Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/AST/RecordLayoutBuilder.cpp
Warning:line 1181, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name RecordLayoutBuilder.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/AST -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/AST/RecordLayoutBuilder.cpp
1//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "clang/AST/ASTContext.h"
10#include "clang/AST/ASTDiagnostic.h"
11#include "clang/AST/Attr.h"
12#include "clang/AST/CXXInheritance.h"
13#include "clang/AST/Decl.h"
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/VTableBuilder.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/Support/Format.h"
22#include "llvm/Support/MathExtras.h"
23
24using namespace clang;
25
26namespace {
27
28/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29/// For a class hierarchy like
30///
31/// class A { };
32/// class B : A { };
33/// class C : A, B { };
34///
35/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36/// instances, one for B and two for A.
37///
38/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39struct BaseSubobjectInfo {
40 /// Class - The class for this base info.
41 const CXXRecordDecl *Class;
42
43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44 bool IsVirtual;
45
46 /// Bases - Information about the base subobjects.
47 SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50 /// of this base info (if one exists).
51 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53 // FIXME: Document.
54 const BaseSubobjectInfo *Derived;
55};
56
57/// Externally provided layout. Typically used when the AST source, such
58/// as DWARF, lacks all the information that was available at compile time, such
59/// as alignment attributes on fields and pragmas in effect.
60struct ExternalLayout {
61 ExternalLayout() : Size(0), Align(0) {}
62
63 /// Overall record size in bits.
64 uint64_t Size;
65
66 /// Overall record alignment in bits.
67 uint64_t Align;
68
69 /// Record field offsets in bits.
70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71
72 /// Direct, non-virtual base offsets.
73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74
75 /// Virtual base offsets.
76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77
78 /// Get the offset of the given field. The external source must provide
79 /// entries for all fields in the record.
80 uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81 assert(FieldOffsets.count(FD) &&(static_cast <bool> (FieldOffsets.count(FD) && "Field does not have an external offset"
) ? void (0) : __assert_fail ("FieldOffsets.count(FD) && \"Field does not have an external offset\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 82, __extension__ __PRETTY_FUNCTION__
))
82 "Field does not have an external offset")(static_cast <bool> (FieldOffsets.count(FD) && "Field does not have an external offset"
) ? void (0) : __assert_fail ("FieldOffsets.count(FD) && \"Field does not have an external offset\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 82, __extension__ __PRETTY_FUNCTION__
))
;
83 return FieldOffsets[FD];
84 }
85
86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87 auto Known = BaseOffsets.find(RD);
88 if (Known == BaseOffsets.end())
89 return false;
90 BaseOffset = Known->second;
91 return true;
92 }
93
94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95 auto Known = VirtualBaseOffsets.find(RD);
96 if (Known == VirtualBaseOffsets.end())
97 return false;
98 BaseOffset = Known->second;
99 return true;
100 }
101};
102
103/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104/// offsets while laying out a C++ class.
105class EmptySubobjectMap {
106 const ASTContext &Context;
107 uint64_t CharWidth;
108
109 /// Class - The class whose empty entries we're keeping track of.
110 const CXXRecordDecl *Class;
111
112 /// EmptyClassOffsets - A map from offsets to empty record decls.
113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115 EmptyClassOffsetsMapTy EmptyClassOffsets;
116
117 /// MaxEmptyClassOffset - The highest offset known to contain an empty
118 /// base subobject.
119 CharUnits MaxEmptyClassOffset;
120
121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122 /// member subobject that is empty.
123 void ComputeEmptySubobjectSizes();
124
125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126
127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128 CharUnits Offset, bool PlacingEmptyBase);
129
130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131 const CXXRecordDecl *Class, CharUnits Offset,
132 bool PlacingOverlappingField);
133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134 bool PlacingOverlappingField);
135
136 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137 /// subobjects beyond the given offset.
138 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139 return Offset <= MaxEmptyClassOffset;
140 }
141
142 CharUnits
143 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145 assert(FieldOffset % CharWidth == 0 &&(static_cast <bool> (FieldOffset % CharWidth == 0 &&
"Field offset not at char boundary!") ? void (0) : __assert_fail
("FieldOffset % CharWidth == 0 && \"Field offset not at char boundary!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 146, __extension__
__PRETTY_FUNCTION__))
146 "Field offset not at char boundary!")(static_cast <bool> (FieldOffset % CharWidth == 0 &&
"Field offset not at char boundary!") ? void (0) : __assert_fail
("FieldOffset % CharWidth == 0 && \"Field offset not at char boundary!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 146, __extension__
__PRETTY_FUNCTION__))
;
147
148 return Context.toCharUnitsFromBits(FieldOffset);
149 }
150
151protected:
152 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153 CharUnits Offset) const;
154
155 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156 CharUnits Offset);
157
158 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159 const CXXRecordDecl *Class,
160 CharUnits Offset) const;
161 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162 CharUnits Offset) const;
163
164public:
165 /// This holds the size of the largest empty subobject (either a base
166 /// or a member). Will be zero if the record being built doesn't contain
167 /// any empty classes.
168 CharUnits SizeOfLargestEmptySubobject;
169
170 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172 ComputeEmptySubobjectSizes();
173 }
174
175 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176 /// at the given offset.
177 /// Returns false if placing the record will result in two components
178 /// (direct or indirect) of the same type having the same offset.
179 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180 CharUnits Offset);
181
182 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183 /// offset.
184 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185};
186
187void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188 // Check the bases.
189 for (const CXXBaseSpecifier &Base : Class->bases()) {
190 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191
192 CharUnits EmptySize;
193 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194 if (BaseDecl->isEmpty()) {
195 // If the class decl is empty, get its size.
196 EmptySize = Layout.getSize();
197 } else {
198 // Otherwise, we get the largest empty subobject for the decl.
199 EmptySize = Layout.getSizeOfLargestEmptySubobject();
200 }
201
202 if (EmptySize > SizeOfLargestEmptySubobject)
203 SizeOfLargestEmptySubobject = EmptySize;
204 }
205
206 // Check the fields.
207 for (const FieldDecl *FD : Class->fields()) {
208 const RecordType *RT =
209 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210
211 // We only care about record types.
212 if (!RT)
213 continue;
214
215 CharUnits EmptySize;
216 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218 if (MemberDecl->isEmpty()) {
219 // If the class decl is empty, get its size.
220 EmptySize = Layout.getSize();
221 } else {
222 // Otherwise, we get the largest empty subobject for the decl.
223 EmptySize = Layout.getSizeOfLargestEmptySubobject();
224 }
225
226 if (EmptySize > SizeOfLargestEmptySubobject)
227 SizeOfLargestEmptySubobject = EmptySize;
228 }
229}
230
231bool
232EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233 CharUnits Offset) const {
234 // We only need to check empty bases.
235 if (!RD->isEmpty())
236 return true;
237
238 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239 if (I == EmptyClassOffsets.end())
240 return true;
241
242 const ClassVectorTy &Classes = I->second;
243 if (!llvm::is_contained(Classes, RD))
244 return true;
245
246 // There is already an empty class of the same type at this offset.
247 return false;
248}
249
250void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251 CharUnits Offset) {
252 // We only care about empty bases.
253 if (!RD->isEmpty())
254 return;
255
256 // If we have empty structures inside a union, we can assign both
257 // the same offset. Just avoid pushing them twice in the list.
258 ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259 if (llvm::is_contained(Classes, RD))
260 return;
261
262 Classes.push_back(RD);
263
264 // Update the empty class offset.
265 if (Offset > MaxEmptyClassOffset)
266 MaxEmptyClassOffset = Offset;
267}
268
269bool
270EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271 CharUnits Offset) {
272 // We don't have to keep looking past the maximum offset that's known to
273 // contain an empty class.
274 if (!AnyEmptySubobjectsBeyondOffset(Offset))
275 return true;
276
277 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278 return false;
279
280 // Traverse all non-virtual bases.
281 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282 for (const BaseSubobjectInfo *Base : Info->Bases) {
283 if (Base->IsVirtual)
284 continue;
285
286 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287
288 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289 return false;
290 }
291
292 if (Info->PrimaryVirtualBaseInfo) {
293 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294
295 if (Info == PrimaryVirtualBaseInfo->Derived) {
296 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297 return false;
298 }
299 }
300
301 // Traverse all member variables.
302 unsigned FieldNo = 0;
303 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305 if (I->isBitField())
306 continue;
307
308 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310 return false;
311 }
312
313 return true;
314}
315
316void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317 CharUnits Offset,
318 bool PlacingEmptyBase) {
319 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320 // We know that the only empty subobjects that can conflict with empty
321 // subobject of non-empty bases, are empty bases that can be placed at
322 // offset zero. Because of this, we only need to keep track of empty base
323 // subobjects with offsets less than the size of the largest empty
324 // subobject for our class.
325 return;
326 }
327
328 AddSubobjectAtOffset(Info->Class, Offset);
329
330 // Traverse all non-virtual bases.
331 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332 for (const BaseSubobjectInfo *Base : Info->Bases) {
333 if (Base->IsVirtual)
334 continue;
335
336 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338 }
339
340 if (Info->PrimaryVirtualBaseInfo) {
341 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342
343 if (Info == PrimaryVirtualBaseInfo->Derived)
344 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345 PlacingEmptyBase);
346 }
347
348 // Traverse all member variables.
349 unsigned FieldNo = 0;
350 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352 if (I->isBitField())
353 continue;
354
355 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357 }
358}
359
360bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361 CharUnits Offset) {
362 // If we know this class doesn't have any empty subobjects we don't need to
363 // bother checking.
364 if (SizeOfLargestEmptySubobject.isZero())
365 return true;
366
367 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368 return false;
369
370 // We are able to place the base at this offset. Make sure to update the
371 // empty base subobject map.
372 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373 return true;
374}
375
376bool
377EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378 const CXXRecordDecl *Class,
379 CharUnits Offset) const {
380 // We don't have to keep looking past the maximum offset that's known to
381 // contain an empty class.
382 if (!AnyEmptySubobjectsBeyondOffset(Offset))
383 return true;
384
385 if (!CanPlaceSubobjectAtOffset(RD, Offset))
386 return false;
387
388 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389
390 // Traverse all non-virtual bases.
391 for (const CXXBaseSpecifier &Base : RD->bases()) {
392 if (Base.isVirtual())
393 continue;
394
395 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396
397 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399 return false;
400 }
401
402 if (RD == Class) {
403 // This is the most derived class, traverse virtual bases as well.
404 for (const CXXBaseSpecifier &Base : RD->vbases()) {
405 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406
407 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409 return false;
410 }
411 }
412
413 // Traverse all member variables.
414 unsigned FieldNo = 0;
415 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416 I != E; ++I, ++FieldNo) {
417 if (I->isBitField())
418 continue;
419
420 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421
422 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423 return false;
424 }
425
426 return true;
427}
428
429bool
430EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431 CharUnits Offset) const {
432 // We don't have to keep looking past the maximum offset that's known to
433 // contain an empty class.
434 if (!AnyEmptySubobjectsBeyondOffset(Offset))
435 return true;
436
437 QualType T = FD->getType();
438 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440
441 // If we have an array type we need to look at every element.
442 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443 QualType ElemTy = Context.getBaseElementType(AT);
444 const RecordType *RT = ElemTy->getAs<RecordType>();
445 if (!RT)
446 return true;
447
448 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450
451 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452 CharUnits ElementOffset = Offset;
453 for (uint64_t I = 0; I != NumElements; ++I) {
454 // We don't have to keep looking past the maximum offset that's known to
455 // contain an empty class.
456 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457 return true;
458
459 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460 return false;
461
462 ElementOffset += Layout.getSize();
463 }
464 }
465
466 return true;
467}
468
469bool
470EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471 CharUnits Offset) {
472 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473 return false;
474
475 // We are able to place the member variable at this offset.
476 // Make sure to update the empty field subobject map.
477 UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478 return true;
479}
480
481void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482 const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483 bool PlacingOverlappingField) {
484 // We know that the only empty subobjects that can conflict with empty
485 // field subobjects are subobjects of empty bases and potentially-overlapping
486 // fields that can be placed at offset zero. Because of this, we only need to
487 // keep track of empty field subobjects with offsets less than the size of
488 // the largest empty subobject for our class.
489 //
490 // (Proof: we will only consider placing a subobject at offset zero or at
491 // >= the current dsize. The only cases where the earlier subobject can be
492 // placed beyond the end of dsize is if it's an empty base or a
493 // potentially-overlapping field.)
494 if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495 return;
496
497 AddSubobjectAtOffset(RD, Offset);
498
499 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500
501 // Traverse all non-virtual bases.
502 for (const CXXBaseSpecifier &Base : RD->bases()) {
503 if (Base.isVirtual())
504 continue;
505
506 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507
508 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510 PlacingOverlappingField);
511 }
512
513 if (RD == Class) {
514 // This is the most derived class, traverse virtual bases as well.
515 for (const CXXBaseSpecifier &Base : RD->vbases()) {
516 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517
518 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520 PlacingOverlappingField);
521 }
522 }
523
524 // Traverse all member variables.
525 unsigned FieldNo = 0;
526 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527 I != E; ++I, ++FieldNo) {
528 if (I->isBitField())
529 continue;
530
531 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532
533 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534 }
535}
536
537void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538 const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539 QualType T = FD->getType();
540 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541 UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542 return;
543 }
544
545 // If we have an array type we need to update every element.
546 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547 QualType ElemTy = Context.getBaseElementType(AT);
548 const RecordType *RT = ElemTy->getAs<RecordType>();
549 if (!RT)
550 return;
551
552 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554
555 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556 CharUnits ElementOffset = Offset;
557
558 for (uint64_t I = 0; I != NumElements; ++I) {
559 // We know that the only empty subobjects that can conflict with empty
560 // field subobjects are subobjects of empty bases that can be placed at
561 // offset zero. Because of this, we only need to keep track of empty field
562 // subobjects with offsets less than the size of the largest empty
563 // subobject for our class.
564 if (!PlacingOverlappingField &&
565 ElementOffset >= SizeOfLargestEmptySubobject)
566 return;
567
568 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569 PlacingOverlappingField);
570 ElementOffset += Layout.getSize();
571 }
572 }
573}
574
575typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576
577class ItaniumRecordLayoutBuilder {
578protected:
579 // FIXME: Remove this and make the appropriate fields public.
580 friend class clang::ASTContext;
581
582 const ASTContext &Context;
583
584 EmptySubobjectMap *EmptySubobjects;
585
586 /// Size - The current size of the record layout.
587 uint64_t Size;
588
589 /// Alignment - The current alignment of the record layout.
590 CharUnits Alignment;
591
592 /// PreferredAlignment - The preferred alignment of the record layout.
593 CharUnits PreferredAlignment;
594
595 /// The alignment if attribute packed is not used.
596 CharUnits UnpackedAlignment;
597
598 /// \brief The maximum of the alignments of top-level members.
599 CharUnits UnadjustedAlignment;
600
601 SmallVector<uint64_t, 16> FieldOffsets;
602
603 /// Whether the external AST source has provided a layout for this
604 /// record.
605 unsigned UseExternalLayout : 1;
606
607 /// Whether we need to infer alignment, even when we have an
608 /// externally-provided layout.
609 unsigned InferAlignment : 1;
610
611 /// Packed - Whether the record is packed or not.
612 unsigned Packed : 1;
613
614 unsigned IsUnion : 1;
615
616 unsigned IsMac68kAlign : 1;
617
618 unsigned IsNaturalAlign : 1;
619
620 unsigned IsMsStruct : 1;
621
622 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623 /// this contains the number of bits in the last unit that can be used for
624 /// an adjacent bitfield if necessary. The unit in question is usually
625 /// a byte, but larger units are used if IsMsStruct.
626 unsigned char UnfilledBitsInLastUnit;
627
628 /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629 /// storage unit of the previous field if it was a bitfield.
630 unsigned char LastBitfieldStorageUnitSize;
631
632 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
633 /// #pragma pack.
634 CharUnits MaxFieldAlignment;
635
636 /// DataSize - The data size of the record being laid out.
637 uint64_t DataSize;
638
639 CharUnits NonVirtualSize;
640 CharUnits NonVirtualAlignment;
641 CharUnits PreferredNVAlignment;
642
643 /// If we've laid out a field but not included its tail padding in Size yet,
644 /// this is the size up to the end of that field.
645 CharUnits PaddedFieldSize;
646
647 /// PrimaryBase - the primary base class (if one exists) of the class
648 /// we're laying out.
649 const CXXRecordDecl *PrimaryBase;
650
651 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
652 /// out is virtual.
653 bool PrimaryBaseIsVirtual;
654
655 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656 /// pointer, as opposed to inheriting one from a primary base class.
657 bool HasOwnVFPtr;
658
659 /// the flag of field offset changing due to packed attribute.
660 bool HasPackedField;
661
662 /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663 /// When there are OverlappingEmptyFields existing in the aggregate, the
664 /// flag shows if the following first non-empty or empty-but-non-overlapping
665 /// field has been handled, if any.
666 bool HandledFirstNonOverlappingEmptyField;
667
668 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
669
670 /// Bases - base classes and their offsets in the record.
671 BaseOffsetsMapTy Bases;
672
673 // VBases - virtual base classes and their offsets in the record.
674 ASTRecordLayout::VBaseOffsetsMapTy VBases;
675
676 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677 /// primary base classes for some other direct or indirect base class.
678 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
679
680 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681 /// inheritance graph order. Used for determining the primary base class.
682 const CXXRecordDecl *FirstNearlyEmptyVBase;
683
684 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685 /// avoid visiting virtual bases more than once.
686 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
687
688 /// Valid if UseExternalLayout is true.
