Bug Summary

File:lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp
Warning:line 1084, column 33
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name PdbAstBuilder.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -isystem /usr/include/libxml2 -D HAVE_ROUND -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/lldb/source/Plugins/SymbolFile/NativePDB -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/lldb/source/Plugins/SymbolFile/NativePDB -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/lldb/include -I tools/lldb/include -I include -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/include -I /usr/include/python3.9 -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/clang/include -I tools/lldb/../clang/include -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/lldb/source -I tools/lldb/source -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-deprecated-declarations -Wno-unknown-pragmas -Wno-strict-aliasing -Wno-deprecated-register -Wno-vla-extension -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-01-19-134126-35450-1 -x c++ /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp

/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp

1#include "PdbAstBuilder.h"
2
3#include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
4#include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h"
5#include "llvm/DebugInfo/CodeView/RecordName.h"
6#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
7#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
8#include "llvm/DebugInfo/CodeView/SymbolRecordHelpers.h"
9#include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
10#include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
11#include "llvm/DebugInfo/PDB/Native/DbiStream.h"
12#include "llvm/DebugInfo/PDB/Native/PublicsStream.h"
13#include "llvm/DebugInfo/PDB/Native/SymbolStream.h"
14#include "llvm/DebugInfo/PDB/Native/TpiStream.h"
15#include "llvm/Demangle/MicrosoftDemangle.h"
16
17#include "Plugins/ExpressionParser/Clang/ClangASTMetadata.h"
18#include "Plugins/ExpressionParser/Clang/ClangUtil.h"
19#include "Plugins/Language/CPlusPlus/MSVCUndecoratedNameParser.h"
20#include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
21#include "lldb/Core/Module.h"
22#include "lldb/Symbol/ObjectFile.h"
23#include "lldb/Utility/LLDBAssert.h"
24
25#include "PdbUtil.h"
26#include "UdtRecordCompleter.h"
27
28using namespace lldb_private;
29using namespace lldb_private::npdb;
30using namespace llvm::codeview;
31using namespace llvm::pdb;
32
33namespace {
34struct CreateMethodDecl : public TypeVisitorCallbacks {
35 CreateMethodDecl(PdbIndex &m_index, TypeSystemClang &m_clang,
36 TypeIndex func_type_index,
37 clang::FunctionDecl *&function_decl,
38 lldb::opaque_compiler_type_t parent_ty,
39 llvm::StringRef proc_name, CompilerType func_ct)
40 : m_index(m_index), m_clang(m_clang), func_type_index(func_type_index),
41 function_decl(function_decl), parent_ty(parent_ty),
42 proc_name(proc_name), func_ct(func_ct) {}
43 PdbIndex &m_index;
44 TypeSystemClang &m_clang;
45 TypeIndex func_type_index;
46 clang::FunctionDecl *&function_decl;
47 lldb::opaque_compiler_type_t parent_ty;
48 llvm::StringRef proc_name;
49 CompilerType func_ct;
50
51 llvm::Error visitKnownMember(CVMemberRecord &cvr,
52 OverloadedMethodRecord &overloaded) override {
53 TypeIndex method_list_idx = overloaded.MethodList;
54
55 CVType method_list_type = m_index.tpi().getType(method_list_idx);
56 assert(method_list_type.kind() == LF_METHODLIST)(static_cast <bool> (method_list_type.kind() == LF_METHODLIST
) ? void (0) : __assert_fail ("method_list_type.kind() == LF_METHODLIST"
, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 56, __extension__ __PRETTY_FUNCTION__))
;
57
58 MethodOverloadListRecord method_list;
59 llvm::cantFail(TypeDeserializer::deserializeAs<MethodOverloadListRecord>(
60 method_list_type, method_list));
61
62 for (const OneMethodRecord &method : method_list.Methods) {
63 if (method.getType().getIndex() == func_type_index.getIndex())
64 AddMethod(overloaded.Name, method.getAccess(), method.getOptions(),
65 method.Attrs);
66 }
67
68 return llvm::Error::success();
69 }
70
71 llvm::Error visitKnownMember(CVMemberRecord &cvr,
72 OneMethodRecord &record) override {
73 AddMethod(record.getName(), record.getAccess(), record.getOptions(),
74 record.Attrs);
75 return llvm::Error::success();
76 }
77
78 void AddMethod(llvm::StringRef name, MemberAccess access,
79 MethodOptions options, MemberAttributes attrs) {
80 if (name != proc_name || function_decl)
81 return;
82 lldb::AccessType access_type = TranslateMemberAccess(access);
83 bool is_virtual = attrs.isVirtual();
84 bool is_static = attrs.isStatic();
85 bool is_artificial = (options & MethodOptions::CompilerGenerated) ==
86 MethodOptions::CompilerGenerated;
87 function_decl = m_clang.AddMethodToCXXRecordType(
88 parent_ty, proc_name,
89 /*mangled_name=*/nullptr, func_ct, /*access=*/access_type,
90 /*is_virtual=*/is_virtual, /*is_static=*/is_static,
91 /*is_inline=*/false, /*is_explicit=*/false,
92 /*is_attr_used=*/false, /*is_artificial=*/is_artificial);
93 }
94};
95} // namespace
96
97static llvm::Optional<PdbCompilandSymId> FindSymbolScope(PdbIndex &index,
98 PdbCompilandSymId id) {
99 CVSymbol sym = index.ReadSymbolRecord(id);
100 if (symbolOpensScope(sym.kind())) {
101 // If this exact symbol opens a scope, we can just directly access its
102 // parent.
103 id.offset = getScopeParentOffset(sym);
104 // Global symbols have parent offset of 0. Return llvm::None to indicate
105 // this.
106 if (id.offset == 0)
107 return llvm::None;
108 return id;
109 }
110
111 // Otherwise we need to start at the beginning and iterate forward until we
112 // reach (or pass) this particular symbol
113 CompilandIndexItem &cii = index.compilands().GetOrCreateCompiland(id.modi);
114 const CVSymbolArray &syms = cii.m_debug_stream.getSymbolArray();
115
116 auto begin = syms.begin();
117 auto end = syms.at(id.offset);
118 std::vector<PdbCompilandSymId> scope_stack;
119
120 while (begin != end) {
121 if (id.offset == begin.offset()) {
122 // We have a match! Return the top of the stack
123 if (scope_stack.empty())
124 return llvm::None;
125 return scope_stack.back();
126 }
127 if (begin.offset() > id.offset) {
128 // We passed it. We couldn't even find this symbol record.
129 lldbassert(false && "Invalid compiland symbol id!")lldb_private::lldb_assert(static_cast<bool>(false &&
"Invalid compiland symbol id!"), "false && \"Invalid compiland symbol id!\""
, __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 129)
;
130 return llvm::None;
131 }
132
133 // We haven't found the symbol yet. Check if we need to open or close the
134 // scope stack.
135 if (symbolOpensScope(begin->kind())) {
136 // We can use the end offset of the scope to determine whether or not
137 // we can just outright skip this entire scope.
138 uint32_t scope_end = getScopeEndOffset(*begin);
139 if (scope_end < id.modi) {
140 begin = syms.at(scope_end);
141 } else {
142 // The symbol we're looking for is somewhere in this scope.
143 scope_stack.emplace_back(id.modi, begin.offset());
144 }
145 } else if (symbolEndsScope(begin->kind())) {
146 scope_stack.pop_back();
147 }
148 ++begin;
149 }
150
151 return llvm::None;
152}
153
154static clang::TagTypeKind TranslateUdtKind(const TagRecord &cr) {
155 switch (cr.Kind) {
156 case TypeRecordKind::Class:
157 return clang::TTK_Class;
158 case TypeRecordKind::Struct:
159 return clang::TTK_Struct;
160 case TypeRecordKind::Union:
161 return clang::TTK_Union;
162 case TypeRecordKind::Interface:
163 return clang::TTK_Interface;
164 case TypeRecordKind::Enum:
165 return clang::TTK_Enum;
166 default:
167 lldbassert(false && "Invalid tag record kind!")lldb_private::lldb_assert(static_cast<bool>(false &&
"Invalid tag record kind!"), "false && \"Invalid tag record kind!\""
, __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 167)
;
168 return clang::TTK_Struct;
169 }
170}
171
172static bool IsCVarArgsFunction(llvm::ArrayRef<TypeIndex> args) {
173 if (args.empty())
174 return false;
175 return args.back() == TypeIndex::None();
176}
177
178static bool
179AnyScopesHaveTemplateParams(llvm::ArrayRef<llvm::ms_demangle::Node *> scopes) {
180 for (llvm::ms_demangle::Node *n : scopes) {
181 auto *idn = static_cast<llvm::ms_demangle::IdentifierNode *>(n);
182 if (idn->TemplateParams)
183 return true;
184 }
185 return false;
186}
187
188static llvm::Optional<clang::CallingConv>
189TranslateCallingConvention(llvm::codeview::CallingConvention conv) {
190 using CC = llvm::codeview::CallingConvention;
191 switch (conv) {
192
193 case CC::NearC:
194 case CC::FarC:
195 return clang::CallingConv::CC_C;
196 case CC::NearPascal:
197 case CC::FarPascal:
198 return clang::CallingConv::CC_X86Pascal;
199 case CC::NearFast:
200 case CC::FarFast:
201 return clang::CallingConv::CC_X86FastCall;
202 case CC::NearStdCall:
203 case CC::FarStdCall:
204 return clang::CallingConv::CC_X86StdCall;
205 case CC::ThisCall:
206 return clang::CallingConv::CC_X86ThisCall;
207 case CC::NearVector:
208 return clang::CallingConv::CC_X86VectorCall;
209 default:
210 return llvm::None;
211 }
212}
213
214static llvm::Optional<CVTagRecord>
215GetNestedTagDefinition(const NestedTypeRecord &Record,
216 const CVTagRecord &parent, TpiStream &tpi) {
217 // An LF_NESTTYPE is essentially a nested typedef / using declaration, but it
218 // is also used to indicate the primary definition of a nested class. That is
219 // to say, if you have:
220 // struct A {
221 // struct B {};
222 // using C = B;
223 // };
224 // Then in the debug info, this will appear as:
225 // LF_STRUCTURE `A::B` [type index = N]
226 // LF_STRUCTURE `A`
227 // LF_NESTTYPE [name = `B`, index = N]
228 // LF_NESTTYPE [name = `C`, index = N]
229 // In order to accurately reconstruct the decl context hierarchy, we need to
230 // know which ones are actual definitions and which ones are just aliases.
231
232 // If it's a simple type, then this is something like `using foo = int`.
233 if (Record.Type.isSimple())
234 return llvm::None;
235
236 CVType cvt = tpi.getType(Record.Type);
237
238 if (!IsTagRecord(cvt))
239 return llvm::None;
240
241 // If it's an inner definition, then treat whatever name we have here as a
242 // single component of a mangled name. So we can inject it into the parent's
243 // mangled name to see if it matches.
244 CVTagRecord child = CVTagRecord::create(cvt);
245 std::string qname = std::string(parent.asTag().getUniqueName());
246 if (qname.size() < 4 || child.asTag().getUniqueName().size() < 4)
247 return llvm::None;
248
249 // qname[3] is the tag type identifier (struct, class, union, etc). Since the
250 // inner tag type is not necessarily the same as the outer tag type, re-write
251 // it to match the inner tag type.
252 qname[3] = child.asTag().getUniqueName()[3];
253 std::string piece;
254 if (qname[3] == 'W')
255 piece = "4";
256 piece += Record.Name;
257 piece.push_back('@');
258 qname.insert(4, std::move(piece));
259 if (qname != child.asTag().UniqueName)
260 return llvm::None;
261
262 return std::move(child);
263}
264
265static bool IsAnonymousNamespaceName(llvm::StringRef name) {
266 return name == "`anonymous namespace'" || name == "`anonymous-namespace'";
267}
268
269PdbAstBuilder::PdbAstBuilder(ObjectFile &obj, PdbIndex &index, TypeSystemClang &clang)
270 : m_index(index), m_clang(clang) {
271 BuildParentMap();
272}
273
274lldb_private::CompilerDeclContext PdbAstBuilder::GetTranslationUnitDecl() {
275 return ToCompilerDeclContext(*m_clang.GetTranslationUnitDecl());
276}
277
278std::pair<clang::DeclContext *, std::string>
279PdbAstBuilder::CreateDeclInfoForType(const TagRecord &record, TypeIndex ti) {
280 // FIXME: Move this to GetDeclContextContainingUID.
281 if (!record.hasUniqueName())
282 return CreateDeclInfoForUndecoratedName(record.Name);
283
284 llvm::ms_demangle::Demangler demangler;
285 StringView sv(record.UniqueName.begin(), record.UniqueName.size());
286 llvm::ms_demangle::TagTypeNode *ttn = demangler.parseTagUniqueName(sv);
287 if (demangler.Error)
288 return {m_clang.GetTranslationUnitDecl(), std::string(record.UniqueName)};
289
290 llvm::ms_demangle::IdentifierNode *idn =
291 ttn->QualifiedName->getUnqualifiedIdentifier();
292 std::string uname = idn->toString(llvm::ms_demangle::OF_NoTagSpecifier);
293
294 llvm::ms_demangle::NodeArrayNode *name_components =
295 ttn->QualifiedName->Components;
296 llvm::ArrayRef<llvm::ms_demangle::Node *> scopes(name_components->Nodes,
297 name_components->Count - 1);
298
299 clang::DeclContext *context = m_clang.GetTranslationUnitDecl();
300
301 // If this type doesn't have a parent type in the debug info, then the best we
302 // can do is to say that it's either a series of namespaces (if the scope is
303 // non-empty), or the translation unit (if the scope is empty).
304 auto parent_iter = m_parent_types.find(ti);
305 if (parent_iter == m_parent_types.end()) {
306 if (scopes.empty())
307 return {context, uname};
308
309 // If there is no parent in the debug info, but some of the scopes have
310 // template params, then this is a case of bad debug info. See, for
311 // example, llvm.org/pr39607. We don't want to create an ambiguity between
312 // a NamespaceDecl and a CXXRecordDecl, so instead we create a class at
313 // global scope with the fully qualified name.
314 if (AnyScopesHaveTemplateParams(scopes))
315 return {context, std::string(record.Name)};
316
317 for (llvm::ms_demangle::Node *scope : scopes) {
318 auto *nii = static_cast<llvm::ms_demangle::NamedIdentifierNode *>(scope);
319 std::string str = nii->toString();
320 context = GetOrCreateNamespaceDecl(str.c_str(), *context);
321 }
322 return {context, uname};
323 }
324
325 // Otherwise, all we need to do is get the parent type of this type and
326 // recurse into our lazy type creation / AST reconstruction logic to get an
327 // LLDB TypeSP for the parent. This will cause the AST to automatically get
328 // the right DeclContext created for any parent.
329 clang::QualType parent_qt = GetOrCreateType(parent_iter->second);
330
331 context = clang::TagDecl::castToDeclContext(parent_qt->getAsTagDecl());
332 return {context, uname};
333}
334
335void PdbAstBuilder::BuildParentMap() {
336 LazyRandomTypeCollection &types = m_index.tpi().typeCollection();
337
338 llvm::DenseMap<TypeIndex, TypeIndex> forward_to_full;
339 llvm::DenseMap<TypeIndex, TypeIndex> full_to_forward;
340
341 struct RecordIndices {
342 TypeIndex forward;
343 TypeIndex full;
344 };
345
346 llvm::StringMap<RecordIndices> record_indices;
347
348 for (auto ti = types.getFirst(); ti; ti = types.getNext(*ti)) {
349 CVType type = types.getType(*ti);
350 if (!IsTagRecord(type))
351 continue;
352
353 CVTagRecord tag = CVTagRecord::create(type);
354
355 RecordIndices &indices = record_indices[tag.asTag().getUniqueName()];
356 if (tag.asTag().isForwardRef())
357 indices.forward = *ti;
358 else
359 indices.full = *ti;
360
361 if (indices.full != TypeIndex::None() &&
362 indices.forward != TypeIndex::None()) {
363 forward_to_full[indices.forward] = indices.full;
364 full_to_forward[indices.full] = indices.forward;
365 }
366
367 // We're looking for LF_NESTTYPE records in the field list, so ignore
368 // forward references (no field list), and anything without a nested class
369 // (since there won't be any LF_NESTTYPE records).
370 if (tag.asTag().isForwardRef() || !tag.asTag().containsNestedClass())
371 continue;
372
373 struct ProcessTpiStream : public TypeVisitorCallbacks {
374 ProcessTpiStream(PdbIndex &index, TypeIndex parent,
375 const CVTagRecord &parent_cvt,
376 llvm::DenseMap<TypeIndex, TypeIndex> &parents)
377 : index(index), parents(parents), parent(parent),
378 parent_cvt(parent_cvt) {}
379
380 PdbIndex &index;
381 llvm::DenseMap<TypeIndex, TypeIndex> &parents;
382
383 unsigned unnamed_type_index = 1;
384 TypeIndex parent;
385 const CVTagRecord &parent_cvt;
386
387 llvm::Error visitKnownMember(CVMemberRecord &CVR,
388 NestedTypeRecord &Record) override {
389 std::string unnamed_type_name;
390 if (Record.Name.empty()) {
391 unnamed_type_name =
392 llvm::formatv("<unnamed-type-$S{0}>", unnamed_type_index).str();
393 Record.Name = unnamed_type_name;
394 ++unnamed_type_index;
395 }
396 llvm::Optional<CVTagRecord> tag =
397 GetNestedTagDefinition(Record, parent_cvt, index.tpi());
398 if (!tag)
399 return llvm::ErrorSuccess();
400
401 parents[Record.Type] = parent;
402 return llvm::ErrorSuccess();
403 }
404 };
405
406 CVType field_list = m_index.tpi().getType(tag.asTag().FieldList);
407 ProcessTpiStream process(m_index, *ti, tag, m_parent_types);
408 llvm::Error error = visitMemberRecordStream(field_list.data(), process);
409 if (error)
410 llvm::consumeError(std::move(error));
411 }
412
413 // Now that we know the forward -> full mapping of all type indices, we can
414 // re-write all the indices. At the end of this process, we want a mapping
415 // consisting of fwd -> full and full -> full for all child -> parent indices.
416 // We can re-write the values in place, but for the keys, we must save them
417 // off so that we don't modify the map in place while also iterating it.
418 std::vector<TypeIndex> full_keys;
419 std::vector<TypeIndex> fwd_keys;
420 for (auto &entry : m_parent_types) {
421 TypeIndex key = entry.first;
422 TypeIndex value = entry.second;
423
424 auto iter = forward_to_full.find(value);
425 if (iter != forward_to_full.end())
426 entry.second = iter->second;
427
428 iter = forward_to_full.find(key);
429 if (iter != forward_to_full.end())
430 fwd_keys.push_back(key);
431 else
432 full_keys.push_back(key);
433 }
434 for (TypeIndex fwd : fwd_keys) {
435 TypeIndex full = forward_to_full[fwd];
436 m_parent_types[full] = m_parent_types[fwd];
437 }
438 for (TypeIndex full : full_keys) {
439 TypeIndex fwd = full_to_forward[full];
440 m_parent_types[fwd] = m_parent_types[full];
441 }
442
443 // Now that
444}
445
446static bool isLocalVariableType(SymbolKind K) {
447 switch (K) {
448 case S_REGISTER:
449 case S_REGREL32:
450 case S_LOCAL:
451 return true;
452 default:
453 break;
454 }
455 return false;
456}
457
458static std::string
459RenderScopeList(llvm::ArrayRef<llvm::ms_demangle::Node *> nodes) {
460 lldbassert(!nodes.empty())lldb_private::lldb_assert(static_cast<bool>(!nodes.empty
()), "!nodes.empty()", __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 460)
;
461
462 std::string result = nodes.front()->toString();
463 nodes = nodes.drop_front();
464 while (!nodes.empty()) {
465 result += "::";
466 result += nodes.front()->toString(llvm::ms_demangle::OF_NoTagSpecifier);
467 nodes = nodes.drop_front();
468 }
469 return result;
470}
471
472static llvm::Optional<PublicSym32> FindPublicSym(const SegmentOffset &addr,
473 SymbolStream &syms,
474 PublicsStream &publics) {
475 llvm::FixedStreamArray<ulittle32_t> addr_map = publics.getAddressMap();
476 auto iter = std::lower_bound(
477 addr_map.begin(), addr_map.end(), addr,
478 [&](const ulittle32_t &x, const SegmentOffset &y) {
479 CVSymbol s1 = syms.readRecord(x);
480 lldbassert(s1.kind() == S_PUB32)lldb_private::lldb_assert(static_cast<bool>(s1.kind() ==
S_PUB32), "s1.kind() == S_PUB32", __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 480)
;
481 PublicSym32 p1;
482 llvm::cantFail(SymbolDeserializer::deserializeAs<PublicSym32>(s1, p1));
483 if (p1.Segment < y.segment)
484 return true;
485 return p1.Offset < y.offset;
486 });
487 if (iter == addr_map.end())
488 return llvm::None;
489 CVSymbol sym = syms.readRecord(*iter);
490 lldbassert(sym.kind() == S_PUB32)lldb_private::lldb_assert(static_cast<bool>(sym.kind() ==
S_PUB32), "sym.kind() == S_PUB32", __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 490)
;
491 PublicSym32 p;
492 llvm::cantFail(SymbolDeserializer::deserializeAs<PublicSym32>(sym, p));
493 if (p.Segment == addr.segment && p.Offset == addr.offset)
494 return p;
495 return llvm::None;
496}
497
498clang::Decl *PdbAstBuilder::GetOrCreateSymbolForId(PdbCompilandSymId id) {
499 CVSymbol cvs = m_index.ReadSymbolRecord(id);
500
501 if (isLocalVariableType(cvs.kind())) {
12
Taking false branch
502 clang::DeclContext *scope = GetParentDeclContext(id);
503 clang::Decl *scope_decl = clang::Decl::castFromDeclContext(scope);
504 PdbCompilandSymId scope_id(id.modi, m_decl_to_status[scope_decl].uid);
505 return GetOrCreateVariableDecl(scope_id, id);
506 }
507
508 switch (cvs.kind()) {
13
Control jumps to 'case S_LPROC32:' at line 510
509 case S_GPROC32:
510 case S_LPROC32:
511 return GetOrCreateFunctionDecl(id);
14
Calling 'PdbAstBuilder::GetOrCreateFunctionDecl'
512 case S_GDATA32:
513 case S_LDATA32:
514 case S_GTHREAD32:
515 case S_CONSTANT:
516 // global variable
517 return nullptr;
518 case S_BLOCK32:
519 return GetOrCreateBlockDecl(id);
520 default:
521 return nullptr;
522 }
523}
524
525llvm::Optional<CompilerDecl> PdbAstBuilder::GetOrCreateDeclForUid(PdbSymUid uid) {
526 if (clang::Decl *result = TryGetDecl(uid))
527 return ToCompilerDecl(*result);
528
529 clang::Decl *result = nullptr;
530 switch (uid.kind()) {
531 case PdbSymUidKind::CompilandSym:
532 result = GetOrCreateSymbolForId(uid.asCompilandSym());
533 break;
534 case PdbSymUidKind::Type: {
535 clang::QualType qt = GetOrCreateType(uid.asTypeSym());
536 if (auto *tag = qt->getAsTagDecl()) {
537 result = tag;
538 break;
539 }
540 return llvm::None;
541 }
542 default:
543 return llvm::None;
544 }
545 m_uid_to_decl[toOpaqueUid(uid)] = result;
546 return ToCompilerDecl(*result);
547}
548
549clang::DeclContext *PdbAstBuilder::GetOrCreateDeclContextForUid(PdbSymUid uid) {
550 if (uid.kind() == PdbSymUidKind::CompilandSym) {
551 if (uid.asCompilandSym().offset == 0)
552 return FromCompilerDeclContext(GetTranslationUnitDecl());
553 }
554 auto option = GetOrCreateDeclForUid(uid);
555 if (!option)
556 return nullptr;
557 clang::Decl *decl = FromCompilerDecl(option.getValue());
558 if (!decl)
559 return nullptr;
560
561 return clang::Decl::castToDeclContext(decl);
562}
563
564std::pair<clang::DeclContext *, std::string>
565PdbAstBuilder::CreateDeclInfoForUndecoratedName(llvm::StringRef name) {
566 MSVCUndecoratedNameParser parser(name);
567 llvm::ArrayRef<MSVCUndecoratedNameSpecifier> specs = parser.GetSpecifiers();
568
569 auto context = FromCompilerDeclContext(GetTranslationUnitDecl());
570
571 llvm::StringRef uname = specs.back().GetBaseName();
572 specs = specs.drop_back();
573 if (specs.empty())
574 return {context, std::string(name)};
575
576 llvm::StringRef scope_name = specs.back().GetFullName();
577
578 // It might be a class name, try that first.
579 std::vector<TypeIndex> types = m_index.tpi().findRecordsByName(scope_name);
580 while (!types.empty()) {
581 clang::QualType qt = GetOrCreateType(types.back());
582 clang::TagDecl *tag = qt->getAsTagDecl();
583 if (tag)
584 return {clang::TagDecl::castToDeclContext(tag), std::string(uname)};
585 types.pop_back();
586 }
587
588 // If that fails, treat it as a series of namespaces.
589 for (const MSVCUndecoratedNameSpecifier &spec : specs) {
590 std::string ns_name = spec.GetBaseName().str();
591 context = GetOrCreateNamespaceDecl(ns_name.c_str(), *context);
592 }
593 return {context, std::string(uname)};
594}
595
596clang::DeclContext *
597PdbAstBuilder::GetParentDeclContextForSymbol(const CVSymbol &sym) {
598 if (!SymbolHasAddress(sym))
599 return CreateDeclInfoForUndecoratedName(getSymbolName(sym)).first;
600 SegmentOffset addr = GetSegmentAndOffset(sym);
601 llvm::Optional<PublicSym32> pub =
602 FindPublicSym(addr, m_index.symrecords(), m_index.publics());
603 if (!pub)
604 return CreateDeclInfoForUndecoratedName(getSymbolName(sym)).first;
605
606 llvm::ms_demangle::Demangler demangler;
607 StringView name{pub->Name.begin(), pub->Name.size()};
608 llvm::ms_demangle::SymbolNode *node = demangler.parse(name);
609 if (!node)
610 return FromCompilerDeclContext(GetTranslationUnitDecl());
611 llvm::ArrayRef<llvm::ms_demangle::Node *> name_components{
612 node->Name->Components->Nodes, node->Name->Components->Count - 1};
613
614 if (!name_components.empty()) {
615 // Render the current list of scope nodes as a fully qualified name, and
616 // look it up in the debug info as a type name. If we find something,
617 // this is a type (which may itself be prefixed by a namespace). If we
618 // don't, this is a list of namespaces.
619 std::string qname = RenderScopeList(name_components);
620 std::vector<TypeIndex> matches = m_index.tpi().findRecordsByName(qname);
621 while (!matches.empty()) {
622 clang::QualType qt = GetOrCreateType(matches.back());
623 clang::TagDecl *tag = qt->getAsTagDecl();
624 if (tag)
625 return clang::TagDecl::castToDeclContext(tag);
626 matches.pop_back();
627 }
628 }
629
630 // It's not a type. It must be a series of namespaces.
631 auto context = FromCompilerDeclContext(GetTranslationUnitDecl());
632 while (!name_components.empty()) {
633 std::string ns = name_components.front()->toString();
634 context = GetOrCreateNamespaceDecl(ns.c_str(), *context);
635 name_components = name_components.drop_front();
636 }
637 return context;
638}
639
640clang::DeclContext *PdbAstBuilder::GetParentDeclContext(PdbSymUid uid) {
641 // We must do this *without* calling GetOrCreate on the current uid, as
642 // that would be an infinite recursion.
643 switch (uid.kind()) {
644 case PdbSymUidKind::CompilandSym: {
645 llvm::Optional<PdbCompilandSymId> scope =
646 FindSymbolScope(m_index, uid.asCompilandSym());
647 if (scope)
648 return GetOrCreateDeclContextForUid(*scope);
649
650 CVSymbol sym = m_index.ReadSymbolRecord(uid.asCompilandSym());
651 return GetParentDeclContextForSymbol(sym);
652 }
653 case PdbSymUidKind::Type: {
654 // It could be a namespace, class, or global. We don't support nested
655 // functions yet. Anyway, we just need to consult the parent type map.
656 PdbTypeSymId type_id = uid.asTypeSym();
657 auto iter = m_parent_types.find(type_id.index);
658 if (iter == m_parent_types.end())
659 return FromCompilerDeclContext(GetTranslationUnitDecl());
660 return GetOrCreateDeclContextForUid(PdbTypeSymId(iter->second));
661 }
662 case PdbSymUidKind::FieldListMember:
663 // In this case the parent DeclContext is the one for the class that this
664 // member is inside of.
665 break;
666 case PdbSymUidKind::GlobalSym: {
667 // If this refers to a compiland symbol, just recurse in with that symbol.
668 // The only other possibilities are S_CONSTANT and S_UDT, in which case we
669 // need to parse the undecorated name to figure out the scope, then look
670 // that up in the TPI stream. If it's found, it's a type, othewrise it's
671 // a series of namespaces.
672 // FIXME: do this.
673 CVSymbol global = m_index.ReadSymbolRecord(uid.asGlobalSym());
674 switch (global.kind()) {
675 case SymbolKind::S_GDATA32:
676 case SymbolKind::S_LDATA32:
677 return GetParentDeclContextForSymbol(global);
678 case SymbolKind::S_PROCREF:
679 case SymbolKind::S_LPROCREF: {
680 ProcRefSym ref{global.kind()};
681 llvm::cantFail(
682 SymbolDeserializer::deserializeAs<ProcRefSym>(global, ref));
683 PdbCompilandSymId cu_sym_id{ref.modi(), ref.SymOffset};
684 return GetParentDeclContext(cu_sym_id);
685 }
686 case SymbolKind::S_CONSTANT:
687 case SymbolKind::S_UDT:
688 return CreateDeclInfoForUndecoratedName(getSymbolName(global)).first;
689 default:
690 break;
691 }
692 break;
693 }
694 default:
695 break;
696 }
697 return FromCompilerDeclContext(GetTranslationUnitDecl());
698}
699
700bool PdbAstBuilder::CompleteType(clang::QualType qt) {
701 clang::TagDecl *tag = qt->getAsTagDecl();
702 if (!tag)
703 return false;
704
705 return CompleteTagDecl(*tag);
706}
707
708bool PdbAstBuilder::CompleteTagDecl(clang::TagDecl &tag) {
709 // If this is not in our map, it's an error.
710 auto status_iter = m_decl_to_status.find(&tag);
711 lldbassert(status_iter != m_decl_to_status.end())lldb_private::lldb_assert(static_cast<bool>(status_iter
!= m_decl_to_status.end()), "status_iter != m_decl_to_status.end()"
, __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 711)
;
712
713 // If it's already complete, just return.
714 DeclStatus &status = status_iter->second;
715 if (status.resolved)
716 return true;
717
718 PdbTypeSymId type_id = PdbSymUid(status.uid).asTypeSym();
719
720 lldbassert(IsTagRecord(type_id, m_index.tpi()))lldb_private::lldb_assert(static_cast<bool>(IsTagRecord
(type_id, m_index.tpi())), "IsTagRecord(type_id, m_index.tpi())"
, __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 720)
;
721
722 clang::QualType tag_qt = m_clang.getASTContext().getTypeDeclType(&tag);
723 TypeSystemClang::SetHasExternalStorage(tag_qt.getAsOpaquePtr(), false);
724
725 TypeIndex tag_ti = type_id.index;
726 CVType cvt = m_index.tpi().getType(tag_ti);
727 if (cvt.kind() == LF_MODIFIER)
728 tag_ti = LookThroughModifierRecord(cvt);
729
730 PdbTypeSymId best_ti = GetBestPossibleDecl(tag_ti, m_index.tpi());
731 cvt = m_index.tpi().getType(best_ti.index);
732 lldbassert(IsTagRecord(cvt))lldb_private::lldb_assert(static_cast<bool>(IsTagRecord
(cvt)), "IsTagRecord(cvt)", __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 732)
;
733
734 if (IsForwardRefUdt(cvt)) {
735 // If we can't find a full decl for this forward ref anywhere in the debug
736 // info, then we have no way to complete it.
737 return false;
738 }
739
740 TypeIndex field_list_ti = GetFieldListIndex(cvt);
741 CVType field_list_cvt = m_index.tpi().getType(field_list_ti);
742 if (field_list_cvt.kind() != LF_FIELDLIST)
743 return false;
744
745 // Visit all members of this class, then perform any finalization necessary
746 // to complete the class.
747 CompilerType ct = ToCompilerType(tag_qt);
748 UdtRecordCompleter completer(best_ti, ct, tag, *this, m_index,
749 m_cxx_record_map);
750 auto error =
751 llvm::codeview::visitMemberRecordStream(field_list_cvt.data(), completer);
752 completer.complete();
753
754 status.resolved = true;
755 if (!error)
756 return true;
757
758 llvm::consumeError(std::move(error));
759 return false;
760}
761
762clang::QualType PdbAstBuilder::CreateSimpleType(TypeIndex ti) {
763 if (ti == TypeIndex::NullptrT())
764 return GetBasicType(lldb::eBasicTypeNullPtr);
765
766 if (ti.getSimpleMode() != SimpleTypeMode::Direct) {
767 clang::QualType direct_type = GetOrCreateType(ti.makeDirect());
768 return m_clang.getASTContext().getPointerType(direct_type);
769 }
770
771 if (ti.getSimpleKind() == SimpleTypeKind::NotTranslated)
772 return {};
773
774 lldb::BasicType bt = GetCompilerTypeForSimpleKind(ti.getSimpleKind());
775 if (bt == lldb::eBasicTypeInvalid)
776 return {};
777
778 return GetBasicType(bt);
779}
780
781clang::QualType PdbAstBuilder::CreatePointerType(const PointerRecord &pointer) {
782 clang::QualType pointee_type = GetOrCreateType(pointer.ReferentType);
783
784 // This can happen for pointers to LF_VTSHAPE records, which we shouldn't
785 // create in the AST.
786 if (pointee_type.isNull())
787 return {};
788
789 if (pointer.isPointerToMember()) {
790 MemberPointerInfo mpi = pointer.getMemberInfo();
791 clang::QualType class_type = GetOrCreateType(mpi.ContainingType);
792
793 return m_clang.getASTContext().getMemberPointerType(
794 pointee_type, class_type.getTypePtr());
795 }
796
797 clang::QualType pointer_type;
798 if (pointer.getMode() == PointerMode::LValueReference)
799 pointer_type = m_clang.getASTContext().getLValueReferenceType(pointee_type);
800 else if (pointer.getMode() == PointerMode::RValueReference)
801 pointer_type = m_clang.getASTContext().getRValueReferenceType(pointee_type);
802 else
803 pointer_type = m_clang.getASTContext().getPointerType(pointee_type);
804
805 if ((pointer.getOptions() & PointerOptions::Const) != PointerOptions::None)
806 pointer_type.addConst();
807
808 if ((pointer.getOptions() & PointerOptions::Volatile) != PointerOptions::None)
809 pointer_type.addVolatile();
810
811 if ((pointer.getOptions() & PointerOptions::Restrict) != PointerOptions::None)
812 pointer_type.addRestrict();
813
814 return pointer_type;
815}
816
817clang::QualType
818PdbAstBuilder::CreateModifierType(const ModifierRecord &modifier) {
819 clang::QualType unmodified_type = GetOrCreateType(modifier.ModifiedType);
820 if (unmodified_type.isNull())
821 return {};
822
823 if ((modifier.Modifiers & ModifierOptions::Const) != ModifierOptions::None)
824 unmodified_type.addConst();
825 if ((modifier.Modifiers & ModifierOptions::Volatile) != ModifierOptions::None)
826 unmodified_type.addVolatile();
827
828 return unmodified_type;
829}
830
831clang::QualType PdbAstBuilder::CreateRecordType(PdbTypeSymId id,
832 const TagRecord &record) {
833 clang::DeclContext *context = nullptr;
834 std::string uname;
835 std::tie(context, uname) = CreateDeclInfoForType(record, id.index);
836 clang::TagTypeKind ttk = TranslateUdtKind(record);
837 lldb::AccessType access =
838 (ttk == clang::TTK_Class) ? lldb::eAccessPrivate : lldb::eAccessPublic;
839
840 ClangASTMetadata metadata;
841 metadata.SetUserID(toOpaqueUid(id));
842 metadata.SetIsDynamicCXXType(false);
843
844 CompilerType ct =
845 m_clang.CreateRecordType(context, OptionalClangModuleID(), access, uname,
846 ttk, lldb::eLanguageTypeC_plus_plus, &metadata);
847
848 lldbassert(ct.IsValid())lldb_private::lldb_assert(static_cast<bool>(ct.IsValid(
)), "ct.IsValid()", __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 848)
;
849
850 TypeSystemClang::StartTagDeclarationDefinition(ct);
851
852 // Even if it's possible, don't complete it at this point. Just mark it
853 // forward resolved, and if/when LLDB needs the full definition, it can
854 // ask us.
