| File: | build/source/llvm/lib/CodeGen/RDFGraph.cpp |
| Warning: | line 510, column 17 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- RDFGraph.cpp -------------------------------------------------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // Target-independent, SSA-based data flow graph for register data flow (RDF). | |||
| 10 | // | |||
| 11 | #include "llvm/CodeGen/RDFGraph.h" | |||
| 12 | #include "llvm/ADT/BitVector.h" | |||
| 13 | #include "llvm/ADT/STLExtras.h" | |||
| 14 | #include "llvm/ADT/SetVector.h" | |||
| 15 | #include "llvm/CodeGen/MachineBasicBlock.h" | |||
| 16 | #include "llvm/CodeGen/MachineDominanceFrontier.h" | |||
| 17 | #include "llvm/CodeGen/MachineDominators.h" | |||
| 18 | #include "llvm/CodeGen/MachineFunction.h" | |||
| 19 | #include "llvm/CodeGen/MachineInstr.h" | |||
| 20 | #include "llvm/CodeGen/MachineOperand.h" | |||
| 21 | #include "llvm/CodeGen/MachineRegisterInfo.h" | |||
| 22 | #include "llvm/CodeGen/RDFRegisters.h" | |||
| 23 | #include "llvm/CodeGen/TargetInstrInfo.h" | |||
| 24 | #include "llvm/CodeGen/TargetLowering.h" | |||
| 25 | #include "llvm/CodeGen/TargetRegisterInfo.h" | |||
| 26 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | |||
| 27 | #include "llvm/IR/Function.h" | |||
| 28 | #include "llvm/MC/LaneBitmask.h" | |||
| 29 | #include "llvm/MC/MCInstrDesc.h" | |||
| 30 | #include "llvm/Support/ErrorHandling.h" | |||
| 31 | #include "llvm/Support/raw_ostream.h" | |||
| 32 | #include <algorithm> | |||
| 33 | #include <cassert> | |||
| 34 | #include <cstdint> | |||
| 35 | #include <cstring> | |||
| 36 | #include <iterator> | |||
| 37 | #include <set> | |||
| 38 | #include <utility> | |||
| 39 | #include <vector> | |||
| 40 | ||||
| 41 | using namespace llvm; | |||
| 42 | using namespace rdf; | |||
| 43 | ||||
| 44 | // Printing functions. Have them here first, so that the rest of the code | |||
| 45 | // can use them. | |||
| 46 | namespace llvm { | |||
| 47 | namespace rdf { | |||
| 48 | ||||
| 49 | raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) { | |||
| 50 | if (!P.Mask.all()) | |||
| 51 | OS << ':' << PrintLaneMask(P.Mask); | |||
| 52 | return OS; | |||
| 53 | } | |||
| 54 | ||||
| 55 | raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { | |||
| 56 | auto &TRI = P.G.getTRI(); | |||
| 57 | if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs()) | |||
| 58 | OS << TRI.getName(P.Obj.Reg); | |||
| 59 | else | |||
| 60 | OS << '#' << P.Obj.Reg; | |||
| 61 | OS << PrintLaneMaskOpt(P.Obj.Mask); | |||
| 62 | return OS; | |||
| 63 | } | |||
| 64 | ||||
| 65 | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { | |||
| 66 | auto NA = P.G.addr<NodeBase*>(P.Obj); | |||
| 67 | uint16_t Attrs = NA.Addr->getAttrs(); | |||
| 68 | uint16_t Kind = NodeAttrs::kind(Attrs); | |||
| 69 | uint16_t Flags = NodeAttrs::flags(Attrs); | |||
| 70 | switch (NodeAttrs::type(Attrs)) { | |||
| 71 | case NodeAttrs::Code: | |||
| 72 | switch (Kind) { | |||
| 73 | case NodeAttrs::Func: OS << 'f'; break; | |||
| 74 | case NodeAttrs::Block: OS << 'b'; break; | |||
| 75 | case NodeAttrs::Stmt: OS << 's'; break; | |||
| 76 | case NodeAttrs::Phi: OS << 'p'; break; | |||
| 77 | default: OS << "c?"; break; | |||
| 78 | } | |||
| 79 | break; | |||
| 80 | case NodeAttrs::Ref: | |||
| 81 | if (Flags & NodeAttrs::Undef) | |||
| 82 | OS << '/'; | |||
| 83 | if (Flags & NodeAttrs::Dead) | |||
| 84 | OS << '\\'; | |||
| 85 | if (Flags & NodeAttrs::Preserving) | |||
| 86 | OS << '+'; | |||
| 87 | if (Flags & NodeAttrs::Clobbering) | |||
| 88 | OS << '~'; | |||
| 89 | switch (Kind) { | |||
| 90 | case NodeAttrs::Use: OS << 'u'; break; | |||
| 91 | case NodeAttrs::Def: OS << 'd'; break; | |||
| 92 | case NodeAttrs::Block: OS << 'b'; break; | |||
| 93 | default: OS << "r?"; break; | |||
| 94 | } | |||
| 95 | break; | |||
| 96 | default: | |||
| 97 | OS << '?'; | |||
| 98 | break; | |||
| 99 | } | |||
| 100 | OS << P.Obj; | |||
| 101 | if (Flags & NodeAttrs::Shadow) | |||
| 102 | OS << '"'; | |||
| 103 | return OS; | |||
| 104 | } | |||
| 105 | ||||
| 106 | static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, | |||
| 107 | const DataFlowGraph &G) { | |||
| 108 | OS << Print(RA.Id, G) << '<' | |||
| 109 | << Print(RA.Addr->getRegRef(G), G) << '>'; | |||
| 110 | if (RA.Addr->getFlags() & NodeAttrs::Fixed) | |||
| 111 | OS << '!'; | |||
| 112 | } | |||
| 113 | ||||
| 114 | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) { | |||
| 115 | printRefHeader(OS, P.Obj, P.G); | |||
| 116 | OS << '('; | |||
| 117 | if (NodeId N = P.Obj.Addr->getReachingDef()) | |||
| 118 | OS << Print(N, P.G); | |||
| 119 | OS << ','; | |||
| 120 | if (NodeId N = P.Obj.Addr->getReachedDef()) | |||
| 121 | OS << Print(N, P.G); | |||
| 122 | OS << ','; | |||
| 123 | if (NodeId N = P.Obj.Addr->getReachedUse()) | |||
| 124 | OS << Print(N, P.G); | |||
| 125 | OS << "):"; | |||
| 126 | if (NodeId N = P.Obj.Addr->getSibling()) | |||
| 127 | OS << Print(N, P.G); | |||
| 128 | return OS; | |||
| 129 | } | |||
| 130 | ||||
| 131 | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) { | |||
| 132 | printRefHeader(OS, P.Obj, P.G); | |||
| 133 | OS << '('; | |||
| 134 | if (NodeId N = P.Obj.Addr->getReachingDef()) | |||
| 135 | OS << Print(N, P.G); | |||
| 136 | OS << "):"; | |||
| 137 | if (NodeId N = P.Obj.Addr->getSibling()) | |||
| 138 | OS << Print(N, P.G); | |||
| 139 | return OS; | |||
| 140 | } | |||
| 141 | ||||
| 142 | raw_ostream &operator<< (raw_ostream &OS, | |||
| 143 | const Print<NodeAddr<PhiUseNode*>> &P) { | |||
| 144 | printRefHeader(OS, P.Obj, P.G); | |||
| 145 | OS << '('; | |||
| 146 | if (NodeId N = P.Obj.Addr->getReachingDef()) | |||
| 147 | OS << Print(N, P.G); | |||
| 148 | OS << ','; | |||
| 149 | if (NodeId N = P.Obj.Addr->getPredecessor()) | |||
| 150 | OS << Print(N, P.G); | |||
| 151 | OS << "):"; | |||
| 152 | if (NodeId N = P.Obj.Addr->getSibling()) | |||
| 153 | OS << Print(N, P.G); | |||
| 154 | return OS; | |||
| 155 | } | |||
| 156 | ||||
| 157 | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) { | |||
| 158 | switch (P.Obj.Addr->getKind()) { | |||
| 159 | case NodeAttrs::Def: | |||
| 160 | OS << PrintNode<DefNode*>(P.Obj, P.G); | |||
| 161 | break; | |||
| 162 | case NodeAttrs::Use: | |||
| 163 | if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) | |||
| 164 | OS << PrintNode<PhiUseNode*>(P.Obj, P.G); | |||
| 165 | else | |||
| 166 | OS << PrintNode<UseNode*>(P.Obj, P.G); | |||
| 167 | break; | |||
| 168 | } | |||
| 169 | return OS; | |||
| 170 | } | |||
| 171 | ||||
| 172 | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) { | |||
| 173 | unsigned N = P.Obj.size(); | |||
| 174 | for (auto I : P.Obj) { | |||
| 175 | OS << Print(I.Id, P.G); | |||
| 176 | if (--N) | |||
| 177 | OS << ' '; | |||
| 178 | } | |||
| 179 | return OS; | |||
| 180 | } | |||
| 181 | ||||
| 182 | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) { | |||
| 183 | unsigned N = P.Obj.size(); | |||
| 184 | for (auto I : P.Obj) { | |||
| 185 | OS << Print(I, P.G); | |||
| 186 | if (--N) | |||
| 187 | OS << ' '; | |||
| 188 | } | |||
| 189 | return OS; | |||
| 190 | } | |||
| 191 | ||||
| 192 | namespace { | |||
| 193 | ||||
| 194 | template <typename T> | |||
| 195 | struct PrintListV { | |||
| 196 | PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} | |||
| 197 | ||||
| 198 | using Type = T; | |||
| 199 | const NodeList &List; | |||
| 200 | const DataFlowGraph &G; | |||
| 201 | }; | |||
| 202 | ||||
| 203 | template <typename T> | |||
| 204 | raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) { | |||
| 205 | unsigned N = P.List.size(); | |||
| 206 | for (NodeAddr<T> A : P.List) { | |||
| 207 | OS << PrintNode<T>(A, P.G); | |||
| 208 | if (--N) | |||
| 209 | OS << ", "; | |||
| 210 | } | |||
| 211 | return OS; | |||
| 212 | } | |||
| 213 | ||||
| 214 | } // end anonymous namespace | |||
| 215 | ||||
| 216 | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { | |||
| 217 | OS << Print(P.Obj.Id, P.G) << ": phi [" | |||
| 218 | << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; | |||
| 219 | return OS; | |||
| 220 | } | |||
| 221 | ||||
| 222 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) { | |||
| 223 | const MachineInstr &MI = *P.Obj.Addr->getCode(); | |||
| 224 | unsigned Opc = MI.getOpcode(); | |||
| 225 | OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); | |||
| 226 | // Print the target for calls and branches (for readability). | |||
| 227 | if (MI.isCall() || MI.isBranch()) { | |||
| 228 | MachineInstr::const_mop_iterator T = | |||
| 229 | llvm::find_if(MI.operands(), | |||
| 230 | [] (const MachineOperand &Op) -> bool { | |||
| 231 | return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); | |||
| 232 | }); | |||
| 233 | if (T != MI.operands_end()) { | |||
| 234 | OS << ' '; | |||
| 235 | if (T->isMBB()) | |||
| 236 | OS << printMBBReference(*T->getMBB()); | |||
| 237 | else if (T->isGlobal()) | |||
| 238 | OS << T->getGlobal()->getName(); | |||
| 239 | else if (T->isSymbol()) | |||
| 240 | OS << T->getSymbolName(); | |||
| 241 | } | |||
| 242 | } | |||
| 243 | OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; | |||
| 244 | return OS; | |||
| 245 | } | |||
| 246 | ||||
| 247 | raw_ostream &operator<< (raw_ostream &OS, | |||
| 248 | const Print<NodeAddr<InstrNode*>> &P) { | |||
| 249 | switch (P.Obj.Addr->getKind()) { | |||
| 250 | case NodeAttrs::Phi: | |||
| 251 | OS << PrintNode<PhiNode*>(P.Obj, P.G); | |||
| 252 | break; | |||
| 253 | case NodeAttrs::Stmt: | |||
| 254 | OS << PrintNode<StmtNode*>(P.Obj, P.G); | |||
| 255 | break; | |||
| 256 | default: | |||
| 257 | OS << "instr? " << Print(P.Obj.Id, P.G); | |||
| 258 | break; | |||
| 259 | } | |||
| 260 | return OS; | |||
| 261 | } | |||
| 262 | ||||
| 263 | raw_ostream &operator<< (raw_ostream &OS, | |||
| 264 | const Print<NodeAddr<BlockNode*>> &P) { | |||
| 265 | MachineBasicBlock *BB = P.Obj.Addr->getCode(); | |||
| 266 | unsigned NP = BB->pred_size(); | |||
| 267 | std::vector<int> Ns; | |||
| 268 | auto PrintBBs = [&OS] (std::vector<int> Ns) -> void { | |||
| 269 | unsigned N = Ns.size(); | |||
| 270 | for (int I : Ns) { | |||
| 271 | OS << "%bb." << I; | |||
| 272 | if (--N) | |||
| 273 | OS << ", "; | |||
| 274 | } | |||
| 275 | }; | |||
| 276 | ||||
| 277 | OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB) | |||
| 278 | << " --- preds(" << NP << "): "; | |||
| 279 | for (MachineBasicBlock *B : BB->predecessors()) | |||
| 280 | Ns.push_back(B->getNumber()); | |||
| 281 | PrintBBs(Ns); | |||
| 282 | ||||
| 283 | unsigned NS = BB->succ_size(); | |||
| 284 | OS << " succs(" << NS << "): "; | |||
| 285 | Ns.clear(); | |||
| 286 | for (MachineBasicBlock *B : BB->successors()) | |||
| 287 | Ns.push_back(B->getNumber()); | |||
| 288 | PrintBBs(Ns); | |||
| 289 | OS << '\n'; | |||
| 290 | ||||
| 291 | for (auto I : P.Obj.Addr->members(P.G)) | |||
| 292 | OS << PrintNode<InstrNode*>(I, P.G) << '\n'; | |||