689 ExternalLayout External;
690
691 ItaniumRecordLayoutBuilder(const ASTContext &Context,
692 EmptySubobjectMap *EmptySubobjects)
693 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
694 Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695 UnpackedAlignment(CharUnits::One()),
696 UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697 InferAlignment(false), Packed(false), IsUnion(false),
698 IsMac68kAlign(false),
699 IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
700 IsMsStruct(false), UnfilledBitsInLastUnit(0),
701 LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702 DataSize(0), NonVirtualSize(CharUnits::Zero()),
703 NonVirtualAlignment(CharUnits::One()),
704 PreferredNVAlignment(CharUnits::One()),
705 PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707 HandledFirstNonOverlappingEmptyField(false),
708 FirstNearlyEmptyVBase(nullptr) {}
709
710 void Layout(const RecordDecl *D);
711 void Layout(const CXXRecordDecl *D);
712 void Layout(const ObjCInterfaceDecl *D);
713
714 void LayoutFields(const RecordDecl *D);
715 void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
716 void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
717 bool FieldPacked, const FieldDecl *D);
718 void LayoutBitField(const FieldDecl *D);
719
720 TargetCXXABI getCXXABI() const {
721 return Context.getTargetInfo().getCXXABI();
722 }
723
724 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
726
727 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
728 BaseSubobjectInfoMapTy;
729
730 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731 /// of the class we're laying out to their base subobject info.
732 BaseSubobjectInfoMapTy VirtualBaseInfo;
733
734 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735 /// class we're laying out to their base subobject info.
736 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
737
738 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739 /// bases of the given class.
740 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
741
742 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743 /// single class and all of its base classes.
744 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
745 bool IsVirtual,
746 BaseSubobjectInfo *Derived);
747
748 /// DeterminePrimaryBase - Determine the primary base of the given class.
749 void DeterminePrimaryBase(const CXXRecordDecl *RD);
750
751 void SelectPrimaryVBase(const CXXRecordDecl *RD);
752
753 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
754
755 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
758
759 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
761
762 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
763 CharUnits Offset);
764
765 /// LayoutVirtualBases - Lays out all the virtual bases.
766 void LayoutVirtualBases(const CXXRecordDecl *RD,
767 const CXXRecordDecl *MostDerivedClass);
768
769 /// LayoutVirtualBase - Lays out a single virtual base.
770 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
771
772 /// LayoutBase - Will lay out a base and return the offset where it was
773 /// placed, in chars.
774 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
775
776 /// InitializeLayout - Initialize record layout for the given record decl.
777 void InitializeLayout(const Decl *D);
778
779 /// FinishLayout - Finalize record layout. Adjust record size based on the
780 /// alignment.
781 void FinishLayout(const NamedDecl *D);
782
783 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
784 CharUnits PreferredAlignment);
785 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
786 UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
787 }
788 void UpdateAlignment(CharUnits NewAlignment) {
789 UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
790 }
791
792 /// Retrieve the externally-supplied field offset for the given
793 /// field.
794 ///
795 /// \param Field The field whose offset is being queried.
796 /// \param ComputedOffset The offset that we've computed for this field.
797 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
798 uint64_t ComputedOffset);
799
800 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
801 uint64_t UnpackedOffset, unsigned UnpackedAlign,
802 bool isPacked, const FieldDecl *D);
803
804 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
805
806 CharUnits getSize() const {
807 assert(Size % Context.getCharWidth() == 0)(static_cast <bool> (Size % Context.getCharWidth() == 0
) ? void (0) : __assert_fail ("Size % Context.getCharWidth() == 0"
, "clang/lib/AST/RecordLayoutBuilder.cpp", 807, __extension__
__PRETTY_FUNCTION__))
;
808 return Context.toCharUnitsFromBits(Size);
809 }
810 uint64_t getSizeInBits() const { return Size; }
811
812 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
813 void setSize(uint64_t NewSize) { Size = NewSize; }
814
815 CharUnits getAligment() const { return Alignment; }
816
817 CharUnits getDataSize() const {
818 assert(DataSize % Context.getCharWidth() == 0)(static_cast <bool> (DataSize % Context.getCharWidth() ==
0) ? void (0) : __assert_fail ("DataSize % Context.getCharWidth() == 0"
, "clang/lib/AST/RecordLayoutBuilder.cpp", 818, __extension__
__PRETTY_FUNCTION__))
;
819 return Context.toCharUnitsFromBits(DataSize);
820 }
821 uint64_t getDataSizeInBits() const { return DataSize; }
822
823 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
824 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
825
826 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
827 void operator=(const ItaniumRecordLayoutBuilder &) = delete;
828};
829} // end anonymous namespace
830
831void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
832 for (const auto &I : RD->bases()) {
833 assert(!I.getType()->isDependentType() &&(static_cast <bool> (!I.getType()->isDependentType()
&& "Cannot layout class with dependent bases.") ? void
(0) : __assert_fail ("!I.getType()->isDependentType() && \"Cannot layout class with dependent bases.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 834, __extension__
__PRETTY_FUNCTION__))
834 "Cannot layout class with dependent bases.")(static_cast <bool> (!I.getType()->isDependentType()
&& "Cannot layout class with dependent bases.") ? void
(0) : __assert_fail ("!I.getType()->isDependentType() && \"Cannot layout class with dependent bases.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 834, __extension__
__PRETTY_FUNCTION__))
;
835
836 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
837
838 // Check if this is a nearly empty virtual base.
839 if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
840 // If it's not an indirect primary base, then we've found our primary
841 // base.
842 if (!IndirectPrimaryBases.count(Base)) {
843 PrimaryBase = Base;
844 PrimaryBaseIsVirtual = true;
845 return;
846 }
847
848 // Is this the first nearly empty virtual base?
849 if (!FirstNearlyEmptyVBase)
850 FirstNearlyEmptyVBase = Base;
851 }
852
853 SelectPrimaryVBase(Base);
854 if (PrimaryBase)
855 return;
856 }
857}
858
859/// DeterminePrimaryBase - Determine the primary base of the given class.
860void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
861 // If the class isn't dynamic, it won't have a primary base.
862 if (!RD->isDynamicClass())
863 return;
864
865 // Compute all the primary virtual bases for all of our direct and
866 // indirect bases, and record all their primary virtual base classes.
867 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
868
869 // If the record has a dynamic base class, attempt to choose a primary base
870 // class. It is the first (in direct base class order) non-virtual dynamic
871 // base class, if one exists.
872 for (const auto &I : RD->bases()) {
873 // Ignore virtual bases.
874 if (I.isVirtual())
875 continue;
876
877 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
878
879 if (Base->isDynamicClass()) {
880 // We found it.
881 PrimaryBase = Base;
882 PrimaryBaseIsVirtual = false;
883 return;
884 }
885 }
886
887 // Under the Itanium ABI, if there is no non-virtual primary base class,
888 // try to compute the primary virtual base. The primary virtual base is
889 // the first nearly empty virtual base that is not an indirect primary
890 // virtual base class, if one exists.
891 if (RD->getNumVBases() != 0) {
892 SelectPrimaryVBase(RD);
893 if (PrimaryBase)
894 return;
895 }
896
897 // Otherwise, it is the first indirect primary base class, if one exists.
898 if (FirstNearlyEmptyVBase) {
899 PrimaryBase = FirstNearlyEmptyVBase;
900 PrimaryBaseIsVirtual = true;
901 return;
902 }
903
904 assert(!PrimaryBase && "Should not get here with a primary base!")(static_cast <bool> (!PrimaryBase && "Should not get here with a primary base!"
) ? void (0) : __assert_fail ("!PrimaryBase && \"Should not get here with a primary base!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 904, __extension__
__PRETTY_FUNCTION__))
;
905}
906
907BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
909 BaseSubobjectInfo *Info;
910
911 if (IsVirtual) {
912 // Check if we already have info about this virtual base.
913 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
914 if (InfoSlot) {
915 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!")(static_cast <bool> (InfoSlot->Class == RD &&
"Wrong class for virtual base info!") ? void (0) : __assert_fail
("InfoSlot->Class == RD && \"Wrong class for virtual base info!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 915, __extension__
__PRETTY_FUNCTION__))
;
916 return InfoSlot;
917 }
918
919 // We don't, create it.
920 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
921 Info = InfoSlot;
922 } else {
923 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
924 }
925
926 Info->Class = RD;
927 Info->IsVirtual = IsVirtual;
928 Info->Derived = nullptr;
929 Info->PrimaryVirtualBaseInfo = nullptr;
930
931 const CXXRecordDecl *PrimaryVirtualBase = nullptr;
932 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
933
934 // Check if this base has a primary virtual base.
935 if (RD->getNumVBases()) {
936 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
937 if (Layout.isPrimaryBaseVirtual()) {
938 // This base does have a primary virtual base.
939 PrimaryVirtualBase = Layout.getPrimaryBase();
940 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!")(static_cast <bool> (PrimaryVirtualBase && "Didn't have a primary virtual base!"
) ? void (0) : __assert_fail ("PrimaryVirtualBase && \"Didn't have a primary virtual base!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 940, __extension__
__PRETTY_FUNCTION__))
;
941
942 // Now check if we have base subobject info about this primary base.
943 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
944
945 if (PrimaryVirtualBaseInfo) {
946 if (PrimaryVirtualBaseInfo->Derived) {
947 // We did have info about this primary base, and it turns out that it
948 // has already been claimed as a primary virtual base for another
949 // base.
950 PrimaryVirtualBase = nullptr;
951 } else {
952 // We can claim this base as our primary base.
953 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
954 PrimaryVirtualBaseInfo->Derived = Info;
955 }
956 }
957 }
958 }
959
960 // Now go through all direct bases.
961 for (const auto &I : RD->bases()) {
962 bool IsVirtual = I.isVirtual();
963
964 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
965
966 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
967 }
968
969 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
970 // Traversing the bases must have created the base info for our primary
971 // virtual base.
972 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
973 assert(PrimaryVirtualBaseInfo &&(static_cast <bool> (PrimaryVirtualBaseInfo && "Did not create a primary virtual base!"
) ? void (0) : __assert_fail ("PrimaryVirtualBaseInfo && \"Did not create a primary virtual base!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 974, __extension__
__PRETTY_FUNCTION__))
974 "Did not create a primary virtual base!")(static_cast <bool> (PrimaryVirtualBaseInfo && "Did not create a primary virtual base!"
) ? void (0) : __assert_fail ("PrimaryVirtualBaseInfo && \"Did not create a primary virtual base!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 974, __extension__
__PRETTY_FUNCTION__))
;
975
976 // Claim the primary virtual base as our primary virtual base.
977 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
978 PrimaryVirtualBaseInfo->Derived = Info;
979 }
980
981 return Info;
982}
983
984void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985 const CXXRecordDecl *RD) {
986 for (const auto &I : RD->bases()) {
987 bool IsVirtual = I.isVirtual();
988
989 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
990
991 // Compute the base subobject info for this base.
992 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
993 nullptr);
994
995 if (IsVirtual) {
996 // ComputeBaseInfo has already added this base for us.
997 assert(VirtualBaseInfo.count(BaseDecl) &&(static_cast <bool> (VirtualBaseInfo.count(BaseDecl) &&
"Did not add virtual base!") ? void (0) : __assert_fail ("VirtualBaseInfo.count(BaseDecl) && \"Did not add virtual base!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 998, __extension__
__PRETTY_FUNCTION__))
998 "Did not add virtual base!")(static_cast <bool> (VirtualBaseInfo.count(BaseDecl) &&
"Did not add virtual base!") ? void (0) : __assert_fail ("VirtualBaseInfo.count(BaseDecl) && \"Did not add virtual base!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 998, __extension__
__PRETTY_FUNCTION__))
;
999 } else {
1000 // Add the base info to the map of non-virtual bases.
1001 assert(!NonVirtualBaseInfo.count(BaseDecl) &&(static_cast <bool> (!NonVirtualBaseInfo.count(BaseDecl
) && "Non-virtual base already exists!") ? void (0) :
__assert_fail ("!NonVirtualBaseInfo.count(BaseDecl) && \"Non-virtual base already exists!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1002, __extension__
__PRETTY_FUNCTION__))
1002 "Non-virtual base already exists!")(static_cast <bool> (!NonVirtualBaseInfo.count(BaseDecl
) && "Non-virtual base already exists!") ? void (0) :
__assert_fail ("!NonVirtualBaseInfo.count(BaseDecl) && \"Non-virtual base already exists!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1002, __extension__
__PRETTY_FUNCTION__))
;
1003 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1004 }
1005 }
1006}
1007
1008void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009 CharUnits UnpackedBaseAlign) {
1010 CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1011
1012 // The maximum field alignment overrides base align.
1013 if (!MaxFieldAlignment.isZero()) {
1014 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1015 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1016 }
1017
1018 // Round up the current record size to pointer alignment.
1019 setSize(getSize().alignTo(BaseAlign));
1020
1021 // Update the alignment.
1022 UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1023}
1024
1025void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026 const CXXRecordDecl *RD) {
1027 // Then, determine the primary base class.
1028 DeterminePrimaryBase(RD);
1029
1030 // Compute base subobject info.
1031 ComputeBaseSubobjectInfo(RD);
1032
1033 // If we have a primary base class, lay it out.
1034 if (PrimaryBase) {
1035 if (PrimaryBaseIsVirtual) {
1036 // If the primary virtual base was a primary virtual base of some other
1037 // base class we'll have to steal it.
1038 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1039 PrimaryBaseInfo->Derived = nullptr;
1040
1041 // We have a virtual primary base, insert it as an indirect primary base.
1042 IndirectPrimaryBases.insert(PrimaryBase);
1043
1044 assert(!VisitedVirtualBases.count(PrimaryBase) &&(static_cast <bool> (!VisitedVirtualBases.count(PrimaryBase
) && "vbase already visited!") ? void (0) : __assert_fail
("!VisitedVirtualBases.count(PrimaryBase) && \"vbase already visited!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1045, __extension__
__PRETTY_FUNCTION__))
1045 "vbase already visited!")(static_cast <bool> (!VisitedVirtualBases.count(PrimaryBase
) && "vbase already visited!") ? void (0) : __assert_fail
("!VisitedVirtualBases.count(PrimaryBase) && \"vbase already visited!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1045, __extension__
__PRETTY_FUNCTION__))
;
1046 VisitedVirtualBases.insert(PrimaryBase);
1047
1048 LayoutVirtualBase(PrimaryBaseInfo);
1049 } else {
1050 BaseSubobjectInfo *PrimaryBaseInfo =
1051 NonVirtualBaseInfo.lookup(PrimaryBase);
1052 assert(PrimaryBaseInfo &&(static_cast <bool> (PrimaryBaseInfo && "Did not find base info for non-virtual primary base!"
) ? void (0) : __assert_fail ("PrimaryBaseInfo && \"Did not find base info for non-virtual primary base!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1053, __extension__
__PRETTY_FUNCTION__))
1053 "Did not find base info for non-virtual primary base!")(static_cast <bool> (PrimaryBaseInfo && "Did not find base info for non-virtual primary base!"
) ? void (0) : __assert_fail ("PrimaryBaseInfo && \"Did not find base info for non-virtual primary base!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1053, __extension__
__PRETTY_FUNCTION__))
;
1054
1055 LayoutNonVirtualBase(PrimaryBaseInfo);
1056 }
1057
1058 // If this class needs a vtable/vf-table and didn't get one from a
1059 // primary base, add it in now.
1060 } else if (RD->isDynamicClass()) {
1061 assert(DataSize == 0 && "Vtable pointer must be at offset zero!")(static_cast <bool> (DataSize == 0 && "Vtable pointer must be at offset zero!"
) ? void (0) : __assert_fail ("DataSize == 0 && \"Vtable pointer must be at offset zero!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1061, __extension__
__PRETTY_FUNCTION__))
;
1062 CharUnits PtrWidth =
1063 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1064 CharUnits PtrAlign =
1065 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1066 EnsureVTablePointerAlignment(PtrAlign);
1067 HasOwnVFPtr = true;
1068
1069 assert(!IsUnion && "Unions cannot be dynamic classes.")(static_cast <bool> (!IsUnion && "Unions cannot be dynamic classes."
) ? void (0) : __assert_fail ("!IsUnion && \"Unions cannot be dynamic classes.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1069, __extension__
__PRETTY_FUNCTION__))
;
1070 HandledFirstNonOverlappingEmptyField = true;
1071
1072 setSize(getSize() + PtrWidth);
1073 setDataSize(getSize());
1074 }
1075
1076 // Now lay out the non-virtual bases.
1077 for (const auto &I : RD->bases()) {
1078
1079 // Ignore virtual bases.
1080 if (I.isVirtual())
1081 continue;
1082
1083 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1084
1085 // Skip the primary base, because we've already laid it out. The
1086 // !PrimaryBaseIsVirtual check is required because we might have a
1087 // non-virtual base of the same type as a primary virtual base.
1088 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1089 continue;
1090
1091 // Lay out the base.
1092 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1093 assert(BaseInfo && "Did not find base info for non-virtual base!")(static_cast <bool> (BaseInfo && "Did not find base info for non-virtual base!"
) ? void (0) : __assert_fail ("BaseInfo && \"Did not find base info for non-virtual base!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1093, __extension__
__PRETTY_FUNCTION__))
;
1094
1095 LayoutNonVirtualBase(BaseInfo);
1096 }
1097}
1098
1099void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100 const BaseSubobjectInfo *Base) {
1101 // Layout the base.
1102 CharUnits Offset = LayoutBase(Base);
1103
1104 // Add its base class offset.
