Bug Summary

File:build/source/mlir/lib/AsmParser/Parser.cpp
Warning:line 1227, column 5
1st function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name Parser.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D MLIR_CUDA_CONVERSIONS_ENABLED=1 -D MLIR_ROCM_CONVERSIONS_ENABLED=1 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/mlir/lib/AsmParser -I /build/source/mlir/lib/AsmParser -I include -I /build/source/llvm/include -I /build/source/mlir/include -I tools/mlir/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1679915782 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-27-130437-16335-1 -x c++ /build/source/mlir/lib/AsmParser/Parser.cpp
1//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the parser for the MLIR textual form.
10//
11//===----------------------------------------------------------------------===//
12
13#include "Parser.h"
14#include "AsmParserImpl.h"
15#include "mlir/AsmParser/AsmParser.h"
16#include "mlir/AsmParser/AsmParserState.h"
17#include "mlir/AsmParser/CodeComplete.h"
18#include "mlir/IR/AffineMap.h"
19#include "mlir/IR/AsmState.h"
20#include "mlir/IR/BuiltinOps.h"
21#include "mlir/IR/Dialect.h"
22#include "mlir/IR/Verifier.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/ScopeExit.h"
25#include "llvm/ADT/StringSet.h"
26#include "llvm/ADT/bit.h"
27#include "llvm/Support/Endian.h"
28#include "llvm/Support/PrettyStackTrace.h"
29#include "llvm/Support/SourceMgr.h"
30#include <algorithm>
31#include <optional>
32
33using namespace mlir;
34using namespace mlir::detail;
35
36//===----------------------------------------------------------------------===//
37// CodeComplete
38//===----------------------------------------------------------------------===//
39
40AsmParserCodeCompleteContext::~AsmParserCodeCompleteContext() = default;
41
42//===----------------------------------------------------------------------===//
43// Parser
44//===----------------------------------------------------------------------===//
45
46/// Parse a list of comma-separated items with an optional delimiter. If a
47/// delimiter is provided, then an empty list is allowed. If not, then at
48/// least one element will be parsed.
49ParseResult
50Parser::parseCommaSeparatedList(Delimiter delimiter,
51 function_ref<ParseResult()> parseElementFn,
52 StringRef contextMessage) {
53 switch (delimiter) {
54 case Delimiter::None:
55 break;
56 case Delimiter::OptionalParen:
57 if (getToken().isNot(Token::l_paren))
58 return success();
59 [[fallthrough]];
60 case Delimiter::Paren:
61 if (parseToken(Token::l_paren, "expected '('" + contextMessage))
62 return failure();
63 // Check for empty list.
64 if (consumeIf(Token::r_paren))
65 return success();
66 break;
67 case Delimiter::OptionalLessGreater:
68 // Check for absent list.
69 if (getToken().isNot(Token::less))
70 return success();
71 [[fallthrough]];
72 case Delimiter::LessGreater:
73 if (parseToken(Token::less, "expected '<'" + contextMessage))
74 return success();
75 // Check for empty list.
76 if (consumeIf(Token::greater))
77 return success();
78 break;
79 case Delimiter::OptionalSquare:
80 if (getToken().isNot(Token::l_square))
81 return success();
82 [[fallthrough]];
83 case Delimiter::Square:
84 if (parseToken(Token::l_square, "expected '['" + contextMessage))
85 return failure();
86 // Check for empty list.
87 if (consumeIf(Token::r_square))
88 return success();
89 break;
90 case Delimiter::OptionalBraces:
91 if (getToken().isNot(Token::l_brace))
92 return success();
93 [[fallthrough]];
94 case Delimiter::Braces:
95 if (parseToken(Token::l_brace, "expected '{'" + contextMessage))
96 return failure();
97 // Check for empty list.
98 if (consumeIf(Token::r_brace))
99 return success();
100 break;
101 }
102
103 // Non-empty case starts with an element.
104 if (parseElementFn())
105 return failure();
106
107 // Otherwise we have a list of comma separated elements.
108 while (consumeIf(Token::comma)) {
109 if (parseElementFn())
110 return failure();
111 }
112
113 switch (delimiter) {
114 case Delimiter::None:
115 return success();
116 case Delimiter::OptionalParen:
117 case Delimiter::Paren:
118 return parseToken(Token::r_paren, "expected ')'" + contextMessage);
119 case Delimiter::OptionalLessGreater:
120 case Delimiter::LessGreater:
121 return parseToken(Token::greater, "expected '>'" + contextMessage);
122 case Delimiter::OptionalSquare:
123 case Delimiter::Square:
124 return parseToken(Token::r_square, "expected ']'" + contextMessage);
125 case Delimiter::OptionalBraces:
126 case Delimiter::Braces:
127 return parseToken(Token::r_brace, "expected '}'" + contextMessage);
128 }
129 llvm_unreachable("Unknown delimiter")::llvm::llvm_unreachable_internal("Unknown delimiter", "mlir/lib/AsmParser/Parser.cpp"
, 129)
;
130}
131
132/// Parse a comma-separated list of elements, terminated with an arbitrary
133/// token. This allows empty lists if allowEmptyList is true.
134///
135/// abstract-list ::= rightToken // if allowEmptyList == true
136/// abstract-list ::= element (',' element)* rightToken
137///
138ParseResult
139Parser::parseCommaSeparatedListUntil(Token::Kind rightToken,
140 function_ref<ParseResult()> parseElement,
141 bool allowEmptyList) {
142 // Handle the empty case.
143 if (getToken().is(rightToken)) {
144 if (!allowEmptyList)
145 return emitWrongTokenError("expected list element");
146 consumeToken(rightToken);
147 return success();
148 }
149
150 if (parseCommaSeparatedList(parseElement) ||
151 parseToken(rightToken, "expected ',' or '" +
152 Token::getTokenSpelling(rightToken) + "'"))
153 return failure();
154
155 return success();
156}
157
158InFlightDiagnostic Parser::emitError(const Twine &message) {
159 auto loc = state.curToken.getLoc();
160 if (state.curToken.isNot(Token::eof))
161 return emitError(loc, message);
162
163 // If the error is to be emitted at EOF, move it back one character.
164 return emitError(SMLoc::getFromPointer(loc.getPointer() - 1), message);
165}
166
167InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
168 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);
169
170 // If we hit a parse error in response to a lexer error, then the lexer
171 // already reported the error.
172 if (getToken().is(Token::error))
173 diag.abandon();
174 return diag;
175}
176
177/// Emit an error about a "wrong token". If the current token is at the
178/// start of a source line, this will apply heuristics to back up and report
179/// the error at the end of the previous line, which is where the expected
180/// token is supposed to be.
181InFlightDiagnostic Parser::emitWrongTokenError(const Twine &message) {
182 auto loc = state.curToken.getLoc();
183
184 // If the error is to be emitted at EOF, move it back one character.
185 if (state.curToken.is(Token::eof))
186 loc = SMLoc::getFromPointer(loc.getPointer() - 1);
187
188 // This is the location we were originally asked to report the error at.
189 auto originalLoc = loc;
190
191 // Determine if the token is at the start of the current line.
192 const char *bufferStart = state.lex.getBufferBegin();
193 const char *curPtr = loc.getPointer();
194
195 // Use this StringRef to keep track of what we are going to back up through,
196 // it provides nicer string search functions etc.
197 StringRef startOfBuffer(bufferStart, curPtr - bufferStart);
198
199 // Back up over entirely blank lines.
200 while (true) {
201 // Back up until we see a \n, but don't look past the buffer start.
202 startOfBuffer = startOfBuffer.rtrim(" \t");
203
204 // For tokens with no preceding source line, just emit at the original
205 // location.
206 if (startOfBuffer.empty())
207 return emitError(originalLoc, message);
208
209 // If we found something that isn't the end of line, then we're done.
210 if (startOfBuffer.back() != '\n' && startOfBuffer.back() != '\r')
211 return emitError(SMLoc::getFromPointer(startOfBuffer.end()), message);
212
213 // Drop the \n so we emit the diagnostic at the end of the line.
214 startOfBuffer = startOfBuffer.drop_back();
215
216 // Check to see if the preceding line has a comment on it. We assume that a
217 // `//` is the start of a comment, which is mostly correct.
218 // TODO: This will do the wrong thing for // in a string literal.
219 auto prevLine = startOfBuffer;
220 size_t newLineIndex = prevLine.find_last_of("\n\r");
221 if (newLineIndex != StringRef::npos)
222 prevLine = prevLine.drop_front(newLineIndex);
223
224 // If we find a // in the current line, then emit the diagnostic before it.
225 size_t commentStart = prevLine.find("//");
226 if (commentStart != StringRef::npos)
227 startOfBuffer = startOfBuffer.drop_back(prevLine.size() - commentStart);
228 }
229}
230
231/// Consume the specified token if present and return success. On failure,
232/// output a diagnostic and return failure.
233ParseResult Parser::parseToken(Token::Kind expectedToken,
234 const Twine &message) {
235 if (consumeIf(expectedToken))
236 return success();
237 return emitWrongTokenError(message);
238}
239
240/// Parse an optional integer value from the stream.
241OptionalParseResult Parser::parseOptionalInteger(APInt &result) {
242 // Parse `false` and `true` keywords as 0 and 1 respectively.
243 if (consumeIf(Token::kw_false)) {
244 result = false;
245 return success();
246 }
247 if (consumeIf(Token::kw_true)) {
248 result = true;
249 return success();
250 }
251
252 Token curToken = getToken();
253 if (curToken.isNot(Token::integer, Token::minus))
254 return std::nullopt;
255
256 bool negative = consumeIf(Token::minus);
257 Token curTok = getToken();
258 if (parseToken(Token::integer, "expected integer value"))
259 return failure();
260
261 StringRef spelling = curTok.getSpelling();
262 bool isHex = spelling.size() > 1 && spelling[1] == 'x';
263 if (spelling.getAsInteger(isHex ? 0 : 10, result))
264 return emitError(curTok.getLoc(), "integer value too large");
265
266 // Make sure we have a zero at the top so we return the right signedness.
267 if (result.isNegative())
268 result = result.zext(result.getBitWidth() + 1);
269
270 // Process the negative sign if present.
271 if (negative)
272 result.negate();
273
274 return success();
275}
276
277/// Parse a floating point value from an integer literal token.
278ParseResult Parser::parseFloatFromIntegerLiteral(
279 std::optional<APFloat> &result, const Token &tok, bool isNegative,
280 const llvm::fltSemantics &semantics, size_t typeSizeInBits) {
281 SMLoc loc = tok.getLoc();
282 StringRef spelling = tok.getSpelling();
283 bool isHex = spelling.size() > 1 && spelling[1] == 'x';
284 if (!isHex) {
285 return emitError(loc, "unexpected decimal integer literal for a "
286 "floating point value")
287 .attachNote()
288 << "add a trailing dot to make the literal a float";
289 }
290 if (isNegative) {
291 return emitError(loc, "hexadecimal float literal should not have a "
292 "leading minus");
293 }
294
295 std::optional<uint64_t> value = tok.getUInt64IntegerValue();
296 if (!value)
297 return emitError(loc, "hexadecimal float constant out of range for type");
298
299 if (&semantics == &APFloat::IEEEdouble()) {
300 result = APFloat(semantics, APInt(typeSizeInBits, *value));
301 return success();
302 }
303
304 APInt apInt(typeSizeInBits, *value);
305 if (apInt != *value)
306 return emitError(loc, "hexadecimal float constant out of range for type");
307 result = APFloat(semantics, apInt);
308
309 return success();
310}
311
312ParseResult Parser::parseOptionalKeyword(StringRef *keyword) {
313 // Check that the current token is a keyword.
314 if (!isCurrentTokenAKeyword())
315 return failure();
316
317 *keyword = getTokenSpelling();
318 consumeToken();
319 return success();
320}
321
322//===----------------------------------------------------------------------===//
323// Resource Parsing
324
325FailureOr<AsmDialectResourceHandle>
326Parser::parseResourceHandle(const OpAsmDialectInterface *dialect,
327 StringRef &name) {
328 assert(dialect && "expected valid dialect interface")(static_cast <bool> (dialect && "expected valid dialect interface"
) ? void (0) : __assert_fail ("dialect && \"expected valid dialect interface\""
, "mlir/lib/AsmParser/Parser.cpp", 328, __extension__ __PRETTY_FUNCTION__
))
;
329 SMLoc nameLoc = getToken().getLoc();
330 if (failed(parseOptionalKeyword(&name)))
331 return emitError("expected identifier key for 'resource' entry");
332 auto &resources = getState().symbols.dialectResources;
333
334 // If this is the first time encountering this handle, ask the dialect to
335 // resolve a reference to this handle. This allows for us to remap the name of
336 // the handle if necessary.
