Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Scalar/Reassociate.cpp
Warning:line 169, column 8
Dereference of null pointer (loaded from variable '__begin1')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name Reassociate.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Scalar -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Scalar/Reassociate.cpp
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass reassociates commutative expressions in an order that is designed
10// to promote better constant propagation, GCSE, LICM, PRE, etc.
11//
12// For example: 4 + (x + 5) -> x + (4 + 5)
13//
14// In the implementation of this algorithm, constants are assigned rank = 0,
15// function arguments are rank = 1, and other values are assigned ranks
16// corresponding to the reverse post order traversal of current function
17// (starting at 2), which effectively gives values in deep loops higher rank
18// than values not in loops.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Scalar/Reassociate.h"
23#include "llvm/ADT/APFloat.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/PostOrderIterator.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/BasicAliasAnalysis.h"
32#include "llvm/Analysis/GlobalsModRef.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/BasicBlock.h"
36#include "llvm/IR/CFG.h"
37#include "llvm/IR/Constant.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/IRBuilder.h"
41#include "llvm/IR/InstrTypes.h"
42#include "llvm/IR/Instruction.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/Operator.h"
45#include "llvm/IR/PassManager.h"
46#include "llvm/IR/PatternMatch.h"
47#include "llvm/IR/Type.h"
48#include "llvm/IR/User.h"
49#include "llvm/IR/Value.h"
50#include "llvm/IR/ValueHandle.h"
51#include "llvm/InitializePasses.h"
52#include "llvm/Pass.h"
53#include "llvm/Support/Casting.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Transforms/Scalar.h"
57#include "llvm/Transforms/Utils/Local.h"
58#include <algorithm>
59#include <cassert>
60#include <utility>
61
62using namespace llvm;
63using namespace reassociate;
64using namespace PatternMatch;
65
66#define DEBUG_TYPE"reassociate" "reassociate"
67
68STATISTIC(NumChanged, "Number of insts reassociated")static llvm::Statistic NumChanged = {"reassociate", "NumChanged"
, "Number of insts reassociated"}
;
69STATISTIC(NumAnnihil, "Number of expr tree annihilated")static llvm::Statistic NumAnnihil = {"reassociate", "NumAnnihil"
, "Number of expr tree annihilated"}
;
70STATISTIC(NumFactor , "Number of multiplies factored")static llvm::Statistic NumFactor = {"reassociate", "NumFactor"
, "Number of multiplies factored"}
;
71
72#ifndef NDEBUG
73/// Print out the expression identified in the Ops list.
74static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
75 Module *M = I->getModule();
76 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
77 << *Ops[0].Op->getType() << '\t';
78 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
79 dbgs() << "[ ";
80 Ops[i].Op->printAsOperand(dbgs(), false, M);
81 dbgs() << ", #" << Ops[i].Rank << "] ";
82 }
83}
84#endif
85
86/// Utility class representing a non-constant Xor-operand. We classify
87/// non-constant Xor-Operands into two categories:
88/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
89/// C2)
90/// C2.1) The operand is in the form of "X | C", where C is a non-zero
91/// constant.
92/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
93/// operand as "E | 0"
94class llvm::reassociate::XorOpnd {
95public:
96 XorOpnd(Value *V);
97
98 bool isInvalid() const { return SymbolicPart == nullptr; }
99 bool isOrExpr() const { return isOr; }
100 Value *getValue() const { return OrigVal; }
101 Value *getSymbolicPart() const { return SymbolicPart; }
102 unsigned getSymbolicRank() const { return SymbolicRank; }
103 const APInt &getConstPart() const { return ConstPart; }
104
105 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
106 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
107
108private:
109 Value *OrigVal;
110 Value *SymbolicPart;
111 APInt ConstPart;
112 unsigned SymbolicRank;
113 bool isOr;
114};
115
116XorOpnd::XorOpnd(Value *V) {
117 assert(!isa<ConstantInt>(V) && "No ConstantInt")(static_cast <bool> (!isa<ConstantInt>(V) &&
"No ConstantInt") ? void (0) : __assert_fail ("!isa<ConstantInt>(V) && \"No ConstantInt\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 117, __extension__
__PRETTY_FUNCTION__))
;
118 OrigVal = V;
119 Instruction *I = dyn_cast<Instruction>(V);
120 SymbolicRank = 0;
121
122 if (I && (I->getOpcode() == Instruction::Or ||
123 I->getOpcode() == Instruction::And)) {
124 Value *V0 = I->getOperand(0);
125 Value *V1 = I->getOperand(1);
126 const APInt *C;
127 if (match(V0, m_APInt(C)))
128 std::swap(V0, V1);
129
130 if (match(V1, m_APInt(C))) {
131 ConstPart = *C;
132 SymbolicPart = V0;
133 isOr = (I->getOpcode() == Instruction::Or);
134 return;
135 }
136 }
137
138 // view the operand as "V | 0"
139 SymbolicPart = V;
140 ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits());
141 isOr = true;
142}
143
144/// Return true if V is an instruction of the specified opcode and if it
145/// only has one use.
146static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
147 auto *I = dyn_cast<Instruction>(V);
148 if (I && I->hasOneUse() && I->getOpcode() == Opcode)
149 if (!isa<FPMathOperator>(I) || I->isFast())
150 return cast<BinaryOperator>(I);
151 return nullptr;
152}
153
154static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
155 unsigned Opcode2) {
156 auto *I = dyn_cast<Instruction>(V);
157 if (I && I->hasOneUse() &&
158 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
159 if (!isa<FPMathOperator>(I) || I->isFast())
160 return cast<BinaryOperator>(I);
161 return nullptr;
162}
163
164void ReassociatePass::BuildRankMap(Function &F,
165 ReversePostOrderTraversal<Function*> &RPOT) {
166 unsigned Rank = 2;
167
168 // Assign distinct ranks to function arguments.
169 for (auto &Arg :
8.1
'__begin1' is not equal to '__end1'
F.args()) {
5
Assuming '__begin1' is not equal to '__end1'
8
Null pointer value stored to '__begin1'
9
Dereference of null pointer (loaded from variable '__begin1')
170 ValueRankMap[&Arg] = ++Rank;
171 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rankdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "Calculated Rank[" <<
Arg.getName() << "] = " << Rank << "\n"; }
} while (false)
6
Assuming 'DebugFlag' is false
7
Loop condition is false. Exiting loop
172 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "Calculated Rank[" <<
Arg.getName() << "] = " << Rank << "\n"; }
} while (false)
;
173 }
174
175 // Traverse basic blocks in ReversePostOrder.
176 for (BasicBlock *BB : RPOT) {
177 unsigned BBRank = RankMap[BB] = ++Rank << 16;
178
179 // Walk the basic block, adding precomputed ranks for any instructions that
180 // we cannot move. This ensures that the ranks for these instructions are
181 // all different in the block.
182 for (Instruction &I : *BB)
183 if (mayHaveNonDefUseDependency(I))
184 ValueRankMap[&I] = ++BBRank;
185 }
186}
187
188unsigned ReassociatePass::getRank(Value *V) {
189 Instruction *I = dyn_cast<Instruction>(V);
190 if (!I) {
191 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
192 return 0; // Otherwise it's a global or constant, rank 0.
193 }
194
195 if (unsigned Rank = ValueRankMap[I])
196 return Rank; // Rank already known?
197
198 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
199 // we can reassociate expressions for code motion! Since we do not recurse
200 // for PHI nodes, we cannot have infinite recursion here, because there
201 // cannot be loops in the value graph that do not go through PHI nodes.
202 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
203 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
204 Rank = std::max(Rank, getRank(I->getOperand(i)));
205
206 // If this is a 'not' or 'neg' instruction, do not count it for rank. This
207 // assures us that X and ~X will have the same rank.
208 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
209 !match(I, m_FNeg(m_Value())))
210 ++Rank;
211
212 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rankdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "Calculated Rank[" <<
V->getName() << "] = " << Rank << "\n";
} } while (false)
213 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "Calculated Rank[" <<
V->getName() << "] = " << Rank << "\n";
} } while (false)
;
214
215 return ValueRankMap[I] = Rank;
216}
217
218// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
219void ReassociatePass::canonicalizeOperands(Instruction *I) {
220 assert(isa<BinaryOperator>(I) && "Expected binary operator.")(static_cast <bool> (isa<BinaryOperator>(I) &&
"Expected binary operator.") ? void (0) : __assert_fail ("isa<BinaryOperator>(I) && \"Expected binary operator.\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 220, __extension__
__PRETTY_FUNCTION__))
;
221 assert(I->isCommutative() && "Expected commutative operator.")(static_cast <bool> (I->isCommutative() && "Expected commutative operator."
) ? void (0) : __assert_fail ("I->isCommutative() && \"Expected commutative operator.\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 221, __extension__
__PRETTY_FUNCTION__))
;
222
223 Value *LHS = I->getOperand(0);
224 Value *RHS = I->getOperand(1);
225 if (LHS == RHS || isa<Constant>(RHS))
226 return;
227 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
228 cast<BinaryOperator>(I)->swapOperands();
229}
230
231static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
232 Instruction *InsertBefore, Value *FlagsOp) {
233 if (S1->getType()->isIntOrIntVectorTy())
234 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
235 else {
236 BinaryOperator *Res =
237 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
238 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
239 return Res;
240 }
241}
242
243static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
244 Instruction *InsertBefore, Value *FlagsOp) {
245 if (S1->getType()->isIntOrIntVectorTy())
246 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
247 else {
248 BinaryOperator *Res =
249 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
250 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
251 return Res;
252 }
253}
254
255static Instruction *CreateNeg(Value *S1, const Twine &Name,
256 Instruction *InsertBefore, Value *FlagsOp) {
257 if (S1->getType()->isIntOrIntVectorTy())
258 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
259
260 if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
261 return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
262
263 return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
264}
265
266/// Replace 0-X with X*-1.
267static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
268 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&(static_cast <bool> ((isa<UnaryOperator>(Neg) || isa
<BinaryOperator>(Neg)) && "Expected a Negate!")
? void (0) : __assert_fail ("(isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) && \"Expected a Negate!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 269, __extension__
__PRETTY_FUNCTION__))
269 "Expected a Negate!")(static_cast <bool> ((isa<UnaryOperator>(Neg) || isa
<BinaryOperator>(Neg)) && "Expected a Negate!")
? void (0) : __assert_fail ("(isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) && \"Expected a Negate!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 269, __extension__
__PRETTY_FUNCTION__))
;
270 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
271 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
272 Type *Ty = Neg->getType();
273 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
274 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
275
276 BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
277 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
278 Res->takeName(Neg);
279 Neg->replaceAllUsesWith(Res);
280 Res->setDebugLoc(Neg->getDebugLoc());
281 return Res;
282}
283
284/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
285/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
286/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
287/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
288/// even x in Bitwidth-bit arithmetic.
289static unsigned CarmichaelShift(unsigned Bitwidth) {
290 if (Bitwidth < 3)
291 return Bitwidth - 1;
292 return Bitwidth - 2;
293}
294
295/// Add the extra weight 'RHS' to the existing weight 'LHS',
296/// reducing the combined weight using any special properties of the operation.
297/// The existing weight LHS represents the computation X op X op ... op X where
298/// X occurs LHS times. The combined weight represents X op X op ... op X with
299/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
300/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
301/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
302static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
303 // If we were working with infinite precision arithmetic then the combined
304 // weight would be LHS + RHS. But we are using finite precision arithmetic,
305 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
306 // for nilpotent operations and addition, but not for idempotent operations
307 // and multiplication), so it is important to correctly reduce the combined
308 // weight back into range if wrapping would be wrong.
309
310 // If RHS is zero then the weight didn't change.
311 if (RHS.isMinValue())
312 return;
313 // If LHS is zero then the combined weight is RHS.
314 if (LHS.isMinValue()) {
315 LHS = RHS;
316 return;
317 }
318 // From this point on we know that neither LHS nor RHS is zero.
319
320 if (Instruction::isIdempotent(Opcode)) {
321 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
322 // weight of 1. Keeping weights at zero or one also means that wrapping is
323 // not a problem.
324 assert(LHS == 1 && RHS == 1 && "Weights not reduced!")(static_cast <bool> (LHS == 1 && RHS == 1 &&
"Weights not reduced!") ? void (0) : __assert_fail ("LHS == 1 && RHS == 1 && \"Weights not reduced!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 324, __extension__
__PRETTY_FUNCTION__))
;
325 return; // Return a weight of 1.
326 }
327 if (Instruction::isNilpotent(Opcode)) {
328 // Nilpotent means X op X === 0, so reduce weights modulo 2.
329 assert(LHS == 1 && RHS == 1 && "Weights not reduced!")(static_cast <bool> (LHS == 1 && RHS == 1 &&
"Weights not reduced!") ? void (0) : __assert_fail ("LHS == 1 && RHS == 1 && \"Weights not reduced!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 329, __extension__
__PRETTY_FUNCTION__))
;
330 LHS = 0; // 1 + 1 === 0 modulo 2.
331 return;
332 }
333 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
334 // TODO: Reduce the weight by exploiting nsw/nuw?
335 LHS += RHS;
336 return;
337 }
338
339 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&(static_cast <bool> ((Opcode == Instruction::Mul || Opcode
== Instruction::FMul) && "Unknown associative operation!"
) ? void (0) : __assert_fail ("(Opcode == Instruction::Mul || Opcode == Instruction::FMul) && \"Unknown associative operation!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 340, __extension__
__PRETTY_FUNCTION__))
340 "Unknown associative operation!")(static_cast <bool> ((Opcode == Instruction::Mul || Opcode
== Instruction::FMul) && "Unknown associative operation!"
