNCTION__))
;
671
672 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
673 if (I == MBB.end())
674 return 0;
675
676 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
677 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
678 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
679 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
680 return 0;
681
682 // Remove the branch.
683 I->eraseFromParent();
684
685 I = MBB.end();
686
687 if (I == MBB.begin()) return 1;
688 --I;
689 if (I->getOpcode() != PPC::BCC &&
690 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
691 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
692 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
693 return 1;
694
695 // Remove the branch.
696 I->eraseFromParent();
697 return 2;
698}
699
700unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
701 MachineBasicBlock *TBB,
702 MachineBasicBlock *FBB,
703 ArrayRef<MachineOperand> Cond,
704 const DebugLoc &DL,
705 int *BytesAdded) const {
706 // Shouldn't be a fall through.
707 assert(TBB && "insertBranch must not be told to insert a fallthrough")((TBB && "insertBranch must not be told to insert a fallthrough"
) ? static_cast<void> (0) : __assert_fail ("TBB && \"insertBranch must not be told to insert a fallthrough\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 707, __PRETTY_FUNCTION__))
;
708 assert((Cond.size() == 2 || Cond.size() == 0) &&(((Cond.size() == 2 || Cond.size() == 0) && "PPC branch conditions have two components!"
) ? static_cast<void> (0) : __assert_fail ("(Cond.size() == 2 || Cond.size() == 0) && \"PPC branch conditions have two components!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 709, __PRETTY_FUNCTION__))
709 "PPC branch conditions have two components!")(((Cond.size() == 2 || Cond.size() == 0) && "PPC branch conditions have two components!"
) ? static_cast<void> (0) : __assert_fail ("(Cond.size() == 2 || Cond.size() == 0) && \"PPC branch conditions have two components!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 709, __PRETTY_FUNCTION__))
;
710 assert(!BytesAdded && "code size not handled")((!BytesAdded && "code size not handled") ? static_cast
<void> (0) : __assert_fail ("!BytesAdded && \"code size not handled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 710, __PRETTY_FUNCTION__))
;
711
712 bool isPPC64 = Subtarget.isPPC64();
713
714 // One-way branch.
715 if (!FBB) {
716 if (Cond.empty()) // Unconditional branch
717 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
718 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
719 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
720 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
721 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
722 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
723 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
724 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
725 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
726 else // Conditional branch
727 BuildMI(&MBB, DL, get(PPC::BCC))
728 .addImm(Cond[0].getImm())
729 .add(Cond[1])
730 .addMBB(TBB);
731 return 1;
732 }
733
734 // Two-way Conditional Branch.
735 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
736 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
737 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
738 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
739 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
740 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
741 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
742 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
743 else
744 BuildMI(&MBB, DL, get(PPC::BCC))
745 .addImm(Cond[0].getImm())
746 .add(Cond[1])
747 .addMBB(TBB);
748 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
749 return 2;
750}
751
752// Select analysis.
753bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
754 ArrayRef<MachineOperand> Cond,
755 unsigned TrueReg, unsigned FalseReg,
756 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
757 if (Cond.size() != 2)
758 return false;
759
760 // If this is really a bdnz-like condition, then it cannot be turned into a
761 // select.
762 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
763 return false;
764
765 // Check register classes.
766 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
767 const TargetRegisterClass *RC =
768 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
769 if (!RC)
770 return false;
771
772 // isel is for regular integer GPRs only.
773 if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
774 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
775 !PPC::G8RCRegClass.hasSubClassEq(RC) &&
776 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
777 return false;
778
779 // FIXME: These numbers are for the A2, how well they work for other cores is
780 // an open question. On the A2, the isel instruction has a 2-cycle latency
781 // but single-cycle throughput. These numbers are used in combination with
782 // the MispredictPenalty setting from the active SchedMachineModel.
783 CondCycles = 1;
784 TrueCycles = 1;
785 FalseCycles = 1;
786
787 return true;
788}
789
790void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
791 MachineBasicBlock::iterator MI,
792 const DebugLoc &dl, unsigned DestReg,
793 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
794 unsigned FalseReg) const {
795 assert(Cond.size() == 2 &&((Cond.size() == 2 && "PPC branch conditions have two components!"
) ? static_cast<void> (0) : __assert_fail ("Cond.size() == 2 && \"PPC branch conditions have two components!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 796, __PRETTY_FUNCTION__))
796 "PPC branch conditions have two components!")((Cond.size() == 2 && "PPC branch conditions have two components!"
) ? static_cast<void> (0) : __assert_fail ("Cond.size() == 2 && \"PPC branch conditions have two components!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 796, __PRETTY_FUNCTION__))
;
797
798 // Get the register classes.
799 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
800 const TargetRegisterClass *RC =
801 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
802 assert(RC && "TrueReg and FalseReg must have overlapping register classes")((RC && "TrueReg and FalseReg must have overlapping register classes"
) ? static_cast<void> (0) : __assert_fail ("RC && \"TrueReg and FalseReg must have overlapping register classes\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 802, __PRETTY_FUNCTION__))
;
803
804 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
805 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
806 assert((Is64Bit ||(((Is64Bit || PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC)) && "isel is for regular integer GPRs only"
) ? static_cast<void> (0) : __assert_fail ("(Is64Bit || PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && \"isel is for regular integer GPRs only\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 809, __PRETTY_FUNCTION__))
807 PPC::GPRCRegClass.hasSubClassEq(RC) ||(((Is64Bit || PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC)) && "isel is for regular integer GPRs only"
) ? static_cast<void> (0) : __assert_fail ("(Is64Bit || PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && \"isel is for regular integer GPRs only\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 809, __PRETTY_FUNCTION__))
808 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&(((Is64Bit || PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC)) && "isel is for regular integer GPRs only"
) ? static_cast<void> (0) : __assert_fail ("(Is64Bit || PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && \"isel is for regular integer GPRs only\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 809, __PRETTY_FUNCTION__))
809 "isel is for regular integer GPRs only")(((Is64Bit || PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC)) && "isel is for regular integer GPRs only"
) ? static_cast<void> (0) : __assert_fail ("(Is64Bit || PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && \"isel is for regular integer GPRs only\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 809, __PRETTY_FUNCTION__))
;
810
811 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
812 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
813
814 unsigned SubIdx = 0;
815 bool SwapOps = false;
816 switch (SelectPred) {
817 case PPC::PRED_EQ:
818 case PPC::PRED_EQ_MINUS:
819 case PPC::PRED_EQ_PLUS:
820 SubIdx = PPC::sub_eq; SwapOps = false; break;
821 case PPC::PRED_NE:
822 case PPC::PRED_NE_MINUS:
823 case PPC::PRED_NE_PLUS:
824 SubIdx = PPC::sub_eq; SwapOps = true; break;
825 case PPC::PRED_LT:
826 case PPC::PRED_LT_MINUS:
827 case PPC::PRED_LT_PLUS:
828 SubIdx = PPC::sub_lt; SwapOps = false; break;
829 case PPC::PRED_GE:
830 case PPC::PRED_GE_MINUS:
831 case PPC::PRED_GE_PLUS:
832 SubIdx = PPC::sub_lt; SwapOps = true; break;
833 case PPC::PRED_GT:
834 case PPC::PRED_GT_MINUS:
835 case PPC::PRED_GT_PLUS:
836 SubIdx = PPC::sub_gt; SwapOps = false; break;
837 case PPC::PRED_LE:
838 case PPC::PRED_LE_MINUS:
839 case PPC::PRED_LE_PLUS:
840 SubIdx = PPC::sub_gt; SwapOps = true; break;
841 case PPC::PRED_UN:
842 case PPC::PRED_UN_MINUS:
843 case PPC::PRED_UN_PLUS:
844 SubIdx = PPC::sub_un; SwapOps = false; break;
845 case PPC::PRED_NU:
846 case PPC::PRED_NU_MINUS:
847 case PPC::PRED_NU_PLUS:
848 SubIdx = PPC::sub_un; SwapOps = true; break;
849 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
850 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
851 }
852
853 unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
854 SecondReg = SwapOps ? TrueReg : FalseReg;
855
856 // The first input register of isel cannot be r0. If it is a member
857 // of a register class that can be r0, then copy it first (the
858 // register allocator should eliminate the copy).
859 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
860 MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
861 const TargetRegisterClass *FirstRC =
862 MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
863 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
864 unsigned OldFirstReg = FirstReg;
865 FirstReg = MRI.createVirtualRegister(FirstRC);
866 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
867 .addReg(OldFirstReg);
868 }
869
870 BuildMI(MBB, MI, dl, get(OpCode), DestReg)
871 .addReg(FirstReg).addReg(SecondReg)
872 .addReg(Cond[1].getReg(), 0, SubIdx);
873}
874
875static unsigned getCRBitValue(unsigned CRBit) {
876 unsigned Ret = 4;
877 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
878 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
879 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
880 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
881 Ret = 3;
882 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
883 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
884 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
885 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
886 Ret = 2;
887 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
888 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
889 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
890 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
891 Ret = 1;
892 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
893 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
894 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
895 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
896 Ret = 0;
897
898 assert(Ret != 4 && "Invalid CR bit register")((Ret != 4 && "Invalid CR bit register") ? static_cast
<void> (0) : __assert_fail ("Ret != 4 && \"Invalid CR bit register\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 898, __PRETTY_FUNCTION__))
;
899 return Ret;
900}
901
902void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
903 MachineBasicBlock::iterator I,
904 const DebugLoc &DL, unsigned DestReg,
905 unsigned SrcReg, bool KillSrc) const {
906 // We can end up with self copies and similar things as a result of VSX copy
907 // legalization. Promote them here.
908 const TargetRegisterInfo *TRI = &getRegisterInfo();
909 if (PPC::F8RCRegClass.contains(DestReg) &&
910 PPC::VSRCRegClass.contains(SrcReg)) {
911 unsigned SuperReg =
912 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
913
914 if (VSXSelfCopyCrash && SrcReg == SuperReg)
915 llvm_unreachable("nop VSX copy")::llvm::llvm_unreachable_internal("nop VSX copy", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 915)
;
916
917 DestReg = SuperReg;
918 } else if (PPC::F8RCRegClass.contains(SrcReg) &&
919 PPC::VSRCRegClass.contains(DestReg)) {
920 unsigned SuperReg =
921 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
922
923 if (VSXSelfCopyCrash && DestReg == SuperReg)
924 llvm_unreachable("nop VSX copy")::llvm::llvm_unreachable_internal("nop VSX copy", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 924)
;
925
926 SrcReg = SuperReg;
927 }
928
929 // Different class register copy
930 if (PPC::CRBITRCRegClass.contains(SrcReg) &&
931 PPC::GPRCRegClass.contains(DestReg)) {
932 unsigned CRReg = getCRFromCRBit(SrcReg);
933 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
934 getKillRegState(KillSrc);
935 // Rotate the CR bit in the CR fields to be the least significant bit and
936 // then mask with 0x1 (MB = ME = 31).
937 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
938 .addReg(DestReg, RegState::Kill)
939 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
940 .addImm(31)
941 .addImm(31);
942 return;
943 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
944 PPC::G8RCRegClass.contains(DestReg)) {
945 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
946 getKillRegState(KillSrc);
947 return;
948 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
949 PPC::GPRCRegClass.contains(DestReg)) {
950 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
951 getKillRegState(KillSrc);
952 return;
953 } else if (PPC::G8RCRegClass.contains(SrcReg) &&
954 PPC::VSFRCRegClass.contains(DestReg)) {
955 assert(Subtarget.hasDirectMove() &&((Subtarget.hasDirectMove() && "Subtarget doesn't support directmove, don't know how to copy."
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasDirectMove() && \"Subtarget doesn't support directmove, don't know how to copy.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 956, __PRETTY_FUNCTION__))
956 "Subtarget doesn't support directmove, don't know how to copy.")((Subtarget.hasDirectMove() && "Subtarget doesn't support directmove, don't know how to copy."
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasDirectMove() && \"Subtarget doesn't support directmove, don't know how to copy.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 956, __PRETTY_FUNCTION__))
;
957 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
958 NumGPRtoVSRSpill++;
959 getKillRegState(KillSrc);
960 return;
961 } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
962 PPC::G8RCRegClass.contains(DestReg)) {
963 assert(Subtarget.hasDirectMove() &&((Subtarget.hasDirectMove() && "Subtarget doesn't support directmove, don't know how to copy."
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasDirectMove() && \"Subtarget doesn't support directmove, don't know how to copy.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 964, __PRETTY_FUNCTION__))
964 "Subtarget doesn't support directmove, don't know how to copy.")((Subtarget.hasDirectMove() && "Subtarget doesn't support directmove, don't know how to copy."
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasDirectMove() && \"Subtarget doesn't support directmove, don't know how to copy.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 964, __PRETTY_FUNCTION__))
;
965 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
966 getKillRegState(KillSrc);
967 return;
968 } else if (PPC::SPERCRegClass.contains(SrcReg) &&
969 PPC::SPE4RCRegClass.contains(DestReg)) {
970 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
971 getKillRegState(KillSrc);
972 return;
973 } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
974 PPC::SPERCRegClass.contains(DestReg)) {
975 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
976 getKillRegState(KillSrc);
977 return;
978 }
979
980 unsigned Opc;
981 if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
982 Opc = PPC::OR;
983 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
984 Opc = PPC::OR8;
985 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
986 Opc = PPC::FMR;
987 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
988 Opc = PPC::MCRF;
989 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
990 Opc = PPC::VOR;
991 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
992 // There are two different ways this can be done:
993 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
994 // issue in VSU pipeline 0.
995 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
996 // can go to either pipeline.
997 // We'll always use xxlor here, because in practically all cases where
998 // copies are generated, they are close enough to some use that the
999 // lower-latency form is preferable.
