Bug Summary

File:clang/lib/Parse/ParseExprCXX.cpp
Warning:line 2023, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ParseExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Parse -I /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse -I /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/build-llvm -ferror-limit 19 -fvisibility-inlines-hidden -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-26-234817-15343-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp

/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp

1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expression parsing implementation for C++.
10//
11//===----------------------------------------------------------------------===//
12#include "clang/AST/ASTContext.h"
13#include "clang/AST/Decl.h"
14#include "clang/AST/DeclTemplate.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/Basic/PrettyStackTrace.h"
17#include "clang/Lex/LiteralSupport.h"
18#include "clang/Parse/ParseDiagnostic.h"
19#include "clang/Parse/Parser.h"
20#include "clang/Parse/RAIIObjectsForParser.h"
21#include "clang/Sema/DeclSpec.h"
22#include "clang/Sema/ParsedTemplate.h"
23#include "clang/Sema/Scope.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <numeric>
26
27using namespace clang;
28
29static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
30 switch (Kind) {
31 // template name
32 case tok::unknown: return 0;
33 // casts
34 case tok::kw_addrspace_cast: return 1;
35 case tok::kw_const_cast: return 2;
36 case tok::kw_dynamic_cast: return 3;
37 case tok::kw_reinterpret_cast: return 4;
38 case tok::kw_static_cast: return 5;
39 default:
40 llvm_unreachable("Unknown type for digraph error message.")::llvm::llvm_unreachable_internal("Unknown type for digraph error message."
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 40)
;
41 }
42}
43
44// Are the two tokens adjacent in the same source file?
45bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
46 SourceManager &SM = PP.getSourceManager();
47 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
48 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
49 return FirstEnd == SM.getSpellingLoc(Second.getLocation());
50}
51
52// Suggest fixit for "<::" after a cast.
53static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
54 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
55 // Pull '<:' and ':' off token stream.
56 if (!AtDigraph)
57 PP.Lex(DigraphToken);
58 PP.Lex(ColonToken);
59
60 SourceRange Range;
61 Range.setBegin(DigraphToken.getLocation());
62 Range.setEnd(ColonToken.getLocation());
63 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
64 << SelectDigraphErrorMessage(Kind)
65 << FixItHint::CreateReplacement(Range, "< ::");
66
67 // Update token information to reflect their change in token type.
68 ColonToken.setKind(tok::coloncolon);
69 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
70 ColonToken.setLength(2);
71 DigraphToken.setKind(tok::less);
72 DigraphToken.setLength(1);
73
74 // Push new tokens back to token stream.
75 PP.EnterToken(ColonToken, /*IsReinject*/ true);
76 if (!AtDigraph)
77 PP.EnterToken(DigraphToken, /*IsReinject*/ true);
78}
79
80// Check for '<::' which should be '< ::' instead of '[:' when following
81// a template name.
82void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
83 bool EnteringContext,
84 IdentifierInfo &II, CXXScopeSpec &SS) {
85 if (!Next.is(tok::l_square) || Next.getLength() != 2)
86 return;
87
88 Token SecondToken = GetLookAheadToken(2);
89 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
90 return;
91
92 TemplateTy Template;
93 UnqualifiedId TemplateName;
94 TemplateName.setIdentifier(&II, Tok.getLocation());
95 bool MemberOfUnknownSpecialization;
96 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
97 TemplateName, ObjectType, EnteringContext,
98 Template, MemberOfUnknownSpecialization))
99 return;
100
101 FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
102 /*AtDigraph*/false);
103}
104
105/// Parse global scope or nested-name-specifier if present.
106///
107/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
108/// may be preceded by '::'). Note that this routine will not parse ::new or
109/// ::delete; it will just leave them in the token stream.
110///
111/// '::'[opt] nested-name-specifier
112/// '::'
113///
114/// nested-name-specifier:
115/// type-name '::'
116/// namespace-name '::'
117/// nested-name-specifier identifier '::'
118/// nested-name-specifier 'template'[opt] simple-template-id '::'
119///
120///
121/// \param SS the scope specifier that will be set to the parsed
122/// nested-name-specifier (or empty)
123///
124/// \param ObjectType if this nested-name-specifier is being parsed following
125/// the "." or "->" of a member access expression, this parameter provides the
126/// type of the object whose members are being accessed.
127///
128/// \param ObjectHadErrors if this unqualified-id occurs within a member access
129/// expression, indicates whether the original subexpressions had any errors.
130/// When true, diagnostics for missing 'template' keyword will be supressed.
131///
132/// \param EnteringContext whether we will be entering into the context of
133/// the nested-name-specifier after parsing it.
134///
135/// \param MayBePseudoDestructor When non-NULL, points to a flag that
136/// indicates whether this nested-name-specifier may be part of a
137/// pseudo-destructor name. In this case, the flag will be set false
138/// if we don't actually end up parsing a destructor name. Moreover,
139/// if we do end up determining that we are parsing a destructor name,
140/// the last component of the nested-name-specifier is not parsed as
141/// part of the scope specifier.
142///
143/// \param IsTypename If \c true, this nested-name-specifier is known to be
144/// part of a type name. This is used to improve error recovery.
145///
146/// \param LastII When non-NULL, points to an IdentifierInfo* that will be
147/// filled in with the leading identifier in the last component of the
148/// nested-name-specifier, if any.
149///
150/// \param OnlyNamespace If true, only considers namespaces in lookup.
151///
152///
153/// \returns true if there was an error parsing a scope specifier
154bool Parser::ParseOptionalCXXScopeSpecifier(
155 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
156 bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
157 IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
158 assert(getLangOpts().CPlusPlus &&(static_cast <bool> (getLangOpts().CPlusPlus &&
"Call sites of this function should be guarded by checking for C++"
) ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Call sites of this function should be guarded by checking for C++\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 159, __extension__ __PRETTY_FUNCTION__))
159 "Call sites of this function should be guarded by checking for C++")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Call sites of this function should be guarded by checking for C++"
) ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Call sites of this function should be guarded by checking for C++\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 159, __extension__ __PRETTY_FUNCTION__))
;
160
161 if (Tok.is(tok::annot_cxxscope)) {
162 assert(!LastII && "want last identifier but have already annotated scope")(static_cast <bool> (!LastII && "want last identifier but have already annotated scope"
) ? void (0) : __assert_fail ("!LastII && \"want last identifier but have already annotated scope\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 162, __extension__ __PRETTY_FUNCTION__))
;
163 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope")(static_cast <bool> (!MayBePseudoDestructor && "unexpected annot_cxxscope"
) ? void (0) : __assert_fail ("!MayBePseudoDestructor && \"unexpected annot_cxxscope\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 163, __extension__ __PRETTY_FUNCTION__))
;
164 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
165 Tok.getAnnotationRange(),
166 SS);
167 ConsumeAnnotationToken();
168 return false;
169 }
170
171 // Has to happen before any "return false"s in this function.
172 bool CheckForDestructor = false;
173 if (MayBePseudoDestructor && *MayBePseudoDestructor) {
174 CheckForDestructor = true;
175 *MayBePseudoDestructor = false;
176 }
177
178 if (LastII)
179 *LastII = nullptr;
180
181 bool HasScopeSpecifier = false;
182
183 if (Tok.is(tok::coloncolon)) {
184 // ::new and ::delete aren't nested-name-specifiers.
185 tok::TokenKind NextKind = NextToken().getKind();
186 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
187 return false;
188
189 if (NextKind == tok::l_brace) {
190 // It is invalid to have :: {, consume the scope qualifier and pretend
191 // like we never saw it.
192 Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
193 } else {
194 // '::' - Global scope qualifier.
195 if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
196 return true;
197
198 HasScopeSpecifier = true;
199 }
200 }
201
202 if (Tok.is(tok::kw___super)) {
203 SourceLocation SuperLoc = ConsumeToken();
204 if (!Tok.is(tok::coloncolon)) {
205 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
206 return true;
207 }
208
209 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
210 }
211
212 if (!HasScopeSpecifier &&
213 Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
214 DeclSpec DS(AttrFactory);
215 SourceLocation DeclLoc = Tok.getLocation();
216 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
217
218 SourceLocation CCLoc;
219 // Work around a standard defect: 'decltype(auto)::' is not a
220 // nested-name-specifier.
221 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
222 !TryConsumeToken(tok::coloncolon, CCLoc)) {
223 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
224 return false;
225 }
226
227 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
228 SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
229
230 HasScopeSpecifier = true;
231 }
232
233 // Preferred type might change when parsing qualifiers, we need the original.
234 auto SavedType = PreferredType;
235 while (true) {
236 if (HasScopeSpecifier) {
237 if (Tok.is(tok::code_completion)) {
238 cutOffParsing();
239 // Code completion for a nested-name-specifier, where the code
240 // completion token follows the '::'.
241 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
242 InUsingDeclaration, ObjectType.get(),
243 SavedType.get(SS.getBeginLoc()));
244 // Include code completion token into the range of the scope otherwise
245 // when we try to annotate the scope tokens the dangling code completion
246 // token will cause assertion in
247 // Preprocessor::AnnotatePreviousCachedTokens.
248 SS.setEndLoc(Tok.getLocation());
249 return true;
250 }
251
252 // C++ [basic.lookup.classref]p5:
253 // If the qualified-id has the form
254 //
255 // ::class-name-or-namespace-name::...
256 //
257 // the class-name-or-namespace-name is looked up in global scope as a
258 // class-name or namespace-name.
259 //
260 // To implement this, we clear out the object type as soon as we've
261 // seen a leading '::' or part of a nested-name-specifier.
262 ObjectType = nullptr;
263 }
264
265 // nested-name-specifier:
266 // nested-name-specifier 'template'[opt] simple-template-id '::'
267
268 // Parse the optional 'template' keyword, then make sure we have
269 // 'identifier <' after it.
270 if (Tok.is(tok::kw_template)) {
271 // If we don't have a scope specifier or an object type, this isn't a
272 // nested-name-specifier, since they aren't allowed to start with
273 // 'template'.
274 if (!HasScopeSpecifier && !ObjectType)
275 break;
276
277 TentativeParsingAction TPA(*this);
278 SourceLocation TemplateKWLoc = ConsumeToken();
279
280 UnqualifiedId TemplateName;
281 if (Tok.is(tok::identifier)) {
282 // Consume the identifier.
283 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
284 ConsumeToken();
285 } else if (Tok.is(tok::kw_operator)) {
286 // We don't need to actually parse the unqualified-id in this case,
287 // because a simple-template-id cannot start with 'operator', but
288 // go ahead and parse it anyway for consistency with the case where
289 // we already annotated the template-id.
290 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
291 TemplateName)) {
292 TPA.Commit();
293 break;
294 }
295
296 if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
297 TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
298 Diag(TemplateName.getSourceRange().getBegin(),
299 diag::err_id_after_template_in_nested_name_spec)
300 << TemplateName.getSourceRange();
301 TPA.Commit();
302 break;
303 }
304 } else {
305 TPA.Revert();
306 break;
307 }
308
309 // If the next token is not '<', we have a qualified-id that refers
310 // to a template name, such as T::template apply, but is not a
311 // template-id.
312 if (Tok.isNot(tok::less)) {
313 TPA.Revert();
314 break;
315 }
316
317 // Commit to parsing the template-id.
318 TPA.Commit();
319 TemplateTy Template;
320 TemplateNameKind TNK = Actions.ActOnTemplateName(
321 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
322 EnteringContext, Template, /*AllowInjectedClassName*/ true);
323 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
324 TemplateName, false))
325 return true;
326
327 continue;
328 }
329
330 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
331 // We have
332 //
333 // template-id '::'
334 //
335 // So we need to check whether the template-id is a simple-template-id of
336 // the right kind (it should name a type or be dependent), and then
337 // convert it into a type within the nested-name-specifier.
338 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
339 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
340 *MayBePseudoDestructor = true;
341 return false;
342 }
343
344 if (LastII)
345 *LastII = TemplateId->Name;
346
347 // Consume the template-id token.
348 ConsumeAnnotationToken();
349
350 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!")(static_cast <bool> (Tok.is(tok::coloncolon) &&
"NextToken() not working properly!") ? void (0) : __assert_fail
("Tok.is(tok::coloncolon) && \"NextToken() not working properly!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 350, __extension__ __PRETTY_FUNCTION__))
;
351 SourceLocation CCLoc = ConsumeToken();
352
353 HasScopeSpecifier = true;
354
355 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
356 TemplateId->NumArgs);
357
358 if (TemplateId->isInvalid() ||
359 Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
360 SS,
361 TemplateId->TemplateKWLoc,
362 TemplateId->Template,
363 TemplateId->TemplateNameLoc,
364 TemplateId->LAngleLoc,
365 TemplateArgsPtr,
366 TemplateId->RAngleLoc,
367 CCLoc,
368 EnteringContext)) {
369 SourceLocation StartLoc
370 = SS.getBeginLoc().isValid()? SS.getBeginLoc()
371 : TemplateId->TemplateNameLoc;
372 SS.SetInvalid(SourceRange(StartLoc, CCLoc));
373 }
374
375 continue;
376 }
377
378 // The rest of the nested-name-specifier possibilities start with
379 // tok::identifier.
380 if (Tok.isNot(tok::identifier))
381 break;
382
383 IdentifierInfo &II = *Tok.getIdentifierInfo();
384
385 // nested-name-specifier:
386 // type-name '::'
387 // namespace-name '::'
388 // nested-name-specifier identifier '::'
389 Token Next = NextToken();
390 Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
391 ObjectType);
392
393 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
394 // and emit a fixit hint for it.
395 if (Next.is(tok::colon) && !ColonIsSacred) {
396 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
397 EnteringContext) &&
398 // If the token after the colon isn't an identifier, it's still an
399 // error, but they probably meant something else strange so don't
400 // recover like this.
401 PP.LookAhead(1).is(tok::identifier)) {
402 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
403 << FixItHint::CreateReplacement(Next.getLocation(), "::");
404 // Recover as if the user wrote '::'.
405 Next.setKind(tok::coloncolon);
406 }
407 }
408
409 if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
410 // It is invalid to have :: {, consume the scope qualifier and pretend
411 // like we never saw it.
412 Token Identifier = Tok; // Stash away the identifier.
413 ConsumeToken(); // Eat the identifier, current token is now '::'.
414 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
415 << tok::identifier;
416 UnconsumeToken(Identifier); // Stick the identifier back.
417 Next = NextToken(); // Point Next at the '{' token.
418 }
419
420 if (Next.is(tok::coloncolon)) {
421 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
422 *MayBePseudoDestructor = true;
423 return false;
424 }
425
426 if (ColonIsSacred) {
427 const Token &Next2 = GetLookAheadToken(2);
428 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
429 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
430 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
431 << Next2.getName()
432 << FixItHint::CreateReplacement(Next.getLocation(), ":");
433 Token ColonColon;
434 PP.Lex(ColonColon);
435 ColonColon.setKind(tok::colon);
436 PP.EnterToken(ColonColon, /*IsReinject*/ true);
437 break;
438 }
439 }
440
441 if (LastII)
442 *LastII = &II;
443
444 // We have an identifier followed by a '::'. Lookup this name
445 // as the name in a nested-name-specifier.
446 Token Identifier = Tok;
447 SourceLocation IdLoc = ConsumeToken();
448 assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&(static_cast <bool> (Tok.isOneOf(tok::coloncolon, tok::
colon) && "NextToken() not working properly!") ? void
(0) : __assert_fail ("Tok.isOneOf(tok::coloncolon, tok::colon) && \"NextToken() not working properly!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 449, __extension__ __PRETTY_FUNCTION__))
449 "NextToken() not working properly!")(static_cast <bool> (Tok.isOneOf(tok::coloncolon, tok::
colon) && "NextToken() not working properly!") ? void
(0) : __assert_fail ("Tok.isOneOf(tok::coloncolon, tok::colon) && \"NextToken() not working properly!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 449, __extension__ __PRETTY_FUNCTION__))
;
450 Token ColonColon = Tok;
451 SourceLocation CCLoc = ConsumeToken();
452
453 bool IsCorrectedToColon = false;
454 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
455 if (Actions.ActOnCXXNestedNameSpecifier(
456 getCurScope(), IdInfo, EnteringContext, SS, false,
457 CorrectionFlagPtr, OnlyNamespace)) {
458 // Identifier is not recognized as a nested name, but we can have
459 // mistyped '::' instead of ':'.
460 if (CorrectionFlagPtr && IsCorrectedToColon) {
461 ColonColon.setKind(tok::colon);
462 PP.EnterToken(Tok, /*IsReinject*/ true);
463 PP.EnterToken(ColonColon, /*IsReinject*/ true);
464 Tok = Identifier;
465 break;
466 }
467 SS.SetInvalid(SourceRange(IdLoc, CCLoc));
468 }
469 HasScopeSpecifier = true;
470 continue;
471 }
472
473 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
474
475 // nested-name-specifier:
476 // type-name '<'
477 if (Next.is(tok::less)) {
478
479 TemplateTy Template;
480 UnqualifiedId TemplateName;
481 TemplateName.setIdentifier(&II, Tok.getLocation());
482 bool MemberOfUnknownSpecialization;
483 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
484 /*hasTemplateKeyword=*/false,
485 TemplateName,
486 ObjectType,
487 EnteringContext,
488 Template,
489 MemberOfUnknownSpecialization)) {
490 // If lookup didn't find anything, we treat the name as a template-name
491 // anyway. C++20 requires this, and in prior language modes it improves
492 // error recovery. But before we commit to this, check that we actually
493 // have something that looks like a template-argument-list next.
494 if (!IsTypename && TNK == TNK_Undeclared_template &&
495 isTemplateArgumentList(1) == TPResult::False)
496 break;
497
498 // We have found a template name, so annotate this token
499 // with a template-id annotation. We do not permit the
500 // template-id to be translated into a type annotation,
501 // because some clients (e.g., the parsing of class template
502 // specializations) still want to see the original template-id
503 // token, and it might not be a type at all (e.g. a concept name in a
504 // type-constraint).
505 ConsumeToken();
506 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
507 TemplateName, false))
508 return true;
509 continue;
510 }
511
512 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
513 (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
514 // If we had errors before, ObjectType can be dependent even without any
515 // templates. Do not report missing template keyword in that case.
516 if (!ObjectHadErrors) {
517 // We have something like t::getAs<T>, where getAs is a
518 // member of an unknown specialization. However, this will only
519 // parse correctly as a template, so suggest the keyword 'template'
520 // before 'getAs' and treat this as a dependent template name.
521 unsigned DiagID = diag::err_missing_dependent_template_keyword;
522 if (getLangOpts().MicrosoftExt)
523 DiagID = diag::warn_missing_dependent_template_keyword;
524
525 Diag(Tok.getLocation(), DiagID)
526 << II.getName()
527 << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
528 }
529
530 SourceLocation TemplateNameLoc = ConsumeToken();
531
532 TemplateNameKind TNK = Actions.ActOnTemplateName(
533 getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
534 EnteringContext, Template, /*AllowInjectedClassName*/ true);
535 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
536 TemplateName, false))
537 return true;
538
539 continue;
540 }
541 }
542
543 // We don't have any tokens that form the beginning of a
544 // nested-name-specifier, so we're done.
545 break;
546 }
547
548 // Even if we didn't see any pieces of a nested-name-specifier, we
549 // still check whether there is a tilde in this position, which
550 // indicates a potential pseudo-destructor.
551 if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
552 *MayBePseudoDestructor = true;
553
554 return false;
555}
556
557ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
558 bool isAddressOfOperand,
559 Token &Replacement) {
560 ExprResult E;
561
562 // We may have already annotated this id-expression.
563 switch (Tok.getKind()) {
564 case tok::annot_non_type: {
565 NamedDecl *ND = getNonTypeAnnotation(Tok);
566 SourceLocation Loc = ConsumeAnnotationToken();
567 E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
568 break;
569 }
570
571 case tok::annot_non_type_dependent: {
572 IdentifierInfo *II = getIdentifierAnnotation(Tok);
573 SourceLocation Loc = ConsumeAnnotationToken();
574
575 // This is only the direct operand of an & operator if it is not
576 // followed by a postfix-expression suffix.