855 clang::QualType result =
856 clang::QualType::getFromOpaquePtr(ct.GetOpaqueQualType());
857
858 TypeSystemClang::SetHasExternalStorage(result.getAsOpaquePtr(), true);
859 return result;
860}
861
862clang::Decl *PdbAstBuilder::TryGetDecl(PdbSymUid uid) const {
863 auto iter = m_uid_to_decl.find(toOpaqueUid(uid));
864 if (iter != m_uid_to_decl.end())
865 return iter->second;
866 return nullptr;
867}
868
869clang::NamespaceDecl *
870PdbAstBuilder::GetOrCreateNamespaceDecl(const char *name,
871 clang::DeclContext &context) {
872 return m_clang.GetUniqueNamespaceDeclaration(
873 IsAnonymousNamespaceName(name) ? nullptr : name, &context,
874 OptionalClangModuleID());
875}
876
877clang::BlockDecl *
878PdbAstBuilder::GetOrCreateBlockDecl(PdbCompilandSymId block_id) {
879 if (clang::Decl *decl = TryGetDecl(block_id))
880 return llvm::dyn_cast<clang::BlockDecl>(decl);
881
882 clang::DeclContext *scope = GetParentDeclContext(block_id);
883
884 clang::BlockDecl *block_decl =
885 m_clang.CreateBlockDeclaration(scope, OptionalClangModuleID());
886 m_uid_to_decl.insert({toOpaqueUid(block_id), block_decl});
887
888 DeclStatus status;
889 status.resolved = true;
890 status.uid = toOpaqueUid(block_id);
891 m_decl_to_status.insert({block_decl, status});
892
893 return block_decl;
894}
895
896clang::VarDecl *PdbAstBuilder::CreateVariableDecl(PdbSymUid uid, CVSymbol sym,
897 clang::DeclContext &scope) {
898 VariableInfo var_info = GetVariableNameInfo(sym);
899 clang::QualType qt = GetOrCreateType(var_info.type);
900
901 clang::VarDecl *var_decl = m_clang.CreateVariableDeclaration(
902 &scope, OptionalClangModuleID(), var_info.name.str().c_str(), qt);
903
904 m_uid_to_decl[toOpaqueUid(uid)] = var_decl;
905 DeclStatus status;
906 status.resolved = true;
907 status.uid = toOpaqueUid(uid);
908 m_decl_to_status.insert({var_decl, status});
909 return var_decl;
910}
911
912clang::VarDecl *
913PdbAstBuilder::GetOrCreateVariableDecl(PdbCompilandSymId scope_id,
914 PdbCompilandSymId var_id) {
915 if (clang::Decl *decl = TryGetDecl(var_id))
916 return llvm::dyn_cast<clang::VarDecl>(decl);
917
918 clang::DeclContext *scope = GetOrCreateDeclContextForUid(scope_id);
919
920 CVSymbol sym = m_index.ReadSymbolRecord(var_id);
921 return CreateVariableDecl(PdbSymUid(var_id), sym, *scope);
922}
923
924clang::VarDecl *PdbAstBuilder::GetOrCreateVariableDecl(PdbGlobalSymId var_id) {
925 if (clang::Decl *decl = TryGetDecl(var_id))
926 return llvm::dyn_cast<clang::VarDecl>(decl);
927
928 CVSymbol sym = m_index.ReadSymbolRecord(var_id);
929 auto context = FromCompilerDeclContext(GetTranslationUnitDecl());
930 return CreateVariableDecl(PdbSymUid(var_id), sym, *context);
931}
932
933clang::TypedefNameDecl *
934PdbAstBuilder::GetOrCreateTypedefDecl(PdbGlobalSymId id) {
935 if (clang::Decl *decl = TryGetDecl(id))
936 return llvm::dyn_cast<clang::TypedefNameDecl>(decl);
937
938 CVSymbol sym = m_index.ReadSymbolRecord(id);
939 lldbassert(sym.kind() == S_UDT)lldb_private::lldb_assert(static_cast<bool>(sym.kind() ==
S_UDT), "sym.kind() == S_UDT", __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 939)
;
940 UDTSym udt = llvm::cantFail(SymbolDeserializer::deserializeAs<UDTSym>(sym));
941
942 clang::DeclContext *scope = GetParentDeclContext(id);
943
944 PdbTypeSymId real_type_id{udt.Type, false};
945 clang::QualType qt = GetOrCreateType(real_type_id);
946
947 std::string uname = std::string(DropNameScope(udt.Name));
948
949 CompilerType ct = ToCompilerType(qt).CreateTypedef(
950 uname.c_str(), ToCompilerDeclContext(*scope), 0);
951 clang::TypedefNameDecl *tnd = m_clang.GetAsTypedefDecl(ct);
952 DeclStatus status;
953 status.resolved = true;
954 status.uid = toOpaqueUid(id);
955 m_decl_to_status.insert({tnd, status});
956 return tnd;
957}
958
959clang::QualType PdbAstBuilder::GetBasicType(lldb::BasicType type) {
960 CompilerType ct = m_clang.GetBasicType(type);
961 return clang::QualType::getFromOpaquePtr(ct.GetOpaqueQualType());
962}
963
964clang::QualType PdbAstBuilder::CreateType(PdbTypeSymId type) {
965 if (type.index.isSimple())
966 return CreateSimpleType(type.index);
967
968 CVType cvt = m_index.tpi().getType(type.index);
969
970 if (cvt.kind() == LF_MODIFIER) {
971 ModifierRecord modifier;
972 llvm::cantFail(
973 TypeDeserializer::deserializeAs<ModifierRecord>(cvt, modifier));
974 return CreateModifierType(modifier);
975 }
976
977 if (cvt.kind() == LF_POINTER) {
978 PointerRecord pointer;
979 llvm::cantFail(
980 TypeDeserializer::deserializeAs<PointerRecord>(cvt, pointer));
981 return CreatePointerType(pointer);
982 }
983
984 if (IsTagRecord(cvt)) {
985 CVTagRecord tag = CVTagRecord::create(cvt);
986 if (tag.kind() == CVTagRecord::Union)
987 return CreateRecordType(type.index, tag.asUnion());
988 if (tag.kind() == CVTagRecord::Enum)
989 return CreateEnumType(type.index, tag.asEnum());
990 return CreateRecordType(type.index, tag.asClass());
991 }
992
993 if (cvt.kind() == LF_ARRAY) {
994 ArrayRecord ar;
995 llvm::cantFail(TypeDeserializer::deserializeAs<ArrayRecord>(cvt, ar));
996 return CreateArrayType(ar);
997 }
998
999 if (cvt.kind() == LF_PROCEDURE) {
1000 ProcedureRecord pr;
1001 llvm::cantFail(TypeDeserializer::deserializeAs<ProcedureRecord>(cvt, pr));
1002 return CreateFunctionType(pr.ArgumentList, pr.ReturnType, pr.CallConv);
1003 }
1004
1005 if (cvt.kind() == LF_MFUNCTION) {
1006 MemberFunctionRecord mfr;
1007 llvm::cantFail(
1008 TypeDeserializer::deserializeAs<MemberFunctionRecord>(cvt, mfr));
1009 return CreateFunctionType(mfr.ArgumentList, mfr.ReturnType, mfr.CallConv);
1010 }
1011
1012 return {};
1013}
1014
1015clang::QualType PdbAstBuilder::GetOrCreateType(PdbTypeSymId type) {
1016 lldb::user_id_t uid = toOpaqueUid(type);
1017 auto iter = m_uid_to_type.find(uid);
1018 if (iter != m_uid_to_type.end())
1019 return iter->second;
1020
1021 PdbTypeSymId best_type = GetBestPossibleDecl(type, m_index.tpi());
1022
1023 clang::QualType qt;
1024 if (best_type.index != type.index) {
1025 // This is a forward decl. Call GetOrCreate on the full decl, then map the
1026 // forward decl id to the full decl QualType.
1027 clang::QualType qt = GetOrCreateType(best_type);
1028 m_uid_to_type[toOpaqueUid(type)] = qt;
1029 return qt;
1030 }
1031
1032 // This is either a full decl, or a forward decl with no matching full decl
1033 // in the debug info.
1034 qt = CreateType(type);
1035 m_uid_to_type[toOpaqueUid(type)] = qt;
1036 if (IsTagRecord(type, m_index.tpi())) {
1037 clang::TagDecl *tag = qt->getAsTagDecl();
1038 lldbassert(m_decl_to_status.count(tag) == 0)lldb_private::lldb_assert(static_cast<bool>(m_decl_to_status
.count(tag) == 0), "m_decl_to_status.count(tag) == 0", __FUNCTION__
, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 1038)
;
1039
1040 DeclStatus &status = m_decl_to_status[tag];
1041 status.uid = uid;
1042 status.resolved = false;
1043 }
1044 return qt;
1045}
1046
1047clang::FunctionDecl *
1048PdbAstBuilder::GetOrCreateFunctionDecl(PdbCompilandSymId func_id) {
1049 if (clang::Decl *decl = TryGetDecl(func_id))
15
Assuming 'decl' is null
16
Taking false branch
1050 return llvm::dyn_cast<clang::FunctionDecl>(decl);
1051
1052 clang::DeclContext *parent = GetParentDeclContext(PdbSymUid(func_id));
1053 std::string context_name;
1054 if (clang::NamespaceDecl *ns
17.1
'ns' is null
17.1
'ns' is null
17.1
'ns' is null
= llvm::dyn_cast<clang::NamespaceDecl>(parent)) {
17
Assuming 'parent' is not a 'NamespaceDecl'
18
Taking false branch
1055 context_name = ns->getQualifiedNameAsString();
1056 } else if (clang::TagDecl *tag
19.1
'tag' is null
19.1
'tag' is null
19.1
'tag' is null
= llvm::dyn_cast<clang::TagDecl>(parent)) {
19
Assuming 'parent' is not a 'TagDecl'
20
Taking false branch
1057 context_name = tag->getQualifiedNameAsString();
1058 }
1059
1060 CVSymbol cvs = m_index.ReadSymbolRecord(func_id);
1061 ProcSym proc(static_cast<SymbolRecordKind>(cvs.kind()));
1062 llvm::cantFail(SymbolDeserializer::deserializeAs<ProcSym>(cvs, proc));
1063
1064 PdbTypeSymId type_id(proc.FunctionType);
1065 clang::QualType qt = GetOrCreateType(type_id);
1066 if (qt.isNull())
21
Calling 'QualType::isNull'
27
Returning from 'QualType::isNull'
28
Taking false branch
1067 return nullptr;
1068
1069 clang::StorageClass storage = clang::SC_None;
1070 if (proc.Kind == SymbolRecordKind::ProcSym)
29
Assuming field 'Kind' is not equal to ProcSym
30
Taking false branch
1071 storage = clang::SC_Static;
1072
1073 const clang::FunctionProtoType *func_type =
1074 llvm::dyn_cast<clang::FunctionProtoType>(qt);
1075
1076 CompilerType func_ct = ToCompilerType(qt);
1077
1078 llvm::StringRef proc_name = proc.Name;
1079 proc_name.consume_front(context_name);
1080 proc_name.consume_front("::");
1081
1082 clang::FunctionDecl *function_decl = nullptr;
1083 if (parent->isRecord()) {
31
Assuming the condition is true
32
Taking true branch
1084 clang::QualType parent_qt = llvm::dyn_cast<clang::TypeDecl>(parent)
33
Assuming 'parent' is not a 'TypeDecl'
34
Called C++ object pointer is null
1085 ->getTypeForDecl()
1086 ->getCanonicalTypeInternal();
1087 lldb::opaque_compiler_type_t parent_opaque_ty =
1088 ToCompilerType(parent_qt).GetOpaqueQualType();
1089
1090 auto iter = m_cxx_record_map.find(parent_opaque_ty);
1091 if (iter != m_cxx_record_map.end()) {
1092 if (iter->getSecond().contains({proc_name, func_ct})) {
1093 return nullptr;
1094 }
1095 }
1096
1097 CVType cvt = m_index.tpi().getType(type_id.index);
1098 MemberFunctionRecord func_record(static_cast<TypeRecordKind>(cvt.kind()));
1099 llvm::cantFail(TypeDeserializer::deserializeAs<MemberFunctionRecord>(
1100 cvt, func_record));
1101 TypeIndex class_index = func_record.getClassType();
1102 CVType parent_cvt = m_index.tpi().getType(class_index);
1103 ClassRecord class_record = CVTagRecord::create(parent_cvt).asClass();
1104 // If it's a forward reference, try to get the real TypeIndex.
1105 if (class_record.isForwardRef()) {
1106 llvm::Expected<TypeIndex> eti =
1107 m_index.tpi().findFullDeclForForwardRef(class_index);
1108 if (eti) {
1109 class_record =
1110 CVTagRecord::create(m_index.tpi().getType(*eti)).asClass();
1111 }
1112 }
1113 if (!class_record.FieldList.isSimple()) {
1114 CVType field_list = m_index.tpi().getType(class_record.FieldList);
1115 CreateMethodDecl process(m_index, m_clang, type_id.index, function_decl,
1116 parent_opaque_ty, proc_name, func_ct);
1117 if (llvm::Error err = visitMemberRecordStream(field_list.data(), process))
1118 llvm::consumeError(std::move(err));
1119 }
1120
1121 if (!function_decl) {
1122 function_decl = m_clang.AddMethodToCXXRecordType(
1123 parent_opaque_ty, proc_name,
1124 /*mangled_name=*/nullptr, func_ct,
1125 /*access=*/lldb::AccessType::eAccessPublic,
1126 /*is_virtual=*/false, /*is_static=*/false,
1127 /*is_inline=*/false, /*is_explicit=*/false,
1128 /*is_attr_used=*/false, /*is_artificial=*/false);
1129 }
1130
1131 m_cxx_record_map[parent_opaque_ty].insert({proc_name, func_ct});
1132 } else {
1133 function_decl = m_clang.CreateFunctionDeclaration(
1134 parent, OptionalClangModuleID(), proc_name, func_ct, storage, false);
1135 CreateFunctionParameters(func_id, *function_decl,
1136 func_type->getNumParams());
1137 }
1138
1139 lldbassert(m_uid_to_decl.count(toOpaqueUid(func_id)) == 0)lldb_private::lldb_assert(static_cast<bool>(m_uid_to_decl
.count(toOpaqueUid(func_id)) == 0), "m_uid_to_decl.count(toOpaqueUid(func_id)) == 0"
, __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 1139)
;
1140 m_uid_to_decl[toOpaqueUid(func_id)] = function_decl;
1141 DeclStatus status;
1142 status.resolved = true;
1143 status.uid = toOpaqueUid(func_id);
1144 m_decl_to_status.insert({function_decl, status});
1145
1146 return function_decl;
1147}
1148
1149void PdbAstBuilder::CreateFunctionParameters(PdbCompilandSymId func_id,
1150 clang::FunctionDecl &function_decl,
1151 uint32_t param_count) {
1152 CompilandIndexItem *cii = m_index.compilands().GetCompiland(func_id.modi);
1153 CVSymbolArray scope =
1154 cii->m_debug_stream.getSymbolArrayForScope(func_id.offset);
1155
1156 auto begin = scope.begin();
1157 auto end = scope.end();
1158 std::vector<clang::ParmVarDecl *> params;
1159 while (begin != end && param_count > 0) {
1160 uint32_t record_offset = begin.offset();
1161 CVSymbol sym = *begin++;
1162
1163 TypeIndex param_type;
1164 llvm::StringRef param_name;
1165 switch (sym.kind()) {
1166 case S_REGREL32: {
1167 RegRelativeSym reg(SymbolRecordKind::RegRelativeSym);
1168 cantFail(SymbolDeserializer::deserializeAs<RegRelativeSym>(sym, reg));
1169 param_type = reg.Type;
1170 param_name = reg.Name;
1171 break;
1172 }
1173 case S_REGISTER: {
1174 RegisterSym reg(SymbolRecordKind::RegisterSym);
1175 cantFail(SymbolDeserializer::deserializeAs<RegisterSym>(sym, reg));
1176 param_type = reg.Index;
1177 param_name = reg.Name;
1178 break;
1179 }
1180 case S_LOCAL: {
1181 LocalSym local(SymbolRecordKind::LocalSym);
1182 cantFail(SymbolDeserializer::deserializeAs<LocalSym>(sym, local));
1183 if ((local.Flags & LocalSymFlags::IsParameter) == LocalSymFlags::None)
1184 continue;
1185 param_type = local.Type;
1186 param_name = local.Name;
1187 break;
1188 }
1189 case S_BLOCK32:
1190 // All parameters should come before the first block. If that isn't the
1191 // case, then perhaps this is bad debug info that doesn't contain
1192 // information about all parameters.
1193 return;
1194 default:
1195 continue;
1196 }
1197
1198 PdbCompilandSymId param_uid(func_id.modi, record_offset);
1199 clang::QualType qt = GetOrCreateType(param_type);
1200
1201 CompilerType param_type_ct = m_clang.GetType(qt);
1202 clang::ParmVarDecl *param = m_clang.CreateParameterDeclaration(
1203 &function_decl, OptionalClangModuleID(), param_name.str().c_str(),
1204 param_type_ct, clang::SC_None, true);
1205 lldbassert(m_uid_to_decl.count(toOpaqueUid(param_uid)) == 0)lldb_private::lldb_assert(static_cast<bool>(m_uid_to_decl
.count(toOpaqueUid(param_uid)) == 0), "m_uid_to_decl.count(toOpaqueUid(param_uid)) == 0"
, __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 1205)
;
1206
1207 m_uid_to_decl[toOpaqueUid(param_uid)] = param;
1208 params.push_back(param);
1209 --param_count;
1210 }
1211
1212 if (!params.empty())
1213 m_clang.SetFunctionParameters(&function_decl, params);
1214}
1215
1216clang::QualType PdbAstBuilder::CreateEnumType(PdbTypeSymId id,
1217 const EnumRecord &er) {
1218 clang::DeclContext *decl_context = nullptr;
1219 std::string uname;
1220 std::tie(decl_context, uname) = CreateDeclInfoForType(er, id.index);
1221 clang::QualType underlying_type = GetOrCreateType(er.UnderlyingType);
1222
1223 Declaration declaration;
1224 CompilerType enum_ct = m_clang.CreateEnumerationType(
1225 uname, decl_context, OptionalClangModuleID(), declaration,
1226 ToCompilerType(underlying_type), er.isScoped());
1227
1228 TypeSystemClang::StartTagDeclarationDefinition(enum_ct);
1229 TypeSystemClang::SetHasExternalStorage(enum_ct.GetOpaqueQualType(), true);
1230
1231 return clang::QualType::getFromOpaquePtr(enum_ct.GetOpaqueQualType());
1232}
1233
1234clang::QualType PdbAstBuilder::CreateArrayType(const ArrayRecord &ar) {
1235 clang::QualType element_type = GetOrCreateType(ar.ElementType);
1236
1237 uint64_t element_count =
1238 ar.Size / GetSizeOfType({ar.ElementType}, m_index.tpi());
1239
1240 CompilerType array_ct = m_clang.CreateArrayType(ToCompilerType(element_type),
1241 element_count, false);
1242 return clang::QualType::getFromOpaquePtr(array_ct.GetOpaqueQualType());
1243}
1244
1245clang::QualType PdbAstBuilder::CreateFunctionType(
1246 TypeIndex args_type_idx, TypeIndex return_type_idx,
1247 llvm::codeview::CallingConvention calling_convention) {
1248 TpiStream &stream = m_index.tpi();
1249 CVType args_cvt = stream.getType(args_type_idx);
1250 ArgListRecord args;
1251 llvm::cantFail(
1252 TypeDeserializer::deserializeAs<ArgListRecord>(args_cvt, args));
1253
1254 llvm::ArrayRef<TypeIndex> arg_indices = llvm::makeArrayRef(args.ArgIndices);
1255 bool is_variadic = IsCVarArgsFunction(arg_indices);
1256 if (is_variadic)
1257 arg_indices = arg_indices.drop_back();
1258
1259 std::vector<CompilerType> arg_types;
1260 arg_types.reserve(arg_indices.size());
1261
1262 for (TypeIndex arg_index : arg_indices) {
1263 clang::QualType arg_type = GetOrCreateType(arg_index);
1264 arg_types.push_back(ToCompilerType(arg_type));
1265 }
1266
1267 clang::QualType return_type = GetOrCreateType(return_type_idx);
1268
1269 llvm::Optional<clang::CallingConv> cc =
1270 TranslateCallingConvention(calling_convention);
1271 if (!cc)
1272 return {};
1273
1274 CompilerType return_ct = ToCompilerType(return_type);
1275 CompilerType func_sig_ast_type = m_clang.CreateFunctionType(
1276 return_ct, arg_types.data(), arg_types.size(), is_variadic, 0, *cc);
1277
1278 return clang::QualType::getFromOpaquePtr(
1279 func_sig_ast_type.GetOpaqueQualType());
1280}
1281
1282static bool isTagDecl(clang::DeclContext &context) {
1283 return llvm::isa<clang::TagDecl>(&context);
1284}
1285
1286static bool isFunctionDecl(clang::DeclContext &context) {
1287 return llvm::isa<clang::FunctionDecl>(&context);
1288}
1289
1290static bool isBlockDecl(clang::DeclContext &context) {
1291 return llvm::isa<clang::BlockDecl>(&context);
1292}
1293
1294void PdbAstBuilder::ParseAllNamespacesPlusChildrenOf(
1295 llvm::Optional<llvm::StringRef> parent) {
1296 TypeIndex ti{m_index.tpi().TypeIndexBegin()};
1297 for (const CVType &cvt : m_index.tpi().typeArray()) {
1298 PdbTypeSymId tid{ti};
1299 ++ti;
1300
1301 if (!IsTagRecord(cvt))
1302 continue;
1303
1304 CVTagRecord tag = CVTagRecord::create(cvt);
1305
1306 if (!parent.hasValue()) {
1307 clang::QualType qt = GetOrCreateType(tid);
1308 CompleteType(qt);
1309 continue;
1310 }
1311
1312 // Call CreateDeclInfoForType unconditionally so that the namespace info
1313 // gets created. But only call CreateRecordType if the namespace name
1314 // matches.
1315 clang::DeclContext *context = nullptr;
1316 std::string uname;
1317 std::tie(context, uname) = CreateDeclInfoForType(tag.asTag(), tid.index);
1318 if (!context->isNamespace())
1319 continue;
1320
1321 clang::NamespaceDecl *ns = llvm::dyn_cast<clang::NamespaceDecl>(context);
1322 std::string actual_ns = ns->getQualifiedNameAsString();
1323 if (llvm::StringRef(actual_ns).startswith(*parent)) {
1324 clang::QualType qt = GetOrCreateType(tid);
1325 CompleteType(qt);
1326 continue;
1327 }
1328 }
1329
1330 uint32_t module_count = m_index.dbi().modules().getModuleCount();
1331 for (uint16_t modi = 0; modi < module_count; ++modi) {
1332 CompilandIndexItem &cii = m_index.compilands().GetOrCreateCompiland(modi);
1333 const CVSymbolArray &symbols = cii.m_debug_stream.getSymbolArray();
1334 auto iter = symbols.begin();
1335 while (iter != symbols.end()) {
1336 PdbCompilandSymId sym_id{modi, iter.offset()};
1337
1338 switch (iter->kind()) {
1339 case S_GPROC32:
1340 case S_LPROC32:
1341 GetOrCreateFunctionDecl(sym_id);
1342 iter = symbols.at(getScopeEndOffset(*iter));
1343 break;
1344 case S_GDATA32:
1345 case S_GTHREAD32:
1346 case S_LDATA32:
1347 case S_LTHREAD32:
1348 GetOrCreateVariableDecl(PdbCompilandSymId(modi, 0), sym_id);
1349 ++iter;
1350 break;
1351 default:
1352 ++iter;
1353 continue;
1354 }
1355 }
1356 }
1357}
1358
1359static CVSymbolArray skipFunctionParameters(clang::Decl &decl,
1360 const CVSymbolArray &symbols) {
1361 clang::FunctionDecl *func_decl = llvm::dyn_cast<clang::FunctionDecl>(&decl);
1362 if (!func_decl)
1363 return symbols;
1364 unsigned int params = func_decl->getNumParams();
1365 if (params == 0)
1366 return symbols;
1367
1368 CVSymbolArray result = symbols;
1369
1370 while (!result.empty()) {
1371 if (params == 0)
1372 return result;
1373
1374 CVSymbol sym = *result.begin();
1375 result.drop_front();
1376
1377 if (!isLocalVariableType(sym.kind()))
1378 continue;
1379
1380 --params;
1381 }
1382 return result;
1383}
1384
1385void PdbAstBuilder::ParseBlockChildren(PdbCompilandSymId block_id) {
1386 CVSymbol sym = m_index.ReadSymbolRecord(block_id);
1387 lldbassert(sym.kind() == S_GPROC32 || sym.kind() == S_LPROC32 ||lldb_private::lldb_assert(static_cast<bool>(sym.kind() ==
S_GPROC32 || sym.kind() == S_LPROC32 || sym.kind() == S_BLOCK32
), "sym.kind() == S_GPROC32 || sym.kind() == S_LPROC32 || sym.kind() == S_BLOCK32"
, __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 1388)
7
Assuming the condition is false
1388 sym.kind() == S_BLOCK32)lldb_private::lldb_assert(static_cast<bool>(sym.kind() ==
S_GPROC32 || sym.kind() == S_LPROC32 || sym.kind() == S_BLOCK32
), "sym.kind() == S_GPROC32 || sym.kind() == S_LPROC32 || sym.kind() == S_BLOCK32"
, __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 1388)
;
1389 CompilandIndexItem &cii =
1390 m_index.compilands().GetOrCreateCompiland(block_id.modi);
1391 CVSymbolArray symbols =
1392 cii.m_debug_stream.getSymbolArrayForScope(block_id.offset);
1393
1394 // Function parameters should already have been created when the function was
1395 // parsed.
1396 if (sym.kind() == S_GPROC32 || sym.kind() == S_LPROC32)
8
Assuming the condition is false
9
Taking false branch
1397 symbols =
1398 skipFunctionParameters(*m_uid_to_decl[toOpaqueUid(block_id)], symbols);
1399
1400 auto begin = symbols.begin();
1401 while (begin != symbols.end()) {
10
Loop condition is true. Entering loop body
1402 PdbCompilandSymId child_sym_id(block_id.modi, begin.offset());
1403 GetOrCreateSymbolForId(child_sym_id);
11
Calling 'PdbAstBuilder::GetOrCreateSymbolForId'
1404 if (begin->kind() == S_BLOCK32) {
1405 ParseBlockChildren(child_sym_id);
1406 begin = symbols.at(getScopeEndOffset(*begin));
1407 }
1408 ++begin;
1409 }
1410}
1411
1412void PdbAstBuilder::ParseDeclsForSimpleContext(clang::DeclContext &context) {
1413
1414 clang::Decl *decl = clang::Decl::castFromDeclContext(&context);
1415 lldbassert(decl)lldb_private::lldb_assert(static_cast<bool>(decl), "decl"
, __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 1415)
;
1416
1417 auto iter = m_decl_to_status.find(decl);
1418 lldbassert(iter != m_decl_to_status.end())lldb_private::lldb_assert(static_cast<bool>(iter != m_decl_to_status
.end()), "iter != m_decl_to_status.end()", __FUNCTION__, "lldb/source/Plugins/SymbolFile/NativePDB/PdbAstBuilder.cpp"
, 1418)
;
1419
1420 if (auto *tag
4.1
'tag' is null
4.1
'tag' is null
4.1
'tag' is null
= llvm::dyn_cast<clang::TagDecl>(&context)) {
4
Assuming the object is not a 'TagDecl'
1421 CompleteTagDecl(*tag);
1422 return;
1423 }
1424
1425 if (isFunctionDecl(context) || isBlockDecl(context)) {
5
Taking true branch
1426 PdbCompilandSymId block_id = PdbSymUid(iter->second.uid).asCompilandSym();
1427 ParseBlockChildren(block_id);
6
Calling 'PdbAstBuilder::ParseBlockChildren'
1428 }
1429}
1430
1431void PdbAstBuilder::ParseDeclsForContext(clang::DeclContext &context) {
1432 // Namespaces aren't explicitly represented in the debug info, and the only
1433 // way to parse them is to parse all type info, demangling every single type
1434 // and trying to reconstruct the DeclContext hierarchy this way. Since this
1435 // is an expensive operation, we have to special case it so that we do other
1436 // work (such as parsing the items that appear within the namespaces) at the
1437 // same time.
1438 if (context.isTranslationUnit()) {
1
Taking false branch
1439 ParseAllNamespacesPlusChildrenOf(llvm::None);
1440 return;
1441 }
1442
1443 if (context.isNamespace()) {
1444 clang::NamespaceDecl &ns = *llvm::dyn_cast<clang::NamespaceDecl>(&context);
1445 std::string qname = ns.getQualifiedNameAsString();
1446 ParseAllNamespacesPlusChildrenOf(llvm::StringRef{qname});
1447 return;
1448 }
1449
1450 if (isTagDecl(context) || isFunctionDecl(context) || isBlockDecl(context)) {
2
Taking true branch
1451 ParseDeclsForSimpleContext(context);
3
Calling 'PdbAstBuilder::ParseDeclsForSimpleContext'
1452 return;
1453 }
1454}
1455
1456CompilerDecl PdbAstBuilder::ToCompilerDecl(clang::Decl &decl) {
1457 return m_clang.GetCompilerDecl(&decl);
1458}
1459
1460CompilerType PdbAstBuilder::ToCompilerType(clang::QualType qt) {
1461 return {&m_clang, qt.getAsOpaquePtr()};
1462}
1463
1464CompilerDeclContext
1465PdbAstBuilder::ToCompilerDeclContext(clang::DeclContext &context) {
1466 return m_clang.CreateDeclContext(&context);
1467}
1468
1469clang::Decl * PdbAstBuilder::FromCompilerDecl(CompilerDecl decl) {
1470 return ClangUtil::GetDecl(decl);
1471}
1472
1473clang::DeclContext *
1474PdbAstBuilder::FromCompilerDeclContext(CompilerDeclContext context) {
1475 return static_cast<clang::DeclContext *>(context.GetOpaqueDeclContext());
1476}
1477
1478void PdbAstBuilder::Dump(Stream &stream) {
1479 m_clang.Dump(stream.AsRawOstream());
1480}

/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132class UsingShadowDecl;
133
134using CanQualType = CanQual<Type>;
135
136// Provide forward declarations for all of the *Type classes.
137#define TYPE(Class, Base) class Class##Type;
138#include "clang/AST/TypeNodes.inc"
139
140/// The collection of all-type qualifiers we support.
141/// Clang supports five independent qualifiers:
142/// * C99: const, volatile, and restrict
143/// * MS: __unaligned
144/// * Embedded C (TR18037): address spaces
145/// * Objective C: the GC attributes (none, weak, or strong)
146class Qualifiers {
147public:
148 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
149 Const = 0x1,
150 Restrict = 0x2,
151 Volatile = 0x4,
152 CVRMask = Const | Volatile | Restrict
153 };
154
155 enum GC {
156 GCNone = 0,
157 Weak,
158 Strong
159 };
160
161 enum ObjCLifetime {
162 /// There is no lifetime qualification on this type.
163 OCL_None,
164
165 /// This object can be modified without requiring retains or
166 /// releases.
167 OCL_ExplicitNone,
168
169 /// Assigning into this object requires the old value to be
170 /// released and the new value to be retained. The timing of the
171 /// release of the old value is inexact: it may be moved to
172 /// immediately after the last known point where the value is
173 /// live.
174 OCL_Strong,
175
176 /// Reading or writing from this object requires a barrier call.
177 OCL_Weak,
178
179 /// Assigning into this object requires a lifetime extension.
180 OCL_Autoreleasing
181 };
182
183 enum {
184 /// The maximum supported address space number.
185 /// 23 bits should be enough for anyone.
186 MaxAddressSpace = 0x7fffffu,
187
188 /// The width of the "fast" qualifier mask.
189 FastWidth = 3,
190
191 /// The fast qualifier mask.
192 FastMask = (1 << FastWidth) - 1
193 };
194
195 /// Returns the common set of qualifiers while removing them from
196 /// the given sets.
197 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
198 // If both are only CVR-qualified, bit operations are sufficient.
199 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
200 Qualifiers Q;
201 Q.Mask = L.Mask & R.Mask;
202 L.Mask &= ~Q.Mask;
203 R.Mask &= ~Q.Mask;
204 return Q;
205 }
206
207 Qualifiers Q;
208 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
209 Q.addCVRQualifiers(CommonCRV);
210 L.removeCVRQualifiers(CommonCRV);
211 R.removeCVRQualifiers(CommonCRV);
212
213 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
214 Q.setObjCGCAttr(L.getObjCGCAttr());
215 L.removeObjCGCAttr();
216 R.removeObjCGCAttr();
217 }
218
219 if (L.getObjCLifetime() == R.getObjCLifetime()) {
220 Q.setObjCLifetime(L.getObjCLifetime());
221 L.removeObjCLifetime();
222 R.removeObjCLifetime();
223 }
224
225 if (L.getAddressSpace() == R.getAddressSpace()) {
226 Q.setAddressSpace(L.getAddressSpace());
227 L.removeAddressSpace();
228 R.removeAddressSpace();
229 }
230 return Q;
231 }
232
233 static Qualifiers fromFastMask(unsigned Mask) {
234 Qualifiers Qs;
235 Qs.addFastQualifiers(Mask);
236 return Qs;
237 }
238
239 static Qualifiers fromCVRMask(unsigned CVR) {
240 Qualifiers Qs;
241 Qs.addCVRQualifiers(CVR);
242 return Qs;
243 }
244
245 static Qualifiers fromCVRUMask(unsigned CVRU) {
246 Qualifiers Qs;
247 Qs.addCVRUQualifiers(CVRU);
248 return Qs;
249 }
250
251 // Deserialize qualifiers from an opaque representation.
252 static Qualifiers fromOpaqueValue(unsigned opaque) {
253 Qualifiers Qs;
254 Qs.Mask = opaque;
255 return Qs;
256 }
257
258 // Serialize these qualifiers into an opaque representation.
259 unsigned getAsOpaqueValue() const {
260 return Mask;
261 }
262
263 bool hasConst() const { return Mask & Const; }
264 bool hasOnlyConst() const { return Mask == Const; }
265 void removeConst() { Mask &= ~Const; }
266 void addConst() { Mask |= Const; }
267
268 bool hasVolatile() const { return Mask & Volatile; }
269 bool hasOnlyVolatile() const { return Mask == Volatile; }
270 void removeVolatile() { Mask &= ~Volatile; }
271 void addVolatile() { Mask |= Volatile; }
272
273 bool hasRestrict() const { return Mask & Restrict; }
274 bool hasOnlyRestrict() const { return Mask == Restrict; }
275 void removeRestrict() { Mask &= ~Restrict; }
276 void addRestrict() { Mask |= Restrict; }
277
278 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
279 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
280 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
281
282 void setCVRQualifiers(unsigned mask) {
283 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 283, __extension__ __PRETTY_FUNCTION__
))
;
284 Mask = (Mask & ~CVRMask) | mask;
285 }
286 void removeCVRQualifiers(unsigned mask) {
287 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 287, __extension__ __PRETTY_FUNCTION__
))
;
288 Mask &= ~mask;
289 }
290 void removeCVRQualifiers() {
291 removeCVRQualifiers(CVRMask);
292 }
293 void addCVRQualifiers(unsigned mask) {
294 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 294, __extension__ __PRETTY_FUNCTION__
))
;
295 Mask |= mask;
296 }
297 void addCVRUQualifiers(unsigned mask) {
298 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")(static_cast <bool> (!(mask & ~CVRMask & ~UMask
) && "bitmask contains non-CVRU bits") ? void (0) : __assert_fail
("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "clang/include/clang/AST/Type.h", 298, __extension__ __PRETTY_FUNCTION__
))
;
299 Mask |= mask;
300 }
301
302 bool hasUnaligned() const { return Mask & UMask; }
303 void setUnaligned(bool flag) {
304 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
305 }
306 void removeUnaligned() { Mask &= ~UMask; }
307 void addUnaligned() { Mask |= UMask; }
308
309 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
310 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
311 void setObjCGCAttr(GC type) {
312 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
313 }
314 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
315 void addObjCGCAttr(GC type) {
316 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 316, __extension__ __PRETTY_FUNCTION__
))
;
317 setObjCGCAttr(type);
318 }
319 Qualifiers withoutObjCGCAttr() const {
320 Qualifiers qs = *this;
321 qs.removeObjCGCAttr();
322 return qs;
323 }
324 Qualifiers withoutObjCLifetime() const {
325 Qualifiers qs = *this;
326 qs.removeObjCLifetime();
327 return qs;
328 }
329 Qualifiers withoutAddressSpace() const {
330 Qualifiers qs = *this;
331 qs.removeAddressSpace();
332 return qs;
333 }
334
335 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
336 ObjCLifetime getObjCLifetime() const {
337 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
338 }
339 void setObjCLifetime(ObjCLifetime type) {
340 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
341 }
342 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
343 void addObjCLifetime(ObjCLifetime type) {
344 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 344, __extension__ __PRETTY_FUNCTION__
))
;
345 assert(!hasObjCLifetime())(static_cast <bool> (!hasObjCLifetime()) ? void (0) : __assert_fail
("!hasObjCLifetime()", "clang/include/clang/AST/Type.h", 345
, __extension__ __PRETTY_FUNCTION__))
;
346 Mask |= (type << LifetimeShift);
347 }
348
349 /// True if the lifetime is neither None or ExplicitNone.
350 bool hasNonTrivialObjCLifetime() const {
351 ObjCLifetime lifetime = getObjCLifetime();
352 return (lifetime > OCL_ExplicitNone);
353 }
354
355 /// True if the lifetime is either strong or weak.
356 bool hasStrongOrWeakObjCLifetime() const {
357 ObjCLifetime lifetime = getObjCLifetime();
358 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
359 }
360
361 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
362 LangAS getAddressSpace() const {
363 return static_cast<LangAS>(Mask >> AddressSpaceShift);
364 }
365 bool hasTargetSpecificAddressSpace() const {
366 return isTargetAddressSpace(getAddressSpace());
367 }
368 /// Get the address space attribute value to be printed by diagnostics.
369 unsigned getAddressSpaceAttributePrintValue() const {
370 auto Addr = getAddressSpace();
371 // This function is not supposed to be used with language specific
372 // address spaces. If that happens, the diagnostic message should consider
373 // printing the QualType instead of the address space value.
374 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())(static_cast <bool> (Addr == LangAS::Default || hasTargetSpecificAddressSpace
()) ? void (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "clang/include/clang/AST/Type.h", 374, __extension__ __PRETTY_FUNCTION__
))
;
375 if (Addr != LangAS::Default)
376 return toTargetAddressSpace(Addr);
377 // TODO: The diagnostic messages where Addr may be 0 should be fixed
378 // since it cannot differentiate the situation where 0 denotes the default
379 // address space or user specified __attribute__((address_space(0))).
380 return 0;
381 }
382 void setAddressSpace(LangAS space) {
383 assert((unsigned)space <= MaxAddressSpace)(static_cast <bool> ((unsigned)space <= MaxAddressSpace
) ? void (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "clang/include/clang/AST/Type.h", 383, __extension__ __PRETTY_FUNCTION__
))
;
384 Mask = (Mask & ~AddressSpaceMask)
385 | (((uint32_t) space) << AddressSpaceShift);
386 }
387 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
388 void addAddressSpace(LangAS space) {
389 assert(space != LangAS::Default)(static_cast <bool> (space != LangAS::Default) ? void (
0) : __assert_fail ("space != LangAS::Default", "clang/include/clang/AST/Type.h"
, 389, __extension__ __PRETTY_FUNCTION__))
;
390 setAddressSpace(space);
391 }
392
393 // Fast qualifiers are those that can be allocated directly
394 // on a QualType object.
395 bool hasFastQualifiers() const { return getFastQualifiers(); }
396 unsigned getFastQualifiers() const { return Mask & FastMask; }
397 void setFastQualifiers(unsigned mask) {
398 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 398, __extension__ __PRETTY_FUNCTION__
))
;
399 Mask = (Mask & ~FastMask) | mask;
400 }
401 void removeFastQualifiers(unsigned mask) {
402 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 402, __extension__ __PRETTY_FUNCTION__
))
;
403 Mask &= ~mask;
404 }
405 void removeFastQualifiers() {
406 removeFastQualifiers(FastMask);
407 }
408 void addFastQualifiers(unsigned mask) {
409 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 409, __extension__ __PRETTY_FUNCTION__
))
;
410 Mask |= mask;
411 }
412
413 /// Return true if the set contains any qualifiers which require an ExtQuals
414 /// node to be allocated.
415 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
416 Qualifiers getNonFastQualifiers() const {
417 Qualifiers Quals = *this;
418 Quals.setFastQualifiers(0);
419 return Quals;
420 }
421
422 /// Return true if the set contains any qualifiers.
423 bool hasQualifiers() const { return Mask; }
424 bool empty() const { return !Mask; }
425
426 /// Add the qualifiers from the given set to this set.
427 void addQualifiers(Qualifiers Q) {
428 // If the other set doesn't have any non-boolean qualifiers, just
429 // bit-or it in.
430 if (!(Q.Mask & ~CVRMask))
431 Mask |= Q.Mask;
432 else {
433 Mask |= (Q.Mask & CVRMask);
434 if (Q.hasAddressSpace())
435 addAddressSpace(Q.getAddressSpace());
436 if (Q.hasObjCGCAttr())
437 addObjCGCAttr(Q.getObjCGCAttr());
438 if (Q.hasObjCLifetime())
439 addObjCLifetime(Q.getObjCLifetime());
440 }
441 }
442
443 /// Remove the qualifiers from the given set from this set.
444 void removeQualifiers(Qualifiers Q) {
445 // If the other set doesn't have any non-boolean qualifiers, just
446 // bit-and the inverse in.
447 if (!(Q.Mask & ~CVRMask))
448 Mask &= ~Q.Mask;
449 else {
450 Mask &= ~(Q.Mask & CVRMask);
451 if (getObjCGCAttr() == Q.getObjCGCAttr())
452 removeObjCGCAttr();
453 if (getObjCLifetime() == Q.getObjCLifetime())
454 removeObjCLifetime();
455 if (getAddressSpace() == Q.getAddressSpace())
456 removeAddressSpace();
457 }
458 }
459
460 /// Add the qualifiers from the given set to this set, given that
461 /// they don't conflict.