1000 Opc = PPC::XXLOR;
1001 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1002 PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1003 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1004 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1005 Opc = PPC::QVFMR;
1006 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1007 Opc = PPC::QVFMRs;
1008 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1009 Opc = PPC::QVFMRb;
1010 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1011 Opc = PPC::CROR;
1012 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1013 Opc = PPC::EVOR;
1014 else
1015 llvm_unreachable("Impossible reg-to-reg copy")::llvm::llvm_unreachable_internal("Impossible reg-to-reg copy"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1015)
;
1016
1017 const MCInstrDesc &MCID = get(Opc);
1018 if (MCID.getNumOperands() == 3)
1019 BuildMI(MBB, I, DL, MCID, DestReg)
1020 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1021 else
1022 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1023}
1024
1025unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1026 const TargetRegisterClass *RC)
1027 const {
1028 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1029 int OpcodeIndex = 0;
1030
1031 if (RC != nullptr) {
1032 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1033 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1034 OpcodeIndex = SOK_Int4Spill;
1035 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1036 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1037 OpcodeIndex = SOK_Int8Spill;
1038 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1039 OpcodeIndex = SOK_Float8Spill;
1040 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1041 OpcodeIndex = SOK_Float4Spill;
1042 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1043 OpcodeIndex = SOK_SPESpill;
1044 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1045 OpcodeIndex = SOK_SPE4Spill;
1046 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1047 OpcodeIndex = SOK_CRSpill;
1048 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1049 OpcodeIndex = SOK_CRBitSpill;
1050 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1051 OpcodeIndex = SOK_VRVectorSpill;
1052 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1053 OpcodeIndex = SOK_VSXVectorSpill;
1054 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1055 OpcodeIndex = SOK_VectorFloat8Spill;
1056 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1057 OpcodeIndex = SOK_VectorFloat4Spill;
1058 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1059 OpcodeIndex = SOK_VRSaveSpill;
1060 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1061 OpcodeIndex = SOK_QuadFloat8Spill;
1062 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1063 OpcodeIndex = SOK_QuadFloat4Spill;
1064 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1065 OpcodeIndex = SOK_QuadBitSpill;
1066 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1067 OpcodeIndex = SOK_SpillToVSR;
1068 } else {
1069 llvm_unreachable("Unknown regclass!")::llvm::llvm_unreachable_internal("Unknown regclass!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1069)
;
1070 }
1071 } else {
1072 if (PPC::GPRCRegClass.contains(Reg) ||
1073 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1074 OpcodeIndex = SOK_Int4Spill;
1075 } else if (PPC::G8RCRegClass.contains(Reg) ||
1076 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1077 OpcodeIndex = SOK_Int8Spill;
1078 } else if (PPC::F8RCRegClass.contains(Reg)) {
1079 OpcodeIndex = SOK_Float8Spill;
1080 } else if (PPC::F4RCRegClass.contains(Reg)) {
1081 OpcodeIndex = SOK_Float4Spill;
1082 } else if (PPC::SPERCRegClass.contains(Reg)) {
1083 OpcodeIndex = SOK_SPESpill;
1084 } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1085 OpcodeIndex = SOK_SPE4Spill;
1086 } else if (PPC::CRRCRegClass.contains(Reg)) {
1087 OpcodeIndex = SOK_CRSpill;
1088 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1089 OpcodeIndex = SOK_CRBitSpill;
1090 } else if (PPC::VRRCRegClass.contains(Reg)) {
1091 OpcodeIndex = SOK_VRVectorSpill;
1092 } else if (PPC::VSRCRegClass.contains(Reg)) {
1093 OpcodeIndex = SOK_VSXVectorSpill;
1094 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1095 OpcodeIndex = SOK_VectorFloat8Spill;
1096 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1097 OpcodeIndex = SOK_VectorFloat4Spill;
1098 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1099 OpcodeIndex = SOK_VRSaveSpill;
1100 } else if (PPC::QFRCRegClass.contains(Reg)) {
1101 OpcodeIndex = SOK_QuadFloat8Spill;
1102 } else if (PPC::QSRCRegClass.contains(Reg)) {
1103 OpcodeIndex = SOK_QuadFloat4Spill;
1104 } else if (PPC::QBRCRegClass.contains(Reg)) {
1105 OpcodeIndex = SOK_QuadBitSpill;
1106 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1107 OpcodeIndex = SOK_SpillToVSR;
1108 } else {
1109 llvm_unreachable("Unknown regclass!")::llvm::llvm_unreachable_internal("Unknown regclass!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1109)
;
1110 }
1111 }
1112 return OpcodesForSpill[OpcodeIndex];
1113}
1114
1115unsigned
1116PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1117 const TargetRegisterClass *RC) const {
1118 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1119 int OpcodeIndex = 0;
1120
1121 if (RC != nullptr) {
1122 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1123 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1124 OpcodeIndex = SOK_Int4Spill;
1125 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1126 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1127 OpcodeIndex = SOK_Int8Spill;
1128 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1129 OpcodeIndex = SOK_Float8Spill;
1130 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1131 OpcodeIndex = SOK_Float4Spill;
1132 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1133 OpcodeIndex = SOK_SPESpill;
1134 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1135 OpcodeIndex = SOK_SPE4Spill;
1136 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1137 OpcodeIndex = SOK_CRSpill;
1138 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1139 OpcodeIndex = SOK_CRBitSpill;
1140 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1141 OpcodeIndex = SOK_VRVectorSpill;
1142 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1143 OpcodeIndex = SOK_VSXVectorSpill;
1144 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1145 OpcodeIndex = SOK_VectorFloat8Spill;
1146 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1147 OpcodeIndex = SOK_VectorFloat4Spill;
1148 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1149 OpcodeIndex = SOK_VRSaveSpill;
1150 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1151 OpcodeIndex = SOK_QuadFloat8Spill;
1152 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1153 OpcodeIndex = SOK_QuadFloat4Spill;
1154 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1155 OpcodeIndex = SOK_QuadBitSpill;
1156 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1157 OpcodeIndex = SOK_SpillToVSR;
1158 } else {
1159 llvm_unreachable("Unknown regclass!")::llvm::llvm_unreachable_internal("Unknown regclass!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1159)
;
1160 }
1161 } else {
1162 if (PPC::GPRCRegClass.contains(Reg) ||
1163 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1164 OpcodeIndex = SOK_Int4Spill;
1165 } else if (PPC::G8RCRegClass.contains(Reg) ||
1166 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1167 OpcodeIndex = SOK_Int8Spill;
1168 } else if (PPC::F8RCRegClass.contains(Reg)) {
1169 OpcodeIndex = SOK_Float8Spill;
1170 } else if (PPC::F4RCRegClass.contains(Reg)) {
1171 OpcodeIndex = SOK_Float4Spill;
1172 } else if (PPC::SPERCRegClass.contains(Reg)) {
1173 OpcodeIndex = SOK_SPESpill;
1174 } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1175 OpcodeIndex = SOK_SPE4Spill;
1176 } else if (PPC::CRRCRegClass.contains(Reg)) {
1177 OpcodeIndex = SOK_CRSpill;
1178 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1179 OpcodeIndex = SOK_CRBitSpill;
1180 } else if (PPC::VRRCRegClass.contains(Reg)) {
1181 OpcodeIndex = SOK_VRVectorSpill;
1182 } else if (PPC::VSRCRegClass.contains(Reg)) {
1183 OpcodeIndex = SOK_VSXVectorSpill;
1184 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1185 OpcodeIndex = SOK_VectorFloat8Spill;
1186 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1187 OpcodeIndex = SOK_VectorFloat4Spill;
1188 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1189 OpcodeIndex = SOK_VRSaveSpill;
1190 } else if (PPC::QFRCRegClass.contains(Reg)) {
1191 OpcodeIndex = SOK_QuadFloat8Spill;
1192 } else if (PPC::QSRCRegClass.contains(Reg)) {
1193 OpcodeIndex = SOK_QuadFloat4Spill;
1194 } else if (PPC::QBRCRegClass.contains(Reg)) {
1195 OpcodeIndex = SOK_QuadBitSpill;
1196 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1197 OpcodeIndex = SOK_SpillToVSR;
1198 } else {
1199 llvm_unreachable("Unknown regclass!")::llvm::llvm_unreachable_internal("Unknown regclass!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1199)
;
1200 }
1201 }
1202 return OpcodesForSpill[OpcodeIndex];
1203}
1204
1205void PPCInstrInfo::StoreRegToStackSlot(
1206 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1207 const TargetRegisterClass *RC,
1208 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1209 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1210 DebugLoc DL;
1211
1212 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1213 FuncInfo->setHasSpills();
1214
1215 NewMIs.push_back(addFrameReference(
1216 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1217 FrameIdx));
1218
1219 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1220 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1221 FuncInfo->setSpillsCR();
1222
1223 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1224 FuncInfo->setSpillsVRSAVE();
1225
1226 if (isXFormMemOp(Opcode))
1227 FuncInfo->setHasNonRISpills();
1228}
1229
1230void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1231 MachineBasicBlock::iterator MI,
1232 unsigned SrcReg, bool isKill,
1233 int FrameIdx,
1234 const TargetRegisterClass *RC,
1235 const TargetRegisterInfo *TRI) const {
1236 MachineFunction &MF = *MBB.getParent();
1237 SmallVector<MachineInstr *, 4> NewMIs;
1238
1239 // We need to avoid a situation in which the value from a VRRC register is
1240 // spilled using an Altivec instruction and reloaded into a VSRC register
1241 // using a VSX instruction. The issue with this is that the VSX
1242 // load/store instructions swap the doublewords in the vector and the Altivec
1243 // ones don't. The register classes on the spill/reload may be different if
1244 // the register is defined using an Altivec instruction and is then used by a
1245 // VSX instruction.
1246 RC = updatedRC(RC);
1247
1248 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1249
1250 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1251 MBB.insert(MI, NewMIs[i]);
1252
1253 const MachineFrameInfo &MFI = MF.getFrameInfo();
1254 MachineMemOperand *MMO = MF.getMachineMemOperand(
1255 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1256 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1257 MFI.getObjectAlignment(FrameIdx));
1258 NewMIs.back()->addMemOperand(MF, MMO);
1259}
1260
1261void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1262 unsigned DestReg, int FrameIdx,
1263 const TargetRegisterClass *RC,
1264 SmallVectorImpl<MachineInstr *> &NewMIs)
1265 const {
1266 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1267 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1268 FrameIdx));
1269 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1270
1271 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1272 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1273 FuncInfo->setSpillsCR();
1274
1275 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1276 FuncInfo->setSpillsVRSAVE();
1277
1278 if (isXFormMemOp(Opcode))
1279 FuncInfo->setHasNonRISpills();
1280}
1281
1282void
1283PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1284 MachineBasicBlock::iterator MI,
1285 unsigned DestReg, int FrameIdx,
1286 const TargetRegisterClass *RC,
1287 const TargetRegisterInfo *TRI) const {
1288 MachineFunction &MF = *MBB.getParent();
1289 SmallVector<MachineInstr*, 4> NewMIs;
1290 DebugLoc DL;
1291 if (MI != MBB.end()) DL = MI->getDebugLoc();
1292
1293 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1294 FuncInfo->setHasSpills();
1295
1296 // We need to avoid a situation in which the value from a VRRC register is
1297 // spilled using an Altivec instruction and reloaded into a VSRC register
1298 // using a VSX instruction. The issue with this is that the VSX
1299 // load/store instructions swap the doublewords in the vector and the Altivec
1300 // ones don't. The register classes on the spill/reload may be different if
1301 // the register is defined using an Altivec instruction and is then used by a
1302 // VSX instruction.
1303 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1304 RC = &PPC::VSRCRegClass;
1305
1306 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1307
1308 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1309 MBB.insert(MI, NewMIs[i]);
1310
1311 const MachineFrameInfo &MFI = MF.getFrameInfo();
1312 MachineMemOperand *MMO = MF.getMachineMemOperand(
1313 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1314 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1315 MFI.getObjectAlignment(FrameIdx));
1316 NewMIs.back()->addMemOperand(MF, MMO);
1317}
1318
1319bool PPCInstrInfo::
1320reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1321 assert(Cond.size() == 2 && "Invalid PPC branch opcode!")((Cond.size() == 2 && "Invalid PPC branch opcode!") ?
static_cast<void> (0) : __assert_fail ("Cond.size() == 2 && \"Invalid PPC branch opcode!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1321, __PRETTY_FUNCTION__))
;
1322 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1323 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1324 else
1325 // Leave the CR# the same, but invert the condition.
1326 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1327 return false;
1328}
1329
1330bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1331 unsigned Reg, MachineRegisterInfo *MRI) const {
1332 // For some instructions, it is legal to fold ZERO into the RA register field.
1333 // A zero immediate should always be loaded with a single li.
1334 unsigned DefOpc = DefMI.getOpcode();
1335 if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1336 return false;
1337 if (!DefMI.getOperand(1).isImm())
1338 return false;
1339 if (DefMI.getOperand(1).getImm() != 0)
1340 return false;
1341
1342 // Note that we cannot here invert the arguments of an isel in order to fold
1343 // a ZERO into what is presented as the second argument. All we have here
1344 // is the condition bit, and that might come from a CR-logical bit operation.
1345
1346 const MCInstrDesc &UseMCID = UseMI.getDesc();
1347
1348 // Only fold into real machine instructions.
1349 if (UseMCID.isPseudo())
1350 return false;
1351
1352 unsigned UseIdx;
1353 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1354 if (UseMI.getOperand(UseIdx).isReg() &&
1355 UseMI.getOperand(UseIdx).getReg() == Reg)
1356 break;
1357
1358 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI")((UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"
) ? static_cast<void> (0) : __assert_fail ("UseIdx < UseMI.getNumOperands() && \"Cannot find Reg in UseMI\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1358, __PRETTY_FUNCTION__))
;
1359 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg")((UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"
) ? static_cast<void> (0) : __assert_fail ("UseIdx < UseMCID.getNumOperands() && \"No operand description for Reg\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1359, __PRETTY_FUNCTION__))
;
1360
1361 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1362
1363 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1364 // register (which might also be specified as a pointer class kind).
1365 if (UseInfo->isLookupPtrRegClass()) {
1366 if (UseInfo->RegClass /* Kind */ != 1)
1367 return false;
1368 } else {
1369 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1370 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1371 return false;
1372 }
1373
1374 // Make sure this is not tied to an output register (or otherwise
1375 // constrained). This is true for ST?UX registers, for example, which
1376 // are tied to their output registers.
1377 if (UseInfo->Constraints != 0)
1378 return false;
1379
1380 unsigned ZeroReg;
1381 if (UseInfo->isLookupPtrRegClass()) {
1382 bool isPPC64 = Subtarget.isPPC64();
1383 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1384 } else {
1385 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1386 PPC::ZERO8 : PPC::ZERO;
1387 }
1388
1389 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1390 UseMI.getOperand(UseIdx).setReg(ZeroReg);
1391
1392 if (DeleteDef)
1393 DefMI.eraseFromParent();
1394
1395 return true;
1396}
1397
1398static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1399 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1400 I != IE; ++I)
1401 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1402 return true;
1403 return false;
1404}
1405
1406// We should make sure that, if we're going to predicate both sides of a
1407// condition (a diamond), that both sides don't define the counter register. We
1408// can predicate counter-decrement-based branches, but while that predicates
1409// the branching, it does not predicate the counter decrement. If we tried to
1410// merge the triangle into one predicated block, we'd decrement the counter
1411// twice.
1412bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1413 unsigned NumT, unsigned ExtraT,
1414 MachineBasicBlock &FMBB,
1415 unsigned NumF, unsigned ExtraF,
1416 BranchProbability Probability) const {
1417 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1418}
1419
1420
1421bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1422 // The predicated branches are identified by their type, not really by the
1423 // explicit presence of a predicate. Furthermore, some of them can be
1424 // predicated more than once. Because if conversion won't try to predicate
1425 // any instruction which already claims to be predicated (by returning true
1426 // here), always return false. In doing so, we let isPredicable() be the
1427 // final word on whether not the instruction can be (further) predicated.
1428
1429 return false;
1430}
1431
1432bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1433 if (!MI.isTerminator())
1434 return false;
1435
1436 // Conditional branch is a special case.
1437 if (MI.isBranch() && !MI.isBarrier())
1438 return true;
1439
1440 return !isPredicated(MI);
1441}
1442
1443bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1444 ArrayRef<MachineOperand> Pred) const {
1445 unsigned OpC = MI.getOpcode();
1446 if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1447 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1448 bool isPPC64 = Subtarget.isPPC64();
1449 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1450 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1451 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1452 MI.setDesc(get(PPC::BCLR));
1453 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1454 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1455 MI.setDesc(get(PPC::BCLRn));
1456 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1457 } else {
1458 MI.setDesc(get(PPC::BCCLR));
1459 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1460 .addImm(Pred[0].getImm())
1461 .add(Pred[1]);
1462 }
1463
1464 return true;
1465 } else if (OpC == PPC::B) {
1466 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1467 bool isPPC64 = Subtarget.isPPC64();
1468 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1469 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1470 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1471 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1472 MI.RemoveOperand(0);
1473
1474 MI.setDesc(get(PPC::BC));
1475 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1476 .add(Pred[1])
1477 .addMBB(MBB);
1478 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1479 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1480 MI.RemoveOperand(0);
1481
1482 MI.setDesc(get(PPC::BCn));
1483 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1484 .add(Pred[1])
1485 .addMBB(MBB);
1486 } else {
1487 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1488 MI.RemoveOperand(0);
1489
1490 MI.setDesc(get(PPC::BCC));
1491 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1492 .addImm(Pred[0].getImm())
1493 .add(Pred[1])
1494 .addMBB(MBB);
1495 }
1496
1497 return true;
1498 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1499 OpC == PPC::BCTRL8) {
1500 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1501 llvm_unreachable("Cannot predicate bctr[l] on the ctr register")::llvm::llvm_unreachable_internal("Cannot predicate bctr[l] on the ctr register"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1501)
;
1502
1503 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1504 bool isPPC64 = Subtarget.isPPC64();
1505
1506 if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1507 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1508 : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1509 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1510 return true;
1511 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1512 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1513 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1514 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1515 return true;
1516 }
1517
1518 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1519 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1520 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1521 .addImm(Pred[0].getImm())
1522 .add(Pred[1]);
1523 return true;
1524 }
1525
1526 return false;
1527}
1528
1529bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1530 ArrayRef<MachineOperand> Pred2) const {
1531 assert(Pred1.size() == 2 && "Invalid PPC first predicate")((Pred1.size() == 2 && "Invalid PPC first predicate")
? static_cast<void> (0) : __assert_fail ("Pred1.size() == 2 && \"Invalid PPC first predicate\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1531, __PRETTY_FUNCTION__))
;
1532 assert(Pred2.size() == 2 && "Invalid PPC second predicate")((Pred2.size() == 2 && "Invalid PPC second predicate"
) ? static_cast<void> (0) : __assert_fail ("Pred2.size() == 2 && \"Invalid PPC second predicate\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1532, __PRETTY_FUNCTION__))
;
1533
1534 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1535 return false;
1536 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1537 return false;
1538
1539 // P1 can only subsume P2 if they test the same condition register.