) ? void (0) : __assert_fail ("(Opcode == Instruction::Mul || Opcode == Instruction::FMul) && \"Unknown associative operation!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 340, __extension__
__PRETTY_FUNCTION__))
;
341 unsigned Bitwidth = LHS.getBitWidth();
342 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
343 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
344 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
345 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
346 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
347 // which by a happy accident means that they can always be represented using
348 // Bitwidth bits.
349 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
350 // the Carmichael number).
351 if (Bitwidth > 3) {
352 /// CM - The value of Carmichael's lambda function.
353 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
354 // Any weight W >= Threshold can be replaced with W - CM.
355 APInt Threshold = CM + Bitwidth;
356 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!")(static_cast <bool> (LHS.ult(Threshold) && RHS.
ult(Threshold) && "Weights not reduced!") ? void (0) :
__assert_fail ("LHS.ult(Threshold) && RHS.ult(Threshold) && \"Weights not reduced!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 356, __extension__
__PRETTY_FUNCTION__))
;
357 // For Bitwidth 4 or more the following sum does not overflow.
358 LHS += RHS;
359 while (LHS.uge(Threshold))
360 LHS -= CM;
361 } else {
362 // To avoid problems with overflow do everything the same as above but using
363 // a larger type.
364 unsigned CM = 1U << CarmichaelShift(Bitwidth);
365 unsigned Threshold = CM + Bitwidth;
366 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&(static_cast <bool> (LHS.getZExtValue() < Threshold &&
RHS.getZExtValue() < Threshold && "Weights not reduced!"
) ? void (0) : __assert_fail ("LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && \"Weights not reduced!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 367, __extension__
__PRETTY_FUNCTION__))
367 "Weights not reduced!")(static_cast <bool> (LHS.getZExtValue() < Threshold &&
RHS.getZExtValue() < Threshold && "Weights not reduced!"
) ? void (0) : __assert_fail ("LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && \"Weights not reduced!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 367, __extension__
__PRETTY_FUNCTION__))
;
368 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
369 while (Total >= Threshold)
370 Total -= CM;
371 LHS = Total;
372 }
373}
374
375using RepeatedValue = std::pair<Value*, APInt>;
376
377/// Given an associative binary expression, return the leaf
378/// nodes in Ops along with their weights (how many times the leaf occurs). The
379/// original expression is the same as
380/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
381/// op
382/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
383/// op
384/// ...
385/// op
386/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
387///
388/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
389///
390/// This routine may modify the function, in which case it returns 'true'. The
391/// changes it makes may well be destructive, changing the value computed by 'I'
392/// to something completely different. Thus if the routine returns 'true' then
393/// you MUST either replace I with a new expression computed from the Ops array,
394/// or use RewriteExprTree to put the values back in.
395///
396/// A leaf node is either not a binary operation of the same kind as the root
397/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
398/// opcode), or is the same kind of binary operator but has a use which either
399/// does not belong to the expression, or does belong to the expression but is
400/// a leaf node. Every leaf node has at least one use that is a non-leaf node
401/// of the expression, while for non-leaf nodes (except for the root 'I') every
402/// use is a non-leaf node of the expression.
403///
404/// For example:
405/// expression graph node names
406///
407/// + | I
408/// / \ |
409/// + + | A, B
410/// / \ / \ |
411/// * + * | C, D, E
412/// / \ / \ / \ |
413/// + * | F, G
414///
415/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
416/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
417///
418/// The expression is maximal: if some instruction is a binary operator of the
419/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
420/// then the instruction also belongs to the expression, is not a leaf node of
421/// it, and its operands also belong to the expression (but may be leaf nodes).
422///
423/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
424/// order to ensure that every non-root node in the expression has *exactly one*
425/// use by a non-leaf node of the expression. This destruction means that the
426/// caller MUST either replace 'I' with a new expression or use something like
427/// RewriteExprTree to put the values back in if the routine indicates that it
428/// made a change by returning 'true'.
429///
430/// In the above example either the right operand of A or the left operand of B
431/// will be replaced by undef. If it is B's operand then this gives:
432///
433/// + | I
434/// / \ |
435/// + + | A, B - operand of B replaced with undef
436/// / \ \ |
437/// * + * | C, D, E
438/// / \ / \ / \ |
439/// + * | F, G
440///
441/// Note that such undef operands can only be reached by passing through 'I'.
442/// For example, if you visit operands recursively starting from a leaf node
443/// then you will never see such an undef operand unless you get back to 'I',
444/// which requires passing through a phi node.
445///
446/// Note that this routine may also mutate binary operators of the wrong type
447/// that have all uses inside the expression (i.e. only used by non-leaf nodes
448/// of the expression) if it can turn them into binary operators of the right
449/// type and thus make the expression bigger.
450static bool LinearizeExprTree(Instruction *I,
451 SmallVectorImpl<RepeatedValue> &Ops) {
452 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&(static_cast <bool> ((isa<UnaryOperator>(I) || isa
<BinaryOperator>(I)) && "Expected a UnaryOperator or BinaryOperator!"
) ? void (0) : __assert_fail ("(isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) && \"Expected a UnaryOperator or BinaryOperator!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 453, __extension__
__PRETTY_FUNCTION__))
453 "Expected a UnaryOperator or BinaryOperator!")(static_cast <bool> ((isa<UnaryOperator>(I) || isa
<BinaryOperator>(I)) && "Expected a UnaryOperator or BinaryOperator!"
) ? void (0) : __assert_fail ("(isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) && \"Expected a UnaryOperator or BinaryOperator!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 453, __extension__
__PRETTY_FUNCTION__))
;
454 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "LINEARIZE: " << *I <<
'\n'; } } while (false)
;
455 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
456 unsigned Opcode = I->getOpcode();
457 assert(I->isAssociative() && I->isCommutative() &&(static_cast <bool> (I->isAssociative() && I
->isCommutative() && "Expected an associative and commutative operation!"
) ? void (0) : __assert_fail ("I->isAssociative() && I->isCommutative() && \"Expected an associative and commutative operation!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 458, __extension__
__PRETTY_FUNCTION__))
458 "Expected an associative and commutative operation!")(static_cast <bool> (I->isAssociative() && I
->isCommutative() && "Expected an associative and commutative operation!"
) ? void (0) : __assert_fail ("I->isAssociative() && I->isCommutative() && \"Expected an associative and commutative operation!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 458, __extension__
__PRETTY_FUNCTION__))
;
459
460 // Visit all operands of the expression, keeping track of their weight (the
461 // number of paths from the expression root to the operand, or if you like
462 // the number of times that operand occurs in the linearized expression).
463 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
464 // while A has weight two.
465
466 // Worklist of non-leaf nodes (their operands are in the expression too) along
467 // with their weights, representing a certain number of paths to the operator.
468 // If an operator occurs in the worklist multiple times then we found multiple
469 // ways to get to it.
470 SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
471 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
472 bool Changed = false;
473
474 // Leaves of the expression are values that either aren't the right kind of
475 // operation (eg: a constant, or a multiply in an add tree), or are, but have
476 // some uses that are not inside the expression. For example, in I = X + X,
477 // X = A + B, the value X has two uses (by I) that are in the expression. If
478 // X has any other uses, for example in a return instruction, then we consider
479 // X to be a leaf, and won't analyze it further. When we first visit a value,
480 // if it has more than one use then at first we conservatively consider it to
481 // be a leaf. Later, as the expression is explored, we may discover some more
482 // uses of the value from inside the expression. If all uses turn out to be
483 // from within the expression (and the value is a binary operator of the right
484 // kind) then the value is no longer considered to be a leaf, and its operands
485 // are explored.
486
487 // Leaves - Keeps track of the set of putative leaves as well as the number of
488 // paths to each leaf seen so far.
489 using LeafMap = DenseMap<Value *, APInt>;
490 LeafMap Leaves; // Leaf -> Total weight so far.
491 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
492
493#ifndef NDEBUG
494 SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
495#endif
496 while (!Worklist.empty()) {
497 std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
498 I = P.first; // We examine the operands of this binary operator.
499
500 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
501 Value *Op = I->getOperand(OpIdx);
502 APInt Weight = P.second; // Number of paths to this operand.
503 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "OPERAND: " << *Op <<
" (" << Weight << ")\n"; } } while (false)
;
504 assert(!Op->use_empty() && "No uses, so how did we get to it?!")(static_cast <bool> (!Op->use_empty() && "No uses, so how did we get to it?!"
) ? void (0) : __assert_fail ("!Op->use_empty() && \"No uses, so how did we get to it?!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 504, __extension__
__PRETTY_FUNCTION__))
;
505
506 // If this is a binary operation of the right kind with only one use then
507 // add its operands to the expression.
508 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
509 assert(Visited.insert(Op).second && "Not first visit!")(static_cast <bool> (Visited.insert(Op).second &&
"Not first visit!") ? void (0) : __assert_fail ("Visited.insert(Op).second && \"Not first visit!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 509, __extension__
__PRETTY_FUNCTION__))
;
510 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "DIRECT ADD: " << *Op
<< " (" << Weight << ")\n"; } } while (false
)
;
511 Worklist.push_back(std::make_pair(BO, Weight));
512 continue;
513 }
514
515 // Appears to be a leaf. Is the operand already in the set of leaves?
516 LeafMap::iterator It = Leaves.find(Op);
517 if (It == Leaves.end()) {
518 // Not in the leaf map. Must be the first time we saw this operand.
519 assert(Visited.insert(Op).second && "Not first visit!")(static_cast <bool> (Visited.insert(Op).second &&
"Not first visit!") ? void (0) : __assert_fail ("Visited.insert(Op).second && \"Not first visit!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 519, __extension__
__PRETTY_FUNCTION__))
;
520 if (!Op->hasOneUse()) {
521 // This value has uses not accounted for by the expression, so it is
522 // not safe to modify. Mark it as being a leaf.
523 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "ADD USES LEAF: " <<
*Op << " (" << Weight << ")\n"; } } while (
false)
524 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "ADD USES LEAF: " <<
*Op << " (" << Weight << ")\n"; } } while (
false)
;
525 LeafOrder.push_back(Op);
526 Leaves[Op] = Weight;
527 continue;
528 }
529 // No uses outside the expression, try morphing it.
530 } else {
531 // Already in the leaf map.
532 assert(It != Leaves.end() && Visited.count(Op) &&(static_cast <bool> (It != Leaves.end() && Visited
.count(Op) && "In leaf map but not visited!") ? void (
0) : __assert_fail ("It != Leaves.end() && Visited.count(Op) && \"In leaf map but not visited!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 533, __extension__
__PRETTY_FUNCTION__))
533 "In leaf map but not visited!")(static_cast <bool> (It != Leaves.end() && Visited
.count(Op) && "In leaf map but not visited!") ? void (
0) : __assert_fail ("It != Leaves.end() && Visited.count(Op) && \"In leaf map but not visited!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 533, __extension__
__PRETTY_FUNCTION__))
;
534
535 // Update the number of paths to the leaf.
536 IncorporateWeight(It->second, Weight, Opcode);
537
538#if 0 // TODO: Re-enable once PR13021 is fixed.
539 // The leaf already has one use from inside the expression. As we want
540 // exactly one such use, drop this new use of the leaf.
541 assert(!Op->hasOneUse() && "Only one use, but we got here twice!")(static_cast <bool> (!Op->hasOneUse() && "Only one use, but we got here twice!"
) ? void (0) : __assert_fail ("!Op->hasOneUse() && \"Only one use, but we got here twice!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 541, __extension__
__PRETTY_FUNCTION__))
;
542 I->setOperand(OpIdx, UndefValue::get(I->getType()));
543 Changed = true;
544
545 // If the leaf is a binary operation of the right kind and we now see
546 // that its multiple original uses were in fact all by nodes belonging
547 // to the expression, then no longer consider it to be a leaf and add
548 // its operands to the expression.
549 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
550 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "UNLEAF: " << *Op <<
" (" << It->second << ")\n"; } } while (false
)
;
551 Worklist.push_back(std::make_pair(BO, It->second));
552 Leaves.erase(It);
553 continue;
554 }
555#endif
556
557 // If we still have uses that are not accounted for by the expression
558 // then it is not safe to modify the value.
559 if (!Op->hasOneUse())
560 continue;
561
562 // No uses outside the expression, try morphing it.
563 Weight = It->second;
564 Leaves.erase(It); // Since the value may be morphed below.
565 }
566
567 // At this point we have a value which, first of all, is not a binary
568 // expression of the right kind, and secondly, is only used inside the
569 // expression. This means that it can safely be modified. See if we
570 // can usefully morph it into an expression of the right kind.
571 assert((!isa<Instruction>(Op) ||(static_cast <bool> ((!isa<Instruction>(Op) || cast
<Instruction>(Op)->getOpcode() != Opcode || (isa<
FPMathOperator>(Op) && !cast<Instruction>(Op
)->isFast())) && "Should have been handled above!"
) ? void (0) : __assert_fail ("(!isa<Instruction>(Op) || cast<Instruction>(Op)->getOpcode() != Opcode || (isa<FPMathOperator>(Op) && !cast<Instruction>(Op)->isFast())) && \"Should have been handled above!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 575, __extension__
__PRETTY_FUNCTION__))
572 cast<Instruction>(Op)->getOpcode() != Opcode(static_cast <bool> ((!isa<Instruction>(Op) || cast
<Instruction>(Op)->getOpcode() != Opcode || (isa<
FPMathOperator>(Op) && !cast<Instruction>(Op
)->isFast())) && "Should have been handled above!"
