File: | build/source/clang/lib/AST/RecordLayoutBuilder.cpp |
Warning: | line 1181, column 10 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | ||||
9 | #include "clang/AST/ASTContext.h" | |||
10 | #include "clang/AST/ASTDiagnostic.h" | |||
11 | #include "clang/AST/Attr.h" | |||
12 | #include "clang/AST/CXXInheritance.h" | |||
13 | #include "clang/AST/Decl.h" | |||
14 | #include "clang/AST/DeclCXX.h" | |||
15 | #include "clang/AST/DeclObjC.h" | |||
16 | #include "clang/AST/Expr.h" | |||
17 | #include "clang/AST/VTableBuilder.h" | |||
18 | #include "clang/AST/RecordLayout.h" | |||
19 | #include "clang/Basic/TargetInfo.h" | |||
20 | #include "llvm/ADT/SmallSet.h" | |||
21 | #include "llvm/Support/Format.h" | |||
22 | #include "llvm/Support/MathExtras.h" | |||
23 | ||||
24 | using namespace clang; | |||
25 | ||||
26 | namespace { | |||
27 | ||||
28 | /// BaseSubobjectInfo - Represents a single base subobject in a complete class. | |||
29 | /// For a class hierarchy like | |||
30 | /// | |||
31 | /// class A { }; | |||
32 | /// class B : A { }; | |||
33 | /// class C : A, B { }; | |||
34 | /// | |||
35 | /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo | |||
36 | /// instances, one for B and two for A. | |||
37 | /// | |||
38 | /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. | |||
39 | struct BaseSubobjectInfo { | |||
40 | /// Class - The class for this base info. | |||
41 | const CXXRecordDecl *Class; | |||
42 | ||||
43 | /// IsVirtual - Whether the BaseInfo represents a virtual base or not. | |||
44 | bool IsVirtual; | |||
45 | ||||
46 | /// Bases - Information about the base subobjects. | |||
47 | SmallVector<BaseSubobjectInfo*, 4> Bases; | |||
48 | ||||
49 | /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base | |||
50 | /// of this base info (if one exists). | |||
51 | BaseSubobjectInfo *PrimaryVirtualBaseInfo; | |||
52 | ||||
53 | // FIXME: Document. | |||
54 | const BaseSubobjectInfo *Derived; | |||
55 | }; | |||
56 | ||||
57 | /// Externally provided layout. Typically used when the AST source, such | |||
58 | /// as DWARF, lacks all the information that was available at compile time, such | |||
59 | /// as alignment attributes on fields and pragmas in effect. | |||
60 | struct ExternalLayout { | |||
61 | ExternalLayout() : Size(0), Align(0) {} | |||
62 | ||||
63 | /// Overall record size in bits. | |||
64 | uint64_t Size; | |||
65 | ||||
66 | /// Overall record alignment in bits. | |||
67 | uint64_t Align; | |||
68 | ||||
69 | /// Record field offsets in bits. | |||
70 | llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets; | |||
71 | ||||
72 | /// Direct, non-virtual base offsets. | |||
73 | llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets; | |||
74 | ||||
75 | /// Virtual base offsets. | |||
76 | llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets; | |||
77 | ||||
78 | /// Get the offset of the given field. The external source must provide | |||
79 | /// entries for all fields in the record. | |||
80 | uint64_t getExternalFieldOffset(const FieldDecl *FD) { | |||
81 | assert(FieldOffsets.count(FD) &&(static_cast <bool> (FieldOffsets.count(FD) && "Field does not have an external offset" ) ? void (0) : __assert_fail ("FieldOffsets.count(FD) && \"Field does not have an external offset\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 82, __extension__ __PRETTY_FUNCTION__ )) | |||
82 | "Field does not have an external offset")(static_cast <bool> (FieldOffsets.count(FD) && "Field does not have an external offset" ) ? void (0) : __assert_fail ("FieldOffsets.count(FD) && \"Field does not have an external offset\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 82, __extension__ __PRETTY_FUNCTION__ )); | |||
83 | return FieldOffsets[FD]; | |||
84 | } | |||
85 | ||||
86 | bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { | |||
87 | auto Known = BaseOffsets.find(RD); | |||
88 | if (Known == BaseOffsets.end()) | |||
89 | return false; | |||
90 | BaseOffset = Known->second; | |||
91 | return true; | |||
92 | } | |||
93 | ||||
94 | bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { | |||
95 | auto Known = VirtualBaseOffsets.find(RD); | |||
96 | if (Known == VirtualBaseOffsets.end()) | |||
97 | return false; | |||
98 | BaseOffset = Known->second; | |||
99 | return true; | |||
100 | } | |||
101 | }; | |||
102 | ||||
103 | /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different | |||
104 | /// offsets while laying out a C++ class. | |||
105 | class EmptySubobjectMap { | |||
106 | const ASTContext &Context; | |||
107 | uint64_t CharWidth; | |||
108 | ||||
109 | /// Class - The class whose empty entries we're keeping track of. | |||
110 | const CXXRecordDecl *Class; | |||
111 | ||||
112 | /// EmptyClassOffsets - A map from offsets to empty record decls. | |||
113 | typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy; | |||
114 | typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy; | |||
115 | EmptyClassOffsetsMapTy EmptyClassOffsets; | |||
116 | ||||
117 | /// MaxEmptyClassOffset - The highest offset known to contain an empty | |||
118 | /// base subobject. | |||
119 | CharUnits MaxEmptyClassOffset; | |||
120 | ||||
121 | /// ComputeEmptySubobjectSizes - Compute the size of the largest base or | |||
122 | /// member subobject that is empty. | |||
123 | void ComputeEmptySubobjectSizes(); | |||
124 | ||||
125 | void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); | |||
126 | ||||
127 | void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, | |||
128 | CharUnits Offset, bool PlacingEmptyBase); | |||
129 | ||||
130 | void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, | |||
131 | const CXXRecordDecl *Class, CharUnits Offset, | |||
132 | bool PlacingOverlappingField); | |||
133 | void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset, | |||
134 | bool PlacingOverlappingField); | |||
135 | ||||
136 | /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty | |||
137 | /// subobjects beyond the given offset. | |||
138 | bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { | |||
139 | return Offset <= MaxEmptyClassOffset; | |||
140 | } | |||
141 | ||||
142 | CharUnits | |||
143 | getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const { | |||
144 | uint64_t FieldOffset = Layout.getFieldOffset(FieldNo); | |||
145 | assert(FieldOffset % CharWidth == 0 &&(static_cast <bool> (FieldOffset % CharWidth == 0 && "Field offset not at char boundary!") ? void (0) : __assert_fail ("FieldOffset % CharWidth == 0 && \"Field offset not at char boundary!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 146, __extension__ __PRETTY_FUNCTION__)) | |||
146 | "Field offset not at char boundary!")(static_cast <bool> (FieldOffset % CharWidth == 0 && "Field offset not at char boundary!") ? void (0) : __assert_fail ("FieldOffset % CharWidth == 0 && \"Field offset not at char boundary!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 146, __extension__ __PRETTY_FUNCTION__)); | |||
147 | ||||
148 | return Context.toCharUnitsFromBits(FieldOffset); | |||
149 | } | |||
150 | ||||
151 | protected: | |||
152 | bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, | |||
153 | CharUnits Offset) const; | |||
154 | ||||
155 | bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, | |||
156 | CharUnits Offset); | |||
157 | ||||
158 | bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, | |||
159 | const CXXRecordDecl *Class, | |||
160 | CharUnits Offset) const; | |||
161 | bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, | |||
162 | CharUnits Offset) const; | |||
163 | ||||
164 | public: | |||
165 | /// This holds the size of the largest empty subobject (either a base | |||
166 | /// or a member). Will be zero if the record being built doesn't contain | |||
167 | /// any empty classes. | |||
168 | CharUnits SizeOfLargestEmptySubobject; | |||
169 | ||||
170 | EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) | |||
171 | : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { | |||
172 | ComputeEmptySubobjectSizes(); | |||
173 | } | |||
174 | ||||
175 | /// CanPlaceBaseAtOffset - Return whether the given base class can be placed | |||
176 | /// at the given offset. | |||
177 | /// Returns false if placing the record will result in two components | |||
178 | /// (direct or indirect) of the same type having the same offset. | |||
179 | bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, | |||
180 | CharUnits Offset); | |||
181 | ||||
182 | /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given | |||
183 | /// offset. | |||
184 | bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); | |||
185 | }; | |||
186 | ||||
187 | void EmptySubobjectMap::ComputeEmptySubobjectSizes() { | |||
188 | // Check the bases. | |||
189 | for (const CXXBaseSpecifier &Base : Class->bases()) { | |||
190 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
191 | ||||
192 | CharUnits EmptySize; | |||
193 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); | |||
194 | if (BaseDecl->isEmpty()) { | |||
195 | // If the class decl is empty, get its size. | |||
196 | EmptySize = Layout.getSize(); | |||
197 | } else { | |||
198 | // Otherwise, we get the largest empty subobject for the decl. | |||
199 | EmptySize = Layout.getSizeOfLargestEmptySubobject(); | |||
200 | } | |||
201 | ||||
202 | if (EmptySize > SizeOfLargestEmptySubobject) | |||
203 | SizeOfLargestEmptySubobject = EmptySize; | |||
204 | } | |||
205 | ||||
206 | // Check the fields. | |||
207 | for (const FieldDecl *FD : Class->fields()) { | |||
208 | const RecordType *RT = | |||
209 | Context.getBaseElementType(FD->getType())->getAs<RecordType>(); | |||
210 | ||||
211 | // We only care about record types. | |||
212 | if (!RT) | |||
213 | continue; | |||
214 | ||||
215 | CharUnits EmptySize; | |||
216 | const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl(); | |||
217 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); | |||
218 | if (MemberDecl->isEmpty()) { | |||
219 | // If the class decl is empty, get its size. | |||
220 | EmptySize = Layout.getSize(); | |||
221 | } else { | |||
222 | // Otherwise, we get the largest empty subobject for the decl. | |||
223 | EmptySize = Layout.getSizeOfLargestEmptySubobject(); | |||
224 | } | |||
225 | ||||
226 | if (EmptySize > SizeOfLargestEmptySubobject) | |||
227 | SizeOfLargestEmptySubobject = EmptySize; | |||
228 | } | |||
229 | } | |||
230 | ||||
231 | bool | |||
232 | EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, | |||
233 | CharUnits Offset) const { | |||
234 | // We only need to check empty bases. | |||
235 | if (!RD->isEmpty()) | |||
236 | return true; | |||
237 | ||||
238 | EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset); | |||
239 | if (I == EmptyClassOffsets.end()) | |||
240 | return true; | |||
241 | ||||
242 | const ClassVectorTy &Classes = I->second; | |||
243 | if (!llvm::is_contained(Classes, RD)) | |||
244 | return true; | |||
245 | ||||
246 | // There is already an empty class of the same type at this offset. | |||
247 | return false; | |||
248 | } | |||
249 | ||||
250 | void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, | |||
251 | CharUnits Offset) { | |||
252 | // We only care about empty bases. | |||
253 | if (!RD->isEmpty()) | |||
254 | return; | |||
255 | ||||
256 | // If we have empty structures inside a union, we can assign both | |||
257 | // the same offset. Just avoid pushing them twice in the list. | |||
258 | ClassVectorTy &Classes = EmptyClassOffsets[Offset]; | |||
259 | if (llvm::is_contained(Classes, RD)) | |||
260 | return; | |||
261 | ||||
262 | Classes.push_back(RD); | |||
263 | ||||
264 | // Update the empty class offset. | |||
265 | if (Offset > MaxEmptyClassOffset) | |||
266 | MaxEmptyClassOffset = Offset; | |||
267 | } | |||
268 | ||||
269 | bool | |||
270 | EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, | |||
271 | CharUnits Offset) { | |||
272 | // We don't have to keep looking past the maximum offset that's known to | |||
273 | // contain an empty class. | |||
274 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) | |||
275 | return true; | |||
276 | ||||
277 | if (!CanPlaceSubobjectAtOffset(Info->Class, Offset)) | |||
278 | return false; | |||
279 | ||||
280 | // Traverse all non-virtual bases. | |||
281 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); | |||
282 | for (const BaseSubobjectInfo *Base : Info->Bases) { | |||
283 | if (Base->IsVirtual) | |||
284 | continue; | |||
285 | ||||
286 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); | |||
287 | ||||
288 | if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset)) | |||
289 | return false; | |||
290 | } | |||
291 | ||||
292 | if (Info->PrimaryVirtualBaseInfo) { | |||
293 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; | |||
294 | ||||
295 | if (Info == PrimaryVirtualBaseInfo->Derived) { | |||
296 | if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset)) | |||
297 | return false; | |||
298 | } | |||
299 | } | |||
300 | ||||
301 | // Traverse all member variables. | |||
302 | unsigned FieldNo = 0; | |||
303 | for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), | |||
304 | E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { | |||
305 | if (I->isBitField()) | |||
306 | continue; | |||
307 | ||||
308 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); | |||
309 | if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) | |||
310 | return false; | |||
311 | } | |||
312 | ||||
313 | return true; | |||
314 | } | |||
315 | ||||
316 | void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, | |||
317 | CharUnits Offset, | |||
318 | bool PlacingEmptyBase) { | |||
319 | if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { | |||
320 | // We know that the only empty subobjects that can conflict with empty | |||
321 | // subobject of non-empty bases, are empty bases that can be placed at | |||
322 | // offset zero. Because of this, we only need to keep track of empty base | |||
323 | // subobjects with offsets less than the size of the largest empty | |||
324 | // subobject for our class. | |||
325 | return; | |||
326 | } | |||
327 | ||||
328 | AddSubobjectAtOffset(Info->Class, Offset); | |||
329 | ||||
330 | // Traverse all non-virtual bases. | |||
331 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); | |||
332 | for (const BaseSubobjectInfo *Base : Info->Bases) { | |||
333 | if (Base->IsVirtual) | |||
334 | continue; | |||
335 | ||||
336 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); | |||
337 | UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase); | |||
338 | } | |||
339 | ||||