1540 if (Pred1[1].getReg() != Pred2[1].getReg())
1541 return false;
1542
1543 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1544 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1545
1546 if (P1 == P2)
1547 return true;
1548
1549 // Does P1 subsume P2, e.g. GE subsumes GT.
1550 if (P1 == PPC::PRED_LE &&
1551 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1552 return true;
1553 if (P1 == PPC::PRED_GE &&
1554 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1555 return true;
1556
1557 return false;
1558}
1559
1560bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1561 std::vector<MachineOperand> &Pred) const {
1562 // Note: At the present time, the contents of Pred from this function is
1563 // unused by IfConversion. This implementation follows ARM by pushing the
1564 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1565 // predicate, instructions defining CTR or CTR8 are also included as
1566 // predicate-defining instructions.
1567
1568 const TargetRegisterClass *RCs[] =
1569 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1570 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1571
1572 bool Found = false;
1573 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1574 const MachineOperand &MO = MI.getOperand(i);
1575 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1576 const TargetRegisterClass *RC = RCs[c];
1577 if (MO.isReg()) {
1578 if (MO.isDef() && RC->contains(MO.getReg())) {
1579 Pred.push_back(MO);
1580 Found = true;
1581 }
1582 } else if (MO.isRegMask()) {
1583 for (TargetRegisterClass::iterator I = RC->begin(),
1584 IE = RC->end(); I != IE; ++I)
1585 if (MO.clobbersPhysReg(*I)) {
1586 Pred.push_back(MO);
1587 Found = true;
1588 }
1589 }
1590 }
1591 }
1592
1593 return Found;
1594}
1595
1596bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1597 unsigned OpC = MI.getOpcode();
1598 switch (OpC) {
1599 default:
1600 return false;
1601 case PPC::B:
1602 case PPC::BLR:
1603 case PPC::BLR8:
1604 case PPC::BCTR:
1605 case PPC::BCTR8:
1606 case PPC::BCTRL:
1607 case PPC::BCTRL8:
1608 return true;
1609 }
1610}
1611
1612bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1613 unsigned &SrcReg2, int &Mask,
1614 int &Value) const {
1615 unsigned Opc = MI.getOpcode();
1616
1617 switch (Opc) {
1618 default: return false;
1619 case PPC::CMPWI:
1620 case PPC::CMPLWI:
1621 case PPC::CMPDI:
1622 case PPC::CMPLDI:
1623 SrcReg = MI.getOperand(1).getReg();
1624 SrcReg2 = 0;
1625 Value = MI.getOperand(2).getImm();
1626 Mask = 0xFFFF;
1627 return true;
1628 case PPC::CMPW:
1629 case PPC::CMPLW:
1630 case PPC::CMPD:
1631 case PPC::CMPLD:
1632 case PPC::FCMPUS:
1633 case PPC::FCMPUD:
1634 SrcReg = MI.getOperand(1).getReg();
1635 SrcReg2 = MI.getOperand(2).getReg();
1636 Value = 0;
1637 Mask = 0;
1638 return true;
1639 }
1640}
1641
1642bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1643 unsigned SrcReg2, int Mask, int Value,
1644 const MachineRegisterInfo *MRI) const {
1645 if (DisableCmpOpt)
1646 return false;
1647
1648 int OpC = CmpInstr.getOpcode();
1649 unsigned CRReg = CmpInstr.getOperand(0).getReg();
1650
1651 // FP record forms set CR1 based on the exception status bits, not a
1652 // comparison with zero.
1653 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1654 return false;
1655
1656 const TargetRegisterInfo *TRI = &getRegisterInfo();
1657 // The record forms set the condition register based on a signed comparison
1658 // with zero (so says the ISA manual). This is not as straightforward as it
1659 // seems, however, because this is always a 64-bit comparison on PPC64, even
1660 // for instructions that are 32-bit in nature (like slw for example).
1661 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1662 // for equality checks (as those don't depend on the sign). On PPC64,
1663 // we are restricted to equality for unsigned 64-bit comparisons and for
1664 // signed 32-bit comparisons the applicability is more restricted.
1665 bool isPPC64 = Subtarget.isPPC64();
1666 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
1667 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1668 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1669
1670 // Look through copies unless that gets us to a physical register.
1671 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1672 if (TargetRegisterInfo::isVirtualRegister(ActualSrc))
1673 SrcReg = ActualSrc;
1674
1675 // Get the unique definition of SrcReg.
1676 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1677 if (!MI) return false;
1678
1679 bool equalityOnly = false;
1680 bool noSub = false;
1681 if (isPPC64) {
1682 if (is32BitSignedCompare) {
1683 // We can perform this optimization only if MI is sign-extending.
1684 if (isSignExtended(*MI))
1685 noSub = true;
1686 else
1687 return false;
1688 } else if (is32BitUnsignedCompare) {
1689 // We can perform this optimization, equality only, if MI is
1690 // zero-extending.
1691 if (isZeroExtended(*MI)) {
1692 noSub = true;
1693 equalityOnly = true;
1694 } else
1695 return false;
1696 } else
1697 equalityOnly = is64BitUnsignedCompare;
1698 } else
1699 equalityOnly = is32BitUnsignedCompare;
1700
1701 if (equalityOnly) {
1702 // We need to check the uses of the condition register in order to reject
1703 // non-equality comparisons.
1704 for (MachineRegisterInfo::use_instr_iterator
1705 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1706 I != IE; ++I) {
1707 MachineInstr *UseMI = &*I;
1708 if (UseMI->getOpcode() == PPC::BCC) {
1709 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1710 unsigned PredCond = PPC::getPredicateCondition(Pred);
1711 // We ignore hint bits when checking for non-equality comparisons.
1712 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1713 return false;
1714 } else if (UseMI->getOpcode() == PPC::ISEL ||
1715 UseMI->getOpcode() == PPC::ISEL8) {
1716 unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1717 if (SubIdx != PPC::sub_eq)
1718 return false;
1719 } else
1720 return false;
1721 }
1722 }
1723
1724 MachineBasicBlock::iterator I = CmpInstr;
1725
1726 // Scan forward to find the first use of the compare.
1727 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1728 ++I) {
1729 bool FoundUse = false;
1730 for (MachineRegisterInfo::use_instr_iterator
1731 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1732 J != JE; ++J)
1733 if (&*J == &*I) {
1734 FoundUse = true;
1735 break;
1736 }
1737
1738 if (FoundUse)
1739 break;
1740 }
1741
1742 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1743 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1744
1745 // There are two possible candidates which can be changed to set CR[01].
1746 // One is MI, the other is a SUB instruction.
1747 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1748 MachineInstr *Sub = nullptr;
1749 if (SrcReg2 != 0)
1750 // MI is not a candidate for CMPrr.
1751 MI = nullptr;
1752 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1753 // same BB as the comparison. This is to allow the check below to avoid calls
1754 // (and other explicit clobbers); instead we should really check for these
1755 // more explicitly (in at least a few predecessors).
1756 else if (MI->getParent() != CmpInstr.getParent())
1757 return false;
1758 else if (Value != 0) {
1759 // The record-form instructions set CR bit based on signed comparison
1760 // against 0. We try to convert a compare against 1 or -1 into a compare
1761 // against 0 to exploit record-form instructions. For example, we change
1762 // the condition "greater than -1" into "greater than or equal to 0"
1763 // and "less than 1" into "less than or equal to 0".
1764
1765 // Since we optimize comparison based on a specific branch condition,
1766 // we don't optimize if condition code is used by more than once.
1767 if (equalityOnly || !MRI->hasOneUse(CRReg))
1768 return false;
1769
1770 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1771 if (UseMI->getOpcode() != PPC::BCC)
1772 return false;
1773
1774 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1775 PPC::Predicate NewPred = Pred;
Value stored to 'NewPred' during its initialization is never read
1776 unsigned PredCond = PPC::getPredicateCondition(Pred);
1777 unsigned PredHint = PPC::getPredicateHint(Pred);
1778 int16_t Immed = (int16_t)Value;
1779
1780 // When modifying the condition in the predicate, we propagate hint bits
1781 // from the original predicate to the new one.
1782 if (Immed == -1 && PredCond == PPC::PRED_GT)
1783 // We convert "greater than -1" into "greater than or equal to 0",
1784 // since we are assuming signed comparison by !equalityOnly
1785 NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1786 else if (Immed == -1 && PredCond == PPC::PRED_LE)
1787 // We convert "less than or equal to -1" into "less than 0".
1788 NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1789 else if (Immed == 1 && PredCond == PPC::PRED_LT)
1790 // We convert "less than 1" into "less than or equal to 0".
1791 NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1792 else if (Immed == 1 && PredCond == PPC::PRED_GE)
1793 // We convert "greater than or equal to 1" into "greater than 0".
1794 NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1795 else
1796 return false;
1797
1798 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1799 NewPred));
1800 }
1801
1802 // Search for Sub.
1803 --I;
1804
1805 // Get ready to iterate backward from CmpInstr.
1806 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1807
1808 for (; I != E && !noSub; --I) {
1809 const MachineInstr &Instr = *I;
1810 unsigned IOpC = Instr.getOpcode();
1811
1812 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1813 Instr.readsRegister(PPC::CR0, TRI)))
1814 // This instruction modifies or uses the record condition register after
1815 // the one we want to change. While we could do this transformation, it
1816 // would likely not be profitable. This transformation removes one
1817 // instruction, and so even forcing RA to generate one move probably
1818 // makes it unprofitable.
1819 return false;
1820
1821 // Check whether CmpInstr can be made redundant by the current instruction.
1822 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1823 OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1824 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1825 ((Instr.getOperand(1).getReg() == SrcReg &&
1826 Instr.getOperand(2).getReg() == SrcReg2) ||
1827 (Instr.getOperand(1).getReg() == SrcReg2 &&
1828 Instr.getOperand(2).getReg() == SrcReg))) {
1829 Sub = &*I;
1830 break;
1831 }
1832
1833 if (I == B)
1834 // The 'and' is below the comparison instruction.
1835 return false;
1836 }
1837
1838 // Return false if no candidates exist.
1839 if (!MI && !Sub)
1840 return false;
1841
1842 // The single candidate is called MI.
1843 if (!MI) MI = Sub;
1844
1845 int NewOpC = -1;
1846 int MIOpC = MI->getOpcode();
1847 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1848 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1849 NewOpC = MIOpC;
1850 else {
1851 NewOpC = PPC::getRecordFormOpcode(MIOpC);
1852 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1853 NewOpC = MIOpC;
1854 }
1855
1856 // FIXME: On the non-embedded POWER architectures, only some of the record
1857 // forms are fast, and we should use only the fast ones.
1858
1859 // The defining instruction has a record form (or is already a record
1860 // form). It is possible, however, that we'll need to reverse the condition
1861 // code of the users.
1862 if (NewOpC == -1)
1863 return false;
1864
1865 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1866 // needs to be updated to be based on SUB. Push the condition code
1867 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1868 // condition code of these operands will be modified.
1869 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1870 // comparison against 0, which may modify predicate.
1871 bool ShouldSwap = false;
1872 if (Sub && Value == 0) {
1873 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1874 Sub->getOperand(2).getReg() == SrcReg;
1875
1876 // The operands to subf are the opposite of sub, so only in the fixed-point
1877 // case, invert the order.
1878 ShouldSwap = !ShouldSwap;
1879 }
1880
1881 if (ShouldSwap)
1882 for (MachineRegisterInfo::use_instr_iterator
1883 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1884 I != IE; ++I) {
1885 MachineInstr *UseMI = &*I;
1886 if (UseMI->getOpcode() == PPC::BCC) {
1887 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1888 unsigned PredCond = PPC::getPredicateCondition(Pred);
1889 assert((!equalityOnly ||(((!equalityOnly || PredCond == PPC::PRED_EQ || PredCond == PPC
::PRED_NE) && "Invalid predicate for equality-only optimization"
) ? static_cast<void> (0) : __assert_fail ("(!equalityOnly || PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && \"Invalid predicate for equality-only optimization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1891, __PRETTY_FUNCTION__))
1890 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&(((!equalityOnly || PredCond == PPC::PRED_EQ || PredCond == PPC
::PRED_NE) && "Invalid predicate for equality-only optimization"
) ? static_cast<void> (0) : __assert_fail ("(!equalityOnly || PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && \"Invalid predicate for equality-only optimization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1891, __PRETTY_FUNCTION__))
1891 "Invalid predicate for equality-only optimization")(((!equalityOnly || PredCond == PPC::PRED_EQ || PredCond == PPC
::PRED_NE) && "Invalid predicate for equality-only optimization"
) ? static_cast<void> (0) : __assert_fail ("(!equalityOnly || PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && \"Invalid predicate for equality-only optimization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1891, __PRETTY_FUNCTION__))
;
1892 (void)PredCond; // To suppress warning in release build.
1893 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1894 PPC::getSwappedPredicate(Pred)));
1895 } else if (UseMI->getOpcode() == PPC::ISEL ||
1896 UseMI->getOpcode() == PPC::ISEL8) {
1897 unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1898 assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&(((!equalityOnly || NewSubReg == PPC::sub_eq) && "Invalid CR bit for equality-only optimization"
) ? static_cast<void> (0) : __assert_fail ("(!equalityOnly || NewSubReg == PPC::sub_eq) && \"Invalid CR bit for equality-only optimization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1899, __PRETTY_FUNCTION__))
1899 "Invalid CR bit for equality-only optimization")(((!equalityOnly || NewSubReg == PPC::sub_eq) && "Invalid CR bit for equality-only optimization"
) ? static_cast<void> (0) : __assert_fail ("(!equalityOnly || NewSubReg == PPC::sub_eq) && \"Invalid CR bit for equality-only optimization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1899, __PRETTY_FUNCTION__))
;
1900
1901 if (NewSubReg == PPC::sub_lt)
1902 NewSubReg = PPC::sub_gt;
1903 else if (NewSubReg == PPC::sub_gt)
1904 NewSubReg = PPC::sub_lt;
1905
1906 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1907 NewSubReg));
1908 } else // We need to abort on a user we don't understand.