) ? void (0) : __assert_fail ("(!isa<Instruction>(Op) || cast<Instruction>(Op)->getOpcode() != Opcode || (isa<FPMathOperator>(Op) && !cast<Instruction>(Op)->isFast())) && \"Should have been handled above!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 575, __extension__
__PRETTY_FUNCTION__))
573 || (isa<FPMathOperator>(Op) &&(static_cast <bool> ((!isa<Instruction>(Op) || cast
<Instruction>(Op)->getOpcode() != Opcode || (isa<
FPMathOperator>(Op) && !cast<Instruction>(Op
)->isFast())) && "Should have been handled above!"
) ? void (0) : __assert_fail ("(!isa<Instruction>(Op) || cast<Instruction>(Op)->getOpcode() != Opcode || (isa<FPMathOperator>(Op) && !cast<Instruction>(Op)->isFast())) && \"Should have been handled above!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 575, __extension__
__PRETTY_FUNCTION__))
574 !cast<Instruction>(Op)->isFast())) &&(static_cast <bool> ((!isa<Instruction>(Op) || cast
<Instruction>(Op)->getOpcode() != Opcode || (isa<
FPMathOperator>(Op) && !cast<Instruction>(Op
)->isFast())) && "Should have been handled above!"
) ? void (0) : __assert_fail ("(!isa<Instruction>(Op) || cast<Instruction>(Op)->getOpcode() != Opcode || (isa<FPMathOperator>(Op) && !cast<Instruction>(Op)->isFast())) && \"Should have been handled above!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 575, __extension__
__PRETTY_FUNCTION__))
575 "Should have been handled above!")(static_cast <bool> ((!isa<Instruction>(Op) || cast
<Instruction>(Op)->getOpcode() != Opcode || (isa<
FPMathOperator>(Op) && !cast<Instruction>(Op
)->isFast())) && "Should have been handled above!"
) ? void (0) : __assert_fail ("(!isa<Instruction>(Op) || cast<Instruction>(Op)->getOpcode() != Opcode || (isa<FPMathOperator>(Op) && !cast<Instruction>(Op)->isFast())) && \"Should have been handled above!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 575, __extension__
__PRETTY_FUNCTION__))
;
576 assert(Op->hasOneUse() && "Has uses outside the expression tree!")(static_cast <bool> (Op->hasOneUse() && "Has uses outside the expression tree!"
) ? void (0) : __assert_fail ("Op->hasOneUse() && \"Has uses outside the expression tree!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 576, __extension__
__PRETTY_FUNCTION__))
;
577
578 // If this is a multiply expression, turn any internal negations into
579 // multiplies by -1 so they can be reassociated.
580 if (Instruction *Tmp = dyn_cast<Instruction>(Op))
581 if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) ||
582 (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) {
583 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "MORPH LEAF: " << *Op
<< " (" << Weight << ") TO "; } } while (false
)
584 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "MORPH LEAF: " << *Op
<< " (" << Weight << ") TO "; } } while (false
)
;
585 Tmp = LowerNegateToMultiply(Tmp);
586 LLVM_DEBUG(dbgs() << *Tmp << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << *Tmp << '\n'; } } while
(false)
;
587 Worklist.push_back(std::make_pair(Tmp, Weight));
588 Changed = true;
589 continue;
590 }
591
592 // Failed to morph into an expression of the right type. This really is
593 // a leaf.
594 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "ADD LEAF: " << *Op <<
" (" << Weight << ")\n"; } } while (false)
;
595 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?")(static_cast <bool> (!isReassociableOp(Op, Opcode) &&
"Value was morphed?") ? void (0) : __assert_fail ("!isReassociableOp(Op, Opcode) && \"Value was morphed?\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 595, __extension__
__PRETTY_FUNCTION__))
;
596 LeafOrder.push_back(Op);
597 Leaves[Op] = Weight;
598 }
599 }
600
601 // The leaves, repeated according to their weights, represent the linearized
602 // form of the expression.
603 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
604 Value *V = LeafOrder[i];
605 LeafMap::iterator It = Leaves.find(V);
606 if (It == Leaves.end())
607 // Node initially thought to be a leaf wasn't.
608 continue;
609 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!")(static_cast <bool> (!isReassociableOp(V, Opcode) &&
"Shouldn't be a leaf!") ? void (0) : __assert_fail ("!isReassociableOp(V, Opcode) && \"Shouldn't be a leaf!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 609, __extension__
__PRETTY_FUNCTION__))
;
610 APInt Weight = It->second;
611 if (Weight.isMinValue())
612 // Leaf already output or weight reduction eliminated it.
613 continue;
614 // Ensure the leaf is only output once.
615 It->second = 0;
616 Ops.push_back(std::make_pair(V, Weight));
617 }
618
619 // For nilpotent operations or addition there may be no operands, for example
620 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
621 // in both cases the weight reduces to 0 causing the value to be skipped.
622 if (Ops.empty()) {
623 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
624 assert(Identity && "Associative operation without identity!")(static_cast <bool> (Identity && "Associative operation without identity!"
) ? void (0) : __assert_fail ("Identity && \"Associative operation without identity!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 624, __extension__
__PRETTY_FUNCTION__))
;
625 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
626 }
627
628 return Changed;
629}
630
631/// Now that the operands for this expression tree are
632/// linearized and optimized, emit them in-order.
633void ReassociatePass::RewriteExprTree(BinaryOperator *I,
634 SmallVectorImpl<ValueEntry> &Ops) {
635 assert(Ops.size() > 1 && "Single values should be used directly!")(static_cast <bool> (Ops.size() > 1 && "Single values should be used directly!"
) ? void (0) : __assert_fail ("Ops.size() > 1 && \"Single values should be used directly!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 635, __extension__
__PRETTY_FUNCTION__))
;
636
637 // Since our optimizations should never increase the number of operations, the
638 // new expression can usually be written reusing the existing binary operators
639 // from the original expression tree, without creating any new instructions,
640 // though the rewritten expression may have a completely different topology.
641 // We take care to not change anything if the new expression will be the same
642 // as the original. If more than trivial changes (like commuting operands)
643 // were made then we are obliged to clear out any optional subclass data like
644 // nsw flags.
645
646 /// NodesToRewrite - Nodes from the original expression available for writing
647 /// the new expression into.
648 SmallVector<BinaryOperator*, 8> NodesToRewrite;
649 unsigned Opcode = I->getOpcode();
650 BinaryOperator *Op = I;
651
652 /// NotRewritable - The operands being written will be the leaves of the new
653 /// expression and must not be used as inner nodes (via NodesToRewrite) by
654 /// mistake. Inner nodes are always reassociable, and usually leaves are not
655 /// (if they were they would have been incorporated into the expression and so
656 /// would not be leaves), so most of the time there is no danger of this. But
657 /// in rare cases a leaf may become reassociable if an optimization kills uses
658 /// of it, or it may momentarily become reassociable during rewriting (below)
659 /// due it being removed as an operand of one of its uses. Ensure that misuse
660 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
661 /// leaves and refusing to reuse any of them as inner nodes.
662 SmallPtrSet<Value*, 8> NotRewritable;
663 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
664 NotRewritable.insert(Ops[i].Op);
665
666 // ExpressionChanged - Non-null if the rewritten expression differs from the
667 // original in some non-trivial way, requiring the clearing of optional flags.
668 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
669 BinaryOperator *ExpressionChanged = nullptr;
670 for (unsigned i = 0; ; ++i) {
671 // The last operation (which comes earliest in the IR) is special as both
672 // operands will come from Ops, rather than just one with the other being
673 // a subexpression.
674 if (i+2 == Ops.size()) {
675 Value *NewLHS = Ops[i].Op;
676 Value *NewRHS = Ops[i+1].Op;
677 Value *OldLHS = Op->getOperand(0);
678 Value *OldRHS = Op->getOperand(1);
679
680 if (NewLHS == OldLHS && NewRHS == OldRHS)
681 // Nothing changed, leave it alone.
682 break;
683
684 if (NewLHS == OldRHS && NewRHS == OldLHS) {
685 // The order of the operands was reversed. Swap them.
686 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "RA: " << *Op <<
'\n'; } } while (false)
;
687 Op->swapOperands();
688 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "TO: " << *Op <<
'\n'; } } while (false)
;
689 MadeChange = true;
690 ++NumChanged;
691 break;
692 }
693
694 // The new operation differs non-trivially from the original. Overwrite
695 // the old operands with the new ones.
696 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "RA: " << *Op <<
'\n'; } } while (false)
;
697 if (NewLHS != OldLHS) {
698 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
699 if (BO && !NotRewritable.count(BO))
700 NodesToRewrite.push_back(BO);
701 Op->setOperand(0, NewLHS);
702 }
703 if (NewRHS != OldRHS) {
704 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
705 if (BO && !NotRewritable.count(BO))
706 NodesToRewrite.push_back(BO);
707 Op->setOperand(1, NewRHS);
708 }
709 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "TO: " << *Op <<
'\n'; } } while (false)
;
710
711 ExpressionChanged = Op;
712 MadeChange = true;
713 ++NumChanged;
714
715 break;
716 }
717
718 // Not the last operation. The left-hand side will be a sub-expression
719 // while the right-hand side will be the current element of Ops.
720 Value *NewRHS = Ops[i].Op;
721 if (NewRHS != Op->getOperand(1)) {
722 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "RA: " << *Op <<
'\n'; } } while (false)
;
723 if (NewRHS == Op->getOperand(0)) {
724 // The new right-hand side was already present as the left operand. If
725 // we are lucky then swapping the operands will sort out both of them.
726 Op->swapOperands();
727 } else {
728 // Overwrite with the new right-hand side.
729 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
730 if (BO && !NotRewritable.count(BO))
731 NodesToRewrite.push_back(BO);
732 Op->setOperand(1, NewRHS);
733 ExpressionChanged = Op;
734 }
735 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "TO: " << *Op <<
'\n'; } } while (false)
;
736 MadeChange = true;
737 ++NumChanged;
738 }
739
740 // Now deal with the left-hand side. If this is already an operation node
741 // from the original expression then just rewrite the rest of the expression
742 // into it.
743 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
744 if (BO && !NotRewritable.count(BO)) {
745 Op = BO;
746 continue;
747 }
748
749 // Otherwise, grab a spare node from the original expression and use that as
750 // the left-hand side. If there are no nodes left then the optimizers made
751 // an expression with more nodes than the original! This usually means that
752 // they did something stupid but it might mean that the problem was just too
753 // hard (finding the mimimal number of multiplications needed to realize a
754 // multiplication expression is NP-complete). Whatever the reason, smart or
755 // stupid, create a new node if there are none left.
756 BinaryOperator *NewOp;
757 if (NodesToRewrite.empty()) {
758 Constant *Undef = UndefValue::get(I->getType());
759 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
760 Undef, Undef, "", I);
761 if (NewOp->getType()->isFPOrFPVectorTy())
762 NewOp->setFastMathFlags(I->getFastMathFlags());
763 } else {
764 NewOp = NodesToRewrite.pop_back_val();
765 }
766
767 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "RA: " << *Op <<
'\n'; } } while (false)
;
768 Op->setOperand(0, NewOp);
769 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "TO: " << *Op <<
'\n'; } } while (false)
;
770 ExpressionChanged = Op;
771 MadeChange = true;
772 ++NumChanged;
773 Op = NewOp;
774 }
775
776 // If the expression changed non-trivially then clear out all subclass data
777 // starting from the operator specified in ExpressionChanged, and compactify
778 // the operators to just before the expression root to guarantee that the
779 // expression tree is dominated by all of Ops.
780 if (ExpressionChanged)
781 do {
782 // Preserve FastMathFlags.
783 if (isa<FPMathOperator>(I)) {
784 FastMathFlags Flags = I->getFastMathFlags();
785 ExpressionChanged->clearSubclassOptionalData();
786 ExpressionChanged->setFastMathFlags(Flags);
787 } else
788 ExpressionChanged->clearSubclassOptionalData();
789
790 if (ExpressionChanged == I)
791 break;
792
793 // Discard any debug info related to the expressions that has changed (we
794 // can leave debug infor related to the root, since the result of the
795 // expression tree should be the same even after reassociation).
796 replaceDbgUsesWithUndef(ExpressionChanged);
797
798 ExpressionChanged->moveBefore(I);
799 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
800 } while (true);
801
802 // Throw away any left over nodes from the original expression.
803 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
804 RedoInsts.insert(NodesToRewrite[i]);
805}
806
807/// Insert instructions before the instruction pointed to by BI,
808/// that computes the negative version of the value specified. The negative
809/// version of the value is returned, and BI is left pointing at the instruction
810/// that should be processed next by the reassociation pass.
811/// Also add intermediate instructions to the redo list that are modified while
812/// pushing the negates through adds. These will be revisited to see if
813/// additional opportunities have been exposed.
814static Value *NegateValue(Value *V, Instruction *BI,
815 ReassociatePass::OrderedSet &ToRedo) {
816 if (auto *C = dyn_cast<Constant>(V))
817 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
818 ConstantExpr::getNeg(C);
819
820 // We are trying to expose opportunity for reassociation. One of the things
821 // that we want to do to achieve this is to push a negation as deep into an
822 // expression chain as possible, to expose the add instructions. In practice,
823 // this means that we turn this:
824 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
825 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
826 // the constants. We assume that instcombine will clean up the mess later if
827 // we introduce tons of unnecessary negation instructions.
