Bug Summary

File:include/llvm/Support/Error.h
Warning:line 201, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name PassBuilder.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/Passes -I /build/llvm-toolchain-snapshot-8~svn350071/lib/Passes -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/Passes -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp

1//===- Parsing, selection, and construction of pass pipelines -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10///
11/// This file provides the implementation of the PassBuilder based on our
12/// static pass registry as well as related functionality. It also provides
13/// helpers to aid in analyzing, debugging, and testing passes and pass
14/// pipelines.
15///
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Passes/PassBuilder.h"
19#include "llvm/ADT/StringSwitch.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/AliasAnalysisEvaluator.h"
22#include "llvm/Analysis/AssumptionCache.h"
23#include "llvm/Analysis/BasicAliasAnalysis.h"
24#include "llvm/Analysis/BlockFrequencyInfo.h"
25#include "llvm/Analysis/BranchProbabilityInfo.h"
26#include "llvm/Analysis/CFGPrinter.h"
27#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
28#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
29#include "llvm/Analysis/CGSCCPassManager.h"
30#include "llvm/Analysis/CallGraph.h"
31#include "llvm/Analysis/DemandedBits.h"
32#include "llvm/Analysis/DependenceAnalysis.h"
33#include "llvm/Analysis/DominanceFrontier.h"
34#include "llvm/Analysis/GlobalsModRef.h"
35#include "llvm/Analysis/IVUsers.h"
36#include "llvm/Analysis/LazyCallGraph.h"
37#include "llvm/Analysis/LazyValueInfo.h"
38#include "llvm/Analysis/LoopAccessAnalysis.h"
39#include "llvm/Analysis/LoopInfo.h"
40#include "llvm/Analysis/MemoryDependenceAnalysis.h"
41#include "llvm/Analysis/MemorySSA.h"
42#include "llvm/Analysis/ModuleSummaryAnalysis.h"
43#include "llvm/Analysis/OptimizationRemarkEmitter.h"
44#include "llvm/Analysis/PhiValues.h"
45#include "llvm/Analysis/PostDominators.h"
46#include "llvm/Analysis/ProfileSummaryInfo.h"
47#include "llvm/Analysis/RegionInfo.h"
48#include "llvm/Analysis/ScalarEvolution.h"
49#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
50#include "llvm/Analysis/ScopedNoAliasAA.h"
51#include "llvm/Analysis/StackSafetyAnalysis.h"
52#include "llvm/Analysis/TargetLibraryInfo.h"
53#include "llvm/Analysis/TargetTransformInfo.h"
54#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
55#include "llvm/CodeGen/PreISelIntrinsicLowering.h"
56#include "llvm/CodeGen/UnreachableBlockElim.h"
57#include "llvm/IR/Dominators.h"
58#include "llvm/IR/IRPrintingPasses.h"
59#include "llvm/IR/PassManager.h"
60#include "llvm/IR/Verifier.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/FormatVariadic.h"
63#include "llvm/Support/Regex.h"
64#include "llvm/Target/TargetMachine.h"
65#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
66#include "llvm/Transforms/IPO/AlwaysInliner.h"
67#include "llvm/Transforms/IPO/ArgumentPromotion.h"
68#include "llvm/Transforms/IPO/CalledValuePropagation.h"
69#include "llvm/Transforms/IPO/ConstantMerge.h"
70#include "llvm/Transforms/IPO/CrossDSOCFI.h"
71#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
72#include "llvm/Transforms/IPO/ElimAvailExtern.h"
73#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
74#include "llvm/Transforms/IPO/FunctionAttrs.h"
75#include "llvm/Transforms/IPO/FunctionImport.h"
76#include "llvm/Transforms/IPO/GlobalDCE.h"
77#include "llvm/Transforms/IPO/GlobalOpt.h"
78#include "llvm/Transforms/IPO/GlobalSplit.h"
79#include "llvm/Transforms/IPO/HotColdSplitting.h"
80#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
81#include "llvm/Transforms/IPO/Inliner.h"
82#include "llvm/Transforms/IPO/Internalize.h"
83#include "llvm/Transforms/IPO/LowerTypeTests.h"
84#include "llvm/Transforms/IPO/PartialInlining.h"
85#include "llvm/Transforms/IPO/SCCP.h"
86#include "llvm/Transforms/IPO/SampleProfile.h"
87#include "llvm/Transforms/IPO/StripDeadPrototypes.h"
88#include "llvm/Transforms/IPO/SyntheticCountsPropagation.h"
89#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
90#include "llvm/Transforms/InstCombine/InstCombine.h"
91#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
92#include "llvm/Transforms/Instrumentation/CGProfile.h"
93#include "llvm/Transforms/Instrumentation/ControlHeightReduction.h"
94#include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
95#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
96#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
97#include "llvm/Transforms/Scalar/ADCE.h"
98#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
99#include "llvm/Transforms/Scalar/BDCE.h"
100#include "llvm/Transforms/Scalar/CallSiteSplitting.h"
101#include "llvm/Transforms/Scalar/ConstantHoisting.h"
102#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
103#include "llvm/Transforms/Scalar/DCE.h"
104#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
105#include "llvm/Transforms/Scalar/DivRemPairs.h"
106#include "llvm/Transforms/Scalar/EarlyCSE.h"
107#include "llvm/Transforms/Scalar/Float2Int.h"
108#include "llvm/Transforms/Scalar/GVN.h"
109#include "llvm/Transforms/Scalar/GuardWidening.h"
110#include "llvm/Transforms/Scalar/IVUsersPrinter.h"
111#include "llvm/Transforms/Scalar/IndVarSimplify.h"
112#include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
113#include "llvm/Transforms/Scalar/InstSimplifyPass.h"
114#include "llvm/Transforms/Scalar/JumpThreading.h"
115#include "llvm/Transforms/Scalar/LICM.h"
116#include "llvm/Transforms/Scalar/LoopAccessAnalysisPrinter.h"
117#include "llvm/Transforms/Scalar/LoopDataPrefetch.h"
118#include "llvm/Transforms/Scalar/LoopDeletion.h"
119#include "llvm/Transforms/Scalar/LoopDistribute.h"
120#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
121#include "llvm/Transforms/Scalar/LoopInstSimplify.h"
122#include "llvm/Transforms/Scalar/LoopLoadElimination.h"
123#include "llvm/Transforms/Scalar/LoopPassManager.h"
124#include "llvm/Transforms/Scalar/LoopPredication.h"
125#include "llvm/Transforms/Scalar/LoopRotation.h"
126#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
127#include "llvm/Transforms/Scalar/LoopSink.h"
128#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
129#include "llvm/Transforms/Scalar/LoopUnrollAndJamPass.h"
130#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
131#include "llvm/Transforms/Scalar/LowerAtomic.h"
132#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
133#include "llvm/Transforms/Scalar/LowerGuardIntrinsic.h"
134#include "llvm/Transforms/Scalar/MakeGuardsExplicit.h"
135#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
136#include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h"
137#include "llvm/Transforms/Scalar/NaryReassociate.h"
138#include "llvm/Transforms/Scalar/NewGVN.h"
139#include "llvm/Transforms/Scalar/PartiallyInlineLibCalls.h"
140#include "llvm/Transforms/Scalar/Reassociate.h"
141#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
142#include "llvm/Transforms/Scalar/SCCP.h"
143#include "llvm/Transforms/Scalar/SROA.h"
144#include "llvm/Transforms/Scalar/Scalarizer.h"
145#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
146#include "llvm/Transforms/Scalar/SimplifyCFG.h"
147#include "llvm/Transforms/Scalar/Sink.h"
148#include "llvm/Transforms/Scalar/SpeculateAroundPHIs.h"
149#include "llvm/Transforms/Scalar/SpeculativeExecution.h"
150#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
151#include "llvm/Transforms/Scalar/WarnMissedTransforms.h"
152#include "llvm/Transforms/Utils/AddDiscriminators.h"
153#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
154#include "llvm/Transforms/Utils/EntryExitInstrumenter.h"
155#include "llvm/Transforms/Utils/LCSSA.h"
156#include "llvm/Transforms/Utils/LibCallsShrinkWrap.h"
157#include "llvm/Transforms/Utils/LoopSimplify.h"
158#include "llvm/Transforms/Utils/LowerInvoke.h"
159#include "llvm/Transforms/Utils/Mem2Reg.h"
160#include "llvm/Transforms/Utils/NameAnonGlobals.h"
161#include "llvm/Transforms/Utils/SymbolRewriter.h"
162#include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
163#include "llvm/Transforms/Vectorize/LoopVectorize.h"
164#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
165
166using namespace llvm;
167
168static cl::opt<unsigned> MaxDevirtIterations("pm-max-devirt-iterations",
169 cl::ReallyHidden, cl::init(4));
170static cl::opt<bool>
171 RunPartialInlining("enable-npm-partial-inlining", cl::init(false),
172 cl::Hidden, cl::ZeroOrMore,
173 cl::desc("Run Partial inlinining pass"));
174
175static cl::opt<bool>
176 RunNewGVN("enable-npm-newgvn", cl::init(false),
177 cl::Hidden, cl::ZeroOrMore,
178 cl::desc("Run NewGVN instead of GVN"));
179
180static cl::opt<bool> EnableEarlyCSEMemSSA(
181 "enable-npm-earlycse-memssa", cl::init(true), cl::Hidden,
182 cl::desc("Enable the EarlyCSE w/ MemorySSA pass for the new PM (default = on)"));
183
184static cl::opt<bool> EnableGVNHoist(
185 "enable-npm-gvn-hoist", cl::init(false), cl::Hidden,
186 cl::desc("Enable the GVN hoisting pass for the new PM (default = off)"));
187
188static cl::opt<bool> EnableGVNSink(
189 "enable-npm-gvn-sink", cl::init(false), cl::Hidden,
190 cl::desc("Enable the GVN hoisting pass for the new PM (default = off)"));
191
192static cl::opt<bool> EnableUnrollAndJam(
193 "enable-npm-unroll-and-jam", cl::init(false), cl::Hidden,
194 cl::desc("Enable the Unroll and Jam pass for the new PM (default = off)"));
195
196static cl::opt<bool> EnableSyntheticCounts(
197 "enable-npm-synthetic-counts", cl::init(false), cl::Hidden, cl::ZeroOrMore,
198 cl::desc("Run synthetic function entry count generation "
199 "pass"));
200
201static Regex DefaultAliasRegex(
202 "^(default|thinlto-pre-link|thinlto|lto-pre-link|lto)<(O[0123sz])>$");
203
204static cl::opt<bool>
205 EnableCHR("enable-chr-npm", cl::init(true), cl::Hidden,
206 cl::desc("Enable control height reduction optimization (CHR)"));
207
208extern cl::opt<bool> EnableHotColdSplit;
209
210static bool isOptimizingForSize(PassBuilder::OptimizationLevel Level) {
211 switch (Level) {
212 case PassBuilder::O0:
213 case PassBuilder::O1:
214 case PassBuilder::O2:
215 case PassBuilder::O3:
216 return false;
217
218 case PassBuilder::Os:
219 case PassBuilder::Oz:
220 return true;
221 }
222 llvm_unreachable("Invalid optimization level!")::llvm::llvm_unreachable_internal("Invalid optimization level!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 222)
;
223}
224
225namespace {
226
227/// No-op module pass which does nothing.
228struct NoOpModulePass {
229 PreservedAnalyses run(Module &M, ModuleAnalysisManager &) {
230 return PreservedAnalyses::all();
231 }
232 static StringRef name() { return "NoOpModulePass"; }
233};
234
235/// No-op module analysis.
236class NoOpModuleAnalysis : public AnalysisInfoMixin<NoOpModuleAnalysis> {
237 friend AnalysisInfoMixin<NoOpModuleAnalysis>;
238 static AnalysisKey Key;
239
240public:
241 struct Result {};
242 Result run(Module &, ModuleAnalysisManager &) { return Result(); }
243 static StringRef name() { return "NoOpModuleAnalysis"; }
244};
245
246/// No-op CGSCC pass which does nothing.
247struct NoOpCGSCCPass {
248 PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &,
249 LazyCallGraph &, CGSCCUpdateResult &UR) {
250 return PreservedAnalyses::all();
251 }
252 static StringRef name() { return "NoOpCGSCCPass"; }
253};
254
255/// No-op CGSCC analysis.
256class NoOpCGSCCAnalysis : public AnalysisInfoMixin<NoOpCGSCCAnalysis> {
257 friend AnalysisInfoMixin<NoOpCGSCCAnalysis>;
258 static AnalysisKey Key;
259
260public:
261 struct Result {};
262 Result run(LazyCallGraph::SCC &, CGSCCAnalysisManager &, LazyCallGraph &G) {
263 return Result();
264 }
265 static StringRef name() { return "NoOpCGSCCAnalysis"; }
266};
267
268/// No-op function pass which does nothing.
269struct NoOpFunctionPass {
270 PreservedAnalyses run(Function &F, FunctionAnalysisManager &) {
271 return PreservedAnalyses::all();
272 }
273 static StringRef name() { return "NoOpFunctionPass"; }
274};
275
276/// No-op function analysis.
277class NoOpFunctionAnalysis : public AnalysisInfoMixin<NoOpFunctionAnalysis> {
278 friend AnalysisInfoMixin<NoOpFunctionAnalysis>;
279 static AnalysisKey Key;
280
281public:
282 struct Result {};
283 Result run(Function &, FunctionAnalysisManager &) { return Result(); }
284 static StringRef name() { return "NoOpFunctionAnalysis"; }
285};
286
287/// No-op loop pass which does nothing.
288struct NoOpLoopPass {
289 PreservedAnalyses run(Loop &L, LoopAnalysisManager &,
290 LoopStandardAnalysisResults &, LPMUpdater &) {
291 return PreservedAnalyses::all();
292 }
293 static StringRef name() { return "NoOpLoopPass"; }
294};
295
296/// No-op loop analysis.
297class NoOpLoopAnalysis : public AnalysisInfoMixin<NoOpLoopAnalysis> {
298 friend AnalysisInfoMixin<NoOpLoopAnalysis>;
299 static AnalysisKey Key;
300
301public:
302 struct Result {};
303 Result run(Loop &, LoopAnalysisManager &, LoopStandardAnalysisResults &) {
304 return Result();
305 }
306 static StringRef name() { return "NoOpLoopAnalysis"; }
307};
308
309AnalysisKey NoOpModuleAnalysis::Key;
310AnalysisKey NoOpCGSCCAnalysis::Key;
311AnalysisKey NoOpFunctionAnalysis::Key;
312AnalysisKey NoOpLoopAnalysis::Key;
313
314} // End anonymous namespace.
315
316void PassBuilder::invokePeepholeEPCallbacks(
317 FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
318 for (auto &C : PeepholeEPCallbacks)
319 C(FPM, Level);
320}
321
322void PassBuilder::registerModuleAnalyses(ModuleAnalysisManager &MAM) {
323#define MODULE_ANALYSIS(NAME, CREATE_PASS) \
324 MAM.registerPass([&] { return CREATE_PASS; });
325#include "PassRegistry.def"
326
327 for (auto &C : ModuleAnalysisRegistrationCallbacks)
328 C(MAM);
329}
330
331void PassBuilder::registerCGSCCAnalyses(CGSCCAnalysisManager &CGAM) {
332#define CGSCC_ANALYSIS(NAME, CREATE_PASS) \
333 CGAM.registerPass([&] { return CREATE_PASS; });
334#include "PassRegistry.def"
335
336 for (auto &C : CGSCCAnalysisRegistrationCallbacks)
337 C(CGAM);
338}
339
340void PassBuilder::registerFunctionAnalyses(FunctionAnalysisManager &FAM) {
341#define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \
342 FAM.registerPass([&] { return CREATE_PASS; });
343#include "PassRegistry.def"
344
345 for (auto &C : FunctionAnalysisRegistrationCallbacks)
346 C(FAM);
347}
348
349void PassBuilder::registerLoopAnalyses(LoopAnalysisManager &LAM) {
350#define LOOP_ANALYSIS(NAME, CREATE_PASS) \
351 LAM.registerPass([&] { return CREATE_PASS; });
352#include "PassRegistry.def"
353
354 for (auto &C : LoopAnalysisRegistrationCallbacks)
355 C(LAM);
356}
357
358FunctionPassManager
359PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level,
360 ThinLTOPhase Phase,
361 bool DebugLogging) {
362 assert(Level != O0 && "Must request optimizations!")((Level != O0 && "Must request optimizations!") ? static_cast
<void> (0) : __assert_fail ("Level != O0 && \"Must request optimizations!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 362, __PRETTY_FUNCTION__))
;
363 FunctionPassManager FPM(DebugLogging);
364
365 // Form SSA out of local memory accesses after breaking apart aggregates into
366 // scalars.
367 FPM.addPass(SROA());
368
369 // Catch trivial redundancies
370 FPM.addPass(EarlyCSEPass(EnableEarlyCSEMemSSA));
371
372 // Hoisting of scalars and load expressions.
373 if (EnableGVNHoist)
374 FPM.addPass(GVNHoistPass());
375
376 // Global value numbering based sinking.
377 if (EnableGVNSink) {
378 FPM.addPass(GVNSinkPass());
379 FPM.addPass(SimplifyCFGPass());
380 }
381
382 // Speculative execution if the target has divergent branches; otherwise nop.
383 FPM.addPass(SpeculativeExecutionPass());
384
385 // Optimize based on known information about branches, and cleanup afterward.
386 FPM.addPass(JumpThreadingPass());
387 FPM.addPass(CorrelatedValuePropagationPass());
388 FPM.addPass(SimplifyCFGPass());
389 if (Level == O3)
390 FPM.addPass(AggressiveInstCombinePass());
391 FPM.addPass(InstCombinePass());
392
393 if (!isOptimizingForSize(Level))
394 FPM.addPass(LibCallsShrinkWrapPass());
395
396 invokePeepholeEPCallbacks(FPM, Level);
397
398 // For PGO use pipeline, try to optimize memory intrinsics such as memcpy
399 // using the size value profile. Don't perform this when optimizing for size.
400 if (PGOOpt && !PGOOpt->ProfileUseFile.empty() &&
401 !isOptimizingForSize(Level))
402 FPM.addPass(PGOMemOPSizeOpt());
403
404 FPM.addPass(TailCallElimPass());
405 FPM.addPass(SimplifyCFGPass());
406
407 // Form canonically associated expression trees, and simplify the trees using
408 // basic mathematical properties. For example, this will form (nearly)
409 // minimal multiplication trees.
410 FPM.addPass(ReassociatePass());
411
412 // Add the primary loop simplification pipeline.
413 // FIXME: Currently this is split into two loop pass pipelines because we run
414 // some function passes in between them. These can and should be removed
415 // and/or replaced by scheduling the loop pass equivalents in the correct
416 // positions. But those equivalent passes aren't powerful enough yet.
417 // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
418 // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
419 // fully replace `SimplifyCFGPass`, and the closest to the other we have is
420 // `LoopInstSimplify`.
421 LoopPassManager LPM1(DebugLogging), LPM2(DebugLogging);
422
423 // Simplify the loop body. We do this initially to clean up after other loop
424 // passes run, either when iterating on a loop or on inner loops with
425 // implications on the outer loop.
426 LPM1.addPass(LoopInstSimplifyPass());
427 LPM1.addPass(LoopSimplifyCFGPass());
428
429 // Rotate Loop - disable header duplication at -Oz
430 LPM1.addPass(LoopRotatePass(Level != Oz));
431 LPM1.addPass(LICMPass());
432 LPM1.addPass(SimpleLoopUnswitchPass());
433 LPM2.addPass(IndVarSimplifyPass());
434 LPM2.addPass(LoopIdiomRecognizePass());
435
436 for (auto &C : LateLoopOptimizationsEPCallbacks)
437 C(LPM2, Level);
438
439 LPM2.addPass(LoopDeletionPass());
440 // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
441 // because it changes IR to makes profile annotation in back compile
442 // inaccurate.
443 if (Phase != ThinLTOPhase::PreLink ||
444 !PGOOpt || PGOOpt->SampleProfileFile.empty())
445 LPM2.addPass(LoopFullUnrollPass(Level));
446
447 for (auto &C : LoopOptimizerEndEPCallbacks)
448 C(LPM2, Level);
449
450 // We provide the opt remark emitter pass for LICM to use. We only need to do
451 // this once as it is immutable.
452 FPM.addPass(RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
453 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1), DebugLogging));
454 FPM.addPass(SimplifyCFGPass());
455 FPM.addPass(InstCombinePass());
456 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2), DebugLogging));
457
458 // Eliminate redundancies.
459 if (Level != O1) {
460 // These passes add substantial compile time so skip them at O1.
461 FPM.addPass(MergedLoadStoreMotionPass());
462 if (RunNewGVN)
463 FPM.addPass(NewGVNPass());
464 else
465 FPM.addPass(GVN());
466 }
467
468 // Specially optimize memory movement as it doesn't look like dataflow in SSA.
469 FPM.addPass(MemCpyOptPass());
470
471 // Sparse conditional constant propagation.