340 | if (Info->PrimaryVirtualBaseInfo) { | |||
341 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; | |||
342 | ||||
343 | if (Info == PrimaryVirtualBaseInfo->Derived) | |||
344 | UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset, | |||
345 | PlacingEmptyBase); | |||
346 | } | |||
347 | ||||
348 | // Traverse all member variables. | |||
349 | unsigned FieldNo = 0; | |||
350 | for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), | |||
351 | E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { | |||
352 | if (I->isBitField()) | |||
353 | continue; | |||
354 | ||||
355 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); | |||
356 | UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase); | |||
357 | } | |||
358 | } | |||
359 | ||||
360 | bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, | |||
361 | CharUnits Offset) { | |||
362 | // If we know this class doesn't have any empty subobjects we don't need to | |||
363 | // bother checking. | |||
364 | if (SizeOfLargestEmptySubobject.isZero()) | |||
365 | return true; | |||
366 | ||||
367 | if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) | |||
368 | return false; | |||
369 | ||||
370 | // We are able to place the base at this offset. Make sure to update the | |||
371 | // empty base subobject map. | |||
372 | UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty()); | |||
373 | return true; | |||
374 | } | |||
375 | ||||
376 | bool | |||
377 | EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, | |||
378 | const CXXRecordDecl *Class, | |||
379 | CharUnits Offset) const { | |||
380 | // We don't have to keep looking past the maximum offset that's known to | |||
381 | // contain an empty class. | |||
382 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) | |||
383 | return true; | |||
384 | ||||
385 | if (!CanPlaceSubobjectAtOffset(RD, Offset)) | |||
386 | return false; | |||
387 | ||||
388 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
389 | ||||
390 | // Traverse all non-virtual bases. | |||
391 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
392 | if (Base.isVirtual()) | |||
393 | continue; | |||
394 | ||||
395 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
396 | ||||
397 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); | |||
398 | if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset)) | |||
399 | return false; | |||
400 | } | |||
401 | ||||
402 | if (RD == Class) { | |||
403 | // This is the most derived class, traverse virtual bases as well. | |||
404 | for (const CXXBaseSpecifier &Base : RD->vbases()) { | |||
405 | const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
406 | ||||
407 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); | |||
408 | if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset)) | |||
409 | return false; | |||
410 | } | |||
411 | } | |||
412 | ||||
413 | // Traverse all member variables. | |||
414 | unsigned FieldNo = 0; | |||
415 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); | |||
416 | I != E; ++I, ++FieldNo) { | |||
417 | if (I->isBitField()) | |||
418 | continue; | |||
419 | ||||
420 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); | |||
421 | ||||
422 | if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) | |||
423 | return false; | |||
424 | } | |||
425 | ||||
426 | return true; | |||
427 | } | |||
428 | ||||
429 | bool | |||
430 | EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, | |||
431 | CharUnits Offset) const { | |||
432 | // We don't have to keep looking past the maximum offset that's known to | |||
433 | // contain an empty class. | |||
434 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) | |||
435 | return true; | |||
436 | ||||
437 | QualType T = FD->getType(); | |||
438 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
439 | return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset); | |||
440 | ||||
441 | // If we have an array type we need to look at every element. | |||
442 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { | |||
443 | QualType ElemTy = Context.getBaseElementType(AT); | |||
444 | const RecordType *RT = ElemTy->getAs<RecordType>(); | |||
445 | if (!RT) | |||
446 | return true; | |||
447 | ||||
448 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); | |||
449 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
450 | ||||
451 | uint64_t NumElements = Context.getConstantArrayElementCount(AT); | |||
452 | CharUnits ElementOffset = Offset; | |||
453 | for (uint64_t I = 0; I != NumElements; ++I) { | |||
454 | // We don't have to keep looking past the maximum offset that's known to | |||
455 | // contain an empty class. | |||
456 | if (!AnyEmptySubobjectsBeyondOffset(ElementOffset)) | |||
457 | return true; | |||
458 | ||||
459 | if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset)) | |||
460 | return false; | |||
461 | ||||
462 | ElementOffset += Layout.getSize(); | |||
463 | } | |||
464 | } | |||
465 | ||||
466 | return true; | |||
467 | } | |||
468 | ||||
469 | bool | |||
470 | EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, | |||
471 | CharUnits Offset) { | |||
472 | if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) | |||
473 | return false; | |||
474 | ||||
475 | // We are able to place the member variable at this offset. | |||
476 | // Make sure to update the empty field subobject map. | |||
477 | UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>()); | |||
478 | return true; | |||
479 | } | |||
480 | ||||
481 | void EmptySubobjectMap::UpdateEmptyFieldSubobjects( | |||
482 | const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset, | |||
483 | bool PlacingOverlappingField) { | |||
484 | // We know that the only empty subobjects that can conflict with empty | |||
485 | // field subobjects are subobjects of empty bases and potentially-overlapping | |||
486 | // fields that can be placed at offset zero. Because of this, we only need to | |||
487 | // keep track of empty field subobjects with offsets less than the size of | |||
488 | // the largest empty subobject for our class. | |||
489 | // | |||
490 | // (Proof: we will only consider placing a subobject at offset zero or at | |||
491 | // >= the current dsize. The only cases where the earlier subobject can be | |||
492 | // placed beyond the end of dsize is if it's an empty base or a | |||
493 | // potentially-overlapping field.) | |||
494 | if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject) | |||
495 | return; | |||
496 | ||||
497 | AddSubobjectAtOffset(RD, Offset); | |||
498 | ||||
499 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
500 | ||||
501 | // Traverse all non-virtual bases. | |||
502 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
503 | if (Base.isVirtual()) | |||
504 | continue; | |||
505 | ||||
506 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
507 | ||||
508 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); | |||
509 | UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset, | |||
510 | PlacingOverlappingField); | |||
511 | } | |||
512 | ||||
513 | if (RD == Class) { | |||
514 | // This is the most derived class, traverse virtual bases as well. | |||
515 | for (const CXXBaseSpecifier &Base : RD->vbases()) { | |||
516 | const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
517 | ||||
518 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); | |||
519 | UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset, | |||
520 | PlacingOverlappingField); | |||
521 | } | |||
522 | } | |||
523 | ||||
524 | // Traverse all member variables. | |||
525 | unsigned FieldNo = 0; | |||
526 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); | |||
527 | I != E; ++I, ++FieldNo) { | |||
528 | if (I->isBitField()) | |||
529 | continue; | |||
530 | ||||
531 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); | |||
532 | ||||
533 | UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField); | |||
534 | } | |||
535 | } | |||
536 | ||||
537 | void EmptySubobjectMap::UpdateEmptyFieldSubobjects( | |||
538 | const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) { | |||
539 | QualType T = FD->getType(); | |||
540 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { | |||
541 | UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField); | |||
542 | return; | |||
543 | } | |||
544 | ||||
545 | // If we have an array type we need to update every element. | |||
546 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { | |||
547 | QualType ElemTy = Context.getBaseElementType(AT); | |||
548 | const RecordType *RT = ElemTy->getAs<RecordType>(); | |||
549 | if (!RT) | |||
550 | return; | |||
551 | ||||
552 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); | |||
553 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
554 | ||||
555 | uint64_t NumElements = Context.getConstantArrayElementCount(AT); | |||
556 | CharUnits ElementOffset = Offset; | |||
557 | ||||
558 | for (uint64_t I = 0; I != NumElements; ++I) { | |||
559 | // We know that the only empty subobjects that can conflict with empty | |||
560 | // field subobjects are subobjects of empty bases that can be placed at | |||
561 | // offset zero. Because of this, we only need to keep track of empty field | |||
562 | // subobjects with offsets less than the size of the largest empty | |||
563 | // subobject for our class. | |||
564 | if (!PlacingOverlappingField && | |||
565 | ElementOffset >= SizeOfLargestEmptySubobject) | |||
566 | return; | |||
567 | ||||
568 | UpdateEmptyFieldSubobjects(RD, RD, ElementOffset, | |||
569 | PlacingOverlappingField); | |||
570 | ElementOffset += Layout.getSize(); | |||
571 | } | |||
572 | } | |||
573 | } | |||
574 | ||||
575 | typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy; | |||
576 | ||||
577 | class ItaniumRecordLayoutBuilder { | |||
578 | protected: | |||
579 | // FIXME: Remove this and make the appropriate fields public. | |||
580 | friend class clang::ASTContext; | |||
581 | ||||
582 | const ASTContext &Context; | |||
583 | ||||
584 | EmptySubobjectMap *EmptySubobjects; | |||
585 | ||||
586 | /// Size - The current size of the record layout. | |||
587 | uint64_t Size; | |||
588 | ||||
589 | /// Alignment - The current alignment of the record layout. | |||
590 | CharUnits Alignment; | |||
591 | ||||
592 | /// PreferredAlignment - The preferred alignment of the record layout. | |||
593 | CharUnits PreferredAlignment; | |||
594 | ||||
595 | /// The alignment if attribute packed is not used. | |||
596 | CharUnits UnpackedAlignment; | |||
597 | ||||
598 | /// \brief The maximum of the alignments of top-level members. | |||
599 | CharUnits UnadjustedAlignment; | |||
600 | ||||
601 | SmallVector<uint64_t, 16> FieldOffsets; | |||
602 | ||||
603 | /// Whether the external AST source has provided a layout for this | |||
604 | /// record. | |||
605 | unsigned UseExternalLayout : 1; | |||
606 | ||||
607 | /// Whether we need to infer alignment, even when we have an | |||
608 | /// externally-provided layout. | |||
609 | unsigned InferAlignment : 1; | |||
610 | ||||
611 | /// Packed - Whether the record is packed or not. | |||
612 | unsigned Packed : 1; | |||
613 | ||||
614 | unsigned IsUnion : 1; | |||
615 | ||||
616 | unsigned IsMac68kAlign : 1; | |||
617 | ||||
618 | unsigned IsNaturalAlign : 1; | |||
619 | ||||
620 | unsigned IsMsStruct : 1; | |||
621 | ||||
622 | /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield, | |||
623 | /// this contains the number of bits in the last unit that can be used for | |||
624 | /// an adjacent bitfield if necessary. The unit in question is usually | |||
625 | /// a byte, but larger units are used if IsMsStruct. | |||
626 | unsigned char UnfilledBitsInLastUnit; | |||
627 | ||||
628 | /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the | |||
629 | /// storage unit of the previous field if it was a bitfield. | |||
630 | unsigned char LastBitfieldStorageUnitSize; | |||
631 | ||||
632 | /// MaxFieldAlignment - The maximum allowed field alignment. This is set by | |||
633 | /// #pragma pack. | |||
634 | CharUnits MaxFieldAlignment; | |||
635 | ||||
636 | /// DataSize - The data size of the record being laid out. | |||
637 | uint64_t DataSize; | |||
638 | ||||
639 | CharUnits NonVirtualSize; | |||
640 | CharUnits NonVirtualAlignment; | |||
641 | CharUnits PreferredNVAlignment; | |||
642 | ||||
643 | /// If we've laid out a field but not included its tail padding in Size yet, | |||
644 | /// this is the size up to the end of that field. | |||
645 | CharUnits PaddedFieldSize; | |||
646 | ||||
647 | /// PrimaryBase - the primary base class (if one exists) of the class | |||
648 | /// we're laying out. | |||
649 | const CXXRecordDecl *PrimaryBase; | |||
650 | ||||
651 | /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying | |||
652 | /// out is virtual. | |||
653 | bool PrimaryBaseIsVirtual; | |||
654 | ||||
655 | /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl | |||
656 | /// pointer, as opposed to inheriting one from a primary base class. | |||
657 | bool HasOwnVFPtr; | |||
658 | ||||
659 | /// the flag of field offset changing due to packed attribute. | |||
660 | bool HasPackedField; | |||
661 | ||||
662 | /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX. | |||
663 | /// When there are OverlappingEmptyFields existing in the aggregate, the | |||
664 | /// flag shows if the following first non-empty or empty-but-non-overlapping | |||
665 | /// field has been handled, if any. | |||
666 | bool HandledFirstNonOverlappingEmptyField; | |||
667 | ||||
668 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; | |||
669 | ||||
670 | /// Bases - base classes and their offsets in the record. | |||
671 | BaseOffsetsMapTy Bases; | |||
672 | ||||
673 | // VBases - virtual base classes and their offsets in the record. | |||
674 | ASTRecordLayout::VBaseOffsetsMapTy VBases; | |||
675 | ||||
676 | /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are | |||
677 | /// primary base classes for some other direct or indirect base class. | |||
678 | CXXIndirectPrimaryBaseSet IndirectPrimaryBases; | |||
679 | ||||
680 | /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in | |||
681 | /// inheritance graph order. Used for determining the primary base class. | |||
682 | const CXXRecordDecl *FirstNearlyEmptyVBase; | |||
683 | ||||
684 | /// VisitedVirtualBases - A set of all the visited virtual bases, used to | |||
685 | /// avoid visiting virtual bases more than once. | |||
686 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; | |||
687 | ||||
688 | /// Valid if UseExternalLayout is true. | |||
689 | ExternalLayout External; | |||
