Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/CodeGen/PeepholeOptimizer.cpp
Warning:line 545, column 30
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name PeepholeOptimizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/CodeGen -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/CodeGen/PeepholeOptimizer.cpp
1//===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Perform peephole optimizations on the machine code:
10//
11// - Optimize Extensions
12//
13// Optimization of sign / zero extension instructions. It may be extended to
14// handle other instructions with similar properties.
15//
16// On some targets, some instructions, e.g. X86 sign / zero extension, may
17// leave the source value in the lower part of the result. This optimization
18// will replace some uses of the pre-extension value with uses of the
19// sub-register of the results.
20//
21// - Optimize Comparisons
22//
23// Optimization of comparison instructions. For instance, in this code:
24//
25// sub r1, 1
26// cmp r1, 0
27// bz L1
28//
29// If the "sub" instruction all ready sets (or could be modified to set) the
30// same flag that the "cmp" instruction sets and that "bz" uses, then we can
31// eliminate the "cmp" instruction.
32//
33// Another instance, in this code:
34//
35// sub r1, r3 | sub r1, imm
36// cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37// bge L1
38//
39// If the branch instruction can use flag from "sub", then we can replace
40// "sub" with "subs" and eliminate the "cmp" instruction.
41//
42// - Optimize Loads:
43//
44// Loads that can be folded into a later instruction. A load is foldable
45// if it loads to virtual registers and the virtual register defined has
46// a single use.
47//
48// - Optimize Copies and Bitcast (more generally, target specific copies):
49//
50// Rewrite copies and bitcasts to avoid cross register bank copies
51// when possible.
52// E.g., Consider the following example, where capital and lower
53// letters denote different register file:
54// b = copy A <-- cross-bank copy
55// C = copy b <-- cross-bank copy
56// =>
57// b = copy A <-- cross-bank copy
58// C = copy A <-- same-bank copy
59//
60// E.g., for bitcast:
61// b = bitcast A <-- cross-bank copy
62// C = bitcast b <-- cross-bank copy
63// =>
64// b = bitcast A <-- cross-bank copy
65// C = copy A <-- same-bank copy
66//===----------------------------------------------------------------------===//
67
68#include "llvm/ADT/DenseMap.h"
69#include "llvm/ADT/Optional.h"
70#include "llvm/ADT/SmallPtrSet.h"
71#include "llvm/ADT/SmallSet.h"
72#include "llvm/ADT/SmallVector.h"
73#include "llvm/ADT/Statistic.h"
74#include "llvm/CodeGen/MachineBasicBlock.h"
75#include "llvm/CodeGen/MachineDominators.h"
76#include "llvm/CodeGen/MachineFunction.h"
77#include "llvm/CodeGen/MachineFunctionPass.h"
78#include "llvm/CodeGen/MachineInstr.h"
79#include "llvm/CodeGen/MachineInstrBuilder.h"
80#include "llvm/CodeGen/MachineLoopInfo.h"
81#include "llvm/CodeGen/MachineOperand.h"
82#include "llvm/CodeGen/MachineRegisterInfo.h"
83#include "llvm/CodeGen/TargetInstrInfo.h"
84#include "llvm/CodeGen/TargetOpcodes.h"
85#include "llvm/CodeGen/TargetRegisterInfo.h"
86#include "llvm/CodeGen/TargetSubtargetInfo.h"
87#include "llvm/InitializePasses.h"
88#include "llvm/MC/LaneBitmask.h"
89#include "llvm/MC/MCInstrDesc.h"
90#include "llvm/Pass.h"
91#include "llvm/Support/CommandLine.h"
92#include "llvm/Support/Debug.h"
93#include "llvm/Support/raw_ostream.h"
94#include <cassert>
95#include <cstdint>
96#include <memory>
97#include <utility>
98
99using namespace llvm;
100using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
101using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
102
103#define DEBUG_TYPE"peephole-opt" "peephole-opt"
104
105// Optimize Extensions
106static cl::opt<bool>
107Aggressive("aggressive-ext-opt", cl::Hidden,
108 cl::desc("Aggressive extension optimization"));
109
110static cl::opt<bool>
111DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
112 cl::desc("Disable the peephole optimizer"));
113
114/// Specifiy whether or not the value tracking looks through
115/// complex instructions. When this is true, the value tracker
116/// bails on everything that is not a copy or a bitcast.
117static cl::opt<bool>
118DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
119 cl::desc("Disable advanced copy optimization"));
120
121static cl::opt<bool> DisableNAPhysCopyOpt(
122 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
123 cl::desc("Disable non-allocatable physical register copy optimization"));
124
125// Limit the number of PHI instructions to process
126// in PeepholeOptimizer::getNextSource.
127static cl::opt<unsigned> RewritePHILimit(
128 "rewrite-phi-limit", cl::Hidden, cl::init(10),
129 cl::desc("Limit the length of PHI chains to lookup"));
130
131// Limit the length of recurrence chain when evaluating the benefit of
132// commuting operands.
133static cl::opt<unsigned> MaxRecurrenceChain(
134 "recurrence-chain-limit", cl::Hidden, cl::init(3),
135 cl::desc("Maximum length of recurrence chain when evaluating the benefit "
136 "of commuting operands"));
137
138
139STATISTIC(NumReuse, "Number of extension results reused")static llvm::Statistic NumReuse = {"peephole-opt", "NumReuse"
, "Number of extension results reused"}
;
140STATISTIC(NumCmps, "Number of compares eliminated")static llvm::Statistic NumCmps = {"peephole-opt", "NumCmps", "Number of compares eliminated"
}
;
141STATISTIC(NumImmFold, "Number of move immediate folded")static llvm::Statistic NumImmFold = {"peephole-opt", "NumImmFold"
, "Number of move immediate folded"}
;
142STATISTIC(NumLoadFold, "Number of loads folded")static llvm::Statistic NumLoadFold = {"peephole-opt", "NumLoadFold"
, "Number of loads folded"}
;
143STATISTIC(NumSelects, "Number of selects optimized")static llvm::Statistic NumSelects = {"peephole-opt", "NumSelects"
, "Number of selects optimized"}
;
144STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized")static llvm::Statistic NumUncoalescableCopies = {"peephole-opt"
, "NumUncoalescableCopies", "Number of uncoalescable copies optimized"
}
;
145STATISTIC(NumRewrittenCopies, "Number of copies rewritten")static llvm::Statistic NumRewrittenCopies = {"peephole-opt", "NumRewrittenCopies"
, "Number of copies rewritten"}
;
146STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed")static llvm::Statistic NumNAPhysCopies = {"peephole-opt", "NumNAPhysCopies"
, "Number of non-allocatable physical copies removed"}
;
147
148namespace {
149
150 class ValueTrackerResult;
151 class RecurrenceInstr;
152
153 class PeepholeOptimizer : public MachineFunctionPass {
154 const TargetInstrInfo *TII;
155 const TargetRegisterInfo *TRI;
156 MachineRegisterInfo *MRI;
157 MachineDominatorTree *DT; // Machine dominator tree
158 MachineLoopInfo *MLI;
159
160 public:
161 static char ID; // Pass identification
162
163 PeepholeOptimizer() : MachineFunctionPass(ID) {
164 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
165 }
166
167 bool runOnMachineFunction(MachineFunction &MF) override;
168
169 void getAnalysisUsage(AnalysisUsage &AU) const override {
170 AU.setPreservesCFG();
171 MachineFunctionPass::getAnalysisUsage(AU);
172 AU.addRequired<MachineLoopInfo>();
173 AU.addPreserved<MachineLoopInfo>();
174 if (Aggressive) {
175 AU.addRequired<MachineDominatorTree>();
176 AU.addPreserved<MachineDominatorTree>();
177 }
178 }
179
180 MachineFunctionProperties getRequiredProperties() const override {
181 return MachineFunctionProperties()
182 .set(MachineFunctionProperties::Property::IsSSA);
183 }
184
185 /// Track Def -> Use info used for rewriting copies.
186 using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
187
188 /// Sequence of instructions that formulate recurrence cycle.
189 using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
190
191 private:
192 bool optimizeCmpInstr(MachineInstr &MI);
193 bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
194 SmallPtrSetImpl<MachineInstr*> &LocalMIs);
195 bool optimizeSelect(MachineInstr &MI,
196 SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197 bool optimizeCondBranch(MachineInstr &MI);
198 bool optimizeCoalescableCopy(MachineInstr &MI);
199 bool optimizeUncoalescableCopy(MachineInstr &MI,
200 SmallPtrSetImpl<MachineInstr *> &LocalMIs);
201 bool optimizeRecurrence(MachineInstr &PHI);
202 bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
203 bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
204 DenseMap<Register, MachineInstr *> &ImmDefMIs);
205 bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
206 DenseMap<Register, MachineInstr *> &ImmDefMIs);
207
208 /// Finds recurrence cycles, but only ones that formulated around
209 /// a def operand and a use operand that are tied. If there is a use
210 /// operand commutable with the tied use operand, find recurrence cycle
211 /// along that operand as well.
212 bool findTargetRecurrence(Register Reg,
213 const SmallSet<Register, 2> &TargetReg,
214 RecurrenceCycle &RC);
215
216 /// If copy instruction \p MI is a virtual register copy, track it in
217 /// the set \p CopyMIs. If this virtual register was previously seen as a
218 /// copy, replace the uses of this copy with the previously seen copy's
219 /// destination register.
220 bool foldRedundantCopy(MachineInstr &MI,
221 DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs);
222
223 /// Is the register \p Reg a non-allocatable physical register?
224 bool isNAPhysCopy(Register Reg);
225
226 /// If copy instruction \p MI is a non-allocatable virtual<->physical
227 /// register copy, track it in the \p NAPhysToVirtMIs map. If this
228 /// non-allocatable physical register was previously copied to a virtual
229 /// registered and hasn't been clobbered, the virt->phys copy can be
230 /// deleted.
231 bool foldRedundantNAPhysCopy(
232 MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs);
233
234 bool isLoadFoldable(MachineInstr &MI,
235 SmallSet<Register, 16> &FoldAsLoadDefCandidates);
236
237 /// Check whether \p MI is understood by the register coalescer
238 /// but may require some rewriting.
239 bool isCoalescableCopy(const MachineInstr &MI) {
240 // SubregToRegs are not interesting, because they are already register
241 // coalescer friendly.
242 return MI.isCopy() || (!DisableAdvCopyOpt &&
243 (MI.isRegSequence() || MI.isInsertSubreg() ||
244 MI.isExtractSubreg()));
245 }
246
247 /// Check whether \p MI is a copy like instruction that is
248 /// not recognized by the register coalescer.
249 bool isUncoalescableCopy(const MachineInstr &MI) {
250 return MI.isBitcast() ||
251 (!DisableAdvCopyOpt &&
252 (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
253 MI.isExtractSubregLike()));
254 }
255
256 MachineInstr &rewriteSource(MachineInstr &CopyLike,
257 RegSubRegPair Def, RewriteMapTy &RewriteMap);
258 };
259
260 /// Helper class to hold instructions that are inside recurrence cycles.
261 /// The recurrence cycle is formulated around 1) a def operand and its
262 /// tied use operand, or 2) a def operand and a use operand that is commutable
263 /// with another use operand which is tied to the def operand. In the latter
264 /// case, index of the tied use operand and the commutable use operand are
265 /// maintained with CommutePair.