337 std::pair<std::string, AsmDialectResourceHandle> &entry =
338 resources[dialect][name];
339 if (entry.first.empty()) {
340 FailureOr<AsmDialectResourceHandle> result = dialect->declareResource(name);
341 if (failed(result)) {
342 return emitError(nameLoc)
343 << "unknown 'resource' key '" << name << "' for dialect '"
344 << dialect->getDialect()->getNamespace() << "'";
345 }
346 entry.first = dialect->getResourceKey(*result);
347 entry.second = *result;
348 }
349
350 name = entry.first;
351 return entry.second;
352}
353
354FailureOr<AsmDialectResourceHandle>
355Parser::parseResourceHandle(Dialect *dialect) {
356 const auto *interface = dyn_cast<OpAsmDialectInterface>(dialect);
357 if (!interface) {
358 return emitError() << "dialect '" << dialect->getNamespace()
359 << "' does not expect resource handles";
360 }
361 StringRef resourceName;
362 return parseResourceHandle(interface, resourceName);
363}
364
365//===----------------------------------------------------------------------===//
366// Code Completion
367
368ParseResult Parser::codeCompleteDialectName() {
369 state.codeCompleteContext->completeDialectName();
370 return failure();
371}
372
373ParseResult Parser::codeCompleteOperationName(StringRef dialectName) {
374 // Perform some simple validation on the dialect name. This doesn't need to be
375 // extensive, it's more of an optimization (to avoid checking completion
376 // results when we know they will fail).
377 if (dialectName.empty() || dialectName.contains('.'))
378 return failure();
379 state.codeCompleteContext->completeOperationName(dialectName);
380 return failure();
381}
382
383ParseResult Parser::codeCompleteDialectOrElidedOpName(SMLoc loc) {
384 // Check to see if there is anything else on the current line. This check
385 // isn't strictly necessary, but it does avoid unnecessarily triggering
386 // completions for operations and dialects in situations where we don't want
387 // them (e.g. at the end of an operation).
388 auto shouldIgnoreOpCompletion = [&]() {
389 const char *bufBegin = state.lex.getBufferBegin();
390 const char *it = loc.getPointer() - 1;
391 for (; it > bufBegin && *it != '\n'; --it)
392 if (!StringRef(" \t\r").contains(*it))
393 return true;
394 return false;
395 };
396 if (shouldIgnoreOpCompletion())
397 return failure();
398
399 // The completion here is either for a dialect name, or an operation name
400 // whose dialect prefix was elided. For this we simply invoke both of the
401 // individual completion methods.
402 (void)codeCompleteDialectName();
403 return codeCompleteOperationName(state.defaultDialectStack.back());
404}
405
406ParseResult Parser::codeCompleteStringDialectOrOperationName(StringRef name) {
407 // If the name is empty, this is the start of the string and contains the
408 // dialect.
409 if (name.empty())
410 return codeCompleteDialectName();
411
412 // Otherwise, we treat this as completing an operation name. The current name
413 // is used as the dialect namespace.
414 if (name.consume_back("."))
415 return codeCompleteOperationName(name);
416 return failure();
417}
418
419ParseResult Parser::codeCompleteExpectedTokens(ArrayRef<StringRef> tokens) {
420 state.codeCompleteContext->completeExpectedTokens(tokens, /*optional=*/false);
421 return failure();
422}
423ParseResult Parser::codeCompleteOptionalTokens(ArrayRef<StringRef> tokens) {
424 state.codeCompleteContext->completeExpectedTokens(tokens, /*optional=*/true);
425 return failure();
426}
427
428Attribute Parser::codeCompleteAttribute() {
429 state.codeCompleteContext->completeAttribute(
430 state.symbols.attributeAliasDefinitions);
431 return {};
432}
433Type Parser::codeCompleteType() {
434 state.codeCompleteContext->completeType(state.symbols.typeAliasDefinitions);
435 return {};
436}
437
438Attribute
439Parser::codeCompleteDialectSymbol(const llvm::StringMap<Attribute> &aliases) {
440 state.codeCompleteContext->completeDialectAttributeOrAlias(aliases);
441 return {};
442}
443Type Parser::codeCompleteDialectSymbol(const llvm::StringMap<Type> &aliases) {
444 state.codeCompleteContext->completeDialectTypeOrAlias(aliases);
445 return {};
446}
447
448//===----------------------------------------------------------------------===//
449// OperationParser
450//===----------------------------------------------------------------------===//
451
452namespace {
453/// This class provides support for parsing operations and regions of
454/// operations.
455class OperationParser : public Parser {
456public:
457 OperationParser(ParserState &state, ModuleOp topLevelOp);
458 ~OperationParser();
459
460 /// After parsing is finished, this function must be called to see if there
461 /// are any remaining issues.
462 ParseResult finalize();
463
464 //===--------------------------------------------------------------------===//
465 // SSA Value Handling
466 //===--------------------------------------------------------------------===//
467
468 using UnresolvedOperand = OpAsmParser::UnresolvedOperand;
469 using Argument = OpAsmParser::Argument;
470
471 struct DeferredLocInfo {
472 SMLoc loc;
473 StringRef identifier;
474 };
475
476 /// Push a new SSA name scope to the parser.
477 void pushSSANameScope(bool isIsolated);
478
479 /// Pop the last SSA name scope from the parser.
480 ParseResult popSSANameScope();
481
482 /// Register a definition of a value with the symbol table.
483 ParseResult addDefinition(UnresolvedOperand useInfo, Value value);
484
485 /// Parse an optional list of SSA uses into 'results'.
486 ParseResult
487 parseOptionalSSAUseList(SmallVectorImpl<UnresolvedOperand> &results);
488
489 /// Parse a single SSA use into 'result'. If 'allowResultNumber' is true then
490 /// we allow #42 syntax.
491 ParseResult parseSSAUse(UnresolvedOperand &result,
492 bool allowResultNumber = true);
493
494 /// Given a reference to an SSA value and its type, return a reference. This
495 /// returns null on failure.
496 Value resolveSSAUse(UnresolvedOperand useInfo, Type type);
497
498 ParseResult parseSSADefOrUseAndType(
499 function_ref<ParseResult(UnresolvedOperand, Type)> action);
500
501 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results);
502
503 /// Return the location of the value identified by its name and number if it
504 /// has been already reference.
505 std::optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
506 auto &values = isolatedNameScopes.back().values;
507 if (!values.count(name) || number >= values[name].size())
508 return {};
509 if (values[name][number].value)
510 return values[name][number].loc;
511 return {};
512 }
513
514 //===--------------------------------------------------------------------===//
515 // Operation Parsing
516 //===--------------------------------------------------------------------===//
517
518 /// Parse an operation instance.
519 ParseResult parseOperation();
520
521 /// Parse a single operation successor.
522 ParseResult parseSuccessor(Block *&dest);
523
524 /// Parse a comma-separated list of operation successors in brackets.
525 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations);
526
527 /// Parse an operation instance that is in the generic form.
528 Operation *parseGenericOperation();
529
530 /// Parse different components, viz., use-info of operand(s), successor(s),
531 /// region(s), attribute(s) and function-type, of the generic form of an
532 /// operation instance and populate the input operation-state 'result' with
533 /// those components. If any of the components is explicitly provided, then
534 /// skip parsing that component.
535 ParseResult parseGenericOperationAfterOpName(
536 OperationState &result,
537 std::optional<ArrayRef<UnresolvedOperand>> parsedOperandUseInfo =
538 std::nullopt,
539 std::optional<ArrayRef<Block *>> parsedSuccessors = std::nullopt,
540 std::optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions =
541 std::nullopt,
542 std::optional<ArrayRef<NamedAttribute>> parsedAttributes = std::nullopt,
543 std::optional<FunctionType> parsedFnType = std::nullopt);
544
545 /// Parse an operation instance that is in the generic form and insert it at
546 /// the provided insertion point.
547 Operation *parseGenericOperation(Block *insertBlock,
548 Block::iterator insertPt);
549
550 /// This type is used to keep track of things that are either an Operation or
551 /// a BlockArgument. We cannot use Value for this, because not all Operations
552 /// have results.
553 using OpOrArgument = llvm::PointerUnion<Operation *, BlockArgument>;
554
555 /// Parse an optional trailing location and add it to the specifier Operation
556 /// or `UnresolvedOperand` if present.
557 ///
558 /// trailing-location ::= (`loc` (`(` location `)` | attribute-alias))?
559 ///
560 ParseResult parseTrailingLocationSpecifier(OpOrArgument opOrArgument);
561
562 /// Parse a location alias, that is a sequence looking like: #loc42
563 /// The alias may have already be defined or may be defined later, in which
564 /// case an OpaqueLoc is used a placeholder.
565 ParseResult parseLocationAlias(LocationAttr &loc);
566
567 /// This is the structure of a result specifier in the assembly syntax,
568 /// including the name, number of results, and location.
569 using ResultRecord = std::tuple<StringRef, unsigned, SMLoc>;
570
571 /// Parse an operation instance that is in the op-defined custom form.
572 /// resultInfo specifies information about the "%name =" specifiers.
573 Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs);
574
575 /// Parse the name of an operation, in the custom form. On success, return a
576 /// an object of type 'OperationName'. Otherwise, failure is returned.
577 FailureOr<OperationName> parseCustomOperationName();
578
579 //===--------------------------------------------------------------------===//
580 // Region Parsing
581 //===--------------------------------------------------------------------===//
582
583 /// Parse a region into 'region' with the provided entry block arguments.
584 /// 'isIsolatedNameScope' indicates if the naming scope of this region is
585 /// isolated from those above.
586 ParseResult parseRegion(Region &region, ArrayRef<Argument> entryArguments,
587 bool isIsolatedNameScope = false);
588
589 /// Parse a region body into 'region'.
590 ParseResult parseRegionBody(Region &region, SMLoc startLoc,
591 ArrayRef<Argument> entryArguments,
592 bool isIsolatedNameScope);
593
594 //===--------------------------------------------------------------------===//
595 // Block Parsing
596 //===--------------------------------------------------------------------===//
597
598 /// Parse a new block into 'block'.
599 ParseResult parseBlock(Block *&block);
600
601 /// Parse a list of operations into 'block'.
602 ParseResult parseBlockBody(Block *block);
603
604 /// Parse a (possibly empty) list of block arguments.
605 ParseResult parseOptionalBlockArgList(Block *owner);
606
607 /// Get the block with the specified name, creating it if it doesn't
608 /// already exist. The location specified is the point of use, which allows
609 /// us to diagnose references to blocks that are not defined precisely.
610 Block *getBlockNamed(StringRef name, SMLoc loc);
611
612 //===--------------------------------------------------------------------===//
613 // Code Completion
614 //===--------------------------------------------------------------------===//
615
616 /// The set of various code completion methods. Every completion method
617 /// returns `failure` to stop the parsing process after providing completion
618 /// results.
619
620 ParseResult codeCompleteSSAUse();
621 ParseResult codeCompleteBlock();
622
623private:
624 /// This class represents a definition of a Block.
625 struct BlockDefinition {
626 /// A pointer to the defined Block.
627 Block *block;
628 /// The location that the Block was defined at.
629 SMLoc loc;
630 };
631 /// This class represents a definition of a Value.
632 struct ValueDefinition {
633 /// A pointer to the defined Value.
634 Value value;
635 /// The location that the Value was defined at.
636 SMLoc loc;
637 };
638
639 /// Returns the info for a block at the current scope for the given name.
640 BlockDefinition &getBlockInfoByName(StringRef name) {
641 return blocksByName.back()[name];
642 }
643
644 /// Insert a new forward reference to the given block.
645 void insertForwardRef(Block *block, SMLoc loc) {
646 forwardRef.back().try_emplace(block, loc);
647 }
648
649 /// Erase any forward reference to the given block.
650 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }
651
652 /// Record that a definition was added at the current scope.
653 void recordDefinition(StringRef def);
654
655 /// Get the value entry for the given SSA name.
656 SmallVectorImpl<ValueDefinition> &getSSAValueEntry(StringRef name);
657
658 /// Create a forward reference placeholder value with the given location and
659 /// result type.
660 Value createForwardRefPlaceholder(SMLoc loc, Type type);
661
662 /// Return true if this is a forward reference.
663 bool isForwardRefPlaceholder(Value value) {
664 return forwardRefPlaceholders.count(value);
665 }
666
667 /// This struct represents an isolated SSA name scope. This scope may contain
668 /// other nested non-isolated scopes. These scopes are used for operations
669 /// that are known to be isolated to allow for reusing names within their
670 /// regions, even if those names are used above.
671 struct IsolatedSSANameScope {
672 /// Record that a definition was added at the current scope.
673 void recordDefinition(StringRef def) {
674 definitionsPerScope.back().insert(def);
675 }
676
677 /// Push a nested name scope.
678 void pushSSANameScope() { definitionsPerScope.push_back({}); }
679
680 /// Pop a nested name scope.
681 void popSSANameScope() {
682 for (auto &def : definitionsPerScope.pop_back_val())
683 values.erase(def.getKey());
684 }
685
686 /// This keeps track of all of the SSA values we are tracking for each name
687 /// scope, indexed by their name. This has one entry per result number.
688 llvm::StringMap<SmallVector<ValueDefinition, 1>> values;
689
690 /// This keeps track of all of the values defined by a specific name scope.
691 SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
692 };
693
694 /// A list of isolated name scopes.
695 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;
696
697 /// This keeps track of the block names as well as the location of the first
698 /// reference for each nested name scope. This is used to diagnose invalid
699 /// block references and memorize them.
700 SmallVector<DenseMap<StringRef, BlockDefinition>, 2> blocksByName;
701 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;
702
703 /// These are all of the placeholders we've made along with the location of
704 /// their first reference, to allow checking for use of undefined values.
