Bug Summary

File:build/source/clang/lib/Parse/ParseExprCXX.cpp
Warning:line 2127, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ParseExprCXX.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I tools/clang/lib/Parse -I /build/source/clang/lib/Parse -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/clang/lib/Parse/ParseExprCXX.cpp
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expression parsing implementation for C++.
10//
11//===----------------------------------------------------------------------===//
12#include "clang/AST/ASTContext.h"
13#include "clang/AST/Decl.h"
14#include "clang/AST/DeclTemplate.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/Basic/PrettyStackTrace.h"
17#include "clang/Basic/TokenKinds.h"
18#include "clang/Lex/LiteralSupport.h"
19#include "clang/Parse/ParseDiagnostic.h"
20#include "clang/Parse/Parser.h"
21#include "clang/Parse/RAIIObjectsForParser.h"
22#include "clang/Sema/DeclSpec.h"
23#include "clang/Sema/EnterExpressionEvaluationContext.h"
24#include "clang/Sema/ParsedTemplate.h"
25#include "clang/Sema/Scope.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <numeric>
29
30using namespace clang;
31
32static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
33 switch (Kind) {
34 // template name
35 case tok::unknown: return 0;
36 // casts
37 case tok::kw_addrspace_cast: return 1;
38 case tok::kw_const_cast: return 2;
39 case tok::kw_dynamic_cast: return 3;
40 case tok::kw_reinterpret_cast: return 4;
41 case tok::kw_static_cast: return 5;
42 default:
43 llvm_unreachable("Unknown type for digraph error message.")::llvm::llvm_unreachable_internal("Unknown type for digraph error message."
, "clang/lib/Parse/ParseExprCXX.cpp", 43)
;
44 }
45}
46
47// Are the two tokens adjacent in the same source file?
48bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
49 SourceManager &SM = PP.getSourceManager();
50 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
51 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
52 return FirstEnd == SM.getSpellingLoc(Second.getLocation());
53}
54
55// Suggest fixit for "<::" after a cast.
56static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
57 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
58 // Pull '<:' and ':' off token stream.
59 if (!AtDigraph)
60 PP.Lex(DigraphToken);
61 PP.Lex(ColonToken);
62
63 SourceRange Range;
64 Range.setBegin(DigraphToken.getLocation());
65 Range.setEnd(ColonToken.getLocation());
66 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
67 << SelectDigraphErrorMessage(Kind)
68 << FixItHint::CreateReplacement(Range, "< ::");
69
70 // Update token information to reflect their change in token type.
71 ColonToken.setKind(tok::coloncolon);
72 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
73 ColonToken.setLength(2);
74 DigraphToken.setKind(tok::less);
75 DigraphToken.setLength(1);
76
77 // Push new tokens back to token stream.
78 PP.EnterToken(ColonToken, /*IsReinject*/ true);
79 if (!AtDigraph)
80 PP.EnterToken(DigraphToken, /*IsReinject*/ true);
81}
82
83// Check for '<::' which should be '< ::' instead of '[:' when following
84// a template name.
85void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
86 bool EnteringContext,
87 IdentifierInfo &II, CXXScopeSpec &SS) {
88 if (!Next.is(tok::l_square) || Next.getLength() != 2)
89 return;
90
91 Token SecondToken = GetLookAheadToken(2);
92 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
93 return;
94
95 TemplateTy Template;
96 UnqualifiedId TemplateName;
97 TemplateName.setIdentifier(&II, Tok.getLocation());
98 bool MemberOfUnknownSpecialization;
99 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
100 TemplateName, ObjectType, EnteringContext,
101 Template, MemberOfUnknownSpecialization))
102 return;
103
104 FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
105 /*AtDigraph*/false);
106}
107
108/// Parse global scope or nested-name-specifier if present.
109///
110/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
111/// may be preceded by '::'). Note that this routine will not parse ::new or
112/// ::delete; it will just leave them in the token stream.
113///
114/// '::'[opt] nested-name-specifier
115/// '::'
116///
117/// nested-name-specifier:
118/// type-name '::'
119/// namespace-name '::'
120/// nested-name-specifier identifier '::'
121/// nested-name-specifier 'template'[opt] simple-template-id '::'
122///
123///
124/// \param SS the scope specifier that will be set to the parsed
125/// nested-name-specifier (or empty)
126///
127/// \param ObjectType if this nested-name-specifier is being parsed following
128/// the "." or "->" of a member access expression, this parameter provides the
129/// type of the object whose members are being accessed.
130///
131/// \param ObjectHadErrors if this unqualified-id occurs within a member access
132/// expression, indicates whether the original subexpressions had any errors.
133/// When true, diagnostics for missing 'template' keyword will be supressed.
134///
135/// \param EnteringContext whether we will be entering into the context of
136/// the nested-name-specifier after parsing it.
137///
138/// \param MayBePseudoDestructor When non-NULL, points to a flag that
139/// indicates whether this nested-name-specifier may be part of a
140/// pseudo-destructor name. In this case, the flag will be set false
141/// if we don't actually end up parsing a destructor name. Moreover,
142/// if we do end up determining that we are parsing a destructor name,
143/// the last component of the nested-name-specifier is not parsed as
144/// part of the scope specifier.
145///
146/// \param IsTypename If \c true, this nested-name-specifier is known to be
147/// part of a type name. This is used to improve error recovery.
148///
149/// \param LastII When non-NULL, points to an IdentifierInfo* that will be
150/// filled in with the leading identifier in the last component of the
151/// nested-name-specifier, if any.
152///
153/// \param OnlyNamespace If true, only considers namespaces in lookup.
154///
155///
156/// \returns true if there was an error parsing a scope specifier
157bool Parser::ParseOptionalCXXScopeSpecifier(
158 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
159 bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
160 IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
161 assert(getLangOpts().CPlusPlus &&(static_cast <bool> (getLangOpts().CPlusPlus &&
"Call sites of this function should be guarded by checking for C++"
) ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Call sites of this function should be guarded by checking for C++\""
, "clang/lib/Parse/ParseExprCXX.cpp", 162, __extension__ __PRETTY_FUNCTION__
))
162 "Call sites of this function should be guarded by checking for C++")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Call sites of this function should be guarded by checking for C++"
) ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Call sites of this function should be guarded by checking for C++\""
, "clang/lib/Parse/ParseExprCXX.cpp", 162, __extension__ __PRETTY_FUNCTION__
))
;
163
164 if (Tok.is(tok::annot_cxxscope)) {
165 assert(!LastII && "want last identifier but have already annotated scope")(static_cast <bool> (!LastII && "want last identifier but have already annotated scope"
) ? void (0) : __assert_fail ("!LastII && \"want last identifier but have already annotated scope\""
, "clang/lib/Parse/ParseExprCXX.cpp", 165, __extension__ __PRETTY_FUNCTION__
))
;
166 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope")(static_cast <bool> (!MayBePseudoDestructor && "unexpected annot_cxxscope"
) ? void (0) : __assert_fail ("!MayBePseudoDestructor && \"unexpected annot_cxxscope\""
, "clang/lib/Parse/ParseExprCXX.cpp", 166, __extension__ __PRETTY_FUNCTION__
))
;
167 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
168 Tok.getAnnotationRange(),
169 SS);
170 ConsumeAnnotationToken();
171 return false;
172 }
173
174 // Has to happen before any "return false"s in this function.
175 bool CheckForDestructor = false;
176 if (MayBePseudoDestructor && *MayBePseudoDestructor) {
177 CheckForDestructor = true;
178 *MayBePseudoDestructor = false;
179 }
180
181 if (LastII)
182 *LastII = nullptr;
183
184 bool HasScopeSpecifier = false;
185
186 if (Tok.is(tok::coloncolon)) {
187 // ::new and ::delete aren't nested-name-specifiers.
188 tok::TokenKind NextKind = NextToken().getKind();
189 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
190 return false;
191
192 if (NextKind == tok::l_brace) {
193 // It is invalid to have :: {, consume the scope qualifier and pretend
194 // like we never saw it.
195 Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
196 } else {
197 // '::' - Global scope qualifier.
198 if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
199 return true;
200
201 HasScopeSpecifier = true;
202 }
203 }
204
205 if (Tok.is(tok::kw___super)) {
206 SourceLocation SuperLoc = ConsumeToken();
207 if (!Tok.is(tok::coloncolon)) {
208 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
209 return true;
210 }
211
212 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
213 }
214
215 if (!HasScopeSpecifier &&
216 Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
217 DeclSpec DS(AttrFactory);
218 SourceLocation DeclLoc = Tok.getLocation();
219 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
220
221 SourceLocation CCLoc;
222 // Work around a standard defect: 'decltype(auto)::' is not a
223 // nested-name-specifier.
224 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
225 !TryConsumeToken(tok::coloncolon, CCLoc)) {
226 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
227 return false;
228 }
229
230 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
231 SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
232
233 HasScopeSpecifier = true;
234 }
235
236 // Preferred type might change when parsing qualifiers, we need the original.
237 auto SavedType = PreferredType;
238 while (true) {
239 if (HasScopeSpecifier) {
240 if (Tok.is(tok::code_completion)) {
241 cutOffParsing();
242 // Code completion for a nested-name-specifier, where the code
243 // completion token follows the '::'.
244 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
245 InUsingDeclaration, ObjectType.get(),
246 SavedType.get(SS.getBeginLoc()));
247 // Include code completion token into the range of the scope otherwise
248 // when we try to annotate the scope tokens the dangling code completion
249 // token will cause assertion in
250 // Preprocessor::AnnotatePreviousCachedTokens.
251 SS.setEndLoc(Tok.getLocation());
252 return true;
253 }
254
255 // C++ [basic.lookup.classref]p5:
256 // If the qualified-id has the form
257 //
258 // ::class-name-or-namespace-name::...
259 //
260 // the class-name-or-namespace-name is looked up in global scope as a
261 // class-name or namespace-name.
262 //
263 // To implement this, we clear out the object type as soon as we've
264 // seen a leading '::' or part of a nested-name-specifier.
265 ObjectType = nullptr;
266 }
267
268 // nested-name-specifier:
269 // nested-name-specifier 'template'[opt] simple-template-id '::'
270
271 // Parse the optional 'template' keyword, then make sure we have
272 // 'identifier <' after it.
273 if (Tok.is(tok::kw_template)) {
274 // If we don't have a scope specifier or an object type, this isn't a
275 // nested-name-specifier, since they aren't allowed to start with
276 // 'template'.
277 if (!HasScopeSpecifier && !ObjectType)
278 break;
279
280 TentativeParsingAction TPA(*this);
281 SourceLocation TemplateKWLoc = ConsumeToken();
282
283 UnqualifiedId TemplateName;
284 if (Tok.is(tok::identifier)) {
285 // Consume the identifier.
286 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
287 ConsumeToken();
288 } else if (Tok.is(tok::kw_operator)) {
289 // We don't need to actually parse the unqualified-id in this case,
290 // because a simple-template-id cannot start with 'operator', but
291 // go ahead and parse it anyway for consistency with the case where
292 // we already annotated the template-id.
293 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
294 TemplateName)) {
295 TPA.Commit();
296 break;
297 }
298
299 if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
300 TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
301 Diag(TemplateName.getSourceRange().getBegin(),
302 diag::err_id_after_template_in_nested_name_spec)
303 << TemplateName.getSourceRange();
304 TPA.Commit();
305 break;
306 }
307 } else {
308 TPA.Revert();
309 break;
310 }
311
312 // If the next token is not '<', we have a qualified-id that refers
313 // to a template name, such as T::template apply, but is not a
314 // template-id.
315 if (Tok.isNot(tok::less)) {
316 TPA.Revert();
317 break;
318 }
319
320 // Commit to parsing the template-id.
321 TPA.Commit();
322 TemplateTy Template;
323 TemplateNameKind TNK = Actions.ActOnTemplateName(
324 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
325 EnteringContext, Template, /*AllowInjectedClassName*/ true);
326 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
327 TemplateName, false))
328 return true;
329
330 continue;
331 }
332
333 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
334 // We have
335 //
336 // template-id '::'
337 //
338 // So we need to check whether the template-id is a simple-template-id of
339 // the right kind (it should name a type or be dependent), and then
340 // convert it into a type within the nested-name-specifier.
341 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
342 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
343 *MayBePseudoDestructor = true;
344 return false;
345 }
346
347 if (LastII)
348 *LastII = TemplateId->Name;
349
350 // Consume the template-id token.
351 ConsumeAnnotationToken();
352
353 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!")(static_cast <bool> (Tok.is(tok::coloncolon) &&
"NextToken() not working properly!") ? void (0) : __assert_fail
("Tok.is(tok::coloncolon) && \"NextToken() not working properly!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 353, __extension__ __PRETTY_FUNCTION__
))
;
354 SourceLocation CCLoc = ConsumeToken();
355
356 HasScopeSpecifier = true;
357
358 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
359 TemplateId->NumArgs);
360
361 if (TemplateId->isInvalid() ||
362 Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
363 SS,
364 TemplateId->TemplateKWLoc,
365 TemplateId->Template,
366 TemplateId->TemplateNameLoc,
367 TemplateId->LAngleLoc,
368 TemplateArgsPtr,
369 TemplateId->RAngleLoc,
370 CCLoc,
371 EnteringContext)) {
372 SourceLocation StartLoc
373 = SS.getBeginLoc().isValid()? SS.getBeginLoc()
374 : TemplateId->TemplateNameLoc;
375 SS.SetInvalid(SourceRange(StartLoc, CCLoc));
376 }
377
378 continue;
379 }
380
381 // The rest of the nested-name-specifier possibilities start with
382 // tok::identifier.
383 if (Tok.isNot(tok::identifier))
384 break;
385
386 IdentifierInfo &II = *Tok.getIdentifierInfo();
387
388 // nested-name-specifier:
389 // type-name '::'
390 // namespace-name '::'
391 // nested-name-specifier identifier '::'
392 Token Next = NextToken();
393 Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
394 ObjectType);
395
396 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
397 // and emit a fixit hint for it.
398 if (Next.is(tok::colon) && !ColonIsSacred) {
399 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
400 EnteringContext) &&
401 // If the token after the colon isn't an identifier, it's still an
402 // error, but they probably meant something else strange so don't
403 // recover like this.
404 PP.LookAhead(1).is(tok::identifier)) {
405 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
406 << FixItHint::CreateReplacement(Next.getLocation(), "::");
407 // Recover as if the user wrote '::'.
408 Next.setKind(tok::coloncolon);
409 }
410 }
411
412 if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
413 // It is invalid to have :: {, consume the scope qualifier and pretend
414 // like we never saw it.
415 Token Identifier = Tok; // Stash away the identifier.
416 ConsumeToken(); // Eat the identifier, current token is now '::'.
417 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
418 << tok::identifier;
419 UnconsumeToken(Identifier); // Stick the identifier back.
420 Next = NextToken(); // Point Next at the '{' token.
421 }
422
423 if (Next.is(tok::coloncolon)) {
424 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
425 *MayBePseudoDestructor = true;
426 return false;
427 }
428
429 if (ColonIsSacred) {
430 const Token &Next2 = GetLookAheadToken(2);
431 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
432 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
433 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
434 << Next2.getName()
435 << FixItHint::CreateReplacement(Next.getLocation(), ":");
436 Token ColonColon;
437 PP.Lex(ColonColon);
438 ColonColon.setKind(tok::colon);
439 PP.EnterToken(ColonColon, /*IsReinject*/ true);
440 break;
441 }
442 }
443
444 if (LastII)
445 *LastII = &II;
446
447 // We have an identifier followed by a '::'. Lookup this name
448 // as the name in a nested-name-specifier.
449 Token Identifier = Tok;
450 SourceLocation IdLoc = ConsumeToken();
451 assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&(static_cast <bool> (Tok.isOneOf(tok::coloncolon, tok::
colon) && "NextToken() not working properly!") ? void
(0) : __assert_fail ("Tok.isOneOf(tok::coloncolon, tok::colon) && \"NextToken() not working properly!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 452, __extension__ __PRETTY_FUNCTION__
))
452 "NextToken() not working properly!")(static_cast <bool> (Tok.isOneOf(tok::coloncolon, tok::
colon) && "NextToken() not working properly!") ? void
(0) : __assert_fail ("Tok.isOneOf(tok::coloncolon, tok::colon) && \"NextToken() not working properly!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 452, __extension__ __PRETTY_FUNCTION__
))
;
453 Token ColonColon = Tok;
454 SourceLocation CCLoc = ConsumeToken();
455
456 bool IsCorrectedToColon = false;
457 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
458 if (Actions.ActOnCXXNestedNameSpecifier(
459 getCurScope(), IdInfo, EnteringContext, SS, CorrectionFlagPtr,
460 OnlyNamespace)) {
461 // Identifier is not recognized as a nested name, but we can have
462 // mistyped '::' instead of ':'.
463 if (CorrectionFlagPtr && IsCorrectedToColon) {
464 ColonColon.setKind(tok::colon);
465 PP.EnterToken(Tok, /*IsReinject*/ true);
466 PP.EnterToken(ColonColon, /*IsReinject*/ true);
467 Tok = Identifier;
468 break;
469 }
470 SS.SetInvalid(SourceRange(IdLoc, CCLoc));
471 }
472 HasScopeSpecifier = true;
473 continue;
474 }
475
476 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
477
478 // nested-name-specifier:
479 // type-name '<'
480 if (Next.is(tok::less)) {
481
482 TemplateTy Template;
483 UnqualifiedId TemplateName;
484 TemplateName.setIdentifier(&II, Tok.getLocation());
485 bool MemberOfUnknownSpecialization;
486 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
487 /*hasTemplateKeyword=*/false,
488 TemplateName,
489 ObjectType,
490 EnteringContext,
491 Template,
492 MemberOfUnknownSpecialization)) {
493 // If lookup didn't find anything, we treat the name as a template-name
494 // anyway. C++20 requires this, and in prior language modes it improves
495 // error recovery. But before we commit to this, check that we actually
496 // have something that looks like a template-argument-list next.
497 if (!IsTypename && TNK == TNK_Undeclared_template &&
498 isTemplateArgumentList(1) == TPResult::False)
499 break;
500
501 // We have found a template name, so annotate this token
502 // with a template-id annotation. We do not permit the
503 // template-id to be translated into a type annotation,
504 // because some clients (e.g., the parsing of class template
505 // specializations) still want to see the original template-id
506 // token, and it might not be a type at all (e.g. a concept name in a
507 // type-constraint).
508 ConsumeToken();
509 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
510 TemplateName, false))
511 return true;
512 continue;
513 }
514
515 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
516 (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
517 // If we had errors before, ObjectType can be dependent even without any
518 // templates. Do not report missing template keyword in that case.
519 if (!ObjectHadErrors) {
520 // We have something like t::getAs<T>, where getAs is a
521 // member of an unknown specialization. However, this will only
522 // parse correctly as a template, so suggest the keyword 'template'
523 // before 'getAs' and treat this as a dependent template name.
524 unsigned DiagID = diag::err_missing_dependent_template_keyword;
525 if (getLangOpts().MicrosoftExt)
526 DiagID = diag::warn_missing_dependent_template_keyword;
527
528 Diag(Tok.getLocation(), DiagID)
529 << II.getName()
530 << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
531 }
532
533 SourceLocation TemplateNameLoc = ConsumeToken();
534
535 TemplateNameKind TNK = Actions.ActOnTemplateName(
536 getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
537 EnteringContext, Template, /*AllowInjectedClassName*/ true);
538 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
539 TemplateName, false))
540 return true;
541
542 continue;
543 }
544 }
545
546 // We don't have any tokens that form the beginning of a
547 // nested-name-specifier, so we're done.