1909 return false;
1910 }
1911 assert(!(Value != 0 && ShouldSwap) &&((!(Value != 0 && ShouldSwap) && "Non-zero immediate support and ShouldSwap"
"may conflict in updating predicate") ? static_cast<void>
(0) : __assert_fail ("!(Value != 0 && ShouldSwap) && \"Non-zero immediate support and ShouldSwap\" \"may conflict in updating predicate\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1913, __PRETTY_FUNCTION__))
1912 "Non-zero immediate support and ShouldSwap"((!(Value != 0 && ShouldSwap) && "Non-zero immediate support and ShouldSwap"
"may conflict in updating predicate") ? static_cast<void>
(0) : __assert_fail ("!(Value != 0 && ShouldSwap) && \"Non-zero immediate support and ShouldSwap\" \"may conflict in updating predicate\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1913, __PRETTY_FUNCTION__))
1913 "may conflict in updating predicate")((!(Value != 0 && ShouldSwap) && "Non-zero immediate support and ShouldSwap"
"may conflict in updating predicate") ? static_cast<void>
(0) : __assert_fail ("!(Value != 0 && ShouldSwap) && \"Non-zero immediate support and ShouldSwap\" \"may conflict in updating predicate\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 1913, __PRETTY_FUNCTION__))
;
1914
1915 // Create a new virtual register to hold the value of the CR set by the
1916 // record-form instruction. If the instruction was not previously in
1917 // record form, then set the kill flag on the CR.
1918 CmpInstr.eraseFromParent();
1919
1920 MachineBasicBlock::iterator MII = MI;
1921 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1922 get(TargetOpcode::COPY), CRReg)
1923 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1924
1925 // Even if CR0 register were dead before, it is alive now since the
1926 // instruction we just built uses it.
1927 MI->clearRegisterDeads(PPC::CR0);
1928
1929 if (MIOpC != NewOpC) {
1930 // We need to be careful here: we're replacing one instruction with
1931 // another, and we need to make sure that we get all of the right
1932 // implicit uses and defs. On the other hand, the caller may be holding
1933 // an iterator to this instruction, and so we can't delete it (this is
1934 // specifically the case if this is the instruction directly after the
1935 // compare).
1936
1937 // Rotates are expensive instructions. If we're emitting a record-form
1938 // rotate that can just be an andi/andis, we should just emit that.
1939 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1940 unsigned GPRRes = MI->getOperand(0).getReg();
1941 int64_t SH = MI->getOperand(2).getImm();
1942 int64_t MB = MI->getOperand(3).getImm();
1943 int64_t ME = MI->getOperand(4).getImm();
1944 // We can only do this if both the start and end of the mask are in the
1945 // same halfword.
1946 bool MBInLoHWord = MB >= 16;
1947 bool MEInLoHWord = ME >= 16;
1948 uint64_t Mask = ~0LLU;
1949
1950 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1951 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1952 // The mask value needs to shift right 16 if we're emitting andis.
1953 Mask >>= MBInLoHWord ? 0 : 16;
1954 NewOpC = MIOpC == PPC::RLWINM ?
1955 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1956 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1957 } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1958 (ME - MB + 1 == SH) && (MB >= 16)) {
1959 // If we are rotating by the exact number of bits as are in the mask
1960 // and the mask is in the least significant bits of the register,
1961 // that's just an andis. (as long as the GPR result has no uses).
1962 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1963 Mask >>= 16;
1964 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1965 }
1966 // If we've set the mask, we can transform.
1967 if (Mask != ~0LLU) {
1968 MI->RemoveOperand(4);
1969 MI->RemoveOperand(3);
1970 MI->getOperand(2).setImm(Mask);
1971 NumRcRotatesConvertedToRcAnd++;
1972 }
1973 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1974 int64_t MB = MI->getOperand(3).getImm();
1975 if (MB >= 48) {
1976 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1977 NewOpC = PPC::ANDIo8;
1978 MI->RemoveOperand(3);
1979 MI->getOperand(2).setImm(Mask);
1980 NumRcRotatesConvertedToRcAnd++;
1981 }
1982 }
1983
1984 const MCInstrDesc &NewDesc = get(NewOpC);
1985 MI->setDesc(NewDesc);
1986
1987 if (NewDesc.ImplicitDefs)
1988 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1989 *ImpDefs; ++ImpDefs)
1990 if (!MI->definesRegister(*ImpDefs))
1991 MI->addOperand(*MI->getParent()->getParent(),
1992 MachineOperand::CreateReg(*ImpDefs, true, true));
1993 if (NewDesc.ImplicitUses)
1994 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1995 *ImpUses; ++ImpUses)
1996 if (!MI->readsRegister(*ImpUses))
1997 MI->addOperand(*MI->getParent()->getParent(),
1998 MachineOperand::CreateReg(*ImpUses, false, true));
1999 }
2000 assert(MI->definesRegister(PPC::CR0) &&((MI->definesRegister(PPC::CR0) && "Record-form instruction does not define cr0?"
) ? static_cast<void> (0) : __assert_fail ("MI->definesRegister(PPC::CR0) && \"Record-form instruction does not define cr0?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2001, __PRETTY_FUNCTION__))
2001 "Record-form instruction does not define cr0?")((MI->definesRegister(PPC::CR0) && "Record-form instruction does not define cr0?"
) ? static_cast<void> (0) : __assert_fail ("MI->definesRegister(PPC::CR0) && \"Record-form instruction does not define cr0?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2001, __PRETTY_FUNCTION__))
;
2002
2003 // Modify the condition code of operands in OperandsToUpdate.
2004 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2005 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2006 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2007 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2008
2009 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2010 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2011
2012 return true;
2013}
2014
2015/// GetInstSize - Return the number of bytes of code the specified
2016/// instruction may be. This returns the maximum number of bytes.
2017///
2018unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2019 unsigned Opcode = MI.getOpcode();
2020
2021 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2022 const MachineFunction *MF = MI.getParent()->getParent();
2023 const char *AsmStr = MI.getOperand(0).getSymbolName();
2024 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2025 } else if (Opcode == TargetOpcode::STACKMAP) {
2026 StackMapOpers Opers(&MI);
2027 return Opers.getNumPatchBytes();
2028 } else if (Opcode == TargetOpcode::PATCHPOINT) {
2029 PatchPointOpers Opers(&MI);
2030 return Opers.getNumPatchBytes();
2031 } else {
2032 return get(Opcode).getSize();
2033 }
2034}
2035
2036std::pair<unsigned, unsigned>
2037PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2038 const unsigned Mask = PPCII::MO_ACCESS_MASK;
2039 return std::make_pair(TF & Mask, TF & ~Mask);
2040}
2041
2042ArrayRef<std::pair<unsigned, const char *>>
2043PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2044 using namespace PPCII;
2045 static const std::pair<unsigned, const char *> TargetFlags[] = {
2046 {MO_LO, "ppc-lo"},
2047 {MO_HA, "ppc-ha"},
2048 {MO_TPREL_LO, "ppc-tprel-lo"},
2049 {MO_TPREL_HA, "ppc-tprel-ha"},
2050 {MO_DTPREL_LO, "ppc-dtprel-lo"},
2051 {MO_TLSLD_LO, "ppc-tlsld-lo"},
2052 {MO_TOC_LO, "ppc-toc-lo"},
2053 {MO_TLS, "ppc-tls"}};
2054 return makeArrayRef(TargetFlags);
2055}
2056
2057ArrayRef<std::pair<unsigned, const char *>>
2058PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2059 using namespace PPCII;
2060 static const std::pair<unsigned, const char *> TargetFlags[] = {
2061 {MO_PLT, "ppc-plt"},
2062 {MO_PIC_FLAG, "ppc-pic"},
2063 {MO_NLP_FLAG, "ppc-nlp"},
2064 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2065 return makeArrayRef(TargetFlags);
2066}
2067
2068// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2069// The VSX versions have the advantage of a full 64-register target whereas
2070// the FP ones have the advantage of lower latency and higher throughput. So
2071// what we are after is using the faster instructions in low register pressure
2072// situations and using the larger register file in high register pressure
2073// situations.
2074bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2075 unsigned UpperOpcode, LowerOpcode;
2076 switch (MI.getOpcode()) {
2077 case PPC::DFLOADf32:
2078 UpperOpcode = PPC::LXSSP;
2079 LowerOpcode = PPC::LFS;
2080 break;
2081 case PPC::DFLOADf64:
2082 UpperOpcode = PPC::LXSD;
2083 LowerOpcode = PPC::LFD;
2084 break;
2085 case PPC::DFSTOREf32:
2086 UpperOpcode = PPC::STXSSP;
2087 LowerOpcode = PPC::STFS;
2088 break;
2089 case PPC::DFSTOREf64:
2090 UpperOpcode = PPC::STXSD;
2091 LowerOpcode = PPC::STFD;
2092 break;
2093 case PPC::XFLOADf32:
2094 UpperOpcode = PPC::LXSSPX;
2095 LowerOpcode = PPC::LFSX;
2096 break;
2097 case PPC::XFLOADf64:
2098 UpperOpcode = PPC::LXSDX;
2099 LowerOpcode = PPC::LFDX;
2100 break;
2101 case PPC::XFSTOREf32:
2102 UpperOpcode = PPC::STXSSPX;
2103 LowerOpcode = PPC::STFSX;
2104 break;
2105 case PPC::XFSTOREf64:
2106 UpperOpcode = PPC::STXSDX;
2107 LowerOpcode = PPC::STFDX;
2108 break;
2109 case PPC::LIWAX:
2110 UpperOpcode = PPC::LXSIWAX;
2111 LowerOpcode = PPC::LFIWAX;
2112 break;
2113 case PPC::LIWZX:
2114 UpperOpcode = PPC::LXSIWZX;
2115 LowerOpcode = PPC::LFIWZX;
2116 break;
2117 case PPC::STIWX:
2118 UpperOpcode = PPC::STXSIWX;
2119 LowerOpcode = PPC::STFIWX;
2120 break;
2121 default:
2122 llvm_unreachable("Unknown Operation!")::llvm::llvm_unreachable_internal("Unknown Operation!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2122)
;
2123 }
2124
2125 unsigned TargetReg = MI.getOperand(0).getReg();
2126 unsigned Opcode;
2127 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2128 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2129 Opcode = LowerOpcode;
2130 else
2131 Opcode = UpperOpcode;
2132 MI.setDesc(get(Opcode));
2133 return true;
2134}
2135
2136static bool isAnImmediateOperand(const MachineOperand &MO) {
2137 return MO.isCPI() || MO.isGlobal() || MO.isImm();
2138}
2139
2140bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2141 auto &MBB = *MI.getParent();
2142 auto DL = MI.getDebugLoc();
2143
2144 switch (MI.getOpcode()) {
2145 case TargetOpcode::LOAD_STACK_GUARD: {
2146 assert(Subtarget.isTargetLinux() &&((Subtarget.isTargetLinux() && "Only Linux target is expected to contain LOAD_STACK_GUARD"
) ? static_cast<void> (0) : __assert_fail ("Subtarget.isTargetLinux() && \"Only Linux target is expected to contain LOAD_STACK_GUARD\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2147, __PRETTY_FUNCTION__))
2147 "Only Linux target is expected to contain LOAD_STACK_GUARD")((Subtarget.isTargetLinux() && "Only Linux target is expected to contain LOAD_STACK_GUARD"
) ? static_cast<void> (0) : __assert_fail ("Subtarget.isTargetLinux() && \"Only Linux target is expected to contain LOAD_STACK_GUARD\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2147, __PRETTY_FUNCTION__))
;
2148 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2149 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2150 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2151 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2152 .addImm(Offset)
2153 .addReg(Reg);
2154 return true;
2155 }
2156 case PPC::DFLOADf32:
2157 case PPC::DFLOADf64:
2158 case PPC::DFSTOREf32:
2159 case PPC::DFSTOREf64: {
2160 assert(Subtarget.hasP9Vector() &&((Subtarget.hasP9Vector() && "Invalid D-Form Pseudo-ops on Pre-P9 target."
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasP9Vector() && \"Invalid D-Form Pseudo-ops on Pre-P9 target.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2161, __PRETTY_FUNCTION__))
2161 "Invalid D-Form Pseudo-ops on Pre-P9 target.")((Subtarget.hasP9Vector() && "Invalid D-Form Pseudo-ops on Pre-P9 target."
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasP9Vector() && \"Invalid D-Form Pseudo-ops on Pre-P9 target.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2161, __PRETTY_FUNCTION__))
;
2162 assert(MI.getOperand(2).isReg() &&((MI.getOperand(2).isReg() && isAnImmediateOperand(MI
.getOperand(1)) && "D-form op must have register and immediate operands"
) ? static_cast<void> (0) : __assert_fail ("MI.getOperand(2).isReg() && isAnImmediateOperand(MI.getOperand(1)) && \"D-form op must have register and immediate operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2164, __PRETTY_FUNCTION__))
2163 isAnImmediateOperand(MI.getOperand(1)) &&((MI.getOperand(2).isReg() && isAnImmediateOperand(MI
.getOperand(1)) && "D-form op must have register and immediate operands"
) ? static_cast<void> (0) : __assert_fail ("MI.getOperand(2).isReg() && isAnImmediateOperand(MI.getOperand(1)) && \"D-form op must have register and immediate operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2164, __PRETTY_FUNCTION__))
2164 "D-form op must have register and immediate operands")((MI.getOperand(2).isReg() && isAnImmediateOperand(MI
.getOperand(1)) && "D-form op must have register and immediate operands"
) ? static_cast<void> (0) : __assert_fail ("MI.getOperand(2).isReg() && isAnImmediateOperand(MI.getOperand(1)) && \"D-form op must have register and immediate operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2164, __PRETTY_FUNCTION__))
;
2165 return expandVSXMemPseudo(MI);
2166 }
2167 case PPC::XFLOADf32:
2168 case PPC::XFSTOREf32:
2169 case PPC::LIWAX:
2170 case PPC::LIWZX:
2171 case PPC::STIWX: {
2172 assert(Subtarget.hasP8Vector() &&((Subtarget.hasP8Vector() && "Invalid X-Form Pseudo-ops on Pre-P8 target."
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasP8Vector() && \"Invalid X-Form Pseudo-ops on Pre-P8 target.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2173, __PRETTY_FUNCTION__))
2173 "Invalid X-Form Pseudo-ops on Pre-P8 target.")((Subtarget.hasP8Vector() && "Invalid X-Form Pseudo-ops on Pre-P8 target."
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasP8Vector() && \"Invalid X-Form Pseudo-ops on Pre-P8 target.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2173, __PRETTY_FUNCTION__))
;
2174 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&((MI.getOperand(2).isReg() && MI.getOperand(1).isReg(
) && "X-form op must have register and register operands"
) ? static_cast<void> (0) : __assert_fail ("MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && \"X-form op must have register and register operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2175, __PRETTY_FUNCTION__))
2175 "X-form op must have register and register operands")((MI.getOperand(2).isReg() && MI.getOperand(1).isReg(
) && "X-form op must have register and register operands"
) ? static_cast<void> (0) : __assert_fail ("MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && \"X-form op must have register and register operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2175, __PRETTY_FUNCTION__))
;
2176 return expandVSXMemPseudo(MI);
2177 }
2178 case PPC::XFLOADf64:
2179 case PPC::XFSTOREf64: {
2180 assert(Subtarget.hasVSX() &&((Subtarget.hasVSX() && "Invalid X-Form Pseudo-ops on target that has no VSX."
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasVSX() && \"Invalid X-Form Pseudo-ops on target that has no VSX.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2181, __PRETTY_FUNCTION__))
2181 "Invalid X-Form Pseudo-ops on target that has no VSX.")((Subtarget.hasVSX() && "Invalid X-Form Pseudo-ops on target that has no VSX."
