Bug Summary

File:build/source/llvm/include/llvm/ADT/PointerIntPair.h
Warning:line 177, column 52
The result of the left shift is undefined due to shifting '0' by '2', which is unrepresentable in the unsigned version of the return type 'intptr_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name LoopAccessAnalysis.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I lib/Analysis -I /build/source/llvm/lib/Analysis -I include -I /build/source/llvm/include -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1675721604 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-02-07-030702-17298-1 -x c++ /build/source/llvm/lib/Analysis/LoopAccessAnalysis.cpp

/build/source/llvm/lib/Analysis/LoopAccessAnalysis.cpp

1//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The implementation for the loop memory dependence that was originally
10// developed for the loop vectorizer.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/LoopAccessAnalysis.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DepthFirstIterator.h"
18#include "llvm/ADT/EquivalenceClasses.h"
19#include "llvm/ADT/PointerIntPair.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/AliasSetTracker.h"
28#include "llvm/Analysis/LoopAnalysisManager.h"
29#include "llvm/Analysis/LoopInfo.h"
30#include "llvm/Analysis/LoopIterator.h"
31#include "llvm/Analysis/MemoryLocation.h"
32#include "llvm/Analysis/OptimizationRemarkEmitter.h"
33#include "llvm/Analysis/ScalarEvolution.h"
34#include "llvm/Analysis/ScalarEvolutionExpressions.h"
35#include "llvm/Analysis/TargetLibraryInfo.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/Analysis/VectorUtils.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/DiagnosticInfo.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/InstrTypes.h"
47#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/Operator.h"
50#include "llvm/IR/PassManager.h"
51#include "llvm/IR/PatternMatch.h"
52#include "llvm/IR/Type.h"
53#include "llvm/IR/Value.h"
54#include "llvm/IR/ValueHandle.h"
55#include "llvm/InitializePasses.h"
56#include "llvm/Pass.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/CommandLine.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/raw_ostream.h"
62#include <algorithm>
63#include <cassert>
64#include <cstdint>
65#include <iterator>
66#include <utility>
67#include <vector>
68
69using namespace llvm;
70using namespace llvm::PatternMatch;
71
72#define DEBUG_TYPE"loop-accesses" "loop-accesses"
73
74static cl::opt<unsigned, true>
75VectorizationFactor("force-vector-width", cl::Hidden,
76 cl::desc("Sets the SIMD width. Zero is autoselect."),
77 cl::location(VectorizerParams::VectorizationFactor));
78unsigned VectorizerParams::VectorizationFactor;
79
80static cl::opt<unsigned, true>
81VectorizationInterleave("force-vector-interleave", cl::Hidden,
82 cl::desc("Sets the vectorization interleave count. "
83 "Zero is autoselect."),
84 cl::location(
85 VectorizerParams::VectorizationInterleave));
86unsigned VectorizerParams::VectorizationInterleave;
87
88static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89 "runtime-memory-check-threshold", cl::Hidden,
90 cl::desc("When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94
95/// The maximum iterations used to merge memory checks
96static cl::opt<unsigned> MemoryCheckMergeThreshold(
97 "memory-check-merge-threshold", cl::Hidden,
98 cl::desc("Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
100 cl::init(100));
101
102/// Maximum SIMD width.
103const unsigned VectorizerParams::MaxVectorWidth = 64;
104
105/// We collect dependences up to this threshold.
106static cl::opt<unsigned>
107 MaxDependences("max-dependences", cl::Hidden,
108 cl::desc("Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
110 cl::init(100));
111
112/// This enables versioning on the strides of symbolically striding memory
113/// accesses in code like the following.
114/// for (i = 0; i < N; ++i)
115/// A[i * Stride1] += B[i * Stride2] ...
116///
117/// Will be roughly translated to
118/// if (Stride1 == 1 && Stride2 == 1) {
119/// for (i = 0; i < N; i+=4)
120/// A[i:i+3] += ...
121/// } else
122/// ...
123static cl::opt<bool> EnableMemAccessVersioning(
124 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125 cl::desc("Enable symbolic stride memory access versioning"));
126
127/// Enable store-to-load forwarding conflict detection. This option can
128/// be disabled for correctness testing.
129static cl::opt<bool> EnableForwardingConflictDetection(
130 "store-to-load-forwarding-conflict-detection", cl::Hidden,
131 cl::desc("Enable conflict detection in loop-access analysis"),
132 cl::init(true));
133
134static cl::opt<unsigned> MaxForkedSCEVDepth(
135 "max-forked-scev-depth", cl::Hidden,
136 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
137 cl::init(5));
138
139bool VectorizerParams::isInterleaveForced() {
140 return ::VectorizationInterleave.getNumOccurrences() > 0;
141}
142
143Value *llvm::stripIntegerCast(Value *V) {
144 if (auto *CI = dyn_cast<CastInst>(V))
145 if (CI->getOperand(0)->getType()->isIntegerTy())
146 return CI->getOperand(0);
147 return V;
148}
149
150const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
151 const ValueToValueMap &PtrToStride,
152 Value *Ptr) {
153 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
154
155 // If there is an entry in the map return the SCEV of the pointer with the
156 // symbolic stride replaced by one.
157 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr);
158 if (SI == PtrToStride.end())
159 // For a non-symbolic stride, just return the original expression.
160 return OrigSCEV;
161
162 Value *StrideVal = stripIntegerCast(SI->second);
163
164 ScalarEvolution *SE = PSE.getSE();
165 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
166 const auto *CT =
167 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
168
169 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
170 auto *Expr = PSE.getSCEV(Ptr);
171
172 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEVdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Replacing SCEV: " <<
*OrigSCEV << " by: " << *Expr << "\n"; } }
while (false)
173 << " by: " << *Expr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Replacing SCEV: " <<
*OrigSCEV << " by: " << *Expr << "\n"; } }
while (false)
;
174 return Expr;
175}
176
177RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
178 unsigned Index, RuntimePointerChecking &RtCheck)
179 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
180 AddressSpace(RtCheck.Pointers[Index]
181 .PointerValue->getType()
182 ->getPointerAddressSpace()),
183 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
184 Members.push_back(Index);
185}
186
187/// Calculate Start and End points of memory access.
188/// Let's assume A is the first access and B is a memory access on N-th loop
189/// iteration. Then B is calculated as:
190/// B = A + Step*N .
191/// Step value may be positive or negative.
192/// N is a calculated back-edge taken count:
193/// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
194/// Start and End points are calculated in the following way:
195/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
196/// where SizeOfElt is the size of single memory access in bytes.
197///
198/// There is no conflict when the intervals are disjoint:
199/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
200void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
201 Type *AccessTy, bool WritePtr,
202 unsigned DepSetId, unsigned ASId,
203 PredicatedScalarEvolution &PSE,
204 bool NeedsFreeze) {
205 ScalarEvolution *SE = PSE.getSE();
206
207 const SCEV *ScStart;
208 const SCEV *ScEnd;
209
210 if (SE->isLoopInvariant(PtrExpr, Lp)) {
211 ScStart = ScEnd = PtrExpr;
212 } else {
213 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr);
214 assert(AR && "Invalid addrec expression")(static_cast <bool> (AR && "Invalid addrec expression"
) ? void (0) : __assert_fail ("AR && \"Invalid addrec expression\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 214, __extension__
__PRETTY_FUNCTION__))
;
215 const SCEV *Ex = PSE.getBackedgeTakenCount();
216
217 ScStart = AR->getStart();
218 ScEnd = AR->evaluateAtIteration(Ex, *SE);
219 const SCEV *Step = AR->getStepRecurrence(*SE);
220
221 // For expressions with negative step, the upper bound is ScStart and the
222 // lower bound is ScEnd.
223 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
224 if (CStep->getValue()->isNegative())
225 std::swap(ScStart, ScEnd);
226 } else {
227 // Fallback case: the step is not constant, but we can still
228 // get the upper and lower bounds of the interval by using min/max
229 // expressions.
230 ScStart = SE->getUMinExpr(ScStart, ScEnd);
231 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
232 }
233 }
234 // Add the size of the pointed element to ScEnd.
235 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
236 Type *IdxTy = DL.getIndexType(Ptr->getType());
237 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
238 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
239
240 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
241 NeedsFreeze);
242}
243
244void RuntimePointerChecking::tryToCreateDiffCheck(
245 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
246 if (!CanUseDiffCheck)
247 return;
248
249 // If either group contains multiple different pointers, bail out.
250 // TODO: Support multiple pointers by using the minimum or maximum pointer,
251 // depending on src & sink.
252 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) {
253 CanUseDiffCheck = false;
254 return;
255 }
256
257 PointerInfo *Src = &Pointers[CGI.Members[0]];
258 PointerInfo *Sink = &Pointers[CGJ.Members[0]];
259
260 // If either pointer is read and written, multiple checks may be needed. Bail
261 // out.
262 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
263 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) {
264 CanUseDiffCheck = false;
265 return;
266 }
267
268 ArrayRef<unsigned> AccSrc =
269 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
270 ArrayRef<unsigned> AccSink =
271 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
272 // If either pointer is accessed multiple times, there may not be a clear
273 // src/sink relation. Bail out for now.
274 if (AccSrc.size() != 1 || AccSink.size() != 1) {
275 CanUseDiffCheck = false;
276 return;
277 }
278 // If the sink is accessed before src, swap src/sink.
279 if (AccSink[0] < AccSrc[0])
280 std::swap(Src, Sink);
281
282 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
283 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
284 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
285 SinkAR->getLoop() != DC.getInnermostLoop()) {
286 CanUseDiffCheck = false;
287 return;
288 }
289
290 SmallVector<Instruction *, 4> SrcInsts =
291 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
292 SmallVector<Instruction *, 4> SinkInsts =
293 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
294 Type *SrcTy = getLoadStoreType(SrcInsts[0]);
295 Type *DstTy = getLoadStoreType(SinkInsts[0]);
296 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) {
297 CanUseDiffCheck = false;
298 return;
299 }
300 const DataLayout &DL =
301 SinkAR->getLoop()->getHeader()->getModule()->getDataLayout();
302 unsigned AllocSize =
303 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
304
305 // Only matching constant steps matching the AllocSize are supported at the
306 // moment. This simplifies the difference computation. Can be extended in the
307 // future.
308 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
309 if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
310 Step->getAPInt().abs() != AllocSize) {
311 CanUseDiffCheck = false;
312 return;
313 }
314
315 IntegerType *IntTy =
316 IntegerType::get(Src->PointerValue->getContext(),
317 DL.getPointerSizeInBits(CGI.AddressSpace));
318
319 // When counting down, the dependence distance needs to be swapped.
320 if (Step->getValue()->isNegative())
321 std::swap(SinkAR, SrcAR);
322
323 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
324 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
325 if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
326 isa<SCEVCouldNotCompute>(SrcStartInt)) {
327 CanUseDiffCheck = false;
328 return;
329 }
330 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
331 Src->NeedsFreeze || Sink->NeedsFreeze);
332}
333
334SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
335 SmallVector<RuntimePointerCheck, 4> Checks;
336
337 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
338 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
339 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
340 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
341
342 if (needsChecking(CGI, CGJ)) {
343 tryToCreateDiffCheck(CGI, CGJ);
344 Checks.push_back(std::make_pair(&CGI, &CGJ));
345 }
346 }
347 }
348 return Checks;
349}
350
351void RuntimePointerChecking::generateChecks(
352 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
353 assert(Checks.empty() && "Checks is not empty")(static_cast <bool> (Checks.empty() && "Checks is not empty"
) ? void (0) : __assert_fail ("Checks.empty() && \"Checks is not empty\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 353, __extension__
__PRETTY_FUNCTION__))
;
354 groupChecks(DepCands, UseDependencies);
355 Checks = generateChecks();
356}
357
358bool RuntimePointerChecking::needsChecking(
359 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
360 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
361 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
362 if (needsChecking(M.Members[I], N.Members[J]))
363 return true;
364 return false;
365}
366
367/// Compare \p I and \p J and return the minimum.
368/// Return nullptr in case we couldn't find an answer.
369static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
370 ScalarEvolution *SE) {
371 const SCEV *Diff = SE->getMinusSCEV(J, I);
372 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
373
374 if (!C)
375 return nullptr;
376 if (C->getValue()->isNegative())
377 return J;
378 return I;
379}
380
381bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
382 RuntimePointerChecking &RtCheck) {
383 return addPointer(
384 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
385 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
386 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
387}
388
389bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
390 const SCEV *End, unsigned AS,
391 bool NeedsFreeze,
392 ScalarEvolution &SE) {
393 assert(AddressSpace == AS &&(static_cast <bool> (AddressSpace == AS && "all pointers in a checking group must be in the same address space"
) ? void (0) : __assert_fail ("AddressSpace == AS && \"all pointers in a checking group must be in the same address space\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 394, __extension__
__PRETTY_FUNCTION__))
394 "all pointers in a checking group must be in the same address space")(static_cast <bool> (AddressSpace == AS && "all pointers in a checking group must be in the same address space"
) ? void (0) : __assert_fail ("AddressSpace == AS && \"all pointers in a checking group must be in the same address space\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 394, __extension__
__PRETTY_FUNCTION__))
;
395
396 // Compare the starts and ends with the known minimum and maximum
397 // of this set. We need to know how we compare against the min/max
398 // of the set in order to be able to emit memchecks.
399 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
400 if (!Min0)
401 return false;
402
403 const SCEV *Min1 = getMinFromExprs(End, High, &SE);
404 if (!Min1)
405 return false;
406
407 // Update the low bound expression if we've found a new min value.
408 if (Min0 == Start)
409 Low = Start;
410
411 // Update the high bound expression if we've found a new max value.
412 if (Min1 != End)
413 High = End;
414
415 Members.push_back(Index);
416 this->NeedsFreeze |= NeedsFreeze;
417 return true;
418}
419
420void RuntimePointerChecking::groupChecks(
421 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
422 // We build the groups from dependency candidates equivalence classes
423 // because:
424 // - We know that pointers in the same equivalence class share
425 // the same underlying object and therefore there is a chance
426 // that we can compare pointers
427 // - We wouldn't be able to merge two pointers for which we need
428 // to emit a memcheck. The classes in DepCands are already
429 // conveniently built such that no two pointers in the same
430 // class need checking against each other.
431
432 // We use the following (greedy) algorithm to construct the groups
433 // For every pointer in the equivalence class:
434 // For each existing group:
435 // - if the difference between this pointer and the min/max bounds
436 // of the group is a constant, then make the pointer part of the
437 // group and update the min/max bounds of that group as required.
438
439 CheckingGroups.clear();
440
441 // If we need to check two pointers to the same underlying object
442 // with a non-constant difference, we shouldn't perform any pointer
443 // grouping with those pointers. This is because we can easily get
444 // into cases where the resulting check would return false, even when
445 // the accesses are safe.
446 //
447 // The following example shows this:
448 // for (i = 0; i < 1000; ++i)
449 // a[5000 + i * m] = a[i] + a[i + 9000]
450 //
451 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
452 // (0, 10000) which is always false. However, if m is 1, there is no
453 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
454 // us to perform an accurate check in this case.
455 //
456 // The above case requires that we have an UnknownDependence between
457 // accesses to the same underlying object. This cannot happen unless
458 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
459 // is also false. In this case we will use the fallback path and create
460 // separate checking groups for all pointers.
461
462 // If we don't have the dependency partitions, construct a new
463 // checking pointer group for each pointer. This is also required
464 // for correctness, because in this case we can have checking between
465 // pointers to the same underlying object.
466 if (!UseDependencies) {
467 for (unsigned I = 0; I < Pointers.size(); ++I)
468 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
469 return;
470 }
471
472 unsigned TotalComparisons = 0;
473
474 DenseMap<Value *, SmallVector<unsigned>> PositionMap;
475 for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
476 auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}});
477 Iter.first->second.push_back(Index);
478 }
479
480 // We need to keep track of what pointers we've already seen so we
481 // don't process them twice.