548 break;
549 }
550
551 // Even if we didn't see any pieces of a nested-name-specifier, we
552 // still check whether there is a tilde in this position, which
553 // indicates a potential pseudo-destructor.
554 if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
555 *MayBePseudoDestructor = true;
556
557 return false;
558}
559
560ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
561 bool isAddressOfOperand,
562 Token &Replacement) {
563 ExprResult E;
564
565 // We may have already annotated this id-expression.
566 switch (Tok.getKind()) {
567 case tok::annot_non_type: {
568 NamedDecl *ND = getNonTypeAnnotation(Tok);
569 SourceLocation Loc = ConsumeAnnotationToken();
570 E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
571 break;
572 }
573
574 case tok::annot_non_type_dependent: {
575 IdentifierInfo *II = getIdentifierAnnotation(Tok);
576 SourceLocation Loc = ConsumeAnnotationToken();
577
578 // This is only the direct operand of an & operator if it is not
579 // followed by a postfix-expression suffix.
580 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
581 isAddressOfOperand = false;
582
583 E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
584 isAddressOfOperand);
585 break;
586 }
587
588 case tok::annot_non_type_undeclared: {
589 assert(SS.isEmpty() &&(static_cast <bool> (SS.isEmpty() && "undeclared non-type annotation should be unqualified"
) ? void (0) : __assert_fail ("SS.isEmpty() && \"undeclared non-type annotation should be unqualified\""
, "clang/lib/Parse/ParseExprCXX.cpp", 590, __extension__ __PRETTY_FUNCTION__
))
590 "undeclared non-type annotation should be unqualified")(static_cast <bool> (SS.isEmpty() && "undeclared non-type annotation should be unqualified"
) ? void (0) : __assert_fail ("SS.isEmpty() && \"undeclared non-type annotation should be unqualified\""
, "clang/lib/Parse/ParseExprCXX.cpp", 590, __extension__ __PRETTY_FUNCTION__
))
;
591 IdentifierInfo *II = getIdentifierAnnotation(Tok);
592 SourceLocation Loc = ConsumeAnnotationToken();
593 E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
594 break;
595 }
596
597 default:
598 SourceLocation TemplateKWLoc;
599 UnqualifiedId Name;
600 if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
601 /*ObjectHadErrors=*/false,
602 /*EnteringContext=*/false,
603 /*AllowDestructorName=*/false,
604 /*AllowConstructorName=*/false,
605 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
606 return ExprError();
607
608 // This is only the direct operand of an & operator if it is not
609 // followed by a postfix-expression suffix.
610 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
611 isAddressOfOperand = false;
612
613 E = Actions.ActOnIdExpression(
614 getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
615 isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
616 &Replacement);
617 break;
618 }
619
620 if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
621 checkPotentialAngleBracket(E);
622 return E;
623}
624
625/// ParseCXXIdExpression - Handle id-expression.
626///
627/// id-expression:
628/// unqualified-id
629/// qualified-id
630///
631/// qualified-id:
632/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
633/// '::' identifier
634/// '::' operator-function-id
635/// '::' template-id
636///
637/// NOTE: The standard specifies that, for qualified-id, the parser does not
638/// expect:
639///
640/// '::' conversion-function-id
641/// '::' '~' class-name
642///
643/// This may cause a slight inconsistency on diagnostics:
644///
645/// class C {};
646/// namespace A {}
647/// void f() {
648/// :: A :: ~ C(); // Some Sema error about using destructor with a
649/// // namespace.
650/// :: ~ C(); // Some Parser error like 'unexpected ~'.
651/// }
652///
653/// We simplify the parser a bit and make it work like:
654///
655/// qualified-id:
656/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
657/// '::' unqualified-id
658///
659/// That way Sema can handle and report similar errors for namespaces and the
660/// global scope.
661///
662/// The isAddressOfOperand parameter indicates that this id-expression is a
663/// direct operand of the address-of operator. This is, besides member contexts,
664/// the only place where a qualified-id naming a non-static class member may
665/// appear.
666///
667ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
668 // qualified-id:
669 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
670 // '::' unqualified-id
671 //
672 CXXScopeSpec SS;
673 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
674 /*ObjectHasErrors=*/false,
675 /*EnteringContext=*/false);
676
677 Token Replacement;
678 ExprResult Result =
679 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
680 if (Result.isUnset()) {
681 // If the ExprResult is valid but null, then typo correction suggested a
682 // keyword replacement that needs to be reparsed.
683 UnconsumeToken(Replacement);
684 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
685 }
686 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "(static_cast <bool> (!Result.isUnset() && "Typo correction suggested a keyword replacement "
"for a previous keyword suggestion") ? void (0) : __assert_fail
("!Result.isUnset() && \"Typo correction suggested a keyword replacement \" \"for a previous keyword suggestion\""
, "clang/lib/Parse/ParseExprCXX.cpp", 687, __extension__ __PRETTY_FUNCTION__
))
687 "for a previous keyword suggestion")(static_cast <bool> (!Result.isUnset() && "Typo correction suggested a keyword replacement "
"for a previous keyword suggestion") ? void (0) : __assert_fail
("!Result.isUnset() && \"Typo correction suggested a keyword replacement \" \"for a previous keyword suggestion\""
, "clang/lib/Parse/ParseExprCXX.cpp", 687, __extension__ __PRETTY_FUNCTION__
))
;
688 return Result;
689}
690
691/// ParseLambdaExpression - Parse a C++11 lambda expression.
692///
693/// lambda-expression:
694/// lambda-introducer lambda-declarator compound-statement
695/// lambda-introducer '<' template-parameter-list '>'
696/// requires-clause[opt] lambda-declarator compound-statement
697///
698/// lambda-introducer:
699/// '[' lambda-capture[opt] ']'
700///
701/// lambda-capture:
702/// capture-default
703/// capture-list
704/// capture-default ',' capture-list
705///
706/// capture-default:
707/// '&'
708/// '='
709///
710/// capture-list:
711/// capture
712/// capture-list ',' capture
713///
714/// capture:
715/// simple-capture
716/// init-capture [C++1y]
717///
718/// simple-capture:
719/// identifier
720/// '&' identifier
721/// 'this'
722///
723/// init-capture: [C++1y]
724/// identifier initializer
725/// '&' identifier initializer
726///
727/// lambda-declarator:
728/// lambda-specifiers [C++23]
729/// '(' parameter-declaration-clause ')' lambda-specifiers
730/// requires-clause[opt]
731///
732/// lambda-specifiers:
733/// decl-specifier-seq[opt] noexcept-specifier[opt]
734/// attribute-specifier-seq[opt] trailing-return-type[opt]
735///
736ExprResult Parser::ParseLambdaExpression() {
737 // Parse lambda-introducer.
738 LambdaIntroducer Intro;
739 if (ParseLambdaIntroducer(Intro)) {
740 SkipUntil(tok::r_square, StopAtSemi);
741 SkipUntil(tok::l_brace, StopAtSemi);
742 SkipUntil(tok::r_brace, StopAtSemi);
743 return ExprError();
744 }
745
746 return ParseLambdaExpressionAfterIntroducer(Intro);
747}
748
749/// Use lookahead and potentially tentative parsing to determine if we are
750/// looking at a C++11 lambda expression, and parse it if we are.
751///
752/// If we are not looking at a lambda expression, returns ExprError().
753ExprResult Parser::TryParseLambdaExpression() {
754 assert(getLangOpts().CPlusPlus11(static_cast <bool> (getLangOpts().CPlusPlus11 &&
Tok.is(tok::l_square) && "Not at the start of a possible lambda expression."
) ? void (0) : __assert_fail ("getLangOpts().CPlusPlus11 && Tok.is(tok::l_square) && \"Not at the start of a possible lambda expression.\""
, "clang/lib/Parse/ParseExprCXX.cpp", 756, __extension__ __PRETTY_FUNCTION__
))
755 && Tok.is(tok::l_square)(static_cast <bool> (getLangOpts().CPlusPlus11 &&
Tok.is(tok::l_square) && "Not at the start of a possible lambda expression."
) ? void (0) : __assert_fail ("getLangOpts().CPlusPlus11 && Tok.is(tok::l_square) && \"Not at the start of a possible lambda expression.\""
, "clang/lib/Parse/ParseExprCXX.cpp", 756, __extension__ __PRETTY_FUNCTION__
))
756 && "Not at the start of a possible lambda expression.")(static_cast <bool> (getLangOpts().CPlusPlus11 &&
Tok.is(tok::l_square) && "Not at the start of a possible lambda expression."
) ? void (0) : __assert_fail ("getLangOpts().CPlusPlus11 && Tok.is(tok::l_square) && \"Not at the start of a possible lambda expression.\""
, "clang/lib/Parse/ParseExprCXX.cpp", 756, __extension__ __PRETTY_FUNCTION__
))
;
757
758 const Token Next = NextToken();
759 if (Next.is(tok::eof)) // Nothing else to lookup here...
760 return ExprEmpty();
761
762 const Token After = GetLookAheadToken(2);
763 // If lookahead indicates this is a lambda...
764 if (Next.is(tok::r_square) || // []
765 Next.is(tok::equal) || // [=
766 (Next.is(tok::amp) && // [&] or [&,
767 After.isOneOf(tok::r_square, tok::comma)) ||
768 (Next.is(tok::identifier) && // [identifier]
769 After.is(tok::r_square)) ||
770 Next.is(tok::ellipsis)) { // [...
771 return ParseLambdaExpression();
772 }
773
774 // If lookahead indicates an ObjC message send...
775 // [identifier identifier
776 if (Next.is(tok::identifier) && After.is(tok::identifier))
777 return ExprEmpty();
778
779 // Here, we're stuck: lambda introducers and Objective-C message sends are
780 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
781 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
782 // writing two routines to parse a lambda introducer, just try to parse
783 // a lambda introducer first, and fall back if that fails.
784 LambdaIntroducer Intro;
785 {
786 TentativeParsingAction TPA(*this);
787 LambdaIntroducerTentativeParse Tentative;
788 if (ParseLambdaIntroducer(Intro, &Tentative)) {
789 TPA.Commit();
790 return ExprError();
791 }
792
793 switch (Tentative) {
794 case LambdaIntroducerTentativeParse::Success:
795 TPA.Commit();
796 break;
797
798 case LambdaIntroducerTentativeParse::Incomplete:
799 // Didn't fully parse the lambda-introducer, try again with a
800 // non-tentative parse.
801 TPA.Revert();
802 Intro = LambdaIntroducer();
803 if (ParseLambdaIntroducer(Intro))
804 return ExprError();
805 break;
806
807 case LambdaIntroducerTentativeParse::MessageSend:
808 case LambdaIntroducerTentativeParse::Invalid:
809 // Not a lambda-introducer, might be a message send.
810 TPA.Revert();
811 return ExprEmpty();
812 }
813 }
814
815 return ParseLambdaExpressionAfterIntroducer(Intro);
816}
817
818/// Parse a lambda introducer.
819/// \param Intro A LambdaIntroducer filled in with information about the
820/// contents of the lambda-introducer.
821/// \param Tentative If non-null, we are disambiguating between a
822/// lambda-introducer and some other construct. In this mode, we do not
823/// produce any diagnostics or take any other irreversible action unless
824/// we're sure that this is a lambda-expression.
825/// \return \c true if parsing (or disambiguation) failed with a diagnostic and
826/// the caller should bail out / recover.
827bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
828 LambdaIntroducerTentativeParse *Tentative) {
829 if (Tentative)
830 *Tentative = LambdaIntroducerTentativeParse::Success;
831
832 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.")(static_cast <bool> (Tok.is(tok::l_square) && "Lambda expressions begin with '['."
) ? void (0) : __assert_fail ("Tok.is(tok::l_square) && \"Lambda expressions begin with '['.\""
, "clang/lib/Parse/ParseExprCXX.cpp", 832, __extension__ __PRETTY_FUNCTION__
))
;
833 BalancedDelimiterTracker T(*this, tok::l_square);
834 T.consumeOpen();
835
836 Intro.Range.setBegin(T.getOpenLocation());
837
838 bool First = true;
839
840 // Produce a diagnostic if we're not tentatively parsing; otherwise track
841 // that our parse has failed.
842 auto Invalid = [&](llvm::function_ref<void()> Action) {
843 if (Tentative) {
844 *Tentative = LambdaIntroducerTentativeParse::Invalid;
845 return false;
846 }
847 Action();
848 return true;
849 };
850
851 // Perform some irreversible action if this is a non-tentative parse;
852 // otherwise note that our actions were incomplete.
853 auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
854 if (Tentative)
855 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
856 else
857 Action();
858 };
859
860 // Parse capture-default.
861 if (Tok.is(tok::amp) &&
862 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
863 Intro.Default = LCD_ByRef;
864 Intro.DefaultLoc = ConsumeToken();
865 First = false;
866 if (!Tok.getIdentifierInfo()) {
867 // This can only be a lambda; no need for tentative parsing any more.
868 // '[[and]]' can still be an attribute, though.
869 Tentative = nullptr;
870 }
871 } else if (Tok.is(tok::equal)) {
872 Intro.Default = LCD_ByCopy;
873 Intro.DefaultLoc = ConsumeToken();
874 First = false;
875 Tentative = nullptr;
876 }
877
878 while (Tok.isNot(tok::r_square)) {
879 if (!First) {
880 if (Tok.isNot(tok::comma)) {
881 // Provide a completion for a lambda introducer here. Except
882 // in Objective-C, where this is Almost Surely meant to be a message
883 // send. In that case, fail here and let the ObjC message
884 // expression parser perform the completion.
885 if (Tok.is(tok::code_completion) &&
886 !(getLangOpts().ObjC && Tentative)) {
887 cutOffParsing();
888 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
889 /*AfterAmpersand=*/false);
890 break;
891 }
892
893 return Invalid([&] {
894 Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
895 });
896 }
897 ConsumeToken();
898 }
899
900 if (Tok.is(tok::code_completion)) {
901 cutOffParsing();
902 // If we're in Objective-C++ and we have a bare '[', then this is more
903 // likely to be a message receiver.
904 if (getLangOpts().ObjC && Tentative && First)
905 Actions.CodeCompleteObjCMessageReceiver(getCurScope());
906 else
907 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
908 /*AfterAmpersand=*/false);
909 break;
910 }
911
912 First = false;
913
914 // Parse capture.
915 LambdaCaptureKind Kind = LCK_ByCopy;
916 LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
917 SourceLocation Loc;
918 IdentifierInfo *Id = nullptr;
919 SourceLocation EllipsisLocs[4];
920 ExprResult Init;
921 SourceLocation LocStart = Tok.getLocation();
922
923 if (Tok.is(tok::star)) {
924 Loc = ConsumeToken();
925 if (Tok.is(tok::kw_this)) {
926 ConsumeToken();
927 Kind = LCK_StarThis;
928 } else {
929 return Invalid([&] {
930 Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
931 });
932 }
933 } else if (Tok.is(tok::kw_this)) {
934 Kind = LCK_This;
935 Loc = ConsumeToken();
936 } else if (Tok.isOneOf(tok::amp, tok::equal) &&
937 NextToken().isOneOf(tok::comma, tok::r_square) &&
938 Intro.Default == LCD_None) {
939 // We have a lone "&" or "=" which is either a misplaced capture-default
940 // or the start of a capture (in the "&" case) with the rest of the
941 // capture missing. Both are an error but a misplaced capture-default
942 // is more likely if we don't already have a capture default.
943 return Invalid(
944 [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
945 } else {
946 TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
947
948 if (Tok.is(tok::amp)) {
949 Kind = LCK_ByRef;
950 ConsumeToken();
951
952 if (Tok.is(tok::code_completion)) {
953 cutOffParsing();
954 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
955 /*AfterAmpersand=*/true);
956 break;
957 }
958 }
959
960 TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
961
962 if (Tok.is(tok::identifier)) {
963 Id = Tok.getIdentifierInfo();
964 Loc = ConsumeToken();
965 } else if (Tok.is(tok::kw_this)) {
966 return Invalid([&] {
967 // FIXME: Suggest a fixit here.
968 Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
969 });
970 } else {
971 return Invalid([&] {
972 Diag(Tok.getLocation(), diag::err_expected_capture);
973 });
974 }
975
976 TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
977
978 if (Tok.is(tok::l_paren)) {
979 BalancedDelimiterTracker Parens(*this, tok::l_paren);
980 Parens.consumeOpen();
981
982 InitKind = LambdaCaptureInitKind::DirectInit;
983
984 ExprVector Exprs;
985 if (Tentative) {
986 Parens.skipToEnd();
987 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
988 } else if (ParseExpressionList(Exprs)) {
989 Parens.skipToEnd();
990 Init = ExprError();
991 } else {
992 Parens.consumeClose();
993 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
994 Parens.getCloseLocation(),
995 Exprs);
996 }
997 } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
998 // Each lambda init-capture forms its own full expression, which clears
999 // Actions.MaybeODRUseExprs. So create an expression evaluation context
1000 // to save the necessary state, and restore it later.
1001 EnterExpressionEvaluationContext EC(
1002 Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1003
1004 if (TryConsumeToken(tok::equal))
1005 InitKind = LambdaCaptureInitKind::CopyInit;
1006 else
1007 InitKind = LambdaCaptureInitKind::ListInit;
1008
1009 if (!Tentative) {
1010 Init = ParseInitializer();
1011 } else if (Tok.is(tok::l_brace)) {
1012 BalancedDelimiterTracker Braces(*this, tok::l_brace);
1013 Braces.consumeOpen();
1014 Braces.skipToEnd();
1015 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1016 } else {
1017 // We're disambiguating this:
1018 //
1019 // [..., x = expr
1020 //
1021 // We need to find the end of the following expression in order to
1022 // determine whether this is an Obj-C message send's receiver, a
1023 // C99 designator, or a lambda init-capture.
1024 //
1025 // Parse the expression to find where it ends, and annotate it back
1026 // onto the tokens. We would have parsed this expression the same way
1027 // in either case: both the RHS of an init-capture and the RHS of an
1028 // assignment expression are parsed as an initializer-clause, and in
1029 // neither case can anything be added to the scope between the '[' and
1030 // here.
1031 //
1032 // FIXME: This is horrible. Adding a mechanism to skip an expression
1033 // would be much cleaner.
1034 // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1035 // that instead. (And if we see a ':' with no matching '?', we can
1036 // classify this as an Obj-C message send.)
1037 SourceLocation StartLoc = Tok.getLocation();
1038 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1039 Init = ParseInitializer();
1040 if (!Init.isInvalid())
1041 Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1042
1043 if (Tok.getLocation() != StartLoc) {
1044 // Back out the lexing of the token after the initializer.
1045 PP.RevertCachedTokens(1);
1046
1047 // Replace the consumed tokens with an appropriate annotation.
1048 Tok.setLocation(StartLoc);
1049 Tok.setKind(tok::annot_primary_expr);
1050 setExprAnnotation(Tok, Init);
1051 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1052 PP.AnnotateCachedTokens(Tok);
1053
1054 // Consume the annotated initializer.
1055 ConsumeAnnotationToken();
1056 }
1057 }
1058 }
1059
1060 TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1061 }
1062
1063 // Check if this is a message send before we act on a possible init-capture.
1064 if (Tentative && Tok.is(tok::identifier) &&
1065 NextToken().isOneOf(tok::colon, tok::r_square)) {
1066 // This can only be a message send. We're done with disambiguation.
1067 *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1068 return false;
1069 }
1070
1071 // Ensure that any ellipsis was in the right place.