1105 assert(!Bases.count(Base->Class) && "base offset already exists!")(static_cast <bool> (!Bases.count(Base->Class) &&
"base offset already exists!") ? void (0) : __assert_fail ("!Bases.count(Base->Class) && \"base offset already exists!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1105, __extension__
__PRETTY_FUNCTION__))
;
1106 Bases.insert(std::make_pair(Base->Class, Offset));
1107
1108 AddPrimaryVirtualBaseOffsets(Base, Offset);
1109}
1110
1111void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112 const BaseSubobjectInfo *Info, CharUnits Offset) {
1113 // This base isn't interesting, it has no virtual bases.
1114 if (!Info->Class->getNumVBases())
1115 return;
1116
1117 // First, check if we have a virtual primary base to add offsets for.
1118 if (Info->PrimaryVirtualBaseInfo) {
1119 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&(static_cast <bool> (Info->PrimaryVirtualBaseInfo->
IsVirtual && "Primary virtual base is not virtual!") ?
void (0) : __assert_fail ("Info->PrimaryVirtualBaseInfo->IsVirtual && \"Primary virtual base is not virtual!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1120, __extension__
__PRETTY_FUNCTION__))
1120 "Primary virtual base is not virtual!")(static_cast <bool> (Info->PrimaryVirtualBaseInfo->
IsVirtual && "Primary virtual base is not virtual!") ?
void (0) : __assert_fail ("Info->PrimaryVirtualBaseInfo->IsVirtual && \"Primary virtual base is not virtual!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1120, __extension__
__PRETTY_FUNCTION__))
;
1121 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1122 // Add the offset.
1123 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&(static_cast <bool> (!VBases.count(Info->PrimaryVirtualBaseInfo
->Class) && "primary vbase offset already exists!"
) ? void (0) : __assert_fail ("!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && \"primary vbase offset already exists!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1124, __extension__
__PRETTY_FUNCTION__))
1124 "primary vbase offset already exists!")(static_cast <bool> (!VBases.count(Info->PrimaryVirtualBaseInfo
->Class) && "primary vbase offset already exists!"
) ? void (0) : __assert_fail ("!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && \"primary vbase offset already exists!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1124, __extension__
__PRETTY_FUNCTION__))
;
1125 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1126 ASTRecordLayout::VBaseInfo(Offset, false)));
1127
1128 // Traverse the primary virtual base.
1129 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1130 }
1131 }
1132
1133 // Now go through all direct non-virtual bases.
1134 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1135 for (const BaseSubobjectInfo *Base : Info->Bases) {
1136 if (Base->IsVirtual)
1137 continue;
1138
1139 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1140 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1141 }
1142}
1143
1144void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1146 const CXXRecordDecl *PrimaryBase;
1147 bool PrimaryBaseIsVirtual;
1148
1149 if (MostDerivedClass
17.1
'MostDerivedClass' is equal to 'RD'
== RD) {
18
Taking true branch
1150 PrimaryBase = this->PrimaryBase;
1151 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1152 } else {
1153 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1154 PrimaryBase = Layout.getPrimaryBase();
1155 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1156 }
1157
1158 for (const CXXBaseSpecifier &Base : RD->bases()) {
19
Assuming '__begin1' is not equal to '__end1'
1159 assert(!Base.getType()->isDependentType() &&(static_cast <bool> (!Base.getType()->isDependentType
() && "Cannot layout class with dependent bases.") ? void
(0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1160, __extension__
__PRETTY_FUNCTION__))
20
Assuming the condition is true
21
'?' condition is true
1160 "Cannot layout class with dependent bases.")(static_cast <bool> (!Base.getType()->isDependentType
() && "Cannot layout class with dependent bases.") ? void
(0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1160, __extension__
__PRETTY_FUNCTION__))
;
1161
1162 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
22
'BaseDecl' initialized here
1163
1164 if (Base.isVirtual()) {
23
Assuming the condition is true
1165 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
24
Assuming 'PrimaryBase' is equal to 'BaseDecl'
25
Assuming 'PrimaryBaseIsVirtual' is true
26
Taking false branch
1166 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1167
1168 // Only lay out the virtual base if it's not an indirect primary base.
1169 if (!IndirectPrimaryBase) {
1170 // Only visit virtual bases once.
1171 if (!VisitedVirtualBases.insert(BaseDecl).second)
1172 continue;
1173
1174 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1175 assert(BaseInfo && "Did not find virtual base info!")(static_cast <bool> (BaseInfo && "Did not find virtual base info!"
) ? void (0) : __assert_fail ("BaseInfo && \"Did not find virtual base info!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1175, __extension__
__PRETTY_FUNCTION__))
;
1176 LayoutVirtualBase(BaseInfo);
1177 }
1178 }
1179 }
1180
1181 if (!BaseDecl->getNumVBases()) {
27
Called C++ object pointer is null
1182 // This base isn't interesting since it doesn't have any virtual bases.
1183 continue;
1184 }
1185
1186 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1187 }
1188}
1189
1190void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191 const BaseSubobjectInfo *Base) {
1192 assert(!Base->Derived && "Trying to lay out a primary virtual base!")(static_cast <bool> (!Base->Derived && "Trying to lay out a primary virtual base!"
) ? void (0) : __assert_fail ("!Base->Derived && \"Trying to lay out a primary virtual base!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1192, __extension__
__PRETTY_FUNCTION__))
;
1193
1194 // Layout the base.
1195 CharUnits Offset = LayoutBase(Base);
1196
1197 // Add its base class offset.
1198 assert(!VBases.count(Base->Class) && "vbase offset already exists!")(static_cast <bool> (!VBases.count(Base->Class) &&
"vbase offset already exists!") ? void (0) : __assert_fail (
"!VBases.count(Base->Class) && \"vbase offset already exists!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1198, __extension__
__PRETTY_FUNCTION__))
;
1199 VBases.insert(std::make_pair(Base->Class,
1200 ASTRecordLayout::VBaseInfo(Offset, false)));
1201
1202 AddPrimaryVirtualBaseOffsets(Base, Offset);
1203}
1204
1205CharUnits
1206ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1207 assert(!IsUnion && "Unions cannot have base classes.")(static_cast <bool> (!IsUnion && "Unions cannot have base classes."
) ? void (0) : __assert_fail ("!IsUnion && \"Unions cannot have base classes.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1207, __extension__
__PRETTY_FUNCTION__))
;
1208
1209 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1210 CharUnits Offset;
1211
1212 // Query the external layout to see if it provides an offset.
1213 bool HasExternalLayout = false;
1214 if (UseExternalLayout) {
1215 if (Base->IsVirtual)
1216 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1217 else
1218 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1219 }
1220
1221 auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1222 // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223 // Per GCC's documentation, it only applies to non-static data members.
1224 return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1225 LangOptions::ClangABI::Ver6) ||
1226 Context.getTargetInfo().getTriple().isPS4() ||
1227 Context.getTargetInfo().getTriple().isOSAIX()))
1228 ? CharUnits::One()
1229 : UnpackedAlign;
1230 };
1231
1232 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1233 CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1234 CharUnits BaseAlign =
1235 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1236 CharUnits PreferredBaseAlign =
1237 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1238
1239 const bool DefaultsToAIXPowerAlignment =
1240 Context.getTargetInfo().defaultsToAIXPowerAlignment();
1241 if (DefaultsToAIXPowerAlignment) {
1242 // AIX `power` alignment does not apply the preferred alignment for
1243 // non-union classes if the source of the alignment (the current base in
1244 // this context) follows introduction of the first subobject with
1245 // exclusively allocated space or zero-extent array.
1246 if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1247 // By handling a base class that is not empty, we're handling the
1248 // "first (inherited) member".
1249 HandledFirstNonOverlappingEmptyField = true;
1250 } else if (!IsNaturalAlign) {
1251 UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1252 PreferredBaseAlign = BaseAlign;
1253 }
1254 }
1255
1256 CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1257 ? UnpackedBaseAlign
1258 : UnpackedPreferredBaseAlign;
1259 // If we have an empty base class, try to place it at offset 0.
1260 if (Base->Class->isEmpty() &&
1261 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1262 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1263 setSize(std::max(getSize(), Layout.getSize()));
1264 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1265
1266 return CharUnits::Zero();
1267 }
1268
1269 // The maximum field alignment overrides the base align/(AIX-only) preferred
1270 // base align.
1271 if (!MaxFieldAlignment.isZero()) {
1272 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1273 PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1274 UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1275 }
1276
1277 CharUnits AlignTo =
1278 !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1279 if (!HasExternalLayout) {
1280 // Round up the current record size to the base's alignment boundary.
1281 Offset = getDataSize().alignTo(AlignTo);
1282
1283 // Try to place the base.
1284 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1285 Offset += AlignTo;
1286 } else {
1287 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1288 (void)Allowed;
1289 assert(Allowed && "Base subobject externally placed at overlapping offset")(static_cast <bool> (Allowed && "Base subobject externally placed at overlapping offset"
) ? void (0) : __assert_fail ("Allowed && \"Base subobject externally placed at overlapping offset\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1289, __extension__
__PRETTY_FUNCTION__))
;
1290
1291 if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1292 // The externally-supplied base offset is before the base offset we
1293 // computed. Assume that the structure is packed.
1294 Alignment = CharUnits::One();
1295 InferAlignment = false;
1296 }
1297 }
1298
1299 if (!Base->Class->isEmpty()) {
1300 // Update the data size.
1301 setDataSize(Offset + Layout.getNonVirtualSize());
1302
1303 setSize(std::max(getSize(), getDataSize()));
1304 } else
1305 setSize(std::max(getSize(), Offset + Layout.getSize()));
1306
1307 // Remember max struct/class alignment.
1308 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1309
1310 return Offset;
1311}
1312
1313void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1314 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1315 IsUnion = RD->isUnion();
1316 IsMsStruct = RD->isMsStruct(Context);
1317 }
1318
1319 Packed = D->hasAttr<PackedAttr>();
1320
1321 // Honor the default struct packing maximum alignment flag.
1322 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1323 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1324 }
1325
1326 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1327 // and forces all structures to have 2-byte alignment. The IBM docs on it
1328 // allude to additional (more complicated) semantics, especially with regard
1329 // to bit-fields, but gcc appears not to follow that.
1330 if (D->hasAttr<AlignMac68kAttr>()) {
1331 assert((static_cast <bool> (!D->hasAttr<AlignNaturalAttr
>() && "Having both mac68k and natural alignment on a decl is not allowed."
) ? void (0) : __assert_fail ("!D->hasAttr<AlignNaturalAttr>() && \"Having both mac68k and natural alignment on a decl is not allowed.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1333, __extension__
__PRETTY_FUNCTION__))
1332 !D->hasAttr<AlignNaturalAttr>() &&(static_cast <bool> (!D->hasAttr<AlignNaturalAttr
>() && "Having both mac68k and natural alignment on a decl is not allowed."
) ? void (0) : __assert_fail ("!D->hasAttr<AlignNaturalAttr>() && \"Having both mac68k and natural alignment on a decl is not allowed.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1333, __extension__
__PRETTY_FUNCTION__))
1333 "Having both mac68k and natural alignment on a decl is not allowed.")(static_cast <bool> (!D->hasAttr<AlignNaturalAttr
>() && "Having both mac68k and natural alignment on a decl is not allowed."
) ? void (0) : __assert_fail ("!D->hasAttr<AlignNaturalAttr>() && \"Having both mac68k and natural alignment on a decl is not allowed.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1333, __extension__
__PRETTY_FUNCTION__))
;
1334 IsMac68kAlign = true;
1335 MaxFieldAlignment = CharUnits::fromQuantity(2);
1336 Alignment = CharUnits::fromQuantity(2);
1337 PreferredAlignment = CharUnits::fromQuantity(2);
1338 } else {
1339 if (D->hasAttr<AlignNaturalAttr>())
1340 IsNaturalAlign = true;
1341
1342 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1343 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1344
1345 if (unsigned MaxAlign = D->getMaxAlignment())
1346 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1347 }
1348
1349 HandledFirstNonOverlappingEmptyField =
1350 !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1351
1352 // If there is an external AST source, ask it for the various offsets.
1353 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1354 if (ExternalASTSource *Source = Context.getExternalSource()) {
1355 UseExternalLayout = Source->layoutRecordType(
1356 RD, External.Size, External.Align, External.FieldOffsets,
1357 External.BaseOffsets, External.VirtualBaseOffsets);
1358
1359 // Update based on external alignment.
1360 if (UseExternalLayout) {
1361 if (External.Align > 0) {
1362 Alignment = Context.toCharUnitsFromBits(External.Align);
1363 PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1364 } else {
1365 // The external source didn't have alignment information; infer it.
1366 InferAlignment = true;
1367 }
1368 }
1369 }
1370}
1371
1372void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1373 InitializeLayout(D);
1374 LayoutFields(D);
1375
1376 // Finally, round the size of the total struct up to the alignment of the
1377 // struct itself.
1378 FinishLayout(D);
1379}
1380
1381void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1382 InitializeLayout(RD);
1383
1384 // Lay out the vtable and the non-virtual bases.
1385 LayoutNonVirtualBases(RD);
1386
1387 LayoutFields(RD);
1388
1389 NonVirtualSize = Context.toCharUnitsFromBits(
1390 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1391 NonVirtualAlignment = Alignment;
1392 PreferredNVAlignment = PreferredAlignment;
1393
1394 // Lay out the virtual bases and add the primary virtual base offsets.
1395 LayoutVirtualBases(RD, RD);
17
Calling 'ItaniumRecordLayoutBuilder::LayoutVirtualBases'
1396
1397 // Finally, round the size of the total struct up to the alignment
1398 // of the struct itself.
1399 FinishLayout(RD);
1400
1401#ifndef NDEBUG
1402 // Check that we have base offsets for all bases.
1403 for (const CXXBaseSpecifier &Base : RD->bases()) {
1404 if (Base.isVirtual())
1405 continue;
1406
1407 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1408
1409 assert(Bases.count(BaseDecl) && "Did not find base offset!")(static_cast <bool> (Bases.count(BaseDecl) && "Did not find base offset!"
) ? void (0) : __assert_fail ("Bases.count(BaseDecl) && \"Did not find base offset!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1409, __extension__
__PRETTY_FUNCTION__))
;
1410 }
1411
1412 // And all virtual bases.
1413 for (const CXXBaseSpecifier &Base : RD->vbases()) {
1414 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1415
1416 assert(VBases.count(BaseDecl) && "Did not find base offset!")(static_cast <bool> (VBases.count(BaseDecl) && "Did not find base offset!"
) ? void (0) : __assert_fail ("VBases.count(BaseDecl) && \"Did not find base offset!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1416, __extension__
__PRETTY_FUNCTION__))
;
1417 }
1418#endif
1419}
1420
1421void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1422 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1423 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1424
1425 UpdateAlignment(SL.getAlignment());
1426
1427 // We start laying out ivars not at the end of the superclass
1428 // structure, but at the next byte following the last field.
1429 setDataSize(SL.getDataSize());
1430 setSize(getDataSize());
1431 }
1432
1433 InitializeLayout(D);
1434 // Layout each ivar sequentially.
1435 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1436 IVD = IVD->getNextIvar())
1437 LayoutField(IVD, false);
1438
1439 // Finally, round the size of the total struct up to the alignment of the
1440 // struct itself.
1441 FinishLayout(D);
1442}
1443
1444void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1445 // Layout each field, for now, just sequentially, respecting alignment. In
1446 // the future, this will need to be tweakable by targets.
1447 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1448 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1449 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1450 auto Next(I);
1451 ++Next;
1452 LayoutField(*I,
1453 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1454 }
1455}
1456
1457// Rounds the specified size to have it a multiple of the char size.
1458static uint64_t
1459roundUpSizeToCharAlignment(uint64_t Size,
1460 const ASTContext &Context) {
1461 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1462 return llvm::alignTo(Size, CharAlignment);
1463}
1464
1465void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1466 uint64_t StorageUnitSize,
1467 bool FieldPacked,
1468 const FieldDecl *D) {
1469 assert(Context.getLangOpts().CPlusPlus &&(static_cast <bool> (Context.getLangOpts().CPlusPlus &&
"Can only have wide bit-fields in C++!") ? void (0) : __assert_fail
("Context.getLangOpts().CPlusPlus && \"Can only have wide bit-fields in C++!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1470, __extension__
__PRETTY_FUNCTION__))
1470 "Can only have wide bit-fields in C++!")(static_cast <bool> (Context.getLangOpts().CPlusPlus &&
"Can only have wide bit-fields in C++!") ? void (0) : __assert_fail
("Context.getLangOpts().CPlusPlus && \"Can only have wide bit-fields in C++!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1470, __extension__
__PRETTY_FUNCTION__))
;
1471
1472 // Itanium C++ ABI 2.4:
1473 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1474 // sizeof(T')*8 <= n.
1475
1476 QualType IntegralPODTypes[] = {
1477 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1478 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1479 };
1480
1481 QualType Type;
1482 for (const QualType &QT : IntegralPODTypes) {
1483 uint64_t Size = Context.getTypeSize(QT);
1484
1485 if (Size > FieldSize)
1486 break;
1487
1488 Type = QT;
1489 }
1490 assert(!Type.isNull() && "Did not find a type!")(static_cast <bool> (!Type.isNull() && "Did not find a type!"
) ? void (0) : __assert_fail ("!Type.isNull() && \"Did not find a type!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1490, __extension__
__PRETTY_FUNCTION__))
;
1491
1492 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1493
1494 // We're not going to use any of the unfilled bits in the last byte.
1495 UnfilledBitsInLastUnit = 0;
1496 LastBitfieldStorageUnitSize = 0;
1497
1498 uint64_t FieldOffset;
1499 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1500
1501 if (IsUnion) {
1502 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1503 Context);
1504 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1505 FieldOffset = 0;
1506 } else {
1507 // The bitfield is allocated starting at the next offset aligned
1508 // appropriately for T', with length n bits.