705 DenseMap<Value, SMLoc> forwardRefPlaceholders;
706
707 /// Deffered locations: when parsing `loc(#loc42)` we add an entry to this
708 /// map. After parsing the definition `#loc42 = ...` we'll patch back users
709 /// of this location.
710 std::vector<DeferredLocInfo> deferredLocsReferences;
711
712 /// The builder used when creating parsed operation instances.
713 OpBuilder opBuilder;
714
715 /// The top level operation that holds all of the parsed operations.
716 Operation *topLevelOp;
717};
718} // namespace
719
720MLIR_DECLARE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *)namespace mlir { namespace detail { template <> class TypeIDResolver
<OperationParser::DeferredLocInfo *> { public: static TypeID
resolveTypeID() { return id; } private: static SelfOwningTypeID
id; }; } }
721MLIR_DEFINE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *)namespace mlir { namespace detail { SelfOwningTypeID TypeIDResolver
<OperationParser::DeferredLocInfo *>::id = {}; } }
722
723OperationParser::OperationParser(ParserState &state, ModuleOp topLevelOp)
724 : Parser(state), opBuilder(topLevelOp.getRegion()), topLevelOp(topLevelOp) {
725 // The top level operation starts a new name scope.
726 pushSSANameScope(/*isIsolated=*/true);
727
728 // If we are populating the parser state, prepare it for parsing.
729 if (state.asmState)
730 state.asmState->initialize(topLevelOp);
731}
732
733OperationParser::~OperationParser() {
734 for (auto &fwd : forwardRefPlaceholders) {
735 // Drop all uses of undefined forward declared reference and destroy
736 // defining operation.
737 fwd.first.dropAllUses();
738 fwd.first.getDefiningOp()->destroy();
739 }
740 for (const auto &scope : forwardRef) {
741 for (const auto &fwd : scope) {
742 // Delete all blocks that were created as forward references but never
743 // included into a region.
744 fwd.first->dropAllUses();
745 delete fwd.first;
746 }
747 }
748}
749
750/// After parsing is finished, this function must be called to see if there are
751/// any remaining issues.
752ParseResult OperationParser::finalize() {
753 // Check for any forward references that are left. If we find any, error
754 // out.
755 if (!forwardRefPlaceholders.empty()) {
756 SmallVector<const char *, 4> errors;
757 // Iteration over the map isn't deterministic, so sort by source location.
758 for (auto entry : forwardRefPlaceholders)
759 errors.push_back(entry.second.getPointer());
760 llvm::array_pod_sort(errors.begin(), errors.end());
761
762 for (const char *entry : errors) {
763 auto loc = SMLoc::getFromPointer(entry);
764 emitError(loc, "use of undeclared SSA value name");
765 }
766 return failure();
767 }
768
769 // Resolve the locations of any deferred operations.
770 auto &attributeAliases = state.symbols.attributeAliasDefinitions;
771 auto locID = TypeID::get<DeferredLocInfo *>();
772 auto resolveLocation = [&, this](auto &opOrArgument) -> LogicalResult {
773 auto fwdLoc = dyn_cast<OpaqueLoc>(opOrArgument.getLoc());
774 if (!fwdLoc || fwdLoc.getUnderlyingTypeID() != locID)
775 return success();
776 auto locInfo = deferredLocsReferences[fwdLoc.getUnderlyingLocation()];
777 Attribute attr = attributeAliases.lookup(locInfo.identifier);
778 if (!attr)
779 return this->emitError(locInfo.loc)
780 << "operation location alias was never defined";
781 auto locAttr = dyn_cast<LocationAttr>(attr);
782 if (!locAttr)
783 return this->emitError(locInfo.loc)
784 << "expected location, but found '" << attr << "'";
785 opOrArgument.setLoc(locAttr);
786 return success();
787 };
788
789 auto walkRes = topLevelOp->walk([&](Operation *op) {
790 if (failed(resolveLocation(*op)))
791 return WalkResult::interrupt();
792 for (Region &region : op->getRegions())
793 for (Block &block : region.getBlocks())
794 for (BlockArgument arg : block.getArguments())
795 if (failed(resolveLocation(arg)))
796 return WalkResult::interrupt();
797 return WalkResult::advance();
798 });
799 if (walkRes.wasInterrupted())
800 return failure();
801
802 // Pop the top level name scope.
803 if (failed(popSSANameScope()))
804 return failure();
805
806 // Verify that the parsed operations are valid.
807 if (state.config.shouldVerifyAfterParse() && failed(verify(topLevelOp)))
808 return failure();
809
810 // If we are populating the parser state, finalize the top-level operation.
811 if (state.asmState)
812 state.asmState->finalize(topLevelOp);
813 return success();
814}
815
816//===----------------------------------------------------------------------===//
817// SSA Value Handling
818//===----------------------------------------------------------------------===//
819
820void OperationParser::pushSSANameScope(bool isIsolated) {
821 blocksByName.push_back(DenseMap<StringRef, BlockDefinition>());
822 forwardRef.push_back(DenseMap<Block *, SMLoc>());
823
824 // Push back a new name definition scope.
825 if (isIsolated)
826 isolatedNameScopes.push_back({});
827 isolatedNameScopes.back().pushSSANameScope();
828}
829
830ParseResult OperationParser::popSSANameScope() {
831 auto forwardRefInCurrentScope = forwardRef.pop_back_val();
832
833 // Verify that all referenced blocks were defined.
834 if (!forwardRefInCurrentScope.empty()) {
835 SmallVector<std::pair<const char *, Block *>, 4> errors;
836 // Iteration over the map isn't deterministic, so sort by source location.
837 for (auto entry : forwardRefInCurrentScope) {
838 errors.push_back({entry.second.getPointer(), entry.first});
839 // Add this block to the top-level region to allow for automatic cleanup.
840 topLevelOp->getRegion(0).push_back(entry.first);
841 }
842 llvm::array_pod_sort(errors.begin(), errors.end());
843
844 for (auto entry : errors) {
845 auto loc = SMLoc::getFromPointer(entry.first);
846 emitError(loc, "reference to an undefined block");
847 }
848 return failure();
849 }
850
851 // Pop the next nested namescope. If there is only one internal namescope,
852 // just pop the isolated scope.
853 auto &currentNameScope = isolatedNameScopes.back();
854 if (currentNameScope.definitionsPerScope.size() == 1)
855 isolatedNameScopes.pop_back();
856 else
857 currentNameScope.popSSANameScope();
858
859 blocksByName.pop_back();
860 return success();
861}
862
863/// Register a definition of a value with the symbol table.
864ParseResult OperationParser::addDefinition(UnresolvedOperand useInfo,
865 Value value) {
866 auto &entries = getSSAValueEntry(useInfo.name);
867
868 // Make sure there is a slot for this value.
869 if (entries.size() <= useInfo.number)
870 entries.resize(useInfo.number + 1);
871
872 // If we already have an entry for this, check to see if it was a definition
873 // or a forward reference.
874 if (auto existing = entries[useInfo.number].value) {
875 if (!isForwardRefPlaceholder(existing)) {
876 return emitError(useInfo.location)
877 .append("redefinition of SSA value '", useInfo.name, "'")
878 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
879 .append("previously defined here");
880 }
881
882 if (existing.getType() != value.getType()) {
883 return emitError(useInfo.location)
884 .append("definition of SSA value '", useInfo.name, "#",
885 useInfo.number, "' has type ", value.getType())
886 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
887 .append("previously used here with type ", existing.getType());
888 }
889
890 // If it was a forward reference, update everything that used it to use
891 // the actual definition instead, delete the forward ref, and remove it
892 // from our set of forward references we track.
893 existing.replaceAllUsesWith(value);
894 existing.getDefiningOp()->destroy();
895 forwardRefPlaceholders.erase(existing);
896
897 // If a definition of the value already exists, replace it in the assembly
898 // state.
899 if (state.asmState)
900 state.asmState->refineDefinition(existing, value);
901 }
902
903 /// Record this definition for the current scope.
904 entries[useInfo.number] = {value, useInfo.location};
905 recordDefinition(useInfo.name);
906 return success();
907}
908
909/// Parse a (possibly empty) list of SSA operands.
910///
911/// ssa-use-list ::= ssa-use (`,` ssa-use)*
912/// ssa-use-list-opt ::= ssa-use-list?
913///
914ParseResult OperationParser::parseOptionalSSAUseList(
915 SmallVectorImpl<UnresolvedOperand> &results) {
916 if (!getToken().isOrIsCodeCompletionFor(Token::percent_identifier))
917 return success();
918 return parseCommaSeparatedList([&]() -> ParseResult {
919 UnresolvedOperand result;
920 if (parseSSAUse(result))
921 return failure();
922 results.push_back(result);
923 return success();
924 });
925}
926
927/// Parse a SSA operand for an operation.
928///
929/// ssa-use ::= ssa-id
930///
931ParseResult OperationParser::parseSSAUse(UnresolvedOperand &result,
932 bool allowResultNumber) {
933 if (getToken().isCodeCompletion())
934 return codeCompleteSSAUse();
935
936 result.name = getTokenSpelling();
937 result.number = 0;
938 result.location = getToken().getLoc();
939 if (parseToken(Token::percent_identifier, "expected SSA operand"))
940 return failure();
941
942 // If we have an attribute ID, it is a result number.
943 if (getToken().is(Token::hash_identifier)) {
944 if (!allowResultNumber)
945 return emitError("result number not allowed in argument list");
946
947 if (auto value = getToken().getHashIdentifierNumber())
948 result.number = *value;
949 else
950 return emitError("invalid SSA value result number");
951 consumeToken(Token::hash_identifier);
952 }
953
954 return success();
955}
956
957/// Given an unbound reference to an SSA value and its type, return the value
958/// it specifies. This returns null on failure.
959Value OperationParser::resolveSSAUse(UnresolvedOperand useInfo, Type type) {
960 auto &entries = getSSAValueEntry(useInfo.name);
961
962 // Functor used to record the use of the given value if the assembly state
963 // field is populated.
964 auto maybeRecordUse = [&](Value value) {
965 if (state.asmState)
966 state.asmState->addUses(value, useInfo.location);
967 return value;
968 };
969
970 // If we have already seen a value of this name, return it.
971 if (useInfo.number < entries.size() && entries[useInfo.number].value) {
972 Value result = entries[useInfo.number].value;
973 // Check that the type matches the other uses.
974 if (result.getType() == type)
975 return maybeRecordUse(result);
976
977 emitError(useInfo.location, "use of value '")
978 .append(useInfo.name,
979 "' expects different type than prior uses: ", type, " vs ",
980 result.getType())
981 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
982 .append("prior use here");
983 return nullptr;
984 }
985
986 // Make sure we have enough slots for this.
987 if (entries.size() <= useInfo.number)
988 entries.resize(useInfo.number + 1);
989
990 // If the value has already been defined and this is an overly large result
991 // number, diagnose that.
992 if (entries[0].value && !isForwardRefPlaceholder(entries[0].value))
993 return (emitError(useInfo.location, "reference to invalid result number"),
994 nullptr);
995
996 // Otherwise, this is a forward reference. Create a placeholder and remember
997 // that we did so.
998 Value result = createForwardRefPlaceholder(useInfo.location, type);
999 entries[useInfo.number] = {result, useInfo.location};
1000 return maybeRecordUse(result);
1001}
1002
1003/// Parse an SSA use with an associated type.
1004///
1005/// ssa-use-and-type ::= ssa-use `:` type
1006ParseResult OperationParser::parseSSADefOrUseAndType(
1007 function_ref<ParseResult(UnresolvedOperand, Type)> action) {
1008 UnresolvedOperand useInfo;
1009 if (parseSSAUse(useInfo) ||
1010 parseToken(Token::colon, "expected ':' and type for SSA operand"))
1011 return failure();
1012
1013 auto type = parseType();
1014 if (!type)
1015 return failure();
1016
1017 return action(useInfo, type);
1018}
1019
1020/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
1021/// followed by a type list.
1022///
1023/// ssa-use-and-type-list
1024/// ::= ssa-use-list ':' type-list-no-parens
1025///
1026ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
1027 SmallVectorImpl<Value> &results) {
1028 SmallVector<UnresolvedOperand, 4> valueIDs;
1029 if (parseOptionalSSAUseList(valueIDs))
1030 return failure();
1031
1032 // If there were no operands, then there is no colon or type lists.
1033 if (valueIDs.empty())
1034 return success();
1035
1036 SmallVector<Type, 4> types;
1037 if (parseToken(Token::colon, "expected ':' in operand list") ||
1038 parseTypeListNoParens(types))
1039 return failure();
1040
1041 if (valueIDs.size() != types.size())
1042 return emitError("expected ")
1043 << valueIDs.size() << " types to match operand list";
1044
1045 results.reserve(valueIDs.size());
1046 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
1047 if (auto value = resolveSSAUse(valueIDs[i], types[i]))
1048 results.push_back(value);
1049 else
1050 return failure();
1051 }
1052
1053 return success();
1054}
1055
1056/// Record that a definition was added at the current scope.
1057void OperationParser::recordDefinition(StringRef def) {
1058 isolatedNameScopes.back().recordDefinition(def);
1059}
1060
1061/// Get the value entry for the given SSA name.