472 // FIXME: It isn't clear why we do this *after* loop passes rather than
473 // before...
474 FPM.addPass(SCCPPass());
475
476 // Delete dead bit computations (instcombine runs after to fold away the dead
477 // computations, and then ADCE will run later to exploit any new DCE
478 // opportunities that creates).
479 FPM.addPass(BDCEPass());
480
481 // Run instcombine after redundancy and dead bit elimination to exploit
482 // opportunities opened up by them.
483 FPM.addPass(InstCombinePass());
484 invokePeepholeEPCallbacks(FPM, Level);
485
486 // Re-consider control flow based optimizations after redundancy elimination,
487 // redo DCE, etc.
488 FPM.addPass(JumpThreadingPass());
489 FPM.addPass(CorrelatedValuePropagationPass());
490 FPM.addPass(DSEPass());
491 FPM.addPass(createFunctionToLoopPassAdaptor(LICMPass(), DebugLogging));
492
493 for (auto &C : ScalarOptimizerLateEPCallbacks)
494 C(FPM, Level);
495
496 // Finally, do an expensive DCE pass to catch all the dead code exposed by
497 // the simplifications and basic cleanup after all the simplifications.
498 FPM.addPass(ADCEPass());
499 FPM.addPass(SimplifyCFGPass());
500 FPM.addPass(InstCombinePass());
501 invokePeepholeEPCallbacks(FPM, Level);
502
503 if (EnableCHR && Level == O3 && PGOOpt &&
504 (!PGOOpt->ProfileUseFile.empty() || !PGOOpt->SampleProfileFile.empty()))
505 FPM.addPass(ControlHeightReductionPass());
506
507 return FPM;
508}
509
510void PassBuilder::addPGOInstrPasses(ModulePassManager &MPM, bool DebugLogging,
511 PassBuilder::OptimizationLevel Level,
512 bool RunProfileGen,
513 std::string ProfileGenFile,
514 std::string ProfileUseFile,
515 std::string ProfileRemappingFile) {
516 // Generally running simplification passes and the inliner with an high
517 // threshold results in smaller executables, but there may be cases where
518 // the size grows, so let's be conservative here and skip this simplification
519 // at -Os/Oz.
520 if (!isOptimizingForSize(Level)) {
521 InlineParams IP;
522
523 // In the old pass manager, this is a cl::opt. Should still this be one?
524 IP.DefaultThreshold = 75;
525
526 // FIXME: The hint threshold has the same value used by the regular inliner.
527 // This should probably be lowered after performance testing.
528 // FIXME: this comment is cargo culted from the old pass manager, revisit).
529 IP.HintThreshold = 325;
530
531 CGSCCPassManager CGPipeline(DebugLogging);
532
533 CGPipeline.addPass(InlinerPass(IP));
534
535 FunctionPassManager FPM;
536 FPM.addPass(SROA());
537 FPM.addPass(EarlyCSEPass()); // Catch trivial redundancies.
538 FPM.addPass(SimplifyCFGPass()); // Merge & remove basic blocks.
539 FPM.addPass(InstCombinePass()); // Combine silly sequences.
540 invokePeepholeEPCallbacks(FPM, Level);
541
542 CGPipeline.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
543
544 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPipeline)));
545 }
546
547 // Delete anything that is now dead to make sure that we don't instrument
548 // dead code. Instrumentation can end up keeping dead code around and
549 // dramatically increase code size.
550 MPM.addPass(GlobalDCEPass());
551
552 if (RunProfileGen) {
553 MPM.addPass(PGOInstrumentationGen());
554
555 FunctionPassManager FPM;
556 FPM.addPass(
557 createFunctionToLoopPassAdaptor(LoopRotatePass(), DebugLogging));
558 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
559
560 // Add the profile lowering pass.
561 InstrProfOptions Options;
562 if (!ProfileGenFile.empty())
563 Options.InstrProfileOutput = ProfileGenFile;
564 Options.DoCounterPromotion = true;
565 MPM.addPass(InstrProfiling(Options));
566 }
567
568 if (!ProfileUseFile.empty())
569 MPM.addPass(PGOInstrumentationUse(ProfileUseFile, ProfileRemappingFile));
570}
571
572static InlineParams
573getInlineParamsFromOptLevel(PassBuilder::OptimizationLevel Level) {
574 auto O3 = PassBuilder::O3;
575 unsigned OptLevel = Level > O3 ? 2 : Level;
576 unsigned SizeLevel = Level > O3 ? Level - O3 : 0;
577 return getInlineParams(OptLevel, SizeLevel);
578}
579
580ModulePassManager
581PassBuilder::buildModuleSimplificationPipeline(OptimizationLevel Level,
582 ThinLTOPhase Phase,
583 bool DebugLogging) {
584 ModulePassManager MPM(DebugLogging);
585
586 // Do basic inference of function attributes from known properties of system
587 // libraries and other oracles.
588 MPM.addPass(InferFunctionAttrsPass());
589
590 // Create an early function pass manager to cleanup the output of the
591 // frontend.
592 FunctionPassManager EarlyFPM(DebugLogging);
593 EarlyFPM.addPass(SimplifyCFGPass());
594 EarlyFPM.addPass(SROA());
595 EarlyFPM.addPass(EarlyCSEPass());
596 EarlyFPM.addPass(LowerExpectIntrinsicPass());
597 if (Level == O3)
598 EarlyFPM.addPass(CallSiteSplittingPass());
599
600 // In SamplePGO ThinLTO backend, we need instcombine before profile annotation
601 // to convert bitcast to direct calls so that they can be inlined during the
602 // profile annotation prepration step.
603 // More details about SamplePGO design can be found in:
604 // https://research.google.com/pubs/pub45290.html
605 // FIXME: revisit how SampleProfileLoad/Inliner/ICP is structured.
606 if (PGOOpt && !PGOOpt->SampleProfileFile.empty() &&
607 Phase == ThinLTOPhase::PostLink)
608 EarlyFPM.addPass(InstCombinePass());
609 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(EarlyFPM)));
610
611 if (PGOOpt && !PGOOpt->SampleProfileFile.empty()) {
612 // Annotate sample profile right after early FPM to ensure freshness of
613 // the debug info.
614 MPM.addPass(SampleProfileLoaderPass(PGOOpt->SampleProfileFile,
615 PGOOpt->ProfileRemappingFile,
616 Phase == ThinLTOPhase::PreLink));
617 // Do not invoke ICP in the ThinLTOPrelink phase as it makes it hard
618 // for the profile annotation to be accurate in the ThinLTO backend.
619 if (Phase != ThinLTOPhase::PreLink)
620 // We perform early indirect call promotion here, before globalopt.
621 // This is important for the ThinLTO backend phase because otherwise
622 // imported available_externally functions look unreferenced and are
623 // removed.
624 MPM.addPass(PGOIndirectCallPromotion(Phase == ThinLTOPhase::PostLink,
625 true));
626 }
627
628 // Interprocedural constant propagation now that basic cleanup has occurred
629 // and prior to optimizing globals.
630 // FIXME: This position in the pipeline hasn't been carefully considered in
631 // years, it should be re-analyzed.
632 MPM.addPass(IPSCCPPass());
633
634 // Attach metadata to indirect call sites indicating the set of functions
635 // they may target at run-time. This should follow IPSCCP.
636 MPM.addPass(CalledValuePropagationPass());
637
638 // Optimize globals to try and fold them into constants.
639 MPM.addPass(GlobalOptPass());
640
641 // Promote any localized globals to SSA registers.
642 // FIXME: Should this instead by a run of SROA?
643 // FIXME: We should probably run instcombine and simplify-cfg afterward to
644 // delete control flows that are dead once globals have been folded to
645 // constants.
646 MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
647
648 // Remove any dead arguments exposed by cleanups and constand folding
649 // globals.
650 MPM.addPass(DeadArgumentEliminationPass());
651
652 // Create a small function pass pipeline to cleanup after all the global
653 // optimizations.
654 FunctionPassManager GlobalCleanupPM(DebugLogging);
655 GlobalCleanupPM.addPass(InstCombinePass());
656 invokePeepholeEPCallbacks(GlobalCleanupPM, Level);
657
658 GlobalCleanupPM.addPass(SimplifyCFGPass());
659 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(GlobalCleanupPM)));
660
661 // Add all the requested passes for instrumentation PGO, if requested.
662 if (PGOOpt && Phase != ThinLTOPhase::PostLink &&
663 (!PGOOpt->ProfileGenFile.empty() || !PGOOpt->ProfileUseFile.empty())) {
664 addPGOInstrPasses(MPM, DebugLogging, Level, PGOOpt->RunProfileGen,
665 PGOOpt->ProfileGenFile, PGOOpt->ProfileUseFile,
666 PGOOpt->ProfileRemappingFile);
667 MPM.addPass(PGOIndirectCallPromotion(false, false));
668 }
669
670 // Synthesize function entry counts for non-PGO compilation.
671 if (EnableSyntheticCounts && !PGOOpt)
672 MPM.addPass(SyntheticCountsPropagation());
673
674 // Require the GlobalsAA analysis for the module so we can query it within
675 // the CGSCC pipeline.
676 MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>());
677
678 // Require the ProfileSummaryAnalysis for the module so we can query it within
679 // the inliner pass.
680 MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
681
682 // Now begin the main postorder CGSCC pipeline.
683 // FIXME: The current CGSCC pipeline has its origins in the legacy pass
684 // manager and trying to emulate its precise behavior. Much of this doesn't
685 // make a lot of sense and we should revisit the core CGSCC structure.
686 CGSCCPassManager MainCGPipeline(DebugLogging);
687
688 // Note: historically, the PruneEH pass was run first to deduce nounwind and
689 // generally clean up exception handling overhead. It isn't clear this is
690 // valuable as the inliner doesn't currently care whether it is inlining an
691 // invoke or a call.
692
693 // Run the inliner first. The theory is that we are walking bottom-up and so
694 // the callees have already been fully optimized, and we want to inline them
695 // into the callers so that our optimizations can reflect that.
696 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
697 // because it makes profile annotation in the backend inaccurate.
698 InlineParams IP = getInlineParamsFromOptLevel(Level);
699 if (Phase == ThinLTOPhase::PreLink &&
700 PGOOpt && !PGOOpt->SampleProfileFile.empty())
701 IP.HotCallSiteThreshold = 0;
702 MainCGPipeline.addPass(InlinerPass(IP));
703
704 // Now deduce any function attributes based in the current code.
705 MainCGPipeline.addPass(PostOrderFunctionAttrsPass());
706
707 // When at O3 add argument promotion to the pass pipeline.
708 // FIXME: It isn't at all clear why this should be limited to O3.
709 if (Level == O3)
710 MainCGPipeline.addPass(ArgumentPromotionPass());
711
712 // Lastly, add the core function simplification pipeline nested inside the
713 // CGSCC walk.
714 MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
715 buildFunctionSimplificationPipeline(Level, Phase, DebugLogging)));
716
717 // We only want to do hot cold splitting once for ThinLTO, during the
718 // post-link ThinLTO.
719 if (EnableHotColdSplit && Phase != ThinLTOPhase::PreLink)
720 MPM.addPass(HotColdSplittingPass());
721
722 for (auto &C : CGSCCOptimizerLateEPCallbacks)
723 C(MainCGPipeline, Level);
724
725 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
726 // to detect when we devirtualize indirect calls and iterate the SCC passes
727 // in that case to try and catch knock-on inlining or function attrs
728 // opportunities. Then we add it to the module pipeline by walking the SCCs
729 // in postorder (or bottom-up).
730 MPM.addPass(
731 createModuleToPostOrderCGSCCPassAdaptor(createDevirtSCCRepeatedPass(
732 std::move(MainCGPipeline), MaxDevirtIterations)));
733
734 return MPM;
735}
736
737ModulePassManager
738PassBuilder::buildModuleOptimizationPipeline(OptimizationLevel Level,
739 bool DebugLogging) {
740 ModulePassManager MPM(DebugLogging);
741
742 // Optimize globals now that the module is fully simplified.
743 MPM.addPass(GlobalOptPass());
744 MPM.addPass(GlobalDCEPass());
745
746 // Run partial inlining pass to partially inline functions that have
747 // large bodies.
748 if (RunPartialInlining)
749 MPM.addPass(PartialInlinerPass());
750
751 // Remove avail extern fns and globals definitions since we aren't compiling
752 // an object file for later LTO. For LTO we want to preserve these so they
753 // are eligible for inlining at link-time. Note if they are unreferenced they
754 // will be removed by GlobalDCE later, so this only impacts referenced
755 // available externally globals. Eventually they will be suppressed during
756 // codegen, but eliminating here enables more opportunity for GlobalDCE as it
757 // may make globals referenced by available external functions dead and saves
758 // running remaining passes on the eliminated functions.
759 MPM.addPass(EliminateAvailableExternallyPass());
760
761 // Do RPO function attribute inference across the module to forward-propagate
762 // attributes where applicable.
763 // FIXME: Is this really an optimization rather than a canonicalization?
764 MPM.addPass(ReversePostOrderFunctionAttrsPass());
765
766 // Re-require GloblasAA here prior to function passes. This is particularly
767 // useful as the above will have inlined, DCE'ed, and function-attr
768 // propagated everything. We should at this point have a reasonably minimal
769 // and richly annotated call graph. By computing aliasing and mod/ref
770 // information for all local globals here, the late loop passes and notably
771 // the vectorizer will be able to use them to help recognize vectorizable
772 // memory operations.
773 MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>());
774
775 FunctionPassManager OptimizePM(DebugLogging);
776 OptimizePM.addPass(Float2IntPass());
777 // FIXME: We need to run some loop optimizations to re-rotate loops after
778 // simplify-cfg and others undo their rotation.
779
780 // Optimize the loop execution. These passes operate on entire loop nests
781 // rather than on each loop in an inside-out manner, and so they are actually
782 // function passes.
783
784 for (auto &C : VectorizerStartEPCallbacks)
785 C(OptimizePM, Level);
786
787 // First rotate loops that may have been un-rotated by prior passes.
788 OptimizePM.addPass(
789 createFunctionToLoopPassAdaptor(LoopRotatePass(), DebugLogging));
790
791 // Distribute loops to allow partial vectorization. I.e. isolate dependences
792 // into separate loop that would otherwise inhibit vectorization. This is
793 // currently only performed for loops marked with the metadata
794 // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
795 OptimizePM.addPass(LoopDistributePass());
796
797 // Now run the core loop vectorizer.
798 OptimizePM.addPass(LoopVectorizePass());
799
800 // Eliminate loads by forwarding stores from the previous iteration to loads
801 // of the current iteration.
802 OptimizePM.addPass(LoopLoadEliminationPass());
803
804 // Cleanup after the loop optimization passes.
805 OptimizePM.addPass(InstCombinePass());
806
807 // Now that we've formed fast to execute loop structures, we do further
808 // optimizations. These are run afterward as they might block doing complex
809 // analyses and transforms such as what are needed for loop vectorization.
810
811 // Cleanup after loop vectorization, etc. Simplification passes like CVP and
812 // GVN, loop transforms, and others have already run, so it's now better to
813 // convert to more optimized IR using more aggressive simplify CFG options.
814 // The extra sinking transform can create larger basic blocks, so do this
815 // before SLP vectorization.
816 OptimizePM.addPass(SimplifyCFGPass(SimplifyCFGOptions().
817 forwardSwitchCondToPhi(true).
818 convertSwitchToLookupTable(true).
819 needCanonicalLoops(false).
820 sinkCommonInsts(true)));
821
822 // Optimize parallel scalar instruction chains into SIMD instructions.
823 OptimizePM.addPass(SLPVectorizerPass());
824
825 OptimizePM.addPass(InstCombinePass());
826
827 // Unroll small loops to hide loop backedge latency and saturate any parallel
828 // execution resources of an out-of-order processor. We also then need to
829 // clean up redundancies and loop invariant code.
830 // FIXME: It would be really good to use a loop-integrated instruction
831 // combiner for cleanup here so that the unrolling and LICM can be pipelined
832 // across the loop nests.
833 // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
834 if (EnableUnrollAndJam) {
835 OptimizePM.addPass(
836 createFunctionToLoopPassAdaptor(LoopUnrollAndJamPass(Level)));
837 }
838 OptimizePM.addPass(LoopUnrollPass(LoopUnrollOptions(Level)));
839 OptimizePM.addPass(WarnMissedTransformationsPass());
840 OptimizePM.addPass(InstCombinePass());
841 OptimizePM.addPass(RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
842 OptimizePM.addPass(createFunctionToLoopPassAdaptor(LICMPass(), DebugLogging));
843
844 // Now that we've vectorized and unrolled loops, we may have more refined
845 // alignment information, try to re-derive it here.
846 OptimizePM.addPass(AlignmentFromAssumptionsPass());
847
848 // LoopSink pass sinks instructions hoisted by LICM, which serves as a
849 // canonicalization pass that enables other optimizations. As a result,
850 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
851 // result too early.
852 OptimizePM.addPass(LoopSinkPass());
853
854 // And finally clean up LCSSA form before generating code.
855 OptimizePM.addPass(InstSimplifyPass());
856
857 // This hoists/decomposes div/rem ops. It should run after other sink/hoist
858 // passes to avoid re-sinking, but before SimplifyCFG because it can allow
859 // flattening of blocks.
860 OptimizePM.addPass(DivRemPairsPass());
861
862 // LoopSink (and other loop passes since the last simplifyCFG) might have
863 // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
864 OptimizePM.addPass(SimplifyCFGPass());
865
866 // Optimize PHIs by speculating around them when profitable. Note that this
867 // pass needs to be run after any PRE or similar pass as it is essentially
868 // inserting redudnancies into the progrem. This even includes SimplifyCFG.
869 OptimizePM.addPass(SpeculateAroundPHIsPass());
870
871 for (auto &C : OptimizerLastEPCallbacks)
872 C(OptimizePM, Level);
873
874 // Add the core optimizing pipeline.
875 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(OptimizePM)));
876
877 MPM.addPass(CGProfilePass());
878
879 // Now we need to do some global optimization transforms.
880 // FIXME: It would seem like these should come first in the optimization
881 // pipeline and maybe be the bottom of the canonicalization pipeline? Weird
882 // ordering here.
883 MPM.addPass(GlobalDCEPass());
884 MPM.addPass(ConstantMergePass());
885
886 return MPM;
887}
888
889ModulePassManager
890PassBuilder::buildPerModuleDefaultPipeline(OptimizationLevel Level,
891 bool DebugLogging) {
892 assert(Level != O0 && "Must request optimizations for the default pipeline!")((Level != O0 && "Must request optimizations for the default pipeline!"
) ? static_cast<void> (0) : __assert_fail ("Level != O0 && \"Must request optimizations for the default pipeline!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 892, __PRETTY_FUNCTION__))
;
893
894 ModulePassManager MPM(DebugLogging);
895
896 // Force any function attributes we want the rest of the pipeline to observe.
897 MPM.addPass(ForceFunctionAttrsPass());
898
899 // Apply module pipeline start EP callback.
900 for (auto &C : PipelineStartEPCallbacks)
901 C(MPM);
902
903 if (PGOOpt && PGOOpt->SamplePGOSupport)
904 MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
905
906 // Add the core simplification pipeline.
907 MPM.addPass(buildModuleSimplificationPipeline(Level, ThinLTOPhase::None,
908 DebugLogging));
909
910 // Now add the optimization pipeline.
911 MPM.addPass(buildModuleOptimizationPipeline(Level, DebugLogging));
912
913 return MPM;
914}
915
916ModulePassManager
917PassBuilder::buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level,
918 bool DebugLogging) {
919 assert(Level != O0 && "Must request optimizations for the default pipeline!")((Level != O0 && "Must request optimizations for the default pipeline!"
) ? static_cast<void> (0) : __assert_fail ("Level != O0 && \"Must request optimizations for the default pipeline!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 919, __PRETTY_FUNCTION__))
;
920
921 ModulePassManager MPM(DebugLogging);
922
923 // Force any function attributes we want the rest of the pipeline to observe.
924 MPM.addPass(ForceFunctionAttrsPass());
925
926 if (PGOOpt && PGOOpt->SamplePGOSupport)
927 MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
928
929 // Apply module pipeline start EP callback.
930 for (auto &C : PipelineStartEPCallbacks)
931 C(MPM);
932
933 // If we are planning to perform ThinLTO later, we don't bloat the code with
934 // unrolling/vectorization/... now. Just simplify the module as much as we
935 // can.
936 MPM.addPass(buildModuleSimplificationPipeline(Level, ThinLTOPhase::PreLink,
937 DebugLogging));
938
939 // Run partial inlining pass to partially inline functions that have
940 // large bodies.
941 // FIXME: It isn't clear whether this is really the right place to run this
942 // in ThinLTO. Because there is another canonicalization and simplification
943 // phase that will run after the thin link, running this here ends up with
944 // less information than will be available later and it may grow functions in
945 // ways that aren't beneficial.
946 if (RunPartialInlining)
947 MPM.addPass(PartialInlinerPass());
948
949 // Reduce the size of the IR as much as possible.