1509 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1510
1511 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1512
1513 setDataSize(
1514 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1515 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1516 }
1517
1518 // Place this field at the current location.
1519 FieldOffsets.push_back(FieldOffset);
1520
1521 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1522 Context.toBits(TypeAlign), FieldPacked, D);
1523
1524 // Update the size.
1525 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1526
1527 // Remember max struct/class alignment.
1528 UpdateAlignment(TypeAlign);
1529}
1530
1531static bool isAIXLayout(const ASTContext &Context) {
1532 return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX;
1533}
1534
1535void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1536 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1537 uint64_t FieldSize = D->getBitWidthValue(Context);
1538 TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1539 uint64_t StorageUnitSize = FieldInfo.Width;
1540 unsigned FieldAlign = FieldInfo.Align;
1541 bool AlignIsRequired = FieldInfo.isAlignRequired();
1542
1543 // UnfilledBitsInLastUnit is the difference between the end of the
1544 // last allocated bitfield (i.e. the first bit offset available for
1545 // bitfields) and the end of the current data size in bits (i.e. the
1546 // first bit offset available for non-bitfields). The current data
1547 // size in bits is always a multiple of the char size; additionally,
1548 // for ms_struct records it's also a multiple of the
1549 // LastBitfieldStorageUnitSize (if set).
1550
1551 // The struct-layout algorithm is dictated by the platform ABI,
1552 // which in principle could use almost any rules it likes. In
1553 // practice, UNIXy targets tend to inherit the algorithm described
1554 // in the System V generic ABI. The basic bitfield layout rule in
1555 // System V is to place bitfields at the next available bit offset
1556 // where the entire bitfield would fit in an aligned storage unit of
1557 // the declared type; it's okay if an earlier or later non-bitfield
1558 // is allocated in the same storage unit. However, some targets
1559 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1560 // require this storage unit to be aligned, and therefore always put
1561 // the bitfield at the next available bit offset.
1562
1563 // ms_struct basically requests a complete replacement of the
1564 // platform ABI's struct-layout algorithm, with the high-level goal
1565 // of duplicating MSVC's layout. For non-bitfields, this follows
1566 // the standard algorithm. The basic bitfield layout rule is to
1567 // allocate an entire unit of the bitfield's declared type
1568 // (e.g. 'unsigned long'), then parcel it up among successive
1569 // bitfields whose declared types have the same size, making a new
1570 // unit as soon as the last can no longer store the whole value.
1571 // Since it completely replaces the platform ABI's algorithm,
1572 // settings like !useBitFieldTypeAlignment() do not apply.
1573
1574 // A zero-width bitfield forces the use of a new storage unit for
1575 // later bitfields. In general, this occurs by rounding up the
1576 // current size of the struct as if the algorithm were about to
1577 // place a non-bitfield of the field's formal type. Usually this
1578 // does not change the alignment of the struct itself, but it does
1579 // on some targets (those that useZeroLengthBitfieldAlignment(),
1580 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1581 // ignored unless they follow a non-zero-width bitfield.
1582
1583 // A field alignment restriction (e.g. from #pragma pack) or
1584 // specification (e.g. from __attribute__((aligned))) changes the
1585 // formal alignment of the field. For System V, this alters the
1586 // required alignment of the notional storage unit that must contain
1587 // the bitfield. For ms_struct, this only affects the placement of
1588 // new storage units. In both cases, the effect of #pragma pack is
1589 // ignored on zero-width bitfields.
1590
1591 // On System V, a packed field (e.g. from #pragma pack or
1592 // __attribute__((packed))) always uses the next available bit
1593 // offset.
1594
1595 // In an ms_struct struct, the alignment of a fundamental type is
1596 // always equal to its size. This is necessary in order to mimic
1597 // the i386 alignment rules on targets which might not fully align
1598 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1599
1600 // First, some simple bookkeeping to perform for ms_struct structs.
1601 if (IsMsStruct) {
1602 // The field alignment for integer types is always the size.
1603 FieldAlign = StorageUnitSize;
1604
1605 // If the previous field was not a bitfield, or was a bitfield
1606 // with a different storage unit size, or if this field doesn't fit into
1607 // the current storage unit, we're done with that storage unit.
1608 if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1609 UnfilledBitsInLastUnit < FieldSize) {
1610 // Also, ignore zero-length bitfields after non-bitfields.
1611 if (!LastBitfieldStorageUnitSize && !FieldSize)
1612 FieldAlign = 1;
1613
1614 UnfilledBitsInLastUnit = 0;
1615 LastBitfieldStorageUnitSize = 0;
1616 }
1617 }
1618
1619 if (isAIXLayout(Context)) {
1620 if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) {
1621 // On AIX, [bool, char, short] bitfields have the same alignment
1622 // as [unsigned].
1623 StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy);
1624 } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) &&
1625 Context.getTargetInfo().getTriple().isArch32Bit() &&
1626 FieldSize <= 32) {
1627 // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1628 // long long bitfield has length no greater than 32 bits.
1629 StorageUnitSize = 32;
1630
1631 if (!AlignIsRequired)
1632 FieldAlign = 32;
1633 }
1634
1635 if (FieldAlign < StorageUnitSize) {
1636 // The bitfield alignment should always be greater than or equal to
1637 // bitcontainer size.
1638 FieldAlign = StorageUnitSize;
1639 }
1640 }
1641
1642 // If the field is wider than its declared type, it follows
1643 // different rules in all cases, except on AIX.
1644 // On AIX, wide bitfield follows the same rules as normal bitfield.
1645 if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) {
1646 LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1647 return;
1648 }
1649
1650 // Compute the next available bit offset.
1651 uint64_t FieldOffset =
1652 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1653
1654 // Handle targets that don't honor bitfield type alignment.
1655 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1656 // Some such targets do honor it on zero-width bitfields.
1657 if (FieldSize == 0 &&
1658 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1659 // Some targets don't honor leading zero-width bitfield.
1660 if (!IsUnion && FieldOffset == 0 &&
1661 !Context.getTargetInfo().useLeadingZeroLengthBitfield())
1662 FieldAlign = 1;
1663 else {
1664 // The alignment to round up to is the max of the field's natural
1665 // alignment and a target-specific fixed value (sometimes zero).
1666 unsigned ZeroLengthBitfieldBoundary =
1667 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1668 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1669 }
1670 // If that doesn't apply, just ignore the field alignment.
1671 } else {
1672 FieldAlign = 1;
1673 }
1674 }
1675
1676 // Remember the alignment we would have used if the field were not packed.
1677 unsigned UnpackedFieldAlign = FieldAlign;
1678
1679 // Ignore the field alignment if the field is packed unless it has zero-size.
1680 if (!IsMsStruct && FieldPacked && FieldSize != 0)
1681 FieldAlign = 1;
1682
1683 // But, if there's an 'aligned' attribute on the field, honor that.
1684 unsigned ExplicitFieldAlign = D->getMaxAlignment();
1685 if (ExplicitFieldAlign) {
1686 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1687 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1688 }
1689
1690 // But, if there's a #pragma pack in play, that takes precedent over
1691 // even the 'aligned' attribute, for non-zero-width bitfields.
1692 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1693 if (!MaxFieldAlignment.isZero() && FieldSize) {
1694 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1695 if (FieldPacked)
1696 FieldAlign = UnpackedFieldAlign;
1697 else
1698 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1699 }
1700
1701 // But, ms_struct just ignores all of that in unions, even explicit
1702 // alignment attributes.
1703 if (IsMsStruct && IsUnion) {
1704 FieldAlign = UnpackedFieldAlign = 1;
1705 }
1706
1707 // For purposes of diagnostics, we're going to simultaneously
1708 // compute the field offsets that we would have used if we weren't
1709 // adding any alignment padding or if the field weren't packed.
1710 uint64_t UnpaddedFieldOffset = FieldOffset;
1711 uint64_t UnpackedFieldOffset = FieldOffset;
1712
1713 // Check if we need to add padding to fit the bitfield within an
1714 // allocation unit with the right size and alignment. The rules are
1715 // somewhat different here for ms_struct structs.
1716 if (IsMsStruct) {
1717 // If it's not a zero-width bitfield, and we can fit the bitfield
1718 // into the active storage unit (and we haven't already decided to
1719 // start a new storage unit), just do so, regardless of any other
1720 // other consideration. Otherwise, round up to the right alignment.
1721 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1722 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1723 UnpackedFieldOffset =
1724 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1725 UnfilledBitsInLastUnit = 0;
1726 }
1727
1728 } else {
1729 // #pragma pack, with any value, suppresses the insertion of padding.
1730 bool AllowPadding = MaxFieldAlignment.isZero();
1731
1732 // Compute the real offset.
1733 if (FieldSize == 0 ||
1734 (AllowPadding &&
1735 (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1736 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1737 } else if (ExplicitFieldAlign &&
1738 (MaxFieldAlignmentInBits == 0 ||
1739 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1740 Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1741 // TODO: figure it out what needs to be done on targets that don't honor
1742 // bit-field type alignment like ARM APCS ABI.
1743 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1744 }
1745
1746 // Repeat the computation for diagnostic purposes.
1747 if (FieldSize == 0 ||
1748 (AllowPadding &&
1749 (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1750 StorageUnitSize))
1751 UnpackedFieldOffset =
1752 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1753 else if (ExplicitFieldAlign &&
1754 (MaxFieldAlignmentInBits == 0 ||
1755 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1756 Context.getTargetInfo().useExplicitBitFieldAlignment())
1757 UnpackedFieldOffset =
1758 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1759 }
1760
1761 // If we're using external layout, give the external layout a chance
1762 // to override this information.
1763 if (UseExternalLayout)
1764 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1765
1766 // Okay, place the bitfield at the calculated offset.
1767 FieldOffsets.push_back(FieldOffset);
1768
1769 // Bookkeeping:
1770
1771 // Anonymous members don't affect the overall record alignment,
1772 // except on targets where they do.
1773 if (!IsMsStruct &&
1774 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1775 !D->getIdentifier())
1776 FieldAlign = UnpackedFieldAlign = 1;
1777
1778 // On AIX, zero-width bitfields pad out to the natural alignment boundary,
1779 // but do not increase the alignment greater than the MaxFieldAlignment, or 1
1780 // if packed.
1781 if (isAIXLayout(Context) && !FieldSize) {
1782 if (FieldPacked)
1783 FieldAlign = 1;
1784 if (!MaxFieldAlignment.isZero()) {
1785 UnpackedFieldAlign =
1786 std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1787 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1788 }
1789 }
1790
1791 // Diagnose differences in layout due to padding or packing.
1792 if (!UseExternalLayout)
1793 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1794 UnpackedFieldAlign, FieldPacked, D);
1795
1796 // Update DataSize to include the last byte containing (part of) the bitfield.
1797
1798 // For unions, this is just a max operation, as usual.
1799 if (IsUnion) {
1800 // For ms_struct, allocate the entire storage unit --- unless this
1801 // is a zero-width bitfield, in which case just use a size of 1.
1802 uint64_t RoundedFieldSize;
1803 if (IsMsStruct) {
1804 RoundedFieldSize = (FieldSize ? StorageUnitSize
1805 : Context.getTargetInfo().getCharWidth());
1806
1807 // Otherwise, allocate just the number of bytes required to store
1808 // the bitfield.
1809 } else {
1810 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1811 }
1812 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1813
1814 // For non-zero-width bitfields in ms_struct structs, allocate a new
1815 // storage unit if necessary.
1816 } else if (IsMsStruct && FieldSize) {
1817 // We should have cleared UnfilledBitsInLastUnit in every case
1818 // where we changed storage units.
1819 if (!UnfilledBitsInLastUnit) {
1820 setDataSize(FieldOffset + StorageUnitSize);
1821 UnfilledBitsInLastUnit = StorageUnitSize;
1822 }
1823 UnfilledBitsInLastUnit -= FieldSize;
1824 LastBitfieldStorageUnitSize = StorageUnitSize;
1825
1826 // Otherwise, bump the data size up to include the bitfield,
1827 // including padding up to char alignment, and then remember how
1828 // bits we didn't use.
1829 } else {
1830 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1831 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1832 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1833 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1834
1835 // The only time we can get here for an ms_struct is if this is a
1836 // zero-width bitfield, which doesn't count as anything for the
1837 // purposes of unfilled bits.
1838 LastBitfieldStorageUnitSize = 0;
1839 }
1840
1841 // Update the size.
1842 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1843
1844 // Remember max struct/class alignment.
1845 UnadjustedAlignment =
1846 std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1847 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1848 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1849}
1850
1851void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1852 bool InsertExtraPadding) {
1853 auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1854 bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1855 bool IsOverlappingEmptyField =
1856 PotentiallyOverlapping && FieldClass->isEmpty();
1857
1858 CharUnits FieldOffset =
1859 (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1860
1861 const bool DefaultsToAIXPowerAlignment =
1862 Context.getTargetInfo().defaultsToAIXPowerAlignment();
1863 bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1864 if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1865 assert(FieldOffset == CharUnits::Zero() &&(static_cast <bool> (FieldOffset == CharUnits::Zero() &&
"The first non-overlapping empty field should have been handled."
) ? void (0) : __assert_fail ("FieldOffset == CharUnits::Zero() && \"The first non-overlapping empty field should have been handled.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1866, __extension__
__PRETTY_FUNCTION__))
1866 "The first non-overlapping empty field should have been handled.")(static_cast <bool> (FieldOffset == CharUnits::Zero() &&
"The first non-overlapping empty field should have been handled."
) ? void (0) : __assert_fail ("FieldOffset == CharUnits::Zero() && \"The first non-overlapping empty field should have been handled.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1866, __extension__
__PRETTY_FUNCTION__))
;
1867
1868 if (!IsOverlappingEmptyField) {
1869 FoundFirstNonOverlappingEmptyFieldForAIX = true;
1870
1871 // We're going to handle the "first member" based on
1872 // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1873 // invocation of this function; record it as handled for future
1874 // invocations (except for unions, because the current field does not
1875 // represent all "firsts").
1876 HandledFirstNonOverlappingEmptyField = !IsUnion;
1877 }
1878 }
1879
1880 if (D->isBitField()) {
1881 LayoutBitField(D);
1882 return;
1883 }
1884
1885 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1886 // Reset the unfilled bits.
1887 UnfilledBitsInLastUnit = 0;
1888 LastBitfieldStorageUnitSize = 0;
1889
1890 llvm::Triple Target = Context.getTargetInfo().getTriple();
1891 bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() ||
1892 Context.getLangOpts().getClangABICompat() <=
1893 LangOptions::ClangABI::Ver13 ||
1894 Target.isPS4() || Target.isOSDarwin())) ||
1895 D->hasAttr<PackedAttr>();
1896
1897 AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1898 CharUnits FieldSize;
1899 CharUnits FieldAlign;
1900 // The amount of this class's dsize occupied by the field.
1901 // This is equal to FieldSize unless we're permitted to pack
1902 // into the field's tail padding.
1903 CharUnits EffectiveFieldSize;
1904
1905 auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1906 auto TI = Context.getTypeInfoInChars(D->getType());
1907 FieldAlign = TI.Align;
1908 // Flexible array members don't have any size, but they have to be
1909 // aligned appropriately for their element type.
1910 EffectiveFieldSize = FieldSize =
1911 IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1912 AlignRequirement = TI.AlignRequirement;
1913 };
1914
1915 if (D->getType()->isIncompleteArrayType()) {
1916 setDeclInfo(true /* IsIncompleteArrayType */);
1917 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1918 unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
1919 EffectiveFieldSize = FieldSize = Context.toCharUnitsFromBits(
1920 Context.getTargetInfo().getPointerWidth(AS));
1921 FieldAlign = Context.toCharUnitsFromBits(
1922 Context.getTargetInfo().getPointerAlign(AS));
1923 } else {
1924 setDeclInfo(false /* IsIncompleteArrayType */);
1925
1926 // A potentially-overlapping field occupies its dsize or nvsize, whichever
1927 // is larger.
1928 if (PotentiallyOverlapping) {
1929 const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1930 EffectiveFieldSize =
1931 std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1932 }
1933
1934 if (IsMsStruct) {
1935 // If MS bitfield layout is required, figure out what type is being
1936 // laid out and align the field to the width of that type.
1937
1938 // Resolve all typedefs down to their base type and round up the field
1939 // alignment if necessary.
1940 QualType T = Context.getBaseElementType(D->getType());
1941 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1942 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1943
1944 if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1945 assert((static_cast <bool> (!Context.getTargetInfo().getTriple
().isWindowsMSVCEnvironment() && "Non PowerOf2 size in MSVC mode"
) ? void (0) : __assert_fail ("!Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && \"Non PowerOf2 size in MSVC mode\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1947, __extension__
__PRETTY_FUNCTION__))
1946 !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&(static_cast <bool> (!Context.getTargetInfo().getTriple
().isWindowsMSVCEnvironment() && "Non PowerOf2 size in MSVC mode"
) ? void (0) : __assert_fail ("!Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && \"Non PowerOf2 size in MSVC mode\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1947, __extension__
__PRETTY_FUNCTION__))
1947 "Non PowerOf2 size in MSVC mode")(static_cast <bool> (!Context.getTargetInfo().getTriple
().isWindowsMSVCEnvironment() && "Non PowerOf2 size in MSVC mode"
) ? void (0) : __assert_fail ("!Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && \"Non PowerOf2 size in MSVC mode\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 1947, __extension__
__PRETTY_FUNCTION__))
;
1948 // Base types with sizes that aren't a power of two don't work
1949 // with the layout rules for MS structs. This isn't an issue in
1950 // MSVC itself since there are no such base data types there.