| 293 | return OS; | |||
| 294 | } | |||
| 295 | ||||
| 296 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) { | |||
| 297 | OS << "DFG dump:[\n" << Print(P.Obj.Id, P.G) << ": Function: " | |||
| 298 | << P.Obj.Addr->getCode()->getName() << '\n'; | |||
| 299 | for (auto I : P.Obj.Addr->members(P.G)) | |||
| 300 | OS << PrintNode<BlockNode*>(I, P.G) << '\n'; | |||
| 301 | OS << "]\n"; | |||
| 302 | return OS; | |||
| 303 | } | |||
| 304 | ||||
| 305 | raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) { | |||
| 306 | OS << '{'; | |||
| 307 | for (auto I : P.Obj) | |||
| 308 | OS << ' ' << Print(I, P.G); | |||
| 309 | OS << " }"; | |||
| 310 | return OS; | |||
| 311 | } | |||
| 312 | ||||
| 313 | raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) { | |||
| 314 | P.Obj.print(OS); | |||
| 315 | return OS; | |||
| 316 | } | |||
| 317 | ||||
| 318 | raw_ostream &operator<< (raw_ostream &OS, | |||
| 319 | const Print<DataFlowGraph::DefStack> &P) { | |||
| 320 | for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) { | |||
| 321 | OS << Print(I->Id, P.G) | |||
| 322 | << '<' << Print(I->Addr->getRegRef(P.G), P.G) << '>'; | |||
| 323 | I.down(); | |||
| 324 | if (I != E) | |||
| 325 | OS << ' '; | |||
| 326 | } | |||
| 327 | return OS; | |||
| 328 | } | |||
| 329 | ||||
| 330 | } // end namespace rdf | |||
| 331 | } // end namespace llvm | |||
| 332 | ||||
| 333 | // Node allocation functions. | |||
| 334 | // | |||
| 335 | // Node allocator is like a slab memory allocator: it allocates blocks of | |||
| 336 | // memory in sizes that are multiples of the size of a node. Each block has | |||
| 337 | // the same size. Nodes are allocated from the currently active block, and | |||
| 338 | // when it becomes full, a new one is created. | |||
| 339 | // There is a mapping scheme between node id and its location in a block, | |||
| 340 | // and within that block is described in the header file. | |||
| 341 | // | |||
| 342 | void NodeAllocator::startNewBlock() { | |||
| 343 | void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize); | |||
| 344 | char *P = static_cast<char*>(T); | |||
| 345 | Blocks.push_back(P); | |||
| 346 | // Check if the block index is still within the allowed range, i.e. less | |||
| 347 | // than 2^N, where N is the number of bits in NodeId for the block index. | |||
| 348 | // BitsPerIndex is the number of bits per node index. | |||
| 349 | assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&(static_cast <bool> ((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && "Out of bits for block index" ) ? void (0) : __assert_fail ("(Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && \"Out of bits for block index\"" , "llvm/lib/CodeGen/RDFGraph.cpp", 350, __extension__ __PRETTY_FUNCTION__ )) | |||
| 350 | "Out of bits for block index")(static_cast <bool> ((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && "Out of bits for block index" ) ? void (0) : __assert_fail ("(Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && \"Out of bits for block index\"" , "llvm/lib/CodeGen/RDFGraph.cpp", 350, __extension__ __PRETTY_FUNCTION__ )); | |||
| 351 | ActiveEnd = P; | |||
| 352 | } | |||
| 353 | ||||
| 354 | bool NodeAllocator::needNewBlock() { | |||
| 355 | if (Blocks.empty()) | |||
| 356 | return true; | |||
| 357 | ||||
| 358 | char *ActiveBegin = Blocks.back(); | |||
| 359 | uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize; | |||
| 360 | return Index >= NodesPerBlock; | |||
| 361 | } | |||
| 362 | ||||
| 363 | NodeAddr<NodeBase*> NodeAllocator::New() { | |||
| 364 | if (needNewBlock()) | |||
| 365 | startNewBlock(); | |||
| 366 | ||||
| 367 | uint32_t ActiveB = Blocks.size()-1; | |||
| 368 | uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize; | |||
| 369 | NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd), | |||
| 370 | makeId(ActiveB, Index) }; | |||
| 371 | ActiveEnd += NodeMemSize; | |||
| 372 | return NA; | |||
| 373 | } | |||
| 374 | ||||
| 375 | NodeId NodeAllocator::id(const NodeBase *P) const { | |||
| 376 | uintptr_t A = reinterpret_cast<uintptr_t>(P); | |||
| 377 | for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { | |||
| 378 | uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); | |||
| 379 | if (A < B || A >= B + NodesPerBlock*NodeMemSize) | |||
| 380 | continue; | |||
| 381 | uint32_t Idx = (A-B)/NodeMemSize; | |||
| 382 | return makeId(i, Idx); | |||
| 383 | } | |||
| 384 | llvm_unreachable("Invalid node address")::llvm::llvm_unreachable_internal("Invalid node address", "llvm/lib/CodeGen/RDFGraph.cpp" , 384); | |||
| 385 | } | |||
| 386 | ||||
| 387 | void NodeAllocator::clear() { | |||
| 388 | MemPool.Reset(); | |||
| 389 | Blocks.clear(); | |||
| 390 | ActiveEnd = nullptr; | |||
| 391 | } | |||
| 392 | ||||
| 393 | // Insert node NA after "this" in the circular chain. | |||
| 394 | void NodeBase::append(NodeAddr<NodeBase*> NA) { | |||
| 395 | NodeId Nx = Next; | |||
| 396 | // If NA is already "next", do nothing. | |||
| 397 | if (Next != NA.Id) { | |||
| 398 | Next = NA.Id; | |||
| 399 | NA.Addr->Next = Nx; | |||
| 400 | } | |||
| 401 | } | |||
| 402 | ||||
| 403 | // Fundamental node manipulator functions. | |||
| 404 | ||||
| 405 | // Obtain the register reference from a reference node. | |||
| 406 | RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { | |||
| 407 | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref)(static_cast <bool> (NodeAttrs::type(Attrs) == NodeAttrs ::Ref) ? void (0) : __assert_fail ("NodeAttrs::type(Attrs) == NodeAttrs::Ref" , "llvm/lib/CodeGen/RDFGraph.cpp", 407, __extension__ __PRETTY_FUNCTION__ )); | |||
| 408 | if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) | |||
| 409 | return G.unpack(Ref.PR); | |||
| 410 | assert(Ref.Op != nullptr)(static_cast <bool> (Ref.Op != nullptr) ? void (0) : __assert_fail ("Ref.Op != nullptr", "llvm/lib/CodeGen/RDFGraph.cpp", 410, __extension__ __PRETTY_FUNCTION__)); | |||
| 411 | return G.makeRegRef(*Ref.Op); | |||
| 412 | } | |||
| 413 | ||||
| 414 | // Set the register reference in the reference node directly (for references | |||
| 415 | // in phi nodes). | |||
| 416 | void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { | |||
| 417 | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref)(static_cast <bool> (NodeAttrs::type(Attrs) == NodeAttrs ::Ref) ? void (0) : __assert_fail ("NodeAttrs::type(Attrs) == NodeAttrs::Ref" , "llvm/lib/CodeGen/RDFGraph.cpp", 417, __extension__ __PRETTY_FUNCTION__ )); | |||
| 418 | assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)(static_cast <bool> (NodeAttrs::flags(Attrs) & NodeAttrs ::PhiRef) ? void (0) : __assert_fail ("NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef" , "llvm/lib/CodeGen/RDFGraph.cpp", 418, __extension__ __PRETTY_FUNCTION__ )); | |||
| 419 | Ref.PR = G.pack(RR); | |||
| 420 | } | |||
| 421 | ||||
| 422 | // Set the register reference in the reference node based on a machine | |||
| 423 | // operand (for references in statement nodes). | |||
| 424 | void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { | |||
| 425 | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref)(static_cast <bool> (NodeAttrs::type(Attrs) == NodeAttrs ::Ref) ? void (0) : __assert_fail ("NodeAttrs::type(Attrs) == NodeAttrs::Ref" , "llvm/lib/CodeGen/RDFGraph.cpp", 425, __extension__ __PRETTY_FUNCTION__ )); | |||
| 426 | assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef))(static_cast <bool> (!(NodeAttrs::flags(Attrs) & NodeAttrs ::PhiRef)) ? void (0) : __assert_fail ("!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)" , "llvm/lib/CodeGen/RDFGraph.cpp", 426, __extension__ __PRETTY_FUNCTION__ )); | |||
| 427 | (void)G; | |||
| 428 | Ref.Op = Op; | |||
| 429 | } | |||
| 430 | ||||
| 431 | // Get the owner of a given reference node. | |||
| 432 | NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) { | |||
| 433 | NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); | |||
| 434 | ||||
| 435 | while (NA.Addr != this) { | |||
| 436 | if (NA.Addr->getType() == NodeAttrs::Code) | |||
| 437 | return NA; | |||
| 438 | NA = G.addr<NodeBase*>(NA.Addr->getNext()); | |||
| 439 | } | |||
| 440 | llvm_unreachable("No owner in circular list")::llvm::llvm_unreachable_internal("No owner in circular list" , "llvm/lib/CodeGen/RDFGraph.cpp", 440); | |||
| 441 | } | |||
| 442 | ||||
| 443 | // Connect the def node to the reaching def node. | |||
| 444 | void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { | |||
| 445 | Ref.RD = DA.Id; | |||
| 446 | Ref.Sib = DA.Addr->getReachedDef(); | |||
| 447 | DA.Addr->setReachedDef(Self); | |||
| 448 | } | |||
| 449 | ||||
| 450 | // Connect the use node to the reaching def node. | |||
| 451 | void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { | |||
| 452 | Ref.RD = DA.Id; | |||
| 453 | Ref.Sib = DA.Addr->getReachedUse(); | |||
| 454 | DA.Addr->setReachedUse(Self); | |||
| 455 | } | |||
| 456 | ||||
| 457 | // Get the first member of the code node. | |||
| 458 | NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const { | |||
| 459 | if (Code.FirstM == 0) | |||
| 460 | return NodeAddr<NodeBase*>(); | |||
| 461 | return G.addr<NodeBase*>(Code.FirstM); | |||
| 462 | } | |||
| 463 | ||||
| 464 | // Get the last member of the code node. | |||
| 465 | NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const { | |||
| 466 | if (Code.LastM == 0) | |||
| 467 | return NodeAddr<NodeBase*>(); | |||
| 468 | return G.addr<NodeBase*>(Code.LastM); | |||
| 469 | } | |||
| 470 | ||||
| 471 | // Add node NA at the end of the member list of the given code node. | |||
| 472 | void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { | |||
| 473 | NodeAddr<NodeBase*> ML = getLastMember(G); | |||
| 474 | if (ML.Id != 0) { | |||
| 475 | ML.Addr->append(NA); | |||
| 476 | } else { | |||
| 477 | Code.FirstM = NA.Id; | |||
| 478 | NodeId Self = G.id(this); | |||
| 479 | NA.Addr->setNext(Self); | |||
| 480 | } | |||
| 481 | Code.LastM = NA.Id; | |||
| 482 | } | |||
| 483 | ||||
| 484 | // Add node NA after member node MA in the given code node. | |||
| 485 | void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, | |||
| 486 | const DataFlowGraph &G) { | |||
| 487 | MA.Addr->append(NA); | |||
| 488 | if (Code.LastM == MA.Id) | |||
| 489 | Code.LastM = NA.Id; | |||
| 490 | } | |||
| 491 | ||||
| 492 | // Remove member node NA from the given code node. | |||
| 493 | void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { | |||
| 494 | NodeAddr<NodeBase*> MA = getFirstMember(G); | |||
| 495 | assert(MA.Id != 0)(static_cast <bool> (MA.Id != 0) ? void (0) : __assert_fail ("MA.Id != 0", "llvm/lib/CodeGen/RDFGraph.cpp", 495, __extension__ __PRETTY_FUNCTION__)); | |||
| 496 | ||||
| 497 | // Special handling if the member to remove is the first member. | |||
| 498 | if (MA.Id == NA.Id) { | |||
| 499 | if (Code.LastM == MA.Id) { | |||
| 500 | // If it is the only member, set both first and last to 0. | |||