482 SmallSet<unsigned, 2> Seen;
483
484 // Go through all equivalence classes, get the "pointer check groups"
485 // and add them to the overall solution. We use the order in which accesses
486 // appear in 'Pointers' to enforce determinism.
487 for (unsigned I = 0; I < Pointers.size(); ++I) {
488 // We've seen this pointer before, and therefore already processed
489 // its equivalence class.
490 if (Seen.count(I))
491 continue;
492
493 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
494 Pointers[I].IsWritePtr);
495
496 SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
497 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
498
499 // Because DepCands is constructed by visiting accesses in the order in
500 // which they appear in alias sets (which is deterministic) and the
501 // iteration order within an equivalence class member is only dependent on
502 // the order in which unions and insertions are performed on the
503 // equivalence class, the iteration order is deterministic.
504 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
505 MI != ME; ++MI) {
506 auto PointerI = PositionMap.find(MI->getPointer());
507 assert(PointerI != PositionMap.end() &&(static_cast <bool> (PointerI != PositionMap.end() &&
"pointer in equivalence class not found in PositionMap") ? void
(0) : __assert_fail ("PointerI != PositionMap.end() && \"pointer in equivalence class not found in PositionMap\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 508, __extension__
__PRETTY_FUNCTION__))
508 "pointer in equivalence class not found in PositionMap")(static_cast <bool> (PointerI != PositionMap.end() &&
"pointer in equivalence class not found in PositionMap") ? void
(0) : __assert_fail ("PointerI != PositionMap.end() && \"pointer in equivalence class not found in PositionMap\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 508, __extension__
__PRETTY_FUNCTION__))
;
509 for (unsigned Pointer : PointerI->second) {
510 bool Merged = false;
511 // Mark this pointer as seen.
512 Seen.insert(Pointer);
513
514 // Go through all the existing sets and see if we can find one
515 // which can include this pointer.
516 for (RuntimeCheckingPtrGroup &Group : Groups) {
517 // Don't perform more than a certain amount of comparisons.
518 // This should limit the cost of grouping the pointers to something
519 // reasonable. If we do end up hitting this threshold, the algorithm
520 // will create separate groups for all remaining pointers.
521 if (TotalComparisons > MemoryCheckMergeThreshold)
522 break;
523
524 TotalComparisons++;
525
526 if (Group.addPointer(Pointer, *this)) {
527 Merged = true;
528 break;
529 }
530 }
531
532 if (!Merged)
533 // We couldn't add this pointer to any existing set or the threshold
534 // for the number of comparisons has been reached. Create a new group
535 // to hold the current pointer.
536 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
537 }
538 }
539
540 // We've computed the grouped checks for this partition.
541 // Save the results and continue with the next one.
542 llvm::copy(Groups, std::back_inserter(CheckingGroups));
543 }
544}
545
546bool RuntimePointerChecking::arePointersInSamePartition(
547 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
548 unsigned PtrIdx2) {
549 return (PtrToPartition[PtrIdx1] != -1 &&
550 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
551}
552
553bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
554 const PointerInfo &PointerI = Pointers[I];
555 const PointerInfo &PointerJ = Pointers[J];
556
557 // No need to check if two readonly pointers intersect.
558 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
559 return false;
560
561 // Only need to check pointers between two different dependency sets.
562 if (PointerI.DependencySetId == PointerJ.DependencySetId)
563 return false;
564
565 // Only need to check pointers in the same alias set.
566 if (PointerI.AliasSetId != PointerJ.AliasSetId)
567 return false;
568
569 return true;
570}
571
572void RuntimePointerChecking::printChecks(
573 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
574 unsigned Depth) const {
575 unsigned N = 0;
576 for (const auto &Check : Checks) {
577 const auto &First = Check.first->Members, &Second = Check.second->Members;
578
579 OS.indent(Depth) << "Check " << N++ << ":\n";
580
581 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
582 for (unsigned K = 0; K < First.size(); ++K)
583 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
584
585 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
586 for (unsigned K = 0; K < Second.size(); ++K)
587 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
588 }
589}
590
591void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
592
593 OS.indent(Depth) << "Run-time memory checks:\n";
594 printChecks(OS, Checks, Depth);
595
596 OS.indent(Depth) << "Grouped accesses:\n";
597 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
598 const auto &CG = CheckingGroups[I];
599
600 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
601 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
602 << ")\n";
603 for (unsigned J = 0; J < CG.Members.size(); ++J) {
604 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
605 << "\n";
606 }
607 }
608}
609
610namespace {
611
612/// Analyses memory accesses in a loop.
613///
614/// Checks whether run time pointer checks are needed and builds sets for data
615/// dependence checking.
616class AccessAnalysis {
617public:
618 /// Read or write access location.
619 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
620 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
621
622 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
623 MemoryDepChecker::DepCandidates &DA,
624 PredicatedScalarEvolution &PSE)
625 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE) {
626 // We're analyzing dependences across loop iterations.
627 BAA.enableCrossIterationMode();
628 }
629
630 /// Register a load and whether it is only read from.
631 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
632 Value *Ptr = const_cast<Value*>(Loc.Ptr);
633 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
634 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
635 if (IsReadOnly)
636 ReadOnlyPtr.insert(Ptr);
637 }
638
639 /// Register a store.
640 void addStore(MemoryLocation &Loc, Type *AccessTy) {
641 Value *Ptr = const_cast<Value*>(Loc.Ptr);
642 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
643 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
644 }
645
646 /// Check if we can emit a run-time no-alias check for \p Access.
647 ///
648 /// Returns true if we can emit a run-time no alias check for \p Access.
649 /// If we can check this access, this also adds it to a dependence set and
650 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
651 /// we will attempt to use additional run-time checks in order to get
652 /// the bounds of the pointer.
653 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
654 MemAccessInfo Access, Type *AccessTy,
655 const ValueToValueMap &Strides,
656 DenseMap<Value *, unsigned> &DepSetId,
657 Loop *TheLoop, unsigned &RunningDepId,
658 unsigned ASId, bool ShouldCheckStride, bool Assume);
659
660 /// Check whether we can check the pointers at runtime for
661 /// non-intersection.
662 ///
663 /// Returns true if we need no check or if we do and we can generate them
664 /// (i.e. the pointers have computable bounds).
665 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
666 Loop *TheLoop, const ValueToValueMap &Strides,
667 Value *&UncomputablePtr, bool ShouldCheckWrap = false);
668
669 /// Goes over all memory accesses, checks whether a RT check is needed
670 /// and builds sets of dependent accesses.
671 void buildDependenceSets() {
672 processMemAccesses();
10
Calling 'AccessAnalysis::processMemAccesses'
673 }
674
675 /// Initial processing of memory accesses determined that we need to
676 /// perform dependency checking.
677 ///
678 /// Note that this can later be cleared if we retry memcheck analysis without
679 /// dependency checking (i.e. FoundNonConstantDistanceDependence).
680 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
681
682 /// We decided that no dependence analysis would be used. Reset the state.
683 void resetDepChecks(MemoryDepChecker &DepChecker) {
684 CheckDeps.clear();
685 DepChecker.clearDependences();
686 }
687
688 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
689
690private:
691 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
692
693 /// Go over all memory access and check whether runtime pointer checks
694 /// are needed and build sets of dependency check candidates.
695 void processMemAccesses();
696
697 /// Map of all accesses. Values are the types used to access memory pointed to
698 /// by the pointer.
699 PtrAccessMap Accesses;
700
701 /// The loop being checked.
702 const Loop *TheLoop;
703
704 /// List of accesses that need a further dependence check.
705 MemAccessInfoList CheckDeps;
706
707 /// Set of pointers that are read only.
708 SmallPtrSet<Value*, 16> ReadOnlyPtr;
709
710 /// Batched alias analysis results.
711 BatchAAResults BAA;
712
713 /// An alias set tracker to partition the access set by underlying object and
714 //intrinsic property (such as TBAA metadata).
715 AliasSetTracker AST;
716
717 LoopInfo *LI;
718
719 /// Sets of potentially dependent accesses - members of one set share an
720 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
721 /// dependence check.
722 MemoryDepChecker::DepCandidates &DepCands;
723
724 /// Initial processing of memory accesses determined that we may need
725 /// to add memchecks. Perform the analysis to determine the necessary checks.
726 ///
727 /// Note that, this is different from isDependencyCheckNeeded. When we retry
728 /// memcheck analysis without dependency checking
729 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
730 /// cleared while this remains set if we have potentially dependent accesses.
731 bool IsRTCheckAnalysisNeeded = false;
732
733 /// The SCEV predicate containing all the SCEV-related assumptions.
734 PredicatedScalarEvolution &PSE;
735};
736
737} // end anonymous namespace
738
739/// Check whether a pointer can participate in a runtime bounds check.
740/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
741/// by adding run-time checks (overflow checks) if necessary.
742static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
743 const SCEV *PtrScev, Loop *L, bool Assume) {
744 // The bounds for loop-invariant pointer is trivial.
745 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
746 return true;
747
748 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
749
750 if (!AR && Assume)
751 AR = PSE.getAsAddRec(Ptr);
752
753 if (!AR)
754 return false;
755
756 return AR->isAffine();
757}
758
759/// Check whether a pointer address cannot wrap.
760static bool isNoWrap(PredicatedScalarEvolution &PSE,
761 const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy,
762 Loop *L) {
763 const SCEV *PtrScev = PSE.getSCEV(Ptr);
764 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
765 return true;
766
767 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
768 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
769 return true;
770
771 return false;
772}
773
774static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
775 function_ref<void(Value *)> AddPointer) {
776 SmallPtrSet<Value *, 8> Visited;
777 SmallVector<Value *> WorkList;
778 WorkList.push_back(StartPtr);
779
780 while (!WorkList.empty()) {
781 Value *Ptr = WorkList.pop_back_val();
782 if (!Visited.insert(Ptr).second)
783 continue;
784 auto *PN = dyn_cast<PHINode>(Ptr);
785 // SCEV does not look through non-header PHIs inside the loop. Such phis
786 // can be analyzed by adding separate accesses for each incoming pointer
787 // value.
788 if (PN && InnermostLoop.contains(PN->getParent()) &&
789 PN->getParent() != InnermostLoop.getHeader()) {
790 for (const Use &Inc : PN->incoming_values())
791 WorkList.push_back(Inc);
792 } else
793 AddPointer(Ptr);
794 }
795}
796
797// Walk back through the IR for a pointer, looking for a select like the
798// following:
799//
800// %offset = select i1 %cmp, i64 %a, i64 %b
801// %addr = getelementptr double, double* %base, i64 %offset
802// %ld = load double, double* %addr, align 8
803//
804// We won't be able to form a single SCEVAddRecExpr from this since the
805// address for each loop iteration depends on %cmp. We could potentially
806// produce multiple valid SCEVAddRecExprs, though, and check all of them for
807// memory safety/aliasing if needed.
808//
809// If we encounter some IR we don't yet handle, or something obviously fine
810// like a constant, then we just add the SCEV for that term to the list passed
811// in by the caller. If we have a node that may potentially yield a valid
812// SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
813// ourselves before adding to the list.
814static void findForkedSCEVs(
815 ScalarEvolution *SE, const Loop *L, Value *Ptr,
816 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
817 unsigned Depth) {
818 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
819 // we've exceeded our limit on recursion, just return whatever we have
820 // regardless of whether it can be used for a forked pointer or not, along
821 // with an indication of whether it might be a poison or undef value.
822 const SCEV *Scev = SE->getSCEV(Ptr);
823 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
824 !isa<Instruction>(Ptr) || Depth == 0) {
825 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
826 return;
827 }
828
829 Depth--;
830
831 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
832 return get<1>(S);
833 };
834
835 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
836 switch (Opcode) {
837 case Instruction::Add:
838 return SE->getAddExpr(L, R);
839 case Instruction::Sub:
840 return SE->getMinusSCEV(L, R);
841 default:
842 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs")::llvm::llvm_unreachable_internal("Unexpected binary operator when walking ForkedPtrs"
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 842)
;
843 }
844 };
845
846 Instruction *I = cast<Instruction>(Ptr);
847 unsigned Opcode = I->getOpcode();
848 switch (Opcode) {
849 case Instruction::GetElementPtr: {
850 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
851 Type *SourceTy = GEP->getSourceElementType();
852 // We only handle base + single offset GEPs here for now.
853 // Not dealing with preexisting gathers yet, so no vectors.
854 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
855 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
856 break;
857 }
858 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
859 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
860 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
861 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
862
863 // See if we need to freeze our fork...
864 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
865 any_of(OffsetScevs, UndefPoisonCheck);
866
867 // Check that we only have a single fork, on either the base or the offset.
868 // Copy the SCEV across for the one without a fork in order to generate
869 // the full SCEV for both sides of the GEP.
870 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
871 BaseScevs.push_back(BaseScevs[0]);
872 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
873 OffsetScevs.push_back(OffsetScevs[0]);
874 else {
875 ScevList.emplace_back(Scev, NeedsFreeze);
876 break;
877 }
878
879 // Find the pointer type we need to extend to.
880 Type *IntPtrTy = SE->getEffectiveSCEVType(
881 SE->getSCEV(GEP->getPointerOperand())->getType());
882
883 // Find the size of the type being pointed to. We only have a single
884 // index term (guarded above) so we don't need to index into arrays or
885 // structures, just get the size of the scalar value.
886 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
887
888 // Scale up the offsets by the size of the type, then add to the bases.
889 const SCEV *Scaled1 = SE->getMulExpr(
890 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
891 const SCEV *Scaled2 = SE->getMulExpr(
892 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
893 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
894 NeedsFreeze);
895 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
896 NeedsFreeze);
897 break;
898 }
899 case Instruction::Select: {
900 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
901 // A select means we've found a forked pointer, but we currently only
902 // support a single select per pointer so if there's another behind this
903 // then we just bail out and return the generic SCEV.
904 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
905 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
906 if (ChildScevs.size() == 2) {
907 ScevList.push_back(ChildScevs[0]);
908 ScevList.push_back(ChildScevs[1]);
909 } else
910 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
911 break;
912 }
913 case Instruction::Add:
914 case Instruction::Sub: {
915 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
916 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
917 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
918 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
919
920 // See if we need to freeze our fork...
921 bool NeedsFreeze =
922 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
923
924 // Check that we only have a single fork, on either the left or right side.
925 // Copy the SCEV across for the one without a fork in order to generate
926 // the full SCEV for both sides of the BinOp.
927 if (LScevs.size() == 2 && RScevs.size() == 1)
928 RScevs.push_back(RScevs[0]);
929 else if (RScevs.size() == 2 && LScevs.size() == 1)
930 LScevs.push_back(LScevs[0]);
931 else {
932 ScevList.emplace_back(Scev, NeedsFreeze);
933 break;
934 }
935
936 ScevList.emplace_back(
937 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
938 NeedsFreeze);
939 ScevList.emplace_back(
940 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
941 NeedsFreeze);
942 break;
943 }
944 default:
945 // Just return the current SCEV if we haven't handled the instruction yet.
946 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "ForkedPtr unhandled instruction: "
<< *I << "\n"; } } while (false)
;
947 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
948 break;
949 }
950}
951
952static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
953findForkedPointer(PredicatedScalarEvolution &PSE,
954 const ValueToValueMap &StridesMap, Value *Ptr,
955 const Loop *L) {
956 ScalarEvolution *SE = PSE.getSE();
957 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!")(static_cast <bool> (SE->isSCEVable(Ptr->getType(
)) && "Value is not SCEVable!") ? void (0) : __assert_fail
("SE->isSCEVable(Ptr->getType()) && \"Value is not SCEVable!\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 957, __extension__
__PRETTY_FUNCTION__))
;
958 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
959 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
960
961 // For now, we will only accept a forked pointer with two possible SCEVs
962 // that are either SCEVAddRecExprs or loop invariant.