) ? static_cast<void> (0) : __assert_fail ("Subtarget.hasVSX() && \"Invalid X-Form Pseudo-ops on target that has no VSX.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2181, __PRETTY_FUNCTION__))
;
2182 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&((MI.getOperand(2).isReg() && MI.getOperand(1).isReg(
) && "X-form op must have register and register operands"
) ? static_cast<void> (0) : __assert_fail ("MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && \"X-form op must have register and register operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2183, __PRETTY_FUNCTION__))
2183 "X-form op must have register and register operands")((MI.getOperand(2).isReg() && MI.getOperand(1).isReg(
) && "X-form op must have register and register operands"
) ? static_cast<void> (0) : __assert_fail ("MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && \"X-form op must have register and register operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2183, __PRETTY_FUNCTION__))
;
2184 return expandVSXMemPseudo(MI);
2185 }
2186 case PPC::SPILLTOVSR_LD: {
2187 unsigned TargetReg = MI.getOperand(0).getReg();
2188 if (PPC::VSFRCRegClass.contains(TargetReg)) {
2189 MI.setDesc(get(PPC::DFLOADf64));
2190 return expandPostRAPseudo(MI);
2191 }
2192 else
2193 MI.setDesc(get(PPC::LD));
2194 return true;
2195 }
2196 case PPC::SPILLTOVSR_ST: {
2197 unsigned SrcReg = MI.getOperand(0).getReg();
2198 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2199 NumStoreSPILLVSRRCAsVec++;
2200 MI.setDesc(get(PPC::DFSTOREf64));
2201 return expandPostRAPseudo(MI);
2202 } else {
2203 NumStoreSPILLVSRRCAsGpr++;
2204 MI.setDesc(get(PPC::STD));
2205 }
2206 return true;
2207 }
2208 case PPC::SPILLTOVSR_LDX: {
2209 unsigned TargetReg = MI.getOperand(0).getReg();
2210 if (PPC::VSFRCRegClass.contains(TargetReg))
2211 MI.setDesc(get(PPC::LXSDX));
2212 else
2213 MI.setDesc(get(PPC::LDX));
2214 return true;
2215 }
2216 case PPC::SPILLTOVSR_STX: {
2217 unsigned SrcReg = MI.getOperand(0).getReg();
2218 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2219 NumStoreSPILLVSRRCAsVec++;
2220 MI.setDesc(get(PPC::STXSDX));
2221 } else {
2222 NumStoreSPILLVSRRCAsGpr++;
2223 MI.setDesc(get(PPC::STDX));
2224 }
2225 return true;
2226 }
2227
2228 case PPC::CFENCE8: {
2229 auto Val = MI.getOperand(0).getReg();
2230 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2231 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2232 .addImm(PPC::PRED_NE_MINUS)
2233 .addReg(PPC::CR7)
2234 .addImm(1);
2235 MI.setDesc(get(PPC::ISYNC));
2236 MI.RemoveOperand(0);
2237 return true;
2238 }
2239 }
2240 return false;
2241}
2242
2243// Essentially a compile-time implementation of a compare->isel sequence.
2244// It takes two constants to compare, along with the true/false registers
2245// and the comparison type (as a subreg to a CR field) and returns one
2246// of the true/false registers, depending on the comparison results.
2247static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2248 unsigned TrueReg, unsigned FalseReg,
2249 unsigned CRSubReg) {
2250 // Signed comparisons. The immediates are assumed to be sign-extended.
2251 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2252 switch (CRSubReg) {
2253 default: llvm_unreachable("Unknown integer comparison type.")::llvm::llvm_unreachable_internal("Unknown integer comparison type."
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2253)
;
2254 case PPC::sub_lt:
2255 return Imm1 < Imm2 ? TrueReg : FalseReg;
2256 case PPC::sub_gt:
2257 return Imm1 > Imm2 ? TrueReg : FalseReg;
2258 case PPC::sub_eq:
2259 return Imm1 == Imm2 ? TrueReg : FalseReg;
2260 }
2261 }
2262 // Unsigned comparisons.
2263 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2264 switch (CRSubReg) {
2265 default: llvm_unreachable("Unknown integer comparison type.")::llvm::llvm_unreachable_internal("Unknown integer comparison type."
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2265)
;
2266 case PPC::sub_lt:
2267 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2268 case PPC::sub_gt:
2269 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2270 case PPC::sub_eq:
2271 return Imm1 == Imm2 ? TrueReg : FalseReg;
2272 }
2273 }
2274 return PPC::NoRegister;
2275}
2276
2277void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2278 unsigned OpNo,
2279 int64_t Imm) const {
2280 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG")((MI.getOperand(OpNo).isReg() && "Operand must be a REG"
) ? static_cast<void> (0) : __assert_fail ("MI.getOperand(OpNo).isReg() && \"Operand must be a REG\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2280, __PRETTY_FUNCTION__))
;
2281 // Replace the REG with the Immediate.
2282 unsigned InUseReg = MI.getOperand(OpNo).getReg();
2283 MI.getOperand(OpNo).ChangeToImmediate(Imm);
2284
2285 if (empty(MI.implicit_operands()))
2286 return;
2287
2288 // We need to make sure that the MI didn't have any implicit use
2289 // of this REG any more.
2290 const TargetRegisterInfo *TRI = &getRegisterInfo();
2291 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2292 if (UseOpIdx >= 0) {
2293 MachineOperand &MO = MI.getOperand(UseOpIdx);
2294 if (MO.isImplicit())
2295 // The operands must always be in the following order:
2296 // - explicit reg defs,
2297 // - other explicit operands (reg uses, immediates, etc.),
2298 // - implicit reg defs
2299 // - implicit reg uses
2300 // Therefore, removing the implicit operand won't change the explicit
2301 // operands layout.
2302 MI.RemoveOperand(UseOpIdx);
2303 }
2304}
2305
2306// Replace an instruction with one that materializes a constant (and sets
2307// CR0 if the original instruction was a record-form instruction).
2308void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2309 const LoadImmediateInfo &LII) const {
2310 // Remove existing operands.
2311 int OperandToKeep = LII.SetCR ? 1 : 0;
2312 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2313 MI.RemoveOperand(i);
2314
2315 // Replace the instruction.
2316 if (LII.SetCR) {
2317 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2318 // Set the immediate.
2319 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2320 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2321 return;
2322 }
2323 else
2324 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2325
2326 // Set the immediate.
2327 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2328 .addImm(LII.Imm);
2329}
2330
2331MachineInstr *PPCInstrInfo::getForwardingDefMI(
2332 MachineInstr &MI,
2333 unsigned &OpNoForForwarding,
2334 bool &SeenIntermediateUse) const {
2335 OpNoForForwarding = ~0U;
2336 MachineInstr *DefMI = nullptr;
2337 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2338 const TargetRegisterInfo *TRI = &getRegisterInfo();
2339 // If we're in SSA, get the defs through the MRI. Otherwise, only look
2340 // within the basic block to see if the register is defined using an LI/LI8.
2341 if (MRI->isSSA()) {
2342 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2343 if (!MI.getOperand(i).isReg())
2344 continue;
2345 unsigned Reg = MI.getOperand(i).getReg();
2346 if (!TargetRegisterInfo::isVirtualRegister(Reg))
2347 continue;
2348 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2349 if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
2350 DefMI = MRI->getVRegDef(TrueReg);
2351 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2352 OpNoForForwarding = i;
2353 break;
2354 }
2355 }
2356 }
2357 } else {
2358 // Looking back through the definition for each operand could be expensive,
2359 // so exit early if this isn't an instruction that either has an immediate
2360 // form or is already an immediate form that we can handle.
2361 ImmInstrInfo III;
2362 unsigned Opc = MI.getOpcode();
2363 bool ConvertibleImmForm =
2364 Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2365 Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2366 Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2367 Opc == PPC::ORI || Opc == PPC::ORI8 ||
2368 Opc == PPC::XORI || Opc == PPC::XORI8 ||
2369 Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2370 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2371 Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2372 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2373 if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm)
2374 return nullptr;
2375
2376 // Don't convert or %X, %Y, %Y since that's just a register move.
2377 if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2378 MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2379 return nullptr;
2380 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2381 MachineOperand &MO = MI.getOperand(i);
2382 SeenIntermediateUse = false;
2383 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2384 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2385 It++;
2386 unsigned Reg = MI.getOperand(i).getReg();
2387
2388 // Is this register defined by some form of add-immediate (including
2389 // load-immediate) within this basic block?
2390 for ( ; It != E; ++It) {
2391 if (It->modifiesRegister(Reg, &getRegisterInfo())) {
2392 switch (It->getOpcode()) {
2393 default: break;
2394 case PPC::LI:
2395 case PPC::LI8:
2396 case PPC::ADDItocL:
2397 case PPC::ADDI:
2398 case PPC::ADDI8:
2399 OpNoForForwarding = i;
2400 return &*It;
2401 }
2402 break;
2403 } else if (It->readsRegister(Reg, &getRegisterInfo()))
2404 // If we see another use of this reg between the def and the MI,
2405 // we want to flat it so the def isn't deleted.
2406 SeenIntermediateUse = true;
2407 }
2408 }
2409 }
2410 }
2411 return OpNoForForwarding == ~0U ? nullptr : DefMI;
2412}
2413
2414const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2415 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2416 // Power 8
2417 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2418 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2419 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2420 PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
2421 // Power 9
2422 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2423 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2424 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2425 PPC::SPILLTOVSR_ST}};
2426
2427 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2428}
2429
2430const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2431 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2432 // Power 8
2433 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2434 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2435 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2436 PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
2437 // Power 9
2438 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2439 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2440 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2441 PPC::SPILLTOVSR_LD}};
2442
2443 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2444}
2445
2446void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2447 unsigned RegNo) const {
2448 const MachineRegisterInfo &MRI =
2449 StartMI.getParent()->getParent()->getRegInfo();
2450 if (MRI.isSSA())
2451 return;
2452
2453 // Instructions between [StartMI, EndMI] should be in same basic block.
2454 assert((StartMI.getParent() == EndMI.getParent()) &&(((StartMI.getParent() == EndMI.getParent()) && "Instructions are not in same basic block"
) ? static_cast<void> (0) : __assert_fail ("(StartMI.getParent() == EndMI.getParent()) && \"Instructions are not in same basic block\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2455, __PRETTY_FUNCTION__))
2455 "Instructions are not in same basic block")(((StartMI.getParent() == EndMI.getParent()) && "Instructions are not in same basic block"
) ? static_cast<void> (0) : __assert_fail ("(StartMI.getParent() == EndMI.getParent()) && \"Instructions are not in same basic block\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2455, __PRETTY_FUNCTION__))
;
2456
2457 bool IsKillSet = false;
2458
2459 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2460 MachineOperand &MO = MI.getOperand(Index);
2461 if (MO.isReg() && MO.isUse() && MO.isKill() &&
2462 getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2463 MO.setIsKill(false);
2464 };
2465
2466 // Set killed flag for EndMI.
2467 // No need to do anything if EndMI defines RegNo.
2468 int UseIndex =
2469 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2470 if (UseIndex != -1) {
2471 EndMI.getOperand(UseIndex).setIsKill(true);
2472 IsKillSet = true;
2473 // Clear killed flag for other EndMI operands related to RegNo. In some
2474 // upexpected cases, killed may be set multiple times for same register
2475 // operand in same MI.
2476 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2477 if (i != UseIndex)
2478 clearOperandKillInfo(EndMI, i);
2479 }
2480
2481 // Walking the inst in reverse order (EndMI -> StartMI].
2482 MachineBasicBlock::reverse_iterator It = EndMI;
2483 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2484 // EndMI has been handled above, skip it here.
2485 It++;
2486 MachineOperand *MO = nullptr;
2487 for (; It != E; ++It) {
2488 // Skip insturctions which could not be a def/use of RegNo.
2489 if (It->isDebugInstr() || It->isPosition())
2490 continue;
2491
2492 // Clear killed flag for all It operands related to RegNo. In some
2493 // upexpected cases, killed may be set multiple times for same register
2494 // operand in same MI.
2495 for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2496 clearOperandKillInfo(*It, i);
2497
2498 // If killed is not set, set killed for its last use or set dead for its def
2499 // if no use found.
2500 if (!IsKillSet) {
2501 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2502 // Use found, set it killed.
2503 IsKillSet = true;
2504 MO->setIsKill(true);
2505 continue;
2506 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2507 &getRegisterInfo()))) {
2508 // No use found, set dead for its def.
2509 assert(&*It == &StartMI && "No new def between StartMI and EndMI.")((&*It == &StartMI && "No new def between StartMI and EndMI."
) ? static_cast<void> (0) : __assert_fail ("&*It == &StartMI && \"No new def between StartMI and EndMI.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2509, __PRETTY_FUNCTION__))
;
2510 MO->setIsDead(true);
2511 break;
2512 }
2513 }
2514
2515 if ((&*It) == &StartMI)
2516 break;
2517 }
2518 // Ensure RegMo liveness is killed after EndMI.
2519 assert((IsKillSet || (MO && MO->isDead())) &&(((IsKillSet || (MO && MO->isDead())) && "RegNo should be killed or dead"
) ? static_cast<void> (0) : __assert_fail ("(IsKillSet || (MO && MO->isDead())) && \"RegNo should be killed or dead\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2520, __PRETTY_FUNCTION__))
2520 "RegNo should be killed or dead")(((IsKillSet || (MO && MO->isDead())) && "RegNo should be killed or dead"
) ? static_cast<void> (0) : __assert_fail ("(IsKillSet || (MO && MO->isDead())) && \"RegNo should be killed or dead\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2520, __PRETTY_FUNCTION__))
;
2521}
2522
2523// If this instruction has an immediate form and one of its operands is a
2524// result of a load-immediate or an add-immediate, convert it to
2525// the immediate form if the constant is in range.
2526bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2527 MachineInstr **KilledDef) const {
2528 MachineFunction *MF = MI.getParent()->getParent();
2529 MachineRegisterInfo *MRI = &MF->getRegInfo();
2530 bool PostRA = !MRI->isSSA();
2531 bool SeenIntermediateUse = true;
2532 unsigned ForwardingOperand = ~0U;
2533 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2534 SeenIntermediateUse);
2535 if (!DefMI)
2536 return false;
2537 assert(ForwardingOperand < MI.getNumOperands() &&((ForwardingOperand < MI.getNumOperands() && "The forwarding operand needs to be valid at this point"
) ? static_cast<void> (0) : __assert_fail ("ForwardingOperand < MI.getNumOperands() && \"The forwarding operand needs to be valid at this point\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2538, __PRETTY_FUNCTION__))
2538 "The forwarding operand needs to be valid at this point")((ForwardingOperand < MI.getNumOperands() && "The forwarding operand needs to be valid at this point"
) ? static_cast<void> (0) : __assert_fail ("ForwardingOperand < MI.getNumOperands() && \"The forwarding operand needs to be valid at this point\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2538, __PRETTY_FUNCTION__))
;
2539 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2540 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2541 unsigned ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2542 if (KilledDef && KillFwdDefMI)
2543 *KilledDef = DefMI;
2544
2545 ImmInstrInfo III;
2546 bool HasImmForm = instrHasImmForm(MI, III, PostRA);
2547 // If this is a reg+reg instruction that has a reg+imm form,
2548 // and one of the operands is produced by an add-immediate,
2549 // try to convert it.
2550 if (HasImmForm &&
2551 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2552 KillFwdDefMI))
2553 return true;
2554
2555 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2556 !DefMI->getOperand(1).isImm())
2557 return false;
2558
2559 int64_t Immediate = DefMI->getOperand(1).getImm();
2560 // Sign-extend to 64-bits.
2561 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2562 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2563
2564 // If this is a reg+reg instruction that has a reg+imm form,
2565 // and one of the operands is produced by LI, convert it now.
2566 if (HasImmForm)
2567 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2568
2569 bool ReplaceWithLI = false;
2570 bool Is64BitLI = false;
2571 int64_t NewImm = 0;
2572 bool SetCR = false;
2573 unsigned Opc = MI.getOpcode();
2574 switch (Opc) {
2575 default: return false;
2576
2577 // FIXME: Any branches conditional on such a comparison can be made
2578 // unconditional. At this time, this happens too infrequently to be worth
2579 // the implementation effort, but if that ever changes, we could convert
2580 // such a pattern here.