1072 SourceLocation EllipsisLoc;
1073 if (llvm::any_of(EllipsisLocs,
1074 [](SourceLocation Loc) { return Loc.isValid(); })) {
1075 // The '...' should appear before the identifier in an init-capture, and
1076 // after the identifier otherwise.
1077 bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1078 SourceLocation *ExpectedEllipsisLoc =
1079 !InitCapture ? &EllipsisLocs[2] :
1080 Kind == LCK_ByRef ? &EllipsisLocs[1] :
1081 &EllipsisLocs[0];
1082 EllipsisLoc = *ExpectedEllipsisLoc;
1083
1084 unsigned DiagID = 0;
1085 if (EllipsisLoc.isInvalid()) {
1086 DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1087 for (SourceLocation Loc : EllipsisLocs) {
1088 if (Loc.isValid())
1089 EllipsisLoc = Loc;
1090 }
1091 } else {
1092 unsigned NumEllipses = std::accumulate(
1093 std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1094 [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1095 if (NumEllipses > 1)
1096 DiagID = diag::err_lambda_capture_multiple_ellipses;
1097 }
1098 if (DiagID) {
1099 NonTentativeAction([&] {
1100 // Point the diagnostic at the first misplaced ellipsis.
1101 SourceLocation DiagLoc;
1102 for (SourceLocation &Loc : EllipsisLocs) {
1103 if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1104 DiagLoc = Loc;
1105 break;
1106 }
1107 }
1108 assert(DiagLoc.isValid() && "no location for diagnostic")(static_cast <bool> (DiagLoc.isValid() && "no location for diagnostic"
) ? void (0) : __assert_fail ("DiagLoc.isValid() && \"no location for diagnostic\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1108, __extension__ __PRETTY_FUNCTION__
))
;
1109
1110 // Issue the diagnostic and produce fixits showing where the ellipsis
1111 // should have been written.
1112 auto &&D = Diag(DiagLoc, DiagID);
1113 if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1114 SourceLocation ExpectedLoc =
1115 InitCapture ? Loc
1116 : Lexer::getLocForEndOfToken(
1117 Loc, 0, PP.getSourceManager(), getLangOpts());
1118 D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1119 }
1120 for (SourceLocation &Loc : EllipsisLocs) {
1121 if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1122 D << FixItHint::CreateRemoval(Loc);
1123 }
1124 });
1125 }
1126 }
1127
1128 // Process the init-capture initializers now rather than delaying until we
1129 // form the lambda-expression so that they can be handled in the context
1130 // enclosing the lambda-expression, rather than in the context of the
1131 // lambda-expression itself.
1132 ParsedType InitCaptureType;
1133 if (Init.isUsable())
1134 Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1135 if (Init.isUsable()) {
1136 NonTentativeAction([&] {
1137 // Get the pointer and store it in an lvalue, so we can use it as an
1138 // out argument.
1139 Expr *InitExpr = Init.get();
1140 // This performs any lvalue-to-rvalue conversions if necessary, which
1141 // can affect what gets captured in the containing decl-context.
1142 InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1143 Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1144 Init = InitExpr;
1145 });
1146 }
1147
1148 SourceLocation LocEnd = PrevTokLocation;
1149
1150 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1151 InitCaptureType, SourceRange(LocStart, LocEnd));
1152 }
1153
1154 T.consumeClose();
1155 Intro.Range.setEnd(T.getCloseLocation());
1156 return false;
1157}
1158
1159static void tryConsumeLambdaSpecifierToken(Parser &P,
1160 SourceLocation &MutableLoc,
1161 SourceLocation &StaticLoc,
1162 SourceLocation &ConstexprLoc,
1163 SourceLocation &ConstevalLoc,
1164 SourceLocation &DeclEndLoc) {
1165 assert(MutableLoc.isInvalid())(static_cast <bool> (MutableLoc.isInvalid()) ? void (0)
: __assert_fail ("MutableLoc.isInvalid()", "clang/lib/Parse/ParseExprCXX.cpp"
, 1165, __extension__ __PRETTY_FUNCTION__))
;
1166 assert(StaticLoc.isInvalid())(static_cast <bool> (StaticLoc.isInvalid()) ? void (0) :
__assert_fail ("StaticLoc.isInvalid()", "clang/lib/Parse/ParseExprCXX.cpp"
, 1166, __extension__ __PRETTY_FUNCTION__))
;
1167 assert(ConstexprLoc.isInvalid())(static_cast <bool> (ConstexprLoc.isInvalid()) ? void (
0) : __assert_fail ("ConstexprLoc.isInvalid()", "clang/lib/Parse/ParseExprCXX.cpp"
, 1167, __extension__ __PRETTY_FUNCTION__))
;
1168 assert(ConstevalLoc.isInvalid())(static_cast <bool> (ConstevalLoc.isInvalid()) ? void (
0) : __assert_fail ("ConstevalLoc.isInvalid()", "clang/lib/Parse/ParseExprCXX.cpp"
, 1168, __extension__ __PRETTY_FUNCTION__))
;
1169 // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1170 // to the final of those locations. Emit an error if we have multiple
1171 // copies of those keywords and recover.
1172
1173 auto ConsumeLocation = [&P, &DeclEndLoc](SourceLocation &SpecifierLoc,
1174 int DiagIndex) {
1175 if (SpecifierLoc.isValid()) {
1176 P.Diag(P.getCurToken().getLocation(),
1177 diag::err_lambda_decl_specifier_repeated)
1178 << DiagIndex
1179 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1180 }
1181 SpecifierLoc = P.ConsumeToken();
1182 DeclEndLoc = SpecifierLoc;
1183 };
1184
1185 while (true) {
1186 switch (P.getCurToken().getKind()) {
1187 case tok::kw_mutable:
1188 ConsumeLocation(MutableLoc, 0);
1189 break;
1190 case tok::kw_static:
1191 ConsumeLocation(StaticLoc, 1);
1192 break;
1193 case tok::kw_constexpr:
1194 ConsumeLocation(ConstexprLoc, 2);
1195 break;
1196 case tok::kw_consteval:
1197 ConsumeLocation(ConstevalLoc, 3);
1198 break;
1199 default:
1200 return;
1201 }
1202 }
1203}
1204
1205static void addStaticToLambdaDeclSpecifier(Parser &P, SourceLocation StaticLoc,
1206 DeclSpec &DS) {
1207 if (StaticLoc.isValid()) {
1208 P.Diag(StaticLoc, !P.getLangOpts().CPlusPlus23
1209 ? diag::err_static_lambda
1210 : diag::warn_cxx20_compat_static_lambda);
1211 const char *PrevSpec = nullptr;
1212 unsigned DiagID = 0;
1213 DS.SetStorageClassSpec(P.getActions(), DeclSpec::SCS_static, StaticLoc,
1214 PrevSpec, DiagID,
1215 P.getActions().getASTContext().getPrintingPolicy());
1216 assert(PrevSpec == nullptr && DiagID == 0 &&(static_cast <bool> (PrevSpec == nullptr && DiagID
== 0 && "Static cannot have been set previously!") ?
void (0) : __assert_fail ("PrevSpec == nullptr && DiagID == 0 && \"Static cannot have been set previously!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1217, __extension__ __PRETTY_FUNCTION__
))
1217 "Static cannot have been set previously!")(static_cast <bool> (PrevSpec == nullptr && DiagID
== 0 && "Static cannot have been set previously!") ?
void (0) : __assert_fail ("PrevSpec == nullptr && DiagID == 0 && \"Static cannot have been set previously!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1217, __extension__ __PRETTY_FUNCTION__
))
;
1218 }
1219}
1220
1221static void
1222addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1223 DeclSpec &DS) {
1224 if (ConstexprLoc.isValid()) {
1225 P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1226 ? diag::ext_constexpr_on_lambda_cxx17
1227 : diag::warn_cxx14_compat_constexpr_on_lambda);
1228 const char *PrevSpec = nullptr;
1229 unsigned DiagID = 0;
1230 DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1231 DiagID);
1232 assert(PrevSpec == nullptr && DiagID == 0 &&(static_cast <bool> (PrevSpec == nullptr && DiagID
== 0 && "Constexpr cannot have been set previously!"
) ? void (0) : __assert_fail ("PrevSpec == nullptr && DiagID == 0 && \"Constexpr cannot have been set previously!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1233, __extension__ __PRETTY_FUNCTION__
))
1233 "Constexpr cannot have been set previously!")(static_cast <bool> (PrevSpec == nullptr && DiagID
== 0 && "Constexpr cannot have been set previously!"
) ? void (0) : __assert_fail ("PrevSpec == nullptr && DiagID == 0 && \"Constexpr cannot have been set previously!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1233, __extension__ __PRETTY_FUNCTION__
))
;
1234 }
1235}
1236
1237static void addConstevalToLambdaDeclSpecifier(Parser &P,
1238 SourceLocation ConstevalLoc,
1239 DeclSpec &DS) {
1240 if (ConstevalLoc.isValid()) {
1241 P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1242 const char *PrevSpec = nullptr;
1243 unsigned DiagID = 0;
1244 DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1245 DiagID);
1246 if (DiagID != 0)
1247 P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1248 }
1249}
1250
1251static void DiagnoseStaticSpecifierRestrictions(Parser &P,
1252 SourceLocation StaticLoc,
1253 SourceLocation MutableLoc,
1254 const LambdaIntroducer &Intro) {
1255 if (StaticLoc.isInvalid())
1256 return;
1257
1258 // [expr.prim.lambda.general] p4
1259 // The lambda-specifier-seq shall not contain both mutable and static.
1260 // If the lambda-specifier-seq contains static, there shall be no
1261 // lambda-capture.
1262 if (MutableLoc.isValid())
1263 P.Diag(StaticLoc, diag::err_static_mutable_lambda);
1264 if (Intro.hasLambdaCapture()) {
1265 P.Diag(StaticLoc, diag::err_static_lambda_captures);
1266 }
1267}
1268
1269/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1270/// expression.
1271ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1272 LambdaIntroducer &Intro) {
1273 SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1274 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1275
1276 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1277 "lambda expression parsing");
1278
1279 // Parse lambda-declarator[opt].
1280 DeclSpec DS(AttrFactory);
1281 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::LambdaExpr);
1282 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1283
1284 ParseScope LambdaScope(this, Scope::LambdaScope | Scope::DeclScope |
1285 Scope::FunctionDeclarationScope |
1286 Scope::FunctionPrototypeScope);
1287
1288 Actions.PushLambdaScope();
1289 Actions.ActOnLambdaExpressionAfterIntroducer(Intro, getCurScope());
1290
1291 ParsedAttributes Attributes(AttrFactory);
1292 if (getLangOpts().CUDA) {
1293 // In CUDA code, GNU attributes are allowed to appear immediately after the
1294 // "[...]", even if there is no "(...)" before the lambda body.
1295 //
1296 // Note that we support __noinline__ as a keyword in this mode and thus
1297 // it has to be separately handled.
1298 while (true) {
1299 if (Tok.is(tok::kw___noinline__)) {
1300 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1301 SourceLocation AttrNameLoc = ConsumeToken();
1302 Attributes.addNew(AttrName, AttrNameLoc, /*ScopeName=*/nullptr,
1303 AttrNameLoc, /*ArgsUnion=*/nullptr,
1304 /*numArgs=*/0, tok::kw___noinline__);
1305 } else if (Tok.is(tok::kw___attribute))
1306 ParseGNUAttributes(Attributes, /*LatePArsedAttrList=*/nullptr, &D);
1307 else
1308 break;
1309 }
1310
1311 D.takeAttributes(Attributes);
1312 }
1313
1314 // Helper to emit a warning if we see a CUDA host/device/global attribute
1315 // after '(...)'. nvcc doesn't accept this.
1316 auto WarnIfHasCUDATargetAttr = [&] {
1317 if (getLangOpts().CUDA)
1318 for (const ParsedAttr &A : Attributes)
1319 if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1320 A.getKind() == ParsedAttr::AT_CUDAHost ||
1321 A.getKind() == ParsedAttr::AT_CUDAGlobal)
1322 Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1323 << A.getAttrName()->getName();
1324 };
1325
1326 MultiParseScope TemplateParamScope(*this);
1327 if (Tok.is(tok::less)) {
1328 Diag(Tok, getLangOpts().CPlusPlus20
1329 ? diag::warn_cxx17_compat_lambda_template_parameter_list
1330 : diag::ext_lambda_template_parameter_list);
1331
1332 SmallVector<NamedDecl*, 4> TemplateParams;
1333 SourceLocation LAngleLoc, RAngleLoc;
1334 if (ParseTemplateParameters(TemplateParamScope,
1335 CurTemplateDepthTracker.getDepth(),
1336 TemplateParams, LAngleLoc, RAngleLoc)) {
1337 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1338 return ExprError();
1339 }
1340
1341 if (TemplateParams.empty()) {
1342 Diag(RAngleLoc,
1343 diag::err_lambda_template_parameter_list_empty);
1344 } else {
1345 ExprResult RequiresClause;
1346 if (TryConsumeToken(tok::kw_requires)) {
1347 RequiresClause =
1348 Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1349 /*IsTrailingRequiresClause=*/false));
1350 if (RequiresClause.isInvalid())
1351 SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1352 }
1353
1354 Actions.ActOnLambdaExplicitTemplateParameterList(
1355 Intro, LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1356 ++CurTemplateDepthTracker;
1357 }
1358 }
1359
1360 // Implement WG21 P2173, which allows attributes immediately before the
1361 // lambda declarator and applies them to the corresponding function operator
1362 // or operator template declaration. We accept this as a conforming extension
1363 // in all language modes that support lambdas.
1364 if (isCXX11AttributeSpecifier()) {
1365 Diag(Tok, getLangOpts().CPlusPlus23
1366 ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1367 : diag::ext_decl_attrs_on_lambda);
1368 MaybeParseCXX11Attributes(D);
1369 }
1370
1371 TypeResult TrailingReturnType;
1372 SourceLocation TrailingReturnTypeLoc;
1373 SourceLocation LParenLoc, RParenLoc;
1374 SourceLocation DeclEndLoc;
1375 bool HasParentheses = false;
1376 bool HasSpecifiers = false;
1377 SourceLocation MutableLoc;
1378
1379 auto ParseConstexprAndMutableSpecifiers = [&] {
1380 // GNU-style attributes must be parsed before the mutable specifier to
1381 // be compatible with GCC. MSVC-style attributes must be parsed before
1382 // the mutable specifier to be compatible with MSVC.
1383 MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attributes);
1384 // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1385 // the DeclEndLoc.
1386 SourceLocation ConstexprLoc;
1387 SourceLocation ConstevalLoc;
1388 SourceLocation StaticLoc;
1389
1390 tryConsumeLambdaSpecifierToken(*this, MutableLoc, StaticLoc, ConstexprLoc,
1391 ConstevalLoc, DeclEndLoc);
1392
1393 DiagnoseStaticSpecifierRestrictions(*this, StaticLoc, MutableLoc, Intro);
1394
1395 addStaticToLambdaDeclSpecifier(*this, StaticLoc, DS);
1396 addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1397 addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1398 };
1399
1400 auto ParseLambdaSpecifiers =
1401 [&](MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
1402 SourceLocation EllipsisLoc) {
1403 // Parse exception-specification[opt].
1404 ExceptionSpecificationType ESpecType = EST_None;
1405 SourceRange ESpecRange;
1406 SmallVector<ParsedType, 2> DynamicExceptions;
1407 SmallVector<SourceRange, 2> DynamicExceptionRanges;
1408 ExprResult NoexceptExpr;
1409 CachedTokens *ExceptionSpecTokens;
1410
1411 ESpecType = tryParseExceptionSpecification(
1412 /*Delayed=*/false, ESpecRange, DynamicExceptions,
1413 DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1414
1415 if (ESpecType != EST_None)
1416 DeclEndLoc = ESpecRange.getEnd();
1417
1418 // Parse attribute-specifier[opt].
1419 if (MaybeParseCXX11Attributes(Attributes))
1420 DeclEndLoc = Attributes.Range.getEnd();
1421
1422 // Parse OpenCL addr space attribute.
1423 if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1424 tok::kw___constant, tok::kw___generic)) {
1425 ParseOpenCLQualifiers(DS.getAttributes());
1426 ConsumeToken();
1427 }
1428
1429 SourceLocation FunLocalRangeEnd = DeclEndLoc;
1430
1431 // Parse trailing-return-type[opt].
1432 if (Tok.is(tok::arrow)) {
1433 FunLocalRangeEnd = Tok.getLocation();
1434 SourceRange Range;
1435 TrailingReturnType = ParseTrailingReturnType(
1436 Range, /*MayBeFollowedByDirectInit*/ false);
1437 TrailingReturnTypeLoc = Range.getBegin();
1438 if (Range.getEnd().isValid())
1439 DeclEndLoc = Range.getEnd();
1440 }
1441
1442 SourceLocation NoLoc;
1443 D.AddTypeInfo(
1444 DeclaratorChunk::getFunction(
1445 /*HasProto=*/true,
1446 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1447 ParamInfo.size(), EllipsisLoc, RParenLoc,
1448 /*RefQualifierIsLvalueRef=*/true,
1449 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
1450 DynamicExceptions.data(), DynamicExceptionRanges.data(),
1451 DynamicExceptions.size(),
1452 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1453 /*ExceptionSpecTokens*/ nullptr,
1454 /*DeclsInPrototype=*/std::nullopt, LParenLoc, FunLocalRangeEnd,
1455 D, TrailingReturnType, TrailingReturnTypeLoc, &DS),
1456 std::move(Attributes), DeclEndLoc);
1457
1458 Actions.ActOnLambdaClosureQualifiers(Intro, MutableLoc);
1459
1460 if (HasParentheses && Tok.is(tok::kw_requires))
1461 ParseTrailingRequiresClause(D);
1462 };
1463
1464 ParseScope Prototype(this, Scope::FunctionPrototypeScope |
1465 Scope::FunctionDeclarationScope |
1466 Scope::DeclScope);
1467
1468 // Parse parameter-declaration-clause.
1469 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1470 SourceLocation EllipsisLoc;
1471
1472 if (Tok.is(tok::l_paren)) {
1473 BalancedDelimiterTracker T(*this, tok::l_paren);
1474 T.consumeOpen();
1475 LParenLoc = T.getOpenLocation();
1476
1477 if (Tok.isNot(tok::r_paren)) {
1478 Actions.RecordParsingTemplateParameterDepth(
1479 CurTemplateDepthTracker.getOriginalDepth());
1480
1481 ParseParameterDeclarationClause(D, Attributes, ParamInfo, EllipsisLoc);
1482 // For a generic lambda, each 'auto' within the parameter declaration
1483 // clause creates a template type parameter, so increment the depth.
1484 // If we've parsed any explicit template parameters, then the depth will
1485 // have already been incremented. So we make sure that at most a single
1486 // depth level is added.
1487 if (Actions.getCurGenericLambda())
1488 CurTemplateDepthTracker.setAddedDepth(1);
1489 }
1490
1491 T.consumeClose();
1492 DeclEndLoc = RParenLoc = T.getCloseLocation();
1493 HasParentheses = true;
1494 }
1495
1496 HasSpecifiers =
1497 Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1498 tok::kw_constexpr, tok::kw_consteval, tok::kw_static,
1499 tok::kw___private, tok::kw___global, tok::kw___local,
1500 tok::kw___constant, tok::kw___generic, tok::kw_groupshared,
1501 tok::kw_requires, tok::kw_noexcept) ||
1502 (Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1503
1504 if (HasSpecifiers && !HasParentheses && !getLangOpts().CPlusPlus23) {
1505 // It's common to forget that one needs '()' before 'mutable', an
1506 // attribute specifier, the result type, or the requires clause. Deal with
1507 // this.