266 class RecurrenceInstr {
267 public:
268 using IndexPair = std::pair<unsigned, unsigned>;
269
270 RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
271 RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
272 : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
273
274 MachineInstr *getMI() const { return MI; }
275 Optional<IndexPair> getCommutePair() const { return CommutePair; }
276
277 private:
278 MachineInstr *MI;
279 Optional<IndexPair> CommutePair;
280 };
281
282 /// Helper class to hold a reply for ValueTracker queries.
283 /// Contains the returned sources for a given search and the instructions
284 /// where the sources were tracked from.
285 class ValueTrackerResult {
286 private:
287 /// Track all sources found by one ValueTracker query.
288 SmallVector<RegSubRegPair, 2> RegSrcs;
289
290 /// Instruction using the sources in 'RegSrcs'.
291 const MachineInstr *Inst = nullptr;
292
293 public:
294 ValueTrackerResult() = default;
295
296 ValueTrackerResult(Register Reg, unsigned SubReg) {
297 addSource(Reg, SubReg);
298 }
299
300 bool isValid() const { return getNumSources() > 0; }
301
302 void setInst(const MachineInstr *I) { Inst = I; }
303 const MachineInstr *getInst() const { return Inst; }
304
305 void clear() {
306 RegSrcs.clear();
307 Inst = nullptr;
308 }
309
310 void addSource(Register SrcReg, unsigned SrcSubReg) {
311 RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
312 }
313
314 void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) {
315 assert(Idx < getNumSources() && "Reg pair source out of index")(static_cast <bool> (Idx < getNumSources() &&
"Reg pair source out of index") ? void (0) : __assert_fail (
"Idx < getNumSources() && \"Reg pair source out of index\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 315, __extension__
__PRETTY_FUNCTION__))
;
316 RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
317 }
318
319 int getNumSources() const { return RegSrcs.size(); }
320
321 RegSubRegPair getSrc(int Idx) const {
322 return RegSrcs[Idx];
323 }
324
325 Register getSrcReg(int Idx) const {
326 assert(Idx < getNumSources() && "Reg source out of index")(static_cast <bool> (Idx < getNumSources() &&
"Reg source out of index") ? void (0) : __assert_fail ("Idx < getNumSources() && \"Reg source out of index\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 326, __extension__
__PRETTY_FUNCTION__))
;
327 return RegSrcs[Idx].Reg;
328 }
329
330 unsigned getSrcSubReg(int Idx) const {
331 assert(Idx < getNumSources() && "SubReg source out of index")(static_cast <bool> (Idx < getNumSources() &&
"SubReg source out of index") ? void (0) : __assert_fail ("Idx < getNumSources() && \"SubReg source out of index\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 331, __extension__
__PRETTY_FUNCTION__))
;
332 return RegSrcs[Idx].SubReg;
333 }
334
335 bool operator==(const ValueTrackerResult &Other) const {
336 if (Other.getInst() != getInst())
337 return false;
338
339 if (Other.getNumSources() != getNumSources())
340 return false;
341
342 for (int i = 0, e = Other.getNumSources(); i != e; ++i)
343 if (Other.getSrcReg(i) != getSrcReg(i) ||
344 Other.getSrcSubReg(i) != getSrcSubReg(i))
345 return false;
346 return true;
347 }
348 };
349
350 /// Helper class to track the possible sources of a value defined by
351 /// a (chain of) copy related instructions.
352 /// Given a definition (instruction and definition index), this class
353 /// follows the use-def chain to find successive suitable sources.
354 /// The given source can be used to rewrite the definition into
355 /// def = COPY src.
356 ///
357 /// For instance, let us consider the following snippet:
358 /// v0 =
359 /// v2 = INSERT_SUBREG v1, v0, sub0
360 /// def = COPY v2.sub0
361 ///
362 /// Using a ValueTracker for def = COPY v2.sub0 will give the following
363 /// suitable sources:
364 /// v2.sub0 and v0.
365 /// Then, def can be rewritten into def = COPY v0.
366 class ValueTracker {
367 private:
368 /// The current point into the use-def chain.
369 const MachineInstr *Def = nullptr;
370
371 /// The index of the definition in Def.
372 unsigned DefIdx = 0;
373
374 /// The sub register index of the definition.
375 unsigned DefSubReg;
376
377 /// The register where the value can be found.
378 Register Reg;
379
380 /// MachineRegisterInfo used to perform tracking.
381 const MachineRegisterInfo &MRI;
382
383 /// Optional TargetInstrInfo used to perform some complex tracking.
384 const TargetInstrInfo *TII;
385
386 /// Dispatcher to the right underlying implementation of getNextSource.
387 ValueTrackerResult getNextSourceImpl();
388
389 /// Specialized version of getNextSource for Copy instructions.
390 ValueTrackerResult getNextSourceFromCopy();
391
392 /// Specialized version of getNextSource for Bitcast instructions.
393 ValueTrackerResult getNextSourceFromBitcast();
394
395 /// Specialized version of getNextSource for RegSequence instructions.
396 ValueTrackerResult getNextSourceFromRegSequence();
397
398 /// Specialized version of getNextSource for InsertSubreg instructions.
399 ValueTrackerResult getNextSourceFromInsertSubreg();
400
401 /// Specialized version of getNextSource for ExtractSubreg instructions.
402 ValueTrackerResult getNextSourceFromExtractSubreg();
403
404 /// Specialized version of getNextSource for SubregToReg instructions.
405 ValueTrackerResult getNextSourceFromSubregToReg();
406
407 /// Specialized version of getNextSource for PHI instructions.
408 ValueTrackerResult getNextSourceFromPHI();
409
410 public:
411 /// Create a ValueTracker instance for the value defined by \p Reg.
412 /// \p DefSubReg represents the sub register index the value tracker will
413 /// track. It does not need to match the sub register index used in the
414 /// definition of \p Reg.
415 /// If \p Reg is a physical register, a value tracker constructed with
416 /// this constructor will not find any alternative source.
417 /// Indeed, when \p Reg is a physical register that constructor does not
418 /// know which definition of \p Reg it should track.
419 /// Use the next constructor to track a physical register.
420 ValueTracker(Register Reg, unsigned DefSubReg,
421 const MachineRegisterInfo &MRI,
422 const TargetInstrInfo *TII = nullptr)
423 : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
424 if (!Reg.isPhysical()) {
425 Def = MRI.getVRegDef(Reg);
426 DefIdx = MRI.def_begin(Reg).getOperandNo();
427 }
428 }
429
430 /// Following the use-def chain, get the next available source
431 /// for the tracked value.
432 /// \return A ValueTrackerResult containing a set of registers
433 /// and sub registers with tracked values. A ValueTrackerResult with
434 /// an empty set of registers means no source was found.
435 ValueTrackerResult getNextSource();
436 };
437
438} // end anonymous namespace
439
440char PeepholeOptimizer::ID = 0;
441
442char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
443
444INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,static void *initializePeepholeOptimizerPassOnce(PassRegistry
&Registry) {
445 "Peephole Optimizations", false, false)static void *initializePeepholeOptimizerPassOnce(PassRegistry
&Registry) {
446INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry);
447INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry);
448INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,PassInfo *PI = new PassInfo( "Peephole Optimizations", "peephole-opt"
, &PeepholeOptimizer::ID, PassInfo::NormalCtor_t(callDefaultCtor
<PeepholeOptimizer>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializePeepholeOptimizerPassFlag
; void llvm::initializePeepholeOptimizerPass(PassRegistry &
Registry) { llvm::call_once(InitializePeepholeOptimizerPassFlag
, initializePeepholeOptimizerPassOnce, std::ref(Registry)); }
449 "Peephole Optimizations", false, false)PassInfo *PI = new PassInfo( "Peephole Optimizations", "peephole-opt"
, &PeepholeOptimizer::ID, PassInfo::NormalCtor_t(callDefaultCtor
<PeepholeOptimizer>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializePeepholeOptimizerPassFlag
; void llvm::initializePeepholeOptimizerPass(PassRegistry &
Registry) { llvm::call_once(InitializePeepholeOptimizerPassFlag
, initializePeepholeOptimizerPassOnce, std::ref(Registry)); }
450
451/// If instruction is a copy-like instruction, i.e. it reads a single register
452/// and writes a single register and it does not modify the source, and if the
453/// source value is preserved as a sub-register of the result, then replace all
454/// reachable uses of the source with the subreg of the result.
455///
456/// Do not generate an EXTRACT that is used only in a debug use, as this changes
457/// the code. Since this code does not currently share EXTRACTs, just ignore all
458/// debug uses.
459bool PeepholeOptimizer::
460optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
461 SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
462 Register SrcReg, DstReg;
463 unsigned SubIdx;
464 if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
21
Assuming the condition is false
465 return false;
466
467 if (DstReg.isPhysical() || SrcReg.isPhysical())
22
Taking false branch
468 return false;
469
470 if (MRI->hasOneNonDBGUse(SrcReg))
23
Assuming the condition is false
24
Taking false branch
471 // No other uses.
472 return false;
473
474 // Ensure DstReg can get a register class that actually supports
475 // sub-registers. Don't change the class until we commit.
476 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
477 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
478 if (!DstRC)
25
Assuming 'DstRC' is non-null
26
Taking false branch
479 return false;
480
481 // The ext instr may be operating on a sub-register of SrcReg as well.
482 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
483 // register.
484 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
485 // SrcReg:SubIdx should be replaced.
486 bool UseSrcSubIdx =
487 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
27
Assuming the condition is false
488
489 // The source has other uses. See if we can replace the other uses with use of
490 // the result of the extension.
491 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
492 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
493 ReachedBBs.insert(UI.getParent());
494
495 // Uses that are in the same BB of uses of the result of the instruction.
496 SmallVector<MachineOperand*, 8> Uses;
497
498 // Uses that the result of the instruction can reach.
499 SmallVector<MachineOperand*, 8> ExtendedUses;
500
501 bool ExtendLife = true;
502 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
503 MachineInstr *UseMI = UseMO.getParent();
504 if (UseMI == &MI)
28
Assuming the condition is false
29
Taking false branch
505 continue;
506
507 if (UseMI->isPHI()) {
508 ExtendLife = false;
509 continue;
510 }
511
512 // Only accept uses of SrcReg:SubIdx.
513 if (UseSrcSubIdx
29.1
'UseSrcSubIdx' is false
&& UseMO.getSubReg() != SubIdx)
514 continue;
515
516 // It's an error to translate this:
517 //
518 // %reg1025 = <sext> %reg1024
519 // ...
520 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
521 //
522 // into this:
523 //
524 // %reg1025 = <sext> %reg1024
525 // ...
526 // %reg1027 = COPY %reg1025:4
527 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
528 //
529 // The problem here is that SUBREG_TO_REG is there to assert that an
530 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
531 // the COPY here, it will give us the value after the <sext>, not the
532 // original value of %reg1024 before <sext>.
533 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
30
Assuming the condition is false
31
Taking false branch
534 continue;
535
536 MachineBasicBlock *UseMBB = UseMI->getParent();
537 if (UseMBB == &MBB) {
32
Assuming the condition is false
33
Taking false branch
538 // Local uses that come after the extension.
539 if (!LocalMIs.count(UseMI))
540 Uses.push_back(&UseMO);
541 } else if (ReachedBBs.count(UseMBB)) {
34
Assuming the condition is false
542 // Non-local uses where the result of the extension is used. Always
543 // replace these unless it's a PHI.