1062auto OperationParser::getSSAValueEntry(StringRef name)
1063 -> SmallVectorImpl<ValueDefinition> & {
1064 return isolatedNameScopes.back().values[name];
1065}
1066
1067/// Create and remember a new placeholder for a forward reference.
1068Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
1069 // Forward references are always created as operations, because we just need
1070 // something with a def/use chain.
1071 //
1072 // We create these placeholders as having an empty name, which we know
1073 // cannot be created through normal user input, allowing us to distinguish
1074 // them.
1075 auto name = OperationName("builtin.unrealized_conversion_cast", getContext());
1076 auto *op = Operation::create(
1077 getEncodedSourceLocation(loc), name, type, /*operands=*/{},
1078 /*attributes=*/std::nullopt, /*successors=*/{}, /*numRegions=*/0);
1079 forwardRefPlaceholders[op->getResult(0)] = loc;
1080 return op->getResult(0);
1081}
1082
1083//===----------------------------------------------------------------------===//
1084// Operation Parsing
1085//===----------------------------------------------------------------------===//
1086
1087/// Parse an operation.
1088///
1089/// operation ::= op-result-list?
1090/// (generic-operation | custom-operation)
1091/// trailing-location?
1092/// generic-operation ::= string-literal `(` ssa-use-list? `)`
1093/// successor-list? (`(` region-list `)`)?
1094/// attribute-dict? `:` function-type
1095/// custom-operation ::= bare-id custom-operation-format
1096/// op-result-list ::= op-result (`,` op-result)* `=`
1097/// op-result ::= ssa-id (`:` integer-literal)
1098///
1099ParseResult OperationParser::parseOperation() {
1100 auto loc = getToken().getLoc();
1101 SmallVector<ResultRecord, 1> resultIDs;
1102 size_t numExpectedResults = 0;
1103 if (getToken().is(Token::percent_identifier)) {
1104 // Parse the group of result ids.
1105 auto parseNextResult = [&]() -> ParseResult {
1106 // Parse the next result id.
1107 Token nameTok = getToken();
1108 if (parseToken(Token::percent_identifier,
1109 "expected valid ssa identifier"))
1110 return failure();
1111
1112 // If the next token is a ':', we parse the expected result count.
1113 size_t expectedSubResults = 1;
1114 if (consumeIf(Token::colon)) {
1115 // Check that the next token is an integer.
1116 if (!getToken().is(Token::integer))
1117 return emitWrongTokenError("expected integer number of results");
1118
1119 // Check that number of results is > 0.
1120 auto val = getToken().getUInt64IntegerValue();
1121 if (!val || *val < 1)
1122 return emitError(
1123 "expected named operation to have at least 1 result");
1124 consumeToken(Token::integer);
1125 expectedSubResults = *val;
1126 }
1127
1128 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults,
1129 nameTok.getLoc());
1130 numExpectedResults += expectedSubResults;
1131 return success();
1132 };
1133 if (parseCommaSeparatedList(parseNextResult))
1134 return failure();
1135
1136 if (parseToken(Token::equal, "expected '=' after SSA name"))
1137 return failure();
1138 }
1139
1140 Operation *op;
1141 Token nameTok = getToken();
1142 if (nameTok.is(Token::bare_identifier) || nameTok.isKeyword())
1143 op = parseCustomOperation(resultIDs);
1144 else if (nameTok.is(Token::string))
1145 op = parseGenericOperation();
1146 else if (nameTok.isCodeCompletionFor(Token::string))
1147 return codeCompleteStringDialectOrOperationName(nameTok.getStringValue());
1148 else if (nameTok.isCodeCompletion())
1149 return codeCompleteDialectOrElidedOpName(loc);
1150 else
1151 return emitWrongTokenError("expected operation name in quotes");
1152
1153 // If parsing of the basic operation failed, then this whole thing fails.
1154 if (!op)
1155 return failure();
1156
1157 // If the operation had a name, register it.
1158 if (!resultIDs.empty()) {
1159 if (op->getNumResults() == 0)
1160 return emitError(loc, "cannot name an operation with no results");
1161 if (numExpectedResults != op->getNumResults())
1162 return emitError(loc, "operation defines ")
1163 << op->getNumResults() << " results but was provided "
1164 << numExpectedResults << " to bind";
1165
1166 // Add this operation to the assembly state if it was provided to populate.
1167 if (state.asmState) {
1168 unsigned resultIt = 0;
1169 SmallVector<std::pair<unsigned, SMLoc>> asmResultGroups;
1170 asmResultGroups.reserve(resultIDs.size());
1171 for (ResultRecord &record : resultIDs) {
1172 asmResultGroups.emplace_back(resultIt, std::get<2>(record));
1173 resultIt += std::get<1>(record);
1174 }
1175 state.asmState->finalizeOperationDefinition(
1176 op, nameTok.getLocRange(), /*endLoc=*/getToken().getLoc(),
1177 asmResultGroups);
1178 }
1179
1180 // Add definitions for each of the result groups.
1181 unsigned opResI = 0;
1182 for (ResultRecord &resIt : resultIDs) {
1183 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) {
1184 if (addDefinition({std::get<2>(resIt), std::get<0>(resIt), subRes},
1185 op->getResult(opResI++)))
1186 return failure();
1187 }
1188 }
1189
1190 // Add this operation to the assembly state if it was provided to populate.
1191 } else if (state.asmState) {
1192 state.asmState->finalizeOperationDefinition(op, nameTok.getLocRange(),
1193 /*endLoc=*/getToken().getLoc());
1194 }
1195
1196 return success();
1197}
1198
1199/// Parse a single operation successor.
1200///
1201/// successor ::= block-id
1202///
1203ParseResult OperationParser::parseSuccessor(Block *&dest) {
1204 if (getToken().isCodeCompletion())
3
Taking true branch
1205 return codeCompleteBlock();
4
Returning without writing to 'dest'
1206
1207 // Verify branch is identifier and get the matching block.
1208 if (!getToken().is(Token::caret_identifier))
1209 return emitWrongTokenError("expected block name");
1210 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
1211 consumeToken();
1212 return success();
1213}
1214
1215/// Parse a comma-separated list of operation successors in brackets.
1216///
1217/// successor-list ::= `[` successor (`,` successor )* `]`
1218///
1219ParseResult
1220OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) {
1221 if (parseToken(Token::l_square, "expected '['"))
1222 return failure();
1223
1224 auto parseElt = [this, &destinations] {
1225 Block *dest;
1
'dest' declared without an initial value
1226 ParseResult res = parseSuccessor(dest);
2
Calling 'OperationParser::parseSuccessor'
5
Returning from 'OperationParser::parseSuccessor'
1227 destinations.push_back(dest);
6
1st function call argument is an uninitialized value
1228 return res;
1229 };
1230 return parseCommaSeparatedListUntil(Token::r_square, parseElt,
1231 /*allowEmptyList=*/false);
1232}
1233
1234namespace {
1235// RAII-style guard for cleaning up the regions in the operation state before
1236// deleting them. Within the parser, regions may get deleted if parsing failed,
1237// and other errors may be present, in particular undominated uses. This makes
1238// sure such uses are deleted.
1239struct CleanupOpStateRegions {
1240 ~CleanupOpStateRegions() {
1241 SmallVector<Region *, 4> regionsToClean;
1242 regionsToClean.reserve(state.regions.size());
1243 for (auto &region : state.regions)
1244 if (region)
1245 for (auto &block : *region)
1246 block.dropAllDefinedValueUses();
1247 }
1248 OperationState &state;
1249};
1250} // namespace
1251
1252ParseResult OperationParser::parseGenericOperationAfterOpName(
1253 OperationState &result,
1254 std::optional<ArrayRef<UnresolvedOperand>> parsedOperandUseInfo,
1255 std::optional<ArrayRef<Block *>> parsedSuccessors,
1256 std::optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions,
1257 std::optional<ArrayRef<NamedAttribute>> parsedAttributes,
1258 std::optional<FunctionType> parsedFnType) {
1259
1260 // Parse the operand list, if not explicitly provided.
1261 SmallVector<UnresolvedOperand, 8> opInfo;
1262 if (!parsedOperandUseInfo) {
1263 if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
1264 parseOptionalSSAUseList(opInfo) ||
1265 parseToken(Token::r_paren, "expected ')' to end operand list")) {
1266 return failure();
1267 }
1268 parsedOperandUseInfo = opInfo;
1269 }
1270
1271 // Parse the successor list, if not explicitly provided.
1272 if (!parsedSuccessors) {
1273 if (getToken().is(Token::l_square)) {
1274 // Check if the operation is not a known terminator.
1275 if (!result.name.mightHaveTrait<OpTrait::IsTerminator>())
1276 return emitError("successors in non-terminator");
1277
1278 SmallVector<Block *, 2> successors;
1279 if (parseSuccessors(successors))
1280 return failure();
1281 result.addSuccessors(successors);
1282 }
1283 } else {
1284 result.addSuccessors(*parsedSuccessors);
1285 }
1286
1287 // Parse the region list, if not explicitly provided.
1288 if (!parsedRegions) {
1289 if (consumeIf(Token::l_paren)) {
1290 do {
1291 // Create temporary regions with the top level region as parent.
1292 result.regions.emplace_back(new Region(topLevelOp));
1293 if (parseRegion(*result.regions.back(), /*entryArguments=*/{}))
1294 return failure();
1295 } while (consumeIf(Token::comma));
1296 if (parseToken(Token::r_paren, "expected ')' to end region list"))
1297 return failure();
1298 }
1299 } else {
1300 result.addRegions(*parsedRegions);
1301 }
1302
1303 // Parse the attributes, if not explicitly provided.
1304 if (!parsedAttributes) {
1305 if (getToken().is(Token::l_brace)) {
1306 if (parseAttributeDict(result.attributes))
1307 return failure();
1308 }
1309 } else {
1310 result.addAttributes(*parsedAttributes);
1311 }
1312
1313 // Parse the operation type, if not explicitly provided.
1314 Location typeLoc = result.location;
1315 if (!parsedFnType) {
1316 if (parseToken(Token::colon, "expected ':' followed by operation type"))
1317 return failure();
1318
1319 typeLoc = getEncodedSourceLocation(getToken().getLoc());
1320 auto type = parseType();
1321 if (!type)
1322 return failure();
1323 auto fnType = type.dyn_cast<FunctionType>();
1324 if (!fnType)
1325 return mlir::emitError(typeLoc, "expected function type");
1326
1327 parsedFnType = fnType;
1328 }
1329
1330 result.addTypes(parsedFnType->getResults());
1331
1332 // Check that we have the right number of types for the operands.
1333 ArrayRef<Type> operandTypes = parsedFnType->getInputs();
1334 if (operandTypes.size() != parsedOperandUseInfo->size()) {
1335 auto plural = "s"[parsedOperandUseInfo->size() == 1];
1336 return mlir::emitError(typeLoc, "expected ")
1337 << parsedOperandUseInfo->size() << " operand type" << plural
1338 << " but had " << operandTypes.size();
1339 }
1340
1341 // Resolve all of the operands.
1342 for (unsigned i = 0, e = parsedOperandUseInfo->size(); i != e; ++i) {
1343 result.operands.push_back(
1344 resolveSSAUse((*parsedOperandUseInfo)[i], operandTypes[i]));
1345 if (!result.operands.back())
1346 return failure();
1347 }
1348
1349 return success();
1350}
1351
1352Operation *OperationParser::parseGenericOperation() {
1353 // Get location information for the operation.
1354 auto srcLocation = getEncodedSourceLocation(getToken().getLoc());
1355
1356 std::string name = getToken().getStringValue();
1357 if (name.empty())
1358 return (emitError("empty operation name is invalid"), nullptr);
1359 if (name.find('\0') != StringRef::npos)
1360 return (emitError("null character not allowed in operation name"), nullptr);
1361
1362 consumeToken(Token::string);
1363
1364 OperationState result(srcLocation, name);
1365 CleanupOpStateRegions guard{result};
1366
1367 // Lazy load dialects in the context as needed.
1368 if (!result.name.isRegistered()) {
1369 StringRef dialectName = StringRef(name).split('.').first;
1370 if (!getContext()->getLoadedDialect(dialectName) &&
1371 !getContext()->getOrLoadDialect(dialectName)) {
1372 if (!getContext()->allowsUnregisteredDialects()) {
1373 // Emit an error if the dialect couldn't be loaded (i.e., it was not
1374 // registered) and unregistered dialects aren't allowed.
1375 emitError("operation being parsed with an unregistered dialect. If "
1376 "this is intended, please use -allow-unregistered-dialect "
1377 "with the MLIR tool used");
1378 return nullptr;
1379 }
1380 } else {
1381 // Reload the OperationName now that the dialect is loaded.
1382 result.name = OperationName(name, getContext());
1383 }
1384 }
1385
1386 // If we are populating the parser state, start a new operation definition.
1387 if (state.asmState)
1388 state.asmState->startOperationDefinition(result.name);
1389
1390 if (parseGenericOperationAfterOpName(result))
1391 return nullptr;
1392
1393 // Create the operation and try to parse a location for it.