1508 Diag(Tok, diag::ext_lambda_missing_parens)
1509 << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1510 }
1511
1512 if (HasParentheses || HasSpecifiers)
1513 ParseConstexprAndMutableSpecifiers();
1514
1515 Actions.ActOnLambdaClosureParameters(getCurScope(), ParamInfo);
1516
1517 if (!HasParentheses)
1518 Actions.ActOnLambdaClosureQualifiers(Intro, MutableLoc);
1519
1520 if (HasSpecifiers || HasParentheses)
1521 ParseLambdaSpecifiers(ParamInfo, EllipsisLoc);
1522
1523 WarnIfHasCUDATargetAttr();
1524
1525 Prototype.Exit();
1526
1527 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1528 // it.
1529 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1530 Scope::CompoundStmtScope;
1531 ParseScope BodyScope(this, ScopeFlags);
1532
1533 Actions.ActOnStartOfLambdaDefinition(Intro, D, DS);
1534
1535 // Parse compound-statement.
1536 if (!Tok.is(tok::l_brace)) {
1537 Diag(Tok, diag::err_expected_lambda_body);
1538 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1539 return ExprError();
1540 }
1541
1542 StmtResult Stmt(ParseCompoundStatementBody());
1543 BodyScope.Exit();
1544 TemplateParamScope.Exit();
1545 LambdaScope.Exit();
1546
1547 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1548 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1549
1550 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1551 return ExprError();
1552}
1553
1554/// ParseCXXCasts - This handles the various ways to cast expressions to another
1555/// type.
1556///
1557/// postfix-expression: [C++ 5.2p1]
1558/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1559/// 'static_cast' '<' type-name '>' '(' expression ')'
1560/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1561/// 'const_cast' '<' type-name '>' '(' expression ')'
1562///
1563/// C++ for OpenCL s2.3.1 adds:
1564/// 'addrspace_cast' '<' type-name '>' '(' expression ')'
1565ExprResult Parser::ParseCXXCasts() {
1566 tok::TokenKind Kind = Tok.getKind();
1567 const char *CastName = nullptr; // For error messages
1568
1569 switch (Kind) {
1570 default: llvm_unreachable("Unknown C++ cast!")::llvm::llvm_unreachable_internal("Unknown C++ cast!", "clang/lib/Parse/ParseExprCXX.cpp"
, 1570)
;
1571 case tok::kw_addrspace_cast: CastName = "addrspace_cast"; break;
1572 case tok::kw_const_cast: CastName = "const_cast"; break;
1573 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
1574 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1575 case tok::kw_static_cast: CastName = "static_cast"; break;
1576 }
1577
1578 SourceLocation OpLoc = ConsumeToken();
1579 SourceLocation LAngleBracketLoc = Tok.getLocation();
1580
1581 // Check for "<::" which is parsed as "[:". If found, fix token stream,
1582 // diagnose error, suggest fix, and recover parsing.
1583 if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1584 Token Next = NextToken();
1585 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1586 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1587 }
1588
1589 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1590 return ExprError();
1591
1592 // Parse the common declaration-specifiers piece.
1593 DeclSpec DS(AttrFactory);
1594 ParseSpecifierQualifierList(DS, /*AccessSpecifier=*/AS_none,
1595 DeclSpecContext::DSC_type_specifier);
1596
1597 // Parse the abstract-declarator, if present.
1598 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1599 DeclaratorContext::TypeName);
1600 ParseDeclarator(DeclaratorInfo);
1601
1602 SourceLocation RAngleBracketLoc = Tok.getLocation();
1603
1604 if (ExpectAndConsume(tok::greater))
1605 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1606
1607 BalancedDelimiterTracker T(*this, tok::l_paren);
1608
1609 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1610 return ExprError();
1611
1612 ExprResult Result = ParseExpression();
1613
1614 // Match the ')'.
1615 T.consumeClose();
1616
1617 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1618 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1619 LAngleBracketLoc, DeclaratorInfo,
1620 RAngleBracketLoc,
1621 T.getOpenLocation(), Result.get(),
1622 T.getCloseLocation());
1623
1624 return Result;
1625}
1626
1627/// ParseCXXTypeid - This handles the C++ typeid expression.
1628///
1629/// postfix-expression: [C++ 5.2p1]
1630/// 'typeid' '(' expression ')'
1631/// 'typeid' '(' type-id ')'
1632///
1633ExprResult Parser::ParseCXXTypeid() {
1634 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!")(static_cast <bool> (Tok.is(tok::kw_typeid) && "Not 'typeid'!"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_typeid) && \"Not 'typeid'!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1634, __extension__ __PRETTY_FUNCTION__
))
;
1635
1636 SourceLocation OpLoc = ConsumeToken();
1637 SourceLocation LParenLoc, RParenLoc;
1638 BalancedDelimiterTracker T(*this, tok::l_paren);
1639
1640 // typeid expressions are always parenthesized.
1641 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1642 return ExprError();
1643 LParenLoc = T.getOpenLocation();
1644
1645 ExprResult Result;
1646
1647 // C++0x [expr.typeid]p3:
1648 // When typeid is applied to an expression other than an lvalue of a
1649 // polymorphic class type [...] The expression is an unevaluated
1650 // operand (Clause 5).
1651 //
1652 // Note that we can't tell whether the expression is an lvalue of a
1653 // polymorphic class type until after we've parsed the expression; we
1654 // speculatively assume the subexpression is unevaluated, and fix it up
1655 // later.
1656 //
1657 // We enter the unevaluated context before trying to determine whether we
1658 // have a type-id, because the tentative parse logic will try to resolve
1659 // names, and must treat them as unevaluated.
1660 EnterExpressionEvaluationContext Unevaluated(
1661 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1662 Sema::ReuseLambdaContextDecl);
1663
1664 if (isTypeIdInParens()) {
1665 TypeResult Ty = ParseTypeName();
1666
1667 // Match the ')'.
1668 T.consumeClose();
1669 RParenLoc = T.getCloseLocation();
1670 if (Ty.isInvalid() || RParenLoc.isInvalid())
1671 return ExprError();
1672
1673 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1674 Ty.get().getAsOpaquePtr(), RParenLoc);
1675 } else {
1676 Result = ParseExpression();
1677
1678 // Match the ')'.
1679 if (Result.isInvalid())
1680 SkipUntil(tok::r_paren, StopAtSemi);
1681 else {
1682 T.consumeClose();
1683 RParenLoc = T.getCloseLocation();
1684 if (RParenLoc.isInvalid())
1685 return ExprError();
1686
1687 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1688 Result.get(), RParenLoc);
1689 }
1690 }
1691
1692 return Result;
1693}
1694
1695/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1696///
1697/// '__uuidof' '(' expression ')'
1698/// '__uuidof' '(' type-id ')'
1699///
1700ExprResult Parser::ParseCXXUuidof() {
1701 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!")(static_cast <bool> (Tok.is(tok::kw___uuidof) &&
"Not '__uuidof'!") ? void (0) : __assert_fail ("Tok.is(tok::kw___uuidof) && \"Not '__uuidof'!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1701, __extension__ __PRETTY_FUNCTION__
))
;
1702
1703 SourceLocation OpLoc = ConsumeToken();
1704 BalancedDelimiterTracker T(*this, tok::l_paren);
1705
1706 // __uuidof expressions are always parenthesized.
1707 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1708 return ExprError();
1709
1710 ExprResult Result;
1711
1712 if (isTypeIdInParens()) {
1713 TypeResult Ty = ParseTypeName();
1714
1715 // Match the ')'.
1716 T.consumeClose();
1717
1718 if (Ty.isInvalid())
1719 return ExprError();
1720
1721 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1722 Ty.get().getAsOpaquePtr(),
1723 T.getCloseLocation());
1724 } else {
1725 EnterExpressionEvaluationContext Unevaluated(
1726 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1727 Result = ParseExpression();
1728
1729 // Match the ')'.
1730 if (Result.isInvalid())
1731 SkipUntil(tok::r_paren, StopAtSemi);
1732 else {
1733 T.consumeClose();
1734
1735 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1736 /*isType=*/false,
1737 Result.get(), T.getCloseLocation());
1738 }
1739 }
1740
1741 return Result;
1742}
1743
1744/// Parse a C++ pseudo-destructor expression after the base,
1745/// . or -> operator, and nested-name-specifier have already been
1746/// parsed. We're handling this fragment of the grammar:
1747///
1748/// postfix-expression: [C++2a expr.post]
1749/// postfix-expression . template[opt] id-expression
1750/// postfix-expression -> template[opt] id-expression
1751///
1752/// id-expression:
1753/// qualified-id
1754/// unqualified-id
1755///
1756/// qualified-id:
1757/// nested-name-specifier template[opt] unqualified-id
1758///
1759/// nested-name-specifier:
1760/// type-name ::
1761/// decltype-specifier :: FIXME: not implemented, but probably only
1762/// allowed in C++ grammar by accident
1763/// nested-name-specifier identifier ::
1764/// nested-name-specifier template[opt] simple-template-id ::
1765/// [...]
1766///
1767/// unqualified-id:
1768/// ~ type-name
1769/// ~ decltype-specifier
1770/// [...]
1771///
1772/// ... where the all but the last component of the nested-name-specifier
1773/// has already been parsed, and the base expression is not of a non-dependent
1774/// class type.
1775ExprResult
1776Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1777 tok::TokenKind OpKind,
1778 CXXScopeSpec &SS,
1779 ParsedType ObjectType) {
1780 // If the last component of the (optional) nested-name-specifier is
1781 // template[opt] simple-template-id, it has already been annotated.
1782 UnqualifiedId FirstTypeName;
1783 SourceLocation CCLoc;
1784 if (Tok.is(tok::identifier)) {
1785 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1786 ConsumeToken();
1787 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail")(static_cast <bool> (Tok.is(tok::coloncolon) &&
"ParseOptionalCXXScopeSpecifier fail") ? void (0) : __assert_fail
("Tok.is(tok::coloncolon) &&\"ParseOptionalCXXScopeSpecifier fail\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1787, __extension__ __PRETTY_FUNCTION__
))
;
1788 CCLoc = ConsumeToken();
1789 } else if (Tok.is(tok::annot_template_id)) {
1790 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1791 // FIXME: Carry on and build an AST representation for tooling.
1792 if (TemplateId->isInvalid())
1793 return ExprError();
1794 FirstTypeName.setTemplateId(TemplateId);
1795 ConsumeAnnotationToken();
1796 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail")(static_cast <bool> (Tok.is(tok::coloncolon) &&
"ParseOptionalCXXScopeSpecifier fail") ? void (0) : __assert_fail
("Tok.is(tok::coloncolon) &&\"ParseOptionalCXXScopeSpecifier fail\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1796, __extension__ __PRETTY_FUNCTION__
))
;
1797 CCLoc = ConsumeToken();
1798 } else {
1799 assert(SS.isEmpty() && "missing last component of nested name specifier")(static_cast <bool> (SS.isEmpty() && "missing last component of nested name specifier"
) ? void (0) : __assert_fail ("SS.isEmpty() && \"missing last component of nested name specifier\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1799, __extension__ __PRETTY_FUNCTION__
))
;
1800 FirstTypeName.setIdentifier(nullptr, SourceLocation());
1801 }
1802
1803 // Parse the tilde.
1804 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail")(static_cast <bool> (Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail"
) ? void (0) : __assert_fail ("Tok.is(tok::tilde) && \"ParseOptionalCXXScopeSpecifier fail\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1804, __extension__ __PRETTY_FUNCTION__
))
;
1805 SourceLocation TildeLoc = ConsumeToken();
1806
1807 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1808 DeclSpec DS(AttrFactory);
1809 ParseDecltypeSpecifier(DS);
1810 if (DS.getTypeSpecType() == TST_error)
1811 return ExprError();
1812 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1813 TildeLoc, DS);
1814 }
1815
1816 if (!Tok.is(tok::identifier)) {
1817 Diag(Tok, diag::err_destructor_tilde_identifier);
1818 return ExprError();
1819 }
1820
1821 // Parse the second type.
1822 UnqualifiedId SecondTypeName;
1823 IdentifierInfo *Name = Tok.getIdentifierInfo();
1824 SourceLocation NameLoc = ConsumeToken();
1825 SecondTypeName.setIdentifier(Name, NameLoc);
1826
1827 // If there is a '<', the second type name is a template-id. Parse
1828 // it as such.
1829 //
1830 // FIXME: This is not a context in which a '<' is assumed to start a template
1831 // argument list. This affects examples such as
1832 // void f(auto *p) { p->~X<int>(); }
1833 // ... but there's no ambiguity, and nowhere to write 'template' in such an
1834 // example, so we accept it anyway.
1835 if (Tok.is(tok::less) &&
1836 ParseUnqualifiedIdTemplateId(
1837 SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1838 Name, NameLoc, false, SecondTypeName,
1839 /*AssumeTemplateId=*/true))
1840 return ExprError();
1841
1842 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1843 SS, FirstTypeName, CCLoc, TildeLoc,
1844 SecondTypeName);
1845}
1846
1847/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1848///
1849/// boolean-literal: [C++ 2.13.5]
1850/// 'true'
1851/// 'false'
1852ExprResult Parser::ParseCXXBoolLiteral() {
1853 tok::TokenKind Kind = Tok.getKind();
1854 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1855}
1856
1857/// ParseThrowExpression - This handles the C++ throw expression.
1858///
1859/// throw-expression: [C++ 15]
1860/// 'throw' assignment-expression[opt]
1861ExprResult Parser::ParseThrowExpression() {
1862 assert(Tok.is(tok::kw_throw) && "Not throw!")(static_cast <bool> (Tok.is(tok::kw_throw) && "Not throw!"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_throw) && \"Not throw!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1862, __extension__ __PRETTY_FUNCTION__
))
;
1863 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
1864
1865 // If the current token isn't the start of an assignment-expression,
1866 // then the expression is not present. This handles things like:
1867 // "C ? throw : (void)42", which is crazy but legal.
1868 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
1869 case tok::semi:
1870 case tok::r_paren:
1871 case tok::r_square:
1872 case tok::r_brace:
1873 case tok::colon:
1874 case tok::comma:
1875 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1876
1877 default:
1878 ExprResult Expr(ParseAssignmentExpression());
1879 if (Expr.isInvalid()) return Expr;
1880 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1881 }
1882}
1883
1884/// Parse the C++ Coroutines co_yield expression.
1885///
1886/// co_yield-expression:
1887/// 'co_yield' assignment-expression[opt]
1888ExprResult Parser::ParseCoyieldExpression() {
1889 assert(Tok.is(tok::kw_co_yield) && "Not co_yield!")(static_cast <bool> (Tok.is(tok::kw_co_yield) &&
"Not co_yield!") ? void (0) : __assert_fail ("Tok.is(tok::kw_co_yield) && \"Not co_yield!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1889, __extension__ __PRETTY_FUNCTION__
))
;
1890
1891 SourceLocation Loc = ConsumeToken();
1892 ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1893 : ParseAssignmentExpression();
1894 if (!Expr.isInvalid())
1895 Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1896 return Expr;
1897}
1898
1899/// ParseCXXThis - This handles the C++ 'this' pointer.
1900///
1901/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1902/// a non-lvalue expression whose value is the address of the object for which
1903/// the function is called.
1904ExprResult Parser::ParseCXXThis() {
1905 assert(Tok.is(tok::kw_this) && "Not 'this'!")(static_cast <bool> (Tok.is(tok::kw_this) && "Not 'this'!"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_this) && \"Not 'this'!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1905, __extension__ __PRETTY_FUNCTION__
))
;
1906 SourceLocation ThisLoc = ConsumeToken();
1907 return Actions.ActOnCXXThis(ThisLoc);
1908}
1909
1910/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1911/// Can be interpreted either as function-style casting ("int(x)")
1912/// or class type construction ("ClassType(x,y,z)")
1913/// or creation of a value-initialized type ("int()").
1914/// See [C++ 5.2.3].
1915///
1916/// postfix-expression: [C++ 5.2p1]
1917/// simple-type-specifier '(' expression-list[opt] ')'
1918/// [C++0x] simple-type-specifier braced-init-list
1919/// typename-specifier '(' expression-list[opt] ')'
1920/// [C++0x] typename-specifier braced-init-list
1921///
1922/// In C++1z onwards, the type specifier can also be a template-name.
1923ExprResult
1924Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1925 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1926 DeclaratorContext::FunctionalCast);
1927 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1928
1929 assert((Tok.is(tok::l_paren) ||(static_cast <bool> ((Tok.is(tok::l_paren) || (getLangOpts
().CPlusPlus11 && Tok.is(tok::l_brace))) && "Expected '(' or '{'!"
) ? void (0) : __assert_fail ("(Tok.is(tok::l_paren) || (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) && \"Expected '(' or '{'!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1931, __extension__ __PRETTY_FUNCTION__
))
1930 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))(static_cast <bool> ((Tok.is(tok::l_paren) || (getLangOpts
().CPlusPlus11 && Tok.is(tok::l_brace))) && "Expected '(' or '{'!"
) ? void (0) : __assert_fail ("(Tok.is(tok::l_paren) || (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) && \"Expected '(' or '{'!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1931, __extension__ __PRETTY_FUNCTION__
))
1931 && "Expected '(' or '{'!")(static_cast <bool> ((Tok.is(tok::l_paren) || (getLangOpts
().CPlusPlus11 && Tok.is(tok::l_brace))) && "Expected '(' or '{'!"
) ? void (0) : __assert_fail ("(Tok.is(tok::l_paren) || (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) && \"Expected '(' or '{'!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1931, __extension__ __PRETTY_FUNCTION__
))
;
1932
1933 if (Tok.is(tok::l_brace)) {
1934 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1935 ExprResult Init = ParseBraceInitializer();
1936 if (Init.isInvalid())
1937 return Init;
1938 Expr *InitList = Init.get();
1939 return Actions.ActOnCXXTypeConstructExpr(
1940 TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1941 InitList->getEndLoc(), /*ListInitialization=*/true);
1942 } else {
1943 BalancedDelimiterTracker T(*this, tok::l_paren);
1944 T.consumeOpen();
1945
1946 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1947
1948 ExprVector Exprs;
1949
1950 auto RunSignatureHelp = [&]() {
1951 QualType PreferredType;
1952 if (TypeRep)
1953 PreferredType = Actions.ProduceConstructorSignatureHelp(
1954 TypeRep.get()->getCanonicalTypeInternal(), DS.getEndLoc(), Exprs,
1955 T.getOpenLocation(), /*Braced=*/false);
1956 CalledSignatureHelp = true;
1957 return PreferredType;
1958 };
1959
1960 if (Tok.isNot(tok::r_paren)) {
1961 if (ParseExpressionList(Exprs, [&] {
1962 PreferredType.enterFunctionArgument(Tok.getLocation(),
1963 RunSignatureHelp);
1964 })) {
1965 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1966 RunSignatureHelp();
1967 SkipUntil(tok::r_paren, StopAtSemi);
1968 return ExprError();
1969 }
1970 }
1971
1972 // Match the ')'.
1973 T.consumeClose();
1974
1975 // TypeRep could be null, if it references an invalid typedef.