544 Uses.push_back(&UseMO);
545 } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
35
Assuming the condition is true
36
Called C++ object pointer is null
546 // We may want to extend the live range of the extension result in order
547 // to replace these uses.
548 ExtendedUses.push_back(&UseMO);
549 } else {
550 // Both will be live out of the def MBB anyway. Don't extend live range of
551 // the extension result.
552 ExtendLife = false;
553 break;
554 }
555 }
556
557 if (ExtendLife && !ExtendedUses.empty())
558 // Extend the liveness of the extension result.
559 Uses.append(ExtendedUses.begin(), ExtendedUses.end());
560
561 // Now replace all uses.
562 bool Changed = false;
563 if (!Uses.empty()) {
564 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
565
566 // Look for PHI uses of the extended result, we don't want to extend the
567 // liveness of a PHI input. It breaks all kinds of assumptions down
568 // stream. A PHI use is expected to be the kill of its source values.
569 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
570 if (UI.isPHI())
571 PHIBBs.insert(UI.getParent());
572
573 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
574 for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
575 MachineOperand *UseMO = Uses[i];
576 MachineInstr *UseMI = UseMO->getParent();
577 MachineBasicBlock *UseMBB = UseMI->getParent();
578 if (PHIBBs.count(UseMBB))
579 continue;
580
581 // About to add uses of DstReg, clear DstReg's kill flags.
582 if (!Changed) {
583 MRI->clearKillFlags(DstReg);
584 MRI->constrainRegClass(DstReg, DstRC);
585 }
586
587 // SubReg defs are illegal in machine SSA phase,
588 // we should not generate SubReg defs.
589 //
590 // For example, for the instructions:
591 //
592 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
593 // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc
594 //
595 // We should generate:
596 //
597 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
598 // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0
599 // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0
600 //
601 if (UseSrcSubIdx)
602 RC = MRI->getRegClass(UseMI->getOperand(0).getReg());
603
604 Register NewVR = MRI->createVirtualRegister(RC);
605 BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
606 TII->get(TargetOpcode::COPY), NewVR)
607 .addReg(DstReg, 0, SubIdx);
608 if (UseSrcSubIdx)
609 UseMO->setSubReg(0);
610
611 UseMO->setReg(NewVR);
612 ++NumReuse;
613 Changed = true;
614 }
615 }
616
617 return Changed;
618}
619
620/// If the instruction is a compare and the previous instruction it's comparing
621/// against already sets (or could be modified to set) the same flag as the
622/// compare, then we can remove the comparison and use the flag from the
623/// previous instruction.
624bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
625 // If this instruction is a comparison against zero and isn't comparing a
626 // physical register, we can try to optimize it.
627 Register SrcReg, SrcReg2;
628 int64_t CmpMask, CmpValue;
629 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
630 SrcReg.isPhysical() || SrcReg2.isPhysical())
631 return false;
632
633 // Attempt to optimize the comparison instruction.
634 LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "Attempting to optimize compare: "
<< MI; } } while (false)
;
635 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
636 LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << " -> Successfully optimized compare!\n"
; } } while (false)
;
637 ++NumCmps;
638 return true;
639 }
640
641 return false;
642}
643
644/// Optimize a select instruction.
645bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
646 SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
647 unsigned TrueOp = 0;
648 unsigned FalseOp = 0;
649 bool Optimizable = false;
650 SmallVector<MachineOperand, 4> Cond;
651 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
652 return false;
653 if (!Optimizable)
654 return false;
655 if (!TII->optimizeSelect(MI, LocalMIs))
656 return false;
657 LLVM_DEBUG(dbgs() << "Deleting select: " << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "Deleting select: " <<
MI; } } while (false)
;
658 MI.eraseFromParent();
659 ++NumSelects;
660 return true;
661}
662
663/// Check if a simpler conditional branch can be generated.
664bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
665 return TII->optimizeCondBranch(MI);
666}
667
668/// Try to find the next source that share the same register file
669/// for the value defined by \p Reg and \p SubReg.
670/// When true is returned, the \p RewriteMap can be used by the client to
671/// retrieve all Def -> Use along the way up to the next source. Any found
672/// Use that is not itself a key for another entry, is the next source to
673/// use. During the search for the next source, multiple sources can be found
674/// given multiple incoming sources of a PHI instruction. In this case, we
675/// look in each PHI source for the next source; all found next sources must
676/// share the same register file as \p Reg and \p SubReg. The client should
677/// then be capable to rewrite all intermediate PHIs to get the next source.
678/// \return False if no alternative sources are available. True otherwise.
679bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
680 RewriteMapTy &RewriteMap) {
681 // Do not try to find a new source for a physical register.
682 // So far we do not have any motivating example for doing that.
683 // Thus, instead of maintaining untested code, we will revisit that if
684 // that changes at some point.
685 Register Reg = RegSubReg.Reg;
686 if (Reg.isPhysical())
687 return false;
688 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
689
690 SmallVector<RegSubRegPair, 4> SrcToLook;
691 RegSubRegPair CurSrcPair = RegSubReg;
692 SrcToLook.push_back(CurSrcPair);
693
694 unsigned PHICount = 0;
695 do {
696 CurSrcPair = SrcToLook.pop_back_val();
697 // As explained above, do not handle physical registers
698 if (Register::isPhysicalRegister(CurSrcPair.Reg))
699 return false;
700
701 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
702
703 // Follow the chain of copies until we find a more suitable source, a phi
704 // or have to abort.
705 while (true) {
706 ValueTrackerResult Res = ValTracker.getNextSource();
707 // Abort at the end of a chain (without finding a suitable source).
708 if (!Res.isValid())
709 return false;
710
711 // Insert the Def -> Use entry for the recently found source.
712 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
713 if (CurSrcRes.isValid()) {
714 assert(CurSrcRes == Res && "ValueTrackerResult found must match")(static_cast <bool> (CurSrcRes == Res && "ValueTrackerResult found must match"
) ? void (0) : __assert_fail ("CurSrcRes == Res && \"ValueTrackerResult found must match\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 714, __extension__
__PRETTY_FUNCTION__))
;
715 // An existent entry with multiple sources is a PHI cycle we must avoid.
716 // Otherwise it's an entry with a valid next source we already found.
717 if (CurSrcRes.getNumSources() > 1) {
718 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "findNextSource: found PHI cycle, aborting...\n"
; } } while (false)
719 << "findNextSource: found PHI cycle, aborting...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "findNextSource: found PHI cycle, aborting...\n"
; } } while (false)
;
720 return false;
721 }
722 break;
723 }
724 RewriteMap.insert(std::make_pair(CurSrcPair, Res));
725
726 // ValueTrackerResult usually have one source unless it's the result from
727 // a PHI instruction. Add the found PHI edges to be looked up further.
728 unsigned NumSrcs = Res.getNumSources();
729 if (NumSrcs > 1) {
730 PHICount++;
731 if (PHICount >= RewritePHILimit) {
732 LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "findNextSource: PHI limit reached\n"
; } } while (false)
;
733 return false;
734 }
735
736 for (unsigned i = 0; i < NumSrcs; ++i)
737 SrcToLook.push_back(Res.getSrc(i));
738 break;
739 }
740
741 CurSrcPair = Res.getSrc(0);
742 // Do not extend the live-ranges of physical registers as they add
743 // constraints to the register allocator. Moreover, if we want to extend
744 // the live-range of a physical register, unlike SSA virtual register,
745 // we will have to check that they aren't redefine before the related use.
746 if (Register::isPhysicalRegister(CurSrcPair.Reg))
747 return false;
748
749 // Keep following the chain if the value isn't any better yet.
750 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
751 if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
752 CurSrcPair.SubReg))
753 continue;
754
755 // We currently cannot deal with subreg operands on PHI instructions
756 // (see insertPHI()).
757 if (PHICount > 0 && CurSrcPair.SubReg != 0)
758 continue;
759
760 // We found a suitable source, and are done with this chain.
761 break;
762 }
763 } while (!SrcToLook.empty());
764
765 // If we did not find a more suitable source, there is nothing to optimize.
766 return CurSrcPair.Reg != Reg;
767}
768
769/// Insert a PHI instruction with incoming edges \p SrcRegs that are
770/// guaranteed to have the same register class. This is necessary whenever we
771/// successfully traverse a PHI instruction and find suitable sources coming
772/// from its edges. By inserting a new PHI, we provide a rewritten PHI def
773/// suitable to be used in a new COPY instruction.
774static MachineInstr &
775insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
776 const SmallVectorImpl<RegSubRegPair> &SrcRegs,
777 MachineInstr &OrigPHI) {
778 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?")(static_cast <bool> (!SrcRegs.empty() && "No sources to create a PHI instruction?"
) ? void (0) : __assert_fail ("!SrcRegs.empty() && \"No sources to create a PHI instruction?\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 778, __extension__
__PRETTY_FUNCTION__))
;
779
780 const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
781 // NewRC is only correct if no subregisters are involved. findNextSource()
782 // should have rejected those cases already.
783 assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand")(static_cast <bool> (SrcRegs[0].SubReg == 0 && "should not have subreg operand"
) ? void (0) : __assert_fail ("SrcRegs[0].SubReg == 0 && \"should not have subreg operand\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 783, __extension__
__PRETTY_FUNCTION__))
;
784 Register NewVR = MRI.createVirtualRegister(NewRC);
785 MachineBasicBlock *MBB = OrigPHI.getParent();
786 MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
787 TII.get(TargetOpcode::PHI), NewVR);
788
789 unsigned MBBOpIdx = 2;
790 for (const RegSubRegPair &RegPair : SrcRegs) {
791 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
792 MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
793 // Since we're extended the lifetime of RegPair.Reg, clear the
794 // kill flags to account for that and make RegPair.Reg reaches
795 // the new PHI.
796 MRI.clearKillFlags(RegPair.Reg);
797 MBBOpIdx += 2;
798 }
799
800 return *MIB;
801}
802
803namespace {
804
805/// Interface to query instructions amenable to copy rewriting.
806class Rewriter {
807protected:
808 MachineInstr &CopyLike;
809 unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten.
810public:
811 Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
812 virtual ~Rewriter() = default;
813
814 /// Get the next rewritable source (SrcReg, SrcSubReg) and
815 /// the related value that it affects (DstReg, DstSubReg).
816 /// A source is considered rewritable if its register class and the
817 /// register class of the related DstReg may not be register
818 /// coalescer friendly. In other words, given a copy-like instruction
819 /// not all the arguments may be returned at rewritable source, since
820 /// some arguments are none to be register coalescer friendly.
821 ///
822 /// Each call of this method moves the current source to the next
823 /// rewritable source.
824 /// For instance, let CopyLike be the instruction to rewrite.
825 /// CopyLike has one definition and one source:
826 /// dst.dstSubIdx = CopyLike src.srcSubIdx.
827 ///
828 /// The first call will give the first rewritable source, i.e.,
829 /// the only source this instruction has:
830 /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
831 /// This source defines the whole definition, i.e.,
832 /// (DstReg, DstSubReg) = (dst, dstSubIdx).
833 ///
834 /// The second and subsequent calls will return false, as there is only one
835 /// rewritable source.
836 ///
837 /// \return True if a rewritable source has been found, false otherwise.
838 /// The output arguments are valid if and only if true is returned.
839 virtual bool getNextRewritableSource(RegSubRegPair &Src,
840 RegSubRegPair &Dst) = 0;
841
842 /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
843 /// \return True if the rewriting was possible, false otherwise.
844 virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0;
845};
846
847/// Rewriter for COPY instructions.