1394 Operation *op = opBuilder.create(result);
1395 if (parseTrailingLocationSpecifier(op))
1396 return nullptr;
1397 return op;
1398}
1399
1400Operation *OperationParser::parseGenericOperation(Block *insertBlock,
1401 Block::iterator insertPt) {
1402 Token nameToken = getToken();
1403
1404 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder);
1405 opBuilder.setInsertionPoint(insertBlock, insertPt);
1406 Operation *op = parseGenericOperation();
1407 if (!op)
1408 return nullptr;
1409
1410 // If we are populating the parser asm state, finalize this operation
1411 // definition.
1412 if (state.asmState)
1413 state.asmState->finalizeOperationDefinition(op, nameToken.getLocRange(),
1414 /*endLoc=*/getToken().getLoc());
1415 return op;
1416}
1417
1418namespace {
1419class CustomOpAsmParser : public AsmParserImpl<OpAsmParser> {
1420public:
1421 CustomOpAsmParser(
1422 SMLoc nameLoc, ArrayRef<OperationParser::ResultRecord> resultIDs,
1423 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly,
1424 bool isIsolatedFromAbove, StringRef opName, OperationParser &parser)
1425 : AsmParserImpl<OpAsmParser>(nameLoc, parser), resultIDs(resultIDs),
1426 parseAssembly(parseAssembly), isIsolatedFromAbove(isIsolatedFromAbove),
1427 opName(opName), parser(parser) {
1428 (void)isIsolatedFromAbove; // Only used in assert, silence unused warning.
1429 }
1430
1431 /// Parse an instance of the operation described by 'opDefinition' into the
1432 /// provided operation state.
1433 ParseResult parseOperation(OperationState &opState) {
1434 if (parseAssembly(*this, opState))
1435 return failure();
1436 // Verify that the parsed attributes does not have duplicate attributes.
1437 // This can happen if an attribute set during parsing is also specified in
1438 // the attribute dictionary in the assembly, or the attribute is set
1439 // multiple during parsing.
1440 std::optional<NamedAttribute> duplicate =
1441 opState.attributes.findDuplicate();
1442 if (duplicate)
1443 return emitError(getNameLoc(), "attribute '")
1444 << duplicate->getName().getValue()
1445 << "' occurs more than once in the attribute list";
1446 return success();
1447 }
1448
1449 Operation *parseGenericOperation(Block *insertBlock,
1450 Block::iterator insertPt) final {
1451 return parser.parseGenericOperation(insertBlock, insertPt);
1452 }
1453
1454 FailureOr<OperationName> parseCustomOperationName() final {
1455 return parser.parseCustomOperationName();
1456 }
1457
1458 ParseResult parseGenericOperationAfterOpName(
1459 OperationState &result,
1460 std::optional<ArrayRef<UnresolvedOperand>> parsedUnresolvedOperands,
1461 std::optional<ArrayRef<Block *>> parsedSuccessors,
1462 std::optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions,
1463 std::optional<ArrayRef<NamedAttribute>> parsedAttributes,
1464 std::optional<FunctionType> parsedFnType) final {
1465 return parser.parseGenericOperationAfterOpName(
1466 result, parsedUnresolvedOperands, parsedSuccessors, parsedRegions,
1467 parsedAttributes, parsedFnType);
1468 }
1469 //===--------------------------------------------------------------------===//
1470 // Utilities
1471 //===--------------------------------------------------------------------===//
1472
1473 /// Return the name of the specified result in the specified syntax, as well
1474 /// as the subelement in the name. For example, in this operation:
1475 ///
1476 /// %x, %y:2, %z = foo.op
1477 ///
1478 /// getResultName(0) == {"x", 0 }
1479 /// getResultName(1) == {"y", 0 }
1480 /// getResultName(2) == {"y", 1 }
1481 /// getResultName(3) == {"z", 0 }
1482 std::pair<StringRef, unsigned>
1483 getResultName(unsigned resultNo) const override {
1484 // Scan for the resultID that contains this result number.
1485 for (const auto &entry : resultIDs) {
1486 if (resultNo < std::get<1>(entry)) {
1487 // Don't pass on the leading %.
1488 StringRef name = std::get<0>(entry).drop_front();
1489 return {name, resultNo};
1490 }
1491 resultNo -= std::get<1>(entry);
1492 }
1493
1494 // Invalid result number.
1495 return {"", ~0U};
1496 }
1497
1498 /// Return the number of declared SSA results. This returns 4 for the foo.op
1499 /// example in the comment for getResultName.
1500 size_t getNumResults() const override {
1501 size_t count = 0;
1502 for (auto &entry : resultIDs)
1503 count += std::get<1>(entry);
1504 return count;
1505 }
1506
1507 /// Emit a diagnostic at the specified location and return failure.
1508 InFlightDiagnostic emitError(SMLoc loc, const Twine &message) override {
1509 return AsmParserImpl<OpAsmParser>::emitError(loc, "custom op '" + opName +
1510 "' " + message);
1511 }
1512
1513 //===--------------------------------------------------------------------===//
1514 // Operand Parsing
1515 //===--------------------------------------------------------------------===//
1516
1517 /// Parse a single operand.
1518 ParseResult parseOperand(UnresolvedOperand &result,
1519 bool allowResultNumber = true) override {
1520 OperationParser::UnresolvedOperand useInfo;
1521 if (parser.parseSSAUse(useInfo, allowResultNumber))
1522 return failure();
1523
1524 result = {useInfo.location, useInfo.name, useInfo.number};
1525 return success();
1526 }
1527
1528 /// Parse a single operand if present.
1529 OptionalParseResult
1530 parseOptionalOperand(UnresolvedOperand &result,
1531 bool allowResultNumber = true) override {
1532 if (parser.getToken().isOrIsCodeCompletionFor(Token::percent_identifier))
1533 return parseOperand(result, allowResultNumber);
1534 return std::nullopt;
1535 }
1536
1537 /// Parse zero or more SSA comma-separated operand references with a specified
1538 /// surrounding delimiter, and an optional required operand count.
1539 ParseResult parseOperandList(SmallVectorImpl<UnresolvedOperand> &result,
1540 Delimiter delimiter = Delimiter::None,
1541 bool allowResultNumber = true,
1542 int requiredOperandCount = -1) override {
1543 // The no-delimiter case has some special handling for better diagnostics.
1544 if (delimiter == Delimiter::None) {
1545 // parseCommaSeparatedList doesn't handle the missing case for "none",
1546 // so we handle it custom here.
1547 Token tok = parser.getToken();
1548 if (!tok.isOrIsCodeCompletionFor(Token::percent_identifier)) {
1549 // If we didn't require any operands or required exactly zero (weird)
1550 // then this is success.
1551 if (requiredOperandCount == -1 || requiredOperandCount == 0)
1552 return success();
1553
1554 // Otherwise, try to produce a nice error message.
1555 if (tok.isAny(Token::l_paren, Token::l_square))
1556 return parser.emitError("unexpected delimiter");
1557 return parser.emitWrongTokenError("expected operand");
1558 }
1559 }
1560
1561 auto parseOneOperand = [&]() -> ParseResult {
1562 return parseOperand(result.emplace_back(), allowResultNumber);
1563 };
1564
1565 auto startLoc = parser.getToken().getLoc();
1566 if (parseCommaSeparatedList(delimiter, parseOneOperand, " in operand list"))
1567 return failure();
1568
1569 // Check that we got the expected # of elements.
1570 if (requiredOperandCount != -1 &&
1571 result.size() != static_cast<size_t>(requiredOperandCount))
1572 return emitError(startLoc, "expected ")
1573 << requiredOperandCount << " operands";
1574 return success();
1575 }
1576
1577 /// Resolve an operand to an SSA value, emitting an error on failure.
1578 ParseResult resolveOperand(const UnresolvedOperand &operand, Type type,
1579 SmallVectorImpl<Value> &result) override {
1580 if (auto value = parser.resolveSSAUse(operand, type)) {
1581 result.push_back(value);
1582 return success();
1583 }
1584 return failure();
1585 }
1586
1587 /// Parse an AffineMap of SSA ids.
1588 ParseResult
1589 parseAffineMapOfSSAIds(SmallVectorImpl<UnresolvedOperand> &operands,
1590 Attribute &mapAttr, StringRef attrName,
1591 NamedAttrList &attrs, Delimiter delimiter) override {
1592 SmallVector<UnresolvedOperand, 2> dimOperands;
1593 SmallVector<UnresolvedOperand, 1> symOperands;
1594
1595 auto parseElement = [&](bool isSymbol) -> ParseResult {
1596 UnresolvedOperand operand;
1597 if (parseOperand(operand))
1598 return failure();
1599 if (isSymbol)
1600 symOperands.push_back(operand);
1601 else
1602 dimOperands.push_back(operand);
1603 return success();
1604 };
1605
1606 AffineMap map;
1607 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter))
1608 return failure();
1609 // Add AffineMap attribute.
1610 if (map) {
1611 mapAttr = AffineMapAttr::get(map);
1612 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
1613 }
1614
1615 // Add dim operands before symbol operands in 'operands'.
1616 operands.assign(dimOperands.begin(), dimOperands.end());
1617 operands.append(symOperands.begin(), symOperands.end());
1618 return success();
1619 }
1620
1621 /// Parse an AffineExpr of SSA ids.
1622 ParseResult
1623 parseAffineExprOfSSAIds(SmallVectorImpl<UnresolvedOperand> &dimOperands,
1624 SmallVectorImpl<UnresolvedOperand> &symbOperands,
1625 AffineExpr &expr) override {
1626 auto parseElement = [&](bool isSymbol) -> ParseResult {
1627 UnresolvedOperand operand;
1628 if (parseOperand(operand))
1629 return failure();
1630 if (isSymbol)
1631 symbOperands.push_back(operand);
1632 else
1633 dimOperands.push_back(operand);
1634 return success();
1635 };
1636
1637 return parser.parseAffineExprOfSSAIds(expr, parseElement);
1638 }
1639
1640 //===--------------------------------------------------------------------===//
1641 // Argument Parsing
1642 //===--------------------------------------------------------------------===//
1643
1644 /// Parse a single argument with the following syntax:
1645 ///
1646 /// `%ssaname : !type { optionalAttrDict} loc(optionalSourceLoc)`
1647 ///
1648 /// If `allowType` is false or `allowAttrs` are false then the respective
1649 /// parts of the grammar are not parsed.
1650 ParseResult parseArgument(Argument &result, bool allowType = false,
1651 bool allowAttrs = false) override {
1652 NamedAttrList attrs;
1653 if (parseOperand(result.ssaName, /*allowResultNumber=*/false) ||
1654 (allowType && parseColonType(result.type)) ||
1655 (allowAttrs && parseOptionalAttrDict(attrs)) ||
1656 parseOptionalLocationSpecifier(result.sourceLoc))
1657 return failure();
1658 result.attrs = attrs.getDictionary(getContext());
1659 return success();
1660 }
1661
1662 /// Parse a single argument if present.
1663 OptionalParseResult parseOptionalArgument(Argument &result, bool allowType,
1664 bool allowAttrs) override {
1665 if (parser.getToken().is(Token::percent_identifier))
1666 return parseArgument(result, allowType, allowAttrs);
1667 return std::nullopt;
1668 }
1669
1670 ParseResult parseArgumentList(SmallVectorImpl<Argument> &result,
1671 Delimiter delimiter, bool allowType,
1672 bool allowAttrs) override {
1673 // The no-delimiter case has some special handling for the empty case.
1674 if (delimiter == Delimiter::None &&
1675 parser.getToken().isNot(Token::percent_identifier))
1676 return success();
1677
1678 auto parseOneArgument = [&]() -> ParseResult {
1679 return parseArgument(result.emplace_back(), allowType, allowAttrs);
1680 };
1681 return parseCommaSeparatedList(delimiter, parseOneArgument,
1682 " in argument list");
1683 }
1684
1685 //===--------------------------------------------------------------------===//
1686 // Region Parsing
1687 //===--------------------------------------------------------------------===//
1688
1689 /// Parse a region that takes `arguments` of `argTypes` types. This
1690 /// effectively defines the SSA values of `arguments` and assigns their type.
1691 ParseResult parseRegion(Region &region, ArrayRef<Argument> arguments,
1692 bool enableNameShadowing) override {
1693 // Try to parse the region.
1694 (void)isIsolatedFromAbove;
1695 assert((!enableNameShadowing || isIsolatedFromAbove) &&(static_cast <bool> ((!enableNameShadowing || isIsolatedFromAbove
) && "name shadowing is only allowed on isolated regions"
) ? void (0) : __assert_fail ("(!enableNameShadowing || isIsolatedFromAbove) && \"name shadowing is only allowed on isolated regions\""
, "mlir/lib/AsmParser/Parser.cpp", 1696, __extension__ __PRETTY_FUNCTION__
))
1696 "name shadowing is only allowed on isolated regions")(static_cast <bool> ((!enableNameShadowing || isIsolatedFromAbove
) && "name shadowing is only allowed on isolated regions"
) ? void (0) : __assert_fail ("(!enableNameShadowing || isIsolatedFromAbove) && \"name shadowing is only allowed on isolated regions\""
, "mlir/lib/AsmParser/Parser.cpp", 1696, __extension__ __PRETTY_FUNCTION__
))
;
1697 if (parser.parseRegion(region, arguments, enableNameShadowing))
1698 return failure();
1699 return success();
1700 }
1701
1702 /// Parses a region if present.