| 501 | Code.FirstM = Code.LastM = 0; | |||
| 502 | } else { | |||
| 503 | // Otherwise, advance the first member. | |||
| 504 | Code.FirstM = MA.Addr->getNext(); | |||
| 505 | } | |||
| 506 | return; | |||
| 507 | } | |||
| 508 | ||||
| 509 | while (MA.Addr != this) { | |||
| 510 | NodeId MX = MA.Addr->getNext(); | |||
| ||||
| 511 | if (MX == NA.Id) { | |||
| 512 | MA.Addr->setNext(NA.Addr->getNext()); | |||
| 513 | // If the member to remove happens to be the last one, update the | |||
| 514 | // LastM indicator. | |||
| 515 | if (Code.LastM == NA.Id) | |||
| 516 | Code.LastM = MA.Id; | |||
| 517 | return; | |||
| 518 | } | |||
| 519 | MA = G.addr<NodeBase*>(MX); | |||
| 520 | } | |||
| 521 | llvm_unreachable("No such member")::llvm::llvm_unreachable_internal("No such member", "llvm/lib/CodeGen/RDFGraph.cpp" , 521); | |||
| 522 | } | |||
| 523 | ||||
| 524 | // Return the list of all members of the code node. | |||
| 525 | NodeList CodeNode::members(const DataFlowGraph &G) const { | |||
| 526 | static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; }; | |||
| 527 | return members_if(True, G); | |||
| 528 | } | |||
| 529 | ||||
| 530 | // Return the owner of the given instr node. | |||
| 531 | NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) { | |||
| 532 | NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); | |||
| 533 | ||||
| 534 | while (NA.Addr != this) { | |||
| 535 | assert(NA.Addr->getType() == NodeAttrs::Code)(static_cast <bool> (NA.Addr->getType() == NodeAttrs ::Code) ? void (0) : __assert_fail ("NA.Addr->getType() == NodeAttrs::Code" , "llvm/lib/CodeGen/RDFGraph.cpp", 535, __extension__ __PRETTY_FUNCTION__ )); | |||
| 536 | if (NA.Addr->getKind() == NodeAttrs::Block) | |||
| 537 | return NA; | |||
| 538 | NA = G.addr<NodeBase*>(NA.Addr->getNext()); | |||
| 539 | } | |||
| 540 | llvm_unreachable("No owner in circular list")::llvm::llvm_unreachable_internal("No owner in circular list" , "llvm/lib/CodeGen/RDFGraph.cpp", 540); | |||
| 541 | } | |||
| 542 | ||||
| 543 | // Add the phi node PA to the given block node. | |||
| 544 | void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) { | |||
| 545 | NodeAddr<NodeBase*> M = getFirstMember(G); | |||
| 546 | if (M.Id == 0) { | |||
| 547 | addMember(PA, G); | |||
| 548 | return; | |||
| 549 | } | |||
| 550 | ||||
| 551 | assert(M.Addr->getType() == NodeAttrs::Code)(static_cast <bool> (M.Addr->getType() == NodeAttrs:: Code) ? void (0) : __assert_fail ("M.Addr->getType() == NodeAttrs::Code" , "llvm/lib/CodeGen/RDFGraph.cpp", 551, __extension__ __PRETTY_FUNCTION__ )); | |||
| 552 | if (M.Addr->getKind() == NodeAttrs::Stmt) { | |||
| 553 | // If the first member of the block is a statement, insert the phi as | |||
| 554 | // the first member. | |||
| 555 | Code.FirstM = PA.Id; | |||
| 556 | PA.Addr->setNext(M.Id); | |||
| 557 | } else { | |||
| 558 | // If the first member is a phi, find the last phi, and append PA to it. | |||
| 559 | assert(M.Addr->getKind() == NodeAttrs::Phi)(static_cast <bool> (M.Addr->getKind() == NodeAttrs:: Phi) ? void (0) : __assert_fail ("M.Addr->getKind() == NodeAttrs::Phi" , "llvm/lib/CodeGen/RDFGraph.cpp", 559, __extension__ __PRETTY_FUNCTION__ )); | |||
| 560 | NodeAddr<NodeBase*> MN = M; | |||
| 561 | do { | |||
| 562 | M = MN; | |||
| 563 | MN = G.addr<NodeBase*>(M.Addr->getNext()); | |||
| 564 | assert(MN.Addr->getType() == NodeAttrs::Code)(static_cast <bool> (MN.Addr->getType() == NodeAttrs ::Code) ? void (0) : __assert_fail ("MN.Addr->getType() == NodeAttrs::Code" , "llvm/lib/CodeGen/RDFGraph.cpp", 564, __extension__ __PRETTY_FUNCTION__ )); | |||
| 565 | } while (MN.Addr->getKind() == NodeAttrs::Phi); | |||
| 566 | ||||
| 567 | // M is the last phi. | |||
| 568 | addMemberAfter(M, PA, G); | |||
| 569 | } | |||
| 570 | } | |||
| 571 | ||||
| 572 | // Find the block node corresponding to the machine basic block BB in the | |||
| 573 | // given func node. | |||
| 574 | NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB, | |||
| 575 | const DataFlowGraph &G) const { | |||
| 576 | auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool { | |||
| 577 | return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB; | |||
| 578 | }; | |||
| 579 | NodeList Ms = members_if(EqBB, G); | |||
| 580 | if (!Ms.empty()) | |||
| 581 | return Ms[0]; | |||
| 582 | return NodeAddr<BlockNode*>(); | |||
| 583 | } | |||
| 584 | ||||
| 585 | // Get the block node for the entry block in the given function. | |||
| 586 | NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) { | |||
| 587 | MachineBasicBlock *EntryB = &getCode()->front(); | |||
| 588 | return findBlock(EntryB, G); | |||
| 589 | } | |||
| 590 | ||||
| 591 | // Target operand information. | |||
| 592 | // | |||
| 593 | ||||
| 594 | // For a given instruction, check if there are any bits of RR that can remain | |||
| 595 | // unchanged across this def. | |||
| 596 | bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum) | |||
| 597 | const { | |||
| 598 | return TII.isPredicated(In); | |||
| 599 | } | |||
| 600 | ||||
| 601 | // Check if the definition of RR produces an unspecified value. | |||
| 602 | bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum) | |||
| 603 | const { | |||
| 604 | const MachineOperand &Op = In.getOperand(OpNum); | |||
| 605 | if (Op.isRegMask()) | |||
| 606 | return true; | |||
| 607 | assert(Op.isReg())(static_cast <bool> (Op.isReg()) ? void (0) : __assert_fail ("Op.isReg()", "llvm/lib/CodeGen/RDFGraph.cpp", 607, __extension__ __PRETTY_FUNCTION__)); | |||
| 608 | if (In.isCall()) | |||
| 609 | if (Op.isDef() && Op.isDead()) | |||
| 610 | return true; | |||
| 611 | return false; | |||
| 612 | } | |||
| 613 | ||||
| 614 | // Check if the given instruction specifically requires | |||
| 615 | bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) | |||
| 616 | const { | |||
| 617 | if (In.isCall() || In.isReturn() || In.isInlineAsm()) | |||
| 618 | return true; | |||
| 619 | // Check for a tail call. | |||
| 620 | if (In.isBranch()) | |||
| 621 | for (const MachineOperand &O : In.operands()) | |||
| 622 | if (O.isGlobal() || O.isSymbol()) | |||
| 623 | return true; | |||
| 624 | ||||
| 625 | const MCInstrDesc &D = In.getDesc(); | |||
| 626 | if (D.implicit_defs().empty() && D.implicit_uses().empty()) | |||
| 627 | return false; | |||
| 628 | const MachineOperand &Op = In.getOperand(OpNum); | |||
| 629 | // If there is a sub-register, treat the operand as non-fixed. Currently, | |||
| 630 | // fixed registers are those that are listed in the descriptor as implicit | |||
| 631 | // uses or defs, and those lists do not allow sub-registers. | |||
| 632 | if (Op.getSubReg() != 0) | |||
| 633 | return false; | |||
| 634 | Register Reg = Op.getReg(); | |||
| 635 | ArrayRef<MCPhysReg> ImpOps = | |||
| 636 | Op.isDef() ? D.implicit_defs() : D.implicit_uses(); | |||
| 637 | return is_contained(ImpOps, Reg); | |||
| 638 | } | |||
| 639 | ||||
| 640 | // | |||
| 641 | // The data flow graph construction. | |||
| 642 | // | |||
| 643 | ||||
| 644 | DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, | |||
| 645 | const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, | |||
| 646 | const MachineDominanceFrontier &mdf) | |||
| 647 | : DefaultTOI(std::make_unique<TargetOperandInfo>(tii)), MF(mf), TII(tii), | |||
| 648 | TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI), | |||
| 649 | LiveIns(PRI) { | |||
| 650 | } | |||
| 651 | ||||
| 652 | DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, | |||
| 653 | const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, | |||
| 654 | const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi) | |||
| 655 | : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), | |||
| 656 | LiveIns(PRI) { | |||
| 657 | } | |||
| 658 | ||||
| 659 | // The implementation of the definition stack. | |||
| 660 | // Each register reference has its own definition stack. In particular, | |||
| 661 | // for a register references "Reg" and "Reg:subreg" will each have their | |||
| 662 | // own definition stacks. | |||
| 663 | ||||
| 664 | // Construct a stack iterator. | |||
| 665 | DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, | |||
| 666 | bool Top) : DS(S) { | |||
| 667 | if (!Top) { | |||
| 668 | // Initialize to bottom. | |||
| 669 | Pos = 0; | |||
| 670 | return; | |||
| 671 | } | |||
| 672 | // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). | |||
| 673 | Pos = DS.Stack.size(); | |||
| 674 | while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1])) | |||
| 675 | Pos--; | |||
| 676 | } | |||
| 677 | ||||
| 678 | // Return the size of the stack, including block delimiters. | |||
| 679 | unsigned DataFlowGraph::DefStack::size() const { | |||
| 680 | unsigned S = 0; | |||
| 681 | for (auto I = top(), E = bottom(); I != E; I.down()) | |||
| 682 | S++; | |||
| 683 | return S; | |||
| 684 | } | |||
| 685 | ||||
| 686 | // Remove the top entry from the stack. Remove all intervening delimiters | |||
| 687 | // so that after this, the stack is either empty, or the top of the stack | |||
| 688 | // is a non-delimiter. | |||
| 689 | void DataFlowGraph::DefStack::pop() { | |||
| 690 | assert(!empty())(static_cast <bool> (!empty()) ? void (0) : __assert_fail ("!empty()", "llvm/lib/CodeGen/RDFGraph.cpp", 690, __extension__ __PRETTY_FUNCTION__)); | |||
| 691 | unsigned P = nextDown(Stack.size()); | |||
| 692 | Stack.resize(P); | |||
| 693 | } | |||
| 694 | ||||
| 695 | // Push a delimiter for block node N on the stack. | |||
| 696 | void DataFlowGraph::DefStack::start_block(NodeId N) { | |||
| 697 | assert(N != 0)(static_cast <bool> (N != 0) ? void (0) : __assert_fail ("N != 0", "llvm/lib/CodeGen/RDFGraph.cpp", 697, __extension__ __PRETTY_FUNCTION__)); | |||
| 698 | Stack.push_back(NodeAddr<DefNode*>(nullptr, N)); | |||
| 699 | } | |||
| 700 | ||||
| 701 | // Remove all nodes from the top of the stack, until the delimited for | |||
| 702 | // block node N is encountered. Remove the delimiter as well. In effect, | |||
| 703 | // this will remove from the stack all definitions from block N. | |||
| 704 | void DataFlowGraph::DefStack::clear_block(NodeId N) { | |||
| 705 | assert(N != 0)(static_cast <bool> (N != 0) ? void (0) : __assert_fail ("N != 0", "llvm/lib/CodeGen/RDFGraph.cpp", 705, __extension__ __PRETTY_FUNCTION__)); | |||
| 706 | unsigned P = Stack.size(); | |||
| 707 | while (P > 0) { | |||
| 708 | bool Found = isDelimiter(Stack[P-1], N); | |||
| 709 | P--; | |||
| 710 | if (Found) | |||
| 711 | break; | |||
| 712 | } | |||
| 713 | // This will also remove the delimiter, if found. | |||
| 714 | Stack.resize(P); | |||
| 715 | } | |||
| 716 | ||||
| 717 | // Move the stack iterator up by one. | |||
| 718 | unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { | |||
| 719 | // Get the next valid position after P (skipping all delimiters). | |||
| 720 | // The input position P does not have to point to a non-delimiter. | |||