848class CopyRewriter : public Rewriter {
849public:
850 CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
851 assert(MI.isCopy() && "Expected copy instruction")(static_cast <bool> (MI.isCopy() && "Expected copy instruction"
) ? void (0) : __assert_fail ("MI.isCopy() && \"Expected copy instruction\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 851, __extension__
__PRETTY_FUNCTION__))
;
852 }
853 virtual ~CopyRewriter() = default;
854
855 bool getNextRewritableSource(RegSubRegPair &Src,
856 RegSubRegPair &Dst) override {
857 // CurrentSrcIdx > 0 means this function has already been called.
858 if (CurrentSrcIdx > 0)
859 return false;
860 // This is the first call to getNextRewritableSource.
861 // Move the CurrentSrcIdx to remember that we made that call.
862 CurrentSrcIdx = 1;
863 // The rewritable source is the argument.
864 const MachineOperand &MOSrc = CopyLike.getOperand(1);
865 Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
866 // What we track are the alternative sources of the definition.
867 const MachineOperand &MODef = CopyLike.getOperand(0);
868 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
869 return true;
870 }
871
872 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
873 if (CurrentSrcIdx != 1)
874 return false;
875 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
876 MOSrc.setReg(NewReg);
877 MOSrc.setSubReg(NewSubReg);
878 return true;
879 }
880};
881
882/// Helper class to rewrite uncoalescable copy like instructions
883/// into new COPY (coalescable friendly) instructions.
884class UncoalescableRewriter : public Rewriter {
885 unsigned NumDefs; ///< Number of defs in the bitcast.
886
887public:
888 UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
889 NumDefs = MI.getDesc().getNumDefs();
890 }
891
892 /// \see See Rewriter::getNextRewritableSource()
893 /// All such sources need to be considered rewritable in order to
894 /// rewrite a uncoalescable copy-like instruction. This method return
895 /// each definition that must be checked if rewritable.
896 bool getNextRewritableSource(RegSubRegPair &Src,
897 RegSubRegPair &Dst) override {
898 // Find the next non-dead definition and continue from there.
899 if (CurrentSrcIdx == NumDefs)
900 return false;
901
902 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
903 ++CurrentSrcIdx;
904 if (CurrentSrcIdx == NumDefs)
905 return false;
906 }
907
908 // What we track are the alternative sources of the definition.
909 Src = RegSubRegPair(0, 0);
910 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
911 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
912
913 CurrentSrcIdx++;
914 return true;
915 }
916
917 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
918 return false;
919 }
920};
921
922/// Specialized rewriter for INSERT_SUBREG instruction.
923class InsertSubregRewriter : public Rewriter {
924public:
925 InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
926 assert(MI.isInsertSubreg() && "Invalid instruction")(static_cast <bool> (MI.isInsertSubreg() && "Invalid instruction"
) ? void (0) : __assert_fail ("MI.isInsertSubreg() && \"Invalid instruction\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 926, __extension__
__PRETTY_FUNCTION__))
;
927 }
928
929 /// \see See Rewriter::getNextRewritableSource()
930 /// Here CopyLike has the following form:
931 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
932 /// Src1 has the same register class has dst, hence, there is
933 /// nothing to rewrite.
934 /// Src2.src2SubIdx, may not be register coalescer friendly.
935 /// Therefore, the first call to this method returns:
936 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
937 /// (DstReg, DstSubReg) = (dst, subIdx).
938 ///
939 /// Subsequence calls will return false.
940 bool getNextRewritableSource(RegSubRegPair &Src,
941 RegSubRegPair &Dst) override {
942 // If we already get the only source we can rewrite, return false.
943 if (CurrentSrcIdx == 2)
944 return false;
945 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
946 CurrentSrcIdx = 2;
947 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
948 Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
949 const MachineOperand &MODef = CopyLike.getOperand(0);
950
951 // We want to track something that is compatible with the
952 // partial definition.
953 if (MODef.getSubReg())
954 // Bail if we have to compose sub-register indices.
955 return false;
956 Dst = RegSubRegPair(MODef.getReg(),
957 (unsigned)CopyLike.getOperand(3).getImm());
958 return true;
959 }
960
961 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
962 if (CurrentSrcIdx != 2)
963 return false;
964 // We are rewriting the inserted reg.
965 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
966 MO.setReg(NewReg);
967 MO.setSubReg(NewSubReg);
968 return true;
969 }
970};
971
972/// Specialized rewriter for EXTRACT_SUBREG instruction.
973class ExtractSubregRewriter : public Rewriter {
974 const TargetInstrInfo &TII;
975
976public:
977 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
978 : Rewriter(MI), TII(TII) {
979 assert(MI.isExtractSubreg() && "Invalid instruction")(static_cast <bool> (MI.isExtractSubreg() && "Invalid instruction"
) ? void (0) : __assert_fail ("MI.isExtractSubreg() && \"Invalid instruction\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 979, __extension__
__PRETTY_FUNCTION__))
;
980 }
981
982 /// \see Rewriter::getNextRewritableSource()
983 /// Here CopyLike has the following form:
984 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
985 /// There is only one rewritable source: Src.subIdx,
986 /// which defines dst.dstSubIdx.
987 bool getNextRewritableSource(RegSubRegPair &Src,
988 RegSubRegPair &Dst) override {
989 // If we already get the only source we can rewrite, return false.
990 if (CurrentSrcIdx == 1)
991 return false;
992 // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
993 CurrentSrcIdx = 1;
994 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
995 // If we have to compose sub-register indices, bail out.
996 if (MOExtractedReg.getSubReg())
997 return false;
998
999 Src = RegSubRegPair(MOExtractedReg.getReg(),
1000 CopyLike.getOperand(2).getImm());
1001
1002 // We want to track something that is compatible with the definition.
1003 const MachineOperand &MODef = CopyLike.getOperand(0);
1004 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1005 return true;
1006 }
1007
1008 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1009 // The only source we can rewrite is the input register.
1010 if (CurrentSrcIdx != 1)
1011 return false;
1012
1013 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
1014
1015 // If we find a source that does not require to extract something,
1016 // rewrite the operation with a copy.
1017 if (!NewSubReg) {
1018 // Move the current index to an invalid position.
1019 // We do not want another call to this method to be able
1020 // to do any change.
1021 CurrentSrcIdx = -1;
1022 // Rewrite the operation as a COPY.
1023 // Get rid of the sub-register index.
1024 CopyLike.removeOperand(2);
1025 // Morph the operation into a COPY.
1026 CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1027 return true;
1028 }
1029 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1030 return true;
1031 }
1032};
1033
1034/// Specialized rewriter for REG_SEQUENCE instruction.
1035class RegSequenceRewriter : public Rewriter {
1036public:
1037 RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1038 assert(MI.isRegSequence() && "Invalid instruction")(static_cast <bool> (MI.isRegSequence() && "Invalid instruction"
) ? void (0) : __assert_fail ("MI.isRegSequence() && \"Invalid instruction\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1038, __extension__
__PRETTY_FUNCTION__))
;
1039 }
1040
1041 /// \see Rewriter::getNextRewritableSource()
1042 /// Here CopyLike has the following form:
1043 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1044 /// Each call will return a different source, walking all the available
1045 /// source.
1046 ///
1047 /// The first call returns:
1048 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1049 /// (DstReg, DstSubReg) = (dst, subIdx1).
1050 ///
1051 /// The second call returns:
1052 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1053 /// (DstReg, DstSubReg) = (dst, subIdx2).
1054 ///
1055 /// And so on, until all the sources have been traversed, then
1056 /// it returns false.
1057 bool getNextRewritableSource(RegSubRegPair &Src,
1058 RegSubRegPair &Dst) override {
1059 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1060
1061 // If this is the first call, move to the first argument.
1062 if (CurrentSrcIdx == 0) {
1063 CurrentSrcIdx = 1;
1064 } else {
1065 // Otherwise, move to the next argument and check that it is valid.
1066 CurrentSrcIdx += 2;
1067 if (CurrentSrcIdx >= CopyLike.getNumOperands())
1068 return false;
1069 }
1070 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1071 Src.Reg = MOInsertedReg.getReg();
1072 // If we have to compose sub-register indices, bail out.
1073 if ((Src.SubReg = MOInsertedReg.getSubReg()))
1074 return false;
1075
1076 // We want to track something that is compatible with the related
1077 // partial definition.
1078 Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1079
1080 const MachineOperand &MODef = CopyLike.getOperand(0);
1081 Dst.Reg = MODef.getReg();
1082 // If we have to compose sub-registers, bail.
1083 return MODef.getSubReg() == 0;
1084 }
1085
1086 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1087 // We cannot rewrite out of bound operands.
1088 // Moreover, rewritable sources are at odd positions.
1089 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1090 return false;
1091
1092 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1093 MO.setReg(NewReg);
1094 MO.setSubReg(NewSubReg);
1095 return true;
1096 }
1097};
1098
1099} // end anonymous namespace
1100
1101/// Get the appropriated Rewriter for \p MI.
1102/// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1103/// rewriter works for \p MI.
1104static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1105 // Handle uncoalescable copy-like instructions.
1106 if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1107 MI.isExtractSubregLike())
1108 return new UncoalescableRewriter(MI);
1109
1110 switch (MI.getOpcode()) {
1111 default:
1112 return nullptr;
1113 case TargetOpcode::COPY:
1114 return new CopyRewriter(MI);
1115 case TargetOpcode::INSERT_SUBREG:
1116 return new InsertSubregRewriter(MI);
1117 case TargetOpcode::EXTRACT_SUBREG:
1118 return new ExtractSubregRewriter(MI, TII);
1119 case TargetOpcode::REG_SEQUENCE:
1120 return new RegSequenceRewriter(MI);
1121 }
1122}
1123
1124/// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find
1125/// the new source to use for rewrite. If \p HandleMultipleSources is true and
1126/// multiple sources for a given \p Def are found along the way, we found a
1127/// PHI instructions that needs to be rewritten.
1128/// TODO: HandleMultipleSources should be removed once we test PHI handling
1129/// with coalescable copies.
1130static RegSubRegPair
1131getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1132 RegSubRegPair Def,
1133 const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1134 bool HandleMultipleSources = true) {
1135 RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1136 while (true) {
1137 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1138 // If there are no entries on the map, LookupSrc is the new source.
1139 if (!Res.isValid())
1140 return LookupSrc;
1141
1142 // There's only one source for this definition, keep searching...
1143 unsigned NumSrcs = Res.getNumSources();
1144 if (NumSrcs == 1) {
1145 LookupSrc.Reg = Res.getSrcReg(0);
1146 LookupSrc.SubReg = Res.getSrcSubReg(0);
1147 continue;
1148 }
1149
1150 // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1151 if (!HandleMultipleSources)
1152 break;
1153
1154 // Multiple sources, recurse into each source to find a new source
1155 // for it. Then, rewrite the PHI accordingly to its new edges.
1156 SmallVector<RegSubRegPair, 4> NewPHISrcs;
1157 for (unsigned i = 0; i < NumSrcs; ++i) {
1158 RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1159 NewPHISrcs.push_back(
1160 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1161 }
1162
1163 // Build the new PHI node and return its def register as the new source.