577 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
578 isAddressOfOperand = false;
579
580 E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
581 isAddressOfOperand);
582 break;
583 }
584
585 case tok::annot_non_type_undeclared: {
586 assert(SS.isEmpty() &&(static_cast <bool> (SS.isEmpty() && "undeclared non-type annotation should be unqualified"
) ? void (0) : __assert_fail ("SS.isEmpty() && \"undeclared non-type annotation should be unqualified\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 587, __extension__ __PRETTY_FUNCTION__))
587 "undeclared non-type annotation should be unqualified")(static_cast <bool> (SS.isEmpty() && "undeclared non-type annotation should be unqualified"
) ? void (0) : __assert_fail ("SS.isEmpty() && \"undeclared non-type annotation should be unqualified\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 587, __extension__ __PRETTY_FUNCTION__))
;
588 IdentifierInfo *II = getIdentifierAnnotation(Tok);
589 SourceLocation Loc = ConsumeAnnotationToken();
590 E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
591 break;
592 }
593
594 default:
595 SourceLocation TemplateKWLoc;
596 UnqualifiedId Name;
597 if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
598 /*ObjectHadErrors=*/false,
599 /*EnteringContext=*/false,
600 /*AllowDestructorName=*/false,
601 /*AllowConstructorName=*/false,
602 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
603 return ExprError();
604
605 // This is only the direct operand of an & operator if it is not
606 // followed by a postfix-expression suffix.
607 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
608 isAddressOfOperand = false;
609
610 E = Actions.ActOnIdExpression(
611 getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
612 isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
613 &Replacement);
614 break;
615 }
616
617 if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
618 checkPotentialAngleBracket(E);
619 return E;
620}
621
622/// ParseCXXIdExpression - Handle id-expression.
623///
624/// id-expression:
625/// unqualified-id
626/// qualified-id
627///
628/// qualified-id:
629/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
630/// '::' identifier
631/// '::' operator-function-id
632/// '::' template-id
633///
634/// NOTE: The standard specifies that, for qualified-id, the parser does not
635/// expect:
636///
637/// '::' conversion-function-id
638/// '::' '~' class-name
639///
640/// This may cause a slight inconsistency on diagnostics:
641///
642/// class C {};
643/// namespace A {}
644/// void f() {
645/// :: A :: ~ C(); // Some Sema error about using destructor with a
646/// // namespace.
647/// :: ~ C(); // Some Parser error like 'unexpected ~'.
648/// }
649///
650/// We simplify the parser a bit and make it work like:
651///
652/// qualified-id:
653/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
654/// '::' unqualified-id
655///
656/// That way Sema can handle and report similar errors for namespaces and the
657/// global scope.
658///
659/// The isAddressOfOperand parameter indicates that this id-expression is a
660/// direct operand of the address-of operator. This is, besides member contexts,
661/// the only place where a qualified-id naming a non-static class member may
662/// appear.
663///
664ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
665 // qualified-id:
666 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
667 // '::' unqualified-id
668 //
669 CXXScopeSpec SS;
670 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
671 /*ObjectHadErrors=*/false,
672 /*EnteringContext=*/false);
673
674 Token Replacement;
675 ExprResult Result =
676 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
677 if (Result.isUnset()) {
678 // If the ExprResult is valid but null, then typo correction suggested a
679 // keyword replacement that needs to be reparsed.
680 UnconsumeToken(Replacement);
681 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
682 }
683 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "(static_cast <bool> (!Result.isUnset() && "Typo correction suggested a keyword replacement "
"for a previous keyword suggestion") ? void (0) : __assert_fail
("!Result.isUnset() && \"Typo correction suggested a keyword replacement \" \"for a previous keyword suggestion\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 684, __extension__ __PRETTY_FUNCTION__))
684 "for a previous keyword suggestion")(static_cast <bool> (!Result.isUnset() && "Typo correction suggested a keyword replacement "
"for a previous keyword suggestion") ? void (0) : __assert_fail
("!Result.isUnset() && \"Typo correction suggested a keyword replacement \" \"for a previous keyword suggestion\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 684, __extension__ __PRETTY_FUNCTION__))
;
685 return Result;
686}
687
688/// ParseLambdaExpression - Parse a C++11 lambda expression.
689///
690/// lambda-expression:
691/// lambda-introducer lambda-declarator compound-statement
692/// lambda-introducer '<' template-parameter-list '>'
693/// requires-clause[opt] lambda-declarator compound-statement
694///
695/// lambda-introducer:
696/// '[' lambda-capture[opt] ']'
697///
698/// lambda-capture:
699/// capture-default
700/// capture-list
701/// capture-default ',' capture-list
702///
703/// capture-default:
704/// '&'
705/// '='
706///
707/// capture-list:
708/// capture
709/// capture-list ',' capture
710///
711/// capture:
712/// simple-capture
713/// init-capture [C++1y]
714///
715/// simple-capture:
716/// identifier
717/// '&' identifier
718/// 'this'
719///
720/// init-capture: [C++1y]
721/// identifier initializer
722/// '&' identifier initializer
723///
724/// lambda-declarator:
725/// lambda-specifiers [C++2b]
726/// '(' parameter-declaration-clause ')' lambda-specifiers
727/// requires-clause[opt]
728///
729/// lambda-specifiers:
730/// decl-specifier-seq[opt] noexcept-specifier[opt]
731/// attribute-specifier-seq[opt] trailing-return-type[opt]
732///
733ExprResult Parser::ParseLambdaExpression() {
734 // Parse lambda-introducer.
735 LambdaIntroducer Intro;
736 if (ParseLambdaIntroducer(Intro)) {
737 SkipUntil(tok::r_square, StopAtSemi);
738 SkipUntil(tok::l_brace, StopAtSemi);
739 SkipUntil(tok::r_brace, StopAtSemi);
740 return ExprError();
741 }
742
743 return ParseLambdaExpressionAfterIntroducer(Intro);
744}
745
746/// Use lookahead and potentially tentative parsing to determine if we are
747/// looking at a C++11 lambda expression, and parse it if we are.
748///
749/// If we are not looking at a lambda expression, returns ExprError().
750ExprResult Parser::TryParseLambdaExpression() {
751 assert(getLangOpts().CPlusPlus11(static_cast <bool> (getLangOpts().CPlusPlus11 &&
Tok.is(tok::l_square) && "Not at the start of a possible lambda expression."
) ? void (0) : __assert_fail ("getLangOpts().CPlusPlus11 && Tok.is(tok::l_square) && \"Not at the start of a possible lambda expression.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 753, __extension__ __PRETTY_FUNCTION__))
752 && Tok.is(tok::l_square)(static_cast <bool> (getLangOpts().CPlusPlus11 &&
Tok.is(tok::l_square) && "Not at the start of a possible lambda expression."
) ? void (0) : __assert_fail ("getLangOpts().CPlusPlus11 && Tok.is(tok::l_square) && \"Not at the start of a possible lambda expression.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 753, __extension__ __PRETTY_FUNCTION__))
753 && "Not at the start of a possible lambda expression.")(static_cast <bool> (getLangOpts().CPlusPlus11 &&
Tok.is(tok::l_square) && "Not at the start of a possible lambda expression."
) ? void (0) : __assert_fail ("getLangOpts().CPlusPlus11 && Tok.is(tok::l_square) && \"Not at the start of a possible lambda expression.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 753, __extension__ __PRETTY_FUNCTION__))
;
754
755 const Token Next = NextToken();
756 if (Next.is(tok::eof)) // Nothing else to lookup here...
757 return ExprEmpty();
758
759 const Token After = GetLookAheadToken(2);
760 // If lookahead indicates this is a lambda...
761 if (Next.is(tok::r_square) || // []
762 Next.is(tok::equal) || // [=
763 (Next.is(tok::amp) && // [&] or [&,
764 After.isOneOf(tok::r_square, tok::comma)) ||
765 (Next.is(tok::identifier) && // [identifier]
766 After.is(tok::r_square)) ||
767 Next.is(tok::ellipsis)) { // [...
768 return ParseLambdaExpression();
769 }
770
771 // If lookahead indicates an ObjC message send...
772 // [identifier identifier
773 if (Next.is(tok::identifier) && After.is(tok::identifier))
774 return ExprEmpty();
775
776 // Here, we're stuck: lambda introducers and Objective-C message sends are
777 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
778 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
779 // writing two routines to parse a lambda introducer, just try to parse
780 // a lambda introducer first, and fall back if that fails.
781 LambdaIntroducer Intro;
782 {
783 TentativeParsingAction TPA(*this);
784 LambdaIntroducerTentativeParse Tentative;
785 if (ParseLambdaIntroducer(Intro, &Tentative)) {
786 TPA.Commit();
787 return ExprError();
788 }
789
790 switch (Tentative) {
791 case LambdaIntroducerTentativeParse::Success:
792 TPA.Commit();
793 break;
794
795 case LambdaIntroducerTentativeParse::Incomplete:
796 // Didn't fully parse the lambda-introducer, try again with a
797 // non-tentative parse.
798 TPA.Revert();
799 Intro = LambdaIntroducer();
800 if (ParseLambdaIntroducer(Intro))
801 return ExprError();
802 break;
803
804 case LambdaIntroducerTentativeParse::MessageSend:
805 case LambdaIntroducerTentativeParse::Invalid:
806 // Not a lambda-introducer, might be a message send.
807 TPA.Revert();
808 return ExprEmpty();
809 }
810 }
811
812 return ParseLambdaExpressionAfterIntroducer(Intro);
813}
814
815/// Parse a lambda introducer.
816/// \param Intro A LambdaIntroducer filled in with information about the
817/// contents of the lambda-introducer.
818/// \param Tentative If non-null, we are disambiguating between a
819/// lambda-introducer and some other construct. In this mode, we do not
820/// produce any diagnostics or take any other irreversible action unless
821/// we're sure that this is a lambda-expression.
822/// \return \c true if parsing (or disambiguation) failed with a diagnostic and
823/// the caller should bail out / recover.
824bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
825 LambdaIntroducerTentativeParse *Tentative) {
826 if (Tentative)
827 *Tentative = LambdaIntroducerTentativeParse::Success;
828
829 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.")(static_cast <bool> (Tok.is(tok::l_square) && "Lambda expressions begin with '['."
) ? void (0) : __assert_fail ("Tok.is(tok::l_square) && \"Lambda expressions begin with '['.\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 829, __extension__ __PRETTY_FUNCTION__))
;
830 BalancedDelimiterTracker T(*this, tok::l_square);
831 T.consumeOpen();
832
833 Intro.Range.setBegin(T.getOpenLocation());
834
835 bool First = true;
836
837 // Produce a diagnostic if we're not tentatively parsing; otherwise track
838 // that our parse has failed.
839 auto Invalid = [&](llvm::function_ref<void()> Action) {
840 if (Tentative) {
841 *Tentative = LambdaIntroducerTentativeParse::Invalid;
842 return false;
843 }
844 Action();
845 return true;
846 };
847
848 // Perform some irreversible action if this is a non-tentative parse;
849 // otherwise note that our actions were incomplete.
850 auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
851 if (Tentative)
852 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
853 else
854 Action();
855 };
856
857 // Parse capture-default.
858 if (Tok.is(tok::amp) &&
859 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
860 Intro.Default = LCD_ByRef;
861 Intro.DefaultLoc = ConsumeToken();
862 First = false;
863 if (!Tok.getIdentifierInfo()) {
864 // This can only be a lambda; no need for tentative parsing any more.
865 // '[[and]]' can still be an attribute, though.
866 Tentative = nullptr;
867 }
868 } else if (Tok.is(tok::equal)) {
869 Intro.Default = LCD_ByCopy;
870 Intro.DefaultLoc = ConsumeToken();
871 First = false;
872 Tentative = nullptr;
873 }
874
875 while (Tok.isNot(tok::r_square)) {
876 if (!First) {
877 if (Tok.isNot(tok::comma)) {
878 // Provide a completion for a lambda introducer here. Except
879 // in Objective-C, where this is Almost Surely meant to be a message
880 // send. In that case, fail here and let the ObjC message
881 // expression parser perform the completion.
882 if (Tok.is(tok::code_completion) &&
883 !(getLangOpts().ObjC && Tentative)) {
884 cutOffParsing();
885 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
886 /*AfterAmpersand=*/false);
887 break;
888 }
889
890 return Invalid([&] {
891 Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
892 });
893 }
894 ConsumeToken();
895 }
896
897 if (Tok.is(tok::code_completion)) {
898 cutOffParsing();
899 // If we're in Objective-C++ and we have a bare '[', then this is more
900 // likely to be a message receiver.
901 if (getLangOpts().ObjC && Tentative && First)
902 Actions.CodeCompleteObjCMessageReceiver(getCurScope());
903 else
904 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
905 /*AfterAmpersand=*/false);
906 break;
907 }
908
909 First = false;
910
911 // Parse capture.
912 LambdaCaptureKind Kind = LCK_ByCopy;
913 LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
914 SourceLocation Loc;
915 IdentifierInfo *Id = nullptr;
916 SourceLocation EllipsisLocs[4];
917 ExprResult Init;
918 SourceLocation LocStart = Tok.getLocation();
919
920 if (Tok.is(tok::star)) {
921 Loc = ConsumeToken();
922 if (Tok.is(tok::kw_this)) {
923 ConsumeToken();
924 Kind = LCK_StarThis;
925 } else {
926 return Invalid([&] {
927 Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
928 });
929 }
930 } else if (Tok.is(tok::kw_this)) {
931 Kind = LCK_This;
932 Loc = ConsumeToken();
933 } else if (Tok.isOneOf(tok::amp, tok::equal) &&
934 NextToken().isOneOf(tok::comma, tok::r_square) &&
935 Intro.Default == LCD_None) {
936 // We have a lone "&" or "=" which is either a misplaced capture-default
937 // or the start of a capture (in the "&" case) with the rest of the
938 // capture missing. Both are an error but a misplaced capture-default
939 // is more likely if we don't already have a capture default.
940 return Invalid(
941 [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
942 } else {
943 TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
944
945 if (Tok.is(tok::amp)) {
946 Kind = LCK_ByRef;
947 ConsumeToken();
948
949 if (Tok.is(tok::code_completion)) {
950 cutOffParsing();
951 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
952 /*AfterAmpersand=*/true);
953 break;
954 }
955 }
956
957 TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
958
959 if (Tok.is(tok::identifier)) {
960 Id = Tok.getIdentifierInfo();
961 Loc = ConsumeToken();
962 } else if (Tok.is(tok::kw_this)) {
963 return Invalid([&] {
964 // FIXME: Suggest a fixit here.
965 Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
966 });
967 } else {
968 return Invalid([&] {
969 Diag(Tok.getLocation(), diag::err_expected_capture);
970 });
971 }
972
973 TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
974
975 if (Tok.is(tok::l_paren)) {
976 BalancedDelimiterTracker Parens(*this, tok::l_paren);
977 Parens.consumeOpen();
978
979 InitKind = LambdaCaptureInitKind::DirectInit;
980
981 ExprVector Exprs;
982 CommaLocsTy Commas;
983 if (Tentative) {
984 Parens.skipToEnd();
985 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
986 } else if (ParseExpressionList(Exprs, Commas)) {
987 Parens.skipToEnd();
988 Init = ExprError();
989 } else {
990 Parens.consumeClose();
991 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
992 Parens.getCloseLocation(),
993 Exprs);
994 }
995 } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
996 // Each lambda init-capture forms its own full expression, which clears
997 // Actions.MaybeODRUseExprs. So create an expression evaluation context
998 // to save the necessary state, and restore it later.
999 EnterExpressionEvaluationContext EC(
1000 Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1001
1002 if (TryConsumeToken(tok::equal))
1003 InitKind = LambdaCaptureInitKind::CopyInit;
1004 else
1005 InitKind = LambdaCaptureInitKind::ListInit;
1006
1007 if (!Tentative) {
1008 Init = ParseInitializer();
1009 } else if (Tok.is(tok::l_brace)) {
1010 BalancedDelimiterTracker Braces(*this, tok::l_brace);
1011 Braces.consumeOpen();
1012 Braces.skipToEnd();
1013 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1014 } else {
1015 // We're disambiguating this:
1016 //
1017 // [..., x = expr
1018 //
1019 // We need to find the end of the following expression in order to
1020 // determine whether this is an Obj-C message send's receiver, a
1021 // C99 designator, or a lambda init-capture.
1022 //
1023 // Parse the expression to find where it ends, and annotate it back
1024 // onto the tokens. We would have parsed this expression the same way
1025 // in either case: both the RHS of an init-capture and the RHS of an
1026 // assignment expression are parsed as an initializer-clause, and in
1027 // neither case can anything be added to the scope between the '[' and
1028 // here.
1029 //
1030 // FIXME: This is horrible. Adding a mechanism to skip an expression
1031 // would be much cleaner.
1032 // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1033 // that instead. (And if we see a ':' with no matching '?', we can
1034 // classify this as an Obj-C message send.)
1035 SourceLocation StartLoc = Tok.getLocation();
1036 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1037 Init = ParseInitializer();
1038 if (!Init.isInvalid())
1039 Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1040
1041 if (Tok.getLocation() != StartLoc) {
1042 // Back out the lexing of the token after the initializer.
1043 PP.RevertCachedTokens(1);
1044
1045 // Replace the consumed tokens with an appropriate annotation.
1046 Tok.setLocation(StartLoc);
1047 Tok.setKind(tok::annot_primary_expr);
1048 setExprAnnotation(Tok, Init);
1049 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1050 PP.AnnotateCachedTokens(Tok);
1051
1052 // Consume the annotated initializer.
1053 ConsumeAnnotationToken();
1054 }
1055 }
1056 }
1057
1058 TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1059 }
1060
1061 // Check if this is a message send before we act on a possible init-capture.
1062 if (Tentative && Tok.is(tok::identifier) &&
1063 NextToken().isOneOf(tok::colon, tok::r_square)) {
1064 // This can only be a message send. We're done with disambiguation.
1065 *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1066 return false;
1067 }
1068
1069 // Ensure that any ellipsis was in the right place.
1070 SourceLocation EllipsisLoc;
1071 if (std::any_of(std::begin(EllipsisLocs), std::end(EllipsisLocs),
1072 [](SourceLocation Loc) { return Loc.isValid(); })) {
1073 // The '...' should appear before the identifier in an init-capture, and
1074 // after the identifier otherwise.
1075 bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1076 SourceLocation *ExpectedEllipsisLoc =
1077 !InitCapture ? &EllipsisLocs[2] :
1078 Kind == LCK_ByRef ? &EllipsisLocs[1] :
1079 &EllipsisLocs[0];
1080 EllipsisLoc = *ExpectedEllipsisLoc;
1081
1082 unsigned DiagID = 0;
1083 if (EllipsisLoc.isInvalid()) {
1084 DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1085 for (SourceLocation Loc : EllipsisLocs) {
1086 if (Loc.isValid())
1087 EllipsisLoc = Loc;
1088 }
1089 } else {
1090 unsigned NumEllipses = std::accumulate(
1091 std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1092 [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1093 if (NumEllipses > 1)
1094 DiagID = diag::err_lambda_capture_multiple_ellipses;
1095 }
1096 if (DiagID) {
1097 NonTentativeAction([&] {
1098 // Point the diagnostic at the first misplaced ellipsis.
1099 SourceLocation DiagLoc;
1100 for (SourceLocation &Loc : EllipsisLocs) {
1101 if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1102 DiagLoc = Loc;
1103 break;
1104 }
1105 }
1106 assert(DiagLoc.isValid() && "no location for diagnostic")(static_cast <bool> (DiagLoc.isValid() && "no location for diagnostic"
) ? void (0) : __assert_fail ("DiagLoc.isValid() && \"no location for diagnostic\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1106, __extension__ __PRETTY_FUNCTION__))
;
1107
1108 // Issue the diagnostic and produce fixits showing where the ellipsis
1109 // should have been written.
1110 auto &&D = Diag(DiagLoc, DiagID);
1111 if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1112 SourceLocation ExpectedLoc =
1113 InitCapture ? Loc
1114 : Lexer::getLocForEndOfToken(
1115 Loc, 0, PP.getSourceManager(), getLangOpts());
1116 D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1117 }
1118 for (SourceLocation &Loc : EllipsisLocs) {
1119 if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1120 D << FixItHint::CreateRemoval(Loc);
1121 }
1122 });
1123 }
1124 }
1125
1126 // Process the init-capture initializers now rather than delaying until we
1127 // form the lambda-expression so that they can be handled in the context
1128 // enclosing the lambda-expression, rather than in the context of the
1129 // lambda-expression itself.
1130 ParsedType InitCaptureType;
1131 if (Init.isUsable())
1132 Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1133 if (Init.isUsable()) {
1134 NonTentativeAction([&] {
1135 // Get the pointer and store it in an lvalue, so we can use it as an
1136 // out argument.