828 //
829 if (BinaryOperator *I =
830 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
831 // Push the negates through the add.
832 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
833 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
834 if (I->getOpcode() == Instruction::Add) {
835 I->setHasNoUnsignedWrap(false);
836 I->setHasNoSignedWrap(false);
837 }
838
839 // We must move the add instruction here, because the neg instructions do
840 // not dominate the old add instruction in general. By moving it, we are
841 // assured that the neg instructions we just inserted dominate the
842 // instruction we are about to insert after them.
843 //
844 I->moveBefore(BI);
845 I->setName(I->getName()+".neg");
846
847 // Add the intermediate negates to the redo list as processing them later
848 // could expose more reassociating opportunities.
849 ToRedo.insert(I);
850 return I;
851 }
852
853 // Okay, we need to materialize a negated version of V with an instruction.
854 // Scan the use lists of V to see if we have one already.
855 for (User *U : V->users()) {
856 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
857 continue;
858
859 // We found one! Now we have to make sure that the definition dominates
860 // this use. We do this by moving it to the entry block (if it is a
861 // non-instruction value) or right after the definition. These negates will
862 // be zapped by reassociate later, so we don't need much finesse here.
863 Instruction *TheNeg = cast<Instruction>(U);
864
865 // Verify that the negate is in this function, V might be a constant expr.
866 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
867 continue;
868
869 bool FoundCatchSwitch = false;
870
871 BasicBlock::iterator InsertPt;
872 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
873 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
874 InsertPt = II->getNormalDest()->begin();
875 } else {
876 InsertPt = ++InstInput->getIterator();
877 }
878
879 const BasicBlock *BB = InsertPt->getParent();
880
881 // Make sure we don't move anything before PHIs or exception
882 // handling pads.
883 while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
884 InsertPt->isEHPad())) {
885 if (isa<CatchSwitchInst>(InsertPt))
886 // A catchswitch cannot have anything in the block except
887 // itself and PHIs. We'll bail out below.
888 FoundCatchSwitch = true;
889 ++InsertPt;
890 }
891 } else {
892 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
893 }
894
895 // We found a catchswitch in the block where we want to move the
896 // neg. We cannot move anything into that block. Bail and just
897 // create the neg before BI, as if we hadn't found an existing
898 // neg.
899 if (FoundCatchSwitch)
900 break;
901
902 TheNeg->moveBefore(&*InsertPt);
903 if (TheNeg->getOpcode() == Instruction::Sub) {
904 TheNeg->setHasNoUnsignedWrap(false);
905 TheNeg->setHasNoSignedWrap(false);
906 } else {
907 TheNeg->andIRFlags(BI);
908 }
909 ToRedo.insert(TheNeg);
910 return TheNeg;
911 }
912
913 // Insert a 'neg' instruction that subtracts the value from zero to get the
914 // negation.
915 Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
916 ToRedo.insert(NewNeg);
917 return NewNeg;
918}
919
920// See if this `or` looks like an load widening reduction, i.e. that it
921// consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
922// ensure that the pattern is *really* a load widening reduction,
923// we do not ensure that it can really be replaced with a widened load,
924// only that it mostly looks like one.
925static bool isLoadCombineCandidate(Instruction *Or) {
926 SmallVector<Instruction *, 8> Worklist;
927 SmallSet<Instruction *, 8> Visited;
928
929 auto Enqueue = [&](Value *V) {
930 auto *I = dyn_cast<Instruction>(V);
931 // Each node of an `or` reduction must be an instruction,
932 if (!I)
933 return false; // Node is certainly not part of an `or` load reduction.
934 // Only process instructions we have never processed before.
935 if (Visited.insert(I).second)
936 Worklist.emplace_back(I);
937 return true; // Will need to look at parent nodes.
938 };
939
940 if (!Enqueue(Or))
941 return false; // Not an `or` reduction pattern.
942
943 while (!Worklist.empty()) {
944 auto *I = Worklist.pop_back_val();
945
946 // Okay, which instruction is this node?
947 switch (I->getOpcode()) {
948 case Instruction::Or:
949 // Got an `or` node. That's fine, just recurse into it's operands.
950 for (Value *Op : I->operands())
951 if (!Enqueue(Op))
952 return false; // Not an `or` reduction pattern.
953 continue;
954
955 case Instruction::Shl:
956 case Instruction::ZExt:
957 // `shl`/`zext` nodes are fine, just recurse into their base operand.
958 if (!Enqueue(I->getOperand(0)))
959 return false; // Not an `or` reduction pattern.
960 continue;
961
962 case Instruction::Load:
963 // Perfect, `load` node means we've reached an edge of the graph.
964 continue;
965
966 default: // Unknown node.
967 return false; // Not an `or` reduction pattern.
968 }
969 }
970
971 return true;
972}
973
974/// Return true if it may be profitable to convert this (X|Y) into (X+Y).
975static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
976 // Don't bother to convert this up unless either the LHS is an associable add
977 // or subtract or mul or if this is only used by one of the above.
978 // This is only a compile-time improvement, it is not needed for correctness!
979 auto isInteresting = [](Value *V) {
980 for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
981 Instruction::Shl})
982 if (isReassociableOp(V, Op))
983 return true;
984 return false;
985 };
986
987 if (any_of(Or->operands(), isInteresting))
988 return true;
989
990 Value *VB = Or->user_back();
991 if (Or->hasOneUse() && isInteresting(VB))
992 return true;
993
994 return false;
995}
996
997/// If we have (X|Y), and iff X and Y have no common bits set,
998/// transform this into (X+Y) to allow arithmetics reassociation.
999static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
1000 // Convert an or into an add.
1001 BinaryOperator *New =
1002 CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or);
1003 New->setHasNoSignedWrap();
1004 New->setHasNoUnsignedWrap();
1005 New->takeName(Or);
1006
1007 // Everyone now refers to the add instruction.
1008 Or->replaceAllUsesWith(New);
1009 New->setDebugLoc(Or->getDebugLoc());
1010
1011 LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "Converted or into an add: "
<< *New << '\n'; } } while (false)
;
1012 return New;
1013}
1014
1015/// Return true if we should break up this subtract of X-Y into (X + -Y).
1016static bool ShouldBreakUpSubtract(Instruction *Sub) {
1017 // If this is a negation, we can't split it up!
1018 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
1019 return false;
1020
1021 // Don't breakup X - undef.
1022 if (isa<UndefValue>(Sub->getOperand(1)))
1023 return false;
1024
1025 // Don't bother to break this up unless either the LHS is an associable add or
1026 // subtract or if this is only used by one.
1027 Value *V0 = Sub->getOperand(0);
1028 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1029 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1030 return true;
1031 Value *V1 = Sub->getOperand(1);
1032 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1033 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1034 return true;
1035 Value *VB = Sub->user_back();
1036 if (Sub->hasOneUse() &&
1037 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1038 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1039 return true;
1040
1041 return false;
1042}
1043
1044/// If we have (X-Y), and if either X is an add, or if this is only used by an
1045/// add, transform this into (X+(0-Y)) to promote better reassociation.
1046static BinaryOperator *BreakUpSubtract(Instruction *Sub,
1047 ReassociatePass::OrderedSet &ToRedo) {
1048 // Convert a subtract into an add and a neg instruction. This allows sub
1049 // instructions to be commuted with other add instructions.
1050 //
1051 // Calculate the negative value of Operand 1 of the sub instruction,
1052 // and set it as the RHS of the add instruction we just made.
1053 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1054 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1055 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1056 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1057 New->takeName(Sub);
1058
1059 // Everyone now refers to the add instruction.
1060 Sub->replaceAllUsesWith(New);
1061 New->setDebugLoc(Sub->getDebugLoc());
1062
1063 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "Negated: " << *New <<
'\n'; } } while (false)
;
1064 return New;
1065}
1066
1067/// If this is a shift of a reassociable multiply or is used by one, change
1068/// this into a multiply by a constant to assist with further reassociation.
1069static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1070 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1071 auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1072 MulCst = ConstantExpr::getShl(MulCst, SA);
1073
1074 BinaryOperator *Mul =
1075 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1076 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1077 Mul->takeName(Shl);
1078
1079 // Everyone now refers to the mul instruction.
1080 Shl->replaceAllUsesWith(Mul);
1081 Mul->setDebugLoc(Shl->getDebugLoc());
1082
1083 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1084 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1085 // handling. It can be preserved as long as we're not left shifting by
1086 // bitwidth - 1.
1087 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1088 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1089 unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1090 if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1091 Mul->setHasNoSignedWrap(true);
1092 Mul->setHasNoUnsignedWrap(NUW);
1093 return Mul;
1094}
1095
1096/// Scan backwards and forwards among values with the same rank as element i
1097/// to see if X exists. If X does not exist, return i. This is useful when
1098/// scanning for 'x' when we see '-x' because they both get the same rank.
1099static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1100 unsigned i, Value *X) {
1101 unsigned XRank = Ops[i].Rank;
1102 unsigned e = Ops.size();
1103 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1104 if (Ops[j].Op == X)
1105 return j;
1106 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1107 if (Instruction *I2 = dyn_cast<Instruction>(X))
1108 if (I1->isIdenticalTo(I2))
1109 return j;
1110 }
1111 // Scan backwards.
1112 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1113 if (Ops[j].Op == X)
1114 return j;
1115 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1116 if (Instruction *I2 = dyn_cast<Instruction>(X))
1117 if (I1->isIdenticalTo(I2))
1118 return j;
1119 }
1120 return i;
1121}
1122
1123/// Emit a tree of add instructions, summing Ops together
1124/// and returning the result. Insert the tree before I.
1125static Value *EmitAddTreeOfValues(Instruction *I,
1126 SmallVectorImpl<WeakTrackingVH> &Ops) {
1127 if (Ops.size() == 1) return Ops.back();
1128
1129 Value *V1 = Ops.pop_back_val();
1130 Value *V2 = EmitAddTreeOfValues(I, Ops);
1131 return CreateAdd(V2, V1, "reass.add", I, I);
1132}
1133
1134/// If V is an expression tree that is a multiplication sequence,
1135/// and if this sequence contains a multiply by Factor,
1136/// remove Factor from the tree and return the new tree.
1137Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1138 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1139 if (!BO)
1140 return nullptr;
1141
1142 SmallVector<RepeatedValue, 8> Tree;
1143 MadeChange |= LinearizeExprTree(BO, Tree);
1144 SmallVector<ValueEntry, 8> Factors;
1145 Factors.reserve(Tree.size());
1146 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1147 RepeatedValue E = Tree[i];
1148 Factors.append(E.second.getZExtValue(),
1149 ValueEntry(getRank(E.first), E.first));
1150 }
1151
1152 bool FoundFactor = false;
1153 bool NeedsNegate = false;
1154 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1155 if (Factors[i].Op == Factor) {
1156 FoundFactor = true;
1157 Factors.erase(Factors.begin()+i);
1158 break;
1159 }
1160
1161 // If this is a negative version of this factor, remove it.
1162 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1163 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1164 if (FC1->getValue() == -FC2->getValue()) {
1165 FoundFactor = NeedsNegate = true;
1166 Factors.erase(Factors.begin()+i);
1167 break;
1168 }
1169 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1170 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1171 const APFloat &F1 = FC1->getValueAPF();
1172 APFloat F2(FC2->getValueAPF());
1173 F2.changeSign();
1174 if (F1 == F2) {
1175 FoundFactor = NeedsNegate = true;
1176 Factors.erase(Factors.begin() + i);
1177 break;
1178 }
1179 }
1180 }
1181 }
1182
1183 if (!FoundFactor) {
1184 // Make sure to restore the operands to the expression tree.
1185 RewriteExprTree(BO, Factors);
1186 return nullptr;
1187 }
1188
1189 BasicBlock::iterator InsertPt = ++BO->getIterator();
1190
1191 // If this was just a single multiply, remove the multiply and return the only
1192 // remaining operand.
1193 if (Factors.size() == 1) {
1194 RedoInsts.insert(BO);
1195 V = Factors[0].Op;
1196 } else {
1197 RewriteExprTree(BO, Factors);
1198 V = BO;
1199 }
1200
1201 if (NeedsNegate)
1202 V = CreateNeg(V, "neg", &*InsertPt, BO);
1203
1204 return V;
1205}
1206
1207/// If V is a single-use multiply, recursively add its operands as factors,
1208/// otherwise add V to the list of factors.
1209///
1210/// Ops is the top-level list of add operands we're trying to factor.
1211static void FindSingleUseMultiplyFactors(Value *V,
1212 SmallVectorImpl<Value*> &Factors) {
1213 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1214 if (!BO) {
1215 Factors.push_back(V);
1216 return;
1217 }
1218
1219 // Otherwise, add the LHS and RHS to the list of factors.
1220 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1221 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1222}
1223
1224/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1225/// This optimizes based on identities. If it can be reduced to a single Value,
1226/// it is returned, otherwise the Ops list is mutated as necessary.
1227static Value *OptimizeAndOrXor(unsigned Opcode,
1228 SmallVectorImpl<ValueEntry> &Ops) {
1229 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1230 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1231 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1232 // First, check for X and ~X in the operand list.
1233 assert(i < Ops.size())(static_cast <bool> (i < Ops.size()) ? void (0) : __assert_fail
("i < Ops.size()", "llvm/lib/Transforms/Scalar/Reassociate.cpp"
, 1233, __extension__ __PRETTY_FUNCTION__))
;
1234 Value *X;
1235 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^.