963 if (Scevs.size() == 2 &&
964 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
965 SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
966 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
967 SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
968 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found forked pointer: "
<< *Ptr << "\n"; } } while (false)
;
969 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "\t(1) " << *get<
0>(Scevs[0]) << "\n"; } } while (false)
;
970 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "\t(2) " << *get<
0>(Scevs[1]) << "\n"; } } while (false)
;
971 return Scevs;
972 }
973
974 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
975}
976
977bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
978 MemAccessInfo Access, Type *AccessTy,
979 const ValueToValueMap &StridesMap,
980 DenseMap<Value *, unsigned> &DepSetId,
981 Loop *TheLoop, unsigned &RunningDepId,
982 unsigned ASId, bool ShouldCheckWrap,
983 bool Assume) {
984 Value *Ptr = Access.getPointer();
985
986 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
987 findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
988
989 for (auto &P : TranslatedPtrs) {
990 const SCEV *PtrExpr = get<0>(P);
991 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
992 return false;
993
994 // When we run after a failing dependency check we have to make sure
995 // we don't have wrapping pointers.
996 if (ShouldCheckWrap) {
997 // Skip wrap checking when translating pointers.
998 if (TranslatedPtrs.size() > 1)
999 return false;
1000
1001 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
1002 auto *Expr = PSE.getSCEV(Ptr);
1003 if (!Assume || !isa<SCEVAddRecExpr>(Expr))
1004 return false;
1005 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1006 }
1007 }
1008 // If there's only one option for Ptr, look it up after bounds and wrap
1009 // checking, because assumptions might have been added to PSE.
1010 if (TranslatedPtrs.size() == 1)
1011 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1012 false};
1013 }
1014
1015 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1016 // The id of the dependence set.
1017 unsigned DepId;
1018
1019 if (isDependencyCheckNeeded()) {
1020 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1021 unsigned &LeaderId = DepSetId[Leader];
1022 if (!LeaderId)
1023 LeaderId = RunningDepId++;
1024 DepId = LeaderId;
1025 } else
1026 // Each access has its own dependence set.
1027 DepId = RunningDepId++;
1028
1029 bool IsWrite = Access.getInt();
1030 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1031 NeedsFreeze);
1032 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a runtime check ptr:"
<< *Ptr << '\n'; } } while (false)
;
1033 }
1034
1035 return true;
1036}
1037
1038bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1039 ScalarEvolution *SE, Loop *TheLoop,
1040 const ValueToValueMap &StridesMap,
1041 Value *&UncomputablePtr, bool ShouldCheckWrap) {
1042 // Find pointers with computable bounds. We are going to use this information
1043 // to place a runtime bound check.
1044 bool CanDoRT = true;
1045
1046 bool MayNeedRTCheck = false;
1047 if (!IsRTCheckAnalysisNeeded) return true;
1048
1049 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1050
1051 // We assign a consecutive id to access from different alias sets.
1052 // Accesses between different groups doesn't need to be checked.
1053 unsigned ASId = 0;
1054 for (auto &AS : AST) {
1055 int NumReadPtrChecks = 0;
1056 int NumWritePtrChecks = 0;
1057 bool CanDoAliasSetRT = true;
1058 ++ASId;
1059
1060 // We assign consecutive id to access from different dependence sets.
1061 // Accesses within the same set don't need a runtime check.
1062 unsigned RunningDepId = 1;
1063 DenseMap<Value *, unsigned> DepSetId;
1064
1065 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1066
1067 // First, count how many write and read accesses are in the alias set. Also
1068 // collect MemAccessInfos for later.
1069 SmallVector<MemAccessInfo, 4> AccessInfos;
1070 for (const auto &A : AS) {
1071 Value *Ptr = A.getValue();
1072 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1073
1074 if (IsWrite)
1075 ++NumWritePtrChecks;
1076 else
1077 ++NumReadPtrChecks;
1078 AccessInfos.emplace_back(Ptr, IsWrite);
1079 }
1080
1081 // We do not need runtime checks for this alias set, if there are no writes
1082 // or a single write and no reads.
1083 if (NumWritePtrChecks == 0 ||
1084 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1085 assert((AS.size() <= 1 ||(static_cast <bool> ((AS.size() <= 1 || all_of(AS, [
this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true
); return DepCands.findValue(AccessWrite) == DepCands.end(); }
)) && "Can only skip updating CanDoRT below, if all entries in AS "
"are reads or there is at most 1 entry") ? void (0) : __assert_fail
("(AS.size() <= 1 || all_of(AS, [this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true); return DepCands.findValue(AccessWrite) == DepCands.end(); })) && \"Can only skip updating CanDoRT below, if all entries in AS \" \"are reads or there is at most 1 entry\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1092, __extension__
__PRETTY_FUNCTION__))
1086 all_of(AS,(static_cast <bool> ((AS.size() <= 1 || all_of(AS, [
this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true
); return DepCands.findValue(AccessWrite) == DepCands.end(); }
)) && "Can only skip updating CanDoRT below, if all entries in AS "
"are reads or there is at most 1 entry") ? void (0) : __assert_fail
("(AS.size() <= 1 || all_of(AS, [this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true); return DepCands.findValue(AccessWrite) == DepCands.end(); })) && \"Can only skip updating CanDoRT below, if all entries in AS \" \"are reads or there is at most 1 entry\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1092, __extension__
__PRETTY_FUNCTION__))
1087 [this](auto AC) {(static_cast <bool> ((AS.size() <= 1 || all_of(AS, [
this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true
); return DepCands.findValue(AccessWrite) == DepCands.end(); }
)) && "Can only skip updating CanDoRT below, if all entries in AS "
"are reads or there is at most 1 entry") ? void (0) : __assert_fail
("(AS.size() <= 1 || all_of(AS, [this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true); return DepCands.findValue(AccessWrite) == DepCands.end(); })) && \"Can only skip updating CanDoRT below, if all entries in AS \" \"are reads or there is at most 1 entry\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1092, __extension__
__PRETTY_FUNCTION__))
1088 MemAccessInfo AccessWrite(AC.getValue(), true);(static_cast <bool> ((AS.size() <= 1 || all_of(AS, [
this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true
); return DepCands.findValue(AccessWrite) == DepCands.end(); }
)) && "Can only skip updating CanDoRT below, if all entries in AS "
"are reads or there is at most 1 entry") ? void (0) : __assert_fail
("(AS.size() <= 1 || all_of(AS, [this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true); return DepCands.findValue(AccessWrite) == DepCands.end(); })) && \"Can only skip updating CanDoRT below, if all entries in AS \" \"are reads or there is at most 1 entry\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1092, __extension__
__PRETTY_FUNCTION__))
1089 return DepCands.findValue(AccessWrite) == DepCands.end();(static_cast <bool> ((AS.size() <= 1 || all_of(AS, [
this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true
); return DepCands.findValue(AccessWrite) == DepCands.end(); }
)) && "Can only skip updating CanDoRT below, if all entries in AS "
"are reads or there is at most 1 entry") ? void (0) : __assert_fail
("(AS.size() <= 1 || all_of(AS, [this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true); return DepCands.findValue(AccessWrite) == DepCands.end(); })) && \"Can only skip updating CanDoRT below, if all entries in AS \" \"are reads or there is at most 1 entry\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1092, __extension__
__PRETTY_FUNCTION__))
1090 })) &&(static_cast <bool> ((AS.size() <= 1 || all_of(AS, [
this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true
); return DepCands.findValue(AccessWrite) == DepCands.end(); }
)) && "Can only skip updating CanDoRT below, if all entries in AS "
"are reads or there is at most 1 entry") ? void (0) : __assert_fail
("(AS.size() <= 1 || all_of(AS, [this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true); return DepCands.findValue(AccessWrite) == DepCands.end(); })) && \"Can only skip updating CanDoRT below, if all entries in AS \" \"are reads or there is at most 1 entry\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1092, __extension__
__PRETTY_FUNCTION__))
1091 "Can only skip updating CanDoRT below, if all entries in AS "(static_cast <bool> ((AS.size() <= 1 || all_of(AS, [
this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true
); return DepCands.findValue(AccessWrite) == DepCands.end(); }
)) && "Can only skip updating CanDoRT below, if all entries in AS "
"are reads or there is at most 1 entry") ? void (0) : __assert_fail
("(AS.size() <= 1 || all_of(AS, [this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true); return DepCands.findValue(AccessWrite) == DepCands.end(); })) && \"Can only skip updating CanDoRT below, if all entries in AS \" \"are reads or there is at most 1 entry\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1092, __extension__
__PRETTY_FUNCTION__))
1092 "are reads or there is at most 1 entry")(static_cast <bool> ((AS.size() <= 1 || all_of(AS, [
this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true
); return DepCands.findValue(AccessWrite) == DepCands.end(); }
)) && "Can only skip updating CanDoRT below, if all entries in AS "
"are reads or there is at most 1 entry") ? void (0) : __assert_fail
("(AS.size() <= 1 || all_of(AS, [this](auto AC) { MemAccessInfo AccessWrite(AC.getValue(), true); return DepCands.findValue(AccessWrite) == DepCands.end(); })) && \"Can only skip updating CanDoRT below, if all entries in AS \" \"are reads or there is at most 1 entry\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1092, __extension__
__PRETTY_FUNCTION__))
;
1093 continue;
1094 }
1095
1096 for (auto &Access : AccessInfos) {
1097 for (const auto &AccessTy : Accesses[Access]) {
1098 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1099 DepSetId, TheLoop, RunningDepId, ASId,
1100 ShouldCheckWrap, false)) {
1101 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Can't find bounds for ptr:"
<< *Access.getPointer() << '\n'; } } while (false
)
1102 << *Access.getPointer() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Can't find bounds for ptr:"
<< *Access.getPointer() << '\n'; } } while (false
)
;
1103 Retries.push_back({Access, AccessTy});
1104 CanDoAliasSetRT = false;
1105 }
1106 }
1107 }
1108
1109 // Note that this function computes CanDoRT and MayNeedRTCheck
1110 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1111 // we have a pointer for which we couldn't find the bounds but we don't
1112 // actually need to emit any checks so it does not matter.
1113 //
1114 // We need runtime checks for this alias set, if there are at least 2
1115 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1116 // any bound checks (because in that case the number of dependence sets is
1117 // incomplete).
1118 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1119
1120 // We need to perform run-time alias checks, but some pointers had bounds
1121 // that couldn't be checked.
1122 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1123 // Reset the CanDoSetRt flag and retry all accesses that have failed.
1124 // We know that we need these checks, so we can now be more aggressive
1125 // and add further checks if required (overflow checks).
1126 CanDoAliasSetRT = true;
1127 for (auto Retry : Retries) {
1128 MemAccessInfo Access = Retry.first;
1129 Type *AccessTy = Retry.second;
1130 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1131 DepSetId, TheLoop, RunningDepId, ASId,
1132 ShouldCheckWrap, /*Assume=*/true)) {
1133 CanDoAliasSetRT = false;
1134 UncomputablePtr = Access.getPointer();
1135 break;
1136 }
1137 }
1138 }
1139
1140 CanDoRT &= CanDoAliasSetRT;
1141 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1142 ++ASId;
1143 }
1144
1145 // If the pointers that we would use for the bounds comparison have different
1146 // address spaces, assume the values aren't directly comparable, so we can't
1147 // use them for the runtime check. We also have to assume they could
1148 // overlap. In the future there should be metadata for whether address spaces
1149 // are disjoint.
1150 unsigned NumPointers = RtCheck.Pointers.size();
1151 for (unsigned i = 0; i < NumPointers; ++i) {
1152 for (unsigned j = i + 1; j < NumPointers; ++j) {
1153 // Only need to check pointers between two different dependency sets.
1154 if (RtCheck.Pointers[i].DependencySetId ==
1155 RtCheck.Pointers[j].DependencySetId)
1156 continue;
1157 // Only need to check pointers in the same alias set.
1158 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1159 continue;
1160
1161 Value *PtrI = RtCheck.Pointers[i].PointerValue;
1162 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1163
1164 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1165 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1166 if (ASi != ASj) {
1167 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Runtime check would require comparison between"
" different address spaces\n"; } } while (false)
1168 dbgs() << "LAA: Runtime check would require comparison between"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Runtime check would require comparison between"
" different address spaces\n"; } } while (false)
1169 " different address spaces\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Runtime check would require comparison between"
" different address spaces\n"; } } while (false)
;
1170 return false;
1171 }
1172 }
1173 }
1174
1175 if (MayNeedRTCheck && CanDoRT)
1176 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1177
1178 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: We need to do " <<
RtCheck.getNumberOfChecks() << " pointer comparisons.\n"
; } } while (false)
1179 << " pointer comparisons.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: We need to do " <<
RtCheck.getNumberOfChecks() << " pointer comparisons.\n"
; } } while (false)
;
1180
1181 // If we can do run-time checks, but there are no checks, no runtime checks
1182 // are needed. This can happen when all pointers point to the same underlying
1183 // object for example.
1184 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1185
1186 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1187 if (!CanDoRTIfNeeded)
1188 RtCheck.reset();
1189 return CanDoRTIfNeeded;
1190}
1191
1192void AccessAnalysis::processMemAccesses() {
1193 // We process the set twice: first we process read-write pointers, last we
1194 // process read-only pointers. This allows us to skip dependence tests for
1195 // read-only pointers.
1196
1197 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Processing memory accesses...\n"
; } } while (false)
;
11
Assuming 'DebugFlag' is false
1198 LLVM_DEBUG(dbgs() << " AST: "; AST.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << " AST: "; AST.dump(); }
} while (false)
;
12
Loop condition is false. Exiting loop
1199 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Accesses(" <<
Accesses.size() << "):\n"; } } while (false)
;
13
Loop condition is false. Exiting loop
1200 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.first.getPointer() << " (" << (
A.first.getInt() ? "write" : (ReadOnlyPtr.count(A.first.getPointer
()) ? "read-only" : "read")) << ")\n"; }; } } while (false
)
14
Loop condition is false. Exiting loop
15
Loop condition is false. Exiting loop
1201 for (auto A : Accesses)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.first.getPointer() << " (" << (
A.first.getInt() ? "write" : (ReadOnlyPtr.count(A.first.getPointer
()) ? "read-only" : "read")) << ")\n"; }; } } while (false
)
1202 dbgs() << "\t" << *A.first.getPointer() << " ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.first.getPointer() << " (" << (
A.first.getInt() ? "write" : (ReadOnlyPtr.count(A.first.getPointer
()) ? "read-only" : "read")) << ")\n"; }; } } while (false
)
1203 << (A.first.getInt()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.first.getPointer() << " (" << (
A.first.getInt() ? "write" : (ReadOnlyPtr.count(A.first.getPointer
()) ? "read-only" : "read")) << ")\n"; }; } } while (false
)
1204 ? "write"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.first.getPointer() << " (" << (
A.first.getInt() ? "write" : (ReadOnlyPtr.count(A.first.getPointer
()) ? "read-only" : "read")) << ")\n"; }; } } while (false
)
1205 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.first.getPointer() << " (" << (
A.first.getInt() ? "write" : (ReadOnlyPtr.count(A.first.getPointer
()) ? "read-only" : "read")) << ")\n"; }; } } while (false
)
1206 : "read"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.first.getPointer() << " (" << (
A.first.getInt() ? "write" : (ReadOnlyPtr.count(A.first.getPointer
()) ? "read-only" : "read")) << ")\n"; }; } } while (false
)
1207 << ")\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.first.getPointer() << " (" << (
A.first.getInt() ? "write" : (ReadOnlyPtr.count(A.first.getPointer
()) ? "read-only" : "read")) << ")\n"; }; } } while (false
)
1208 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.first.getPointer() << " (" << (
A.first.getInt() ? "write" : (ReadOnlyPtr.count(A.first.getPointer
()) ? "read-only" : "read")) << ")\n"; }; } } while (false
)
;
1209
1210 // The AliasSetTracker has nicely partitioned our pointers by metadata
1211 // compatibility and potential for underlying-object overlap. As a result, we
1212 // only need to check for potential pointer dependencies within each alias
1213 // set.