| 721 | unsigned SS = Stack.size(); | |||
| 722 | bool IsDelim; | |||
| 723 | assert(P < SS)(static_cast <bool> (P < SS) ? void (0) : __assert_fail ("P < SS", "llvm/lib/CodeGen/RDFGraph.cpp", 723, __extension__ __PRETTY_FUNCTION__)); | |||
| 724 | do { | |||
| 725 | P++; | |||
| 726 | IsDelim = isDelimiter(Stack[P-1]); | |||
| 727 | } while (P < SS && IsDelim); | |||
| 728 | assert(!IsDelim)(static_cast <bool> (!IsDelim) ? void (0) : __assert_fail ("!IsDelim", "llvm/lib/CodeGen/RDFGraph.cpp", 728, __extension__ __PRETTY_FUNCTION__)); | |||
| 729 | return P; | |||
| 730 | } | |||
| 731 | ||||
| 732 | // Move the stack iterator down by one. | |||
| 733 | unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { | |||
| 734 | // Get the preceding valid position before P (skipping all delimiters). | |||
| 735 | // The input position P does not have to point to a non-delimiter. | |||
| 736 | assert(P > 0 && P <= Stack.size())(static_cast <bool> (P > 0 && P <= Stack. size()) ? void (0) : __assert_fail ("P > 0 && P <= Stack.size()" , "llvm/lib/CodeGen/RDFGraph.cpp", 736, __extension__ __PRETTY_FUNCTION__ )); | |||
| 737 | bool IsDelim = isDelimiter(Stack[P-1]); | |||
| 738 | do { | |||
| 739 | if (--P == 0) | |||
| 740 | break; | |||
| 741 | IsDelim = isDelimiter(Stack[P-1]); | |||
| 742 | } while (P > 0 && IsDelim); | |||
| 743 | assert(!IsDelim)(static_cast <bool> (!IsDelim) ? void (0) : __assert_fail ("!IsDelim", "llvm/lib/CodeGen/RDFGraph.cpp", 743, __extension__ __PRETTY_FUNCTION__)); | |||
| 744 | return P; | |||
| 745 | } | |||
| 746 | ||||
| 747 | // Register information. | |||
| 748 | ||||
| 749 | RegisterSet DataFlowGraph::getLandingPadLiveIns() const { | |||
| 750 | RegisterSet LR; | |||
| 751 | const Function &F = MF.getFunction(); | |||
| 752 | const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() | |||
| 753 | : nullptr; | |||
| 754 | const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); | |||
| 755 | if (RegisterId R = TLI.getExceptionPointerRegister(PF)) | |||
| 756 | LR.insert(RegisterRef(R)); | |||
| 757 | if (!isFuncletEHPersonality(classifyEHPersonality(PF))) { | |||
| 758 | if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) | |||
| 759 | LR.insert(RegisterRef(R)); | |||
| 760 | } | |||
| 761 | return LR; | |||
| 762 | } | |||
| 763 | ||||
| 764 | // Node management functions. | |||
| 765 | ||||
| 766 | // Get the pointer to the node with the id N. | |||
| 767 | NodeBase *DataFlowGraph::ptr(NodeId N) const { | |||
| 768 | if (N == 0) | |||
| 769 | return nullptr; | |||
| 770 | return Memory.ptr(N); | |||
| 771 | } | |||
| 772 | ||||
| 773 | // Get the id of the node at the address P. | |||
| 774 | NodeId DataFlowGraph::id(const NodeBase *P) const { | |||
| 775 | if (P == nullptr) | |||
| 776 | return 0; | |||
| 777 | return Memory.id(P); | |||
| 778 | } | |||
| 779 | ||||
| 780 | // Allocate a new node and set the attributes to Attrs. | |||
| 781 | NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) { | |||
| 782 | NodeAddr<NodeBase*> P = Memory.New(); | |||
| 783 | P.Addr->init(); | |||
| 784 | P.Addr->setAttrs(Attrs); | |||
| 785 | return P; | |||
| 786 | } | |||
| 787 | ||||
| 788 | // Make a copy of the given node B, except for the data-flow links, which | |||
| 789 | // are set to 0. | |||
| 790 | NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) { | |||
| 791 | NodeAddr<NodeBase*> NA = newNode(0); | |||
| 792 | memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); | |||
| 793 | // Ref nodes need to have the data-flow links reset. | |||
| 794 | if (NA.Addr->getType() == NodeAttrs::Ref) { | |||
| 795 | NodeAddr<RefNode*> RA = NA; | |||
| 796 | RA.Addr->setReachingDef(0); | |||
| 797 | RA.Addr->setSibling(0); | |||
| 798 | if (NA.Addr->getKind() == NodeAttrs::Def) { | |||
| 799 | NodeAddr<DefNode*> DA = NA; | |||
| 800 | DA.Addr->setReachedDef(0); | |||
| 801 | DA.Addr->setReachedUse(0); | |||
| 802 | } | |||
| 803 | } | |||
| 804 | return NA; | |||
| 805 | } | |||
| 806 | ||||
| 807 | // Allocation routines for specific node types/kinds. | |||
| 808 | ||||
| 809 | NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner, | |||
| 810 | MachineOperand &Op, uint16_t Flags) { | |||
| 811 | NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); | |||
| 812 | UA.Addr->setRegRef(&Op, *this); | |||
| 813 | return UA; | |||
| 814 | } | |||
| 815 | ||||
| 816 | NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, | |||
| 817 | RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) { | |||
| 818 | NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); | |||
| 819 | assert(Flags & NodeAttrs::PhiRef)(static_cast <bool> (Flags & NodeAttrs::PhiRef) ? void (0) : __assert_fail ("Flags & NodeAttrs::PhiRef", "llvm/lib/CodeGen/RDFGraph.cpp" , 819, __extension__ __PRETTY_FUNCTION__)); | |||
| 820 | PUA.Addr->setRegRef(RR, *this); | |||
| 821 | PUA.Addr->setPredecessor(PredB.Id); | |||
| 822 | return PUA; | |||
| 823 | } | |||
| 824 | ||||
| 825 | NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, | |||
| 826 | MachineOperand &Op, uint16_t Flags) { | |||
| 827 | NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); | |||
| 828 | DA.Addr->setRegRef(&Op, *this); | |||
| 829 | return DA; | |||
| 830 | } | |||
| 831 | ||||
| 832 | NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, | |||
| 833 | RegisterRef RR, uint16_t Flags) { | |||
| 834 | NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); | |||
| 835 | assert(Flags & NodeAttrs::PhiRef)(static_cast <bool> (Flags & NodeAttrs::PhiRef) ? void (0) : __assert_fail ("Flags & NodeAttrs::PhiRef", "llvm/lib/CodeGen/RDFGraph.cpp" , 835, __extension__ __PRETTY_FUNCTION__)); | |||
| 836 | DA.Addr->setRegRef(RR, *this); | |||
| 837 | return DA; | |||
| 838 | } | |||
| 839 | ||||
| 840 | NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) { | |||
| 841 | NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); | |||
| 842 | Owner.Addr->addPhi(PA, *this); | |||
| 843 | return PA; | |||
| 844 | } | |||
| 845 | ||||
| 846 | NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner, | |||
| 847 | MachineInstr *MI) { | |||
| 848 | NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); | |||
| 849 | SA.Addr->setCode(MI); | |||
| 850 | Owner.Addr->addMember(SA, *this); | |||
| 851 | return SA; | |||
| 852 | } | |||
| 853 | ||||
| 854 | NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner, | |||
| 855 | MachineBasicBlock *BB) { | |||
| 856 | NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block); | |||
| 857 | BA.Addr->setCode(BB); | |||
| 858 | Owner.Addr->addMember(BA, *this); | |||
| 859 | return BA; | |||
| 860 | } | |||
| 861 | ||||
| 862 | NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) { | |||
| 863 | NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func); | |||
| 864 | FA.Addr->setCode(MF); | |||
| 865 | return FA; | |||
| 866 | } | |||
| 867 | ||||
| 868 | // Build the data flow graph. | |||
| 869 | void DataFlowGraph::build(unsigned Options) { | |||
| 870 | reset(); | |||
| 871 | Func = newFunc(&MF); | |||
| 872 | ||||
| 873 | if (MF.empty()) | |||
| ||||
| 874 | return; | |||
| 875 | ||||
| 876 | for (MachineBasicBlock &B : MF) { | |||
| 877 | NodeAddr<BlockNode*> BA = newBlock(Func, &B); | |||
| 878 | BlockNodes.insert(std::make_pair(&B, BA)); | |||
| 879 | for (MachineInstr &I : B) { | |||
| 880 | if (I.isDebugInstr()) | |||
| 881 | continue; | |||
| 882 | buildStmt(BA, I); | |||
| 883 | } | |||
| 884 | } | |||
| 885 | ||||
| 886 | NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this); | |||
| 887 | NodeList Blocks = Func.Addr->members(*this); | |||
| 888 | ||||
| 889 | // Collect information about block references. | |||
| 890 | RegisterSet AllRefs; | |||
| 891 | for (NodeAddr<BlockNode*> BA : Blocks) | |||
| 892 | for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) | |||
| 893 | for (NodeAddr<RefNode*> RA : IA.Addr->members(*this)) | |||
| 894 | AllRefs.insert(RA.Addr->getRegRef(*this)); | |||
| 895 | ||||
| 896 | // Collect function live-ins and entry block live-ins. | |||
| 897 | MachineRegisterInfo &MRI = MF.getRegInfo(); | |||
| 898 | MachineBasicBlock &EntryB = *EA.Addr->getCode(); | |||
| 899 | assert(EntryB.pred_empty() && "Function entry block has predecessors")(static_cast <bool> (EntryB.pred_empty() && "Function entry block has predecessors" ) ? void (0) : __assert_fail ("EntryB.pred_empty() && \"Function entry block has predecessors\"" , "llvm/lib/CodeGen/RDFGraph.cpp", 899, __extension__ __PRETTY_FUNCTION__ )); | |||
| 900 | for (std::pair<unsigned,unsigned> P : MRI.liveins()) | |||
| 901 | LiveIns.insert(RegisterRef(P.first)); | |||
| 902 | if (MRI.tracksLiveness()) { | |||
| 903 | for (auto I : EntryB.liveins()) | |||
| 904 | LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask)); | |||
| 905 | } | |||
| 906 | ||||
| 907 | // Add function-entry phi nodes for the live-in registers. | |||
| 908 | //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) { | |||
| 909 | for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) { | |||
| 910 | RegisterRef RR = *I; | |||
| 911 | NodeAddr<PhiNode*> PA = newPhi(EA); | |||
| 912 | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; | |||
| 913 | NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); | |||
| 914 | PA.Addr->addMember(DA, *this); | |||
| 915 | } | |||
| 916 | ||||
| 917 | // Add phis for landing pads. | |||
| 918 | // Landing pads, unlike usual backs blocks, are not entered through | |||
| 919 | // branches in the program, or fall-throughs from other blocks. They | |||
| 920 | // are entered from the exception handling runtime and target's ABI | |||
| 921 | // may define certain registers as defined on entry to such a block. | |||
| 922 | RegisterSet EHRegs = getLandingPadLiveIns(); | |||
| 923 | if (!EHRegs.empty()) { | |||
| 924 | for (NodeAddr<BlockNode*> BA : Blocks) { | |||
| 925 | const MachineBasicBlock &B = *BA.Addr->getCode(); | |||
| 926 | if (!B.isEHPad()) | |||
| 927 | continue; | |||
| 928 | ||||
| 929 | // Prepare a list of NodeIds of the block's predecessors. | |||
| 930 | NodeList Preds; | |||
| 931 | for (MachineBasicBlock *PB : B.predecessors()) | |||
| 932 | Preds.push_back(findBlock(PB)); | |||
| 933 | ||||
| 934 | // Build phi nodes for each live-in. | |||
| 935 | for (RegisterRef RR : EHRegs) { | |||
| 936 | NodeAddr<PhiNode*> PA = newPhi(BA); | |||
| 937 | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; | |||
| 938 | // Add def: | |||
| 939 | NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); | |||
| 940 | PA.Addr->addMember(DA, *this); | |||
| 941 | // Add uses (no reaching defs for phi uses): | |||
| 942 | for (NodeAddr<BlockNode*> PBA : Preds) { | |||
| 943 | NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); | |||
| 944 | PA.Addr->addMember(PUA, *this); | |||
| 945 | } | |||
| 946 | } | |||
| 947 | } | |||
| 948 | } | |||
| 949 | ||||