1236 unsigned FoundX = FindInOperandList(Ops, i, X);
1237 if (FoundX != i) {
1238 if (Opcode == Instruction::And) // ...&X&~X = 0
1239 return Constant::getNullValue(X->getType());
1240
1241 if (Opcode == Instruction::Or) // ...|X|~X = -1
1242 return Constant::getAllOnesValue(X->getType());
1243 }
1244 }
1245
1246 // Next, check for duplicate pairs of values, which we assume are next to
1247 // each other, due to our sorting criteria.
1248 assert(i < Ops.size())(static_cast <bool> (i < Ops.size()) ? void (0) : __assert_fail
("i < Ops.size()", "llvm/lib/Transforms/Scalar/Reassociate.cpp"
, 1248, __extension__ __PRETTY_FUNCTION__))
;
1249 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1250 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1251 // Drop duplicate values for And and Or.
1252 Ops.erase(Ops.begin()+i);
1253 --i; --e;
1254 ++NumAnnihil;
1255 continue;
1256 }
1257
1258 // Drop pairs of values for Xor.
1259 assert(Opcode == Instruction::Xor)(static_cast <bool> (Opcode == Instruction::Xor) ? void
(0) : __assert_fail ("Opcode == Instruction::Xor", "llvm/lib/Transforms/Scalar/Reassociate.cpp"
, 1259, __extension__ __PRETTY_FUNCTION__))
;
1260 if (e == 2)
1261 return Constant::getNullValue(Ops[0].Op->getType());
1262
1263 // Y ^ X^X -> Y
1264 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1265 i -= 1; e -= 2;
1266 ++NumAnnihil;
1267 }
1268 }
1269 return nullptr;
1270}
1271
1272/// Helper function of CombineXorOpnd(). It creates a bitwise-and
1273/// instruction with the given two operands, and return the resulting
1274/// instruction. There are two special cases: 1) if the constant operand is 0,
1275/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1276/// be returned.
1277static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1278 const APInt &ConstOpnd) {
1279 if (ConstOpnd.isZero())
1280 return nullptr;
1281
1282 if (ConstOpnd.isAllOnes())
1283 return Opnd;
1284
1285 Instruction *I = BinaryOperator::CreateAnd(
1286 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1287 InsertBefore);
1288 I->setDebugLoc(InsertBefore->getDebugLoc());
1289 return I;
1290}
1291
1292// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1293// into "R ^ C", where C would be 0, and R is a symbolic value.
1294//
1295// If it was successful, true is returned, and the "R" and "C" is returned
1296// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1297// and both "Res" and "ConstOpnd" remain unchanged.
1298bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1299 APInt &ConstOpnd, Value *&Res) {
1300 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1301 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1302 // = (x & ~c1) ^ (c1 ^ c2)
1303 // It is useful only when c1 == c2.
1304 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero())
1305 return false;
1306
1307 if (!Opnd1->getValue()->hasOneUse())
1308 return false;
1309
1310 const APInt &C1 = Opnd1->getConstPart();
1311 if (C1 != ConstOpnd)
1312 return false;
1313
1314 Value *X = Opnd1->getSymbolicPart();
1315 Res = createAndInstr(I, X, ~C1);
1316 // ConstOpnd was C2, now C1 ^ C2.
1317 ConstOpnd ^= C1;
1318
1319 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1320 RedoInsts.insert(T);
1321 return true;
1322}
1323
1324// Helper function of OptimizeXor(). It tries to simplify
1325// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1326// symbolic value.
1327//
1328// If it was successful, true is returned, and the "R" and "C" is returned
1329// via "Res" and "ConstOpnd", respectively (If the entire expression is
1330// evaluated to a constant, the Res is set to NULL); otherwise, false is
1331// returned, and both "Res" and "ConstOpnd" remain unchanged.
1332bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1333 XorOpnd *Opnd2, APInt &ConstOpnd,
1334 Value *&Res) {
1335 Value *X = Opnd1->getSymbolicPart();
1336 if (X != Opnd2->getSymbolicPart())
1337 return false;
1338
1339 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1340 int DeadInstNum = 1;
1341 if (Opnd1->getValue()->hasOneUse())
1342 DeadInstNum++;
1343 if (Opnd2->getValue()->hasOneUse())
1344 DeadInstNum++;
1345
1346 // Xor-Rule 2:
1347 // (x | c1) ^ (x & c2)
1348 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1349 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1350 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1351 //
1352 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1353 if (Opnd2->isOrExpr())
1354 std::swap(Opnd1, Opnd2);
1355
1356 const APInt &C1 = Opnd1->getConstPart();
1357 const APInt &C2 = Opnd2->getConstPart();
1358 APInt C3((~C1) ^ C2);
1359
1360 // Do not increase code size!
1361 if (!C3.isZero() && !C3.isAllOnes()) {
1362 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1363 if (NewInstNum > DeadInstNum)
1364 return false;
1365 }
1366
1367 Res = createAndInstr(I, X, C3);
1368 ConstOpnd ^= C1;
1369 } else if (Opnd1->isOrExpr()) {
1370 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1371 //
1372 const APInt &C1 = Opnd1->getConstPart();
1373 const APInt &C2 = Opnd2->getConstPart();
1374 APInt C3 = C1 ^ C2;
1375
1376 // Do not increase code size
1377 if (!C3.isZero() && !C3.isAllOnes()) {
1378 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1379 if (NewInstNum > DeadInstNum)
1380 return false;
1381 }
1382
1383 Res = createAndInstr(I, X, C3);
1384 ConstOpnd ^= C3;
1385 } else {
1386 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1387 //
1388 const APInt &C1 = Opnd1->getConstPart();
1389 const APInt &C2 = Opnd2->getConstPart();
1390 APInt C3 = C1 ^ C2;
1391 Res = createAndInstr(I, X, C3);
1392 }
1393
1394 // Put the original operands in the Redo list; hope they will be deleted
1395 // as dead code.
1396 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1397 RedoInsts.insert(T);
1398 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1399 RedoInsts.insert(T);
1400
1401 return true;
1402}
1403
1404/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1405/// to a single Value, it is returned, otherwise the Ops list is mutated as
1406/// necessary.
1407Value *ReassociatePass::OptimizeXor(Instruction *I,
1408 SmallVectorImpl<ValueEntry> &Ops) {
1409 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1410 return V;
1411
1412 if (Ops.size() == 1)
1413 return nullptr;
1414
1415 SmallVector<XorOpnd, 8> Opnds;
1416 SmallVector<XorOpnd*, 8> OpndPtrs;
1417 Type *Ty = Ops[0].Op->getType();
1418 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1419
1420 // Step 1: Convert ValueEntry to XorOpnd
1421 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1422 Value *V = Ops[i].Op;
1423 const APInt *C;
1424 // TODO: Support non-splat vectors.
1425 if (match(V, m_APInt(C))) {
1426 ConstOpnd ^= *C;
1427 } else {
1428 XorOpnd O(V);
1429 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1430 Opnds.push_back(O);
1431 }
1432 }
1433
1434 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1435 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1436 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1437 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1438 // when new elements are added to the vector.
1439 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1440 OpndPtrs.push_back(&Opnds[i]);
1441
1442 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1443 // the same symbolic value cluster together. For instance, the input operand
1444 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1445 // ("x | 123", "x & 789", "y & 456").
1446 //
1447 // The purpose is twofold:
1448 // 1) Cluster together the operands sharing the same symbolic-value.
1449 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1450 // could potentially shorten crital path, and expose more loop-invariants.
1451 // Note that values' rank are basically defined in RPO order (FIXME).
1452 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1453 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1454 // "z" in the order of X-Y-Z is better than any other orders.
1455 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1456 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1457 });
1458
1459 // Step 3: Combine adjacent operands
1460 XorOpnd *PrevOpnd = nullptr;
1461 bool Changed = false;
1462 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1463 XorOpnd *CurrOpnd = OpndPtrs[i];
1464 // The combined value
1465 Value *CV;
1466
1467 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1468 if (!ConstOpnd.isZero() && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1469 Changed = true;
1470 if (CV)
1471 *CurrOpnd = XorOpnd(CV);
1472 else {
1473 CurrOpnd->Invalidate();
1474 continue;
1475 }
1476 }
1477
1478 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1479 PrevOpnd = CurrOpnd;
1480 continue;
1481 }
1482
1483 // step 3.2: When previous and current operands share the same symbolic
1484 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1485 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1486 // Remove previous operand
1487 PrevOpnd->Invalidate();
1488 if (CV) {
1489 *CurrOpnd = XorOpnd(CV);
1490 PrevOpnd = CurrOpnd;
1491 } else {
1492 CurrOpnd->Invalidate();
1493 PrevOpnd = nullptr;
1494 }
1495 Changed = true;
1496 }
1497 }
1498
1499 // Step 4: Reassemble the Ops
1500 if (Changed) {
1501 Ops.clear();
1502 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1503 XorOpnd &O = Opnds[i];
1504 if (O.isInvalid())
1505 continue;
1506 ValueEntry VE(getRank(O.getValue()), O.getValue());
1507 Ops.push_back(VE);
1508 }
1509 if (!ConstOpnd.isZero()) {
1510 Value *C = ConstantInt::get(Ty, ConstOpnd);
1511 ValueEntry VE(getRank(C), C);
1512 Ops.push_back(VE);
1513 }
1514 unsigned Sz = Ops.size();
1515 if (Sz == 1)
1516 return Ops.back().Op;
1517 if (Sz == 0) {
1518 assert(ConstOpnd.isZero())(static_cast <bool> (ConstOpnd.isZero()) ? void (0) : __assert_fail
("ConstOpnd.isZero()", "llvm/lib/Transforms/Scalar/Reassociate.cpp"
, 1518, __extension__ __PRETTY_FUNCTION__))
;
1519 return ConstantInt::get(Ty, ConstOpnd);
1520 }
1521 }
1522
1523 return nullptr;
1524}
1525
1526/// Optimize a series of operands to an 'add' instruction. This
1527/// optimizes based on identities. If it can be reduced to a single Value, it
1528/// is returned, otherwise the Ops list is mutated as necessary.
1529Value *ReassociatePass::OptimizeAdd(Instruction *I,
1530 SmallVectorImpl<ValueEntry> &Ops) {
1531 // Scan the operand lists looking for X and -X pairs. If we find any, we
1532 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1533 // scan for any
1534 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1535
1536 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1537 Value *TheOp = Ops[i].Op;
1538 // Check to see if we've seen this operand before. If so, we factor all
1539 // instances of the operand together. Due to our sorting criteria, we know
1540 // that these need to be next to each other in the vector.
1541 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1542 // Rescan the list, remove all instances of this operand from the expr.
1543 unsigned NumFound = 0;
1544 do {
1545 Ops.erase(Ops.begin()+i);
1546 ++NumFound;
1547 } while (i != Ops.size() && Ops[i].Op == TheOp);
1548
1549 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOpdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "\nFACTORING [" << NumFound
<< "]: " << *TheOp << '\n'; } } while (false
)
1550 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "\nFACTORING [" << NumFound
<< "]: " << *TheOp << '\n'; } } while (false
)
;
1551 ++NumFactor;
1552
1553 // Insert a new multiply.
1554 Type *Ty = TheOp->getType();
1555 Constant *C = Ty->isIntOrIntVectorTy() ?
1556 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1557 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1558
1559 // Now that we have inserted a multiply, optimize it. This allows us to
1560 // handle cases that require multiple factoring steps, such as this:
1561 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1562 RedoInsts.insert(Mul);
1563
1564 // If every add operand was a duplicate, return the multiply.
1565 if (Ops.empty())
1566 return Mul;
1567
1568 // Otherwise, we had some input that didn't have the dupe, such as
1569 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1570 // things being added by this operation.
1571 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1572
1573 --i;
1574 e = Ops.size();
1575 continue;
1576 }
1577
1578 // Check for X and -X or X and ~X in the operand list.
1579 Value *X;
1580 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1581 !match(TheOp, m_FNeg(m_Value(X))))
1582 continue;
1583
1584 unsigned FoundX = FindInOperandList(Ops, i, X);
1585 if (FoundX == i)
1586 continue;
1587
1588 // Remove X and -X from the operand list.
1589 if (Ops.size() == 2 &&
1590 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1591 return Constant::getNullValue(X->getType());
1592
1593 // Remove X and ~X from the operand list.
1594 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1595 return Constant::getAllOnesValue(X->getType());
1596
1597 Ops.erase(Ops.begin()+i);
1598 if (i < FoundX)
1599 --FoundX;
1600 else
1601 --i; // Need to back up an extra one.
1602 Ops.erase(Ops.begin()+FoundX);
1603 ++NumAnnihil;
1604 --i; // Revisit element.
1605 e -= 2; // Removed two elements.
1606
1607 // if X and ~X we append -1 to the operand list.
1608 if (match(TheOp, m_Not(m_Value()))) {
1609 Value *V = Constant::getAllOnesValue(X->getType());
1610 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1611 e += 1;
1612 }
1613 }
1614
1615 // Scan the operand list, checking to see if there are any common factors
1616 // between operands. Consider something like A*A+A*B*C+D. We would like to
1617 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1618 // To efficiently find this, we count the number of times a factor occurs
1619 // for any ADD operands that are MULs.
1620 DenseMap<Value*, unsigned> FactorOccurrences;
1621
1622 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1623 // where they are actually the same multiply.
1624 unsigned MaxOcc = 0;
1625 Value *MaxOccVal = nullptr;
1626 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1627 BinaryOperator *BOp =
1628 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1629 if (!BOp)
1630 continue;
1631
1632 // Compute all of the factors of this added value.