1164 MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1165 MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1166 LLVM_DEBUG(dbgs() << "-- getNewSource\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "-- getNewSource\n"; } } while
(false)
;
1167 LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << " Replacing: " <<
OrigPHI; } } while (false)
;
1168 LLVM_DEBUG(dbgs() << " With: " << NewPHI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << " With: " <<
NewPHI; } } while (false)
;
1169 const MachineOperand &MODef = NewPHI.getOperand(0);
1170 return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1171 }
1172
1173 return RegSubRegPair(0, 0);
1174}
1175
1176/// Optimize generic copy instructions to avoid cross register bank copy.
1177/// The optimization looks through a chain of copies and tries to find a source
1178/// that has a compatible register class.
1179/// Two register classes are considered to be compatible if they share the same
1180/// register bank.
1181/// New copies issued by this optimization are register allocator
1182/// friendly. This optimization does not remove any copy as it may
1183/// overconstrain the register allocator, but replaces some operands
1184/// when possible.
1185/// \pre isCoalescableCopy(*MI) is true.
1186/// \return True, when \p MI has been rewritten. False otherwise.
1187bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1188 assert(isCoalescableCopy(MI) && "Invalid argument")(static_cast <bool> (isCoalescableCopy(MI) && "Invalid argument"
) ? void (0) : __assert_fail ("isCoalescableCopy(MI) && \"Invalid argument\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1188, __extension__
__PRETTY_FUNCTION__))
;
1189 assert(MI.getDesc().getNumDefs() == 1 &&(static_cast <bool> (MI.getDesc().getNumDefs() == 1 &&
"Coalescer can understand multiple defs?!") ? void (0) : __assert_fail
("MI.getDesc().getNumDefs() == 1 && \"Coalescer can understand multiple defs?!\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1190, __extension__
__PRETTY_FUNCTION__))
1190 "Coalescer can understand multiple defs?!")(static_cast <bool> (MI.getDesc().getNumDefs() == 1 &&
"Coalescer can understand multiple defs?!") ? void (0) : __assert_fail
("MI.getDesc().getNumDefs() == 1 && \"Coalescer can understand multiple defs?!\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1190, __extension__
__PRETTY_FUNCTION__))
;
1191 const MachineOperand &MODef = MI.getOperand(0);
1192 // Do not rewrite physical definitions.
1193 if (Register::isPhysicalRegister(MODef.getReg()))
1194 return false;
1195
1196 bool Changed = false;
1197 // Get the right rewriter for the current copy.
1198 std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1199 // If none exists, bail out.
1200 if (!CpyRewriter)
1201 return false;
1202 // Rewrite each rewritable source.
1203 RegSubRegPair Src;
1204 RegSubRegPair TrackPair;
1205 while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1206 // Keep track of PHI nodes and its incoming edges when looking for sources.
1207 RewriteMapTy RewriteMap;
1208 // Try to find a more suitable source. If we failed to do so, or get the
1209 // actual source, move to the next source.
1210 if (!findNextSource(TrackPair, RewriteMap))
1211 continue;
1212
1213 // Get the new source to rewrite. TODO: Only enable handling of multiple
1214 // sources (PHIs) once we have a motivating example and testcases for it.
1215 RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1216 /*HandleMultipleSources=*/false);
1217 if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1218 continue;
1219
1220 // Rewrite source.
1221 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1222 // We may have extended the live-range of NewSrc, account for that.
1223 MRI->clearKillFlags(NewSrc.Reg);
1224 Changed = true;
1225 }
1226 }
1227 // TODO: We could have a clean-up method to tidy the instruction.
1228 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1229 // => v0 = COPY v1
1230 // Currently we haven't seen motivating example for that and we
1231 // want to avoid untested code.
1232 NumRewrittenCopies += Changed;
1233 return Changed;
1234}
1235
1236/// Rewrite the source found through \p Def, by using the \p RewriteMap
1237/// and create a new COPY instruction. More info about RewriteMap in
1238/// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1239/// Uncoalescable copies, since they are copy like instructions that aren't
1240/// recognized by the register allocator.
1241MachineInstr &
1242PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1243 RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1244 assert(!Register::isPhysicalRegister(Def.Reg) &&(static_cast <bool> (!Register::isPhysicalRegister(Def.
Reg) && "We do not rewrite physical registers") ? void
(0) : __assert_fail ("!Register::isPhysicalRegister(Def.Reg) && \"We do not rewrite physical registers\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1245, __extension__
__PRETTY_FUNCTION__))
1245 "We do not rewrite physical registers")(static_cast <bool> (!Register::isPhysicalRegister(Def.
Reg) && "We do not rewrite physical registers") ? void
(0) : __assert_fail ("!Register::isPhysicalRegister(Def.Reg) && \"We do not rewrite physical registers\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1245, __extension__
__PRETTY_FUNCTION__))
;
1246
1247 // Find the new source to use in the COPY rewrite.
1248 RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1249
1250 // Insert the COPY.
1251 const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1252 Register NewVReg = MRI->createVirtualRegister(DefRC);
1253
1254 MachineInstr *NewCopy =
1255 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1256 TII->get(TargetOpcode::COPY), NewVReg)
1257 .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1258
1259 if (Def.SubReg) {
1260 NewCopy->getOperand(0).setSubReg(Def.SubReg);
1261 NewCopy->getOperand(0).setIsUndef();
1262 }
1263
1264 LLVM_DEBUG(dbgs() << "-- RewriteSource\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "-- RewriteSource\n"; } }
while (false)
;
1265 LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << " Replacing: " <<
CopyLike; } } while (false)
;
1266 LLVM_DEBUG(dbgs() << " With: " << *NewCopy)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << " With: " <<
*NewCopy; } } while (false)
;
1267 MRI->replaceRegWith(Def.Reg, NewVReg);
1268 MRI->clearKillFlags(NewVReg);
1269
1270 // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1271 // account for that.
1272 MRI->clearKillFlags(NewSrc.Reg);
1273
1274 return *NewCopy;
1275}
1276
1277/// Optimize copy-like instructions to create
1278/// register coalescer friendly instruction.
1279/// The optimization tries to kill-off the \p MI by looking
1280/// through a chain of copies to find a source that has a compatible
1281/// register class.
1282/// If such a source is found, it replace \p MI by a generic COPY
1283/// operation.
1284/// \pre isUncoalescableCopy(*MI) is true.
1285/// \return True, when \p MI has been optimized. In that case, \p MI has
1286/// been removed from its parent.
1287/// All COPY instructions created, are inserted in \p LocalMIs.
1288bool PeepholeOptimizer::optimizeUncoalescableCopy(
1289 MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1290 assert(isUncoalescableCopy(MI) && "Invalid argument")(static_cast <bool> (isUncoalescableCopy(MI) &&
"Invalid argument") ? void (0) : __assert_fail ("isUncoalescableCopy(MI) && \"Invalid argument\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1290, __extension__
__PRETTY_FUNCTION__))
;
1291 UncoalescableRewriter CpyRewriter(MI);
1292
1293 // Rewrite each rewritable source by generating new COPYs. This works
1294 // differently from optimizeCoalescableCopy since it first makes sure that all
1295 // definitions can be rewritten.
1296 RewriteMapTy RewriteMap;
1297 RegSubRegPair Src;
1298 RegSubRegPair Def;
1299 SmallVector<RegSubRegPair, 4> RewritePairs;
1300 while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1301 // If a physical register is here, this is probably for a good reason.
1302 // Do not rewrite that.
1303 if (Register::isPhysicalRegister(Def.Reg))
1304 return false;
1305
1306 // If we do not know how to rewrite this definition, there is no point
1307 // in trying to kill this instruction.
1308 if (!findNextSource(Def, RewriteMap))
1309 return false;
1310
1311 RewritePairs.push_back(Def);
1312 }
1313
1314 // The change is possible for all defs, do it.
1315 for (const RegSubRegPair &Def : RewritePairs) {
1316 // Rewrite the "copy" in a way the register coalescer understands.
1317 MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1318 LocalMIs.insert(&NewCopy);
1319 }
1320
1321 // MI is now dead.
1322 LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "Deleting uncoalescable copy: "
<< MI; } } while (false)
;
1323 MI.eraseFromParent();
1324 ++NumUncoalescableCopies;
1325 return true;
1326}
1327
1328/// Check whether MI is a candidate for folding into a later instruction.
1329/// We only fold loads to virtual registers and the virtual register defined
1330/// has a single user.
1331bool PeepholeOptimizer::isLoadFoldable(
1332 MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) {
1333 if (!MI.canFoldAsLoad() || !MI.mayLoad())
1334 return false;
1335 const MCInstrDesc &MCID = MI.getDesc();
1336 if (MCID.getNumDefs() != 1)
1337 return false;
1338
1339 Register Reg = MI.getOperand(0).getReg();
1340 // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1341 // loads. It should be checked when processing uses of the load, since
1342 // uses can be removed during peephole.
1343 if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() &&
1344 MRI->hasOneNonDBGUser(Reg)) {
1345 FoldAsLoadDefCandidates.insert(Reg);
1346 return true;
1347 }
1348 return false;
1349}
1350
1351bool PeepholeOptimizer::isMoveImmediate(
1352 MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1353 DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1354 const MCInstrDesc &MCID = MI.getDesc();
1355 if (!MI.isMoveImmediate())
1356 return false;
1357 if (MCID.getNumDefs() != 1)
1358 return false;
1359 Register Reg = MI.getOperand(0).getReg();
1360 if (Reg.isVirtual()) {
1361 ImmDefMIs.insert(std::make_pair(Reg, &MI));
1362 ImmDefRegs.insert(Reg);
1363 return true;
1364 }
1365
1366 return false;
1367}
1368
1369/// Try folding register operands that are defined by move immediate
1370/// instructions, i.e. a trivial constant folding optimization, if
1371/// and only if the def and use are in the same BB.
1372bool PeepholeOptimizer::foldImmediate(
1373 MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1374 DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1375 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1376 MachineOperand &MO = MI.getOperand(i);
1377 if (!MO.isReg() || MO.isDef())
1378 continue;
1379 Register Reg = MO.getReg();
1380 if (!Reg.isVirtual())
1381 continue;
1382 if (ImmDefRegs.count(Reg) == 0)
1383 continue;
1384 DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg);
1385 assert(II != ImmDefMIs.end() && "couldn't find immediate definition")(static_cast <bool> (II != ImmDefMIs.end() && "couldn't find immediate definition"
) ? void (0) : __assert_fail ("II != ImmDefMIs.end() && \"couldn't find immediate definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1385, __extension__
__PRETTY_FUNCTION__))
;
1386 if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1387 ++NumImmFold;
1388 return true;
1389 }
1390 }
1391 return false;
1392}
1393
1394// FIXME: This is very simple and misses some cases which should be handled when
1395// motivating examples are found.
1396//
1397// The copy rewriting logic should look at uses as well as defs and be able to
1398// eliminate copies across blocks.
1399//
1400// Later copies that are subregister extracts will also not be eliminated since
1401// only the first copy is considered.
1402//
1403// e.g.
1404// %1 = COPY %0
1405// %2 = COPY %0:sub1
1406//
1407// Should replace %2 uses with %1:sub1
1408bool PeepholeOptimizer::foldRedundantCopy(
1409 MachineInstr &MI, DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs) {
1410 assert(MI.isCopy() && "expected a COPY machine instruction")(static_cast <bool> (MI.isCopy() && "expected a COPY machine instruction"
) ? void (0) : __assert_fail ("MI.isCopy() && \"expected a COPY machine instruction\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1410, __extension__
__PRETTY_FUNCTION__))
;
1411
1412 Register SrcReg = MI.getOperand(1).getReg();
1413 unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1414 if (!SrcReg.isVirtual())
1415 return false;
1416
1417 Register DstReg = MI.getOperand(0).getReg();
1418 if (!DstReg.isVirtual())
1419 return false;
1420
1421 RegSubRegPair SrcPair(SrcReg, SrcSubReg);
1422
1423 if (CopyMIs.insert(std::make_pair(SrcPair, &MI)).second) {
1424 // First copy of this reg seen.