| 950 | // Build a map "PhiM" which will contain, for each block, the set | |||
| 951 | // of references that will require phi definitions in that block. | |||
| 952 | BlockRefsMap PhiM; | |||
| 953 | for (NodeAddr<BlockNode*> BA : Blocks) | |||
| 954 | recordDefsForDF(PhiM, BA); | |||
| 955 | for (NodeAddr<BlockNode*> BA : Blocks) | |||
| 956 | buildPhis(PhiM, AllRefs, BA); | |||
| 957 | ||||
| 958 | // Link all the refs. This will recursively traverse the dominator tree. | |||
| 959 | DefStackMap DM; | |||
| 960 | linkBlockRefs(DM, EA); | |||
| 961 | ||||
| 962 | // Finally, remove all unused phi nodes. | |||
| 963 | if (!(Options & BuildOptions::KeepDeadPhis)) | |||
| 964 | removeUnusedPhis(); | |||
| 965 | } | |||
| 966 | ||||
| 967 | RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { | |||
| 968 | assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||(static_cast <bool> (PhysicalRegisterInfo::isRegMaskId( Reg) || Register::isPhysicalRegister(Reg)) ? void (0) : __assert_fail ("PhysicalRegisterInfo::isRegMaskId(Reg) || Register::isPhysicalRegister(Reg)" , "llvm/lib/CodeGen/RDFGraph.cpp", 969, __extension__ __PRETTY_FUNCTION__ )) | |||
| 969 | Register::isPhysicalRegister(Reg))(static_cast <bool> (PhysicalRegisterInfo::isRegMaskId( Reg) || Register::isPhysicalRegister(Reg)) ? void (0) : __assert_fail ("PhysicalRegisterInfo::isRegMaskId(Reg) || Register::isPhysicalRegister(Reg)" , "llvm/lib/CodeGen/RDFGraph.cpp", 969, __extension__ __PRETTY_FUNCTION__ )); | |||
| 970 | assert(Reg != 0)(static_cast <bool> (Reg != 0) ? void (0) : __assert_fail ("Reg != 0", "llvm/lib/CodeGen/RDFGraph.cpp", 970, __extension__ __PRETTY_FUNCTION__)); | |||
| 971 | if (Sub != 0) | |||
| 972 | Reg = TRI.getSubReg(Reg, Sub); | |||
| 973 | return RegisterRef(Reg); | |||
| 974 | } | |||
| 975 | ||||
| 976 | RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { | |||
| 977 | assert(Op.isReg() || Op.isRegMask())(static_cast <bool> (Op.isReg() || Op.isRegMask()) ? void (0) : __assert_fail ("Op.isReg() || Op.isRegMask()", "llvm/lib/CodeGen/RDFGraph.cpp" , 977, __extension__ __PRETTY_FUNCTION__)); | |||
| 978 | if (Op.isReg()) | |||
| 979 | return makeRegRef(Op.getReg(), Op.getSubReg()); | |||
| 980 | return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll()); | |||
| 981 | } | |||
| 982 | ||||
| 983 | // For each stack in the map DefM, push the delimiter for block B on it. | |||
| 984 | void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { | |||
| 985 | // Push block delimiters. | |||
| 986 | for (auto &P : DefM) | |||
| 987 | P.second.start_block(B); | |||
| 988 | } | |||
| 989 | ||||
| 990 | // Remove all definitions coming from block B from each stack in DefM. | |||
| 991 | void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { | |||
| 992 | // Pop all defs from this block from the definition stack. Defs that were | |||
| 993 | // added to the map during the traversal of instructions will not have a | |||
| 994 | // delimiter, but for those, the whole stack will be emptied. | |||
| 995 | for (auto &P : DefM) | |||
| 996 | P.second.clear_block(B); | |||
| 997 | ||||
| 998 | // Finally, remove empty stacks from the map. | |||
| 999 | for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { | |||
| 1000 | NextI = std::next(I); | |||
| 1001 | // This preserves the validity of iterators other than I. | |||
| 1002 | if (I->second.empty()) | |||
| 1003 | DefM.erase(I); | |||
| 1004 | } | |||
| 1005 | } | |||
| 1006 | ||||
| 1007 | // Push all definitions from the instruction node IA to an appropriate | |||
| 1008 | // stack in DefM. | |||
| 1009 | void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { | |||
| 1010 | pushClobbers(IA, DefM); | |||
| 1011 | pushDefs(IA, DefM); | |||
| 1012 | } | |||
| 1013 | ||||
| 1014 | // Push all definitions from the instruction node IA to an appropriate | |||
| 1015 | // stack in DefM. | |||
| 1016 | void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { | |||
| 1017 | NodeSet Visited; | |||
| 1018 | std::set<RegisterId> Defined; | |||
| 1019 | ||||
| 1020 | // The important objectives of this function are: | |||
| 1021 | // - to be able to handle instructions both while the graph is being | |||
| 1022 | // constructed, and after the graph has been constructed, and | |||
| 1023 | // - maintain proper ordering of definitions on the stack for each | |||
| 1024 | // register reference: | |||
| 1025 | // - if there are two or more related defs in IA (i.e. coming from | |||
| 1026 | // the same machine operand), then only push one def on the stack, | |||
| 1027 | // - if there are multiple unrelated defs of non-overlapping | |||
| 1028 | // subregisters of S, then the stack for S will have both (in an | |||
| 1029 | // unspecified order), but the order does not matter from the data- | |||
| 1030 | // -flow perspective. | |||
| 1031 | ||||
| 1032 | for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { | |||
| 1033 | if (Visited.count(DA.Id)) | |||
| 1034 | continue; | |||
| 1035 | if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) | |||
| 1036 | continue; | |||
| 1037 | ||||
| 1038 | NodeList Rel = getRelatedRefs(IA, DA); | |||
| 1039 | NodeAddr<DefNode*> PDA = Rel.front(); | |||
| 1040 | RegisterRef RR = PDA.Addr->getRegRef(*this); | |||
| 1041 | ||||
| 1042 | // Push the definition on the stack for the register and all aliases. | |||
| 1043 | // The def stack traversal in linkNodeUp will check the exact aliasing. | |||
| 1044 | DefM[RR.Reg].push(DA); | |||
| 1045 | Defined.insert(RR.Reg); | |||
| 1046 | for (RegisterId A : PRI.getAliasSet(RR.Reg)) { | |||
| 1047 | // Check that we don't push the same def twice. | |||
| 1048 | assert(A != RR.Reg)(static_cast <bool> (A != RR.Reg) ? void (0) : __assert_fail ("A != RR.Reg", "llvm/lib/CodeGen/RDFGraph.cpp", 1048, __extension__ __PRETTY_FUNCTION__)); | |||
| 1049 | if (!Defined.count(A)) | |||
| 1050 | DefM[A].push(DA); | |||
| 1051 | } | |||
| 1052 | // Mark all the related defs as visited. | |||
| 1053 | for (NodeAddr<NodeBase*> T : Rel) | |||
| 1054 | Visited.insert(T.Id); | |||
| 1055 | } | |||
| 1056 | } | |||
| 1057 | ||||
| 1058 | // Push all definitions from the instruction node IA to an appropriate | |||
| 1059 | // stack in DefM. | |||
| 1060 | void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { | |||
| 1061 | NodeSet Visited; | |||
| 1062 | #ifndef NDEBUG | |||
| 1063 | std::set<RegisterId> Defined; | |||
| 1064 | #endif | |||
| 1065 | ||||
| 1066 | // The important objectives of this function are: | |||
| 1067 | // - to be able to handle instructions both while the graph is being | |||
| 1068 | // constructed, and after the graph has been constructed, and | |||
| 1069 | // - maintain proper ordering of definitions on the stack for each | |||
| 1070 | // register reference: | |||
| 1071 | // - if there are two or more related defs in IA (i.e. coming from | |||
| 1072 | // the same machine operand), then only push one def on the stack, | |||
| 1073 | // - if there are multiple unrelated defs of non-overlapping | |||
| 1074 | // subregisters of S, then the stack for S will have both (in an | |||
| 1075 | // unspecified order), but the order does not matter from the data- | |||
| 1076 | // -flow perspective. | |||
| 1077 | ||||
| 1078 | for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { | |||
| 1079 | if (Visited.count(DA.Id)) | |||
| 1080 | continue; | |||
| 1081 | if (DA.Addr->getFlags() & NodeAttrs::Clobbering) | |||
| 1082 | continue; | |||
| 1083 | ||||
| 1084 | NodeList Rel = getRelatedRefs(IA, DA); | |||
| 1085 | NodeAddr<DefNode*> PDA = Rel.front(); | |||
| 1086 | RegisterRef RR = PDA.Addr->getRegRef(*this); | |||
| 1087 | #ifndef NDEBUG | |||
| 1088 | // Assert if the register is defined in two or more unrelated defs. | |||
| 1089 | // This could happen if there are two or more def operands defining it. | |||
| 1090 | if (!Defined.insert(RR.Reg).second) { | |||
| 1091 | MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); | |||
| 1092 | dbgs() << "Multiple definitions of register: " | |||
| 1093 | << Print(RR, *this) << " in\n " << *MI << "in " | |||
| 1094 | << printMBBReference(*MI->getParent()) << '\n'; | |||
| 1095 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/CodeGen/RDFGraph.cpp" , 1095); | |||
| 1096 | } | |||
| 1097 | #endif | |||
| 1098 | // Push the definition on the stack for the register and all aliases. | |||
| 1099 | // The def stack traversal in linkNodeUp will check the exact aliasing. | |||
| 1100 | DefM[RR.Reg].push(DA); | |||
| 1101 | for (RegisterId A : PRI.getAliasSet(RR.Reg)) { | |||
| 1102 | // Check that we don't push the same def twice. | |||
| 1103 | assert(A != RR.Reg)(static_cast <bool> (A != RR.Reg) ? void (0) : __assert_fail ("A != RR.Reg", "llvm/lib/CodeGen/RDFGraph.cpp", 1103, __extension__ __PRETTY_FUNCTION__)); | |||
| 1104 | DefM[A].push(DA); | |||
| 1105 | } | |||
| 1106 | // Mark all the related defs as visited. | |||
| 1107 | for (NodeAddr<NodeBase*> T : Rel) | |||
| 1108 | Visited.insert(T.Id); | |||
| 1109 | } | |||
| 1110 | } | |||
| 1111 | ||||
| 1112 | // Return the list of all reference nodes related to RA, including RA itself. | |||
| 1113 | // See "getNextRelated" for the meaning of a "related reference". | |||
| 1114 | NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA, | |||
| 1115 | NodeAddr<RefNode*> RA) const { | |||
| 1116 | assert(IA.Id != 0 && RA.Id != 0)(static_cast <bool> (IA.Id != 0 && RA.Id != 0) ? void (0) : __assert_fail ("IA.Id != 0 && RA.Id != 0" , "llvm/lib/CodeGen/RDFGraph.cpp", 1116, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1117 | ||||
| 1118 | NodeList Refs; | |||
| 1119 | NodeId Start = RA.Id; | |||
| 1120 | do { | |||
| 1121 | Refs.push_back(RA); | |||
| 1122 | RA = getNextRelated(IA, RA); | |||
| 1123 | } while (RA.Id != 0 && RA.Id != Start); | |||
| 1124 | return Refs; | |||
| 1125 | } | |||
| 1126 | ||||
| 1127 | // Clear all information in the graph. | |||
| 1128 | void DataFlowGraph::reset() { | |||
| 1129 | Memory.clear(); | |||
| 1130 | BlockNodes.clear(); | |||
| 1131 | Func = NodeAddr<FuncNode*>(); | |||
| 1132 | } | |||
| 1133 | ||||
| 1134 | // Return the next reference node in the instruction node IA that is related | |||
| 1135 | // to RA. Conceptually, two reference nodes are related if they refer to the | |||
| 1136 | // same instance of a register access, but differ in flags or other minor | |||
| 1137 | // characteristics. Specific examples of related nodes are shadow reference | |||
| 1138 | // nodes. | |||
| 1139 | // Return the equivalent of nullptr if there are no more related references. | |||
| 1140 | NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, | |||
| 1141 | NodeAddr<RefNode*> RA) const { | |||
| 1142 | assert(IA.Id != 0 && RA.Id != 0)(static_cast <bool> (IA.Id != 0 && RA.Id != 0) ? void (0) : __assert_fail ("IA.Id != 0 && RA.Id != 0" , "llvm/lib/CodeGen/RDFGraph.cpp", 1142, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1143 | ||||