1214 for (const auto &AS : AST) {
1215 // Note that both the alias-set tracker and the alias sets themselves used
1216 // linked lists internally and so the iteration order here is deterministic
1217 // (matching the original instruction order within each set).
1218
1219 bool SetHasWrite = false;
1220
1221 // Map of pointers to last access encountered.
1222 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1223 UnderlyingObjToAccessMap ObjToLastAccess;
1224
1225 // Set of access to check after all writes have been processed.
1226 PtrAccessMap DeferredAccesses;
1227
1228 // Iterate over each alias set twice, once to process read/write pointers,
1229 // and then to process read-only pointers.
1230 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
16
Loop condition is true. Entering loop body
1231 bool UseDeferred = SetIteration > 0;
1232 PtrAccessMap &S = UseDeferred
16.1
'UseDeferred' is false
16.1
'UseDeferred' is false
? DeferredAccesses : Accesses;
17
'?' condition is false
1233
1234 for (const auto &AV : AS) {
1235 Value *Ptr = AV.getValue();
1236
1237 // For a single memory access in AliasSetTracker, Accesses may contain
1238 // both read and write, and they both need to be handled for CheckDeps.
1239 for (const auto &AC : S) {
1240 if (AC.first.getPointer() != Ptr)
18
Assuming the condition is false
19
Taking false branch
1241 continue;
1242
1243 bool IsWrite = AC.first.getInt();
20
'IsWrite' initialized here
1244
1245 // If we're using the deferred access set, then it contains only
1246 // reads.
1247 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
21
Assuming the condition is false
1248 if (UseDeferred
21.1
'UseDeferred' is false
21.1
'UseDeferred' is false
&& !IsReadOnlyPtr)
1249 continue;
1250 // Otherwise, the pointer must be in the PtrAccessSet, either as a
1251 // read or a write.
1252 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||(static_cast <bool> (((IsReadOnlyPtr && UseDeferred
) || IsWrite || S.count(MemAccessInfo(Ptr, false))) &&
"Alias-set pointer not in the access set?") ? void (0) : __assert_fail
("((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count(MemAccessInfo(Ptr, false))) && \"Alias-set pointer not in the access set?\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1254, __extension__
__PRETTY_FUNCTION__))
22
Assuming 'IsWrite' is false
23
Assuming the condition is true
24
'?' condition is true
1253 S.count(MemAccessInfo(Ptr, false))) &&(static_cast <bool> (((IsReadOnlyPtr && UseDeferred
) || IsWrite || S.count(MemAccessInfo(Ptr, false))) &&
"Alias-set pointer not in the access set?") ? void (0) : __assert_fail
("((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count(MemAccessInfo(Ptr, false))) && \"Alias-set pointer not in the access set?\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1254, __extension__
__PRETTY_FUNCTION__))
1254 "Alias-set pointer not in the access set?")(static_cast <bool> (((IsReadOnlyPtr && UseDeferred
) || IsWrite || S.count(MemAccessInfo(Ptr, false))) &&
"Alias-set pointer not in the access set?") ? void (0) : __assert_fail
("((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count(MemAccessInfo(Ptr, false))) && \"Alias-set pointer not in the access set?\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1254, __extension__
__PRETTY_FUNCTION__))
;
1255
1256 MemAccessInfo Access(Ptr, IsWrite);
25
Passing value via 2nd parameter 'IntVal'
26
Calling constructor for 'PointerIntPair<llvm::Value *, 1U, bool, llvm::PointerLikeTypeTraits<llvm::Value *>, llvm::PointerIntPairInfo<llvm::Value *, 1, llvm::PointerLikeTypeTraits<llvm::Value *>>>'
1257 DepCands.insert(Access);
1258
1259 // Memorize read-only pointers for later processing and skip them in
1260 // the first round (they need to be checked after we have seen all
1261 // write pointers). Note: we also mark pointer that are not
1262 // consecutive as "read-only" pointers (so that we check
1263 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1264 if (!UseDeferred && IsReadOnlyPtr) {
1265 // We only use the pointer keys, the types vector values don't
1266 // matter.
1267 DeferredAccesses.insert({Access, {}});
1268 continue;
1269 }
1270
1271 // If this is a write - check other reads and writes for conflicts. If
1272 // this is a read only check other writes for conflicts (but only if
1273 // there is no other write to the ptr - this is an optimization to
1274 // catch "a[i] = a[i] + " without having to do a dependence check).
1275 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1276 CheckDeps.push_back(Access);
1277 IsRTCheckAnalysisNeeded = true;
1278 }
1279
1280 if (IsWrite)
1281 SetHasWrite = true;
1282
1283 // Create sets of pointers connected by a shared alias set and
1284 // underlying object.
1285 typedef SmallVector<const Value *, 16> ValueVector;
1286 ValueVector TempObjects;
1287
1288 getUnderlyingObjects(Ptr, TempObjects, LI);
1289 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "Underlying objects for pointer "
<< *Ptr << "\n"; } } while (false)
1290 << "Underlying objects for pointer " << *Ptr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "Underlying objects for pointer "
<< *Ptr << "\n"; } } while (false)
;
1291 for (const Value *UnderlyingObj : TempObjects) {
1292 // nullptr never alias, don't join sets for pointer that have "null"
1293 // in their UnderlyingObjects list.
1294 if (isa<ConstantPointerNull>(UnderlyingObj) &&
1295 !NullPointerIsDefined(
1296 TheLoop->getHeader()->getParent(),
1297 UnderlyingObj->getType()->getPointerAddressSpace()))
1298 continue;
1299
1300 UnderlyingObjToAccessMap::iterator Prev =
1301 ObjToLastAccess.find(UnderlyingObj);
1302 if (Prev != ObjToLastAccess.end())
1303 DepCands.unionSets(Access, Prev->second);
1304
1305 ObjToLastAccess[UnderlyingObj] = Access;
1306 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << " " << *UnderlyingObj
<< "\n"; } } while (false)
;
1307 }
1308 }
1309 }
1310 }
1311 }
1312}
1313
1314static bool isInBoundsGep(Value *Ptr) {
1315 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
1316 return GEP->isInBounds();
1317 return false;
1318}
1319
1320/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1321/// i.e. monotonically increasing/decreasing.
1322static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1323 PredicatedScalarEvolution &PSE, const Loop *L) {
1324 // FIXME: This should probably only return true for NUW.
1325 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1326 return true;
1327
1328 // Scalar evolution does not propagate the non-wrapping flags to values that
1329 // are derived from a non-wrapping induction variable because non-wrapping
1330 // could be flow-sensitive.
1331 //
1332 // Look through the potentially overflowing instruction to try to prove
1333 // non-wrapping for the *specific* value of Ptr.
1334
1335 // The arithmetic implied by an inbounds GEP can't overflow.
1336 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1337 if (!GEP || !GEP->isInBounds())
1338 return false;
1339
1340 // Make sure there is only one non-const index and analyze that.
1341 Value *NonConstIndex = nullptr;
1342 for (Value *Index : GEP->indices())
1343 if (!isa<ConstantInt>(Index)) {
1344 if (NonConstIndex)
1345 return false;
1346 NonConstIndex = Index;
1347 }
1348 if (!NonConstIndex)
1349 // The recurrence is on the pointer, ignore for now.
1350 return false;
1351
1352 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
1353 // AddRec using a NSW operation.
1354 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1355 if (OBO->hasNoSignedWrap() &&
1356 // Assume constant for other the operand so that the AddRec can be
1357 // easily found.
1358 isa<ConstantInt>(OBO->getOperand(1))) {
1359 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1360
1361 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1362 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1363 }
1364
1365 return false;
1366}
1367
1368/// Check whether the access through \p Ptr has a constant stride.
1369std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE,
1370 Type *AccessTy, Value *Ptr,
1371 const Loop *Lp,
1372 const ValueToValueMap &StridesMap,
1373 bool Assume, bool ShouldCheckWrap) {
1374 Type *Ty = Ptr->getType();
1375 assert(Ty->isPointerTy() && "Unexpected non-ptr")(static_cast <bool> (Ty->isPointerTy() && "Unexpected non-ptr"
) ? void (0) : __assert_fail ("Ty->isPointerTy() && \"Unexpected non-ptr\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1375, __extension__
__PRETTY_FUNCTION__))
;
1376
1377 if (isa<ScalableVectorType>(AccessTy)) {
1378 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTydo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Scalable object: "
<< *AccessTy << "\n"; } } while (false)
1379 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Scalable object: "
<< *AccessTy << "\n"; } } while (false)
;
1380 return std::nullopt;
1381 }
1382
1383 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1384
1385 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1386 if (Assume && !AR)
1387 AR = PSE.getAsAddRec(Ptr);
1388
1389 if (!AR) {
1390 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
<< *Ptr << " SCEV: " << *PtrScev << "\n"
; } } while (false)
1391 << " SCEV: " << *PtrScev << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
<< *Ptr << " SCEV: " << *PtrScev << "\n"
; } } while (false)
;
1392 return std::nullopt;
1393 }
1394
1395 // The access function must stride over the innermost loop.
1396 if (Lp != AR->getLoop()) {
1397 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Not striding over innermost loop "
<< *Ptr << " SCEV: " << *AR << "\n";
} } while (false)
1398 << *Ptr << " SCEV: " << *AR << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Not striding over innermost loop "
<< *Ptr << " SCEV: " << *AR << "\n";
} } while (false)
;
1399 return std::nullopt;
1400 }
1401
1402 // The address calculation must not wrap. Otherwise, a dependence could be
1403 // inverted.
1404 // An inbounds getelementptr that is a AddRec with a unit stride
1405 // cannot wrap per definition. The unit stride requirement is checked later.
1406 // An getelementptr without an inbounds attribute and unit stride would have
1407 // to access the pointer value "0" which is undefined behavior in address
1408 // space 0, therefore we can also vectorize this case.
1409 unsigned AddrSpace = Ty->getPointerAddressSpace();
1410 bool IsInBoundsGEP = isInBoundsGep(Ptr);
1411 bool IsNoWrapAddRec = !ShouldCheckWrap ||
1412 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1413 isNoWrapAddRec(Ptr, AR, PSE, Lp);
1414 if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1415 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) {
1416 if (Assume) {
1417 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1418 IsNoWrapAddRec = true;
1419 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Pointer may wrap in the address space:\n"
<< "LAA: Pointer: " << *Ptr << "\n" <<
"LAA: SCEV: " << *AR << "\n" << "LAA: Added an overflow assumption\n"
; } } while (false)
1420 << "LAA: Pointer: " << *Ptr << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Pointer may wrap in the address space:\n"
<< "LAA: Pointer: " << *Ptr << "\n" <<
"LAA: SCEV: " << *AR << "\n" << "LAA: Added an overflow assumption\n"
; } } while (false)
1421 << "LAA: SCEV: " << *AR << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Pointer may wrap in the address space:\n"
<< "LAA: Pointer: " << *Ptr << "\n" <<
"LAA: SCEV: " << *AR << "\n" << "LAA: Added an overflow assumption\n"
; } } while (false)
1422 << "LAA: Added an overflow assumption\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Pointer may wrap in the address space:\n"
<< "LAA: Pointer: " << *Ptr << "\n" <<
"LAA: SCEV: " << *AR << "\n" << "LAA: Added an overflow assumption\n"
; } } while (false)
;
1423 } else {
1424 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
<< *Ptr << " SCEV: " << *AR << "\n";
} } while (false)
1425 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
<< *Ptr << " SCEV: " << *AR << "\n";
} } while (false)
1426 << *Ptr << " SCEV: " << *AR << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
<< *Ptr << " SCEV: " << *AR << "\n";
} } while (false)
;
1427 return std::nullopt;
1428 }
1429 }
1430
1431 // Check the step is constant.
1432 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1433
1434 // Calculate the pointer stride and check if it is constant.
1435 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1436 if (!C) {
1437 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Not a constant strided "
<< *Ptr << " SCEV: " << *AR << "\n";
} } while (false)
1438 << " SCEV: " << *AR << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Bad stride - Not a constant strided "
<< *Ptr << " SCEV: " << *AR << "\n";
} } while (false)
;
1439 return std::nullopt;
1440 }
1441
1442 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1443 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1444 int64_t Size = AllocSize.getFixedValue();
1445 const APInt &APStepVal = C->getAPInt();
1446
1447 // Huge step value - give up.
1448 if (APStepVal.getBitWidth() > 64)
1449 return std::nullopt;
1450
1451 int64_t StepVal = APStepVal.getSExtValue();
1452
1453 // Strided access.
1454 int64_t Stride = StepVal / Size;
1455 int64_t Rem = StepVal % Size;
1456 if (Rem)
1457 return std::nullopt;
1458
1459 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1460 // know we can't "wrap around the address space". In case of address space
1461 // zero we know that this won't happen without triggering undefined behavior.
1462 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1463 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1464 AddrSpace))) {
1465 if (Assume) {
1466 // We can avoid this case by adding a run-time check.
1467 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Non unit strided pointer which is not either "
<< "inbounds or in address space 0 may wrap:\n" <<
"LAA: Pointer: " << *Ptr << "\n" << "LAA: SCEV: "
<< *AR << "\n" << "LAA: Added an overflow assumption\n"
; } } while (false)
1468 << "inbounds or in address space 0 may wrap:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Non unit strided pointer which is not either "
<< "inbounds or in address space 0 may wrap:\n" <<
"LAA: Pointer: " << *Ptr << "\n" << "LAA: SCEV: "
<< *AR << "\n" << "LAA: Added an overflow assumption\n"
; } } while (false)
1469 << "LAA: Pointer: " << *Ptr << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Non unit strided pointer which is not either "
<< "inbounds or in address space 0 may wrap:\n" <<
"LAA: Pointer: " << *Ptr << "\n" << "LAA: SCEV: "
<< *AR << "\n" << "LAA: Added an overflow assumption\n"
; } } while (false)
1470 << "LAA: SCEV: " << *AR << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Non unit strided pointer which is not either "
<< "inbounds or in address space 0 may wrap:\n" <<
"LAA: Pointer: " << *Ptr << "\n" << "LAA: SCEV: "
<< *AR << "\n" << "LAA: Added an overflow assumption\n"
; } } while (false)
1471 << "LAA: Added an overflow assumption\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Non unit strided pointer which is not either "
<< "inbounds or in address space 0 may wrap:\n" <<
"LAA: Pointer: " << *Ptr << "\n" << "LAA: SCEV: "
<< *AR << "\n" << "LAA: Added an overflow assumption\n"
; } } while (false)
;
1472 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1473 } else
1474 return std::nullopt;
1475 }
1476
1477 return Stride;
1478}
1479
1480std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1481 Type *ElemTyB, Value *PtrB,
1482 const DataLayout &DL,
1483 ScalarEvolution &SE, bool StrictCheck,
1484 bool CheckType) {
1485 assert(PtrA && PtrB && "Expected non-nullptr pointers.")(static_cast <bool> (PtrA && PtrB && "Expected non-nullptr pointers."
) ? void (0) : __assert_fail ("PtrA && PtrB && \"Expected non-nullptr pointers.\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1485, __extension__
__PRETTY_FUNCTION__))
;
1486 assert(cast<PointerType>(PtrA->getType())(static_cast <bool> (cast<PointerType>(PtrA->getType
()) ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"
) ? void (0) : __assert_fail ("cast<PointerType>(PtrA->getType()) ->isOpaqueOrPointeeTypeMatches(ElemTyA) && \"Wrong PtrA type\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1487, __extension__
__PRETTY_FUNCTION__))
1487 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type")(static_cast <bool> (cast<PointerType>(PtrA->getType
()) ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"
) ? void (0) : __assert_fail ("cast<PointerType>(PtrA->getType()) ->isOpaqueOrPointeeTypeMatches(ElemTyA) && \"Wrong PtrA type\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1487, __extension__
__PRETTY_FUNCTION__))
;
1488 assert(cast<PointerType>(PtrB->getType())(static_cast <bool> (cast<PointerType>(PtrB->getType
()) ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"
) ? void (0) : __assert_fail ("cast<PointerType>(PtrB->getType()) ->isOpaqueOrPointeeTypeMatches(ElemTyB) && \"Wrong PtrB type\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1489, __extension__
__PRETTY_FUNCTION__))
1489 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type")(static_cast <bool> (cast<PointerType>(PtrB->getType
()) ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"
) ? void (0) : __assert_fail ("cast<PointerType>(PtrB->getType()) ->isOpaqueOrPointeeTypeMatches(ElemTyB) && \"Wrong PtrB type\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1489, __extension__
__PRETTY_FUNCTION__))
;
1490
1491 // Make sure that A and B are different pointers.