690 | ||||
691 | ItaniumRecordLayoutBuilder(const ASTContext &Context, | |||
692 | EmptySubobjectMap *EmptySubobjects) | |||
693 | : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), | |||
694 | Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()), | |||
695 | UnpackedAlignment(CharUnits::One()), | |||
696 | UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false), | |||
697 | InferAlignment(false), Packed(false), IsUnion(false), | |||
698 | IsMac68kAlign(false), | |||
699 | IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()), | |||
700 | IsMsStruct(false), UnfilledBitsInLastUnit(0), | |||
701 | LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()), | |||
702 | DataSize(0), NonVirtualSize(CharUnits::Zero()), | |||
703 | NonVirtualAlignment(CharUnits::One()), | |||
704 | PreferredNVAlignment(CharUnits::One()), | |||
705 | PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr), | |||
706 | PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false), | |||
707 | HandledFirstNonOverlappingEmptyField(false), | |||
708 | FirstNearlyEmptyVBase(nullptr) {} | |||
709 | ||||
710 | void Layout(const RecordDecl *D); | |||
711 | void Layout(const CXXRecordDecl *D); | |||
712 | void Layout(const ObjCInterfaceDecl *D); | |||
713 | ||||
714 | void LayoutFields(const RecordDecl *D); | |||
715 | void LayoutField(const FieldDecl *D, bool InsertExtraPadding); | |||
716 | void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize, | |||
717 | bool FieldPacked, const FieldDecl *D); | |||
718 | void LayoutBitField(const FieldDecl *D); | |||
719 | ||||
720 | TargetCXXABI getCXXABI() const { | |||
721 | return Context.getTargetInfo().getCXXABI(); | |||
722 | } | |||
723 | ||||
724 | /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. | |||
725 | llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator; | |||
726 | ||||
727 | typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *> | |||
728 | BaseSubobjectInfoMapTy; | |||
729 | ||||
730 | /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases | |||
731 | /// of the class we're laying out to their base subobject info. | |||
732 | BaseSubobjectInfoMapTy VirtualBaseInfo; | |||
733 | ||||
734 | /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the | |||
735 | /// class we're laying out to their base subobject info. | |||
736 | BaseSubobjectInfoMapTy NonVirtualBaseInfo; | |||
737 | ||||
738 | /// ComputeBaseSubobjectInfo - Compute the base subobject information for the | |||
739 | /// bases of the given class. | |||
740 | void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); | |||
741 | ||||
742 | /// ComputeBaseSubobjectInfo - Compute the base subobject information for a | |||
743 | /// single class and all of its base classes. | |||
744 | BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, | |||
745 | bool IsVirtual, | |||
746 | BaseSubobjectInfo *Derived); | |||
747 | ||||
748 | /// DeterminePrimaryBase - Determine the primary base of the given class. | |||
749 | void DeterminePrimaryBase(const CXXRecordDecl *RD); | |||
750 | ||||
751 | void SelectPrimaryVBase(const CXXRecordDecl *RD); | |||
752 | ||||
753 | void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); | |||
754 | ||||
755 | /// LayoutNonVirtualBases - Determines the primary base class (if any) and | |||
756 | /// lays it out. Will then proceed to lay out all non-virtual base clasess. | |||
757 | void LayoutNonVirtualBases(const CXXRecordDecl *RD); | |||
758 | ||||
759 | /// LayoutNonVirtualBase - Lays out a single non-virtual base. | |||
760 | void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); | |||
761 | ||||
762 | void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, | |||
763 | CharUnits Offset); | |||
764 | ||||
765 | /// LayoutVirtualBases - Lays out all the virtual bases. | |||
766 | void LayoutVirtualBases(const CXXRecordDecl *RD, | |||
767 | const CXXRecordDecl *MostDerivedClass); | |||
768 | ||||
769 | /// LayoutVirtualBase - Lays out a single virtual base. | |||
770 | void LayoutVirtualBase(const BaseSubobjectInfo *Base); | |||
771 | ||||
772 | /// LayoutBase - Will lay out a base and return the offset where it was | |||
773 | /// placed, in chars. | |||
774 | CharUnits LayoutBase(const BaseSubobjectInfo *Base); | |||
775 | ||||
776 | /// InitializeLayout - Initialize record layout for the given record decl. | |||
777 | void InitializeLayout(const Decl *D); | |||
778 | ||||
779 | /// FinishLayout - Finalize record layout. Adjust record size based on the | |||
780 | /// alignment. | |||
781 | void FinishLayout(const NamedDecl *D); | |||
782 | ||||
783 | void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment, | |||
784 | CharUnits PreferredAlignment); | |||
785 | void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { | |||
786 | UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment); | |||
787 | } | |||
788 | void UpdateAlignment(CharUnits NewAlignment) { | |||
789 | UpdateAlignment(NewAlignment, NewAlignment, NewAlignment); | |||
790 | } | |||
791 | ||||
792 | /// Retrieve the externally-supplied field offset for the given | |||
793 | /// field. | |||
794 | /// | |||
795 | /// \param Field The field whose offset is being queried. | |||
796 | /// \param ComputedOffset The offset that we've computed for this field. | |||
797 | uint64_t updateExternalFieldOffset(const FieldDecl *Field, | |||
798 | uint64_t ComputedOffset); | |||
799 | ||||
800 | void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, | |||
801 | uint64_t UnpackedOffset, unsigned UnpackedAlign, | |||
802 | bool isPacked, const FieldDecl *D); | |||
803 | ||||
804 | DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); | |||
805 | ||||
806 | CharUnits getSize() const { | |||
807 | assert(Size % Context.getCharWidth() == 0)(static_cast <bool> (Size % Context.getCharWidth() == 0 ) ? void (0) : __assert_fail ("Size % Context.getCharWidth() == 0" , "clang/lib/AST/RecordLayoutBuilder.cpp", 807, __extension__ __PRETTY_FUNCTION__)); | |||
808 | return Context.toCharUnitsFromBits(Size); | |||
809 | } | |||
810 | uint64_t getSizeInBits() const { return Size; } | |||
811 | ||||
812 | void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); } | |||
813 | void setSize(uint64_t NewSize) { Size = NewSize; } | |||
814 | ||||
815 | CharUnits getAligment() const { return Alignment; } | |||
816 | ||||
817 | CharUnits getDataSize() const { | |||
818 | assert(DataSize % Context.getCharWidth() == 0)(static_cast <bool> (DataSize % Context.getCharWidth() == 0) ? void (0) : __assert_fail ("DataSize % Context.getCharWidth() == 0" , "clang/lib/AST/RecordLayoutBuilder.cpp", 818, __extension__ __PRETTY_FUNCTION__)); | |||
819 | return Context.toCharUnitsFromBits(DataSize); | |||
820 | } | |||
821 | uint64_t getDataSizeInBits() const { return DataSize; } | |||
822 | ||||
823 | void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); } | |||
824 | void setDataSize(uint64_t NewSize) { DataSize = NewSize; } | |||
825 | ||||
826 | ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete; | |||
827 | void operator=(const ItaniumRecordLayoutBuilder &) = delete; | |||
828 | }; | |||
829 | } // end anonymous namespace | |||
830 | ||||
831 | void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { | |||
832 | for (const auto &I : RD->bases()) { | |||
833 | assert(!I.getType()->isDependentType() &&(static_cast <bool> (!I.getType()->isDependentType() && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!I.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 834, __extension__ __PRETTY_FUNCTION__)) | |||
834 | "Cannot layout class with dependent bases.")(static_cast <bool> (!I.getType()->isDependentType() && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!I.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 834, __extension__ __PRETTY_FUNCTION__)); | |||
835 | ||||
836 | const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); | |||
837 | ||||
838 | // Check if this is a nearly empty virtual base. | |||
839 | if (I.isVirtual() && Context.isNearlyEmpty(Base)) { | |||
840 | // If it's not an indirect primary base, then we've found our primary | |||
841 | // base. | |||
842 | if (!IndirectPrimaryBases.count(Base)) { | |||
843 | PrimaryBase = Base; | |||
844 | PrimaryBaseIsVirtual = true; | |||
845 | return; | |||
846 | } | |||
847 | ||||
848 | // Is this the first nearly empty virtual base? | |||
849 | if (!FirstNearlyEmptyVBase) | |||
850 | FirstNearlyEmptyVBase = Base; | |||
851 | } | |||
852 | ||||
853 | SelectPrimaryVBase(Base); | |||
854 | if (PrimaryBase) | |||
855 | return; | |||
856 | } | |||
857 | } | |||
858 | ||||
859 | /// DeterminePrimaryBase - Determine the primary base of the given class. | |||
860 | void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { | |||
861 | // If the class isn't dynamic, it won't have a primary base. | |||
862 | if (!RD->isDynamicClass()) | |||
863 | return; | |||
864 | ||||
865 | // Compute all the primary virtual bases for all of our direct and | |||
866 | // indirect bases, and record all their primary virtual base classes. | |||
867 | RD->getIndirectPrimaryBases(IndirectPrimaryBases); | |||
868 | ||||
869 | // If the record has a dynamic base class, attempt to choose a primary base | |||
870 | // class. It is the first (in direct base class order) non-virtual dynamic | |||
871 | // base class, if one exists. | |||
872 | for (const auto &I : RD->bases()) { | |||
873 | // Ignore virtual bases. | |||
874 | if (I.isVirtual()) | |||
875 | continue; | |||
876 | ||||
877 | const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); | |||
878 | ||||
879 | if (Base->isDynamicClass()) { | |||
880 | // We found it. | |||
881 | PrimaryBase = Base; | |||
882 | PrimaryBaseIsVirtual = false; | |||
883 | return; | |||
884 | } | |||
885 | } | |||
886 | ||||
887 | // Under the Itanium ABI, if there is no non-virtual primary base class, | |||
888 | // try to compute the primary virtual base. The primary virtual base is | |||
889 | // the first nearly empty virtual base that is not an indirect primary | |||
890 | // virtual base class, if one exists. | |||
891 | if (RD->getNumVBases() != 0) { | |||
892 | SelectPrimaryVBase(RD); | |||
893 | if (PrimaryBase) | |||
894 | return; | |||
895 | } | |||
896 | ||||
897 | // Otherwise, it is the first indirect primary base class, if one exists. | |||
898 | if (FirstNearlyEmptyVBase) { | |||
899 | PrimaryBase = FirstNearlyEmptyVBase; | |||
900 | PrimaryBaseIsVirtual = true; | |||
901 | return; | |||
902 | } | |||
903 | ||||
904 | assert(!PrimaryBase && "Should not get here with a primary base!")(static_cast <bool> (!PrimaryBase && "Should not get here with a primary base!" ) ? void (0) : __assert_fail ("!PrimaryBase && \"Should not get here with a primary base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 904, __extension__ __PRETTY_FUNCTION__)); | |||
905 | } | |||
906 | ||||
907 | BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( | |||
908 | const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { | |||
909 | BaseSubobjectInfo *Info; | |||
910 | ||||
911 | if (IsVirtual) { | |||
912 | // Check if we already have info about this virtual base. | |||
913 | BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; | |||
914 | if (InfoSlot) { | |||
915 | assert(InfoSlot->Class == RD && "Wrong class for virtual base info!")(static_cast <bool> (InfoSlot->Class == RD && "Wrong class for virtual base info!") ? void (0) : __assert_fail ("InfoSlot->Class == RD && \"Wrong class for virtual base info!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 915, __extension__ __PRETTY_FUNCTION__)); | |||
916 | return InfoSlot; | |||
917 | } | |||
918 | ||||
919 | // We don't, create it. | |||
920 | InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; | |||
921 | Info = InfoSlot; | |||
922 | } else { | |||
923 | Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; | |||
924 | } | |||
925 | ||||
926 | Info->Class = RD; | |||
927 | Info->IsVirtual = IsVirtual; | |||
928 | Info->Derived = nullptr; | |||
929 | Info->PrimaryVirtualBaseInfo = nullptr; | |||
930 | ||||
931 | const CXXRecordDecl *PrimaryVirtualBase = nullptr; | |||
932 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr; | |||
933 | ||||
934 | // Check if this base has a primary virtual base. | |||
935 | if (RD->getNumVBases()) { | |||
936 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
937 | if (Layout.isPrimaryBaseVirtual()) { | |||
938 | // This base does have a primary virtual base. | |||
939 | PrimaryVirtualBase = Layout.getPrimaryBase(); | |||
940 | assert(PrimaryVirtualBase && "Didn't have a primary virtual base!")(static_cast <bool> (PrimaryVirtualBase && "Didn't have a primary virtual base!" ) ? void (0) : __assert_fail ("PrimaryVirtualBase && \"Didn't have a primary virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 940, __extension__ __PRETTY_FUNCTION__)); | |||
941 | ||||
942 | // Now check if we have base subobject info about this primary base. | |||
943 | PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); | |||
944 | ||||
945 | if (PrimaryVirtualBaseInfo) { | |||
946 | if (PrimaryVirtualBaseInfo->Derived) { | |||
947 | // We did have info about this primary base, and it turns out that it | |||
948 | // has already been claimed as a primary virtual base for another | |||
949 | // base. | |||
950 | PrimaryVirtualBase = nullptr; | |||
951 | } else { | |||
952 | // We can claim this base as our primary base. | |||
953 | Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; | |||
954 | PrimaryVirtualBaseInfo->Derived = Info; | |||
955 | } | |||
956 | } | |||
957 | } | |||
958 | } | |||
959 | ||||
960 | // Now go through all direct bases. | |||
961 | for (const auto &I : RD->bases()) { | |||
962 | bool IsVirtual = I.isVirtual(); | |||
963 | ||||
964 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); | |||
965 | ||||
966 | Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info)); | |||
967 | } | |||
968 | ||||
969 | if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { | |||
970 | // Traversing the bases must have created the base info for our primary | |||
971 | // virtual base. | |||
972 | PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); | |||
973 | assert(PrimaryVirtualBaseInfo &&(static_cast <bool> (PrimaryVirtualBaseInfo && "Did not create a primary virtual base!" ) ? void (0) : __assert_fail ("PrimaryVirtualBaseInfo && \"Did not create a primary virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 974, __extension__ __PRETTY_FUNCTION__)) | |||