| 1144 | auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool { | |||
| 1145 | if (TA.Addr->getKind() != RA.Addr->getKind()) | |||
| 1146 | return false; | |||
| 1147 | if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this)) | |||
| 1148 | return false; | |||
| 1149 | return true; | |||
| 1150 | }; | |||
| 1151 | auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { | |||
| 1152 | return Related(TA) && | |||
| 1153 | &RA.Addr->getOp() == &TA.Addr->getOp(); | |||
| 1154 | }; | |||
| 1155 | auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { | |||
| 1156 | if (!Related(TA)) | |||
| 1157 | return false; | |||
| 1158 | if (TA.Addr->getKind() != NodeAttrs::Use) | |||
| 1159 | return true; | |||
| 1160 | // For phi uses, compare predecessor blocks. | |||
| 1161 | const NodeAddr<const PhiUseNode*> TUA = TA; | |||
| 1162 | const NodeAddr<const PhiUseNode*> RUA = RA; | |||
| 1163 | return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); | |||
| 1164 | }; | |||
| 1165 | ||||
| 1166 | RegisterRef RR = RA.Addr->getRegRef(*this); | |||
| 1167 | if (IA.Addr->getKind() == NodeAttrs::Stmt) | |||
| 1168 | return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); | |||
| 1169 | return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); | |||
| 1170 | } | |||
| 1171 | ||||
| 1172 | // Find the next node related to RA in IA that satisfies condition P. | |||
| 1173 | // If such a node was found, return a pair where the second element is the | |||
| 1174 | // located node. If such a node does not exist, return a pair where the | |||
| 1175 | // first element is the element after which such a node should be inserted, | |||
| 1176 | // and the second element is a null-address. | |||
| 1177 | template <typename Predicate> | |||
| 1178 | std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> | |||
| 1179 | DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, | |||
| 1180 | Predicate P) const { | |||
| 1181 | assert(IA.Id != 0 && RA.Id != 0)(static_cast <bool> (IA.Id != 0 && RA.Id != 0) ? void (0) : __assert_fail ("IA.Id != 0 && RA.Id != 0" , "llvm/lib/CodeGen/RDFGraph.cpp", 1181, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1182 | ||||
| 1183 | NodeAddr<RefNode*> NA; | |||
| 1184 | NodeId Start = RA.Id; | |||
| 1185 | while (true) { | |||
| 1186 | NA = getNextRelated(IA, RA); | |||
| 1187 | if (NA.Id == 0 || NA.Id == Start) | |||
| 1188 | break; | |||
| 1189 | if (P(NA)) | |||
| 1190 | break; | |||
| 1191 | RA = NA; | |||
| 1192 | } | |||
| 1193 | ||||
| 1194 | if (NA.Id != 0 && NA.Id != Start) | |||
| 1195 | return std::make_pair(RA, NA); | |||
| 1196 | return std::make_pair(RA, NodeAddr<RefNode*>()); | |||
| 1197 | } | |||
| 1198 | ||||
| 1199 | // Get the next shadow node in IA corresponding to RA, and optionally create | |||
| 1200 | // such a node if it does not exist. | |||
| 1201 | NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, | |||
| 1202 | NodeAddr<RefNode*> RA, bool Create) { | |||
| 1203 | assert(IA.Id != 0 && RA.Id != 0)(static_cast <bool> (IA.Id != 0 && RA.Id != 0) ? void (0) : __assert_fail ("IA.Id != 0 && RA.Id != 0" , "llvm/lib/CodeGen/RDFGraph.cpp", 1203, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1204 | ||||
| 1205 | uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; | |||
| 1206 | auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { | |||
| 1207 | return TA.Addr->getFlags() == Flags; | |||
| 1208 | }; | |||
| 1209 | auto Loc = locateNextRef(IA, RA, IsShadow); | |||
| 1210 | if (Loc.second.Id != 0 || !Create) | |||
| 1211 | return Loc.second; | |||
| 1212 | ||||
| 1213 | // Create a copy of RA and mark is as shadow. | |||
| 1214 | NodeAddr<RefNode*> NA = cloneNode(RA); | |||
| 1215 | NA.Addr->setFlags(Flags | NodeAttrs::Shadow); | |||
| 1216 | IA.Addr->addMemberAfter(Loc.first, NA, *this); | |||
| 1217 | return NA; | |||
| 1218 | } | |||
| 1219 | ||||
| 1220 | // Get the next shadow node in IA corresponding to RA. Return null-address | |||
| 1221 | // if such a node does not exist. | |||
| 1222 | NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, | |||
| 1223 | NodeAddr<RefNode*> RA) const { | |||
| 1224 | assert(IA.Id != 0 && RA.Id != 0)(static_cast <bool> (IA.Id != 0 && RA.Id != 0) ? void (0) : __assert_fail ("IA.Id != 0 && RA.Id != 0" , "llvm/lib/CodeGen/RDFGraph.cpp", 1224, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1225 | uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; | |||
| 1226 | auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { | |||
| 1227 | return TA.Addr->getFlags() == Flags; | |||
| 1228 | }; | |||
| 1229 | return locateNextRef(IA, RA, IsShadow).second; | |||
| 1230 | } | |||
| 1231 | ||||
| 1232 | // Create a new statement node in the block node BA that corresponds to | |||
| 1233 | // the machine instruction MI. | |||
| 1234 | void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { | |||
| 1235 | NodeAddr<StmtNode*> SA = newStmt(BA, &In); | |||
| 1236 | ||||
| 1237 | auto isCall = [] (const MachineInstr &In) -> bool { | |||
| 1238 | if (In.isCall()) | |||
| 1239 | return true; | |||
| 1240 | // Is tail call? | |||
| 1241 | if (In.isBranch()) { | |||
| 1242 | for (const MachineOperand &Op : In.operands()) | |||
| 1243 | if (Op.isGlobal() || Op.isSymbol()) | |||
| 1244 | return true; | |||
| 1245 | // Assume indirect branches are calls. This is for the purpose of | |||
| 1246 | // keeping implicit operands, and so it won't hurt on intra-function | |||
| 1247 | // indirect branches. | |||
| 1248 | if (In.isIndirectBranch()) | |||
| 1249 | return true; | |||
| 1250 | } | |||
| 1251 | return false; | |||
| 1252 | }; | |||
| 1253 | ||||
| 1254 | auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool { | |||
| 1255 | // This instruction defines DR. Check if there is a use operand that | |||
| 1256 | // would make DR live on entry to the instruction. | |||
| 1257 | for (const MachineOperand &Op : In.operands()) { | |||
| 1258 | if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef()) | |||
| 1259 | continue; | |||
| 1260 | RegisterRef UR = makeRegRef(Op); | |||
| 1261 | if (PRI.alias(DR, UR)) | |||
| 1262 | return false; | |||
| 1263 | } | |||
| 1264 | return true; | |||
| 1265 | }; | |||
| 1266 | ||||
| 1267 | bool IsCall = isCall(In); | |||
| 1268 | unsigned NumOps = In.getNumOperands(); | |||
| 1269 | ||||
| 1270 | // Avoid duplicate implicit defs. This will not detect cases of implicit | |||
| 1271 | // defs that define registers that overlap, but it is not clear how to | |||
| 1272 | // interpret that in the absence of explicit defs. Overlapping explicit | |||
| 1273 | // defs are likely illegal already. | |||
| 1274 | BitVector DoneDefs(TRI.getNumRegs()); | |||
| 1275 | // Process explicit defs first. | |||
| 1276 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { | |||
| 1277 | MachineOperand &Op = In.getOperand(OpN); | |||
| 1278 | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) | |||
| 1279 | continue; | |||
| 1280 | Register R = Op.getReg(); | |||
| 1281 | if (!R || !R.isPhysical()) | |||
| 1282 | continue; | |||
| 1283 | uint16_t Flags = NodeAttrs::None; | |||
| 1284 | if (TOI.isPreserving(In, OpN)) { | |||
| 1285 | Flags |= NodeAttrs::Preserving; | |||
| 1286 | // If the def is preserving, check if it is also undefined. | |||
| 1287 | if (isDefUndef(In, makeRegRef(Op))) | |||
| 1288 | Flags |= NodeAttrs::Undef; | |||
| 1289 | } | |||
| 1290 | if (TOI.isClobbering(In, OpN)) | |||
| 1291 | Flags |= NodeAttrs::Clobbering; | |||
| 1292 | if (TOI.isFixedReg(In, OpN)) | |||
| 1293 | Flags |= NodeAttrs::Fixed; | |||
| 1294 | if (IsCall && Op.isDead()) | |||
| 1295 | Flags |= NodeAttrs::Dead; | |||
| 1296 | NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); | |||
| 1297 | SA.Addr->addMember(DA, *this); | |||
| 1298 | assert(!DoneDefs.test(R))(static_cast <bool> (!DoneDefs.test(R)) ? void (0) : __assert_fail ("!DoneDefs.test(R)", "llvm/lib/CodeGen/RDFGraph.cpp", 1298, __extension__ __PRETTY_FUNCTION__)); | |||
| 1299 | DoneDefs.set(R); | |||
| 1300 | } | |||
| 1301 | ||||
| 1302 | // Process reg-masks (as clobbers). | |||
| 1303 | BitVector DoneClobbers(TRI.getNumRegs()); | |||
| 1304 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { | |||
| 1305 | MachineOperand &Op = In.getOperand(OpN); | |||
| 1306 | if (!Op.isRegMask()) | |||
| 1307 | continue; | |||
| 1308 | uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | | |||
| 1309 | NodeAttrs::Dead; | |||
| 1310 | NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); | |||
| 1311 | SA.Addr->addMember(DA, *this); | |||
| 1312 | // Record all clobbered registers in DoneDefs. | |||
| 1313 | const uint32_t *RM = Op.getRegMask(); | |||
| 1314 | for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) | |||
| 1315 | if (!(RM[i/32] & (1u << (i%32)))) | |||
| 1316 | DoneClobbers.set(i); | |||
| 1317 | } | |||
| 1318 | ||||
| 1319 | // Process implicit defs, skipping those that have already been added | |||
| 1320 | // as explicit. | |||
| 1321 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { | |||
| 1322 | MachineOperand &Op = In.getOperand(OpN); | |||
| 1323 | if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) | |||
| 1324 | continue; | |||
| 1325 | Register R = Op.getReg(); | |||
| 1326 | if (!R || !R.isPhysical() || DoneDefs.test(R)) | |||
| 1327 | continue; | |||
| 1328 | RegisterRef RR = makeRegRef(Op); | |||
| 1329 | uint16_t Flags = NodeAttrs::None; | |||
| 1330 | if (TOI.isPreserving(In, OpN)) { | |||
| 1331 | Flags |= NodeAttrs::Preserving; | |||
| 1332 | // If the def is preserving, check if it is also undefined. | |||
| 1333 | if (isDefUndef(In, RR)) | |||
| 1334 | Flags |= NodeAttrs::Undef; | |||
| 1335 | } | |||
| 1336 | if (TOI.isClobbering(In, OpN)) | |||
| 1337 | Flags |= NodeAttrs::Clobbering; | |||
| 1338 | if (TOI.isFixedReg(In, OpN)) | |||
| 1339 | Flags |= NodeAttrs::Fixed; | |||
| 1340 | if (IsCall && Op.isDead()) { | |||
| 1341 | if (DoneClobbers.test(R)) | |||
| 1342 | continue; | |||
| 1343 | Flags |= NodeAttrs::Dead; | |||
| 1344 | } | |||
| 1345 | NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); | |||
| 1346 | SA.Addr->addMember(DA, *this); | |||
| 1347 | DoneDefs.set(R); | |||
| 1348 | } | |||
| 1349 | ||||
| 1350 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { | |||
| 1351 | MachineOperand &Op = In.getOperand(OpN); | |||
| 1352 | if (!Op.isReg() || !Op.isUse()) | |||
| 1353 | continue; | |||
| 1354 | Register R = Op.getReg(); | |||
| 1355 | if (!R || !R.isPhysical()) | |||
| 1356 | continue; | |||
| 1357 | uint16_t Flags = NodeAttrs::None; | |||
| 1358 | if (Op.isUndef()) | |||
| 1359 | Flags |= NodeAttrs::Undef; | |||
| 1360 | if (TOI.isFixedReg(In, OpN)) | |||
| 1361 | Flags |= NodeAttrs::Fixed; | |||
| 1362 | NodeAddr<UseNode*> UA = newUse(SA, Op, Flags); | |||
| 1363 | SA.Addr->addMember(UA, *this); | |||
| 1364 | } | |||
| 1365 | } | |||
| 1366 | ||||