462 void addConsistentQualifiers(Qualifiers qs) {
463 assert(getAddressSpace() == qs.getAddressSpace() ||(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 464, __extension__ __PRETTY_FUNCTION__
))
464 !hasAddressSpace() || !qs.hasAddressSpace())(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 464, __extension__ __PRETTY_FUNCTION__
))
;
465 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 466, __extension__ __PRETTY_FUNCTION__
))
466 !hasObjCGCAttr() || !qs.hasObjCGCAttr())(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 466, __extension__ __PRETTY_FUNCTION__
))
;
467 assert(getObjCLifetime() == qs.getObjCLifetime() ||(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 468, __extension__ __PRETTY_FUNCTION__
))
468 !hasObjCLifetime() || !qs.hasObjCLifetime())(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 468, __extension__ __PRETTY_FUNCTION__
))
;
469 Mask |= qs.Mask;
470 }
471
472 /// Returns true if address space A is equal to or a superset of B.
473 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
474 /// overlapping address spaces.
475 /// CL1.1 or CL1.2:
476 /// every address space is a superset of itself.
477 /// CL2.0 adds:
478 /// __generic is a superset of any address space except for __constant.
479 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
480 // Address spaces must match exactly.
481 return A == B ||
482 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
483 // for __constant can be used as __generic.
484 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
485 // We also define global_device and global_host address spaces,
486 // to distinguish global pointers allocated on host from pointers
487 // allocated on device, which are a subset of __global.
488 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
489 B == LangAS::opencl_global_host)) ||
490 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
491 B == LangAS::sycl_global_host)) ||
492 // Consider pointer size address spaces to be equivalent to default.
493 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
494 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
495 // Default is a superset of SYCL address spaces.
496 (A == LangAS::Default &&
497 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
498 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
499 B == LangAS::sycl_global_host)) ||
500 // In HIP device compilation, any cuda address space is allowed
501 // to implicitly cast into the default address space.
502 (A == LangAS::Default &&
503 (B == LangAS::cuda_constant || B == LangAS::cuda_device ||
504 B == LangAS::cuda_shared));
505 }
506
507 /// Returns true if the address space in these qualifiers is equal to or
508 /// a superset of the address space in the argument qualifiers.
509 bool isAddressSpaceSupersetOf(Qualifiers other) const {
510 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
511 }
512
513 /// Determines if these qualifiers compatibly include another set.
514 /// Generally this answers the question of whether an object with the other
515 /// qualifiers can be safely used as an object with these qualifiers.
516 bool compatiblyIncludes(Qualifiers other) const {
517 return isAddressSpaceSupersetOf(other) &&
518 // ObjC GC qualifiers can match, be added, or be removed, but can't
519 // be changed.
520 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
521 !other.hasObjCGCAttr()) &&
522 // ObjC lifetime qualifiers must match exactly.
523 getObjCLifetime() == other.getObjCLifetime() &&
524 // CVR qualifiers may subset.
525 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
526 // U qualifier may superset.
527 (!other.hasUnaligned() || hasUnaligned());
528 }
529
530 /// Determines if these qualifiers compatibly include another set of
531 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
532 ///
533 /// One set of Objective-C lifetime qualifiers compatibly includes the other
534 /// if the lifetime qualifiers match, or if both are non-__weak and the
535 /// including set also contains the 'const' qualifier, or both are non-__weak
536 /// and one is None (which can only happen in non-ARC modes).
537 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
538 if (getObjCLifetime() == other.getObjCLifetime())
539 return true;
540
541 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
542 return false;
543
544 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
545 return true;
546
547 return hasConst();
548 }
549
550 /// Determine whether this set of qualifiers is a strict superset of
551 /// another set of qualifiers, not considering qualifier compatibility.
552 bool isStrictSupersetOf(Qualifiers Other) const;
553
554 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
555 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
556
557 explicit operator bool() const { return hasQualifiers(); }
558
559 Qualifiers &operator+=(Qualifiers R) {
560 addQualifiers(R);
561 return *this;
562 }
563
564 // Union two qualifier sets. If an enumerated qualifier appears
565 // in both sets, use the one from the right.
566 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
567 L += R;
568 return L;
569 }
570
571 Qualifiers &operator-=(Qualifiers R) {
572 removeQualifiers(R);
573 return *this;
574 }
575
576 /// Compute the difference between two qualifier sets.
577 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
578 L -= R;
579 return L;
580 }
581
582 std::string getAsString() const;
583 std::string getAsString(const PrintingPolicy &Policy) const;
584
585 static std::string getAddrSpaceAsString(LangAS AS);
586
587 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
588 void print(raw_ostream &OS, const PrintingPolicy &Policy,
589 bool appendSpaceIfNonEmpty = false) const;
590
591 void Profile(llvm::FoldingSetNodeID &ID) const {
592 ID.AddInteger(Mask);
593 }
594
595private:
596 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
597 // |C R V|U|GCAttr|Lifetime|AddressSpace|
598 uint32_t Mask = 0;
599
600 static const uint32_t UMask = 0x8;
601 static const uint32_t UShift = 3;
602 static const uint32_t GCAttrMask = 0x30;
603 static const uint32_t GCAttrShift = 4;
604 static const uint32_t LifetimeMask = 0x1C0;
605 static const uint32_t LifetimeShift = 6;
606 static const uint32_t AddressSpaceMask =
607 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
608 static const uint32_t AddressSpaceShift = 9;
609};
610
611/// A std::pair-like structure for storing a qualified type split
612/// into its local qualifiers and its locally-unqualified type.
613struct SplitQualType {
614 /// The locally-unqualified type.
615 const Type *Ty = nullptr;
616
617 /// The local qualifiers.
618 Qualifiers Quals;
619
620 SplitQualType() = default;
621 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
622
623 SplitQualType getSingleStepDesugaredType() const; // end of this file
624
625 // Make std::tie work.
626 std::pair<const Type *,Qualifiers> asPair() const {
627 return std::pair<const Type *, Qualifiers>(Ty, Quals);
628 }
629
630 friend bool operator==(SplitQualType a, SplitQualType b) {
631 return a.Ty == b.Ty && a.Quals == b.Quals;
632 }
633 friend bool operator!=(SplitQualType a, SplitQualType b) {
634 return a.Ty != b.Ty || a.Quals != b.Quals;
635 }
636};
637
638/// The kind of type we are substituting Objective-C type arguments into.
639///
640/// The kind of substitution affects the replacement of type parameters when
641/// no concrete type information is provided, e.g., when dealing with an
642/// unspecialized type.
643enum class ObjCSubstitutionContext {
644 /// An ordinary type.
645 Ordinary,
646
647 /// The result type of a method or function.
648 Result,
649
650 /// The parameter type of a method or function.
651 Parameter,
652
653 /// The type of a property.
654 Property,
655
656 /// The superclass of a type.
657 Superclass,
658};
659
660/// A (possibly-)qualified type.
661///
662/// For efficiency, we don't store CV-qualified types as nodes on their
663/// own: instead each reference to a type stores the qualifiers. This
664/// greatly reduces the number of nodes we need to allocate for types (for
665/// example we only need one for 'int', 'const int', 'volatile int',
666/// 'const volatile int', etc).
667///
668/// As an added efficiency bonus, instead of making this a pair, we
669/// just store the two bits we care about in the low bits of the
670/// pointer. To handle the packing/unpacking, we make QualType be a
671/// simple wrapper class that acts like a smart pointer. A third bit
672/// indicates whether there are extended qualifiers present, in which
673/// case the pointer points to a special structure.
674class QualType {
675 friend class QualifierCollector;
676
677 // Thankfully, these are efficiently composable.
678 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
679 Qualifiers::FastWidth> Value;
680
681 const ExtQuals *getExtQualsUnsafe() const {
682 return Value.getPointer().get<const ExtQuals*>();
683 }
684
685 const Type *getTypePtrUnsafe() const {
686 return Value.getPointer().get<const Type*>();
687 }
688
689 const ExtQualsTypeCommonBase *getCommonPtr() const {
690 assert(!isNull() && "Cannot retrieve a NULL type pointer")(static_cast <bool> (!isNull() && "Cannot retrieve a NULL type pointer"
) ? void (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "clang/include/clang/AST/Type.h", 690, __extension__ __PRETTY_FUNCTION__
))
;
691 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
692 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
693 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
694 }
695
696public:
697 QualType() = default;
698 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
699 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
700
701 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
702 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
703
704 /// Retrieves a pointer to the underlying (unqualified) type.
705 ///
706 /// This function requires that the type not be NULL. If the type might be
707 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
708 const Type *getTypePtr() const;
709
710 const Type *getTypePtrOrNull() const;
711
712 /// Retrieves a pointer to the name of the base type.
713 const IdentifierInfo *getBaseTypeIdentifier() const;
714
715 /// Divides a QualType into its unqualified type and a set of local
716 /// qualifiers.
717 SplitQualType split() const;
718
719 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
720
721 static QualType getFromOpaquePtr(const void *Ptr) {
722 QualType T;
723 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
724 return T;
725 }
726
727 const Type &operator*() const {
728 return *getTypePtr();
729 }
730
731 const Type *operator->() const {
732 return getTypePtr();
733 }
734
735 bool isCanonical() const;
736 bool isCanonicalAsParam() const;
737
738 /// Return true if this QualType doesn't point to a type yet.
739 bool isNull() const {
740 return Value.getPointer().isNull();
22
Calling 'PointerUnion::isNull'
25
Returning from 'PointerUnion::isNull'
26
Returning zero, which participates in a condition later
741 }
742
743 /// Determine whether this particular QualType instance has the
744 /// "const" qualifier set, without looking through typedefs that may have
745 /// added "const" at a different level.
746 bool isLocalConstQualified() const {
747 return (getLocalFastQualifiers() & Qualifiers::Const);
748 }
749
750 /// Determine whether this type is const-qualified.
751 bool isConstQualified() const;
752
753 /// Determine whether this particular QualType instance has the
754 /// "restrict" qualifier set, without looking through typedefs that may have
755 /// added "restrict" at a different level.
756 bool isLocalRestrictQualified() const {
757 return (getLocalFastQualifiers() & Qualifiers::Restrict);
758 }
759
760 /// Determine whether this type is restrict-qualified.
761 bool isRestrictQualified() const;
762
763 /// Determine whether this particular QualType instance has the
764 /// "volatile" qualifier set, without looking through typedefs that may have
765 /// added "volatile" at a different level.
766 bool isLocalVolatileQualified() const {
767 return (getLocalFastQualifiers() & Qualifiers::Volatile);
768 }
769
770 /// Determine whether this type is volatile-qualified.
771 bool isVolatileQualified() const;
772
773 /// Determine whether this particular QualType instance has any
774 /// qualifiers, without looking through any typedefs that might add
775 /// qualifiers at a different level.
776 bool hasLocalQualifiers() const {
777 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
778 }
779
780 /// Determine whether this type has any qualifiers.
781 bool hasQualifiers() const;
782
783 /// Determine whether this particular QualType instance has any
784 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
785 /// instance.
786 bool hasLocalNonFastQualifiers() const {
787 return Value.getPointer().is<const ExtQuals*>();
788 }
789
790 /// Retrieve the set of qualifiers local to this particular QualType
791 /// instance, not including any qualifiers acquired through typedefs or
792 /// other sugar.
793 Qualifiers getLocalQualifiers() const;
794
795 /// Retrieve the set of qualifiers applied to this type.
796 Qualifiers getQualifiers() const;
797
798 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
799 /// local to this particular QualType instance, not including any qualifiers
800 /// acquired through typedefs or other sugar.
801 unsigned getLocalCVRQualifiers() const {
802 return getLocalFastQualifiers();
803 }
804
805 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
806 /// applied to this type.
807 unsigned getCVRQualifiers() const;
808
809 bool isConstant(const ASTContext& Ctx) const {
810 return QualType::isConstant(*this, Ctx);
811 }
812
813 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
814 bool isPODType(const ASTContext &Context) const;
815
816 /// Return true if this is a POD type according to the rules of the C++98
817 /// standard, regardless of the current compilation's language.
818 bool isCXX98PODType(const ASTContext &Context) const;
819
820 /// Return true if this is a POD type according to the more relaxed rules
821 /// of the C++11 standard, regardless of the current compilation's language.
822 /// (C++0x [basic.types]p9). Note that, unlike
823 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
824 bool isCXX11PODType(const ASTContext &Context) const;
825
826 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
827 bool isTrivialType(const ASTContext &Context) const;
828
829 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
830 bool isTriviallyCopyableType(const ASTContext &Context) const;
831
832
833 /// Returns true if it is a class and it might be dynamic.
834 bool mayBeDynamicClass() const;
835
836 /// Returns true if it is not a class or if the class might not be dynamic.
837 bool mayBeNotDynamicClass() const;
838
839 // Don't promise in the API that anything besides 'const' can be
840 // easily added.
841
842 /// Add the `const` type qualifier to this QualType.
843 void addConst() {
844 addFastQualifiers(Qualifiers::Const);
845 }
846 QualType withConst() const {
847 return withFastQualifiers(Qualifiers::Const);
848 }
849
850 /// Add the `volatile` type qualifier to this QualType.
851 void addVolatile() {
852 addFastQualifiers(Qualifiers::Volatile);
853 }
854 QualType withVolatile() const {
855 return withFastQualifiers(Qualifiers::Volatile);
856 }
857
858 /// Add the `restrict` qualifier to this QualType.
859 void addRestrict() {
860 addFastQualifiers(Qualifiers::Restrict);
861 }
862 QualType withRestrict() const {
863 return withFastQualifiers(Qualifiers::Restrict);
864 }
865
866 QualType withCVRQualifiers(unsigned CVR) const {
867 return withFastQualifiers(CVR);
868 }
869
870 void addFastQualifiers(unsigned TQs) {
871 assert(!(TQs & ~Qualifiers::FastMask)(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 872, __extension__ __PRETTY_FUNCTION__
))
872 && "non-fast qualifier bits set in mask!")(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 872, __extension__ __PRETTY_FUNCTION__
))
;
873 Value.setInt(Value.getInt() | TQs);
874 }
875
876 void removeLocalConst();
877 void removeLocalVolatile();
878 void removeLocalRestrict();
879 void removeLocalCVRQualifiers(unsigned Mask);
880
881 void removeLocalFastQualifiers() { Value.setInt(0); }
882 void removeLocalFastQualifiers(unsigned Mask) {
883 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")(static_cast <bool> (!(Mask & ~Qualifiers::FastMask
) && "mask has non-fast qualifiers") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "clang/include/clang/AST/Type.h", 883, __extension__ __PRETTY_FUNCTION__
))
;
884 Value.setInt(Value.getInt() & ~Mask);
885 }
886
887 // Creates a type with the given qualifiers in addition to any
888 // qualifiers already on this type.
889 QualType withFastQualifiers(unsigned TQs) const {
890 QualType T = *this;
891 T.addFastQualifiers(TQs);
892 return T;
893 }
894
895 // Creates a type with exactly the given fast qualifiers, removing
896 // any existing fast qualifiers.
897 QualType withExactLocalFastQualifiers(unsigned TQs) const {
898 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
899 }
900
901 // Removes fast qualifiers, but leaves any extended qualifiers in place.
902 QualType withoutLocalFastQualifiers() const {
903 QualType T = *this;
904 T.removeLocalFastQualifiers();
905 return T;
906 }
907
908 QualType getCanonicalType() const;
909
910 /// Return this type with all of the instance-specific qualifiers
911 /// removed, but without removing any qualifiers that may have been applied
912 /// through typedefs.
913 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
914
915 /// Retrieve the unqualified variant of the given type,
916 /// removing as little sugar as possible.
917 ///
918 /// This routine looks through various kinds of sugar to find the
919 /// least-desugared type that is unqualified. For example, given:
920 ///
921 /// \code
922 /// typedef int Integer;
923 /// typedef const Integer CInteger;
924 /// typedef CInteger DifferenceType;
925 /// \endcode
926 ///
927 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
928 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
929 ///
930 /// The resulting type might still be qualified if it's sugar for an array
931 /// type. To strip qualifiers even from within a sugared array type, use
932 /// ASTContext::getUnqualifiedArrayType.
933 inline QualType getUnqualifiedType() const;
934
935 /// Retrieve the unqualified variant of the given type, removing as little
936 /// sugar as possible.
937 ///
938 /// Like getUnqualifiedType(), but also returns the set of
939 /// qualifiers that were built up.
940 ///
941 /// The resulting type might still be qualified if it's sugar for an array
942 /// type. To strip qualifiers even from within a sugared array type, use
943 /// ASTContext::getUnqualifiedArrayType.
944 inline SplitQualType getSplitUnqualifiedType() const;
945
946 /// Determine whether this type is more qualified than the other
947 /// given type, requiring exact equality for non-CVR qualifiers.
948 bool isMoreQualifiedThan(QualType Other) const;
949
950 /// Determine whether this type is at least as qualified as the other
951 /// given type, requiring exact equality for non-CVR qualifiers.
952 bool isAtLeastAsQualifiedAs(QualType Other) const;
953
954 QualType getNonReferenceType() const;
955
956 /// Determine the type of a (typically non-lvalue) expression with the
957 /// specified result type.
958 ///
959 /// This routine should be used for expressions for which the return type is
960 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
961 /// an lvalue. It removes a top-level reference (since there are no
962 /// expressions of reference type) and deletes top-level cvr-qualifiers
963 /// from non-class types (in C++) or all types (in C).
964 QualType getNonLValueExprType(const ASTContext &Context) const;
965
966 /// Remove an outer pack expansion type (if any) from this type. Used as part
967 /// of converting the type of a declaration to the type of an expression that
968 /// references that expression. It's meaningless for an expression to have a
969 /// pack expansion type.
970 QualType getNonPackExpansionType() const;
971
972 /// Return the specified type with any "sugar" removed from
973 /// the type. This takes off typedefs, typeof's etc. If the outer level of
974 /// the type is already concrete, it returns it unmodified. This is similar
975 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
976 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
977 /// concrete.
978 ///
979 /// Qualifiers are left in place.
980 QualType getDesugaredType(const ASTContext &Context) const {
981 return getDesugaredType(*this, Context);
982 }
983
984 SplitQualType getSplitDesugaredType() const {
985 return getSplitDesugaredType(*this);
986 }
987
988 /// Return the specified type with one level of "sugar" removed from
989 /// the type.
990 ///
991 /// This routine takes off the first typedef, typeof, etc. If the outer level
992 /// of the type is already concrete, it returns it unmodified.
993 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
994 return getSingleStepDesugaredTypeImpl(*this, Context);
995 }
996
997 /// Returns the specified type after dropping any
998 /// outer-level parentheses.
999 QualType IgnoreParens() const {
1000 if (isa<ParenType>(*this))
1001 return QualType::IgnoreParens(*this);
1002 return *this;
1003 }
1004
1005 /// Indicate whether the specified types and qualifiers are identical.
1006 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1007 return LHS.Value == RHS.Value;
1008 }
1009 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1010 return LHS.Value != RHS.Value;
1011 }
1012 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1013 return LHS.Value < RHS.Value;
1014 }
1015
1016 static std::string getAsString(SplitQualType split,
1017 const PrintingPolicy &Policy) {
1018 return getAsString(split.Ty, split.Quals, Policy);
1019 }
1020 static std::string getAsString(const Type *ty, Qualifiers qs,
1021 const PrintingPolicy &Policy);
1022
1023 std::string getAsString() const;
1024 std::string getAsString(const PrintingPolicy &Policy) const;
1025
1026 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1027 const Twine &PlaceHolder = Twine(),
1028 unsigned Indentation = 0) const;
1029
1030 static void print(SplitQualType split, raw_ostream &OS,
1031 const PrintingPolicy &policy, const Twine &PlaceHolder,
1032 unsigned Indentation = 0) {
1033 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1034 }
1035
1036 static void print(const Type *ty, Qualifiers qs,
1037 raw_ostream &OS, const PrintingPolicy &policy,
1038 const Twine &PlaceHolder,
1039 unsigned Indentation = 0);
1040
1041 void getAsStringInternal(std::string &Str,
1042 const PrintingPolicy &Policy) const;
1043
1044 static void getAsStringInternal(SplitQualType split, std::string &out,
1045 const PrintingPolicy &policy) {
1046 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1047 }
1048
1049 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1050 std::string &out,
1051 const PrintingPolicy &policy);
1052
1053 class StreamedQualTypeHelper {
1054 const QualType &T;
1055 const PrintingPolicy &Policy;
1056 const Twine &PlaceHolder;
1057 unsigned Indentation;
1058
1059 public:
1060 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1061 const Twine &PlaceHolder, unsigned Indentation)
1062 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1063 Indentation(Indentation) {}
1064
1065 friend raw_ostream &operator<<(raw_ostream &OS,
1066 const StreamedQualTypeHelper &SQT) {
1067 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1068 return OS;
1069 }
1070 };
1071
1072 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1073 const Twine &PlaceHolder = Twine(),
1074 unsigned Indentation = 0) const {
1075 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1076 }
1077
1078 void dump(const char *s) const;
1079 void dump() const;
1080 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1081
1082 void Profile(llvm::FoldingSetNodeID &ID) const {
1083 ID.AddPointer(getAsOpaquePtr());
1084 }
1085
1086 /// Check if this type has any address space qualifier.
1087 inline bool hasAddressSpace() const;
1088
1089 /// Return the address space of this type.
1090 inline LangAS getAddressSpace() const;
1091
1092 /// Returns true if address space qualifiers overlap with T address space
1093 /// qualifiers.
1094 /// OpenCL C defines conversion rules for pointers to different address spaces
1095 /// and notion of overlapping address spaces.
1096 /// CL1.1 or CL1.2:
1097 /// address spaces overlap iff they are they same.
1098 /// OpenCL C v2.0 s6.5.5 adds:
1099 /// __generic overlaps with any address space except for __constant.
1100 bool isAddressSpaceOverlapping(QualType T) const {
1101 Qualifiers Q = getQualifiers();
1102 Qualifiers TQ = T.getQualifiers();
1103 // Address spaces overlap if at least one of them is a superset of another
1104 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1105 }
1106
1107 /// Returns gc attribute of this type.
1108 inline Qualifiers::GC getObjCGCAttr() const;
1109
1110 /// true when Type is objc's weak.
1111 bool isObjCGCWeak() const {
1112 return getObjCGCAttr() == Qualifiers::Weak;
1113 }
1114
1115 /// true when Type is objc's strong.
1116 bool isObjCGCStrong() const {
1117 return getObjCGCAttr() == Qualifiers::Strong;
1118 }
1119
1120 /// Returns lifetime attribute of this type.
1121 Qualifiers::ObjCLifetime getObjCLifetime() const {
1122 return getQualifiers().getObjCLifetime();
1123 }
1124
1125 bool hasNonTrivialObjCLifetime() const {
1126 return getQualifiers().hasNonTrivialObjCLifetime();
1127 }
1128
1129 bool hasStrongOrWeakObjCLifetime() const {
1130 return getQualifiers().hasStrongOrWeakObjCLifetime();
1131 }
1132
1133 // true when Type is objc's weak and weak is enabled but ARC isn't.
1134 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1135
1136 enum PrimitiveDefaultInitializeKind {
1137 /// The type does not fall into any of the following categories. Note that
1138 /// this case is zero-valued so that values of this enum can be used as a
1139 /// boolean condition for non-triviality.
1140 PDIK_Trivial,
1141
1142 /// The type is an Objective-C retainable pointer type that is qualified
1143 /// with the ARC __strong qualifier.
1144 PDIK_ARCStrong,
1145
1146 /// The type is an Objective-C retainable pointer type that is qualified
1147 /// with the ARC __weak qualifier.
1148 PDIK_ARCWeak,
1149
1150 /// The type is a struct containing a field whose type is not PCK_Trivial.
1151 PDIK_Struct
1152 };
1153
1154 /// Functions to query basic properties of non-trivial C struct types.
1155
1156 /// Check if this is a non-trivial type that would cause a C struct
1157 /// transitively containing this type to be non-trivial to default initialize
1158 /// and return the kind.
1159 PrimitiveDefaultInitializeKind
1160 isNonTrivialToPrimitiveDefaultInitialize() const;
1161
1162 enum PrimitiveCopyKind {
1163 /// The type does not fall into any of the following categories. Note that
1164 /// this case is zero-valued so that values of this enum can be used as a
1165 /// boolean condition for non-triviality.
1166 PCK_Trivial,
1167
1168 /// The type would be trivial except that it is volatile-qualified. Types
1169 /// that fall into one of the other non-trivial cases may additionally be
1170 /// volatile-qualified.
1171 PCK_VolatileTrivial,
1172
1173 /// The type is an Objective-C retainable pointer type that is qualified
1174 /// with the ARC __strong qualifier.
1175 PCK_ARCStrong,
1176
1177 /// The type is an Objective-C retainable pointer type that is qualified
1178 /// with the ARC __weak qualifier.
1179 PCK_ARCWeak,
1180
1181 /// The type is a struct containing a field whose type is neither
1182 /// PCK_Trivial nor PCK_VolatileTrivial.
1183 /// Note that a C++ struct type does not necessarily match this; C++ copying
1184 /// semantics are too complex to express here, in part because they depend
1185 /// on the exact constructor or assignment operator that is chosen by
1186 /// overload resolution to do the copy.
1187 PCK_Struct
1188 };
1189
1190 /// Check if this is a non-trivial type that would cause a C struct
1191 /// transitively containing this type to be non-trivial to copy and return the
1192 /// kind.
1193 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1194
1195 /// Check if this is a non-trivial type that would cause a C struct
1196 /// transitively containing this type to be non-trivial to destructively
1197 /// move and return the kind. Destructive move in this context is a C++-style
1198 /// move in which the source object is placed in a valid but unspecified state
1199 /// after it is moved, as opposed to a truly destructive move in which the
1200 /// source object is placed in an uninitialized state.
1201 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1202
1203 enum DestructionKind {
1204 DK_none,
1205 DK_cxx_destructor,
1206 DK_objc_strong_lifetime,
1207 DK_objc_weak_lifetime,
1208 DK_nontrivial_c_struct
1209 };
1210
1211 /// Returns a nonzero value if objects of this type require
1212 /// non-trivial work to clean up after. Non-zero because it's
1213 /// conceivable that qualifiers (objc_gc(weak)?) could make
1214 /// something require destruction.
1215 DestructionKind isDestructedType() const {
1216 return isDestructedTypeImpl(*this);
1217 }
1218
1219 /// Check if this is or contains a C union that is non-trivial to
1220 /// default-initialize, which is a union that has a member that is non-trivial
1221 /// to default-initialize. If this returns true,
1222 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1223 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1224
1225 /// Check if this is or contains a C union that is non-trivial to destruct,
1226 /// which is a union that has a member that is non-trivial to destruct. If
1227 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1228 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1229
1230 /// Check if this is or contains a C union that is non-trivial to copy, which
1231 /// is a union that has a member that is non-trivial to copy. If this returns
1232 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1233 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1234
1235 /// Determine whether expressions of the given type are forbidden
1236 /// from being lvalues in C.
1237 ///
1238 /// The expression types that are forbidden to be lvalues are:
1239 /// - 'void', but not qualified void
1240 /// - function types
1241 ///
1242 /// The exact rule here is C99 6.3.2.1:
1243 /// An lvalue is an expression with an object type or an incomplete
1244 /// type other than void.
1245 bool isCForbiddenLValueType() const;
1246
1247 /// Substitute type arguments for the Objective-C type parameters used in the
1248 /// subject type.
1249 ///
1250 /// \param ctx ASTContext in which the type exists.
1251 ///
1252 /// \param typeArgs The type arguments that will be substituted for the
1253 /// Objective-C type parameters in the subject type, which are generally
1254 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1255 /// parameters will be replaced with their bounds or id/Class, as appropriate
1256 /// for the context.
1257 ///
1258 /// \param context The context in which the subject type was written.
1259 ///
1260 /// \returns the resulting type.
1261 QualType substObjCTypeArgs(ASTContext &ctx,
1262 ArrayRef<QualType> typeArgs,
1263 ObjCSubstitutionContext context) const;
1264
1265 /// Substitute type arguments from an object type for the Objective-C type
1266 /// parameters used in the subject type.
1267 ///
1268 /// This operation combines the computation of type arguments for
1269 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1270 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1271 /// callers that need to perform a single substitution in isolation.
1272 ///
1273 /// \param objectType The type of the object whose member type we're
1274 /// substituting into. For example, this might be the receiver of a message
1275 /// or the base of a property access.
1276 ///
1277 /// \param dc The declaration context from which the subject type was
1278 /// retrieved, which indicates (for example) which type parameters should
1279 /// be substituted.
1280 ///
1281 /// \param context The context in which the subject type was written.
1282 ///
1283 /// \returns the subject type after replacing all of the Objective-C type
1284 /// parameters with their corresponding arguments.
1285 QualType substObjCMemberType(QualType objectType,
1286 const DeclContext *dc,
1287 ObjCSubstitutionContext context) const;
1288
1289 /// Strip Objective-C "__kindof" types from the given type.
1290 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1291
1292 /// Remove all qualifiers including _Atomic.
1293 QualType getAtomicUnqualifiedType() const;
1294
1295private:
1296 // These methods are implemented in a separate translation unit;
1297 // "static"-ize them to avoid creating temporary QualTypes in the
1298 // caller.
1299 static bool isConstant(QualType T, const ASTContext& Ctx);
1300 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1301 static SplitQualType getSplitDesugaredType(QualType T);
1302 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1303 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1304 const ASTContext &C);
1305 static QualType IgnoreParens(QualType T);
1306 static DestructionKind isDestructedTypeImpl(QualType type);
1307
1308 /// Check if \param RD is or contains a non-trivial C union.
1309 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1310 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1311 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1312};
1313
1314} // namespace clang
1315
1316namespace llvm {
1317
1318/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1319/// to a specific Type class.
1320template<> struct simplify_type< ::clang::QualType> {
1321 using SimpleType = const ::clang::Type *;
1322
1323 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1324 return Val.getTypePtr();
1325 }
1326};
1327
1328// Teach SmallPtrSet that QualType is "basically a pointer".
1329template<>
1330struct PointerLikeTypeTraits<clang::QualType> {
1331 static inline void *getAsVoidPointer(clang::QualType P) {
1332 return P.getAsOpaquePtr();
1333 }
1334
1335 static inline clang::QualType getFromVoidPointer(void *P) {
1336 return clang::QualType::getFromOpaquePtr(P);
1337 }
1338
1339 // Various qualifiers go in low bits.
1340 static constexpr int NumLowBitsAvailable = 0;
1341};
1342
1343} // namespace llvm
1344
1345namespace clang {
1346
1347/// Base class that is common to both the \c ExtQuals and \c Type
1348/// classes, which allows \c QualType to access the common fields between the
1349/// two.
1350class ExtQualsTypeCommonBase {
1351 friend class ExtQuals;
1352 friend class QualType;
1353 friend class Type;
1354
1355 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1356 /// a self-referential pointer (for \c Type).
1357 ///
1358 /// This pointer allows an efficient mapping from a QualType to its
1359 /// underlying type pointer.
1360 const Type *const BaseType;
1361
1362 /// The canonical type of this type. A QualType.
1363 QualType CanonicalType;
1364
1365 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1366 : BaseType(baseType), CanonicalType(canon) {}
1367};
1368
1369/// We can encode up to four bits in the low bits of a
1370/// type pointer, but there are many more type qualifiers that we want
1371/// to be able to apply to an arbitrary type. Therefore we have this
1372/// struct, intended to be heap-allocated and used by QualType to
1373/// store qualifiers.
1374///
1375/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1376/// in three low bits on the QualType pointer; a fourth bit records whether
1377/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1378/// Objective-C GC attributes) are much more rare.
1379class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1380 // NOTE: changing the fast qualifiers should be straightforward as
1381 // long as you don't make 'const' non-fast.
1382 // 1. Qualifiers:
1383 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1384 // Fast qualifiers must occupy the low-order bits.
1385 // b) Update Qualifiers::FastWidth and FastMask.
1386 // 2. QualType:
1387 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1388 // b) Update remove{Volatile,Restrict}, defined near the end of
1389 // this header.
1390 // 3. ASTContext:
1391 // a) Update get{Volatile,Restrict}Type.
1392
1393 /// The immutable set of qualifiers applied by this node. Always contains
1394 /// extended qualifiers.
1395 Qualifiers Quals;
1396
1397 ExtQuals *this_() { return this; }
1398
1399public:
1400 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1401 : ExtQualsTypeCommonBase(baseType,
1402 canon.isNull() ? QualType(this_(), 0) : canon),
1403 Quals(quals) {
1404 assert(Quals.hasNonFastQualifiers()(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1405, __extension__ __PRETTY_FUNCTION__
))
1405 && "ExtQuals created with no fast qualifiers")(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1405, __extension__ __PRETTY_FUNCTION__
))
;
1406 assert(!Quals.hasFastQualifiers()(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1407, __extension__ __PRETTY_FUNCTION__
))
1407 && "ExtQuals created with fast qualifiers")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1407, __extension__ __PRETTY_FUNCTION__
))
;
1408 }
1409
1410 Qualifiers getQualifiers() const { return Quals; }
1411
1412 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1413 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1414
1415 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1416 Qualifiers::ObjCLifetime getObjCLifetime() const {
1417 return Quals.getObjCLifetime();
1418 }
1419
1420 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1421 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1422
1423 const Type *getBaseType() const { return BaseType; }
1424
1425public:
1426 void Profile(llvm::FoldingSetNodeID &ID) const {
1427 Profile(ID, getBaseType(), Quals);
1428 }
1429
1430 static void Profile(llvm::FoldingSetNodeID &ID,
1431 const Type *BaseType,
1432 Qualifiers Quals) {
1433 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"fast qualifiers in ExtQuals hash!") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "clang/include/clang/AST/Type.h", 1433, __extension__ __PRETTY_FUNCTION__
))
;
1434 ID.AddPointer(BaseType);
1435 Quals.Profile(ID);
1436 }
1437};
1438
1439/// The kind of C++11 ref-qualifier associated with a function type.
1440/// This determines whether a member function's "this" object can be an
1441/// lvalue, rvalue, or neither.
1442enum RefQualifierKind {
1443 /// No ref-qualifier was provided.
1444 RQ_None = 0,
1445
1446 /// An lvalue ref-qualifier was provided (\c &).
1447 RQ_LValue,
1448
1449 /// An rvalue ref-qualifier was provided (\c &&).
1450 RQ_RValue
1451};
1452
1453/// Which keyword(s) were used to create an AutoType.
1454enum class AutoTypeKeyword {
1455 /// auto
1456 Auto,
1457
1458 /// decltype(auto)
1459 DecltypeAuto,
1460
1461 /// __auto_type (GNU extension)
1462 GNUAutoType
1463};
1464
1465/// The base class of the type hierarchy.
1466///
1467/// A central concept with types is that each type always has a canonical
1468/// type. A canonical type is the type with any typedef names stripped out
1469/// of it or the types it references. For example, consider:
1470///
1471/// typedef int foo;
1472/// typedef foo* bar;
1473/// 'int *' 'foo *' 'bar'
1474///
1475/// There will be a Type object created for 'int'. Since int is canonical, its
1476/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1477/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1478/// there is a PointerType that represents 'int*', which, like 'int', is
1479/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1480/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1481/// is also 'int*'.
1482///
1483/// Non-canonical types are useful for emitting diagnostics, without losing
1484/// information about typedefs being used. Canonical types are useful for type
1485/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1486/// about whether something has a particular form (e.g. is a function type),
1487/// because they implicitly, recursively, strip all typedefs out of a type.
1488///
1489/// Types, once created, are immutable.
1490///
1491class alignas(8) Type : public ExtQualsTypeCommonBase {
1492public:
1493 enum TypeClass {
1494#define TYPE(Class, Base) Class,
1495#define LAST_TYPE(Class) TypeLast = Class
1496#define ABSTRACT_TYPE(Class, Base)
1497#include "clang/AST/TypeNodes.inc"
1498 };
1499
1500private:
1501 /// Bitfields required by the Type class.
1502 class TypeBitfields {
1503 friend class Type;
1504 template <class T> friend class TypePropertyCache;
1505
1506 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1507 unsigned TC : 8;
1508
1509 /// Store information on the type dependency.
1510 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1511
1512 /// True if the cache (i.e. the bitfields here starting with
1513 /// 'Cache') is valid.
1514 mutable unsigned CacheValid : 1;
1515
1516 /// Linkage of this type.
1517 mutable unsigned CachedLinkage : 3;
1518
1519 /// Whether this type involves and local or unnamed types.
1520 mutable unsigned CachedLocalOrUnnamed : 1;
1521
1522 /// Whether this type comes from an AST file.
1523 mutable unsigned FromAST : 1;
1524
1525 bool isCacheValid() const {
1526 return CacheValid;
1527 }
1528
1529 Linkage getLinkage() const {
1530 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1530, __extension__ __PRETTY_FUNCTION__
))
;
1531 return static_cast<Linkage>(CachedLinkage);
1532 }
1533
1534 bool hasLocalOrUnnamedType() const {
1535 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1535, __extension__ __PRETTY_FUNCTION__
))
;
1536 return CachedLocalOrUnnamed;
1537 }
1538 };
1539 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1540
1541protected:
1542 // These classes allow subclasses to somewhat cleanly pack bitfields
1543 // into Type.
1544
1545 class ArrayTypeBitfields {
1546 friend class ArrayType;
1547
1548 unsigned : NumTypeBits;
1549
1550 /// CVR qualifiers from declarations like
1551 /// 'int X[static restrict 4]'. For function parameters only.
1552 unsigned IndexTypeQuals : 3;
1553
1554 /// Storage class qualifiers from declarations like
1555 /// 'int X[static restrict 4]'. For function parameters only.
1556 /// Actually an ArrayType::ArraySizeModifier.
1557 unsigned SizeModifier : 3;
1558 };
1559
1560 class ConstantArrayTypeBitfields {
1561 friend class ConstantArrayType;
1562
1563 unsigned : NumTypeBits + 3 + 3;
1564
1565 /// Whether we have a stored size expression.
1566 unsigned HasStoredSizeExpr : 1;
1567 };
1568
1569 class BuiltinTypeBitfields {
1570 friend class BuiltinType;
1571
1572 unsigned : NumTypeBits;
1573
1574 /// The kind (BuiltinType::Kind) of builtin type this is.
1575 unsigned Kind : 8;
1576 };
1577
1578 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1579 /// Only common bits are stored here. Additional uncommon bits are stored
1580 /// in a trailing object after FunctionProtoType.
1581 class FunctionTypeBitfields {
1582 friend class FunctionProtoType;
1583 friend class FunctionType;
1584
1585 unsigned : NumTypeBits;
1586
1587 /// Extra information which affects how the function is called, like
1588 /// regparm and the calling convention.
1589 unsigned ExtInfo : 13;
1590
1591 /// The ref-qualifier associated with a \c FunctionProtoType.
1592 ///
1593 /// This is a value of type \c RefQualifierKind.
1594 unsigned RefQualifier : 2;
1595
1596 /// Used only by FunctionProtoType, put here to pack with the
1597 /// other bitfields.
1598 /// The qualifiers are part of FunctionProtoType because...
1599 ///
1600 /// C++ 8.3.5p4: The return type, the parameter type list and the
1601 /// cv-qualifier-seq, [...], are part of the function type.
1602 unsigned FastTypeQuals : Qualifiers::FastWidth;
1603 /// Whether this function has extended Qualifiers.
1604 unsigned HasExtQuals : 1;
1605
1606 /// The number of parameters this function has, not counting '...'.
1607 /// According to [implimits] 8 bits should be enough here but this is
1608 /// somewhat easy to exceed with metaprogramming and so we would like to
1609 /// keep NumParams as wide as reasonably possible.
1610 unsigned NumParams : 16;
1611
1612 /// The type of exception specification this function has.
1613 unsigned ExceptionSpecType : 4;
1614
1615 /// Whether this function has extended parameter information.
1616 unsigned HasExtParameterInfos : 1;
1617
1618 /// Whether the function is variadic.
1619 unsigned Variadic : 1;
1620
1621 /// Whether this function has a trailing return type.