1492 if (PtrA == PtrB)
1493 return 0;
1494
1495 // Make sure that the element types are the same if required.
1496 if (CheckType && ElemTyA != ElemTyB)
1497 return std::nullopt;
1498
1499 unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1500 unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1501
1502 // Check that the address spaces match.
1503 if (ASA != ASB)
1504 return std::nullopt;
1505 unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1506
1507 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1508 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1509 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1510
1511 int Val;
1512 if (PtrA1 == PtrB1) {
1513 // Retrieve the address space again as pointer stripping now tracks through
1514 // `addrspacecast`.
1515 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1516 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1517 // Check that the address spaces match and that the pointers are valid.
1518 if (ASA != ASB)
1519 return std::nullopt;
1520
1521 IdxWidth = DL.getIndexSizeInBits(ASA);
1522 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1523 OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1524
1525 OffsetB -= OffsetA;
1526 Val = OffsetB.getSExtValue();
1527 } else {
1528 // Otherwise compute the distance with SCEV between the base pointers.
1529 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1530 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1531 const auto *Diff =
1532 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1533 if (!Diff)
1534 return std::nullopt;
1535 Val = Diff->getAPInt().getSExtValue();
1536 }
1537 int Size = DL.getTypeStoreSize(ElemTyA);
1538 int Dist = Val / Size;
1539
1540 // Ensure that the calculated distance matches the type-based one after all
1541 // the bitcasts removal in the provided pointers.
1542 if (!StrictCheck || Dist * Size == Val)
1543 return Dist;
1544 return std::nullopt;
1545}
1546
1547bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1548 const DataLayout &DL, ScalarEvolution &SE,
1549 SmallVectorImpl<unsigned> &SortedIndices) {
1550 assert(llvm::all_of((static_cast <bool> (llvm::all_of( VL, [](const Value *
V) { return V->getType()->isPointerTy(); }) && "Expected list of pointer operands."
) ? void (0) : __assert_fail ("llvm::all_of( VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && \"Expected list of pointer operands.\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1552, __extension__
__PRETTY_FUNCTION__))
1551 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&(static_cast <bool> (llvm::all_of( VL, [](const Value *
V) { return V->getType()->isPointerTy(); }) && "Expected list of pointer operands."
) ? void (0) : __assert_fail ("llvm::all_of( VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && \"Expected list of pointer operands.\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1552, __extension__
__PRETTY_FUNCTION__))
1552 "Expected list of pointer operands.")(static_cast <bool> (llvm::all_of( VL, [](const Value *
V) { return V->getType()->isPointerTy(); }) && "Expected list of pointer operands."
) ? void (0) : __assert_fail ("llvm::all_of( VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && \"Expected list of pointer operands.\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1552, __extension__
__PRETTY_FUNCTION__))
;
1553 // Walk over the pointers, and map each of them to an offset relative to
1554 // first pointer in the array.
1555 Value *Ptr0 = VL[0];
1556
1557 using DistOrdPair = std::pair<int64_t, int>;
1558 auto Compare = llvm::less_first();
1559 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1560 Offsets.emplace(0, 0);
1561 int Cnt = 1;
1562 bool IsConsecutive = true;
1563 for (auto *Ptr : VL.drop_front()) {
1564 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1565 /*StrictCheck=*/true);
1566 if (!Diff)
1567 return false;
1568
1569 // Check if the pointer with the same offset is found.
1570 int64_t Offset = *Diff;
1571 auto Res = Offsets.emplace(Offset, Cnt);
1572 if (!Res.second)
1573 return false;
1574 // Consecutive order if the inserted element is the last one.
1575 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
1576 ++Cnt;
1577 }
1578 SortedIndices.clear();
1579 if (!IsConsecutive) {
1580 // Fill SortedIndices array only if it is non-consecutive.
1581 SortedIndices.resize(VL.size());
1582 Cnt = 0;
1583 for (const std::pair<int64_t, int> &Pair : Offsets) {
1584 SortedIndices[Cnt] = Pair.second;
1585 ++Cnt;
1586 }
1587 }
1588 return true;
1589}
1590
1591/// Returns true if the memory operations \p A and \p B are consecutive.
1592bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1593 ScalarEvolution &SE, bool CheckType) {
1594 Value *PtrA = getLoadStorePointerOperand(A);
1595 Value *PtrB = getLoadStorePointerOperand(B);
1596 if (!PtrA || !PtrB)
1597 return false;
1598 Type *ElemTyA = getLoadStoreType(A);
1599 Type *ElemTyB = getLoadStoreType(B);
1600 std::optional<int> Diff =
1601 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1602 /*StrictCheck=*/true, CheckType);
1603 return Diff && *Diff == 1;
1604}
1605
1606void MemoryDepChecker::addAccess(StoreInst *SI) {
1607 visitPointers(SI->getPointerOperand(), *InnermostLoop,
1608 [this, SI](Value *Ptr) {
1609 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1610 InstMap.push_back(SI);
1611 ++AccessIdx;
1612 });
1613}
1614
1615void MemoryDepChecker::addAccess(LoadInst *LI) {
1616 visitPointers(LI->getPointerOperand(), *InnermostLoop,
1617 [this, LI](Value *Ptr) {
1618 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1619 InstMap.push_back(LI);
1620 ++AccessIdx;
1621 });
1622}
1623
1624MemoryDepChecker::VectorizationSafetyStatus
1625MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1626 switch (Type) {
1627 case NoDep:
1628 case Forward:
1629 case BackwardVectorizable:
1630 return VectorizationSafetyStatus::Safe;
1631
1632 case Unknown:
1633 return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1634 case ForwardButPreventsForwarding:
1635 case Backward:
1636 case BackwardVectorizableButPreventsForwarding:
1637 return VectorizationSafetyStatus::Unsafe;
1638 }
1639 llvm_unreachable("unexpected DepType!")::llvm::llvm_unreachable_internal("unexpected DepType!", "llvm/lib/Analysis/LoopAccessAnalysis.cpp"
, 1639)
;
1640}
1641
1642bool MemoryDepChecker::Dependence::isBackward() const {
1643 switch (Type) {
1644 case NoDep:
1645 case Forward:
1646 case ForwardButPreventsForwarding:
1647 case Unknown:
1648 return false;
1649
1650 case BackwardVectorizable:
1651 case Backward:
1652 case BackwardVectorizableButPreventsForwarding:
1653 return true;
1654 }
1655 llvm_unreachable("unexpected DepType!")::llvm::llvm_unreachable_internal("unexpected DepType!", "llvm/lib/Analysis/LoopAccessAnalysis.cpp"
, 1655)
;
1656}
1657
1658bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1659 return isBackward() || Type == Unknown;
1660}
1661
1662bool MemoryDepChecker::Dependence::isForward() const {
1663 switch (Type) {
1664 case Forward:
1665 case ForwardButPreventsForwarding:
1666 return true;
1667
1668 case NoDep:
1669 case Unknown:
1670 case BackwardVectorizable:
1671 case Backward:
1672 case BackwardVectorizableButPreventsForwarding:
1673 return false;
1674 }
1675 llvm_unreachable("unexpected DepType!")::llvm::llvm_unreachable_internal("unexpected DepType!", "llvm/lib/Analysis/LoopAccessAnalysis.cpp"
, 1675)
;
1676}
1677
1678bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1679 uint64_t TypeByteSize) {
1680 // If loads occur at a distance that is not a multiple of a feasible vector
1681 // factor store-load forwarding does not take place.
1682 // Positive dependences might cause troubles because vectorizing them might
1683 // prevent store-load forwarding making vectorized code run a lot slower.
1684 // a[i] = a[i-3] ^ a[i-8];
1685 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1686 // hence on your typical architecture store-load forwarding does not take
1687 // place. Vectorizing in such cases does not make sense.
1688 // Store-load forwarding distance.
1689
1690 // After this many iterations store-to-load forwarding conflicts should not
1691 // cause any slowdowns.
1692 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1693 // Maximum vector factor.
1694 uint64_t MaxVFWithoutSLForwardIssues = std::min(
1695 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1696
1697 // Compute the smallest VF at which the store and load would be misaligned.
1698 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1699 VF *= 2) {
1700 // If the number of vector iteration between the store and the load are
1701 // small we could incur conflicts.
1702 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1703 MaxVFWithoutSLForwardIssues = (VF >> 1);
1704 break;
1705 }
1706 }
1707
1708 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1709 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Distance " <<
Distance << " that could cause a store-load forwarding conflict\n"
; } } while (false)
1710 dbgs() << "LAA: Distance " << Distancedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Distance " <<
Distance << " that could cause a store-load forwarding conflict\n"
; } } while (false)
1711 << " that could cause a store-load forwarding conflict\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Distance " <<
Distance << " that could cause a store-load forwarding conflict\n"
; } } while (false)
;
1712 return true;
1713 }
1714
1715 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1716 MaxVFWithoutSLForwardIssues !=
1717 VectorizerParams::MaxVectorWidth * TypeByteSize)
1718 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1719 return false;
1720}
1721
1722void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1723 if (Status < S)
1724 Status = S;
1725}
1726
1727/// Given a dependence-distance \p Dist between two
1728/// memory accesses, that have the same stride whose absolute value is given
1729/// in \p Stride, and that have the same type size \p TypeByteSize,
1730/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1731/// possible to prove statically that the dependence distance is larger
1732/// than the range that the accesses will travel through the execution of
1733/// the loop. If so, return true; false otherwise. This is useful for
1734/// example in loops such as the following (PR31098):
1735/// for (i = 0; i < D; ++i) {
1736/// = out[i];
1737/// out[i+D] =
1738/// }
1739static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1740 const SCEV &BackedgeTakenCount,
1741 const SCEV &Dist, uint64_t Stride,
1742 uint64_t TypeByteSize) {
1743
1744 // If we can prove that
1745 // (**) |Dist| > BackedgeTakenCount * Step
1746 // where Step is the absolute stride of the memory accesses in bytes,
1747 // then there is no dependence.
1748 //
1749 // Rationale:
1750 // We basically want to check if the absolute distance (|Dist/Step|)
1751 // is >= the loop iteration count (or > BackedgeTakenCount).
1752 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1753 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1754 // that the dependence distance is >= VF; This is checked elsewhere.
1755 // But in some cases we can prune dependence distances early, and
1756 // even before selecting the VF, and without a runtime test, by comparing
1757 // the distance against the loop iteration count. Since the vectorized code
1758 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1759 // also guarantees that distance >= VF.
1760 //
1761 const uint64_t ByteStride = Stride * TypeByteSize;
1762 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1763 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1764
1765 const SCEV *CastedDist = &Dist;
1766 const SCEV *CastedProduct = Product;
1767 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1768 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1769
1770 // The dependence distance can be positive/negative, so we sign extend Dist;
1771 // The multiplication of the absolute stride in bytes and the
1772 // backedgeTakenCount is non-negative, so we zero extend Product.
1773 if (DistTypeSizeBits > ProductTypeSizeBits)
1774 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1775 else
1776 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1777
1778 // Is Dist - (BackedgeTakenCount * Step) > 0 ?
1779 // (If so, then we have proven (**) because |Dist| >= Dist)
1780 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1781 if (SE.isKnownPositive(Minus))
1782 return true;
1783
1784 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ?
1785 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1786 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1787 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1788 if (SE.isKnownPositive(Minus))
1789 return true;
1790
1791 return false;
1792}
1793
1794/// Check the dependence for two accesses with the same stride \p Stride.
1795/// \p Distance is the positive distance and \p TypeByteSize is type size in
1796/// bytes.
1797///
1798/// \returns true if they are independent.
1799static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1800 uint64_t TypeByteSize) {
1801 assert(Stride > 1 && "The stride must be greater than 1")(static_cast <bool> (Stride > 1 && "The stride must be greater than 1"
) ? void (0) : __assert_fail ("Stride > 1 && \"The stride must be greater than 1\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1801, __extension__
__PRETTY_FUNCTION__))
;
1802 assert(TypeByteSize > 0 && "The type size in byte must be non-zero")(static_cast <bool> (TypeByteSize > 0 && "The type size in byte must be non-zero"
) ? void (0) : __assert_fail ("TypeByteSize > 0 && \"The type size in byte must be non-zero\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1802, __extension__
__PRETTY_FUNCTION__))
;
1803 assert(Distance > 0 && "The distance must be non-zero")(static_cast <bool> (Distance > 0 && "The distance must be non-zero"
) ? void (0) : __assert_fail ("Distance > 0 && \"The distance must be non-zero\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1803, __extension__
__PRETTY_FUNCTION__))
;
1804
1805 // Skip if the distance is not multiple of type byte size.
1806 if (Distance % TypeByteSize)
1807 return false;
1808
1809 uint64_t ScaledDist = Distance / TypeByteSize;
1810
1811 // No dependence if the scaled distance is not multiple of the stride.
1812 // E.g.
1813 // for (i = 0; i < 1024 ; i += 4)
1814 // A[i+2] = A[i] + 1;
1815 //
1816 // Two accesses in memory (scaled distance is 2, stride is 4):
1817 // | A[0] | | | | A[4] | | | |
1818 // | | | A[2] | | | | A[6] | |
1819 //
1820 // E.g.
1821 // for (i = 0; i < 1024 ; i += 3)
1822 // A[i+4] = A[i] + 1;
1823 //
1824 // Two accesses in memory (scaled distance is 4, stride is 3):
1825 // | A[0] | | | A[3] | | | A[6] | | |
1826 // | | | | | A[4] | | | A[7] | |
1827 return ScaledDist % Stride;
1828}
1829
1830MemoryDepChecker::Dependence::DepType
1831MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1832 const MemAccessInfo &B, unsigned BIdx,
1833 const ValueToValueMap &Strides) {
1834 assert (AIdx < BIdx && "Must pass arguments in program order")(static_cast <bool> (AIdx < BIdx && "Must pass arguments in program order"
) ? void (0) : __assert_fail ("AIdx < BIdx && \"Must pass arguments in program order\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1834, __extension__
__PRETTY_FUNCTION__))
;
1835
1836 auto [APtr, AIsWrite] = A;
1837 auto [BPtr, BIsWrite] = B;
1838 Type *ATy = getLoadStoreType(InstMap[AIdx]);
1839 Type *BTy = getLoadStoreType(InstMap[BIdx]);
1840
1841 // Two reads are independent.
1842 if (!AIsWrite && !BIsWrite)
1843 return Dependence::NoDep;
1844
1845 // We cannot check pointers in different address spaces.
1846 if (APtr->getType()->getPointerAddressSpace() !=
1847 BPtr->getType()->getPointerAddressSpace())
1848 return Dependence::Unknown;
1849
1850 int64_t StrideAPtr =
1851 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true).value_or(0);
1852 int64_t StrideBPtr =
1853 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true).value_or(0);
1854
1855 const SCEV *Src = PSE.getSCEV(APtr);
1856 const SCEV *Sink = PSE.getSCEV(BPtr);
1857
1858 // If the induction step is negative we have to invert source and sink of the
1859 // dependence.