950 MPM.addPass(GlobalOptPass());
951
952 return MPM;
953}
954
955ModulePassManager PassBuilder::buildThinLTODefaultPipeline(
956 OptimizationLevel Level, bool DebugLogging,
957 const ModuleSummaryIndex *ImportSummary) {
958 ModulePassManager MPM(DebugLogging);
959
960 if (ImportSummary) {
961 // These passes import type identifier resolutions for whole-program
962 // devirtualization and CFI. They must run early because other passes may
963 // disturb the specific instruction patterns that these passes look for,
964 // creating dependencies on resolutions that may not appear in the summary.
965 //
966 // For example, GVN may transform the pattern assume(type.test) appearing in
967 // two basic blocks into assume(phi(type.test, type.test)), which would
968 // transform a dependency on a WPD resolution into a dependency on a type
969 // identifier resolution for CFI.
970 //
971 // Also, WPD has access to more precise information than ICP and can
972 // devirtualize more effectively, so it should operate on the IR first.
973 MPM.addPass(WholeProgramDevirtPass(nullptr, ImportSummary));
974 MPM.addPass(LowerTypeTestsPass(nullptr, ImportSummary));
975 }
976
977 // Force any function attributes we want the rest of the pipeline to observe.
978 MPM.addPass(ForceFunctionAttrsPass());
979
980 // During the ThinLTO backend phase we perform early indirect call promotion
981 // here, before globalopt. Otherwise imported available_externally functions
982 // look unreferenced and are removed.
983 // FIXME: move this into buildModuleSimplificationPipeline to merge the logic
984 // with SamplePGO.
985 if (!PGOOpt || PGOOpt->SampleProfileFile.empty())
986 MPM.addPass(PGOIndirectCallPromotion(true /* InLTO */,
987 false /* SamplePGO */));
988
989 // Add the core simplification pipeline.
990 MPM.addPass(buildModuleSimplificationPipeline(Level, ThinLTOPhase::PostLink,
991 DebugLogging));
992
993 // Now add the optimization pipeline.
994 MPM.addPass(buildModuleOptimizationPipeline(Level, DebugLogging));
995
996 return MPM;
997}
998
999ModulePassManager
1000PassBuilder::buildLTOPreLinkDefaultPipeline(OptimizationLevel Level,
1001 bool DebugLogging) {
1002 assert(Level != O0 && "Must request optimizations for the default pipeline!")((Level != O0 && "Must request optimizations for the default pipeline!"
) ? static_cast<void> (0) : __assert_fail ("Level != O0 && \"Must request optimizations for the default pipeline!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 1002, __PRETTY_FUNCTION__))
;
1003 // FIXME: We should use a customized pre-link pipeline!
1004 return buildPerModuleDefaultPipeline(Level, DebugLogging);
1005}
1006
1007ModulePassManager
1008PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level, bool DebugLogging,
1009 ModuleSummaryIndex *ExportSummary) {
1010 assert(Level != O0 && "Must request optimizations for the default pipeline!")((Level != O0 && "Must request optimizations for the default pipeline!"
) ? static_cast<void> (0) : __assert_fail ("Level != O0 && \"Must request optimizations for the default pipeline!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 1010, __PRETTY_FUNCTION__))
;
1011 ModulePassManager MPM(DebugLogging);
1012
1013 if (PGOOpt && !PGOOpt->SampleProfileFile.empty()) {
1014 // Load sample profile before running the LTO optimization pipeline.
1015 MPM.addPass(SampleProfileLoaderPass(PGOOpt->SampleProfileFile,
1016 PGOOpt->ProfileRemappingFile,
1017 false /* ThinLTOPhase::PreLink */));
1018 }
1019
1020 // Remove unused virtual tables to improve the quality of code generated by
1021 // whole-program devirtualization and bitset lowering.
1022 MPM.addPass(GlobalDCEPass());
1023
1024 // Force any function attributes we want the rest of the pipeline to observe.
1025 MPM.addPass(ForceFunctionAttrsPass());
1026
1027 // Do basic inference of function attributes from known properties of system
1028 // libraries and other oracles.
1029 MPM.addPass(InferFunctionAttrsPass());
1030
1031 if (Level > 1) {
1032 FunctionPassManager EarlyFPM(DebugLogging);
1033 EarlyFPM.addPass(CallSiteSplittingPass());
1034 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(EarlyFPM)));
1035
1036 // Indirect call promotion. This should promote all the targets that are
1037 // left by the earlier promotion pass that promotes intra-module targets.
1038 // This two-step promotion is to save the compile time. For LTO, it should
1039 // produce the same result as if we only do promotion here.
1040 MPM.addPass(PGOIndirectCallPromotion(
1041 true /* InLTO */, PGOOpt && !PGOOpt->SampleProfileFile.empty()));
1042 // Propagate constants at call sites into the functions they call. This
1043 // opens opportunities for globalopt (and inlining) by substituting function
1044 // pointers passed as arguments to direct uses of functions.
1045 MPM.addPass(IPSCCPPass());
1046
1047 // Attach metadata to indirect call sites indicating the set of functions
1048 // they may target at run-time. This should follow IPSCCP.
1049 MPM.addPass(CalledValuePropagationPass());
1050 }
1051
1052 // Now deduce any function attributes based in the current code.
1053 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1054 PostOrderFunctionAttrsPass()));
1055
1056 // Do RPO function attribute inference across the module to forward-propagate
1057 // attributes where applicable.
1058 // FIXME: Is this really an optimization rather than a canonicalization?
1059 MPM.addPass(ReversePostOrderFunctionAttrsPass());
1060
1061 // Use inragne annotations on GEP indices to split globals where beneficial.
1062 MPM.addPass(GlobalSplitPass());
1063
1064 // Run whole program optimization of virtual call when the list of callees
1065 // is fixed.
1066 MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
1067
1068 // Stop here at -O1.
1069 if (Level == 1) {
1070 // The LowerTypeTestsPass needs to run to lower type metadata and the
1071 // type.test intrinsics. The pass does nothing if CFI is disabled.
1072 MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1073 return MPM;
1074 }
1075
1076 // Optimize globals to try and fold them into constants.
1077 MPM.addPass(GlobalOptPass());
1078
1079 // Promote any localized globals to SSA registers.
1080 MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
1081
1082 // Linking modules together can lead to duplicate global constant, only
1083 // keep one copy of each constant.
1084 MPM.addPass(ConstantMergePass());
1085
1086 // Remove unused arguments from functions.
1087 MPM.addPass(DeadArgumentEliminationPass());
1088
1089 // Reduce the code after globalopt and ipsccp. Both can open up significant
1090 // simplification opportunities, and both can propagate functions through
1091 // function pointers. When this happens, we often have to resolve varargs
1092 // calls, etc, so let instcombine do this.
1093 FunctionPassManager PeepholeFPM(DebugLogging);
1094 if (Level == O3)
1095 PeepholeFPM.addPass(AggressiveInstCombinePass());
1096 PeepholeFPM.addPass(InstCombinePass());
1097 invokePeepholeEPCallbacks(PeepholeFPM, Level);
1098
1099 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(PeepholeFPM)));
1100
1101 // Note: historically, the PruneEH pass was run first to deduce nounwind and
1102 // generally clean up exception handling overhead. It isn't clear this is
1103 // valuable as the inliner doesn't currently care whether it is inlining an
1104 // invoke or a call.
1105 // Run the inliner now.
1106 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1107 InlinerPass(getInlineParamsFromOptLevel(Level))));
1108
1109 // Optimize globals again after we ran the inliner.
1110 MPM.addPass(GlobalOptPass());
1111
1112 // Garbage collect dead functions.
1113 // FIXME: Add ArgumentPromotion pass after once it's ported.
1114 MPM.addPass(GlobalDCEPass());
1115
1116 FunctionPassManager FPM(DebugLogging);
1117 // The IPO Passes may leave cruft around. Clean up after them.
1118 FPM.addPass(InstCombinePass());
1119 invokePeepholeEPCallbacks(FPM, Level);
1120
1121 FPM.addPass(JumpThreadingPass());
1122
1123 // Break up allocas
1124 FPM.addPass(SROA());
1125
1126 // Run a few AA driver optimizations here and now to cleanup the code.
1127 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1128
1129 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1130 PostOrderFunctionAttrsPass()));
1131 // FIXME: here we run IP alias analysis in the legacy PM.
1132
1133 FunctionPassManager MainFPM;
1134
1135 // FIXME: once we fix LoopPass Manager, add LICM here.
1136 // FIXME: once we provide support for enabling MLSM, add it here.
1137 // FIXME: once we provide support for enabling NewGVN, add it here.
1138 if (RunNewGVN)
1139 MainFPM.addPass(NewGVNPass());
1140 else
1141 MainFPM.addPass(GVN());
1142
1143 // Remove dead memcpy()'s.
1144 MainFPM.addPass(MemCpyOptPass());
1145
1146 // Nuke dead stores.
1147 MainFPM.addPass(DSEPass());
1148
1149 // FIXME: at this point, we run a bunch of loop passes:
1150 // indVarSimplify, loopDeletion, loopInterchange, loopUnrool,
1151 // loopVectorize. Enable them once the remaining issue with LPM
1152 // are sorted out.
1153
1154 MainFPM.addPass(InstCombinePass());
1155 MainFPM.addPass(SimplifyCFGPass());
1156 MainFPM.addPass(SCCPPass());
1157 MainFPM.addPass(InstCombinePass());
1158 MainFPM.addPass(BDCEPass());
1159
1160 // FIXME: We may want to run SLPVectorizer here.
1161 // After vectorization, assume intrinsics may tell us more
1162 // about pointer alignments.
1163#if 0
1164 MainFPM.add(AlignmentFromAssumptionsPass());
1165#endif
1166
1167 // FIXME: Conditionally run LoadCombine here, after it's ported
1168 // (in case we still have this pass, given its questionable usefulness).
1169
1170 MainFPM.addPass(InstCombinePass());
1171 invokePeepholeEPCallbacks(MainFPM, Level);
1172 MainFPM.addPass(JumpThreadingPass());
1173 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(MainFPM)));
1174
1175 // Create a function that performs CFI checks for cross-DSO calls with
1176 // targets in the current module.
1177 MPM.addPass(CrossDSOCFIPass());
1178
1179 // Lower type metadata and the type.test intrinsic. This pass supports
1180 // clang's control flow integrity mechanisms (-fsanitize=cfi*) and needs
1181 // to be run at link time if CFI is enabled. This pass does nothing if
1182 // CFI is disabled.
1183 MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1184
1185 // Add late LTO optimization passes.
1186 // Delete basic blocks, which optimization passes may have killed.
1187 MPM.addPass(createModuleToFunctionPassAdaptor(SimplifyCFGPass()));
1188
1189 // Drop bodies of available eternally objects to improve GlobalDCE.
1190 MPM.addPass(EliminateAvailableExternallyPass());
1191
1192 // Now that we have optimized the program, discard unreachable functions.
1193 MPM.addPass(GlobalDCEPass());
1194
1195 // FIXME: Enable MergeFuncs, conditionally, after ported, maybe.
1196 return MPM;
1197}
1198
1199AAManager PassBuilder::buildDefaultAAPipeline() {
1200 AAManager AA;
1201
1202 // The order in which these are registered determines their priority when
1203 // being queried.
1204
1205 // First we register the basic alias analysis that provides the majority of
1206 // per-function local AA logic. This is a stateless, on-demand local set of
1207 // AA techniques.
1208 AA.registerFunctionAnalysis<BasicAA>();
1209
1210 // Next we query fast, specialized alias analyses that wrap IR-embedded
1211 // information about aliasing.
1212 AA.registerFunctionAnalysis<ScopedNoAliasAA>();
1213 AA.registerFunctionAnalysis<TypeBasedAA>();
1214
1215 // Add support for querying global aliasing information when available.
1216 // Because the `AAManager` is a function analysis and `GlobalsAA` is a module
1217 // analysis, all that the `AAManager` can do is query for any *cached*
1218 // results from `GlobalsAA` through a readonly proxy.
1219 AA.registerModuleAnalysis<GlobalsAA>();
1220
1221 return AA;
1222}
1223
1224static Optional<int> parseRepeatPassName(StringRef Name) {
1225 if (!Name.consume_front("repeat<") || !Name.consume_back(">"))
1226 return None;
1227 int Count;
1228 if (Name.getAsInteger(0, Count) || Count <= 0)
1229 return None;
1230 return Count;
1231}
1232
1233static Optional<int> parseDevirtPassName(StringRef Name) {
1234 if (!Name.consume_front("devirt<") || !Name.consume_back(">"))
1235 return None;
1236 int Count;
1237 if (Name.getAsInteger(0, Count) || Count <= 0)
1238 return None;
1239 return Count;
1240}
1241
1242/// Tests whether a pass name starts with a valid prefix for a default pipeline
1243/// alias.
1244static bool startsWithDefaultPipelineAliasPrefix(StringRef Name) {
1245 return Name.startswith("default") || Name.startswith("thinlto") ||
1246 Name.startswith("lto");
1247}
1248
1249/// Tests whether registered callbacks will accept a given pass name.
1250///
1251/// When parsing a pipeline text, the type of the outermost pipeline may be
1252/// omitted, in which case the type is automatically determined from the first
1253/// pass name in the text. This may be a name that is handled through one of the
1254/// callbacks. We check this through the oridinary parsing callbacks by setting
1255/// up a dummy PassManager in order to not force the client to also handle this
1256/// type of query.
1257template <typename PassManagerT, typename CallbacksT>
1258static bool callbacksAcceptPassName(StringRef Name, CallbacksT &Callbacks) {
1259 if (!Callbacks.empty()) {
1260 PassManagerT DummyPM;
1261 for (auto &CB : Callbacks)
1262 if (CB(Name, DummyPM, {}))
1263 return true;
1264 }
1265 return false;
1266}
1267
1268template <typename CallbacksT>
1269static bool isModulePassName(StringRef Name, CallbacksT &Callbacks) {
1270 // Manually handle aliases for pre-configured pipeline fragments.
1271 if (startsWithDefaultPipelineAliasPrefix(Name))
1272 return DefaultAliasRegex.match(Name);
1273
1274 // Explicitly handle pass manager names.
1275 if (Name == "module")
1276 return true;
1277 if (Name == "cgscc")
1278 return true;
1279 if (Name == "function")
1280 return true;
1281
1282 // Explicitly handle custom-parsed pass names.
1283 if (parseRepeatPassName(Name))
1284 return true;
1285
1286#define MODULE_PASS(NAME, CREATE_PASS) \
1287 if (Name == NAME) \
1288 return true;
1289#define MODULE_ANALYSIS(NAME, CREATE_PASS) \
1290 if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
1291 return true;
1292#include "PassRegistry.def"
1293
1294 return callbacksAcceptPassName<ModulePassManager>(Name, Callbacks);
1295}
1296
1297template <typename CallbacksT>
1298static bool isCGSCCPassName(StringRef Name, CallbacksT &Callbacks) {
1299 // Explicitly handle pass manager names.
1300 if (Name == "cgscc")
1301 return true;
1302 if (Name == "function")
1303 return true;
1304
1305 // Explicitly handle custom-parsed pass names.
1306 if (parseRepeatPassName(Name))
1307 return true;
1308 if (parseDevirtPassName(Name))
1309 return true;
1310
1311#define CGSCC_PASS(NAME, CREATE_PASS) \
1312 if (Name == NAME) \
1313 return true;
1314#define CGSCC_ANALYSIS(NAME, CREATE_PASS) \
1315 if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
1316 return true;
1317#include "PassRegistry.def"
1318
1319 return callbacksAcceptPassName<CGSCCPassManager>(Name, Callbacks);
1320}
1321
1322template <typename CallbacksT>
1323static bool isFunctionPassName(StringRef Name, CallbacksT &Callbacks) {
1324 // Explicitly handle pass manager names.
1325 if (Name == "function")
1326 return true;
1327 if (Name == "loop")
1328 return true;
1329
1330 // Explicitly handle custom-parsed pass names.
1331 if (parseRepeatPassName(Name))
1332 return true;
1333
1334#define FUNCTION_PASS(NAME, CREATE_PASS) \
1335 if (Name == NAME) \
1336 return true;
1337#define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \
1338 if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
1339 return true;
1340#include "PassRegistry.def"
1341
1342 return callbacksAcceptPassName<FunctionPassManager>(Name, Callbacks);
1343}
1344
1345template <typename CallbacksT>
1346static bool isLoopPassName(StringRef Name, CallbacksT &Callbacks) {
1347 // Explicitly handle pass manager names.
1348 if (Name == "loop")
1349 return true;
1350
1351 // Explicitly handle custom-parsed pass names.
1352 if (parseRepeatPassName(Name))
1353 return true;
1354
1355#define LOOP_PASS(NAME, CREATE_PASS) \
1356 if (Name == NAME) \
1357 return true;
1358#define LOOP_ANALYSIS(NAME, CREATE_PASS) \
1359 if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
1360 return true;
1361#include "PassRegistry.def"
1362
1363 return callbacksAcceptPassName<LoopPassManager>(Name, Callbacks);
1364}
1365
1366Optional<std::vector<PassBuilder::PipelineElement>>
1367PassBuilder::parsePipelineText(StringRef Text) {
1368 std::vector<PipelineElement> ResultPipeline;
1369
1370 SmallVector<std::vector<PipelineElement> *, 4> PipelineStack = {
1371 &ResultPipeline};
1372 for (;;) {
1373 std::vector<PipelineElement> &Pipeline = *PipelineStack.back();
1374 size_t Pos = Text.find_first_of(",()");
1375 Pipeline.push_back({Text.substr(0, Pos), {}});
1376
1377 // If we have a single terminating name, we're done.
1378 if (Pos == Text.npos)
1379 break;
1380
1381 char Sep = Text[Pos];
1382 Text = Text.substr(Pos + 1);
1383 if (Sep == ',')
1384 // Just a name ending in a comma, continue.
1385 continue;
1386
1387 if (Sep == '(') {
1388 // Push the inner pipeline onto the stack to continue processing.
1389 PipelineStack.push_back(&Pipeline.back().InnerPipeline);
1390 continue;
1391 }
1392
1393 assert(Sep == ')' && "Bogus separator!")((Sep == ')' && "Bogus separator!") ? static_cast<
void> (0) : __assert_fail ("Sep == ')' && \"Bogus separator!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 1393, __PRETTY_FUNCTION__))
;
1394 // When handling the close parenthesis, we greedily consume them to avoid
1395 // empty strings in the pipeline.
1396 do {
1397 // If we try to pop the outer pipeline we have unbalanced parentheses.
1398 if (PipelineStack.size() == 1)
1399 return None;
1400
1401 PipelineStack.pop_back();
1402 } while (Text.consume_front(")"));
1403
1404 // Check if we've finished parsing.
1405 if (Text.empty())
1406 break;
1407
1408 // Otherwise, the end of an inner pipeline always has to be followed by
1409 // a comma, and then we can continue.
1410 if (!Text.consume_front(","))
1411 return None;
1412 }
1413
1414 if (PipelineStack.size() > 1)
1415 // Unbalanced paretheses.
1416 return None;
1417
1418 assert(PipelineStack.back() == &ResultPipeline &&((PipelineStack.back() == &ResultPipeline && "Wrong pipeline at the bottom of the stack!"
) ? static_cast<void> (0) : __assert_fail ("PipelineStack.back() == &ResultPipeline && \"Wrong pipeline at the bottom of the stack!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 1419, __PRETTY_FUNCTION__))
1419 "Wrong pipeline at the bottom of the stack!")((PipelineStack.back() == &ResultPipeline && "Wrong pipeline at the bottom of the stack!"
) ? static_cast<void> (0) : __assert_fail ("PipelineStack.back() == &ResultPipeline && \"Wrong pipeline at the bottom of the stack!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 1419, __PRETTY_FUNCTION__))
;
1420 return {std::move(ResultPipeline)};
1421}
1422
1423Error PassBuilder::parseModulePass(ModulePassManager &MPM,
1424 const PipelineElement &E,
1425 bool VerifyEachPass, bool DebugLogging) {
1426 auto &Name = E.Name;
1427 auto &InnerPipeline = E.InnerPipeline;
1428
1429 // First handle complex passes like the pass managers which carry pipelines.