1137 Expr *InitExpr = Init.get();
1138 // This performs any lvalue-to-rvalue conversions if necessary, which
1139 // can affect what gets captured in the containing decl-context.
1140 InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1141 Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1142 Init = InitExpr;
1143 });
1144 }
1145
1146 SourceLocation LocEnd = PrevTokLocation;
1147
1148 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1149 InitCaptureType, SourceRange(LocStart, LocEnd));
1150 }
1151
1152 T.consumeClose();
1153 Intro.Range.setEnd(T.getCloseLocation());
1154 return false;
1155}
1156
1157static void tryConsumeLambdaSpecifierToken(Parser &P,
1158 SourceLocation &MutableLoc,
1159 SourceLocation &ConstexprLoc,
1160 SourceLocation &ConstevalLoc,
1161 SourceLocation &DeclEndLoc) {
1162 assert(MutableLoc.isInvalid())(static_cast <bool> (MutableLoc.isInvalid()) ? void (0)
: __assert_fail ("MutableLoc.isInvalid()", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1162, __extension__ __PRETTY_FUNCTION__))
;
1163 assert(ConstexprLoc.isInvalid())(static_cast <bool> (ConstexprLoc.isInvalid()) ? void (
0) : __assert_fail ("ConstexprLoc.isInvalid()", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1163, __extension__ __PRETTY_FUNCTION__))
;
1164 // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1165 // to the final of those locations. Emit an error if we have multiple
1166 // copies of those keywords and recover.
1167
1168 while (true) {
1169 switch (P.getCurToken().getKind()) {
1170 case tok::kw_mutable: {
1171 if (MutableLoc.isValid()) {
1172 P.Diag(P.getCurToken().getLocation(),
1173 diag::err_lambda_decl_specifier_repeated)
1174 << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1175 }
1176 MutableLoc = P.ConsumeToken();
1177 DeclEndLoc = MutableLoc;
1178 break /*switch*/;
1179 }
1180 case tok::kw_constexpr:
1181 if (ConstexprLoc.isValid()) {
1182 P.Diag(P.getCurToken().getLocation(),
1183 diag::err_lambda_decl_specifier_repeated)
1184 << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1185 }
1186 ConstexprLoc = P.ConsumeToken();
1187 DeclEndLoc = ConstexprLoc;
1188 break /*switch*/;
1189 case tok::kw_consteval:
1190 if (ConstevalLoc.isValid()) {
1191 P.Diag(P.getCurToken().getLocation(),
1192 diag::err_lambda_decl_specifier_repeated)
1193 << 2 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1194 }
1195 ConstevalLoc = P.ConsumeToken();
1196 DeclEndLoc = ConstevalLoc;
1197 break /*switch*/;
1198 default:
1199 return;
1200 }
1201 }
1202}
1203
1204static void
1205addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1206 DeclSpec &DS) {
1207 if (ConstexprLoc.isValid()) {
1208 P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1209 ? diag::ext_constexpr_on_lambda_cxx17
1210 : diag::warn_cxx14_compat_constexpr_on_lambda);
1211 const char *PrevSpec = nullptr;
1212 unsigned DiagID = 0;
1213 DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1214 DiagID);
1215 assert(PrevSpec == nullptr && DiagID == 0 &&(static_cast <bool> (PrevSpec == nullptr && DiagID
== 0 && "Constexpr cannot have been set previously!"
) ? void (0) : __assert_fail ("PrevSpec == nullptr && DiagID == 0 && \"Constexpr cannot have been set previously!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1216, __extension__ __PRETTY_FUNCTION__))
1216 "Constexpr cannot have been set previously!")(static_cast <bool> (PrevSpec == nullptr && DiagID
== 0 && "Constexpr cannot have been set previously!"
) ? void (0) : __assert_fail ("PrevSpec == nullptr && DiagID == 0 && \"Constexpr cannot have been set previously!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1216, __extension__ __PRETTY_FUNCTION__))
;
1217 }
1218}
1219
1220static void addConstevalToLambdaDeclSpecifier(Parser &P,
1221 SourceLocation ConstevalLoc,
1222 DeclSpec &DS) {
1223 if (ConstevalLoc.isValid()) {
1224 P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1225 const char *PrevSpec = nullptr;
1226 unsigned DiagID = 0;
1227 DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1228 DiagID);
1229 if (DiagID != 0)
1230 P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1231 }
1232}
1233
1234/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1235/// expression.
1236ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1237 LambdaIntroducer &Intro) {
1238 SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1239 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1240
1241 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1242 "lambda expression parsing");
1243
1244
1245
1246 // FIXME: Call into Actions to add any init-capture declarations to the
1247 // scope while parsing the lambda-declarator and compound-statement.
1248
1249 // Parse lambda-declarator[opt].
1250 DeclSpec DS(AttrFactory);
1251 Declarator D(DS, DeclaratorContext::LambdaExpr);
1252 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1253 Actions.PushLambdaScope();
1254
1255 ParsedAttributes Attr(AttrFactory);
1256 if (getLangOpts().CUDA) {
1257 // In CUDA code, GNU attributes are allowed to appear immediately after the
1258 // "[...]", even if there is no "(...)" before the lambda body.
1259 MaybeParseGNUAttributes(D);
1260 }
1261
1262 // Helper to emit a warning if we see a CUDA host/device/global attribute
1263 // after '(...)'. nvcc doesn't accept this.
1264 auto WarnIfHasCUDATargetAttr = [&] {
1265 if (getLangOpts().CUDA)
1266 for (const ParsedAttr &A : Attr)
1267 if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1268 A.getKind() == ParsedAttr::AT_CUDAHost ||
1269 A.getKind() == ParsedAttr::AT_CUDAGlobal)
1270 Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1271 << A.getAttrName()->getName();
1272 };
1273
1274 MultiParseScope TemplateParamScope(*this);
1275 if (Tok.is(tok::less)) {
1276 Diag(Tok, getLangOpts().CPlusPlus20
1277 ? diag::warn_cxx17_compat_lambda_template_parameter_list
1278 : diag::ext_lambda_template_parameter_list);
1279
1280 SmallVector<NamedDecl*, 4> TemplateParams;
1281 SourceLocation LAngleLoc, RAngleLoc;
1282 if (ParseTemplateParameters(TemplateParamScope,
1283 CurTemplateDepthTracker.getDepth(),
1284 TemplateParams, LAngleLoc, RAngleLoc)) {
1285 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1286 return ExprError();
1287 }
1288
1289 if (TemplateParams.empty()) {
1290 Diag(RAngleLoc,
1291 diag::err_lambda_template_parameter_list_empty);
1292 } else {
1293 ExprResult RequiresClause;
1294 if (TryConsumeToken(tok::kw_requires)) {
1295 RequiresClause =
1296 Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1297 /*IsTrailingRequiresClause=*/false));
1298 if (RequiresClause.isInvalid())
1299 SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1300 }
1301
1302 Actions.ActOnLambdaExplicitTemplateParameterList(
1303 LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1304 ++CurTemplateDepthTracker;
1305 }
1306 }
1307
1308 // Implement WG21 P2173, which allows attributes immediately before the
1309 // lambda declarator and applies them to the corresponding function operator
1310 // or operator template declaration. We accept this as a conforming extension
1311 // in all language modes that support lambdas.
1312 if (isCXX11AttributeSpecifier()) {
1313 Diag(Tok, getLangOpts().CPlusPlus2b
1314 ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1315 : diag::ext_decl_attrs_on_lambda);
1316 MaybeParseCXX11Attributes(D);
1317 }
1318
1319 TypeResult TrailingReturnType;
1320 SourceLocation TrailingReturnTypeLoc;
1321
1322 auto ParseLambdaSpecifiers =
1323 [&](SourceLocation LParenLoc, SourceLocation RParenLoc,
1324 MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
1325 SourceLocation EllipsisLoc) {
1326 SourceLocation DeclEndLoc = RParenLoc;
1327
1328 // GNU-style attributes must be parsed before the mutable specifier to
1329 // be compatible with GCC. MSVC-style attributes must be parsed before
1330 // the mutable specifier to be compatible with MSVC.
1331 MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attr);
1332
1333 // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1334 // the DeclEndLoc.
1335 SourceLocation MutableLoc;
1336 SourceLocation ConstexprLoc;
1337 SourceLocation ConstevalLoc;
1338 tryConsumeLambdaSpecifierToken(*this, MutableLoc, ConstexprLoc,
1339 ConstevalLoc, DeclEndLoc);
1340
1341 addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1342 addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1343 // Parse exception-specification[opt].
1344 ExceptionSpecificationType ESpecType = EST_None;
1345 SourceRange ESpecRange;
1346 SmallVector<ParsedType, 2> DynamicExceptions;
1347 SmallVector<SourceRange, 2> DynamicExceptionRanges;
1348 ExprResult NoexceptExpr;
1349 CachedTokens *ExceptionSpecTokens;
1350 ESpecType = tryParseExceptionSpecification(
1351 /*Delayed=*/false, ESpecRange, DynamicExceptions,
1352 DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1353
1354 if (ESpecType != EST_None)
1355 DeclEndLoc = ESpecRange.getEnd();
1356
1357 // Parse attribute-specifier[opt].
1358 MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1359
1360 // Parse OpenCL addr space attribute.
1361 if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1362 tok::kw___constant, tok::kw___generic)) {
1363 ParseOpenCLQualifiers(DS.getAttributes());
1364 ConsumeToken();
1365 }
1366
1367 SourceLocation FunLocalRangeEnd = DeclEndLoc;
1368
1369 // Parse trailing-return-type[opt].
1370 if (Tok.is(tok::arrow)) {
1371 FunLocalRangeEnd = Tok.getLocation();
1372 SourceRange Range;
1373 TrailingReturnType = ParseTrailingReturnType(
1374 Range, /*MayBeFollowedByDirectInit*/ false);
1375 TrailingReturnTypeLoc = Range.getBegin();
1376 if (Range.getEnd().isValid())
1377 DeclEndLoc = Range.getEnd();
1378 }
1379
1380 SourceLocation NoLoc;
1381 D.AddTypeInfo(
1382 DeclaratorChunk::getFunction(
1383 /*HasProto=*/true,
1384 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1385 ParamInfo.size(), EllipsisLoc, RParenLoc,
1386 /*RefQualifierIsLvalueRef=*/true,
1387 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
1388 DynamicExceptions.data(), DynamicExceptionRanges.data(),
1389 DynamicExceptions.size(),
1390 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1391 /*ExceptionSpecTokens*/ nullptr,
1392 /*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D,
1393 TrailingReturnType, TrailingReturnTypeLoc, &DS),
1394 std::move(Attr), DeclEndLoc);
1395 };
1396
1397 if (Tok.is(tok::l_paren)) {
1398 ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
1399 Scope::FunctionDeclarationScope |
1400 Scope::DeclScope);
1401
1402 BalancedDelimiterTracker T(*this, tok::l_paren);
1403 T.consumeOpen();
1404 SourceLocation LParenLoc = T.getOpenLocation();
1405
1406 // Parse parameter-declaration-clause.
1407 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1408 SourceLocation EllipsisLoc;
1409
1410 if (Tok.isNot(tok::r_paren)) {
1411 Actions.RecordParsingTemplateParameterDepth(
1412 CurTemplateDepthTracker.getOriginalDepth());
1413
1414 ParseParameterDeclarationClause(D.getContext(), Attr, ParamInfo,
1415 EllipsisLoc);
1416 // For a generic lambda, each 'auto' within the parameter declaration
1417 // clause creates a template type parameter, so increment the depth.
1418 // If we've parsed any explicit template parameters, then the depth will
1419 // have already been incremented. So we make sure that at most a single
1420 // depth level is added.
1421 if (Actions.getCurGenericLambda())
1422 CurTemplateDepthTracker.setAddedDepth(1);
1423 }
1424
1425 T.consumeClose();
1426
1427 // Parse lambda-specifiers.
1428 ParseLambdaSpecifiers(LParenLoc, /*DeclEndLoc=*/T.getCloseLocation(),
1429 ParamInfo, EllipsisLoc);
1430
1431 // Parse requires-clause[opt].
1432 if (Tok.is(tok::kw_requires))
1433 ParseTrailingRequiresClause(D);
1434 } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1435 tok::kw_constexpr, tok::kw_consteval,
1436 tok::kw___private, tok::kw___global, tok::kw___local,
1437 tok::kw___constant, tok::kw___generic,
1438 tok::kw_requires, tok::kw_noexcept) ||
1439 (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1440 if (!getLangOpts().CPlusPlus2b)
1441 // It's common to forget that one needs '()' before 'mutable', an
1442 // attribute specifier, the result type, or the requires clause. Deal with
1443 // this.
1444 Diag(Tok, diag::ext_lambda_missing_parens)
1445 << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1446
1447 SourceLocation NoLoc;
1448 // Parse lambda-specifiers.
1449 std::vector<DeclaratorChunk::ParamInfo> EmptyParamInfo;
1450 ParseLambdaSpecifiers(/*LParenLoc=*/NoLoc, /*RParenLoc=*/NoLoc,
1451 EmptyParamInfo, /*EllipsisLoc=*/NoLoc);
1452 }
1453
1454 WarnIfHasCUDATargetAttr();
1455
1456 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1457 // it.
1458 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1459 Scope::CompoundStmtScope;
1460 ParseScope BodyScope(this, ScopeFlags);
1461
1462 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1463
1464 // Parse compound-statement.
1465 if (!Tok.is(tok::l_brace)) {
1466 Diag(Tok, diag::err_expected_lambda_body);
1467 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1468 return ExprError();
1469 }
1470
1471 StmtResult Stmt(ParseCompoundStatementBody());
1472 BodyScope.Exit();
1473 TemplateParamScope.Exit();
1474
1475 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1476 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1477
1478 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1479 return ExprError();
1480}
1481
1482/// ParseCXXCasts - This handles the various ways to cast expressions to another
1483/// type.
1484///
1485/// postfix-expression: [C++ 5.2p1]
1486/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1487/// 'static_cast' '<' type-name '>' '(' expression ')'
1488/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1489/// 'const_cast' '<' type-name '>' '(' expression ')'
1490///
1491/// C++ for OpenCL s2.3.1 adds:
1492/// 'addrspace_cast' '<' type-name '>' '(' expression ')'
1493ExprResult Parser::ParseCXXCasts() {
1494 tok::TokenKind Kind = Tok.getKind();
1495 const char *CastName = nullptr; // For error messages
1496
1497 switch (Kind) {
1498 default: llvm_unreachable("Unknown C++ cast!")::llvm::llvm_unreachable_internal("Unknown C++ cast!", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1498)
;
1499 case tok::kw_addrspace_cast: CastName = "addrspace_cast"; break;
1500 case tok::kw_const_cast: CastName = "const_cast"; break;
1501 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
1502 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1503 case tok::kw_static_cast: CastName = "static_cast"; break;
1504 }
1505
1506 SourceLocation OpLoc = ConsumeToken();
1507 SourceLocation LAngleBracketLoc = Tok.getLocation();
1508
1509 // Check for "<::" which is parsed as "[:". If found, fix token stream,
1510 // diagnose error, suggest fix, and recover parsing.
1511 if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1512 Token Next = NextToken();
1513 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1514 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1515 }
1516
1517 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1518 return ExprError();
1519
1520 // Parse the common declaration-specifiers piece.
1521 DeclSpec DS(AttrFactory);
1522 ParseSpecifierQualifierList(DS);
1523
1524 // Parse the abstract-declarator, if present.
1525 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
1526 ParseDeclarator(DeclaratorInfo);
1527
1528 SourceLocation RAngleBracketLoc = Tok.getLocation();
1529
1530 if (ExpectAndConsume(tok::greater))
1531 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1532
1533 BalancedDelimiterTracker T(*this, tok::l_paren);
1534
1535 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1536 return ExprError();
1537
1538 ExprResult Result = ParseExpression();
1539
1540 // Match the ')'.
1541 T.consumeClose();
1542
1543 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1544 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1545 LAngleBracketLoc, DeclaratorInfo,
1546 RAngleBracketLoc,
1547 T.getOpenLocation(), Result.get(),
1548 T.getCloseLocation());
1549
1550 return Result;
1551}
1552
1553/// ParseCXXTypeid - This handles the C++ typeid expression.
1554///
1555/// postfix-expression: [C++ 5.2p1]
1556/// 'typeid' '(' expression ')'
1557/// 'typeid' '(' type-id ')'
1558///
1559ExprResult Parser::ParseCXXTypeid() {
1560 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!")(static_cast <bool> (Tok.is(tok::kw_typeid) && "Not 'typeid'!"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_typeid) && \"Not 'typeid'!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1560, __extension__ __PRETTY_FUNCTION__))
;
1561
1562 SourceLocation OpLoc = ConsumeToken();
1563 SourceLocation LParenLoc, RParenLoc;
1564 BalancedDelimiterTracker T(*this, tok::l_paren);
1565
1566 // typeid expressions are always parenthesized.
1567 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1568 return ExprError();
1569 LParenLoc = T.getOpenLocation();
1570
1571 ExprResult Result;
1572
1573 // C++0x [expr.typeid]p3:
1574 // When typeid is applied to an expression other than an lvalue of a
1575 // polymorphic class type [...] The expression is an unevaluated
1576 // operand (Clause 5).
1577 //
1578 // Note that we can't tell whether the expression is an lvalue of a
1579 // polymorphic class type until after we've parsed the expression; we
1580 // speculatively assume the subexpression is unevaluated, and fix it up
1581 // later.
1582 //
1583 // We enter the unevaluated context before trying to determine whether we
1584 // have a type-id, because the tentative parse logic will try to resolve
1585 // names, and must treat them as unevaluated.
1586 EnterExpressionEvaluationContext Unevaluated(
1587 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1588 Sema::ReuseLambdaContextDecl);
1589
1590 if (isTypeIdInParens()) {
1591 TypeResult Ty = ParseTypeName();
1592
1593 // Match the ')'.
1594 T.consumeClose();
1595 RParenLoc = T.getCloseLocation();
1596 if (Ty.isInvalid() || RParenLoc.isInvalid())
1597 return ExprError();
1598
1599 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1600 Ty.get().getAsOpaquePtr(), RParenLoc);
1601 } else {
1602 Result = ParseExpression();
1603
1604 // Match the ')'.
1605 if (Result.isInvalid())
1606 SkipUntil(tok::r_paren, StopAtSemi);
1607 else {
1608 T.consumeClose();
1609 RParenLoc = T.getCloseLocation();
1610 if (RParenLoc.isInvalid())
1611 return ExprError();
1612
1613 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1614 Result.get(), RParenLoc);
1615 }
1616 }
1617
1618 return Result;
1619}
1620
1621/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1622///
1623/// '__uuidof' '(' expression ')'
1624/// '__uuidof' '(' type-id ')'
1625///
1626ExprResult Parser::ParseCXXUuidof() {
1627 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!")(static_cast <bool> (Tok.is(tok::kw___uuidof) &&
"Not '__uuidof'!") ? void (0) : __assert_fail ("Tok.is(tok::kw___uuidof) && \"Not '__uuidof'!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1627, __extension__ __PRETTY_FUNCTION__))
;
1628
1629 SourceLocation OpLoc = ConsumeToken();
1630 BalancedDelimiterTracker T(*this, tok::l_paren);
1631
1632 // __uuidof expressions are always parenthesized.
1633 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1634 return ExprError();
1635
1636 ExprResult Result;
1637
1638 if (isTypeIdInParens()) {
1639 TypeResult Ty = ParseTypeName();
1640
1641 // Match the ')'.
1642 T.consumeClose();
1643
1644 if (Ty.isInvalid())
1645 return ExprError();
1646
1647 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1648 Ty.get().getAsOpaquePtr(),
1649 T.getCloseLocation());
1650 } else {
1651 EnterExpressionEvaluationContext Unevaluated(
1652 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1653 Result = ParseExpression();
1654
1655 // Match the ')'.