1622 unsigned HasTrailingReturn : 1;
1623 };
1624
1625 class ObjCObjectTypeBitfields {
1626 friend class ObjCObjectType;
1627
1628 unsigned : NumTypeBits;
1629
1630 /// The number of type arguments stored directly on this object type.
1631 unsigned NumTypeArgs : 7;
1632
1633 /// The number of protocols stored directly on this object type.
1634 unsigned NumProtocols : 6;
1635
1636 /// Whether this is a "kindof" type.
1637 unsigned IsKindOf : 1;
1638 };
1639
1640 class ReferenceTypeBitfields {
1641 friend class ReferenceType;
1642
1643 unsigned : NumTypeBits;
1644
1645 /// True if the type was originally spelled with an lvalue sigil.
1646 /// This is never true of rvalue references but can also be false
1647 /// on lvalue references because of C++0x [dcl.typedef]p9,
1648 /// as follows:
1649 ///
1650 /// typedef int &ref; // lvalue, spelled lvalue
1651 /// typedef int &&rvref; // rvalue
1652 /// ref &a; // lvalue, inner ref, spelled lvalue
1653 /// ref &&a; // lvalue, inner ref
1654 /// rvref &a; // lvalue, inner ref, spelled lvalue
1655 /// rvref &&a; // rvalue, inner ref
1656 unsigned SpelledAsLValue : 1;
1657
1658 /// True if the inner type is a reference type. This only happens
1659 /// in non-canonical forms.
1660 unsigned InnerRef : 1;
1661 };
1662
1663 class TypeWithKeywordBitfields {
1664 friend class TypeWithKeyword;
1665
1666 unsigned : NumTypeBits;
1667
1668 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1669 unsigned Keyword : 8;
1670 };
1671
1672 enum { NumTypeWithKeywordBits = 8 };
1673
1674 class ElaboratedTypeBitfields {
1675 friend class ElaboratedType;
1676
1677 unsigned : NumTypeBits;
1678 unsigned : NumTypeWithKeywordBits;
1679
1680 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1681 unsigned HasOwnedTagDecl : 1;
1682 };
1683
1684 class VectorTypeBitfields {
1685 friend class VectorType;
1686 friend class DependentVectorType;
1687
1688 unsigned : NumTypeBits;
1689
1690 /// The kind of vector, either a generic vector type or some
1691 /// target-specific vector type such as for AltiVec or Neon.
1692 unsigned VecKind : 3;
1693 /// The number of elements in the vector.
1694 uint32_t NumElements;
1695 };
1696
1697 class AttributedTypeBitfields {
1698 friend class AttributedType;
1699
1700 unsigned : NumTypeBits;
1701
1702 /// An AttributedType::Kind
1703 unsigned AttrKind : 32 - NumTypeBits;
1704 };
1705
1706 class AutoTypeBitfields {
1707 friend class AutoType;
1708
1709 unsigned : NumTypeBits;
1710
1711 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1712 /// or '__auto_type'? AutoTypeKeyword value.
1713 unsigned Keyword : 2;
1714
1715 /// The number of template arguments in the type-constraints, which is
1716 /// expected to be able to hold at least 1024 according to [implimits].
1717 /// However as this limit is somewhat easy to hit with template
1718 /// metaprogramming we'd prefer to keep it as large as possible.
1719 /// At the moment it has been left as a non-bitfield since this type
1720 /// safely fits in 64 bits as an unsigned, so there is no reason to
1721 /// introduce the performance impact of a bitfield.
1722 unsigned NumArgs;
1723 };
1724
1725 class SubstTemplateTypeParmPackTypeBitfields {
1726 friend class SubstTemplateTypeParmPackType;
1727
1728 unsigned : NumTypeBits;
1729
1730 /// The number of template arguments in \c Arguments, which is
1731 /// expected to be able to hold at least 1024 according to [implimits].
1732 /// However as this limit is somewhat easy to hit with template
1733 /// metaprogramming we'd prefer to keep it as large as possible.
1734 /// At the moment it has been left as a non-bitfield since this type
1735 /// safely fits in 64 bits as an unsigned, so there is no reason to
1736 /// introduce the performance impact of a bitfield.
1737 unsigned NumArgs;
1738 };
1739
1740 class TemplateSpecializationTypeBitfields {
1741 friend class TemplateSpecializationType;
1742
1743 unsigned : NumTypeBits;
1744
1745 /// Whether this template specialization type is a substituted type alias.
1746 unsigned TypeAlias : 1;
1747
1748 /// The number of template arguments named in this class template
1749 /// specialization, which is expected to be able to hold at least 1024
1750 /// according to [implimits]. However, as this limit is somewhat easy to
1751 /// hit with template metaprogramming we'd prefer to keep it as large
1752 /// as possible. At the moment it has been left as a non-bitfield since
1753 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1754 /// to introduce the performance impact of a bitfield.
1755 unsigned NumArgs;
1756 };
1757
1758 class DependentTemplateSpecializationTypeBitfields {
1759 friend class DependentTemplateSpecializationType;
1760
1761 unsigned : NumTypeBits;
1762 unsigned : NumTypeWithKeywordBits;
1763
1764 /// The number of template arguments named in this class template
1765 /// specialization, which is expected to be able to hold at least 1024
1766 /// according to [implimits]. However, as this limit is somewhat easy to
1767 /// hit with template metaprogramming we'd prefer to keep it as large
1768 /// as possible. At the moment it has been left as a non-bitfield since
1769 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1770 /// to introduce the performance impact of a bitfield.
1771 unsigned NumArgs;
1772 };
1773
1774 class PackExpansionTypeBitfields {
1775 friend class PackExpansionType;
1776
1777 unsigned : NumTypeBits;
1778
1779 /// The number of expansions that this pack expansion will
1780 /// generate when substituted (+1), which is expected to be able to
1781 /// hold at least 1024 according to [implimits]. However, as this limit
1782 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1783 /// keep it as large as possible. At the moment it has been left as a
1784 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1785 /// there is no reason to introduce the performance impact of a bitfield.
1786 ///
1787 /// This field will only have a non-zero value when some of the parameter
1788 /// packs that occur within the pattern have been substituted but others
1789 /// have not.
1790 unsigned NumExpansions;
1791 };
1792
1793 union {
1794 TypeBitfields TypeBits;
1795 ArrayTypeBitfields ArrayTypeBits;
1796 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1797 AttributedTypeBitfields AttributedTypeBits;
1798 AutoTypeBitfields AutoTypeBits;
1799 BuiltinTypeBitfields BuiltinTypeBits;
1800 FunctionTypeBitfields FunctionTypeBits;
1801 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1802 ReferenceTypeBitfields ReferenceTypeBits;
1803 TypeWithKeywordBitfields TypeWithKeywordBits;
1804 ElaboratedTypeBitfields ElaboratedTypeBits;
1805 VectorTypeBitfields VectorTypeBits;
1806 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1807 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1808 DependentTemplateSpecializationTypeBitfields
1809 DependentTemplateSpecializationTypeBits;
1810 PackExpansionTypeBitfields PackExpansionTypeBits;
1811 };
1812
1813private:
1814 template <class T> friend class TypePropertyCache;
1815
1816 /// Set whether this type comes from an AST file.
1817 void setFromAST(bool V = true) const {
1818 TypeBits.FromAST = V;
1819 }
1820
1821protected:
1822 friend class ASTContext;
1823
1824 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1825 : ExtQualsTypeCommonBase(this,
1826 canon.isNull() ? QualType(this_(), 0) : canon) {
1827 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1828 "changing bitfields changed sizeof(Type)!");
1829 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1830 "Insufficient alignment!");
1831 TypeBits.TC = tc;
1832 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1833 TypeBits.CacheValid = false;
1834 TypeBits.CachedLocalOrUnnamed = false;
1835 TypeBits.CachedLinkage = NoLinkage;
1836 TypeBits.FromAST = false;
1837 }
1838
1839 // silence VC++ warning C4355: 'this' : used in base member initializer list
1840 Type *this_() { return this; }
1841
1842 void setDependence(TypeDependence D) {
1843 TypeBits.Dependence = static_cast<unsigned>(D);
1844 }
1845
1846 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1847
1848public:
1849 friend class ASTReader;
1850 friend class ASTWriter;
1851 template <class T> friend class serialization::AbstractTypeReader;
1852 template <class T> friend class serialization::AbstractTypeWriter;
1853
1854 Type(const Type &) = delete;
1855 Type(Type &&) = delete;
1856 Type &operator=(const Type &) = delete;
1857 Type &operator=(Type &&) = delete;
1858
1859 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1860
1861 /// Whether this type comes from an AST file.
1862 bool isFromAST() const { return TypeBits.FromAST; }
1863
1864 /// Whether this type is or contains an unexpanded parameter
1865 /// pack, used to support C++0x variadic templates.
1866 ///
1867 /// A type that contains a parameter pack shall be expanded by the
1868 /// ellipsis operator at some point. For example, the typedef in the
1869 /// following example contains an unexpanded parameter pack 'T':
1870 ///
1871 /// \code
1872 /// template<typename ...T>
1873 /// struct X {
1874 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1875 /// };
1876 /// \endcode
1877 ///
1878 /// Note that this routine does not specify which
1879 bool containsUnexpandedParameterPack() const {
1880 return getDependence() & TypeDependence::UnexpandedPack;
1881 }
1882
1883 /// Determines if this type would be canonical if it had no further
1884 /// qualification.
1885 bool isCanonicalUnqualified() const {
1886 return CanonicalType == QualType(this, 0);
1887 }
1888
1889 /// Pull a single level of sugar off of this locally-unqualified type.
1890 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1891 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1892 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1893
1894 /// As an extension, we classify types as one of "sized" or "sizeless";
1895 /// every type is one or the other. Standard types are all sized;
1896 /// sizeless types are purely an extension.
1897 ///
1898 /// Sizeless types contain data with no specified size, alignment,
1899 /// or layout.
1900 bool isSizelessType() const;
1901 bool isSizelessBuiltinType() const;
1902
1903 /// Determines if this is a sizeless type supported by the
1904 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1905 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1906 bool isVLSTBuiltinType() const;
1907
1908 /// Returns the representative type for the element of an SVE builtin type.
1909 /// This is used to represent fixed-length SVE vectors created with the
1910 /// 'arm_sve_vector_bits' type attribute as VectorType.
1911 QualType getSveEltType(const ASTContext &Ctx) const;
1912
1913 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1914 /// object types, function types, and incomplete types.
1915
1916 /// Return true if this is an incomplete type.
1917 /// A type that can describe objects, but which lacks information needed to
1918 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1919 /// routine will need to determine if the size is actually required.
1920 ///
1921 /// Def If non-null, and the type refers to some kind of declaration
1922 /// that can be completed (such as a C struct, C++ class, or Objective-C
1923 /// class), will be set to the declaration.
1924 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1925
1926 /// Return true if this is an incomplete or object
1927 /// type, in other words, not a function type.
1928 bool isIncompleteOrObjectType() const {
1929 return !isFunctionType();
1930 }
1931
1932 /// Determine whether this type is an object type.
1933 bool isObjectType() const {
1934 // C++ [basic.types]p8:
1935 // An object type is a (possibly cv-qualified) type that is not a
1936 // function type, not a reference type, and not a void type.
1937 return !isReferenceType() && !isFunctionType() && !isVoidType();
1938 }
1939
1940 /// Return true if this is a literal type
1941 /// (C++11 [basic.types]p10)
1942 bool isLiteralType(const ASTContext &Ctx) const;
1943
1944 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1945 bool isStructuralType() const;
1946
1947 /// Test if this type is a standard-layout type.
1948 /// (C++0x [basic.type]p9)
1949 bool isStandardLayoutType() const;
1950
1951 /// Helper methods to distinguish type categories. All type predicates
1952 /// operate on the canonical type, ignoring typedefs and qualifiers.
1953
1954 /// Returns true if the type is a builtin type.
1955 bool isBuiltinType() const;
1956
1957 /// Test for a particular builtin type.
1958 bool isSpecificBuiltinType(unsigned K) const;
1959
1960 /// Test for a type which does not represent an actual type-system type but
1961 /// is instead used as a placeholder for various convenient purposes within
1962 /// Clang. All such types are BuiltinTypes.
1963 bool isPlaceholderType() const;
1964 const BuiltinType *getAsPlaceholderType() const;
1965
1966 /// Test for a specific placeholder type.
1967 bool isSpecificPlaceholderType(unsigned K) const;
1968
1969 /// Test for a placeholder type other than Overload; see
1970 /// BuiltinType::isNonOverloadPlaceholderType.
1971 bool isNonOverloadPlaceholderType() const;
1972
1973 /// isIntegerType() does *not* include complex integers (a GCC extension).
1974 /// isComplexIntegerType() can be used to test for complex integers.
1975 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1976 bool isEnumeralType() const;
1977
1978 /// Determine whether this type is a scoped enumeration type.
1979 bool isScopedEnumeralType() const;
1980 bool isBooleanType() const;
1981 bool isCharType() const;
1982 bool isWideCharType() const;
1983 bool isChar8Type() const;
1984 bool isChar16Type() const;
1985 bool isChar32Type() const;
1986 bool isAnyCharacterType() const;
1987 bool isIntegralType(const ASTContext &Ctx) const;
1988
1989 /// Determine whether this type is an integral or enumeration type.
1990 bool isIntegralOrEnumerationType() const;
1991
1992 /// Determine whether this type is an integral or unscoped enumeration type.
1993 bool isIntegralOrUnscopedEnumerationType() const;
1994 bool isUnscopedEnumerationType() const;
1995
1996 /// Floating point categories.
1997 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1998 /// isComplexType() does *not* include complex integers (a GCC extension).
1999 /// isComplexIntegerType() can be used to test for complex integers.
2000 bool isComplexType() const; // C99 6.2.5p11 (complex)
2001 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
2002 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
2003 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
2004 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
2005 bool isBFloat16Type() const;
2006 bool isFloat128Type() const;
2007 bool isIbm128Type() const;
2008 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2009 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2010 bool isVoidType() const; // C99 6.2.5p19
2011 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2012 bool isAggregateType() const;
2013 bool isFundamentalType() const;
2014 bool isCompoundType() const;
2015
2016 // Type Predicates: Check to see if this type is structurally the specified
2017 // type, ignoring typedefs and qualifiers.
2018 bool isFunctionType() const;
2019 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2020 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2021 bool isPointerType() const;
2022 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2023 bool isBlockPointerType() const;
2024 bool isVoidPointerType() const;
2025 bool isReferenceType() const;
2026 bool isLValueReferenceType() const;
2027 bool isRValueReferenceType() const;
2028 bool isObjectPointerType() const;
2029 bool isFunctionPointerType() const;
2030 bool isFunctionReferenceType() const;
2031 bool isMemberPointerType() const;
2032 bool isMemberFunctionPointerType() const;
2033 bool isMemberDataPointerType() const;
2034 bool isArrayType() const;
2035 bool isConstantArrayType() const;
2036 bool isIncompleteArrayType() const;
2037 bool isVariableArrayType() const;
2038 bool isDependentSizedArrayType() const;
2039 bool isRecordType() const;
2040 bool isClassType() const;
2041 bool isStructureType() const;
2042 bool isObjCBoxableRecordType() const;
2043 bool isInterfaceType() const;
2044 bool isStructureOrClassType() const;
2045 bool isUnionType() const;
2046 bool isComplexIntegerType() const; // GCC _Complex integer type.
2047 bool isVectorType() const; // GCC vector type.
2048 bool isExtVectorType() const; // Extended vector type.
2049 bool isMatrixType() const; // Matrix type.
2050 bool isConstantMatrixType() const; // Constant matrix type.
2051 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2052 bool isObjCObjectPointerType() const; // pointer to ObjC object
2053 bool isObjCRetainableType() const; // ObjC object or block pointer
2054 bool isObjCLifetimeType() const; // (array of)* retainable type
2055 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2056 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2057 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2058 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2059 // for the common case.
2060 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2061 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2062 bool isObjCQualifiedIdType() const; // id<foo>
2063 bool isObjCQualifiedClassType() const; // Class<foo>
2064 bool isObjCObjectOrInterfaceType() const;
2065 bool isObjCIdType() const; // id
2066 bool isDecltypeType() const;
2067 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2068 /// qualifier?
2069 ///
2070 /// This approximates the answer to the following question: if this
2071 /// translation unit were compiled in ARC, would this type be qualified
2072 /// with __unsafe_unretained?
2073 bool isObjCInertUnsafeUnretainedType() const {
2074 return hasAttr(attr::ObjCInertUnsafeUnretained);
2075 }
2076
2077 /// Whether the type is Objective-C 'id' or a __kindof type of an
2078 /// object type, e.g., __kindof NSView * or __kindof id
2079 /// <NSCopying>.
2080 ///
2081 /// \param bound Will be set to the bound on non-id subtype types,
2082 /// which will be (possibly specialized) Objective-C class type, or
2083 /// null for 'id.
2084 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2085 const ObjCObjectType *&bound) const;
2086
2087 bool isObjCClassType() const; // Class
2088
2089 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2090 /// Class type, e.g., __kindof Class <NSCopying>.
2091 ///
2092 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2093 /// here because Objective-C's type system cannot express "a class
2094 /// object for a subclass of NSFoo".
2095 bool isObjCClassOrClassKindOfType() const;
2096
2097 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2098 bool isObjCSelType() const; // Class
2099 bool isObjCBuiltinType() const; // 'id' or 'Class'
2100 bool isObjCARCBridgableType() const;
2101 bool isCARCBridgableType() const;
2102 bool isTemplateTypeParmType() const; // C++ template type parameter
2103 bool isNullPtrType() const; // C++11 std::nullptr_t
2104 bool isNothrowT() const; // C++ std::nothrow_t
2105 bool isAlignValT() const; // C++17 std::align_val_t
2106 bool isStdByteType() const; // C++17 std::byte
2107 bool isAtomicType() const; // C11 _Atomic()
2108 bool isUndeducedAutoType() const; // C++11 auto or
2109 // C++14 decltype(auto)
2110 bool isTypedefNameType() const; // typedef or alias template
2111
2112#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2113 bool is##Id##Type() const;
2114#include "clang/Basic/OpenCLImageTypes.def"
2115
2116 bool isImageType() const; // Any OpenCL image type
2117
2118 bool isSamplerT() const; // OpenCL sampler_t
2119 bool isEventT() const; // OpenCL event_t
2120 bool isClkEventT() const; // OpenCL clk_event_t
2121 bool isQueueT() const; // OpenCL queue_t
2122 bool isReserveIDT() const; // OpenCL reserve_id_t
2123
2124#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2125 bool is##Id##Type() const;
2126#include "clang/Basic/OpenCLExtensionTypes.def"
2127 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2128 bool isOCLIntelSubgroupAVCType() const;
2129 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2130
2131 bool isPipeType() const; // OpenCL pipe type
2132 bool isBitIntType() const; // Bit-precise integer type
2133 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2134
2135 /// Determines if this type, which must satisfy
2136 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2137 /// than implicitly __strong.
2138 bool isObjCARCImplicitlyUnretainedType() const;
2139
2140 /// Check if the type is the CUDA device builtin surface type.
2141 bool isCUDADeviceBuiltinSurfaceType() const;
2142 /// Check if the type is the CUDA device builtin texture type.
2143 bool isCUDADeviceBuiltinTextureType() const;
2144
2145 /// Return the implicit lifetime for this type, which must not be dependent.
2146 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2147
2148 enum ScalarTypeKind {
2149 STK_CPointer,
2150 STK_BlockPointer,
2151 STK_ObjCObjectPointer,
2152 STK_MemberPointer,
2153 STK_Bool,
2154 STK_Integral,
2155 STK_Floating,
2156 STK_IntegralComplex,
2157 STK_FloatingComplex,
2158 STK_FixedPoint
2159 };
2160
2161 /// Given that this is a scalar type, classify it.
2162 ScalarTypeKind getScalarTypeKind() const;
2163
2164 TypeDependence getDependence() const {
2165 return static_cast<TypeDependence>(TypeBits.Dependence);
2166 }
2167
2168 /// Whether this type is an error type.
2169 bool containsErrors() const {
2170 return getDependence() & TypeDependence::Error;
2171 }
2172
2173 /// Whether this type is a dependent type, meaning that its definition
2174 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2175 bool isDependentType() const {
2176 return getDependence() & TypeDependence::Dependent;
2177 }
2178
2179 /// Determine whether this type is an instantiation-dependent type,
2180 /// meaning that the type involves a template parameter (even if the
2181 /// definition does not actually depend on the type substituted for that
2182 /// template parameter).
2183 bool isInstantiationDependentType() const {
2184 return getDependence() & TypeDependence::Instantiation;
2185 }
2186
2187 /// Determine whether this type is an undeduced type, meaning that
2188 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2189 /// deduced.
2190 bool isUndeducedType() const;
2191
2192 /// Whether this type is a variably-modified type (C99 6.7.5).
2193 bool isVariablyModifiedType() const {
2194 return getDependence() & TypeDependence::VariablyModified;
2195 }
2196
2197 /// Whether this type involves a variable-length array type
2198 /// with a definite size.
2199 bool hasSizedVLAType() const;
2200
2201 /// Whether this type is or contains a local or unnamed type.
2202 bool hasUnnamedOrLocalType() const;
2203
2204 bool isOverloadableType() const;
2205
2206 /// Determine wither this type is a C++ elaborated-type-specifier.
2207 bool isElaboratedTypeSpecifier() const;
2208
2209 bool canDecayToPointerType() const;
2210
2211 /// Whether this type is represented natively as a pointer. This includes
2212 /// pointers, references, block pointers, and Objective-C interface,
2213 /// qualified id, and qualified interface types, as well as nullptr_t.
2214 bool hasPointerRepresentation() const;
2215
2216 /// Whether this type can represent an objective pointer type for the
2217 /// purpose of GC'ability
2218 bool hasObjCPointerRepresentation() const;
2219
2220 /// Determine whether this type has an integer representation
2221 /// of some sort, e.g., it is an integer type or a vector.
2222 bool hasIntegerRepresentation() const;
2223
2224 /// Determine whether this type has an signed integer representation
2225 /// of some sort, e.g., it is an signed integer type or a vector.
2226 bool hasSignedIntegerRepresentation() const;
2227
2228 /// Determine whether this type has an unsigned integer representation
2229 /// of some sort, e.g., it is an unsigned integer type or a vector.
2230 bool hasUnsignedIntegerRepresentation() const;
2231
2232 /// Determine whether this type has a floating-point representation
2233 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2234 bool hasFloatingRepresentation() const;
2235
2236 // Type Checking Functions: Check to see if this type is structurally the
2237 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2238 // the best type we can.
2239 const RecordType *getAsStructureType() const;
2240 /// NOTE: getAs*ArrayType are methods on ASTContext.
2241 const RecordType *getAsUnionType() const;
2242 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2243 const ObjCObjectType *getAsObjCInterfaceType() const;
2244
2245 // The following is a convenience method that returns an ObjCObjectPointerType
2246 // for object declared using an interface.
2247 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2248 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2249 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2250 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2251
2252 /// Retrieves the CXXRecordDecl that this type refers to, either
2253 /// because the type is a RecordType or because it is the injected-class-name
2254 /// type of a class template or class template partial specialization.
2255 CXXRecordDecl *getAsCXXRecordDecl() const;
2256
2257 /// Retrieves the RecordDecl this type refers to.
2258 RecordDecl *getAsRecordDecl() const;
2259
2260 /// Retrieves the TagDecl that this type refers to, either
2261 /// because the type is a TagType or because it is the injected-class-name
2262 /// type of a class template or class template partial specialization.
2263 TagDecl *getAsTagDecl() const;
2264
2265 /// If this is a pointer or reference to a RecordType, return the
2266 /// CXXRecordDecl that the type refers to.
2267 ///
2268 /// If this is not a pointer or reference, or the type being pointed to does
2269 /// not refer to a CXXRecordDecl, returns NULL.
2270 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2271
2272 /// Get the DeducedType whose type will be deduced for a variable with
2273 /// an initializer of this type. This looks through declarators like pointer
2274 /// types, but not through decltype or typedefs.
2275 DeducedType *getContainedDeducedType() const;
2276
2277 /// Get the AutoType whose type will be deduced for a variable with
2278 /// an initializer of this type. This looks through declarators like pointer
2279 /// types, but not through decltype or typedefs.
2280 AutoType *getContainedAutoType() const {
2281 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2282 }
2283
2284 /// Determine whether this type was written with a leading 'auto'
2285 /// corresponding to a trailing return type (possibly for a nested
2286 /// function type within a pointer to function type or similar).
2287 bool hasAutoForTrailingReturnType() const;
2288
2289 /// Member-template getAs<specific type>'. Look through sugar for
2290 /// an instance of \<specific type>. This scheme will eventually
2291 /// replace the specific getAsXXXX methods above.
2292 ///
2293 /// There are some specializations of this member template listed
2294 /// immediately following this class.
2295 template <typename T> const T *getAs() const;
2296
2297 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2298 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2299 /// This is used when you need to walk over sugar nodes that represent some
2300 /// kind of type adjustment from a type that was written as a \<specific type>
2301 /// to another type that is still canonically a \<specific type>.
2302 template <typename T> const T *getAsAdjusted() const;
2303
2304 /// A variant of getAs<> for array types which silently discards
2305 /// qualifiers from the outermost type.
2306 const ArrayType *getAsArrayTypeUnsafe() const;
2307
2308 /// Member-template castAs<specific type>. Look through sugar for
2309 /// the underlying instance of \<specific type>.
2310 ///
2311 /// This method has the same relationship to getAs<T> as cast<T> has
2312 /// to dyn_cast<T>; which is to say, the underlying type *must*
2313 /// have the intended type, and this method will never return null.
2314 template <typename T> const T *castAs() const;
2315
2316 /// A variant of castAs<> for array type which silently discards
2317 /// qualifiers from the outermost type.
2318 const ArrayType *castAsArrayTypeUnsafe() const;
2319
2320 /// Determine whether this type had the specified attribute applied to it
2321 /// (looking through top-level type sugar).
2322 bool hasAttr(attr::Kind AK) const;
2323
2324 /// Get the base element type of this type, potentially discarding type
2325 /// qualifiers. This should never be used when type qualifiers
2326 /// are meaningful.
2327 const Type *getBaseElementTypeUnsafe() const;
2328
2329 /// If this is an array type, return the element type of the array,
2330 /// potentially with type qualifiers missing.
2331 /// This should never be used when type qualifiers are meaningful.
2332 const Type *getArrayElementTypeNoTypeQual() const;
2333
2334 /// If this is a pointer type, return the pointee type.
2335 /// If this is an array type, return the array element type.
2336 /// This should never be used when type qualifiers are meaningful.
2337 const Type *getPointeeOrArrayElementType() const;
2338
2339 /// If this is a pointer, ObjC object pointer, or block
2340 /// pointer, this returns the respective pointee.
2341 QualType getPointeeType() const;
2342
2343 /// Return the specified type with any "sugar" removed from the type,
2344 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2345 const Type *getUnqualifiedDesugaredType() const;
2346
2347 /// More type predicates useful for type checking/promotion
2348 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2349
2350 /// Return true if this is an integer type that is
2351 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2352 /// or an enum decl which has a signed representation.
2353 bool isSignedIntegerType() const;
2354
2355 /// Return true if this is an integer type that is
2356 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2357 /// or an enum decl which has an unsigned representation.
2358 bool isUnsignedIntegerType() const;
2359
2360 /// Determines whether this is an integer type that is signed or an
2361 /// enumeration types whose underlying type is a signed integer type.
2362 bool isSignedIntegerOrEnumerationType() const;
2363
2364 /// Determines whether this is an integer type that is unsigned or an
2365 /// enumeration types whose underlying type is a unsigned integer type.
2366 bool isUnsignedIntegerOrEnumerationType() const;
2367
2368 /// Return true if this is a fixed point type according to
2369 /// ISO/IEC JTC1 SC22 WG14 N1169.
2370 bool isFixedPointType() const;
2371
2372 /// Return true if this is a fixed point or integer type.
2373 bool isFixedPointOrIntegerType() const;
2374
2375 /// Return true if this is a saturated fixed point type according to
2376 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2377 bool isSaturatedFixedPointType() const;
2378
2379 /// Return true if this is a saturated fixed point type according to
2380 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2381 bool isUnsaturatedFixedPointType() const;
2382
2383 /// Return true if this is a fixed point type that is signed according
2384 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2385 bool isSignedFixedPointType() const;
2386
2387 /// Return true if this is a fixed point type that is unsigned according
2388 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2389 bool isUnsignedFixedPointType() const;
2390
2391 /// Return true if this is not a variable sized type,
2392 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2393 /// incomplete types.
2394 bool isConstantSizeType() const;
2395
2396 /// Returns true if this type can be represented by some
2397 /// set of type specifiers.
2398 bool isSpecifierType() const;
2399
2400 /// Determine the linkage of this type.
2401 Linkage getLinkage() const;
2402
2403 /// Determine the visibility of this type.
2404 Visibility getVisibility() const {
2405 return getLinkageAndVisibility().getVisibility();
2406 }
2407
2408 /// Return true if the visibility was explicitly set is the code.
2409 bool isVisibilityExplicit() const {
2410 return getLinkageAndVisibility().isVisibilityExplicit();
2411 }
2412
2413 /// Determine the linkage and visibility of this type.
2414 LinkageInfo getLinkageAndVisibility() const;
2415
2416 /// True if the computed linkage is valid. Used for consistency
2417 /// checking. Should always return true.
2418 bool isLinkageValid() const;
2419
2420 /// Determine the nullability of the given type.
2421 ///
2422 /// Note that nullability is only captured as sugar within the type
2423 /// system, not as part of the canonical type, so nullability will
2424 /// be lost by canonicalization and desugaring.
2425 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2426
2427 /// Determine whether the given type can have a nullability
2428 /// specifier applied to it, i.e., if it is any kind of pointer type.
2429 ///
2430 /// \param ResultIfUnknown The value to return if we don't yet know whether
2431 /// this type can have nullability because it is dependent.
2432 bool canHaveNullability(bool ResultIfUnknown = true) const;
2433
2434 /// Retrieve the set of substitutions required when accessing a member
2435 /// of the Objective-C receiver type that is declared in the given context.
2436 ///
2437 /// \c *this is the type of the object we're operating on, e.g., the
2438 /// receiver for a message send or the base of a property access, and is
2439 /// expected to be of some object or object pointer type.
2440 ///
2441 /// \param dc The declaration context for which we are building up a
2442 /// substitution mapping, which should be an Objective-C class, extension,
2443 /// category, or method within.
2444 ///
2445 /// \returns an array of type arguments that can be substituted for
2446 /// the type parameters of the given declaration context in any type described
2447 /// within that context, or an empty optional to indicate that no
2448 /// substitution is required.
2449 Optional<ArrayRef<QualType>>
2450 getObjCSubstitutions(const DeclContext *dc) const;
2451
2452 /// Determines if this is an ObjC interface type that may accept type
2453 /// parameters.
2454 bool acceptsObjCTypeParams() const;
2455
2456 const char *getTypeClassName() const;
2457
2458 QualType getCanonicalTypeInternal() const {
2459 return CanonicalType;
2460 }
2461
2462 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2463 void dump() const;
2464 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2465};
2466
2467/// This will check for a TypedefType by removing any existing sugar
2468/// until it reaches a TypedefType or a non-sugared type.
2469template <> const TypedefType *Type::getAs() const;
2470
2471/// This will check for a TemplateSpecializationType by removing any
2472/// existing sugar until it reaches a TemplateSpecializationType or a
2473/// non-sugared type.
2474template <> const TemplateSpecializationType *Type::getAs() const;
2475
2476/// This will check for an AttributedType by removing any existing sugar
2477/// until it reaches an AttributedType or a non-sugared type.
2478template <> const AttributedType *Type::getAs() const;
2479
2480// We can do canonical leaf types faster, because we don't have to
2481// worry about preserving child type decoration.
2482#define TYPE(Class, Base)
2483#define LEAF_TYPE(Class) \
2484template <> inline const Class##Type *Type::getAs() const { \
2485 return dyn_cast<Class##Type>(CanonicalType); \
2486} \
2487template <> inline const Class##Type *Type::castAs() const { \
2488 return cast<Class##Type>(CanonicalType); \
2489}
2490#include "clang/AST/TypeNodes.inc"
2491
2492/// This class is used for builtin types like 'int'. Builtin
2493/// types are always canonical and have a literal name field.
2494class BuiltinType : public Type {
2495public:
2496 enum Kind {
2497// OpenCL image types
2498#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2499#include "clang/Basic/OpenCLImageTypes.def"
2500// OpenCL extension types
2501#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2502#include "clang/Basic/OpenCLExtensionTypes.def"
2503// SVE Types
2504#define SVE_TYPE(Name, Id, SingletonId) Id,
2505#include "clang/Basic/AArch64SVEACLETypes.def"
2506// PPC MMA Types
2507#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2508#include "clang/Basic/PPCTypes.def"
2509// RVV Types
2510#define RVV_TYPE(Name, Id, SingletonId) Id,
2511#include "clang/Basic/RISCVVTypes.def"
2512// All other builtin types
2513#define BUILTIN_TYPE(Id, SingletonId) Id,
2514#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2515#include "clang/AST/BuiltinTypes.def"
2516 };
2517
2518private:
2519 friend class ASTContext; // ASTContext creates these.
2520
2521 BuiltinType(Kind K)
2522 : Type(Builtin, QualType(),
2523 K == Dependent ? TypeDependence::DependentInstantiation
2524 : TypeDependence::None) {
2525 BuiltinTypeBits.Kind = K;
2526 }
2527
2528public:
2529 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2530 StringRef getName(const PrintingPolicy &Policy) const;
2531
2532 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2533 // The StringRef is null-terminated.
2534 StringRef str = getName(Policy);
2535 assert(!str.empty() && str.data()[str.size()] == '\0')(static_cast <bool> (!str.empty() && str.data()
[str.size()] == '\0') ? void (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "clang/include/clang/AST/Type.h", 2535, __extension__ __PRETTY_FUNCTION__
))
;
2536 return str.data();
2537 }
2538
2539 bool isSugared() const { return false; }
2540 QualType desugar() const { return QualType(this, 0); }
2541
2542 bool isInteger() const {
2543 return getKind() >= Bool && getKind() <= Int128;
2544 }
2545
2546 bool isSignedInteger() const {
2547 return getKind() >= Char_S && getKind() <= Int128;
2548 }
2549
2550 bool isUnsignedInteger() const {
2551 return getKind() >= Bool && getKind() <= UInt128;
2552 }
2553
2554 bool isFloatingPoint() const {
2555 return getKind() >= Half && getKind() <= Ibm128;
2556 }
2557
2558 /// Determines whether the given kind corresponds to a placeholder type.
2559 static bool isPlaceholderTypeKind(Kind K) {
2560 return K >= Overload;
2561 }
2562
2563 /// Determines whether this type is a placeholder type, i.e. a type
2564 /// which cannot appear in arbitrary positions in a fully-formed
2565 /// expression.
2566 bool isPlaceholderType() const {
2567 return isPlaceholderTypeKind(getKind());
2568 }
2569
2570 /// Determines whether this type is a placeholder type other than
2571 /// Overload. Most placeholder types require only syntactic
2572 /// information about their context in order to be resolved (e.g.
2573 /// whether it is a call expression), which means they can (and
2574 /// should) be resolved in an earlier "phase" of analysis.
2575 /// Overload expressions sometimes pick up further information
2576 /// from their context, like whether the context expects a
2577 /// specific function-pointer type, and so frequently need
2578 /// special treatment.
2579 bool isNonOverloadPlaceholderType() const {
2580 return getKind() > Overload;
2581 }
2582
2583 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2584};
2585
2586/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2587/// types (_Complex float etc) as well as the GCC integer complex extensions.
2588class ComplexType : public Type, public llvm::FoldingSetNode {
2589 friend class ASTContext; // ASTContext creates these.
2590
2591 QualType ElementType;
2592
2593 ComplexType(QualType Element, QualType CanonicalPtr)
2594 : Type(Complex, CanonicalPtr, Element->getDependence()),
2595 ElementType(Element) {}
2596
2597public:
2598 QualType getElementType() const { return ElementType; }
2599
2600 bool isSugared() const { return false; }
2601 QualType desugar() const { return QualType(this, 0); }
2602
2603 void Profile(llvm::FoldingSetNodeID &ID) {
2604 Profile(ID, getElementType());
2605 }
2606
2607 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2608 ID.AddPointer(Element.getAsOpaquePtr());
2609 }
2610
2611 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2612};
2613
2614/// Sugar for parentheses used when specifying types.
2615class ParenType : public Type, public llvm::FoldingSetNode {
2616 friend class ASTContext; // ASTContext creates these.
2617
2618 QualType Inner;
2619
2620 ParenType(QualType InnerType, QualType CanonType)
2621 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2622
2623public:
2624 QualType getInnerType() const { return Inner; }
2625
2626 bool isSugared() const { return true; }
2627 QualType desugar() const { return getInnerType(); }
2628
2629 void Profile(llvm::FoldingSetNodeID &ID) {
2630 Profile(ID, getInnerType());
2631 }
2632
2633 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2634 Inner.Profile(ID);
2635 }
2636
2637 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2638};
2639
2640/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2641class PointerType : public Type, public llvm::FoldingSetNode {
2642 friend class ASTContext; // ASTContext creates these.
2643
2644 QualType PointeeType;
2645
2646 PointerType(QualType Pointee, QualType CanonicalPtr)
2647 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2648 PointeeType(Pointee) {}
2649
2650public:
2651 QualType getPointeeType() const { return PointeeType; }
2652
2653 bool isSugared() const { return false; }
2654 QualType desugar() const { return QualType(this, 0); }
2655
2656 void Profile(llvm::FoldingSetNodeID &ID) {
2657 Profile(ID, getPointeeType());
2658 }
2659
2660 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2661 ID.AddPointer(Pointee.getAsOpaquePtr());
2662 }
2663
2664 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2665};
2666
2667/// Represents a type which was implicitly adjusted by the semantic
2668/// engine for arbitrary reasons. For example, array and function types can
2669/// decay, and function types can have their calling conventions adjusted.
2670class AdjustedType : public Type, public llvm::FoldingSetNode {
2671 QualType OriginalTy;
2672 QualType AdjustedTy;
2673
2674protected:
2675 friend class ASTContext; // ASTContext creates these.
2676
2677 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2678 QualType CanonicalPtr)
2679 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2680 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2681
2682public:
2683 QualType getOriginalType() const { return OriginalTy; }
2684 QualType getAdjustedType() const { return AdjustedTy; }
2685
2686 bool isSugared() const { return true; }
2687 QualType desugar() const { return AdjustedTy; }
2688
2689 void Profile(llvm::FoldingSetNodeID &ID) {
2690 Profile(ID, OriginalTy, AdjustedTy);
2691 }
2692
2693 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2694 ID.AddPointer(Orig.getAsOpaquePtr());
2695 ID.AddPointer(New.getAsOpaquePtr());
2696 }
2697
2698 static bool classof(const Type *T) {
2699 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2700 }
2701};
2702
2703/// Represents a pointer type decayed from an array or function type.
2704class DecayedType : public AdjustedType {
2705 friend class ASTContext; // ASTContext creates these.
2706
2707 inline
2708 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2709
2710public:
2711 QualType getDecayedType() const { return getAdjustedType(); }
2712
2713 inline QualType getPointeeType() const;
2714
2715 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2716};
2717
2718/// Pointer to a block type.
2719/// This type is to represent types syntactically represented as
2720/// "void (^)(int)", etc. Pointee is required to always be a function type.
2721class BlockPointerType : public Type, public llvm::FoldingSetNode {
2722 friend class ASTContext; // ASTContext creates these.
2723
2724 // Block is some kind of pointer type
2725 QualType PointeeType;
2726
2727 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2728 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2729 PointeeType(Pointee) {}
2730
2731public:
2732 // Get the pointee type. Pointee is required to always be a function type.