2581 case PPC::CMPWI:
2582 case PPC::CMPLWI:
2583 case PPC::CMPDI:
2584 case PPC::CMPLDI: {
2585 // Doing this post-RA would require dataflow analysis to reliably find uses
2586 // of the CR register set by the compare.
2587 // No need to fixup killed/dead flag since this transformation is only valid
2588 // before RA.
2589 if (PostRA)
2590 return false;
2591 // If a compare-immediate is fed by an immediate and is itself an input of
2592 // an ISEL (the most common case) into a COPY of the correct register.
2593 bool Changed = false;
2594 unsigned DefReg = MI.getOperand(0).getReg();
2595 int64_t Comparand = MI.getOperand(2).getImm();
2596 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2597 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2598
2599 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2600 unsigned UseOpc = CompareUseMI.getOpcode();
2601 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2602 continue;
2603 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2604 unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
2605 unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
2606 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2607 FalseReg, CRSubReg);
2608 if (RegToCopy == PPC::NoRegister)
2609 continue;
2610 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2611 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2612 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2613 replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2614 CompareUseMI.RemoveOperand(3);
2615 CompareUseMI.RemoveOperand(2);
2616 continue;
2617 }
2618 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"
; } } while (false)
2619 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"
; } } while (false)
;
2620 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { DefMI->dump(); MI.dump(); CompareUseMI
.dump(); } } while (false)
;
2621 LLVM_DEBUG(dbgs() << "Is converted to:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { dbgs() << "Is converted to:\n"; }
} while (false)
;
2622 // Convert to copy and remove unneeded operands.
2623 CompareUseMI.setDesc(get(PPC::COPY));
2624 CompareUseMI.RemoveOperand(3);
2625 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2626 CmpIselsConverted++;
2627 Changed = true;
2628 LLVM_DEBUG(CompareUseMI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { CompareUseMI.dump(); } } while (false)
;
2629 }
2630 if (Changed)
2631 return true;
2632 // This may end up incremented multiple times since this function is called
2633 // during a fixed-point transformation, but it is only meant to indicate the
2634 // presence of this opportunity.
2635 MissedConvertibleImmediateInstrs++;
2636 return false;
2637 }
2638
2639 // Immediate forms - may simply be convertable to an LI.
2640 case PPC::ADDI:
2641 case PPC::ADDI8: {
2642 // Does the sum fit in a 16-bit signed field?
2643 int64_t Addend = MI.getOperand(2).getImm();
2644 if (isInt<16>(Addend + SExtImm)) {
2645 ReplaceWithLI = true;
2646 Is64BitLI = Opc == PPC::ADDI8;
2647 NewImm = Addend + SExtImm;
2648 break;
2649 }
2650 return false;
2651 }
2652 case PPC::RLDICL:
2653 case PPC::RLDICLo:
2654 case PPC::RLDICL_32:
2655 case PPC::RLDICL_32_64: {
2656 // Use APInt's rotate function.
2657 int64_t SH = MI.getOperand(2).getImm();
2658 int64_t MB = MI.getOperand(3).getImm();
2659 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2660 64 : 32, SExtImm, true);
2661 InVal = InVal.rotl(SH);
2662 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2663 InVal &= Mask;
2664 // Can't replace negative values with an LI as that will sign-extend
2665 // and not clear the left bits. If we're setting the CR bit, we will use
2666 // ANDIo which won't sign extend, so that's safe.
2667 if (isUInt<15>(InVal.getSExtValue()) ||
2668 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2669 ReplaceWithLI = true;
2670 Is64BitLI = Opc != PPC::RLDICL_32;
2671 NewImm = InVal.getSExtValue();
2672 SetCR = Opc == PPC::RLDICLo;
2673 break;
2674 }
2675 return false;
2676 }
2677 case PPC::RLWINM:
2678 case PPC::RLWINM8:
2679 case PPC::RLWINMo:
2680 case PPC::RLWINM8o: {
2681 int64_t SH = MI.getOperand(2).getImm();
2682 int64_t MB = MI.getOperand(3).getImm();
2683 int64_t ME = MI.getOperand(4).getImm();
2684 APInt InVal(32, SExtImm, true);
2685 InVal = InVal.rotl(SH);
2686 // Set the bits ( MB + 32 ) to ( ME + 32 ).
2687 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2688 InVal &= Mask;
2689 // Can't replace negative values with an LI as that will sign-extend
2690 // and not clear the left bits. If we're setting the CR bit, we will use
2691 // ANDIo which won't sign extend, so that's safe.
2692 bool ValueFits = isUInt<15>(InVal.getSExtValue());
2693 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2694 isUInt<16>(InVal.getSExtValue()));
2695 if (ValueFits) {
2696 ReplaceWithLI = true;
2697 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2698 NewImm = InVal.getSExtValue();
2699 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2700 break;
2701 }
2702 return false;
2703 }
2704 case PPC::ORI:
2705 case PPC::ORI8:
2706 case PPC::XORI:
2707 case PPC::XORI8: {
2708 int64_t LogicalImm = MI.getOperand(2).getImm();
2709 int64_t Result = 0;
2710 if (Opc == PPC::ORI || Opc == PPC::ORI8)
2711 Result = LogicalImm | SExtImm;
2712 else
2713 Result = LogicalImm ^ SExtImm;
2714 if (isInt<16>(Result)) {
2715 ReplaceWithLI = true;
2716 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2717 NewImm = Result;
2718 break;
2719 }
2720 return false;
2721 }
2722 }
2723
2724 if (ReplaceWithLI) {
2725 // We need to be careful with CR-setting instructions we're replacing.
2726 if (SetCR) {
2727 // We don't know anything about uses when we're out of SSA, so only
2728 // replace if the new immediate will be reproduced.
2729 bool ImmChanged = (SExtImm & NewImm) != NewImm;
2730 if (PostRA && ImmChanged)
2731 return false;
2732
2733 if (!PostRA) {
2734 // If the defining load-immediate has no other uses, we can just replace
2735 // the immediate with the new immediate.
2736 if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2737 DefMI->getOperand(1).setImm(NewImm);
2738
2739 // If we're not using the GPR result of the CR-setting instruction, we
2740 // just need to and with zero/non-zero depending on the new immediate.
2741 else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2742 if (NewImm) {
2743 assert(Immediate && "Transformation converted zero to non-zero?")((Immediate && "Transformation converted zero to non-zero?"
) ? static_cast<void> (0) : __assert_fail ("Immediate && \"Transformation converted zero to non-zero?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2743, __PRETTY_FUNCTION__))
;
2744 NewImm = Immediate;
2745 }
2746 }
2747 else if (ImmChanged)
2748 return false;
2749 }
2750 }
2751
2752 LLVM_DEBUG(dbgs() << "Replacing instruction:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { dbgs() << "Replacing instruction:\n"
; } } while (false)
;
2753 LLVM_DEBUG(MI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { MI.dump(); } } while (false)
;
2754 LLVM_DEBUG(dbgs() << "Fed by:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { dbgs() << "Fed by:\n"; } } while (
false)
;
2755 LLVM_DEBUG(DefMI->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { DefMI->dump(); } } while (false)
;
2756 LoadImmediateInfo LII;
2757 LII.Imm = NewImm;
2758 LII.Is64Bit = Is64BitLI;
2759 LII.SetCR = SetCR;
2760 // If we're setting the CR, the original load-immediate must be kept (as an
2761 // operand to ANDIo/ANDI8o).
2762 if (KilledDef && SetCR)
2763 *KilledDef = nullptr;
2764 replaceInstrWithLI(MI, LII);
2765
2766 // Fixup killed/dead flag after transformation.
2767 // Pattern:
2768 // ForwardingOperandReg = LI imm1
2769 // y = op2 imm2, ForwardingOperandReg(killed)
2770 if (IsForwardingOperandKilled)
2771 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2772
2773 LLVM_DEBUG(dbgs() << "With:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { dbgs() << "With:\n"; } } while (false
)
;
2774 LLVM_DEBUG(MI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { MI.dump(); } } while (false)
;
2775 return true;
2776 }
2777 return false;
2778}
2779
2780static bool isVFReg(unsigned Reg) {
2781 return PPC::VFRCRegClass.contains(Reg);
2782}
2783
2784bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI,
2785 ImmInstrInfo &III, bool PostRA) const {
2786 unsigned Opc = MI.getOpcode();
2787 // The vast majority of the instructions would need their operand 2 replaced
2788 // with an immediate when switching to the reg+imm form. A marked exception
2789 // are the update form loads/stores for which a constant operand 2 would need
2790 // to turn into a displacement and move operand 1 to the operand 2 position.
2791 III.ImmOpNo = 2;
2792 III.OpNoForForwarding = 2;
2793 III.ImmWidth = 16;
2794 III.ImmMustBeMultipleOf = 1;
2795 III.TruncateImmTo = 0;
2796 III.IsSummingOperands = false;
2797 switch (Opc) {
2798 default: return false;
2799 case PPC::ADD4:
2800 case PPC::ADD8:
2801 III.SignedImm = true;
2802 III.ZeroIsSpecialOrig = 0;
2803 III.ZeroIsSpecialNew = 1;
2804 III.IsCommutative = true;
2805 III.IsSummingOperands = true;
2806 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2807 break;
2808 case PPC::ADDC:
2809 case PPC::ADDC8:
2810 III.SignedImm = true;
2811 III.ZeroIsSpecialOrig = 0;
2812 III.ZeroIsSpecialNew = 0;
2813 III.IsCommutative = true;
2814 III.IsSummingOperands = true;
2815 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2816 break;
2817 case PPC::ADDCo:
2818 III.SignedImm = true;
2819 III.ZeroIsSpecialOrig = 0;
2820 III.ZeroIsSpecialNew = 0;
2821 III.IsCommutative = true;
2822 III.IsSummingOperands = true;
2823 III.ImmOpcode = PPC::ADDICo;
2824 break;
2825 case PPC::SUBFC:
2826 case PPC::SUBFC8:
2827 III.SignedImm = true;
2828 III.ZeroIsSpecialOrig = 0;
2829 III.ZeroIsSpecialNew = 0;
2830 III.IsCommutative = false;
2831 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2832 break;
2833 case PPC::CMPW:
2834 case PPC::CMPD:
2835 III.SignedImm = true;
2836 III.ZeroIsSpecialOrig = 0;
2837 III.ZeroIsSpecialNew = 0;
2838 III.IsCommutative = false;
2839 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2840 break;
2841 case PPC::CMPLW:
2842 case PPC::CMPLD:
2843 III.SignedImm = false;
2844 III.ZeroIsSpecialOrig = 0;
2845 III.ZeroIsSpecialNew = 0;
2846 III.IsCommutative = false;
2847 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2848 break;
2849 case PPC::ANDo:
2850 case PPC::AND8o:
2851 case PPC::OR:
2852 case PPC::OR8:
2853 case PPC::XOR:
2854 case PPC::XOR8:
2855 III.SignedImm = false;
2856 III.ZeroIsSpecialOrig = 0;
2857 III.ZeroIsSpecialNew = 0;
2858 III.IsCommutative = true;
2859 switch(Opc) {
2860 default: llvm_unreachable("Unknown opcode")::llvm::llvm_unreachable_internal("Unknown opcode", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2860)
;
2861 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2862 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2863 case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2864 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2865 case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2866 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2867 }
2868 break;
2869 case PPC::RLWNM:
2870 case PPC::RLWNM8:
2871 case PPC::RLWNMo:
2872 case PPC::RLWNM8o:
2873 case PPC::SLW:
2874 case PPC::SLW8:
2875 case PPC::SLWo:
2876 case PPC::SLW8o:
2877 case PPC::SRW:
2878 case PPC::SRW8:
2879 case PPC::SRWo:
2880 case PPC::SRW8o:
2881 case PPC::SRAW:
2882 case PPC::SRAWo:
2883 III.SignedImm = false;
2884 III.ZeroIsSpecialOrig = 0;
2885 III.ZeroIsSpecialNew = 0;
2886 III.IsCommutative = false;
2887 // This isn't actually true, but the instructions ignore any of the
2888 // upper bits, so any immediate loaded with an LI is acceptable.
2889 // This does not apply to shift right algebraic because a value
2890 // out of range will produce a -1/0.
2891 III.ImmWidth = 16;
2892 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2893 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2894 III.TruncateImmTo = 5;
2895 else
2896 III.TruncateImmTo = 6;
2897 switch(Opc) {
2898 default: llvm_unreachable("Unknown opcode")::llvm::llvm_unreachable_internal("Unknown opcode", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2898)
;
2899 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2900 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2901 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2902 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2903 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2904 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2905 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2906 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2907 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2908 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2909 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2910 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2911 case PPC::SRAW:
2912 III.ImmWidth = 5;
2913 III.TruncateImmTo = 0;
2914 III.ImmOpcode = PPC::SRAWI;
2915 break;
2916 case PPC::SRAWo:
2917 III.ImmWidth = 5;
2918 III.TruncateImmTo = 0;
2919 III.ImmOpcode = PPC::SRAWIo;
2920 break;
2921 }
2922 break;
2923 case PPC::RLDCL:
2924 case PPC::RLDCLo:
2925 case PPC::RLDCR:
2926 case PPC::RLDCRo:
2927 case PPC::SLD:
2928 case PPC::SLDo:
2929 case PPC::SRD:
2930 case PPC::SRDo:
2931 case PPC::SRAD:
2932 case PPC::SRADo:
2933 III.SignedImm = false;
2934 III.ZeroIsSpecialOrig = 0;
2935 III.ZeroIsSpecialNew = 0;
2936 III.IsCommutative = false;
2937 // This isn't actually true, but the instructions ignore any of the
2938 // upper bits, so any immediate loaded with an LI is acceptable.
2939 // This does not apply to shift right algebraic because a value
2940 // out of range will produce a -1/0.