974 | "Did not create a primary virtual base!")(static_cast <bool> (PrimaryVirtualBaseInfo && "Did not create a primary virtual base!" ) ? void (0) : __assert_fail ("PrimaryVirtualBaseInfo && \"Did not create a primary virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 974, __extension__ __PRETTY_FUNCTION__)); | |||
975 | ||||
976 | // Claim the primary virtual base as our primary virtual base. | |||
977 | Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; | |||
978 | PrimaryVirtualBaseInfo->Derived = Info; | |||
979 | } | |||
980 | ||||
981 | return Info; | |||
982 | } | |||
983 | ||||
984 | void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( | |||
985 | const CXXRecordDecl *RD) { | |||
986 | for (const auto &I : RD->bases()) { | |||
987 | bool IsVirtual = I.isVirtual(); | |||
988 | ||||
989 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); | |||
990 | ||||
991 | // Compute the base subobject info for this base. | |||
992 | BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, | |||
993 | nullptr); | |||
994 | ||||
995 | if (IsVirtual) { | |||
996 | // ComputeBaseInfo has already added this base for us. | |||
997 | assert(VirtualBaseInfo.count(BaseDecl) &&(static_cast <bool> (VirtualBaseInfo.count(BaseDecl) && "Did not add virtual base!") ? void (0) : __assert_fail ("VirtualBaseInfo.count(BaseDecl) && \"Did not add virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 998, __extension__ __PRETTY_FUNCTION__)) | |||
998 | "Did not add virtual base!")(static_cast <bool> (VirtualBaseInfo.count(BaseDecl) && "Did not add virtual base!") ? void (0) : __assert_fail ("VirtualBaseInfo.count(BaseDecl) && \"Did not add virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 998, __extension__ __PRETTY_FUNCTION__)); | |||
999 | } else { | |||
1000 | // Add the base info to the map of non-virtual bases. | |||
1001 | assert(!NonVirtualBaseInfo.count(BaseDecl) &&(static_cast <bool> (!NonVirtualBaseInfo.count(BaseDecl ) && "Non-virtual base already exists!") ? void (0) : __assert_fail ("!NonVirtualBaseInfo.count(BaseDecl) && \"Non-virtual base already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1002, __extension__ __PRETTY_FUNCTION__)) | |||
1002 | "Non-virtual base already exists!")(static_cast <bool> (!NonVirtualBaseInfo.count(BaseDecl ) && "Non-virtual base already exists!") ? void (0) : __assert_fail ("!NonVirtualBaseInfo.count(BaseDecl) && \"Non-virtual base already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1002, __extension__ __PRETTY_FUNCTION__)); | |||
1003 | NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info)); | |||
1004 | } | |||
1005 | } | |||
1006 | } | |||
1007 | ||||
1008 | void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment( | |||
1009 | CharUnits UnpackedBaseAlign) { | |||
1010 | CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign; | |||
1011 | ||||
1012 | // The maximum field alignment overrides base align. | |||
1013 | if (!MaxFieldAlignment.isZero()) { | |||
1014 | BaseAlign = std::min(BaseAlign, MaxFieldAlignment); | |||
1015 | UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); | |||
1016 | } | |||
1017 | ||||
1018 | // Round up the current record size to pointer alignment. | |||
1019 | setSize(getSize().alignTo(BaseAlign)); | |||
1020 | ||||
1021 | // Update the alignment. | |||
1022 | UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign); | |||
1023 | } | |||
1024 | ||||
1025 | void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases( | |||
1026 | const CXXRecordDecl *RD) { | |||
1027 | // Then, determine the primary base class. | |||
1028 | DeterminePrimaryBase(RD); | |||
1029 | ||||
1030 | // Compute base subobject info. | |||
1031 | ComputeBaseSubobjectInfo(RD); | |||
1032 | ||||
1033 | // If we have a primary base class, lay it out. | |||
1034 | if (PrimaryBase) { | |||
1035 | if (PrimaryBaseIsVirtual) { | |||
1036 | // If the primary virtual base was a primary virtual base of some other | |||
1037 | // base class we'll have to steal it. | |||
1038 | BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase); | |||
1039 | PrimaryBaseInfo->Derived = nullptr; | |||
1040 | ||||
1041 | // We have a virtual primary base, insert it as an indirect primary base. | |||
1042 | IndirectPrimaryBases.insert(PrimaryBase); | |||
1043 | ||||
1044 | assert(!VisitedVirtualBases.count(PrimaryBase) &&(static_cast <bool> (!VisitedVirtualBases.count(PrimaryBase ) && "vbase already visited!") ? void (0) : __assert_fail ("!VisitedVirtualBases.count(PrimaryBase) && \"vbase already visited!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1045, __extension__ __PRETTY_FUNCTION__)) | |||
1045 | "vbase already visited!")(static_cast <bool> (!VisitedVirtualBases.count(PrimaryBase ) && "vbase already visited!") ? void (0) : __assert_fail ("!VisitedVirtualBases.count(PrimaryBase) && \"vbase already visited!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1045, __extension__ __PRETTY_FUNCTION__)); | |||
1046 | VisitedVirtualBases.insert(PrimaryBase); | |||
1047 | ||||
1048 | LayoutVirtualBase(PrimaryBaseInfo); | |||
1049 | } else { | |||
1050 | BaseSubobjectInfo *PrimaryBaseInfo = | |||
1051 | NonVirtualBaseInfo.lookup(PrimaryBase); | |||
1052 | assert(PrimaryBaseInfo &&(static_cast <bool> (PrimaryBaseInfo && "Did not find base info for non-virtual primary base!" ) ? void (0) : __assert_fail ("PrimaryBaseInfo && \"Did not find base info for non-virtual primary base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1053, __extension__ __PRETTY_FUNCTION__)) | |||
1053 | "Did not find base info for non-virtual primary base!")(static_cast <bool> (PrimaryBaseInfo && "Did not find base info for non-virtual primary base!" ) ? void (0) : __assert_fail ("PrimaryBaseInfo && \"Did not find base info for non-virtual primary base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1053, __extension__ __PRETTY_FUNCTION__)); | |||
1054 | ||||
1055 | LayoutNonVirtualBase(PrimaryBaseInfo); | |||
1056 | } | |||
1057 | ||||
1058 | // If this class needs a vtable/vf-table and didn't get one from a | |||
1059 | // primary base, add it in now. | |||
1060 | } else if (RD->isDynamicClass()) { | |||
1061 | assert(DataSize == 0 && "Vtable pointer must be at offset zero!")(static_cast <bool> (DataSize == 0 && "Vtable pointer must be at offset zero!" ) ? void (0) : __assert_fail ("DataSize == 0 && \"Vtable pointer must be at offset zero!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1061, __extension__ __PRETTY_FUNCTION__)); | |||
1062 | CharUnits PtrWidth = Context.toCharUnitsFromBits( | |||
1063 | Context.getTargetInfo().getPointerWidth(LangAS::Default)); | |||
1064 | CharUnits PtrAlign = Context.toCharUnitsFromBits( | |||
1065 | Context.getTargetInfo().getPointerAlign(LangAS::Default)); | |||
1066 | EnsureVTablePointerAlignment(PtrAlign); | |||
1067 | HasOwnVFPtr = true; | |||
1068 | ||||
1069 | assert(!IsUnion && "Unions cannot be dynamic classes.")(static_cast <bool> (!IsUnion && "Unions cannot be dynamic classes." ) ? void (0) : __assert_fail ("!IsUnion && \"Unions cannot be dynamic classes.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1069, __extension__ __PRETTY_FUNCTION__)); | |||
1070 | HandledFirstNonOverlappingEmptyField = true; | |||
1071 | ||||
1072 | setSize(getSize() + PtrWidth); | |||
1073 | setDataSize(getSize()); | |||
1074 | } | |||
1075 | ||||
1076 | // Now lay out the non-virtual bases. | |||
1077 | for (const auto &I : RD->bases()) { | |||
1078 | ||||
1079 | // Ignore virtual bases. | |||
1080 | if (I.isVirtual()) | |||
1081 | continue; | |||
1082 | ||||
1083 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); | |||
1084 | ||||
1085 | // Skip the primary base, because we've already laid it out. The | |||
1086 | // !PrimaryBaseIsVirtual check is required because we might have a | |||
1087 | // non-virtual base of the same type as a primary virtual base. | |||
1088 | if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) | |||
1089 | continue; | |||
1090 | ||||
1091 | // Lay out the base. | |||
1092 | BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl); | |||
1093 | assert(BaseInfo && "Did not find base info for non-virtual base!")(static_cast <bool> (BaseInfo && "Did not find base info for non-virtual base!" ) ? void (0) : __assert_fail ("BaseInfo && \"Did not find base info for non-virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1093, __extension__ __PRETTY_FUNCTION__)); | |||
1094 | ||||
1095 | LayoutNonVirtualBase(BaseInfo); | |||
1096 | } | |||
1097 | } | |||
1098 | ||||
1099 | void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase( | |||
1100 | const BaseSubobjectInfo *Base) { | |||
1101 | // Layout the base. | |||
1102 | CharUnits Offset = LayoutBase(Base); | |||
1103 | ||||
1104 | // Add its base class offset. | |||
1105 | assert(!Bases.count(Base->Class) && "base offset already exists!")(static_cast <bool> (!Bases.count(Base->Class) && "base offset already exists!") ? void (0) : __assert_fail ("!Bases.count(Base->Class) && \"base offset already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1105, __extension__ __PRETTY_FUNCTION__)); | |||
1106 | Bases.insert(std::make_pair(Base->Class, Offset)); | |||
1107 | ||||
1108 | AddPrimaryVirtualBaseOffsets(Base, Offset); | |||
1109 | } | |||
1110 | ||||
1111 | void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets( | |||
1112 | const BaseSubobjectInfo *Info, CharUnits Offset) { | |||
1113 | // This base isn't interesting, it has no virtual bases. | |||
1114 | if (!Info->Class->getNumVBases()) | |||
1115 | return; | |||
1116 | ||||
1117 | // First, check if we have a virtual primary base to add offsets for. | |||
1118 | if (Info->PrimaryVirtualBaseInfo) { | |||
1119 | assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&(static_cast <bool> (Info->PrimaryVirtualBaseInfo-> IsVirtual && "Primary virtual base is not virtual!") ? void (0) : __assert_fail ("Info->PrimaryVirtualBaseInfo->IsVirtual && \"Primary virtual base is not virtual!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1120, __extension__ __PRETTY_FUNCTION__)) | |||
1120 | "Primary virtual base is not virtual!")(static_cast <bool> (Info->PrimaryVirtualBaseInfo-> IsVirtual && "Primary virtual base is not virtual!") ? void (0) : __assert_fail ("Info->PrimaryVirtualBaseInfo->IsVirtual && \"Primary virtual base is not virtual!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1120, __extension__ __PRETTY_FUNCTION__)); | |||
1121 | if (Info->PrimaryVirtualBaseInfo->Derived == Info) { | |||
1122 | // Add the offset. | |||
1123 | assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&(static_cast <bool> (!VBases.count(Info->PrimaryVirtualBaseInfo ->Class) && "primary vbase offset already exists!" ) ? void (0) : __assert_fail ("!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && \"primary vbase offset already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1124, __extension__ __PRETTY_FUNCTION__)) | |||
1124 | "primary vbase offset already exists!")(static_cast <bool> (!VBases.count(Info->PrimaryVirtualBaseInfo ->Class) && "primary vbase offset already exists!" ) ? void (0) : __assert_fail ("!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && \"primary vbase offset already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1124, __extension__ __PRETTY_FUNCTION__)); | |||
1125 | VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class, | |||
1126 | ASTRecordLayout::VBaseInfo(Offset, false))); | |||
1127 | ||||
1128 | // Traverse the primary virtual base. | |||
1129 | AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset); | |||
1130 | } | |||
1131 | } | |||
1132 | ||||
1133 | // Now go through all direct non-virtual bases. | |||
1134 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); | |||
1135 | for (const BaseSubobjectInfo *Base : Info->Bases) { | |||
1136 | if (Base->IsVirtual) | |||
1137 | continue; | |||
1138 | ||||
1139 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); | |||
1140 | AddPrimaryVirtualBaseOffsets(Base, BaseOffset); | |||
1141 | } | |||
1142 | } | |||
1143 | ||||
1144 | void ItaniumRecordLayoutBuilder::LayoutVirtualBases( | |||
1145 | const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { | |||
1146 | const CXXRecordDecl *PrimaryBase; | |||
1147 | bool PrimaryBaseIsVirtual; | |||
1148 | ||||
1149 | if (MostDerivedClass
| |||
1150 | PrimaryBase = this->PrimaryBase; | |||
1151 | PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; | |||
1152 | } else { | |||
1153 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
1154 | PrimaryBase = Layout.getPrimaryBase(); | |||
1155 | PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); | |||
1156 | } | |||
1157 | ||||
1158 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
1159 | assert(!Base.getType()->isDependentType() &&(static_cast <bool> (!Base.getType()->isDependentType () && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1160, __extension__ __PRETTY_FUNCTION__)) | |||
1160 | "Cannot layout class with dependent bases.")(static_cast <bool> (!Base.getType()->isDependentType () && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1160, __extension__ __PRETTY_FUNCTION__)); | |||
1161 | ||||
1162 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
1163 | ||||
1164 | if (Base.isVirtual()) { | |||
1165 | if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { | |||
1166 | bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl); | |||
1167 | ||||
1168 | // Only lay out the virtual base if it's not an indirect primary base. | |||
1169 | if (!IndirectPrimaryBase) { | |||
1170 | // Only visit virtual bases once. | |||
1171 | if (!VisitedVirtualBases.insert(BaseDecl).second) | |||
1172 | continue; | |||
1173 | ||||
1174 | const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); | |||
1175 | assert(BaseInfo && "Did not find virtual base info!")(static_cast <bool> (BaseInfo && "Did not find virtual base info!" ) ? void (0) : __assert_fail ("BaseInfo && \"Did not find virtual base info!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1175, __extension__ __PRETTY_FUNCTION__)); | |||
1176 | LayoutVirtualBase(BaseInfo); | |||
1177 | } | |||
1178 | } | |||
1179 | } | |||
1180 | ||||
1181 | if (!BaseDecl->getNumVBases()) { | |||
| ||||
1182 | // This base isn't interesting since it doesn't have any virtual bases. | |||
1183 | continue; | |||
1184 | } | |||
1185 | ||||
1186 | LayoutVirtualBases(BaseDecl, MostDerivedClass); | |||
1187 | } | |||
1188 | } | |||
1189 | ||||
1190 | void ItaniumRecordLayoutBuilder::LayoutVirtualBase( | |||
1191 | const BaseSubobjectInfo *Base) { | |||