2733 QualType getPointeeType() const { return PointeeType; }
2734
2735 bool isSugared() const { return false; }
2736 QualType desugar() const { return QualType(this, 0); }
2737
2738 void Profile(llvm::FoldingSetNodeID &ID) {
2739 Profile(ID, getPointeeType());
2740 }
2741
2742 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2743 ID.AddPointer(Pointee.getAsOpaquePtr());
2744 }
2745
2746 static bool classof(const Type *T) {
2747 return T->getTypeClass() == BlockPointer;
2748 }
2749};
2750
2751/// Base for LValueReferenceType and RValueReferenceType
2752class ReferenceType : public Type, public llvm::FoldingSetNode {
2753 QualType PointeeType;
2754
2755protected:
2756 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2757 bool SpelledAsLValue)
2758 : Type(tc, CanonicalRef, Referencee->getDependence()),
2759 PointeeType(Referencee) {
2760 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2761 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2762 }
2763
2764public:
2765 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2766 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2767
2768 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2769
2770 QualType getPointeeType() const {
2771 // FIXME: this might strip inner qualifiers; okay?
2772 const ReferenceType *T = this;
2773 while (T->isInnerRef())
2774 T = T->PointeeType->castAs<ReferenceType>();
2775 return T->PointeeType;
2776 }
2777
2778 void Profile(llvm::FoldingSetNodeID &ID) {
2779 Profile(ID, PointeeType, isSpelledAsLValue());
2780 }
2781
2782 static void Profile(llvm::FoldingSetNodeID &ID,
2783 QualType Referencee,
2784 bool SpelledAsLValue) {
2785 ID.AddPointer(Referencee.getAsOpaquePtr());
2786 ID.AddBoolean(SpelledAsLValue);
2787 }
2788
2789 static bool classof(const Type *T) {
2790 return T->getTypeClass() == LValueReference ||
2791 T->getTypeClass() == RValueReference;
2792 }
2793};
2794
2795/// An lvalue reference type, per C++11 [dcl.ref].
2796class LValueReferenceType : public ReferenceType {
2797 friend class ASTContext; // ASTContext creates these
2798
2799 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2800 bool SpelledAsLValue)
2801 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2802 SpelledAsLValue) {}
2803
2804public:
2805 bool isSugared() const { return false; }
2806 QualType desugar() const { return QualType(this, 0); }
2807
2808 static bool classof(const Type *T) {
2809 return T->getTypeClass() == LValueReference;
2810 }
2811};
2812
2813/// An rvalue reference type, per C++11 [dcl.ref].
2814class RValueReferenceType : public ReferenceType {
2815 friend class ASTContext; // ASTContext creates these
2816
2817 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2818 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2819
2820public:
2821 bool isSugared() const { return false; }
2822 QualType desugar() const { return QualType(this, 0); }
2823
2824 static bool classof(const Type *T) {
2825 return T->getTypeClass() == RValueReference;
2826 }
2827};
2828
2829/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2830///
2831/// This includes both pointers to data members and pointer to member functions.
2832class MemberPointerType : public Type, public llvm::FoldingSetNode {
2833 friend class ASTContext; // ASTContext creates these.
2834
2835 QualType PointeeType;
2836
2837 /// The class of which the pointee is a member. Must ultimately be a
2838 /// RecordType, but could be a typedef or a template parameter too.
2839 const Type *Class;
2840
2841 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2842 : Type(MemberPointer, CanonicalPtr,
2843 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2844 Pointee->getDependence()),
2845 PointeeType(Pointee), Class(Cls) {}
2846
2847public:
2848 QualType getPointeeType() const { return PointeeType; }
2849
2850 /// Returns true if the member type (i.e. the pointee type) is a
2851 /// function type rather than a data-member type.
2852 bool isMemberFunctionPointer() const {
2853 return PointeeType->isFunctionProtoType();
2854 }
2855
2856 /// Returns true if the member type (i.e. the pointee type) is a
2857 /// data type rather than a function type.
2858 bool isMemberDataPointer() const {
2859 return !PointeeType->isFunctionProtoType();
2860 }
2861
2862 const Type *getClass() const { return Class; }
2863 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2864
2865 bool isSugared() const { return false; }
2866 QualType desugar() const { return QualType(this, 0); }
2867
2868 void Profile(llvm::FoldingSetNodeID &ID) {
2869 Profile(ID, getPointeeType(), getClass());
2870 }
2871
2872 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2873 const Type *Class) {
2874 ID.AddPointer(Pointee.getAsOpaquePtr());
2875 ID.AddPointer(Class);
2876 }
2877
2878 static bool classof(const Type *T) {
2879 return T->getTypeClass() == MemberPointer;
2880 }
2881};
2882
2883/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2884class ArrayType : public Type, public llvm::FoldingSetNode {
2885public:
2886 /// Capture whether this is a normal array (e.g. int X[4])
2887 /// an array with a static size (e.g. int X[static 4]), or an array
2888 /// with a star size (e.g. int X[*]).
2889 /// 'static' is only allowed on function parameters.
2890 enum ArraySizeModifier {
2891 Normal, Static, Star
2892 };
2893
2894private:
2895 /// The element type of the array.
2896 QualType ElementType;
2897
2898protected:
2899 friend class ASTContext; // ASTContext creates these.
2900
2901 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2902 unsigned tq, const Expr *sz = nullptr);
2903
2904public:
2905 QualType getElementType() const { return ElementType; }
2906
2907 ArraySizeModifier getSizeModifier() const {
2908 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2909 }
2910
2911 Qualifiers getIndexTypeQualifiers() const {
2912 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2913 }
2914
2915 unsigned getIndexTypeCVRQualifiers() const {
2916 return ArrayTypeBits.IndexTypeQuals;
2917 }
2918
2919 static bool classof(const Type *T) {
2920 return T->getTypeClass() == ConstantArray ||
2921 T->getTypeClass() == VariableArray ||
2922 T->getTypeClass() == IncompleteArray ||
2923 T->getTypeClass() == DependentSizedArray;
2924 }
2925};
2926
2927/// Represents the canonical version of C arrays with a specified constant size.
2928/// For example, the canonical type for 'int A[4 + 4*100]' is a
2929/// ConstantArrayType where the element type is 'int' and the size is 404.
2930class ConstantArrayType final
2931 : public ArrayType,
2932 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2933 friend class ASTContext; // ASTContext creates these.
2934 friend TrailingObjects;
2935
2936 llvm::APInt Size; // Allows us to unique the type.
2937
2938 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2939 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2940 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2941 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2942 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2943 assert(!can.isNull() && "canonical constant array should not have size")(static_cast <bool> (!can.isNull() && "canonical constant array should not have size"
) ? void (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "clang/include/clang/AST/Type.h", 2943, __extension__ __PRETTY_FUNCTION__
))
;
2944 *getTrailingObjects<const Expr*>() = sz;
2945 }
2946 }
2947
2948 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2949 return ConstantArrayTypeBits.HasStoredSizeExpr;
2950 }
2951
2952public:
2953 const llvm::APInt &getSize() const { return Size; }
2954 const Expr *getSizeExpr() const {
2955 return ConstantArrayTypeBits.HasStoredSizeExpr
2956 ? *getTrailingObjects<const Expr *>()
2957 : nullptr;
2958 }
2959 bool isSugared() const { return false; }
2960 QualType desugar() const { return QualType(this, 0); }
2961
2962 /// Determine the number of bits required to address a member of
2963 // an array with the given element type and number of elements.
2964 static unsigned getNumAddressingBits(const ASTContext &Context,
2965 QualType ElementType,
2966 const llvm::APInt &NumElements);
2967
2968 /// Determine the maximum number of active bits that an array's size
2969 /// can require, which limits the maximum size of the array.
2970 static unsigned getMaxSizeBits(const ASTContext &Context);
2971
2972 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2973 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2974 getSizeModifier(), getIndexTypeCVRQualifiers());
2975 }
2976
2977 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2978 QualType ET, const llvm::APInt &ArraySize,
2979 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2980 unsigned TypeQuals);
2981
2982 static bool classof(const Type *T) {
2983 return T->getTypeClass() == ConstantArray;
2984 }
2985};
2986
2987/// Represents a C array with an unspecified size. For example 'int A[]' has
2988/// an IncompleteArrayType where the element type is 'int' and the size is
2989/// unspecified.
2990class IncompleteArrayType : public ArrayType {
2991 friend class ASTContext; // ASTContext creates these.
2992
2993 IncompleteArrayType(QualType et, QualType can,
2994 ArraySizeModifier sm, unsigned tq)
2995 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2996
2997public:
2998 friend class StmtIteratorBase;
2999
3000 bool isSugared() const { return false; }
3001 QualType desugar() const { return QualType(this, 0); }
3002
3003 static bool classof(const Type *T) {
3004 return T->getTypeClass() == IncompleteArray;
3005 }
3006
3007 void Profile(llvm::FoldingSetNodeID &ID) {
3008 Profile(ID, getElementType(), getSizeModifier(),
3009 getIndexTypeCVRQualifiers());
3010 }
3011
3012 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3013 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3014 ID.AddPointer(ET.getAsOpaquePtr());
3015 ID.AddInteger(SizeMod);
3016 ID.AddInteger(TypeQuals);
3017 }
3018};
3019
3020/// Represents a C array with a specified size that is not an
3021/// integer-constant-expression. For example, 'int s[x+foo()]'.
3022/// Since the size expression is an arbitrary expression, we store it as such.
3023///
3024/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3025/// should not be: two lexically equivalent variable array types could mean
3026/// different things, for example, these variables do not have the same type
3027/// dynamically:
3028///
3029/// void foo(int x) {
3030/// int Y[x];
3031/// ++x;
3032/// int Z[x];
3033/// }
3034class VariableArrayType : public ArrayType {
3035 friend class ASTContext; // ASTContext creates these.
3036
3037 /// An assignment-expression. VLA's are only permitted within
3038 /// a function block.
3039 Stmt *SizeExpr;
3040
3041 /// The range spanned by the left and right array brackets.
3042 SourceRange Brackets;
3043
3044 VariableArrayType(QualType et, QualType can, Expr *e,
3045 ArraySizeModifier sm, unsigned tq,
3046 SourceRange brackets)
3047 : ArrayType(VariableArray, et, can, sm, tq, e),
3048 SizeExpr((Stmt*) e), Brackets(brackets) {}
3049
3050public:
3051 friend class StmtIteratorBase;
3052
3053 Expr *getSizeExpr() const {
3054 // We use C-style casts instead of cast<> here because we do not wish
3055 // to have a dependency of Type.h on Stmt.h/Expr.h.
3056 return (Expr*) SizeExpr;
3057 }
3058
3059 SourceRange getBracketsRange() const { return Brackets; }
3060 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3061 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3062
3063 bool isSugared() const { return false; }
3064 QualType desugar() const { return QualType(this, 0); }
3065
3066 static bool classof(const Type *T) {
3067 return T->getTypeClass() == VariableArray;
3068 }
3069
3070 void Profile(llvm::FoldingSetNodeID &ID) {
3071 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "clang/include/clang/AST/Type.h", 3071)
;
3072 }
3073};
3074
3075/// Represents an array type in C++ whose size is a value-dependent expression.
3076///
3077/// For example:
3078/// \code
3079/// template<typename T, int Size>
3080/// class array {
3081/// T data[Size];
3082/// };
3083/// \endcode
3084///
3085/// For these types, we won't actually know what the array bound is
3086/// until template instantiation occurs, at which point this will
3087/// become either a ConstantArrayType or a VariableArrayType.
3088class DependentSizedArrayType : public ArrayType {
3089 friend class ASTContext; // ASTContext creates these.
3090
3091 const ASTContext &Context;
3092
3093 /// An assignment expression that will instantiate to the
3094 /// size of the array.
3095 ///
3096 /// The expression itself might be null, in which case the array
3097 /// type will have its size deduced from an initializer.
3098 Stmt *SizeExpr;
3099
3100 /// The range spanned by the left and right array brackets.
3101 SourceRange Brackets;
3102
3103 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3104 Expr *e, ArraySizeModifier sm, unsigned tq,
3105 SourceRange brackets);
3106
3107public:
3108 friend class StmtIteratorBase;
3109
3110 Expr *getSizeExpr() const {
3111 // We use C-style casts instead of cast<> here because we do not wish
3112 // to have a dependency of Type.h on Stmt.h/Expr.h.
3113 return (Expr*) SizeExpr;
3114 }
3115
3116 SourceRange getBracketsRange() const { return Brackets; }
3117 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3118 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3119
3120 bool isSugared() const { return false; }
3121 QualType desugar() const { return QualType(this, 0); }
3122
3123 static bool classof(const Type *T) {
3124 return T->getTypeClass() == DependentSizedArray;
3125 }
3126
3127 void Profile(llvm::FoldingSetNodeID &ID) {
3128 Profile(ID, Context, getElementType(),
3129 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3130 }
3131
3132 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3133 QualType ET, ArraySizeModifier SizeMod,
3134 unsigned TypeQuals, Expr *E);
3135};
3136
3137/// Represents an extended address space qualifier where the input address space
3138/// value is dependent. Non-dependent address spaces are not represented with a
3139/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3140///
3141/// For example:
3142/// \code
3143/// template<typename T, int AddrSpace>
3144/// class AddressSpace {
3145/// typedef T __attribute__((address_space(AddrSpace))) type;
3146/// }
3147/// \endcode
3148class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3149 friend class ASTContext;
3150
3151 const ASTContext &Context;
3152 Expr *AddrSpaceExpr;
3153 QualType PointeeType;
3154 SourceLocation loc;
3155
3156 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3157 QualType can, Expr *AddrSpaceExpr,
3158 SourceLocation loc);
3159
3160public:
3161 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3162 QualType getPointeeType() const { return PointeeType; }
3163 SourceLocation getAttributeLoc() const { return loc; }
3164
3165 bool isSugared() const { return false; }
3166 QualType desugar() const { return QualType(this, 0); }
3167
3168 static bool classof(const Type *T) {
3169 return T->getTypeClass() == DependentAddressSpace;
3170 }
3171
3172 void Profile(llvm::FoldingSetNodeID &ID) {
3173 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3174 }
3175
3176 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3177 QualType PointeeType, Expr *AddrSpaceExpr);
3178};
3179
3180/// Represents an extended vector type where either the type or size is
3181/// dependent.
3182///
3183/// For example:
3184/// \code
3185/// template<typename T, int Size>
3186/// class vector {
3187/// typedef T __attribute__((ext_vector_type(Size))) type;
3188/// }
3189/// \endcode
3190class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3191 friend class ASTContext;
3192
3193 const ASTContext &Context;
3194 Expr *SizeExpr;
3195
3196 /// The element type of the array.
3197 QualType ElementType;
3198
3199 SourceLocation loc;
3200
3201 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3202 QualType can, Expr *SizeExpr, SourceLocation loc);
3203
3204public:
3205 Expr *getSizeExpr() const { return SizeExpr; }
3206 QualType getElementType() const { return ElementType; }
3207 SourceLocation getAttributeLoc() const { return loc; }
3208
3209 bool isSugared() const { return false; }
3210 QualType desugar() const { return QualType(this, 0); }
3211
3212 static bool classof(const Type *T) {
3213 return T->getTypeClass() == DependentSizedExtVector;
3214 }
3215
3216 void Profile(llvm::FoldingSetNodeID &ID) {
3217 Profile(ID, Context, getElementType(), getSizeExpr());
3218 }
3219
3220 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3221 QualType ElementType, Expr *SizeExpr);
3222};
3223
3224
3225/// Represents a GCC generic vector type. This type is created using
3226/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3227/// bytes; or from an Altivec __vector or vector declaration.
3228/// Since the constructor takes the number of vector elements, the
3229/// client is responsible for converting the size into the number of elements.
3230class VectorType : public Type, public llvm::FoldingSetNode {
3231public:
3232 enum VectorKind {
3233 /// not a target-specific vector type
3234 GenericVector,
3235
3236 /// is AltiVec vector
3237 AltiVecVector,
3238
3239 /// is AltiVec 'vector Pixel'
3240 AltiVecPixel,
3241
3242 /// is AltiVec 'vector bool ...'
3243 AltiVecBool,
3244
3245 /// is ARM Neon vector
3246 NeonVector,
3247
3248 /// is ARM Neon polynomial vector
3249 NeonPolyVector,
3250
3251 /// is AArch64 SVE fixed-length data vector
3252 SveFixedLengthDataVector,
3253
3254 /// is AArch64 SVE fixed-length predicate vector
3255 SveFixedLengthPredicateVector
3256 };
3257
3258protected:
3259 friend class ASTContext; // ASTContext creates these.
3260
3261 /// The element type of the vector.
3262 QualType ElementType;
3263
3264 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3265 VectorKind vecKind);
3266
3267 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3268 QualType canonType, VectorKind vecKind);
3269
3270public:
3271 QualType getElementType() const { return ElementType; }
3272 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3273
3274 bool isSugared() const { return false; }
3275 QualType desugar() const { return QualType(this, 0); }
3276
3277 VectorKind getVectorKind() const {
3278 return VectorKind(VectorTypeBits.VecKind);
3279 }
3280
3281 void Profile(llvm::FoldingSetNodeID &ID) {
3282 Profile(ID, getElementType(), getNumElements(),
3283 getTypeClass(), getVectorKind());
3284 }
3285
3286 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3287 unsigned NumElements, TypeClass TypeClass,
3288 VectorKind VecKind) {
3289 ID.AddPointer(ElementType.getAsOpaquePtr());
3290 ID.AddInteger(NumElements);
3291 ID.AddInteger(TypeClass);
3292 ID.AddInteger(VecKind);
3293 }
3294
3295 static bool classof(const Type *T) {
3296 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3297 }
3298};
3299
3300/// Represents a vector type where either the type or size is dependent.
3301////
3302/// For example:
3303/// \code
3304/// template<typename T, int Size>
3305/// class vector {
3306/// typedef T __attribute__((vector_size(Size))) type;
3307/// }
3308/// \endcode
3309class DependentVectorType : public Type, public llvm::FoldingSetNode {
3310 friend class ASTContext;
3311
3312 const ASTContext &Context;
3313 QualType ElementType;
3314 Expr *SizeExpr;
3315 SourceLocation Loc;
3316
3317 DependentVectorType(const ASTContext &Context, QualType ElementType,
3318 QualType CanonType, Expr *SizeExpr,
3319 SourceLocation Loc, VectorType::VectorKind vecKind);
3320
3321public:
3322 Expr *getSizeExpr() const { return SizeExpr; }
3323 QualType getElementType() const { return ElementType; }
3324 SourceLocation getAttributeLoc() const { return Loc; }
3325 VectorType::VectorKind getVectorKind() const {
3326 return VectorType::VectorKind(VectorTypeBits.VecKind);
3327 }
3328
3329 bool isSugared() const { return false; }
3330 QualType desugar() const { return QualType(this, 0); }
3331
3332 static bool classof(const Type *T) {
3333 return T->getTypeClass() == DependentVector;
3334 }
3335
3336 void Profile(llvm::FoldingSetNodeID &ID) {
3337 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3338 }
3339
3340 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3341 QualType ElementType, const Expr *SizeExpr,
3342 VectorType::VectorKind VecKind);
3343};
3344
3345/// ExtVectorType - Extended vector type. This type is created using
3346/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3347/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3348/// class enables syntactic extensions, like Vector Components for accessing
3349/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3350/// Shading Language).
3351class ExtVectorType : public VectorType {
3352 friend class ASTContext; // ASTContext creates these.
3353
3354 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3355 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3356
3357public:
3358 static int getPointAccessorIdx(char c) {
3359 switch (c) {
3360 default: return -1;
3361 case 'x': case 'r': return 0;
3362 case 'y': case 'g': return 1;
3363 case 'z': case 'b': return 2;
3364 case 'w': case 'a': return 3;
3365 }
3366 }
3367
3368 static int getNumericAccessorIdx(char c) {
3369 switch (c) {
3370 default: return -1;
3371 case '0': return 0;
3372 case '1': return 1;
3373 case '2': return 2;
3374 case '3': return 3;
3375 case '4': return 4;
3376 case '5': return 5;
3377 case '6': return 6;
3378 case '7': return 7;
3379 case '8': return 8;
3380 case '9': return 9;
3381 case 'A':
3382 case 'a': return 10;
3383 case 'B':
3384 case 'b': return 11;
3385 case 'C':
3386 case 'c': return 12;
3387 case 'D':
3388 case 'd': return 13;
3389 case 'E':
3390 case 'e': return 14;
3391 case 'F':
3392 case 'f': return 15;
3393 }
3394 }
3395
3396 static int getAccessorIdx(char c, bool isNumericAccessor) {
3397 if (isNumericAccessor)
3398 return getNumericAccessorIdx(c);
3399 else
3400 return getPointAccessorIdx(c);
3401 }
3402
3403 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3404 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3405 return unsigned(idx-1) < getNumElements();
3406 return false;
3407 }
3408
3409 bool isSugared() const { return false; }
3410 QualType desugar() const { return QualType(this, 0); }
3411
3412 static bool classof(const Type *T) {
3413 return T->getTypeClass() == ExtVector;
3414 }
3415};
3416
3417/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3418/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3419/// number of rows and "columns" specifies the number of columns.
3420class MatrixType : public Type, public llvm::FoldingSetNode {
3421protected:
3422 friend class ASTContext;
3423
3424 /// The element type of the matrix.
3425 QualType ElementType;
3426
3427 MatrixType(QualType ElementTy, QualType CanonElementTy);
3428
3429 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3430 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3431
3432public:
3433 /// Returns type of the elements being stored in the matrix
3434 QualType getElementType() const { return ElementType; }
3435
3436 /// Valid elements types are the following:
3437 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3438 /// and _Bool
3439 /// * the standard floating types float or double
3440 /// * a half-precision floating point type, if one is supported on the target
3441 static bool isValidElementType(QualType T) {
3442 return T->isDependentType() ||
3443 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3444 }
3445
3446 bool isSugared() const { return false; }
3447 QualType desugar() const { return QualType(this, 0); }
3448
3449 static bool classof(const Type *T) {
3450 return T->getTypeClass() == ConstantMatrix ||
3451 T->getTypeClass() == DependentSizedMatrix;
3452 }
3453};
3454
3455/// Represents a concrete matrix type with constant number of rows and columns
3456class ConstantMatrixType final : public MatrixType {
3457protected:
3458 friend class ASTContext;
3459
3460 /// Number of rows and columns.
3461 unsigned NumRows;
3462 unsigned NumColumns;
3463
3464 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3465
3466 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3467 unsigned NColumns, QualType CanonElementType);
3468
3469 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3470 unsigned NColumns, QualType CanonElementType);
3471
3472public:
3473 /// Returns the number of rows in the matrix.
3474 unsigned getNumRows() const { return NumRows; }
3475
3476 /// Returns the number of columns in the matrix.
3477 unsigned getNumColumns() const { return NumColumns; }
3478
3479 /// Returns the number of elements required to embed the matrix into a vector.
3480 unsigned getNumElementsFlattened() const {
3481 return getNumRows() * getNumColumns();
3482 }
3483
3484 /// Returns true if \p NumElements is a valid matrix dimension.
3485 static constexpr bool isDimensionValid(size_t NumElements) {
3486 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3487 }
3488
3489 /// Returns the maximum number of elements per dimension.
3490 static constexpr unsigned getMaxElementsPerDimension() {
3491 return MaxElementsPerDimension;
3492 }
3493
3494 void Profile(llvm::FoldingSetNodeID &ID) {
3495 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3496 getTypeClass());
3497 }
3498
3499 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3500 unsigned NumRows, unsigned NumColumns,
3501 TypeClass TypeClass) {
3502 ID.AddPointer(ElementType.getAsOpaquePtr());
3503 ID.AddInteger(NumRows);
3504 ID.AddInteger(NumColumns);
3505 ID.AddInteger(TypeClass);
3506 }
3507
3508 static bool classof(const Type *T) {
3509 return T->getTypeClass() == ConstantMatrix;
3510 }
3511};
3512
3513/// Represents a matrix type where the type and the number of rows and columns
3514/// is dependent on a template.
3515class DependentSizedMatrixType final : public MatrixType {
3516 friend class ASTContext;
3517
3518 const ASTContext &Context;
3519 Expr *RowExpr;
3520 Expr *ColumnExpr;
3521
3522 SourceLocation loc;
3523
3524 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3525 QualType CanonicalType, Expr *RowExpr,
3526 Expr *ColumnExpr, SourceLocation loc);
3527
3528public:
3529 Expr *getRowExpr() const { return RowExpr; }
3530 Expr *getColumnExpr() const { return ColumnExpr; }
3531 SourceLocation getAttributeLoc() const { return loc; }
3532
3533 static bool classof(const Type *T) {
3534 return T->getTypeClass() == DependentSizedMatrix;
3535 }
3536
3537 void Profile(llvm::FoldingSetNodeID &ID) {
3538 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3539 }
3540
3541 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3542 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3543};
3544
3545/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3546/// class of FunctionNoProtoType and FunctionProtoType.
3547class FunctionType : public Type {
3548 // The type returned by the function.
3549 QualType ResultType;
3550
3551public:
3552 /// Interesting information about a specific parameter that can't simply
3553 /// be reflected in parameter's type. This is only used by FunctionProtoType
3554 /// but is in FunctionType to make this class available during the
3555 /// specification of the bases of FunctionProtoType.
3556 ///
3557 /// It makes sense to model language features this way when there's some
3558 /// sort of parameter-specific override (such as an attribute) that
3559 /// affects how the function is called. For example, the ARC ns_consumed
3560 /// attribute changes whether a parameter is passed at +0 (the default)
3561 /// or +1 (ns_consumed). This must be reflected in the function type,
3562 /// but isn't really a change to the parameter type.
3563 ///
3564 /// One serious disadvantage of modelling language features this way is
3565 /// that they generally do not work with language features that attempt
3566 /// to destructure types. For example, template argument deduction will
3567 /// not be able to match a parameter declared as
3568 /// T (*)(U)
3569 /// against an argument of type
3570 /// void (*)(__attribute__((ns_consumed)) id)
3571 /// because the substitution of T=void, U=id into the former will
3572 /// not produce the latter.
3573 class ExtParameterInfo {
3574 enum {
3575 ABIMask = 0x0F,
3576 IsConsumed = 0x10,
3577 HasPassObjSize = 0x20,
3578 IsNoEscape = 0x40,
3579 };
3580 unsigned char Data = 0;
3581
3582 public:
3583 ExtParameterInfo() = default;
3584
3585 /// Return the ABI treatment of this parameter.
3586 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3587 ExtParameterInfo withABI(ParameterABI kind) const {
3588 ExtParameterInfo copy = *this;
3589 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3590 return copy;
3591 }
3592
3593 /// Is this parameter considered "consumed" by Objective-C ARC?
3594 /// Consumed parameters must have retainable object type.
3595 bool isConsumed() const { return (Data & IsConsumed); }
3596 ExtParameterInfo withIsConsumed(bool consumed) const {
3597 ExtParameterInfo copy = *this;
3598 if (consumed)
3599 copy.Data |= IsConsumed;
3600 else
3601 copy.Data &= ~IsConsumed;
3602 return copy;
3603 }
3604
3605 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3606 ExtParameterInfo withHasPassObjectSize() const {
3607 ExtParameterInfo Copy = *this;
3608 Copy.Data |= HasPassObjSize;
3609 return Copy;
3610 }
3611
3612 bool isNoEscape() const { return Data & IsNoEscape; }
3613 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3614 ExtParameterInfo Copy = *this;
3615 if (NoEscape)
3616 Copy.Data |= IsNoEscape;
3617 else
3618 Copy.Data &= ~IsNoEscape;
3619 return Copy;
3620 }
3621
3622 unsigned char getOpaqueValue() const { return Data; }
3623 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3624 ExtParameterInfo result;
3625 result.Data = data;
3626 return result;
3627 }
3628
3629 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3630 return lhs.Data == rhs.Data;
3631 }
3632
3633 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3634 return lhs.Data != rhs.Data;
3635 }
3636 };
3637
3638 /// A class which abstracts out some details necessary for
3639 /// making a call.
3640 ///
3641 /// It is not actually used directly for storing this information in
3642 /// a FunctionType, although FunctionType does currently use the
3643 /// same bit-pattern.
3644 ///
3645 // If you add a field (say Foo), other than the obvious places (both,
3646 // constructors, compile failures), what you need to update is
3647 // * Operator==
3648 // * getFoo
3649 // * withFoo
3650 // * functionType. Add Foo, getFoo.
3651 // * ASTContext::getFooType
3652 // * ASTContext::mergeFunctionTypes
3653 // * FunctionNoProtoType::Profile
3654 // * FunctionProtoType::Profile
3655 // * TypePrinter::PrintFunctionProto
3656 // * AST read and write
3657 // * Codegen
3658 class ExtInfo {
3659 friend class FunctionType;
3660
3661 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3662 // adjust the Bits field below, and if you add bits, you'll need to adjust
3663 // Type::FunctionTypeBitfields::ExtInfo as well.
3664
3665 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3666 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3667 //
3668 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3669 enum { CallConvMask = 0x1F };
3670 enum { NoReturnMask = 0x20 };
3671 enum { ProducesResultMask = 0x40 };
3672 enum { NoCallerSavedRegsMask = 0x80 };
3673 enum {
3674 RegParmMask = 0x700,
3675 RegParmOffset = 8
3676 };
3677 enum { NoCfCheckMask = 0x800 };
3678 enum { CmseNSCallMask = 0x1000 };
3679 uint16_t Bits = CC_C;
3680
3681 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3682
3683 public:
3684 // Constructor with no defaults. Use this when you know that you
3685 // have all the elements (when reading an AST file for example).
3686 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3687 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3688 bool cmseNSCall) {
3689 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(static_cast <bool> ((!hasRegParm || regParm < 7) &&
"Invalid regparm value") ? void (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "clang/include/clang/AST/Type.h", 3689, __extension__ __PRETTY_FUNCTION__
))
;
3690 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3691 (producesResult ? ProducesResultMask : 0) |
3692 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3693 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3694 (NoCfCheck ? NoCfCheckMask : 0) |
3695 (cmseNSCall ? CmseNSCallMask : 0);
3696 }
3697
3698 // Constructor with all defaults. Use when for example creating a
3699 // function known to use defaults.
3700 ExtInfo() = default;
3701
3702 // Constructor with just the calling convention, which is an important part
3703 // of the canonical type.
3704 ExtInfo(CallingConv CC) : Bits(CC) {}
3705
3706 bool getNoReturn() const { return Bits & NoReturnMask; }
3707 bool getProducesResult() const { return Bits & ProducesResultMask; }
3708 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3709 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3710 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3711 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3712
3713 unsigned getRegParm() const {
3714 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3715 if (RegParm > 0)
3716 --RegParm;
3717 return RegParm;
3718 }
3719
3720 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3721
3722 bool operator==(ExtInfo Other) const {
3723 return Bits == Other.Bits;
3724 }
3725 bool operator!=(ExtInfo Other) const {
3726 return Bits != Other.Bits;
3727 }
3728
3729 // Note that we don't have setters. That is by design, use
3730 // the following with methods instead of mutating these objects.
3731
3732 ExtInfo withNoReturn(bool noReturn) const {
3733 if (noReturn)
3734 return ExtInfo(Bits | NoReturnMask);
3735 else
3736 return ExtInfo(Bits & ~NoReturnMask);
3737 }
3738
3739 ExtInfo withProducesResult(bool producesResult) const {
3740 if (producesResult)
3741 return ExtInfo(Bits | ProducesResultMask);
3742 else
3743 return ExtInfo(Bits & ~ProducesResultMask);
3744 }
3745
3746 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3747 if (cmseNSCall)
3748 return ExtInfo(Bits | CmseNSCallMask);
3749 else
3750 return ExtInfo(Bits & ~CmseNSCallMask);
3751 }
3752
3753 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3754 if (noCallerSavedRegs)
3755 return ExtInfo(Bits | NoCallerSavedRegsMask);
3756 else
3757 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3758 }
3759
3760 ExtInfo withNoCfCheck(bool noCfCheck) const {
3761 if (noCfCheck)
3762 return ExtInfo(Bits | NoCfCheckMask);
3763 else
3764 return ExtInfo(Bits & ~NoCfCheckMask);
3765 }
3766
3767 ExtInfo withRegParm(unsigned RegParm) const {
3768 assert(RegParm < 7 && "Invalid regparm value")(static_cast <bool> (RegParm < 7 && "Invalid regparm value"
) ? void (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "clang/include/clang/AST/Type.h", 3768, __extension__ __PRETTY_FUNCTION__
))
;
3769 return ExtInfo((Bits & ~RegParmMask) |
3770 ((RegParm + 1) << RegParmOffset));
3771 }
3772
3773 ExtInfo withCallingConv(CallingConv cc) const {
3774 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3775 }
3776
3777 void Profile(llvm::FoldingSetNodeID &ID) const {
3778 ID.AddInteger(Bits);
3779 }
3780 };
3781
3782 /// A simple holder for a QualType representing a type in an
3783 /// exception specification. Unfortunately needed by FunctionProtoType
3784 /// because TrailingObjects cannot handle repeated types.
3785 struct ExceptionType { QualType Type; };
3786
3787 /// A simple holder for various uncommon bits which do not fit in
3788 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3789 /// alignment of subsequent objects in TrailingObjects. You must update
3790 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3791 struct alignas(void *) FunctionTypeExtraBitfields {
3792 /// The number of types in the exception specification.
3793 /// A whole unsigned is not needed here and according to
3794 /// [implimits] 8 bits would be enough here.
3795 unsigned NumExceptionType;
3796 };
3797
3798protected:
3799 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3800 TypeDependence Dependence, ExtInfo Info)
3801 : Type(tc, Canonical, Dependence), ResultType(res) {
3802 FunctionTypeBits.ExtInfo = Info.Bits;
3803 }
3804
3805 Qualifiers getFastTypeQuals() const {
3806 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3807 }
3808
3809public:
3810 QualType getReturnType() const { return ResultType; }
3811
3812 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3813 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3814
3815 /// Determine whether this function type includes the GNU noreturn
3816 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3817 /// type.
3818 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3819
3820 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3821 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3822 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3823
3824 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3825 "Const, volatile and restrict are assumed to be a subset of "
3826 "the fast qualifiers.");
3827
3828 bool isConst() const { return getFastTypeQuals().hasConst(); }
3829 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3830 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3831
3832 /// Determine the type of an expression that calls a function of
3833 /// this type.
3834 QualType getCallResultType(const ASTContext &Context) const {
3835 return getReturnType().getNonLValueExprType(Context);
3836 }
3837
3838 static StringRef getNameForCallConv(CallingConv CC);
3839
3840 static bool classof(const Type *T) {
3841 return T->getTypeClass() == FunctionNoProto ||
3842 T->getTypeClass() == FunctionProto;
3843 }
3844};
3845
3846/// Represents a K&R-style 'int foo()' function, which has
3847/// no information available about its arguments.
3848class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3849 friend class ASTContext; // ASTContext creates these.
3850
3851 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3852 : FunctionType(FunctionNoProto, Result, Canonical,
3853 Result->getDependence() &
3854 ~(TypeDependence::DependentInstantiation |
3855 TypeDependence::UnexpandedPack),
3856 Info) {}
3857
3858public:
3859 // No additional state past what FunctionType provides.
3860
3861 bool isSugared() const { return false; }
3862 QualType desugar() const { return QualType(this, 0); }
3863
3864 void Profile(llvm::FoldingSetNodeID &ID) {
3865 Profile(ID, getReturnType(), getExtInfo());
3866 }
3867
3868 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3869 ExtInfo Info) {
3870 Info.Profile(ID);
3871 ID.AddPointer(ResultType.getAsOpaquePtr());
3872 }
3873
3874 static bool classof(const Type *T) {
3875 return T->getTypeClass() == FunctionNoProto;
3876 }
3877};
3878
3879/// Represents a prototype with parameter type info, e.g.
3880/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3881/// parameters, not as having a single void parameter. Such a type can have
3882/// an exception specification, but this specification is not part of the
3883/// canonical type. FunctionProtoType has several trailing objects, some of
3884/// which optional. For more information about the trailing objects see
3885/// the first comment inside FunctionProtoType.
3886class FunctionProtoType final
3887 : public FunctionType,
3888 public llvm::FoldingSetNode,
3889 private llvm::TrailingObjects<
3890 FunctionProtoType, QualType, SourceLocation,
3891 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3892 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3893 friend class ASTContext; // ASTContext creates these.
3894 friend TrailingObjects;
3895
3896 // FunctionProtoType is followed by several trailing objects, some of
3897 // which optional. They are in order:
3898 //
3899 // * An array of getNumParams() QualType holding the parameter types.
3900 // Always present. Note that for the vast majority of FunctionProtoType,
3901 // these will be the only trailing objects.
3902 //
3903 // * Optionally if the function is variadic, the SourceLocation of the
3904 // ellipsis.
3905 //
3906 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3907 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3908 // a single FunctionTypeExtraBitfields. Present if and only if
3909 // hasExtraBitfields() is true.
3910 //
3911 // * Optionally exactly one of:
3912 // * an array of getNumExceptions() ExceptionType,
3913 // * a single Expr *,
3914 // * a pair of FunctionDecl *,
3915 // * a single FunctionDecl *
3916 // used to store information about the various types of exception
3917 // specification. See getExceptionSpecSize for the details.
3918 //
3919 // * Optionally an array of getNumParams() ExtParameterInfo holding
3920 // an ExtParameterInfo for each of the parameters. Present if and
3921 // only if hasExtParameterInfos() is true.
3922 //
3923 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3924 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3925 // if hasExtQualifiers() is true.
3926 //
3927 // The optional FunctionTypeExtraBitfields has to be before the data
3928 // related to the exception specification since it contains the number
3929 // of exception types.
3930 //
3931 // We put the ExtParameterInfos last. If all were equal, it would make
3932 // more sense to put these before the exception specification, because
3933 // it's much easier to skip past them compared to the elaborate switch
3934 // required to skip the exception specification. However, all is not
3935 // equal; ExtParameterInfos are used to model very uncommon features,
3936 // and it's better not to burden the more common paths.
3937
3938public:
3939 /// Holds information about the various types of exception specification.
3940 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3941 /// used to group together the various bits of information about the
3942 /// exception specification.
3943 struct ExceptionSpecInfo {
3944 /// The kind of exception specification this is.
3945 ExceptionSpecificationType Type = EST_None;
3946
3947 /// Explicitly-specified list of exception types.
3948 ArrayRef<QualType> Exceptions;
3949
3950 /// Noexcept expression, if this is a computed noexcept specification.
3951 Expr *NoexceptExpr = nullptr;
3952
3953 /// The function whose exception specification this is, for
3954 /// EST_Unevaluated and EST_Uninstantiated.
3955 FunctionDecl *SourceDecl = nullptr;
3956
3957 /// The function template whose exception specification this is instantiated
3958 /// from, for EST_Uninstantiated.
3959 FunctionDecl *SourceTemplate = nullptr;
3960
3961 ExceptionSpecInfo() = default;
3962
3963 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3964 };
3965
3966 /// Extra information about a function prototype. ExtProtoInfo is not
3967 /// stored as such in FunctionProtoType but is used to group together
3968 /// the various bits of extra information about a function prototype.
3969 struct ExtProtoInfo {
3970 FunctionType::ExtInfo ExtInfo;
3971 bool Variadic : 1;
3972 bool HasTrailingReturn : 1;
3973 Qualifiers TypeQuals;
3974 RefQualifierKind RefQualifier = RQ_None;
3975 ExceptionSpecInfo ExceptionSpec;
3976 const ExtParameterInfo *ExtParameterInfos = nullptr;
3977 SourceLocation EllipsisLoc;
3978
3979 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3980
3981 ExtProtoInfo(CallingConv CC)
3982 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3983
3984 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3985 ExtProtoInfo Result(*this);
3986 Result.ExceptionSpec = ESI;
3987 return Result;
3988 }
3989 };
3990
3991private:
3992 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3993 return getNumParams();
3994 }
3995
3996 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3997 return isVariadic();
3998 }
3999
4000 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
4001 return hasExtraBitfields();
4002 }
4003
4004 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4005 return getExceptionSpecSize().NumExceptionType;
4006 }
4007
4008 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4009 return getExceptionSpecSize().NumExprPtr;
4010 }
4011
4012 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4013 return getExceptionSpecSize().NumFunctionDeclPtr;
4014 }
4015
4016 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4017 return hasExtParameterInfos() ? getNumParams() : 0;
4018 }
4019
4020 /// Determine whether there are any argument types that
4021 /// contain an unexpanded parameter pack.