| 1367 | // Scan all defs in the block node BA and record in PhiM the locations of | |||
| 1368 | // phi nodes corresponding to these defs. | |||
| 1369 | void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, | |||
| 1370 | NodeAddr<BlockNode*> BA) { | |||
| 1371 | // Check all defs from block BA and record them in each block in BA's | |||
| 1372 | // iterated dominance frontier. This information will later be used to | |||
| 1373 | // create phi nodes. | |||
| 1374 | MachineBasicBlock *BB = BA.Addr->getCode(); | |||
| 1375 | assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB" , "llvm/lib/CodeGen/RDFGraph.cpp", 1375, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1376 | auto DFLoc = MDF.find(BB); | |||
| 1377 | if (DFLoc == MDF.end() || DFLoc->second.empty()) | |||
| 1378 | return; | |||
| 1379 | ||||
| 1380 | // Traverse all instructions in the block and collect the set of all | |||
| 1381 | // defined references. For each reference there will be a phi created | |||
| 1382 | // in the block's iterated dominance frontier. | |||
| 1383 | // This is done to make sure that each defined reference gets only one | |||
| 1384 | // phi node, even if it is defined multiple times. | |||
| 1385 | RegisterSet Defs; | |||
| 1386 | for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) | |||
| 1387 | for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this)) | |||
| 1388 | Defs.insert(RA.Addr->getRegRef(*this)); | |||
| 1389 | ||||
| 1390 | // Calculate the iterated dominance frontier of BB. | |||
| 1391 | const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; | |||
| 1392 | SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end()); | |||
| 1393 | for (unsigned i = 0; i < IDF.size(); ++i) { | |||
| 1394 | auto F = MDF.find(IDF[i]); | |||
| 1395 | if (F != MDF.end()) | |||
| 1396 | IDF.insert(F->second.begin(), F->second.end()); | |||
| 1397 | } | |||
| 1398 | ||||
| 1399 | // Finally, add the set of defs to each block in the iterated dominance | |||
| 1400 | // frontier. | |||
| 1401 | for (auto *DB : IDF) { | |||
| 1402 | NodeAddr<BlockNode*> DBA = findBlock(DB); | |||
| 1403 | PhiM[DBA.Id].insert(Defs.begin(), Defs.end()); | |||
| 1404 | } | |||
| 1405 | } | |||
| 1406 | ||||
| 1407 | // Given the locations of phi nodes in the map PhiM, create the phi nodes | |||
| 1408 | // that are located in the block node BA. | |||
| 1409 | void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, | |||
| 1410 | NodeAddr<BlockNode*> BA) { | |||
| 1411 | // Check if this blocks has any DF defs, i.e. if there are any defs | |||
| 1412 | // that this block is in the iterated dominance frontier of. | |||
| 1413 | auto HasDF = PhiM.find(BA.Id); | |||
| 1414 | if (HasDF == PhiM.end() || HasDF->second.empty()) | |||
| 1415 | return; | |||
| 1416 | ||||
| 1417 | // First, remove all R in Refs in such that there exists T in Refs | |||
| 1418 | // such that T covers R. In other words, only leave those refs that | |||
| 1419 | // are not covered by another ref (i.e. maximal with respect to covering). | |||
| 1420 | ||||
| 1421 | auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef { | |||
| 1422 | for (RegisterRef I : RRs) | |||
| 1423 | if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI)) | |||
| 1424 | RR = I; | |||
| 1425 | return RR; | |||
| 1426 | }; | |||
| 1427 | ||||
| 1428 | RegisterSet MaxDF; | |||
| 1429 | for (RegisterRef I : HasDF->second) | |||
| 1430 | MaxDF.insert(MaxCoverIn(I, HasDF->second)); | |||
| 1431 | ||||
| 1432 | std::vector<RegisterRef> MaxRefs; | |||
| 1433 | for (RegisterRef I : MaxDF) | |||
| 1434 | MaxRefs.push_back(MaxCoverIn(I, AllRefs)); | |||
| 1435 | ||||
| 1436 | // Now, for each R in MaxRefs, get the alias closure of R. If the closure | |||
| 1437 | // only has R in it, create a phi a def for R. Otherwise, create a phi, | |||
| 1438 | // and add a def for each S in the closure. | |||
| 1439 | ||||
| 1440 | // Sort the refs so that the phis will be created in a deterministic order. | |||
| 1441 | llvm::sort(MaxRefs); | |||
| 1442 | // Remove duplicates. | |||
| 1443 | auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end()); | |||
| 1444 | MaxRefs.erase(NewEnd, MaxRefs.end()); | |||
| 1445 | ||||
| 1446 | auto Aliased = [this,&MaxRefs](RegisterRef RR, | |||
| 1447 | std::vector<unsigned> &Closure) -> bool { | |||
| 1448 | for (unsigned I : Closure) | |||
| 1449 | if (PRI.alias(RR, MaxRefs[I])) | |||
| 1450 | return true; | |||
| 1451 | return false; | |||
| 1452 | }; | |||
| 1453 | ||||
| 1454 | // Prepare a list of NodeIds of the block's predecessors. | |||
| 1455 | NodeList Preds; | |||
| 1456 | const MachineBasicBlock *MBB = BA.Addr->getCode(); | |||
| 1457 | for (MachineBasicBlock *PB : MBB->predecessors()) | |||
| 1458 | Preds.push_back(findBlock(PB)); | |||
| 1459 | ||||
| 1460 | while (!MaxRefs.empty()) { | |||
| 1461 | // Put the first element in the closure, and then add all subsequent | |||
| 1462 | // elements from MaxRefs to it, if they alias at least one element | |||
| 1463 | // already in the closure. | |||
| 1464 | // ClosureIdx: vector of indices in MaxRefs of members of the closure. | |||
| 1465 | std::vector<unsigned> ClosureIdx = { 0 }; | |||
| 1466 | for (unsigned i = 1; i != MaxRefs.size(); ++i) | |||
| 1467 | if (Aliased(MaxRefs[i], ClosureIdx)) | |||
| 1468 | ClosureIdx.push_back(i); | |||
| 1469 | ||||
| 1470 | // Build a phi for the closure. | |||
| 1471 | unsigned CS = ClosureIdx.size(); | |||
| 1472 | NodeAddr<PhiNode*> PA = newPhi(BA); | |||
| 1473 | ||||
| 1474 | // Add defs. | |||
| 1475 | for (unsigned X = 0; X != CS; ++X) { | |||
| 1476 | RegisterRef RR = MaxRefs[ClosureIdx[X]]; | |||
| 1477 | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; | |||
| 1478 | NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); | |||
| 1479 | PA.Addr->addMember(DA, *this); | |||
| 1480 | } | |||
| 1481 | // Add phi uses. | |||
| 1482 | for (NodeAddr<BlockNode*> PBA : Preds) { | |||
| 1483 | for (unsigned X = 0; X != CS; ++X) { | |||
| 1484 | RegisterRef RR = MaxRefs[ClosureIdx[X]]; | |||
| 1485 | NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); | |||
| 1486 | PA.Addr->addMember(PUA, *this); | |||
| 1487 | } | |||
| 1488 | } | |||
| 1489 | ||||
| 1490 | // Erase from MaxRefs all elements in the closure. | |||
| 1491 | auto Begin = MaxRefs.begin(); | |||
| 1492 | for (unsigned Idx : llvm::reverse(ClosureIdx)) | |||
| 1493 | MaxRefs.erase(Begin + Idx); | |||
| 1494 | } | |||
| 1495 | } | |||
| 1496 | ||||
| 1497 | // Remove any unneeded phi nodes that were created during the build process. | |||
| 1498 | void DataFlowGraph::removeUnusedPhis() { | |||
| 1499 | // This will remove unused phis, i.e. phis where each def does not reach | |||
| 1500 | // any uses or other defs. This will not detect or remove circular phi | |||
| 1501 | // chains that are otherwise dead. Unused/dead phis are created during | |||
| 1502 | // the build process and this function is intended to remove these cases | |||
| 1503 | // that are easily determinable to be unnecessary. | |||
| 1504 | ||||
| 1505 | SetVector<NodeId> PhiQ; | |||
| 1506 | for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) { | |||
| 1507 | for (auto P : BA.Addr->members_if(IsPhi, *this)) | |||
| 1508 | PhiQ.insert(P.Id); | |||
| 1509 | } | |||
| 1510 | ||||
| 1511 | static auto HasUsedDef = [](NodeList &Ms) -> bool { | |||
| 1512 | for (NodeAddr<NodeBase*> M : Ms) { | |||
| 1513 | if (M.Addr->getKind() != NodeAttrs::Def) | |||
| 1514 | continue; | |||
| 1515 | NodeAddr<DefNode*> DA = M; | |||
| 1516 | if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) | |||
| 1517 | return true; | |||
| 1518 | } | |||
| 1519 | return false; | |||
| 1520 | }; | |||
| 1521 | ||||
| 1522 | // Any phi, if it is removed, may affect other phis (make them dead). | |||
| 1523 | // For each removed phi, collect the potentially affected phis and add | |||
| 1524 | // them back to the queue. | |||
| 1525 | while (!PhiQ.empty()) { | |||
| 1526 | auto PA = addr<PhiNode*>(PhiQ[0]); | |||
| 1527 | PhiQ.remove(PA.Id); | |||
| 1528 | NodeList Refs = PA.Addr->members(*this); | |||
| 1529 | if (HasUsedDef(Refs)) | |||
| 1530 | continue; | |||
| 1531 | for (NodeAddr<RefNode*> RA : Refs) { | |||
| 1532 | if (NodeId RD = RA.Addr->getReachingDef()) { | |||
| 1533 | auto RDA = addr<DefNode*>(RD); | |||
| 1534 | NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this); | |||
| 1535 | if (IsPhi(OA)) | |||
| 1536 | PhiQ.insert(OA.Id); | |||
| 1537 | } | |||
| 1538 | if (RA.Addr->isDef()) | |||
| 1539 | unlinkDef(RA, true); | |||
| 1540 | else | |||
| 1541 | unlinkUse(RA, true); | |||
| 1542 | } | |||
| 1543 | NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this); | |||
| 1544 | BA.Addr->removeMember(PA, *this); | |||
| 1545 | } | |||
| 1546 | } | |||
| 1547 | ||||
| 1548 | // For a given reference node TA in an instruction node IA, connect the | |||
| 1549 | // reaching def of TA to the appropriate def node. Create any shadow nodes | |||
| 1550 | // as appropriate. | |||
| 1551 | template <typename T> | |||
| 1552 | void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, | |||
| 1553 | DefStack &DS) { | |||
| 1554 | if (DS.empty()) | |||
| 1555 | return; | |||
| 1556 | RegisterRef RR = TA.Addr->getRegRef(*this); | |||
| 1557 | NodeAddr<T> TAP; | |||
| 1558 | ||||
| 1559 | // References from the def stack that have been examined so far. | |||
| 1560 | RegisterAggr Defs(PRI); | |||
| 1561 | ||||
| 1562 | for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { | |||
| 1563 | RegisterRef QR = I->Addr->getRegRef(*this); | |||
| 1564 | ||||
| 1565 | // Skip all defs that are aliased to any of the defs that we have already | |||
| 1566 | // seen. If this completes a cover of RR, stop the stack traversal. | |||
| 1567 | bool Alias = Defs.hasAliasOf(QR); | |||
| 1568 | bool Cover = Defs.insert(QR).hasCoverOf(RR); | |||
| 1569 | if (Alias) { | |||
| 1570 | if (Cover) | |||
| 1571 | break; | |||
| 1572 | continue; | |||
| 1573 | } | |||
| 1574 | ||||
| 1575 | // The reaching def. | |||
| 1576 | NodeAddr<DefNode*> RDA = *I; | |||
| 1577 | ||||
| 1578 | // Pick the reached node. | |||
| 1579 | if (TAP.Id == 0) { | |||
| 1580 | TAP = TA; | |||
| 1581 | } else { | |||
| 1582 | // Mark the existing ref as "shadow" and create a new shadow. | |||
| 1583 | TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); | |||
| 1584 | TAP = getNextShadow(IA, TAP, true); | |||
| 1585 | } | |||
| 1586 | ||||
| 1587 | // Create the link. | |||
| 1588 | TAP.Addr->linkToDef(TAP.Id, RDA); | |||
| 1589 | ||||
| 1590 | if (Cover) | |||
| 1591 | break; | |||
| 1592 | } | |||
| 1593 | } | |||
| 1594 | ||||
| 1595 | // Create data-flow links for all reference nodes in the statement node SA. | |||
| 1596 | template <typename Predicate> | |||
| 1597 | void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA, | |||
| 1598 | Predicate P) { | |||
| 1599 | #ifndef NDEBUG | |||
| 1600 | RegisterSet Defs; | |||