1951 // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1952 // Any structs involving that data type obviously can't be ABI
1953 // compatible with MSVC regardless of how it is laid out.
1954
1955 // Since ms_struct can be mass enabled (via a pragma or via the
1956 // -mms-bitfields command line parameter), this can trigger for
1957 // structs that don't actually need MSVC compatibility, so we
1958 // need to be able to sidestep the ms_struct layout for these types.
1959
1960 // Since the combination of -mms-bitfields together with structs
1961 // like max_align_t (which contains a long double) for mingw is
1962 // quite common (and GCC handles it silently), just handle it
1963 // silently there. For other targets that have ms_struct enabled
1964 // (most probably via a pragma or attribute), trigger a diagnostic
1965 // that defaults to an error.
1966 if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1967 Diag(D->getLocation(), diag::warn_npot_ms_struct);
1968 }
1969 if (TypeSize > FieldAlign &&
1970 llvm::isPowerOf2_64(TypeSize.getQuantity()))
1971 FieldAlign = TypeSize;
1972 }
1973 }
1974 }
1975
1976 // When used as part of a typedef, or together with a 'packed' attribute, the
1977 // 'aligned' attribute can be used to decrease alignment. In that case, it
1978 // overrides any computed alignment we have, and there is no need to upgrade
1979 // the alignment.
1980 auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] {
1981 // Enum alignment sources can be safely ignored here, because this only
1982 // helps decide whether we need the AIX alignment upgrade, which only
1983 // applies to floating-point types.
1984 return AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
1985 (AlignRequirement == AlignRequirementKind::RequiredByRecord &&
1986 FieldPacked);
1987 };
1988
1989 // The AIX `power` alignment rules apply the natural alignment of the
1990 // "first member" if it is of a floating-point data type (or is an aggregate
1991 // whose recursively "first" member or element is such a type). The alignment
1992 // associated with these types for subsequent members use an alignment value
1993 // where the floating-point data type is considered to have 4-byte alignment.
1994 //
1995 // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1996 // and zero-width bit-fields count as prior members; members of empty class
1997 // types marked `no_unique_address` are not considered to be prior members.
1998 CharUnits PreferredAlign = FieldAlign;
1999 if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() &&
2000 (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
2001 auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
2002 if (BTy->getKind() == BuiltinType::Double ||
2003 BTy->getKind() == BuiltinType::LongDouble) {
2004 assert(PreferredAlign == CharUnits::fromQuantity(4) &&(static_cast <bool> (PreferredAlign == CharUnits::fromQuantity
(4) && "No need to upgrade the alignment value.") ? void
(0) : __assert_fail ("PreferredAlign == CharUnits::fromQuantity(4) && \"No need to upgrade the alignment value.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2005, __extension__
__PRETTY_FUNCTION__))
2005 "No need to upgrade the alignment value.")(static_cast <bool> (PreferredAlign == CharUnits::fromQuantity
(4) && "No need to upgrade the alignment value.") ? void
(0) : __assert_fail ("PreferredAlign == CharUnits::fromQuantity(4) && \"No need to upgrade the alignment value.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2005, __extension__
__PRETTY_FUNCTION__))
;
2006 PreferredAlign = CharUnits::fromQuantity(8);
2007 }
2008 };
2009
2010 const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe();
2011 if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) {
2012 performBuiltinTypeAlignmentUpgrade(
2013 CTy->getElementType()->castAs<BuiltinType>());
2014 } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) {
2015 performBuiltinTypeAlignmentUpgrade(BTy);
2016 } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2017 const RecordDecl *RD = RT->getDecl();
2018 assert(RD && "Expected non-null RecordDecl.")(static_cast <bool> (RD && "Expected non-null RecordDecl."
) ? void (0) : __assert_fail ("RD && \"Expected non-null RecordDecl.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2018, __extension__
__PRETTY_FUNCTION__))
;
2019 const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
2020 PreferredAlign = FieldRecord.getPreferredAlignment();
2021 }
2022 }
2023
2024 // The align if the field is not packed. This is to check if the attribute
2025 // was unnecessary (-Wpacked).
2026 CharUnits UnpackedFieldAlign =
2027 !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2028 CharUnits UnpackedFieldOffset = FieldOffset;
2029 CharUnits OriginalFieldAlign = UnpackedFieldAlign;
2030
2031 if (FieldPacked) {
2032 FieldAlign = CharUnits::One();
2033 PreferredAlign = CharUnits::One();
2034 }
2035 CharUnits MaxAlignmentInChars =
2036 Context.toCharUnitsFromBits(D->getMaxAlignment());
2037 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
2038 PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
2039 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2040
2041 // The maximum field alignment overrides the aligned attribute.
2042 if (!MaxFieldAlignment.isZero()) {
2043 FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
2044 PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
2045 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2046 }
2047
2048 CharUnits AlignTo =
2049 !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2050 // Round up the current record size to the field's alignment boundary.
2051 FieldOffset = FieldOffset.alignTo(AlignTo);
2052 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
2053
2054 if (UseExternalLayout) {
2055 FieldOffset = Context.toCharUnitsFromBits(
2056 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2057
2058 if (!IsUnion && EmptySubobjects) {
2059 // Record the fact that we're placing a field at this offset.
2060 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2061 (void)Allowed;
2062 assert(Allowed && "Externally-placed field cannot be placed here")(static_cast <bool> (Allowed && "Externally-placed field cannot be placed here"
) ? void (0) : __assert_fail ("Allowed && \"Externally-placed field cannot be placed here\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2062, __extension__
__PRETTY_FUNCTION__))
;
2063 }
2064 } else {
2065 if (!IsUnion && EmptySubobjects) {
2066 // Check if we can place the field at this offset.
2067 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2068 // We couldn't place the field at the offset. Try again at a new offset.
2069 // We try offset 0 (for an empty field) and then dsize(C) onwards.
2070 if (FieldOffset == CharUnits::Zero() &&
2071 getDataSize() != CharUnits::Zero())
2072 FieldOffset = getDataSize().alignTo(AlignTo);
2073 else
2074 FieldOffset += AlignTo;
2075 }
2076 }
2077 }
2078
2079 // Place this field at the current location.
2080 FieldOffsets.push_back(Context.toBits(FieldOffset));
2081
2082 if (!UseExternalLayout)
2083 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2084 Context.toBits(UnpackedFieldOffset),
2085 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2086
2087 if (InsertExtraPadding) {
2088 CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2089 CharUnits ExtraSizeForAsan = ASanAlignment;
2090 if (FieldSize % ASanAlignment)
2091 ExtraSizeForAsan +=
2092 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2093 EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2094 }
2095
2096 // Reserve space for this field.
2097 if (!IsOverlappingEmptyField) {
2098 uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2099 if (IsUnion)
2100 setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2101 else
2102 setDataSize(FieldOffset + EffectiveFieldSize);
2103
2104 PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2105 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2106 } else {
2107 setSize(std::max(getSizeInBits(),
2108 (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2109 }
2110
2111 // Remember max struct/class ABI-specified alignment.
2112 UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2113 UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2114
2115 // For checking the alignment of inner fields against
2116 // the alignment of its parent record.
2117 if (const RecordDecl *RD = D->getParent()) {
2118 // Check if packed attribute or pragma pack is present.
2119 if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero())
2120 if (FieldAlign < OriginalFieldAlign)
2121 if (D->getType()->isRecordType()) {
2122 // If the offset is a multiple of the alignment of
2123 // the type, raise the warning.
2124 // TODO: Takes no account the alignment of the outer struct
2125 if (FieldOffset % OriginalFieldAlign != 0)
2126 Diag(D->getLocation(), diag::warn_unaligned_access)
2127 << Context.getTypeDeclType(RD) << D->getName() << D->getType();
2128 }
2129 }
2130}
2131
2132void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2133 // In C++, records cannot be of size 0.
2134 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2135 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2136 // Compatibility with gcc requires a class (pod or non-pod)
2137 // which is not empty but of size 0; such as having fields of
2138 // array of zero-length, remains of Size 0
2139 if (RD->isEmpty())
2140 setSize(CharUnits::One());
2141 }
2142 else
2143 setSize(CharUnits::One());
2144 }
2145
2146 // If we have any remaining field tail padding, include that in the overall
2147 // size.
2148 setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2149
2150 // Finally, round the size of the record up to the alignment of the
2151 // record itself.
2152 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2153 uint64_t UnpackedSizeInBits =
2154 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2155
2156 uint64_t RoundedSize = llvm::alignTo(
2157 getSizeInBits(),
2158 Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2159 ? Alignment
2160 : PreferredAlignment));
2161
2162 if (UseExternalLayout) {
2163 // If we're inferring alignment, and the external size is smaller than
2164 // our size after we've rounded up to alignment, conservatively set the
2165 // alignment to 1.
2166 if (InferAlignment && External.Size < RoundedSize) {
2167 Alignment = CharUnits::One();
2168 PreferredAlignment = CharUnits::One();
2169 InferAlignment = false;
2170 }
2171 setSize(External.Size);
2172 return;
2173 }
2174
2175 // Set the size to the final size.
2176 setSize(RoundedSize);
2177
2178 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2179 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2180 // Warn if padding was introduced to the struct/class/union.
2181 if (getSizeInBits() > UnpaddedSize) {
2182 unsigned PadSize = getSizeInBits() - UnpaddedSize;
2183 bool InBits = true;
2184 if (PadSize % CharBitNum == 0) {
2185 PadSize = PadSize / CharBitNum;
2186 InBits = false;
2187 }
2188 Diag(RD->getLocation(), diag::warn_padded_struct_size)
2189 << Context.getTypeDeclType(RD)
2190 << PadSize
2191 << (InBits ? 1 : 0); // (byte|bit)
2192 }
2193
2194 // Warn if we packed it unnecessarily, when the unpacked alignment is not
2195 // greater than the one after packing, the size in bits doesn't change and
2196 // the offset of each field is identical.
2197 if (Packed && UnpackedAlignment <= Alignment &&
2198 UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
2199 Diag(D->getLocation(), diag::warn_unnecessary_packed)
2200 << Context.getTypeDeclType(RD);
2201 }
2202}
2203
2204void ItaniumRecordLayoutBuilder::UpdateAlignment(
2205 CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2206 CharUnits PreferredNewAlignment) {
2207 // The alignment is not modified when using 'mac68k' alignment or when
2208 // we have an externally-supplied layout that also provides overall alignment.
2209 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2210 return;
2211
2212 if (NewAlignment > Alignment) {
2213 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&(static_cast <bool> (llvm::isPowerOf2_64(NewAlignment.getQuantity
()) && "Alignment not a power of 2") ? void (0) : __assert_fail
("llvm::isPowerOf2_64(NewAlignment.getQuantity()) && \"Alignment not a power of 2\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2214, __extension__
__PRETTY_FUNCTION__))
2214 "Alignment not a power of 2")(static_cast <bool> (llvm::isPowerOf2_64(NewAlignment.getQuantity
()) && "Alignment not a power of 2") ? void (0) : __assert_fail
("llvm::isPowerOf2_64(NewAlignment.getQuantity()) && \"Alignment not a power of 2\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2214, __extension__
__PRETTY_FUNCTION__))
;
2215 Alignment = NewAlignment;
2216 }
2217
2218 if (UnpackedNewAlignment > UnpackedAlignment) {
2219 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&(static_cast <bool> (llvm::isPowerOf2_64(UnpackedNewAlignment
.getQuantity()) && "Alignment not a power of 2") ? void
(0) : __assert_fail ("llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && \"Alignment not a power of 2\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2220, __extension__
__PRETTY_FUNCTION__))
2220 "Alignment not a power of 2")(static_cast <bool> (llvm::isPowerOf2_64(UnpackedNewAlignment
.getQuantity()) && "Alignment not a power of 2") ? void
(0) : __assert_fail ("llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && \"Alignment not a power of 2\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2220, __extension__
__PRETTY_FUNCTION__))
;
2221 UnpackedAlignment = UnpackedNewAlignment;
2222 }
2223
2224 if (PreferredNewAlignment > PreferredAlignment) {
2225 assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&(static_cast <bool> (llvm::isPowerOf2_64(PreferredNewAlignment
.getQuantity()) && "Alignment not a power of 2") ? void
(0) : __assert_fail ("llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && \"Alignment not a power of 2\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2226, __extension__
__PRETTY_FUNCTION__))
2226 "Alignment not a power of 2")(static_cast <bool> (llvm::isPowerOf2_64(PreferredNewAlignment
.getQuantity()) && "Alignment not a power of 2") ? void
(0) : __assert_fail ("llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && \"Alignment not a power of 2\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2226, __extension__
__PRETTY_FUNCTION__))
;
2227 PreferredAlignment = PreferredNewAlignment;
2228 }
2229}
2230
2231uint64_t
2232ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2233 uint64_t ComputedOffset) {
2234 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2235
2236 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2237 // The externally-supplied field offset is before the field offset we
2238 // computed. Assume that the structure is packed.
2239 Alignment = CharUnits::One();
2240 PreferredAlignment = CharUnits::One();
2241 InferAlignment = false;
2242 }
2243
2244 // Use the externally-supplied field offset.
2245 return ExternalFieldOffset;
2246}
2247
2248/// Get diagnostic %select index for tag kind for
2249/// field padding diagnostic message.
2250/// WARNING: Indexes apply to particular diagnostics only!
2251///
2252/// \returns diagnostic %select index.
2253static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2254 switch (Tag) {
2255 case TTK_Struct: return 0;
2256 case TTK_Interface: return 1;
2257 case TTK_Class: return 2;
2258 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for field padding diagnostic!"
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2258)
;
2259 }
2260}
2261
2262void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2263 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2264 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2265 // We let objc ivars without warning, objc interfaces generally are not used
2266 // for padding tricks.
2267 if (isa<ObjCIvarDecl>(D))
2268 return;
2269
2270 // Don't warn about structs created without a SourceLocation. This can
2271 // be done by clients of the AST, such as codegen.
2272 if (D->getLocation().isInvalid())
2273 return;
2274
2275 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2276
2277 // Warn if padding was introduced to the struct/class.
2278 if (!IsUnion && Offset > UnpaddedOffset) {
2279 unsigned PadSize = Offset - UnpaddedOffset;
2280 bool InBits = true;
2281 if (PadSize % CharBitNum == 0) {
2282 PadSize = PadSize / CharBitNum;
2283 InBits = false;
2284 }
2285 if (D->getIdentifier())
2286 Diag(D->getLocation(), diag::warn_padded_struct_field)
2287 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2288 << Context.getTypeDeclType(D->getParent())
2289 << PadSize
2290 << (InBits ? 1 : 0) // (byte|bit)
2291 << D->getIdentifier();
2292 else
2293 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2294 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2295 << Context.getTypeDeclType(D->getParent())
2296 << PadSize
2297 << (InBits ? 1 : 0); // (byte|bit)
2298 }
2299 if (isPacked && Offset != UnpackedOffset) {
2300 HasPackedField = true;
2301 }
2302}
2303
2304static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2305 const CXXRecordDecl *RD) {
2306 // If a class isn't polymorphic it doesn't have a key function.
2307 if (!RD->isPolymorphic())
2308 return nullptr;
2309
2310 // A class that is not externally visible doesn't have a key function. (Or
2311 // at least, there's no point to assigning a key function to such a class;
2312 // this doesn't affect the ABI.)
2313 if (!RD->isExternallyVisible())
2314 return nullptr;
2315
2316 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2317 // Same behavior as GCC.
2318 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2319 if (TSK == TSK_ImplicitInstantiation ||
2320 TSK == TSK_ExplicitInstantiationDeclaration ||
2321 TSK == TSK_ExplicitInstantiationDefinition)
2322 return nullptr;
2323
2324 bool allowInlineFunctions =
2325 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2326
2327 for (const CXXMethodDecl *MD : RD->methods()) {
2328 if (!MD->isVirtual())
2329 continue;
2330
2331 if (MD->isPure())
2332 continue;
2333
2334 // Ignore implicit member functions, they are always marked as inline, but
2335 // they don't have a body until they're defined.
2336 if (MD->isImplicit())
2337 continue;
2338
2339 if (MD->isInlineSpecified() || MD->isConstexpr())
2340 continue;
2341
2342 if (MD->hasInlineBody())
2343 continue;
2344
2345 // Ignore inline deleted or defaulted functions.
2346 if (!MD->isUserProvided())
2347 continue;
2348
2349 // In certain ABIs, ignore functions with out-of-line inline definitions.
2350 if (!allowInlineFunctions) {
2351 const FunctionDecl *Def;
2352 if (MD->hasBody(Def) && Def->isInlineSpecified())
2353 continue;
2354 }
2355
2356 if (Context.getLangOpts().CUDA) {
2357 // While compiler may see key method in this TU, during CUDA
2358 // compilation we should ignore methods that are not accessible
2359 // on this side of compilation.
2360 if (Context.getLangOpts().CUDAIsDevice) {
2361 // In device mode ignore methods without __device__ attribute.
2362 if (!MD->hasAttr<CUDADeviceAttr>())
2363 continue;
2364 } else {
2365 // In host mode ignore __device__-only methods.
2366 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2367 continue;
2368 }
2369 }
2370
2371 // If the key function is dllimport but the class isn't, then the class has
2372 // no key function. The DLL that exports the key function won't export the
2373 // vtable in this case.
2374 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() &&
2375 !Context.getTargetInfo().hasPS4DLLImportExport())
2376 return nullptr;
2377
2378 // We found it.