1425 return false;
1426 }
1427
1428 MachineInstr *PrevCopy = CopyMIs.find(SrcPair)->second;
1429
1430 assert(SrcSubReg == PrevCopy->getOperand(1).getSubReg() &&(static_cast <bool> (SrcSubReg == PrevCopy->getOperand
(1).getSubReg() && "Unexpected mismatching subreg!") ?
void (0) : __assert_fail ("SrcSubReg == PrevCopy->getOperand(1).getSubReg() && \"Unexpected mismatching subreg!\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1431, __extension__
__PRETTY_FUNCTION__))
1431 "Unexpected mismatching subreg!")(static_cast <bool> (SrcSubReg == PrevCopy->getOperand
(1).getSubReg() && "Unexpected mismatching subreg!") ?
void (0) : __assert_fail ("SrcSubReg == PrevCopy->getOperand(1).getSubReg() && \"Unexpected mismatching subreg!\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1431, __extension__
__PRETTY_FUNCTION__))
;
1432
1433 Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1434
1435 // Only replace if the copy register class is the same.
1436 //
1437 // TODO: If we have multiple copies to different register classes, we may want
1438 // to track multiple copies of the same source register.
1439 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1440 return false;
1441
1442 MRI->replaceRegWith(DstReg, PrevDstReg);
1443
1444 // Lifetime of the previous copy has been extended.
1445 MRI->clearKillFlags(PrevDstReg);
1446 return true;
1447}
1448
1449bool PeepholeOptimizer::isNAPhysCopy(Register Reg) {
1450 return Reg.isPhysical() && !MRI->isAllocatable(Reg);
1451}
1452
1453bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1454 MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) {
1455 assert(MI.isCopy() && "expected a COPY machine instruction")(static_cast <bool> (MI.isCopy() && "expected a COPY machine instruction"
) ? void (0) : __assert_fail ("MI.isCopy() && \"expected a COPY machine instruction\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1455, __extension__
__PRETTY_FUNCTION__))
;
1456
1457 if (DisableNAPhysCopyOpt)
1458 return false;
1459
1460 Register DstReg = MI.getOperand(0).getReg();
1461 Register SrcReg = MI.getOperand(1).getReg();
1462 if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) {
1463 // %vreg = COPY $physreg
1464 // Avoid using a datastructure which can track multiple live non-allocatable
1465 // phys->virt copies since LLVM doesn't seem to do this.
1466 NAPhysToVirtMIs.insert({SrcReg, &MI});
1467 return false;
1468 }
1469
1470 if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg)))
1471 return false;
1472
1473 // $physreg = COPY %vreg
1474 auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1475 if (PrevCopy == NAPhysToVirtMIs.end()) {
1476 // We can't remove the copy: there was an intervening clobber of the
1477 // non-allocatable physical register after the copy to virtual.
1478 LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
<< MI; } } while (false)
1479 << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
<< MI; } } while (false)
;
1480 return false;
1481 }
1482
1483 Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1484 if (PrevDstReg == SrcReg) {
1485 // Remove the virt->phys copy: we saw the virtual register definition, and
1486 // the non-allocatable physical register's state hasn't changed since then.
1487 LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "NAPhysCopy: erasing " <<
MI; } } while (false)
;
1488 ++NumNAPhysCopies;
1489 return true;
1490 }
1491
1492 // Potential missed optimization opportunity: we saw a different virtual
1493 // register get a copy of the non-allocatable physical register, and we only
1494 // track one such copy. Avoid getting confused by this new non-allocatable
1495 // physical register definition, and remove it from the tracked copies.
1496 LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "NAPhysCopy: missed opportunity "
<< MI; } } while (false)
;
1497 NAPhysToVirtMIs.erase(PrevCopy);
1498 return false;
1499}
1500
1501/// \bried Returns true if \p MO is a virtual register operand.
1502static bool isVirtualRegisterOperand(MachineOperand &MO) {
1503 return MO.isReg() && MO.getReg().isVirtual();
1504}
1505
1506bool PeepholeOptimizer::findTargetRecurrence(
1507 Register Reg, const SmallSet<Register, 2> &TargetRegs,
1508 RecurrenceCycle &RC) {
1509 // Recurrence found if Reg is in TargetRegs.
1510 if (TargetRegs.count(Reg))
1511 return true;
1512
1513 // TODO: Curerntly, we only allow the last instruction of the recurrence
1514 // cycle (the instruction that feeds the PHI instruction) to have more than
1515 // one uses to guarantee that commuting operands does not tie registers
1516 // with overlapping live range. Once we have actual live range info of
1517 // each register, this constraint can be relaxed.
1518 if (!MRI->hasOneNonDBGUse(Reg))
1519 return false;
1520
1521 // Give up if the reccurrence chain length is longer than the limit.
1522 if (RC.size() >= MaxRecurrenceChain)
1523 return false;
1524
1525 MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1526 unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1527
1528 // Only interested in recurrences whose instructions have only one def, which
1529 // is a virtual register.
1530 if (MI.getDesc().getNumDefs() != 1)
1531 return false;
1532
1533 MachineOperand &DefOp = MI.getOperand(0);
1534 if (!isVirtualRegisterOperand(DefOp))
1535 return false;
1536
1537 // Check if def operand of MI is tied to any use operand. We are only
1538 // interested in the case that all the instructions in the recurrence chain
1539 // have there def operand tied with one of the use operand.
1540 unsigned TiedUseIdx;
1541 if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1542 return false;
1543
1544 if (Idx == TiedUseIdx) {
1545 RC.push_back(RecurrenceInstr(&MI));
1546 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1547 } else {
1548 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1549 unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1550 if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1551 RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1552 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1553 }
1554 }
1555
1556 return false;
1557}
1558
1559/// Phi instructions will eventually be lowered to copy instructions.
1560/// If phi is in a loop header, a recurrence may formulated around the source
1561/// and destination of the phi. For such case commuting operands of the
1562/// instructions in the recurrence may enable coalescing of the copy instruction
1563/// generated from the phi. For example, if there is a recurrence of
1564///
1565/// LoopHeader:
1566/// %1 = phi(%0, %100)
1567/// LoopLatch:
1568/// %0<def, tied1> = ADD %2<def, tied0>, %1
1569///
1570/// , the fact that %0 and %2 are in the same tied operands set makes
1571/// the coalescing of copy instruction generated from the phi in
1572/// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1573/// %2 have overlapping live range. This introduces additional move
1574/// instruction to the final assembly. However, if we commute %2 and
1575/// %1 of ADD instruction, the redundant move instruction can be
1576/// avoided.
1577bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1578 SmallSet<Register, 2> TargetRegs;
1579 for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1580 MachineOperand &MO = PHI.getOperand(Idx);
1581 assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction")(static_cast <bool> (isVirtualRegisterOperand(MO) &&
"Invalid PHI instruction") ? void (0) : __assert_fail ("isVirtualRegisterOperand(MO) && \"Invalid PHI instruction\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1581, __extension__
__PRETTY_FUNCTION__))
;
1582 TargetRegs.insert(MO.getReg());
1583 }
1584
1585 bool Changed = false;
1586 RecurrenceCycle RC;
1587 if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1588 // Commutes operands of instructions in RC if necessary so that the copy to
1589 // be generated from PHI can be coalesced.
1590 LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "Optimize recurrence chain from "
<< PHI; } } while (false)
;
1591 for (auto &RI : RC) {
1592 LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "\tInst: " << *(RI.
getMI()); } } while (false)
;
1593 auto CP = RI.getCommutePair();
1594 if (CP) {
1595 Changed = true;
1596 TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1597 (*CP).second);
1598 LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "\t\tCommuted: " <<
*(RI.getMI()); } } while (false)
;
1599 }
1600 }
1601 }
1602
1603 return Changed;
1604}
1605
1606bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1607 if (skipFunction(MF.getFunction()))
1
Assuming the condition is false
1608 return false;
1609
1610 LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"
; } } while (false)
;
2
Taking false branch
3
Assuming 'DebugFlag' is false
1611 LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "********** Function: " <<
MF.getName() << '\n'; } } while (false)
;
4
Loop condition is false. Exiting loop
5
Loop condition is false. Exiting loop
1612
1613 if (DisablePeephole)
6
Assuming the condition is false
7
Taking false branch
1614 return false;
1615
1616 TII = MF.getSubtarget().getInstrInfo();
1617 TRI = MF.getSubtarget().getRegisterInfo();
1618 MRI = &MF.getRegInfo();
1619 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
8
Assuming the condition is false
9
'?' condition is false
10
Null pointer value stored to field 'DT'
1620 MLI = &getAnalysis<MachineLoopInfo>();
1621
1622 bool Changed = false;
1623
1624 for (MachineBasicBlock &MBB : MF) {
1625 bool SeenMoveImm = false;
1626
1627 // During this forward scan, at some point it needs to answer the question
1628 // "given a pointer to an MI in the current BB, is it located before or
1629 // after the current instruction".
1630 // To perform this, the following set keeps track of the MIs already seen
1631 // during the scan, if a MI is not in the set, it is assumed to be located
1632 // after. Newly created MIs have to be inserted in the set as well.
1633 SmallPtrSet<MachineInstr*, 16> LocalMIs;
1634 SmallSet<Register, 4> ImmDefRegs;
1635 DenseMap<Register, MachineInstr *> ImmDefMIs;
1636 SmallSet<Register, 16> FoldAsLoadDefCandidates;
1637
1638 // Track when a non-allocatable physical register is copied to a virtual
1639 // register so that useless moves can be removed.
1640 //
1641 // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1642 // without any intervening re-definition of $physreg.
1643 DenseMap<Register, MachineInstr *> NAPhysToVirtMIs;
1644
1645 // Set of pairs of virtual registers and their subregs that are copied
1646 // from.
1647 DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs;
1648
1649 bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1650
1651 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
11
Loop condition is true. Entering loop body
1652 MII != MIE; ) {
1653 MachineInstr *MI = &*MII;
1654 // We may be erasing MI below, increment MII now.
1655 ++MII;
1656 LocalMIs.insert(MI);
1657
1658 // Skip debug instructions. They should not affect this peephole
1659 // optimization.
1660 if (MI->isDebugInstr())
12
Taking false branch
1661 continue;
1662
1663 if (MI->isPosition())
1664 continue;
1665
1666 if (IsLoopHeader && MI->isPHI()) {
13
Assuming 'IsLoopHeader' is false
1667 if (optimizeRecurrence(*MI)) {
1668 Changed = true;
1669 continue;
1670 }
1671 }
1672
1673 if (!MI->isCopy()) {
14
Taking true branch
1674 for (const MachineOperand &MO : MI->operands()) {
15
Assuming '__begin4' is equal to '__end4'
1675 // Visit all operands: definitions can be implicit or explicit.
1676 if (MO.isReg()) {
1677 Register Reg = MO.getReg();
1678 if (MO.isDef() && isNAPhysCopy(Reg)) {
1679 const auto &Def = NAPhysToVirtMIs.find(Reg);
1680 if (Def != NAPhysToVirtMIs.end()) {
1681 // A new definition of the non-allocatable physical register
1682 // invalidates previous copies.