1656 if (Result.isInvalid())
1657 SkipUntil(tok::r_paren, StopAtSemi);
1658 else {
1659 T.consumeClose();
1660
1661 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1662 /*isType=*/false,
1663 Result.get(), T.getCloseLocation());
1664 }
1665 }
1666
1667 return Result;
1668}
1669
1670/// Parse a C++ pseudo-destructor expression after the base,
1671/// . or -> operator, and nested-name-specifier have already been
1672/// parsed. We're handling this fragment of the grammar:
1673///
1674/// postfix-expression: [C++2a expr.post]
1675/// postfix-expression . template[opt] id-expression
1676/// postfix-expression -> template[opt] id-expression
1677///
1678/// id-expression:
1679/// qualified-id
1680/// unqualified-id
1681///
1682/// qualified-id:
1683/// nested-name-specifier template[opt] unqualified-id
1684///
1685/// nested-name-specifier:
1686/// type-name ::
1687/// decltype-specifier :: FIXME: not implemented, but probably only
1688/// allowed in C++ grammar by accident
1689/// nested-name-specifier identifier ::
1690/// nested-name-specifier template[opt] simple-template-id ::
1691/// [...]
1692///
1693/// unqualified-id:
1694/// ~ type-name
1695/// ~ decltype-specifier
1696/// [...]
1697///
1698/// ... where the all but the last component of the nested-name-specifier
1699/// has already been parsed, and the base expression is not of a non-dependent
1700/// class type.
1701ExprResult
1702Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1703 tok::TokenKind OpKind,
1704 CXXScopeSpec &SS,
1705 ParsedType ObjectType) {
1706 // If the last component of the (optional) nested-name-specifier is
1707 // template[opt] simple-template-id, it has already been annotated.
1708 UnqualifiedId FirstTypeName;
1709 SourceLocation CCLoc;
1710 if (Tok.is(tok::identifier)) {
1711 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1712 ConsumeToken();
1713 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail")(static_cast <bool> (Tok.is(tok::coloncolon) &&
"ParseOptionalCXXScopeSpecifier fail") ? void (0) : __assert_fail
("Tok.is(tok::coloncolon) &&\"ParseOptionalCXXScopeSpecifier fail\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1713, __extension__ __PRETTY_FUNCTION__))
;
1714 CCLoc = ConsumeToken();
1715 } else if (Tok.is(tok::annot_template_id)) {
1716 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1717 // FIXME: Carry on and build an AST representation for tooling.
1718 if (TemplateId->isInvalid())
1719 return ExprError();
1720 FirstTypeName.setTemplateId(TemplateId);
1721 ConsumeAnnotationToken();
1722 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail")(static_cast <bool> (Tok.is(tok::coloncolon) &&
"ParseOptionalCXXScopeSpecifier fail") ? void (0) : __assert_fail
("Tok.is(tok::coloncolon) &&\"ParseOptionalCXXScopeSpecifier fail\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1722, __extension__ __PRETTY_FUNCTION__))
;
1723 CCLoc = ConsumeToken();
1724 } else {
1725 assert(SS.isEmpty() && "missing last component of nested name specifier")(static_cast <bool> (SS.isEmpty() && "missing last component of nested name specifier"
) ? void (0) : __assert_fail ("SS.isEmpty() && \"missing last component of nested name specifier\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1725, __extension__ __PRETTY_FUNCTION__))
;
1726 FirstTypeName.setIdentifier(nullptr, SourceLocation());
1727 }
1728
1729 // Parse the tilde.
1730 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail")(static_cast <bool> (Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail"
) ? void (0) : __assert_fail ("Tok.is(tok::tilde) && \"ParseOptionalCXXScopeSpecifier fail\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1730, __extension__ __PRETTY_FUNCTION__))
;
1731 SourceLocation TildeLoc = ConsumeToken();
1732
1733 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1734 DeclSpec DS(AttrFactory);
1735 ParseDecltypeSpecifier(DS);
1736 if (DS.getTypeSpecType() == TST_error)
1737 return ExprError();
1738 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1739 TildeLoc, DS);
1740 }
1741
1742 if (!Tok.is(tok::identifier)) {
1743 Diag(Tok, diag::err_destructor_tilde_identifier);
1744 return ExprError();
1745 }
1746
1747 // Parse the second type.
1748 UnqualifiedId SecondTypeName;
1749 IdentifierInfo *Name = Tok.getIdentifierInfo();
1750 SourceLocation NameLoc = ConsumeToken();
1751 SecondTypeName.setIdentifier(Name, NameLoc);
1752
1753 // If there is a '<', the second type name is a template-id. Parse
1754 // it as such.
1755 //
1756 // FIXME: This is not a context in which a '<' is assumed to start a template
1757 // argument list. This affects examples such as
1758 // void f(auto *p) { p->~X<int>(); }
1759 // ... but there's no ambiguity, and nowhere to write 'template' in such an
1760 // example, so we accept it anyway.
1761 if (Tok.is(tok::less) &&
1762 ParseUnqualifiedIdTemplateId(
1763 SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1764 Name, NameLoc, false, SecondTypeName,
1765 /*AssumeTemplateId=*/true))
1766 return ExprError();
1767
1768 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1769 SS, FirstTypeName, CCLoc, TildeLoc,
1770 SecondTypeName);
1771}
1772
1773/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1774///
1775/// boolean-literal: [C++ 2.13.5]
1776/// 'true'
1777/// 'false'
1778ExprResult Parser::ParseCXXBoolLiteral() {
1779 tok::TokenKind Kind = Tok.getKind();
1780 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1781}
1782
1783/// ParseThrowExpression - This handles the C++ throw expression.
1784///
1785/// throw-expression: [C++ 15]
1786/// 'throw' assignment-expression[opt]
1787ExprResult Parser::ParseThrowExpression() {
1788 assert(Tok.is(tok::kw_throw) && "Not throw!")(static_cast <bool> (Tok.is(tok::kw_throw) && "Not throw!"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_throw) && \"Not throw!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1788, __extension__ __PRETTY_FUNCTION__))
;
1789 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
1790
1791 // If the current token isn't the start of an assignment-expression,
1792 // then the expression is not present. This handles things like:
1793 // "C ? throw : (void)42", which is crazy but legal.
1794 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
1795 case tok::semi:
1796 case tok::r_paren:
1797 case tok::r_square:
1798 case tok::r_brace:
1799 case tok::colon:
1800 case tok::comma:
1801 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1802
1803 default:
1804 ExprResult Expr(ParseAssignmentExpression());
1805 if (Expr.isInvalid()) return Expr;
1806 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1807 }
1808}
1809
1810/// Parse the C++ Coroutines co_yield expression.
1811///
1812/// co_yield-expression:
1813/// 'co_yield' assignment-expression[opt]
1814ExprResult Parser::ParseCoyieldExpression() {
1815 assert(Tok.is(tok::kw_co_yield) && "Not co_yield!")(static_cast <bool> (Tok.is(tok::kw_co_yield) &&
"Not co_yield!") ? void (0) : __assert_fail ("Tok.is(tok::kw_co_yield) && \"Not co_yield!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1815, __extension__ __PRETTY_FUNCTION__))
;
1816
1817 SourceLocation Loc = ConsumeToken();
1818 ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1819 : ParseAssignmentExpression();
1820 if (!Expr.isInvalid())
1821 Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1822 return Expr;
1823}
1824
1825/// ParseCXXThis - This handles the C++ 'this' pointer.
1826///
1827/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1828/// a non-lvalue expression whose value is the address of the object for which
1829/// the function is called.
1830ExprResult Parser::ParseCXXThis() {
1831 assert(Tok.is(tok::kw_this) && "Not 'this'!")(static_cast <bool> (Tok.is(tok::kw_this) && "Not 'this'!"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_this) && \"Not 'this'!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1831, __extension__ __PRETTY_FUNCTION__))
;
1832 SourceLocation ThisLoc = ConsumeToken();
1833 return Actions.ActOnCXXThis(ThisLoc);
1834}
1835
1836/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1837/// Can be interpreted either as function-style casting ("int(x)")
1838/// or class type construction ("ClassType(x,y,z)")
1839/// or creation of a value-initialized type ("int()").
1840/// See [C++ 5.2.3].
1841///
1842/// postfix-expression: [C++ 5.2p1]
1843/// simple-type-specifier '(' expression-list[opt] ')'
1844/// [C++0x] simple-type-specifier braced-init-list
1845/// typename-specifier '(' expression-list[opt] ')'
1846/// [C++0x] typename-specifier braced-init-list
1847///
1848/// In C++1z onwards, the type specifier can also be a template-name.
1849ExprResult
1850Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1851 Declarator DeclaratorInfo(DS, DeclaratorContext::FunctionalCast);
1852 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1853
1854 assert((Tok.is(tok::l_paren) ||(static_cast <bool> ((Tok.is(tok::l_paren) || (getLangOpts
().CPlusPlus11 && Tok.is(tok::l_brace))) && "Expected '(' or '{'!"
) ? void (0) : __assert_fail ("(Tok.is(tok::l_paren) || (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) && \"Expected '(' or '{'!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1856, __extension__ __PRETTY_FUNCTION__))
1855 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))(static_cast <bool> ((Tok.is(tok::l_paren) || (getLangOpts
().CPlusPlus11 && Tok.is(tok::l_brace))) && "Expected '(' or '{'!"
) ? void (0) : __assert_fail ("(Tok.is(tok::l_paren) || (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) && \"Expected '(' or '{'!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1856, __extension__ __PRETTY_FUNCTION__))
1856 && "Expected '(' or '{'!")(static_cast <bool> ((Tok.is(tok::l_paren) || (getLangOpts
().CPlusPlus11 && Tok.is(tok::l_brace))) && "Expected '(' or '{'!"
) ? void (0) : __assert_fail ("(Tok.is(tok::l_paren) || (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) && \"Expected '(' or '{'!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1856, __extension__ __PRETTY_FUNCTION__))
;
1857
1858 if (Tok.is(tok::l_brace)) {
1859 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1860 ExprResult Init = ParseBraceInitializer();
1861 if (Init.isInvalid())
1862 return Init;
1863 Expr *InitList = Init.get();
1864 return Actions.ActOnCXXTypeConstructExpr(
1865 TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1866 InitList->getEndLoc(), /*ListInitialization=*/true);
1867 } else {
1868 BalancedDelimiterTracker T(*this, tok::l_paren);
1869 T.consumeOpen();
1870
1871 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1872
1873 ExprVector Exprs;
1874 CommaLocsTy CommaLocs;
1875
1876 auto RunSignatureHelp = [&]() {
1877 QualType PreferredType;
1878 if (TypeRep)
1879 PreferredType = Actions.ProduceConstructorSignatureHelp(
1880 getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
1881 DS.getEndLoc(), Exprs, T.getOpenLocation());
1882 CalledSignatureHelp = true;
1883 return PreferredType;
1884 };
1885
1886 if (Tok.isNot(tok::r_paren)) {
1887 if (ParseExpressionList(Exprs, CommaLocs, [&] {
1888 PreferredType.enterFunctionArgument(Tok.getLocation(),
1889 RunSignatureHelp);
1890 })) {
1891 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1892 RunSignatureHelp();
1893 SkipUntil(tok::r_paren, StopAtSemi);
1894 return ExprError();
1895 }
1896 }
1897
1898 // Match the ')'.
1899 T.consumeClose();
1900
1901 // TypeRep could be null, if it references an invalid typedef.
1902 if (!TypeRep)
1903 return ExprError();
1904
1905 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&(static_cast <bool> ((Exprs.size() == 0 || Exprs.size()
-1 == CommaLocs.size())&& "Unexpected number of commas!"
) ? void (0) : __assert_fail ("(Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&& \"Unexpected number of commas!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1906, __extension__ __PRETTY_FUNCTION__))
1906 "Unexpected number of commas!")(static_cast <bool> ((Exprs.size() == 0 || Exprs.size()
-1 == CommaLocs.size())&& "Unexpected number of commas!"
) ? void (0) : __assert_fail ("(Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&& \"Unexpected number of commas!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 1906, __extension__ __PRETTY_FUNCTION__))
;
1907 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1908 Exprs, T.getCloseLocation(),
1909 /*ListInitialization=*/false);
1910 }
1911}
1912
1913/// ParseCXXCondition - if/switch/while condition expression.
1914///
1915/// condition:
1916/// expression
1917/// type-specifier-seq declarator '=' assignment-expression
1918/// [C++11] type-specifier-seq declarator '=' initializer-clause
1919/// [C++11] type-specifier-seq declarator braced-init-list
1920/// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
1921/// brace-or-equal-initializer
1922/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1923/// '=' assignment-expression
1924///
1925/// In C++1z, a condition may in some contexts be preceded by an
1926/// optional init-statement. This function will parse that too.
1927///
1928/// \param InitStmt If non-null, an init-statement is permitted, and if present
1929/// will be parsed and stored here.
1930///
1931/// \param Loc The location of the start of the statement that requires this
1932/// condition, e.g., the "for" in a for loop.
1933///
1934/// \param FRI If non-null, a for range declaration is permitted, and if
1935/// present will be parsed and stored here, and a null result will be returned.
1936///
1937/// \param EnterForConditionScope If true, enter a continue/break scope at the
1938/// appropriate moment for a 'for' loop.
1939///
1940/// \returns The parsed condition.
1941Sema::ConditionResult Parser::ParseCXXCondition(StmtResult *InitStmt,
1942 SourceLocation Loc,
1943 Sema::ConditionKind CK,
1944 ForRangeInfo *FRI,
1945 bool EnterForConditionScope) {
1946 // Helper to ensure we always enter a continue/break scope if requested.
1947 struct ForConditionScopeRAII {
1948 Scope *S;
1949 void enter(bool IsConditionVariable) {
1950 if (S) {
1951 S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
1952 S->setIsConditionVarScope(IsConditionVariable);
1953 }
1954 }
1955 ~ForConditionScopeRAII() {
1956 if (S)
1957 S->setIsConditionVarScope(false);
1958 }
1959 } ForConditionScope{EnterForConditionScope
6.1
'EnterForConditionScope' is false
6.1
'EnterForConditionScope' is false
? getCurScope() : nullptr};
1
Assuming 'EnterForConditionScope' is false
2
'?' condition is false
7
'?' condition is false
1960
1961 ParenBraceBracketBalancer BalancerRAIIObj(*this);
1962 PreferredType.enterCondition(Actions, Tok.getLocation());
1963
1964 if (Tok.is(tok::code_completion)) {
3
Taking false branch
8
Calling 'Token::is'
11
Returning from 'Token::is'
12
Taking false branch
1965 cutOffParsing();
1966 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1967 return Sema::ConditionError();
1968 }
1969
1970 ParsedAttributesWithRange attrs(AttrFactory);
1971 MaybeParseCXX11Attributes(attrs);
1972
1973 const auto WarnOnInit = [this, &CK] {
1974 Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
1975 ? diag::warn_cxx14_compat_init_statement
1976 : diag::ext_init_statement)
1977 << (CK == Sema::ConditionKind::Switch);
1978 };
1979
1980 // Determine what kind of thing we have.
1981 switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
4
Control jumps to 'case InitStmtDecl:' at line 2018
13
Control jumps to 'case InitStmtDecl:' at line 2018
1982 case ConditionOrInitStatement::Expression: {
1983 // If this is a for loop, we're entering its condition.
1984 ForConditionScope.enter(/*IsConditionVariable=*/false);
1985
1986 ProhibitAttributes(attrs);
1987
1988 // We can have an empty expression here.
1989 // if (; true);
1990 if (InitStmt && Tok.is(tok::semi)) {
1991 WarnOnInit();
1992 SourceLocation SemiLoc = Tok.getLocation();
1993 if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
1994 Diag(SemiLoc, diag::warn_empty_init_statement)
1995 << (CK == Sema::ConditionKind::Switch)
1996 << FixItHint::CreateRemoval(SemiLoc);
1997 }
1998 ConsumeToken();
1999 *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2000 return ParseCXXCondition(nullptr, Loc, CK);
2001 }
2002
2003 // Parse the expression.
2004 ExprResult Expr = ParseExpression(); // expression
2005 if (Expr.isInvalid())
2006 return Sema::ConditionError();
2007
2008 if (InitStmt && Tok.is(tok::semi)) {
2009 WarnOnInit();
2010 *InitStmt = Actions.ActOnExprStmt(Expr.get());
2011 ConsumeToken();
2012 return ParseCXXCondition(nullptr, Loc, CK);
2013 }
2014
2015 return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK);
2016 }
2017
2018 case ConditionOrInitStatement::InitStmtDecl: {
2019 WarnOnInit();
2020 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2021 DeclGroupPtrTy DG = ParseSimpleDeclaration(
2022 DeclaratorContext::SelectionInit, DeclEnd, attrs, /*RequireSemi=*/true);
2023 *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
14
Called C++ object pointer is null
2024 return ParseCXXCondition(nullptr, Loc, CK);
5
Passing null pointer value via 1st parameter 'InitStmt'
6
Calling 'Parser::ParseCXXCondition'
2025 }
2026
2027 case ConditionOrInitStatement::ForRangeDecl: {
2028 // This is 'for (init-stmt; for-range-decl : range-expr)'.
2029 // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2030 // permitted here.
2031 assert(FRI && "should not parse a for range declaration here")(static_cast <bool> (FRI && "should not parse a for range declaration here"
) ? void (0) : __assert_fail ("FRI && \"should not parse a for range declaration here\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 2031, __extension__ __PRETTY_FUNCTION__))
;
2032 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2033 DeclGroupPtrTy DG = ParseSimpleDeclaration(DeclaratorContext::ForInit,
2034 DeclEnd, attrs, false, FRI);
2035 FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2036 assert((FRI->ColonLoc.isValid() || !DG) &&(static_cast <bool> ((FRI->ColonLoc.isValid() || !DG
) && "cannot find for range declaration") ? void (0) :
__assert_fail ("(FRI->ColonLoc.isValid() || !DG) && \"cannot find for range declaration\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 2037, __extension__ __PRETTY_FUNCTION__))
2037 "cannot find for range declaration")(static_cast <bool> ((FRI->ColonLoc.isValid() || !DG
) && "cannot find for range declaration") ? void (0) :
__assert_fail ("(FRI->ColonLoc.isValid() || !DG) && \"cannot find for range declaration\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 2037, __extension__ __PRETTY_FUNCTION__))
;
2038 return Sema::ConditionResult();
2039 }
2040
2041 case ConditionOrInitStatement::ConditionDecl:
2042 case ConditionOrInitStatement::Error:
2043 break;
2044 }
2045
2046 // If this is a for loop, we're entering its condition.
2047 ForConditionScope.enter(/*IsConditionVariable=*/true);
2048
2049 // type-specifier-seq
2050 DeclSpec DS(AttrFactory);
2051 DS.takeAttributesFrom(attrs);
2052 ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2053
2054 // declarator
2055 Declarator DeclaratorInfo(DS, DeclaratorContext::Condition);
2056 ParseDeclarator(DeclaratorInfo);
2057
2058 // simple-asm-expr[opt]
2059 if (Tok.is(tok::kw_asm)) {
2060 SourceLocation Loc;
2061 ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2062 if (AsmLabel.isInvalid()) {
2063 SkipUntil(tok::semi, StopAtSemi);
2064 return Sema::ConditionError();
2065 }
2066 DeclaratorInfo.setAsmLabel(AsmLabel.get());
2067 DeclaratorInfo.SetRangeEnd(Loc);
2068 }
2069
2070 // If attributes are present, parse them.
2071 MaybeParseGNUAttributes(DeclaratorInfo);
2072
2073 // Type-check the declaration itself.
2074 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2075 DeclaratorInfo);
2076 if (Dcl.isInvalid())
2077 return Sema::ConditionError();
2078 Decl *DeclOut = Dcl.get();
2079
2080 // '=' assignment-expression
2081 // If a '==' or '+=' is found, suggest a fixit to '='.
2082 bool CopyInitialization = isTokenEqualOrEqualTypo();
2083 if (CopyInitialization)
2084 ConsumeToken();
2085
2086 ExprResult InitExpr = ExprError();
2087 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2088 Diag(Tok.getLocation(),
2089 diag::warn_cxx98_compat_generalized_initializer_lists);
2090 InitExpr = ParseBraceInitializer();
2091 } else if (CopyInitialization) {
2092 PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2093 InitExpr = ParseAssignmentExpression();
2094 } else if (Tok.is(tok::l_paren)) {
2095 // This was probably an attempt to initialize the variable.
2096 SourceLocation LParen = ConsumeParen(), RParen = LParen;
2097 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2098 RParen = ConsumeParen();
2099 Diag(DeclOut->getLocation(),
2100 diag::err_expected_init_in_condition_lparen)
2101 << SourceRange(LParen, RParen);
2102 } else {
2103 Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2104 }
2105
2106 if (!InitExpr.isInvalid())
2107 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2108 else
2109 Actions.ActOnInitializerError(DeclOut);
2110
2111 Actions.FinalizeDeclaration(DeclOut);
2112 return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2113}
2114
2115/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2116/// This should only be called when the current token is known to be part of
2117/// simple-type-specifier.