1430 if (!InnerPipeline.empty()) {
1431 if (Name == "module") {
1432 ModulePassManager NestedMPM(DebugLogging);
1433 if (auto Err = parseModulePassPipeline(NestedMPM, InnerPipeline,
1434 VerifyEachPass, DebugLogging))
1435 return Err;
1436 MPM.addPass(std::move(NestedMPM));
1437 return Error::success();
1438 }
1439 if (Name == "cgscc") {
1440 CGSCCPassManager CGPM(DebugLogging);
1441 if (auto Err = parseCGSCCPassPipeline(CGPM, InnerPipeline, VerifyEachPass,
1442 DebugLogging))
1443 return Err;
1444 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
1445 return Error::success();
1446 }
1447 if (Name == "function") {
1448 FunctionPassManager FPM(DebugLogging);
1449 if (auto Err = parseFunctionPassPipeline(FPM, InnerPipeline,
1450 VerifyEachPass, DebugLogging))
1451 return Err;
1452 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1453 return Error::success();
1454 }
1455 if (auto Count = parseRepeatPassName(Name)) {
1456 ModulePassManager NestedMPM(DebugLogging);
1457 if (auto Err = parseModulePassPipeline(NestedMPM, InnerPipeline,
1458 VerifyEachPass, DebugLogging))
1459 return Err;
1460 MPM.addPass(createRepeatedPass(*Count, std::move(NestedMPM)));
1461 return Error::success();
1462 }
1463
1464 for (auto &C : ModulePipelineParsingCallbacks)
1465 if (C(Name, MPM, InnerPipeline))
1466 return Error::success();
1467
1468 // Normal passes can't have pipelines.
1469 return make_error<StringError>(
1470 formatv("invalid use of '{0}' pass as module pipeline", Name).str(),
1471 inconvertibleErrorCode());
1472 ;
1473 }
1474
1475 // Manually handle aliases for pre-configured pipeline fragments.
1476 if (startsWithDefaultPipelineAliasPrefix(Name)) {
1477 SmallVector<StringRef, 3> Matches;
1478 if (!DefaultAliasRegex.match(Name, &Matches))
1479 return make_error<StringError>(
1480 formatv("unknown default pipeline alias '{0}'", Name).str(),
1481 inconvertibleErrorCode());
1482
1483 assert(Matches.size() == 3 && "Must capture two matched strings!")((Matches.size() == 3 && "Must capture two matched strings!"
) ? static_cast<void> (0) : __assert_fail ("Matches.size() == 3 && \"Must capture two matched strings!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 1483, __PRETTY_FUNCTION__))
;
1484
1485 OptimizationLevel L = StringSwitch<OptimizationLevel>(Matches[2])
1486 .Case("O0", O0)
1487 .Case("O1", O1)
1488 .Case("O2", O2)
1489 .Case("O3", O3)
1490 .Case("Os", Os)
1491 .Case("Oz", Oz);
1492 if (L == O0)
1493 // At O0 we do nothing at all!
1494 return Error::success();
1495
1496 if (Matches[1] == "default") {
1497 MPM.addPass(buildPerModuleDefaultPipeline(L, DebugLogging));
1498 } else if (Matches[1] == "thinlto-pre-link") {
1499 MPM.addPass(buildThinLTOPreLinkDefaultPipeline(L, DebugLogging));
1500 } else if (Matches[1] == "thinlto") {
1501 MPM.addPass(buildThinLTODefaultPipeline(L, DebugLogging, nullptr));
1502 } else if (Matches[1] == "lto-pre-link") {
1503 MPM.addPass(buildLTOPreLinkDefaultPipeline(L, DebugLogging));
1504 } else {
1505 assert(Matches[1] == "lto" && "Not one of the matched options!")((Matches[1] == "lto" && "Not one of the matched options!"
) ? static_cast<void> (0) : __assert_fail ("Matches[1] == \"lto\" && \"Not one of the matched options!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Passes/PassBuilder.cpp"
, 1505, __PRETTY_FUNCTION__))
;
1506 MPM.addPass(buildLTODefaultPipeline(L, DebugLogging, nullptr));
1507 }
1508 return Error::success();
1509 }
1510
1511 // Finally expand the basic registered passes from the .inc file.
1512#define MODULE_PASS(NAME, CREATE_PASS) \
1513 if (Name == NAME) { \
1514 MPM.addPass(CREATE_PASS); \
1515 return Error::success(); \
1516 }
1517#define MODULE_ANALYSIS(NAME, CREATE_PASS) \
1518 if (Name == "require<" NAME ">") { \
1519 MPM.addPass( \
1520 RequireAnalysisPass< \
1521 std::remove_reference<decltype(CREATE_PASS)>::type, Module>()); \
1522 return Error::success(); \
1523 } \
1524 if (Name == "invalidate<" NAME ">") { \
1525 MPM.addPass(InvalidateAnalysisPass< \
1526 std::remove_reference<decltype(CREATE_PASS)>::type>()); \
1527 return Error::success(); \
1528 }
1529#include "PassRegistry.def"
1530
1531 for (auto &C : ModulePipelineParsingCallbacks)
1532 if (C(Name, MPM, InnerPipeline))
1533 return Error::success();
1534 return make_error<StringError>(
1535 formatv("unknown module pass '{0}'", Name).str(),
1536 inconvertibleErrorCode());
1537}
1538
1539Error PassBuilder::parseCGSCCPass(CGSCCPassManager &CGPM,
1540 const PipelineElement &E, bool VerifyEachPass,
1541 bool DebugLogging) {
1542 auto &Name = E.Name;
1543 auto &InnerPipeline = E.InnerPipeline;
1544
1545 // First handle complex passes like the pass managers which carry pipelines.
1546 if (!InnerPipeline.empty()) {
1547 if (Name == "cgscc") {
1548 CGSCCPassManager NestedCGPM(DebugLogging);
1549 if (auto Err = parseCGSCCPassPipeline(NestedCGPM, InnerPipeline,
1550 VerifyEachPass, DebugLogging))
1551 return Err;
1552 // Add the nested pass manager with the appropriate adaptor.
1553 CGPM.addPass(std::move(NestedCGPM));
1554 return Error::success();
1555 }
1556 if (Name == "function") {
1557 FunctionPassManager FPM(DebugLogging);
1558 if (auto Err = parseFunctionPassPipeline(FPM, InnerPipeline,
1559 VerifyEachPass, DebugLogging))
1560 return Err;
1561 // Add the nested pass manager with the appropriate adaptor.
1562 CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
1563 return Error::success();
1564 }
1565 if (auto Count = parseRepeatPassName(Name)) {
1566 CGSCCPassManager NestedCGPM(DebugLogging);
1567 if (auto Err = parseCGSCCPassPipeline(NestedCGPM, InnerPipeline,
1568 VerifyEachPass, DebugLogging))
1569 return Err;
1570 CGPM.addPass(createRepeatedPass(*Count, std::move(NestedCGPM)));
1571 return Error::success();
1572 }
1573 if (auto MaxRepetitions = parseDevirtPassName(Name)) {
1574 CGSCCPassManager NestedCGPM(DebugLogging);
1575 if (auto Err = parseCGSCCPassPipeline(NestedCGPM, InnerPipeline,
1576 VerifyEachPass, DebugLogging))
1577 return Err;
1578 CGPM.addPass(
1579 createDevirtSCCRepeatedPass(std::move(NestedCGPM), *MaxRepetitions));
1580 return Error::success();
1581 }
1582
1583 for (auto &C : CGSCCPipelineParsingCallbacks)
1584 if (C(Name, CGPM, InnerPipeline))
1585 return Error::success();
1586
1587 // Normal passes can't have pipelines.
1588 return make_error<StringError>(
1589 formatv("invalid use of '{0}' pass as cgscc pipeline", Name).str(),
1590 inconvertibleErrorCode());
1591 }
1592
1593// Now expand the basic registered passes from the .inc file.
1594#define CGSCC_PASS(NAME, CREATE_PASS) \
1595 if (Name == NAME) { \
1596 CGPM.addPass(CREATE_PASS); \
1597 return Error::success(); \
1598 }
1599#define CGSCC_ANALYSIS(NAME, CREATE_PASS) \
1600 if (Name == "require<" NAME ">") { \
1601 CGPM.addPass(RequireAnalysisPass< \
1602 std::remove_reference<decltype(CREATE_PASS)>::type, \
1603 LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, \
1604 CGSCCUpdateResult &>()); \
1605 return Error::success(); \
1606 } \
1607 if (Name == "invalidate<" NAME ">") { \
1608 CGPM.addPass(InvalidateAnalysisPass< \
1609 std::remove_reference<decltype(CREATE_PASS)>::type>()); \
1610 return Error::success(); \
1611 }
1612#include "PassRegistry.def"
1613
1614 for (auto &C : CGSCCPipelineParsingCallbacks)
1615 if (C(Name, CGPM, InnerPipeline))
1616 return Error::success();
1617 return make_error<StringError>(
1618 formatv("unknown cgscc pass '{0}'", Name).str(),
1619 inconvertibleErrorCode());
1620}
1621
1622Error PassBuilder::parseFunctionPass(FunctionPassManager &FPM,
1623 const PipelineElement &E,
1624 bool VerifyEachPass, bool DebugLogging) {
1625 auto &Name = E.Name;
1626 auto &InnerPipeline = E.InnerPipeline;
1627
1628 // First handle complex passes like the pass managers which carry pipelines.
1629 if (!InnerPipeline.empty()) {
1630 if (Name == "function") {
1631 FunctionPassManager NestedFPM(DebugLogging);
1632 if (auto Err = parseFunctionPassPipeline(NestedFPM, InnerPipeline,
1633 VerifyEachPass, DebugLogging))
1634 return Err;
1635 // Add the nested pass manager with the appropriate adaptor.
1636 FPM.addPass(std::move(NestedFPM));
1637 return Error::success();
1638 }
1639 if (Name == "loop") {
1640 LoopPassManager LPM(DebugLogging);
1641 if (auto Err = parseLoopPassPipeline(LPM, InnerPipeline, VerifyEachPass,
1642 DebugLogging))
1643 return Err;
1644 // Add the nested pass manager with the appropriate adaptor.
1645 FPM.addPass(
1646 createFunctionToLoopPassAdaptor(std::move(LPM), DebugLogging));
1647 return Error::success();
1648 }
1649 if (auto Count = parseRepeatPassName(Name)) {
1650 FunctionPassManager NestedFPM(DebugLogging);
1651 if (auto Err = parseFunctionPassPipeline(NestedFPM, InnerPipeline,
1652 VerifyEachPass, DebugLogging))
1653 return Err;
1654 FPM.addPass(createRepeatedPass(*Count, std::move(NestedFPM)));
1655 return Error::success();
1656 }
1657
1658 for (auto &C : FunctionPipelineParsingCallbacks)
1659 if (C(Name, FPM, InnerPipeline))
1660 return Error::success();
1661
1662 // Normal passes can't have pipelines.
1663 return make_error<StringError>(
1664 formatv("invalid use of '{0}' pass as function pipeline", Name).str(),
1665 inconvertibleErrorCode());
1666 }
1667
1668// Now expand the basic registered passes from the .inc file.
1669#define FUNCTION_PASS(NAME, CREATE_PASS) \
1670 if (Name == NAME) { \
1671 FPM.addPass(CREATE_PASS); \
1672 return Error::success(); \
1673 }
1674#define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \
1675 if (Name == "require<" NAME ">") { \
1676 FPM.addPass( \
1677 RequireAnalysisPass< \
1678 std::remove_reference<decltype(CREATE_PASS)>::type, Function>()); \
1679 return Error::success(); \
1680 } \
1681 if (Name == "invalidate<" NAME ">") { \
1682 FPM.addPass(InvalidateAnalysisPass< \
1683 std::remove_reference<decltype(CREATE_PASS)>::type>()); \
1684 return Error::success(); \
1685 }
1686#include "PassRegistry.def"
1687
1688 for (auto &C : FunctionPipelineParsingCallbacks)
1689 if (C(Name, FPM, InnerPipeline))
1690 return Error::success();
1691 return make_error<StringError>(
1692 formatv("unknown function pass '{0}'", Name).str(),
1693 inconvertibleErrorCode());
1694}
1695
1696Error PassBuilder::parseLoopPass(LoopPassManager &LPM, const PipelineElement &E,
1697 bool VerifyEachPass, bool DebugLogging) {
1698 StringRef Name = E.Name;
1699 auto &InnerPipeline = E.InnerPipeline;
1700
1701 // First handle complex passes like the pass managers which carry pipelines.
1702 if (!InnerPipeline.empty()) {
1703 if (Name == "loop") {
1704 LoopPassManager NestedLPM(DebugLogging);
1705 if (auto Err = parseLoopPassPipeline(NestedLPM, InnerPipeline,
1706 VerifyEachPass, DebugLogging))
1707 return Err;
1708 // Add the nested pass manager with the appropriate adaptor.
1709 LPM.addPass(std::move(NestedLPM));
1710 return Error::success();
1711 }
1712 if (auto Count = parseRepeatPassName(Name)) {
1713 LoopPassManager NestedLPM(DebugLogging);
1714 if (auto Err = parseLoopPassPipeline(NestedLPM, InnerPipeline,
1715 VerifyEachPass, DebugLogging))
1716 return Err;
1717 LPM.addPass(createRepeatedPass(*Count, std::move(NestedLPM)));
1718 return Error::success();
1719 }
1720
1721 for (auto &C : LoopPipelineParsingCallbacks)
1722 if (C(Name, LPM, InnerPipeline))
1723 return Error::success();
1724
1725 // Normal passes can't have pipelines.
1726 return make_error<StringError>(
1727 formatv("invalid use of '{0}' pass as loop pipeline", Name).str(),
1728 inconvertibleErrorCode());
1729 }
1730
1731// Now expand the basic registered passes from the .inc file.
1732#define LOOP_PASS(NAME, CREATE_PASS) \
1733 if (Name == NAME) { \
1734 LPM.addPass(CREATE_PASS); \
1735 return Error::success(); \
1736 }
1737#define LOOP_ANALYSIS(NAME, CREATE_PASS) \
1738 if (Name == "require<" NAME ">") { \
1739 LPM.addPass(RequireAnalysisPass< \
1740 std::remove_reference<decltype(CREATE_PASS)>::type, Loop, \
1741 LoopAnalysisManager, LoopStandardAnalysisResults &, \
1742 LPMUpdater &>()); \
1743 return Error::success(); \
1744 } \
1745 if (Name == "invalidate<" NAME ">") { \
1746 LPM.addPass(InvalidateAnalysisPass< \
1747 std::remove_reference<decltype(CREATE_PASS)>::type>()); \
1748 return Error::success(); \
1749 }
1750#include "PassRegistry.def"
1751
1752 for (auto &C : LoopPipelineParsingCallbacks)
1753 if (C(Name, LPM, InnerPipeline))
1754 return Error::success();
1755 return make_error<StringError>(formatv("unknown loop pass '{0}'", Name).str(),
1756 inconvertibleErrorCode());
1757}
1758
1759bool PassBuilder::parseAAPassName(AAManager &AA, StringRef Name) {
1760#define MODULE_ALIAS_ANALYSIS(NAME, CREATE_PASS) \
1761 if (Name == NAME) { \
1762 AA.registerModuleAnalysis< \
1763 std::remove_reference<decltype(CREATE_PASS)>::type>(); \
1764 return true; \
1765 }
1766#define FUNCTION_ALIAS_ANALYSIS(NAME, CREATE_PASS) \
1767 if (Name == NAME) { \
1768 AA.registerFunctionAnalysis< \
1769 std::remove_reference<decltype(CREATE_PASS)>::type>(); \
1770 return true; \
1771 }
1772#include "PassRegistry.def"
1773
1774 for (auto &C : AAParsingCallbacks)
1775 if (C(Name, AA))
1776 return true;
1777 return false;
1778}
1779
1780Error PassBuilder::parseLoopPassPipeline(LoopPassManager &LPM,
1781 ArrayRef<PipelineElement> Pipeline,
1782 bool VerifyEachPass,
1783 bool DebugLogging) {
1784 for (const auto &Element : Pipeline) {
1785 if (auto Err = parseLoopPass(LPM, Element, VerifyEachPass, DebugLogging))
1786 return Err;
1787 // FIXME: No verifier support for Loop passes!
1788 }
1789 return Error::success();
1790}
1791
1792Error PassBuilder::parseFunctionPassPipeline(FunctionPassManager &FPM,
1793 ArrayRef<PipelineElement> Pipeline,
1794 bool VerifyEachPass,
1795 bool DebugLogging) {
1796 for (const auto &Element : Pipeline) {
1797 if (auto Err =
1798 parseFunctionPass(FPM, Element, VerifyEachPass, DebugLogging))
1799 return Err;
1800 if (VerifyEachPass)
1801 FPM.addPass(VerifierPass());
1802 }
1803 return Error::success();
1804}
1805
1806Error PassBuilder::parseCGSCCPassPipeline(CGSCCPassManager &CGPM,
1807 ArrayRef<PipelineElement> Pipeline,
1808 bool VerifyEachPass,
1809 bool DebugLogging) {
1810 for (const auto &Element : Pipeline) {
1811 if (auto Err = parseCGSCCPass(CGPM, Element, VerifyEachPass, DebugLogging))
1812 return Err;
1813 // FIXME: No verifier support for CGSCC passes!
1814 }
1815 return Error::success();
1816}
1817
1818void PassBuilder::crossRegisterProxies(LoopAnalysisManager &LAM,
1819 FunctionAnalysisManager &FAM,
1820 CGSCCAnalysisManager &CGAM,
1821 ModuleAnalysisManager &MAM) {
1822 MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
1823 MAM.registerPass([&] { return CGSCCAnalysisManagerModuleProxy(CGAM); });
1824 CGAM.registerPass([&] { return ModuleAnalysisManagerCGSCCProxy(MAM); });
1825 FAM.registerPass([&] { return CGSCCAnalysisManagerFunctionProxy(CGAM); });
1826 FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
1827 FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
1828 LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
1829}
1830
1831Error PassBuilder::parseModulePassPipeline(ModulePassManager &MPM,
1832 ArrayRef<PipelineElement> Pipeline,
1833 bool VerifyEachPass,
1834 bool DebugLogging) {
1835 for (const auto &Element : Pipeline) {
1836 if (auto Err = parseModulePass(MPM, Element, VerifyEachPass, DebugLogging))
1837 return Err;
1838 if (VerifyEachPass)
1839 MPM.addPass(VerifierPass());
1840 }
1841 return Error::success();
1842}
1843
1844// Primary pass pipeline description parsing routine for a \c ModulePassManager
1845// FIXME: Should this routine accept a TargetMachine or require the caller to
1846// pre-populate the analysis managers with target-specific stuff?
1847Error PassBuilder::parsePassPipeline(ModulePassManager &MPM,
1848 StringRef PipelineText,
1849 bool VerifyEachPass, bool DebugLogging) {
1850 auto Pipeline = parsePipelineText(PipelineText);
1851 if (!Pipeline || Pipeline->empty())
1852 return make_error<StringError>(
1853 formatv("invalid pipeline '{0}'", PipelineText).str(),
1854 inconvertibleErrorCode());
1855
1856 // If the first name isn't at the module layer, wrap the pipeline up
1857 // automatically.
1858 StringRef FirstName = Pipeline->front().Name;
1859
1860 if (!isModulePassName(FirstName, ModulePipelineParsingCallbacks)) {
1861 if (isCGSCCPassName(FirstName, CGSCCPipelineParsingCallbacks)) {
1862 Pipeline = {{"cgscc", std::move(*Pipeline)}};
1863 } else if (isFunctionPassName(FirstName,
1864 FunctionPipelineParsingCallbacks)) {
1865 Pipeline = {{"function", std::move(*Pipeline)}};
1866 } else if (isLoopPassName(FirstName, LoopPipelineParsingCallbacks)) {
1867 Pipeline = {{"function", {{"loop", std::move(*Pipeline)}}}};
1868 } else {
1869 for (auto &C : TopLevelPipelineParsingCallbacks)
1870 if (C(MPM, *Pipeline, VerifyEachPass, DebugLogging))
1871 return Error::success();
1872
1873 // Unknown pass or pipeline name!