1192 | assert(!Base->Derived && "Trying to lay out a primary virtual base!")(static_cast <bool> (!Base->Derived && "Trying to lay out a primary virtual base!" ) ? void (0) : __assert_fail ("!Base->Derived && \"Trying to lay out a primary virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1192, __extension__ __PRETTY_FUNCTION__)); | |||
1193 | ||||
1194 | // Layout the base. | |||
1195 | CharUnits Offset = LayoutBase(Base); | |||
1196 | ||||
1197 | // Add its base class offset. | |||
1198 | assert(!VBases.count(Base->Class) && "vbase offset already exists!")(static_cast <bool> (!VBases.count(Base->Class) && "vbase offset already exists!") ? void (0) : __assert_fail ( "!VBases.count(Base->Class) && \"vbase offset already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1198, __extension__ __PRETTY_FUNCTION__)); | |||
1199 | VBases.insert(std::make_pair(Base->Class, | |||
1200 | ASTRecordLayout::VBaseInfo(Offset, false))); | |||
1201 | ||||
1202 | AddPrimaryVirtualBaseOffsets(Base, Offset); | |||
1203 | } | |||
1204 | ||||
1205 | CharUnits | |||
1206 | ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { | |||
1207 | assert(!IsUnion && "Unions cannot have base classes.")(static_cast <bool> (!IsUnion && "Unions cannot have base classes." ) ? void (0) : __assert_fail ("!IsUnion && \"Unions cannot have base classes.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1207, __extension__ __PRETTY_FUNCTION__)); | |||
1208 | ||||
1209 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); | |||
1210 | CharUnits Offset; | |||
1211 | ||||
1212 | // Query the external layout to see if it provides an offset. | |||
1213 | bool HasExternalLayout = false; | |||
1214 | if (UseExternalLayout) { | |||
1215 | if (Base->IsVirtual) | |||
1216 | HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset); | |||
1217 | else | |||
1218 | HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset); | |||
1219 | } | |||
1220 | ||||
1221 | auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) { | |||
1222 | // Clang <= 6 incorrectly applied the 'packed' attribute to base classes. | |||
1223 | // Per GCC's documentation, it only applies to non-static data members. | |||
1224 | return (Packed && ((Context.getLangOpts().getClangABICompat() <= | |||
1225 | LangOptions::ClangABI::Ver6) || | |||
1226 | Context.getTargetInfo().getTriple().isPS() || | |||
1227 | Context.getTargetInfo().getTriple().isOSAIX())) | |||
1228 | ? CharUnits::One() | |||
1229 | : UnpackedAlign; | |||
1230 | }; | |||
1231 | ||||
1232 | CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment(); | |||
1233 | CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment(); | |||
1234 | CharUnits BaseAlign = | |||
1235 | getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign); | |||
1236 | CharUnits PreferredBaseAlign = | |||
1237 | getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign); | |||
1238 | ||||
1239 | const bool DefaultsToAIXPowerAlignment = | |||
1240 | Context.getTargetInfo().defaultsToAIXPowerAlignment(); | |||
1241 | if (DefaultsToAIXPowerAlignment) { | |||
1242 | // AIX `power` alignment does not apply the preferred alignment for | |||
1243 | // non-union classes if the source of the alignment (the current base in | |||
1244 | // this context) follows introduction of the first subobject with | |||
1245 | // exclusively allocated space or zero-extent array. | |||
1246 | if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) { | |||
1247 | // By handling a base class that is not empty, we're handling the | |||
1248 | // "first (inherited) member". | |||
1249 | HandledFirstNonOverlappingEmptyField = true; | |||
1250 | } else if (!IsNaturalAlign) { | |||
1251 | UnpackedPreferredBaseAlign = UnpackedBaseAlign; | |||
1252 | PreferredBaseAlign = BaseAlign; | |||
1253 | } | |||
1254 | } | |||
1255 | ||||
1256 | CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment | |||
1257 | ? UnpackedBaseAlign | |||
1258 | : UnpackedPreferredBaseAlign; | |||
1259 | // If we have an empty base class, try to place it at offset 0. | |||
1260 | if (Base->Class->isEmpty() && | |||
1261 | (!HasExternalLayout || Offset == CharUnits::Zero()) && | |||
1262 | EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) { | |||
1263 | setSize(std::max(getSize(), Layout.getSize())); | |||
1264 | // On PS4/PS5, don't update the alignment, to preserve compatibility. | |||
1265 | if (!Context.getTargetInfo().getTriple().isPS()) | |||
1266 | UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign); | |||
1267 | ||||
1268 | return CharUnits::Zero(); | |||
1269 | } | |||
1270 | ||||
1271 | // The maximum field alignment overrides the base align/(AIX-only) preferred | |||
1272 | // base align. | |||
1273 | if (!MaxFieldAlignment.isZero()) { | |||
1274 | BaseAlign = std::min(BaseAlign, MaxFieldAlignment); | |||
1275 | PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment); | |||
1276 | UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment); | |||
1277 | } | |||
1278 | ||||
1279 | CharUnits AlignTo = | |||
1280 | !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign; | |||
1281 | if (!HasExternalLayout) { | |||
1282 | // Round up the current record size to the base's alignment boundary. | |||
1283 | Offset = getDataSize().alignTo(AlignTo); | |||
1284 | ||||
1285 | // Try to place the base. | |||
1286 | while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset)) | |||
1287 | Offset += AlignTo; | |||
1288 | } else { | |||
1289 | bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset); | |||
1290 | (void)Allowed; | |||
1291 | assert(Allowed && "Base subobject externally placed at overlapping offset")(static_cast <bool> (Allowed && "Base subobject externally placed at overlapping offset" ) ? void (0) : __assert_fail ("Allowed && \"Base subobject externally placed at overlapping offset\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1291, __extension__ __PRETTY_FUNCTION__)); | |||
1292 | ||||
1293 | if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) { | |||
1294 | // The externally-supplied base offset is before the base offset we | |||
1295 | // computed. Assume that the structure is packed. | |||
1296 | Alignment = CharUnits::One(); | |||
1297 | InferAlignment = false; | |||
1298 | } | |||
1299 | } | |||
1300 | ||||
1301 | if (!Base->Class->isEmpty()) { | |||
1302 | // Update the data size. | |||
1303 | setDataSize(Offset + Layout.getNonVirtualSize()); | |||
1304 | ||||
1305 | setSize(std::max(getSize(), getDataSize())); | |||
1306 | } else | |||
1307 | setSize(std::max(getSize(), Offset + Layout.getSize())); | |||
1308 | ||||
1309 | // Remember max struct/class alignment. | |||
1310 | UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign); | |||
1311 | ||||
1312 | return Offset; | |||
1313 | } | |||
1314 | ||||
1315 | void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) { | |||
1316 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { | |||
1317 | IsUnion = RD->isUnion(); | |||
1318 | IsMsStruct = RD->isMsStruct(Context); | |||
1319 | } | |||
1320 | ||||
1321 | Packed = D->hasAttr<PackedAttr>(); | |||
1322 | ||||
1323 | // Honor the default struct packing maximum alignment flag. | |||
1324 | if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { | |||
1325 | MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); | |||
1326 | } | |||
1327 | ||||
1328 | // mac68k alignment supersedes maximum field alignment and attribute aligned, | |||
1329 | // and forces all structures to have 2-byte alignment. The IBM docs on it | |||
1330 | // allude to additional (more complicated) semantics, especially with regard | |||
1331 | // to bit-fields, but gcc appears not to follow that. | |||
1332 | if (D->hasAttr<AlignMac68kAttr>()) { | |||
1333 | assert((static_cast <bool> (!D->hasAttr<AlignNaturalAttr >() && "Having both mac68k and natural alignment on a decl is not allowed." ) ? void (0) : __assert_fail ("!D->hasAttr<AlignNaturalAttr>() && \"Having both mac68k and natural alignment on a decl is not allowed.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1335, __extension__ __PRETTY_FUNCTION__)) | |||
1334 | !D->hasAttr<AlignNaturalAttr>() &&(static_cast <bool> (!D->hasAttr<AlignNaturalAttr >() && "Having both mac68k and natural alignment on a decl is not allowed." ) ? void (0) : __assert_fail ("!D->hasAttr<AlignNaturalAttr>() && \"Having both mac68k and natural alignment on a decl is not allowed.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1335, __extension__ __PRETTY_FUNCTION__)) | |||
1335 | "Having both mac68k and natural alignment on a decl is not allowed.")(static_cast <bool> (!D->hasAttr<AlignNaturalAttr >() && "Having both mac68k and natural alignment on a decl is not allowed." ) ? void (0) : __assert_fail ("!D->hasAttr<AlignNaturalAttr>() && \"Having both mac68k and natural alignment on a decl is not allowed.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1335, __extension__ __PRETTY_FUNCTION__)); | |||
1336 | IsMac68kAlign = true; | |||
1337 | MaxFieldAlignment = CharUnits::fromQuantity(2); | |||
1338 | Alignment = CharUnits::fromQuantity(2); | |||
1339 | PreferredAlignment = CharUnits::fromQuantity(2); | |||
1340 | } else { | |||
1341 | if (D->hasAttr<AlignNaturalAttr>()) | |||
1342 | IsNaturalAlign = true; | |||
1343 | ||||
1344 | if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>()) | |||
1345 | MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment()); | |||
1346 | ||||
1347 | if (unsigned MaxAlign = D->getMaxAlignment()) | |||
1348 | UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign)); | |||
1349 | } | |||
1350 | ||||
1351 | HandledFirstNonOverlappingEmptyField = | |||
1352 | !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign; | |||
1353 | ||||
1354 | // If there is an external AST source, ask it for the various offsets. | |||
1355 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) | |||
1356 | if (ExternalASTSource *Source = Context.getExternalSource()) { | |||
1357 | UseExternalLayout = Source->layoutRecordType( | |||
1358 | RD, External.Size, External.Align, External.FieldOffsets, | |||
1359 | External.BaseOffsets, External.VirtualBaseOffsets); | |||
1360 | ||||
1361 | // Update based on external alignment. | |||
1362 | if (UseExternalLayout) { | |||
1363 | if (External.Align > 0) { | |||
1364 | Alignment = Context.toCharUnitsFromBits(External.Align); | |||
1365 | PreferredAlignment = Context.toCharUnitsFromBits(External.Align); | |||
1366 | } else { | |||
1367 | // The external source didn't have alignment information; infer it. | |||
1368 | InferAlignment = true; | |||
1369 | } | |||
1370 | } | |||
1371 | } | |||
1372 | } | |||
1373 | ||||
1374 | void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) { | |||
1375 | InitializeLayout(D); | |||
1376 | LayoutFields(D); | |||
1377 | ||||
1378 | // Finally, round the size of the total struct up to the alignment of the | |||
1379 | // struct itself. | |||
1380 | FinishLayout(D); | |||
1381 | } | |||
1382 | ||||
1383 | void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { | |||
1384 | InitializeLayout(RD); | |||
1385 | ||||
1386 | // Lay out the vtable and the non-virtual bases. | |||
1387 | LayoutNonVirtualBases(RD); | |||
1388 | ||||
1389 | LayoutFields(RD); | |||
1390 | ||||
1391 | NonVirtualSize = Context.toCharUnitsFromBits( | |||
1392 | llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign())); | |||
1393 | NonVirtualAlignment = Alignment; | |||
1394 | PreferredNVAlignment = PreferredAlignment; | |||
1395 | ||||
1396 | // Lay out the virtual bases and add the primary virtual base offsets. | |||
1397 | LayoutVirtualBases(RD, RD); | |||
1398 | ||||
1399 | // Finally, round the size of the total struct up to the alignment | |||
1400 | // of the struct itself. | |||
1401 | FinishLayout(RD); | |||
1402 | ||||
1403 | #ifndef NDEBUG | |||
1404 | // Check that we have base offsets for all bases. | |||
1405 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
1406 | if (Base.isVirtual()) | |||
1407 | continue; | |||
1408 | ||||
1409 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
1410 | ||||
1411 | assert(Bases.count(BaseDecl) && "Did not find base offset!")(static_cast <bool> (Bases.count(BaseDecl) && "Did not find base offset!" ) ? void (0) : __assert_fail ("Bases.count(BaseDecl) && \"Did not find base offset!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1411, __extension__ __PRETTY_FUNCTION__)); | |||
1412 | } | |||
1413 | ||||
1414 | // And all virtual bases. | |||
1415 | for (const CXXBaseSpecifier &Base : RD->vbases()) { | |||
1416 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
1417 | ||||
1418 | assert(VBases.count(BaseDecl) && "Did not find base offset!")(static_cast <bool> (VBases.count(BaseDecl) && "Did not find base offset!" ) ? void (0) : __assert_fail ("VBases.count(BaseDecl) && \"Did not find base offset!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1418, __extension__ __PRETTY_FUNCTION__)); | |||
1419 | } | |||
1420 | #endif | |||
1421 | } | |||
1422 | ||||
1423 | void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { | |||
1424 | if (ObjCInterfaceDecl *SD = D->getSuperClass()) { | |||
1425 | const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD); | |||
1426 | ||||
1427 | UpdateAlignment(SL.getAlignment()); | |||
1428 | ||||
1429 | // We start laying out ivars not at the end of the superclass | |||
1430 | // structure, but at the next byte following the last field. | |||
1431 | setDataSize(SL.getDataSize()); | |||
1432 | setSize(getDataSize()); | |||
1433 | } | |||
1434 | ||||
1435 | InitializeLayout(D); | |||
1436 | // Layout each ivar sequentially. | |||
1437 | for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; | |||
1438 | IVD = IVD->getNextIvar()) | |||
1439 | LayoutField(IVD, false); | |||
1440 | ||||
1441 | // Finally, round the size of the total struct up to the alignment of the | |||
1442 | // struct itself. | |||
1443 | FinishLayout(D); | |||
1444 | } | |||
1445 | ||||
1446 | void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { | |||
1447 | // Layout each field, for now, just sequentially, respecting alignment. In | |||
1448 | // the future, this will need to be tweakable by targets. | |||
1449 | bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true); | |||
1450 | bool HasFlexibleArrayMember = D->hasFlexibleArrayMember(); | |||
1451 | for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) { | |||
1452 | auto Next(I); | |||
1453 | ++Next; | |||
1454 | LayoutField(*I, | |||
1455 | InsertExtraPadding && (Next != End || !HasFlexibleArrayMember)); | |||
1456 | } | |||
1457 | } | |||
1458 | ||||
1459 | // Rounds the specified size to have it a multiple of the char size. | |||
1460 | static uint64_t | |||
1461 | roundUpSizeToCharAlignment(uint64_t Size, | |||