1633 SmallVector<Value*, 8> Factors;
1634 FindSingleUseMultiplyFactors(BOp, Factors);
1635 assert(Factors.size() > 1 && "Bad linearize!")(static_cast <bool> (Factors.size() > 1 && "Bad linearize!"
) ? void (0) : __assert_fail ("Factors.size() > 1 && \"Bad linearize!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 1635, __extension__
__PRETTY_FUNCTION__))
;
1636
1637 // Add one to FactorOccurrences for each unique factor in this op.
1638 SmallPtrSet<Value*, 8> Duplicates;
1639 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1640 Value *Factor = Factors[i];
1641 if (!Duplicates.insert(Factor).second)
1642 continue;
1643
1644 unsigned Occ = ++FactorOccurrences[Factor];
1645 if (Occ > MaxOcc) {
1646 MaxOcc = Occ;
1647 MaxOccVal = Factor;
1648 }
1649
1650 // If Factor is a negative constant, add the negated value as a factor
1651 // because we can percolate the negate out. Watch for minint, which
1652 // cannot be positivified.
1653 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1654 if (CI->isNegative() && !CI->isMinValue(true)) {
1655 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1656 if (!Duplicates.insert(Factor).second)
1657 continue;
1658 unsigned Occ = ++FactorOccurrences[Factor];
1659 if (Occ > MaxOcc) {
1660 MaxOcc = Occ;
1661 MaxOccVal = Factor;
1662 }
1663 }
1664 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1665 if (CF->isNegative()) {
1666 APFloat F(CF->getValueAPF());
1667 F.changeSign();
1668 Factor = ConstantFP::get(CF->getContext(), F);
1669 if (!Duplicates.insert(Factor).second)
1670 continue;
1671 unsigned Occ = ++FactorOccurrences[Factor];
1672 if (Occ > MaxOcc) {
1673 MaxOcc = Occ;
1674 MaxOccVal = Factor;
1675 }
1676 }
1677 }
1678 }
1679 }
1680
1681 // If any factor occurred more than one time, we can pull it out.
1682 if (MaxOcc > 1) {
1683 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccValdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "\nFACTORING [" << MaxOcc
<< "]: " << *MaxOccVal << '\n'; } } while (
false)
1684 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "\nFACTORING [" << MaxOcc
<< "]: " << *MaxOccVal << '\n'; } } while (
false)
;
1685 ++NumFactor;
1686
1687 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1688 // this, we could otherwise run into situations where removing a factor
1689 // from an expression will drop a use of maxocc, and this can cause
1690 // RemoveFactorFromExpression on successive values to behave differently.
1691 Instruction *DummyInst =
1692 I->getType()->isIntOrIntVectorTy()
1693 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1694 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1695
1696 SmallVector<WeakTrackingVH, 4> NewMulOps;
1697 for (unsigned i = 0; i != Ops.size(); ++i) {
1698 // Only try to remove factors from expressions we're allowed to.
1699 BinaryOperator *BOp =
1700 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1701 if (!BOp)
1702 continue;
1703
1704 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1705 // The factorized operand may occur several times. Convert them all in
1706 // one fell swoop.
1707 for (unsigned j = Ops.size(); j != i;) {
1708 --j;
1709 if (Ops[j].Op == Ops[i].Op) {
1710 NewMulOps.push_back(V);
1711 Ops.erase(Ops.begin()+j);
1712 }
1713 }
1714 --i;
1715 }
1716 }
1717
1718 // No need for extra uses anymore.
1719 DummyInst->deleteValue();
1720
1721 unsigned NumAddedValues = NewMulOps.size();
1722 Value *V = EmitAddTreeOfValues(I, NewMulOps);
1723
1724 // Now that we have inserted the add tree, optimize it. This allows us to
1725 // handle cases that require multiple factoring steps, such as this:
1726 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1727 assert(NumAddedValues > 1 && "Each occurrence should contribute a value")(static_cast <bool> (NumAddedValues > 1 && "Each occurrence should contribute a value"
) ? void (0) : __assert_fail ("NumAddedValues > 1 && \"Each occurrence should contribute a value\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 1727, __extension__
__PRETTY_FUNCTION__))
;
1728 (void)NumAddedValues;
1729 if (Instruction *VI = dyn_cast<Instruction>(V))
1730 RedoInsts.insert(VI);
1731
1732 // Create the multiply.
1733 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1734
1735 // Rerun associate on the multiply in case the inner expression turned into
1736 // a multiply. We want to make sure that we keep things in canonical form.
1737 RedoInsts.insert(V2);
1738
1739 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1740 // entire result expression is just the multiply "A*(B+C)".
1741 if (Ops.empty())
1742 return V2;
1743
1744 // Otherwise, we had some input that didn't have the factor, such as
1745 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1746 // things being added by this operation.
1747 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1748 }
1749
1750 return nullptr;
1751}
1752
1753/// Build up a vector of value/power pairs factoring a product.
1754///
1755/// Given a series of multiplication operands, build a vector of factors and
1756/// the powers each is raised to when forming the final product. Sort them in
1757/// the order of descending power.
1758///
1759/// (x*x) -> [(x, 2)]
1760/// ((x*x)*x) -> [(x, 3)]
1761/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1762///
1763/// \returns Whether any factors have a power greater than one.
1764static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1765 SmallVectorImpl<Factor> &Factors) {
1766 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1767 // Compute the sum of powers of simplifiable factors.
1768 unsigned FactorPowerSum = 0;
1769 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1770 Value *Op = Ops[Idx-1].Op;
1771
1772 // Count the number of occurrences of this value.
1773 unsigned Count = 1;
1774 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1775 ++Count;
1776 // Track for simplification all factors which occur 2 or more times.
1777 if (Count > 1)
1778 FactorPowerSum += Count;
1779 }
1780
1781 // We can only simplify factors if the sum of the powers of our simplifiable
1782 // factors is 4 or higher. When that is the case, we will *always* have
1783 // a simplification. This is an important invariant to prevent cyclicly
1784 // trying to simplify already minimal formations.
1785 if (FactorPowerSum < 4)
1786 return false;
1787
1788 // Now gather the simplifiable factors, removing them from Ops.
1789 FactorPowerSum = 0;
1790 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1791 Value *Op = Ops[Idx-1].Op;
1792
1793 // Count the number of occurrences of this value.
1794 unsigned Count = 1;
1795 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1796 ++Count;
1797 if (Count == 1)
1798 continue;
1799 // Move an even number of occurrences to Factors.
1800 Count &= ~1U;
1801 Idx -= Count;
1802 FactorPowerSum += Count;
1803 Factors.push_back(Factor(Op, Count));
1804 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1805 }
1806
1807 // None of the adjustments above should have reduced the sum of factor powers
1808 // below our mininum of '4'.
1809 assert(FactorPowerSum >= 4)(static_cast <bool> (FactorPowerSum >= 4) ? void (0)
: __assert_fail ("FactorPowerSum >= 4", "llvm/lib/Transforms/Scalar/Reassociate.cpp"
, 1809, __extension__ __PRETTY_FUNCTION__))
;
1810
1811 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1812 return LHS.Power > RHS.Power;
1813 });
1814 return true;
1815}
1816
1817/// Build a tree of multiplies, computing the product of Ops.
1818static Value *buildMultiplyTree(IRBuilderBase &Builder,
1819 SmallVectorImpl<Value*> &Ops) {
1820 if (Ops.size() == 1)
1821 return Ops.back();
1822
1823 Value *LHS = Ops.pop_back_val();
1824 do {
1825 if (LHS->getType()->isIntOrIntVectorTy())
1826 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1827 else
1828 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1829 } while (!Ops.empty());
1830
1831 return LHS;
1832}
1833
1834/// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1835///
1836/// Given a vector of values raised to various powers, where no two values are
1837/// equal and the powers are sorted in decreasing order, compute the minimal
1838/// DAG of multiplies to compute the final product, and return that product
1839/// value.
1840Value *
1841ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1842 SmallVectorImpl<Factor> &Factors) {
1843 assert(Factors[0].Power)(static_cast <bool> (Factors[0].Power) ? void (0) : __assert_fail
("Factors[0].Power", "llvm/lib/Transforms/Scalar/Reassociate.cpp"
, 1843, __extension__ __PRETTY_FUNCTION__))
;
1844 SmallVector<Value *, 4> OuterProduct;
1845 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1846 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1847 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1848 LastIdx = Idx;
1849 continue;
1850 }
1851
1852 // We want to multiply across all the factors with the same power so that
1853 // we can raise them to that power as a single entity. Build a mini tree
1854 // for that.
1855 SmallVector<Value *, 4> InnerProduct;
1856 InnerProduct.push_back(Factors[LastIdx].Base);
1857 do {
1858 InnerProduct.push_back(Factors[Idx].Base);
1859 ++Idx;
1860 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1861
1862 // Reset the base value of the first factor to the new expression tree.
1863 // We'll remove all the factors with the same power in a second pass.
1864 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1865 if (Instruction *MI = dyn_cast<Instruction>(M))
1866 RedoInsts.insert(MI);
1867
1868 LastIdx = Idx;
1869 }
1870 // Unique factors with equal powers -- we've folded them into the first one's
1871 // base.
1872 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1873 [](const Factor &LHS, const Factor &RHS) {
1874 return LHS.Power == RHS.Power;
1875 }),
1876 Factors.end());
1877
1878 // Iteratively collect the base of each factor with an add power into the
1879 // outer product, and halve each power in preparation for squaring the
1880 // expression.
1881 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1882 if (Factors[Idx].Power & 1)
1883 OuterProduct.push_back(Factors[Idx].Base);
1884 Factors[Idx].Power >>= 1;
1885 }
1886 if (Factors[0].Power) {
1887 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1888 OuterProduct.push_back(SquareRoot);
1889 OuterProduct.push_back(SquareRoot);
1890 }
1891 if (OuterProduct.size() == 1)
1892 return OuterProduct.front();
1893
1894 Value *V = buildMultiplyTree(Builder, OuterProduct);
1895 return V;
1896}
1897
1898Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1899 SmallVectorImpl<ValueEntry> &Ops) {
1900 // We can only optimize the multiplies when there is a chain of more than
1901 // three, such that a balanced tree might require fewer total multiplies.
1902 if (Ops.size() < 4)
1903 return nullptr;
1904
1905 // Try to turn linear trees of multiplies without other uses of the
1906 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1907 // re-use.
1908 SmallVector<Factor, 4> Factors;
1909 if (!collectMultiplyFactors(Ops, Factors))
1910 return nullptr; // All distinct factors, so nothing left for us to do.
1911
1912 IRBuilder<> Builder(I);
1913 // The reassociate transformation for FP operations is performed only
1914 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1915 // to the newly generated operations.
1916 if (auto FPI = dyn_cast<FPMathOperator>(I))
1917 Builder.setFastMathFlags(FPI->getFastMathFlags());
1918
1919 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1920 if (Ops.empty())
1921 return V;
1922
1923 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1924 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1925 return nullptr;
1926}
1927
1928Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1929 SmallVectorImpl<ValueEntry> &Ops) {
1930 // Now that we have the linearized expression tree, try to optimize it.
1931 // Start by folding any constants that we found.
1932 Constant *Cst = nullptr;
1933 unsigned Opcode = I->getOpcode();
1934 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1935 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1936 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1937 }
1938 // If there was nothing but constants then we are done.
1939 if (Ops.empty())
1940 return Cst;
1941
1942 // Put the combined constant back at the end of the operand list, except if
1943 // there is no point. For example, an add of 0 gets dropped here, while a
1944 // multiplication by zero turns the whole expression into zero.
1945 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1946 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1947 return Cst;
1948 Ops.push_back(ValueEntry(0, Cst));
1949 }
1950
1951 if (Ops.size() == 1) return Ops[0].Op;
1952
1953 // Handle destructive annihilation due to identities between elements in the
1954 // argument list here.
1955 unsigned NumOps = Ops.size();
1956 switch (Opcode) {
1957 default: break;
1958 case Instruction::And:
1959 case Instruction::Or:
1960 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1961 return Result;
1962 break;
1963
1964 case Instruction::Xor:
1965 if (Value *Result = OptimizeXor(I, Ops))
1966 return Result;
1967 break;
1968
1969 case Instruction::Add:
1970 case Instruction::FAdd:
1971 if (Value *Result = OptimizeAdd(I, Ops))
1972 return Result;
1973 break;
1974
1975 case Instruction::Mul:
1976 case Instruction::FMul:
1977 if (Value *Result = OptimizeMul(I, Ops))
1978 return Result;
1979 break;
1980 }
1981
1982 if (Ops.size() != NumOps)
1983 return OptimizeExpression(I, Ops);
1984 return nullptr;
1985}
1986
1987// Remove dead instructions and if any operands are trivially dead add them to
1988// Insts so they will be removed as well.
1989void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1990 OrderedSet &Insts) {
1991 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!")(static_cast <bool> (isInstructionTriviallyDead(I) &&
"Trivially dead instructions only!") ? void (0) : __assert_fail
("isInstructionTriviallyDead(I) && \"Trivially dead instructions only!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 1991, __extension__
__PRETTY_FUNCTION__))
;
1992 SmallVector<Value *, 4> Ops(I->operands());
1993 ValueRankMap.erase(I);
1994 Insts.remove(I);
1995 RedoInsts.remove(I);
1996 llvm::salvageDebugInfo(*I);
1997 I->eraseFromParent();
1998 for (auto Op : Ops)
1999 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
2000 if (OpInst->use_empty())
2001 Insts.insert(OpInst);
2002}
2003
2004/// Zap the given instruction, adding interesting operands to the work list.