1860 if (StrideAPtr < 0) {
1861 std::swap(APtr, BPtr);
1862 std::swap(ATy, BTy);
1863 std::swap(Src, Sink);
1864 std::swap(AIsWrite, BIsWrite);
1865 std::swap(AIdx, BIdx);
1866 std::swap(StrideAPtr, StrideBPtr);
1867 }
1868
1869 ScalarEvolution &SE = *PSE.getSE();
1870 const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1871
1872 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sinkdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Src Scev: " <<
*Src << "Sink Scev: " << *Sink << "(Induction step: "
<< StrideAPtr << ")\n"; } } while (false)
1873 << "(Induction step: " << StrideAPtr << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Src Scev: " <<
*Src << "Sink Scev: " << *Sink << "(Induction step: "
<< StrideAPtr << ")\n"; } } while (false)
;
1874 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Distance for " <<
*InstMap[AIdx] << " to " << *InstMap[BIdx] <<
": " << *Dist << "\n"; } } while (false)
1875 << *InstMap[BIdx] << ": " << *Dist << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Distance for " <<
*InstMap[AIdx] << " to " << *InstMap[BIdx] <<
": " << *Dist << "\n"; } } while (false)
;
1876
1877 // Need accesses with constant stride. We don't want to vectorize
1878 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1879 // the address space.
1880 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1881 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "Pointer access with non-constant stride\n"
; } } while (false)
;
1882 return Dependence::Unknown;
1883 }
1884
1885 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1886 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1887 bool HasSameSize =
1888 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1889 uint64_t Stride = std::abs(StrideAPtr);
1890
1891 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize &&
1892 isSafeDependenceDistance(DL, SE, *(PSE.getBackedgeTakenCount()), *Dist,
1893 Stride, TypeByteSize))
1894 return Dependence::NoDep;
1895
1896 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1897 if (!C) {
1898 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Dependence because of non-constant distance\n"
; } } while (false)
;
1899 FoundNonConstantDistanceDependence = true;
1900 return Dependence::Unknown;
1901 }
1902
1903 const APInt &Val = C->getAPInt();
1904 int64_t Distance = Val.getSExtValue();
1905
1906 // Attempt to prove strided accesses independent.
1907 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize &&
1908 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1909 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Strided accesses are independent\n"
; } } while (false)
;
1910 return Dependence::NoDep;
1911 }
1912
1913 // Negative distances are not plausible dependencies.
1914 if (Val.isNegative()) {
1915 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1916 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1917 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1918 !HasSameSize)) {
1919 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"
; } } while (false)
;
1920 return Dependence::ForwardButPreventsForwarding;
1921 }
1922
1923 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Dependence is negative\n"
; } } while (false)
;
1924 return Dependence::Forward;
1925 }
1926
1927 // Write to the same location with the same size.
1928 if (Val == 0) {
1929 if (HasSameSize)
1930 return Dependence::Forward;
1931 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Zero dependence difference but different type sizes\n"
; } } while (false)
1932 dbgs() << "LAA: Zero dependence difference but different type sizes\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Zero dependence difference but different type sizes\n"
; } } while (false)
;
1933 return Dependence::Unknown;
1934 }
1935
1936 assert(Val.isStrictlyPositive() && "Expect a positive value")(static_cast <bool> (Val.isStrictlyPositive() &&
"Expect a positive value") ? void (0) : __assert_fail ("Val.isStrictlyPositive() && \"Expect a positive value\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 1936, __extension__
__PRETTY_FUNCTION__))
;
1937
1938 if (!HasSameSize) {
1939 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: ReadWrite-Write positive dependency with "
"different type sizes\n"; } } while (false)
1940 "different type sizes\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: ReadWrite-Write positive dependency with "
"different type sizes\n"; } } while (false)
;
1941 return Dependence::Unknown;
1942 }
1943
1944 // Bail out early if passed-in parameters make vectorization not feasible.
1945 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1946 VectorizerParams::VectorizationFactor : 1);
1947 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1948 VectorizerParams::VectorizationInterleave : 1);
1949 // The minimum number of iterations for a vectorized/unrolled version.
1950 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1951
1952 // It's not vectorizable if the distance is smaller than the minimum distance
1953 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1954 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1955 // TypeByteSize (No need to plus the last gap distance).
1956 //
1957 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1958 // foo(int *A) {
1959 // int *B = (int *)((char *)A + 14);
1960 // for (i = 0 ; i < 1024 ; i += 2)
1961 // B[i] = A[i] + 1;
1962 // }
1963 //
1964 // Two accesses in memory (stride is 2):
1965 // | A[0] | | A[2] | | A[4] | | A[6] | |
1966 // | B[0] | | B[2] | | B[4] |
1967 //
1968 // Distance needs for vectorizing iterations except the last iteration:
1969 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1970 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1971 //
1972 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1973 // 12, which is less than distance.
1974 //
1975 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1976 // the minimum distance needed is 28, which is greater than distance. It is
1977 // not safe to do vectorization.
1978 uint64_t MinDistanceNeeded =
1979 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1980 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1981 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Failure because of positive distance "
<< Distance << '\n'; } } while (false)
1982 << Distance << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Failure because of positive distance "
<< Distance << '\n'; } } while (false)
;
1983 return Dependence::Backward;
1984 }
1985
1986 // Unsafe if the minimum distance needed is greater than max safe distance.
1987 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1988 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Failure because it needs at least "
<< MinDistanceNeeded << " size in bytes\n"; } } while
(false)
1989 << MinDistanceNeeded << " size in bytes\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Failure because it needs at least "
<< MinDistanceNeeded << " size in bytes\n"; } } while
(false)
;
1990 return Dependence::Backward;
1991 }
1992
1993 // Positive distance bigger than max vectorization factor.
1994 // FIXME: Should use max factor instead of max distance in bytes, which could
1995 // not handle different types.
1996 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1997 // void foo (int *A, char *B) {
1998 // for (unsigned i = 0; i < 1024; i++) {
1999 // A[i+2] = A[i] + 1;
2000 // B[i+2] = B[i] + 1;
2001 // }
2002 // }
2003 //
2004 // This case is currently unsafe according to the max safe distance. If we
2005 // analyze the two accesses on array B, the max safe dependence distance
2006 // is 2. Then we analyze the accesses on array A, the minimum distance needed
2007 // is 8, which is less than 2 and forbidden vectorization, But actually
2008 // both A and B could be vectorized by 2 iterations.
2009 MaxSafeDepDistBytes =
2010 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
2011
2012 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2013 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2014 couldPreventStoreLoadForward(Distance, TypeByteSize))
2015 return Dependence::BackwardVectorizableButPreventsForwarding;
2016
2017 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
2018 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Positive distance "
<< Val.getSExtValue() << " with max VF = " <<
MaxVF << '\n'; } } while (false)
2019 << " with max VF = " << MaxVF << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Positive distance "
<< Val.getSExtValue() << " with max VF = " <<
MaxVF << '\n'; } } while (false)
;
2020 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2021 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2022 return Dependence::BackwardVectorizable;
2023}
2024
2025bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
2026 MemAccessInfoList &CheckDeps,
2027 const ValueToValueMap &Strides) {
2028
2029 MaxSafeDepDistBytes = -1;
2030 SmallPtrSet<MemAccessInfo, 8> Visited;
2031 for (MemAccessInfo CurAccess : CheckDeps) {
2032 if (Visited.count(CurAccess))
2033 continue;
2034
2035 // Get the relevant memory access set.
2036 EquivalenceClasses<MemAccessInfo>::iterator I =
2037 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2038
2039 // Check accesses within this set.
2040 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2041 AccessSets.member_begin(I);
2042 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2043 AccessSets.member_end();
2044
2045 // Check every access pair.
2046 while (AI != AE) {
2047 Visited.insert(*AI);
2048 bool AIIsWrite = AI->getInt();
2049 // Check loads only against next equivalent class, but stores also against
2050 // other stores in the same equivalence class - to the same address.
2051 EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2052 (AIIsWrite ? AI : std::next(AI));
2053 while (OI != AE) {
2054 // Check every accessing instruction pair in program order.
2055 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2056 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2057 // Scan all accesses of another equivalence class, but only the next
2058 // accesses of the same equivalent class.
2059 for (std::vector<unsigned>::iterator
2060 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2061 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2062 I2 != I2E; ++I2) {
2063 auto A = std::make_pair(&*AI, *I1);
2064 auto B = std::make_pair(&*OI, *I2);
2065
2066 assert(*I1 != *I2)(static_cast <bool> (*I1 != *I2) ? void (0) : __assert_fail
("*I1 != *I2", "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 2066
, __extension__ __PRETTY_FUNCTION__))
;
2067 if (*I1 > *I2)
2068 std::swap(A, B);
2069
2070 Dependence::DepType Type =
2071 isDependent(*A.first, A.second, *B.first, B.second, Strides);
2072 mergeInStatus(Dependence::isSafeForVectorization(Type));
2073
2074 // Gather dependences unless we accumulated MaxDependences
2075 // dependences. In that case return as soon as we find the first
2076 // unsafe dependence. This puts a limit on this quadratic
2077 // algorithm.
2078 if (RecordDependences) {
2079 if (Type != Dependence::NoDep)
2080 Dependences.push_back(Dependence(A.second, B.second, Type));
2081
2082 if (Dependences.size() >= MaxDependences) {
2083 RecordDependences = false;
2084 Dependences.clear();
2085 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "Too many dependences, stopped recording\n"
; } } while (false)
2086 << "Too many dependences, stopped recording\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "Too many dependences, stopped recording\n"
; } } while (false)
;
2087 }
2088 }
2089 if (!RecordDependences && !isSafeForVectorization())
2090 return false;
2091 }
2092 ++OI;
2093 }
2094 AI++;
2095 }
2096 }
2097
2098 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "Total Dependences: " <<
Dependences.size() << "\n"; } } while (false)
;
2099 return isSafeForVectorization();
2100}
2101
2102SmallVector<Instruction *, 4>
2103MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
2104 MemAccessInfo Access(Ptr, isWrite);
2105 auto &IndexVector = Accesses.find(Access)->second;
2106
2107 SmallVector<Instruction *, 4> Insts;
2108 transform(IndexVector,
2109 std::back_inserter(Insts),
2110 [&](unsigned Idx) { return this->InstMap[Idx]; });
2111 return Insts;
2112}
2113
2114const char *MemoryDepChecker::Dependence::DepName[] = {
2115 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
2116 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
2117
2118void MemoryDepChecker::Dependence::print(
2119 raw_ostream &OS, unsigned Depth,
2120 const SmallVectorImpl<Instruction *> &Instrs) const {
2121 OS.indent(Depth) << DepName[Type] << ":\n";
2122 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2123 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2124}
2125
2126bool LoopAccessInfo::canAnalyzeLoop() {
2127 // We need to have a loop header.
2128 LLVM_DEBUG(dbgs() << "LAA: Found a loop in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a loop in " <<
TheLoop->getHeader()->getParent()->getName() <<
": " << TheLoop->getHeader()->getName() <<
'\n'; } } while (false)
2129 << TheLoop->getHeader()->getParent()->getName() << ": "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a loop in " <<
TheLoop->getHeader()->getParent()->getName() <<
": " << TheLoop->getHeader()->getName() <<
'\n'; } } while (false)
2130 << TheLoop->getHeader()->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a loop in " <<
TheLoop->getHeader()->getParent()->getName() <<
": " << TheLoop->getHeader()->getName() <<
'\n'; } } while (false)
;
2131
2132 // We can only analyze innermost loops.
2133 if (!TheLoop->isInnermost()) {
2134 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: loop is not the innermost loop\n"
; } } while (false)
;
2135 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2136 return false;
2137 }
2138
2139 // We must have a single backedge.
2140 if (TheLoop->getNumBackEdges() != 1) {
2141 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: loop control flow is not understood by analyzer\n"
; } } while (false)
2142 dbgs() << "LAA: loop control flow is not understood by analyzer\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: loop control flow is not understood by analyzer\n"
; } } while (false)
;
2143 recordAnalysis("CFGNotUnderstood")
2144 << "loop control flow is not understood by analyzer";
2145 return false;
2146 }
2147
2148 // ScalarEvolution needs to be able to find the exit count.
2149 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
2150 if (isa<SCEVCouldNotCompute>(ExitCount)) {
2151 recordAnalysis("CantComputeNumberOfIterations")
2152 << "could not determine number of loop iterations";
2153 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: SCEV could not compute the loop exit count.\n"
; } } while (false)
;
2154 return false;
2155 }
2156
2157 return true;
2158}
2159
2160void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
2161 const TargetLibraryInfo *TLI,
2162 DominatorTree *DT) {
2163 // Holds the Load and Store instructions.
2164 SmallVector<LoadInst *, 16> Loads;
2165 SmallVector<StoreInst *, 16> Stores;
2166
2167 // Holds all the different accesses in the loop.
2168 unsigned NumReads = 0;
2169 unsigned NumReadWrites = 0;
2170
2171 bool HasComplexMemInst = false;
2172
2173 // A runtime check is only legal to insert if there are no convergent calls.
2174 HasConvergentOp = false;
2175
2176 PtrRtChecking->Pointers.clear();
2177 PtrRtChecking->Need = false;
2178
2179 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2180
2181 const bool EnableMemAccessVersioningOfLoop =
2182 EnableMemAccessVersioning &&
1
Assuming the condition is false
2183 !TheLoop->getHeader()->getParent()->hasOptSize();
2184
2185 // Traverse blocks in fixed RPOT order, regardless of their storage in the
2186 // loop info, as it may be arbitrary.
2187 LoopBlocksRPO RPOT(TheLoop);
2188 RPOT.perform(LI);
2189 for (BasicBlock *BB : RPOT) {
2190 // Scan the BB and collect legal loads and stores. Also detect any
2191 // convergent instructions.
2192 for (Instruction &I : *BB) {
2193 if (auto *Call = dyn_cast<CallBase>(&I)) {
2194 if (Call->isConvergent())
2195 HasConvergentOp = true;
2196 }
2197
2198 // With both a non-vectorizable memory instruction and a convergent
2199 // operation, found in this loop, no reason to continue the search.
2200 if (HasComplexMemInst && HasConvergentOp) {
2201 CanVecMem = false;
2202 return;
2203 }
2204
2205 // Avoid hitting recordAnalysis multiple times.
2206 if (HasComplexMemInst)
2207 continue;
2208
2209 // If this is a load, save it. If this instruction can read from memory
2210 // but is not a load, then we quit. Notice that we don't handle function
2211 // calls that read or write.
2212 if (I.mayReadFromMemory()) {
2213 // Many math library functions read the rounding mode. We will only
2214 // vectorize a loop if it contains known function calls that don't set
2215 // the flag. Therefore, it is safe to ignore this read from memory.
2216 auto *Call = dyn_cast<CallInst>(&I);
2217 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2218 continue;
2219
2220 // If the function has an explicit vectorized counterpart, we can safely
2221 // assume that it can be vectorized.
2222 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2223 !VFDatabase::getMappings(*Call).empty())
2224 continue;
2225
2226 auto *Ld = dyn_cast<LoadInst>(&I);
2227 if (!Ld) {
2228 recordAnalysis("CantVectorizeInstruction", Ld)
2229 << "instruction cannot be vectorized";
2230 HasComplexMemInst = true;
2231 continue;
2232 }
2233 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2234 recordAnalysis("NonSimpleLoad", Ld)
2235 << "read with atomic ordering or volatile read";
2236 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a non-simple load.\n"
; } } while (false)
;
2237 HasComplexMemInst = true;
2238 continue;
2239 }
2240 NumLoads++;
2241 Loads.push_back(Ld);
2242 DepChecker->addAccess(Ld);
2243 if (EnableMemAccessVersioningOfLoop)
2244 collectStridedAccess(Ld);
2245 continue;
2246 }
2247
2248 // Save 'store' instructions. Abort if other instructions write to memory.