2941 III.ImmWidth = 16;
2942 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2943 Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2944 III.TruncateImmTo = 6;
2945 else
2946 III.TruncateImmTo = 7;
2947 switch(Opc) {
2948 default: llvm_unreachable("Unknown opcode")::llvm::llvm_unreachable_internal("Unknown opcode", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2948)
;
2949 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2950 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2951 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2952 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2953 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2954 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2955 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2956 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2957 case PPC::SRAD:
2958 III.ImmWidth = 6;
2959 III.TruncateImmTo = 0;
2960 III.ImmOpcode = PPC::SRADI;
2961 break;
2962 case PPC::SRADo:
2963 III.ImmWidth = 6;
2964 III.TruncateImmTo = 0;
2965 III.ImmOpcode = PPC::SRADIo;
2966 break;
2967 }
2968 break;
2969 // Loads and stores:
2970 case PPC::LBZX:
2971 case PPC::LBZX8:
2972 case PPC::LHZX:
2973 case PPC::LHZX8:
2974 case PPC::LHAX:
2975 case PPC::LHAX8:
2976 case PPC::LWZX:
2977 case PPC::LWZX8:
2978 case PPC::LWAX:
2979 case PPC::LDX:
2980 case PPC::LFSX:
2981 case PPC::LFDX:
2982 case PPC::STBX:
2983 case PPC::STBX8:
2984 case PPC::STHX:
2985 case PPC::STHX8:
2986 case PPC::STWX:
2987 case PPC::STWX8:
2988 case PPC::STDX:
2989 case PPC::STFSX:
2990 case PPC::STFDX:
2991 III.SignedImm = true;
2992 III.ZeroIsSpecialOrig = 1;
2993 III.ZeroIsSpecialNew = 2;
2994 III.IsCommutative = true;
2995 III.IsSummingOperands = true;
2996 III.ImmOpNo = 1;
2997 III.OpNoForForwarding = 2;
2998 switch(Opc) {
2999 default: llvm_unreachable("Unknown opcode")::llvm::llvm_unreachable_internal("Unknown opcode", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 2999)
;
3000 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3001 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3002 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3003 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3004 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3005 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3006 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3007 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3008 case PPC::LWAX:
3009 III.ImmOpcode = PPC::LWA;
3010 III.ImmMustBeMultipleOf = 4;
3011 break;
3012 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3013 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3014 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3015 case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3016 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3017 case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3018 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3019 case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3020 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3021 case PPC::STDX:
3022 III.ImmOpcode = PPC::STD;
3023 III.ImmMustBeMultipleOf = 4;
3024 break;
3025 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3026 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3027 }
3028 break;
3029 case PPC::LBZUX:
3030 case PPC::LBZUX8:
3031 case PPC::LHZUX:
3032 case PPC::LHZUX8:
3033 case PPC::LHAUX:
3034 case PPC::LHAUX8:
3035 case PPC::LWZUX:
3036 case PPC::LWZUX8:
3037 case PPC::LDUX:
3038 case PPC::LFSUX:
3039 case PPC::LFDUX:
3040 case PPC::STBUX:
3041 case PPC::STBUX8:
3042 case PPC::STHUX:
3043 case PPC::STHUX8:
3044 case PPC::STWUX:
3045 case PPC::STWUX8:
3046 case PPC::STDUX:
3047 case PPC::STFSUX:
3048 case PPC::STFDUX:
3049 III.SignedImm = true;
3050 III.ZeroIsSpecialOrig = 2;
3051 III.ZeroIsSpecialNew = 3;
3052 III.IsCommutative = false;
3053 III.IsSummingOperands = true;
3054 III.ImmOpNo = 2;
3055 III.OpNoForForwarding = 3;
3056 switch(Opc) {
3057 default: llvm_unreachable("Unknown opcode")::llvm::llvm_unreachable_internal("Unknown opcode", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 3057)
;
3058 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3059 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3060 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3061 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3062 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3063 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3064 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3065 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3066 case PPC::LDUX:
3067 III.ImmOpcode = PPC::LDU;
3068 III.ImmMustBeMultipleOf = 4;
3069 break;
3070 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3071 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3072 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3073 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3074 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3075 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3076 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3077 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3078 case PPC::STDUX:
3079 III.ImmOpcode = PPC::STDU;
3080 III.ImmMustBeMultipleOf = 4;
3081 break;
3082 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3083 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3084 }
3085 break;
3086 // Power9 and up only. For some of these, the X-Form version has access to all
3087 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3088 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3089 // into or stored from is one of the VR registers.
3090 case PPC::LXVX:
3091 case PPC::LXSSPX:
3092 case PPC::LXSDX:
3093 case PPC::STXVX:
3094 case PPC::STXSSPX:
3095 case PPC::STXSDX:
3096 case PPC::XFLOADf32:
3097 case PPC::XFLOADf64:
3098 case PPC::XFSTOREf32:
3099 case PPC::XFSTOREf64:
3100 if (!Subtarget.hasP9Vector())
3101 return false;
3102 III.SignedImm = true;
3103 III.ZeroIsSpecialOrig = 1;
3104 III.ZeroIsSpecialNew = 2;
3105 III.IsCommutative = true;
3106 III.IsSummingOperands = true;
3107 III.ImmOpNo = 1;
3108 III.OpNoForForwarding = 2;
3109 III.ImmMustBeMultipleOf = 4;
3110 switch(Opc) {
3111 default: llvm_unreachable("Unknown opcode")::llvm::llvm_unreachable_internal("Unknown opcode", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 3111)
;
3112 case PPC::LXVX:
3113 III.ImmOpcode = PPC::LXV;
3114 III.ImmMustBeMultipleOf = 16;
3115 break;
3116 case PPC::LXSSPX:
3117 if (PostRA) {
3118 if (isVFReg(MI.getOperand(0).getReg()))
3119 III.ImmOpcode = PPC::LXSSP;
3120 else {
3121 III.ImmOpcode = PPC::LFS;
3122 III.ImmMustBeMultipleOf = 1;
3123 }
3124 break;
3125 }
3126 LLVM_FALLTHROUGH[[clang::fallthrough]];
3127 case PPC::XFLOADf32:
3128 III.ImmOpcode = PPC::DFLOADf32;
3129 break;
3130 case PPC::LXSDX:
3131 if (PostRA) {
3132 if (isVFReg(MI.getOperand(0).getReg()))
3133 III.ImmOpcode = PPC::LXSD;
3134 else {
3135 III.ImmOpcode = PPC::LFD;
3136 III.ImmMustBeMultipleOf = 1;
3137 }
3138 break;
3139 }
3140 LLVM_FALLTHROUGH[[clang::fallthrough]];
3141 case PPC::XFLOADf64:
3142 III.ImmOpcode = PPC::DFLOADf64;
3143 break;
3144 case PPC::STXVX:
3145 III.ImmOpcode = PPC::STXV;
3146 III.ImmMustBeMultipleOf = 16;
3147 break;
3148 case PPC::STXSSPX:
3149 if (PostRA) {
3150 if (isVFReg(MI.getOperand(0).getReg()))
3151 III.ImmOpcode = PPC::STXSSP;
3152 else {
3153 III.ImmOpcode = PPC::STFS;
3154 III.ImmMustBeMultipleOf = 1;
3155 }
3156 break;
3157 }
3158 LLVM_FALLTHROUGH[[clang::fallthrough]];
3159 case PPC::XFSTOREf32:
3160 III.ImmOpcode = PPC::DFSTOREf32;
3161 break;
3162 case PPC::STXSDX:
3163 if (PostRA) {
3164 if (isVFReg(MI.getOperand(0).getReg()))
3165 III.ImmOpcode = PPC::STXSD;
3166 else {
3167 III.ImmOpcode = PPC::STFD;
3168 III.ImmMustBeMultipleOf = 1;
3169 }
3170 break;
3171 }
3172 LLVM_FALLTHROUGH[[clang::fallthrough]];
3173 case PPC::XFSTOREf64:
3174 III.ImmOpcode = PPC::DFSTOREf64;
3175 break;
3176 }
3177 break;
3178 }
3179 return true;
3180}
3181
3182// Utility function for swaping two arbitrary operands of an instruction.
3183static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3184 assert(Op1 != Op2 && "Cannot swap operand with itself.")((Op1 != Op2 && "Cannot swap operand with itself.") ?
static_cast<void> (0) : __assert_fail ("Op1 != Op2 && \"Cannot swap operand with itself.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 3184, __PRETTY_FUNCTION__))
;
3185
3186 unsigned MaxOp = std::max(Op1, Op2);
3187 unsigned MinOp = std::min(Op1, Op2);
3188 MachineOperand MOp1 = MI.getOperand(MinOp);
3189 MachineOperand MOp2 = MI.getOperand(MaxOp);
3190 MI.RemoveOperand(std::max(Op1, Op2));
3191 MI.RemoveOperand(std::min(Op1, Op2));
3192
3193 // If the operands we are swapping are the two at the end (the common case)
3194 // we can just remove both and add them in the opposite order.
3195 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3196 MI.addOperand(MOp2);
3197 MI.addOperand(MOp1);
3198 } else {
3199 // Store all operands in a temporary vector, remove them and re-add in the
3200 // right order.
3201 SmallVector<MachineOperand, 2> MOps;
3202 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3203 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3204 MOps.push_back(MI.getOperand(i));
3205 MI.RemoveOperand(i);
3206 }
3207 // MOp2 needs to be added next.
3208 MI.addOperand(MOp2);
3209 // Now add the rest.
3210 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3211 if (i == MaxOp)
3212 MI.addOperand(MOp1);
3213 else {
3214 MI.addOperand(MOps.back());
3215 MOps.pop_back();
3216 }
3217 }
3218 }
3219}
3220
3221// Check if the 'MI' that has the index OpNoForForwarding
3222// meets the requirement described in the ImmInstrInfo.
3223bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3224 const ImmInstrInfo &III,
3225 unsigned OpNoForForwarding
3226 ) const {
3227 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3228 // would not work pre-RA, we can only do the check post RA.
3229 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3230 if (MRI.isSSA())
3231 return false;
3232
3233 // Cannot do the transform if MI isn't summing the operands.
3234 if (!III.IsSummingOperands)
3235 return false;
3236
3237 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3238 if (!III.ZeroIsSpecialOrig)
3239 return false;
3240
3241 // We cannot do the transform if the operand we are trying to replace
3242 // isn't the same as the operand the instruction allows.
3243 if (OpNoForForwarding != III.OpNoForForwarding)
3244 return false;
3245
3246 // Check if the instruction we are trying to transform really has
3247 // the special zero register as its operand.
3248 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3249 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3250 return false;
3251
3252 // This machine instruction is convertible if it is,
3253 // 1. summing the operands.
3254 // 2. one of the operands is special zero register.
3255 // 3. the operand we are trying to replace is allowed by the MI.
3256 return true;
3257}
3258
3259// Check if the DefMI is the add inst and set the ImmMO and RegMO
3260// accordingly.
3261bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3262 const ImmInstrInfo &III,
3263 MachineOperand *&ImmMO,
3264 MachineOperand *&RegMO) const {
3265 unsigned Opc = DefMI.getOpcode();
3266 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3267 return false;
3268
3269 assert(DefMI.getNumOperands() >= 3 &&((DefMI.getNumOperands() >= 3 && "Add inst must have at least three operands"
) ? static_cast<void> (0) : __assert_fail ("DefMI.getNumOperands() >= 3 && \"Add inst must have at least three operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 3270, __PRETTY_FUNCTION__))
3270 "Add inst must have at least three operands")((DefMI.getNumOperands() >= 3 && "Add inst must have at least three operands"
) ? static_cast<void> (0) : __assert_fail ("DefMI.getNumOperands() >= 3 && \"Add inst must have at least three operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 3270, __PRETTY_FUNCTION__))
;
3271 RegMO = &DefMI.getOperand(1);
3272 ImmMO = &DefMI.getOperand(2);
3273
3274 // This DefMI is elgible for forwarding if it is:
3275 // 1. add inst
3276 // 2. one of the operands is Imm/CPI/Global.
3277 return isAnImmediateOperand(*ImmMO);
3278}
3279
3280bool PPCInstrInfo::isRegElgibleForForwarding(
3281 const MachineOperand &RegMO, const MachineInstr &DefMI,
3282 const MachineInstr &MI, bool KillDefMI,
3283 bool &IsFwdFeederRegKilled) const {
3284 // x = addi y, imm
3285 // ...
3286 // z = lfdx 0, x -> z = lfd imm(y)
3287 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3288 // of "y" between the DEF of "x" and "z".
3289 // The query is only valid post RA.
3290 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3291 if (MRI.isSSA())
3292 return false;
3293
3294 unsigned Reg = RegMO.getReg();
3295
3296 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3297 MachineBasicBlock::const_reverse_iterator It = MI;
3298 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3299 It++;
3300 for (; It != E; ++It) {
3301 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3302 return false;
3303 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3304 IsFwdFeederRegKilled = true;
3305 // Made it to DefMI without encountering a clobber.
3306 if ((&*It) == &DefMI)
3307 break;
3308 }
3309 assert((&*It) == &DefMI && "DefMI is missing")(((&*It) == &DefMI && "DefMI is missing") ? static_cast
<void> (0) : __assert_fail ("(&*It) == &DefMI && \"DefMI is missing\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 3309, __PRETTY_FUNCTION__))
;
3310
3311 // If DefMI also defines the register to be forwarded, we can only forward it
3312 // if DefMI is being erased.
3313 if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3314 return KillDefMI;
3315
3316 return true;
3317}
3318
3319bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3320 const MachineInstr &DefMI,
3321 const ImmInstrInfo &III,
3322 int64_t &Imm) const {
3323 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate")((isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"
) ? static_cast<void> (0) : __assert_fail ("isAnImmediateOperand(ImmMO) && \"ImmMO is NOT an immediate\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 3323, __PRETTY_FUNCTION__))
;
3324 if (DefMI.getOpcode() == PPC::ADDItocL) {
3325 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3326 // However, we know that, it is 16-bit width, and has the alignment of 4.
3327 // Check if the instruction met the requirement.
3328 if (III.ImmMustBeMultipleOf > 4 ||
3329 III.TruncateImmTo || III.ImmWidth != 16)
3330 return false;
3331
3332 // Going from XForm to DForm loads means that the displacement needs to be
3333 // not just an immediate but also a multiple of 4, or 16 depending on the
3334 // load. A DForm load cannot be represented if it is a multiple of say 2.
3335 // XForm loads do not have this restriction.
3336 if (ImmMO.isGlobal() &&
3337 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3338 return false;
3339
3340 return true;
3341 }
3342
3343 if (ImmMO.isImm()) {
3344 // It is Imm, we need to check if the Imm fit the range.
3345 int64_t Immediate = ImmMO.getImm();
3346 // Sign-extend to 64-bits.
3347 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3348 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3349
3350 if (Imm % III.ImmMustBeMultipleOf)
3351 return false;
3352 if (III.TruncateImmTo)
3353 Imm &= ((1 << III.TruncateImmTo) - 1);
3354 if (III.SignedImm) {
3355 APInt ActualValue(64, Imm, true);
3356 if (!ActualValue.isSignedIntN(III.ImmWidth))
3357 return false;
3358 } else {
3359 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3360 if ((uint64_t)Imm > UnsignedMax)
3361 return false;
3362 }
3363 }
3364 else
3365 return false;
3366
3367 // This ImmMO is forwarded if it meets the requriement describle
3368 // in ImmInstrInfo
3369 return true;
3370}
3371
3372// If an X-Form instruction is fed by an add-immediate and one of its operands
3373// is the literal zero, attempt to forward the source of the add-immediate to
3374// the corresponding D-Form instruction with the displacement coming from
3375// the immediate being added.
3376bool PPCInstrInfo::transformToImmFormFedByAdd(
3377 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3378 MachineInstr &DefMI, bool KillDefMI) const {
3379 // RegMO ImmMO
3380 // | |
3381 // x = addi reg, imm <----- DefMI
3382 // y = op 0 , x <----- MI
3383 // |
3384 // OpNoForForwarding
3385 // Check if the MI meet the requirement described in the III.
3386 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3387 return false;
3388
3389 // Check if the DefMI meet the requirement
3390 // described in the III. If yes, set the ImmMO and RegMO accordingly.
3391 MachineOperand *ImmMO = nullptr;
3392 MachineOperand *RegMO = nullptr;
3393 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3394 return false;
3395 assert(ImmMO && RegMO && "Imm and Reg operand must have been set")((ImmMO && RegMO && "Imm and Reg operand must have been set"
) ? static_cast<void> (0) : __assert_fail ("ImmMO && RegMO && \"Imm and Reg operand must have been set\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 3395, __PRETTY_FUNCTION__))
;
3396
3397 // As we get the Imm operand now, we need to check if the ImmMO meet
3398 // the requirement described in the III. If yes set the Imm.
3399 int64_t Imm = 0;
3400 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3401 return false;
3402
3403 bool IsFwdFeederRegKilled = false;
3404 // Check if the RegMO can be forwarded to MI.
3405 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3406 IsFwdFeederRegKilled))
3407 return false;
3408
3409 // Get killed info in case fixup needed after transformation.
3410 unsigned ForwardKilledOperandReg = ~0U;
3411 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3412 bool PostRA = !MRI.isSSA();
3413 if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3414 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3415
3416 // We know that, the MI and DefMI both meet the pattern, and
3417 // the Imm also meet the requirement with the new Imm-form.
3418 // It is safe to do the transformation now.
3419 LLVM_DEBUG(dbgs() << "Replacing instruction:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { dbgs() << "Replacing instruction:\n"
; } } while (false)
;
3420 LLVM_DEBUG(MI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { MI.dump(); } } while (false)
;
3421 LLVM_DEBUG(dbgs() << "Fed by:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { dbgs() << "Fed by:\n"; } } while (
false)
;
3422 LLVM_DEBUG(DefMI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { DefMI.dump(); } } while (false)
;
3423
3424 // Update the base reg first.