2118///
2119/// simple-type-specifier:
2120/// '::'[opt] nested-name-specifier[opt] type-name
2121/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2122/// char
2123/// wchar_t
2124/// bool
2125/// short
2126/// int
2127/// long
2128/// signed
2129/// unsigned
2130/// float
2131/// double
2132/// void
2133/// [GNU] typeof-specifier
2134/// [C++0x] auto [TODO]
2135///
2136/// type-name:
2137/// class-name
2138/// enum-name
2139/// typedef-name
2140///
2141void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2142 DS.SetRangeStart(Tok.getLocation());
2143 const char *PrevSpec;
2144 unsigned DiagID;
2145 SourceLocation Loc = Tok.getLocation();
2146 const clang::PrintingPolicy &Policy =
2147 Actions.getASTContext().getPrintingPolicy();
2148
2149 switch (Tok.getKind()) {
2150 case tok::identifier: // foo::bar
2151 case tok::coloncolon: // ::foo::bar
2152 llvm_unreachable("Annotation token should already be formed!")::llvm::llvm_unreachable_internal("Annotation token should already be formed!"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 2152)
;
2153 default:
2154 llvm_unreachable("Not a simple-type-specifier token!")::llvm::llvm_unreachable_internal("Not a simple-type-specifier token!"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 2154)
;
2155
2156 // type-name
2157 case tok::annot_typename: {
2158 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2159 getTypeAnnotation(Tok), Policy);
2160 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2161 ConsumeAnnotationToken();
2162
2163 DS.Finish(Actions, Policy);
2164 return;
2165 }
2166
2167 case tok::kw__ExtInt: {
2168 ExprResult ER = ParseExtIntegerArgument();
2169 if (ER.isInvalid())
2170 DS.SetTypeSpecError();
2171 else
2172 DS.SetExtIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2173
2174 // Do this here because we have already consumed the close paren.
2175 DS.SetRangeEnd(PrevTokLocation);
2176 DS.Finish(Actions, Policy);
2177 return;
2178 }
2179
2180 // builtin types
2181 case tok::kw_short:
2182 DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2183 Policy);
2184 break;
2185 case tok::kw_long:
2186 DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2187 Policy);
2188 break;
2189 case tok::kw___int64:
2190 DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2191 Policy);
2192 break;
2193 case tok::kw_signed:
2194 DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2195 break;
2196 case tok::kw_unsigned:
2197 DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2198 break;
2199 case tok::kw_void:
2200 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2201 break;
2202 case tok::kw_char:
2203 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2204 break;
2205 case tok::kw_int:
2206 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2207 break;
2208 case tok::kw___int128:
2209 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2210 break;
2211 case tok::kw___bf16:
2212 DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2213 break;
2214 case tok::kw_half:
2215 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2216 break;
2217 case tok::kw_float:
2218 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2219 break;
2220 case tok::kw_double:
2221 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2222 break;
2223 case tok::kw__Float16:
2224 DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2225 break;
2226 case tok::kw___float128:
2227 DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2228 break;
2229 case tok::kw___ibm128:
2230 DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2231 break;
2232 case tok::kw_wchar_t:
2233 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2234 break;
2235 case tok::kw_char8_t:
2236 DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2237 break;
2238 case tok::kw_char16_t:
2239 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2240 break;
2241 case tok::kw_char32_t:
2242 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2243 break;
2244 case tok::kw_bool:
2245 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2246 break;
2247#define GENERIC_IMAGE_TYPE(ImgType, Id) \
2248 case tok::kw_##ImgType##_t: \
2249 DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \
2250 Policy); \
2251 break;
2252#include "clang/Basic/OpenCLImageTypes.def"
2253
2254 case tok::annot_decltype:
2255 case tok::kw_decltype:
2256 DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2257 return DS.Finish(Actions, Policy);
2258
2259 // GNU typeof support.
2260 case tok::kw_typeof:
2261 ParseTypeofSpecifier(DS);
2262 DS.Finish(Actions, Policy);
2263 return;
2264 }
2265 ConsumeAnyToken();
2266 DS.SetRangeEnd(PrevTokLocation);
2267 DS.Finish(Actions, Policy);
2268}
2269
2270/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2271/// [dcl.name]), which is a non-empty sequence of type-specifiers,
2272/// e.g., "const short int". Note that the DeclSpec is *not* finished
2273/// by parsing the type-specifier-seq, because these sequences are
2274/// typically followed by some form of declarator. Returns true and
2275/// emits diagnostics if this is not a type-specifier-seq, false
2276/// otherwise.
2277///
2278/// type-specifier-seq: [C++ 8.1]
2279/// type-specifier type-specifier-seq[opt]
2280///
2281bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
2282 ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier);
2283 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2284 return false;
2285}
2286
2287/// Finish parsing a C++ unqualified-id that is a template-id of
2288/// some form.
2289///
2290/// This routine is invoked when a '<' is encountered after an identifier or
2291/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2292/// whether the unqualified-id is actually a template-id. This routine will
2293/// then parse the template arguments and form the appropriate template-id to
2294/// return to the caller.
2295///
2296/// \param SS the nested-name-specifier that precedes this template-id, if
2297/// we're actually parsing a qualified-id.
2298///
2299/// \param ObjectType if this unqualified-id occurs within a member access
2300/// expression, the type of the base object whose member is being accessed.
2301///
2302/// \param ObjectHadErrors this unqualified-id occurs within a member access
2303/// expression, indicates whether the original subexpressions had any errors.
2304///
2305/// \param Name for constructor and destructor names, this is the actual
2306/// identifier that may be a template-name.
2307///
2308/// \param NameLoc the location of the class-name in a constructor or
2309/// destructor.
2310///
2311/// \param EnteringContext whether we're entering the scope of the
2312/// nested-name-specifier.
2313///
2314/// \param Id as input, describes the template-name or operator-function-id
2315/// that precedes the '<'. If template arguments were parsed successfully,
2316/// will be updated with the template-id.
2317///
2318/// \param AssumeTemplateId When true, this routine will assume that the name
2319/// refers to a template without performing name lookup to verify.
2320///
2321/// \returns true if a parse error occurred, false otherwise.
2322bool Parser::ParseUnqualifiedIdTemplateId(
2323 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2324 SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2325 bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2326 assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id")(static_cast <bool> (Tok.is(tok::less) && "Expected '<' to finish parsing a template-id"
) ? void (0) : __assert_fail ("Tok.is(tok::less) && \"Expected '<' to finish parsing a template-id\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 2326, __extension__ __PRETTY_FUNCTION__))
;
2327
2328 TemplateTy Template;
2329 TemplateNameKind TNK = TNK_Non_template;
2330 switch (Id.getKind()) {
2331 case UnqualifiedIdKind::IK_Identifier:
2332 case UnqualifiedIdKind::IK_OperatorFunctionId:
2333 case UnqualifiedIdKind::IK_LiteralOperatorId:
2334 if (AssumeTemplateId) {
2335 // We defer the injected-class-name checks until we've found whether
2336 // this template-id is used to form a nested-name-specifier or not.
2337 TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2338 ObjectType, EnteringContext, Template,
2339 /*AllowInjectedClassName*/ true);
2340 } else {
2341 bool MemberOfUnknownSpecialization;
2342 TNK = Actions.isTemplateName(getCurScope(), SS,
2343 TemplateKWLoc.isValid(), Id,
2344 ObjectType, EnteringContext, Template,
2345 MemberOfUnknownSpecialization);
2346 // If lookup found nothing but we're assuming that this is a template
2347 // name, double-check that makes sense syntactically before committing
2348 // to it.
2349 if (TNK == TNK_Undeclared_template &&
2350 isTemplateArgumentList(0) == TPResult::False)
2351 return false;
2352
2353 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2354 ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2355 // If we had errors before, ObjectType can be dependent even without any
2356 // templates, do not report missing template keyword in that case.
2357 if (!ObjectHadErrors) {
2358 // We have something like t->getAs<T>(), where getAs is a
2359 // member of an unknown specialization. However, this will only
2360 // parse correctly as a template, so suggest the keyword 'template'
2361 // before 'getAs' and treat this as a dependent template name.
2362 std::string Name;
2363 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2364 Name = std::string(Id.Identifier->getName());
2365 else {
2366 Name = "operator ";
2367 if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2368 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2369 else
2370 Name += Id.Identifier->getName();
2371 }
2372 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2373 << Name
2374 << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2375 }
2376 TNK = Actions.ActOnTemplateName(
2377 getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2378 Template, /*AllowInjectedClassName*/ true);
2379 } else if (TNK == TNK_Non_template) {
2380 return false;
2381 }
2382 }
2383 break;
2384
2385 case UnqualifiedIdKind::IK_ConstructorName: {
2386 UnqualifiedId TemplateName;
2387 bool MemberOfUnknownSpecialization;
2388 TemplateName.setIdentifier(Name, NameLoc);
2389 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2390 TemplateName, ObjectType,
2391 EnteringContext, Template,
2392 MemberOfUnknownSpecialization);
2393 if (TNK == TNK_Non_template)
2394 return false;
2395 break;
2396 }
2397
2398 case UnqualifiedIdKind::IK_DestructorName: {
2399 UnqualifiedId TemplateName;
2400 bool MemberOfUnknownSpecialization;
2401 TemplateName.setIdentifier(Name, NameLoc);
2402 if (ObjectType) {
2403 TNK = Actions.ActOnTemplateName(
2404 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2405 EnteringContext, Template, /*AllowInjectedClassName*/ true);
2406 } else {
2407 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2408 TemplateName, ObjectType,
2409 EnteringContext, Template,
2410 MemberOfUnknownSpecialization);
2411
2412 if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2413 Diag(NameLoc, diag::err_destructor_template_id)
2414 << Name << SS.getRange();
2415 // Carry on to parse the template arguments before bailing out.
2416 }
2417 }
2418 break;
2419 }
2420
2421 default:
2422 return false;
2423 }
2424
2425 // Parse the enclosed template argument list.
2426 SourceLocation LAngleLoc, RAngleLoc;
2427 TemplateArgList TemplateArgs;
2428 if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs,
2429 RAngleLoc))
2430 return true;
2431
2432 // If this is a non-template, we already issued a diagnostic.
2433 if (TNK == TNK_Non_template)
2434 return true;
2435
2436 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2437 Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2438 Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2439 // Form a parsed representation of the template-id to be stored in the
2440 // UnqualifiedId.
2441
2442 // FIXME: Store name for literal operator too.
2443 IdentifierInfo *TemplateII =
2444 Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2445 : nullptr;
2446 OverloadedOperatorKind OpKind =
2447 Id.getKind() == UnqualifiedIdKind::IK_Identifier
2448 ? OO_None
2449 : Id.OperatorFunctionId.Operator;
2450
2451 TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2452 TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2453 LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2454
2455 Id.setTemplateId(TemplateId);
2456 return false;
2457 }
2458
2459 // Bundle the template arguments together.
2460 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2461
2462 // Constructor and destructor names.
2463 TypeResult Type = Actions.ActOnTemplateIdType(
2464 getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2465 TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2466 if (Type.isInvalid())
2467 return true;
2468
2469 if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2470 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2471 else
2472 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2473
2474 return false;
2475}
2476
2477/// Parse an operator-function-id or conversion-function-id as part
2478/// of a C++ unqualified-id.
2479///
2480/// This routine is responsible only for parsing the operator-function-id or
2481/// conversion-function-id; it does not handle template arguments in any way.
2482///
2483/// \code
2484/// operator-function-id: [C++ 13.5]
2485/// 'operator' operator
2486///
2487/// operator: one of
2488/// new delete new[] delete[]
2489/// + - * / % ^ & | ~
2490/// ! = < > += -= *= /= %=
2491/// ^= &= |= << >> >>= <<= == !=
2492/// <= >= && || ++ -- , ->* ->
2493/// () [] <=>
2494///
2495/// conversion-function-id: [C++ 12.3.2]
2496/// operator conversion-type-id
2497///
2498/// conversion-type-id:
2499/// type-specifier-seq conversion-declarator[opt]
2500///
2501/// conversion-declarator:
2502/// ptr-operator conversion-declarator[opt]
2503/// \endcode
2504///
2505/// \param SS The nested-name-specifier that preceded this unqualified-id. If
2506/// non-empty, then we are parsing the unqualified-id of a qualified-id.
2507///
2508/// \param EnteringContext whether we are entering the scope of the
2509/// nested-name-specifier.
2510///
2511/// \param ObjectType if this unqualified-id occurs within a member access
2512/// expression, the type of the base object whose member is being accessed.
2513///
2514/// \param Result on a successful parse, contains the parsed unqualified-id.
2515///
2516/// \returns true if parsing fails, false otherwise.
2517bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2518 ParsedType ObjectType,
2519 UnqualifiedId &Result) {
2520 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword")(static_cast <bool> (Tok.is(tok::kw_operator) &&
"Expected 'operator' keyword") ? void (0) : __assert_fail ("Tok.is(tok::kw_operator) && \"Expected 'operator' keyword\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 2520, __extension__ __PRETTY_FUNCTION__))
;
2521
2522 // Consume the 'operator' keyword.
2523 SourceLocation KeywordLoc = ConsumeToken();
2524
2525 // Determine what kind of operator name we have.
2526 unsigned SymbolIdx = 0;
2527 SourceLocation SymbolLocations[3];
2528 OverloadedOperatorKind Op = OO_None;
2529 switch (Tok.getKind()) {
2530 case tok::kw_new:
2531 case tok::kw_delete: {
2532 bool isNew = Tok.getKind() == tok::kw_new;
2533 // Consume the 'new' or 'delete'.
2534 SymbolLocations[SymbolIdx++] = ConsumeToken();
2535 // Check for array new/delete.
2536 if (Tok.is(tok::l_square) &&
2537 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2538 // Consume the '[' and ']'.
2539 BalancedDelimiterTracker T(*this, tok::l_square);
2540 T.consumeOpen();
2541 T.consumeClose();
2542 if (T.getCloseLocation().isInvalid())
2543 return true;
2544
2545 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2546 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2547 Op = isNew? OO_Array_New : OO_Array_Delete;
2548 } else {
2549 Op = isNew? OO_New : OO_Delete;
2550 }
2551 break;
2552 }
2553
2554#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2555 case tok::Token: \
2556 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
2557 Op = OO_##Name; \
2558 break;
2559#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2560#include "clang/Basic/OperatorKinds.def"
2561
2562 case tok::l_paren: {
2563 // Consume the '(' and ')'.
2564 BalancedDelimiterTracker T(*this, tok::l_paren);
2565 T.consumeOpen();
2566 T.consumeClose();
2567 if (T.getCloseLocation().isInvalid())
2568 return true;
2569
2570 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2571 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2572 Op = OO_Call;
2573 break;
2574 }
2575
2576 case tok::l_square: {
2577 // Consume the '[' and ']'.
2578 BalancedDelimiterTracker T(*this, tok::l_square);
2579 T.consumeOpen();
2580 T.consumeClose();
2581 if (T.getCloseLocation().isInvalid())
2582 return true;
2583
2584 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2585 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2586 Op = OO_Subscript;
2587 break;
2588 }
2589
2590 case tok::code_completion: {
2591 // Don't try to parse any further.
2592 cutOffParsing();
2593 // Code completion for the operator name.
2594 Actions.CodeCompleteOperatorName(getCurScope());
2595 return true;
2596 }
2597
2598 default:
2599 break;
2600 }
2601
2602 if (Op != OO_None) {
2603 // We have parsed an operator-function-id.
2604 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2605 return false;
2606 }
2607
2608 // Parse a literal-operator-id.
2609 //
2610 // literal-operator-id: C++11 [over.literal]
2611 // operator string-literal identifier
2612 // operator user-defined-string-literal
2613
2614 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2615 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2616
2617 SourceLocation DiagLoc;
2618 unsigned DiagId = 0;
2619
2620 // We're past translation phase 6, so perform string literal concatenation
2621 // before checking for "".
2622 SmallVector<Token, 4> Toks;
2623 SmallVector<SourceLocation, 4> TokLocs;
2624 while (isTokenStringLiteral()) {
2625 if (!Tok.is(tok::string_literal) && !DiagId) {
2626 // C++11 [over.literal]p1:
2627 // The string-literal or user-defined-string-literal in a
2628 // literal-operator-id shall have no encoding-prefix [...].
2629 DiagLoc = Tok.getLocation();
2630 DiagId = diag::err_literal_operator_string_prefix;
2631 }
2632 Toks.push_back(Tok);
2633 TokLocs.push_back(ConsumeStringToken());
2634 }
2635
2636 StringLiteralParser Literal(Toks, PP);
2637 if (Literal.hadError)
2638 return true;
2639
2640 // Grab the literal operator's suffix, which will be either the next token
2641 // or a ud-suffix from the string literal.
2642 bool IsUDSuffix = !Literal.getUDSuffix().empty();
2643 IdentifierInfo *II = nullptr;
2644 SourceLocation SuffixLoc;
2645 if (IsUDSuffix) {
2646 II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2647 SuffixLoc =
2648 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2649 Literal.getUDSuffixOffset(),
2650 PP.getSourceManager(), getLangOpts());
2651 } else if (Tok.is(tok::identifier)) {
2652 II = Tok.getIdentifierInfo();
2653 SuffixLoc = ConsumeToken();
2654 TokLocs.push_back(SuffixLoc);
2655 } else {
2656 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2657 return true;
2658 }
2659
2660 // The string literal must be empty.
2661 if (!Literal.GetString().empty() || Literal.Pascal) {
2662 // C++11 [over.literal]p1:
2663 // The string-literal or user-defined-string-literal in a
2664 // literal-operator-id shall [...] contain no characters
2665 // other than the implicit terminating '\0'.
2666 DiagLoc = TokLocs.front();
2667 DiagId = diag::err_literal_operator_string_not_empty;
2668 }
2669
2670 if (DiagId) {
2671 // This isn't a valid literal-operator-id, but we think we know
2672 // what the user meant. Tell them what they should have written.
2673 SmallString<32> Str;
2674 Str += "\"\"";
2675 Str += II->getName();
2676 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2677 SourceRange(TokLocs.front(), TokLocs.back()), Str);
2678 }
2679
2680 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2681
2682 return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
2683 }
2684
2685 // Parse a conversion-function-id.
2686 //
2687 // conversion-function-id: [C++ 12.3.2]
2688 // operator conversion-type-id
2689 //
2690 // conversion-type-id:
2691 // type-specifier-seq conversion-declarator[opt]
2692 //
2693 // conversion-declarator:
2694 // ptr-operator conversion-declarator[opt]
2695
2696 // Parse the type-specifier-seq.
2697 DeclSpec DS(AttrFactory);
2698 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2699 return true;
2700
2701 // Parse the conversion-declarator, which is merely a sequence of
2702 // ptr-operators.
2703 Declarator D(DS, DeclaratorContext::ConversionId);
2704 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2705
2706 // Finish up the type.
2707 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2708 if (Ty.isInvalid())
2709 return true;
2710
2711 // Note that this is a conversion-function-id.
2712 Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2713 D.getSourceRange().getEnd());
2714 return false;
2715}
2716
2717/// Parse a C++ unqualified-id (or a C identifier), which describes the
2718/// name of an entity.
2719///
2720/// \code
2721/// unqualified-id: [C++ expr.prim.general]
2722/// identifier
2723/// operator-function-id
2724/// conversion-function-id
2725/// [C++0x] literal-operator-id [TODO]
2726/// ~ class-name
2727/// template-id
2728///
2729/// \endcode
2730///
2731/// \param SS The nested-name-specifier that preceded this unqualified-id. If
2732/// non-empty, then we are parsing the unqualified-id of a qualified-id.
2733///
2734/// \param ObjectType if this unqualified-id occurs within a member access
2735/// expression, the type of the base object whose member is being accessed.
2736///
2737/// \param ObjectHadErrors if this unqualified-id occurs within a member access
2738/// expression, indicates whether the original subexpressions had any errors.
2739/// When true, diagnostics for missing 'template' keyword will be supressed.
2740///
2741/// \param EnteringContext whether we are entering the scope of the
2742/// nested-name-specifier.
2743///
2744/// \param AllowDestructorName whether we allow parsing of a destructor name.
2745///
2746/// \param AllowConstructorName whether we allow parsing a constructor name.
2747///
2748/// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2749///
2750/// \param Result on a successful parse, contains the parsed unqualified-id.