1976 if (!TypeRep)
1977 return ExprError();
1978
1979 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1980 Exprs, T.getCloseLocation(),
1981 /*ListInitialization=*/false);
1982 }
1983}
1984
1985Parser::DeclGroupPtrTy
1986Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
1987 ParsedAttributes &Attrs) {
1988 assert(Tok.is(tok::kw_using) && "Expected using")(static_cast <bool> (Tok.is(tok::kw_using) && "Expected using"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_using) && \"Expected using\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1988, __extension__ __PRETTY_FUNCTION__
))
;
1989 assert((Context == DeclaratorContext::ForInit ||(static_cast <bool> ((Context == DeclaratorContext::ForInit
|| Context == DeclaratorContext::SelectionInit) && "Unexpected Declarator Context"
) ? void (0) : __assert_fail ("(Context == DeclaratorContext::ForInit || Context == DeclaratorContext::SelectionInit) && \"Unexpected Declarator Context\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1991, __extension__ __PRETTY_FUNCTION__
))
1990 Context == DeclaratorContext::SelectionInit) &&(static_cast <bool> ((Context == DeclaratorContext::ForInit
|| Context == DeclaratorContext::SelectionInit) && "Unexpected Declarator Context"
) ? void (0) : __assert_fail ("(Context == DeclaratorContext::ForInit || Context == DeclaratorContext::SelectionInit) && \"Unexpected Declarator Context\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1991, __extension__ __PRETTY_FUNCTION__
))
1991 "Unexpected Declarator Context")(static_cast <bool> ((Context == DeclaratorContext::ForInit
|| Context == DeclaratorContext::SelectionInit) && "Unexpected Declarator Context"
) ? void (0) : __assert_fail ("(Context == DeclaratorContext::ForInit || Context == DeclaratorContext::SelectionInit) && \"Unexpected Declarator Context\""
, "clang/lib/Parse/ParseExprCXX.cpp", 1991, __extension__ __PRETTY_FUNCTION__
))
;
1992 DeclGroupPtrTy DG;
1993 SourceLocation DeclStart = ConsumeToken(), DeclEnd;
1994
1995 DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none);
1996 if (!DG)
1997 return DG;
1998
1999 Diag(DeclStart, !getLangOpts().CPlusPlus23
2000 ? diag::ext_alias_in_init_statement
2001 : diag::warn_cxx20_alias_in_init_statement)
2002 << SourceRange(DeclStart, DeclEnd);
2003
2004 return DG;
2005}
2006
2007/// ParseCXXCondition - if/switch/while condition expression.
2008///
2009/// condition:
2010/// expression
2011/// type-specifier-seq declarator '=' assignment-expression
2012/// [C++11] type-specifier-seq declarator '=' initializer-clause
2013/// [C++11] type-specifier-seq declarator braced-init-list
2014/// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
2015/// brace-or-equal-initializer
2016/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
2017/// '=' assignment-expression
2018///
2019/// In C++1z, a condition may in some contexts be preceded by an
2020/// optional init-statement. This function will parse that too.
2021///
2022/// \param InitStmt If non-null, an init-statement is permitted, and if present
2023/// will be parsed and stored here.
2024///
2025/// \param Loc The location of the start of the statement that requires this
2026/// condition, e.g., the "for" in a for loop.
2027///
2028/// \param MissingOK Whether an empty condition is acceptable here. Otherwise
2029/// it is considered an error to be recovered from.
2030///
2031/// \param FRI If non-null, a for range declaration is permitted, and if
2032/// present will be parsed and stored here, and a null result will be returned.
2033///
2034/// \param EnterForConditionScope If true, enter a continue/break scope at the
2035/// appropriate moment for a 'for' loop.
2036///
2037/// \returns The parsed condition.
2038Sema::ConditionResult
2039Parser::ParseCXXCondition(StmtResult *InitStmt, SourceLocation Loc,
2040 Sema::ConditionKind CK, bool MissingOK,
2041 ForRangeInfo *FRI, bool EnterForConditionScope) {
2042 // Helper to ensure we always enter a continue/break scope if requested.
2043 struct ForConditionScopeRAII {
2044 Scope *S;
2045 void enter(bool IsConditionVariable) {
2046 if (S) {
2047 S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
2048 S->setIsConditionVarScope(IsConditionVariable);
2049 }
2050 }
2051 ~ForConditionScopeRAII() {
2052 if (S)
2053 S->setIsConditionVarScope(false);
2054 }
2055 } ForConditionScope{EnterForConditionScope
7.1
'EnterForConditionScope' is false
? getCurScope() : nullptr};
1
Assuming 'EnterForConditionScope' is false
2
'?' condition is false
8
'?' condition is false
2056
2057 ParenBraceBracketBalancer BalancerRAIIObj(*this);
2058 PreferredType.enterCondition(Actions, Tok.getLocation());
2059
2060 if (Tok.is(tok::code_completion)) {
3
Taking false branch
9
Taking false branch
2061 cutOffParsing();
2062 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
2063 return Sema::ConditionError();
2064 }
2065
2066 ParsedAttributes attrs(AttrFactory);
2067 MaybeParseCXX11Attributes(attrs);
2068
2069 const auto WarnOnInit = [this, &CK] {
2070 Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
2071 ? diag::warn_cxx14_compat_init_statement
2072 : diag::ext_init_statement)
2073 << (CK == Sema::ConditionKind::Switch);
2074 };
2075
2076 // Determine what kind of thing we have.
2077 switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
4
Control jumps to 'case InitStmtDecl:' at line 2115
10
Control jumps to 'case InitStmtDecl:' at line 2115
2078 case ConditionOrInitStatement::Expression: {
2079 // If this is a for loop, we're entering its condition.
2080 ForConditionScope.enter(/*IsConditionVariable=*/false);
2081
2082 ProhibitAttributes(attrs);
2083
2084 // We can have an empty expression here.
2085 // if (; true);
2086 if (InitStmt && Tok.is(tok::semi)) {
2087 WarnOnInit();
2088 SourceLocation SemiLoc = Tok.getLocation();
2089 if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
2090 Diag(SemiLoc, diag::warn_empty_init_statement)
2091 << (CK == Sema::ConditionKind::Switch)
2092 << FixItHint::CreateRemoval(SemiLoc);
2093 }
2094 ConsumeToken();
2095 *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2096 return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2097 }
2098
2099 // Parse the expression.
2100 ExprResult Expr = ParseExpression(); // expression
2101 if (Expr.isInvalid())
2102 return Sema::ConditionError();
2103
2104 if (InitStmt && Tok.is(tok::semi)) {
2105 WarnOnInit();
2106 *InitStmt = Actions.ActOnExprStmt(Expr.get());
2107 ConsumeToken();
2108 return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2109 }
2110
2111 return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK,
2112 MissingOK);
2113 }
2114
2115 case ConditionOrInitStatement::InitStmtDecl: {
2116 WarnOnInit();
2117 DeclGroupPtrTy DG;
2118 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2119 if (Tok.is(tok::kw_using))
5
Taking false branch
11
Taking true branch
2120 DG = ParseAliasDeclarationInInitStatement(
2121 DeclaratorContext::SelectionInit, attrs);
2122 else {
2123 ParsedAttributes DeclSpecAttrs(AttrFactory);
2124 DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd,
2125 attrs, DeclSpecAttrs, /*RequireSemi=*/true);
2126 }
2127 *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
12
Called C++ object pointer is null
2128 return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
6
Passing null pointer value via 1st parameter 'InitStmt'
7
Calling 'Parser::ParseCXXCondition'
2129 }
2130
2131 case ConditionOrInitStatement::ForRangeDecl: {
2132 // This is 'for (init-stmt; for-range-decl : range-expr)'.
2133 // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2134 // permitted here.
2135 assert(FRI && "should not parse a for range declaration here")(static_cast <bool> (FRI && "should not parse a for range declaration here"
) ? void (0) : __assert_fail ("FRI && \"should not parse a for range declaration here\""
, "clang/lib/Parse/ParseExprCXX.cpp", 2135, __extension__ __PRETTY_FUNCTION__
))
;
2136 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2137 ParsedAttributes DeclSpecAttrs(AttrFactory);
2138 DeclGroupPtrTy DG = ParseSimpleDeclaration(
2139 DeclaratorContext::ForInit, DeclEnd, attrs, DeclSpecAttrs, false, FRI);
2140 FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2141 assert((FRI->ColonLoc.isValid() || !DG) &&(static_cast <bool> ((FRI->ColonLoc.isValid() || !DG
) && "cannot find for range declaration") ? void (0) :
__assert_fail ("(FRI->ColonLoc.isValid() || !DG) && \"cannot find for range declaration\""
, "clang/lib/Parse/ParseExprCXX.cpp", 2142, __extension__ __PRETTY_FUNCTION__
))
2142 "cannot find for range declaration")(static_cast <bool> ((FRI->ColonLoc.isValid() || !DG
) && "cannot find for range declaration") ? void (0) :
__assert_fail ("(FRI->ColonLoc.isValid() || !DG) && \"cannot find for range declaration\""
, "clang/lib/Parse/ParseExprCXX.cpp", 2142, __extension__ __PRETTY_FUNCTION__
))
;
2143 return Sema::ConditionResult();
2144 }
2145
2146 case ConditionOrInitStatement::ConditionDecl:
2147 case ConditionOrInitStatement::Error:
2148 break;
2149 }
2150
2151 // If this is a for loop, we're entering its condition.
2152 ForConditionScope.enter(/*IsConditionVariable=*/true);
2153
2154 // type-specifier-seq
2155 DeclSpec DS(AttrFactory);
2156 ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2157
2158 // declarator
2159 Declarator DeclaratorInfo(DS, attrs, DeclaratorContext::Condition);
2160 ParseDeclarator(DeclaratorInfo);
2161
2162 // simple-asm-expr[opt]
2163 if (Tok.is(tok::kw_asm)) {
2164 SourceLocation Loc;
2165 ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2166 if (AsmLabel.isInvalid()) {
2167 SkipUntil(tok::semi, StopAtSemi);
2168 return Sema::ConditionError();
2169 }
2170 DeclaratorInfo.setAsmLabel(AsmLabel.get());
2171 DeclaratorInfo.SetRangeEnd(Loc);
2172 }
2173
2174 // If attributes are present, parse them.
2175 MaybeParseGNUAttributes(DeclaratorInfo);
2176
2177 // Type-check the declaration itself.
2178 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2179 DeclaratorInfo);
2180 if (Dcl.isInvalid())
2181 return Sema::ConditionError();
2182 Decl *DeclOut = Dcl.get();
2183
2184 // '=' assignment-expression
2185 // If a '==' or '+=' is found, suggest a fixit to '='.
2186 bool CopyInitialization = isTokenEqualOrEqualTypo();
2187 if (CopyInitialization)
2188 ConsumeToken();
2189
2190 ExprResult InitExpr = ExprError();
2191 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2192 Diag(Tok.getLocation(),
2193 diag::warn_cxx98_compat_generalized_initializer_lists);
2194 InitExpr = ParseBraceInitializer();
2195 } else if (CopyInitialization) {
2196 PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2197 InitExpr = ParseAssignmentExpression();
2198 } else if (Tok.is(tok::l_paren)) {
2199 // This was probably an attempt to initialize the variable.
2200 SourceLocation LParen = ConsumeParen(), RParen = LParen;
2201 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2202 RParen = ConsumeParen();
2203 Diag(DeclOut->getLocation(),
2204 diag::err_expected_init_in_condition_lparen)
2205 << SourceRange(LParen, RParen);
2206 } else {
2207 Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2208 }
2209
2210 if (!InitExpr.isInvalid())
2211 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2212 else
2213 Actions.ActOnInitializerError(DeclOut);
2214
2215 Actions.FinalizeDeclaration(DeclOut);
2216 return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2217}
2218
2219/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2220/// This should only be called when the current token is known to be part of
2221/// simple-type-specifier.
2222///
2223/// simple-type-specifier:
2224/// '::'[opt] nested-name-specifier[opt] type-name
2225/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2226/// char
2227/// wchar_t
2228/// bool
2229/// short
2230/// int
2231/// long
2232/// signed
2233/// unsigned
2234/// float
2235/// double
2236/// void
2237/// [GNU] typeof-specifier
2238/// [C++0x] auto [TODO]
2239///
2240/// type-name:
2241/// class-name
2242/// enum-name
2243/// typedef-name
2244///
2245void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2246 DS.SetRangeStart(Tok.getLocation());
2247 const char *PrevSpec;
2248 unsigned DiagID;
2249 SourceLocation Loc = Tok.getLocation();
2250 const clang::PrintingPolicy &Policy =
2251 Actions.getASTContext().getPrintingPolicy();
2252
2253 switch (Tok.getKind()) {
2254 case tok::identifier: // foo::bar
2255 case tok::coloncolon: // ::foo::bar
2256 llvm_unreachable("Annotation token should already be formed!")::llvm::llvm_unreachable_internal("Annotation token should already be formed!"
, "clang/lib/Parse/ParseExprCXX.cpp", 2256)
;
2257 default:
2258 llvm_unreachable("Not a simple-type-specifier token!")::llvm::llvm_unreachable_internal("Not a simple-type-specifier token!"
, "clang/lib/Parse/ParseExprCXX.cpp", 2258)
;
2259
2260 // type-name
2261 case tok::annot_typename: {
2262 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2263 getTypeAnnotation(Tok), Policy);
2264 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2265 ConsumeAnnotationToken();
2266
2267 DS.Finish(Actions, Policy);
2268 return;
2269 }
2270
2271 case tok::kw__ExtInt:
2272 case tok::kw__BitInt: {
2273 DiagnoseBitIntUse(Tok);
2274 ExprResult ER = ParseExtIntegerArgument();
2275 if (ER.isInvalid())
2276 DS.SetTypeSpecError();
2277 else
2278 DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2279
2280 // Do this here because we have already consumed the close paren.
2281 DS.SetRangeEnd(PrevTokLocation);
2282 DS.Finish(Actions, Policy);
2283 return;
2284 }
2285
2286 // builtin types
2287 case tok::kw_short:
2288 DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2289 Policy);
2290 break;
2291 case tok::kw_long:
2292 DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2293 Policy);
2294 break;
2295 case tok::kw___int64:
2296 DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2297 Policy);
2298 break;
2299 case tok::kw_signed:
2300 DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2301 break;
2302 case tok::kw_unsigned:
2303 DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2304 break;
2305 case tok::kw_void:
2306 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2307 break;
2308 case tok::kw_auto:
2309 DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy);
2310 break;
2311 case tok::kw_char:
2312 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2313 break;
2314 case tok::kw_int:
2315 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2316 break;
2317 case tok::kw___int128:
2318 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2319 break;
2320 case tok::kw___bf16:
2321 DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2322 break;
2323 case tok::kw_half:
2324 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2325 break;
2326 case tok::kw_float:
2327 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2328 break;
2329 case tok::kw_double:
2330 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2331 break;
2332 case tok::kw__Float16:
2333 DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2334 break;
2335 case tok::kw___float128:
2336 DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2337 break;
2338 case tok::kw___ibm128:
2339 DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2340 break;
2341 case tok::kw_wchar_t:
2342 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2343 break;
2344 case tok::kw_char8_t:
2345 DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2346 break;
2347 case tok::kw_char16_t:
2348 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2349 break;
2350 case tok::kw_char32_t:
2351 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2352 break;
2353 case tok::kw_bool:
2354 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2355 break;
2356#define GENERIC_IMAGE_TYPE(ImgType, Id) \
2357 case tok::kw_##ImgType##_t: \
2358 DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \
2359 Policy); \
2360 break;
2361#include "clang/Basic/OpenCLImageTypes.def"
2362
2363 case tok::annot_decltype:
2364 case tok::kw_decltype:
2365 DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2366 return DS.Finish(Actions, Policy);
2367
2368 // GNU typeof support.
2369 case tok::kw_typeof:
2370 ParseTypeofSpecifier(DS);
2371 DS.Finish(Actions, Policy);
2372 return;
2373 }
2374 ConsumeAnyToken();
2375 DS.SetRangeEnd(PrevTokLocation);
2376 DS.Finish(Actions, Policy);
2377}
2378
2379/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2380/// [dcl.name]), which is a non-empty sequence of type-specifiers,
2381/// e.g., "const short int". Note that the DeclSpec is *not* finished
2382/// by parsing the type-specifier-seq, because these sequences are
2383/// typically followed by some form of declarator. Returns true and
2384/// emits diagnostics if this is not a type-specifier-seq, false
2385/// otherwise.
2386///
2387/// type-specifier-seq: [C++ 8.1]
2388/// type-specifier type-specifier-seq[opt]
2389///
2390bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS, DeclaratorContext Context) {
2391 ParseSpecifierQualifierList(DS, AS_none,
2392 getDeclSpecContextFromDeclaratorContext(Context));
2393 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2394 return false;
2395}
2396
2397/// Finish parsing a C++ unqualified-id that is a template-id of
2398/// some form.
2399///
2400/// This routine is invoked when a '<' is encountered after an identifier or
2401/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2402/// whether the unqualified-id is actually a template-id. This routine will
2403/// then parse the template arguments and form the appropriate template-id to
2404/// return to the caller.
2405///
2406/// \param SS the nested-name-specifier that precedes this template-id, if
2407/// we're actually parsing a qualified-id.
2408///
2409/// \param ObjectType if this unqualified-id occurs within a member access
2410/// expression, the type of the base object whose member is being accessed.
2411///
2412/// \param ObjectHadErrors this unqualified-id occurs within a member access
2413/// expression, indicates whether the original subexpressions had any errors.
2414///
2415/// \param Name for constructor and destructor names, this is the actual
2416/// identifier that may be a template-name.
2417///
2418/// \param NameLoc the location of the class-name in a constructor or
2419/// destructor.
2420///
2421/// \param EnteringContext whether we're entering the scope of the
2422/// nested-name-specifier.
2423///
2424/// \param Id as input, describes the template-name or operator-function-id
2425/// that precedes the '<'. If template arguments were parsed successfully,
2426/// will be updated with the template-id.
2427///
2428/// \param AssumeTemplateId When true, this routine will assume that the name
2429/// refers to a template without performing name lookup to verify.
2430///
2431/// \returns true if a parse error occurred, false otherwise.
2432bool Parser::ParseUnqualifiedIdTemplateId(
2433 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2434 SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2435 bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2436 assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id")(static_cast <bool> (Tok.is(tok::less) && "Expected '<' to finish parsing a template-id"
) ? void (0) : __assert_fail ("Tok.is(tok::less) && \"Expected '<' to finish parsing a template-id\""
, "clang/lib/Parse/ParseExprCXX.cpp", 2436, __extension__ __PRETTY_FUNCTION__
))
;
2437
2438 TemplateTy Template;
2439 TemplateNameKind TNK = TNK_Non_template;
2440 switch (Id.getKind()) {
2441 case UnqualifiedIdKind::IK_Identifier:
2442 case UnqualifiedIdKind::IK_OperatorFunctionId:
2443 case UnqualifiedIdKind::IK_LiteralOperatorId:
2444 if (AssumeTemplateId) {
2445 // We defer the injected-class-name checks until we've found whether
2446 // this template-id is used to form a nested-name-specifier or not.
2447 TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2448 ObjectType, EnteringContext, Template,
2449 /*AllowInjectedClassName*/ true);
2450 } else {
2451 bool MemberOfUnknownSpecialization;
2452 TNK = Actions.isTemplateName(getCurScope(), SS,
2453 TemplateKWLoc.isValid(), Id,
2454 ObjectType, EnteringContext, Template,
2455 MemberOfUnknownSpecialization);
2456 // If lookup found nothing but we're assuming that this is a template
2457 // name, double-check that makes sense syntactically before committing
2458 // to it.
2459 if (TNK == TNK_Undeclared_template &&
2460 isTemplateArgumentList(0) == TPResult::False)
2461 return false;
2462
2463 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2464 ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2465 // If we had errors before, ObjectType can be dependent even without any
2466 // templates, do not report missing template keyword in that case.