1462 | const ASTContext &Context) { | |||
1463 | uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); | |||
1464 | return llvm::alignTo(Size, CharAlignment); | |||
1465 | } | |||
1466 | ||||
1467 | void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, | |||
1468 | uint64_t StorageUnitSize, | |||
1469 | bool FieldPacked, | |||
1470 | const FieldDecl *D) { | |||
1471 | assert(Context.getLangOpts().CPlusPlus &&(static_cast <bool> (Context.getLangOpts().CPlusPlus && "Can only have wide bit-fields in C++!") ? void (0) : __assert_fail ("Context.getLangOpts().CPlusPlus && \"Can only have wide bit-fields in C++!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1472, __extension__ __PRETTY_FUNCTION__)) | |||
1472 | "Can only have wide bit-fields in C++!")(static_cast <bool> (Context.getLangOpts().CPlusPlus && "Can only have wide bit-fields in C++!") ? void (0) : __assert_fail ("Context.getLangOpts().CPlusPlus && \"Can only have wide bit-fields in C++!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1472, __extension__ __PRETTY_FUNCTION__)); | |||
1473 | ||||
1474 | // Itanium C++ ABI 2.4: | |||
1475 | // If sizeof(T)*8 < n, let T' be the largest integral POD type with | |||
1476 | // sizeof(T')*8 <= n. | |||
1477 | ||||
1478 | QualType IntegralPODTypes[] = { | |||
1479 | Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy, | |||
1480 | Context.UnsignedLongTy, Context.UnsignedLongLongTy | |||
1481 | }; | |||
1482 | ||||
1483 | QualType Type; | |||
1484 | for (const QualType &QT : IntegralPODTypes) { | |||
1485 | uint64_t Size = Context.getTypeSize(QT); | |||
1486 | ||||
1487 | if (Size > FieldSize) | |||
1488 | break; | |||
1489 | ||||
1490 | Type = QT; | |||
1491 | } | |||
1492 | assert(!Type.isNull() && "Did not find a type!")(static_cast <bool> (!Type.isNull() && "Did not find a type!" ) ? void (0) : __assert_fail ("!Type.isNull() && \"Did not find a type!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1492, __extension__ __PRETTY_FUNCTION__)); | |||
1493 | ||||
1494 | CharUnits TypeAlign = Context.getTypeAlignInChars(Type); | |||
1495 | ||||
1496 | // We're not going to use any of the unfilled bits in the last byte. | |||
1497 | UnfilledBitsInLastUnit = 0; | |||
1498 | LastBitfieldStorageUnitSize = 0; | |||
1499 | ||||
1500 | uint64_t FieldOffset; | |||
1501 | uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; | |||
1502 | ||||
1503 | if (IsUnion) { | |||
1504 | uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, | |||
1505 | Context); | |||
1506 | setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); | |||
1507 | FieldOffset = 0; | |||
1508 | } else { | |||
1509 | // The bitfield is allocated starting at the next offset aligned | |||
1510 | // appropriately for T', with length n bits. | |||
1511 | FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign)); | |||
1512 | ||||
1513 | uint64_t NewSizeInBits = FieldOffset + FieldSize; | |||
1514 | ||||
1515 | setDataSize( | |||
1516 | llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign())); | |||
1517 | UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; | |||
1518 | } | |||
1519 | ||||
1520 | // Place this field at the current location. | |||
1521 | FieldOffsets.push_back(FieldOffset); | |||
1522 | ||||
1523 | CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset, | |||
1524 | Context.toBits(TypeAlign), FieldPacked, D); | |||
1525 | ||||
1526 | // Update the size. | |||
1527 | setSize(std::max(getSizeInBits(), getDataSizeInBits())); | |||
1528 | ||||
1529 | // Remember max struct/class alignment. | |||
1530 | UpdateAlignment(TypeAlign); | |||
1531 | } | |||
1532 | ||||
1533 | static bool isAIXLayout(const ASTContext &Context) { | |||
1534 | return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX; | |||
1535 | } | |||
1536 | ||||
1537 | void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { | |||
1538 | bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); | |||
1539 | uint64_t FieldSize = D->getBitWidthValue(Context); | |||
1540 | TypeInfo FieldInfo = Context.getTypeInfo(D->getType()); | |||
1541 | uint64_t StorageUnitSize = FieldInfo.Width; | |||
1542 | unsigned FieldAlign = FieldInfo.Align; | |||
1543 | bool AlignIsRequired = FieldInfo.isAlignRequired(); | |||
1544 | ||||
1545 | // UnfilledBitsInLastUnit is the difference between the end of the | |||
1546 | // last allocated bitfield (i.e. the first bit offset available for | |||
1547 | // bitfields) and the end of the current data size in bits (i.e. the | |||
1548 | // first bit offset available for non-bitfields). The current data | |||
1549 | // size in bits is always a multiple of the char size; additionally, | |||
1550 | // for ms_struct records it's also a multiple of the | |||
1551 | // LastBitfieldStorageUnitSize (if set). | |||
1552 | ||||
1553 | // The struct-layout algorithm is dictated by the platform ABI, | |||
1554 | // which in principle could use almost any rules it likes. In | |||
1555 | // practice, UNIXy targets tend to inherit the algorithm described | |||
1556 | // in the System V generic ABI. The basic bitfield layout rule in | |||
1557 | // System V is to place bitfields at the next available bit offset | |||
1558 | // where the entire bitfield would fit in an aligned storage unit of | |||
1559 | // the declared type; it's okay if an earlier or later non-bitfield | |||
1560 | // is allocated in the same storage unit. However, some targets | |||
1561 | // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't | |||
1562 | // require this storage unit to be aligned, and therefore always put | |||
1563 | // the bitfield at the next available bit offset. | |||
1564 | ||||
1565 | // ms_struct basically requests a complete replacement of the | |||
1566 | // platform ABI's struct-layout algorithm, with the high-level goal | |||
1567 | // of duplicating MSVC's layout. For non-bitfields, this follows | |||
1568 | // the standard algorithm. The basic bitfield layout rule is to | |||
1569 | // allocate an entire unit of the bitfield's declared type | |||
1570 | // (e.g. 'unsigned long'), then parcel it up among successive | |||
1571 | // bitfields whose declared types have the same size, making a new | |||
1572 | // unit as soon as the last can no longer store the whole value. | |||
1573 | // Since it completely replaces the platform ABI's algorithm, | |||
1574 | // settings like !useBitFieldTypeAlignment() do not apply. | |||
1575 | ||||
1576 | // A zero-width bitfield forces the use of a new storage unit for | |||
1577 | // later bitfields. In general, this occurs by rounding up the | |||
1578 | // current size of the struct as if the algorithm were about to | |||
1579 | // place a non-bitfield of the field's formal type. Usually this | |||
1580 | // does not change the alignment of the struct itself, but it does | |||
1581 | // on some targets (those that useZeroLengthBitfieldAlignment(), | |||
1582 | // e.g. ARM). In ms_struct layout, zero-width bitfields are | |||
1583 | // ignored unless they follow a non-zero-width bitfield. | |||
1584 | ||||
1585 | // A field alignment restriction (e.g. from #pragma pack) or | |||
1586 | // specification (e.g. from __attribute__((aligned))) changes the | |||
1587 | // formal alignment of the field. For System V, this alters the | |||
1588 | // required alignment of the notional storage unit that must contain | |||
1589 | // the bitfield. For ms_struct, this only affects the placement of | |||
1590 | // new storage units. In both cases, the effect of #pragma pack is | |||
1591 | // ignored on zero-width bitfields. | |||
1592 | ||||
1593 | // On System V, a packed field (e.g. from #pragma pack or | |||
1594 | // __attribute__((packed))) always uses the next available bit | |||
1595 | // offset. | |||
1596 | ||||
1597 | // In an ms_struct struct, the alignment of a fundamental type is | |||
1598 | // always equal to its size. This is necessary in order to mimic | |||
1599 | // the i386 alignment rules on targets which might not fully align | |||
1600 | // all types (e.g. Darwin PPC32, where alignof(long long) == 4). | |||
1601 | ||||
1602 | // First, some simple bookkeeping to perform for ms_struct structs. | |||
1603 | if (IsMsStruct) { | |||
1604 | // The field alignment for integer types is always the size. | |||
1605 | FieldAlign = StorageUnitSize; | |||
1606 | ||||
1607 | // If the previous field was not a bitfield, or was a bitfield | |||
1608 | // with a different storage unit size, or if this field doesn't fit into | |||
1609 | // the current storage unit, we're done with that storage unit. | |||
1610 | if (LastBitfieldStorageUnitSize != StorageUnitSize || | |||
1611 | UnfilledBitsInLastUnit < FieldSize) { | |||
1612 | // Also, ignore zero-length bitfields after non-bitfields. | |||
1613 | if (!LastBitfieldStorageUnitSize && !FieldSize) | |||
1614 | FieldAlign = 1; | |||
1615 | ||||
1616 | UnfilledBitsInLastUnit = 0; | |||
1617 | LastBitfieldStorageUnitSize = 0; | |||
1618 | } | |||
1619 | } | |||
1620 | ||||
1621 | if (isAIXLayout(Context)) { | |||
1622 | if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) { | |||
1623 | // On AIX, [bool, char, short] bitfields have the same alignment | |||
1624 | // as [unsigned]. | |||
1625 | StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy); | |||
1626 | } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) && | |||
1627 | Context.getTargetInfo().getTriple().isArch32Bit() && | |||
1628 | FieldSize <= 32) { | |||
1629 | // Under 32-bit compile mode, the bitcontainer is 32 bits if a single | |||
1630 | // long long bitfield has length no greater than 32 bits. | |||
1631 | StorageUnitSize = 32; | |||
1632 | ||||
1633 | if (!AlignIsRequired) | |||
1634 | FieldAlign = 32; | |||
1635 | } | |||
1636 | ||||
1637 | if (FieldAlign < StorageUnitSize) { | |||
1638 | // The bitfield alignment should always be greater than or equal to | |||
1639 | // bitcontainer size. | |||
1640 | FieldAlign = StorageUnitSize; | |||
1641 | } | |||
1642 | } | |||
1643 | ||||
1644 | // If the field is wider than its declared type, it follows | |||
1645 | // different rules in all cases, except on AIX. | |||
1646 | // On AIX, wide bitfield follows the same rules as normal bitfield. | |||
1647 | if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) { | |||
1648 | LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D); | |||
1649 | return; | |||
1650 | } | |||
1651 | ||||
1652 | // Compute the next available bit offset. | |||
1653 | uint64_t FieldOffset = | |||
1654 | IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit); | |||
1655 | ||||
1656 | // Handle targets that don't honor bitfield type alignment. | |||
1657 | if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) { | |||
1658 | // Some such targets do honor it on zero-width bitfields. | |||
1659 | if (FieldSize == 0 && | |||
1660 | Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { | |||
1661 | // Some targets don't honor leading zero-width bitfield. | |||
1662 | if (!IsUnion && FieldOffset == 0 && | |||
1663 | !Context.getTargetInfo().useLeadingZeroLengthBitfield()) | |||
1664 | FieldAlign = 1; | |||
1665 | else { | |||
1666 | // The alignment to round up to is the max of the field's natural | |||
1667 | // alignment and a target-specific fixed value (sometimes zero). | |||
1668 | unsigned ZeroLengthBitfieldBoundary = | |||
1669 | Context.getTargetInfo().getZeroLengthBitfieldBoundary(); | |||
1670 | FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary); | |||
1671 | } | |||
1672 | // If that doesn't apply, just ignore the field alignment. | |||
1673 | } else { | |||
1674 | FieldAlign = 1; | |||
1675 | } | |||
1676 | } | |||
1677 | ||||
1678 | // Remember the alignment we would have used if the field were not packed. | |||
1679 | unsigned UnpackedFieldAlign = FieldAlign; | |||
1680 | ||||
1681 | // Ignore the field alignment if the field is packed unless it has zero-size. | |||
1682 | if (!IsMsStruct && FieldPacked && FieldSize != 0) | |||
1683 | FieldAlign = 1; | |||
1684 | ||||
1685 | // But, if there's an 'aligned' attribute on the field, honor that. | |||
1686 | unsigned ExplicitFieldAlign = D->getMaxAlignment(); | |||
1687 | if (ExplicitFieldAlign) { | |||
1688 | FieldAlign = std::max(FieldAlign, ExplicitFieldAlign); | |||
1689 | UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign); | |||
1690 | } | |||
1691 | ||||
1692 | // But, if there's a #pragma pack in play, that takes precedent over | |||
1693 | // even the 'aligned' attribute, for non-zero-width bitfields. | |||
1694 | unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment); | |||
1695 | if (!MaxFieldAlignment.isZero() && FieldSize) { | |||
1696 | UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); | |||
1697 | if (FieldPacked) | |||
1698 | FieldAlign = UnpackedFieldAlign; | |||
1699 | else | |||
1700 | FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); | |||
1701 | } | |||
1702 | ||||
1703 | // But, ms_struct just ignores all of that in unions, even explicit | |||
1704 | // alignment attributes. | |||
1705 | if (IsMsStruct && IsUnion) { | |||
1706 | FieldAlign = UnpackedFieldAlign = 1; | |||
1707 | } | |||
1708 | ||||
1709 | // For purposes of diagnostics, we're going to simultaneously | |||
1710 | // compute the field offsets that we would have used if we weren't | |||
1711 | // adding any alignment padding or if the field weren't packed. | |||
1712 | uint64_t UnpaddedFieldOffset = FieldOffset; | |||
1713 | uint64_t UnpackedFieldOffset = FieldOffset; | |||
1714 | ||||
1715 | // Check if we need to add padding to fit the bitfield within an | |||
1716 | // allocation unit with the right size and alignment. The rules are | |||
1717 | // somewhat different here for ms_struct structs. | |||
1718 | if (IsMsStruct) { | |||
1719 | // If it's not a zero-width bitfield, and we can fit the bitfield | |||
1720 | // into the active storage unit (and we haven't already decided to | |||
1721 | // start a new storage unit), just do so, regardless of any other | |||
1722 | // other consideration. Otherwise, round up to the right alignment. | |||
1723 | if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) { | |||
1724 | FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); | |||
1725 | UnpackedFieldOffset = | |||
1726 | llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); | |||
1727 | UnfilledBitsInLastUnit = 0; | |||
1728 | } | |||
1729 | ||||
1730 | } else { | |||
1731 | // #pragma pack, with any value, suppresses the insertion of padding. | |||
1732 | bool AllowPadding = MaxFieldAlignment.isZero(); | |||
1733 | ||||
1734 | // Compute the real offset. | |||