1874 auto &InnerPipeline = Pipeline->front().InnerPipeline;
1875 return make_error<StringError>(
1876 formatv("unknown {0} name '{1}'",
1877 (InnerPipeline.empty() ? "pass" : "pipeline"), FirstName)
1878 .str(),
1879 inconvertibleErrorCode());
1880 }
1881 }
1882
1883 if (auto Err =
1884 parseModulePassPipeline(MPM, *Pipeline, VerifyEachPass, DebugLogging))
1885 return Err;
1886 return Error::success();
1887}
1888
1889// Primary pass pipeline description parsing routine for a \c CGSCCPassManager
1890Error PassBuilder::parsePassPipeline(CGSCCPassManager &CGPM,
1891 StringRef PipelineText,
1892 bool VerifyEachPass, bool DebugLogging) {
1893 auto Pipeline = parsePipelineText(PipelineText);
1894 if (!Pipeline || Pipeline->empty())
1895 return make_error<StringError>(
1896 formatv("invalid pipeline '{0}'", PipelineText).str(),
1897 inconvertibleErrorCode());
1898
1899 StringRef FirstName = Pipeline->front().Name;
1900 if (!isCGSCCPassName(FirstName, CGSCCPipelineParsingCallbacks))
1901 return make_error<StringError>(
1902 formatv("unknown cgscc pass '{0}' in pipeline '{1}'", FirstName,
1903 PipelineText)
1904 .str(),
1905 inconvertibleErrorCode());
1906
1907 if (auto Err =
1908 parseCGSCCPassPipeline(CGPM, *Pipeline, VerifyEachPass, DebugLogging))
1909 return Err;
1910 return Error::success();
1911}
1912
1913// Primary pass pipeline description parsing routine for a \c
1914// FunctionPassManager
1915Error PassBuilder::parsePassPipeline(FunctionPassManager &FPM,
1916 StringRef PipelineText,
1917 bool VerifyEachPass, bool DebugLogging) {
1918 auto Pipeline = parsePipelineText(PipelineText);
1919 if (!Pipeline || Pipeline->empty())
1920 return make_error<StringError>(
1921 formatv("invalid pipeline '{0}'", PipelineText).str(),
1922 inconvertibleErrorCode());
1923
1924 StringRef FirstName = Pipeline->front().Name;
1925 if (!isFunctionPassName(FirstName, FunctionPipelineParsingCallbacks))
1926 return make_error<StringError>(
1927 formatv("unknown function pass '{0}' in pipeline '{1}'", FirstName,
1928 PipelineText)
1929 .str(),
1930 inconvertibleErrorCode());
1931
1932 if (auto Err = parseFunctionPassPipeline(FPM, *Pipeline, VerifyEachPass,
1933 DebugLogging))
1934 return Err;
1935 return Error::success();
1936}
1937
1938// Primary pass pipeline description parsing routine for a \c LoopPassManager
1939Error PassBuilder::parsePassPipeline(LoopPassManager &CGPM,
1940 StringRef PipelineText,
1941 bool VerifyEachPass, bool DebugLogging) {
1942 auto Pipeline = parsePipelineText(PipelineText);
1943 if (!Pipeline || Pipeline->empty())
1
Assuming the condition is true
1944 return make_error<StringError>(
2
Calling 'make_error<llvm::StringError, std::__cxx11::basic_string<char>, std::error_code>'
1945 formatv("invalid pipeline '{0}'", PipelineText).str(),
1946 inconvertibleErrorCode());
1947
1948 if (auto Err =
1949 parseLoopPassPipeline(CGPM, *Pipeline, VerifyEachPass, DebugLogging))
1950 return Err;
1951
1952 return Error::success();
1953}
1954
1955Error PassBuilder::parseAAPipeline(AAManager &AA, StringRef PipelineText) {
1956 // If the pipeline just consists of the word 'default' just replace the AA
1957 // manager with our default one.
1958 if (PipelineText == "default") {
1959 AA = buildDefaultAAPipeline();
1960 return Error::success();
1961 }
1962
1963 while (!PipelineText.empty()) {
1964 StringRef Name;
1965 std::tie(Name, PipelineText) = PipelineText.split(',');
1966 if (!parseAAPassName(AA, Name))
1967 return make_error<StringError>(
1968 formatv("unknown alias analysis name '{0}'", Name).str(),
1969 inconvertibleErrorCode());
1970 }
1971
1972 return Error::success();
1973}

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm-c/Error.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Config/abi-breaking.h"
23#include "llvm/Support/AlignOf.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/ErrorOr.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <cstdlib>
34#include <functional>
35#include <memory>
36#include <new>
37#include <string>
38#include <system_error>
39#include <type_traits>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class ErrorSuccess;
46
47/// Base class for error info classes. Do not extend this directly: Extend
48/// the ErrorInfo template subclass instead.
49class ErrorInfoBase {
50public:
51 virtual ~ErrorInfoBase() = default;
52
53 /// Print an error message to an output stream.
54 virtual void log(raw_ostream &OS) const = 0;
55
56 /// Return the error message as a string.
57 virtual std::string message() const {
58 std::string Msg;
59 raw_string_ostream OS(Msg);
60 log(OS);
61 return OS.str();
62 }
63
64 /// Convert this error to a std::error_code.
65 ///
66 /// This is a temporary crutch to enable interaction with code still
67 /// using std::error_code. It will be removed in the future.
68 virtual std::error_code convertToErrorCode() const = 0;
69
70 // Returns the class ID for this type.
71 static const void *classID() { return &ID; }
72
73 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
74 virtual const void *dynamicClassID() const = 0;
75
76 // Check whether this instance is a subclass of the class identified by
77 // ClassID.
78 virtual bool isA(const void *const ClassID) const {
79 return ClassID == classID();
80 }
81
82 // Check whether this instance is a subclass of ErrorInfoT.
83 template <typename ErrorInfoT> bool isA() const {
84 return isA(ErrorInfoT::classID());
85 }
86
87private:
88 virtual void anchor();
89
90 static char ID;
91};
92
93/// Lightweight error class with error context and mandatory checking.
94///
95/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
96/// are represented by setting the pointer to a ErrorInfoBase subclass
97/// instance containing information describing the failure. Success is
98/// represented by a null pointer value.
99///
100/// Instances of Error also contains a 'Checked' flag, which must be set
101/// before the destructor is called, otherwise the destructor will trigger a
102/// runtime error. This enforces at runtime the requirement that all Error
103/// instances be checked or returned to the caller.
104///
105/// There are two ways to set the checked flag, depending on what state the
106/// Error instance is in. For Error instances indicating success, it
107/// is sufficient to invoke the boolean conversion operator. E.g.:
108///
109/// @code{.cpp}
110/// Error foo(<...>);
111///
112/// if (auto E = foo(<...>))
113/// return E; // <- Return E if it is in the error state.
114/// // We have verified that E was in the success state. It can now be safely
115/// // destroyed.
116/// @endcode
117///
118/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
119/// without testing the return value will raise a runtime error, even if foo
120/// returns success.
121///
122/// For Error instances representing failure, you must use either the
123/// handleErrors or handleAllErrors function with a typed handler. E.g.:
124///
125/// @code{.cpp}
126/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
127/// // Custom error info.
128/// };
129///
130/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
131///
132/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
133/// auto NewE =
134/// handleErrors(E,
135/// [](const MyErrorInfo &M) {
136/// // Deal with the error.
137/// },
138/// [](std::unique_ptr<OtherError> M) -> Error {
139/// if (canHandle(*M)) {
140/// // handle error.
141/// return Error::success();
142/// }
143/// // Couldn't handle this error instance. Pass it up the stack.
144/// return Error(std::move(M));
145/// );
146/// // Note - we must check or return NewE in case any of the handlers
147/// // returned a new error.
148/// @endcode
149///
150/// The handleAllErrors function is identical to handleErrors, except
151/// that it has a void return type, and requires all errors to be handled and
152/// no new errors be returned. It prevents errors (assuming they can all be
153/// handled) from having to be bubbled all the way to the top-level.
154///
155/// *All* Error instances must be checked before destruction, even if
156/// they're moved-assigned or constructed from Success values that have already
157/// been checked. This enforces checking through all levels of the call stack.
158class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
159 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
160 // pointers out of this class to add to the error list.
161 friend class ErrorList;
162 friend class FileError;
163
164 // handleErrors needs to be able to set the Checked flag.
165 template <typename... HandlerTs>
166 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
167
168 // Expected<T> needs to be able to steal the payload when constructed from an
169 // error.
170 template <typename T> friend class Expected;
171
172 // wrap needs to be able to steal the payload.
173 friend LLVMErrorRef wrap(Error);
174
175protected:
176 /// Create a success value. Prefer using 'Error::success()' for readability
177 Error() {
178 setPtr(nullptr);
179 setChecked(false);
180 }
181
182public:
183 /// Create a success value.
184 static ErrorSuccess success();
185
186 // Errors are not copy-constructable.
187 Error(const Error &Other) = delete;
188
189 /// Move-construct an error value. The newly constructed error is considered
190 /// unchecked, even if the source error had been checked. The original error
191 /// becomes a checked Success value, regardless of its original state.
192 Error(Error &&Other) {
193 setChecked(true);
194 *this = std::move(Other);
195 }
196
197 /// Create an error value. Prefer using the 'make_error' function, but
198 /// this constructor can be useful when "re-throwing" errors from handlers.
199 Error(std::unique_ptr<ErrorInfoBase> Payload) {
200 setPtr(Payload.release());
201 setChecked(false);
7
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
202 }
203
204 // Errors are not copy-assignable.
205 Error &operator=(const Error &Other) = delete;
206
207 /// Move-assign an error value. The current error must represent success, you
208 /// you cannot overwrite an unhandled error. The current error is then
209 /// considered unchecked. The source error becomes a checked success value,
210 /// regardless of its original state.
211 Error &operator=(Error &&Other) {
212 // Don't allow overwriting of unchecked values.
213 assertIsChecked();
214 setPtr(Other.getPtr());
215
216 // This Error is unchecked, even if the source error was checked.
217 setChecked(false);
218
219 // Null out Other's payload and set its checked bit.
220 Other.setPtr(nullptr);
221 Other.setChecked(true);
222
223 return *this;
224 }
225
226 /// Destroy a Error. Fails with a call to abort() if the error is
227 /// unchecked.
228 ~Error() {
229 assertIsChecked();
230 delete getPtr();
231 }
232
233 /// Bool conversion. Returns true if this Error is in a failure state,
234 /// and false if it is in an accept state. If the error is in a Success state
235 /// it will be considered checked.
236 explicit operator bool() {
237 setChecked(getPtr() == nullptr);
238 return getPtr() != nullptr;
239 }
240
241 /// Check whether one error is a subclass of another.
242 template <typename ErrT> bool isA() const {
243 return getPtr() && getPtr()->isA(ErrT::classID());
244 }
245
246 /// Returns the dynamic class id of this error, or null if this is a success
247 /// value.
248 const void* dynamicClassID() const {
249 if (!getPtr())
250 return nullptr;
251 return getPtr()->dynamicClassID();
252 }
253
254private:
255#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
256 // assertIsChecked() happens very frequently, but under normal circumstances
257 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
258 // of debug prints can cause the function to be too large for inlining. So
259 // it's important that we define this function out of line so that it can't be
260 // inlined.
261 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
262 void fatalUncheckedError() const;
263#endif
264
265 void assertIsChecked() {
266#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
267 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
268 fatalUncheckedError();
269#endif
270 }
271
272 ErrorInfoBase *getPtr() const {
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298 Payload = reinterpret_cast<ErrorInfoBase*>(
299 (reinterpret_cast<uintptr_t>(Payload) &
300 ~static_cast<uintptr_t>(0x1)) |
301 (V ? 0 : 1));
302 }
303
304 std::unique_ptr<ErrorInfoBase> takePayload() {
305 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
306 setPtr(nullptr);
307 setChecked(true);
308 return Tmp;
309 }
310
311 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
312 if (auto P = E.getPtr())
313 P->log(OS);
314 else
315 OS << "success";
316 return OS;
317 }
318
319 ErrorInfoBase *Payload = nullptr;
320};
321
322/// Subclass of Error for the sole purpose of identifying the success path in
323/// the type system. This allows to catch invalid conversion to Expected<T> at
324/// compile time.
325class ErrorSuccess final : public Error {};
326
327inline ErrorSuccess Error::success() { return ErrorSuccess(); }
328
329/// Make a Error instance representing failure using the given error info
330/// type.
331template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
332 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
3
Calling 'make_unique<llvm::StringError, std::__cxx11::basic_string<char>, std::error_code>'
5
Returned allocated memory
6
Calling constructor for 'Error'
333}
334
335/// Base class for user error types. Users should declare their error types
336/// like:
337///
338/// class MyError : public ErrorInfo<MyError> {
339/// ....
340/// };
341///
342/// This class provides an implementation of the ErrorInfoBase::kind
343/// method, which is used by the Error RTTI system.
344template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
345class ErrorInfo : public ParentErrT {
346public:
347 using ParentErrT::ParentErrT; // inherit constructors
348
349 static const void *classID() { return &ThisErrT::ID; }
350
351 const void *dynamicClassID() const override { return &ThisErrT::ID; }
352
353 bool isA(const void *const ClassID) const override {
354 return ClassID == classID() || ParentErrT::isA(ClassID);
355 }
356};
357
358/// Special ErrorInfo subclass representing a list of ErrorInfos.
359/// Instances of this class are constructed by joinError.
360class ErrorList final : public ErrorInfo<ErrorList> {
361 // handleErrors needs to be able to iterate the payload list of an
362 // ErrorList.
363 template <typename... HandlerTs>
364 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
365
366 // joinErrors is implemented in terms of join.
367 friend Error joinErrors(Error, Error);
368
369public:
370 void log(raw_ostream &OS) const override {
371 OS << "Multiple errors:\n";
372 for (auto &ErrPayload : Payloads) {
373 ErrPayload->log(OS);
374 OS << "\n";
375 }
376 }
377
378 std::error_code convertToErrorCode() const override;
379
380 // Used by ErrorInfo::classID.
381 static char ID;
382
383private:
384 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
385 std::unique_ptr<ErrorInfoBase> Payload2) {
386 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
387 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
;
388 Payloads.push_back(std::move(Payload1));
389 Payloads.push_back(std::move(Payload2));
390 }
391
392 static Error join(Error E1, Error E2) {
393 if (!E1)
394 return E2;
395 if (!E2)
396 return E1;
397 if (E1.isA<ErrorList>()) {
398 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
399 if (E2.isA<ErrorList>()) {
400 auto E2Payload = E2.takePayload();
401 auto &E2List = static_cast<ErrorList &>(*E2Payload);
402 for (auto &Payload : E2List.Payloads)
403 E1List.Payloads.push_back(std::move(Payload));
404 } else
405 E1List.Payloads.push_back(E2.takePayload());
406
407 return E1;
408 }
409 if (E2.isA<ErrorList>()) {
410 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
411 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
412 return E2;
413 }
414 return Error(std::unique_ptr<ErrorList>(
415 new ErrorList(E1.takePayload(), E2.takePayload())));
416 }
417
418 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
419};
420
421/// Concatenate errors. The resulting Error is unchecked, and contains the
422/// ErrorInfo(s), if any, contained in E1, followed by the
423/// ErrorInfo(s), if any, contained in E2.
424inline Error joinErrors(Error E1, Error E2) {
425 return ErrorList::join(std::move(E1), std::move(E2));
426}
427
428/// Tagged union holding either a T or a Error.
429///
430/// This class parallels ErrorOr, but replaces error_code with Error. Since
431/// Error cannot be copied, this class replaces getError() with
432/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
433/// error class type.
434template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
435 template <class T1> friend class ExpectedAsOutParameter;
436 template <class OtherT> friend class Expected;
437
438 static const bool isRef = std::is_reference<T>::value;
439
440 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
441
442 using error_type = std::unique_ptr<ErrorInfoBase>;
443
444public:
445 using storage_type = typename std::conditional<isRef, wrap, T>::type;
446 using value_type = T;
447
448private:
449 using reference = typename std::remove_reference<T>::type &;
450 using const_reference = const typename std::remove_reference<T>::type &;
451 using pointer = typename std::remove_reference<T>::type *;
452 using const_pointer = const typename std::remove_reference<T>::type *;
453
454public:
455 /// Create an Expected<T> error value from the given Error.
456 Expected(Error Err)
457 : HasError(true)
458#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
459 // Expected is unchecked upon construction in Debug builds.
460 , Unchecked(true)
461#endif
462 {
463 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 463, __PRETTY_FUNCTION__))
;
464 new (getErrorStorage()) error_type(Err.takePayload());
465 }
466
467 /// Forbid to convert from Error::success() implicitly, this avoids having
468 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
469 /// but triggers the assertion above.
470 Expected(ErrorSuccess) = delete;
471
472 /// Create an Expected<T> success value from the given OtherT value, which
473 /// must be convertible to T.
474 template <typename OtherT>
475 Expected(OtherT &&Val,
476 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
477 * = nullptr)
478 : HasError(false)
479#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
480 // Expected is unchecked upon construction in Debug builds.
481 , Unchecked(true)
482#endif
483 {
484 new (getStorage()) storage_type(std::forward<OtherT>(Val));
485 }
486
487 /// Move construct an Expected<T> value.
488 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
489
490 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
491 /// must be convertible to T.
492 template <class OtherT>
493 Expected(Expected<OtherT> &&Other,
494 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
495 * = nullptr) {
496 moveConstruct(std::move(Other));
497 }
498
499 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
500 /// isn't convertible to T.
501 template <class OtherT>
502 explicit Expected(
503 Expected<OtherT> &&Other,
504 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
505 nullptr) {
506 moveConstruct(std::move(Other));
507 }
508
509 /// Move-assign from another Expected<T>.
510 Expected &operator=(Expected &&Other) {
511 moveAssign(std::move(Other));
512 return *this;
513 }
514
515 /// Destroy an Expected<T>.
516 ~Expected() {
517 assertIsChecked();
518 if (!HasError)
519 getStorage()->~storage_type();
520 else
521 getErrorStorage()->~error_type();
522 }
523
524 /// Return false if there is an error.
525 explicit operator bool() {
526#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
527 Unchecked = HasError;
528#endif
529 return !HasError;
530 }
531
532 /// Returns a reference to the stored T value.
533 reference get() {
534 assertIsChecked();
535 return *getStorage();
536 }
537
538 /// Returns a const reference to the stored T value.
539 const_reference get() const {
540 assertIsChecked();
541 return const_cast<Expected<T> *>(this)->get();
542 }
543
544 /// Check that this Expected<T> is an error of type ErrT.
545 template <typename ErrT> bool errorIsA() const {
546 return HasError && (*getErrorStorage())->template isA<ErrT>();
547 }
548
549 /// Take ownership of the stored error.
550 /// After calling this the Expected<T> is in an indeterminate state that can
551 /// only be safely destructed. No further calls (beside the destructor) should
552 /// be made on the Expected<T> vaule.
553 Error takeError() {
554#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
555 Unchecked = false;
556#endif
557 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
558 }
559
560 /// Returns a pointer to the stored T value.
561 pointer operator->() {
562 assertIsChecked();
563 return toPointer(getStorage());
564 }
565
566 /// Returns a const pointer to the stored T value.
567 const_pointer operator->() const {
568 assertIsChecked();
569 return toPointer(getStorage());
570 }
571
572 /// Returns a reference to the stored T value.
573 reference operator*() {
574 assertIsChecked();
575 return *getStorage();
576 }
577
578 /// Returns a const reference to the stored T value.
579 const_reference operator*() const {
580 assertIsChecked();
581 return *getStorage();
582 }
583
584private:
585 template <class T1>
586 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
587 return &a == &b;
588 }
589
590 template <class T1, class T2>
591 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
592 return false;
593 }
594
595 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
596 HasError = Other.HasError;
597#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
598 Unchecked = true;
599 Other.Unchecked = false;
600#endif
601
602 if (!HasError)
603 new (getStorage()) storage_type(std::move(*Other.getStorage()));
604 else
605 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
606 }
607
608 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
609 assertIsChecked();
610
611 if (compareThisIfSameType(*this, Other))
612 return;
613
614 this->~Expected();
615 new (this) Expected(std::move(Other));
616 }
617
618 pointer toPointer(pointer Val) { return Val; }
619
620 const_pointer toPointer(const_pointer Val) const { return Val; }
621
622 pointer toPointer(wrap *Val) { return &Val->get(); }
623
624 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
625
626 storage_type *getStorage() {
627 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 627, __PRETTY_FUNCTION__))
;
628 return reinterpret_cast<storage_type *>(TStorage.buffer);
629 }
630
631 const storage_type *getStorage() const {
632 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 632, __PRETTY_FUNCTION__))
;
633 return reinterpret_cast<const storage_type *>(TStorage.buffer);
634 }
635
636 error_type *getErrorStorage() {
637 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 637, __PRETTY_FUNCTION__))
;
638 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
639 }
640
641 const error_type *getErrorStorage() const {
642 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 642, __PRETTY_FUNCTION__))
;
643 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
644 }
645
646 // Used by ExpectedAsOutParameter to reset the checked flag.
647 void setUnchecked() {
648#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
649 Unchecked = true;
650#endif
651 }
652
653#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
654 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
655 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
656 void fatalUncheckedExpected() const {
657 dbgs() << "Expected<T> must be checked before access or destruction.\n";
658 if (HasError) {
659 dbgs() << "Unchecked Expected<T> contained error:\n";
660 (*getErrorStorage())->log(dbgs());
661 } else
662 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
663 "values in success mode must still be checked prior to being "
664 "destroyed).\n";
665 abort();
666 }
667#endif
668
669 void assertIsChecked() {
670#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
671 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
672 fatalUncheckedExpected();
673#endif
674 }
675
676 union {
677 AlignedCharArrayUnion<storage_type> TStorage;
678 AlignedCharArrayUnion<error_type> ErrorStorage;
679 };
680 bool HasError : 1;
681#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
682 bool Unchecked : 1;
683#endif
684};
685
686/// Report a serious error, calling any installed error handler. See
687/// ErrorHandling.h.
688LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
689 bool gen_crash_diag = true);
690
691/// Report a fatal error if Err is a failure value.
692///
693/// This function can be used to wrap calls to fallible functions ONLY when it
694/// is known that the Error will always be a success value. E.g.
695///
696/// @code{.cpp}
697/// // foo only attempts the fallible operation if DoFallibleOperation is
698/// // true. If DoFallibleOperation is false then foo always returns
699/// // Error::success().