2379 return MD;
2380 }
2381
2382 return nullptr;
2383}
2384
2385DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2386 unsigned DiagID) {
2387 return Context.getDiagnostics().Report(Loc, DiagID);
2388}
2389
2390/// Does the target C++ ABI require us to skip over the tail-padding
2391/// of the given class (considering it as a base class) when allocating
2392/// objects?
2393static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2394 switch (ABI.getTailPaddingUseRules()) {
2395 case TargetCXXABI::AlwaysUseTailPadding:
2396 return false;
2397
2398 case TargetCXXABI::UseTailPaddingUnlessPOD03:
2399 // FIXME: To the extent that this is meant to cover the Itanium ABI
2400 // rules, we should implement the restrictions about over-sized
2401 // bitfields:
2402 //
2403 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2404 // In general, a type is considered a POD for the purposes of
2405 // layout if it is a POD type (in the sense of ISO C++
2406 // [basic.types]). However, a POD-struct or POD-union (in the
2407 // sense of ISO C++ [class]) with a bitfield member whose
2408 // declared width is wider than the declared type of the
2409 // bitfield is not a POD for the purpose of layout. Similarly,
2410 // an array type is not a POD for the purpose of layout if the
2411 // element type of the array is not a POD for the purpose of
2412 // layout.
2413 //
2414 // Where references to the ISO C++ are made in this paragraph,
2415 // the Technical Corrigendum 1 version of the standard is
2416 // intended.
2417 return RD->isPOD();
2418
2419 case TargetCXXABI::UseTailPaddingUnlessPOD11:
2420 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2421 // but with a lot of abstraction penalty stripped off. This does
2422 // assume that these properties are set correctly even in C++98
2423 // mode; fortunately, that is true because we want to assign
2424 // consistently semantics to the type-traits intrinsics (or at
2425 // least as many of them as possible).
2426 return RD->isTrivial() && RD->isCXX11StandardLayout();
2427 }
2428
2429 llvm_unreachable("bad tail-padding use kind")::llvm::llvm_unreachable_internal("bad tail-padding use kind"
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2429)
;
2430}
2431
2432static bool isMsLayout(const ASTContext &Context) {
2433 return Context.getTargetInfo().getCXXABI().isMicrosoft();
2434}
2435
2436// This section contains an implementation of struct layout that is, up to the
2437// included tests, compatible with cl.exe (2013). The layout produced is
2438// significantly different than those produced by the Itanium ABI. Here we note
2439// the most important differences.
2440//
2441// * The alignment of bitfields in unions is ignored when computing the
2442// alignment of the union.
2443// * The existence of zero-width bitfield that occurs after anything other than
2444// a non-zero length bitfield is ignored.
2445// * There is no explicit primary base for the purposes of layout. All bases
2446// with vfptrs are laid out first, followed by all bases without vfptrs.
2447// * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2448// function pointer) and a vbptr (virtual base pointer). They can each be
2449// shared with a, non-virtual bases. These bases need not be the same. vfptrs
2450// always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2451// placed after the lexicographically last non-virtual base. This placement
2452// is always before fields but can be in the middle of the non-virtual bases
2453// due to the two-pass layout scheme for non-virtual-bases.
2454// * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2455// the virtual base and is used in conjunction with virtual overrides during
2456// construction and destruction. This is always a 4 byte value and is used as
2457// an alternative to constructor vtables.
2458// * vtordisps are allocated in a block of memory with size and alignment equal
2459// to the alignment of the completed structure (before applying __declspec(
2460// align())). The vtordisp always occur at the end of the allocation block,
2461// immediately prior to the virtual base.
2462// * vfptrs are injected after all bases and fields have been laid out. In
2463// order to guarantee proper alignment of all fields, the vfptr injection
2464// pushes all bases and fields back by the alignment imposed by those bases
2465// and fields. This can potentially add a significant amount of padding.
2466// vfptrs are always injected at offset 0.
2467// * vbptrs are injected after all bases and fields have been laid out. In
2468// order to guarantee proper alignment of all fields, the vfptr injection
2469// pushes all bases and fields back by the alignment imposed by those bases
2470// and fields. This can potentially add a significant amount of padding.
2471// vbptrs are injected immediately after the last non-virtual base as
2472// lexicographically ordered in the code. If this site isn't pointer aligned
2473// the vbptr is placed at the next properly aligned location. Enough padding
2474// is added to guarantee a fit.
2475// * The last zero sized non-virtual base can be placed at the end of the
2476// struct (potentially aliasing another object), or may alias with the first
2477// field, even if they are of the same type.
2478// * The last zero size virtual base may be placed at the end of the struct
2479// potentially aliasing another object.
2480// * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2481// between bases or vbases with specific properties. The criteria for
2482// additional padding between two bases is that the first base is zero sized
2483// or ends with a zero sized subobject and the second base is zero sized or
2484// trails with a zero sized base or field (sharing of vfptrs can reorder the
2485// layout of the so the leading base is not always the first one declared).
2486// This rule does take into account fields that are not records, so padding
2487// will occur even if the last field is, e.g. an int. The padding added for
2488// bases is 1 byte. The padding added between vbases depends on the alignment
2489// of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2490// * There is no concept of non-virtual alignment, non-virtual alignment and
2491// alignment are always identical.
2492// * There is a distinction between alignment and required alignment.
2493// __declspec(align) changes the required alignment of a struct. This
2494// alignment is _always_ obeyed, even in the presence of #pragma pack. A
2495// record inherits required alignment from all of its fields and bases.
2496// * __declspec(align) on bitfields has the effect of changing the bitfield's
2497// alignment instead of its required alignment. This is the only known way
2498// to make the alignment of a struct bigger than 8. Interestingly enough
2499// this alignment is also immune to the effects of #pragma pack and can be
2500// used to create structures with large alignment under #pragma pack.
2501// However, because it does not impact required alignment, such a structure,
2502// when used as a field or base, will not be aligned if #pragma pack is
2503// still active at the time of use.
2504//
2505// Known incompatibilities:
2506// * all: #pragma pack between fields in a record
2507// * 2010 and back: If the last field in a record is a bitfield, every object
2508// laid out after the record will have extra padding inserted before it. The
2509// extra padding will have size equal to the size of the storage class of the
2510// bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2511// padding can be avoided by adding a 0 sized bitfield after the non-zero-
2512// sized bitfield.
2513// * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2514// greater due to __declspec(align()) then a second layout phase occurs after
2515// The locations of the vf and vb pointers are known. This layout phase
2516// suffers from the "last field is a bitfield" bug in 2010 and results in
2517// _every_ field getting padding put in front of it, potentially including the
2518// vfptr, leaving the vfprt at a non-zero location which results in a fault if
2519// anything tries to read the vftbl. The second layout phase also treats
2520// bitfields as separate entities and gives them each storage rather than
2521// packing them. Additionally, because this phase appears to perform a
2522// (an unstable) sort on the members before laying them out and because merged
2523// bitfields have the same address, the bitfields end up in whatever order
2524// the sort left them in, a behavior we could never hope to replicate.
2525
2526namespace {
2527struct MicrosoftRecordLayoutBuilder {
2528 struct ElementInfo {
2529 CharUnits Size;
2530 CharUnits Alignment;
2531 };
2532 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2533 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2534private:
2535 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2536 void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2537public:
2538 void layout(const RecordDecl *RD);
2539 void cxxLayout(const CXXRecordDecl *RD);
2540 /// Initializes size and alignment and honors some flags.
2541 void initializeLayout(const RecordDecl *RD);
2542 /// Initialized C++ layout, compute alignment and virtual alignment and
2543 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2544 /// laid out.
2545 void initializeCXXLayout(const CXXRecordDecl *RD);
2546 void layoutNonVirtualBases(const CXXRecordDecl *RD);
2547 void layoutNonVirtualBase(const CXXRecordDecl *RD,
2548 const CXXRecordDecl *BaseDecl,
2549 const ASTRecordLayout &BaseLayout,
2550 const ASTRecordLayout *&PreviousBaseLayout);
2551 void injectVFPtr(const CXXRecordDecl *RD);
2552 void injectVBPtr(const CXXRecordDecl *RD);
2553 /// Lays out the fields of the record. Also rounds size up to
2554 /// alignment.
2555 void layoutFields(const RecordDecl *RD);
2556 void layoutField(const FieldDecl *FD);
2557 void layoutBitField(const FieldDecl *FD);
2558 /// Lays out a single zero-width bit-field in the record and handles
2559 /// special cases associated with zero-width bit-fields.
2560 void layoutZeroWidthBitField(const FieldDecl *FD);
2561 void layoutVirtualBases(const CXXRecordDecl *RD);
2562 void finalizeLayout(const RecordDecl *RD);
2563 /// Gets the size and alignment of a base taking pragma pack and
2564 /// __declspec(align) into account.
2565 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2566 /// Gets the size and alignment of a field taking pragma pack and
2567 /// __declspec(align) into account. It also updates RequiredAlignment as a
2568 /// side effect because it is most convenient to do so here.
2569 ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2570 /// Places a field at an offset in CharUnits.
2571 void placeFieldAtOffset(CharUnits FieldOffset) {
2572 FieldOffsets.push_back(Context.toBits(FieldOffset));
2573 }
2574 /// Places a bitfield at a bit offset.
2575 void placeFieldAtBitOffset(uint64_t FieldOffset) {
2576 FieldOffsets.push_back(FieldOffset);
2577 }
2578 /// Compute the set of virtual bases for which vtordisps are required.
2579 void computeVtorDispSet(
2580 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2581 const CXXRecordDecl *RD) const;
2582 const ASTContext &Context;
2583 /// The size of the record being laid out.
2584 CharUnits Size;
2585 /// The non-virtual size of the record layout.
2586 CharUnits NonVirtualSize;
2587 /// The data size of the record layout.
2588 CharUnits DataSize;
2589 /// The current alignment of the record layout.
2590 CharUnits Alignment;
2591 /// The maximum allowed field alignment. This is set by #pragma pack.
2592 CharUnits MaxFieldAlignment;
2593 /// The alignment that this record must obey. This is imposed by
2594 /// __declspec(align()) on the record itself or one of its fields or bases.
2595 CharUnits RequiredAlignment;
2596 /// The size of the allocation of the currently active bitfield.
2597 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2598 /// is true.
2599 CharUnits CurrentBitfieldSize;
2600 /// Offset to the virtual base table pointer (if one exists).
2601 CharUnits VBPtrOffset;
2602 /// Minimum record size possible.
2603 CharUnits MinEmptyStructSize;
2604 /// The size and alignment info of a pointer.
2605 ElementInfo PointerInfo;
2606 /// The primary base class (if one exists).
2607 const CXXRecordDecl *PrimaryBase;
2608 /// The class we share our vb-pointer with.
2609 const CXXRecordDecl *SharedVBPtrBase;
2610 /// The collection of field offsets.
2611 SmallVector<uint64_t, 16> FieldOffsets;
2612 /// Base classes and their offsets in the record.
2613 BaseOffsetsMapTy Bases;
2614 /// virtual base classes and their offsets in the record.
2615 ASTRecordLayout::VBaseOffsetsMapTy VBases;
2616 /// The number of remaining bits in our last bitfield allocation.
2617 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2618 /// true.
2619 unsigned RemainingBitsInField;
2620 bool IsUnion : 1;
2621 /// True if the last field laid out was a bitfield and was not 0
2622 /// width.
2623 bool LastFieldIsNonZeroWidthBitfield : 1;
2624 /// True if the class has its own vftable pointer.
2625 bool HasOwnVFPtr : 1;
2626 /// True if the class has a vbtable pointer.
2627 bool HasVBPtr : 1;
2628 /// True if the last sub-object within the type is zero sized or the
2629 /// object itself is zero sized. This *does not* count members that are not
2630 /// records. Only used for MS-ABI.
2631 bool EndsWithZeroSizedObject : 1;
2632 /// True if this class is zero sized or first base is zero sized or
2633 /// has this property. Only used for MS-ABI.
2634 bool LeadsWithZeroSizedBase : 1;
2635
2636 /// True if the external AST source provided a layout for this record.
2637 bool UseExternalLayout : 1;
2638
2639 /// The layout provided by the external AST source. Only active if
2640 /// UseExternalLayout is true.
2641 ExternalLayout External;
2642};
2643} // namespace
2644
2645MicrosoftRecordLayoutBuilder::ElementInfo
2646MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2647 const ASTRecordLayout &Layout) {
2648 ElementInfo Info;
2649 Info.Alignment = Layout.getAlignment();
2650 // Respect pragma pack.
2651 if (!MaxFieldAlignment.isZero())
2652 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2653 // Track zero-sized subobjects here where it's already available.
2654 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2655 // Respect required alignment, this is necessary because we may have adjusted
2656 // the alignment in the case of pragma pack. Note that the required alignment
2657 // doesn't actually apply to the struct alignment at this point.
2658 Alignment = std::max(Alignment, Info.Alignment);
2659 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2660 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2661 Info.Size = Layout.getNonVirtualSize();
2662 return Info;
2663}
2664
2665MicrosoftRecordLayoutBuilder::ElementInfo
2666MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2667 const FieldDecl *FD) {
2668 // Get the alignment of the field type's natural alignment, ignore any
2669 // alignment attributes.
2670 auto TInfo =
2671 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2672 ElementInfo Info{TInfo.Width, TInfo.Align};
2673 // Respect align attributes on the field.
2674 CharUnits FieldRequiredAlignment =
2675 Context.toCharUnitsFromBits(FD->getMaxAlignment());
2676 // Respect align attributes on the type.
2677 if (Context.isAlignmentRequired(FD->getType()))
2678 FieldRequiredAlignment = std::max(
2679 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2680 // Respect attributes applied to subobjects of the field.
2681 if (FD->isBitField())
2682 // For some reason __declspec align impacts alignment rather than required
2683 // alignment when it is applied to bitfields.
2684 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2685 else {
2686 if (auto RT =
2687 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2688 auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2689 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2690 FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2691 Layout.getRequiredAlignment());
2692 }
2693 // Capture required alignment as a side-effect.
2694 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2695 }
2696 // Respect pragma pack, attribute pack and declspec align
2697 if (!MaxFieldAlignment.isZero())
2698 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2699 if (FD->hasAttr<PackedAttr>())
2700 Info.Alignment = CharUnits::One();
2701 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2702 return Info;
2703}
2704
2705void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2706 // For C record layout, zero-sized records always have size 4.
2707 MinEmptyStructSize = CharUnits::fromQuantity(4);
2708 initializeLayout(RD);
2709 layoutFields(RD);
2710 DataSize = Size = Size.alignTo(Alignment);
2711 RequiredAlignment = std::max(
2712 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2713 finalizeLayout(RD);
2714}
2715
2716void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2717 // The C++ standard says that empty structs have size 1.
2718 MinEmptyStructSize = CharUnits::One();
2719 initializeLayout(RD);
2720 initializeCXXLayout(RD);
2721 layoutNonVirtualBases(RD);
2722 layoutFields(RD);
2723 injectVBPtr(RD);
2724 injectVFPtr(RD);
2725 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2726 Alignment = std::max(Alignment, PointerInfo.Alignment);
2727 auto RoundingAlignment = Alignment;
2728 if (!MaxFieldAlignment.isZero())
2729 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2730 if (!UseExternalLayout)
2731 Size = Size.alignTo(RoundingAlignment);
2732 NonVirtualSize = Size;
2733 RequiredAlignment = std::max(
2734 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2735 layoutVirtualBases(RD);
2736 finalizeLayout(RD);
2737}
2738
2739void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2740 IsUnion = RD->isUnion();
2741 Size = CharUnits::Zero();
2742 Alignment = CharUnits::One();
2743 // In 64-bit mode we always perform an alignment step after laying out vbases.
2744 // In 32-bit mode we do not. The check to see if we need to perform alignment
2745 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2746 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2747 ? CharUnits::One()
2748 : CharUnits::Zero();
2749 // Compute the maximum field alignment.
2750 MaxFieldAlignment = CharUnits::Zero();
2751 // Honor the default struct packing maximum alignment flag.
2752 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2753 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2754 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2755 // than the pointer size.
2756 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2757 unsigned PackedAlignment = MFAA->getAlignment();
2758 if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2759 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2760 }
2761 // Packed attribute forces max field alignment to be 1.
2762 if (RD->hasAttr<PackedAttr>())
2763 MaxFieldAlignment = CharUnits::One();
2764
2765 // Try to respect the external layout if present.
2766 UseExternalLayout = false;
2767 if (ExternalASTSource *Source = Context.getExternalSource())
2768 UseExternalLayout = Source->layoutRecordType(
2769 RD, External.Size, External.Align, External.FieldOffsets,
2770 External.BaseOffsets, External.VirtualBaseOffsets);
2771}
2772
2773void
2774MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2775 EndsWithZeroSizedObject = false;
2776 LeadsWithZeroSizedBase = false;
2777 HasOwnVFPtr = false;
2778 HasVBPtr = false;
2779 PrimaryBase = nullptr;
2780 SharedVBPtrBase = nullptr;
2781 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2782 // injection.
2783 PointerInfo.Size =
2784 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2785 PointerInfo.Alignment =
2786 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2787 // Respect pragma pack.
2788 if (!MaxFieldAlignment.isZero())
2789 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2790}
2791
2792void
2793MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2794 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2795 // out any bases that do not contain vfptrs. We implement this as two passes
2796 // over the bases. This approach guarantees that the primary base is laid out
2797 // first. We use these passes to calculate some additional aggregated
2798 // information about the bases, such as required alignment and the presence of
2799 // zero sized members.
2800 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2801 bool HasPolymorphicBaseClass = false;
2802 // Iterate through the bases and lay out the non-virtual ones.