1703 OptionalParseResult parseOptionalRegion(Region &region,
1704 ArrayRef<Argument> arguments,
1705 bool enableNameShadowing) override {
1706 if (parser.getToken().isNot(Token::l_brace))
1707 return std::nullopt;
1708 return parseRegion(region, arguments, enableNameShadowing);
1709 }
1710
1711 /// Parses a region if present. If the region is present, a new region is
1712 /// allocated and placed in `region`. If no region is present, `region`
1713 /// remains untouched.
1714 OptionalParseResult
1715 parseOptionalRegion(std::unique_ptr<Region> &region,
1716 ArrayRef<Argument> arguments,
1717 bool enableNameShadowing = false) override {
1718 if (parser.getToken().isNot(Token::l_brace))
1719 return std::nullopt;
1720 std::unique_ptr<Region> newRegion = std::make_unique<Region>();
1721 if (parseRegion(*newRegion, arguments, enableNameShadowing))
1722 return failure();
1723
1724 region = std::move(newRegion);
1725 return success();
1726 }
1727
1728 //===--------------------------------------------------------------------===//
1729 // Successor Parsing
1730 //===--------------------------------------------------------------------===//
1731
1732 /// Parse a single operation successor.
1733 ParseResult parseSuccessor(Block *&dest) override {
1734 return parser.parseSuccessor(dest);
1735 }
1736
1737 /// Parse an optional operation successor and its operand list.
1738 OptionalParseResult parseOptionalSuccessor(Block *&dest) override {
1739 if (!parser.getToken().isOrIsCodeCompletionFor(Token::caret_identifier))
1740 return std::nullopt;
1741 return parseSuccessor(dest);
1742 }
1743
1744 /// Parse a single operation successor and its operand list.
1745 ParseResult
1746 parseSuccessorAndUseList(Block *&dest,
1747 SmallVectorImpl<Value> &operands) override {
1748 if (parseSuccessor(dest))
1749 return failure();
1750
1751 // Handle optional arguments.
1752 if (succeeded(parseOptionalLParen()) &&
1753 (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) {
1754 return failure();
1755 }
1756 return success();
1757 }
1758
1759 //===--------------------------------------------------------------------===//
1760 // Type Parsing
1761 //===--------------------------------------------------------------------===//
1762
1763 /// Parse a list of assignments of the form
1764 /// (%x1 = %y1, %x2 = %y2, ...).
1765 OptionalParseResult parseOptionalAssignmentList(
1766 SmallVectorImpl<Argument> &lhs,
1767 SmallVectorImpl<UnresolvedOperand> &rhs) override {
1768 if (failed(parseOptionalLParen()))
1769 return std::nullopt;
1770
1771 auto parseElt = [&]() -> ParseResult {
1772 if (parseArgument(lhs.emplace_back()) || parseEqual() ||
1773 parseOperand(rhs.emplace_back()))
1774 return failure();
1775 return success();
1776 };
1777 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
1778 }
1779
1780 /// Parse a loc(...) specifier if present, filling in result if so.
1781 ParseResult
1782 parseOptionalLocationSpecifier(std::optional<Location> &result) override {
1783 // If there is a 'loc' we parse a trailing location.
1784 if (!parser.consumeIf(Token::kw_loc))
1785 return success();
1786 LocationAttr directLoc;
1787 if (parser.parseToken(Token::l_paren, "expected '(' in location"))
1788 return failure();
1789
1790 Token tok = parser.getToken();
1791
1792 // Check to see if we are parsing a location alias.
1793 // Otherwise, we parse the location directly.
1794 if (tok.is(Token::hash_identifier)) {
1795 if (parser.parseLocationAlias(directLoc))
1796 return failure();
1797 } else if (parser.parseLocationInstance(directLoc)) {
1798 return failure();
1799 }
1800
1801 if (parser.parseToken(Token::r_paren, "expected ')' in location"))
1802 return failure();
1803
1804 result = directLoc;
1805 return success();
1806 }
1807
1808private:
1809 /// Information about the result name specifiers.
1810 ArrayRef<OperationParser::ResultRecord> resultIDs;
1811
1812 /// The abstract information of the operation.
1813 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly;
1814 bool isIsolatedFromAbove;
1815 StringRef opName;
1816
1817 /// The backing operation parser.
1818 OperationParser &parser;
1819};
1820} // namespace
1821
1822FailureOr<OperationName> OperationParser::parseCustomOperationName() {
1823 Token nameTok = getToken();
1824 StringRef opName = nameTok.getSpelling();
1825 if (opName.empty())
1826 return (emitError("empty operation name is invalid"), failure());
1827 consumeToken();
1828
1829 // Check to see if this operation name is already registered.
1830 std::optional<RegisteredOperationName> opInfo =
1831 RegisteredOperationName::lookup(opName, getContext());
1832 if (opInfo)
1833 return *opInfo;
1834
1835 // If the operation doesn't have a dialect prefix try using the default
1836 // dialect.
1837 auto opNameSplit = opName.split('.');
1838 StringRef dialectName = opNameSplit.first;
1839 std::string opNameStorage;
1840 if (opNameSplit.second.empty()) {
1841 // If the name didn't have a prefix, check for a code completion request.
1842 if (getToken().isCodeCompletion() && opName.back() == '.')
1843 return codeCompleteOperationName(dialectName);
1844
1845 dialectName = getState().defaultDialectStack.back();
1846 opNameStorage = (dialectName + "." + opName).str();
1847 opName = opNameStorage;
1848 }
1849
1850 // Try to load the dialect before returning the operation name to make sure
1851 // the operation has a chance to be registered.
1852 getContext()->getOrLoadDialect(dialectName);
1853 return OperationName(opName, getContext());
1854}
1855
1856Operation *
1857OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) {
1858 SMLoc opLoc = getToken().getLoc();
1859 StringRef originalOpName = getTokenSpelling();
1860
1861 FailureOr<OperationName> opNameInfo = parseCustomOperationName();
1862 if (failed(opNameInfo))
1863 return nullptr;
1864 StringRef opName = opNameInfo->getStringRef();
1865
1866 // This is the actual hook for the custom op parsing, usually implemented by
1867 // the op itself (`Op::parse()`). We retrieve it either from the
1868 // RegisteredOperationName or from the Dialect.
1869 OperationName::ParseAssemblyFn parseAssemblyFn;
1870 bool isIsolatedFromAbove = false;
1871
1872 StringRef defaultDialect = "";
1873 if (auto opInfo = opNameInfo->getRegisteredInfo()) {
1874 parseAssemblyFn = opInfo->getParseAssemblyFn();
1875 isIsolatedFromAbove = opInfo->hasTrait<OpTrait::IsIsolatedFromAbove>();
1876 auto *iface = opInfo->getInterface<OpAsmOpInterface>();
1877 if (iface && !iface->getDefaultDialect().empty())
1878 defaultDialect = iface->getDefaultDialect();
1879 } else {
1880 std::optional<Dialect::ParseOpHook> dialectHook;
1881 Dialect *dialect = opNameInfo->getDialect();
1882 if (!dialect) {
1883 InFlightDiagnostic diag =
1884 emitError(opLoc) << "Dialect `" << opNameInfo->getDialectNamespace()
1885 << "' not found for custom op '" << originalOpName
1886 << "' ";
1887 if (originalOpName != opName)
1888 diag << " (tried '" << opName << "' as well)";
1889 auto &note = diag.attachNote();
1890 note << "Registered dialects: ";
1891 llvm::interleaveComma(getContext()->getAvailableDialects(), note,
1892 [&](StringRef dialect) { note << dialect; });
1893 note << " ; for more info on dialect registration see "
1894 "https://mlir.llvm.org/getting_started/Faq/"
1895 "#registered-loaded-dependent-whats-up-with-dialects-management";
1896 return nullptr;
1897 }
1898 dialectHook = dialect->getParseOperationHook(opName);
1899 if (!dialectHook) {
1900 InFlightDiagnostic diag =
1901 emitError(opLoc) << "custom op '" << originalOpName << "' is unknown";
1902 if (originalOpName != opName)
1903 diag << " (tried '" << opName << "' as well)";
1904 return nullptr;
1905 }
1906 parseAssemblyFn = *dialectHook;
1907 }
1908 getState().defaultDialectStack.push_back(defaultDialect);
1909 auto restoreDefaultDialect = llvm::make_scope_exit(
1910 [&]() { getState().defaultDialectStack.pop_back(); });
1911
1912 // If the custom op parser crashes, produce some indication to help
1913 // debugging.
1914 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
1915 opNameInfo->getIdentifier().data());
1916
1917 // Get location information for the operation.
1918 auto srcLocation = getEncodedSourceLocation(opLoc);
1919 OperationState opState(srcLocation, *opNameInfo);
1920
1921 // If we are populating the parser state, start a new operation definition.
1922 if (state.asmState)
1923 state.asmState->startOperationDefinition(opState.name);
1924
1925 // Have the op implementation take a crack and parsing this.
1926 CleanupOpStateRegions guard{opState};
1927 CustomOpAsmParser opAsmParser(opLoc, resultIDs, parseAssemblyFn,
1928 isIsolatedFromAbove, opName, *this);
1929 if (opAsmParser.parseOperation(opState))
1930 return nullptr;
1931
1932 // If it emitted an error, we failed.
1933 if (opAsmParser.didEmitError())
1934 return nullptr;
1935
1936 // Otherwise, create the operation and try to parse a location for it.
1937 Operation *op = opBuilder.create(opState);
1938 if (parseTrailingLocationSpecifier(op))
1939 return nullptr;
1940 return op;
1941}
1942
1943ParseResult OperationParser::parseLocationAlias(LocationAttr &loc) {
1944 Token tok = getToken();
1945 consumeToken(Token::hash_identifier);
1946 StringRef identifier = tok.getSpelling().drop_front();
1947 if (identifier.contains('.')) {
1948 return emitError(tok.getLoc())
1949 << "expected location, but found dialect attribute: '#" << identifier
1950 << "'";
1951 }
1952
1953 // If this alias can be resolved, do it now.
1954 Attribute attr = state.symbols.attributeAliasDefinitions.lookup(identifier);
1955 if (attr) {
1956 if (!(loc = dyn_cast<LocationAttr>(attr)))
1957 return emitError(tok.getLoc())
1958 << "expected location, but found '" << attr << "'";
1959 } else {
1960 // Otherwise, remember this operation and resolve its location later.
1961 // In the meantime, use a special OpaqueLoc as a marker.
1962 loc = OpaqueLoc::get(deferredLocsReferences.size(),
1963 TypeID::get<DeferredLocInfo *>(),
1964 UnknownLoc::get(getContext()));
1965 deferredLocsReferences.push_back(DeferredLocInfo{tok.getLoc(), identifier});
1966 }
1967 return success();
1968}
1969
1970ParseResult
1971OperationParser::parseTrailingLocationSpecifier(OpOrArgument opOrArgument) {
1972 // If there is a 'loc' we parse a trailing location.
1973 if (!consumeIf(Token::kw_loc))
1974 return success();
1975 if (parseToken(Token::l_paren, "expected '(' in location"))
1976 return failure();
1977 Token tok = getToken();
1978
1979 // Check to see if we are parsing a location alias.
1980 // Otherwise, we parse the location directly.
1981 LocationAttr directLoc;
1982 if (tok.is(Token::hash_identifier)) {
1983 if (parseLocationAlias(directLoc))
1984 return failure();
1985 } else if (parseLocationInstance(directLoc)) {
1986 return failure();
1987 }
1988
1989 if (parseToken(Token::r_paren, "expected ')' in location"))
1990 return failure();
1991
1992 if (auto *op = opOrArgument.dyn_cast<Operation *>())
1993 op->setLoc(directLoc);
1994 else
1995 opOrArgument.get<BlockArgument>().setLoc(directLoc);
1996 return success();
1997}
1998
1999//===----------------------------------------------------------------------===//
2000// Region Parsing
2001//===----------------------------------------------------------------------===//
2002
2003ParseResult OperationParser::parseRegion(Region &region,
2004 ArrayRef<Argument> entryArguments,
2005 bool isIsolatedNameScope) {
2006 // Parse the '{'.
2007 Token lBraceTok = getToken();
2008 if (parseToken(Token::l_brace, "expected '{' to begin a region"))
2009 return failure();
2010
2011 // If we are populating the parser state, start a new region definition.
2012 if (state.asmState)
2013 state.asmState->startRegionDefinition();
2014
2015 // Parse the region body.
2016 if ((!entryArguments.empty() || getToken().isNot(Token::r_brace)) &&
2017 parseRegionBody(region, lBraceTok.getLoc(), entryArguments,
2018 isIsolatedNameScope)) {
2019 return failure();
2020 }
2021 consumeToken(Token::r_brace);
2022
2023 // If we are populating the parser state, finalize this region.
2024 if (state.asmState)
2025 state.asmState->finalizeRegionDefinition();
2026
2027 return success();
2028}
2029
2030ParseResult OperationParser::parseRegionBody(Region &region, SMLoc startLoc,
2031 ArrayRef<Argument> entryArguments,
2032 bool isIsolatedNameScope) {
2033 auto currentPt = opBuilder.saveInsertionPoint();
2034
2035 // Push a new named value scope.