2467 if (!ObjectHadErrors) {
2468 // We have something like t->getAs<T>(), where getAs is a
2469 // member of an unknown specialization. However, this will only
2470 // parse correctly as a template, so suggest the keyword 'template'
2471 // before 'getAs' and treat this as a dependent template name.
2472 std::string Name;
2473 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2474 Name = std::string(Id.Identifier->getName());
2475 else {
2476 Name = "operator ";
2477 if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2478 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2479 else
2480 Name += Id.Identifier->getName();
2481 }
2482 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2483 << Name
2484 << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2485 }
2486 TNK = Actions.ActOnTemplateName(
2487 getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2488 Template, /*AllowInjectedClassName*/ true);
2489 } else if (TNK == TNK_Non_template) {
2490 return false;
2491 }
2492 }
2493 break;
2494
2495 case UnqualifiedIdKind::IK_ConstructorName: {
2496 UnqualifiedId TemplateName;
2497 bool MemberOfUnknownSpecialization;
2498 TemplateName.setIdentifier(Name, NameLoc);
2499 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2500 TemplateName, ObjectType,
2501 EnteringContext, Template,
2502 MemberOfUnknownSpecialization);
2503 if (TNK == TNK_Non_template)
2504 return false;
2505 break;
2506 }
2507
2508 case UnqualifiedIdKind::IK_DestructorName: {
2509 UnqualifiedId TemplateName;
2510 bool MemberOfUnknownSpecialization;
2511 TemplateName.setIdentifier(Name, NameLoc);
2512 if (ObjectType) {
2513 TNK = Actions.ActOnTemplateName(
2514 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2515 EnteringContext, Template, /*AllowInjectedClassName*/ true);
2516 } else {
2517 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2518 TemplateName, ObjectType,
2519 EnteringContext, Template,
2520 MemberOfUnknownSpecialization);
2521
2522 if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2523 Diag(NameLoc, diag::err_destructor_template_id)
2524 << Name << SS.getRange();
2525 // Carry on to parse the template arguments before bailing out.
2526 }
2527 }
2528 break;
2529 }
2530
2531 default:
2532 return false;
2533 }
2534
2535 // Parse the enclosed template argument list.
2536 SourceLocation LAngleLoc, RAngleLoc;
2537 TemplateArgList TemplateArgs;
2538 if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs, RAngleLoc,
2539 Template))
2540 return true;
2541
2542 // If this is a non-template, we already issued a diagnostic.
2543 if (TNK == TNK_Non_template)
2544 return true;
2545
2546 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2547 Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2548 Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2549 // Form a parsed representation of the template-id to be stored in the
2550 // UnqualifiedId.
2551
2552 // FIXME: Store name for literal operator too.
2553 IdentifierInfo *TemplateII =
2554 Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2555 : nullptr;
2556 OverloadedOperatorKind OpKind =
2557 Id.getKind() == UnqualifiedIdKind::IK_Identifier
2558 ? OO_None
2559 : Id.OperatorFunctionId.Operator;
2560
2561 TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2562 TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2563 LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2564
2565 Id.setTemplateId(TemplateId);
2566 return false;
2567 }
2568
2569 // Bundle the template arguments together.
2570 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2571
2572 // Constructor and destructor names.
2573 TypeResult Type = Actions.ActOnTemplateIdType(
2574 getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2575 TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2576 if (Type.isInvalid())
2577 return true;
2578
2579 if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2580 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2581 else
2582 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2583
2584 return false;
2585}
2586
2587/// Parse an operator-function-id or conversion-function-id as part
2588/// of a C++ unqualified-id.
2589///
2590/// This routine is responsible only for parsing the operator-function-id or
2591/// conversion-function-id; it does not handle template arguments in any way.
2592///
2593/// \code
2594/// operator-function-id: [C++ 13.5]
2595/// 'operator' operator
2596///
2597/// operator: one of
2598/// new delete new[] delete[]
2599/// + - * / % ^ & | ~
2600/// ! = < > += -= *= /= %=
2601/// ^= &= |= << >> >>= <<= == !=
2602/// <= >= && || ++ -- , ->* ->
2603/// () [] <=>
2604///
2605/// conversion-function-id: [C++ 12.3.2]
2606/// operator conversion-type-id
2607///
2608/// conversion-type-id:
2609/// type-specifier-seq conversion-declarator[opt]
2610///
2611/// conversion-declarator:
2612/// ptr-operator conversion-declarator[opt]
2613/// \endcode
2614///
2615/// \param SS The nested-name-specifier that preceded this unqualified-id. If
2616/// non-empty, then we are parsing the unqualified-id of a qualified-id.
2617///
2618/// \param EnteringContext whether we are entering the scope of the
2619/// nested-name-specifier.
2620///
2621/// \param ObjectType if this unqualified-id occurs within a member access
2622/// expression, the type of the base object whose member is being accessed.
2623///
2624/// \param Result on a successful parse, contains the parsed unqualified-id.
2625///
2626/// \returns true if parsing fails, false otherwise.
2627bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2628 ParsedType ObjectType,
2629 UnqualifiedId &Result) {
2630 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword")(static_cast <bool> (Tok.is(tok::kw_operator) &&
"Expected 'operator' keyword") ? void (0) : __assert_fail ("Tok.is(tok::kw_operator) && \"Expected 'operator' keyword\""
, "clang/lib/Parse/ParseExprCXX.cpp", 2630, __extension__ __PRETTY_FUNCTION__
))
;
2631
2632 // Consume the 'operator' keyword.
2633 SourceLocation KeywordLoc = ConsumeToken();
2634
2635 // Determine what kind of operator name we have.
2636 unsigned SymbolIdx = 0;
2637 SourceLocation SymbolLocations[3];
2638 OverloadedOperatorKind Op = OO_None;
2639 switch (Tok.getKind()) {
2640 case tok::kw_new:
2641 case tok::kw_delete: {
2642 bool isNew = Tok.getKind() == tok::kw_new;
2643 // Consume the 'new' or 'delete'.
2644 SymbolLocations[SymbolIdx++] = ConsumeToken();
2645 // Check for array new/delete.
2646 if (Tok.is(tok::l_square) &&
2647 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2648 // Consume the '[' and ']'.
2649 BalancedDelimiterTracker T(*this, tok::l_square);
2650 T.consumeOpen();
2651 T.consumeClose();
2652 if (T.getCloseLocation().isInvalid())
2653 return true;
2654
2655 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2656 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2657 Op = isNew? OO_Array_New : OO_Array_Delete;
2658 } else {
2659 Op = isNew? OO_New : OO_Delete;
2660 }
2661 break;
2662 }
2663
2664#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2665 case tok::Token: \
2666 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
2667 Op = OO_##Name; \
2668 break;
2669#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2670#include "clang/Basic/OperatorKinds.def"
2671
2672 case tok::l_paren: {
2673 // Consume the '(' and ')'.
2674 BalancedDelimiterTracker T(*this, tok::l_paren);
2675 T.consumeOpen();
2676 T.consumeClose();
2677 if (T.getCloseLocation().isInvalid())
2678 return true;
2679
2680 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2681 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2682 Op = OO_Call;
2683 break;
2684 }
2685
2686 case tok::l_square: {
2687 // Consume the '[' and ']'.
2688 BalancedDelimiterTracker T(*this, tok::l_square);
2689 T.consumeOpen();
2690 T.consumeClose();
2691 if (T.getCloseLocation().isInvalid())
2692 return true;
2693
2694 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2695 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2696 Op = OO_Subscript;
2697 break;
2698 }
2699
2700 case tok::code_completion: {
2701 // Don't try to parse any further.
2702 cutOffParsing();
2703 // Code completion for the operator name.
2704 Actions.CodeCompleteOperatorName(getCurScope());
2705 return true;
2706 }
2707
2708 default:
2709 break;
2710 }
2711
2712 if (Op != OO_None) {
2713 // We have parsed an operator-function-id.
2714 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2715 return false;
2716 }
2717
2718 // Parse a literal-operator-id.
2719 //
2720 // literal-operator-id: C++11 [over.literal]
2721 // operator string-literal identifier
2722 // operator user-defined-string-literal
2723
2724 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2725 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2726
2727 SourceLocation DiagLoc;
2728 unsigned DiagId = 0;
2729
2730 // We're past translation phase 6, so perform string literal concatenation
2731 // before checking for "".
2732 SmallVector<Token, 4> Toks;
2733 SmallVector<SourceLocation, 4> TokLocs;
2734 while (isTokenStringLiteral()) {
2735 if (!Tok.is(tok::string_literal) && !DiagId) {
2736 // C++11 [over.literal]p1:
2737 // The string-literal or user-defined-string-literal in a
2738 // literal-operator-id shall have no encoding-prefix [...].
2739 DiagLoc = Tok.getLocation();
2740 DiagId = diag::err_literal_operator_string_prefix;
2741 }
2742 Toks.push_back(Tok);
2743 TokLocs.push_back(ConsumeStringToken());
2744 }
2745
2746 StringLiteralParser Literal(Toks, PP);
2747 if (Literal.hadError)
2748 return true;
2749
2750 // Grab the literal operator's suffix, which will be either the next token
2751 // or a ud-suffix from the string literal.
2752 bool IsUDSuffix = !Literal.getUDSuffix().empty();
2753 IdentifierInfo *II = nullptr;
2754 SourceLocation SuffixLoc;
2755 if (IsUDSuffix) {
2756 II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2757 SuffixLoc =
2758 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2759 Literal.getUDSuffixOffset(),
2760 PP.getSourceManager(), getLangOpts());
2761 } else if (Tok.is(tok::identifier)) {
2762 II = Tok.getIdentifierInfo();
2763 SuffixLoc = ConsumeToken();
2764 TokLocs.push_back(SuffixLoc);
2765 } else {
2766 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2767 return true;
2768 }
2769
2770 // The string literal must be empty.
2771 if (!Literal.GetString().empty() || Literal.Pascal) {
2772 // C++11 [over.literal]p1:
2773 // The string-literal or user-defined-string-literal in a
2774 // literal-operator-id shall [...] contain no characters
2775 // other than the implicit terminating '\0'.
2776 DiagLoc = TokLocs.front();
2777 DiagId = diag::err_literal_operator_string_not_empty;
2778 }
2779
2780 if (DiagId) {
2781 // This isn't a valid literal-operator-id, but we think we know
2782 // what the user meant. Tell them what they should have written.
2783 SmallString<32> Str;
2784 Str += "\"\"";
2785 Str += II->getName();
2786 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2787 SourceRange(TokLocs.front(), TokLocs.back()), Str);
2788 }
2789
2790 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2791
2792 return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
2793 }
2794
2795 // Parse a conversion-function-id.
2796 //
2797 // conversion-function-id: [C++ 12.3.2]
2798 // operator conversion-type-id
2799 //
2800 // conversion-type-id:
2801 // type-specifier-seq conversion-declarator[opt]
2802 //
2803 // conversion-declarator:
2804 // ptr-operator conversion-declarator[opt]
2805
2806 // Parse the type-specifier-seq.
2807 DeclSpec DS(AttrFactory);
2808 if (ParseCXXTypeSpecifierSeq(
2809 DS, DeclaratorContext::ConversionId)) // FIXME: ObjectType?
2810 return true;
2811
2812 // Parse the conversion-declarator, which is merely a sequence of
2813 // ptr-operators.
2814 Declarator D(DS, ParsedAttributesView::none(),
2815 DeclaratorContext::ConversionId);
2816 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2817
2818 // Finish up the type.
2819 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2820 if (Ty.isInvalid())
2821 return true;
2822
2823 // Note that this is a conversion-function-id.
2824 Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2825 D.getSourceRange().getEnd());
2826 return false;
2827}
2828
2829/// Parse a C++ unqualified-id (or a C identifier), which describes the
2830/// name of an entity.
2831///
2832/// \code
2833/// unqualified-id: [C++ expr.prim.general]
2834/// identifier
2835/// operator-function-id
2836/// conversion-function-id
2837/// [C++0x] literal-operator-id [TODO]
2838/// ~ class-name
2839/// template-id
2840///
2841/// \endcode
2842///
2843/// \param SS The nested-name-specifier that preceded this unqualified-id. If
2844/// non-empty, then we are parsing the unqualified-id of a qualified-id.
2845///
2846/// \param ObjectType if this unqualified-id occurs within a member access
2847/// expression, the type of the base object whose member is being accessed.
2848///
2849/// \param ObjectHadErrors if this unqualified-id occurs within a member access
2850/// expression, indicates whether the original subexpressions had any errors.
2851/// When true, diagnostics for missing 'template' keyword will be supressed.
2852///
2853/// \param EnteringContext whether we are entering the scope of the
2854/// nested-name-specifier.
2855///
2856/// \param AllowDestructorName whether we allow parsing of a destructor name.
2857///
2858/// \param AllowConstructorName whether we allow parsing a constructor name.
2859///
2860/// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2861///
2862/// \param Result on a successful parse, contains the parsed unqualified-id.
2863///
2864/// \returns true if parsing fails, false otherwise.
2865bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2866 bool ObjectHadErrors, bool EnteringContext,
2867 bool AllowDestructorName,
2868 bool AllowConstructorName,
2869 bool AllowDeductionGuide,
2870 SourceLocation *TemplateKWLoc,
2871 UnqualifiedId &Result) {
2872 if (TemplateKWLoc)
2873 *TemplateKWLoc = SourceLocation();
2874
2875 // Handle 'A::template B'. This is for template-ids which have not
2876 // already been annotated by ParseOptionalCXXScopeSpecifier().
2877 bool TemplateSpecified = false;
2878 if (Tok.is(tok::kw_template)) {
2879 if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2880 TemplateSpecified = true;
2881 *TemplateKWLoc = ConsumeToken();
2882 } else {
2883 SourceLocation TemplateLoc = ConsumeToken();
2884 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2885 << FixItHint::CreateRemoval(TemplateLoc);
2886 }
2887 }
2888
2889 // unqualified-id:
2890 // identifier
2891 // template-id (when it hasn't already been annotated)
2892 if (Tok.is(tok::identifier)) {
2893 ParseIdentifier:
2894 // Consume the identifier.
2895 IdentifierInfo *Id = Tok.getIdentifierInfo();
2896 SourceLocation IdLoc = ConsumeToken();
2897
2898 if (!getLangOpts().CPlusPlus) {
2899 // If we're not in C++, only identifiers matter. Record the
2900 // identifier and return.
2901 Result.setIdentifier(Id, IdLoc);
2902 return false;
2903 }
2904
2905 ParsedTemplateTy TemplateName;
2906 if (AllowConstructorName &&
2907 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2908 // We have parsed a constructor name.
2909 ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2910 EnteringContext);
2911 if (!Ty)
2912 return true;
2913 Result.setConstructorName(Ty, IdLoc, IdLoc);
2914 } else if (getLangOpts().CPlusPlus17 && AllowDeductionGuide &&
2915 SS.isEmpty() &&
2916 Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc, SS,
2917 &TemplateName)) {
2918 // We have parsed a template-name naming a deduction guide.
2919 Result.setDeductionGuideName(TemplateName, IdLoc);
2920 } else {
2921 // We have parsed an identifier.
2922 Result.setIdentifier(Id, IdLoc);
2923 }
2924
2925 // If the next token is a '<', we may have a template.
2926 TemplateTy Template;
2927 if (Tok.is(tok::less))
2928 return ParseUnqualifiedIdTemplateId(
2929 SS, ObjectType, ObjectHadErrors,
2930 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2931 EnteringContext, Result, TemplateSpecified);
2932 else if (TemplateSpecified &&
2933 Actions.ActOnTemplateName(
2934 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2935 EnteringContext, Template,
2936 /*AllowInjectedClassName*/ true) == TNK_Non_template)
2937 return true;
2938
2939 return false;
2940 }
2941
2942 // unqualified-id:
2943 // template-id (already parsed and annotated)
2944 if (Tok.is(tok::annot_template_id)) {
2945 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2946
2947 // FIXME: Consider passing invalid template-ids on to callers; they may
2948 // be able to recover better than we can.
2949 if (TemplateId->isInvalid()) {
2950 ConsumeAnnotationToken();
2951 return true;
2952 }
2953
2954 // If the template-name names the current class, then this is a constructor
2955 if (AllowConstructorName && TemplateId->Name &&
2956 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2957 if (SS.isSet()) {
2958 // C++ [class.qual]p2 specifies that a qualified template-name
2959 // is taken as the constructor name where a constructor can be
2960 // declared. Thus, the template arguments are extraneous, so
2961 // complain about them and remove them entirely.
2962 Diag(TemplateId->TemplateNameLoc,
2963 diag::err_out_of_line_constructor_template_id)
2964 << TemplateId->Name
2965 << FixItHint::CreateRemoval(
2966 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2967 ParsedType Ty = Actions.getConstructorName(
2968 *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2969 EnteringContext);
2970 if (!Ty)
2971 return true;
2972 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2973 TemplateId->RAngleLoc);
2974 ConsumeAnnotationToken();
2975 return false;
2976 }
2977
2978 Result.setConstructorTemplateId(TemplateId);
2979 ConsumeAnnotationToken();
2980 return false;
2981 }
2982
2983 // We have already parsed a template-id; consume the annotation token as
2984 // our unqualified-id.
2985 Result.setTemplateId(TemplateId);
2986 SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2987 if (TemplateLoc.isValid()) {
2988 if (TemplateKWLoc && (ObjectType || SS.isSet()))
2989 *TemplateKWLoc = TemplateLoc;
2990 else
2991 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2992 << FixItHint::CreateRemoval(TemplateLoc);
2993 }
2994 ConsumeAnnotationToken();
2995 return false;
2996 }
2997
2998 // unqualified-id:
2999 // operator-function-id
3000 // conversion-function-id
3001 if (Tok.is(tok::kw_operator)) {
3002 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
3003 return true;
3004
3005 // If we have an operator-function-id or a literal-operator-id and the next
3006 // token is a '<', we may have a
3007 //
3008 // template-id:
3009 // operator-function-id < template-argument-list[opt] >
3010 TemplateTy Template;
3011 if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
3012 Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
3013 Tok.is(tok::less))
3014 return ParseUnqualifiedIdTemplateId(
3015 SS, ObjectType, ObjectHadErrors,
3016 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
3017 SourceLocation(), EnteringContext, Result, TemplateSpecified);
3018 else if (TemplateSpecified &&
3019 Actions.ActOnTemplateName(
3020 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
3021 EnteringContext, Template,
3022 /*AllowInjectedClassName*/ true) == TNK_Non_template)
3023 return true;
3024
3025 return false;
3026 }
3027
3028 if (getLangOpts().CPlusPlus &&
3029 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
3030 // C++ [expr.unary.op]p10:
3031 // There is an ambiguity in the unary-expression ~X(), where X is a
3032 // class-name. The ambiguity is resolved in favor of treating ~ as a
3033 // unary complement rather than treating ~X as referring to a destructor.
3034
3035 // Parse the '~'.
3036 SourceLocation TildeLoc = ConsumeToken();
3037
3038 if (TemplateSpecified) {
3039 // C++ [temp.names]p3:
3040 // A name prefixed by the keyword template shall be a template-id [...]
3041 //
3042 // A template-id cannot begin with a '~' token. This would never work
3043 // anyway: x.~A<int>() would specify that the destructor is a template,
3044 // not that 'A' is a template.
3045 //
3046 // FIXME: Suggest replacing the attempted destructor name with a correct
3047 // destructor name and recover. (This is not trivial if this would become
3048 // a pseudo-destructor name).