2803 for (const CXXBaseSpecifier &Base : RD->bases()) {
2804 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2805 HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2806 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2807 // Mark and skip virtual bases.
2808 if (Base.isVirtual()) {
2809 HasVBPtr = true;
2810 continue;
2811 }
2812 // Check for a base to share a VBPtr with.
2813 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2814 SharedVBPtrBase = BaseDecl;
2815 HasVBPtr = true;
2816 }
2817 // Only lay out bases with extendable VFPtrs on the first pass.
2818 if (!BaseLayout.hasExtendableVFPtr())
2819 continue;
2820 // If we don't have a primary base, this one qualifies.
2821 if (!PrimaryBase) {
2822 PrimaryBase = BaseDecl;
2823 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2824 }
2825 // Lay out the base.
2826 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2827 }
2828 // Figure out if we need a fresh VFPtr for this class.
2829 if (RD->isPolymorphic()) {
2830 if (!HasPolymorphicBaseClass)
2831 // This class introduces polymorphism, so we need a vftable to store the
2832 // RTTI information.
2833 HasOwnVFPtr = true;
2834 else if (!PrimaryBase) {
2835 // We have a polymorphic base class but can't extend its vftable. Add a
2836 // new vfptr if we would use any vftable slots.
2837 for (CXXMethodDecl *M : RD->methods()) {
2838 if (MicrosoftVTableContext::hasVtableSlot(M) &&
2839 M->size_overridden_methods() == 0) {
2840 HasOwnVFPtr = true;
2841 break;
2842 }
2843 }
2844 }
2845 }
2846 // If we don't have a primary base then we have a leading object that could
2847 // itself lead with a zero-sized object, something we track.
2848 bool CheckLeadingLayout = !PrimaryBase;
2849 // Iterate through the bases and lay out the non-virtual ones.
2850 for (const CXXBaseSpecifier &Base : RD->bases()) {
2851 if (Base.isVirtual())
2852 continue;
2853 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2854 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2855 // Only lay out bases without extendable VFPtrs on the second pass.
2856 if (BaseLayout.hasExtendableVFPtr()) {
2857 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2858 continue;
2859 }
2860 // If this is the first layout, check to see if it leads with a zero sized
2861 // object. If it does, so do we.
2862 if (CheckLeadingLayout) {
2863 CheckLeadingLayout = false;
2864 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2865 }
2866 // Lay out the base.
2867 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2868 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2869 }
2870 // Set our VBPtroffset if we know it at this point.
2871 if (!HasVBPtr)
2872 VBPtrOffset = CharUnits::fromQuantity(-1);
2873 else if (SharedVBPtrBase) {
2874 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2875 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2876 }
2877}
2878
2879static bool recordUsesEBO(const RecordDecl *RD) {
2880 if (!isa<CXXRecordDecl>(RD))
2881 return false;
2882 if (RD->hasAttr<EmptyBasesAttr>())
2883 return true;
2884 if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2885 // TODO: Double check with the next version of MSVC.
2886 if (LVA->getVersion() <= LangOptions::MSVC2015)
2887 return false;
2888 // TODO: Some later version of MSVC will change the default behavior of the
2889 // compiler to enable EBO by default. When this happens, we will need an
2890 // additional isCompatibleWithMSVC check.
2891 return false;
2892}
2893
2894void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2895 const CXXRecordDecl *RD,
2896 const CXXRecordDecl *BaseDecl,
2897 const ASTRecordLayout &BaseLayout,
2898 const ASTRecordLayout *&PreviousBaseLayout) {
2899 // Insert padding between two bases if the left first one is zero sized or
2900 // contains a zero sized subobject and the right is zero sized or one leads
2901 // with a zero sized base.
2902 bool MDCUsesEBO = recordUsesEBO(RD);
2903 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2904 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2905 Size++;
2906 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2907 CharUnits BaseOffset;
2908
2909 // Respect the external AST source base offset, if present.
2910 bool FoundBase = false;
2911 if (UseExternalLayout) {
2912 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2913 if (FoundBase) {
2914 assert(BaseOffset >= Size && "base offset already allocated")(static_cast <bool> (BaseOffset >= Size && "base offset already allocated"
) ? void (0) : __assert_fail ("BaseOffset >= Size && \"base offset already allocated\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2914, __extension__
__PRETTY_FUNCTION__))
;
2915 Size = BaseOffset;
2916 }
2917 }
2918
2919 if (!FoundBase) {
2920 if (MDCUsesEBO && BaseDecl->isEmpty()) {
2921 assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero())(static_cast <bool> (BaseLayout.getNonVirtualSize() == CharUnits
::Zero()) ? void (0) : __assert_fail ("BaseLayout.getNonVirtualSize() == CharUnits::Zero()"
, "clang/lib/AST/RecordLayoutBuilder.cpp", 2921, __extension__
__PRETTY_FUNCTION__))
;
2922 BaseOffset = CharUnits::Zero();
2923 } else {
2924 // Otherwise, lay the base out at the end of the MDC.
2925 BaseOffset = Size = Size.alignTo(Info.Alignment);
2926 }
2927 }
2928 Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2929 Size += BaseLayout.getNonVirtualSize();
2930 PreviousBaseLayout = &BaseLayout;
2931}
2932
2933void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2934 LastFieldIsNonZeroWidthBitfield = false;
2935 for (const FieldDecl *Field : RD->fields())
2936 layoutField(Field);
2937}
2938
2939void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2940 if (FD->isBitField()) {
2941 layoutBitField(FD);
2942 return;
2943 }
2944 LastFieldIsNonZeroWidthBitfield = false;
2945 ElementInfo Info = getAdjustedElementInfo(FD);
2946 Alignment = std::max(Alignment, Info.Alignment);
2947 CharUnits FieldOffset;
2948 if (UseExternalLayout)
2949 FieldOffset =
2950 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2951 else if (IsUnion)
2952 FieldOffset = CharUnits::Zero();
2953 else
2954 FieldOffset = Size.alignTo(Info.Alignment);
2955 placeFieldAtOffset(FieldOffset);
2956 Size = std::max(Size, FieldOffset + Info.Size);
2957}
2958
2959void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2960 unsigned Width = FD->getBitWidthValue(Context);
2961 if (Width == 0) {
2962 layoutZeroWidthBitField(FD);
2963 return;
2964 }
2965 ElementInfo Info = getAdjustedElementInfo(FD);
2966 // Clamp the bitfield to a containable size for the sake of being able
2967 // to lay them out. Sema will throw an error.
2968 if (Width > Context.toBits(Info.Size))
2969 Width = Context.toBits(Info.Size);
2970 // Check to see if this bitfield fits into an existing allocation. Note:
2971 // MSVC refuses to pack bitfields of formal types with different sizes
2972 // into the same allocation.
2973 if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2974 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2975 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2976 RemainingBitsInField -= Width;
2977 return;
2978 }
2979 LastFieldIsNonZeroWidthBitfield = true;
2980 CurrentBitfieldSize = Info.Size;
2981 if (UseExternalLayout) {
2982 auto FieldBitOffset = External.getExternalFieldOffset(FD);
2983 placeFieldAtBitOffset(FieldBitOffset);
2984 auto NewSize = Context.toCharUnitsFromBits(
2985 llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2986 Context.toBits(Info.Size));
2987 Size = std::max(Size, NewSize);
2988 Alignment = std::max(Alignment, Info.Alignment);
2989 } else if (IsUnion) {
2990 placeFieldAtOffset(CharUnits::Zero());
2991 Size = std::max(Size, Info.Size);
2992 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2993 } else {
2994 // Allocate a new block of memory and place the bitfield in it.
2995 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2996 placeFieldAtOffset(FieldOffset);
2997 Size = FieldOffset + Info.Size;
2998 Alignment = std::max(Alignment, Info.Alignment);
2999 RemainingBitsInField = Context.toBits(Info.Size) - Width;
3000 }
3001}
3002
3003void
3004MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
3005 // Zero-width bitfields are ignored unless they follow a non-zero-width
3006 // bitfield.
3007 if (!LastFieldIsNonZeroWidthBitfield) {
3008 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
3009 // TODO: Add a Sema warning that MS ignores alignment for zero
3010 // sized bitfields that occur after zero-size bitfields or non-bitfields.
3011 return;
3012 }
3013 LastFieldIsNonZeroWidthBitfield = false;
3014 ElementInfo Info = getAdjustedElementInfo(FD);
3015 if (IsUnion) {
3016 placeFieldAtOffset(CharUnits::Zero());
3017 Size = std::max(Size, Info.Size);
3018 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3019 } else {
3020 // Round up the current record size to the field's alignment boundary.
3021 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3022 placeFieldAtOffset(FieldOffset);
3023 Size = FieldOffset;
3024 Alignment = std::max(Alignment, Info.Alignment);
3025 }
3026}
3027
3028void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
3029 if (!HasVBPtr || SharedVBPtrBase)
3030 return;
3031 // Inject the VBPointer at the injection site.
3032 CharUnits InjectionSite = VBPtrOffset;
3033 // But before we do, make sure it's properly aligned.
3034 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
3035 // Determine where the first field should be laid out after the vbptr.
3036 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
3037 // Shift everything after the vbptr down, unless we're using an external
3038 // layout.
3039 if (UseExternalLayout) {
3040 // It is possible that there were no fields or bases located after vbptr,
3041 // so the size was not adjusted before.
3042 if (Size < FieldStart)
3043 Size = FieldStart;
3044 return;
3045 }
3046 // Make sure that the amount we push the fields back by is a multiple of the
3047 // alignment.
3048 CharUnits Offset = (FieldStart - InjectionSite)
3049 .alignTo(std::max(RequiredAlignment, Alignment));
3050 Size += Offset;
3051 for (uint64_t &FieldOffset : FieldOffsets)
3052 FieldOffset += Context.toBits(Offset);
3053 for (BaseOffsetsMapTy::value_type &Base : Bases)
3054 if (Base.second >= InjectionSite)
3055 Base.second += Offset;
3056}
3057
3058void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
3059 if (!HasOwnVFPtr)
3060 return;
3061 // Make sure that the amount we push the struct back by is a multiple of the
3062 // alignment.
3063 CharUnits Offset =
3064 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
3065 // Push back the vbptr, but increase the size of the object and push back
3066 // regular fields by the offset only if not using external record layout.
3067 if (HasVBPtr)
3068 VBPtrOffset += Offset;
3069
3070 if (UseExternalLayout) {
3071 // The class may have no bases or fields, but still have a vfptr
3072 // (e.g. it's an interface class). The size was not correctly set before
3073 // in this case.
3074 if (FieldOffsets.empty() && Bases.empty())
3075 Size += Offset;
3076 return;
3077 }
3078
3079 Size += Offset;
3080
3081 // If we're using an external layout, the fields offsets have already
3082 // accounted for this adjustment.
3083 for (uint64_t &FieldOffset : FieldOffsets)
3084 FieldOffset += Context.toBits(Offset);
3085 for (BaseOffsetsMapTy::value_type &Base : Bases)
3086 Base.second += Offset;
3087}
3088
3089void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3090 if (!HasVBPtr)
3091 return;
3092 // Vtordisps are always 4 bytes (even in 64-bit mode)
3093 CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3094 CharUnits VtorDispAlignment = VtorDispSize;
3095 // vtordisps respect pragma pack.
3096 if (!MaxFieldAlignment.isZero())
3097 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3098 // The alignment of the vtordisp is at least the required alignment of the
3099 // entire record. This requirement may be present to support vtordisp
3100 // injection.
3101 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3102 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3103 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3104 RequiredAlignment =
3105 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3106 }
3107 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3108 // Compute the vtordisp set.
3109 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3110 computeVtorDispSet(HasVtorDispSet, RD);
3111 // Iterate through the virtual bases and lay them out.
3112 const ASTRecordLayout *PreviousBaseLayout = nullptr;
3113 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3114 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3115 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3116 bool HasVtordisp = HasVtorDispSet.contains(BaseDecl);
3117 // Insert padding between two bases if the left first one is zero sized or
3118 // contains a zero sized subobject and the right is zero sized or one leads
3119 // with a zero sized base. The padding between virtual bases is 4
3120 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3121 // the required alignment, we don't know why.
3122 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3123 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3124 HasVtordisp) {
3125 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3126 Alignment = std::max(VtorDispAlignment, Alignment);
3127 }
3128 // Insert the virtual base.
3129 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3130 CharUnits BaseOffset;
3131
3132 // Respect the external AST source base offset, if present.
3133 if (UseExternalLayout) {
3134 if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3135 BaseOffset = Size;
3136 } else
3137 BaseOffset = Size.alignTo(Info.Alignment);
3138
3139 assert(BaseOffset >= Size && "base offset already allocated")(static_cast <bool> (BaseOffset >= Size && "base offset already allocated"
) ? void (0) : __assert_fail ("BaseOffset >= Size && \"base offset already allocated\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3139, __extension__
__PRETTY_FUNCTION__))
;
3140
3141 VBases.insert(std::make_pair(BaseDecl,
3142 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3143 Size = BaseOffset + BaseLayout.getNonVirtualSize();
3144 PreviousBaseLayout = &BaseLayout;
3145 }
3146}
3147
3148void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3149 // Respect required alignment. Note that in 32-bit mode Required alignment
3150 // may be 0 and cause size not to be updated.
3151 DataSize = Size;
3152 if (!RequiredAlignment.isZero()) {
3153 Alignment = std::max(Alignment, RequiredAlignment);
3154 auto RoundingAlignment = Alignment;
3155 if (!MaxFieldAlignment.isZero())
3156 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3157 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3158 Size = Size.alignTo(RoundingAlignment);
3159 }
3160 if (Size.isZero()) {
3161 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3162 EndsWithZeroSizedObject = true;
3163 LeadsWithZeroSizedBase = true;
3164 }
3165 // Zero-sized structures have size equal to their alignment if a
3166 // __declspec(align) came into play.
3167 if (RequiredAlignment >= MinEmptyStructSize)
3168 Size = Alignment;
3169 else
3170 Size = MinEmptyStructSize;
3171 }
3172
3173 if (UseExternalLayout) {
3174 Size = Context.toCharUnitsFromBits(External.Size);
3175 if (External.Align)
3176 Alignment = Context.toCharUnitsFromBits(External.Align);
3177 }
3178}
3179
3180// Recursively walks the non-virtual bases of a class and determines if any of
3181// them are in the bases with overridden methods set.
3182static bool
3183RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3184 BasesWithOverriddenMethods,
3185 const CXXRecordDecl *RD) {
3186 if (BasesWithOverriddenMethods.count(RD))
3187 return true;
3188 // If any of a virtual bases non-virtual bases (recursively) requires a
3189 // vtordisp than so does this virtual base.
3190 for (const CXXBaseSpecifier &Base : RD->bases())
3191 if (!Base.isVirtual() &&
3192 RequiresVtordisp(BasesWithOverriddenMethods,
3193 Base.getType()->getAsCXXRecordDecl()))
3194 return true;
3195 return false;
3196}
3197
3198void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3199 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3200 const CXXRecordDecl *RD) const {
3201 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3202 // vftables.
3203 if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3204 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3205 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3206 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3207 if (Layout.hasExtendableVFPtr())
3208 HasVtordispSet.insert(BaseDecl);
3209 }
3210 return;
3211 }
3212
3213 // If any of our bases need a vtordisp for this type, so do we. Check our
3214 // direct bases for vtordisp requirements.
3215 for (const CXXBaseSpecifier &Base : RD->bases()) {
3216 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3217 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3218 for (const auto &bi : Layout.getVBaseOffsetsMap())
3219 if (bi.second.hasVtorDisp())
3220 HasVtordispSet.insert(bi.first);
3221 }
3222 // We don't introduce any additional vtordisps if either:
3223 // * A user declared constructor or destructor aren't declared.
3224 // * #pragma vtordisp(0) or the /vd0 flag are in use.
3225 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3226 RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3227 return;
3228 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3229 // possible for a partially constructed object with virtual base overrides to
3230 // escape a non-trivial constructor.
3231 assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride)(static_cast <bool> (RD->getMSVtorDispMode() == MSVtorDispMode
::ForVBaseOverride) ? void (0) : __assert_fail ("RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride"
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3231, __extension__
__PRETTY_FUNCTION__))
;
3232 // Compute a set of base classes which define methods we override. A virtual
3233 // base in this set will require a vtordisp. A virtual base that transitively
3234 // contains one of these bases as a non-virtual base will also require a
3235 // vtordisp.
3236 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3237 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3238 // Seed the working set with our non-destructor, non-pure virtual methods.
3239 for (const CXXMethodDecl *MD : RD->methods())
3240 if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3241 !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3242 Work.insert(MD);
3243 while (!Work.empty()) {
3244 const CXXMethodDecl *MD = *Work.begin();
3245 auto MethodRange = MD->overridden_methods();
3246 // If a virtual method has no-overrides it lives in its parent's vtable.
3247 if (MethodRange.begin() == MethodRange.end())
3248 BasesWithOverriddenMethods.insert(MD->getParent());
3249 else
3250 Work.insert(MethodRange.begin(), MethodRange.end());
3251 // We've finished processing this element, remove it from the working set.
3252 Work.erase(MD);
3253 }
3254 // For each of our virtual bases, check if it is in the set of overridden
3255 // bases or if it transitively contains a non-virtual base that is.
3256 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3257 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3258 if (!HasVtordispSet.count(BaseDecl) &&
3259 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3260 HasVtordispSet.insert(BaseDecl);
3261 }
3262}
3263
3264/// getASTRecordLayout - Get or compute information about the layout of the
3265/// specified record (struct/union/class), which indicates its size and field
3266/// position information.