2036 pushSSANameScope(isIsolatedNameScope);
2037
2038 // Parse the first block directly to allow for it to be unnamed.
2039 auto owningBlock = std::make_unique<Block>();
2040 Block *block = owningBlock.get();
2041
2042 // If this block is not defined in the source file, add a definition for it
2043 // now in the assembly state. Blocks with a name will be defined when the name
2044 // is parsed.
2045 if (state.asmState && getToken().isNot(Token::caret_identifier))
2046 state.asmState->addDefinition(block, startLoc);
2047
2048 // Add arguments to the entry block if we had the form with explicit names.
2049 if (!entryArguments.empty() && !entryArguments[0].ssaName.name.empty()) {
2050 // If we had named arguments, then don't allow a block name.
2051 if (getToken().is(Token::caret_identifier))
2052 return emitError("invalid block name in region with named arguments");
2053
2054 for (auto &entryArg : entryArguments) {
2055 auto &argInfo = entryArg.ssaName;
2056
2057 // Ensure that the argument was not already defined.
2058 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
2059 return emitError(argInfo.location, "region entry argument '" +
2060 argInfo.name +
2061 "' is already in use")
2062 .attachNote(getEncodedSourceLocation(*defLoc))
2063 << "previously referenced here";
2064 }
2065 Location loc = entryArg.sourceLoc.has_value()
2066 ? *entryArg.sourceLoc
2067 : getEncodedSourceLocation(argInfo.location);
2068 BlockArgument arg = block->addArgument(entryArg.type, loc);
2069
2070 // Add a definition of this arg to the assembly state if provided.
2071 if (state.asmState)
2072 state.asmState->addDefinition(arg, argInfo.location);
2073
2074 // Record the definition for this argument.
2075 if (addDefinition(argInfo, arg))
2076 return failure();
2077 }
2078 }
2079
2080 if (parseBlock(block))
2081 return failure();
2082
2083 // Verify that no other arguments were parsed.
2084 if (!entryArguments.empty() &&
2085 block->getNumArguments() > entryArguments.size()) {
2086 return emitError("entry block arguments were already defined");
2087 }
2088
2089 // Parse the rest of the region.
2090 region.push_back(owningBlock.release());
2091 while (getToken().isNot(Token::r_brace)) {
2092 Block *newBlock = nullptr;
2093 if (parseBlock(newBlock))
2094 return failure();
2095 region.push_back(newBlock);
2096 }
2097
2098 // Pop the SSA value scope for this region.
2099 if (popSSANameScope())
2100 return failure();
2101
2102 // Reset the original insertion point.
2103 opBuilder.restoreInsertionPoint(currentPt);
2104 return success();
2105}
2106
2107//===----------------------------------------------------------------------===//
2108// Block Parsing
2109//===----------------------------------------------------------------------===//
2110
2111/// Block declaration.
2112///
2113/// block ::= block-label? operation*
2114/// block-label ::= block-id block-arg-list? `:`
2115/// block-id ::= caret-id
2116/// block-arg-list ::= `(` ssa-id-and-type-list? `)`
2117///
2118ParseResult OperationParser::parseBlock(Block *&block) {
2119 // The first block of a region may already exist, if it does the caret
2120 // identifier is optional.
2121 if (block && getToken().isNot(Token::caret_identifier))
2122 return parseBlockBody(block);
2123
2124 SMLoc nameLoc = getToken().getLoc();
2125 auto name = getTokenSpelling();
2126 if (parseToken(Token::caret_identifier, "expected block name"))
2127 return failure();
2128
2129 // Define the block with the specified name.
2130 auto &blockAndLoc = getBlockInfoByName(name);
2131 blockAndLoc.loc = nameLoc;
2132
2133 // Use a unique pointer for in-flight block being parsed. Release ownership
2134 // only in the case of a successful parse. This ensures that the Block
2135 // allocated is released if the parse fails and control returns early.
2136 std::unique_ptr<Block> inflightBlock;
2137 auto cleanupOnFailure = llvm::make_scope_exit([&] {
2138 if (inflightBlock)
2139 inflightBlock->dropAllDefinedValueUses();
2140 });
2141
2142 // If a block has yet to be set, this is a new definition. If the caller
2143 // provided a block, use it. Otherwise create a new one.
2144 if (!blockAndLoc.block) {
2145 if (block) {
2146 blockAndLoc.block = block;
2147 } else {
2148 inflightBlock = std::make_unique<Block>();
2149 blockAndLoc.block = inflightBlock.get();
2150 }
2151
2152 // Otherwise, the block has a forward declaration. Forward declarations are
2153 // removed once defined, so if we are defining a existing block and it is
2154 // not a forward declaration, then it is a redeclaration. Fail if the block
2155 // was already defined.
2156 } else if (!eraseForwardRef(blockAndLoc.block)) {
2157 return emitError(nameLoc, "redefinition of block '") << name << "'";
2158 } else {
2159 // This was a forward reference block that is now floating. Keep track of it
2160 // as inflight in case of error, so that it gets cleaned up properly.
2161 inflightBlock.reset(blockAndLoc.block);
2162 }
2163
2164 // Populate the high level assembly state if necessary.
2165 if (state.asmState)
2166 state.asmState->addDefinition(blockAndLoc.block, nameLoc);
2167 block = blockAndLoc.block;
2168
2169 // If an argument list is present, parse it.
2170 if (getToken().is(Token::l_paren))
2171 if (parseOptionalBlockArgList(block))
2172 return failure();
2173 if (parseToken(Token::colon, "expected ':' after block name"))
2174 return failure();
2175
2176 // Parse the body of the block.
2177 ParseResult res = parseBlockBody(block);
2178
2179 // If parsing was successful, drop the inflight block. We relinquish ownership
2180 // back up to the caller.
2181 if (succeeded(res))
2182 (void)inflightBlock.release();
2183 return res;
2184}
2185
2186ParseResult OperationParser::parseBlockBody(Block *block) {
2187 // Set the insertion point to the end of the block to parse.
2188 opBuilder.setInsertionPointToEnd(block);
2189
2190 // Parse the list of operations that make up the body of the block.
2191 while (getToken().isNot(Token::caret_identifier, Token::r_brace))
2192 if (parseOperation())
2193 return failure();
2194
2195 return success();
2196}
2197
2198/// Get the block with the specified name, creating it if it doesn't already
2199/// exist. The location specified is the point of use, which allows
2200/// us to diagnose references to blocks that are not defined precisely.
2201Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
2202 BlockDefinition &blockDef = getBlockInfoByName(name);
2203 if (!blockDef.block) {
2204 blockDef = {new Block(), loc};
2205 insertForwardRef(blockDef.block, blockDef.loc);
2206 }
2207
2208 // Populate the high level assembly state if necessary.
2209 if (state.asmState)
2210 state.asmState->addUses(blockDef.block, loc);
2211
2212 return blockDef.block;
2213}
2214
2215/// Parse a (possibly empty) list of SSA operands with types as block arguments
2216/// enclosed in parentheses.
2217///
2218/// value-id-and-type-list ::= value-id-and-type (`,` ssa-id-and-type)*
2219/// block-arg-list ::= `(` value-id-and-type-list? `)`
2220///
2221ParseResult OperationParser::parseOptionalBlockArgList(Block *owner) {
2222 if (getToken().is(Token::r_brace))
2223 return success();
2224
2225 // If the block already has arguments, then we're handling the entry block.
2226 // Parse and register the names for the arguments, but do not add them.
2227 bool definingExistingArgs = owner->getNumArguments() != 0;
2228 unsigned nextArgument = 0;
2229
2230 return parseCommaSeparatedList(Delimiter::Paren, [&]() -> ParseResult {
2231 return parseSSADefOrUseAndType(
2232 [&](UnresolvedOperand useInfo, Type type) -> ParseResult {
2233 BlockArgument arg;
2234
2235 // If we are defining existing arguments, ensure that the argument
2236 // has already been created with the right type.
2237 if (definingExistingArgs) {
2238 // Otherwise, ensure that this argument has already been created.
2239 if (nextArgument >= owner->getNumArguments())
2240 return emitError("too many arguments specified in argument list");
2241
2242 // Finally, make sure the existing argument has the correct type.
2243 arg = owner->getArgument(nextArgument++);
2244 if (arg.getType() != type)
2245 return emitError("argument and block argument type mismatch");
2246 } else {
2247 auto loc = getEncodedSourceLocation(useInfo.location);
2248 arg = owner->addArgument(type, loc);
2249 }
2250
2251 // If the argument has an explicit loc(...) specifier, parse and apply
2252 // it.
2253 if (parseTrailingLocationSpecifier(arg))
2254 return failure();
2255
2256 // Mark this block argument definition in the parser state if it was
2257 // provided.
2258 if (state.asmState)
2259 state.asmState->addDefinition(arg, useInfo.location);
2260
2261 return addDefinition(useInfo, arg);
2262 });
2263 });
2264}
2265
2266//===----------------------------------------------------------------------===//
2267// Code Completion
2268//===----------------------------------------------------------------------===//
2269
2270ParseResult OperationParser::codeCompleteSSAUse() {
2271 std::string detailData;
2272 llvm::raw_string_ostream detailOS(detailData);
2273 for (IsolatedSSANameScope &scope : isolatedNameScopes) {
2274 for (auto &it : scope.values) {
2275 if (it.second.empty())
2276 continue;
2277 Value frontValue = it.second.front().value;
2278
2279 // If the value isn't a forward reference, we also add the name of the op
2280 // to the detail.
2281 if (auto result = dyn_cast<OpResult>(frontValue)) {
2282 if (!forwardRefPlaceholders.count(result))
2283 detailOS << result.getOwner()->getName() << ": ";
2284 } else {
2285 detailOS << "arg #" << frontValue.cast<BlockArgument>().getArgNumber()
2286 << ": ";
2287 }
2288
2289 // Emit the type of the values to aid with completion selection.
2290 detailOS << frontValue.getType();
2291
2292 // FIXME: We should define a policy for packed values, e.g. with a limit
2293 // on the detail size, but it isn't clear what would be useful right now.
2294 // For now we just only emit the first type.
2295 if (it.second.size() > 1)
2296 detailOS << ", ...";
2297
2298 state.codeCompleteContext->appendSSAValueCompletion(
2299 it.getKey(), std::move(detailOS.str()));
2300 }
2301 }
2302
2303 return failure();
2304}
2305
2306ParseResult OperationParser::codeCompleteBlock() {
2307 // Don't provide completions if the token isn't empty, e.g. this avoids
2308 // weirdness when we encounter a `.` within the identifier.
2309 StringRef spelling = getTokenSpelling();
2310 if (!(spelling.empty() || spelling == "^"))
2311 return failure();
2312
2313 for (const auto &it : blocksByName.back())
2314 state.codeCompleteContext->appendBlockCompletion(it.getFirst());
2315 return failure();
2316}
2317
2318//===----------------------------------------------------------------------===//
2319// Top-level entity parsing.
2320//===----------------------------------------------------------------------===//
2321
2322namespace {
2323/// This parser handles entities that are only valid at the top level of the
2324/// file.
2325class TopLevelOperationParser : public Parser {
2326public:
2327 explicit TopLevelOperationParser(ParserState &state) : Parser(state) {}
2328
2329 /// Parse a set of operations into the end of the given Block.
2330 ParseResult parse(Block *topLevelBlock, Location parserLoc);
2331
2332private:
2333 /// Parse an attribute alias declaration.
2334 ///
2335 /// attribute-alias-def ::= '#' alias-name `=` attribute-value
2336 ///
2337 ParseResult parseAttributeAliasDef();
2338
2339 /// Parse a type alias declaration.
2340 ///
2341 /// type-alias-def ::= '!' alias-name `=` type
2342 ///
2343 ParseResult parseTypeAliasDef();
2344
2345 /// Parse a top-level file metadata dictionary.
2346 ///
2347 /// file-metadata-dict ::= '{-#' file-metadata-entry* `#-}'
2348 ///
2349 ParseResult parseFileMetadataDictionary();
2350
2351 /// Parse a resource metadata dictionary.
2352 ParseResult parseResourceFileMetadata(
2353 function_ref<ParseResult(StringRef, SMLoc)> parseBody);
2354 ParseResult parseDialectResourceFileMetadata();
2355 ParseResult parseExternalResourceFileMetadata();
2356};
2357
2358/// This class represents an implementation of a resource entry for the MLIR
2359/// textual format.