2751///
2752/// \returns true if parsing fails, false otherwise.
2753bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2754 bool ObjectHadErrors, bool EnteringContext,
2755 bool AllowDestructorName,
2756 bool AllowConstructorName,
2757 bool AllowDeductionGuide,
2758 SourceLocation *TemplateKWLoc,
2759 UnqualifiedId &Result) {
2760 if (TemplateKWLoc)
2761 *TemplateKWLoc = SourceLocation();
2762
2763 // Handle 'A::template B'. This is for template-ids which have not
2764 // already been annotated by ParseOptionalCXXScopeSpecifier().
2765 bool TemplateSpecified = false;
2766 if (Tok.is(tok::kw_template)) {
2767 if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2768 TemplateSpecified = true;
2769 *TemplateKWLoc = ConsumeToken();
2770 } else {
2771 SourceLocation TemplateLoc = ConsumeToken();
2772 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2773 << FixItHint::CreateRemoval(TemplateLoc);
2774 }
2775 }
2776
2777 // unqualified-id:
2778 // identifier
2779 // template-id (when it hasn't already been annotated)
2780 if (Tok.is(tok::identifier)) {
2781 // Consume the identifier.
2782 IdentifierInfo *Id = Tok.getIdentifierInfo();
2783 SourceLocation IdLoc = ConsumeToken();
2784
2785 if (!getLangOpts().CPlusPlus) {
2786 // If we're not in C++, only identifiers matter. Record the
2787 // identifier and return.
2788 Result.setIdentifier(Id, IdLoc);
2789 return false;
2790 }
2791
2792 ParsedTemplateTy TemplateName;
2793 if (AllowConstructorName &&
2794 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2795 // We have parsed a constructor name.
2796 ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2797 EnteringContext);
2798 if (!Ty)
2799 return true;
2800 Result.setConstructorName(Ty, IdLoc, IdLoc);
2801 } else if (getLangOpts().CPlusPlus17 &&
2802 AllowDeductionGuide && SS.isEmpty() &&
2803 Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
2804 &TemplateName)) {
2805 // We have parsed a template-name naming a deduction guide.
2806 Result.setDeductionGuideName(TemplateName, IdLoc);
2807 } else {
2808 // We have parsed an identifier.
2809 Result.setIdentifier(Id, IdLoc);
2810 }
2811
2812 // If the next token is a '<', we may have a template.
2813 TemplateTy Template;
2814 if (Tok.is(tok::less))
2815 return ParseUnqualifiedIdTemplateId(
2816 SS, ObjectType, ObjectHadErrors,
2817 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2818 EnteringContext, Result, TemplateSpecified);
2819 else if (TemplateSpecified &&
2820 Actions.ActOnTemplateName(
2821 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2822 EnteringContext, Template,
2823 /*AllowInjectedClassName*/ true) == TNK_Non_template)
2824 return true;
2825
2826 return false;
2827 }
2828
2829 // unqualified-id:
2830 // template-id (already parsed and annotated)
2831 if (Tok.is(tok::annot_template_id)) {
2832 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2833
2834 // FIXME: Consider passing invalid template-ids on to callers; they may
2835 // be able to recover better than we can.
2836 if (TemplateId->isInvalid()) {
2837 ConsumeAnnotationToken();
2838 return true;
2839 }
2840
2841 // If the template-name names the current class, then this is a constructor
2842 if (AllowConstructorName && TemplateId->Name &&
2843 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2844 if (SS.isSet()) {
2845 // C++ [class.qual]p2 specifies that a qualified template-name
2846 // is taken as the constructor name where a constructor can be
2847 // declared. Thus, the template arguments are extraneous, so
2848 // complain about them and remove them entirely.
2849 Diag(TemplateId->TemplateNameLoc,
2850 diag::err_out_of_line_constructor_template_id)
2851 << TemplateId->Name
2852 << FixItHint::CreateRemoval(
2853 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2854 ParsedType Ty = Actions.getConstructorName(
2855 *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2856 EnteringContext);
2857 if (!Ty)
2858 return true;
2859 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2860 TemplateId->RAngleLoc);
2861 ConsumeAnnotationToken();
2862 return false;
2863 }
2864
2865 Result.setConstructorTemplateId(TemplateId);
2866 ConsumeAnnotationToken();
2867 return false;
2868 }
2869
2870 // We have already parsed a template-id; consume the annotation token as
2871 // our unqualified-id.
2872 Result.setTemplateId(TemplateId);
2873 SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2874 if (TemplateLoc.isValid()) {
2875 if (TemplateKWLoc && (ObjectType || SS.isSet()))
2876 *TemplateKWLoc = TemplateLoc;
2877 else
2878 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2879 << FixItHint::CreateRemoval(TemplateLoc);
2880 }
2881 ConsumeAnnotationToken();
2882 return false;
2883 }
2884
2885 // unqualified-id:
2886 // operator-function-id
2887 // conversion-function-id
2888 if (Tok.is(tok::kw_operator)) {
2889 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2890 return true;
2891
2892 // If we have an operator-function-id or a literal-operator-id and the next
2893 // token is a '<', we may have a
2894 //
2895 // template-id:
2896 // operator-function-id < template-argument-list[opt] >
2897 TemplateTy Template;
2898 if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2899 Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
2900 Tok.is(tok::less))
2901 return ParseUnqualifiedIdTemplateId(
2902 SS, ObjectType, ObjectHadErrors,
2903 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
2904 SourceLocation(), EnteringContext, Result, TemplateSpecified);
2905 else if (TemplateSpecified &&
2906 Actions.ActOnTemplateName(
2907 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2908 EnteringContext, Template,
2909 /*AllowInjectedClassName*/ true) == TNK_Non_template)
2910 return true;
2911
2912 return false;
2913 }
2914
2915 if (getLangOpts().CPlusPlus &&
2916 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2917 // C++ [expr.unary.op]p10:
2918 // There is an ambiguity in the unary-expression ~X(), where X is a
2919 // class-name. The ambiguity is resolved in favor of treating ~ as a
2920 // unary complement rather than treating ~X as referring to a destructor.
2921
2922 // Parse the '~'.
2923 SourceLocation TildeLoc = ConsumeToken();
2924
2925 if (TemplateSpecified) {
2926 // C++ [temp.names]p3:
2927 // A name prefixed by the keyword template shall be a template-id [...]
2928 //
2929 // A template-id cannot begin with a '~' token. This would never work
2930 // anyway: x.~A<int>() would specify that the destructor is a template,
2931 // not that 'A' is a template.
2932 //
2933 // FIXME: Suggest replacing the attempted destructor name with a correct
2934 // destructor name and recover. (This is not trivial if this would become
2935 // a pseudo-destructor name).
2936 Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
2937 << Tok.getLocation();
2938 return true;
2939 }
2940
2941 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2942 DeclSpec DS(AttrFactory);
2943 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2944 if (ParsedType Type =
2945 Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
2946 Result.setDestructorName(TildeLoc, Type, EndLoc);
2947 return false;
2948 }
2949 return true;
2950 }
2951
2952 // Parse the class-name.
2953 if (Tok.isNot(tok::identifier)) {
2954 Diag(Tok, diag::err_destructor_tilde_identifier);
2955 return true;
2956 }
2957
2958 // If the user wrote ~T::T, correct it to T::~T.
2959 DeclaratorScopeObj DeclScopeObj(*this, SS);
2960 if (NextToken().is(tok::coloncolon)) {
2961 // Don't let ParseOptionalCXXScopeSpecifier() "correct"
2962 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
2963 // it will confuse this recovery logic.
2964 ColonProtectionRAIIObject ColonRAII(*this, false);
2965
2966 if (SS.isSet()) {
2967 AnnotateScopeToken(SS, /*NewAnnotation*/true);
2968 SS.clear();
2969 }
2970 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
2971 EnteringContext))
2972 return true;
2973 if (SS.isNotEmpty())
2974 ObjectType = nullptr;
2975 if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
2976 !SS.isSet()) {
2977 Diag(TildeLoc, diag::err_destructor_tilde_scope);
2978 return true;
2979 }
2980
2981 // Recover as if the tilde had been written before the identifier.
2982 Diag(TildeLoc, diag::err_destructor_tilde_scope)
2983 << FixItHint::CreateRemoval(TildeLoc)
2984 << FixItHint::CreateInsertion(Tok.getLocation(), "~");
2985
2986 // Temporarily enter the scope for the rest of this function.
2987 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2988 DeclScopeObj.EnterDeclaratorScope();
2989 }
2990
2991 // Parse the class-name (or template-name in a simple-template-id).
2992 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2993 SourceLocation ClassNameLoc = ConsumeToken();
2994
2995 if (Tok.is(tok::less)) {
2996 Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
2997 return ParseUnqualifiedIdTemplateId(
2998 SS, ObjectType, ObjectHadErrors,
2999 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
3000 ClassNameLoc, EnteringContext, Result, TemplateSpecified);
3001 }
3002
3003 // Note that this is a destructor name.
3004 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
3005 ClassNameLoc, getCurScope(),
3006 SS, ObjectType,
3007 EnteringContext);
3008 if (!Ty)
3009 return true;
3010
3011 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3012 return false;
3013 }
3014
3015 Diag(Tok, diag::err_expected_unqualified_id)
3016 << getLangOpts().CPlusPlus;
3017 return true;
3018}
3019
3020/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3021/// memory in a typesafe manner and call constructors.
3022///
3023/// This method is called to parse the new expression after the optional :: has
3024/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
3025/// is its location. Otherwise, "Start" is the location of the 'new' token.
3026///
3027/// new-expression:
3028/// '::'[opt] 'new' new-placement[opt] new-type-id
3029/// new-initializer[opt]
3030/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3031/// new-initializer[opt]
3032///
3033/// new-placement:
3034/// '(' expression-list ')'
3035///
3036/// new-type-id:
3037/// type-specifier-seq new-declarator[opt]
3038/// [GNU] attributes type-specifier-seq new-declarator[opt]
3039///
3040/// new-declarator:
3041/// ptr-operator new-declarator[opt]
3042/// direct-new-declarator
3043///
3044/// new-initializer:
3045/// '(' expression-list[opt] ')'
3046/// [C++0x] braced-init-list
3047///
3048ExprResult
3049Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3050 assert(Tok.is(tok::kw_new) && "expected 'new' token")(static_cast <bool> (Tok.is(tok::kw_new) && "expected 'new' token"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_new) && \"expected 'new' token\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3050, __extension__ __PRETTY_FUNCTION__))
;
3051 ConsumeToken(); // Consume 'new'
3052
3053 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3054 // second form of new-expression. It can't be a new-type-id.
3055
3056 ExprVector PlacementArgs;
3057 SourceLocation PlacementLParen, PlacementRParen;
3058
3059 SourceRange TypeIdParens;
3060 DeclSpec DS(AttrFactory);
3061 Declarator DeclaratorInfo(DS, DeclaratorContext::CXXNew);
3062 if (Tok.is(tok::l_paren)) {
3063 // If it turns out to be a placement, we change the type location.
3064 BalancedDelimiterTracker T(*this, tok::l_paren);
3065 T.consumeOpen();
3066 PlacementLParen = T.getOpenLocation();
3067 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3068 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3069 return ExprError();
3070 }
3071
3072 T.consumeClose();
3073 PlacementRParen = T.getCloseLocation();
3074 if (PlacementRParen.isInvalid()) {
3075 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3076 return ExprError();
3077 }
3078
3079 if (PlacementArgs.empty()) {
3080 // Reset the placement locations. There was no placement.
3081 TypeIdParens = T.getRange();
3082 PlacementLParen = PlacementRParen = SourceLocation();
3083 } else {
3084 // We still need the type.
3085 if (Tok.is(tok::l_paren)) {
3086 BalancedDelimiterTracker T(*this, tok::l_paren);
3087 T.consumeOpen();
3088 MaybeParseGNUAttributes(DeclaratorInfo);
3089 ParseSpecifierQualifierList(DS);
3090 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3091 ParseDeclarator(DeclaratorInfo);
3092 T.consumeClose();
3093 TypeIdParens = T.getRange();
3094 } else {
3095 MaybeParseGNUAttributes(DeclaratorInfo);
3096 if (ParseCXXTypeSpecifierSeq(DS))
3097 DeclaratorInfo.setInvalidType(true);
3098 else {
3099 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3100 ParseDeclaratorInternal(DeclaratorInfo,
3101 &Parser::ParseDirectNewDeclarator);
3102 }
3103 }
3104 }
3105 } else {
3106 // A new-type-id is a simplified type-id, where essentially the
3107 // direct-declarator is replaced by a direct-new-declarator.
3108 MaybeParseGNUAttributes(DeclaratorInfo);
3109 if (ParseCXXTypeSpecifierSeq(DS))
3110 DeclaratorInfo.setInvalidType(true);
3111 else {
3112 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3113 ParseDeclaratorInternal(DeclaratorInfo,
3114 &Parser::ParseDirectNewDeclarator);
3115 }
3116 }
3117 if (DeclaratorInfo.isInvalidType()) {
3118 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3119 return ExprError();
3120 }
3121
3122 ExprResult Initializer;
3123
3124 if (Tok.is(tok::l_paren)) {
3125 SourceLocation ConstructorLParen, ConstructorRParen;
3126 ExprVector ConstructorArgs;
3127 BalancedDelimiterTracker T(*this, tok::l_paren);
3128 T.consumeOpen();
3129 ConstructorLParen = T.getOpenLocation();
3130 if (Tok.isNot(tok::r_paren)) {
3131 CommaLocsTy CommaLocs;
3132 auto RunSignatureHelp = [&]() {
3133 ParsedType TypeRep =
3134 Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
3135 QualType PreferredType;
3136 // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3137 // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3138 // `new decltype(invalid) (^)`.
3139 if (TypeRep)
3140 PreferredType = Actions.ProduceConstructorSignatureHelp(
3141 getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
3142 DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen);
3143 CalledSignatureHelp = true;
3144 return PreferredType;
3145 };
3146 if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
3147 PreferredType.enterFunctionArgument(Tok.getLocation(),
3148 RunSignatureHelp);
3149 })) {
3150 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3151 RunSignatureHelp();
3152 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3153 return ExprError();
3154 }
3155 }
3156 T.consumeClose();
3157 ConstructorRParen = T.getCloseLocation();
3158 if (ConstructorRParen.isInvalid()) {
3159 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3160 return ExprError();
3161 }
3162 Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3163 ConstructorRParen,
3164 ConstructorArgs);
3165 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3166 Diag(Tok.getLocation(),
3167 diag::warn_cxx98_compat_generalized_initializer_lists);
3168 Initializer = ParseBraceInitializer();
3169 }
3170 if (Initializer.isInvalid())
3171 return Initializer;
3172
3173 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3174 PlacementArgs, PlacementRParen,
3175 TypeIdParens, DeclaratorInfo, Initializer.get());
3176}
3177
3178/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3179/// passed to ParseDeclaratorInternal.
3180///
3181/// direct-new-declarator:
3182/// '[' expression[opt] ']'
3183/// direct-new-declarator '[' constant-expression ']'
3184///
3185void Parser::ParseDirectNewDeclarator(Declarator &D) {
3186 // Parse the array dimensions.
3187 bool First = true;
3188 while (Tok.is(tok::l_square)) {
3189 // An array-size expression can't start with a lambda.
3190 if (CheckProhibitedCXX11Attribute())
3191 continue;
3192
3193 BalancedDelimiterTracker T(*this, tok::l_square);
3194 T.consumeOpen();
3195
3196 ExprResult Size =
3197 First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3198 : ParseConstantExpression();
3199 if (Size.isInvalid()) {
3200 // Recover
3201 SkipUntil(tok::r_square, StopAtSemi);
3202 return;
3203 }
3204 First = false;
3205
3206 T.consumeClose();
3207
3208 // Attributes here appertain to the array type. C++11 [expr.new]p5.
3209 ParsedAttributes Attrs(AttrFactory);
3210 MaybeParseCXX11Attributes(Attrs);
3211
3212 D.AddTypeInfo(DeclaratorChunk::getArray(0,
3213 /*isStatic=*/false, /*isStar=*/false,
3214 Size.get(), T.getOpenLocation(),
3215 T.getCloseLocation()),
3216 std::move(Attrs), T.getCloseLocation());
3217
3218 if (T.getCloseLocation().isInvalid())
3219 return;
3220 }
3221}
3222
3223/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3224/// This ambiguity appears in the syntax of the C++ new operator.
3225///
3226/// new-expression:
3227/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3228/// new-initializer[opt]
3229///
3230/// new-placement:
3231/// '(' expression-list ')'
3232///
3233bool Parser::ParseExpressionListOrTypeId(
3234 SmallVectorImpl<Expr*> &PlacementArgs,
3235 Declarator &D) {
3236 // The '(' was already consumed.
3237 if (isTypeIdInParens()) {
3238 ParseSpecifierQualifierList(D.getMutableDeclSpec());
3239 D.SetSourceRange(D.getDeclSpec().getSourceRange());
3240 ParseDeclarator(D);
3241 return D.isInvalidType();
3242 }
3243
3244 // It's not a type, it has to be an expression list.
3245 // Discard the comma locations - ActOnCXXNew has enough parameters.
3246 CommaLocsTy CommaLocs;
3247 return ParseExpressionList(PlacementArgs, CommaLocs);
3248}
3249
3250/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3251/// to free memory allocated by new.
3252///
3253/// This method is called to parse the 'delete' expression after the optional
3254/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
3255/// and "Start" is its location. Otherwise, "Start" is the location of the
3256/// 'delete' token.
3257///
3258/// delete-expression:
3259/// '::'[opt] 'delete' cast-expression
3260/// '::'[opt] 'delete' '[' ']' cast-expression
3261ExprResult
3262Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3263 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword")(static_cast <bool> (Tok.is(tok::kw_delete) && "Expected 'delete' keyword"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_delete) && \"Expected 'delete' keyword\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3263, __extension__ __PRETTY_FUNCTION__))
;
3264 ConsumeToken(); // Consume 'delete'
3265
3266 // Array delete?
3267 bool ArrayDelete = false;
3268 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3269 // C++11 [expr.delete]p1:
3270 // Whenever the delete keyword is followed by empty square brackets, it
3271 // shall be interpreted as [array delete].
3272 // [Footnote: A lambda expression with a lambda-introducer that consists
3273 // of empty square brackets can follow the delete keyword if
3274 // the lambda expression is enclosed in parentheses.]
3275
3276 const Token Next = GetLookAheadToken(2);
3277
3278 // Basic lookahead to check if we have a lambda expression.
3279 if (Next.isOneOf(tok::l_brace, tok::less) ||
3280 (Next.is(tok::l_paren) &&
3281 (GetLookAheadToken(3).is(tok::r_paren) ||
3282 (GetLookAheadToken(3).is(tok::identifier) &&
3283 GetLookAheadToken(4).is(tok::identifier))))) {
3284 TentativeParsingAction TPA(*this);
3285 SourceLocation LSquareLoc = Tok.getLocation();
3286 SourceLocation RSquareLoc = NextToken().getLocation();
3287
3288 // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3289 // case.
3290 SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3291 SourceLocation RBraceLoc;
3292 bool EmitFixIt = false;
3293 if (Tok.is(tok::l_brace)) {
3294 ConsumeBrace();
3295 SkipUntil(tok::r_brace, StopBeforeMatch);
3296 RBraceLoc = Tok.getLocation();
3297 EmitFixIt = true;
3298 }
3299
3300 TPA.Revert();
3301
3302 if (EmitFixIt)
3303 Diag(Start, diag::err_lambda_after_delete)
3304 << SourceRange(Start, RSquareLoc)
3305 << FixItHint::CreateInsertion(LSquareLoc, "(")
3306 << FixItHint::CreateInsertion(
3307 Lexer::getLocForEndOfToken(
3308 RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3309 ")");
3310 else
3311 Diag(Start, diag::err_lambda_after_delete)
3312 << SourceRange(Start, RSquareLoc);
3313
3314 // Warn that the non-capturing lambda isn't surrounded by parentheses
3315 // to disambiguate it from 'delete[]'.
3316 ExprResult Lambda = ParseLambdaExpression();
3317 if (Lambda.isInvalid())
3318 return ExprError();
3319
3320 // Evaluate any postfix expressions used on the lambda.