1683 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "NAPhysCopy: invalidating because of "
<< *MI; } } while (false)
1684 << "NAPhysCopy: invalidating because of " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "NAPhysCopy: invalidating because of "
<< *MI; } } while (false)
;
1685 NAPhysToVirtMIs.erase(Def);
1686 }
1687 }
1688 } else if (MO.isRegMask()) {
1689 const uint32_t *RegMask = MO.getRegMask();
1690 for (auto &RegMI : NAPhysToVirtMIs) {
1691 Register Def = RegMI.first;
1692 if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1693 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "NAPhysCopy: invalidating because of "
<< *MI; } } while (false)
1694 << "NAPhysCopy: invalidating because of " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "NAPhysCopy: invalidating because of "
<< *MI; } } while (false)
;
1695 NAPhysToVirtMIs.erase(Def);
1696 }
1697 }
1698 }
1699 }
1700 }
1701
1702 if (MI->isImplicitDef() || MI->isKill())
1703 continue;
1704
1705 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
16
Assuming the condition is false
1706 // Blow away all non-allocatable physical registers knowledge since we
1707 // don't know what's correct anymore.
1708 //
1709 // FIXME: handle explicit asm clobbers.
1710 LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "NAPhysCopy: blowing away all info due to "
<< *MI; } } while (false)
1711 << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "NAPhysCopy: blowing away all info due to "
<< *MI; } } while (false)
;
1712 NAPhysToVirtMIs.clear();
1713 }
1714
1715 if ((isUncoalescableCopy(*MI) &&
1716 optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1717 (MI->isCompare() && optimizeCmpInstr(*MI)) ||
17
Assuming the condition is false
1718 (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
18
Assuming the condition is false
1719 // MI is deleted.
1720 LocalMIs.erase(MI);
1721 Changed = true;
1722 continue;
1723 }
1724
1725 if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1726 Changed = true;
1727 continue;
1728 }
1729
1730 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1731 // MI is just rewritten.
1732 Changed = true;
1733 continue;
1734 }
1735
1736 if (MI->isCopy() && (foldRedundantCopy(*MI, CopySrcMIs) ||
1737 foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1738 LocalMIs.erase(MI);
1739 LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "Deleting redundant copy: "
<< *MI << "\n"; } } while (false)
;
1740 MI->eraseFromParent();
1741 Changed = true;
1742 continue;
1743 }
1744
1745 if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
19
Taking false branch
1746 SeenMoveImm = true;
1747 } else {
1748 Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
20
Calling 'PeepholeOptimizer::optimizeExtInstr'
1749 // optimizeExtInstr might have created new instructions after MI
1750 // and before the already incremented MII. Adjust MII so that the
1751 // next iteration sees the new instructions.
1752 MII = MI;
1753 ++MII;
1754 if (SeenMoveImm)
1755 Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1756 }
1757
1758 // Check whether MI is a load candidate for folding into a later
1759 // instruction. If MI is not a candidate, check whether we can fold an
1760 // earlier load into MI.
1761 if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1762 !FoldAsLoadDefCandidates.empty()) {
1763
1764 // We visit each operand even after successfully folding a previous
1765 // one. This allows us to fold multiple loads into a single
1766 // instruction. We do assume that optimizeLoadInstr doesn't insert
1767 // foldable uses earlier in the argument list. Since we don't restart
1768 // iteration, we'd miss such cases.
1769 const MCInstrDesc &MIDesc = MI->getDesc();
1770 for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1771 ++i) {
1772 const MachineOperand &MOp = MI->getOperand(i);
1773 if (!MOp.isReg())
1774 continue;
1775 Register FoldAsLoadDefReg = MOp.getReg();
1776 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1777 // We need to fold load after optimizeCmpInstr, since
1778 // optimizeCmpInstr can enable folding by converting SUB to CMP.
1779 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1780 // we need it for markUsesInDebugValueAsUndef().
1781 Register FoldedReg = FoldAsLoadDefReg;
1782 MachineInstr *DefMI = nullptr;
1783 if (MachineInstr *FoldMI =
1784 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1785 // Update LocalMIs since we replaced MI with FoldMI and deleted
1786 // DefMI.
1787 LLVM_DEBUG(dbgs() << "Replacing: " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "Replacing: " << *MI
; } } while (false)
;
1788 LLVM_DEBUG(dbgs() << " With: " << *FoldMI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << " With: " << *FoldMI
; } } while (false)
;
1789 LocalMIs.erase(MI);
1790 LocalMIs.erase(DefMI);
1791 LocalMIs.insert(FoldMI);
1792 // Update the call site info.
1793 if (MI->shouldUpdateCallSiteInfo())
1794 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1795 MI->eraseFromParent();
1796 DefMI->eraseFromParent();
1797 MRI->markUsesInDebugValueAsUndef(FoldedReg);
1798 FoldAsLoadDefCandidates.erase(FoldedReg);
1799 ++NumLoadFold;
1800
1801 // MI is replaced with FoldMI so we can continue trying to fold
1802 Changed = true;
1803 MI = FoldMI;
1804 }
1805 }
1806 }
1807 }
1808
1809 // If we run into an instruction we can't fold across, discard
1810 // the load candidates. Note: We might be able to fold *into* this
1811 // instruction, so this needs to be after the folding logic.
1812 if (MI->isLoadFoldBarrier()) {
1813 LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("peephole-opt")) { dbgs() << "Encountered load fold barrier on "
<< *MI; } } while (false)
;
1814 FoldAsLoadDefCandidates.clear();
1815 }
1816 }
1817 }
1818
1819 return Changed;
1820}
1821
1822ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1823 assert(Def->isCopy() && "Invalid definition")(static_cast <bool> (Def->isCopy() && "Invalid definition"
) ? void (0) : __assert_fail ("Def->isCopy() && \"Invalid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1823, __extension__
__PRETTY_FUNCTION__))
;
1824 // Copy instruction are supposed to be: Def = Src.
1825 // If someone breaks this assumption, bad things will happen everywhere.
1826 // There may be implicit uses preventing the copy to be moved across
1827 // some target specific register definitions
1828 assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&(static_cast <bool> (Def->getNumOperands() - Def->
getNumImplicitOperands() == 2 && "Invalid number of operands"
) ? void (0) : __assert_fail ("Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && \"Invalid number of operands\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1829, __extension__
__PRETTY_FUNCTION__))
1829 "Invalid number of operands")(static_cast <bool> (Def->getNumOperands() - Def->
getNumImplicitOperands() == 2 && "Invalid number of operands"
) ? void (0) : __assert_fail ("Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && \"Invalid number of operands\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1829, __extension__
__PRETTY_FUNCTION__))
;
1830 assert(!Def->hasImplicitDef() && "Only implicit uses are allowed")(static_cast <bool> (!Def->hasImplicitDef() &&
"Only implicit uses are allowed") ? void (0) : __assert_fail
("!Def->hasImplicitDef() && \"Only implicit uses are allowed\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1830, __extension__
__PRETTY_FUNCTION__))
;
1831
1832 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1833 // If we look for a different subreg, it means we want a subreg of src.
1834 // Bails as we do not support composing subregs yet.
1835 return ValueTrackerResult();
1836 // Otherwise, we want the whole source.
1837 const MachineOperand &Src = Def->getOperand(1);
1838 if (Src.isUndef())
1839 return ValueTrackerResult();
1840 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1841}
1842
1843ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1844 assert(Def->isBitcast() && "Invalid definition")(static_cast <bool> (Def->isBitcast() && "Invalid definition"
) ? void (0) : __assert_fail ("Def->isBitcast() && \"Invalid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1844, __extension__
__PRETTY_FUNCTION__))
;
1845
1846 // Bail if there are effects that a plain copy will not expose.
1847 if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1848 return ValueTrackerResult();
1849
1850 // Bitcasts with more than one def are not supported.
1851 if (Def->getDesc().getNumDefs() != 1)
1852 return ValueTrackerResult();
1853 const MachineOperand DefOp = Def->getOperand(DefIdx);
1854 if (DefOp.getSubReg() != DefSubReg)
1855 // If we look for a different subreg, it means we want a subreg of the src.
1856 // Bails as we do not support composing subregs yet.
1857 return ValueTrackerResult();
1858
1859 unsigned SrcIdx = Def->getNumOperands();
1860 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1861 ++OpIdx) {
1862 const MachineOperand &MO = Def->getOperand(OpIdx);
1863 if (!MO.isReg() || !MO.getReg())
1864 continue;
1865 // Ignore dead implicit defs.
1866 if (MO.isImplicit() && MO.isDead())
1867 continue;
1868 assert(!MO.isDef() && "We should have skipped all the definitions by now")(static_cast <bool> (!MO.isDef() && "We should have skipped all the definitions by now"
) ? void (0) : __assert_fail ("!MO.isDef() && \"We should have skipped all the definitions by now\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1868, __extension__
__PRETTY_FUNCTION__))
;
1869 if (SrcIdx != EndOpIdx)
1870 // Multiple sources?
1871 return ValueTrackerResult();
1872 SrcIdx = OpIdx;
1873 }
1874
1875 // In some rare case, Def has no input, SrcIdx is out of bound,
1876 // getOperand(SrcIdx) will fail below.
1877 if (SrcIdx >= Def->getNumOperands())
1878 return ValueTrackerResult();
1879
1880 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1881 // will break the assumed guarantees for the upper bits.
1882 for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1883 if (UseMI.isSubregToReg())
1884 return ValueTrackerResult();
1885 }
1886
1887 const MachineOperand &Src = Def->getOperand(SrcIdx);
1888 if (Src.isUndef())
1889 return ValueTrackerResult();
1890 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1891}
1892
1893ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1894 assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&(static_cast <bool> ((Def->isRegSequence() || Def->
isRegSequenceLike()) && "Invalid definition") ? void (
0) : __assert_fail ("(Def->isRegSequence() || Def->isRegSequenceLike()) && \"Invalid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1895, __extension__
__PRETTY_FUNCTION__))
1895 "Invalid definition")(static_cast <bool> ((Def->isRegSequence() || Def->
isRegSequenceLike()) && "Invalid definition") ? void (
0) : __assert_fail ("(Def->isRegSequence() || Def->isRegSequenceLike()) && \"Invalid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1895, __extension__
__PRETTY_FUNCTION__))
;
1896
1897 if (Def->getOperand(DefIdx).getSubReg())
1898 // If we are composing subregs, bail out.
1899 // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1900 // This should almost never happen as the SSA property is tracked at
1901 // the register level (as opposed to the subreg level).
1902 // I.e.,
1903 // Def.sub0 =
1904 // Def.sub1 =
1905 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1906 // Def. Thus, it must not be generated.
1907 // However, some code could theoretically generates a single
1908 // Def.sub0 (i.e, not defining the other subregs) and we would
1909 // have this case.
1910 // If we can ascertain (or force) that this never happens, we could
1911 // turn that into an assertion.
1912 return ValueTrackerResult();
1913
1914 if (!TII)
1915 // We could handle the REG_SEQUENCE here, but we do not want to
1916 // duplicate the code from the generic TII.
1917 return ValueTrackerResult();
1918
1919 SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1920 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1921 return ValueTrackerResult();
1922
1923 // We are looking at:
1924 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1925 // Check if one of the operand defines the subreg we are interested in.