700/// Error foo(bool DoFallibleOperation);
701///
702/// cantFail(foo(false));
703/// @endcode
704inline void cantFail(Error Err, const char *Msg = nullptr) {
705 if (Err) {
706 if (!Msg)
707 Msg = "Failure value returned from cantFail wrapped call";
708 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 708)
;
709 }
710}
711
712/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
713/// returns the contained value.
714///
715/// This function can be used to wrap calls to fallible functions ONLY when it
716/// is known that the Error will always be a success value. E.g.
717///
718/// @code{.cpp}
719/// // foo only attempts the fallible operation if DoFallibleOperation is
720/// // true. If DoFallibleOperation is false then foo always returns an int.
721/// Expected<int> foo(bool DoFallibleOperation);
722///
723/// int X = cantFail(foo(false));
724/// @endcode
725template <typename T>
726T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
727 if (ValOrErr)
728 return std::move(*ValOrErr);
729 else {
730 if (!Msg)
731 Msg = "Failure value returned from cantFail wrapped call";
732 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 732)
;
733 }
734}
735
736/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
737/// returns the contained reference.
738///
739/// This function can be used to wrap calls to fallible functions ONLY when it
740/// is known that the Error will always be a success value. E.g.
741///
742/// @code{.cpp}
743/// // foo only attempts the fallible operation if DoFallibleOperation is
744/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
745/// Expected<Bar&> foo(bool DoFallibleOperation);
746///
747/// Bar &X = cantFail(foo(false));
748/// @endcode
749template <typename T>
750T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
751 if (ValOrErr)
752 return *ValOrErr;
753 else {
754 if (!Msg)
755 Msg = "Failure value returned from cantFail wrapped call";
756 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 756)
;
757 }
758}
759
760/// Helper for testing applicability of, and applying, handlers for
761/// ErrorInfo types.
762template <typename HandlerT>
763class ErrorHandlerTraits
764 : public ErrorHandlerTraits<decltype(
765 &std::remove_reference<HandlerT>::type::operator())> {};
766
767// Specialization functions of the form 'Error (const ErrT&)'.
768template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
769public:
770 static bool appliesTo(const ErrorInfoBase &E) {
771 return E.template isA<ErrT>();
772 }
773
774 template <typename HandlerT>
775 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
776 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 776, __PRETTY_FUNCTION__))
;
777 return H(static_cast<ErrT &>(*E));
778 }
779};
780
781// Specialization functions of the form 'void (const ErrT&)'.
782template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 790, __PRETTY_FUNCTION__))
;
791 H(static_cast<ErrT &>(*E));
792 return Error::success();
793 }
794};
795
796/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 806, __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 return H(std::move(SubE));
809 }
810};
811
812/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
813template <typename ErrT>
814class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
815public:
816 static bool appliesTo(const ErrorInfoBase &E) {
817 return E.template isA<ErrT>();
818 }
819
820 template <typename HandlerT>
821 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
822 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 822, __PRETTY_FUNCTION__))
;
823 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
824 H(std::move(SubE));
825 return Error::success();
826 }
827};
828
829// Specialization for member functions of the form 'RetT (const ErrT&)'.
830template <typename C, typename RetT, typename ErrT>
831class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
832 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
833
834// Specialization for member functions of the form 'RetT (const ErrT&) const'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
837 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
838
839// Specialization for member functions of the form 'RetT (const ErrT&)'.
840template <typename C, typename RetT, typename ErrT>
841class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
842 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
843
844// Specialization for member functions of the form 'RetT (const ErrT&) const'.
845template <typename C, typename RetT, typename ErrT>
846class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
847 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
848
849/// Specialization for member functions of the form
850/// 'RetT (std::unique_ptr<ErrT>)'.
851template <typename C, typename RetT, typename ErrT>
852class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
853 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
854
855/// Specialization for member functions of the form
856/// 'RetT (std::unique_ptr<ErrT>) const'.
857template <typename C, typename RetT, typename ErrT>
858class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
859 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
860
861inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
862 return Error(std::move(Payload));
863}
864
865template <typename HandlerT, typename... HandlerTs>
866Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
867 HandlerT &&Handler, HandlerTs &&... Handlers) {
868 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
869 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
870 std::move(Payload));
871 return handleErrorImpl(std::move(Payload),
872 std::forward<HandlerTs>(Handlers)...);
873}
874
875/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
876/// unhandled errors (or Errors returned by handlers) are re-concatenated and
877/// returned.
878/// Because this function returns an error, its result must also be checked
879/// or returned. If you intend to handle all errors use handleAllErrors
880/// (which returns void, and will abort() on unhandled errors) instead.
881template <typename... HandlerTs>
882Error handleErrors(Error E, HandlerTs &&... Hs) {
883 if (!E)
884 return Error::success();
885
886 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
887
888 if (Payload->isA<ErrorList>()) {
889 ErrorList &List = static_cast<ErrorList &>(*Payload);
890 Error R;
891 for (auto &P : List.Payloads)
892 R = ErrorList::join(
893 std::move(R),
894 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
895 return R;
896 }
897
898 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
899}
900
901/// Behaves the same as handleErrors, except that by contract all errors
902/// *must* be handled by the given handlers (i.e. there must be no remaining
903/// errors after running the handlers, or llvm_unreachable is called).
904template <typename... HandlerTs>
905void handleAllErrors(Error E, HandlerTs &&... Handlers) {
906 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
907}
908
909/// Check that E is a non-error, then drop it.
910/// If E is an error, llvm_unreachable will be called.
911inline void handleAllErrors(Error E) {
912 cantFail(std::move(E));
913}
914
915/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
916///
917/// If the incoming value is a success value it is returned unmodified. If it
918/// is a failure value then it the contained error is passed to handleErrors.
919/// If handleErrors is able to handle the error then the RecoveryPath functor
920/// is called to supply the final result. If handleErrors is not able to
921/// handle all errors then the unhandled errors are returned.
922///
923/// This utility enables the follow pattern:
924///
925/// @code{.cpp}
926/// enum FooStrategy { Aggressive, Conservative };
927/// Expected<Foo> foo(FooStrategy S);
928///
929/// auto ResultOrErr =
930/// handleExpected(
931/// foo(Aggressive),
932/// []() { return foo(Conservative); },
933/// [](AggressiveStrategyError&) {
934/// // Implicitly conusme this - we'll recover by using a conservative
935/// // strategy.
936/// });
937///
938/// @endcode
939template <typename T, typename RecoveryFtor, typename... HandlerTs>
940Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
941 HandlerTs &&... Handlers) {
942 if (ValOrErr)
943 return ValOrErr;
944
945 if (auto Err = handleErrors(ValOrErr.takeError(),
946 std::forward<HandlerTs>(Handlers)...))
947 return std::move(Err);
948
949 return RecoveryPath();
950}
951
952/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
953/// will be printed before the first one is logged. A newline will be printed
954/// after each error.
955///
956/// This function is compatible with the helpers from Support/WithColor.h. You
957/// can pass any of them as the OS. Please consider using them instead of
958/// including 'error: ' in the ErrorBanner.
959///
960/// This is useful in the base level of your program to allow clean termination
961/// (allowing clean deallocation of resources, etc.), while reporting error
962/// information to the user.
963void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
964
965/// Write all error messages (if any) in E to a string. The newline character
966/// is used to separate error messages.
967inline std::string toString(Error E) {
968 SmallVector<std::string, 2> Errors;
969 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
970 Errors.push_back(EI.message());
971 });
972 return join(Errors.begin(), Errors.end(), "\n");
973}
974
975/// Consume a Error without doing anything. This method should be used
976/// only where an error can be considered a reasonable and expected return
977/// value.
978///
979/// Uses of this method are potentially indicative of design problems: If it's
980/// legitimate to do nothing while processing an "error", the error-producer
981/// might be more clearly refactored to return an Optional<T>.
982inline void consumeError(Error Err) {
983 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
984}
985
986/// Helper for converting an Error to a bool.
987///
988/// This method returns true if Err is in an error state, or false if it is
989/// in a success state. Puts Err in a checked state in both cases (unlike
990/// Error::operator bool(), which only does this for success states).
991inline bool errorToBool(Error Err) {
992 bool IsError = static_cast<bool>(Err);
993 if (IsError)
994 consumeError(std::move(Err));
995 return IsError;
996}
997
998/// Helper for Errors used as out-parameters.
999///
1000/// This helper is for use with the Error-as-out-parameter idiom, where an error
1001/// is passed to a function or method by reference, rather than being returned.
1002/// In such cases it is helpful to set the checked bit on entry to the function
1003/// so that the error can be written to (unchecked Errors abort on assignment)
1004/// and clear the checked bit on exit so that clients cannot accidentally forget
1005/// to check the result. This helper performs these actions automatically using
1006/// RAII:
1007///
1008/// @code{.cpp}
1009/// Result foo(Error &Err) {
1010/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1011/// // <body of foo>
1012/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1013/// }
1014/// @endcode
1015///
1016/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1017/// used with optional Errors (Error pointers that are allowed to be null). If
1018/// ErrorAsOutParameter took an Error reference, an instance would have to be
1019/// created inside every condition that verified that Error was non-null. By
1020/// taking an Error pointer we can just create one instance at the top of the
1021/// function.
1022class ErrorAsOutParameter {
1023public:
1024 ErrorAsOutParameter(Error *Err) : Err(Err) {
1025 // Raise the checked bit if Err is success.
1026 if (Err)
1027 (void)!!*Err;
1028 }
1029
1030 ~ErrorAsOutParameter() {
1031 // Clear the checked bit.
1032 if (Err && !*Err)
1033 *Err = Error::success();
1034 }
1035
1036private:
1037 Error *Err;
1038};
1039
1040/// Helper for Expected<T>s used as out-parameters.
1041///
1042/// See ErrorAsOutParameter.
1043template <typename T>
1044class ExpectedAsOutParameter {
1045public:
1046 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1047 : ValOrErr(ValOrErr) {
1048 if (ValOrErr)
1049 (void)!!*ValOrErr;
1050 }
1051
1052 ~ExpectedAsOutParameter() {
1053 if (ValOrErr)
1054 ValOrErr->setUnchecked();
1055 }
1056
1057private:
1058 Expected<T> *ValOrErr;
1059};
1060
1061/// This class wraps a std::error_code in a Error.
1062///
1063/// This is useful if you're writing an interface that returns a Error
1064/// (or Expected) and you want to call code that still returns
1065/// std::error_codes.
1066class ECError : public ErrorInfo<ECError> {
1067 friend Error errorCodeToError(std::error_code);
1068
1069public:
1070 void setErrorCode(std::error_code EC) { this->EC = EC; }
1071 std::error_code convertToErrorCode() const override { return EC; }
1072 void log(raw_ostream &OS) const override { OS << EC.message(); }
1073
1074 // Used by ErrorInfo::classID.
1075 static char ID;
1076
1077protected:
1078 ECError() = default;
1079 ECError(std::error_code EC) : EC(EC) {}
1080
1081 std::error_code EC;
1082};
1083
1084/// The value returned by this function can be returned from convertToErrorCode
1085/// for Error values where no sensible translation to std::error_code exists.
1086/// It should only be used in this situation, and should never be used where a
1087/// sensible conversion to std::error_code is available, as attempts to convert
1088/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1089///error to try to convert such a value).
1090std::error_code inconvertibleErrorCode();
1091
1092/// Helper for converting an std::error_code to a Error.
1093Error errorCodeToError(std::error_code EC);
1094
1095/// Helper for converting an ECError to a std::error_code.
1096///
1097/// This method requires that Err be Error() or an ECError, otherwise it
1098/// will trigger a call to abort().
1099std::error_code errorToErrorCode(Error Err);
1100
1101/// Convert an ErrorOr<T> to an Expected<T>.
1102template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1103 if (auto EC = EO.getError())
1104 return errorCodeToError(EC);
1105 return std::move(*EO);
1106}
1107
1108/// Convert an Expected<T> to an ErrorOr<T>.
1109template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1110 if (auto Err = E.takeError())
1111 return errorToErrorCode(std::move(Err));
1112 return std::move(*E);
1113}
1114
1115/// This class wraps a string in an Error.
1116///
1117/// StringError is useful in cases where the client is not expected to be able
1118/// to consume the specific error message programmatically (for example, if the
1119/// error message is to be presented to the user).
1120///
1121/// StringError can also be used when additional information is to be printed
1122/// along with a error_code message. Depending on the constructor called, this
1123/// class can either display:
1124/// 1. the error_code message (ECError behavior)
1125/// 2. a string
1126/// 3. the error_code message and a string
1127///
1128/// These behaviors are useful when subtyping is required; for example, when a
1129/// specific library needs an explicit error type. In the example below,
1130/// PDBError is derived from StringError:
1131///
1132/// @code{.cpp}
1133/// Expected<int> foo() {
1134/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1135/// "Additional information");
1136/// }
1137/// @endcode
1138///
1139class StringError : public ErrorInfo<StringError> {
1140public:
1141 static char ID;
1142
1143 // Prints EC + S and converts to EC
1144 StringError(std::error_code EC, const Twine &S = Twine());
1145
1146 // Prints S and converts to EC
1147 StringError(const Twine &S, std::error_code EC);
1148
1149 void log(raw_ostream &OS) const override;
1150 std::error_code convertToErrorCode() const override;
1151
1152 const std::string &getMessage() const { return Msg; }
1153
1154private:
1155 std::string Msg;
1156 std::error_code EC;
1157 const bool PrintMsgOnly = false;
1158};
1159
1160/// Create formatted StringError object.
1161template <typename... Ts>
1162Error createStringError(std::error_code EC, char const *Fmt,
1163 const Ts &... Vals) {
1164 std::string Buffer;
1165 raw_string_ostream Stream(Buffer);
1166 Stream << format(Fmt, Vals...);
1167 return make_error<StringError>(Stream.str(), EC);
1168}
1169
1170Error createStringError(std::error_code EC, char const *Msg);
1171
1172/// This class wraps a filename and another Error.
1173///
1174/// In some cases, an error needs to live along a 'source' name, in order to
1175/// show more detailed information to the user.
1176class FileError final : public ErrorInfo<FileError> {
1177
1178 friend Error createFileError(std::string, Error);
1179
1180public:
1181 void log(raw_ostream &OS) const override {
1182 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1182, __PRETTY_FUNCTION__))
;
1183 OS << "'" << FileName << "': ";
1184 Err->log(OS);
1185 }
1186
1187 Error takeError() { return Error(std::move(Err)); }
1188
1189 std::error_code convertToErrorCode() const override;
1190
1191 // Used by ErrorInfo::classID.
1192 static char ID;
1193
1194private:
1195 FileError(std::string F, std::unique_ptr<ErrorInfoBase> E) {
1196 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1196, __PRETTY_FUNCTION__))
;
1197 assert(!F.empty() &&((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1198, __PRETTY_FUNCTION__))
1198 "The file name provided to FileError must not be empty.")((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1198, __PRETTY_FUNCTION__))
;
1199 FileName = F;
1200 Err = std::move(E);
1201 }
1202
1203 static Error build(std::string F, Error E) {
1204 return Error(std::unique_ptr<FileError>(new FileError(F, E.takePayload())));
1205 }
1206
1207 std::string FileName;
1208 std::unique_ptr<ErrorInfoBase> Err;
1209};
1210
1211/// Concatenate a source file path and/or name with an Error. The resulting
1212/// Error is unchecked.
1213inline Error createFileError(std::string F, Error E) {
1214 return FileError::build(F, std::move(E));
1215}
1216
1217Error createFileError(std::string F, ErrorSuccess) = delete;
1218
1219/// Helper for check-and-exit error handling.
1220///
1221/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1222///
1223class ExitOnError {
1224public:
1225 /// Create an error on exit helper.
1226 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1227 : Banner(std::move(Banner)),
1228 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1229
1230 /// Set the banner string for any errors caught by operator().
1231 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1232
1233 /// Set the exit-code mapper function.
1234 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1235 this->GetExitCode = std::move(GetExitCode);
1236 }
1237
1238 /// Check Err. If it's in a failure state log the error(s) and exit.
1239 void operator()(Error Err) const { checkError(std::move(Err)); }
1240
1241 /// Check E. If it's in a success state then return the contained value. If
1242 /// it's in a failure state log the error(s) and exit.
1243 template <typename T> T operator()(Expected<T> &&E) const {
1244 checkError(E.takeError());
1245 return std::move(*E);
1246 }
1247
1248 /// Check E. If it's in a success state then return the contained reference. If
1249 /// it's in a failure state log the error(s) and exit.
1250 template <typename T> T& operator()(Expected<T&> &&E) const {
1251 checkError(E.takeError());
1252 return *E;
1253 }
1254
1255private:
1256 void checkError(Error Err) const {
1257 if (Err) {
1258 int ExitCode = GetExitCode(Err);
1259 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1260 exit(ExitCode);
1261 }
1262 }
1263
1264 std::string Banner;
1265 std::function<int(const Error &)> GetExitCode;
1266};
1267
1268/// Conversion from Error to LLVMErrorRef for C error bindings.
1269inline LLVMErrorRef wrap(Error Err) {
1270 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1271}
1272
1273/// Conversion from LLVMErrorRef to Error for C error bindings.
1274inline Error unwrap(LLVMErrorRef ErrRef) {
1275 return Error(std::unique_ptr<ErrorInfoBase>(
1276 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1277}
1278
1279} // end namespace llvm
1280
1281#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Config/abi-breaking.h"
25#include "llvm/Support/ErrorHandling.h"
26#include <algorithm>
27#include <cassert>
28#include <cstddef>
29#include <cstdint>
30#include <cstdlib>
31#include <functional>
32#include <initializer_list>
33#include <iterator>
34#include <limits>
35#include <memory>
36#include <tuple>
37#include <type_traits>
38#include <utility>
39
40#ifdef EXPENSIVE_CHECKS
41#include <random> // for std::mt19937
42#endif
43
44namespace llvm {
45
46// Only used by compiler if both template types are the same. Useful when
47// using SFINAE to test for the existence of member functions.
48template <typename T, T> struct SameType;
49
50namespace detail {
51
52template <typename RangeT>
53using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
54
55template <typename RangeT>
56using ValueOfRange = typename std::remove_reference<decltype(
57 *std::begin(std::declval<RangeT &>()))>::type;
58
59} // end namespace detail
60
61//===----------------------------------------------------------------------===//
62// Extra additions to <type_traits>
63//===----------------------------------------------------------------------===//
64
65template <typename T>
66struct negation : std::integral_constant<bool, !bool(T::value)> {};
67
68template <typename...> struct conjunction : std::true_type {};
69template <typename B1> struct conjunction<B1> : B1 {};
70template <typename B1, typename... Bn>
71struct conjunction<B1, Bn...>
72 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
73
74template <typename T> struct make_const_ptr {
75 using type =
76 typename std::add_pointer<typename std::add_const<T>::type>::type;
77};
78//===----------------------------------------------------------------------===//
79// Extra additions to <functional>
80//===----------------------------------------------------------------------===//
81
82template <class Ty> struct identity {
83 using argument_type = Ty;
84
85 Ty &operator()(Ty &self) const {
86 return self;
87 }
88 const Ty &operator()(const Ty &self) const {
89 return self;
90 }
91};
92
93template <class Ty> struct less_ptr {
94 bool operator()(const Ty* left, const Ty* right) const {
95 return *left < *right;
96 }
97};
98
99template <class Ty> struct greater_ptr {
100 bool operator()(const Ty* left, const Ty* right) const {
101 return *right < *left;
102 }
103};
104
105/// An efficient, type-erasing, non-owning reference to a callable. This is
106/// intended for use as the type of a function parameter that is not used
107/// after the function in question returns.
108///
109/// This class does not own the callable, so it is not in general safe to store
110/// a function_ref.
111template<typename Fn> class function_ref;
112
113template<typename Ret, typename ...Params>
114class function_ref<Ret(Params...)> {
115 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
116 intptr_t callable;
117
118 template<typename Callable>
119 static Ret callback_fn(intptr_t callable, Params ...params) {
120 return (*reinterpret_cast<Callable*>(callable))(
121 std::forward<Params>(params)...);
122 }
123
124public:
125 function_ref() = default;
126 function_ref(std::nullptr_t) {}
127
128 template <typename Callable>
129 function_ref(Callable &&callable,
130 typename std::enable_if<
131 !std::is_same<typename std::remove_reference<Callable>::type,
132 function_ref>::value>::type * = nullptr)
133 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
134 callable(reinterpret_cast<intptr_t>(&callable)) {}
135
136 Ret operator()(Params ...params) const {
137 return callback(callable, std::forward<Params>(params)...);
138 }
139
140 operator bool() const { return callback; }
141};
142
143// deleter - Very very very simple method that is used to invoke operator
144// delete on something. It is used like this:
145//
146// for_each(V.begin(), B.end(), deleter<Interval>);
147template <class T>
148inline void deleter(T *Ptr) {
149 delete Ptr;
150}
151
152//===----------------------------------------------------------------------===//
153// Extra additions to <iterator>
154//===----------------------------------------------------------------------===//
155
156namespace adl_detail {
157
158using std::begin;
159
160template <typename ContainerTy>
161auto adl_begin(ContainerTy &&container)
162 -> decltype(begin(std::forward<ContainerTy>(container))) {
163 return begin(std::forward<ContainerTy>(container));
164}
165
166using std::end;
167
168template <typename ContainerTy>
169auto adl_end(ContainerTy &&container)
170 -> decltype(end(std::forward<ContainerTy>(container))) {
171 return end(std::forward<ContainerTy>(container));
172}
173
174using std::swap;
175
176template <typename T>
177void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
178 std::declval<T>()))) {
179 swap(std::forward<T>(lhs), std::forward<T>(rhs));
180}
181
182} // end namespace adl_detail
183
184template <typename ContainerTy>
185auto adl_begin(ContainerTy &&container)
186 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
187 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
188}
189
190template <typename ContainerTy>
191auto adl_end(ContainerTy &&container)
192 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
193 return adl_detail::adl_end(std::forward<ContainerTy>(container));
194}
195
196template <typename T>
197void adl_swap(T &&lhs, T &&rhs) noexcept(
198 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
199 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
200}
201
202/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
203template <typename T>
204constexpr bool empty(const T &RangeOrContainer) {
205 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
206}
207
208// mapped_iterator - This is a simple iterator adapter that causes a function to
209// be applied whenever operator* is invoked on the iterator.