3321 Lambda = ParsePostfixExpressionSuffix(Lambda);
3322 if (Lambda.isInvalid())
3323 return ExprError();
3324 return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3325 Lambda.get());
3326 }
3327
3328 ArrayDelete = true;
3329 BalancedDelimiterTracker T(*this, tok::l_square);
3330
3331 T.consumeOpen();
3332 T.consumeClose();
3333 if (T.getCloseLocation().isInvalid())
3334 return ExprError();
3335 }
3336
3337 ExprResult Operand(ParseCastExpression(AnyCastExpr));
3338 if (Operand.isInvalid())
3339 return Operand;
3340
3341 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3342}
3343
3344/// ParseRequiresExpression - Parse a C++2a requires-expression.
3345/// C++2a [expr.prim.req]p1
3346/// A requires-expression provides a concise way to express requirements on
3347/// template arguments. A requirement is one that can be checked by name
3348/// lookup (6.4) or by checking properties of types and expressions.
3349///
3350/// requires-expression:
3351/// 'requires' requirement-parameter-list[opt] requirement-body
3352///
3353/// requirement-parameter-list:
3354/// '(' parameter-declaration-clause[opt] ')'
3355///
3356/// requirement-body:
3357/// '{' requirement-seq '}'
3358///
3359/// requirement-seq:
3360/// requirement
3361/// requirement-seq requirement
3362///
3363/// requirement:
3364/// simple-requirement
3365/// type-requirement
3366/// compound-requirement
3367/// nested-requirement
3368ExprResult Parser::ParseRequiresExpression() {
3369 assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword")(static_cast <bool> (Tok.is(tok::kw_requires) &&
"Expected 'requires' keyword") ? void (0) : __assert_fail ("Tok.is(tok::kw_requires) && \"Expected 'requires' keyword\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3369, __extension__ __PRETTY_FUNCTION__))
;
3370 SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3371
3372 llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3373 if (Tok.is(tok::l_paren)) {
3374 // requirement parameter list is present.
3375 ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3376 Scope::DeclScope);
3377 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3378 Parens.consumeOpen();
3379 if (!Tok.is(tok::r_paren)) {
3380 ParsedAttributes FirstArgAttrs(getAttrFactory());
3381 SourceLocation EllipsisLoc;
3382 llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3383 ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3384 FirstArgAttrs, LocalParameters,
3385 EllipsisLoc);
3386 if (EllipsisLoc.isValid())
3387 Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3388 for (auto &ParamInfo : LocalParameters)
3389 LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3390 }
3391 Parens.consumeClose();
3392 }
3393
3394 BalancedDelimiterTracker Braces(*this, tok::l_brace);
3395 if (Braces.expectAndConsume())
3396 return ExprError();
3397
3398 // Start of requirement list
3399 llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3400
3401 // C++2a [expr.prim.req]p2
3402 // Expressions appearing within a requirement-body are unevaluated operands.
3403 EnterExpressionEvaluationContext Ctx(
3404 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3405
3406 ParseScope BodyScope(this, Scope::DeclScope);
3407 RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3408 RequiresKWLoc, LocalParameterDecls, getCurScope());
3409
3410 if (Tok.is(tok::r_brace)) {
3411 // Grammar does not allow an empty body.
3412 // requirement-body:
3413 // { requirement-seq }
3414 // requirement-seq:
3415 // requirement
3416 // requirement-seq requirement
3417 Diag(Tok, diag::err_empty_requires_expr);
3418 // Continue anyway and produce a requires expr with no requirements.
3419 } else {
3420 while (!Tok.is(tok::r_brace)) {
3421 switch (Tok.getKind()) {
3422 case tok::l_brace: {
3423 // Compound requirement
3424 // C++ [expr.prim.req.compound]
3425 // compound-requirement:
3426 // '{' expression '}' 'noexcept'[opt]
3427 // return-type-requirement[opt] ';'
3428 // return-type-requirement:
3429 // trailing-return-type
3430 // '->' cv-qualifier-seq[opt] constrained-parameter
3431 // cv-qualifier-seq[opt] abstract-declarator[opt]
3432 BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3433 ExprBraces.consumeOpen();
3434 ExprResult Expression =
3435 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3436 if (!Expression.isUsable()) {
3437 ExprBraces.skipToEnd();
3438 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3439 break;
3440 }
3441 if (ExprBraces.consumeClose())
3442 ExprBraces.skipToEnd();
3443
3444 concepts::Requirement *Req = nullptr;
3445 SourceLocation NoexceptLoc;
3446 TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3447 if (Tok.is(tok::semi)) {
3448 Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3449 if (Req)
3450 Requirements.push_back(Req);
3451 break;
3452 }
3453 if (!TryConsumeToken(tok::arrow))
3454 // User probably forgot the arrow, remind them and try to continue.
3455 Diag(Tok, diag::err_requires_expr_missing_arrow)
3456 << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3457 // Try to parse a 'type-constraint'
3458 if (TryAnnotateTypeConstraint()) {
3459 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3460 break;
3461 }
3462 if (!isTypeConstraintAnnotation()) {
3463 Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3464 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3465 break;
3466 }
3467 CXXScopeSpec SS;
3468 if (Tok.is(tok::annot_cxxscope)) {
3469 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3470 Tok.getAnnotationRange(),
3471 SS);
3472 ConsumeAnnotationToken();
3473 }
3474
3475 Req = Actions.ActOnCompoundRequirement(
3476 Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3477 TemplateParameterDepth);
3478 ConsumeAnnotationToken();
3479 if (Req)
3480 Requirements.push_back(Req);
3481 break;
3482 }
3483 default: {
3484 bool PossibleRequiresExprInSimpleRequirement = false;
3485 if (Tok.is(tok::kw_requires)) {
3486 auto IsNestedRequirement = [&] {
3487 RevertingTentativeParsingAction TPA(*this);
3488 ConsumeToken(); // 'requires'
3489 if (Tok.is(tok::l_brace))
3490 // This is a requires expression
3491 // requires (T t) {
3492 // requires { t++; };
3493 // ... ^
3494 // }
3495 return false;
3496 if (Tok.is(tok::l_paren)) {
3497 // This might be the parameter list of a requires expression
3498 ConsumeParen();
3499 auto Res = TryParseParameterDeclarationClause();
3500 if (Res != TPResult::False) {
3501 // Skip to the closing parenthesis
3502 // FIXME: Don't traverse these tokens twice (here and in
3503 // TryParseParameterDeclarationClause).
3504 unsigned Depth = 1;
3505 while (Depth != 0) {
3506 if (Tok.is(tok::l_paren))
3507 Depth++;
3508 else if (Tok.is(tok::r_paren))
3509 Depth--;
3510 ConsumeAnyToken();
3511 }
3512 // requires (T t) {
3513 // requires () ?
3514 // ... ^
3515 // - OR -
3516 // requires (int x) ?
3517 // ... ^
3518 // }
3519 if (Tok.is(tok::l_brace))
3520 // requires (...) {
3521 // ^ - a requires expression as a
3522 // simple-requirement.
3523 return false;
3524 }
3525 }
3526 return true;
3527 };
3528 if (IsNestedRequirement()) {
3529 ConsumeToken();
3530 // Nested requirement
3531 // C++ [expr.prim.req.nested]
3532 // nested-requirement:
3533 // 'requires' constraint-expression ';'
3534 ExprResult ConstraintExpr =
3535 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3536 if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3537 SkipUntil(tok::semi, tok::r_brace,
3538 SkipUntilFlags::StopBeforeMatch);
3539 break;
3540 }
3541 if (auto *Req =
3542 Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3543 Requirements.push_back(Req);
3544 else {
3545 SkipUntil(tok::semi, tok::r_brace,
3546 SkipUntilFlags::StopBeforeMatch);
3547 break;
3548 }
3549 break;
3550 } else
3551 PossibleRequiresExprInSimpleRequirement = true;
3552 } else if (Tok.is(tok::kw_typename)) {
3553 // This might be 'typename T::value_type;' (a type requirement) or
3554 // 'typename T::value_type{};' (a simple requirement).
3555 TentativeParsingAction TPA(*this);
3556
3557 // We need to consume the typename to allow 'requires { typename a; }'
3558 SourceLocation TypenameKWLoc = ConsumeToken();
3559 if (TryAnnotateCXXScopeToken()) {
3560 TPA.Commit();
3561 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3562 break;
3563 }
3564 CXXScopeSpec SS;
3565 if (Tok.is(tok::annot_cxxscope)) {
3566 Actions.RestoreNestedNameSpecifierAnnotation(
3567 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3568 ConsumeAnnotationToken();
3569 }
3570
3571 if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3572 !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3573 TPA.Commit();
3574 SourceLocation NameLoc = Tok.getLocation();
3575 IdentifierInfo *II = nullptr;
3576 TemplateIdAnnotation *TemplateId = nullptr;
3577 if (Tok.is(tok::identifier)) {
3578 II = Tok.getIdentifierInfo();
3579 ConsumeToken();
3580 } else {
3581 TemplateId = takeTemplateIdAnnotation(Tok);
3582 ConsumeAnnotationToken();
3583 if (TemplateId->isInvalid())
3584 break;
3585 }
3586
3587 if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3588 NameLoc, II,
3589 TemplateId)) {
3590 Requirements.push_back(Req);
3591 }
3592 break;
3593 }
3594 TPA.Revert();
3595 }
3596 // Simple requirement
3597 // C++ [expr.prim.req.simple]
3598 // simple-requirement:
3599 // expression ';'
3600 SourceLocation StartLoc = Tok.getLocation();
3601 ExprResult Expression =
3602 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3603 if (!Expression.isUsable()) {
3604 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3605 break;
3606 }
3607 if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3608 Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3609 << FixItHint::CreateInsertion(StartLoc, "requires");
3610 if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3611 Requirements.push_back(Req);
3612 else {
3613 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3614 break;
3615 }
3616 // User may have tried to put some compound requirement stuff here
3617 if (Tok.is(tok::kw_noexcept)) {
3618 Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3619 << FixItHint::CreateInsertion(StartLoc, "{")
3620 << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3621 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3622 break;
3623 }
3624 break;
3625 }
3626 }
3627 if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3628 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3629 TryConsumeToken(tok::semi);
3630 break;
3631 }
3632 }
3633 if (Requirements.empty()) {
3634 // Don't emit an empty requires expr here to avoid confusing the user with
3635 // other diagnostics quoting an empty requires expression they never
3636 // wrote.
3637 Braces.consumeClose();
3638 Actions.ActOnFinishRequiresExpr();
3639 return ExprError();
3640 }
3641 }
3642 Braces.consumeClose();
3643 Actions.ActOnFinishRequiresExpr();
3644 return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
3645 Requirements, Braces.getCloseLocation());
3646}
3647
3648static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3649 switch (kind) {
3650 default: llvm_unreachable("Not a known type trait")::llvm::llvm_unreachable_internal("Not a known type trait", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3650)
;
3651#define TYPE_TRAIT_1(Spelling, Name, Key) \
3652case tok::kw_ ## Spelling: return UTT_ ## Name;
3653#define TYPE_TRAIT_2(Spelling, Name, Key) \
3654case tok::kw_ ## Spelling: return BTT_ ## Name;
3655#include "clang/Basic/TokenKinds.def"
3656#define TYPE_TRAIT_N(Spelling, Name, Key) \
3657 case tok::kw_ ## Spelling: return TT_ ## Name;
3658#include "clang/Basic/TokenKinds.def"
3659 }
3660}
3661
3662static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3663 switch (kind) {
3664 default:
3665 llvm_unreachable("Not a known array type trait")::llvm::llvm_unreachable_internal("Not a known array type trait"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3665)
;
3666#define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \
3667 case tok::kw_##Spelling: \
3668 return ATT_##Name;
3669#include "clang/Basic/TokenKinds.def"
3670 }
3671}
3672
3673static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3674 switch (kind) {
3675 default:
3676 llvm_unreachable("Not a known unary expression trait.")::llvm::llvm_unreachable_internal("Not a known unary expression trait."
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3676)
;
3677#define EXPRESSION_TRAIT(Spelling, Name, Key) \
3678 case tok::kw_##Spelling: \
3679 return ET_##Name;
3680#include "clang/Basic/TokenKinds.def"
3681 }
3682}
3683
3684static unsigned TypeTraitArity(tok::TokenKind kind) {
3685 switch (kind) {
3686 default: llvm_unreachable("Not a known type trait")::llvm::llvm_unreachable_internal("Not a known type trait", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3686)
;
3687#define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
3688#include "clang/Basic/TokenKinds.def"
3689 }
3690}
3691
3692/// Parse the built-in type-trait pseudo-functions that allow
3693/// implementation of the TR1/C++11 type traits templates.
3694///
3695/// primary-expression:
3696/// unary-type-trait '(' type-id ')'
3697/// binary-type-trait '(' type-id ',' type-id ')'
3698/// type-trait '(' type-id-seq ')'
3699///
3700/// type-id-seq:
3701/// type-id ...[opt] type-id-seq[opt]
3702///
3703ExprResult Parser::ParseTypeTrait() {
3704 tok::TokenKind Kind = Tok.getKind();
3705 unsigned Arity = TypeTraitArity(Kind);
3706
3707 SourceLocation Loc = ConsumeToken();
3708
3709 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3710 if (Parens.expectAndConsume())
3711 return ExprError();
3712
3713 SmallVector<ParsedType, 2> Args;
3714 do {
3715 // Parse the next type.
3716 TypeResult Ty = ParseTypeName();
3717 if (Ty.isInvalid()) {
3718 Parens.skipToEnd();
3719 return ExprError();
3720 }
3721
3722 // Parse the ellipsis, if present.
3723 if (Tok.is(tok::ellipsis)) {
3724 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3725 if (Ty.isInvalid()) {
3726 Parens.skipToEnd();
3727 return ExprError();
3728 }
3729 }
3730
3731 // Add this type to the list of arguments.
3732 Args.push_back(Ty.get());
3733 } while (TryConsumeToken(tok::comma));
3734
3735 if (Parens.consumeClose())
3736 return ExprError();
3737
3738 SourceLocation EndLoc = Parens.getCloseLocation();
3739
3740 if (Arity && Args.size() != Arity) {
3741 Diag(EndLoc, diag::err_type_trait_arity)
3742 << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
3743 return ExprError();
3744 }
3745
3746 if (!Arity && Args.empty()) {
3747 Diag(EndLoc, diag::err_type_trait_arity)
3748 << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
3749 return ExprError();
3750 }
3751
3752 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3753}
3754
3755/// ParseArrayTypeTrait - Parse the built-in array type-trait
3756/// pseudo-functions.
3757///
3758/// primary-expression:
3759/// [Embarcadero] '__array_rank' '(' type-id ')'
3760/// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
3761///
3762ExprResult Parser::ParseArrayTypeTrait() {
3763 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3764 SourceLocation Loc = ConsumeToken();
3765
3766 BalancedDelimiterTracker T(*this, tok::l_paren);
3767 if (T.expectAndConsume())
3768 return ExprError();
3769
3770 TypeResult Ty = ParseTypeName();
3771 if (Ty.isInvalid()) {
3772 SkipUntil(tok::comma, StopAtSemi);
3773 SkipUntil(tok::r_paren, StopAtSemi);
3774 return ExprError();
3775 }
3776
3777 switch (ATT) {
3778 case ATT_ArrayRank: {
3779 T.consumeClose();
3780 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3781 T.getCloseLocation());
3782 }
3783 case ATT_ArrayExtent: {
3784 if (ExpectAndConsume(tok::comma)) {
3785 SkipUntil(tok::r_paren, StopAtSemi);
3786 return ExprError();
3787 }
3788
3789 ExprResult DimExpr = ParseExpression();
3790 T.consumeClose();
3791
3792 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3793 T.getCloseLocation());
3794 }
3795 }
3796 llvm_unreachable("Invalid ArrayTypeTrait!")::llvm::llvm_unreachable_internal("Invalid ArrayTypeTrait!", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3796)
;
3797}
3798
3799/// ParseExpressionTrait - Parse built-in expression-trait
3800/// pseudo-functions like __is_lvalue_expr( xxx ).
3801///
3802/// primary-expression:
3803/// [Embarcadero] expression-trait '(' expression ')'
3804///
3805ExprResult Parser::ParseExpressionTrait() {
3806 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3807 SourceLocation Loc = ConsumeToken();
3808
3809 BalancedDelimiterTracker T(*this, tok::l_paren);
3810 if (T.expectAndConsume())
3811 return ExprError();
3812
3813 ExprResult Expr = ParseExpression();
3814
3815 T.consumeClose();
3816
3817 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3818 T.getCloseLocation());
3819}
3820
3821
3822/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3823/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3824/// based on the context past the parens.
3825ExprResult
3826Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3827 ParsedType &CastTy,
3828 BalancedDelimiterTracker &Tracker,
3829 ColonProtectionRAIIObject &ColonProt) {
3830 assert(getLangOpts().CPlusPlus && "Should only be called for C++!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Should only be called for C++!") ? void (0) : __assert_fail
("getLangOpts().CPlusPlus && \"Should only be called for C++!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3830, __extension__ __PRETTY_FUNCTION__))
;
3831 assert(ExprType == CastExpr && "Compound literals are not ambiguous!")(static_cast <bool> (ExprType == CastExpr && "Compound literals are not ambiguous!"
) ? void (0) : __assert_fail ("ExprType == CastExpr && \"Compound literals are not ambiguous!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3831, __extension__ __PRETTY_FUNCTION__))
;
3832 assert(isTypeIdInParens() && "Not a type-id!")(static_cast <bool> (isTypeIdInParens() && "Not a type-id!"
) ? void (0) : __assert_fail ("isTypeIdInParens() && \"Not a type-id!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3832, __extension__ __PRETTY_FUNCTION__))
;
3833
3834 ExprResult Result(true);
3835 CastTy = nullptr;
3836
3837 // We need to disambiguate a very ugly part of the C++ syntax:
3838 //
3839 // (T())x; - type-id
3840 // (T())*x; - type-id
3841 // (T())/x; - expression
3842 // (T()); - expression
3843 //
3844 // The bad news is that we cannot use the specialized tentative parser, since
3845 // it can only verify that the thing inside the parens can be parsed as
3846 // type-id, it is not useful for determining the context past the parens.
3847 //
3848 // The good news is that the parser can disambiguate this part without
3849 // making any unnecessary Action calls.
3850 //
3851 // It uses a scheme similar to parsing inline methods. The parenthesized
3852 // tokens are cached, the context that follows is determined (possibly by
3853 // parsing a cast-expression), and then we re-introduce the cached tokens
3854 // into the token stream and parse them appropriately.
3855
3856 ParenParseOption ParseAs;
3857 CachedTokens Toks;
3858
3859 // Store the tokens of the parentheses. We will parse them after we determine
3860 // the context that follows them.
3861 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3862 // We didn't find the ')' we expected.
3863 Tracker.consumeClose();
3864 return ExprError();
3865 }
3866
3867 if (Tok.is(tok::l_brace)) {
3868 ParseAs = CompoundLiteral;
3869 } else {
3870 bool NotCastExpr;
3871 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3872 NotCastExpr = true;
3873 } else {
3874 // Try parsing the cast-expression that may follow.
3875 // If it is not a cast-expression, NotCastExpr will be true and no token
3876 // will be consumed.
3877 ColonProt.restore();
3878 Result = ParseCastExpression(AnyCastExpr,
3879 false/*isAddressofOperand*/,
3880 NotCastExpr,
3881 // type-id has priority.
3882 IsTypeCast);
3883 }
3884
3885 // If we parsed a cast-expression, it's really a type-id, otherwise it's
3886 // an expression.
3887 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3888 }
3889
3890 // Create a fake EOF to mark end of Toks buffer.
3891 Token AttrEnd;
3892 AttrEnd.startToken();
3893 AttrEnd.setKind(tok::eof);
3894 AttrEnd.setLocation(Tok.getLocation());
3895 AttrEnd.setEofData(Toks.data());
3896 Toks.push_back(AttrEnd);
3897
3898 // The current token should go after the cached tokens.
3899 Toks.push_back(Tok);
3900 // Re-enter the stored parenthesized tokens into the token stream, so we may
3901 // parse them now.
3902 PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
3903 /*IsReinject*/ true);
3904 // Drop the current token and bring the first cached one. It's the same token
3905 // as when we entered this function.
3906 ConsumeAnyToken();
3907
3908 if (ParseAs >= CompoundLiteral) {
3909 // Parse the type declarator.
3910 DeclSpec DS(AttrFactory);
3911 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
3912 {
3913 ColonProtectionRAIIObject InnerColonProtection(*this);
3914 ParseSpecifierQualifierList(DS);
3915 ParseDeclarator(DeclaratorInfo);
3916 }
3917
3918 // Match the ')'.