2005void ReassociatePass::EraseInst(Instruction *I) {
2006 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!")(static_cast <bool> (isInstructionTriviallyDead(I) &&
"Trivially dead instructions only!") ? void (0) : __assert_fail
("isInstructionTriviallyDead(I) && \"Trivially dead instructions only!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2006, __extension__
__PRETTY_FUNCTION__))
;
2007 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "Erasing dead inst: "; I->
dump(); } } while (false)
;
2008
2009 SmallVector<Value *, 8> Ops(I->operands());
2010 // Erase the dead instruction.
2011 ValueRankMap.erase(I);
2012 RedoInsts.remove(I);
2013 llvm::salvageDebugInfo(*I);
2014 I->eraseFromParent();
2015 // Optimize its operands.
2016 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
2017 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2018 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
2019 // If this is a node in an expression tree, climb to the expression root
2020 // and add that since that's where optimization actually happens.
2021 unsigned Opcode = Op->getOpcode();
2022 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
2023 Visited.insert(Op).second)
2024 Op = Op->user_back();
2025
2026 // The instruction we're going to push may be coming from a
2027 // dead block, and Reassociate skips the processing of unreachable
2028 // blocks because it's a waste of time and also because it can
2029 // lead to infinite loop due to LLVM's non-standard definition
2030 // of dominance.
2031 if (ValueRankMap.find(Op) != ValueRankMap.end())
2032 RedoInsts.insert(Op);
2033 }
2034
2035 MadeChange = true;
2036}
2037
2038/// Recursively analyze an expression to build a list of instructions that have
2039/// negative floating-point constant operands. The caller can then transform
2040/// the list to create positive constants for better reassociation and CSE.
2041static void getNegatibleInsts(Value *V,
2042 SmallVectorImpl<Instruction *> &Candidates) {
2043 // Handle only one-use instructions. Combining negations does not justify
2044 // replicating instructions.
2045 Instruction *I;
2046 if (!match(V, m_OneUse(m_Instruction(I))))
2047 return;
2048
2049 // Handle expressions of multiplications and divisions.
2050 // TODO: This could look through floating-point casts.
2051 const APFloat *C;
2052 switch (I->getOpcode()) {
2053 case Instruction::FMul:
2054 // Not expecting non-canonical code here. Bail out and wait.
2055 if (match(I->getOperand(0), m_Constant()))
2056 break;
2057
2058 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2059 Candidates.push_back(I);
2060 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "FMul with negative constant: "
<< *I << '\n'; } } while (false)
;
2061 }
2062 getNegatibleInsts(I->getOperand(0), Candidates);
2063 getNegatibleInsts(I->getOperand(1), Candidates);
2064 break;
2065 case Instruction::FDiv:
2066 // Not expecting non-canonical code here. Bail out and wait.
2067 if (match(I->getOperand(0), m_Constant()) &&
2068 match(I->getOperand(1), m_Constant()))
2069 break;
2070
2071 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2072 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2073 Candidates.push_back(I);
2074 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "FDiv with negative constant: "
<< *I << '\n'; } } while (false)
;
2075 }
2076 getNegatibleInsts(I->getOperand(0), Candidates);
2077 getNegatibleInsts(I->getOperand(1), Candidates);
2078 break;
2079 default:
2080 break;
2081 }
2082}
2083
2084/// Given an fadd/fsub with an operand that is a one-use instruction
2085/// (the fadd/fsub), try to change negative floating-point constants into
2086/// positive constants to increase potential for reassociation and CSE.
2087Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2088 Instruction *Op,
2089 Value *OtherOp) {
2090 assert((I->getOpcode() == Instruction::FAdd ||(static_cast <bool> ((I->getOpcode() == Instruction::
FAdd || I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub"
) ? void (0) : __assert_fail ("(I->getOpcode() == Instruction::FAdd || I->getOpcode() == Instruction::FSub) && \"Expected fadd/fsub\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2091, __extension__
__PRETTY_FUNCTION__))
2091 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub")(static_cast <bool> ((I->getOpcode() == Instruction::
FAdd || I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub"
) ? void (0) : __assert_fail ("(I->getOpcode() == Instruction::FAdd || I->getOpcode() == Instruction::FSub) && \"Expected fadd/fsub\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2091, __extension__
__PRETTY_FUNCTION__))
;
2092
2093 // Collect instructions with negative FP constants from the subtree that ends
2094 // in Op.
2095 SmallVector<Instruction *, 4> Candidates;
2096 getNegatibleInsts(Op, Candidates);
2097 if (Candidates.empty())
2098 return nullptr;
2099
2100 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2101 // resulting subtract will be broken up later. This can get us into an
2102 // infinite loop during reassociation.
2103 bool IsFSub = I->getOpcode() == Instruction::FSub;
2104 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2105 if (NeedsSubtract && ShouldBreakUpSubtract(I))
2106 return nullptr;
2107
2108 for (Instruction *Negatible : Candidates) {
2109 const APFloat *C;
2110 if (match(Negatible->getOperand(0), m_APFloat(C))) {
2111 assert(!match(Negatible->getOperand(1), m_Constant()) &&(static_cast <bool> (!match(Negatible->getOperand(1)
, m_Constant()) && "Expecting only 1 constant operand"
) ? void (0) : __assert_fail ("!match(Negatible->getOperand(1), m_Constant()) && \"Expecting only 1 constant operand\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2112, __extension__
__PRETTY_FUNCTION__))
2112 "Expecting only 1 constant operand")(static_cast <bool> (!match(Negatible->getOperand(1)
, m_Constant()) && "Expecting only 1 constant operand"
) ? void (0) : __assert_fail ("!match(Negatible->getOperand(1), m_Constant()) && \"Expecting only 1 constant operand\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2112, __extension__
__PRETTY_FUNCTION__))
;
2113 assert(C->isNegative() && "Expected negative FP constant")(static_cast <bool> (C->isNegative() && "Expected negative FP constant"
) ? void (0) : __assert_fail ("C->isNegative() && \"Expected negative FP constant\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2113, __extension__
__PRETTY_FUNCTION__))
;
2114 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2115 MadeChange = true;
2116 }
2117 if (match(Negatible->getOperand(1), m_APFloat(C))) {
2118 assert(!match(Negatible->getOperand(0), m_Constant()) &&(static_cast <bool> (!match(Negatible->getOperand(0)
, m_Constant()) && "Expecting only 1 constant operand"
) ? void (0) : __assert_fail ("!match(Negatible->getOperand(0), m_Constant()) && \"Expecting only 1 constant operand\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2119, __extension__
__PRETTY_FUNCTION__))
2119 "Expecting only 1 constant operand")(static_cast <bool> (!match(Negatible->getOperand(0)
, m_Constant()) && "Expecting only 1 constant operand"
) ? void (0) : __assert_fail ("!match(Negatible->getOperand(0), m_Constant()) && \"Expecting only 1 constant operand\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2119, __extension__
__PRETTY_FUNCTION__))
;
2120 assert(C->isNegative() && "Expected negative FP constant")(static_cast <bool> (C->isNegative() && "Expected negative FP constant"
) ? void (0) : __assert_fail ("C->isNegative() && \"Expected negative FP constant\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2120, __extension__
__PRETTY_FUNCTION__))
;
2121 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2122 MadeChange = true;
2123 }
2124 }
2125 assert(MadeChange == true && "Negative constant candidate was not changed")(static_cast <bool> (MadeChange == true && "Negative constant candidate was not changed"
) ? void (0) : __assert_fail ("MadeChange == true && \"Negative constant candidate was not changed\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2125, __extension__
__PRETTY_FUNCTION__))
;
2126
2127 // Negations cancelled out.
2128 if (Candidates.size() % 2 == 0)
2129 return I;
2130
2131 // Negate the final operand in the expression by flipping the opcode of this
2132 // fadd/fsub.
2133 assert(Candidates.size() % 2 == 1 && "Expected odd number")(static_cast <bool> (Candidates.size() % 2 == 1 &&
"Expected odd number") ? void (0) : __assert_fail ("Candidates.size() % 2 == 1 && \"Expected odd number\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2133, __extension__
__PRETTY_FUNCTION__))
;
2134 IRBuilder<> Builder(I);
2135 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2136 : Builder.CreateFSubFMF(OtherOp, Op, I);
2137 I->replaceAllUsesWith(NewInst);
2138 RedoInsts.insert(I);
2139 return dyn_cast<Instruction>(NewInst);
2140}
2141
2142/// Canonicalize expressions that contain a negative floating-point constant
2143/// of the following form:
2144/// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2145/// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2146/// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2147///
2148/// The fadd/fsub opcode may be switched to allow folding a negation into the
2149/// input instruction.
2150Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2151 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "Combine negations for: " <<
*I << '\n'; } } while (false)
;
2152 Value *X;
2153 Instruction *Op;
2154 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2155 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2156 I = R;
2157 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2158 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2159 I = R;
2160 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2161 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2162 I = R;
2163 return I;
2164}
2165
2166/// Inspect and optimize the given instruction. Note that erasing
2167/// instructions is not allowed.
2168void ReassociatePass::OptimizeInst(Instruction *I) {
2169 // Only consider operations that we understand.
2170 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2171 return;
2172
2173 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2174 // If an operand of this shift is a reassociable multiply, or if the shift
2175 // is used by a reassociable multiply or add, turn into a multiply.
2176 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2177 (I->hasOneUse() &&
2178 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2179 isReassociableOp(I->user_back(), Instruction::Add)))) {
2180 Instruction *NI = ConvertShiftToMul(I);
2181 RedoInsts.insert(I);
2182 MadeChange = true;
2183 I = NI;
2184 }
2185
2186 // Commute binary operators, to canonicalize the order of their operands.
2187 // This can potentially expose more CSE opportunities, and makes writing other
2188 // transformations simpler.
2189 if (I->isCommutative())
2190 canonicalizeOperands(I);
2191
2192 // Canonicalize negative constants out of expressions.
2193 if (Instruction *Res = canonicalizeNegFPConstants(I))
2194 I = Res;
2195
2196 // Don't optimize floating-point instructions unless they are 'fast'.
2197 if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2198 return;
2199
2200 // Do not reassociate boolean (i1) expressions. We want to preserve the
2201 // original order of evaluation for short-circuited comparisons that
2202 // SimplifyCFG has folded to AND/OR expressions. If the expression
2203 // is not further optimized, it is likely to be transformed back to a
2204 // short-circuited form for code gen, and the source order may have been
2205 // optimized for the most likely conditions.
2206 if (I->getType()->isIntegerTy(1))
2207 return;
2208
2209 // If this is a bitwise or instruction of operands
2210 // with no common bits set, convert it to X+Y.
2211 if (I->getOpcode() == Instruction::Or &&
2212 shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2213 haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2214 I->getModule()->getDataLayout(), /*AC=*/nullptr, I,
2215 /*DT=*/nullptr)) {
2216 Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2217 RedoInsts.insert(I);
2218 MadeChange = true;
2219 I = NI;
2220 }
2221
2222 // If this is a subtract instruction which is not already in negate form,
2223 // see if we can convert it to X+-Y.
2224 if (I->getOpcode() == Instruction::Sub) {
2225 if (ShouldBreakUpSubtract(I)) {
2226 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2227 RedoInsts.insert(I);
2228 MadeChange = true;
2229 I = NI;
2230 } else if (match(I, m_Neg(m_Value()))) {
2231 // Otherwise, this is a negation. See if the operand is a multiply tree
2232 // and if this is not an inner node of a multiply tree.
2233 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2234 (!I->hasOneUse() ||
2235 !isReassociableOp(I->user_back(), Instruction::Mul))) {
2236 Instruction *NI = LowerNegateToMultiply(I);
2237 // If the negate was simplified, revisit the users to see if we can
2238 // reassociate further.
2239 for (User *U : NI->users()) {
2240 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2241 RedoInsts.insert(Tmp);
2242 }
2243 RedoInsts.insert(I);
2244 MadeChange = true;
2245 I = NI;
2246 }
2247 }
2248 } else if (I->getOpcode() == Instruction::FNeg ||
2249 I->getOpcode() == Instruction::FSub) {
2250 if (ShouldBreakUpSubtract(I)) {
2251 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2252 RedoInsts.insert(I);
2253 MadeChange = true;
2254 I = NI;
2255 } else if (match(I, m_FNeg(m_Value()))) {
2256 // Otherwise, this is a negation. See if the operand is a multiply tree
2257 // and if this is not an inner node of a multiply tree.
2258 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2259 I->getOperand(0);
2260 if (isReassociableOp(Op, Instruction::FMul) &&
2261 (!I->hasOneUse() ||
2262 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2263 // If the negate was simplified, revisit the users to see if we can
2264 // reassociate further.
2265 Instruction *NI = LowerNegateToMultiply(I);
2266 for (User *U : NI->users()) {
2267 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2268 RedoInsts.insert(Tmp);
2269 }
2270 RedoInsts.insert(I);
2271 MadeChange = true;
2272 I = NI;
2273 }
2274 }
2275 }
2276
2277 // If this instruction is an associative binary operator, process it.
2278 if (!I->isAssociative()) return;
2279 BinaryOperator *BO = cast<BinaryOperator>(I);
2280
2281 // If this is an interior node of a reassociable tree, ignore it until we
2282 // get to the root of the tree, to avoid N^2 analysis.
2283 unsigned Opcode = BO->getOpcode();
2284 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2285 // During the initial run we will get to the root of the tree.