2360class ParsedResourceEntry : public AsmParsedResourceEntry {
2361public:
2362 ParsedResourceEntry(StringRef key, SMLoc keyLoc, Token value, Parser &p)
2363 : key(key), keyLoc(keyLoc), value(value), p(p) {}
2364 ~ParsedResourceEntry() override = default;
2365
2366 StringRef getKey() const final { return key; }
2367
2368 InFlightDiagnostic emitError() const final { return p.emitError(keyLoc); }
2369
2370 AsmResourceEntryKind getKind() const final {
2371 if (value.isAny(Token::kw_true, Token::kw_false))
2372 return AsmResourceEntryKind::Bool;
2373 return value.getSpelling().startswith("\"0x")
2374 ? AsmResourceEntryKind::Blob
2375 : AsmResourceEntryKind::String;
2376 }
2377
2378 FailureOr<bool> parseAsBool() const final {
2379 if (value.is(Token::kw_true))
2380 return true;
2381 if (value.is(Token::kw_false))
2382 return false;
2383 return p.emitError(value.getLoc(),
2384 "expected 'true' or 'false' value for key '" + key +
2385 "'");
2386 }
2387
2388 FailureOr<std::string> parseAsString() const final {
2389 if (value.isNot(Token::string))
2390 return p.emitError(value.getLoc(),
2391 "expected string value for key '" + key + "'");
2392 return value.getStringValue();
2393 }
2394
2395 FailureOr<AsmResourceBlob>
2396 parseAsBlob(BlobAllocatorFn allocator) const final {
2397 // Blob data within then textual format is represented as a hex string.
2398 // TODO: We could avoid an additional alloc+copy here if we pre-allocated
2399 // the buffer to use during hex processing.
2400 std::optional<std::string> blobData =
2401 value.is(Token::string) ? value.getHexStringValue() : std::nullopt;
2402 if (!blobData)
2403 return p.emitError(value.getLoc(),
2404 "expected hex string blob for key '" + key + "'");
2405
2406 // Extract the alignment of the blob data, which gets stored at the
2407 // beginning of the string.
2408 if (blobData->size() < sizeof(uint32_t)) {
2409 return p.emitError(value.getLoc(),
2410 "expected hex string blob for key '" + key +
2411 "' to encode alignment in first 4 bytes");
2412 }
2413 llvm::support::ulittle32_t align;
2414 memcpy(&align, blobData->data(), sizeof(uint32_t));
2415
2416 // Get the data portion of the blob.
2417 StringRef data = StringRef(*blobData).drop_front(sizeof(uint32_t));
2418 if (data.empty())
2419 return AsmResourceBlob();
2420
2421 // Allocate memory for the blob using the provided allocator and copy the
2422 // data into it.
2423 AsmResourceBlob blob = allocator(data.size(), align);
2424 assert(llvm::isAddrAligned(llvm::Align(align), blob.getData().data()) &&(static_cast <bool> (llvm::isAddrAligned(llvm::Align(align
), blob.getData().data()) && blob.isMutable() &&
"blob allocator did not return a properly aligned address") ?
void (0) : __assert_fail ("llvm::isAddrAligned(llvm::Align(align), blob.getData().data()) && blob.isMutable() && \"blob allocator did not return a properly aligned address\""
, "mlir/lib/AsmParser/Parser.cpp", 2426, __extension__ __PRETTY_FUNCTION__
))
2425 blob.isMutable() &&(static_cast <bool> (llvm::isAddrAligned(llvm::Align(align
), blob.getData().data()) && blob.isMutable() &&
"blob allocator did not return a properly aligned address") ?
void (0) : __assert_fail ("llvm::isAddrAligned(llvm::Align(align), blob.getData().data()) && blob.isMutable() && \"blob allocator did not return a properly aligned address\""
, "mlir/lib/AsmParser/Parser.cpp", 2426, __extension__ __PRETTY_FUNCTION__
))
2426 "blob allocator did not return a properly aligned address")(static_cast <bool> (llvm::isAddrAligned(llvm::Align(align
), blob.getData().data()) && blob.isMutable() &&
"blob allocator did not return a properly aligned address") ?
void (0) : __assert_fail ("llvm::isAddrAligned(llvm::Align(align), blob.getData().data()) && blob.isMutable() && \"blob allocator did not return a properly aligned address\""
, "mlir/lib/AsmParser/Parser.cpp", 2426, __extension__ __PRETTY_FUNCTION__
))
;
2427 memcpy(blob.getMutableData().data(), data.data(), data.size());
2428 return blob;
2429 }
2430
2431private:
2432 StringRef key;
2433 SMLoc keyLoc;
2434 Token value;
2435 Parser &p;
2436};
2437} // namespace
2438
2439ParseResult TopLevelOperationParser::parseAttributeAliasDef() {
2440 assert(getToken().is(Token::hash_identifier))(static_cast <bool> (getToken().is(Token::hash_identifier
)) ? void (0) : __assert_fail ("getToken().is(Token::hash_identifier)"
, "mlir/lib/AsmParser/Parser.cpp", 2440, __extension__ __PRETTY_FUNCTION__
))
;
2441 StringRef aliasName = getTokenSpelling().drop_front();
2442
2443 // Check for redefinitions.
2444 if (state.symbols.attributeAliasDefinitions.count(aliasName) > 0)
2445 return emitError("redefinition of attribute alias id '" + aliasName + "'");
2446
2447 // Make sure this isn't invading the dialect attribute namespace.
2448 if (aliasName.contains('.'))
2449 return emitError("attribute names with a '.' are reserved for "
2450 "dialect-defined names");
2451
2452 consumeToken(Token::hash_identifier);
2453
2454 // Parse the '='.
2455 if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
2456 return failure();
2457
2458 // Parse the attribute value.
2459 Attribute attr = parseAttribute();
2460 if (!attr)
2461 return failure();
2462
2463 state.symbols.attributeAliasDefinitions[aliasName] = attr;
2464 return success();
2465}
2466
2467ParseResult TopLevelOperationParser::parseTypeAliasDef() {
2468 assert(getToken().is(Token::exclamation_identifier))(static_cast <bool> (getToken().is(Token::exclamation_identifier
)) ? void (0) : __assert_fail ("getToken().is(Token::exclamation_identifier)"
, "mlir/lib/AsmParser/Parser.cpp", 2468, __extension__ __PRETTY_FUNCTION__
))
;
2469 StringRef aliasName = getTokenSpelling().drop_front();
2470
2471 // Check for redefinitions.
2472 if (state.symbols.typeAliasDefinitions.count(aliasName) > 0)
2473 return emitError("redefinition of type alias id '" + aliasName + "'");
2474
2475 // Make sure this isn't invading the dialect type namespace.
2476 if (aliasName.contains('.'))
2477 return emitError("type names with a '.' are reserved for "
2478 "dialect-defined names");
2479 consumeToken(Token::exclamation_identifier);
2480
2481 // Parse the '='.
2482 if (parseToken(Token::equal, "expected '=' in type alias definition"))
2483 return failure();
2484
2485 // Parse the type.
2486 Type aliasedType = parseType();
2487 if (!aliasedType)
2488 return failure();
2489
2490 // Register this alias with the parser state.
2491 state.symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType);
2492 return success();
2493}
2494
2495ParseResult TopLevelOperationParser::parseFileMetadataDictionary() {
2496 consumeToken(Token::file_metadata_begin);
2497 return parseCommaSeparatedListUntil(
2498 Token::file_metadata_end, [&]() -> ParseResult {
2499 // Parse the key of the metadata dictionary.
2500 SMLoc keyLoc = getToken().getLoc();
2501 StringRef key;
2502 if (failed(parseOptionalKeyword(&key)))
2503 return emitError("expected identifier key in file "
2504 "metadata dictionary");
2505 if (parseToken(Token::colon, "expected ':'"))
2506 return failure();
2507
2508 // Process the metadata entry.
2509 if (key == "dialect_resources")
2510 return parseDialectResourceFileMetadata();
2511 if (key == "external_resources")
2512 return parseExternalResourceFileMetadata();
2513 return emitError(keyLoc, "unknown key '" + key +
2514 "' in file metadata dictionary");
2515 });
2516}
2517
2518ParseResult TopLevelOperationParser::parseResourceFileMetadata(
2519 function_ref<ParseResult(StringRef, SMLoc)> parseBody) {
2520 if (parseToken(Token::l_brace, "expected '{'"))
2521 return failure();
2522
2523 return parseCommaSeparatedListUntil(Token::r_brace, [&]() -> ParseResult {
2524 // Parse the top-level name entry.
2525 SMLoc nameLoc = getToken().getLoc();
2526 StringRef name;
2527 if (failed(parseOptionalKeyword(&name)))
2528 return emitError("expected identifier key for 'resource' entry");
2529
2530 if (parseToken(Token::colon, "expected ':'") ||
2531 parseToken(Token::l_brace, "expected '{'"))
2532 return failure();
2533 return parseBody(name, nameLoc);
2534 });
2535}
2536
2537ParseResult TopLevelOperationParser::parseDialectResourceFileMetadata() {
2538 return parseResourceFileMetadata([&](StringRef name,
2539 SMLoc nameLoc) -> ParseResult {
2540 // Lookup the dialect and check that it can handle a resource entry.
2541 Dialect *dialect = getContext()->getOrLoadDialect(name);
2542 if (!dialect)
2543 return emitError(nameLoc, "dialect '" + name + "' is unknown");
2544 const auto *handler = dyn_cast<OpAsmDialectInterface>(dialect);
2545 if (!handler) {
2546 return emitError() << "unexpected 'resource' section for dialect '"
2547 << dialect->getNamespace() << "'";
2548 }
2549
2550 return parseCommaSeparatedListUntil(Token::r_brace, [&]() -> ParseResult {
2551 // Parse the name of the resource entry.
2552 SMLoc keyLoc = getToken().getLoc();
2553 StringRef key;
2554 if (failed(parseResourceHandle(handler, key)) ||
2555 parseToken(Token::colon, "expected ':'"))
2556 return failure();
2557 Token valueTok = getToken();
2558 consumeToken();
2559
2560 ParsedResourceEntry entry(key, keyLoc, valueTok, *this);
2561 return handler->parseResource(entry);
2562 });
2563 });
2564}
2565
2566ParseResult TopLevelOperationParser::parseExternalResourceFileMetadata() {
2567 return parseResourceFileMetadata([&](StringRef name,
2568 SMLoc nameLoc) -> ParseResult {
2569 AsmResourceParser *handler = state.config.getResourceParser(name);
2570
2571 // TODO: Should we require handling external resources in some scenarios?
2572 if (!handler) {
2573 emitWarning(getEncodedSourceLocation(nameLoc))
2574 << "ignoring unknown external resources for '" << name << "'";
2575 }
2576
2577 return parseCommaSeparatedListUntil(Token::r_brace, [&]() -> ParseResult {
2578 // Parse the name of the resource entry.
2579 SMLoc keyLoc = getToken().getLoc();
2580 StringRef key;
2581 if (failed(parseOptionalKeyword(&key)))
2582 return emitError(
2583 "expected identifier key for 'external_resources' entry");
2584 if (parseToken(Token::colon, "expected ':'"))
2585 return failure();
2586 Token valueTok = getToken();
2587 consumeToken();
2588
2589 if (!handler)
2590 return success();
2591 ParsedResourceEntry entry(key, keyLoc, valueTok, *this);
2592 return handler->parseResource(entry);
2593 });
2594 });
2595}
2596
2597ParseResult TopLevelOperationParser::parse(Block *topLevelBlock,
2598 Location parserLoc) {
2599 // Create a top-level operation to contain the parsed state.
2600 OwningOpRef<ModuleOp> topLevelOp(ModuleOp::create(parserLoc));
2601 OperationParser opParser(state, topLevelOp.get());
2602 while (true) {
2603 switch (getToken().getKind()) {
2604 default:
2605 // Parse a top-level operation.
2606 if (opParser.parseOperation())
2607 return failure();
2608 break;
2609
2610 // If we got to the end of the file, then we're done.
2611 case Token::eof: {
2612 if (opParser.finalize())
2613 return failure();
2614
2615 // Splice the blocks of the parsed operation over to the provided
2616 // top-level block.
2617 auto &parsedOps = topLevelOp->getBody()->getOperations();
2618 auto &destOps = topLevelBlock->getOperations();
2619 destOps.splice(destOps.end(), parsedOps, parsedOps.begin(),
2620 parsedOps.end());
2621 return success();
2622 }
2623
2624 // If we got an error token, then the lexer already emitted an error, just
2625 // stop. Someday we could introduce error recovery if there was demand
2626 // for it.
2627 case Token::error:
2628 return failure();
2629
2630 // Parse an attribute alias.
2631 case Token::hash_identifier:
2632 if (parseAttributeAliasDef())
2633 return failure();
2634 break;
2635
2636 // Parse a type alias.
2637 case Token::exclamation_identifier:
2638 if (parseTypeAliasDef())
2639 return failure();
2640 break;
2641
2642 // Parse a file-level metadata dictionary.
2643 case Token::file_metadata_begin:
2644 if (parseFileMetadataDictionary())
2645 return failure();
2646 break;
2647 }
2648 }
2649}
2650
2651//===----------------------------------------------------------------------===//
2652
2653LogicalResult
2654mlir::parseAsmSourceFile(const llvm::SourceMgr &sourceMgr, Block *block,
2655 const ParserConfig &config, AsmParserState *asmState,
2656 AsmParserCodeCompleteContext *codeCompleteContext) {
2657 const auto *sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());
2658
2659 Location parserLoc =
2660 FileLineColLoc::get(config.getContext(), sourceBuf->getBufferIdentifier(),
2661 /*line=*/0, /*column=*/0);
2662
2663 SymbolState aliasState;
2664 ParserState state(sourceMgr, config, aliasState, asmState,
2665 codeCompleteContext);
2666 return TopLevelOperationParser(state).parse(block, parserLoc);
2667}