3267const ASTRecordLayout &
3268ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3269 // These asserts test different things. A record has a definition
3270 // as soon as we begin to parse the definition. That definition is
3271 // not a complete definition (which is what isDefinition() tests)
3272 // until we *finish* parsing the definition.
3273
3274 if (D->hasExternalLexicalStorage() && !D->getDefinition())
5
Assuming the condition is false
3275 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3276
3277 D = D->getDefinition();
3278 assert(D && "Cannot get layout of forward declarations!")(static_cast <bool> (D && "Cannot get layout of forward declarations!"
) ? void (0) : __assert_fail ("D && \"Cannot get layout of forward declarations!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3278, __extension__
__PRETTY_FUNCTION__))
;
6
'?' condition is true
3279 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!")(static_cast <bool> (!D->isInvalidDecl() && "Cannot get layout of invalid decl!"
) ? void (0) : __assert_fail ("!D->isInvalidDecl() && \"Cannot get layout of invalid decl!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3279, __extension__
__PRETTY_FUNCTION__))
;
7
Assuming the condition is true
8
'?' condition is true
3280 assert(D->isCompleteDefinition() && "Cannot layout type before complete!")(static_cast <bool> (D->isCompleteDefinition() &&
"Cannot layout type before complete!") ? void (0) : __assert_fail
("D->isCompleteDefinition() && \"Cannot layout type before complete!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3280, __extension__
__PRETTY_FUNCTION__))
;
9
Assuming the condition is true
10
'?' condition is true
3281
3282 // Look up this layout, if already laid out, return what we have.
3283 // Note that we can't save a reference to the entry because this function
3284 // is recursive.
3285 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3286 if (Entry) return *Entry;
11
Assuming 'Entry' is null
12
Taking false branch
3287
3288 const ASTRecordLayout *NewEntry = nullptr;
3289
3290 if (isMsLayout(*this)) {
13
Taking false branch
3291 MicrosoftRecordLayoutBuilder Builder(*this);
3292 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3293 Builder.cxxLayout(RD);
3294 NewEntry = new (*this) ASTRecordLayout(
3295 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3296 Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3297 Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3298 Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3299 Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3300 Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3301 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3302 Builder.Bases, Builder.VBases);
3303 } else {
3304 Builder.layout(D);
3305 NewEntry = new (*this) ASTRecordLayout(
3306 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3307 Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3308 Builder.FieldOffsets);
3309 }
3310 } else {
3311 if (const auto *RD
14.1
'RD' is non-null
= dyn_cast<CXXRecordDecl>(D)) {
14
Assuming 'D' is a 'CXXRecordDecl'
15
Taking true branch
3312 EmptySubobjectMap EmptySubobjects(*this, RD);
3313 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3314 Builder.Layout(RD);
16
Calling 'ItaniumRecordLayoutBuilder::Layout'
3315
3316 // In certain situations, we are allowed to lay out objects in the
3317 // tail-padding of base classes. This is ABI-dependent.
3318 // FIXME: this should be stored in the record layout.
3319 bool skipTailPadding =
3320 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3321
3322 // FIXME: This should be done in FinalizeLayout.
3323 CharUnits DataSize =
3324 skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3325 CharUnits NonVirtualSize =
3326 skipTailPadding ? DataSize : Builder.NonVirtualSize;
3327 NewEntry = new (*this) ASTRecordLayout(
3328 *this, Builder.getSize(), Builder.Alignment,
3329 Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3330 /*RequiredAlignment : used by MS-ABI)*/
3331 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3332 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3333 NonVirtualSize, Builder.NonVirtualAlignment,
3334 Builder.PreferredNVAlignment,
3335 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3336 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3337 Builder.VBases);
3338 } else {
3339 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3340 Builder.Layout(D);
3341
3342 NewEntry = new (*this) ASTRecordLayout(
3343 *this, Builder.getSize(), Builder.Alignment,
3344 Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3345 /*RequiredAlignment : used by MS-ABI)*/
3346 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3347 }
3348 }
3349
3350 ASTRecordLayouts[D] = NewEntry;
3351
3352 if (getLangOpts().DumpRecordLayouts) {
3353 llvm::outs() << "\n*** Dumping AST Record Layout\n";
3354 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3355 }
3356
3357 return *NewEntry;
3358}
3359
3360const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3361 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3362 return nullptr;
3363
3364 assert(RD->getDefinition() && "Cannot get key function for forward decl!")(static_cast <bool> (RD->getDefinition() && "Cannot get key function for forward decl!"
) ? void (0) : __assert_fail ("RD->getDefinition() && \"Cannot get key function for forward decl!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3364, __extension__
__PRETTY_FUNCTION__))
;
3365 RD = RD->getDefinition();
3366
3367 // Beware:
3368 // 1) computing the key function might trigger deserialization, which might
3369 // invalidate iterators into KeyFunctions
3370 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
3371 // invalidate the LazyDeclPtr within the map itself
3372 LazyDeclPtr Entry = KeyFunctions[RD];
3373 const Decl *Result =
3374 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3375
3376 // Store it back if it changed.
3377 if (Entry.isOffset() || Entry.isValid() != bool(Result))
3378 KeyFunctions[RD] = const_cast<Decl*>(Result);
3379
3380 return cast_or_null<CXXMethodDecl>(Result);
3381}
3382
3383void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3384 assert(Method == Method->getFirstDecl() &&(static_cast <bool> (Method == Method->getFirstDecl(
) && "not working with method declaration from class definition"
) ? void (0) : __assert_fail ("Method == Method->getFirstDecl() && \"not working with method declaration from class definition\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3385, __extension__
__PRETTY_FUNCTION__))
3385 "not working with method declaration from class definition")(static_cast <bool> (Method == Method->getFirstDecl(
) && "not working with method declaration from class definition"
) ? void (0) : __assert_fail ("Method == Method->getFirstDecl() && \"not working with method declaration from class definition\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3385, __extension__
__PRETTY_FUNCTION__))
;
3386
3387 // Look up the cache entry. Since we're working with the first
3388 // declaration, its parent must be the class definition, which is
3389 // the correct key for the KeyFunctions hash.
3390 const auto &Map = KeyFunctions;
3391 auto I = Map.find(Method->getParent());
3392
3393 // If it's not cached, there's nothing to do.
3394 if (I == Map.end()) return;
3395
3396 // If it is cached, check whether it's the target method, and if so,
3397 // remove it from the cache. Note, the call to 'get' might invalidate
3398 // the iterator and the LazyDeclPtr object within the map.
3399 LazyDeclPtr Ptr = I->second;
3400 if (Ptr.get(getExternalSource()) == Method) {
3401 // FIXME: remember that we did this for module / chained PCH state?
3402 KeyFunctions.erase(Method->getParent());
3403 }
3404}
3405
3406static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3407 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3408 return Layout.getFieldOffset(FD->getFieldIndex());
3409}
3410
3411uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3412 uint64_t OffsetInBits;
3413 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3414 OffsetInBits = ::getFieldOffset(*this, FD);
3415 } else {
3416 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3417
3418 OffsetInBits = 0;
3419 for (const NamedDecl *ND : IFD->chain())
3420 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3421 }
3422
3423 return OffsetInBits;
3424}
3425
3426uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3427 const ObjCImplementationDecl *ID,
3428 const ObjCIvarDecl *Ivar) const {
3429 Ivar = Ivar->getCanonicalDecl();
3430 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3431
3432 // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3433 // in here; it should never be necessary because that should be the lexical
3434 // decl context for the ivar.
3435
3436 // If we know have an implementation (and the ivar is in it) then
3437 // look up in the implementation layout.
3438 const ASTRecordLayout *RL;
3439 if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3440 RL = &getASTObjCImplementationLayout(ID);
3441 else
3442 RL = &getASTObjCInterfaceLayout(Container);
3443
3444 // Compute field index.
3445 //
3446 // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3447 // implemented. This should be fixed to get the information from the layout
3448 // directly.
3449 unsigned Index = 0;
3450
3451 for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3452 IVD; IVD = IVD->getNextIvar()) {
3453 if (Ivar == IVD)
3454 break;
3455 ++Index;
3456 }
3457 assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!")(static_cast <bool> (Index < RL->getFieldCount() &&
"Ivar is not inside record layout!") ? void (0) : __assert_fail
("Index < RL->getFieldCount() && \"Ivar is not inside record layout!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3457, __extension__
__PRETTY_FUNCTION__))
;
3458
3459 return RL->getFieldOffset(Index);
3460}
3461
3462/// getObjCLayout - Get or compute information about the layout of the
3463/// given interface.
3464///
3465/// \param Impl - If given, also include the layout of the interface's
3466/// implementation. This may differ by including synthesized ivars.
3467const ASTRecordLayout &
3468ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3469 const ObjCImplementationDecl *Impl) const {
3470 // Retrieve the definition
3471 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3472 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3473 D = D->getDefinition();
3474 assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&(static_cast <bool> (D && !D->isInvalidDecl(
) && D->isThisDeclarationADefinition() && "Invalid interface decl!"
) ? void (0) : __assert_fail ("D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && \"Invalid interface decl!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3475, __extension__
__PRETTY_FUNCTION__))
3475 "Invalid interface decl!")(static_cast <bool> (D && !D->isInvalidDecl(
) && D->isThisDeclarationADefinition() && "Invalid interface decl!"
) ? void (0) : __assert_fail ("D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && \"Invalid interface decl!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3475, __extension__
__PRETTY_FUNCTION__))
;
3476
3477 // Look up this layout, if already laid out, return what we have.
3478 const ObjCContainerDecl *Key =
3479 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3480 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3481 return *Entry;
3482
3483 // Add in synthesized ivar count if laying out an implementation.
3484 if (Impl) {
3485 unsigned SynthCount = CountNonClassIvars(D);
3486 // If there aren't any synthesized ivars then reuse the interface
3487 // entry. Note we can't cache this because we simply free all
3488 // entries later; however we shouldn't look up implementations
3489 // frequently.
3490 if (SynthCount == 0)
3491 return getObjCLayout(D, nullptr);
3492 }
3493
3494 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3495 Builder.Layout(D);
3496
3497 const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3498 *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3499 Builder.UnadjustedAlignment,
3500 /*RequiredAlignment : used by MS-ABI)*/
3501 Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3502
3503 ObjCLayouts[Key] = NewEntry;
3504
3505 return *NewEntry;
3506}
3507
3508static void PrintOffset(raw_ostream &OS,
3509 CharUnits Offset, unsigned IndentLevel) {
3510 OS << llvm::format("%10" PRId64"l" "d" " | ", (int64_t)Offset.getQuantity());
3511 OS.indent(IndentLevel * 2);
3512}
3513
3514static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3515 unsigned Begin, unsigned Width,
3516 unsigned IndentLevel) {
3517 llvm::SmallString<10> Buffer;
3518 {
3519 llvm::raw_svector_ostream BufferOS(Buffer);
3520 BufferOS << Offset.getQuantity() << ':';
3521 if (Width == 0) {
3522 BufferOS << '-';
3523 } else {
3524 BufferOS << Begin << '-' << (Begin + Width - 1);
3525 }
3526 }
3527
3528 OS << llvm::right_justify(Buffer, 10) << " | ";
3529 OS.indent(IndentLevel * 2);
3530}
3531
3532static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3533 OS << " | ";
3534 OS.indent(IndentLevel * 2);
3535}
3536
3537static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3538 const ASTContext &C,
3539 CharUnits Offset,
3540 unsigned IndentLevel,
3541 const char* Description,
3542 bool PrintSizeInfo,
3543 bool IncludeVirtualBases) {
3544 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
4
Calling 'ASTContext::getASTRecordLayout'
3545 auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3546
3547 PrintOffset(OS, Offset, IndentLevel);
3548 OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3549 if (Description)
3550 OS << ' ' << Description;
3551 if (CXXRD && CXXRD->isEmpty())
3552 OS << " (empty)";
3553 OS << '\n';
3554
3555 IndentLevel++;
3556
3557 // Dump bases.
3558 if (CXXRD) {
3559 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3560 bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3561 bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3562
3563 // Vtable pointer.
3564 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3565 PrintOffset(OS, Offset, IndentLevel);
3566 OS << '(' << *RD << " vtable pointer)\n";
3567 } else if (HasOwnVFPtr) {
3568 PrintOffset(OS, Offset, IndentLevel);
3569 // vfptr (for Microsoft C++ ABI)
3570 OS << '(' << *RD << " vftable pointer)\n";
3571 }
3572
3573 // Collect nvbases.
3574 SmallVector<const CXXRecordDecl *, 4> Bases;
3575 for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3576 assert(!Base.getType()->isDependentType() &&(static_cast <bool> (!Base.getType()->isDependentType
() && "Cannot layout class with dependent bases.") ? void
(0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3577, __extension__
__PRETTY_FUNCTION__))
3577 "Cannot layout class with dependent bases.")(static_cast <bool> (!Base.getType()->isDependentType
() && "Cannot layout class with dependent bases.") ? void
(0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3577, __extension__
__PRETTY_FUNCTION__))
;
3578 if (!Base.isVirtual())
3579 Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3580 }
3581
3582 // Sort nvbases by offset.
3583 llvm::stable_sort(
3584 Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3585 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3586 });
3587
3588 // Dump (non-virtual) bases
3589 for (const CXXRecordDecl *Base : Bases) {
3590 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3591 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3592 Base == PrimaryBase ? "(primary base)" : "(base)",
3593 /*PrintSizeInfo=*/false,
3594 /*IncludeVirtualBases=*/false);
3595 }
3596
3597 // vbptr (for Microsoft C++ ABI)
3598 if (HasOwnVBPtr) {
3599 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3600 OS << '(' << *RD << " vbtable pointer)\n";
3601 }
3602 }
3603
3604 // Dump fields.
3605 uint64_t FieldNo = 0;
3606 for (RecordDecl::field_iterator I = RD->field_begin(),
3607 E = RD->field_end(); I != E; ++I, ++FieldNo) {
3608 const FieldDecl &Field = **I;
3609 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3610 CharUnits FieldOffset =
3611 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3612
3613 // Recursively dump fields of record type.
3614 if (auto RT = Field.getType()->getAs<RecordType>()) {
3615 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3616 Field.getName().data(),
3617 /*PrintSizeInfo=*/false,
3618 /*IncludeVirtualBases=*/true);
3619 continue;
3620 }
3621
3622 if (Field.isBitField()) {
3623 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3624 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3625 unsigned Width = Field.getBitWidthValue(C);
3626 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3627 } else {
3628 PrintOffset(OS, FieldOffset, IndentLevel);
3629 }
3630 const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical
3631 ? Field.getType().getCanonicalType()
3632 : Field.getType();
3633 OS << FieldType.getAsString() << ' ' << Field << '\n';
3634 }
3635
3636 // Dump virtual bases.
3637 if (CXXRD && IncludeVirtualBases) {
3638 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3639 Layout.getVBaseOffsetsMap();
3640
3641 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3642 assert(Base.isVirtual() && "Found non-virtual class!")(static_cast <bool> (Base.isVirtual() && "Found non-virtual class!"
) ? void (0) : __assert_fail ("Base.isVirtual() && \"Found non-virtual class!\""
, "clang/lib/AST/RecordLayoutBuilder.cpp", 3642, __extension__
__PRETTY_FUNCTION__))
;
3643 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3644
3645 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3646
3647 if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3648 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3649 OS << "(vtordisp for vbase " << *VBase << ")\n";
3650 }
3651
3652 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3653 VBase == Layout.getPrimaryBase() ?
3654 "(primary virtual base)" : "(virtual base)",
3655 /*PrintSizeInfo=*/false,
3656 /*IncludeVirtualBases=*/false);
3657 }
3658 }
3659
3660 if (!PrintSizeInfo) return;
3661
3662 PrintIndentNoOffset(OS, IndentLevel - 1);
3663 OS << "[sizeof=" << Layout.getSize().getQuantity();
3664 if (CXXRD && !isMsLayout(C))
3665 OS << ", dsize=" << Layout.getDataSize().getQuantity();
3666 OS << ", align=" << Layout.getAlignment().getQuantity();
3667 if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3668 OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3669
3670 if (CXXRD) {
3671 OS << ",\n";
3672 PrintIndentNoOffset(OS, IndentLevel - 1);
3673 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3674 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3675 if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3676 OS << ", preferrednvalign="
3677 << Layout.getPreferredNVAlignment().getQuantity();
3678 }
3679 OS << "]\n";
3680}
3681
3682void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3683 bool Simple) const {
3684 if (!Simple) {
1
Assuming 'Simple' is false
2
Taking true branch
3685 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3
Calling 'DumpRecordLayout'
3686 /*PrintSizeInfo*/ true,
3687 /*IncludeVirtualBases=*/true);
3688 return;
3689 }
3690
3691 // The "simple" format is designed to be parsed by the
3692 // layout-override testing code. There shouldn't be any external
3693 // uses of this format --- when LLDB overrides a layout, it sets up
3694 // the data structures directly --- so feel free to adjust this as
3695 // you like as long as you also update the rudimentary parser for it
3696 // in libFrontend.
3697
3698 const ASTRecordLayout &Info = getASTRecordLayout(RD);
3699 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3700 OS << "\nLayout: ";
3701 OS << "<ASTRecordLayout\n";
3702 OS << " Size:" << toBits(Info.getSize()) << "\n";
3703 if (!isMsLayout(*this))
3704 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
3705 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
3706 if (Target->defaultsToAIXPowerAlignment())
3707 OS << " PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3708 << "\n";
3709 OS << " FieldOffsets: [";
3710 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3711 if (i)
3712 OS << ", ";
3713 OS << Info.getFieldOffset(i);
3714 }
3715 OS << "]>\n";
3716}