3049 Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
3050 << Tok.getLocation();
3051 return true;
3052 }
3053
3054 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
3055 DeclSpec DS(AttrFactory);
3056 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
3057 if (ParsedType Type =
3058 Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
3059 Result.setDestructorName(TildeLoc, Type, EndLoc);
3060 return false;
3061 }
3062 return true;
3063 }
3064
3065 // Parse the class-name.
3066 if (Tok.isNot(tok::identifier)) {
3067 Diag(Tok, diag::err_destructor_tilde_identifier);
3068 return true;
3069 }
3070
3071 // If the user wrote ~T::T, correct it to T::~T.
3072 DeclaratorScopeObj DeclScopeObj(*this, SS);
3073 if (NextToken().is(tok::coloncolon)) {
3074 // Don't let ParseOptionalCXXScopeSpecifier() "correct"
3075 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
3076 // it will confuse this recovery logic.
3077 ColonProtectionRAIIObject ColonRAII(*this, false);
3078
3079 if (SS.isSet()) {
3080 AnnotateScopeToken(SS, /*NewAnnotation*/true);
3081 SS.clear();
3082 }
3083 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
3084 EnteringContext))
3085 return true;
3086 if (SS.isNotEmpty())
3087 ObjectType = nullptr;
3088 if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
3089 !SS.isSet()) {
3090 Diag(TildeLoc, diag::err_destructor_tilde_scope);
3091 return true;
3092 }
3093
3094 // Recover as if the tilde had been written before the identifier.
3095 Diag(TildeLoc, diag::err_destructor_tilde_scope)
3096 << FixItHint::CreateRemoval(TildeLoc)
3097 << FixItHint::CreateInsertion(Tok.getLocation(), "~");
3098
3099 // Temporarily enter the scope for the rest of this function.
3100 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3101 DeclScopeObj.EnterDeclaratorScope();
3102 }
3103
3104 // Parse the class-name (or template-name in a simple-template-id).
3105 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
3106 SourceLocation ClassNameLoc = ConsumeToken();
3107
3108 if (Tok.is(tok::less)) {
3109 Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
3110 return ParseUnqualifiedIdTemplateId(
3111 SS, ObjectType, ObjectHadErrors,
3112 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
3113 ClassNameLoc, EnteringContext, Result, TemplateSpecified);
3114 }
3115
3116 // Note that this is a destructor name.
3117 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
3118 ClassNameLoc, getCurScope(),
3119 SS, ObjectType,
3120 EnteringContext);
3121 if (!Ty)
3122 return true;
3123
3124 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3125 return false;
3126 }
3127
3128 switch (Tok.getKind()) {
3129#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
3130#include "clang/Basic/TransformTypeTraits.def"
3131 if (!NextToken().is(tok::l_paren)) {
3132 Tok.setKind(tok::identifier);
3133 Diag(Tok, diag::ext_keyword_as_ident)
3134 << Tok.getIdentifierInfo()->getName() << 0;
3135 goto ParseIdentifier;
3136 }
3137 [[fallthrough]];
3138 default:
3139 Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
3140 return true;
3141 }
3142}
3143
3144/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3145/// memory in a typesafe manner and call constructors.
3146///
3147/// This method is called to parse the new expression after the optional :: has
3148/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
3149/// is its location. Otherwise, "Start" is the location of the 'new' token.
3150///
3151/// new-expression:
3152/// '::'[opt] 'new' new-placement[opt] new-type-id
3153/// new-initializer[opt]
3154/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3155/// new-initializer[opt]
3156///
3157/// new-placement:
3158/// '(' expression-list ')'
3159///
3160/// new-type-id:
3161/// type-specifier-seq new-declarator[opt]
3162/// [GNU] attributes type-specifier-seq new-declarator[opt]
3163///
3164/// new-declarator:
3165/// ptr-operator new-declarator[opt]
3166/// direct-new-declarator
3167///
3168/// new-initializer:
3169/// '(' expression-list[opt] ')'
3170/// [C++0x] braced-init-list
3171///
3172ExprResult
3173Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3174 assert(Tok.is(tok::kw_new) && "expected 'new' token")(static_cast <bool> (Tok.is(tok::kw_new) && "expected 'new' token"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_new) && \"expected 'new' token\""
, "clang/lib/Parse/ParseExprCXX.cpp", 3174, __extension__ __PRETTY_FUNCTION__
))
;
3175 ConsumeToken(); // Consume 'new'
3176
3177 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3178 // second form of new-expression. It can't be a new-type-id.
3179
3180 ExprVector PlacementArgs;
3181 SourceLocation PlacementLParen, PlacementRParen;
3182
3183 SourceRange TypeIdParens;
3184 DeclSpec DS(AttrFactory);
3185 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3186 DeclaratorContext::CXXNew);
3187 if (Tok.is(tok::l_paren)) {
3188 // If it turns out to be a placement, we change the type location.
3189 BalancedDelimiterTracker T(*this, tok::l_paren);
3190 T.consumeOpen();
3191 PlacementLParen = T.getOpenLocation();
3192 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3193 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3194 return ExprError();
3195 }
3196
3197 T.consumeClose();
3198 PlacementRParen = T.getCloseLocation();
3199 if (PlacementRParen.isInvalid()) {
3200 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3201 return ExprError();
3202 }
3203
3204 if (PlacementArgs.empty()) {
3205 // Reset the placement locations. There was no placement.
3206 TypeIdParens = T.getRange();
3207 PlacementLParen = PlacementRParen = SourceLocation();
3208 } else {
3209 // We still need the type.
3210 if (Tok.is(tok::l_paren)) {
3211 BalancedDelimiterTracker T(*this, tok::l_paren);
3212 T.consumeOpen();
3213 MaybeParseGNUAttributes(DeclaratorInfo);
3214 ParseSpecifierQualifierList(DS);
3215 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3216 ParseDeclarator(DeclaratorInfo);
3217 T.consumeClose();
3218 TypeIdParens = T.getRange();
3219 } else {
3220 MaybeParseGNUAttributes(DeclaratorInfo);
3221 if (ParseCXXTypeSpecifierSeq(DS))
3222 DeclaratorInfo.setInvalidType(true);
3223 else {
3224 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3225 ParseDeclaratorInternal(DeclaratorInfo,
3226 &Parser::ParseDirectNewDeclarator);
3227 }
3228 }
3229 }
3230 } else {
3231 // A new-type-id is a simplified type-id, where essentially the
3232 // direct-declarator is replaced by a direct-new-declarator.
3233 MaybeParseGNUAttributes(DeclaratorInfo);
3234 if (ParseCXXTypeSpecifierSeq(DS))
3235 DeclaratorInfo.setInvalidType(true);
3236 else {
3237 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3238 ParseDeclaratorInternal(DeclaratorInfo,
3239 &Parser::ParseDirectNewDeclarator);
3240 }
3241 }
3242 if (DeclaratorInfo.isInvalidType()) {
3243 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3244 return ExprError();
3245 }
3246
3247 ExprResult Initializer;
3248
3249 if (Tok.is(tok::l_paren)) {
3250 SourceLocation ConstructorLParen, ConstructorRParen;
3251 ExprVector ConstructorArgs;
3252 BalancedDelimiterTracker T(*this, tok::l_paren);
3253 T.consumeOpen();
3254 ConstructorLParen = T.getOpenLocation();
3255 if (Tok.isNot(tok::r_paren)) {
3256 auto RunSignatureHelp = [&]() {
3257 ParsedType TypeRep =
3258 Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
3259 QualType PreferredType;
3260 // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3261 // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3262 // `new decltype(invalid) (^)`.
3263 if (TypeRep)
3264 PreferredType = Actions.ProduceConstructorSignatureHelp(
3265 TypeRep.get()->getCanonicalTypeInternal(),
3266 DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen,
3267 /*Braced=*/false);
3268 CalledSignatureHelp = true;
3269 return PreferredType;
3270 };
3271 if (ParseExpressionList(ConstructorArgs, [&] {
3272 PreferredType.enterFunctionArgument(Tok.getLocation(),
3273 RunSignatureHelp);
3274 })) {
3275 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3276 RunSignatureHelp();
3277 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3278 return ExprError();
3279 }
3280 }
3281 T.consumeClose();
3282 ConstructorRParen = T.getCloseLocation();
3283 if (ConstructorRParen.isInvalid()) {
3284 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3285 return ExprError();
3286 }
3287 Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3288 ConstructorRParen,
3289 ConstructorArgs);
3290 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3291 Diag(Tok.getLocation(),
3292 diag::warn_cxx98_compat_generalized_initializer_lists);
3293 Initializer = ParseBraceInitializer();
3294 }
3295 if (Initializer.isInvalid())
3296 return Initializer;
3297
3298 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3299 PlacementArgs, PlacementRParen,
3300 TypeIdParens, DeclaratorInfo, Initializer.get());
3301}
3302
3303/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3304/// passed to ParseDeclaratorInternal.
3305///
3306/// direct-new-declarator:
3307/// '[' expression[opt] ']'
3308/// direct-new-declarator '[' constant-expression ']'
3309///
3310void Parser::ParseDirectNewDeclarator(Declarator &D) {
3311 // Parse the array dimensions.
3312 bool First = true;
3313 while (Tok.is(tok::l_square)) {
3314 // An array-size expression can't start with a lambda.
3315 if (CheckProhibitedCXX11Attribute())
3316 continue;
3317
3318 BalancedDelimiterTracker T(*this, tok::l_square);
3319 T.consumeOpen();
3320
3321 ExprResult Size =
3322 First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3323 : ParseConstantExpression();
3324 if (Size.isInvalid()) {
3325 // Recover
3326 SkipUntil(tok::r_square, StopAtSemi);
3327 return;
3328 }
3329 First = false;
3330
3331 T.consumeClose();
3332
3333 // Attributes here appertain to the array type. C++11 [expr.new]p5.
3334 ParsedAttributes Attrs(AttrFactory);
3335 MaybeParseCXX11Attributes(Attrs);
3336
3337 D.AddTypeInfo(DeclaratorChunk::getArray(0,
3338 /*isStatic=*/false, /*isStar=*/false,
3339 Size.get(), T.getOpenLocation(),
3340 T.getCloseLocation()),
3341 std::move(Attrs), T.getCloseLocation());
3342
3343 if (T.getCloseLocation().isInvalid())
3344 return;
3345 }
3346}
3347
3348/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3349/// This ambiguity appears in the syntax of the C++ new operator.
3350///
3351/// new-expression:
3352/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3353/// new-initializer[opt]
3354///
3355/// new-placement:
3356/// '(' expression-list ')'
3357///
3358bool Parser::ParseExpressionListOrTypeId(
3359 SmallVectorImpl<Expr*> &PlacementArgs,
3360 Declarator &D) {
3361 // The '(' was already consumed.
3362 if (isTypeIdInParens()) {
3363 ParseSpecifierQualifierList(D.getMutableDeclSpec());
3364 D.SetSourceRange(D.getDeclSpec().getSourceRange());
3365 ParseDeclarator(D);
3366 return D.isInvalidType();
3367 }
3368
3369 // It's not a type, it has to be an expression list.
3370 return ParseExpressionList(PlacementArgs);
3371}
3372
3373/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3374/// to free memory allocated by new.
3375///
3376/// This method is called to parse the 'delete' expression after the optional
3377/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
3378/// and "Start" is its location. Otherwise, "Start" is the location of the
3379/// 'delete' token.
3380///
3381/// delete-expression:
3382/// '::'[opt] 'delete' cast-expression
3383/// '::'[opt] 'delete' '[' ']' cast-expression
3384ExprResult
3385Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3386 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword")(static_cast <bool> (Tok.is(tok::kw_delete) && "Expected 'delete' keyword"
) ? void (0) : __assert_fail ("Tok.is(tok::kw_delete) && \"Expected 'delete' keyword\""
, "clang/lib/Parse/ParseExprCXX.cpp", 3386, __extension__ __PRETTY_FUNCTION__
))
;
3387 ConsumeToken(); // Consume 'delete'
3388
3389 // Array delete?
3390 bool ArrayDelete = false;
3391 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3392 // C++11 [expr.delete]p1:
3393 // Whenever the delete keyword is followed by empty square brackets, it
3394 // shall be interpreted as [array delete].
3395 // [Footnote: A lambda expression with a lambda-introducer that consists
3396 // of empty square brackets can follow the delete keyword if
3397 // the lambda expression is enclosed in parentheses.]
3398
3399 const Token Next = GetLookAheadToken(2);
3400
3401 // Basic lookahead to check if we have a lambda expression.
3402 if (Next.isOneOf(tok::l_brace, tok::less) ||
3403 (Next.is(tok::l_paren) &&
3404 (GetLookAheadToken(3).is(tok::r_paren) ||
3405 (GetLookAheadToken(3).is(tok::identifier) &&
3406 GetLookAheadToken(4).is(tok::identifier))))) {
3407 TentativeParsingAction TPA(*this);
3408 SourceLocation LSquareLoc = Tok.getLocation();
3409 SourceLocation RSquareLoc = NextToken().getLocation();
3410
3411 // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3412 // case.
3413 SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3414 SourceLocation RBraceLoc;
3415 bool EmitFixIt = false;
3416 if (Tok.is(tok::l_brace)) {
3417 ConsumeBrace();
3418 SkipUntil(tok::r_brace, StopBeforeMatch);
3419 RBraceLoc = Tok.getLocation();
3420 EmitFixIt = true;
3421 }
3422
3423 TPA.Revert();
3424
3425 if (EmitFixIt)
3426 Diag(Start, diag::err_lambda_after_delete)
3427 << SourceRange(Start, RSquareLoc)
3428 << FixItHint::CreateInsertion(LSquareLoc, "(")
3429 << FixItHint::CreateInsertion(
3430 Lexer::getLocForEndOfToken(
3431 RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3432 ")");
3433 else
3434 Diag(Start, diag::err_lambda_after_delete)
3435 << SourceRange(Start, RSquareLoc);
3436
3437 // Warn that the non-capturing lambda isn't surrounded by parentheses
3438 // to disambiguate it from 'delete[]'.
3439 ExprResult Lambda = ParseLambdaExpression();
3440 if (Lambda.isInvalid())
3441 return ExprError();
3442
3443 // Evaluate any postfix expressions used on the lambda.
3444 Lambda = ParsePostfixExpressionSuffix(Lambda);
3445 if (Lambda.isInvalid())
3446 return ExprError();
3447 return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3448 Lambda.get());
3449 }
3450
3451 ArrayDelete = true;
3452 BalancedDelimiterTracker T(*this, tok::l_square);
3453
3454 T.consumeOpen();
3455 T.consumeClose();
3456 if (T.getCloseLocation().isInvalid())
3457 return ExprError();
3458 }
3459
3460 ExprResult Operand(ParseCastExpression(AnyCastExpr));
3461 if (Operand.isInvalid())
3462 return Operand;
3463
3464 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3465}
3466
3467/// ParseRequiresExpression - Parse a C++2a requires-expression.
3468/// C++2a [expr.prim.req]p1
3469/// A requires-expression provides a concise way to express requirements on
3470/// template arguments. A requirement is one that can be checked by name
3471/// lookup (6.4) or by checking properties of types and expressions.
3472///
3473/// requires-expression:
3474/// 'requires' requirement-parameter-list[opt] requirement-body
3475///
3476/// requirement-parameter-list:
3477/// '(' parameter-declaration-clause[opt] ')'
3478///
3479/// requirement-body:
3480/// '{' requirement-seq '}'
3481///
3482/// requirement-seq:
3483/// requirement
3484/// requirement-seq requirement
3485///
3486/// requirement:
3487/// simple-requirement
3488/// type-requirement
3489/// compound-requirement
3490/// nested-requirement
3491ExprResult Parser::ParseRequiresExpression() {
3492 assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword")(static_cast <bool> (Tok.is(tok::kw_requires) &&
"Expected 'requires' keyword") ? void (0) : __assert_fail ("Tok.is(tok::kw_requires) && \"Expected 'requires' keyword\""
, "clang/lib/Parse/ParseExprCXX.cpp", 3492, __extension__ __PRETTY_FUNCTION__
))
;
3493 SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3494
3495 llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3496 if (Tok.is(tok::l_paren)) {
3497 // requirement parameter list is present.
3498 ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3499 Scope::DeclScope);
3500 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3501 Parens.consumeOpen();
3502 if (!Tok.is(tok::r_paren)) {
3503 ParsedAttributes FirstArgAttrs(getAttrFactory());
3504 SourceLocation EllipsisLoc;
3505 llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3506 ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3507 FirstArgAttrs, LocalParameters,
3508 EllipsisLoc);
3509 if (EllipsisLoc.isValid())
3510 Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3511 for (auto &ParamInfo : LocalParameters)
3512 LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3513 }
3514 Parens.consumeClose();
3515 }
3516
3517 BalancedDelimiterTracker Braces(*this, tok::l_brace);
3518 if (Braces.expectAndConsume())
3519 return ExprError();
3520
3521 // Start of requirement list
3522 llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3523
3524 // C++2a [expr.prim.req]p2
3525 // Expressions appearing within a requirement-body are unevaluated operands.
3526 EnterExpressionEvaluationContext Ctx(
3527 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3528
3529 ParseScope BodyScope(this, Scope::DeclScope);
3530 // Create a separate diagnostic pool for RequiresExprBodyDecl.
3531 // Dependent diagnostics are attached to this Decl and non-depenedent
3532 // diagnostics are surfaced after this parse.
3533 ParsingDeclRAIIObject ParsingBodyDecl(*this, ParsingDeclRAIIObject::NoParent);
3534 RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3535 RequiresKWLoc, LocalParameterDecls, getCurScope());
3536
3537 if (Tok.is(tok::r_brace)) {
3538 // Grammar does not allow an empty body.
3539 // requirement-body:
3540 // { requirement-seq }
3541 // requirement-seq:
3542 // requirement
3543 // requirement-seq requirement
3544 Diag(Tok, diag::err_empty_requires_expr);
3545 // Continue anyway and produce a requires expr with no requirements.
3546 } else {
3547 while (!Tok.is(tok::r_brace)) {
3548 switch (Tok.getKind()) {
3549 case tok::l_brace: {
3550 // Compound requirement
3551 // C++ [expr.prim.req.compound]
3552 // compound-requirement:
3553 // '{' expression '}' 'noexcept'[opt]
3554 // return-type-requirement[opt] ';'
3555 // return-type-requirement:
3556 // trailing-return-type
3557 // '->' cv-qualifier-seq[opt] constrained-parameter
3558 // cv-qualifier-seq[opt] abstract-declarator[opt]
3559 BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3560 ExprBraces.consumeOpen();
3561 ExprResult Expression =
3562 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3563 if (!Expression.isUsable()) {
3564 ExprBraces.skipToEnd();
3565 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3566 break;
3567 }
3568 if (ExprBraces.consumeClose())
3569 ExprBraces.skipToEnd();
3570
3571 concepts::Requirement *Req = nullptr;
3572 SourceLocation NoexceptLoc;
3573 TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3574 if (Tok.is(tok::semi)) {
3575 Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3576 if (Req)
3577 Requirements.push_back(Req);
3578 break;
3579 }
3580 if (!TryConsumeToken(tok::arrow))
3581 // User probably forgot the arrow, remind them and try to continue.