2286 // But if we get here while we are redoing instructions, there is no
2287 // guarantee that the root will be visited. So Redo later
2288 if (BO->user_back() != BO &&
2289 BO->getParent() == BO->user_back()->getParent())
2290 RedoInsts.insert(BO->user_back());
2291 return;
2292 }
2293
2294 // If this is an add tree that is used by a sub instruction, ignore it
2295 // until we process the subtract.
2296 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2297 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2298 return;
2299 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2300 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2301 return;
2302
2303 ReassociateExpression(BO);
2304}
2305
2306void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2307 // First, walk the expression tree, linearizing the tree, collecting the
2308 // operand information.
2309 SmallVector<RepeatedValue, 8> Tree;
2310 MadeChange |= LinearizeExprTree(I, Tree);
2311 SmallVector<ValueEntry, 8> Ops;
2312 Ops.reserve(Tree.size());
2313 for (const RepeatedValue &E : Tree)
2314 Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first));
2315
2316 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "RAIn:\t"; PrintOps(I, Ops
); dbgs() << '\n'; } } while (false)
;
2317
2318 // Now that we have linearized the tree to a list and have gathered all of
2319 // the operands and their ranks, sort the operands by their rank. Use a
2320 // stable_sort so that values with equal ranks will have their relative
2321 // positions maintained (and so the compiler is deterministic). Note that
2322 // this sorts so that the highest ranking values end up at the beginning of
2323 // the vector.
2324 llvm::stable_sort(Ops);
2325
2326 // Now that we have the expression tree in a convenient
2327 // sorted form, optimize it globally if possible.
2328 if (Value *V = OptimizeExpression(I, Ops)) {
2329 if (V == I)
2330 // Self-referential expression in unreachable code.
2331 return;
2332 // This expression tree simplified to something that isn't a tree,
2333 // eliminate it.
2334 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "Reassoc to scalar: " <<
*V << '\n'; } } while (false)
;
2335 I->replaceAllUsesWith(V);
2336 if (Instruction *VI = dyn_cast<Instruction>(V))
2337 if (I->getDebugLoc())
2338 VI->setDebugLoc(I->getDebugLoc());
2339 RedoInsts.insert(I);
2340 ++NumAnnihil;
2341 return;
2342 }
2343
2344 // We want to sink immediates as deeply as possible except in the case where
2345 // this is a multiply tree used only by an add, and the immediate is a -1.
2346 // In this case we reassociate to put the negation on the outside so that we
2347 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2348 if (I->hasOneUse()) {
2349 if (I->getOpcode() == Instruction::Mul &&
2350 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2351 isa<ConstantInt>(Ops.back().Op) &&
2352 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2353 ValueEntry Tmp = Ops.pop_back_val();
2354 Ops.insert(Ops.begin(), Tmp);
2355 } else if (I->getOpcode() == Instruction::FMul &&
2356 cast<Instruction>(I->user_back())->getOpcode() ==
2357 Instruction::FAdd &&
2358 isa<ConstantFP>(Ops.back().Op) &&
2359 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2360 ValueEntry Tmp = Ops.pop_back_val();
2361 Ops.insert(Ops.begin(), Tmp);
2362 }
2363 }
2364
2365 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("reassociate")) { dbgs() << "RAOut:\t"; PrintOps(I, Ops
); dbgs() << '\n'; } } while (false)
;
2366
2367 if (Ops.size() == 1) {
2368 if (Ops[0].Op == I)
2369 // Self-referential expression in unreachable code.
2370 return;
2371
2372 // This expression tree simplified to something that isn't a tree,
2373 // eliminate it.
2374 I->replaceAllUsesWith(Ops[0].Op);
2375 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2376 OI->setDebugLoc(I->getDebugLoc());
2377 RedoInsts.insert(I);
2378 return;
2379 }
2380
2381 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2382 // Find the pair with the highest count in the pairmap and move it to the
2383 // back of the list so that it can later be CSE'd.
2384 // example:
2385 // a*b*c*d*e
2386 // if c*e is the most "popular" pair, we can express this as
2387 // (((c*e)*d)*b)*a
2388 unsigned Max = 1;
2389 unsigned BestRank = 0;
2390 std::pair<unsigned, unsigned> BestPair;
2391 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2392 for (unsigned i = 0; i < Ops.size() - 1; ++i)
2393 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2394 unsigned Score = 0;
2395 Value *Op0 = Ops[i].Op;
2396 Value *Op1 = Ops[j].Op;
2397 if (std::less<Value *>()(Op1, Op0))
2398 std::swap(Op0, Op1);
2399 auto it = PairMap[Idx].find({Op0, Op1});
2400 if (it != PairMap[Idx].end()) {
2401 // Functions like BreakUpSubtract() can erase the Values we're using
2402 // as keys and create new Values after we built the PairMap. There's a
2403 // small chance that the new nodes can have the same address as
2404 // something already in the table. We shouldn't accumulate the stored
2405 // score in that case as it refers to the wrong Value.
2406 if (it->second.isValid())
2407 Score += it->second.Score;
2408 }
2409
2410 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2411 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2412 BestPair = {i, j};
2413 Max = Score;
2414 BestRank = MaxRank;
2415 }
2416 }
2417 if (Max > 1) {
2418 auto Op0 = Ops[BestPair.first];
2419 auto Op1 = Ops[BestPair.second];
2420 Ops.erase(&Ops[BestPair.second]);
2421 Ops.erase(&Ops[BestPair.first]);
2422 Ops.push_back(Op0);
2423 Ops.push_back(Op1);
2424 }
2425 }
2426 // Now that we ordered and optimized the expressions, splat them back into
2427 // the expression tree, removing any unneeded nodes.
2428 RewriteExprTree(I, Ops);
2429}
2430
2431void
2432ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2433 // Make a "pairmap" of how often each operand pair occurs.
2434 for (BasicBlock *BI : RPOT) {
2435 for (Instruction &I : *BI) {
2436 if (!I.isAssociative())
2437 continue;
2438
2439 // Ignore nodes that aren't at the root of trees.
2440 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2441 continue;
2442
2443 // Collect all operands in a single reassociable expression.
2444 // Since Reassociate has already been run once, we can assume things
2445 // are already canonical according to Reassociation's regime.
2446 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2447 SmallVector<Value *, 8> Ops;
2448 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2449 Value *Op = Worklist.pop_back_val();
2450 Instruction *OpI = dyn_cast<Instruction>(Op);
2451 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2452 Ops.push_back(Op);
2453 continue;
2454 }
2455 // Be paranoid about self-referencing expressions in unreachable code.
2456 if (OpI->getOperand(0) != OpI)
2457 Worklist.push_back(OpI->getOperand(0));
2458 if (OpI->getOperand(1) != OpI)
2459 Worklist.push_back(OpI->getOperand(1));
2460 }
2461 // Skip extremely long expressions.
2462 if (Ops.size() > GlobalReassociateLimit)
2463 continue;
2464
2465 // Add all pairwise combinations of operands to the pair map.
2466 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2467 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2468 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2469 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2470 // Canonicalize operand orderings.
2471 Value *Op0 = Ops[i];
2472 Value *Op1 = Ops[j];
2473 if (std::less<Value *>()(Op1, Op0))
2474 std::swap(Op0, Op1);
2475 if (!Visited.insert({Op0, Op1}).second)
2476 continue;
2477 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2478 if (!res.second) {
2479 // If either key value has been erased then we've got the same
2480 // address by coincidence. That can't happen here because nothing is
2481 // erasing values but it can happen by the time we're querying the
2482 // map.
2483 assert(res.first->second.isValid() && "WeakVH invalidated")(static_cast <bool> (res.first->second.isValid() &&
"WeakVH invalidated") ? void (0) : __assert_fail ("res.first->second.isValid() && \"WeakVH invalidated\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2483, __extension__
__PRETTY_FUNCTION__))
;
2484 ++res.first->second.Score;
2485 }
2486 }
2487 }
2488 }
2489 }
2490}
2491
2492PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2493 // Get the functions basic blocks in Reverse Post Order. This order is used by
2494 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2495 // blocks (it has been seen that the analysis in this pass could hang when
2496 // analysing dead basic blocks).
2497 ReversePostOrderTraversal<Function *> RPOT(&F);
2498
2499 // Calculate the rank map for F.
2500 BuildRankMap(F, RPOT);
4
Calling 'ReassociatePass::BuildRankMap'
2501
2502 // Build the pair map before running reassociate.
2503 // Technically this would be more accurate if we did it after one round
2504 // of reassociation, but in practice it doesn't seem to help much on
2505 // real-world code, so don't waste the compile time running reassociate
2506 // twice.
2507 // If a user wants, they could expicitly run reassociate twice in their
2508 // pass pipeline for further potential gains.
2509 // It might also be possible to update the pair map during runtime, but the
2510 // overhead of that may be large if there's many reassociable chains.
2511 BuildPairMap(RPOT);
2512
2513 MadeChange = false;
2514
2515 // Traverse the same blocks that were analysed by BuildRankMap.
2516 for (BasicBlock *BI : RPOT) {
2517 assert(RankMap.count(&*BI) && "BB should be ranked.")(static_cast <bool> (RankMap.count(&*BI) &&
"BB should be ranked.") ? void (0) : __assert_fail ("RankMap.count(&*BI) && \"BB should be ranked.\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2517, __extension__
__PRETTY_FUNCTION__))
;
2518 // Optimize every instruction in the basic block.
2519 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2520 if (isInstructionTriviallyDead(&*II)) {
2521 EraseInst(&*II++);
2522 } else {
2523 OptimizeInst(&*II);
2524 assert(II->getParent() == &*BI && "Moved to a different block!")(static_cast <bool> (II->getParent() == &*BI &&
"Moved to a different block!") ? void (0) : __assert_fail ("II->getParent() == &*BI && \"Moved to a different block!\""
, "llvm/lib/Transforms/Scalar/Reassociate.cpp", 2524, __extension__
__PRETTY_FUNCTION__))
;
2525 ++II;
2526 }
2527
2528 // Make a copy of all the instructions to be redone so we can remove dead
2529 // instructions.
2530 OrderedSet ToRedo(RedoInsts);
2531 // Iterate over all instructions to be reevaluated and remove trivially dead
2532 // instructions. If any operand of the trivially dead instruction becomes
2533 // dead mark it for deletion as well. Continue this process until all
2534 // trivially dead instructions have been removed.
2535 while (!ToRedo.empty()) {
2536 Instruction *I = ToRedo.pop_back_val();
2537 if (isInstructionTriviallyDead(I)) {
2538 RecursivelyEraseDeadInsts(I, ToRedo);
2539 MadeChange = true;
2540 }
2541 }
2542
2543 // Now that we have removed dead instructions, we can reoptimize the
2544 // remaining instructions.
2545 while (!RedoInsts.empty()) {
2546 Instruction *I = RedoInsts.front();
2547 RedoInsts.erase(RedoInsts.begin());
2548 if (isInstructionTriviallyDead(I))
2549 EraseInst(I);
2550 else
2551 OptimizeInst(I);
2552 }
2553 }
2554
2555 // We are done with the rank map and pair map.
2556 RankMap.clear();
2557 ValueRankMap.clear();
2558 for (auto &Entry : PairMap)
2559 Entry.clear();
2560
2561 if (MadeChange) {
2562 PreservedAnalyses PA;
2563 PA.preserveSet<CFGAnalyses>();
2564 return PA;
2565 }
2566
2567 return PreservedAnalyses::all();
2568}
2569
2570namespace {
2571
2572 class ReassociateLegacyPass : public FunctionPass {
2573 ReassociatePass Impl;
2574
2575 public:
2576 static char ID; // Pass identification, replacement for typeid
2577
2578 ReassociateLegacyPass() : FunctionPass(ID) {
2579 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2580 }
2581
2582 bool runOnFunction(Function &F) override {
2583 if (skipFunction(F))
1
Assuming the condition is false
2
Taking false branch
2584 return false;
2585
2586 FunctionAnalysisManager DummyFAM;
2587 auto PA = Impl.run(F, DummyFAM);
3
Calling 'ReassociatePass::run'
2588 return !PA.areAllPreserved();
2589 }
2590
2591 void getAnalysisUsage(AnalysisUsage &AU) const override {
2592 AU.setPreservesCFG();
2593 AU.addPreserved<AAResultsWrapperPass>();
2594 AU.addPreserved<BasicAAWrapperPass>();
2595 AU.addPreserved<GlobalsAAWrapperPass>();
2596 }
2597 };
2598
2599} // end anonymous namespace
2600
2601char ReassociateLegacyPass::ID = 0;
2602
2603INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",static void *initializeReassociateLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Reassociate expressions"
, "reassociate", &ReassociateLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<ReassociateLegacyPass>), false, false)
; Registry.registerPass(*PI, true); return PI; } static llvm::
once_flag InitializeReassociateLegacyPassPassFlag; void llvm::
initializeReassociateLegacyPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeReassociateLegacyPassPassFlag, initializeReassociateLegacyPassPassOnce
, std::ref(Registry)); }
2604 "Reassociate expressions", false, false)static void *initializeReassociateLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Reassociate expressions"
, "reassociate", &ReassociateLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<ReassociateLegacyPass>), false, false)
; Registry.registerPass(*PI, true); return PI; } static llvm::
once_flag InitializeReassociateLegacyPassPassFlag; void llvm::
initializeReassociateLegacyPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeReassociateLegacyPassPassFlag, initializeReassociateLegacyPassPassOnce
, std::ref(Registry)); }
2605
2606// Public interface to the Reassociate pass
2607FunctionPass *llvm::createReassociatePass() {
2608 return new ReassociateLegacyPass();
2609}