2249 if (I.mayWriteToMemory()) {
2250 auto *St = dyn_cast<StoreInst>(&I);
2251 if (!St) {
2252 recordAnalysis("CantVectorizeInstruction", St)
2253 << "instruction cannot be vectorized";
2254 HasComplexMemInst = true;
2255 continue;
2256 }
2257 if (!St->isSimple() && !IsAnnotatedParallel) {
2258 recordAnalysis("NonSimpleStore", St)
2259 << "write with atomic ordering or volatile write";
2260 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a non-simple store.\n"
; } } while (false)
;
2261 HasComplexMemInst = true;
2262 continue;
2263 }
2264 NumStores++;
2265 Stores.push_back(St);
2266 DepChecker->addAccess(St);
2267 if (EnableMemAccessVersioningOfLoop)
2268 collectStridedAccess(St);
2269 }
2270 } // Next instr.
2271 } // Next block.
2272
2273 if (HasComplexMemInst
1.1
'HasComplexMemInst' is false
1.1
'HasComplexMemInst' is false
) {
2
Taking false branch
2274 CanVecMem = false;
2275 return;
2276 }
2277
2278 // Now we have two lists that hold the loads and the stores.
2279 // Next, we find the pointers that they use.
2280
2281 // Check if we see any stores. If there are no stores, then we don't
2282 // care if the pointers are *restrict*.
2283 if (!Stores.size()) {
3
Assuming the condition is false
4
Taking false branch
2284 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a read-only loop!\n"
; } } while (false)
;
2285 CanVecMem = true;
2286 return;
2287 }
2288
2289 MemoryDepChecker::DepCandidates DependentAccesses;
2290 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
2291
2292 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2293 // multiple times on the same object. If the ptr is accessed twice, once
2294 // for read and once for write, it will only appear once (on the write
2295 // list). This is okay, since we are going to check for conflicts between
2296 // writes and between reads and writes, but not between reads and reads.
2297 SmallSet<std::pair<Value *, Type *>, 16> Seen;
2298
2299 // Record uniform store addresses to identify if we have multiple stores
2300 // to the same address.
2301 SmallPtrSet<Value *, 16> UniformStores;
2302
2303 for (StoreInst *ST : Stores) {
5
Assuming '__begin1' is equal to '__end1'
2304 Value *Ptr = ST->getPointerOperand();
2305
2306 if (isUniform(Ptr)) {
2307 // Record store instructions to loop invariant addresses
2308 StoresToInvariantAddresses.push_back(ST);
2309 HasDependenceInvolvingLoopInvariantAddress |=
2310 !UniformStores.insert(Ptr).second;
2311 }
2312
2313 // If we did *not* see this pointer before, insert it to the read-write
2314 // list. At this phase it is only a 'write' list.
2315 Type *AccessTy = getLoadStoreType(ST);
2316 if (Seen.insert({Ptr, AccessTy}).second) {
2317 ++NumReadWrites;
2318
2319 MemoryLocation Loc = MemoryLocation::get(ST);
2320 // The TBAA metadata could have a control dependency on the predication
2321 // condition, so we cannot rely on it when determining whether or not we
2322 // need runtime pointer checks.
2323 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2324 Loc.AATags.TBAA = nullptr;
2325
2326 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2327 [&Accesses, AccessTy, Loc](Value *Ptr) {
2328 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2329 Accesses.addStore(NewLoc, AccessTy);
2330 });
2331 }
2332 }
2333
2334 if (IsAnnotatedParallel) {
6
Assuming 'IsAnnotatedParallel' is false
7
Taking false branch
2335 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
<< "checks.\n"; } } while (false)
2336 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
<< "checks.\n"; } } while (false)
2337 << "checks.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
<< "checks.\n"; } } while (false)
;
2338 CanVecMem = true;
2339 return;
2340 }
2341
2342 for (LoadInst *LD : Loads) {
8
Assuming '__begin1' is equal to '__end1'
2343 Value *Ptr = LD->getPointerOperand();
2344 // If we did *not* see this pointer before, insert it to the
2345 // read list. If we *did* see it before, then it is already in
2346 // the read-write list. This allows us to vectorize expressions
2347 // such as A[i] += x; Because the address of A[i] is a read-write
2348 // pointer. This only works if the index of A[i] is consecutive.
2349 // If the address of i is unknown (for example A[B[i]]) then we may
2350 // read a few words, modify, and write a few words, and some of the
2351 // words may be written to the same address.
2352 bool IsReadOnlyPtr = false;
2353 Type *AccessTy = getLoadStoreType(LD);
2354 if (Seen.insert({Ptr, AccessTy}).second ||
2355 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2356 ++NumReads;
2357 IsReadOnlyPtr = true;
2358 }
2359
2360 // See if there is an unsafe dependency between a load to a uniform address and
2361 // store to the same uniform address.
2362 if (UniformStores.count(Ptr)) {
2363 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found an unsafe dependency between a uniform "
"load and uniform store to the same address!\n"; } } while (
false)
2364 "load and uniform store to the same address!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found an unsafe dependency between a uniform "
"load and uniform store to the same address!\n"; } } while (
false)
;
2365 HasDependenceInvolvingLoopInvariantAddress = true;
2366 }
2367
2368 MemoryLocation Loc = MemoryLocation::get(LD);
2369 // The TBAA metadata could have a control dependency on the predication
2370 // condition, so we cannot rely on it when determining whether or not we
2371 // need runtime pointer checks.
2372 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2373 Loc.AATags.TBAA = nullptr;
2374
2375 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2376 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2377 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2378 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2379 });
2380 }
2381
2382 // If we write (or read-write) to a single destination and there are no
2383 // other reads in this loop then is it safe to vectorize.
2384 if (NumReadWrites
8.1
'NumReadWrites' is not equal to 1
8.1
'NumReadWrites' is not equal to 1
== 1 && NumReads == 0) {
2385 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a write-only loop!\n"
; } } while (false)
;
2386 CanVecMem = true;
2387 return;
2388 }
2389
2390 // Build dependence sets and check whether we need a runtime pointer bounds
2391 // check.
2392 Accesses.buildDependenceSets();
9
Calling 'AccessAnalysis::buildDependenceSets'
2393
2394 // Find pointers with computable bounds. We are going to use this information
2395 // to place a runtime bound check.
2396 Value *UncomputablePtr = nullptr;
2397 bool CanDoRTIfNeeded =
2398 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2399 SymbolicStrides, UncomputablePtr, false);
2400 if (!CanDoRTIfNeeded) {
2401 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2402 recordAnalysis("CantIdentifyArrayBounds", I)
2403 << "cannot identify array bounds";
2404 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: We can't vectorize because we can't find "
<< "the array bounds.\n"; } } while (false)
2405 << "the array bounds.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: We can't vectorize because we can't find "
<< "the array bounds.\n"; } } while (false)
;
2406 CanVecMem = false;
2407 return;
2408 }
2409
2410 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"
; } } while (false)
2411 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"
; } } while (false)
;
2412
2413 CanVecMem = true;
2414 if (Accesses.isDependencyCheckNeeded()) {
2415 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Checking memory dependencies\n"
; } } while (false)
;
2416 CanVecMem = DepChecker->areDepsSafe(
2417 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2418 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2419
2420 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2421 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Retrying with memory checks\n"
; } } while (false)
;
2422
2423 // Clear the dependency checks. We assume they are not needed.
2424 Accesses.resetDepChecks(*DepChecker);
2425
2426 PtrRtChecking->reset();
2427 PtrRtChecking->Need = true;
2428
2429 auto *SE = PSE->getSE();
2430 UncomputablePtr = nullptr;
2431 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2432 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2433
2434 // Check that we found the bounds for the pointer.
2435 if (!CanDoRTIfNeeded) {
2436 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2437 recordAnalysis("CantCheckMemDepsAtRunTime", I)
2438 << "cannot check memory dependencies at runtime";
2439 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Can't vectorize with memory checks\n"
; } } while (false)
;
2440 CanVecMem = false;
2441 return;
2442 }
2443
2444 CanVecMem = true;
2445 }
2446 }
2447
2448 if (HasConvergentOp) {
2449 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2450 << "cannot add control dependency to convergent operation";
2451 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: We can't vectorize because a runtime check "
"would be needed with a convergent operation\n"; } } while (
false)
2452 "would be needed with a convergent operation\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: We can't vectorize because a runtime check "
"would be needed with a convergent operation\n"; } } while (
false)
;
2453 CanVecMem = false;
2454 return;
2455 }
2456
2457 if (CanVecMem)
2458 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
<< (PtrRtChecking->Need ? "" : " don't") << " need runtime memory checks.\n"
; } } while (false)
2459 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
<< (PtrRtChecking->Need ? "" : " don't") << " need runtime memory checks.\n"
; } } while (false)
2460 << (PtrRtChecking->Need ? "" : " don't")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
<< (PtrRtChecking->Need ? "" : " don't") << " need runtime memory checks.\n"
; } } while (false)
2461 << " need runtime memory checks.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
<< (PtrRtChecking->Need ? "" : " don't") << " need runtime memory checks.\n"
; } } while (false)
;
2462 else
2463 emitUnsafeDependenceRemark();
2464}
2465
2466void LoopAccessInfo::emitUnsafeDependenceRemark() {
2467 auto Deps = getDepChecker().getDependences();
2468 if (!Deps)
2469 return;
2470 auto Found = llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2471 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2472 MemoryDepChecker::VectorizationSafetyStatus::Safe;
2473 });
2474 if (Found == Deps->end())
2475 return;
2476 MemoryDepChecker::Dependence Dep = *Found;
2477
2478 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: unsafe dependent memory operations in loop\n"
; } } while (false)
;
2479
2480 // Emit remark for first unsafe dependence
2481 OptimizationRemarkAnalysis &R =
2482 recordAnalysis("UnsafeDep", Dep.getDestination(*this))
2483 << "unsafe dependent memory operations in loop. Use "
2484 "#pragma loop distribute(enable) to allow loop distribution "
2485 "to attempt to isolate the offending operations into a separate "
2486 "loop";
2487
2488 switch (Dep.Type) {
2489 case MemoryDepChecker::Dependence::NoDep:
2490 case MemoryDepChecker::Dependence::Forward:
2491 case MemoryDepChecker::Dependence::BackwardVectorizable:
2492 llvm_unreachable("Unexpected dependence")::llvm::llvm_unreachable_internal("Unexpected dependence", "llvm/lib/Analysis/LoopAccessAnalysis.cpp"
, 2492)
;
2493 case MemoryDepChecker::Dependence::Backward:
2494 R << "\nBackward loop carried data dependence.";
2495 break;
2496 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2497 R << "\nForward loop carried data dependence that prevents "
2498 "store-to-load forwarding.";
2499 break;
2500 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2501 R << "\nBackward loop carried data dependence that prevents "
2502 "store-to-load forwarding.";
2503 break;
2504 case MemoryDepChecker::Dependence::Unknown:
2505 R << "\nUnknown data dependence.";
2506 break;
2507 }
2508
2509 if (Instruction *I = Dep.getSource(*this)) {
2510 DebugLoc SourceLoc = I->getDebugLoc();
2511 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2512 SourceLoc = DD->getDebugLoc();
2513 if (SourceLoc)
2514 R << " Memory location is the same as accessed at "
2515 << ore::NV("Location", SourceLoc);
2516 }
2517}
2518
2519bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2520 DominatorTree *DT) {
2521 assert(TheLoop->contains(BB) && "Unknown block used")(static_cast <bool> (TheLoop->contains(BB) &&
"Unknown block used") ? void (0) : __assert_fail ("TheLoop->contains(BB) && \"Unknown block used\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 2521, __extension__
__PRETTY_FUNCTION__))
;
2522
2523 // Blocks that do not dominate the latch need predication.
2524 BasicBlock* Latch = TheLoop->getLoopLatch();
2525 return !DT->dominates(BB, Latch);
2526}
2527
2528OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2529 Instruction *I) {
2530 assert(!Report && "Multiple reports generated")(static_cast <bool> (!Report && "Multiple reports generated"
) ? void (0) : __assert_fail ("!Report && \"Multiple reports generated\""
, "llvm/lib/Analysis/LoopAccessAnalysis.cpp", 2530, __extension__
__PRETTY_FUNCTION__))
;
2531
2532 Value *CodeRegion = TheLoop->getHeader();
2533 DebugLoc DL = TheLoop->getStartLoc();
2534
2535 if (I) {
2536 CodeRegion = I->getParent();
2537 // If there is no debug location attached to the instruction, revert back to
2538 // using the loop's.
2539 if (I->getDebugLoc())
2540 DL = I->getDebugLoc();
2541 }
2542
2543 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE"loop-accesses", RemarkName, DL,
2544 CodeRegion);
2545 return *Report;
2546}
2547
2548bool LoopAccessInfo::isUniform(Value *V) const {
2549 auto *SE = PSE->getSE();
2550 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2551 // never considered uniform.
2552 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2553 // trivially loop-invariant FP values to be considered uniform.
2554 if (!SE->isSCEVable(V->getType()))
2555 return false;
2556 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2557}
2558
2559void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2560 Value *Ptr = getLoadStorePointerOperand(MemAccess);
2561 if (!Ptr)
2562 return;
2563
2564 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2565 if (!Stride)
2566 return;
2567
2568 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a strided access that is a candidate for "
"versioning:"; } } while (false)
2569 "versioning:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a strided access that is a candidate for "
"versioning:"; } } while (false)
;
2570 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << " Ptr: " << *Ptr <<
" Stride: " << *Stride << "\n"; } } while (false
)
;
2571
2572 // Avoid adding the "Stride == 1" predicate when we know that
2573 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2574 // or zero iteration loop, as Trip-Count <= Stride == 1.
2575 //
2576 // TODO: We are currently not making a very informed decision on when it is
2577 // beneficial to apply stride versioning. It might make more sense that the
2578 // users of this analysis (such as the vectorizer) will trigger it, based on
2579 // their specific cost considerations; For example, in cases where stride
2580 // versioning does not help resolving memory accesses/dependences, the
2581 // vectorizer should evaluate the cost of the runtime test, and the benefit
2582 // of various possible stride specializations, considering the alternatives
2583 // of using gather/scatters (if available).
2584
2585 const SCEV *StrideExpr = PSE->getSCEV(Stride);
2586 const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2587
2588 // Match the types so we can compare the stride and the BETakenCount.
2589 // The Stride can be positive/negative, so we sign extend Stride;
2590 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2591 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2592 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2593 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType());
2594 const SCEV *CastedStride = StrideExpr;
2595 const SCEV *CastedBECount = BETakenCount;
2596 ScalarEvolution *SE = PSE->getSE();
2597 if (BETypeSizeBits >= StrideTypeSizeBits)
2598 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2599 else
2600 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2601 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2602 // Since TripCount == BackEdgeTakenCount + 1, checking:
2603 // "Stride >= TripCount" is equivalent to checking:
2604 // Stride - BETakenCount > 0
2605 if (SE->isKnownPositive(StrideMinusBETaken)) {
2606 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
"Stride==1 predicate will imply that the loop executes " "at most once.\n"
; } } while (false)
2607 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
"Stride==1 predicate will imply that the loop executes " "at most once.\n"
; } } while (false)
2608 "Stride==1 predicate will imply that the loop executes "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
"Stride==1 predicate will imply that the loop executes " "at most once.\n"
; } } while (false)
2609 "at most once.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
"Stride==1 predicate will imply that the loop executes " "at most once.\n"
; } } while (false)
;
2610 return;
2611 }
2612 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-accesses")) { dbgs() << "LAA: Found a strided access that we can version.\n"
; } } while (false)
;
2613
2614 SymbolicStrides[Ptr] = Stride;
2615 StrideSet.insert(Stride);
2616}
2617
2618LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2619 const TargetLibraryInfo *TLI, AAResults *AA,
2620 DominatorTree *DT, LoopInfo *LI)
2621 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2622 PtrRtChecking(nullptr),
2623 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) {
2624 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
2625 if (canAnalyzeLoop()) {
2626 analyzeLoop(AA, LI, TLI, DT);
2627 }
2628}
2629
2630void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2631 if (CanVecMem) {
2632 OS.indent(Depth) << "Memory dependences are safe";
2633 if (MaxSafeDepDistBytes != -1ULL)
2634 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2635 << " bytes";
2636 if (PtrRtChecking->Need)
2637 OS << " with run-time checks";
2638 OS << "\n";
2639 }
2640
2641 if (HasConvergentOp)
2642 OS.indent(Depth) << "Has convergent operation in loop\n";
2643
2644 if (Report)
2645 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2646
2647 if (auto *Dependences = DepChecker->getDependences()) {
2648 OS.indent(Depth) << "Dependences:\n";
2649 for (const auto &Dep : *Dependences) {
2650 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2651 OS << "\n";
2652 }
2653 } else
2654 OS.indent(Depth) << "Too many dependences, not recorded\n";
2655
2656 // List the pair of accesses need run-time checks to prove independence.