3919 Tracker.consumeClose();
3920 ColonProt.restore();
3921
3922 // Consume EOF marker for Toks buffer.
3923 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())(static_cast <bool> (Tok.is(tok::eof) && Tok.getEofData
() == AttrEnd.getEofData()) ? void (0) : __assert_fail ("Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3923, __extension__ __PRETTY_FUNCTION__))
;
3924 ConsumeAnyToken();
3925
3926 if (ParseAs == CompoundLiteral) {
3927 ExprType = CompoundLiteral;
3928 if (DeclaratorInfo.isInvalidType())
3929 return ExprError();
3930
3931 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3932 return ParseCompoundLiteralExpression(Ty.get(),
3933 Tracker.getOpenLocation(),
3934 Tracker.getCloseLocation());
3935 }
3936
3937 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
3938 assert(ParseAs == CastExpr)(static_cast <bool> (ParseAs == CastExpr) ? void (0) : __assert_fail
("ParseAs == CastExpr", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3938, __extension__ __PRETTY_FUNCTION__))
;
3939
3940 if (DeclaratorInfo.isInvalidType())
3941 return ExprError();
3942
3943 // Result is what ParseCastExpression returned earlier.
3944 if (!Result.isInvalid())
3945 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
3946 DeclaratorInfo, CastTy,
3947 Tracker.getCloseLocation(), Result.get());
3948 return Result;
3949 }
3950
3951 // Not a compound literal, and not followed by a cast-expression.
3952 assert(ParseAs == SimpleExpr)(static_cast <bool> (ParseAs == SimpleExpr) ? void (0) :
__assert_fail ("ParseAs == SimpleExpr", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3952, __extension__ __PRETTY_FUNCTION__))
;
3953
3954 ExprType = SimpleExpr;
3955 Result = ParseExpression();
3956 if (!Result.isInvalid() && Tok.is(tok::r_paren))
3957 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
3958 Tok.getLocation(), Result.get());
3959
3960 // Match the ')'.
3961 if (Result.isInvalid()) {
3962 while (Tok.isNot(tok::eof))
3963 ConsumeAnyToken();
3964 assert(Tok.getEofData() == AttrEnd.getEofData())(static_cast <bool> (Tok.getEofData() == AttrEnd.getEofData
()) ? void (0) : __assert_fail ("Tok.getEofData() == AttrEnd.getEofData()"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3964, __extension__ __PRETTY_FUNCTION__))
;
3965 ConsumeAnyToken();
3966 return ExprError();
3967 }
3968
3969 Tracker.consumeClose();
3970 // Consume EOF marker for Toks buffer.
3971 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())(static_cast <bool> (Tok.is(tok::eof) && Tok.getEofData
() == AttrEnd.getEofData()) ? void (0) : __assert_fail ("Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/Parse/ParseExprCXX.cpp"
, 3971, __extension__ __PRETTY_FUNCTION__))
;
3972 ConsumeAnyToken();
3973 return Result;
3974}
3975
3976/// Parse a __builtin_bit_cast(T, E).
3977ExprResult Parser::ParseBuiltinBitCast() {
3978 SourceLocation KWLoc = ConsumeToken();
3979
3980 BalancedDelimiterTracker T(*this, tok::l_paren);
3981 if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
3982 return ExprError();
3983
3984 // Parse the common declaration-specifiers piece.
3985 DeclSpec DS(AttrFactory);
3986 ParseSpecifierQualifierList(DS);
3987
3988 // Parse the abstract-declarator, if present.
3989 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
3990 ParseDeclarator(DeclaratorInfo);
3991
3992 if (ExpectAndConsume(tok::comma)) {
3993 Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
3994 SkipUntil(tok::r_paren, StopAtSemi);
3995 return ExprError();
3996 }
3997
3998 ExprResult Operand = ParseExpression();
3999
4000 if (T.consumeClose())
4001 return ExprError();
4002
4003 if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4004 return ExprError();
4005
4006 return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4007 T.getCloseLocation());
4008}

/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h

1//===--- Token.h - Token interface ------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Token interface.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_LEX_TOKEN_H
14#define LLVM_CLANG_LEX_TOKEN_H
15
16#include "clang/Basic/SourceLocation.h"
17#include "clang/Basic/TokenKinds.h"
18#include "llvm/ADT/StringRef.h"
19#include <cassert>
20
21namespace clang {
22
23class IdentifierInfo;
24
25/// Token - This structure provides full information about a lexed token.
26/// It is not intended to be space efficient, it is intended to return as much
27/// information as possible about each returned token. This is expected to be
28/// compressed into a smaller form if memory footprint is important.
29///
30/// The parser can create a special "annotation token" representing a stream of
31/// tokens that were parsed and semantically resolved, e.g.: "foo::MyClass<int>"
32/// can be represented by a single typename annotation token that carries
33/// information about the SourceRange of the tokens and the type object.
34class Token {
35 /// The location of the token. This is actually a SourceLocation.
36 SourceLocation::UIntTy Loc;
37
38 // Conceptually these next two fields could be in a union. However, this
39 // causes gcc 4.2 to pessimize LexTokenInternal, a very performance critical
40 // routine. Keeping as separate members with casts until a more beautiful fix
41 // presents itself.
42
43 /// UintData - This holds either the length of the token text, when
44 /// a normal token, or the end of the SourceRange when an annotation
45 /// token.
46 SourceLocation::UIntTy UintData;
47
48 /// PtrData - This is a union of four different pointer types, which depends
49 /// on what type of token this is:
50 /// Identifiers, keywords, etc:
51 /// This is an IdentifierInfo*, which contains the uniqued identifier
52 /// spelling.
53 /// Literals: isLiteral() returns true.
54 /// This is a pointer to the start of the token in a text buffer, which
55 /// may be dirty (have trigraphs / escaped newlines).
56 /// Annotations (resolved type names, C++ scopes, etc): isAnnotation().
57 /// This is a pointer to sema-specific data for the annotation token.
58 /// Eof:
59 // This is a pointer to a Decl.
60 /// Other:
61 /// This is null.
62 void *PtrData;
63
64 /// Kind - The actual flavor of token this is.
65 tok::TokenKind Kind;
66
67 /// Flags - Bits we track about this token, members of the TokenFlags enum.
68 unsigned short Flags;
69
70public:
71 // Various flags set per token:
72 enum TokenFlags {
73 StartOfLine = 0x01, // At start of line or only after whitespace
74 // (considering the line after macro expansion).
75 LeadingSpace = 0x02, // Whitespace exists before this token (considering
76 // whitespace after macro expansion).
77 DisableExpand = 0x04, // This identifier may never be macro expanded.
78 NeedsCleaning = 0x08, // Contained an escaped newline or trigraph.
79 LeadingEmptyMacro = 0x10, // Empty macro exists before this token.
80 HasUDSuffix = 0x20, // This string or character literal has a ud-suffix.
81 HasUCN = 0x40, // This identifier contains a UCN.
82 IgnoredComma = 0x80, // This comma is not a macro argument separator (MS).
83 StringifiedInMacro = 0x100, // This string or character literal is formed by
84 // macro stringizing or charizing operator.
85 CommaAfterElided = 0x200, // The comma following this token was elided (MS).
86 IsEditorPlaceholder = 0x400, // This identifier is a placeholder.
87 IsReinjected = 0x800, // A phase 4 token that was produced before and
88 // re-added, e.g. via EnterTokenStream. Annotation
89 // tokens are *not* reinjected.
90 };
91
92 tok::TokenKind getKind() const { return Kind; }
93 void setKind(tok::TokenKind K) { Kind = K; }
94
95 /// is/isNot - Predicates to check if this token is a specific kind, as in
96 /// "if (Tok.is(tok::l_brace)) {...}".
97 bool is(tok::TokenKind K) const { return Kind == K; }
9
Assuming 'K' is not equal to field 'Kind'
10
Returning zero, which participates in a condition later
98 bool isNot(tok::TokenKind K) const { return Kind != K; }
99 bool isOneOf(tok::TokenKind K1, tok::TokenKind K2) const {
100 return is(K1) || is(K2);
101 }
102 template <typename... Ts>
103 bool isOneOf(tok::TokenKind K1, tok::TokenKind K2, Ts... Ks) const {
104 return is(K1) || isOneOf(K2, Ks...);
105 }
106
107 /// Return true if this is a raw identifier (when lexing
108 /// in raw mode) or a non-keyword identifier (when lexing in non-raw mode).
109 bool isAnyIdentifier() const {
110 return tok::isAnyIdentifier(getKind());
111 }
112
113 /// Return true if this is a "literal", like a numeric
114 /// constant, string, etc.
115 bool isLiteral() const {
116 return tok::isLiteral(getKind());
117 }
118
119 /// Return true if this is any of tok::annot_* kind tokens.
120 bool isAnnotation() const {
121 return tok::isAnnotation(getKind());
122 }
123
124 /// Return a source location identifier for the specified
125 /// offset in the current file.
126 SourceLocation getLocation() const {
127 return SourceLocation::getFromRawEncoding(Loc);
128 }
129 unsigned getLength() const {
130 assert(!isAnnotation() && "Annotation tokens have no length field")(static_cast <bool> (!isAnnotation() && "Annotation tokens have no length field"
) ? void (0) : __assert_fail ("!isAnnotation() && \"Annotation tokens have no length field\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 130, __extension__ __PRETTY_FUNCTION__))
;
131 return UintData;
132 }
133
134 void setLocation(SourceLocation L) { Loc = L.getRawEncoding(); }
135 void setLength(unsigned Len) {
136 assert(!isAnnotation() && "Annotation tokens have no length field")(static_cast <bool> (!isAnnotation() && "Annotation tokens have no length field"
) ? void (0) : __assert_fail ("!isAnnotation() && \"Annotation tokens have no length field\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 136, __extension__ __PRETTY_FUNCTION__))
;
137 UintData = Len;
138 }
139
140 SourceLocation getAnnotationEndLoc() const {
141 assert(isAnnotation() && "Used AnnotEndLocID on non-annotation token")(static_cast <bool> (isAnnotation() && "Used AnnotEndLocID on non-annotation token"
) ? void (0) : __assert_fail ("isAnnotation() && \"Used AnnotEndLocID on non-annotation token\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 141, __extension__ __PRETTY_FUNCTION__))
;
142 return SourceLocation::getFromRawEncoding(UintData ? UintData : Loc);
143 }
144 void setAnnotationEndLoc(SourceLocation L) {
145 assert(isAnnotation() && "Used AnnotEndLocID on non-annotation token")(static_cast <bool> (isAnnotation() && "Used AnnotEndLocID on non-annotation token"
) ? void (0) : __assert_fail ("isAnnotation() && \"Used AnnotEndLocID on non-annotation token\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 145, __extension__ __PRETTY_FUNCTION__))
;
146 UintData = L.getRawEncoding();
147 }
148
149 SourceLocation getLastLoc() const {
150 return isAnnotation() ? getAnnotationEndLoc() : getLocation();
151 }
152
153 SourceLocation getEndLoc() const {
154 return isAnnotation() ? getAnnotationEndLoc()
155 : getLocation().getLocWithOffset(getLength());
156 }
157
158 /// SourceRange of the group of tokens that this annotation token
159 /// represents.
160 SourceRange getAnnotationRange() const {
161 return SourceRange(getLocation(), getAnnotationEndLoc());
162 }
163 void setAnnotationRange(SourceRange R) {
164 setLocation(R.getBegin());
165 setAnnotationEndLoc(R.getEnd());
166 }
167
168 const char *getName() const { return tok::getTokenName(Kind); }
169
170 /// Reset all flags to cleared.
171 void startToken() {
172 Kind = tok::unknown;
173 Flags = 0;
174 PtrData = nullptr;
175 UintData = 0;
176 Loc = SourceLocation().getRawEncoding();
177 }
178
179 IdentifierInfo *getIdentifierInfo() const {
180 assert(isNot(tok::raw_identifier) &&(static_cast <bool> (isNot(tok::raw_identifier) &&
"getIdentifierInfo() on a tok::raw_identifier token!") ? void
(0) : __assert_fail ("isNot(tok::raw_identifier) && \"getIdentifierInfo() on a tok::raw_identifier token!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 181, __extension__ __PRETTY_FUNCTION__))
181 "getIdentifierInfo() on a tok::raw_identifier token!")(static_cast <bool> (isNot(tok::raw_identifier) &&
"getIdentifierInfo() on a tok::raw_identifier token!") ? void
(0) : __assert_fail ("isNot(tok::raw_identifier) && \"getIdentifierInfo() on a tok::raw_identifier token!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 181, __extension__ __PRETTY_FUNCTION__))
;
182 assert(!isAnnotation() &&(static_cast <bool> (!isAnnotation() && "getIdentifierInfo() on an annotation token!"
) ? void (0) : __assert_fail ("!isAnnotation() && \"getIdentifierInfo() on an annotation token!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 183, __extension__ __PRETTY_FUNCTION__))
183 "getIdentifierInfo() on an annotation token!")(static_cast <bool> (!isAnnotation() && "getIdentifierInfo() on an annotation token!"
) ? void (0) : __assert_fail ("!isAnnotation() && \"getIdentifierInfo() on an annotation token!\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 183, __extension__ __PRETTY_FUNCTION__))
;
184 if (isLiteral()) return nullptr;
185 if (is(tok::eof)) return nullptr;
186 return (IdentifierInfo*) PtrData;
187 }
188 void setIdentifierInfo(IdentifierInfo *II) {
189 PtrData = (void*) II;
190 }
191
192 const void *getEofData() const {
193 assert(is(tok::eof))(static_cast <bool> (is(tok::eof)) ? void (0) : __assert_fail
("is(tok::eof)", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 193, __extension__ __PRETTY_FUNCTION__))
;
194 return reinterpret_cast<const void *>(PtrData);
195 }
196 void setEofData(const void *D) {
197 assert(is(tok::eof))(static_cast <bool> (is(tok::eof)) ? void (0) : __assert_fail
("is(tok::eof)", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 197, __extension__ __PRETTY_FUNCTION__))
;
198 assert(!PtrData)(static_cast <bool> (!PtrData) ? void (0) : __assert_fail
("!PtrData", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 198, __extension__ __PRETTY_FUNCTION__))
;
199 PtrData = const_cast<void *>(D);
200 }
201
202 /// getRawIdentifier - For a raw identifier token (i.e., an identifier
203 /// lexed in raw mode), returns a reference to the text substring in the
204 /// buffer if known.
205 StringRef getRawIdentifier() const {
206 assert(is(tok::raw_identifier))(static_cast <bool> (is(tok::raw_identifier)) ? void (0
) : __assert_fail ("is(tok::raw_identifier)", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 206, __extension__ __PRETTY_FUNCTION__))
;
207 return StringRef(reinterpret_cast<const char *>(PtrData), getLength());
208 }
209 void setRawIdentifierData(const char *Ptr) {
210 assert(is(tok::raw_identifier))(static_cast <bool> (is(tok::raw_identifier)) ? void (0
) : __assert_fail ("is(tok::raw_identifier)", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 210, __extension__ __PRETTY_FUNCTION__))
;
211 PtrData = const_cast<char*>(Ptr);
212 }
213
214 /// getLiteralData - For a literal token (numeric constant, string, etc), this
215 /// returns a pointer to the start of it in the text buffer if known, null
216 /// otherwise.
217 const char *getLiteralData() const {
218 assert(isLiteral() && "Cannot get literal data of non-literal")(static_cast <bool> (isLiteral() && "Cannot get literal data of non-literal"
) ? void (0) : __assert_fail ("isLiteral() && \"Cannot get literal data of non-literal\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 218, __extension__ __PRETTY_FUNCTION__))
;
219 return reinterpret_cast<const char*>(PtrData);
220 }
221 void setLiteralData(const char *Ptr) {
222 assert(isLiteral() && "Cannot set literal data of non-literal")(static_cast <bool> (isLiteral() && "Cannot set literal data of non-literal"
) ? void (0) : __assert_fail ("isLiteral() && \"Cannot set literal data of non-literal\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 222, __extension__ __PRETTY_FUNCTION__))
;
223 PtrData = const_cast<char*>(Ptr);
224 }
225
226 void *getAnnotationValue() const {
227 assert(isAnnotation() && "Used AnnotVal on non-annotation token")(static_cast <bool> (isAnnotation() && "Used AnnotVal on non-annotation token"
) ? void (0) : __assert_fail ("isAnnotation() && \"Used AnnotVal on non-annotation token\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 227, __extension__ __PRETTY_FUNCTION__))
;
228 return PtrData;
229 }
230 void setAnnotationValue(void *val) {
231 assert(isAnnotation() && "Used AnnotVal on non-annotation token")(static_cast <bool> (isAnnotation() && "Used AnnotVal on non-annotation token"
) ? void (0) : __assert_fail ("isAnnotation() && \"Used AnnotVal on non-annotation token\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include/clang/Lex/Token.h"
, 231, __extension__ __PRETTY_FUNCTION__))
;
232 PtrData = val;
233 }
234
235 /// Set the specified flag.
236 void setFlag(TokenFlags Flag) {
237 Flags |= Flag;
238 }
239
240 /// Get the specified flag.
241 bool getFlag(TokenFlags Flag) const {
242 return (Flags & Flag) != 0;
243 }
244
245 /// Unset the specified flag.
246 void clearFlag(TokenFlags Flag) {
247 Flags &= ~Flag;
248 }
249
250 /// Return the internal represtation of the flags.
251 ///
252 /// This is only intended for low-level operations such as writing tokens to
253 /// disk.
254 unsigned getFlags() const {
255 return Flags;
256 }
257
258 /// Set a flag to either true or false.
259 void setFlagValue(TokenFlags Flag, bool Val) {
260 if (Val)
261 setFlag(Flag);
262 else
263 clearFlag(Flag);
264 }
265
266 /// isAtStartOfLine - Return true if this token is at the start of a line.
267 ///
268 bool isAtStartOfLine() const { return getFlag(StartOfLine); }
269
270 /// Return true if this token has whitespace before it.
271 ///
272 bool hasLeadingSpace() const { return getFlag(LeadingSpace); }
273
274 /// Return true if this identifier token should never
275 /// be expanded in the future, due to C99 6.10.3.4p2.
276 bool isExpandDisabled() const { return getFlag(DisableExpand); }
277
278 /// Return true if we have an ObjC keyword identifier.
279 bool isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const;
280
281 /// Return the ObjC keyword kind.
282 tok::ObjCKeywordKind getObjCKeywordID() const;
283
284 /// Return true if this token has trigraphs or escaped newlines in it.
285 bool needsCleaning() const { return getFlag(NeedsCleaning); }
286
287 /// Return true if this token has an empty macro before it.
288 ///
289 bool hasLeadingEmptyMacro() const { return getFlag(LeadingEmptyMacro); }
290
291 /// Return true if this token is a string or character literal which
292 /// has a ud-suffix.
293 bool hasUDSuffix() const { return getFlag(HasUDSuffix); }
294
295 /// Returns true if this token contains a universal character name.
296 bool hasUCN() const { return getFlag(HasUCN); }
297
298 /// Returns true if this token is formed by macro by stringizing or charizing
299 /// operator.
300 bool stringifiedInMacro() const { return getFlag(StringifiedInMacro); }
301
302 /// Returns true if the comma after this token was elided.
303 bool commaAfterElided() const { return getFlag(CommaAfterElided); }
304
305 /// Returns true if this token is an editor placeholder.
306 ///
307 /// Editor placeholders are produced by the code-completion engine and are
308 /// represented as characters between '<#' and '#>' in the source code. The
309 /// lexer uses identifier tokens to represent placeholders.
310 bool isEditorPlaceholder() const { return getFlag(IsEditorPlaceholder); }
311};
312
313/// Information about the conditional stack (\#if directives)
314/// currently active.
315struct PPConditionalInfo {
316 /// Location where the conditional started.
317 SourceLocation IfLoc;
318
319 /// True if this was contained in a skipping directive, e.g.,
320 /// in a "\#if 0" block.
321 bool WasSkipping;
322
323 /// True if we have emitted tokens already, and now we're in
324 /// an \#else block or something. Only useful in Skipping blocks.
325 bool FoundNonSkip;
326
327 /// True if we've seen a \#else in this block. If so,
328 /// \#elif/\#else directives are not allowed.
329 bool FoundElse;
330};
331
332} // end namespace clang
333
334#endif // LLVM_CLANG_LEX_TOKEN_H