4022 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4023 unsigned numArgs) {
4024 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4025 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4026 return true;
4027
4028 return false;
4029 }
4030
4031 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4032 QualType canonical, const ExtProtoInfo &epi);
4033
4034 /// This struct is returned by getExceptionSpecSize and is used to
4035 /// translate an ExceptionSpecificationType to the number and kind
4036 /// of trailing objects related to the exception specification.
4037 struct ExceptionSpecSizeHolder {
4038 unsigned NumExceptionType;
4039 unsigned NumExprPtr;
4040 unsigned NumFunctionDeclPtr;
4041 };
4042
4043 /// Return the number and kind of trailing objects
4044 /// related to the exception specification.
4045 static ExceptionSpecSizeHolder
4046 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4047 switch (EST) {
4048 case EST_None:
4049 case EST_DynamicNone:
4050 case EST_MSAny:
4051 case EST_BasicNoexcept:
4052 case EST_Unparsed:
4053 case EST_NoThrow:
4054 return {0, 0, 0};
4055
4056 case EST_Dynamic:
4057 return {NumExceptions, 0, 0};
4058
4059 case EST_DependentNoexcept:
4060 case EST_NoexceptFalse:
4061 case EST_NoexceptTrue:
4062 return {0, 1, 0};
4063
4064 case EST_Uninstantiated:
4065 return {0, 0, 2};
4066
4067 case EST_Unevaluated:
4068 return {0, 0, 1};
4069 }
4070 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "clang/include/clang/AST/Type.h", 4070)
;
4071 }
4072
4073 /// Return the number and kind of trailing objects
4074 /// related to the exception specification.
4075 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4076 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4077 }
4078
4079 /// Whether the trailing FunctionTypeExtraBitfields is present.
4080 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4081 // If the exception spec type is EST_Dynamic then we have > 0 exception
4082 // types and the exact number is stored in FunctionTypeExtraBitfields.
4083 return EST == EST_Dynamic;
4084 }
4085
4086 /// Whether the trailing FunctionTypeExtraBitfields is present.
4087 bool hasExtraBitfields() const {
4088 return hasExtraBitfields(getExceptionSpecType());
4089 }
4090
4091 bool hasExtQualifiers() const {
4092 return FunctionTypeBits.HasExtQuals;
4093 }
4094
4095public:
4096 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4097
4098 QualType getParamType(unsigned i) const {
4099 assert(i < getNumParams() && "invalid parameter index")(static_cast <bool> (i < getNumParams() && "invalid parameter index"
) ? void (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "clang/include/clang/AST/Type.h", 4099, __extension__ __PRETTY_FUNCTION__
))
;
4100 return param_type_begin()[i];
4101 }
4102
4103 ArrayRef<QualType> getParamTypes() const {
4104 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4105 }
4106
4107 ExtProtoInfo getExtProtoInfo() const {
4108 ExtProtoInfo EPI;
4109 EPI.ExtInfo = getExtInfo();
4110 EPI.Variadic = isVariadic();
4111 EPI.EllipsisLoc = getEllipsisLoc();
4112 EPI.HasTrailingReturn = hasTrailingReturn();
4113 EPI.ExceptionSpec = getExceptionSpecInfo();
4114 EPI.TypeQuals = getMethodQuals();
4115 EPI.RefQualifier = getRefQualifier();
4116 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4117 return EPI;
4118 }
4119
4120 /// Get the kind of exception specification on this function.
4121 ExceptionSpecificationType getExceptionSpecType() const {
4122 return static_cast<ExceptionSpecificationType>(
4123 FunctionTypeBits.ExceptionSpecType);
4124 }
4125
4126 /// Return whether this function has any kind of exception spec.
4127 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4128
4129 /// Return whether this function has a dynamic (throw) exception spec.
4130 bool hasDynamicExceptionSpec() const {
4131 return isDynamicExceptionSpec(getExceptionSpecType());
4132 }
4133
4134 /// Return whether this function has a noexcept exception spec.
4135 bool hasNoexceptExceptionSpec() const {
4136 return isNoexceptExceptionSpec(getExceptionSpecType());
4137 }
4138
4139 /// Return whether this function has a dependent exception spec.
4140 bool hasDependentExceptionSpec() const;
4141
4142 /// Return whether this function has an instantiation-dependent exception
4143 /// spec.
4144 bool hasInstantiationDependentExceptionSpec() const;
4145
4146 /// Return all the available information about this type's exception spec.
4147 ExceptionSpecInfo getExceptionSpecInfo() const {
4148 ExceptionSpecInfo Result;
4149 Result.Type = getExceptionSpecType();
4150 if (Result.Type == EST_Dynamic) {
4151 Result.Exceptions = exceptions();
4152 } else if (isComputedNoexcept(Result.Type)) {
4153 Result.NoexceptExpr = getNoexceptExpr();
4154 } else if (Result.Type == EST_Uninstantiated) {
4155 Result.SourceDecl = getExceptionSpecDecl();
4156 Result.SourceTemplate = getExceptionSpecTemplate();
4157 } else if (Result.Type == EST_Unevaluated) {
4158 Result.SourceDecl = getExceptionSpecDecl();
4159 }
4160 return Result;
4161 }
4162
4163 /// Return the number of types in the exception specification.
4164 unsigned getNumExceptions() const {
4165 return getExceptionSpecType() == EST_Dynamic
4166 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4167 ->NumExceptionType
4168 : 0;
4169 }
4170
4171 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4172 QualType getExceptionType(unsigned i) const {
4173 assert(i < getNumExceptions() && "Invalid exception number!")(static_cast <bool> (i < getNumExceptions() &&
"Invalid exception number!") ? void (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "clang/include/clang/AST/Type.h", 4173, __extension__ __PRETTY_FUNCTION__
))
;
4174 return exception_begin()[i];
4175 }
4176
4177 /// Return the expression inside noexcept(expression), or a null pointer
4178 /// if there is none (because the exception spec is not of this form).
4179 Expr *getNoexceptExpr() const {
4180 if (!isComputedNoexcept(getExceptionSpecType()))
4181 return nullptr;
4182 return *getTrailingObjects<Expr *>();
4183 }
4184
4185 /// If this function type has an exception specification which hasn't
4186 /// been determined yet (either because it has not been evaluated or because
4187 /// it has not been instantiated), this is the function whose exception
4188 /// specification is represented by this type.
4189 FunctionDecl *getExceptionSpecDecl() const {
4190 if (getExceptionSpecType() != EST_Uninstantiated &&
4191 getExceptionSpecType() != EST_Unevaluated)
4192 return nullptr;
4193 return getTrailingObjects<FunctionDecl *>()[0];
4194 }
4195
4196 /// If this function type has an uninstantiated exception
4197 /// specification, this is the function whose exception specification
4198 /// should be instantiated to find the exception specification for
4199 /// this type.
4200 FunctionDecl *getExceptionSpecTemplate() const {
4201 if (getExceptionSpecType() != EST_Uninstantiated)
4202 return nullptr;
4203 return getTrailingObjects<FunctionDecl *>()[1];
4204 }
4205
4206 /// Determine whether this function type has a non-throwing exception
4207 /// specification.
4208 CanThrowResult canThrow() const;
4209
4210 /// Determine whether this function type has a non-throwing exception
4211 /// specification. If this depends on template arguments, returns
4212 /// \c ResultIfDependent.
4213 bool isNothrow(bool ResultIfDependent = false) const {
4214 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4215 }
4216
4217 /// Whether this function prototype is variadic.
4218 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4219
4220 SourceLocation getEllipsisLoc() const {
4221 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4222 : SourceLocation();
4223 }
4224
4225 /// Determines whether this function prototype contains a
4226 /// parameter pack at the end.
4227 ///
4228 /// A function template whose last parameter is a parameter pack can be
4229 /// called with an arbitrary number of arguments, much like a variadic
4230 /// function.
4231 bool isTemplateVariadic() const;
4232
4233 /// Whether this function prototype has a trailing return type.
4234 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4235
4236 Qualifiers getMethodQuals() const {
4237 if (hasExtQualifiers())
4238 return *getTrailingObjects<Qualifiers>();
4239 else
4240 return getFastTypeQuals();
4241 }
4242
4243 /// Retrieve the ref-qualifier associated with this function type.
4244 RefQualifierKind getRefQualifier() const {
4245 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4246 }
4247
4248 using param_type_iterator = const QualType *;
4249 using param_type_range = llvm::iterator_range<param_type_iterator>;
4250
4251 param_type_range param_types() const {
4252 return param_type_range(param_type_begin(), param_type_end());
4253 }
4254
4255 param_type_iterator param_type_begin() const {
4256 return getTrailingObjects<QualType>();
4257 }
4258
4259 param_type_iterator param_type_end() const {
4260 return param_type_begin() + getNumParams();
4261 }
4262
4263 using exception_iterator = const QualType *;
4264
4265 ArrayRef<QualType> exceptions() const {
4266 return llvm::makeArrayRef(exception_begin(), exception_end());
4267 }
4268
4269 exception_iterator exception_begin() const {
4270 return reinterpret_cast<exception_iterator>(
4271 getTrailingObjects<ExceptionType>());
4272 }
4273
4274 exception_iterator exception_end() const {
4275 return exception_begin() + getNumExceptions();
4276 }
4277
4278 /// Is there any interesting extra information for any of the parameters
4279 /// of this function type?
4280 bool hasExtParameterInfos() const {
4281 return FunctionTypeBits.HasExtParameterInfos;
4282 }
4283
4284 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4285 assert(hasExtParameterInfos())(static_cast <bool> (hasExtParameterInfos()) ? void (0)
: __assert_fail ("hasExtParameterInfos()", "clang/include/clang/AST/Type.h"
, 4285, __extension__ __PRETTY_FUNCTION__))
;
4286 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4287 getNumParams());
4288 }
4289
4290 /// Return a pointer to the beginning of the array of extra parameter
4291 /// information, if present, or else null if none of the parameters
4292 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4293 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4294 if (!hasExtParameterInfos())
4295 return nullptr;
4296 return getTrailingObjects<ExtParameterInfo>();
4297 }
4298
4299 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4300 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4300, __extension__ __PRETTY_FUNCTION__
))
;
4301 if (hasExtParameterInfos())
4302 return getTrailingObjects<ExtParameterInfo>()[I];
4303 return ExtParameterInfo();
4304 }
4305
4306 ParameterABI getParameterABI(unsigned I) const {
4307 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4307, __extension__ __PRETTY_FUNCTION__
))
;
4308 if (hasExtParameterInfos())
4309 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4310 return ParameterABI::Ordinary;
4311 }
4312
4313 bool isParamConsumed(unsigned I) const {
4314 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4314, __extension__ __PRETTY_FUNCTION__
))
;
4315 if (hasExtParameterInfos())
4316 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4317 return false;
4318 }
4319
4320 bool isSugared() const { return false; }
4321 QualType desugar() const { return QualType(this, 0); }
4322
4323 void printExceptionSpecification(raw_ostream &OS,
4324 const PrintingPolicy &Policy) const;
4325
4326 static bool classof(const Type *T) {
4327 return T->getTypeClass() == FunctionProto;
4328 }
4329
4330 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4331 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4332 param_type_iterator ArgTys, unsigned NumArgs,
4333 const ExtProtoInfo &EPI, const ASTContext &Context,
4334 bool Canonical);
4335};
4336
4337/// Represents the dependent type named by a dependently-scoped
4338/// typename using declaration, e.g.
4339/// using typename Base<T>::foo;
4340///
4341/// Template instantiation turns these into the underlying type.
4342class UnresolvedUsingType : public Type {
4343 friend class ASTContext; // ASTContext creates these.
4344
4345 UnresolvedUsingTypenameDecl *Decl;
4346
4347 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4348 : Type(UnresolvedUsing, QualType(),
4349 TypeDependence::DependentInstantiation),
4350 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4351
4352public:
4353 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4354
4355 bool isSugared() const { return false; }
4356 QualType desugar() const { return QualType(this, 0); }
4357
4358 static bool classof(const Type *T) {
4359 return T->getTypeClass() == UnresolvedUsing;
4360 }
4361
4362 void Profile(llvm::FoldingSetNodeID &ID) {
4363 return Profile(ID, Decl);
4364 }
4365
4366 static void Profile(llvm::FoldingSetNodeID &ID,
4367 UnresolvedUsingTypenameDecl *D) {
4368 ID.AddPointer(D);
4369 }
4370};
4371
4372class UsingType : public Type, public llvm::FoldingSetNode {
4373 UsingShadowDecl *Found;
4374 friend class ASTContext; // ASTContext creates these.
4375
4376 UsingType(const UsingShadowDecl *Found, QualType Underlying, QualType Canon);
4377
4378public:
4379 UsingShadowDecl *getFoundDecl() const { return Found; }
4380 QualType getUnderlyingType() const;
4381
4382 bool isSugared() const { return true; }
4383 QualType desugar() const { return getUnderlyingType(); }
4384
4385 void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Found); }
4386 static void Profile(llvm::FoldingSetNodeID &ID,
4387 const UsingShadowDecl *Found) {
4388 ID.AddPointer(Found);
4389 }
4390 static bool classof(const Type *T) { return T->getTypeClass() == Using; }
4391};
4392
4393class TypedefType : public Type {
4394 TypedefNameDecl *Decl;
4395
4396private:
4397 friend class ASTContext; // ASTContext creates these.
4398
4399 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4400 QualType can);
4401
4402public:
4403 TypedefNameDecl *getDecl() const { return Decl; }
4404
4405 bool isSugared() const { return true; }
4406 QualType desugar() const;
4407
4408 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4409};
4410
4411/// Sugar type that represents a type that was qualified by a qualifier written
4412/// as a macro invocation.
4413class MacroQualifiedType : public Type {
4414 friend class ASTContext; // ASTContext creates these.
4415
4416 QualType UnderlyingTy;
4417 const IdentifierInfo *MacroII;
4418
4419 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4420 const IdentifierInfo *MacroII)
4421 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4422 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4423 assert(isa<AttributedType>(UnderlyingTy) &&(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "clang/include/clang/AST/Type.h", 4424, __extension__ __PRETTY_FUNCTION__
))
4424 "Expected a macro qualified type to only wrap attributed types.")(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "clang/include/clang/AST/Type.h", 4424, __extension__ __PRETTY_FUNCTION__
))
;
4425 }
4426
4427public:
4428 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4429 QualType getUnderlyingType() const { return UnderlyingTy; }
4430
4431 /// Return this attributed type's modified type with no qualifiers attached to
4432 /// it.
4433 QualType getModifiedType() const;
4434
4435 bool isSugared() const { return true; }
4436 QualType desugar() const;
4437
4438 static bool classof(const Type *T) {
4439 return T->getTypeClass() == MacroQualified;
4440 }
4441};
4442
4443/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4444class TypeOfExprType : public Type {
4445 Expr *TOExpr;
4446
4447protected:
4448 friend class ASTContext; // ASTContext creates these.
4449
4450 TypeOfExprType(Expr *E, QualType can = QualType());
4451
4452public:
4453 Expr *getUnderlyingExpr() const { return TOExpr; }
4454
4455 /// Remove a single level of sugar.
4456 QualType desugar() const;
4457
4458 /// Returns whether this type directly provides sugar.
4459 bool isSugared() const;
4460
4461 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4462};
4463
4464/// Internal representation of canonical, dependent
4465/// `typeof(expr)` types.
4466///
4467/// This class is used internally by the ASTContext to manage
4468/// canonical, dependent types, only. Clients will only see instances
4469/// of this class via TypeOfExprType nodes.
4470class DependentTypeOfExprType
4471 : public TypeOfExprType, public llvm::FoldingSetNode {
4472 const ASTContext &Context;
4473
4474public:
4475 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4476 : TypeOfExprType(E), Context(Context) {}
4477
4478 void Profile(llvm::FoldingSetNodeID &ID) {
4479 Profile(ID, Context, getUnderlyingExpr());
4480 }
4481
4482 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4483 Expr *E);
4484};
4485
4486/// Represents `typeof(type)`, a GCC extension.
4487class TypeOfType : public Type {
4488 friend class ASTContext; // ASTContext creates these.
4489
4490 QualType TOType;
4491
4492 TypeOfType(QualType T, QualType can)
4493 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4494 assert(!isa<TypedefType>(can) && "Invalid canonical type")(static_cast <bool> (!isa<TypedefType>(can) &&
"Invalid canonical type") ? void (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "clang/include/clang/AST/Type.h", 4494, __extension__ __PRETTY_FUNCTION__
))
;
4495 }
4496
4497public:
4498 QualType getUnderlyingType() const { return TOType; }
4499
4500 /// Remove a single level of sugar.
4501 QualType desugar() const { return getUnderlyingType(); }
4502
4503 /// Returns whether this type directly provides sugar.
4504 bool isSugared() const { return true; }
4505
4506 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4507};
4508
4509/// Represents the type `decltype(expr)` (C++11).
4510class DecltypeType : public Type {
4511 Expr *E;
4512 QualType UnderlyingType;
4513
4514protected:
4515 friend class ASTContext; // ASTContext creates these.
4516
4517 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4518
4519public:
4520 Expr *getUnderlyingExpr() const { return E; }
4521 QualType getUnderlyingType() const { return UnderlyingType; }
4522
4523 /// Remove a single level of sugar.
4524 QualType desugar() const;
4525
4526 /// Returns whether this type directly provides sugar.
4527 bool isSugared() const;
4528
4529 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4530};
4531
4532/// Internal representation of canonical, dependent
4533/// decltype(expr) types.
4534///
4535/// This class is used internally by the ASTContext to manage
4536/// canonical, dependent types, only. Clients will only see instances
4537/// of this class via DecltypeType nodes.
4538class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4539 const ASTContext &Context;
4540
4541public:
4542 DependentDecltypeType(const ASTContext &Context, Expr *E);
4543
4544 void Profile(llvm::FoldingSetNodeID &ID) {
4545 Profile(ID, Context, getUnderlyingExpr());
4546 }
4547
4548 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4549 Expr *E);
4550};
4551
4552/// A unary type transform, which is a type constructed from another.
4553class UnaryTransformType : public Type {
4554public:
4555 enum UTTKind {
4556 EnumUnderlyingType
4557 };
4558
4559private:
4560 /// The untransformed type.
4561 QualType BaseType;
4562
4563 /// The transformed type if not dependent, otherwise the same as BaseType.
4564 QualType UnderlyingType;
4565
4566 UTTKind UKind;
4567
4568protected:
4569 friend class ASTContext;
4570
4571 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4572 QualType CanonicalTy);
4573
4574public:
4575 bool isSugared() const { return !isDependentType(); }
4576 QualType desugar() const { return UnderlyingType; }
4577
4578 QualType getUnderlyingType() const { return UnderlyingType; }
4579 QualType getBaseType() const { return BaseType; }
4580
4581 UTTKind getUTTKind() const { return UKind; }
4582
4583 static bool classof(const Type *T) {
4584 return T->getTypeClass() == UnaryTransform;
4585 }
4586};
4587
4588/// Internal representation of canonical, dependent
4589/// __underlying_type(type) types.
4590///
4591/// This class is used internally by the ASTContext to manage
4592/// canonical, dependent types, only. Clients will only see instances
4593/// of this class via UnaryTransformType nodes.
4594class DependentUnaryTransformType : public UnaryTransformType,
4595 public llvm::FoldingSetNode {
4596public:
4597 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4598 UTTKind UKind);
4599
4600 void Profile(llvm::FoldingSetNodeID &ID) {
4601 Profile(ID, getBaseType(), getUTTKind());
4602 }
4603
4604 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4605 UTTKind UKind) {
4606 ID.AddPointer(BaseType.getAsOpaquePtr());
4607 ID.AddInteger((unsigned)UKind);
4608 }
4609};
4610
4611class TagType : public Type {
4612 friend class ASTReader;
4613 template <class T> friend class serialization::AbstractTypeReader;
4614
4615 /// Stores the TagDecl associated with this type. The decl may point to any
4616 /// TagDecl that declares the entity.
4617 TagDecl *decl;
4618
4619protected:
4620 TagType(TypeClass TC, const TagDecl *D, QualType can);
4621
4622public:
4623 TagDecl *getDecl() const;
4624
4625 /// Determines whether this type is in the process of being defined.
4626 bool isBeingDefined() const;
4627
4628 static bool classof(const Type *T) {
4629 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4630 }
4631};
4632
4633/// A helper class that allows the use of isa/cast/dyncast
4634/// to detect TagType objects of structs/unions/classes.
4635class RecordType : public TagType {
4636protected:
4637 friend class ASTContext; // ASTContext creates these.
4638
4639 explicit RecordType(const RecordDecl *D)
4640 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4641 explicit RecordType(TypeClass TC, RecordDecl *D)
4642 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4643
4644public:
4645 RecordDecl *getDecl() const {
4646 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4647 }
4648
4649 /// Recursively check all fields in the record for const-ness. If any field
4650 /// is declared const, return true. Otherwise, return false.
4651 bool hasConstFields() const;
4652
4653 bool isSugared() const { return false; }
4654 QualType desugar() const { return QualType(this, 0); }
4655
4656 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4657};
4658
4659/// A helper class that allows the use of isa/cast/dyncast
4660/// to detect TagType objects of enums.
4661class EnumType : public TagType {
4662 friend class ASTContext; // ASTContext creates these.
4663
4664 explicit EnumType(const EnumDecl *D)
4665 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4666
4667public:
4668 EnumDecl *getDecl() const {
4669 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4670 }
4671
4672 bool isSugared() const { return false; }
4673 QualType desugar() const { return QualType(this, 0); }
4674
4675 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4676};
4677
4678/// An attributed type is a type to which a type attribute has been applied.
4679///
4680/// The "modified type" is the fully-sugared type to which the attributed
4681/// type was applied; generally it is not canonically equivalent to the
4682/// attributed type. The "equivalent type" is the minimally-desugared type
4683/// which the type is canonically equivalent to.
4684///
4685/// For example, in the following attributed type:
4686/// int32_t __attribute__((vector_size(16)))
4687/// - the modified type is the TypedefType for int32_t
4688/// - the equivalent type is VectorType(16, int32_t)
4689/// - the canonical type is VectorType(16, int)
4690class AttributedType : public Type, public llvm::FoldingSetNode {
4691public:
4692 using Kind = attr::Kind;
4693
4694private:
4695 friend class ASTContext; // ASTContext creates these
4696
4697 QualType ModifiedType;
4698 QualType EquivalentType;
4699
4700 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4701 QualType equivalent)
4702 : Type(Attributed, canon, equivalent->getDependence()),
4703 ModifiedType(modified), EquivalentType(equivalent) {
4704 AttributedTypeBits.AttrKind = attrKind;
4705 }
4706
4707public:
4708 Kind getAttrKind() const {
4709 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4710 }
4711
4712 QualType getModifiedType() const { return ModifiedType; }
4713 QualType getEquivalentType() const { return EquivalentType; }
4714
4715 bool isSugared() const { return true; }
4716 QualType desugar() const { return getEquivalentType(); }
4717
4718 /// Does this attribute behave like a type qualifier?
4719 ///
4720 /// A type qualifier adjusts a type to provide specialized rules for
4721 /// a specific object, like the standard const and volatile qualifiers.
4722 /// This includes attributes controlling things like nullability,
4723 /// address spaces, and ARC ownership. The value of the object is still
4724 /// largely described by the modified type.
4725 ///
4726 /// In contrast, many type attributes "rewrite" their modified type to
4727 /// produce a fundamentally different type, not necessarily related in any
4728 /// formalizable way to the original type. For example, calling convention
4729 /// and vector attributes are not simple type qualifiers.
4730 ///
4731 /// Type qualifiers are often, but not always, reflected in the canonical
4732 /// type.
4733 bool isQualifier() const;
4734
4735 bool isMSTypeSpec() const;
4736
4737 bool isCallingConv() const;
4738
4739 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4740
4741 /// Retrieve the attribute kind corresponding to the given
4742 /// nullability kind.
4743 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4744 switch (kind) {
4745 case NullabilityKind::NonNull:
4746 return attr::TypeNonNull;
4747
4748 case NullabilityKind::Nullable:
4749 return attr::TypeNullable;
4750
4751 case NullabilityKind::NullableResult:
4752 return attr::TypeNullableResult;
4753
4754 case NullabilityKind::Unspecified:
4755 return attr::TypeNullUnspecified;
4756 }
4757 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "clang/include/clang/AST/Type.h", 4757)
;
4758 }
4759
4760 /// Strip off the top-level nullability annotation on the given
4761 /// type, if it's there.
4762 ///
4763 /// \param T The type to strip. If the type is exactly an
4764 /// AttributedType specifying nullability (without looking through
4765 /// type sugar), the nullability is returned and this type changed
4766 /// to the underlying modified type.
4767 ///
4768 /// \returns the top-level nullability, if present.
4769 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4770
4771 void Profile(llvm::FoldingSetNodeID &ID) {
4772 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4773 }
4774
4775 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4776 QualType modified, QualType equivalent) {
4777 ID.AddInteger(attrKind);
4778 ID.AddPointer(modified.getAsOpaquePtr());
4779 ID.AddPointer(equivalent.getAsOpaquePtr());
4780 }
4781
4782 static bool classof(const Type *T) {
4783 return T->getTypeClass() == Attributed;
4784 }
4785};
4786
4787class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4788 friend class ASTContext; // ASTContext creates these
4789
4790 // Helper data collector for canonical types.
4791 struct CanonicalTTPTInfo {
4792 unsigned Depth : 15;
4793 unsigned ParameterPack : 1;
4794 unsigned Index : 16;
4795 };
4796
4797 union {
4798 // Info for the canonical type.
4799 CanonicalTTPTInfo CanTTPTInfo;
4800
4801 // Info for the non-canonical type.
4802 TemplateTypeParmDecl *TTPDecl;
4803 };
4804
4805 /// Build a non-canonical type.
4806 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4807 : Type(TemplateTypeParm, Canon,
4808 TypeDependence::DependentInstantiation |
4809 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4810 TTPDecl(TTPDecl) {}
4811
4812 /// Build the canonical type.
4813 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4814 : Type(TemplateTypeParm, QualType(this, 0),
4815 TypeDependence::DependentInstantiation |
4816 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4817 CanTTPTInfo.Depth = D;
4818 CanTTPTInfo.Index = I;
4819 CanTTPTInfo.ParameterPack = PP;
4820 }
4821
4822 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4823 QualType Can = getCanonicalTypeInternal();
4824 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4825 }
4826
4827public:
4828 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4829 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4830 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4831
4832 TemplateTypeParmDecl *getDecl() const {
4833 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4834 }
4835
4836 IdentifierInfo *getIdentifier() const;
4837
4838 bool isSugared() const { return false; }
4839 QualType desugar() const { return QualType(this, 0); }
4840
4841 void Profile(llvm::FoldingSetNodeID &ID) {
4842 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4843 }
4844
4845 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4846 unsigned Index, bool ParameterPack,
4847 TemplateTypeParmDecl *TTPDecl) {
4848 ID.AddInteger(Depth);
4849 ID.AddInteger(Index);
4850 ID.AddBoolean(ParameterPack);
4851 ID.AddPointer(TTPDecl);
4852 }
4853
4854 static bool classof(const Type *T) {
4855 return T->getTypeClass() == TemplateTypeParm;
4856 }
4857};
4858
4859/// Represents the result of substituting a type for a template
4860/// type parameter.
4861///
4862/// Within an instantiated template, all template type parameters have
4863/// been replaced with these. They are used solely to record that a
4864/// type was originally written as a template type parameter;
4865/// therefore they are never canonical.
4866class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4867 friend class ASTContext;
4868
4869 // The original type parameter.
4870 const TemplateTypeParmType *Replaced;
4871
4872 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4873 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4874 Replaced(Param) {}
4875
4876public:
4877 /// Gets the template parameter that was substituted for.
4878 const TemplateTypeParmType *getReplacedParameter() const {
4879 return Replaced;
4880 }
4881
4882 /// Gets the type that was substituted for the template
4883 /// parameter.
4884 QualType getReplacementType() const {
4885 return getCanonicalTypeInternal();
4886 }
4887
4888 bool isSugared() const { return true; }
4889 QualType desugar() const { return getReplacementType(); }
4890
4891 void Profile(llvm::FoldingSetNodeID &ID) {
4892 Profile(ID, getReplacedParameter(), getReplacementType());
4893 }
4894
4895 static void Profile(llvm::FoldingSetNodeID &ID,
4896 const TemplateTypeParmType *Replaced,
4897 QualType Replacement) {
4898 ID.AddPointer(Replaced);
4899 ID.AddPointer(Replacement.getAsOpaquePtr());
4900 }
4901
4902 static bool classof(const Type *T) {
4903 return T->getTypeClass() == SubstTemplateTypeParm;
4904 }
4905};
4906
4907/// Represents the result of substituting a set of types for a template
4908/// type parameter pack.
4909///
4910/// When a pack expansion in the source code contains multiple parameter packs
4911/// and those parameter packs correspond to different levels of template
4912/// parameter lists, this type node is used to represent a template type
4913/// parameter pack from an outer level, which has already had its argument pack
4914/// substituted but that still lives within a pack expansion that itself
4915/// could not be instantiated. When actually performing a substitution into
4916/// that pack expansion (e.g., when all template parameters have corresponding
4917/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4918/// at the current pack substitution index.
4919class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4920 friend class ASTContext;
4921
4922 /// The original type parameter.
4923 const TemplateTypeParmType *Replaced;
4924
4925 /// A pointer to the set of template arguments that this
4926 /// parameter pack is instantiated with.
4927 const TemplateArgument *Arguments;
4928
4929 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4930 QualType Canon,
4931 const TemplateArgument &ArgPack);
4932
4933public:
4934 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4935
4936 /// Gets the template parameter that was substituted for.
4937 const TemplateTypeParmType *getReplacedParameter() const {
4938 return Replaced;
4939 }
4940
4941 unsigned getNumArgs() const {
4942 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4943 }
4944
4945 bool isSugared() const { return false; }
4946 QualType desugar() const { return QualType(this, 0); }
4947
4948 TemplateArgument getArgumentPack() const;
4949
4950 void Profile(llvm::FoldingSetNodeID &ID);
4951 static void Profile(llvm::FoldingSetNodeID &ID,
4952 const TemplateTypeParmType *Replaced,
4953 const TemplateArgument &ArgPack);
4954
4955 static bool classof(const Type *T) {
4956 return T->getTypeClass() == SubstTemplateTypeParmPack;
4957 }
4958};
4959
4960/// Common base class for placeholders for types that get replaced by
4961/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4962/// class template types, and constrained type names.
4963///
4964/// These types are usually a placeholder for a deduced type. However, before
4965/// the initializer is attached, or (usually) if the initializer is
4966/// type-dependent, there is no deduced type and the type is canonical. In
4967/// the latter case, it is also a dependent type.
4968class DeducedType : public Type {
4969 QualType DeducedAsType;
4970
4971protected:
4972 DeducedType(TypeClass TC, QualType DeducedAsType,
4973 TypeDependence ExtraDependence, QualType Canon)
4974 : Type(TC, Canon,
4975 ExtraDependence | (DeducedAsType.isNull()
4976 ? TypeDependence::None
4977 : DeducedAsType->getDependence() &
4978 ~TypeDependence::VariablyModified)),
4979 DeducedAsType(DeducedAsType) {}
4980
4981public:
4982 bool isSugared() const { return !DeducedAsType.isNull(); }
4983 QualType desugar() const {
4984 return isSugared() ? DeducedAsType : QualType(this, 0);
4985 }
4986
4987 /// Get the type deduced for this placeholder type, or null if it
4988 /// has not been deduced.
4989 QualType getDeducedType() const { return DeducedAsType; }
4990 bool isDeduced() const {
4991 return !DeducedAsType.isNull() || isDependentType();
4992 }
4993
4994 static bool classof(const Type *T) {
4995 return T->getTypeClass() == Auto ||
4996 T->getTypeClass() == DeducedTemplateSpecialization;
4997 }
4998};
4999
5000/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
5001/// by a type-constraint.
5002class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
5003 friend class ASTContext; // ASTContext creates these
5004
5005 ConceptDecl *TypeConstraintConcept;
5006
5007 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
5008 TypeDependence ExtraDependence, QualType Canon, ConceptDecl *CD,
5009 ArrayRef<TemplateArgument> TypeConstraintArgs);
5010
5011 const TemplateArgument *getArgBuffer() const {
5012 return reinterpret_cast<const TemplateArgument*>(this+1);
5013 }
5014
5015 TemplateArgument *getArgBuffer() {
5016 return reinterpret_cast<TemplateArgument*>(this+1);
5017 }
5018
5019public:
5020 /// Retrieve the template arguments.
5021 const TemplateArgument *getArgs() const {
5022 return getArgBuffer();
5023 }
5024
5025 /// Retrieve the number of template arguments.
5026 unsigned getNumArgs() const {
5027 return AutoTypeBits.NumArgs;
5028 }
5029
5030 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5031
5032 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5033 return {getArgs(), getNumArgs()};
5034 }
5035
5036 ConceptDecl *getTypeConstraintConcept() const {
5037 return TypeConstraintConcept;
5038 }
5039
5040 bool isConstrained() const {
5041 return TypeConstraintConcept != nullptr;
5042 }
5043
5044 bool isDecltypeAuto() const {
5045 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5046 }
5047
5048 AutoTypeKeyword getKeyword() const {
5049 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5050 }
5051
5052 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5053 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5054 getTypeConstraintConcept(), getTypeConstraintArguments());
5055 }
5056
5057 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5058 QualType Deduced, AutoTypeKeyword Keyword,
5059 bool IsDependent, ConceptDecl *CD,
5060 ArrayRef<TemplateArgument> Arguments);
5061
5062 static bool classof(const Type *T) {
5063 return T->getTypeClass() == Auto;
5064 }
5065};
5066
5067/// Represents a C++17 deduced template specialization type.
5068class DeducedTemplateSpecializationType : public DeducedType,
5069 public llvm::FoldingSetNode {
5070 friend class ASTContext; // ASTContext creates these
5071
5072 /// The name of the template whose arguments will be deduced.
5073 TemplateName Template;
5074
5075 DeducedTemplateSpecializationType(TemplateName Template,
5076 QualType DeducedAsType,
5077 bool IsDeducedAsDependent)
5078 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5079 toTypeDependence(Template.getDependence()) |
5080 (IsDeducedAsDependent
5081 ? TypeDependence::DependentInstantiation
5082 : TypeDependence::None),
5083 DeducedAsType.isNull() ? QualType(this, 0)
5084 : DeducedAsType.getCanonicalType()),
5085 Template(Template) {}
5086
5087public:
5088 /// Retrieve the name of the template that we are deducing.
5089 TemplateName getTemplateName() const { return Template;}
5090
5091 void Profile(llvm::FoldingSetNodeID &ID) {
5092 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5093 }
5094
5095 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5096 QualType Deduced, bool IsDependent) {
5097 Template.Profile(ID);
5098 QualType CanonicalType =
5099 Deduced.isNull() ? Deduced : Deduced.getCanonicalType();
5100 ID.AddPointer(CanonicalType.getAsOpaquePtr());
5101 ID.AddBoolean(IsDependent || Template.isDependent());
5102 }
5103
5104 static bool classof(const Type *T) {
5105 return T->getTypeClass() == DeducedTemplateSpecialization;
5106 }
5107};
5108
5109/// Represents a type template specialization; the template
5110/// must be a class template, a type alias template, or a template
5111/// template parameter. A template which cannot be resolved to one of
5112/// these, e.g. because it is written with a dependent scope
5113/// specifier, is instead represented as a
5114/// @c DependentTemplateSpecializationType.
5115///
5116/// A non-dependent template specialization type is always "sugar",
5117/// typically for a \c RecordType. For example, a class template
5118/// specialization type of \c vector<int> will refer to a tag type for
5119/// the instantiation \c std::vector<int, std::allocator<int>>
5120///
5121/// Template specializations are dependent if either the template or
5122/// any of the template arguments are dependent, in which case the
5123/// type may also be canonical.
5124///
5125/// Instances of this type are allocated with a trailing array of
5126/// TemplateArguments, followed by a QualType representing the
5127/// non-canonical aliased type when the template is a type alias
5128/// template.
5129class alignas(8) TemplateSpecializationType
5130 : public Type,
5131 public llvm::FoldingSetNode {
5132 friend class ASTContext; // ASTContext creates these
5133
5134 /// The name of the template being specialized. This is
5135 /// either a TemplateName::Template (in which case it is a
5136 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5137 /// TypeAliasTemplateDecl*), a
5138 /// TemplateName::SubstTemplateTemplateParmPack, or a
5139 /// TemplateName::SubstTemplateTemplateParm (in which case the
5140 /// replacement must, recursively, be one of these).
5141 TemplateName Template;
5142
5143 TemplateSpecializationType(TemplateName T,
5144 ArrayRef<TemplateArgument> Args,
5145 QualType Canon,
5146 QualType Aliased);
5147
5148public:
5149 /// Determine whether any of the given template arguments are dependent.
5150 ///
5151 /// The converted arguments should be supplied when known; whether an
5152 /// argument is dependent can depend on the conversions performed on it
5153 /// (for example, a 'const int' passed as a template argument might be
5154 /// dependent if the parameter is a reference but non-dependent if the
5155 /// parameter is an int).
5156 ///
5157 /// Note that the \p Args parameter is unused: this is intentional, to remind
5158 /// the caller that they need to pass in the converted arguments, not the
5159 /// specified arguments.
5160 static bool
5161 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5162 ArrayRef<TemplateArgument> Converted);
5163 static bool
5164 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5165 ArrayRef<TemplateArgument> Converted);
5166 static bool anyInstantiationDependentTemplateArguments(
5167 ArrayRef<TemplateArgumentLoc> Args);
5168
5169 /// True if this template specialization type matches a current
5170 /// instantiation in the context in which it is found.
5171 bool isCurrentInstantiation() const {
5172 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5173 }
5174
5175 /// Determine if this template specialization type is for a type alias
5176 /// template that has been substituted.
5177 ///
5178 /// Nearly every template specialization type whose template is an alias
5179 /// template will be substituted. However, this is not the case when
5180 /// the specialization contains a pack expansion but the template alias
5181 /// does not have a corresponding parameter pack, e.g.,
5182 ///
5183 /// \code
5184 /// template<typename T, typename U, typename V> struct S;
5185 /// template<typename T, typename U> using A = S<T, int, U>;
5186 /// template<typename... Ts> struct X {
5187 /// typedef A<Ts...> type; // not a type alias
5188 /// };
5189 /// \endcode
5190 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5191
5192 /// Get the aliased type, if this is a specialization of a type alias
5193 /// template.
5194 QualType getAliasedType() const {
5195 assert(isTypeAlias() && "not a type alias template specialization")(static_cast <bool> (isTypeAlias() && "not a type alias template specialization"
) ? void (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "clang/include/clang/AST/Type.h", 5195, __extension__ __PRETTY_FUNCTION__
))
;
5196 return *reinterpret_cast<const QualType*>(end());
5197 }
5198
5199 using iterator = const TemplateArgument *;
5200
5201 iterator begin() const { return getArgs(); }
5202 iterator end() const; // defined inline in TemplateBase.h
5203
5204 /// Retrieve the name of the template that we are specializing.
5205 TemplateName getTemplateName() const { return Template; }
5206
5207 /// Retrieve the template arguments.
5208 const TemplateArgument *getArgs() const {
5209 return reinterpret_cast<const TemplateArgument *>(this + 1);
5210 }
5211
5212 /// Retrieve the number of template arguments.