2657 PtrRtChecking->print(OS, Depth);
2658 OS << "\n";
2659
2660 OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2661 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2662 << "found in loop.\n";
2663
2664 OS.indent(Depth) << "SCEV assumptions:\n";
2665 PSE->getPredicate().print(OS, Depth);
2666
2667 OS << "\n";
2668
2669 OS.indent(Depth) << "Expressions re-written:\n";
2670 PSE->print(OS, Depth);
2671}
2672
2673const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
2674 auto I = LoopAccessInfoMap.insert({&L, nullptr});
2675
2676 if (I.second)
2677 I.first->second =
2678 std::make_unique<LoopAccessInfo>(&L, &SE, TLI, &AA, &DT, &LI);
2679
2680 return *I.first->second;
2681}
2682
2683LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2684 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2685}
2686
2687bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2688 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2689 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2690 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2691 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2692 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2693 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2694 LAIs = std::make_unique<LoopAccessInfoManager>(SE, AA, DT, LI, TLI);
2695 return false;
2696}
2697
2698void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2699 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
2700 AU.addRequiredTransitive<AAResultsWrapperPass>();
2701 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2702 AU.addRequiredTransitive<LoopInfoWrapperPass>();
2703
2704 AU.setPreservesAll();
2705}
2706
2707LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
2708 FunctionAnalysisManager &AM) {
2709 return LoopAccessInfoManager(
2710 AM.getResult<ScalarEvolutionAnalysis>(F), AM.getResult<AAManager>(F),
2711 AM.getResult<DominatorTreeAnalysis>(F), AM.getResult<LoopAnalysis>(F),
2712 &AM.getResult<TargetLibraryAnalysis>(F));
2713}
2714
2715char LoopAccessLegacyAnalysis::ID = 0;
2716static const char laa_name[] = "Loop Access Analysis";
2717#define LAA_NAME"loop-accesses" "loop-accesses"
2718
2719INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)static void *initializeLoopAccessLegacyAnalysisPassOnce(PassRegistry
&Registry) {
2720INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
2721INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
2722INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
2723INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
2724INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)PassInfo *PI = new PassInfo( laa_name, "loop-accesses", &
LoopAccessLegacyAnalysis::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LoopAccessLegacyAnalysis>), false, true); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLoopAccessLegacyAnalysisPassFlag
; void llvm::initializeLoopAccessLegacyAnalysisPass(PassRegistry
&Registry) { llvm::call_once(InitializeLoopAccessLegacyAnalysisPassFlag
, initializeLoopAccessLegacyAnalysisPassOnce, std::ref(Registry
)); }
2725
2726AnalysisKey LoopAccessAnalysis::Key;
2727
2728namespace llvm {
2729
2730 Pass *createLAAPass() {
2731 return new LoopAccessLegacyAnalysis();
2732 }
2733
2734} // end namespace llvm

/build/source/llvm/include/llvm/ADT/PointerIntPair.h

1//===- llvm/ADT/PointerIntPair.h - Pair for pointer and int -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the PointerIntPair class.
11///
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_POINTERINTPAIR_H
15#define LLVM_ADT_POINTERINTPAIR_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/PointerLikeTypeTraits.h"
19#include "llvm/Support/type_traits.h"
20#include <cassert>
21#include <cstdint>
22#include <limits>
23
24namespace llvm {
25
26template <typename T, typename Enable> struct DenseMapInfo;
27template <typename PointerT, unsigned IntBits, typename PtrTraits>
28struct PointerIntPairInfo;
29
30/// PointerIntPair - This class implements a pair of a pointer and small
31/// integer. It is designed to represent this in the space required by one
32/// pointer by bitmangling the integer into the low part of the pointer. This
33/// can only be done for small integers: typically up to 3 bits, but it depends
34/// on the number of bits available according to PointerLikeTypeTraits for the
35/// type.
36///
37/// Note that PointerIntPair always puts the IntVal part in the highest bits
38/// possible. For example, PointerIntPair<void*, 1, bool> will put the bit for
39/// the bool into bit #2, not bit #0, which allows the low two bits to be used
40/// for something else. For example, this allows:
41/// PointerIntPair<PointerIntPair<void*, 1, bool>, 1, bool>
42/// ... and the two bools will land in different bits.
43template <typename PointerTy, unsigned IntBits, typename IntType = unsigned,
44 typename PtrTraits = PointerLikeTypeTraits<PointerTy>,
45 typename Info = PointerIntPairInfo<PointerTy, IntBits, PtrTraits>>
46class PointerIntPair {
47 // Used by MSVC visualizer and generally helpful for debugging/visualizing.
48 using InfoTy = Info;
49 intptr_t Value = 0;
50
51public:
52 constexpr PointerIntPair() = default;
53
54 PointerIntPair(PointerTy PtrVal, IntType IntVal) {
55 setPointerAndInt(PtrVal, IntVal);
27
Passing value via 2nd parameter 'IntVal'
28
Calling 'PointerIntPair::setPointerAndInt'
56 }
57
58 explicit PointerIntPair(PointerTy PtrVal) { initWithPointer(PtrVal); }
59
60 PointerTy getPointer() const { return Info::getPointer(Value); }
61
62 IntType getInt() const { return (IntType)Info::getInt(Value); }
63
64 void setPointer(PointerTy PtrVal) & {
65 Value = Info::updatePointer(Value, PtrVal);
66 }
67
68 void setInt(IntType IntVal) & {
69 Value = Info::updateInt(Value, static_cast<intptr_t>(IntVal));
70 }
71
72 void initWithPointer(PointerTy PtrVal) & {
73 Value = Info::updatePointer(0, PtrVal);
74 }
75
76 void setPointerAndInt(PointerTy PtrVal, IntType IntVal) & {
77 Value = Info::updateInt(Info::updatePointer(0, PtrVal),
30
Calling 'PointerIntPairInfo::updateInt'
78 static_cast<intptr_t>(IntVal));
29
Passing value via 2nd parameter 'Int'
79 }
80
81 PointerTy const *getAddrOfPointer() const {
82 return const_cast<PointerIntPair *>(this)->getAddrOfPointer();
83 }
84
85 PointerTy *getAddrOfPointer() {
86 assert(Value == reinterpret_cast<intptr_t>(getPointer()) &&(static_cast <bool> (Value == reinterpret_cast<intptr_t
>(getPointer()) && "Can only return the address if IntBits is cleared and "
"PtrTraits doesn't change the pointer") ? void (0) : __assert_fail
("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "llvm/include/llvm/ADT/PointerIntPair.h", 88, __extension__
__PRETTY_FUNCTION__))
87 "Can only return the address if IntBits is cleared and "(static_cast <bool> (Value == reinterpret_cast<intptr_t
>(getPointer()) && "Can only return the address if IntBits is cleared and "
"PtrTraits doesn't change the pointer") ? void (0) : __assert_fail
("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "llvm/include/llvm/ADT/PointerIntPair.h", 88, __extension__
__PRETTY_FUNCTION__))
88 "PtrTraits doesn't change the pointer")(static_cast <bool> (Value == reinterpret_cast<intptr_t
>(getPointer()) && "Can only return the address if IntBits is cleared and "
"PtrTraits doesn't change the pointer") ? void (0) : __assert_fail
("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "llvm/include/llvm/ADT/PointerIntPair.h", 88, __extension__
__PRETTY_FUNCTION__))
;
89 return reinterpret_cast<PointerTy *>(&Value);
90 }
91
92 void *getOpaqueValue() const { return reinterpret_cast<void *>(Value); }
93
94 void setFromOpaqueValue(void *Val) & {
95 Value = reinterpret_cast<intptr_t>(Val);
96 }
97
98 static PointerIntPair getFromOpaqueValue(void *V) {
99 PointerIntPair P;
100 P.setFromOpaqueValue(V);
101 return P;
102 }
103
104 // Allow PointerIntPairs to be created from const void * if and only if the
105 // pointer type could be created from a const void *.
106 static PointerIntPair getFromOpaqueValue(const void *V) {
107 (void)PtrTraits::getFromVoidPointer(V);
108 return getFromOpaqueValue(const_cast<void *>(V));
109 }
110
111 bool operator==(const PointerIntPair &RHS) const {
112 return Value == RHS.Value;
113 }
114
115 bool operator!=(const PointerIntPair &RHS) const {
116 return Value != RHS.Value;
117 }
118
119 bool operator<(const PointerIntPair &RHS) const { return Value < RHS.Value; }
120 bool operator>(const PointerIntPair &RHS) const { return Value > RHS.Value; }
121
122 bool operator<=(const PointerIntPair &RHS) const {
123 return Value <= RHS.Value;
124 }
125
126 bool operator>=(const PointerIntPair &RHS) const {
127 return Value >= RHS.Value;
128 }
129};
130
131template <typename PointerT, unsigned IntBits, typename PtrTraits>
132struct PointerIntPairInfo {
133 static_assert(PtrTraits::NumLowBitsAvailable <
134 std::numeric_limits<uintptr_t>::digits,
135 "cannot use a pointer type that has all bits free");
136 static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
137 "PointerIntPair with integer size too large for pointer");
138 enum MaskAndShiftConstants : uintptr_t {
139 /// PointerBitMask - The bits that come from the pointer.
140 PointerBitMask =
141 ~(uintptr_t)(((intptr_t)1 << PtrTraits::NumLowBitsAvailable) - 1),
142
143 /// IntShift - The number of low bits that we reserve for other uses, and
144 /// keep zero.
145 IntShift = (uintptr_t)PtrTraits::NumLowBitsAvailable - IntBits,
146
147 /// IntMask - This is the unshifted mask for valid bits of the int type.
148 IntMask = (uintptr_t)(((intptr_t)1 << IntBits) - 1),
149
150 // ShiftedIntMask - This is the bits for the integer shifted in place.
151 ShiftedIntMask = (uintptr_t)(IntMask << IntShift)
152 };
153
154 static PointerT getPointer(intptr_t Value) {
155 return PtrTraits::getFromVoidPointer(
156 reinterpret_cast<void *>(Value & PointerBitMask));
157 }
158
159 static intptr_t getInt(intptr_t Value) {
160 return (Value >> IntShift) & IntMask;
161 }
162
163 static intptr_t updatePointer(intptr_t OrigValue, PointerT Ptr) {
164 intptr_t PtrWord =
165 reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(Ptr));
166 assert((PtrWord & ~PointerBitMask) == 0 &&(static_cast <bool> ((PtrWord & ~PointerBitMask) ==
0 && "Pointer is not sufficiently aligned") ? void (
0) : __assert_fail ("(PtrWord & ~PointerBitMask) == 0 && \"Pointer is not sufficiently aligned\""
, "llvm/include/llvm/ADT/PointerIntPair.h", 167, __extension__
__PRETTY_FUNCTION__))
167 "Pointer is not sufficiently aligned")(static_cast <bool> ((PtrWord & ~PointerBitMask) ==
0 && "Pointer is not sufficiently aligned") ? void (
0) : __assert_fail ("(PtrWord & ~PointerBitMask) == 0 && \"Pointer is not sufficiently aligned\""
, "llvm/include/llvm/ADT/PointerIntPair.h", 167, __extension__
__PRETTY_FUNCTION__))
;
168 // Preserve all low bits, just update the pointer.
169 return PtrWord | (OrigValue & ~PointerBitMask);
170 }
171
172 static intptr_t updateInt(intptr_t OrigValue, intptr_t Int) {
173 intptr_t IntWord = static_cast<intptr_t>(Int);
31
'IntWord' initialized to the value of 'Int'
174 assert((IntWord & ~IntMask) == 0 && "Integer too large for field")(static_cast <bool> ((IntWord & ~IntMask) == 0 &&
"Integer too large for field") ? void (0) : __assert_fail ("(IntWord & ~IntMask) == 0 && \"Integer too large for field\""
, "llvm/include/llvm/ADT/PointerIntPair.h", 174, __extension__
__PRETTY_FUNCTION__))
;
32
'?' condition is true
175
176 // Preserve all bits other than the ones we are updating.
177 return (OrigValue & ~ShiftedIntMask) | IntWord << IntShift;
33
The result of the left shift is undefined due to shifting '0' by '2', which is unrepresentable in the unsigned version of the return type 'intptr_t'
178 }
179};
180
181// Provide specialization of DenseMapInfo for PointerIntPair.
182template <typename PointerTy, unsigned IntBits, typename IntType>
183struct DenseMapInfo<PointerIntPair<PointerTy, IntBits, IntType>, void> {
184 using Ty = PointerIntPair<PointerTy, IntBits, IntType>;
185
186 static Ty getEmptyKey() {
187 uintptr_t Val = static_cast<uintptr_t>(-1);
188 Val <<= PointerLikeTypeTraits<Ty>::NumLowBitsAvailable;
189 return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
190 }
191
192 static Ty getTombstoneKey() {
193 uintptr_t Val = static_cast<uintptr_t>(-2);
194 Val <<= PointerLikeTypeTraits<PointerTy>::NumLowBitsAvailable;
195 return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
196 }
197
198 static unsigned getHashValue(Ty V) {
199 uintptr_t IV = reinterpret_cast<uintptr_t>(V.getOpaqueValue());
200 return unsigned(IV) ^ unsigned(IV >> 9);
201 }
202
203 static bool isEqual(const Ty &LHS, const Ty &RHS) { return LHS == RHS; }
204};
205
206// Teach SmallPtrSet that PointerIntPair is "basically a pointer".
207template <typename PointerTy, unsigned IntBits, typename IntType,
208 typename PtrTraits>
209struct PointerLikeTypeTraits<
210 PointerIntPair<PointerTy, IntBits, IntType, PtrTraits>> {
211 static inline void *
212 getAsVoidPointer(const PointerIntPair<PointerTy, IntBits, IntType> &P) {
213 return P.getOpaqueValue();
214 }
215
216 static inline PointerIntPair<PointerTy, IntBits, IntType>
217 getFromVoidPointer(void *P) {
218 return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
219 }
220
221 static inline PointerIntPair<PointerTy, IntBits, IntType>
222 getFromVoidPointer(const void *P) {
223 return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
224 }
225
226 static constexpr int NumLowBitsAvailable =
227 PtrTraits::NumLowBitsAvailable - IntBits;
228};
229
230// Allow structured bindings on PointerIntPair.
231template <std::size_t I, typename PointerTy, unsigned IntBits, typename IntType,
232 typename PtrTraits, typename Info>
233decltype(auto)
234get(const PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info> &Pair) {
235 static_assert(I < 2);
236 if constexpr (I == 0)
237 return Pair.getPointer();
238 else
239 return Pair.getInt();
240}
241
242} // end namespace llvm
243
244namespace std {
245template <typename PointerTy, unsigned IntBits, typename IntType,
246 typename PtrTraits, typename Info>
247struct tuple_size<
248 llvm::PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info>>
249 : std::integral_constant<std::size_t, 2> {};
250
251template <std::size_t I, typename PointerTy, unsigned IntBits, typename IntType,
252 typename PtrTraits, typename Info>
253struct tuple_element<
254 I, llvm::PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info>>
255 : std::conditional<I == 0, PointerTy, IntType> {};
256} // namespace std
257
258#endif // LLVM_ADT_POINTERINTPAIR_H