1926 for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1927 if (RegSeqInput.SubIdx == DefSubReg)
1928 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1929 }
1930
1931 // If the subreg we are tracking is super-defined by another subreg,
1932 // we could follow this value. However, this would require to compose
1933 // the subreg and we do not do that for now.
1934 return ValueTrackerResult();
1935}
1936
1937ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1938 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&(static_cast <bool> ((Def->isInsertSubreg() || Def->
isInsertSubregLike()) && "Invalid definition") ? void
(0) : __assert_fail ("(Def->isInsertSubreg() || Def->isInsertSubregLike()) && \"Invalid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1939, __extension__
__PRETTY_FUNCTION__))
1939 "Invalid definition")(static_cast <bool> ((Def->isInsertSubreg() || Def->
isInsertSubregLike()) && "Invalid definition") ? void
(0) : __assert_fail ("(Def->isInsertSubreg() || Def->isInsertSubregLike()) && \"Invalid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1939, __extension__
__PRETTY_FUNCTION__))
;
1940
1941 if (Def->getOperand(DefIdx).getSubReg())
1942 // If we are composing subreg, bail out.
1943 // Same remark as getNextSourceFromRegSequence.
1944 // I.e., this may be turned into an assert.
1945 return ValueTrackerResult();
1946
1947 if (!TII)
1948 // We could handle the REG_SEQUENCE here, but we do not want to
1949 // duplicate the code from the generic TII.
1950 return ValueTrackerResult();
1951
1952 RegSubRegPair BaseReg;
1953 RegSubRegPairAndIdx InsertedReg;
1954 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1955 return ValueTrackerResult();
1956
1957 // We are looking at:
1958 // Def = INSERT_SUBREG v0, v1, sub1
1959 // There are two cases:
1960 // 1. DefSubReg == sub1, get v1.
1961 // 2. DefSubReg != sub1, the value may be available through v0.
1962
1963 // #1 Check if the inserted register matches the required sub index.
1964 if (InsertedReg.SubIdx == DefSubReg) {
1965 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1966 }
1967 // #2 Otherwise, if the sub register we are looking for is not partial
1968 // defined by the inserted element, we can look through the main
1969 // register (v0).
1970 const MachineOperand &MODef = Def->getOperand(DefIdx);
1971 // If the result register (Def) and the base register (v0) do not
1972 // have the same register class or if we have to compose
1973 // subregisters, bail out.
1974 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1975 BaseReg.SubReg)
1976 return ValueTrackerResult();
1977
1978 // Get the TRI and check if the inserted sub-register overlaps with the
1979 // sub-register we are tracking.
1980 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1981 if (!TRI ||
1982 !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1983 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1984 return ValueTrackerResult();
1985 // At this point, the value is available in v0 via the same subreg
1986 // we used for Def.
1987 return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1988}
1989
1990ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1991 assert((Def->isExtractSubreg() ||(static_cast <bool> ((Def->isExtractSubreg() || Def->
isExtractSubregLike()) && "Invalid definition") ? void
(0) : __assert_fail ("(Def->isExtractSubreg() || Def->isExtractSubregLike()) && \"Invalid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1992, __extension__
__PRETTY_FUNCTION__))
1992 Def->isExtractSubregLike()) && "Invalid definition")(static_cast <bool> ((Def->isExtractSubreg() || Def->
isExtractSubregLike()) && "Invalid definition") ? void
(0) : __assert_fail ("(Def->isExtractSubreg() || Def->isExtractSubregLike()) && \"Invalid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 1992, __extension__
__PRETTY_FUNCTION__))
;
1993 // We are looking at:
1994 // Def = EXTRACT_SUBREG v0, sub0
1995
1996 // Bail if we have to compose sub registers.
1997 // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1998 if (DefSubReg)
1999 return ValueTrackerResult();
2000
2001 if (!TII)
2002 // We could handle the EXTRACT_SUBREG here, but we do not want to
2003 // duplicate the code from the generic TII.
2004 return ValueTrackerResult();
2005
2006 RegSubRegPairAndIdx ExtractSubregInputReg;
2007 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
2008 return ValueTrackerResult();
2009
2010 // Bail if we have to compose sub registers.
2011 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2012 if (ExtractSubregInputReg.SubReg)
2013 return ValueTrackerResult();
2014 // Otherwise, the value is available in the v0.sub0.
2015 return ValueTrackerResult(ExtractSubregInputReg.Reg,
2016 ExtractSubregInputReg.SubIdx);
2017}
2018
2019ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2020 assert(Def->isSubregToReg() && "Invalid definition")(static_cast <bool> (Def->isSubregToReg() &&
"Invalid definition") ? void (0) : __assert_fail ("Def->isSubregToReg() && \"Invalid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 2020, __extension__
__PRETTY_FUNCTION__))
;
2021 // We are looking at:
2022 // Def = SUBREG_TO_REG Imm, v0, sub0
2023
2024 // Bail if we have to compose sub registers.
2025 // If DefSubReg != sub0, we would have to check that all the bits
2026 // we track are included in sub0 and if yes, we would have to
2027 // determine the right subreg in v0.
2028 if (DefSubReg != Def->getOperand(3).getImm())
2029 return ValueTrackerResult();
2030 // Bail if we have to compose sub registers.
2031 // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2032 if (Def->getOperand(2).getSubReg())
2033 return ValueTrackerResult();
2034
2035 return ValueTrackerResult(Def->getOperand(2).getReg(),
2036 Def->getOperand(3).getImm());
2037}
2038
2039/// Explore each PHI incoming operand and return its sources.
2040ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2041 assert(Def->isPHI() && "Invalid definition")(static_cast <bool> (Def->isPHI() && "Invalid definition"
) ? void (0) : __assert_fail ("Def->isPHI() && \"Invalid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 2041, __extension__
__PRETTY_FUNCTION__))
;
2042 ValueTrackerResult Res;
2043
2044 // If we look for a different subreg, bail as we do not support composing
2045 // subregs yet.
2046 if (Def->getOperand(0).getSubReg() != DefSubReg)
2047 return ValueTrackerResult();
2048
2049 // Return all register sources for PHI instructions.
2050 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2051 const MachineOperand &MO = Def->getOperand(i);
2052 assert(MO.isReg() && "Invalid PHI instruction")(static_cast <bool> (MO.isReg() && "Invalid PHI instruction"
) ? void (0) : __assert_fail ("MO.isReg() && \"Invalid PHI instruction\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 2052, __extension__
__PRETTY_FUNCTION__))
;
2053 // We have no code to deal with undef operands. They shouldn't happen in
2054 // normal programs anyway.
2055 if (MO.isUndef())
2056 return ValueTrackerResult();
2057 Res.addSource(MO.getReg(), MO.getSubReg());
2058 }
2059
2060 return Res;
2061}
2062
2063ValueTrackerResult ValueTracker::getNextSourceImpl() {
2064 assert(Def && "This method needs a valid definition")(static_cast <bool> (Def && "This method needs a valid definition"
) ? void (0) : __assert_fail ("Def && \"This method needs a valid definition\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 2064, __extension__
__PRETTY_FUNCTION__))
;
2065
2066 assert(((Def->getOperand(DefIdx).isDef() &&(static_cast <bool> (((Def->getOperand(DefIdx).isDef
() && (DefIdx < Def->getDesc().getNumDefs() || Def
->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit
()) && "Invalid DefIdx") ? void (0) : __assert_fail (
"((Def->getOperand(DefIdx).isDef() && (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit()) && \"Invalid DefIdx\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 2070, __extension__
__PRETTY_FUNCTION__))
2067 (DefIdx < Def->getDesc().getNumDefs() ||(static_cast <bool> (((Def->getOperand(DefIdx).isDef
() && (DefIdx < Def->getDesc().getNumDefs() || Def
->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit
()) && "Invalid DefIdx") ? void (0) : __assert_fail (
"((Def->getOperand(DefIdx).isDef() && (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit()) && \"Invalid DefIdx\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 2070, __extension__
__PRETTY_FUNCTION__))
2068 Def->getDesc().isVariadic())) ||(static_cast <bool> (((Def->getOperand(DefIdx).isDef
() && (DefIdx < Def->getDesc().getNumDefs() || Def
->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit
()) && "Invalid DefIdx") ? void (0) : __assert_fail (
"((Def->getOperand(DefIdx).isDef() && (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit()) && \"Invalid DefIdx\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 2070, __extension__
__PRETTY_FUNCTION__))
2069 Def->getOperand(DefIdx).isImplicit()) &&(static_cast <bool> (((Def->getOperand(DefIdx).isDef
() && (DefIdx < Def->getDesc().getNumDefs() || Def
->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit
()) && "Invalid DefIdx") ? void (0) : __assert_fail (
"((Def->getOperand(DefIdx).isDef() && (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit()) && \"Invalid DefIdx\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 2070, __extension__
__PRETTY_FUNCTION__))
2070 "Invalid DefIdx")(static_cast <bool> (((Def->getOperand(DefIdx).isDef
() && (DefIdx < Def->getDesc().getNumDefs() || Def
->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit
()) && "Invalid DefIdx") ? void (0) : __assert_fail (
"((Def->getOperand(DefIdx).isDef() && (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit()) && \"Invalid DefIdx\""
, "llvm/lib/CodeGen/PeepholeOptimizer.cpp", 2070, __extension__
__PRETTY_FUNCTION__))
;
2071 if (Def->isCopy())
2072 return getNextSourceFromCopy();
2073 if (Def->isBitcast())
2074 return getNextSourceFromBitcast();
2075 // All the remaining cases involve "complex" instructions.
2076 // Bail if we did not ask for the advanced tracking.
2077 if (DisableAdvCopyOpt)
2078 return ValueTrackerResult();
2079 if (Def->isRegSequence() || Def->isRegSequenceLike())
2080 return getNextSourceFromRegSequence();
2081 if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2082 return getNextSourceFromInsertSubreg();
2083 if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2084 return getNextSourceFromExtractSubreg();
2085 if (Def->isSubregToReg())
2086 return getNextSourceFromSubregToReg();
2087 if (Def->isPHI())
2088 return getNextSourceFromPHI();
2089 return ValueTrackerResult();
2090}
2091
2092ValueTrackerResult ValueTracker::getNextSource() {
2093 // If we reach a point where we cannot move up in the use-def chain,
2094 // there is nothing we can get.
2095 if (!Def)
2096 return ValueTrackerResult();
2097
2098 ValueTrackerResult Res = getNextSourceImpl();
2099 if (Res.isValid()) {
2100 // Update definition, definition index, and subregister for the
2101 // next call of getNextSource.
2102 // Update the current register.
2103 bool OneRegSrc = Res.getNumSources() == 1;
2104 if (OneRegSrc)
2105 Reg = Res.getSrcReg(0);
2106 // Update the result before moving up in the use-def chain
2107 // with the instruction containing the last found sources.
2108 Res.setInst(Def);
2109
2110 // If we can still move up in the use-def chain, move to the next
2111 // definition.
2112 if (!Register::isPhysicalRegister(Reg) && OneRegSrc) {
2113 MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2114 if (DI != MRI.def_end()) {
2115 Def = DI->getParent();
2116 DefIdx = DI.getOperandNo();
2117 DefSubReg = Res.getSrcSubReg(0);
2118 } else {
2119 Def = nullptr;
2120 }
2121 return Res;
2122 }
2123 }
2124 // If we end up here, this means we will not be able to find another source
2125 // for the next iteration. Make sure any new call to getNextSource bails out
2126 // early by cutting the use-def chain.
2127 Def = nullptr;
2128 return Res;
2129}