5213 unsigned getNumArgs() const {
5214 return TemplateSpecializationTypeBits.NumArgs;
5215 }
5216
5217 /// Retrieve a specific template argument as a type.
5218 /// \pre \c isArgType(Arg)
5219 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5220
5221 ArrayRef<TemplateArgument> template_arguments() const {
5222 return {getArgs(), getNumArgs()};
5223 }
5224
5225 bool isSugared() const {
5226 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5227 }
5228
5229 QualType desugar() const {
5230 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5231 }
5232
5233 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5234 Profile(ID, Template, template_arguments(), Ctx);
5235 if (isTypeAlias())
5236 getAliasedType().Profile(ID);
5237 }
5238
5239 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5240 ArrayRef<TemplateArgument> Args,
5241 const ASTContext &Context);
5242
5243 static bool classof(const Type *T) {
5244 return T->getTypeClass() == TemplateSpecialization;
5245 }
5246};
5247
5248/// Print a template argument list, including the '<' and '>'
5249/// enclosing the template arguments.
5250void printTemplateArgumentList(raw_ostream &OS,
5251 ArrayRef<TemplateArgument> Args,
5252 const PrintingPolicy &Policy,
5253 const TemplateParameterList *TPL = nullptr);
5254
5255void printTemplateArgumentList(raw_ostream &OS,
5256 ArrayRef<TemplateArgumentLoc> Args,
5257 const PrintingPolicy &Policy,
5258 const TemplateParameterList *TPL = nullptr);
5259
5260void printTemplateArgumentList(raw_ostream &OS,
5261 const TemplateArgumentListInfo &Args,
5262 const PrintingPolicy &Policy,
5263 const TemplateParameterList *TPL = nullptr);
5264
5265/// The injected class name of a C++ class template or class
5266/// template partial specialization. Used to record that a type was
5267/// spelled with a bare identifier rather than as a template-id; the
5268/// equivalent for non-templated classes is just RecordType.
5269///
5270/// Injected class name types are always dependent. Template
5271/// instantiation turns these into RecordTypes.
5272///
5273/// Injected class name types are always canonical. This works
5274/// because it is impossible to compare an injected class name type
5275/// with the corresponding non-injected template type, for the same
5276/// reason that it is impossible to directly compare template
5277/// parameters from different dependent contexts: injected class name
5278/// types can only occur within the scope of a particular templated
5279/// declaration, and within that scope every template specialization
5280/// will canonicalize to the injected class name (when appropriate
5281/// according to the rules of the language).
5282class InjectedClassNameType : public Type {
5283 friend class ASTContext; // ASTContext creates these.
5284 friend class ASTNodeImporter;
5285 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5286 // currently suitable for AST reading, too much
5287 // interdependencies.
5288 template <class T> friend class serialization::AbstractTypeReader;
5289
5290 CXXRecordDecl *Decl;
5291
5292 /// The template specialization which this type represents.
5293 /// For example, in
5294 /// template <class T> class A { ... };
5295 /// this is A<T>, whereas in
5296 /// template <class X, class Y> class A<B<X,Y> > { ... };
5297 /// this is A<B<X,Y> >.
5298 ///
5299 /// It is always unqualified, always a template specialization type,
5300 /// and always dependent.
5301 QualType InjectedType;
5302
5303 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5304 : Type(InjectedClassName, QualType(),
5305 TypeDependence::DependentInstantiation),
5306 Decl(D), InjectedType(TST) {
5307 assert(isa<TemplateSpecializationType>(TST))(static_cast <bool> (isa<TemplateSpecializationType>
(TST)) ? void (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "clang/include/clang/AST/Type.h", 5307, __extension__ __PRETTY_FUNCTION__
))
;
5308 assert(!TST.hasQualifiers())(static_cast <bool> (!TST.hasQualifiers()) ? void (0) :
__assert_fail ("!TST.hasQualifiers()", "clang/include/clang/AST/Type.h"
, 5308, __extension__ __PRETTY_FUNCTION__))
;
5309 assert(TST->isDependentType())(static_cast <bool> (TST->isDependentType()) ? void (
0) : __assert_fail ("TST->isDependentType()", "clang/include/clang/AST/Type.h"
, 5309, __extension__ __PRETTY_FUNCTION__))
;
5310 }
5311
5312public:
5313 QualType getInjectedSpecializationType() const { return InjectedType; }
5314
5315 const TemplateSpecializationType *getInjectedTST() const {
5316 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5317 }
5318
5319 TemplateName getTemplateName() const {
5320 return getInjectedTST()->getTemplateName();
5321 }
5322
5323 CXXRecordDecl *getDecl() const;
5324
5325 bool isSugared() const { return false; }
5326 QualType desugar() const { return QualType(this, 0); }
5327
5328 static bool classof(const Type *T) {
5329 return T->getTypeClass() == InjectedClassName;
5330 }
5331};
5332
5333/// The kind of a tag type.
5334enum TagTypeKind {
5335 /// The "struct" keyword.
5336 TTK_Struct,
5337
5338 /// The "__interface" keyword.
5339 TTK_Interface,
5340
5341 /// The "union" keyword.
5342 TTK_Union,
5343
5344 /// The "class" keyword.
5345 TTK_Class,
5346
5347 /// The "enum" keyword.
5348 TTK_Enum
5349};
5350
5351/// The elaboration keyword that precedes a qualified type name or
5352/// introduces an elaborated-type-specifier.
5353enum ElaboratedTypeKeyword {
5354 /// The "struct" keyword introduces the elaborated-type-specifier.
5355 ETK_Struct,
5356
5357 /// The "__interface" keyword introduces the elaborated-type-specifier.
5358 ETK_Interface,
5359
5360 /// The "union" keyword introduces the elaborated-type-specifier.
5361 ETK_Union,
5362
5363 /// The "class" keyword introduces the elaborated-type-specifier.
5364 ETK_Class,
5365
5366 /// The "enum" keyword introduces the elaborated-type-specifier.
5367 ETK_Enum,
5368
5369 /// The "typename" keyword precedes the qualified type name, e.g.,
5370 /// \c typename T::type.
5371 ETK_Typename,
5372
5373 /// No keyword precedes the qualified type name.
5374 ETK_None
5375};
5376
5377/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5378/// The keyword in stored in the free bits of the base class.
5379/// Also provides a few static helpers for converting and printing
5380/// elaborated type keyword and tag type kind enumerations.
5381class TypeWithKeyword : public Type {
5382protected:
5383 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5384 QualType Canonical, TypeDependence Dependence)
5385 : Type(tc, Canonical, Dependence) {
5386 TypeWithKeywordBits.Keyword = Keyword;
5387 }
5388
5389public:
5390 ElaboratedTypeKeyword getKeyword() const {
5391 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5392 }
5393
5394 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5395 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5396
5397 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5398 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5399 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5400
5401 /// Converts a TagTypeKind into an elaborated type keyword.
5402 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5403
5404 /// Converts an elaborated type keyword into a TagTypeKind.
5405 /// It is an error to provide an elaborated type keyword
5406 /// which *isn't* a tag kind here.
5407 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5408
5409 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5410
5411 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5412
5413 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5414 return getKeywordName(getKeywordForTagTypeKind(Kind));
5415 }
5416
5417 class CannotCastToThisType {};
5418 static CannotCastToThisType classof(const Type *);
5419};
5420
5421/// Represents a type that was referred to using an elaborated type
5422/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5423/// or both.
5424///
5425/// This type is used to keep track of a type name as written in the
5426/// source code, including tag keywords and any nested-name-specifiers.
5427/// The type itself is always "sugar", used to express what was written
5428/// in the source code but containing no additional semantic information.
5429class ElaboratedType final
5430 : public TypeWithKeyword,
5431 public llvm::FoldingSetNode,
5432 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5433 friend class ASTContext; // ASTContext creates these
5434 friend TrailingObjects;
5435
5436 /// The nested name specifier containing the qualifier.
5437 NestedNameSpecifier *NNS;
5438
5439 /// The type that this qualified name refers to.
5440 QualType NamedType;
5441
5442 /// The (re)declaration of this tag type owned by this occurrence is stored
5443 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5444 /// it, or obtain a null pointer if there is none.
5445
5446 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5447 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5448 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5449 // Any semantic dependence on the qualifier will have
5450 // been incorporated into NamedType. We still need to
5451 // track syntactic (instantiation / error / pack)
5452 // dependence on the qualifier.
5453 NamedType->getDependence() |
5454 (NNS ? toSyntacticDependence(
5455 toTypeDependence(NNS->getDependence()))
5456 : TypeDependence::None)),
5457 NNS(NNS), NamedType(NamedType) {
5458 ElaboratedTypeBits.HasOwnedTagDecl = false;
5459 if (OwnedTagDecl) {
5460 ElaboratedTypeBits.HasOwnedTagDecl = true;
5461 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5462 }
5463 assert(!(Keyword == ETK_None && NNS == nullptr) &&(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5465, __extension__ __PRETTY_FUNCTION__
))
5464 "ElaboratedType cannot have elaborated type keyword "(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5465, __extension__ __PRETTY_FUNCTION__
))
5465 "and name qualifier both null.")(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5465, __extension__ __PRETTY_FUNCTION__
))
;
5466 }
5467
5468public:
5469 /// Retrieve the qualification on this type.
5470 NestedNameSpecifier *getQualifier() const { return NNS; }
5471
5472 /// Retrieve the type named by the qualified-id.
5473 QualType getNamedType() const { return NamedType; }
5474
5475 /// Remove a single level of sugar.
5476 QualType desugar() const { return getNamedType(); }
5477
5478 /// Returns whether this type directly provides sugar.
5479 bool isSugared() const { return true; }
5480
5481 /// Return the (re)declaration of this type owned by this occurrence of this
5482 /// type, or nullptr if there is none.
5483 TagDecl *getOwnedTagDecl() const {
5484 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5485 : nullptr;
5486 }
5487
5488 void Profile(llvm::FoldingSetNodeID &ID) {
5489 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5490 }
5491
5492 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5493 NestedNameSpecifier *NNS, QualType NamedType,
5494 TagDecl *OwnedTagDecl) {
5495 ID.AddInteger(Keyword);
5496 ID.AddPointer(NNS);
5497 NamedType.Profile(ID);
5498 ID.AddPointer(OwnedTagDecl);
5499 }
5500
5501 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5502};
5503
5504/// Represents a qualified type name for which the type name is
5505/// dependent.
5506///
5507/// DependentNameType represents a class of dependent types that involve a
5508/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5509/// name of a type. The DependentNameType may start with a "typename" (for a
5510/// typename-specifier), "class", "struct", "union", or "enum" (for a
5511/// dependent elaborated-type-specifier), or nothing (in contexts where we
5512/// know that we must be referring to a type, e.g., in a base class specifier).
5513/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5514/// mode, this type is used with non-dependent names to delay name lookup until
5515/// instantiation.
5516class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5517 friend class ASTContext; // ASTContext creates these
5518
5519 /// The nested name specifier containing the qualifier.
5520 NestedNameSpecifier *NNS;
5521
5522 /// The type that this typename specifier refers to.
5523 const IdentifierInfo *Name;
5524
5525 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5526 const IdentifierInfo *Name, QualType CanonType)
5527 : TypeWithKeyword(Keyword, DependentName, CanonType,
5528 TypeDependence::DependentInstantiation |
5529 toTypeDependence(NNS->getDependence())),
5530 NNS(NNS), Name(Name) {}
5531
5532public:
5533 /// Retrieve the qualification on this type.
5534 NestedNameSpecifier *getQualifier() const { return NNS; }
5535
5536 /// Retrieve the type named by the typename specifier as an identifier.
5537 ///
5538 /// This routine will return a non-NULL identifier pointer when the
5539 /// form of the original typename was terminated by an identifier,
5540 /// e.g., "typename T::type".
5541 const IdentifierInfo *getIdentifier() const {
5542 return Name;
5543 }
5544
5545 bool isSugared() const { return false; }
5546 QualType desugar() const { return QualType(this, 0); }
5547
5548 void Profile(llvm::FoldingSetNodeID &ID) {
5549 Profile(ID, getKeyword(), NNS, Name);
5550 }
5551
5552 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5553 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5554 ID.AddInteger(Keyword);
5555 ID.AddPointer(NNS);
5556 ID.AddPointer(Name);
5557 }
5558
5559 static bool classof(const Type *T) {
5560 return T->getTypeClass() == DependentName;
5561 }
5562};
5563
5564/// Represents a template specialization type whose template cannot be
5565/// resolved, e.g.
5566/// A<T>::template B<T>
5567class alignas(8) DependentTemplateSpecializationType
5568 : public TypeWithKeyword,
5569 public llvm::FoldingSetNode {
5570 friend class ASTContext; // ASTContext creates these
5571
5572 /// The nested name specifier containing the qualifier.
5573 NestedNameSpecifier *NNS;
5574
5575 /// The identifier of the template.
5576 const IdentifierInfo *Name;
5577
5578 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5579 NestedNameSpecifier *NNS,
5580 const IdentifierInfo *Name,
5581 ArrayRef<TemplateArgument> Args,
5582 QualType Canon);
5583
5584 const TemplateArgument *getArgBuffer() const {
5585 return reinterpret_cast<const TemplateArgument*>(this+1);
5586 }
5587
5588 TemplateArgument *getArgBuffer() {
5589 return reinterpret_cast<TemplateArgument*>(this+1);
5590 }
5591
5592public:
5593 NestedNameSpecifier *getQualifier() const { return NNS; }
5594 const IdentifierInfo *getIdentifier() const { return Name; }
5595
5596 /// Retrieve the template arguments.
5597 const TemplateArgument *getArgs() const {
5598 return getArgBuffer();
5599 }
5600
5601 /// Retrieve the number of template arguments.
5602 unsigned getNumArgs() const {
5603 return DependentTemplateSpecializationTypeBits.NumArgs;
5604 }
5605
5606 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5607
5608 ArrayRef<TemplateArgument> template_arguments() const {
5609 return {getArgs(), getNumArgs()};
5610 }
5611
5612 using iterator = const TemplateArgument *;
5613
5614 iterator begin() const { return getArgs(); }
5615 iterator end() const; // inline in TemplateBase.h
5616
5617 bool isSugared() const { return false; }
5618 QualType desugar() const { return QualType(this, 0); }
5619
5620 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5621 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5622 }
5623
5624 static void Profile(llvm::FoldingSetNodeID &ID,
5625 const ASTContext &Context,
5626 ElaboratedTypeKeyword Keyword,
5627 NestedNameSpecifier *Qualifier,
5628 const IdentifierInfo *Name,
5629 ArrayRef<TemplateArgument> Args);
5630
5631 static bool classof(const Type *T) {
5632 return T->getTypeClass() == DependentTemplateSpecialization;
5633 }
5634};
5635
5636/// Represents a pack expansion of types.
5637///
5638/// Pack expansions are part of C++11 variadic templates. A pack
5639/// expansion contains a pattern, which itself contains one or more
5640/// "unexpanded" parameter packs. When instantiated, a pack expansion
5641/// produces a series of types, each instantiated from the pattern of
5642/// the expansion, where the Ith instantiation of the pattern uses the
5643/// Ith arguments bound to each of the unexpanded parameter packs. The
5644/// pack expansion is considered to "expand" these unexpanded
5645/// parameter packs.
5646///
5647/// \code
5648/// template<typename ...Types> struct tuple;
5649///
5650/// template<typename ...Types>
5651/// struct tuple_of_references {
5652/// typedef tuple<Types&...> type;
5653/// };
5654/// \endcode
5655///
5656/// Here, the pack expansion \c Types&... is represented via a
5657/// PackExpansionType whose pattern is Types&.
5658class PackExpansionType : public Type, public llvm::FoldingSetNode {
5659 friend class ASTContext; // ASTContext creates these
5660
5661 /// The pattern of the pack expansion.
5662 QualType Pattern;
5663
5664 PackExpansionType(QualType Pattern, QualType Canon,
5665 Optional<unsigned> NumExpansions)
5666 : Type(PackExpansion, Canon,
5667 (Pattern->getDependence() | TypeDependence::Dependent |
5668 TypeDependence::Instantiation) &
5669 ~TypeDependence::UnexpandedPack),
5670 Pattern(Pattern) {
5671 PackExpansionTypeBits.NumExpansions =
5672 NumExpansions ? *NumExpansions + 1 : 0;
5673 }
5674
5675public:
5676 /// Retrieve the pattern of this pack expansion, which is the
5677 /// type that will be repeatedly instantiated when instantiating the
5678 /// pack expansion itself.
5679 QualType getPattern() const { return Pattern; }
5680
5681 /// Retrieve the number of expansions that this pack expansion will
5682 /// generate, if known.
5683 Optional<unsigned> getNumExpansions() const {
5684 if (PackExpansionTypeBits.NumExpansions)
5685 return PackExpansionTypeBits.NumExpansions - 1;
5686 return None;
5687 }
5688
5689 bool isSugared() const { return false; }
5690 QualType desugar() const { return QualType(this, 0); }
5691
5692 void Profile(llvm::FoldingSetNodeID &ID) {
5693 Profile(ID, getPattern(), getNumExpansions());
5694 }
5695
5696 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5697 Optional<unsigned> NumExpansions) {
5698 ID.AddPointer(Pattern.getAsOpaquePtr());
5699 ID.AddBoolean(NumExpansions.hasValue());
5700 if (NumExpansions)
5701 ID.AddInteger(*NumExpansions);
5702 }
5703
5704 static bool classof(const Type *T) {
5705 return T->getTypeClass() == PackExpansion;
5706 }
5707};
5708
5709/// This class wraps the list of protocol qualifiers. For types that can
5710/// take ObjC protocol qualifers, they can subclass this class.
5711template <class T>
5712class ObjCProtocolQualifiers {
5713protected:
5714 ObjCProtocolQualifiers() = default;
5715
5716 ObjCProtocolDecl * const *getProtocolStorage() const {
5717 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5718 }
5719
5720 ObjCProtocolDecl **getProtocolStorage() {
5721 return static_cast<T*>(this)->getProtocolStorageImpl();
5722 }
5723
5724 void setNumProtocols(unsigned N) {
5725 static_cast<T*>(this)->setNumProtocolsImpl(N);
5726 }
5727
5728 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5729 setNumProtocols(protocols.size());
5730 assert(getNumProtocols() == protocols.size() &&(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "clang/include/clang/AST/Type.h", 5731, __extension__ __PRETTY_FUNCTION__
))
5731 "bitfield overflow in protocol count")(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "clang/include/clang/AST/Type.h", 5731, __extension__ __PRETTY_FUNCTION__
))
;
5732 if (!protocols.empty())
5733 memcpy(getProtocolStorage(), protocols.data(),
5734 protocols.size() * sizeof(ObjCProtocolDecl*));
5735 }
5736
5737public:
5738 using qual_iterator = ObjCProtocolDecl * const *;
5739 using qual_range = llvm::iterator_range<qual_iterator>;
5740
5741 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5742 qual_iterator qual_begin() const { return getProtocolStorage(); }
5743 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5744
5745 bool qual_empty() const { return getNumProtocols() == 0; }
5746
5747 /// Return the number of qualifying protocols in this type, or 0 if
5748 /// there are none.
5749 unsigned getNumProtocols() const {
5750 return static_cast<const T*>(this)->getNumProtocolsImpl();
5751 }
5752
5753 /// Fetch a protocol by index.
5754 ObjCProtocolDecl *getProtocol(unsigned I) const {
5755 assert(I < getNumProtocols() && "Out-of-range protocol access")(static_cast <bool> (I < getNumProtocols() &&
"Out-of-range protocol access") ? void (0) : __assert_fail (
"I < getNumProtocols() && \"Out-of-range protocol access\""
, "clang/include/clang/AST/Type.h", 5755, __extension__ __PRETTY_FUNCTION__
))
;
5756 return qual_begin()[I];
5757 }
5758
5759 /// Retrieve all of the protocol qualifiers.
5760 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5761 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5762 }
5763};
5764
5765/// Represents a type parameter type in Objective C. It can take
5766/// a list of protocols.
5767class ObjCTypeParamType : public Type,
5768 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5769 public llvm::FoldingSetNode {
5770 friend class ASTContext;
5771 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5772
5773 /// The number of protocols stored on this type.
5774 unsigned NumProtocols : 6;
5775
5776 ObjCTypeParamDecl *OTPDecl;
5777
5778 /// The protocols are stored after the ObjCTypeParamType node. In the
5779 /// canonical type, the list of protocols are sorted alphabetically
5780 /// and uniqued.
5781 ObjCProtocolDecl **getProtocolStorageImpl();
5782
5783 /// Return the number of qualifying protocols in this interface type,
5784 /// or 0 if there are none.
5785 unsigned getNumProtocolsImpl() const {
5786 return NumProtocols;
5787 }
5788
5789 void setNumProtocolsImpl(unsigned N) {
5790 NumProtocols = N;
5791 }
5792
5793 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5794 QualType can,
5795 ArrayRef<ObjCProtocolDecl *> protocols);
5796
5797public:
5798 bool isSugared() const { return true; }
5799 QualType desugar() const { return getCanonicalTypeInternal(); }
5800
5801 static bool classof(const Type *T) {
5802 return T->getTypeClass() == ObjCTypeParam;
5803 }
5804
5805 void Profile(llvm::FoldingSetNodeID &ID);
5806 static void Profile(llvm::FoldingSetNodeID &ID,
5807 const ObjCTypeParamDecl *OTPDecl,
5808 QualType CanonicalType,
5809 ArrayRef<ObjCProtocolDecl *> protocols);
5810
5811 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5812};
5813
5814/// Represents a class type in Objective C.
5815///
5816/// Every Objective C type is a combination of a base type, a set of
5817/// type arguments (optional, for parameterized classes) and a list of
5818/// protocols.
5819///
5820/// Given the following declarations:
5821/// \code
5822/// \@class C<T>;
5823/// \@protocol P;
5824/// \endcode
5825///
5826/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5827/// with base C and no protocols.
5828///
5829/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5830/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5831/// protocol list.
5832/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5833/// and protocol list [P].
5834///
5835/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5836/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5837/// and no protocols.
5838///
5839/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5840/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5841/// this should get its own sugar class to better represent the source.
5842class ObjCObjectType : public Type,
5843 public ObjCProtocolQualifiers<ObjCObjectType> {
5844 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5845
5846 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5847 // after the ObjCObjectPointerType node.
5848 // ObjCObjectType.NumProtocols - the number of protocols stored
5849 // after the type arguments of ObjCObjectPointerType node.
5850 //
5851 // These protocols are those written directly on the type. If
5852 // protocol qualifiers ever become additive, the iterators will need
5853 // to get kindof complicated.
5854 //
5855 // In the canonical object type, these are sorted alphabetically
5856 // and uniqued.
5857
5858 /// Either a BuiltinType or an InterfaceType or sugar for either.
5859 QualType BaseType;
5860
5861 /// Cached superclass type.
5862 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5863 CachedSuperClassType;
5864
5865 QualType *getTypeArgStorage();
5866 const QualType *getTypeArgStorage() const {
5867 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5868 }
5869
5870 ObjCProtocolDecl **getProtocolStorageImpl();
5871 /// Return the number of qualifying protocols in this interface type,
5872 /// or 0 if there are none.
5873 unsigned getNumProtocolsImpl() const {
5874 return ObjCObjectTypeBits.NumProtocols;
5875 }
5876 void setNumProtocolsImpl(unsigned N) {
5877 ObjCObjectTypeBits.NumProtocols = N;
5878 }
5879
5880protected:
5881 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5882
5883 ObjCObjectType(QualType Canonical, QualType Base,
5884 ArrayRef<QualType> typeArgs,
5885 ArrayRef<ObjCProtocolDecl *> protocols,
5886 bool isKindOf);
5887
5888 ObjCObjectType(enum Nonce_ObjCInterface)
5889 : Type(ObjCInterface, QualType(), TypeDependence::None),
5890 BaseType(QualType(this_(), 0)) {
5891 ObjCObjectTypeBits.NumProtocols = 0;
5892 ObjCObjectTypeBits.NumTypeArgs = 0;
5893 ObjCObjectTypeBits.IsKindOf = 0;
5894 }
5895
5896 void computeSuperClassTypeSlow() const;
5897
5898public:
5899 /// Gets the base type of this object type. This is always (possibly
5900 /// sugar for) one of:
5901 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5902 /// user, which is a typedef for an ObjCObjectPointerType)
5903 /// - the 'Class' builtin type (same caveat)
5904 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5905 QualType getBaseType() const { return BaseType; }
5906
5907 bool isObjCId() const {
5908 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5909 }
5910
5911 bool isObjCClass() const {
5912 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5913 }
5914
5915 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5916 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5917 bool isObjCUnqualifiedIdOrClass() const {
5918 if (!qual_empty()) return false;
5919 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5920 return T->getKind() == BuiltinType::ObjCId ||
5921 T->getKind() == BuiltinType::ObjCClass;
5922 return false;
5923 }
5924 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5925 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5926
5927 /// Gets the interface declaration for this object type, if the base type
5928 /// really is an interface.
5929 ObjCInterfaceDecl *getInterface() const;
5930
5931 /// Determine whether this object type is "specialized", meaning
5932 /// that it has type arguments.
5933 bool isSpecialized() const;
5934
5935 /// Determine whether this object type was written with type arguments.
5936 bool isSpecializedAsWritten() const {
5937 return ObjCObjectTypeBits.NumTypeArgs > 0;
5938 }
5939
5940 /// Determine whether this object type is "unspecialized", meaning
5941 /// that it has no type arguments.
5942 bool isUnspecialized() const { return !isSpecialized(); }
5943
5944 /// Determine whether this object type is "unspecialized" as
5945 /// written, meaning that it has no type arguments.
5946 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5947
5948 /// Retrieve the type arguments of this object type (semantically).
5949 ArrayRef<QualType> getTypeArgs() const;
5950
5951 /// Retrieve the type arguments of this object type as they were
5952 /// written.
5953 ArrayRef<QualType> getTypeArgsAsWritten() const {
5954 return llvm::makeArrayRef(getTypeArgStorage(),
5955 ObjCObjectTypeBits.NumTypeArgs);
5956 }
5957
5958 /// Whether this is a "__kindof" type as written.
5959 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5960
5961 /// Whether this ia a "__kindof" type (semantically).
5962 bool isKindOfType() const;
5963
5964 /// Retrieve the type of the superclass of this object type.
5965 ///
5966 /// This operation substitutes any type arguments into the
5967 /// superclass of the current class type, potentially producing a
5968 /// specialization of the superclass type. Produces a null type if
5969 /// there is no superclass.
5970 QualType getSuperClassType() const {
5971 if (!CachedSuperClassType.getInt())
5972 computeSuperClassTypeSlow();
5973
5974 assert(CachedSuperClassType.getInt() && "Superclass not set?")(static_cast <bool> (CachedSuperClassType.getInt() &&
"Superclass not set?") ? void (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "clang/include/clang/AST/Type.h", 5974, __extension__ __PRETTY_FUNCTION__
))
;
5975 return QualType(CachedSuperClassType.getPointer(), 0);
5976 }
5977
5978 /// Strip off the Objective-C "kindof" type and (with it) any
5979 /// protocol qualifiers.
5980 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5981
5982 bool isSugared() const { return false; }
5983 QualType desugar() const { return QualType(this, 0); }
5984
5985 static bool classof(const Type *T) {
5986 return T->getTypeClass() == ObjCObject ||
5987 T->getTypeClass() == ObjCInterface;
5988 }
5989};
5990
5991/// A class providing a concrete implementation
5992/// of ObjCObjectType, so as to not increase the footprint of
5993/// ObjCInterfaceType. Code outside of ASTContext and the core type
5994/// system should not reference this type.
5995class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5996 friend class ASTContext;
5997
5998 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5999 // will need to be modified.
6000
6001 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
6002 ArrayRef<QualType> typeArgs,
6003 ArrayRef<ObjCProtocolDecl *> protocols,
6004 bool isKindOf)
6005 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
6006
6007public:
6008 void Profile(llvm::FoldingSetNodeID &ID);
6009 static void Profile(llvm::FoldingSetNodeID &ID,
6010 QualType Base,
6011 ArrayRef<QualType> typeArgs,
6012 ArrayRef<ObjCProtocolDecl *> protocols,
6013 bool isKindOf);
6014};
6015
6016inline QualType *ObjCObjectType::getTypeArgStorage() {
6017 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
6018}
6019
6020inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
6021 return reinterpret_cast<ObjCProtocolDecl**>(
6022 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
6023}
6024
6025inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
6026 return reinterpret_cast<ObjCProtocolDecl**>(
6027 static_cast<ObjCTypeParamType*>(this)+1);
6028}
6029
6030/// Interfaces are the core concept in Objective-C for object oriented design.
6031/// They basically correspond to C++ classes. There are two kinds of interface
6032/// types: normal interfaces like `NSString`, and qualified interfaces, which
6033/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6034///
6035/// ObjCInterfaceType guarantees the following properties when considered
6036/// as a subtype of its superclass, ObjCObjectType:
6037/// - There are no protocol qualifiers. To reinforce this, code which
6038/// tries to invoke the protocol methods via an ObjCInterfaceType will
6039/// fail to compile.
6040/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6041/// T->getBaseType() == QualType(T, 0).
6042class ObjCInterfaceType : public ObjCObjectType {
6043 friend class ASTContext; // ASTContext creates these.
6044 friend class ASTReader;
6045 template <class T> friend class serialization::AbstractTypeReader;
6046
6047 ObjCInterfaceDecl *Decl;
6048
6049 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6050 : ObjCObjectType(Nonce_ObjCInterface),
6051 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6052
6053public:
6054 /// Get the declaration of this interface.
6055 ObjCInterfaceDecl *getDecl() const;
6056
6057 bool isSugared() const { return false; }
6058 QualType desugar() const { return QualType(this, 0); }
6059
6060 static bool classof(const Type *T) {
6061 return T->getTypeClass() == ObjCInterface;
6062 }
6063
6064 // Nonsense to "hide" certain members of ObjCObjectType within this
6065 // class. People asking for protocols on an ObjCInterfaceType are
6066 // not going to get what they want: ObjCInterfaceTypes are
6067 // guaranteed to have no protocols.
6068 enum {
6069 qual_iterator,
6070 qual_begin,
6071 qual_end,
6072 getNumProtocols,
6073 getProtocol
6074 };
6075};
6076
6077inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6078 QualType baseType = getBaseType();
6079 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6080 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6081 return T->getDecl();
6082
6083 baseType = ObjT->getBaseType();
6084 }
6085
6086 return nullptr;
6087}
6088
6089/// Represents a pointer to an Objective C object.
6090///
6091/// These are constructed from pointer declarators when the pointee type is
6092/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6093/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6094/// and 'Class<P>' are translated into these.
6095///
6096/// Pointers to pointers to Objective C objects are still PointerTypes;
6097/// only the first level of pointer gets it own type implementation.
6098class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6099 friend class ASTContext; // ASTContext creates these.
6100
6101 QualType PointeeType;
6102
6103 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6104 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6105 PointeeType(Pointee) {}
6106
6107public:
6108 /// Gets the type pointed to by this ObjC pointer.
6109 /// The result will always be an ObjCObjectType or sugar thereof.
6110 QualType getPointeeType() const { return PointeeType; }
6111
6112 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6113 ///
6114 /// This method is equivalent to getPointeeType() except that
6115 /// it discards any typedefs (or other sugar) between this
6116 /// type and the "outermost" object type. So for:
6117 /// \code
6118 /// \@class A; \@protocol P; \@protocol Q;
6119 /// typedef A<P> AP;
6120 /// typedef A A1;
6121 /// typedef A1<P> A1P;
6122 /// typedef A1P<Q> A1PQ;
6123 /// \endcode
6124 /// For 'A*', getObjectType() will return 'A'.
6125 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6126 /// For 'AP*', getObjectType() will return 'A<P>'.
6127 /// For 'A1*', getObjectType() will return 'A'.
6128 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6129 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6130 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6131 /// adding protocols to a protocol-qualified base discards the
6132 /// old qualifiers (for now). But if it didn't, getObjectType()
6133 /// would return 'A1P<Q>' (and we'd have to make iterating over
6134 /// qualifiers more complicated).
6135 const ObjCObjectType *getObjectType() const {
6136 return PointeeType->castAs<ObjCObjectType>();
6137 }
6138
6139 /// If this pointer points to an Objective C
6140 /// \@interface type, gets the type for that interface. Any protocol
6141 /// qualifiers on the interface are ignored.
6142 ///
6143 /// \return null if the base type for this pointer is 'id' or 'Class'
6144 const ObjCInterfaceType *getInterfaceType() const;
6145
6146 /// If this pointer points to an Objective \@interface
6147 /// type, gets the declaration for that interface.
6148 ///
6149 /// \return null if the base type for this pointer is 'id' or 'Class'
6150 ObjCInterfaceDecl *getInterfaceDecl() const {
6151 return getObjectType()->getInterface();
6152 }
6153
6154 /// True if this is equivalent to the 'id' type, i.e. if
6155 /// its object type is the primitive 'id' type with no protocols.
6156 bool isObjCIdType() const {
6157 return getObjectType()->isObjCUnqualifiedId();
6158 }
6159
6160 /// True if this is equivalent to the 'Class' type,
6161 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6162 bool isObjCClassType() const {
6163 return getObjectType()->isObjCUnqualifiedClass();
6164 }
6165
6166 /// True if this is equivalent to the 'id' or 'Class' type,
6167 bool isObjCIdOrClassType() const {
6168 return getObjectType()->isObjCUnqualifiedIdOrClass();
6169 }
6170
6171 /// True if this is equivalent to 'id<P>' for some non-empty set of
6172 /// protocols.
6173 bool isObjCQualifiedIdType() const {
6174 return getObjectType()->isObjCQualifiedId();
6175 }
6176
6177 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6178 /// protocols.
6179 bool isObjCQualifiedClassType() const {
6180 return getObjectType()->isObjCQualifiedClass();
6181 }
6182
6183 /// Whether this is a "__kindof" type.
6184 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6185
6186 /// Whether this type is specialized, meaning that it has type arguments.
6187 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6188
6189 /// Whether this type is specialized, meaning that it has type arguments.
6190 bool isSpecializedAsWritten() const {
6191 return getObjectType()->isSpecializedAsWritten();
6192 }
6193
6194 /// Whether this type is unspecialized, meaning that is has no type arguments.
6195 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6196
6197 /// Determine whether this object type is "unspecialized" as
6198 /// written, meaning that it has no type arguments.
6199 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6200
6201 /// Retrieve the type arguments for this type.
6202 ArrayRef<QualType> getTypeArgs() const {
6203 return getObjectType()->getTypeArgs();
6204 }
6205
6206 /// Retrieve the type arguments for this type.
6207 ArrayRef<QualType> getTypeArgsAsWritten() const {
6208 return getObjectType()->getTypeArgsAsWritten();
6209 }
6210
6211 /// An iterator over the qualifiers on the object type. Provided
6212 /// for convenience. This will always iterate over the full set of
6213 /// protocols on a type, not just those provided directly.
6214 using qual_iterator = ObjCObjectType::qual_iterator;
6215 using qual_range = llvm::iterator_range<qual_iterator>;
6216
6217 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6218
6219 qual_iterator qual_begin() const {
6220 return getObjectType()->qual_begin();
6221 }
6222
6223 qual_iterator qual_end() const {
6224 return getObjectType()->qual_end();
6225 }
6226
6227 bool qual_empty() const { return getObjectType()->qual_empty(); }
6228
6229 /// Return the number of qualifying protocols on the object type.
6230 unsigned getNumProtocols() const {
6231 return getObjectType()->getNumProtocols();
6232 }
6233
6234 /// Retrieve a qualifying protocol by index on the object type.
6235 ObjCProtocolDecl *getProtocol(unsigned I) const {
6236 return getObjectType()->getProtocol(I);
6237 }
6238
6239 bool isSugared() const { return false; }
6240 QualType desugar() const { return QualType(this, 0); }
6241
6242 /// Retrieve the type of the superclass of this object pointer type.
6243 ///
6244 /// This operation substitutes any type arguments into the
6245 /// superclass of the current class type, potentially producing a
6246 /// pointer to a specialization of the superclass type. Produces a
6247 /// null type if there is no superclass.
6248 QualType getSuperClassType() const;
6249
6250 /// Strip off the Objective-C "kindof" type and (with it) any
6251 /// protocol qualifiers.
6252 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6253 const ASTContext &ctx) const;
6254
6255 void Profile(llvm::FoldingSetNodeID &ID) {
6256 Profile(ID, getPointeeType());
6257 }
6258
6259 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6260 ID.AddPointer(T.getAsOpaquePtr());
6261 }
6262
6263 static bool classof(const Type *T) {
6264 return T->getTypeClass() == ObjCObjectPointer;
6265 }
6266};
6267
6268class AtomicType : public Type, public llvm::FoldingSetNode {
6269 friend class ASTContext; // ASTContext creates these.
6270
6271 QualType ValueType;
6272
6273 AtomicType(QualType ValTy, QualType Canonical)
6274 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6275
6276public:
6277 /// Gets the type contained by this atomic type, i.e.
6278 /// the type returned by performing an atomic load of this atomic type.
6279 QualType getValueType() const { return ValueType; }
6280
6281 bool isSugared() const { return false; }
6282 QualType desugar() const { return QualType(this, 0); }
6283
6284 void Profile(llvm::FoldingSetNodeID &ID) {
6285 Profile(ID, getValueType());
6286 }
6287
6288 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6289 ID.AddPointer(T.getAsOpaquePtr());
6290 }
6291
6292 static bool classof(const Type *T) {
6293 return T->getTypeClass() == Atomic;
6294 }
6295};
6296
6297/// PipeType - OpenCL20.
6298class PipeType : public Type, public llvm::FoldingSetNode {
6299 friend class ASTContext; // ASTContext creates these.
6300
6301 QualType ElementType;
6302 bool isRead;
6303
6304 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6305 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6306 ElementType(elemType), isRead(isRead) {}
6307
6308public:
6309 QualType getElementType() const { return ElementType; }
6310
6311 bool isSugared() const { return false; }
6312
6313 QualType desugar() const { return QualType(this, 0); }
6314
6315 void Profile(llvm::FoldingSetNodeID &ID) {
6316 Profile(ID, getElementType(), isReadOnly());
6317 }
6318
6319 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6320 ID.AddPointer(T.getAsOpaquePtr());
6321 ID.AddBoolean(isRead);
6322 }
6323
6324 static bool classof(const Type *T) {
6325 return T->getTypeClass() == Pipe;
6326 }
6327
6328 bool isReadOnly() const { return isRead; }
6329};
6330
6331/// A fixed int type of a specified bitwidth.
6332class BitIntType final : public Type, public llvm::FoldingSetNode {
6333 friend class ASTContext;
6334 unsigned IsUnsigned : 1;
6335 unsigned NumBits : 24;
6336
6337protected:
6338 BitIntType(bool isUnsigned, unsigned NumBits);
6339
6340public:
6341 bool isUnsigned() const { return IsUnsigned; }
6342 bool isSigned() const { return !IsUnsigned; }
6343 unsigned getNumBits() const { return NumBits; }
6344
6345 bool isSugared() const { return false; }
6346 QualType desugar() const { return QualType(this, 0); }
6347
6348 void Profile(llvm::FoldingSetNodeID &ID) {
6349 Profile(ID, isUnsigned(), getNumBits());
6350 }
6351
6352 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6353 unsigned NumBits) {
6354 ID.AddBoolean(IsUnsigned);
6355 ID.AddInteger(NumBits);
6356 }
6357
6358 static bool classof(const Type *T) { return T->getTypeClass() == BitInt; }
6359};
6360
6361class DependentBitIntType final : public Type, public llvm::FoldingSetNode {
6362 friend class ASTContext;
6363 const ASTContext &Context;
6364 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6365
6366protected:
6367 DependentBitIntType(const ASTContext &Context, bool IsUnsigned,
6368 Expr *NumBits);
6369
6370public:
6371 bool isUnsigned() const;
6372 bool isSigned() const { return !isUnsigned(); }
6373 Expr *getNumBitsExpr() const;
6374
6375 bool isSugared() const { return false; }
6376 QualType desugar() const { return QualType(this, 0); }
6377
6378 void Profile(llvm::FoldingSetNodeID &ID) {
6379 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6380 }
6381 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6382 bool IsUnsigned, Expr *NumBitsExpr);
6383
6384 static bool classof(const Type *T) {
6385 return T->getTypeClass() == DependentBitInt;
6386 }
6387};
6388
6389/// A qualifier set is used to build a set of qualifiers.