| 1601 | #endif | |||
| 1602 | ||||
| 1603 | // Link all nodes (upwards in the data-flow) with their reaching defs. | |||
| 1604 | for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) { | |||
| 1605 | uint16_t Kind = RA.Addr->getKind(); | |||
| 1606 | assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use)(static_cast <bool> (Kind == NodeAttrs::Def || Kind == NodeAttrs ::Use) ? void (0) : __assert_fail ("Kind == NodeAttrs::Def || Kind == NodeAttrs::Use" , "llvm/lib/CodeGen/RDFGraph.cpp", 1606, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1607 | RegisterRef RR = RA.Addr->getRegRef(*this); | |||
| 1608 | #ifndef NDEBUG | |||
| 1609 | // Do not expect multiple defs of the same reference. | |||
| 1610 | assert(Kind != NodeAttrs::Def || !Defs.count(RR))(static_cast <bool> (Kind != NodeAttrs::Def || !Defs.count (RR)) ? void (0) : __assert_fail ("Kind != NodeAttrs::Def || !Defs.count(RR)" , "llvm/lib/CodeGen/RDFGraph.cpp", 1610, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1611 | Defs.insert(RR); | |||
| 1612 | #endif | |||
| 1613 | ||||
| 1614 | auto F = DefM.find(RR.Reg); | |||
| 1615 | if (F == DefM.end()) | |||
| 1616 | continue; | |||
| 1617 | DefStack &DS = F->second; | |||
| 1618 | if (Kind == NodeAttrs::Use) | |||
| 1619 | linkRefUp<UseNode*>(SA, RA, DS); | |||
| 1620 | else if (Kind == NodeAttrs::Def) | |||
| 1621 | linkRefUp<DefNode*>(SA, RA, DS); | |||
| 1622 | else | |||
| 1623 | llvm_unreachable("Unexpected node in instruction")::llvm::llvm_unreachable_internal("Unexpected node in instruction" , "llvm/lib/CodeGen/RDFGraph.cpp", 1623); | |||
| 1624 | } | |||
| 1625 | } | |||
| 1626 | ||||
| 1627 | // Create data-flow links for all instructions in the block node BA. This | |||
| 1628 | // will include updating any phi nodes in BA. | |||
| 1629 | void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { | |||
| 1630 | // Push block delimiters. | |||
| 1631 | markBlock(BA.Id, DefM); | |||
| 1632 | ||||
| 1633 | auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool { | |||
| 1634 | return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); | |||
| 1635 | }; | |||
| 1636 | auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool { | |||
| 1637 | return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); | |||
| 1638 | }; | |||
| 1639 | ||||
| 1640 | assert(BA.Addr && "block node address is needed to create a data-flow link")(static_cast <bool> (BA.Addr && "block node address is needed to create a data-flow link" ) ? void (0) : __assert_fail ("BA.Addr && \"block node address is needed to create a data-flow link\"" , "llvm/lib/CodeGen/RDFGraph.cpp", 1640, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1641 | // For each non-phi instruction in the block, link all the defs and uses | |||
| 1642 | // to their reaching defs. For any member of the block (including phis), | |||
| 1643 | // push the defs on the corresponding stacks. | |||
| 1644 | for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) { | |||
| 1645 | // Ignore phi nodes here. They will be linked part by part from the | |||
| 1646 | // predecessors. | |||
| 1647 | if (IA.Addr->getKind() == NodeAttrs::Stmt) { | |||
| 1648 | linkStmtRefs(DefM, IA, IsUse); | |||
| 1649 | linkStmtRefs(DefM, IA, IsClobber); | |||
| 1650 | } | |||
| 1651 | ||||
| 1652 | // Push the definitions on the stack. | |||
| 1653 | pushClobbers(IA, DefM); | |||
| 1654 | ||||
| 1655 | if (IA.Addr->getKind() == NodeAttrs::Stmt) | |||
| 1656 | linkStmtRefs(DefM, IA, IsNoClobber); | |||
| 1657 | ||||
| 1658 | pushDefs(IA, DefM); | |||
| 1659 | } | |||
| 1660 | ||||
| 1661 | // Recursively process all children in the dominator tree. | |||
| 1662 | MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); | |||
| 1663 | for (auto *I : *N) { | |||
| 1664 | MachineBasicBlock *SB = I->getBlock(); | |||
| 1665 | NodeAddr<BlockNode*> SBA = findBlock(SB); | |||
| 1666 | linkBlockRefs(DefM, SBA); | |||
| 1667 | } | |||
| 1668 | ||||
| 1669 | // Link the phi uses from the successor blocks. | |||
| 1670 | auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool { | |||
| 1671 | if (NA.Addr->getKind() != NodeAttrs::Use) | |||
| 1672 | return false; | |||
| 1673 | assert(NA.Addr->getFlags() & NodeAttrs::PhiRef)(static_cast <bool> (NA.Addr->getFlags() & NodeAttrs ::PhiRef) ? void (0) : __assert_fail ("NA.Addr->getFlags() & NodeAttrs::PhiRef" , "llvm/lib/CodeGen/RDFGraph.cpp", 1673, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1674 | NodeAddr<PhiUseNode*> PUA = NA; | |||
| 1675 | return PUA.Addr->getPredecessor() == BA.Id; | |||
| 1676 | }; | |||
| 1677 | ||||
| 1678 | RegisterSet EHLiveIns = getLandingPadLiveIns(); | |||
| 1679 | MachineBasicBlock *MBB = BA.Addr->getCode(); | |||
| 1680 | ||||
| 1681 | for (MachineBasicBlock *SB : MBB->successors()) { | |||
| 1682 | bool IsEHPad = SB->isEHPad(); | |||
| 1683 | NodeAddr<BlockNode*> SBA = findBlock(SB); | |||
| 1684 | for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) { | |||
| 1685 | // Do not link phi uses for landing pad live-ins. | |||
| 1686 | if (IsEHPad) { | |||
| 1687 | // Find what register this phi is for. | |||
| 1688 | NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this); | |||
| 1689 | assert(RA.Id != 0)(static_cast <bool> (RA.Id != 0) ? void (0) : __assert_fail ("RA.Id != 0", "llvm/lib/CodeGen/RDFGraph.cpp", 1689, __extension__ __PRETTY_FUNCTION__)); | |||
| 1690 | if (EHLiveIns.count(RA.Addr->getRegRef(*this))) | |||
| 1691 | continue; | |||
| 1692 | } | |||
| 1693 | // Go over each phi use associated with MBB, and link it. | |||
| 1694 | for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { | |||
| 1695 | NodeAddr<PhiUseNode*> PUA = U; | |||
| 1696 | RegisterRef RR = PUA.Addr->getRegRef(*this); | |||
| 1697 | linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]); | |||
| 1698 | } | |||
| 1699 | } | |||
| 1700 | } | |||
| 1701 | ||||
| 1702 | // Pop all defs from this block from the definition stacks. | |||
| 1703 | releaseBlock(BA.Id, DefM); | |||
| 1704 | } | |||
| 1705 | ||||
| 1706 | // Remove the use node UA from any data-flow and structural links. | |||
| 1707 | void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) { | |||
| 1708 | NodeId RD = UA.Addr->getReachingDef(); | |||
| 1709 | NodeId Sib = UA.Addr->getSibling(); | |||
| 1710 | ||||
| 1711 | if (RD == 0) { | |||
| 1712 | assert(Sib == 0)(static_cast <bool> (Sib == 0) ? void (0) : __assert_fail ("Sib == 0", "llvm/lib/CodeGen/RDFGraph.cpp", 1712, __extension__ __PRETTY_FUNCTION__)); | |||
| 1713 | return; | |||
| 1714 | } | |||
| 1715 | ||||
| 1716 | auto RDA = addr<DefNode*>(RD); | |||
| 1717 | auto TA = addr<UseNode*>(RDA.Addr->getReachedUse()); | |||
| 1718 | if (TA.Id == UA.Id) { | |||
| 1719 | RDA.Addr->setReachedUse(Sib); | |||
| 1720 | return; | |||
| 1721 | } | |||
| 1722 | ||||
| 1723 | while (TA.Id != 0) { | |||
| 1724 | NodeId S = TA.Addr->getSibling(); | |||
| 1725 | if (S == UA.Id) { | |||
| 1726 | TA.Addr->setSibling(UA.Addr->getSibling()); | |||
| 1727 | return; | |||
| 1728 | } | |||
| 1729 | TA = addr<UseNode*>(S); | |||
| 1730 | } | |||
| 1731 | } | |||
| 1732 | ||||
| 1733 | // Remove the def node DA from any data-flow and structural links. | |||
| 1734 | void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) { | |||
| 1735 | // | |||
| 1736 | // RD | |||
| 1737 | // | reached | |||
| 1738 | // | def | |||
| 1739 | // : | |||
| 1740 | // . | |||
| 1741 | // +----+ | |||
| 1742 | // ... -- | DA | -- ... -- 0 : sibling chain of DA | |||
| 1743 | // +----+ | |||
| 1744 | // | | reached | |||
| 1745 | // | : def | |||
| 1746 | // | . | |||
| 1747 | // | ... : Siblings (defs) | |||
| 1748 | // | | |||
| 1749 | // : reached | |||
| 1750 | // . use | |||
| 1751 | // ... : sibling chain of reached uses | |||
| 1752 | ||||
| 1753 | NodeId RD = DA.Addr->getReachingDef(); | |||
| 1754 | ||||
| 1755 | // Visit all siblings of the reached def and reset their reaching defs. | |||
| 1756 | // Also, defs reached by DA are now "promoted" to being reached by RD, | |||
| 1757 | // so all of them will need to be spliced into the sibling chain where | |||
| 1758 | // DA belongs. | |||
| 1759 | auto getAllNodes = [this] (NodeId N) -> NodeList { | |||
| 1760 | NodeList Res; | |||
| 1761 | while (N) { | |||
| 1762 | auto RA = addr<RefNode*>(N); | |||
| 1763 | // Keep the nodes in the exact sibling order. | |||
| 1764 | Res.push_back(RA); | |||
| 1765 | N = RA.Addr->getSibling(); | |||
| 1766 | } | |||
| 1767 | return Res; | |||
| 1768 | }; | |||
| 1769 | NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); | |||
| 1770 | NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); | |||
| 1771 | ||||
| 1772 | if (RD == 0) { | |||
| 1773 | for (NodeAddr<RefNode*> I : ReachedDefs) | |||
| 1774 | I.Addr->setSibling(0); | |||
| 1775 | for (NodeAddr<RefNode*> I : ReachedUses) | |||
| 1776 | I.Addr->setSibling(0); | |||
| 1777 | } | |||
| 1778 | for (NodeAddr<DefNode*> I : ReachedDefs) | |||
| 1779 | I.Addr->setReachingDef(RD); | |||
| 1780 | for (NodeAddr<UseNode*> I : ReachedUses) | |||
| 1781 | I.Addr->setReachingDef(RD); | |||
| 1782 | ||||
| 1783 | NodeId Sib = DA.Addr->getSibling(); | |||
| 1784 | if (RD == 0) { | |||
| 1785 | assert(Sib == 0)(static_cast <bool> (Sib == 0) ? void (0) : __assert_fail ("Sib == 0", "llvm/lib/CodeGen/RDFGraph.cpp", 1785, __extension__ __PRETTY_FUNCTION__)); | |||
| 1786 | return; | |||
| 1787 | } | |||
| 1788 | ||||
| 1789 | // Update the reaching def node and remove DA from the sibling list. | |||
| 1790 | auto RDA = addr<DefNode*>(RD); | |||
| 1791 | auto TA = addr<DefNode*>(RDA.Addr->getReachedDef()); | |||
| 1792 | if (TA.Id == DA.Id) { | |||
| 1793 | // If DA is the first reached def, just update the RD's reached def | |||
| 1794 | // to the DA's sibling. | |||
| 1795 | RDA.Addr->setReachedDef(Sib); | |||
| 1796 | } else { | |||
| 1797 | // Otherwise, traverse the sibling list of the reached defs and remove | |||
| 1798 | // DA from it. | |||
| 1799 | while (TA.Id != 0) { | |||
| 1800 | NodeId S = TA.Addr->getSibling(); | |||
| 1801 | if (S == DA.Id) { | |||
| 1802 | TA.Addr->setSibling(Sib); | |||
| 1803 | break; | |||
| 1804 | } | |||
| 1805 | TA = addr<DefNode*>(S); | |||
| 1806 | } | |||
| 1807 | } | |||
| 1808 | ||||
| 1809 | // Splice the DA's reached defs into the RDA's reached def chain. | |||
| 1810 | if (!ReachedDefs.empty()) { | |||
| 1811 | auto Last = NodeAddr<DefNode*>(ReachedDefs.back()); | |||
| 1812 | Last.Addr->setSibling(RDA.Addr->getReachedDef()); | |||
| 1813 | RDA.Addr->setReachedDef(ReachedDefs.front().Id); | |||
| 1814 | } | |||
| 1815 | // Splice the DA's reached uses into the RDA's reached use chain. | |||
| 1816 | if (!ReachedUses.empty()) { | |||
| 1817 | auto Last = NodeAddr<UseNode*>(ReachedUses.back()); | |||
| 1818 | Last.Addr->setSibling(RDA.Addr->getReachedUse()); | |||
| 1819 | RDA.Addr->setReachedUse(ReachedUses.front().Id); | |||
| 1820 | } | |||
| 1821 | } |