3582 Diag(Tok, diag::err_requires_expr_missing_arrow)
3583 << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3584 // Try to parse a 'type-constraint'
3585 if (TryAnnotateTypeConstraint()) {
3586 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3587 break;
3588 }
3589 if (!isTypeConstraintAnnotation()) {
3590 Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3591 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3592 break;
3593 }
3594 CXXScopeSpec SS;
3595 if (Tok.is(tok::annot_cxxscope)) {
3596 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3597 Tok.getAnnotationRange(),
3598 SS);
3599 ConsumeAnnotationToken();
3600 }
3601
3602 Req = Actions.ActOnCompoundRequirement(
3603 Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3604 TemplateParameterDepth);
3605 ConsumeAnnotationToken();
3606 if (Req)
3607 Requirements.push_back(Req);
3608 break;
3609 }
3610 default: {
3611 bool PossibleRequiresExprInSimpleRequirement = false;
3612 if (Tok.is(tok::kw_requires)) {
3613 auto IsNestedRequirement = [&] {
3614 RevertingTentativeParsingAction TPA(*this);
3615 ConsumeToken(); // 'requires'
3616 if (Tok.is(tok::l_brace))
3617 // This is a requires expression
3618 // requires (T t) {
3619 // requires { t++; };
3620 // ... ^
3621 // }
3622 return false;
3623 if (Tok.is(tok::l_paren)) {
3624 // This might be the parameter list of a requires expression
3625 ConsumeParen();
3626 auto Res = TryParseParameterDeclarationClause();
3627 if (Res != TPResult::False) {
3628 // Skip to the closing parenthesis
3629 // FIXME: Don't traverse these tokens twice (here and in
3630 // TryParseParameterDeclarationClause).
3631 unsigned Depth = 1;
3632 while (Depth != 0) {
3633 if (Tok.is(tok::l_paren))
3634 Depth++;
3635 else if (Tok.is(tok::r_paren))
3636 Depth--;
3637 ConsumeAnyToken();
3638 }
3639 // requires (T t) {
3640 // requires () ?
3641 // ... ^
3642 // - OR -
3643 // requires (int x) ?
3644 // ... ^
3645 // }
3646 if (Tok.is(tok::l_brace))
3647 // requires (...) {
3648 // ^ - a requires expression as a
3649 // simple-requirement.
3650 return false;
3651 }
3652 }
3653 return true;
3654 };
3655 if (IsNestedRequirement()) {
3656 ConsumeToken();
3657 // Nested requirement
3658 // C++ [expr.prim.req.nested]
3659 // nested-requirement:
3660 // 'requires' constraint-expression ';'
3661 ExprResult ConstraintExpr =
3662 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3663 if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3664 SkipUntil(tok::semi, tok::r_brace,
3665 SkipUntilFlags::StopBeforeMatch);
3666 break;
3667 }
3668 if (auto *Req =
3669 Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3670 Requirements.push_back(Req);
3671 else {
3672 SkipUntil(tok::semi, tok::r_brace,
3673 SkipUntilFlags::StopBeforeMatch);
3674 break;
3675 }
3676 break;
3677 } else
3678 PossibleRequiresExprInSimpleRequirement = true;
3679 } else if (Tok.is(tok::kw_typename)) {
3680 // This might be 'typename T::value_type;' (a type requirement) or
3681 // 'typename T::value_type{};' (a simple requirement).
3682 TentativeParsingAction TPA(*this);
3683
3684 // We need to consume the typename to allow 'requires { typename a; }'
3685 SourceLocation TypenameKWLoc = ConsumeToken();
3686 if (TryAnnotateOptionalCXXScopeToken()) {
3687 TPA.Commit();
3688 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3689 break;
3690 }
3691 CXXScopeSpec SS;
3692 if (Tok.is(tok::annot_cxxscope)) {
3693 Actions.RestoreNestedNameSpecifierAnnotation(
3694 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3695 ConsumeAnnotationToken();
3696 }
3697
3698 if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3699 !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3700 TPA.Commit();
3701 SourceLocation NameLoc = Tok.getLocation();
3702 IdentifierInfo *II = nullptr;
3703 TemplateIdAnnotation *TemplateId = nullptr;
3704 if (Tok.is(tok::identifier)) {
3705 II = Tok.getIdentifierInfo();
3706 ConsumeToken();
3707 } else {
3708 TemplateId = takeTemplateIdAnnotation(Tok);
3709 ConsumeAnnotationToken();
3710 if (TemplateId->isInvalid())
3711 break;
3712 }
3713
3714 if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3715 NameLoc, II,
3716 TemplateId)) {
3717 Requirements.push_back(Req);
3718 }
3719 break;
3720 }
3721 TPA.Revert();
3722 }
3723 // Simple requirement
3724 // C++ [expr.prim.req.simple]
3725 // simple-requirement:
3726 // expression ';'
3727 SourceLocation StartLoc = Tok.getLocation();
3728 ExprResult Expression =
3729 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3730 if (!Expression.isUsable()) {
3731 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3732 break;
3733 }
3734 if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3735 Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3736 << FixItHint::CreateInsertion(StartLoc, "requires");
3737 if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3738 Requirements.push_back(Req);
3739 else {
3740 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3741 break;
3742 }
3743 // User may have tried to put some compound requirement stuff here
3744 if (Tok.is(tok::kw_noexcept)) {
3745 Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3746 << FixItHint::CreateInsertion(StartLoc, "{")
3747 << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3748 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3749 break;
3750 }
3751 break;
3752 }
3753 }
3754 if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3755 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3756 TryConsumeToken(tok::semi);
3757 break;
3758 }
3759 }
3760 if (Requirements.empty()) {
3761 // Don't emit an empty requires expr here to avoid confusing the user with
3762 // other diagnostics quoting an empty requires expression they never
3763 // wrote.
3764 Braces.consumeClose();
3765 Actions.ActOnFinishRequiresExpr();
3766 return ExprError();
3767 }
3768 }
3769 Braces.consumeClose();
3770 Actions.ActOnFinishRequiresExpr();
3771 ParsingBodyDecl.complete(Body);
3772 return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
3773 Requirements, Braces.getCloseLocation());
3774}
3775
3776static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3777 switch (kind) {
3778 default: llvm_unreachable("Not a known type trait")::llvm::llvm_unreachable_internal("Not a known type trait", "clang/lib/Parse/ParseExprCXX.cpp"
, 3778)
;
3779#define TYPE_TRAIT_1(Spelling, Name, Key) \
3780case tok::kw_ ## Spelling: return UTT_ ## Name;
3781#define TYPE_TRAIT_2(Spelling, Name, Key) \
3782case tok::kw_ ## Spelling: return BTT_ ## Name;
3783#include "clang/Basic/TokenKinds.def"
3784#define TYPE_TRAIT_N(Spelling, Name, Key) \
3785 case tok::kw_ ## Spelling: return TT_ ## Name;
3786#include "clang/Basic/TokenKinds.def"
3787 }
3788}
3789
3790static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3791 switch (kind) {
3792 default:
3793 llvm_unreachable("Not a known array type trait")::llvm::llvm_unreachable_internal("Not a known array type trait"
, "clang/lib/Parse/ParseExprCXX.cpp", 3793)
;
3794#define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \
3795 case tok::kw_##Spelling: \
3796 return ATT_##Name;
3797#include "clang/Basic/TokenKinds.def"
3798 }
3799}
3800
3801static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3802 switch (kind) {
3803 default:
3804 llvm_unreachable("Not a known unary expression trait.")::llvm::llvm_unreachable_internal("Not a known unary expression trait."
, "clang/lib/Parse/ParseExprCXX.cpp", 3804)
;
3805#define EXPRESSION_TRAIT(Spelling, Name, Key) \
3806 case tok::kw_##Spelling: \
3807 return ET_##Name;
3808#include "clang/Basic/TokenKinds.def"
3809 }
3810}
3811
3812/// Parse the built-in type-trait pseudo-functions that allow
3813/// implementation of the TR1/C++11 type traits templates.
3814///
3815/// primary-expression:
3816/// unary-type-trait '(' type-id ')'
3817/// binary-type-trait '(' type-id ',' type-id ')'
3818/// type-trait '(' type-id-seq ')'
3819///
3820/// type-id-seq:
3821/// type-id ...[opt] type-id-seq[opt]
3822///
3823ExprResult Parser::ParseTypeTrait() {
3824 tok::TokenKind Kind = Tok.getKind();
3825
3826 SourceLocation Loc = ConsumeToken();
3827
3828 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3829 if (Parens.expectAndConsume())
3830 return ExprError();
3831
3832 SmallVector<ParsedType, 2> Args;
3833 do {
3834 // Parse the next type.
3835 TypeResult Ty = ParseTypeName();
3836 if (Ty.isInvalid()) {
3837 Parens.skipToEnd();
3838 return ExprError();
3839 }
3840
3841 // Parse the ellipsis, if present.
3842 if (Tok.is(tok::ellipsis)) {
3843 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3844 if (Ty.isInvalid()) {
3845 Parens.skipToEnd();
3846 return ExprError();
3847 }
3848 }
3849
3850 // Add this type to the list of arguments.
3851 Args.push_back(Ty.get());
3852 } while (TryConsumeToken(tok::comma));
3853
3854 if (Parens.consumeClose())
3855 return ExprError();
3856
3857 SourceLocation EndLoc = Parens.getCloseLocation();
3858
3859 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3860}
3861
3862/// ParseArrayTypeTrait - Parse the built-in array type-trait
3863/// pseudo-functions.
3864///
3865/// primary-expression:
3866/// [Embarcadero] '__array_rank' '(' type-id ')'
3867/// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
3868///
3869ExprResult Parser::ParseArrayTypeTrait() {
3870 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3871 SourceLocation Loc = ConsumeToken();
3872
3873 BalancedDelimiterTracker T(*this, tok::l_paren);
3874 if (T.expectAndConsume())
3875 return ExprError();
3876
3877 TypeResult Ty = ParseTypeName();
3878 if (Ty.isInvalid()) {
3879 SkipUntil(tok::comma, StopAtSemi);
3880 SkipUntil(tok::r_paren, StopAtSemi);
3881 return ExprError();
3882 }
3883
3884 switch (ATT) {
3885 case ATT_ArrayRank: {
3886 T.consumeClose();
3887 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3888 T.getCloseLocation());
3889 }
3890 case ATT_ArrayExtent: {
3891 if (ExpectAndConsume(tok::comma)) {
3892 SkipUntil(tok::r_paren, StopAtSemi);
3893 return ExprError();
3894 }
3895
3896 ExprResult DimExpr = ParseExpression();
3897 T.consumeClose();
3898
3899 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3900 T.getCloseLocation());
3901 }
3902 }
3903 llvm_unreachable("Invalid ArrayTypeTrait!")::llvm::llvm_unreachable_internal("Invalid ArrayTypeTrait!", "clang/lib/Parse/ParseExprCXX.cpp"
, 3903)
;
3904}
3905
3906/// ParseExpressionTrait - Parse built-in expression-trait
3907/// pseudo-functions like __is_lvalue_expr( xxx ).
3908///
3909/// primary-expression:
3910/// [Embarcadero] expression-trait '(' expression ')'
3911///
3912ExprResult Parser::ParseExpressionTrait() {
3913 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3914 SourceLocation Loc = ConsumeToken();
3915
3916 BalancedDelimiterTracker T(*this, tok::l_paren);
3917 if (T.expectAndConsume())
3918 return ExprError();
3919
3920 ExprResult Expr = ParseExpression();
3921
3922 T.consumeClose();
3923
3924 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3925 T.getCloseLocation());
3926}
3927
3928
3929/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3930/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3931/// based on the context past the parens.
3932ExprResult
3933Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3934 ParsedType &CastTy,
3935 BalancedDelimiterTracker &Tracker,
3936 ColonProtectionRAIIObject &ColonProt) {
3937 assert(getLangOpts().CPlusPlus && "Should only be called for C++!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Should only be called for C++!") ? void (0) : __assert_fail
("getLangOpts().CPlusPlus && \"Should only be called for C++!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 3937, __extension__ __PRETTY_FUNCTION__
))
;
3938 assert(ExprType == CastExpr && "Compound literals are not ambiguous!")(static_cast <bool> (ExprType == CastExpr && "Compound literals are not ambiguous!"
) ? void (0) : __assert_fail ("ExprType == CastExpr && \"Compound literals are not ambiguous!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 3938, __extension__ __PRETTY_FUNCTION__
))
;
3939 assert(isTypeIdInParens() && "Not a type-id!")(static_cast <bool> (isTypeIdInParens() && "Not a type-id!"
) ? void (0) : __assert_fail ("isTypeIdInParens() && \"Not a type-id!\""
, "clang/lib/Parse/ParseExprCXX.cpp", 3939, __extension__ __PRETTY_FUNCTION__
))
;
3940
3941 ExprResult Result(true);
3942 CastTy = nullptr;
3943
3944 // We need to disambiguate a very ugly part of the C++ syntax:
3945 //
3946 // (T())x; - type-id
3947 // (T())*x; - type-id
3948 // (T())/x; - expression
3949 // (T()); - expression
3950 //
3951 // The bad news is that we cannot use the specialized tentative parser, since
3952 // it can only verify that the thing inside the parens can be parsed as
3953 // type-id, it is not useful for determining the context past the parens.
3954 //
3955 // The good news is that the parser can disambiguate this part without
3956 // making any unnecessary Action calls.
3957 //
3958 // It uses a scheme similar to parsing inline methods. The parenthesized
3959 // tokens are cached, the context that follows is determined (possibly by
3960 // parsing a cast-expression), and then we re-introduce the cached tokens
3961 // into the token stream and parse them appropriately.
3962
3963 ParenParseOption ParseAs;
3964 CachedTokens Toks;
3965
3966 // Store the tokens of the parentheses. We will parse them after we determine
3967 // the context that follows them.
3968 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3969 // We didn't find the ')' we expected.
3970 Tracker.consumeClose();
3971 return ExprError();
3972 }
3973
3974 if (Tok.is(tok::l_brace)) {
3975 ParseAs = CompoundLiteral;
3976 } else {
3977 bool NotCastExpr;
3978 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3979 NotCastExpr = true;
3980 } else {
3981 // Try parsing the cast-expression that may follow.
3982 // If it is not a cast-expression, NotCastExpr will be true and no token
3983 // will be consumed.
3984 ColonProt.restore();
3985 Result = ParseCastExpression(AnyCastExpr,
3986 false/*isAddressofOperand*/,
3987 NotCastExpr,
3988 // type-id has priority.
3989 IsTypeCast);
3990 }
3991
3992 // If we parsed a cast-expression, it's really a type-id, otherwise it's
3993 // an expression.
3994 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3995 }
3996
3997 // Create a fake EOF to mark end of Toks buffer.
3998 Token AttrEnd;
3999 AttrEnd.startToken();
4000 AttrEnd.setKind(tok::eof);
4001 AttrEnd.setLocation(Tok.getLocation());
4002 AttrEnd.setEofData(Toks.data());
4003 Toks.push_back(AttrEnd);
4004
4005 // The current token should go after the cached tokens.
4006 Toks.push_back(Tok);
4007 // Re-enter the stored parenthesized tokens into the token stream, so we may
4008 // parse them now.
4009 PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
4010 /*IsReinject*/ true);
4011 // Drop the current token and bring the first cached one. It's the same token
4012 // as when we entered this function.
4013 ConsumeAnyToken();
4014
4015 if (ParseAs >= CompoundLiteral) {
4016 // Parse the type declarator.
4017 DeclSpec DS(AttrFactory);
4018 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4019 DeclaratorContext::TypeName);
4020 {
4021 ColonProtectionRAIIObject InnerColonProtection(*this);
4022 ParseSpecifierQualifierList(DS);
4023 ParseDeclarator(DeclaratorInfo);
4024 }
4025
4026 // Match the ')'.
4027 Tracker.consumeClose();
4028 ColonProt.restore();
4029
4030 // Consume EOF marker for Toks buffer.
4031 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())(static_cast <bool> (Tok.is(tok::eof) && Tok.getEofData
() == AttrEnd.getEofData()) ? void (0) : __assert_fail ("Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()"
, "clang/lib/Parse/ParseExprCXX.cpp", 4031, __extension__ __PRETTY_FUNCTION__
))
;
4032 ConsumeAnyToken();
4033
4034 if (ParseAs == CompoundLiteral) {
4035 ExprType = CompoundLiteral;
4036 if (DeclaratorInfo.isInvalidType())
4037 return ExprError();
4038
4039 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
4040 return ParseCompoundLiteralExpression(Ty.get(),
4041 Tracker.getOpenLocation(),
4042 Tracker.getCloseLocation());
4043 }
4044
4045 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
4046 assert(ParseAs == CastExpr)(static_cast <bool> (ParseAs == CastExpr) ? void (0) : __assert_fail
("ParseAs == CastExpr", "clang/lib/Parse/ParseExprCXX.cpp", 4046
, __extension__ __PRETTY_FUNCTION__))
;
4047
4048 if (DeclaratorInfo.isInvalidType())
4049 return ExprError();
4050
4051 // Result is what ParseCastExpression returned earlier.
4052 if (!Result.isInvalid())
4053 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
4054 DeclaratorInfo, CastTy,
4055 Tracker.getCloseLocation(), Result.get());
4056 return Result;
4057 }
4058
4059 // Not a compound literal, and not followed by a cast-expression.
4060 assert(ParseAs == SimpleExpr)(static_cast <bool> (ParseAs == SimpleExpr) ? void (0) :
__assert_fail ("ParseAs == SimpleExpr", "clang/lib/Parse/ParseExprCXX.cpp"
, 4060, __extension__ __PRETTY_FUNCTION__))
;
4061
4062 ExprType = SimpleExpr;
4063 Result = ParseExpression();
4064 if (!Result.isInvalid() && Tok.is(tok::r_paren))
4065 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
4066 Tok.getLocation(), Result.get());
4067
4068 // Match the ')'.
4069 if (Result.isInvalid()) {
4070 while (Tok.isNot(tok::eof))
4071 ConsumeAnyToken();
4072 assert(Tok.getEofData() == AttrEnd.getEofData())(static_cast <bool> (Tok.getEofData() == AttrEnd.getEofData
()) ? void (0) : __assert_fail ("Tok.getEofData() == AttrEnd.getEofData()"
, "clang/lib/Parse/ParseExprCXX.cpp", 4072, __extension__ __PRETTY_FUNCTION__
))
;
4073 ConsumeAnyToken();
4074 return ExprError();
4075 }
4076
4077 Tracker.consumeClose();
4078 // Consume EOF marker for Toks buffer.
4079 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())(static_cast <bool> (Tok.is(tok::eof) && Tok.getEofData
() == AttrEnd.getEofData()) ? void (0) : __assert_fail ("Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()"
, "clang/lib/Parse/ParseExprCXX.cpp", 4079, __extension__ __PRETTY_FUNCTION__
))
;
4080 ConsumeAnyToken();
4081 return Result;
4082}
4083
4084/// Parse a __builtin_bit_cast(T, E).
4085ExprResult Parser::ParseBuiltinBitCast() {
4086 SourceLocation KWLoc = ConsumeToken();
4087
4088 BalancedDelimiterTracker T(*this, tok::l_paren);
4089 if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
4090 return ExprError();
4091
4092 // Parse the common declaration-specifiers piece.
4093 DeclSpec DS(AttrFactory);
4094 ParseSpecifierQualifierList(DS);
4095
4096 // Parse the abstract-declarator, if present.
4097 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4098 DeclaratorContext::TypeName);
4099 ParseDeclarator(DeclaratorInfo);
4100
4101 if (ExpectAndConsume(tok::comma)) {
4102 Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
4103 SkipUntil(tok::r_paren, StopAtSemi);
4104 return ExprError();
4105 }
4106
4107 ExprResult Operand = ParseExpression();
4108
4109 if (T.consumeClose())
4110 return ExprError();
4111
4112 if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4113 return ExprError();
4114
4115 return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4116 T.getCloseLocation());
4117}