1735 | if (FieldSize == 0 || | |||
1736 | (AllowPadding && | |||
1737 | (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) { | |||
1738 | FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); | |||
1739 | } else if (ExplicitFieldAlign && | |||
1740 | (MaxFieldAlignmentInBits == 0 || | |||
1741 | ExplicitFieldAlign <= MaxFieldAlignmentInBits) && | |||
1742 | Context.getTargetInfo().useExplicitBitFieldAlignment()) { | |||
1743 | // TODO: figure it out what needs to be done on targets that don't honor | |||
1744 | // bit-field type alignment like ARM APCS ABI. | |||
1745 | FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign); | |||
1746 | } | |||
1747 | ||||
1748 | // Repeat the computation for diagnostic purposes. | |||
1749 | if (FieldSize == 0 || | |||
1750 | (AllowPadding && | |||
1751 | (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize > | |||
1752 | StorageUnitSize)) | |||
1753 | UnpackedFieldOffset = | |||
1754 | llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); | |||
1755 | else if (ExplicitFieldAlign && | |||
1756 | (MaxFieldAlignmentInBits == 0 || | |||
1757 | ExplicitFieldAlign <= MaxFieldAlignmentInBits) && | |||
1758 | Context.getTargetInfo().useExplicitBitFieldAlignment()) | |||
1759 | UnpackedFieldOffset = | |||
1760 | llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign); | |||
1761 | } | |||
1762 | ||||
1763 | // If we're using external layout, give the external layout a chance | |||
1764 | // to override this information. | |||
1765 | if (UseExternalLayout) | |||
1766 | FieldOffset = updateExternalFieldOffset(D, FieldOffset); | |||
1767 | ||||
1768 | // Okay, place the bitfield at the calculated offset. | |||
1769 | FieldOffsets.push_back(FieldOffset); | |||
1770 | ||||
1771 | // Bookkeeping: | |||
1772 | ||||
1773 | // Anonymous members don't affect the overall record alignment, | |||
1774 | // except on targets where they do. | |||
1775 | if (!IsMsStruct && | |||
1776 | !Context.getTargetInfo().useZeroLengthBitfieldAlignment() && | |||
1777 | !D->getIdentifier()) | |||
1778 | FieldAlign = UnpackedFieldAlign = 1; | |||
1779 | ||||
1780 | // On AIX, zero-width bitfields pad out to the natural alignment boundary, | |||
1781 | // but do not increase the alignment greater than the MaxFieldAlignment, or 1 | |||
1782 | // if packed. | |||
1783 | if (isAIXLayout(Context) && !FieldSize) { | |||
1784 | if (FieldPacked) | |||
1785 | FieldAlign = 1; | |||
1786 | if (!MaxFieldAlignment.isZero()) { | |||
1787 | UnpackedFieldAlign = | |||
1788 | std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); | |||
1789 | FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); | |||
1790 | } | |||
1791 | } | |||
1792 | ||||
1793 | // Diagnose differences in layout due to padding or packing. | |||
1794 | if (!UseExternalLayout) | |||
1795 | CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset, | |||
1796 | UnpackedFieldAlign, FieldPacked, D); | |||
1797 | ||||
1798 | // Update DataSize to include the last byte containing (part of) the bitfield. | |||
1799 | ||||
1800 | // For unions, this is just a max operation, as usual. | |||
1801 | if (IsUnion) { | |||
1802 | // For ms_struct, allocate the entire storage unit --- unless this | |||
1803 | // is a zero-width bitfield, in which case just use a size of 1. | |||
1804 | uint64_t RoundedFieldSize; | |||
1805 | if (IsMsStruct) { | |||
1806 | RoundedFieldSize = (FieldSize ? StorageUnitSize | |||
1807 | : Context.getTargetInfo().getCharWidth()); | |||
1808 | ||||
1809 | // Otherwise, allocate just the number of bytes required to store | |||
1810 | // the bitfield. | |||
1811 | } else { | |||
1812 | RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context); | |||
1813 | } | |||
1814 | setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); | |||
1815 | ||||
1816 | // For non-zero-width bitfields in ms_struct structs, allocate a new | |||
1817 | // storage unit if necessary. | |||
1818 | } else if (IsMsStruct && FieldSize) { | |||
1819 | // We should have cleared UnfilledBitsInLastUnit in every case | |||
1820 | // where we changed storage units. | |||
1821 | if (!UnfilledBitsInLastUnit) { | |||
1822 | setDataSize(FieldOffset + StorageUnitSize); | |||
1823 | UnfilledBitsInLastUnit = StorageUnitSize; | |||
1824 | } | |||
1825 | UnfilledBitsInLastUnit -= FieldSize; | |||
1826 | LastBitfieldStorageUnitSize = StorageUnitSize; | |||
1827 | ||||
1828 | // Otherwise, bump the data size up to include the bitfield, | |||
1829 | // including padding up to char alignment, and then remember how | |||
1830 | // bits we didn't use. | |||
1831 | } else { | |||
1832 | uint64_t NewSizeInBits = FieldOffset + FieldSize; | |||
1833 | uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); | |||
1834 | setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment)); | |||
1835 | UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; | |||
1836 | ||||
1837 | // The only time we can get here for an ms_struct is if this is a | |||
1838 | // zero-width bitfield, which doesn't count as anything for the | |||
1839 | // purposes of unfilled bits. | |||
1840 | LastBitfieldStorageUnitSize = 0; | |||
1841 | } | |||
1842 | ||||
1843 | // Update the size. | |||
1844 | setSize(std::max(getSizeInBits(), getDataSizeInBits())); | |||
1845 | ||||
1846 | // Remember max struct/class alignment. | |||
1847 | UnadjustedAlignment = | |||
1848 | std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign)); | |||
1849 | UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), | |||
1850 | Context.toCharUnitsFromBits(UnpackedFieldAlign)); | |||
1851 | } | |||
1852 | ||||
1853 | void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D, | |||
1854 | bool InsertExtraPadding) { | |||
1855 | auto *FieldClass = D->getType()->getAsCXXRecordDecl(); | |||
1856 | bool IsOverlappingEmptyField = | |||
1857 | D->isPotentiallyOverlapping() && FieldClass->isEmpty(); | |||
1858 | ||||
1859 | CharUnits FieldOffset = | |||
1860 | (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize(); | |||
1861 | ||||
1862 | const bool DefaultsToAIXPowerAlignment = | |||
1863 | Context.getTargetInfo().defaultsToAIXPowerAlignment(); | |||
1864 | bool FoundFirstNonOverlappingEmptyFieldForAIX = false; | |||
1865 | if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) { | |||
1866 | assert(FieldOffset == CharUnits::Zero() &&(static_cast <bool> (FieldOffset == CharUnits::Zero() && "The first non-overlapping empty field should have been handled." ) ? void (0) : __assert_fail ("FieldOffset == CharUnits::Zero() && \"The first non-overlapping empty field should have been handled.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1867, __extension__ __PRETTY_FUNCTION__)) | |||
1867 | "The first non-overlapping empty field should have been handled.")(static_cast <bool> (FieldOffset == CharUnits::Zero() && "The first non-overlapping empty field should have been handled." ) ? void (0) : __assert_fail ("FieldOffset == CharUnits::Zero() && \"The first non-overlapping empty field should have been handled.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1867, __extension__ __PRETTY_FUNCTION__)); | |||
1868 | ||||
1869 | if (!IsOverlappingEmptyField) { | |||
1870 | FoundFirstNonOverlappingEmptyFieldForAIX = true; | |||
1871 | ||||
1872 | // We're going to handle the "first member" based on | |||
1873 | // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current | |||
1874 | // invocation of this function; record it as handled for future | |||
1875 | // invocations (except for unions, because the current field does not | |||
1876 | // represent all "firsts"). | |||
1877 | HandledFirstNonOverlappingEmptyField = !IsUnion; | |||
1878 | } | |||
1879 | } | |||
1880 | ||||
1881 | if (D->isBitField()) { | |||
1882 | LayoutBitField(D); | |||
1883 | return; | |||
1884 | } | |||
1885 | ||||
1886 | uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; | |||
1887 | // Reset the unfilled bits. | |||
1888 | UnfilledBitsInLastUnit = 0; | |||
1889 | LastBitfieldStorageUnitSize = 0; | |||
1890 | ||||
1891 | llvm::Triple Target = Context.getTargetInfo().getTriple(); | |||
1892 | ||||
1893 | AlignRequirementKind AlignRequirement = AlignRequirementKind::None; | |||
1894 | CharUnits FieldSize; | |||
1895 | CharUnits FieldAlign; | |||
1896 | // The amount of this class's dsize occupied by the field. | |||
1897 | // This is equal to FieldSize unless we're permitted to pack | |||
1898 | // into the field's tail padding. | |||
1899 | CharUnits EffectiveFieldSize; | |||
1900 | ||||
1901 | auto setDeclInfo = [&](bool IsIncompleteArrayType) { | |||
1902 | auto TI = Context.getTypeInfoInChars(D->getType()); | |||
1903 | FieldAlign = TI.Align; | |||
1904 | // Flexible array members don't have any size, but they have to be | |||
1905 | // aligned appropriately for their element type. | |||
1906 | EffectiveFieldSize = FieldSize = | |||
1907 | IsIncompleteArrayType ? CharUnits::Zero() : TI.Width; | |||
1908 | AlignRequirement = TI.AlignRequirement; | |||
1909 | }; | |||
1910 | ||||
1911 | if (D->getType()->isIncompleteArrayType()) { | |||
1912 | setDeclInfo(true /* IsIncompleteArrayType */); | |||
1913 | } else { | |||
1914 | setDeclInfo(false /* IsIncompleteArrayType */); | |||
1915 | ||||
1916 | // A potentially-overlapping field occupies its dsize or nvsize, whichever | |||
1917 | // is larger. | |||
1918 | if (D->isPotentiallyOverlapping()) { | |||
1919 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass); | |||
1920 | EffectiveFieldSize = | |||
1921 | std::max(Layout.getNonVirtualSize(), Layout.getDataSize()); | |||
1922 | } | |||
1923 | ||||
1924 | if (IsMsStruct) { | |||
1925 | // If MS bitfield layout is required, figure out what type is being | |||
1926 | // laid out and align the field to the width of that type. | |||
1927 | ||||
1928 | // Resolve all typedefs down to their base type and round up the field | |||
1929 | // alignment if necessary. | |||
1930 | QualType T = Context.getBaseElementType(D->getType()); | |||
1931 | if (const BuiltinType *BTy = T->getAs<BuiltinType>()) { | |||
1932 | CharUnits TypeSize = Context.getTypeSizeInChars(BTy); | |||
1933 | ||||
1934 | if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) { | |||
1935 | assert((static_cast <bool> (!Context.getTargetInfo().getTriple ().isWindowsMSVCEnvironment() && "Non PowerOf2 size in MSVC mode" ) ? void (0) : __assert_fail ("!Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && \"Non PowerOf2 size in MSVC mode\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1937, __extension__ __PRETTY_FUNCTION__)) | |||
1936 | !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&(static_cast <bool> (!Context.getTargetInfo().getTriple ().isWindowsMSVCEnvironment() && "Non PowerOf2 size in MSVC mode" ) ? void (0) : __assert_fail ("!Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && \"Non PowerOf2 size in MSVC mode\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1937, __extension__ __PRETTY_FUNCTION__)) | |||
1937 | "Non PowerOf2 size in MSVC mode")(static_cast <bool> (!Context.getTargetInfo().getTriple ().isWindowsMSVCEnvironment() && "Non PowerOf2 size in MSVC mode" ) ? void (0) : __assert_fail ("!Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && \"Non PowerOf2 size in MSVC mode\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1937, __extension__ __PRETTY_FUNCTION__)); | |||
1938 | // Base types with sizes that aren't a power of two don't work | |||
1939 | // with the layout rules for MS structs. This isn't an issue in | |||
1940 | // MSVC itself since there are no such base data types there. | |||
1941 | // On e.g. x86_32 mingw and linux, long double is 12 bytes though. | |||
1942 | // Any structs involving that data type obviously can't be ABI | |||
1943 | // compatible with MSVC regardless of how it is laid out. | |||
1944 | ||||
1945 | // Since ms_struct can be mass enabled (via a pragma or via the | |||
1946 | // -mms-bitfields command line parameter), this can trigger for | |||
1947 | // structs that don't actually need MSVC compatibility, so we | |||
1948 | // need to be able to sidestep the ms_struct layout for these types. | |||
1949 | ||||
1950 | // Since the combination of -mms-bitfields together with structs | |||
1951 | // like max_align_t (which contains a long double) for mingw is | |||
1952 | // quite common (and GCC handles it silently), just handle it | |||
1953 | // silently there. For other targets that have ms_struct enabled | |||
1954 | // (most probably via a pragma or attribute), trigger a diagnostic | |||
1955 | // that defaults to an error. | |||
1956 | if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) | |||
1957 | Diag(D->getLocation(), diag::warn_npot_ms_struct); | |||
1958 | } | |||
1959 | if (TypeSize > FieldAlign && | |||
1960 | llvm::isPowerOf2_64(TypeSize.getQuantity())) | |||
1961 | FieldAlign = TypeSize; | |||
1962 | } | |||
1963 | } | |||
1964 | } | |||
1965 | ||||
1966 | bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() || | |||
1967 | FieldClass->hasAttr<PackedAttr>() || | |||
1968 | Context.getLangOpts().getClangABICompat() <= | |||
1969 | LangOptions::ClangABI::Ver15 || | |||
1970 | Target.isPS() || Target.isOSDarwin() || | |||
1971 | Target.isOSAIX())) || | |||
1972 | D->hasAttr<PackedAttr>(); | |||
1973 | ||||
1974 | // When used as part of a typedef, or together with a 'packed' attribute, the | |||
1975 | // 'aligned' attribute can be used to decrease alignment. In that case, it | |||
1976 | // overrides any computed alignment we have, and there is no need to upgrade | |||
1977 | // the alignment. | |||
1978 | auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] { | |||
1979 | // Enum alignment sources can be safely ignored here, because this only | |||
1980 | // helps decide whether we need the AIX alignment upgrade, which only | |||
1981 | // applies to floating-point types. | |||
1982 | return AlignRequirement == AlignRequirementKind::RequiredByTypedef || | |||
1983 | (AlignRequirement == AlignRequirementKind::RequiredByRecord && | |||
1984 | FieldPacked); | |||
1985 | }; | |||
1986 | ||||
1987 | // The AIX `power` alignment rules apply the natural alignment of the | |||
1988 | // "first member" if it is of a floating-point data type (or is an aggregate | |||
1989 | // whose recursively "first" member or element is such a type). The alignment | |||
1990 | // associated with these types for subsequent members use an alignment value | |||
1991 | // where the floating-point data type is considered to have 4-byte alignment. | |||
1992 | // | |||
1993 | // For the purposes of the foregoing: vtable pointers, non-empty base classes, | |||