6390class QualifierCollector : public Qualifiers {
6391public:
6392 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6393
6394 /// Collect any qualifiers on the given type and return an
6395 /// unqualified type. The qualifiers are assumed to be consistent
6396 /// with those already in the type.
6397 const Type *strip(QualType type) {
6398 addFastQualifiers(type.getLocalFastQualifiers());
6399 if (!type.hasLocalNonFastQualifiers())
6400 return type.getTypePtrUnsafe();
6401
6402 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6403 addConsistentQualifiers(extQuals->getQualifiers());
6404 return extQuals->getBaseType();
6405 }
6406
6407 /// Apply the collected qualifiers to the given type.
6408 QualType apply(const ASTContext &Context, QualType QT) const;
6409
6410 /// Apply the collected qualifiers to the given type.
6411 QualType apply(const ASTContext &Context, const Type* T) const;
6412};
6413
6414/// A container of type source information.
6415///
6416/// A client can read the relevant info using TypeLoc wrappers, e.g:
6417/// @code
6418/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6419/// TL.getBeginLoc().print(OS, SrcMgr);
6420/// @endcode
6421class alignas(8) TypeSourceInfo {
6422 // Contains a memory block after the class, used for type source information,
6423 // allocated by ASTContext.
6424 friend class ASTContext;
6425
6426 QualType Ty;
6427
6428 TypeSourceInfo(QualType ty) : Ty(ty) {}
6429
6430public:
6431 /// Return the type wrapped by this type source info.
6432 QualType getType() const { return Ty; }
6433
6434 /// Return the TypeLoc wrapper for the type source info.
6435 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6436
6437 /// Override the type stored in this TypeSourceInfo. Use with caution!
6438 void overrideType(QualType T) { Ty = T; }
6439};
6440
6441// Inline function definitions.
6442
6443inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6444 SplitQualType desugar =
6445 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6446 desugar.Quals.addConsistentQualifiers(Quals);
6447 return desugar;
6448}
6449
6450inline const Type *QualType::getTypePtr() const {
6451 return getCommonPtr()->BaseType;
6452}
6453
6454inline const Type *QualType::getTypePtrOrNull() const {
6455 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6456}
6457
6458inline SplitQualType QualType::split() const {
6459 if (!hasLocalNonFastQualifiers())
6460 return SplitQualType(getTypePtrUnsafe(),
6461 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6462
6463 const ExtQuals *eq = getExtQualsUnsafe();
6464 Qualifiers qs = eq->getQualifiers();
6465 qs.addFastQualifiers(getLocalFastQualifiers());
6466 return SplitQualType(eq->getBaseType(), qs);
6467}
6468
6469inline Qualifiers QualType::getLocalQualifiers() const {
6470 Qualifiers Quals;
6471 if (hasLocalNonFastQualifiers())
6472 Quals = getExtQualsUnsafe()->getQualifiers();
6473 Quals.addFastQualifiers(getLocalFastQualifiers());
6474 return Quals;
6475}
6476
6477inline Qualifiers QualType::getQualifiers() const {
6478 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6479 quals.addFastQualifiers(getLocalFastQualifiers());
6480 return quals;
6481}
6482
6483inline unsigned QualType::getCVRQualifiers() const {
6484 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6485 cvr |= getLocalCVRQualifiers();
6486 return cvr;
6487}
6488
6489inline QualType QualType::getCanonicalType() const {
6490 QualType canon = getCommonPtr()->CanonicalType;
6491 return canon.withFastQualifiers(getLocalFastQualifiers());
6492}
6493
6494inline bool QualType::isCanonical() const {
6495 return getTypePtr()->isCanonicalUnqualified();
6496}
6497
6498inline bool QualType::isCanonicalAsParam() const {
6499 if (!isCanonical()) return false;
6500 if (hasLocalQualifiers()) return false;
6501
6502 const Type *T = getTypePtr();
6503 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6504 return false;
6505
6506 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6507}
6508
6509inline bool QualType::isConstQualified() const {
6510 return isLocalConstQualified() ||
6511 getCommonPtr()->CanonicalType.isLocalConstQualified();
6512}
6513
6514inline bool QualType::isRestrictQualified() const {
6515 return isLocalRestrictQualified() ||
6516 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6517}
6518
6519
6520inline bool QualType::isVolatileQualified() const {
6521 return isLocalVolatileQualified() ||
6522 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6523}
6524
6525inline bool QualType::hasQualifiers() const {
6526 return hasLocalQualifiers() ||
6527 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6528}
6529
6530inline QualType QualType::getUnqualifiedType() const {
6531 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6532 return QualType(getTypePtr(), 0);
6533
6534 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6535}
6536
6537inline SplitQualType QualType::getSplitUnqualifiedType() const {
6538 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6539 return split();
6540
6541 return getSplitUnqualifiedTypeImpl(*this);
6542}
6543
6544inline void QualType::removeLocalConst() {
6545 removeLocalFastQualifiers(Qualifiers::Const);
6546}
6547
6548inline void QualType::removeLocalRestrict() {
6549 removeLocalFastQualifiers(Qualifiers::Restrict);
6550}
6551
6552inline void QualType::removeLocalVolatile() {
6553 removeLocalFastQualifiers(Qualifiers::Volatile);
6554}
6555
6556inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6557 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")(static_cast <bool> (!(Mask & ~Qualifiers::CVRMask)
&& "mask has non-CVR bits") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "clang/include/clang/AST/Type.h", 6557, __extension__ __PRETTY_FUNCTION__
))
;
6558 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6559 "Fast bits differ from CVR bits!");
6560
6561 // Fast path: we don't need to touch the slow qualifiers.
6562 removeLocalFastQualifiers(Mask);
6563}
6564
6565/// Check if this type has any address space qualifier.
6566inline bool QualType::hasAddressSpace() const {
6567 return getQualifiers().hasAddressSpace();
6568}
6569
6570/// Return the address space of this type.
6571inline LangAS QualType::getAddressSpace() const {
6572 return getQualifiers().getAddressSpace();
6573}
6574
6575/// Return the gc attribute of this type.
6576inline Qualifiers::GC QualType::getObjCGCAttr() const {
6577 return getQualifiers().getObjCGCAttr();
6578}
6579
6580inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6581 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6582 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6583 return false;
6584}
6585
6586inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6587 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6588 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6589 return false;
6590}
6591
6592inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6593 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6594 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6595 return false;
6596}
6597
6598inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6599 if (const auto *PT = t.getAs<PointerType>()) {
6600 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6601 return FT->getExtInfo();
6602 } else if (const auto *FT = t.getAs<FunctionType>())
6603 return FT->getExtInfo();
6604
6605 return FunctionType::ExtInfo();
6606}
6607
6608inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6609 return getFunctionExtInfo(*t);
6610}
6611
6612/// Determine whether this type is more
6613/// qualified than the Other type. For example, "const volatile int"
6614/// is more qualified than "const int", "volatile int", and
6615/// "int". However, it is not more qualified than "const volatile
6616/// int".
6617inline bool QualType::isMoreQualifiedThan(QualType other) const {
6618 Qualifiers MyQuals = getQualifiers();
6619 Qualifiers OtherQuals = other.getQualifiers();
6620 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6621}
6622
6623/// Determine whether this type is at last
6624/// as qualified as the Other type. For example, "const volatile
6625/// int" is at least as qualified as "const int", "volatile int",
6626/// "int", and "const volatile int".
6627inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6628 Qualifiers OtherQuals = other.getQualifiers();
6629
6630 // Ignore __unaligned qualifier if this type is a void.
6631 if (getUnqualifiedType()->isVoidType())
6632 OtherQuals.removeUnaligned();
6633
6634 return getQualifiers().compatiblyIncludes(OtherQuals);
6635}
6636
6637/// If Type is a reference type (e.g., const
6638/// int&), returns the type that the reference refers to ("const
6639/// int"). Otherwise, returns the type itself. This routine is used
6640/// throughout Sema to implement C++ 5p6:
6641///
6642/// If an expression initially has the type "reference to T" (8.3.2,
6643/// 8.5.3), the type is adjusted to "T" prior to any further
6644/// analysis, the expression designates the object or function
6645/// denoted by the reference, and the expression is an lvalue.
6646inline QualType QualType::getNonReferenceType() const {
6647 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6648 return RefType->getPointeeType();
6649 else
6650 return *this;
6651}
6652
6653inline bool QualType::isCForbiddenLValueType() const {
6654 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6655 getTypePtr()->isFunctionType());
6656}
6657
6658/// Tests whether the type is categorized as a fundamental type.
6659///
6660/// \returns True for types specified in C++0x [basic.fundamental].
6661inline bool Type::isFundamentalType() const {
6662 return isVoidType() ||
6663 isNullPtrType() ||
6664 // FIXME: It's really annoying that we don't have an
6665 // 'isArithmeticType()' which agrees with the standard definition.
6666 (isArithmeticType() && !isEnumeralType());
6667}
6668
6669/// Tests whether the type is categorized as a compound type.
6670///
6671/// \returns True for types specified in C++0x [basic.compound].
6672inline bool Type::isCompoundType() const {
6673 // C++0x [basic.compound]p1:
6674 // Compound types can be constructed in the following ways:
6675 // -- arrays of objects of a given type [...];
6676 return isArrayType() ||
6677 // -- functions, which have parameters of given types [...];
6678 isFunctionType() ||
6679 // -- pointers to void or objects or functions [...];
6680 isPointerType() ||
6681 // -- references to objects or functions of a given type. [...]
6682 isReferenceType() ||
6683 // -- classes containing a sequence of objects of various types, [...];
6684 isRecordType() ||
6685 // -- unions, which are classes capable of containing objects of different
6686 // types at different times;
6687 isUnionType() ||
6688 // -- enumerations, which comprise a set of named constant values. [...];
6689 isEnumeralType() ||
6690 // -- pointers to non-static class members, [...].
6691 isMemberPointerType();
6692}
6693
6694inline bool Type::isFunctionType() const {
6695 return isa<FunctionType>(CanonicalType);
6696}
6697
6698inline bool Type::isPointerType() const {
6699 return isa<PointerType>(CanonicalType);
6700}
6701
6702inline bool Type::isAnyPointerType() const {
6703 return isPointerType() || isObjCObjectPointerType();
6704}
6705
6706inline bool Type::isBlockPointerType() const {
6707 return isa<BlockPointerType>(CanonicalType);
6708}
6709
6710inline bool Type::isReferenceType() const {
6711 return isa<ReferenceType>(CanonicalType);
6712}
6713
6714inline bool Type::isLValueReferenceType() const {
6715 return isa<LValueReferenceType>(CanonicalType);
6716}
6717
6718inline bool Type::isRValueReferenceType() const {
6719 return isa<RValueReferenceType>(CanonicalType);
6720}
6721
6722inline bool Type::isObjectPointerType() const {
6723 // Note: an "object pointer type" is not the same thing as a pointer to an
6724 // object type; rather, it is a pointer to an object type or a pointer to cv
6725 // void.
6726 if (const auto *T = getAs<PointerType>())
6727 return !T->getPointeeType()->isFunctionType();
6728 else
6729 return false;
6730}
6731
6732inline bool Type::isFunctionPointerType() const {
6733 if (const auto *T = getAs<PointerType>())
6734 return T->getPointeeType()->isFunctionType();
6735 else
6736 return false;
6737}
6738
6739inline bool Type::isFunctionReferenceType() const {
6740 if (const auto *T = getAs<ReferenceType>())
6741 return T->getPointeeType()->isFunctionType();
6742 else
6743 return false;
6744}
6745
6746inline bool Type::isMemberPointerType() const {
6747 return isa<MemberPointerType>(CanonicalType);
6748}
6749
6750inline bool Type::isMemberFunctionPointerType() const {
6751 if (const auto *T = getAs<MemberPointerType>())
6752 return T->isMemberFunctionPointer();
6753 else
6754 return false;
6755}
6756
6757inline bool Type::isMemberDataPointerType() const {
6758 if (const auto *T = getAs<MemberPointerType>())
6759 return T->isMemberDataPointer();
6760 else
6761 return false;
6762}
6763
6764inline bool Type::isArrayType() const {
6765 return isa<ArrayType>(CanonicalType);
6766}
6767
6768inline bool Type::isConstantArrayType() const {
6769 return isa<ConstantArrayType>(CanonicalType);
6770}
6771
6772inline bool Type::isIncompleteArrayType() const {
6773 return isa<IncompleteArrayType>(CanonicalType);
6774}
6775
6776inline bool Type::isVariableArrayType() const {
6777 return isa<VariableArrayType>(CanonicalType);
6778}
6779
6780inline bool Type::isDependentSizedArrayType() const {
6781 return isa<DependentSizedArrayType>(CanonicalType);
6782}
6783
6784inline bool Type::isBuiltinType() const {
6785 return isa<BuiltinType>(CanonicalType);
6786}
6787
6788inline bool Type::isRecordType() const {
6789 return isa<RecordType>(CanonicalType);
6790}
6791
6792inline bool Type::isEnumeralType() const {
6793 return isa<EnumType>(CanonicalType);
6794}
6795
6796inline bool Type::isAnyComplexType() const {
6797 return isa<ComplexType>(CanonicalType);
6798}
6799
6800inline bool Type::isVectorType() const {
6801 return isa<VectorType>(CanonicalType);
6802}
6803
6804inline bool Type::isExtVectorType() const {
6805 return isa<ExtVectorType>(CanonicalType);
6806}
6807
6808inline bool Type::isMatrixType() const {
6809 return isa<MatrixType>(CanonicalType);
6810}
6811
6812inline bool Type::isConstantMatrixType() const {
6813 return isa<ConstantMatrixType>(CanonicalType);
6814}
6815
6816inline bool Type::isDependentAddressSpaceType() const {
6817 return isa<DependentAddressSpaceType>(CanonicalType);
6818}
6819
6820inline bool Type::isObjCObjectPointerType() const {
6821 return isa<ObjCObjectPointerType>(CanonicalType);
6822}
6823
6824inline bool Type::isObjCObjectType() const {
6825 return isa<ObjCObjectType>(CanonicalType);
6826}
6827
6828inline bool Type::isObjCObjectOrInterfaceType() const {
6829 return isa<ObjCInterfaceType>(CanonicalType) ||
6830 isa<ObjCObjectType>(CanonicalType);
6831}
6832
6833inline bool Type::isAtomicType() const {
6834 return isa<AtomicType>(CanonicalType);
6835}
6836
6837inline bool Type::isUndeducedAutoType() const {
6838 return isa<AutoType>(CanonicalType);
6839}
6840
6841inline bool Type::isObjCQualifiedIdType() const {
6842 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6843 return OPT->isObjCQualifiedIdType();
6844 return false;
6845}
6846
6847inline bool Type::isObjCQualifiedClassType() const {
6848 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6849 return OPT->isObjCQualifiedClassType();
6850 return false;
6851}
6852
6853inline bool Type::isObjCIdType() const {
6854 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6855 return OPT->isObjCIdType();
6856 return false;
6857}
6858
6859inline bool Type::isObjCClassType() const {
6860 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6861 return OPT->isObjCClassType();
6862 return false;
6863}
6864
6865inline bool Type::isObjCSelType() const {
6866 if (const auto *OPT = getAs<PointerType>())
6867 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6868 return false;
6869}
6870
6871inline bool Type::isObjCBuiltinType() const {
6872 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6873}
6874
6875inline bool Type::isDecltypeType() const {
6876 return isa<DecltypeType>(this);
6877}
6878
6879#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6880 inline bool Type::is##Id##Type() const { \
6881 return isSpecificBuiltinType(BuiltinType::Id); \
6882 }
6883#include "clang/Basic/OpenCLImageTypes.def"
6884
6885inline bool Type::isSamplerT() const {
6886 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6887}
6888
6889inline bool Type::isEventT() const {
6890 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6891}
6892
6893inline bool Type::isClkEventT() const {
6894 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6895}
6896
6897inline bool Type::isQueueT() const {
6898 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6899}
6900
6901inline bool Type::isReserveIDT() const {
6902 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6903}
6904
6905inline bool Type::isImageType() const {
6906#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6907 return
6908#include "clang/Basic/OpenCLImageTypes.def"
6909 false; // end boolean or operation
6910}
6911
6912inline bool Type::isPipeType() const {
6913 return isa<PipeType>(CanonicalType);
6914}
6915
6916inline bool Type::isBitIntType() const {
6917 return isa<BitIntType>(CanonicalType);
6918}
6919
6920#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6921 inline bool Type::is##Id##Type() const { \
6922 return isSpecificBuiltinType(BuiltinType::Id); \
6923 }
6924#include "clang/Basic/OpenCLExtensionTypes.def"
6925
6926inline bool Type::isOCLIntelSubgroupAVCType() const {
6927#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6928 isOCLIntelSubgroupAVC##Id##Type() ||
6929 return
6930#include "clang/Basic/OpenCLExtensionTypes.def"
6931 false; // end of boolean or operation
6932}
6933
6934inline bool Type::isOCLExtOpaqueType() const {
6935#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6936 return
6937#include "clang/Basic/OpenCLExtensionTypes.def"
6938 false; // end of boolean or operation
6939}
6940
6941inline bool Type::isOpenCLSpecificType() const {
6942 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6943 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6944}
6945
6946inline bool Type::isTemplateTypeParmType() const {
6947 return isa<TemplateTypeParmType>(CanonicalType);
6948}
6949
6950inline bool Type::isSpecificBuiltinType(unsigned K) const {
6951 if (const BuiltinType *BT = getAs<BuiltinType>()) {
6952 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
6953 }
6954 return false;
6955}
6956
6957inline bool Type::isPlaceholderType() const {
6958 if (const auto *BT = dyn_cast<BuiltinType>(this))
6959 return BT->isPlaceholderType();
6960 return false;
6961}
6962
6963inline const BuiltinType *Type::getAsPlaceholderType() const {
6964 if (const auto *BT = dyn_cast<BuiltinType>(this))
6965 if (BT->isPlaceholderType())
6966 return BT;
6967 return nullptr;
6968}
6969
6970inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6971 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))(static_cast <bool> (BuiltinType::isPlaceholderTypeKind
((BuiltinType::Kind) K)) ? void (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "clang/include/clang/AST/Type.h", 6971, __extension__ __PRETTY_FUNCTION__
))
;
6972 return isSpecificBuiltinType(K);
6973}
6974
6975inline bool Type::isNonOverloadPlaceholderType() const {
6976 if (const auto *BT = dyn_cast<BuiltinType>(this))
6977 return BT->isNonOverloadPlaceholderType();
6978 return false;
6979}
6980
6981inline bool Type::isVoidType() const {
6982 return isSpecificBuiltinType(BuiltinType::Void);
6983}
6984
6985inline bool Type::isHalfType() const {
6986 // FIXME: Should we allow complex __fp16? Probably not.
6987 return isSpecificBuiltinType(BuiltinType::Half);
6988}
6989
6990inline bool Type::isFloat16Type() const {
6991 return isSpecificBuiltinType(BuiltinType::Float16);
6992}
6993
6994inline bool Type::isBFloat16Type() const {
6995 return isSpecificBuiltinType(BuiltinType::BFloat16);
6996}
6997
6998inline bool Type::isFloat128Type() const {
6999 return isSpecificBuiltinType(BuiltinType::Float128);
7000}
7001
7002inline bool Type::isIbm128Type() const {
7003 return isSpecificBuiltinType(BuiltinType::Ibm128);
7004}
7005
7006inline bool Type::isNullPtrType() const {
7007 return isSpecificBuiltinType(BuiltinType::NullPtr);
7008}
7009
7010bool IsEnumDeclComplete(EnumDecl *);
7011bool IsEnumDeclScoped(EnumDecl *);
7012
7013inline bool Type::isIntegerType() const {
7014 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7015 return BT->getKind() >= BuiltinType::Bool &&
7016 BT->getKind() <= BuiltinType::Int128;
7017 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
7018 // Incomplete enum types are not treated as integer types.
7019 // FIXME: In C++, enum types are never integer types.
7020 return IsEnumDeclComplete(ET->getDecl()) &&
7021 !IsEnumDeclScoped(ET->getDecl());
7022 }
7023 return isBitIntType();
7024}
7025
7026inline bool Type::isFixedPointType() const {
7027 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7028 return BT->getKind() >= BuiltinType::ShortAccum &&
7029 BT->getKind() <= BuiltinType::SatULongFract;
7030 }
7031 return false;
7032}
7033
7034inline bool Type::isFixedPointOrIntegerType() const {
7035 return isFixedPointType() || isIntegerType();
7036}
7037
7038inline bool Type::isSaturatedFixedPointType() const {
7039 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7040 return BT->getKind() >= BuiltinType::SatShortAccum &&
7041 BT->getKind() <= BuiltinType::SatULongFract;
7042 }
7043 return false;
7044}
7045
7046inline bool Type::isUnsaturatedFixedPointType() const {
7047 return isFixedPointType() && !isSaturatedFixedPointType();
7048}
7049
7050inline bool Type::isSignedFixedPointType() const {
7051 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7052 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7053 BT->getKind() <= BuiltinType::LongAccum) ||
7054 (BT->getKind() >= BuiltinType::ShortFract &&
7055 BT->getKind() <= BuiltinType::LongFract) ||
7056 (BT->getKind() >= BuiltinType::SatShortAccum &&
7057 BT->getKind() <= BuiltinType::SatLongAccum) ||
7058 (BT->getKind() >= BuiltinType::SatShortFract &&
7059 BT->getKind() <= BuiltinType::SatLongFract));
7060 }
7061 return false;
7062}
7063
7064inline bool Type::isUnsignedFixedPointType() const {
7065 return isFixedPointType() && !isSignedFixedPointType();
7066}
7067
7068inline bool Type::isScalarType() const {
7069 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7070 return BT->getKind() > BuiltinType::Void &&
7071 BT->getKind() <= BuiltinType::NullPtr;
7072 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7073 // Enums are scalar types, but only if they are defined. Incomplete enums
7074 // are not treated as scalar types.
7075 return IsEnumDeclComplete(ET->getDecl());
7076 return isa<PointerType>(CanonicalType) ||
7077 isa<BlockPointerType>(CanonicalType) ||
7078 isa<MemberPointerType>(CanonicalType) ||
7079 isa<ComplexType>(CanonicalType) ||
7080 isa<ObjCObjectPointerType>(CanonicalType) ||
7081 isBitIntType();
7082}
7083
7084inline bool Type::isIntegralOrEnumerationType() const {
7085 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7086 return BT->getKind() >= BuiltinType::Bool &&
7087 BT->getKind() <= BuiltinType::Int128;
7088
7089 // Check for a complete enum type; incomplete enum types are not properly an
7090 // enumeration type in the sense required here.
7091 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
7092 return IsEnumDeclComplete(ET->getDecl());
7093
7094 return isBitIntType();
7095}
7096
7097inline bool Type::isBooleanType() const {
7098 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7099 return BT->getKind() == BuiltinType::Bool;
7100 return false;
7101}
7102
7103inline bool Type::isUndeducedType() const {
7104 auto *DT = getContainedDeducedType();
7105 return DT && !DT->isDeduced();
7106}
7107
7108/// Determines whether this is a type for which one can define
7109/// an overloaded operator.
7110inline bool Type::isOverloadableType() const {
7111 return isDependentType() || isRecordType() || isEnumeralType();
7112}
7113
7114/// Determines whether this type is written as a typedef-name.
7115inline bool Type::isTypedefNameType() const {
7116 if (getAs<TypedefType>())
7117 return true;
7118 if (auto *TST = getAs<TemplateSpecializationType>())
7119 return TST->isTypeAlias();
7120 return false;
7121}
7122
7123/// Determines whether this type can decay to a pointer type.
7124inline bool Type::canDecayToPointerType() const {
7125 return isFunctionType() || isArrayType();
7126}
7127
7128inline bool Type::hasPointerRepresentation() const {
7129 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7130 isObjCObjectPointerType() || isNullPtrType());
7131}
7132
7133inline bool Type::hasObjCPointerRepresentation() const {
7134 return isObjCObjectPointerType();
7135}
7136
7137inline const Type *Type::getBaseElementTypeUnsafe() const {
7138 const Type *type = this;
7139 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7140 type = arrayType->getElementType().getTypePtr();
7141 return type;
7142}
7143
7144inline const Type *Type::getPointeeOrArrayElementType() const {
7145 const Type *type = this;
7146 if (type->isAnyPointerType())
7147 return type->getPointeeType().getTypePtr();
7148 else if (type->isArrayType())
7149 return type->getBaseElementTypeUnsafe();
7150 return type;
7151}
7152/// Insertion operator for partial diagnostics. This allows sending adress
7153/// spaces into a diagnostic with <<.
7154inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7155 LangAS AS) {
7156 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7157 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7158 return PD;
7159}
7160
7161/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7162/// into a diagnostic with <<.
7163inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7164 Qualifiers Q) {
7165 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7166 DiagnosticsEngine::ArgumentKind::ak_qual);
7167 return PD;
7168}
7169
7170/// Insertion operator for partial diagnostics. This allows sending QualType's
7171/// into a diagnostic with <<.
7172inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7173 QualType T) {
7174 PD.AddTaggedVal(reinterpret_cast<uint64_t>(T.getAsOpaquePtr()),
7175 DiagnosticsEngine::ak_qualtype);
7176 return PD;
7177}
7178
7179// Helper class template that is used by Type::getAs to ensure that one does
7180// not try to look through a qualified type to get to an array type.
7181template <typename T>
7182using TypeIsArrayType =
7183 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7184 std::is_base_of<ArrayType, T>::value>;
7185
7186// Member-template getAs<specific type>'.
7187template <typename T> const T *Type::getAs() const {
7188 static_assert(!TypeIsArrayType<T>::value,
7189 "ArrayType cannot be used with getAs!");
7190
7191 // If this is directly a T type, return it.
7192 if (const auto *Ty = dyn_cast<T>(this))
7193 return Ty;
7194
7195 // If the canonical form of this type isn't the right kind, reject it.
7196 if (!isa<T>(CanonicalType))
7197 return nullptr;
7198
7199 // If this is a typedef for the type, strip the typedef off without
7200 // losing all typedef information.
7201 return cast<T>(getUnqualifiedDesugaredType());
7202}
7203
7204template <typename T> const T *Type::getAsAdjusted() const {
7205 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7206
7207 // If this is directly a T type, return it.
7208 if (const auto *Ty = dyn_cast<T>(this))
7209 return Ty;
7210
7211 // If the canonical form of this type isn't the right kind, reject it.
7212 if (!isa<T>(CanonicalType))
7213 return nullptr;
7214
7215 // Strip off type adjustments that do not modify the underlying nature of the
7216 // type.
7217 const Type *Ty = this;
7218 while (Ty) {
7219 if (const auto *A = dyn_cast<AttributedType>(Ty))
7220 Ty = A->getModifiedType().getTypePtr();
7221 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7222 Ty = E->desugar().getTypePtr();
7223 else if (const auto *P = dyn_cast<ParenType>(Ty))
7224 Ty = P->desugar().getTypePtr();
7225 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7226 Ty = A->desugar().getTypePtr();
7227 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7228 Ty = M->desugar().getTypePtr();
7229 else
7230 break;
7231 }
7232
7233 // Just because the canonical type is correct does not mean we can use cast<>,
7234 // since we may not have stripped off all the sugar down to the base type.
7235 return dyn_cast<T>(Ty);
7236}
7237
7238inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7239 // If this is directly an array type, return it.
7240 if (const auto *arr = dyn_cast<ArrayType>(this))
7241 return arr;
7242
7243 // If the canonical form of this type isn't the right kind, reject it.
7244 if (!isa<ArrayType>(CanonicalType))
7245 return nullptr;
7246
7247 // If this is a typedef for the type, strip the typedef off without
7248 // losing all typedef information.
7249 return cast<ArrayType>(getUnqualifiedDesugaredType());
7250}
7251
7252template <typename T> const T *Type::castAs() const {
7253 static_assert(!TypeIsArrayType<T>::value,
7254 "ArrayType cannot be used with castAs!");
7255
7256 if (const auto *ty = dyn_cast<T>(this)) return ty;
7257 assert(isa<T>(CanonicalType))(static_cast <bool> (isa<T>(CanonicalType)) ? void
(0) : __assert_fail ("isa<T>(CanonicalType)", "clang/include/clang/AST/Type.h"
, 7257, __extension__ __PRETTY_FUNCTION__))
;
7258 return cast<T>(getUnqualifiedDesugaredType());
7259}
7260
7261inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7262 assert(isa<ArrayType>(CanonicalType))(static_cast <bool> (isa<ArrayType>(CanonicalType
)) ? void (0) : __assert_fail ("isa<ArrayType>(CanonicalType)"
, "clang/include/clang/AST/Type.h", 7262, __extension__ __PRETTY_FUNCTION__
))
;
7263 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7264 return cast<ArrayType>(getUnqualifiedDesugaredType());
7265}
7266
7267DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7268 QualType CanonicalPtr)
7269 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7270#ifndef NDEBUG
7271 QualType Adjusted = getAdjustedType();
7272 (void)AttributedType::stripOuterNullability(Adjusted);
7273 assert(isa<PointerType>(Adjusted))(static_cast <bool> (isa<PointerType>(Adjusted)) ?
void (0) : __assert_fail ("isa<PointerType>(Adjusted)"
, "clang/include/clang/AST/Type.h", 7273, __extension__ __PRETTY_FUNCTION__
))
;
7274#endif
7275}
7276
7277QualType DecayedType::getPointeeType() const {
7278 QualType Decayed = getDecayedType();
7279 (void)AttributedType::stripOuterNullability(Decayed);
7280 return cast<PointerType>(Decayed)->getPointeeType();
7281}
7282
7283// Get the decimal string representation of a fixed point type, represented
7284// as a scaled integer.
7285// TODO: At some point, we should change the arguments to instead just accept an
7286// APFixedPoint instead of APSInt and scale.
7287void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7288 unsigned Scale);
7289
7290} // namespace clang
7291
7292#endif // LLVM_CLANG_AST_TYPE_H

/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/include/llvm/ADT/PointerUnion.h

1//===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the PointerUnion class, which is a discriminated union of
10// pointer types.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_POINTERUNION_H
15#define LLVM_ADT_POINTERUNION_H
16
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/Support/PointerLikeTypeTraits.h"
21#include <algorithm>
22#include <cassert>
23#include <cstddef>
24#include <cstdint>
25
26namespace llvm {
27
28namespace pointer_union_detail {
29 /// Determine the number of bits required to store integers with values < n.
30 /// This is ceil(log2(n)).
31 constexpr int bitsRequired(unsigned n) {
32 return n > 1 ? 1 + bitsRequired((n + 1) / 2) : 0;
33 }
34
35 template <typename... Ts> constexpr int lowBitsAvailable() {
36 return std::min<int>({PointerLikeTypeTraits<Ts>::NumLowBitsAvailable...});
37 }
38
39 /// Find the first type in a list of types.
40 template <typename T, typename...> struct GetFirstType {
41 using type = T;
42 };
43
44 /// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
45 /// for the template arguments.
46 template <typename ...PTs> class PointerUnionUIntTraits {
47 public:
48 static inline void *getAsVoidPointer(void *P) { return P; }
49 static inline void *getFromVoidPointer(void *P) { return P; }
50 static constexpr int NumLowBitsAvailable = lowBitsAvailable<PTs...>();
51 };
52
53 template <typename Derived, typename ValTy, int I, typename ...Types>
54 class PointerUnionMembers;
55
56 template <typename Derived, typename ValTy, int I>
57 class PointerUnionMembers<Derived, ValTy, I> {
58 protected:
59 ValTy Val;
60 PointerUnionMembers() = default;
61 PointerUnionMembers(ValTy Val) : Val(Val) {}
62
63 friend struct PointerLikeTypeTraits<Derived>;
64 };
65
66 template <typename Derived, typename ValTy, int I, typename Type,
67 typename ...Types>
68 class PointerUnionMembers<Derived, ValTy, I, Type, Types...>
69 : public PointerUnionMembers<Derived, ValTy, I + 1, Types...> {
70 using Base = PointerUnionMembers<Derived, ValTy, I + 1, Types...>;
71 public:
72 using Base::Base;
73 PointerUnionMembers() = default;
74 PointerUnionMembers(Type V)
75 : Base(ValTy(const_cast<void *>(
76 PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
77 I)) {}
78
79 using Base::operator=;
80 Derived &operator=(Type V) {
81 this->Val = ValTy(
82 const_cast<void *>(PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
83 I);
84 return static_cast<Derived &>(*this);
85 };
86 };
87}
88
89/// A discriminated union of two or more pointer types, with the discriminator
90/// in the low bit of the pointer.
91///
92/// This implementation is extremely efficient in space due to leveraging the
93/// low bits of the pointer, while exposing a natural and type-safe API.
94///
95/// Common use patterns would be something like this:
96/// PointerUnion<int*, float*> P;
97/// P = (int*)0;
98/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
99/// X = P.get<int*>(); // ok.
100/// Y = P.get<float*>(); // runtime assertion failure.
101/// Z = P.get<double*>(); // compile time failure.
102/// P = (float*)0;
103/// Y = P.get<float*>(); // ok.
104/// X = P.get<int*>(); // runtime assertion failure.
105/// PointerUnion<int*, int*> Q; // compile time failure.
106template <typename... PTs>
107class PointerUnion
108 : public pointer_union_detail::PointerUnionMembers<
109 PointerUnion<PTs...>,
110 PointerIntPair<
111 void *, pointer_union_detail::bitsRequired(sizeof...(PTs)), int,
112 pointer_union_detail::PointerUnionUIntTraits<PTs...>>,
113 0, PTs...> {
114 static_assert(TypesAreDistinct<PTs...>::value,
115 "PointerUnion alternative types cannot be repeated");
116 // The first type is special because we want to directly cast a pointer to a
117 // default-initialized union to a pointer to the first type. But we don't
118 // want PointerUnion to be a 'template <typename First, typename ...Rest>'
119 // because it's much more convenient to have a name for the whole pack. So
120 // split off the first type here.
121 using First = TypeAtIndex<0, PTs...>;
122 using Base = typename PointerUnion::PointerUnionMembers;
123
124public:
125 PointerUnion() = default;
126
127 PointerUnion(std::nullptr_t) : PointerUnion() {}
128 using Base::Base;
129
130 /// Test if the pointer held in the union is null, regardless of
131 /// which type it is.
132 bool isNull() const { return !this->Val.getPointer(); }
23
Assuming the condition is false
24
Returning zero, which participates in a condition later
133
134 explicit operator bool() const { return !isNull(); }
135
136 /// Test if the Union currently holds the type matching T.
137 template <typename T> bool is() const {
138 return this->Val.getInt() == FirstIndexOfType<T, PTs...>::value;
139 }
140
141 /// Returns the value of the specified pointer type.
142 ///
143 /// If the specified pointer type is incorrect, assert.
144 template <typename T> T get() const {
145 assert(is<T>() && "Invalid accessor called")(static_cast <bool> (is<T>() && "Invalid accessor called"
) ? void (0) : __assert_fail ("is<T>() && \"Invalid accessor called\""
, "llvm/include/llvm/ADT/PointerUnion.h", 145, __extension__ __PRETTY_FUNCTION__
))
;
146 return PointerLikeTypeTraits<T>::getFromVoidPointer(this->Val.getPointer());
147 }
148
149 /// Returns the current pointer if it is of the specified pointer type,
150 /// otherwise returns null.
151 template <typename T> T dyn_cast() const {
152 if (is<T>())
153 return get<T>();
154 return T();
155 }
156
157 /// If the union is set to the first pointer type get an address pointing to
158 /// it.
159 First const *getAddrOfPtr1() const {
160 return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
161 }
162
163 /// If the union is set to the first pointer type get an address pointing to
164 /// it.
165 First *getAddrOfPtr1() {
166 assert(is<First>() && "Val is not the first pointer")(static_cast <bool> (is<First>() && "Val is not the first pointer"
) ? void (0) : __assert_fail ("is<First>() && \"Val is not the first pointer\""
, "llvm/include/llvm/ADT/PointerUnion.h", 166, __extension__ __PRETTY_FUNCTION__
))
;
167 assert((static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 170, __extension__ __PRETTY_FUNCTION__
))
168 PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) ==(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 170, __extension__ __PRETTY_FUNCTION__
))
169 this->Val.getPointer() &&(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 170, __extension__ __PRETTY_FUNCTION__
))
170 "Can't get the address because PointerLikeTypeTraits changes the ptr")(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 170, __extension__ __PRETTY_FUNCTION__
))
;
171 return const_cast<First *>(
172 reinterpret_cast<const First *>(this->Val.getAddrOfPointer()));
173 }
174
175 /// Assignment from nullptr which just clears the union.
176 const PointerUnion &operator=(std::nullptr_t) {
177 this->Val.initWithPointer(nullptr);
178 return *this;
179 }
180
181 /// Assignment from elements of the union.
182 using Base::operator=;
183
184 void *getOpaqueValue() const { return this->Val.getOpaqueValue(); }
185 static inline PointerUnion getFromOpaqueValue(void *VP) {
186 PointerUnion V;
187 V.Val = decltype(V.Val)::getFromOpaqueValue(VP);
188 return V;
189 }
190};
191
192template <typename ...PTs>
193bool operator==(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
194 return lhs.getOpaqueValue() == rhs.getOpaqueValue();
195}
196
197template <typename ...PTs>
198bool operator!=(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
199 return lhs.getOpaqueValue() != rhs.getOpaqueValue();
200}
201
202template <typename ...PTs>
203bool operator<(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
204 return lhs.getOpaqueValue() < rhs.getOpaqueValue();
205}
206
207// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
208// # low bits available = min(PT1bits,PT2bits)-1.
209template <typename ...PTs>
210struct PointerLikeTypeTraits<PointerUnion<PTs...>> {
211 static inline void *getAsVoidPointer(const PointerUnion<PTs...> &P) {
212 return P.getOpaqueValue();
213 }
214
215 static inline PointerUnion<PTs...> getFromVoidPointer(void *P) {
216 return PointerUnion<PTs...>::getFromOpaqueValue(P);
217 }
218
219 // The number of bits available are the min of the pointer types minus the
220 // bits needed for the discriminator.
221 static constexpr int NumLowBitsAvailable = PointerLikeTypeTraits<decltype(
222 PointerUnion<PTs...>::Val)>::NumLowBitsAvailable;
223};
224
225// Teach DenseMap how to use PointerUnions as keys.
226template <typename ...PTs> struct DenseMapInfo<PointerUnion<PTs...>> {
227 using Union = PointerUnion<PTs...>;
228 using FirstInfo =
229 DenseMapInfo<typename pointer_union_detail::GetFirstType<PTs...>::type>;
230
231 static inline Union getEmptyKey() { return Union(FirstInfo::getEmptyKey()); }
232
233 static inline Union getTombstoneKey() {
234 return Union(FirstInfo::getTombstoneKey());
235 }
236
237 static unsigned getHashValue(const Union &UnionVal) {
238 intptr_t key = (intptr_t)UnionVal.getOpaqueValue();
239 return DenseMapInfo<intptr_t>::getHashValue(key);
240 }
241
242 static bool isEqual(const Union &LHS, const Union &RHS) {
243 return LHS == RHS;
244 }
245};
246
247} // end namespace llvm
248
249#endif // LLVM_ADT_POINTERUNION_H