210
211template <typename ItTy, typename FuncTy,
212 typename FuncReturnTy =
213 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
214class mapped_iterator
215 : public iterator_adaptor_base<
216 mapped_iterator<ItTy, FuncTy>, ItTy,
217 typename std::iterator_traits<ItTy>::iterator_category,
218 typename std::remove_reference<FuncReturnTy>::type> {
219public:
220 mapped_iterator(ItTy U, FuncTy F)
221 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
222
223 ItTy getCurrent() { return this->I; }
224
225 FuncReturnTy operator*() { return F(*this->I); }
226
227private:
228 FuncTy F;
229};
230
231// map_iterator - Provide a convenient way to create mapped_iterators, just like
232// make_pair is useful for creating pairs...
233template <class ItTy, class FuncTy>
234inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
235 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
236}
237
238/// Helper to determine if type T has a member called rbegin().
239template <typename Ty> class has_rbegin_impl {
240 using yes = char[1];
241 using no = char[2];
242
243 template <typename Inner>
244 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
245
246 template <typename>
247 static no& test(...);
248
249public:
250 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
251};
252
253/// Metafunction to determine if T& or T has a member called rbegin().
254template <typename Ty>
255struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
256};
257
258// Returns an iterator_range over the given container which iterates in reverse.
259// Note that the container must have rbegin()/rend() methods for this to work.
260template <typename ContainerTy>
261auto reverse(ContainerTy &&C,
262 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
263 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
264 return make_range(C.rbegin(), C.rend());
265}
266
267// Returns a std::reverse_iterator wrapped around the given iterator.
268template <typename IteratorTy>
269std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
270 return std::reverse_iterator<IteratorTy>(It);
271}
272
273// Returns an iterator_range over the given container which iterates in reverse.
274// Note that the container must have begin()/end() methods which return
275// bidirectional iterators for this to work.
276template <typename ContainerTy>
277auto reverse(
278 ContainerTy &&C,
279 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
280 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
281 llvm::make_reverse_iterator(std::begin(C)))) {
282 return make_range(llvm::make_reverse_iterator(std::end(C)),
283 llvm::make_reverse_iterator(std::begin(C)));
284}
285
286/// An iterator adaptor that filters the elements of given inner iterators.
287///
288/// The predicate parameter should be a callable object that accepts the wrapped
289/// iterator's reference type and returns a bool. When incrementing or
290/// decrementing the iterator, it will call the predicate on each element and
291/// skip any where it returns false.
292///
293/// \code
294/// int A[] = { 1, 2, 3, 4 };
295/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
296/// // R contains { 1, 3 }.
297/// \endcode
298///
299/// Note: filter_iterator_base implements support for forward iteration.
300/// filter_iterator_impl exists to provide support for bidirectional iteration,
301/// conditional on whether the wrapped iterator supports it.
302template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
303class filter_iterator_base
304 : public iterator_adaptor_base<
305 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
306 WrappedIteratorT,
307 typename std::common_type<
308 IterTag, typename std::iterator_traits<
309 WrappedIteratorT>::iterator_category>::type> {
310 using BaseT = iterator_adaptor_base<
311 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
312 WrappedIteratorT,
313 typename std::common_type<
314 IterTag, typename std::iterator_traits<
315 WrappedIteratorT>::iterator_category>::type>;
316
317protected:
318 WrappedIteratorT End;
319 PredicateT Pred;
320
321 void findNextValid() {
322 while (this->I != End && !Pred(*this->I))
323 BaseT::operator++();
324 }
325
326 // Construct the iterator. The begin iterator needs to know where the end
327 // is, so that it can properly stop when it gets there. The end iterator only
328 // needs the predicate to support bidirectional iteration.
329 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
330 PredicateT Pred)
331 : BaseT(Begin), End(End), Pred(Pred) {
332 findNextValid();
333 }
334
335public:
336 using BaseT::operator++;
337
338 filter_iterator_base &operator++() {
339 BaseT::operator++();
340 findNextValid();
341 return *this;
342 }
343};
344
345/// Specialization of filter_iterator_base for forward iteration only.
346template <typename WrappedIteratorT, typename PredicateT,
347 typename IterTag = std::forward_iterator_tag>
348class filter_iterator_impl
349 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
350 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
351
352public:
353 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
354 PredicateT Pred)
355 : BaseT(Begin, End, Pred) {}
356};
357
358/// Specialization of filter_iterator_base for bidirectional iteration.
359template <typename WrappedIteratorT, typename PredicateT>
360class filter_iterator_impl<WrappedIteratorT, PredicateT,
361 std::bidirectional_iterator_tag>
362 : public filter_iterator_base<WrappedIteratorT, PredicateT,
363 std::bidirectional_iterator_tag> {
364 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
365 std::bidirectional_iterator_tag>;
366 void findPrevValid() {
367 while (!this->Pred(*this->I))
368 BaseT::operator--();
369 }
370
371public:
372 using BaseT::operator--;
373
374 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
375 PredicateT Pred)
376 : BaseT(Begin, End, Pred) {}
377
378 filter_iterator_impl &operator--() {
379 BaseT::operator--();
380 findPrevValid();
381 return *this;
382 }
383};
384
385namespace detail {
386
387template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
388 using type = std::forward_iterator_tag;
389};
390
391template <> struct fwd_or_bidi_tag_impl<true> {
392 using type = std::bidirectional_iterator_tag;
393};
394
395/// Helper which sets its type member to forward_iterator_tag if the category
396/// of \p IterT does not derive from bidirectional_iterator_tag, and to
397/// bidirectional_iterator_tag otherwise.
398template <typename IterT> struct fwd_or_bidi_tag {
399 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
400 std::bidirectional_iterator_tag,
401 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
402};
403
404} // namespace detail
405
406/// Defines filter_iterator to a suitable specialization of
407/// filter_iterator_impl, based on the underlying iterator's category.
408template <typename WrappedIteratorT, typename PredicateT>
409using filter_iterator = filter_iterator_impl<
410 WrappedIteratorT, PredicateT,
411 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
412
413/// Convenience function that takes a range of elements and a predicate,
414/// and return a new filter_iterator range.
415///
416/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
417/// lifetime of that temporary is not kept by the returned range object, and the
418/// temporary is going to be dropped on the floor after the make_iterator_range
419/// full expression that contains this function call.
420template <typename RangeT, typename PredicateT>
421iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
422make_filter_range(RangeT &&Range, PredicateT Pred) {
423 using FilterIteratorT =
424 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
425 return make_range(
426 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
427 std::end(std::forward<RangeT>(Range)), Pred),
428 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
429 std::end(std::forward<RangeT>(Range)), Pred));
430}
431
432/// A pseudo-iterator adaptor that is designed to implement "early increment"
433/// style loops.
434///
435/// This is *not a normal iterator* and should almost never be used directly. It
436/// is intended primarily to be used with range based for loops and some range
437/// algorithms.
438///
439/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
440/// somewhere between them. The constraints of these iterators are:
441///
442/// - On construction or after being incremented, it is comparable and
443/// dereferencable. It is *not* incrementable.
444/// - After being dereferenced, it is neither comparable nor dereferencable, it
445/// is only incrementable.
446///
447/// This means you can only dereference the iterator once, and you can only
448/// increment it once between dereferences.
449template <typename WrappedIteratorT>
450class early_inc_iterator_impl
451 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
452 WrappedIteratorT, std::input_iterator_tag> {
453 using BaseT =
454 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
455 WrappedIteratorT, std::input_iterator_tag>;
456
457 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
458
459protected:
460#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
461 bool IsEarlyIncremented = false;
462#endif
463
464public:
465 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
466
467 using BaseT::operator*;
468 typename BaseT::reference operator*() {
469#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
470 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 470, __PRETTY_FUNCTION__))
;
471 IsEarlyIncremented = true;
472#endif
473 return *(this->I)++;
474 }
475
476 using BaseT::operator++;
477 early_inc_iterator_impl &operator++() {
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 479, __PRETTY_FUNCTION__))
;
480 IsEarlyIncremented = false;
481#endif
482 return *this;
483 }
484
485 using BaseT::operator==;
486 bool operator==(const early_inc_iterator_impl &RHS) const {
487#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
488 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 488, __PRETTY_FUNCTION__))
;
489#endif
490 return BaseT::operator==(RHS);
491 }
492};
493
494/// Make a range that does early increment to allow mutation of the underlying
495/// range without disrupting iteration.
496///
497/// The underlying iterator will be incremented immediately after it is
498/// dereferenced, allowing deletion of the current node or insertion of nodes to
499/// not disrupt iteration provided they do not invalidate the *next* iterator --
500/// the current iterator can be invalidated.
501///
502/// This requires a very exact pattern of use that is only really suitable to
503/// range based for loops and other range algorithms that explicitly guarantee
504/// to dereference exactly once each element, and to increment exactly once each
505/// element.
506template <typename RangeT>
507iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
508make_early_inc_range(RangeT &&Range) {
509 using EarlyIncIteratorT =
510 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
511 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
512 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
513}
514
515// forward declarations required by zip_shortest/zip_first/zip_longest
516template <typename R, typename UnaryPredicate>
517bool all_of(R &&range, UnaryPredicate P);
518template <typename R, typename UnaryPredicate>
519bool any_of(R &&range, UnaryPredicate P);
520
521template <size_t... I> struct index_sequence;
522
523template <class... Ts> struct index_sequence_for;
524
525namespace detail {
526
527using std::declval;
528
529// We have to alias this since inlining the actual type at the usage site
530// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
531template<typename... Iters> struct ZipTupleType {
532 using type = std::tuple<decltype(*declval<Iters>())...>;
533};
534
535template <typename ZipType, typename... Iters>
536using zip_traits = iterator_facade_base<
537 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
538 typename std::iterator_traits<
539 Iters>::iterator_category...>::type,
540 // ^ TODO: Implement random access methods.
541 typename ZipTupleType<Iters...>::type,
542 typename std::iterator_traits<typename std::tuple_element<
543 0, std::tuple<Iters...>>::type>::difference_type,
544 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
545 // inner iterators have the same difference_type. It would fail if, for
546 // instance, the second field's difference_type were non-numeric while the
547 // first is.
548 typename ZipTupleType<Iters...>::type *,
549 typename ZipTupleType<Iters...>::type>;
550
551template <typename ZipType, typename... Iters>
552struct zip_common : public zip_traits<ZipType, Iters...> {
553 using Base = zip_traits<ZipType, Iters...>;
554 using value_type = typename Base::value_type;
555
556 std::tuple<Iters...> iterators;
557
558protected:
559 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
560 return value_type(*std::get<Ns>(iterators)...);
561 }
562
563 template <size_t... Ns>
564 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
565 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
571 }
572
573public:
574 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
575
576 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
577
578 const value_type operator*() const {
579 return deref(index_sequence_for<Iters...>{});
580 }
581
582 ZipType &operator++() {
583 iterators = tup_inc(index_sequence_for<Iters...>{});
584 return *reinterpret_cast<ZipType *>(this);
585 }
586
587 ZipType &operator--() {
588 static_assert(Base::IsBidirectional,
589 "All inner iterators must be at least bidirectional.");
590 iterators = tup_dec(index_sequence_for<Iters...>{});
591 return *reinterpret_cast<ZipType *>(this);
592 }
593};
594
595template <typename... Iters>
596struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
597 using Base = zip_common<zip_first<Iters...>, Iters...>;
598
599 bool operator==(const zip_first<Iters...> &other) const {
600 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
601 }
602
603 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
604};
605
606template <typename... Iters>
607class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
608 template <size_t... Ns>
609 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
610 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
611 std::get<Ns>(other.iterators)...},
612 identity<bool>{});
613 }
614
615public:
616 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
617
618 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
619
620 bool operator==(const zip_shortest<Iters...> &other) const {
621 return !test(other, index_sequence_for<Iters...>{});
622 }
623};
624
625template <template <typename...> class ItType, typename... Args> class zippy {
626public:
627 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
628 using iterator_category = typename iterator::iterator_category;
629 using value_type = typename iterator::value_type;
630 using difference_type = typename iterator::difference_type;
631 using pointer = typename iterator::pointer;
632 using reference = typename iterator::reference;
633
634private:
635 std::tuple<Args...> ts;
636
637 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
638 return iterator(std::begin(std::get<Ns>(ts))...);
639 }
640 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
641 return iterator(std::end(std::get<Ns>(ts))...);
642 }
643
644public:
645 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
646
647 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
648 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
649};
650
651} // end namespace detail
652
653/// zip iterator for two or more iteratable types.
654template <typename T, typename U, typename... Args>
655detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
656 Args &&... args) {
657 return detail::zippy<detail::zip_shortest, T, U, Args...>(
658 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
659}
660
661/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
662/// be the shortest.
663template <typename T, typename U, typename... Args>
664detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
665 Args &&... args) {
666 return detail::zippy<detail::zip_first, T, U, Args...>(
667 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
668}
669
670namespace detail {
671template <typename Iter>
672static Iter next_or_end(const Iter &I, const Iter &End) {
673 if (I == End)
674 return End;
675 return std::next(I);
676}
677
678template <typename Iter>
679static auto deref_or_none(const Iter &I, const Iter &End)
680 -> llvm::Optional<typename std::remove_const<
681 typename std::remove_reference<decltype(*I)>::type>::type> {
682 if (I == End)
683 return None;
684 return *I;
685}
686
687template <typename Iter> struct ZipLongestItemType {
688 using type =
689 llvm::Optional<typename std::remove_const<typename std::remove_reference<
690 decltype(*std::declval<Iter>())>::type>::type>;
691};
692
693template <typename... Iters> struct ZipLongestTupleType {
694 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
695};
696
697template <typename... Iters>
698class zip_longest_iterator
699 : public iterator_facade_base<
700 zip_longest_iterator<Iters...>,
701 typename std::common_type<
702 std::forward_iterator_tag,
703 typename std::iterator_traits<Iters>::iterator_category...>::type,
704 typename ZipLongestTupleType<Iters...>::type,
705 typename std::iterator_traits<typename std::tuple_element<
706 0, std::tuple<Iters...>>::type>::difference_type,
707 typename ZipLongestTupleType<Iters...>::type *,
708 typename ZipLongestTupleType<Iters...>::type> {
709public:
710 using value_type = typename ZipLongestTupleType<Iters...>::type;
711
712private:
713 std::tuple<Iters...> iterators;
714 std::tuple<Iters...> end_iterators;
715
716 template <size_t... Ns>
717 bool test(const zip_longest_iterator<Iters...> &other,
718 index_sequence<Ns...>) const {
719 return llvm::any_of(
720 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
721 std::get<Ns>(other.iterators)...},
722 identity<bool>{});
723 }
724
725 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
726 return value_type(
727 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
728 }
729
730 template <size_t... Ns>
731 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
732 return std::tuple<Iters...>(
733 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
734 }
735
736public:
737 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
738 : iterators(std::forward<Iters>(ts.first)...),
739 end_iterators(std::forward<Iters>(ts.second)...) {}
740
741 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
742
743 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
744
745 zip_longest_iterator<Iters...> &operator++() {
746 iterators = tup_inc(index_sequence_for<Iters...>{});
747 return *this;
748 }
749
750 bool operator==(const zip_longest_iterator<Iters...> &other) const {
751 return !test(other, index_sequence_for<Iters...>{});
752 }
753};
754
755template <typename... Args> class zip_longest_range {
756public:
757 using iterator =
758 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
759 using iterator_category = typename iterator::iterator_category;
760 using value_type = typename iterator::value_type;
761 using difference_type = typename iterator::difference_type;
762 using pointer = typename iterator::pointer;
763 using reference = typename iterator::reference;
764
765private:
766 std::tuple<Args...> ts;
767
768 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
769 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
770 adl_end(std::get<Ns>(ts)))...);
771 }
772
773 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778public:
779 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
780
781 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
782 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
783};
784} // namespace detail
785
786/// Iterate over two or more iterators at the same time. Iteration continues
787/// until all iterators reach the end. The llvm::Optional only contains a value
788/// if the iterator has not reached the end.
789template <typename T, typename U, typename... Args>
790detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
791 Args &&... args) {
792 return detail::zip_longest_range<T, U, Args...>(
793 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
794}
795
796/// Iterator wrapper that concatenates sequences together.
797///
798/// This can concatenate different iterators, even with different types, into
799/// a single iterator provided the value types of all the concatenated
800/// iterators expose `reference` and `pointer` types that can be converted to
801/// `ValueT &` and `ValueT *` respectively. It doesn't support more
802/// interesting/customized pointer or reference types.
803///
804/// Currently this only supports forward or higher iterator categories as
805/// inputs and always exposes a forward iterator interface.
806template <typename ValueT, typename... IterTs>
807class concat_iterator
808 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
809 std::forward_iterator_tag, ValueT> {
810 using BaseT = typename concat_iterator::iterator_facade_base;
811
812 /// We store both the current and end iterators for each concatenated
813 /// sequence in a tuple of pairs.
814 ///
815 /// Note that something like iterator_range seems nice at first here, but the
816 /// range properties are of little benefit and end up getting in the way
817 /// because we need to do mutation on the current iterators.
818 std::tuple<IterTs...> Begins;
819 std::tuple<IterTs...> Ends;
820
821 /// Attempts to increment a specific iterator.
822 ///
823 /// Returns true if it was able to increment the iterator. Returns false if
824 /// the iterator is already at the end iterator.
825 template <size_t Index> bool incrementHelper() {
826 auto &Begin = std::get<Index>(Begins);
827 auto &End = std::get<Index>(Ends);
828 if (Begin == End)
829 return false;
830
831 ++Begin;
832 return true;
833 }
834
835 /// Increments the first non-end iterator.
836 ///
837 /// It is an error to call this with all iterators at the end.
838 template <size_t... Ns> void increment(index_sequence<Ns...>) {
839 // Build a sequence of functions to increment each iterator if possible.
840 bool (concat_iterator::*IncrementHelperFns[])() = {
841 &concat_iterator::incrementHelper<Ns>...};
842
843 // Loop over them, and stop as soon as we succeed at incrementing one.
844 for (auto &IncrementHelperFn : IncrementHelperFns)
845 if ((this->*IncrementHelperFn)())
846 return;
847
848 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 848)
;
849 }
850
851 /// Returns null if the specified iterator is at the end. Otherwise,
852 /// dereferences the iterator and returns the address of the resulting
853 /// reference.
854 template <size_t Index> ValueT *getHelper() const {
855 auto &Begin = std::get<Index>(Begins);
856 auto &End = std::get<Index>(Ends);
857 if (Begin == End)
858 return nullptr;
859
860 return &*Begin;
861 }
862
863 /// Finds the first non-end iterator, dereferences, and returns the resulting
864 /// reference.
865 ///
866 /// It is an error to call this with all iterators at the end.
867 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
868 // Build a sequence of functions to get from iterator if possible.
869 ValueT *(concat_iterator::*GetHelperFns[])() const = {
870 &concat_iterator::getHelper<Ns>...};
871
872 // Loop over them, and return the first result we find.
873 for (auto &GetHelperFn : GetHelperFns)
874 if (ValueT *P = (this->*GetHelperFn)())
875 return *P;
876
877 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 877)
;
878 }
879
880public:
881 /// Constructs an iterator from a squence of ranges.
882 ///
883 /// We need the full range to know how to switch between each of the
884 /// iterators.
885 template <typename... RangeTs>
886 explicit concat_iterator(RangeTs &&... Ranges)
887 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
888
889 using BaseT::operator++;
890
891 concat_iterator &operator++() {
892 increment(index_sequence_for<IterTs...>());
893 return *this;
894 }
895
896 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
897
898 bool operator==(const concat_iterator &RHS) const {
899 return Begins == RHS.Begins && Ends == RHS.Ends;
900 }
901};
902
903namespace detail {
904
905/// Helper to store a sequence of ranges being concatenated and access them.