3425 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3426 false, false,
3427 RegMO->isKill());
3428
3429 // Then, update the imm.
3430 if (ImmMO->isImm()) {
3431 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3432 // directly.
3433 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3434 }
3435 else {
3436 // Otherwise, it is Constant Pool Index(CPI) or Global,
3437 // which is relocation in fact. We need to replace the special zero
3438 // register with ImmMO.
3439 // Before that, we need to fixup the target flags for imm.
3440 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3441 if (DefMI.getOpcode() == PPC::ADDItocL)
3442 ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3443
3444 // MI didn't have the interface such as MI.setOperand(i) though
3445 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3446 // ImmMO, we need to remove ZERO operand and all the operands behind it,
3447 // and, add the ImmMO, then, move back all the operands behind ZERO.
3448 SmallVector<MachineOperand, 2> MOps;
3449 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3450 MOps.push_back(MI.getOperand(i));
3451 MI.RemoveOperand(i);
3452 }
3453
3454 // Remove the last MO in the list, which is ZERO operand in fact.
3455 MOps.pop_back();
3456 // Add the imm operand.
3457 MI.addOperand(*ImmMO);
3458 // Now add the rest back.
3459 for (auto &MO : MOps)
3460 MI.addOperand(MO);
3461 }
3462
3463 // Update the opcode.
3464 MI.setDesc(get(III.ImmOpcode));
3465
3466 // Fix up killed/dead flag after transformation.
3467 // Pattern 1:
3468 // x = ADD KilledFwdFeederReg, imm
3469 // n = opn KilledFwdFeederReg(killed), regn
3470 // y = XOP 0, x
3471 // Pattern 2:
3472 // x = ADD reg(killed), imm
3473 // y = XOP 0, x
3474 if (IsFwdFeederRegKilled || RegMO->isKill())
3475 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3476 // Pattern 3:
3477 // ForwardKilledOperandReg = ADD reg, imm
3478 // y = XOP 0, ForwardKilledOperandReg(killed)
3479 if (ForwardKilledOperandReg != ~0U)
3480 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3481
3482 LLVM_DEBUG(dbgs() << "With:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { dbgs() << "With:\n"; } } while (false
)
;
3483 LLVM_DEBUG(MI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("ppc-instr-info")) { MI.dump(); } } while (false)
;
3484
3485 return true;
3486}
3487
3488bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3489 const ImmInstrInfo &III,
3490 unsigned ConstantOpNo,
3491 MachineInstr &DefMI,
3492 int64_t Imm) const {
3493 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3494 bool PostRA = !MRI.isSSA();
3495 // Exit early if we can't convert this.
3496 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3497 return false;
3498 if (Imm % III.ImmMustBeMultipleOf)
3499 return false;
3500 if (III.TruncateImmTo)
3501 Imm &= ((1 << III.TruncateImmTo) - 1);
3502 if (III.SignedImm) {
3503 APInt ActualValue(64, Imm, true);
3504 if (!ActualValue.isSignedIntN(III.ImmWidth))
3505 return false;
3506 } else {
3507 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3508 if ((uint64_t)Imm > UnsignedMax)
3509 return false;
3510 }
3511
3512 // If we're post-RA, the instructions don't agree on whether register zero is
3513 // special, we can transform this as long as the register operand that will
3514 // end up in the location where zero is special isn't R0.
3515 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3516 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3517 III.ZeroIsSpecialNew + 1;
3518 unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3519 unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3520 // If R0 is in the operand where zero is special for the new instruction,
3521 // it is unsafe to transform if the constant operand isn't that operand.
3522 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3523 ConstantOpNo != III.ZeroIsSpecialNew)
3524 return false;
3525 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3526 ConstantOpNo != PosForOrigZero)
3527 return false;
3528 }
3529
3530 // Get killed info in case fixup needed after transformation.
3531 unsigned ForwardKilledOperandReg = ~0U;
3532 if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3533 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3534
3535 unsigned Opc = MI.getOpcode();
3536 bool SpecialShift32 =
3537 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3538 bool SpecialShift64 =
3539 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3540 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3541 Opc == PPC::SLDo || Opc == PPC::SRDo;
3542 bool RightShift =
3543 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3544
3545 MI.setDesc(get(III.ImmOpcode));
3546 if (ConstantOpNo == III.OpNoForForwarding) {
3547 // Converting shifts to immediate form is a bit tricky since they may do
3548 // one of three things:
3549 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3550 // 2. If the shift amount is zero, the result is unchanged (save for maybe
3551 // setting CR0)
3552 // 3. If the shift amount is in [1, OpSize), it's just a shift
3553 if (SpecialShift32 || SpecialShift64) {
3554 LoadImmediateInfo LII;
3555 LII.Imm = 0;
3556 LII.SetCR = SetCR;
3557 LII.Is64Bit = SpecialShift64;
3558 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3559 if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3560 replaceInstrWithLI(MI, LII);
3561 // Shifts by zero don't change the value. If we don't need to set CR0,
3562 // just convert this to a COPY. Can't do this post-RA since we've already
3563 // cleaned up the copies.
3564 else if (!SetCR && ShAmt == 0 && !PostRA) {
3565 MI.RemoveOperand(2);
3566 MI.setDesc(get(PPC::COPY));
3567 } else {
3568 // The 32 bit and 64 bit instructions are quite different.
3569 if (SpecialShift32) {
3570 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3571 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3572 uint64_t MB = RightShift ? ShAmt : 0;
3573 uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3574 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3575 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3576 .addImm(ME);
3577 } else {
3578 // Left shifts use (N, 63-N), right shifts use (64-N, N).
3579 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3580 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3581 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3582 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3583 }
3584 }
3585 } else
3586 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3587 }
3588 // Convert commutative instructions (switch the operands and convert the
3589 // desired one to an immediate.
3590 else if (III.IsCommutative) {
3591 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3592 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3593 } else
3594 llvm_unreachable("Should have exited early!")::llvm::llvm_unreachable_internal("Should have exited early!"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 3594)
;
3595
3596 // For instructions for which the constant register replaces a different
3597 // operand than where the immediate goes, we need to swap them.
3598 if (III.OpNoForForwarding != III.ImmOpNo)
3599 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3600
3601 // If the special R0/X0 register index are different for original instruction
3602 // and new instruction, we need to fix up the register class in new
3603 // instruction.
3604 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3605 if (III.ZeroIsSpecialNew) {
3606 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3607 // need to fix up register class.
3608 unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3609 if (TargetRegisterInfo::isVirtualRegister(RegToModify)) {
3610 const TargetRegisterClass *NewRC =
3611 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3612 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3613 MRI.setRegClass(RegToModify, NewRC);
3614 }
3615 }
3616 }
3617
3618 // Fix up killed/dead flag after transformation.
3619 // Pattern:
3620 // ForwardKilledOperandReg = LI imm
3621 // y = XOP reg, ForwardKilledOperandReg(killed)
3622 if (ForwardKilledOperandReg != ~0U)
3623 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3624 return true;
3625}
3626
3627const TargetRegisterClass *
3628PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3629 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3630 return &PPC::VSRCRegClass;
3631 return RC;
3632}
3633
3634int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3635 return PPC::getRecordFormOpcode(Opcode);
3636}
3637
3638// This function returns true if the machine instruction
3639// always outputs a value by sign-extending a 32 bit value,
3640// i.e. 0 to 31-th bits are same as 32-th bit.
3641static bool isSignExtendingOp(const MachineInstr &MI) {
3642 int Opcode = MI.getOpcode();
3643 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3644 Opcode == PPC::LIS || Opcode == PPC::LIS8 ||
3645 Opcode == PPC::SRAW || Opcode == PPC::SRAWo ||
3646 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo ||
3647 Opcode == PPC::LWA || Opcode == PPC::LWAX ||
3648 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3649 Opcode == PPC::LHA || Opcode == PPC::LHAX ||
3650 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 ||
3651 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3652 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3653 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3654 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3655 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3656 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3657 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3658 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3659 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo ||
3660 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo ||
3661 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 ||
3662 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo ||
3663 Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
3664 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3665 Opcode == PPC::EXTSB8_32_64)
3666 return true;
3667
3668 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3669 return true;
3670
3671 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3672 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) &&
3673 MI.getOperand(3).getImm() > 0 &&
3674 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3675 return true;
3676
3677 return false;
3678}
3679
3680// This function returns true if the machine instruction
3681// always outputs zeros in higher 32 bits.
3682static bool isZeroExtendingOp(const MachineInstr &MI) {
3683 int Opcode = MI.getOpcode();
3684 // The 16-bit immediate is sign-extended in li/lis.
3685 // If the most significant bit is zero, all higher bits are zero.
3686 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3687 Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3688 int64_t Imm = MI.getOperand(1).getImm();
3689 if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3690 return true;
3691 }
3692
3693 // We have some variations of rotate-and-mask instructions
3694 // that clear higher 32-bits.
3695 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3696 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo ||
3697 Opcode == PPC::RLDICL_32_64) &&
3698 MI.getOperand(3).getImm() >= 32)
3699 return true;
3700
3701 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3702 MI.getOperand(3).getImm() >= 32 &&
3703 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3704 return true;
3705
3706 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3707 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
3708 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3709 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3710 return true;
3711
3712 // There are other instructions that clear higher 32-bits.
3713 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
3714 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
3715 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3716 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
3717 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo ||
3718 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3719 Opcode == PPC::SLW || Opcode == PPC::SLWo ||
3720 Opcode == PPC::SRW || Opcode == PPC::SRWo ||
3721 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 ||
3722 Opcode == PPC::SLWI || Opcode == PPC::SLWIo ||
3723 Opcode == PPC::SRWI || Opcode == PPC::SRWIo ||
3724 Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
3725 Opcode == PPC::LWZU || Opcode == PPC::LWZUX ||
3726 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX ||
3727 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3728 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3729 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3730 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3731 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 ||
3732 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 ||
3733 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
3734 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3735 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3736 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3737 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3738 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo ||
3739 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo ||
3740 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo ||
3741 Opcode == PPC::MFVSRWZ)
3742 return true;
3743
3744 return false;
3745}
3746
3747// This function returns true if the input MachineInstr is a TOC save
3748// instruction.
3749bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3750 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3751 return false;
3752 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3753 unsigned StackOffset = MI.getOperand(1).getImm();
3754 unsigned StackReg = MI.getOperand(2).getReg();
3755 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3756 return true;
3757
3758 return false;
3759}
3760
3761// We limit the max depth to track incoming values of PHIs or binary ops
3762// (e.g. AND) to avoid excessive cost.
3763const unsigned MAX_DEPTH = 1;
3764
3765bool
3766PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3767 const unsigned Depth) const {
3768 const MachineFunction *MF = MI.getParent()->getParent();
3769 const MachineRegisterInfo *MRI = &MF->getRegInfo();
3770
3771 // If we know this instruction returns sign- or zero-extended result,
3772 // return true.
3773 if (SignExt ? isSignExtendingOp(MI):
3774 isZeroExtendingOp(MI))
3775 return true;
3776
3777 switch (MI.getOpcode()) {
3778 case PPC::COPY: {
3779 unsigned SrcReg = MI.getOperand(1).getReg();
3780
3781 // In both ELFv1 and v2 ABI, method parameters and the return value
3782 // are sign- or zero-extended.
3783 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3784 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3785 // We check the ZExt/SExt flags for a method parameter.
3786 if (MI.getParent()->getBasicBlock() ==
3787 &MF->getFunction().getEntryBlock()) {
3788 unsigned VReg = MI.getOperand(0).getReg();
3789 if (MF->getRegInfo().isLiveIn(VReg))
3790 return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3791 FuncInfo->isLiveInZExt(VReg);
3792 }
3793
3794 // For a method return value, we check the ZExt/SExt flags in attribute.
3795 // We assume the following code sequence for method call.
3796 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3797 // BL8_NOP @func,...
3798 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3799 // %5 = COPY %x3; G8RC:%5
3800 if (SrcReg == PPC::X3) {
3801 const MachineBasicBlock *MBB = MI.getParent();
3802 MachineBasicBlock::const_instr_iterator II =
3803 MachineBasicBlock::const_instr_iterator(&MI);
3804 if (II != MBB->instr_begin() &&
3805 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3806 const MachineInstr &CallMI = *(--II);
3807 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3808 const Function *CalleeFn =
3809 dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3810 if (!CalleeFn)
3811 return false;
3812 const IntegerType *IntTy =
3813 dyn_cast<IntegerType>(CalleeFn->getReturnType());
3814 const AttributeSet &Attrs =
3815 CalleeFn->getAttributes().getRetAttributes();
3816 if (IntTy && IntTy->getBitWidth() <= 32)
3817 return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3818 Attribute::ZExt);
3819 }
3820 }
3821 }
3822 }
3823
3824 // If this is a copy from another register, we recursively check source.
3825 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3826 return false;
3827 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3828 if (SrcMI != NULL__null)
3829 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3830
3831 return false;
3832 }
3833
3834 case PPC::ANDIo:
3835 case PPC::ANDISo:
3836 case PPC::ORI:
3837 case PPC::ORIS:
3838 case PPC::XORI:
3839 case PPC::XORIS:
3840 case PPC::ANDIo8:
3841 case PPC::ANDISo8:
3842 case PPC::ORI8:
3843 case PPC::ORIS8:
3844 case PPC::XORI8:
3845 case PPC::XORIS8: {
3846 // logical operation with 16-bit immediate does not change the upper bits.
3847 // So, we track the operand register as we do for register copy.
3848 unsigned SrcReg = MI.getOperand(1).getReg();
3849 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3850 return false;
3851 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3852 if (SrcMI != NULL__null)
3853 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3854
3855 return false;
3856 }
3857
3858 // If all incoming values are sign-/zero-extended,
3859 // the output of OR, ISEL or PHI is also sign-/zero-extended.
3860 case PPC::OR:
3861 case PPC::OR8:
3862 case PPC::ISEL:
3863 case PPC::PHI: {
3864 if (Depth >= MAX_DEPTH)
3865 return false;
3866
3867 // The input registers for PHI are operand 1, 3, ...
3868 // The input registers for others are operand 1 and 2.
3869 unsigned E = 3, D = 1;
3870 if (MI.getOpcode() == PPC::PHI) {
3871 E = MI.getNumOperands();
3872 D = 2;
3873 }
3874
3875 for (unsigned I = 1; I != E; I += D) {
3876 if (MI.getOperand(I).isReg()) {
3877 unsigned SrcReg = MI.getOperand(I).getReg();
3878 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3879 return false;
3880 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3881 if (SrcMI == NULL__null || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3882 return false;
3883 }
3884 else
3885 return false;
3886 }
3887 return true;
3888 }
3889
3890 // If at least one of the incoming values of an AND is zero extended
3891 // then the output is also zero-extended. If both of the incoming values
3892 // are sign-extended then the output is also sign extended.
3893 case PPC::AND:
3894 case PPC::AND8: {
3895 if (Depth >= MAX_DEPTH)
3896 return false;
3897
3898 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg())((MI.getOperand(1).isReg() && MI.getOperand(2).isReg(
)) ? static_cast<void> (0) : __assert_fail ("MI.getOperand(1).isReg() && MI.getOperand(2).isReg()"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Target/PowerPC/PPCInstrInfo.cpp"
, 3898, __PRETTY_FUNCTION__))
;
3899
3900 unsigned SrcReg1 = MI.getOperand(1).getReg();
3901 unsigned SrcReg2 = MI.getOperand(2).getReg();
3902
3903 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
3904 !TargetRegisterInfo::isVirtualRegister(SrcReg2))
3905 return false;
3906
3907 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3908 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3909 if (!MISrc1 || !MISrc2)
3910 return false;
3911
3912 if(SignExt)
3913 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3914 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3915 else
3916 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3917 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3918 }
3919
3920 default:
3921 break;
3922 }
3923 return false;
3924}