906///
907/// This is designed to facilitate providing actual storage when temporaries
908/// are passed into the constructor such that we can use it as part of range
909/// based for loops.
910template <typename ValueT, typename... RangeTs> class concat_range {
911public:
912 using iterator =
913 concat_iterator<ValueT,
914 decltype(std::begin(std::declval<RangeTs &>()))...>;
915
916private:
917 std::tuple<RangeTs...> Ranges;
918
919 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
920 return iterator(std::get<Ns>(Ranges)...);
921 }
922 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
923 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
924 std::end(std::get<Ns>(Ranges)))...);
925 }
926
927public:
928 concat_range(RangeTs &&... Ranges)
929 : Ranges(std::forward<RangeTs>(Ranges)...) {}
930
931 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
932 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
933};
934
935} // end namespace detail
936
937/// Concatenated range across two or more ranges.
938///
939/// The desired value type must be explicitly specified.
940template <typename ValueT, typename... RangeTs>
941detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
942 static_assert(sizeof...(RangeTs) > 1,
943 "Need more than one range to concatenate!");
944 return detail::concat_range<ValueT, RangeTs...>(
945 std::forward<RangeTs>(Ranges)...);
946}
947
948//===----------------------------------------------------------------------===//
949// Extra additions to <utility>
950//===----------------------------------------------------------------------===//
951
952/// Function object to check whether the first component of a std::pair
953/// compares less than the first component of another std::pair.
954struct less_first {
955 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
956 return lhs.first < rhs.first;
957 }
958};
959
960/// Function object to check whether the second component of a std::pair
961/// compares less than the second component of another std::pair.
962struct less_second {
963 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
964 return lhs.second < rhs.second;
965 }
966};
967
968/// \brief Function object to apply a binary function to the first component of
969/// a std::pair.
970template<typename FuncTy>
971struct on_first {
972 FuncTy func;
973
974 template <typename T>
975 auto operator()(const T &lhs, const T &rhs) const
976 -> decltype(func(lhs.first, rhs.first)) {
977 return func(lhs.first, rhs.first);
978 }
979};
980
981// A subset of N3658. More stuff can be added as-needed.
982
983/// Represents a compile-time sequence of integers.
984template <class T, T... I> struct integer_sequence {
985 using value_type = T;
986
987 static constexpr size_t size() { return sizeof...(I); }
988};
989
990/// Alias for the common case of a sequence of size_ts.
991template <size_t... I>
992struct index_sequence : integer_sequence<std::size_t, I...> {};
993
994template <std::size_t N, std::size_t... I>
995struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
996template <std::size_t... I>
997struct build_index_impl<0, I...> : index_sequence<I...> {};
998
999/// Creates a compile-time integer sequence for a parameter pack.
1000template <class... Ts>
1001struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1002
1003/// Utility type to build an inheritance chain that makes it easy to rank
1004/// overload candidates.
1005template <int N> struct rank : rank<N - 1> {};
1006template <> struct rank<0> {};
1007
1008/// traits class for checking whether type T is one of any of the given
1009/// types in the variadic list.
1010template <typename T, typename... Ts> struct is_one_of {
1011 static const bool value = false;
1012};
1013
1014template <typename T, typename U, typename... Ts>
1015struct is_one_of<T, U, Ts...> {
1016 static const bool value =
1017 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1018};
1019
1020/// traits class for checking whether type T is a base class for all
1021/// the given types in the variadic list.
1022template <typename T, typename... Ts> struct are_base_of {
1023 static const bool value = true;
1024};
1025
1026template <typename T, typename U, typename... Ts>
1027struct are_base_of<T, U, Ts...> {
1028 static const bool value =
1029 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1030};
1031
1032//===----------------------------------------------------------------------===//
1033// Extra additions for arrays
1034//===----------------------------------------------------------------------===//
1035
1036/// Find the length of an array.
1037template <class T, std::size_t N>
1038constexpr inline size_t array_lengthof(T (&)[N]) {
1039 return N;
1040}
1041
1042/// Adapt std::less<T> for array_pod_sort.
1043template<typename T>
1044inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1045 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1046 *reinterpret_cast<const T*>(P2)))
1047 return -1;
1048 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1049 *reinterpret_cast<const T*>(P1)))
1050 return 1;
1051 return 0;
1052}
1053
1054/// get_array_pod_sort_comparator - This is an internal helper function used to
1055/// get type deduction of T right.
1056template<typename T>
1057inline int (*get_array_pod_sort_comparator(const T &))
1058 (const void*, const void*) {
1059 return array_pod_sort_comparator<T>;
1060}
1061
1062/// array_pod_sort - This sorts an array with the specified start and end
1063/// extent. This is just like std::sort, except that it calls qsort instead of
1064/// using an inlined template. qsort is slightly slower than std::sort, but
1065/// most sorts are not performance critical in LLVM and std::sort has to be
1066/// template instantiated for each type, leading to significant measured code
1067/// bloat. This function should generally be used instead of std::sort where
1068/// possible.
1069///
1070/// This function assumes that you have simple POD-like types that can be
1071/// compared with std::less and can be moved with memcpy. If this isn't true,
1072/// you should use std::sort.
1073///
1074/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1075/// default to std::less.
1076template<class IteratorTy>
1077inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1078 // Don't inefficiently call qsort with one element or trigger undefined
1079 // behavior with an empty sequence.
1080 auto NElts = End - Start;
1081 if (NElts <= 1) return;
1082#ifdef EXPENSIVE_CHECKS
1083 std::mt19937 Generator(std::random_device{}());
1084 std::shuffle(Start, End, Generator);
1085#endif
1086 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1087}
1088
1089template <class IteratorTy>
1090inline void array_pod_sort(
1091 IteratorTy Start, IteratorTy End,
1092 int (*Compare)(
1093 const typename std::iterator_traits<IteratorTy>::value_type *,
1094 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1095 // Don't inefficiently call qsort with one element or trigger undefined
1096 // behavior with an empty sequence.
1097 auto NElts = End - Start;
1098 if (NElts <= 1) return;
1099#ifdef EXPENSIVE_CHECKS
1100 std::mt19937 Generator(std::random_device{}());
1101 std::shuffle(Start, End, Generator);
1102#endif
1103 qsort(&*Start, NElts, sizeof(*Start),
1104 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1105}
1106
1107// Provide wrappers to std::sort which shuffle the elements before sorting
1108// to help uncover non-deterministic behavior (PR35135).
1109template <typename IteratorTy>
1110inline void sort(IteratorTy Start, IteratorTy End) {
1111#ifdef EXPENSIVE_CHECKS
1112 std::mt19937 Generator(std::random_device{}());
1113 std::shuffle(Start, End, Generator);
1114#endif
1115 std::sort(Start, End);
1116}
1117
1118template <typename Container> inline void sort(Container &&C) {
1119 llvm::sort(adl_begin(C), adl_end(C));
1120}
1121
1122template <typename IteratorTy, typename Compare>
1123inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1124#ifdef EXPENSIVE_CHECKS
1125 std::mt19937 Generator(std::random_device{}());
1126 std::shuffle(Start, End, Generator);
1127#endif
1128 std::sort(Start, End, Comp);
1129}
1130
1131template <typename Container, typename Compare>
1132inline void sort(Container &&C, Compare Comp) {
1133 llvm::sort(adl_begin(C), adl_end(C), Comp);
1134}
1135
1136//===----------------------------------------------------------------------===//
1137// Extra additions to <algorithm>
1138//===----------------------------------------------------------------------===//
1139
1140/// For a container of pointers, deletes the pointers and then clears the
1141/// container.
1142template<typename Container>
1143void DeleteContainerPointers(Container &C) {
1144 for (auto V : C)
1145 delete V;
1146 C.clear();
1147}
1148
1149/// In a container of pairs (usually a map) whose second element is a pointer,
1150/// deletes the second elements and then clears the container.
1151template<typename Container>
1152void DeleteContainerSeconds(Container &C) {
1153 for (auto &V : C)
1154 delete V.second;
1155 C.clear();
1156}
1157
1158/// Get the size of a range. This is a wrapper function around std::distance
1159/// which is only enabled when the operation is O(1).
1160template <typename R>
1161auto size(R &&Range, typename std::enable_if<
1162 std::is_same<typename std::iterator_traits<decltype(
1163 Range.begin())>::iterator_category,
1164 std::random_access_iterator_tag>::value,
1165 void>::type * = nullptr)
1166 -> decltype(std::distance(Range.begin(), Range.end())) {
1167 return std::distance(Range.begin(), Range.end());
1168}
1169
1170/// Provide wrappers to std::for_each which take ranges instead of having to
1171/// pass begin/end explicitly.
1172template <typename R, typename UnaryPredicate>
1173UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1174 return std::for_each(adl_begin(Range), adl_end(Range), P);
1175}
1176
1177/// Provide wrappers to std::all_of which take ranges instead of having to pass
1178/// begin/end explicitly.
1179template <typename R, typename UnaryPredicate>
1180bool all_of(R &&Range, UnaryPredicate P) {
1181 return std::all_of(adl_begin(Range), adl_end(Range), P);
1182}
1183
1184/// Provide wrappers to std::any_of which take ranges instead of having to pass
1185/// begin/end explicitly.
1186template <typename R, typename UnaryPredicate>
1187bool any_of(R &&Range, UnaryPredicate P) {
1188 return std::any_of(adl_begin(Range), adl_end(Range), P);
1189}
1190
1191/// Provide wrappers to std::none_of which take ranges instead of having to pass
1192/// begin/end explicitly.
1193template <typename R, typename UnaryPredicate>
1194bool none_of(R &&Range, UnaryPredicate P) {
1195 return std::none_of(adl_begin(Range), adl_end(Range), P);
1196}
1197
1198/// Provide wrappers to std::find which take ranges instead of having to pass
1199/// begin/end explicitly.
1200template <typename R, typename T>
1201auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1202 return std::find(adl_begin(Range), adl_end(Range), Val);
1203}
1204
1205/// Provide wrappers to std::find_if which take ranges instead of having to pass
1206/// begin/end explicitly.
1207template <typename R, typename UnaryPredicate>
1208auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1209 return std::find_if(adl_begin(Range), adl_end(Range), P);
1210}
1211
1212template <typename R, typename UnaryPredicate>
1213auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217/// Provide wrappers to std::remove_if which take ranges instead of having to
1218/// pass begin/end explicitly.
1219template <typename R, typename UnaryPredicate>
1220auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1221 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1222}
1223
1224/// Provide wrappers to std::copy_if which take ranges instead of having to
1225/// pass begin/end explicitly.
1226template <typename R, typename OutputIt, typename UnaryPredicate>
1227OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1228 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1229}
1230
1231template <typename R, typename OutputIt>
1232OutputIt copy(R &&Range, OutputIt Out) {
1233 return std::copy(adl_begin(Range), adl_end(Range), Out);
1234}
1235
1236/// Wrapper function around std::find to detect if an element exists
1237/// in a container.
1238template <typename R, typename E>
1239bool is_contained(R &&Range, const E &Element) {
1240 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1241}
1242
1243/// Wrapper function around std::count to count the number of times an element
1244/// \p Element occurs in the given range \p Range.
1245template <typename R, typename E>
1246auto count(R &&Range, const E &Element) ->
1247 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1248 return std::count(adl_begin(Range), adl_end(Range), Element);
1249}
1250
1251/// Wrapper function around std::count_if to count the number of times an
1252/// element satisfying a given predicate occurs in a range.
1253template <typename R, typename UnaryPredicate>
1254auto count_if(R &&Range, UnaryPredicate P) ->
1255 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1256 return std::count_if(adl_begin(Range), adl_end(Range), P);
1257}
1258
1259/// Wrapper function around std::transform to apply a function to a range and
1260/// store the result elsewhere.
1261template <typename R, typename OutputIt, typename UnaryPredicate>
1262OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1263 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1264}
1265
1266/// Provide wrappers to std::partition which take ranges instead of having to
1267/// pass begin/end explicitly.
1268template <typename R, typename UnaryPredicate>
1269auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1270 return std::partition(adl_begin(Range), adl_end(Range), P);
1271}
1272
1273/// Provide wrappers to std::lower_bound which take ranges instead of having to
1274/// pass begin/end explicitly.
1275template <typename R, typename ForwardIt>
1276auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1277 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1278}
1279
1280template <typename R, typename ForwardIt, typename Compare>
1281auto lower_bound(R &&Range, ForwardIt I, Compare C)
1282 -> decltype(adl_begin(Range)) {
1283 return std::lower_bound(adl_begin(Range), adl_end(Range), I, C);
1284}
1285
1286/// Provide wrappers to std::upper_bound which take ranges instead of having to
1287/// pass begin/end explicitly.
1288template <typename R, typename ForwardIt>
1289auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1290 return std::upper_bound(adl_begin(Range), adl_end(Range), I);
1291}
1292
1293template <typename R, typename ForwardIt, typename Compare>
1294auto upper_bound(R &&Range, ForwardIt I, Compare C)
1295 -> decltype(adl_begin(Range)) {
1296 return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
1297}
1298/// Wrapper function around std::equal to detect if all elements
1299/// in a container are same.
1300template <typename R>
1301bool is_splat(R &&Range) {
1302 size_t range_size = size(Range);
1303 return range_size != 0 && (range_size == 1 ||
1304 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1305}
1306
1307/// Given a range of type R, iterate the entire range and return a
1308/// SmallVector with elements of the vector. This is useful, for example,
1309/// when you want to iterate a range and then sort the results.
1310template <unsigned Size, typename R>
1311SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1312to_vector(R &&Range) {
1313 return {adl_begin(Range), adl_end(Range)};
1314}
1315
1316/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1317/// `erase_if` which is equivalent to:
1318///
1319/// C.erase(remove_if(C, pred), C.end());
1320///
1321/// This version works for any container with an erase method call accepting
1322/// two iterators.
1323template <typename Container, typename UnaryPredicate>
1324void erase_if(Container &C, UnaryPredicate P) {
1325 C.erase(remove_if(C, P), C.end());
1326}
1327
1328//===----------------------------------------------------------------------===//
1329// Extra additions to <memory>
1330//===----------------------------------------------------------------------===//
1331
1332// Implement make_unique according to N3656.
1333
1334/// Constructs a `new T()` with the given args and returns a
1335/// `unique_ptr<T>` which owns the object.
1336///
1337/// Example:
1338///
1339/// auto p = make_unique<int>();
1340/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1341template <class T, class... Args>
1342typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1343make_unique(Args &&... args) {
1344 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
4
Memory is allocated
1345}
1346
1347/// Constructs a `new T[n]` with the given args and returns a
1348/// `unique_ptr<T[]>` which owns the object.
1349///
1350/// \param n size of the new array.
1351///
1352/// Example:
1353///
1354/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1355template <class T>
1356typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1357 std::unique_ptr<T>>::type
1358make_unique(size_t n) {
1359 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1360}
1361
1362/// This function isn't used and is only here to provide better compile errors.
1363template <class T, class... Args>
1364typename std::enable_if<std::extent<T>::value != 0>::type
1365make_unique(Args &&...) = delete;
1366
1367struct FreeDeleter {
1368 void operator()(void* v) {
1369 ::free(v);
1370 }
1371};
1372
1373template<typename First, typename Second>
1374struct pair_hash {
1375 size_t operator()(const std::pair<First, Second> &P) const {
1376 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1377 }
1378};
1379
1380/// A functor like C++14's std::less<void> in its absence.
1381struct less {
1382 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1383 return std::forward<A>(a) < std::forward<B>(b);
1384 }
1385};
1386
1387/// A functor like C++14's std::equal<void> in its absence.
1388struct equal {
1389 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1390 return std::forward<A>(a) == std::forward<B>(b);
1391 }
1392};
1393
1394/// Binary functor that adapts to any other binary functor after dereferencing
1395/// operands.
1396template <typename T> struct deref {
1397 T func;
1398
1399 // Could be further improved to cope with non-derivable functors and
1400 // non-binary functors (should be a variadic template member function
1401 // operator()).
1402 template <typename A, typename B>
1403 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1404 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1404, __PRETTY_FUNCTION__))
;
1405 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1405, __PRETTY_FUNCTION__))
;
1406 return func(*lhs, *rhs);
1407 }
1408};
1409
1410namespace detail {
1411
1412template <typename R> class enumerator_iter;
1413
1414template <typename R> struct result_pair {
1415 friend class enumerator_iter<R>;
1416
1417 result_pair() = default;
1418 result_pair(std::size_t Index, IterOfRange<R> Iter)
1419 : Index(Index), Iter(Iter) {}
1420
1421 result_pair<R> &operator=(const result_pair<R> &Other) {
1422 Index = Other.Index;
1423 Iter = Other.Iter;
1424 return *this;
1425 }
1426
1427 std::size_t index() const { return Index; }
1428 const ValueOfRange<R> &value() const { return *Iter; }
1429 ValueOfRange<R> &value() { return *Iter; }
1430
1431private:
1432 std::size_t Index = std::numeric_limits<std::size_t>::max();
1433 IterOfRange<R> Iter;
1434};
1435
1436template <typename R>
1437class enumerator_iter
1438 : public iterator_facade_base<
1439 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1440 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1441 typename std::iterator_traits<IterOfRange<R>>::pointer,
1442 typename std::iterator_traits<IterOfRange<R>>::reference> {
1443 using result_type = result_pair<R>;
1444
1445public:
1446 explicit enumerator_iter(IterOfRange<R> EndIter)
1447 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1448
1449 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1450 : Result(Index, Iter) {}
1451
1452 result_type &operator*() { return Result; }
1453 const result_type &operator*() const { return Result; }
1454
1455 enumerator_iter<R> &operator++() {
1456 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1456, __PRETTY_FUNCTION__))
;
1457 ++Result.Iter;
1458 ++Result.Index;
1459 return *this;
1460 }
1461
1462 bool operator==(const enumerator_iter<R> &RHS) const {
1463 // Don't compare indices here, only iterators. It's possible for an end
1464 // iterator to have different indices depending on whether it was created
1465 // by calling std::end() versus incrementing a valid iterator.
1466 return Result.Iter == RHS.Result.Iter;
1467 }
1468
1469 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1470 Result = Other.Result;
1471 return *this;
1472 }
1473
1474private:
1475 result_type Result;
1476};
1477
1478template <typename R> class enumerator {
1479public:
1480 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1481
1482 enumerator_iter<R> begin() {
1483 return enumerator_iter<R>(0, std::begin(TheRange));
1484 }
1485
1486 enumerator_iter<R> end() {
1487 return enumerator_iter<R>(std::end(TheRange));
1488 }
1489
1490private:
1491 R TheRange;
1492};
1493
1494} // end namespace detail
1495
1496/// Given an input range, returns a new range whose values are are pair (A,B)
1497/// such that A is the 0-based index of the item in the sequence, and B is
1498/// the value from the original sequence. Example:
1499///
1500/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1501/// for (auto X : enumerate(Items)) {
1502/// printf("Item %d - %c\n", X.index(), X.value());
1503/// }
1504///
1505/// Output:
1506/// Item 0 - A
1507/// Item 1 - B
1508/// Item 2 - C
1509/// Item 3 - D
1510///
1511template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1512 return detail::enumerator<R>(std::forward<R>(TheRange));
1513}
1514
1515namespace detail {
1516
1517template <typename F, typename Tuple, std::size_t... I>
1518auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1519 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1520 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1521}
1522
1523} // end namespace detail
1524
1525/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1526/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1527/// return the result.
1528template <typename F, typename Tuple>
1529auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1530 std::forward<F>(f), std::forward<Tuple>(t),
1531 build_index_impl<
1532 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1533 using Indices = build_index_impl<
1534 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1535
1536 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1537 Indices{});
1538}
1539
1540/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1541/// time. Not meant for use with random-access iterators.
1542template <typename IterTy>
1543bool hasNItems(
1544 IterTy &&Begin, IterTy &&End, unsigned N,
1545 typename std::enable_if<
1546 !std::is_same<
1547 typename std::iterator_traits<typename std::remove_reference<
1548 decltype(Begin)>::type>::iterator_category,
1549 std::random_access_iterator_tag>::value,
1550 void>::type * = nullptr) {
1551 for (; N; --N, ++Begin)
1552 if (Begin == End)
1553 return false; // Too few.
1554 return Begin == End;
1555}
1556
1557/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1558/// time. Not meant for use with random-access iterators.
1559template <typename IterTy>
1560bool hasNItemsOrMore(
1561 IterTy &&Begin, IterTy &&End, unsigned N,
1562 typename std::enable_if<
1563 !std::is_same<
1564 typename std::iterator_traits<typename std::remove_reference<
1565 decltype(Begin)>::type>::iterator_category,
1566 std::random_access_iterator_tag>::value,
1567 void>::type * = nullptr) {
1568 for (; N; --N, ++Begin)
1569 if (Begin == End)
1570 return false; // Too few.
1571 return true;
1572}
1573
1574} // end namespace llvm
1575
1576#endif // LLVM_ADT_STLEXTRAS_H