1994 | // and zero-width bit-fields count as prior members; members of empty class | |||
1995 | // types marked `no_unique_address` are not considered to be prior members. | |||
1996 | CharUnits PreferredAlign = FieldAlign; | |||
1997 | if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() && | |||
1998 | (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) { | |||
1999 | auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) { | |||
2000 | if (BTy->getKind() == BuiltinType::Double || | |||
2001 | BTy->getKind() == BuiltinType::LongDouble) { | |||
2002 | assert(PreferredAlign == CharUnits::fromQuantity(4) &&(static_cast <bool> (PreferredAlign == CharUnits::fromQuantity (4) && "No need to upgrade the alignment value.") ? void (0) : __assert_fail ("PreferredAlign == CharUnits::fromQuantity(4) && \"No need to upgrade the alignment value.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2003, __extension__ __PRETTY_FUNCTION__)) | |||
2003 | "No need to upgrade the alignment value.")(static_cast <bool> (PreferredAlign == CharUnits::fromQuantity (4) && "No need to upgrade the alignment value.") ? void (0) : __assert_fail ("PreferredAlign == CharUnits::fromQuantity(4) && \"No need to upgrade the alignment value.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2003, __extension__ __PRETTY_FUNCTION__)); | |||
2004 | PreferredAlign = CharUnits::fromQuantity(8); | |||
2005 | } | |||
2006 | }; | |||
2007 | ||||
2008 | const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe(); | |||
2009 | if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) { | |||
2010 | performBuiltinTypeAlignmentUpgrade( | |||
2011 | CTy->getElementType()->castAs<BuiltinType>()); | |||
2012 | } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) { | |||
2013 | performBuiltinTypeAlignmentUpgrade(BTy); | |||
2014 | } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) { | |||
2015 | const RecordDecl *RD = RT->getDecl(); | |||
2016 | assert(RD && "Expected non-null RecordDecl.")(static_cast <bool> (RD && "Expected non-null RecordDecl." ) ? void (0) : __assert_fail ("RD && \"Expected non-null RecordDecl.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2016, __extension__ __PRETTY_FUNCTION__)); | |||
2017 | const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD); | |||
2018 | PreferredAlign = FieldRecord.getPreferredAlignment(); | |||
2019 | } | |||
2020 | } | |||
2021 | ||||
2022 | // The align if the field is not packed. This is to check if the attribute | |||
2023 | // was unnecessary (-Wpacked). | |||
2024 | CharUnits UnpackedFieldAlign = FieldAlign; | |||
2025 | CharUnits PackedFieldAlign = CharUnits::One(); | |||
2026 | CharUnits UnpackedFieldOffset = FieldOffset; | |||
2027 | CharUnits OriginalFieldAlign = UnpackedFieldAlign; | |||
2028 | ||||
2029 | CharUnits MaxAlignmentInChars = | |||
2030 | Context.toCharUnitsFromBits(D->getMaxAlignment()); | |||
2031 | PackedFieldAlign = std::max(PackedFieldAlign, MaxAlignmentInChars); | |||
2032 | PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars); | |||
2033 | UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars); | |||
2034 | ||||
2035 | // The maximum field alignment overrides the aligned attribute. | |||
2036 | if (!MaxFieldAlignment.isZero()) { | |||
2037 | PackedFieldAlign = std::min(PackedFieldAlign, MaxFieldAlignment); | |||
2038 | PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment); | |||
2039 | UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment); | |||
2040 | } | |||
2041 | ||||
2042 | ||||
2043 | if (!FieldPacked) | |||
2044 | FieldAlign = UnpackedFieldAlign; | |||
2045 | if (DefaultsToAIXPowerAlignment) | |||
2046 | UnpackedFieldAlign = PreferredAlign; | |||
2047 | if (FieldPacked) { | |||
2048 | PreferredAlign = PackedFieldAlign; | |||
2049 | FieldAlign = PackedFieldAlign; | |||
2050 | } | |||
2051 | ||||
2052 | CharUnits AlignTo = | |||
2053 | !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign; | |||
2054 | // Round up the current record size to the field's alignment boundary. | |||
2055 | FieldOffset = FieldOffset.alignTo(AlignTo); | |||
2056 | UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign); | |||
2057 | ||||
2058 | if (UseExternalLayout) { | |||
2059 | FieldOffset = Context.toCharUnitsFromBits( | |||
2060 | updateExternalFieldOffset(D, Context.toBits(FieldOffset))); | |||
2061 | ||||
2062 | if (!IsUnion && EmptySubobjects) { | |||
2063 | // Record the fact that we're placing a field at this offset. | |||
2064 | bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset); | |||
2065 | (void)Allowed; | |||
2066 | assert(Allowed && "Externally-placed field cannot be placed here")(static_cast <bool> (Allowed && "Externally-placed field cannot be placed here" ) ? void (0) : __assert_fail ("Allowed && \"Externally-placed field cannot be placed here\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2066, __extension__ __PRETTY_FUNCTION__)); | |||
2067 | } | |||
2068 | } else { | |||
2069 | if (!IsUnion && EmptySubobjects) { | |||
2070 | // Check if we can place the field at this offset. | |||
2071 | while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) { | |||
2072 | // We couldn't place the field at the offset. Try again at a new offset. | |||
2073 | // We try offset 0 (for an empty field) and then dsize(C) onwards. | |||
2074 | if (FieldOffset == CharUnits::Zero() && | |||
2075 | getDataSize() != CharUnits::Zero()) | |||
2076 | FieldOffset = getDataSize().alignTo(AlignTo); | |||
2077 | else | |||
2078 | FieldOffset += AlignTo; | |||
2079 | } | |||
2080 | } | |||
2081 | } | |||
2082 | ||||
2083 | // Place this field at the current location. | |||
2084 | FieldOffsets.push_back(Context.toBits(FieldOffset)); | |||
2085 | ||||
2086 | if (!UseExternalLayout) | |||
2087 | CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, | |||
2088 | Context.toBits(UnpackedFieldOffset), | |||
2089 | Context.toBits(UnpackedFieldAlign), FieldPacked, D); | |||
2090 | ||||
2091 | if (InsertExtraPadding) { | |||
2092 | CharUnits ASanAlignment = CharUnits::fromQuantity(8); | |||
2093 | CharUnits ExtraSizeForAsan = ASanAlignment; | |||
2094 | if (FieldSize % ASanAlignment) | |||
2095 | ExtraSizeForAsan += | |||
2096 | ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment); | |||
2097 | EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan; | |||
2098 | } | |||
2099 | ||||
2100 | // Reserve space for this field. | |||
2101 | if (!IsOverlappingEmptyField) { | |||
2102 | uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize); | |||
2103 | if (IsUnion) | |||
2104 | setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits)); | |||
2105 | else | |||
2106 | setDataSize(FieldOffset + EffectiveFieldSize); | |||
2107 | ||||
2108 | PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize); | |||
2109 | setSize(std::max(getSizeInBits(), getDataSizeInBits())); | |||
2110 | } else { | |||
2111 | setSize(std::max(getSizeInBits(), | |||
2112 | (uint64_t)Context.toBits(FieldOffset + FieldSize))); | |||
2113 | } | |||
2114 | ||||
2115 | // Remember max struct/class ABI-specified alignment. | |||
2116 | UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign); | |||
2117 | UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign); | |||
2118 | ||||
2119 | // For checking the alignment of inner fields against | |||
2120 | // the alignment of its parent record. | |||
2121 | if (const RecordDecl *RD = D->getParent()) { | |||
2122 | // Check if packed attribute or pragma pack is present. | |||
2123 | if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero()) | |||
2124 | if (FieldAlign < OriginalFieldAlign) | |||
2125 | if (D->getType()->isRecordType()) { | |||
2126 | // If the offset is a multiple of the alignment of | |||
2127 | // the type, raise the warning. | |||
2128 | // TODO: Takes no account the alignment of the outer struct | |||
2129 | if (FieldOffset % OriginalFieldAlign != 0) | |||
2130 | Diag(D->getLocation(), diag::warn_unaligned_access) | |||
2131 | << Context.getTypeDeclType(RD) << D->getName() << D->getType(); | |||
2132 | } | |||
2133 | } | |||
2134 | ||||
2135 | if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign) | |||
2136 | Diag(D->getLocation(), diag::warn_unpacked_field) << D; | |||
2137 | } | |||
2138 | ||||
2139 | void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) { | |||
2140 | // In C++, records cannot be of size 0. | |||
2141 | if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { | |||
2142 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { | |||
2143 | // Compatibility with gcc requires a class (pod or non-pod) | |||
2144 | // which is not empty but of size 0; such as having fields of | |||
2145 | // array of zero-length, remains of Size 0 | |||
2146 | if (RD->isEmpty()) | |||
2147 | setSize(CharUnits::One()); | |||
2148 | } | |||
2149 | else | |||
2150 | setSize(CharUnits::One()); | |||
2151 | } | |||
2152 | ||||
2153 | // If we have any remaining field tail padding, include that in the overall | |||
2154 | // size. | |||
2155 | setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize))); | |||
2156 | ||||
2157 | // Finally, round the size of the record up to the alignment of the | |||
2158 | // record itself. | |||
2159 | uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit; | |||
2160 | uint64_t UnpackedSizeInBits = | |||
2161 | llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment)); | |||
2162 | ||||
2163 | uint64_t RoundedSize = llvm::alignTo( | |||
2164 | getSizeInBits(), | |||
2165 | Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment() | |||
2166 | ? Alignment | |||
2167 | : PreferredAlignment)); | |||
2168 | ||||
2169 | if (UseExternalLayout) { | |||
2170 | // If we're inferring alignment, and the external size is smaller than | |||
2171 | // our size after we've rounded up to alignment, conservatively set the | |||
2172 | // alignment to 1. | |||
2173 | if (InferAlignment && External.Size < RoundedSize) { | |||
2174 | Alignment = CharUnits::One(); | |||
2175 | PreferredAlignment = CharUnits::One(); | |||
2176 | InferAlignment = false; | |||
2177 | } | |||
2178 | setSize(External.Size); | |||
2179 | return; | |||
2180 | } | |||
2181 | ||||
2182 | // Set the size to the final size. | |||
2183 | setSize(RoundedSize); | |||
2184 | ||||
2185 | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); | |||
2186 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { | |||
2187 | // Warn if padding was introduced to the struct/class/union. | |||
2188 | if (getSizeInBits() > UnpaddedSize) { | |||
2189 | unsigned PadSize = getSizeInBits() - UnpaddedSize; | |||
2190 | bool InBits = true; | |||
2191 | if (PadSize % CharBitNum == 0) { | |||
2192 | PadSize = PadSize / CharBitNum; | |||
2193 | InBits = false; | |||
2194 | } | |||
2195 | Diag(RD->getLocation(), diag::warn_padded_struct_size) | |||
2196 | << Context.getTypeDeclType(RD) | |||
2197 | << PadSize | |||
2198 | << (InBits ? 1 : 0); // (byte|bit) | |||
2199 | } | |||
2200 | ||||
2201 | // Warn if we packed it unnecessarily, when the unpacked alignment is not | |||
2202 | // greater than the one after packing, the size in bits doesn't change and | |||
2203 | // the offset of each field is identical. | |||
2204 | if (Packed && UnpackedAlignment <= Alignment && | |||
2205 | UnpackedSizeInBits == getSizeInBits() && !HasPackedField) | |||
2206 | Diag(D->getLocation(), diag::warn_unnecessary_packed) | |||
2207 | << Context.getTypeDeclType(RD); | |||
2208 | } | |||
2209 | } | |||
2210 | ||||
2211 | void ItaniumRecordLayoutBuilder::UpdateAlignment( | |||
2212 | CharUnits NewAlignment, CharUnits UnpackedNewAlignment, | |||
2213 | CharUnits PreferredNewAlignment) { | |||
2214 | // The alignment is not modified when using 'mac68k' alignment or when | |||
2215 | // we have an externally-supplied layout that also provides overall alignment. | |||
2216 | if (IsMac68kAlign || (UseExternalLayout && !InferAlignment)) | |||
2217 | return; | |||
2218 | ||||
2219 | if (NewAlignment > Alignment) { | |||
2220 | assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&(static_cast <bool> (llvm::isPowerOf2_64(NewAlignment.getQuantity ()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(NewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2221, __extension__ __PRETTY_FUNCTION__)) | |||
2221 | "Alignment not a power of 2")(static_cast <bool> (llvm::isPowerOf2_64(NewAlignment.getQuantity ()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(NewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2221, __extension__ __PRETTY_FUNCTION__)); | |||
2222 | Alignment = NewAlignment; | |||
2223 | } | |||
2224 | ||||
2225 | if (UnpackedNewAlignment > UnpackedAlignment) { | |||
2226 | assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&(static_cast <bool> (llvm::isPowerOf2_64(UnpackedNewAlignment .getQuantity()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2227, __extension__ __PRETTY_FUNCTION__)) | |||
2227 | "Alignment not a power of 2")(static_cast <bool> (llvm::isPowerOf2_64(UnpackedNewAlignment .getQuantity()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2227, __extension__ __PRETTY_FUNCTION__)); | |||
2228 | UnpackedAlignment = UnpackedNewAlignment; | |||
2229 | } | |||
2230 | ||||
2231 | if (PreferredNewAlignment > PreferredAlignment) { | |||
2232 | assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&(static_cast <bool> (llvm::isPowerOf2_64(PreferredNewAlignment .getQuantity()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2233, __extension__ __PRETTY_FUNCTION__)) | |||
2233 | "Alignment not a power of 2")(static_cast <bool> (llvm::isPowerOf2_64(PreferredNewAlignment .getQuantity()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2233, __extension__ __PRETTY_FUNCTION__)); | |||
2234 | PreferredAlignment = PreferredNewAlignment; | |||
2235 | } | |||
2236 | } | |||
2237 | ||||
2238 | uint64_t | |||
2239 | ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, | |||
2240 | uint64_t ComputedOffset) { | |||
2241 | uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field); | |||
2242 | ||||
2243 | if (InferAlignment && ExternalFieldOffset < ComputedOffset) { | |||
2244 | // The externally-supplied field offset is before the field offset we | |||
2245 | // computed. Assume that the structure is packed. | |||
2246 | Alignment = CharUnits::One(); | |||
2247 | PreferredAlignment = CharUnits::One(); | |||
2248 | InferAlignment = false; | |||
2249 | } | |||
2250 | ||||
2251 | // Use the externally-supplied field offset. | |||
2252 | return ExternalFieldOffset; | |||
2253 | } | |||
2254 | ||||
2255 | /// Get diagnostic %select index for tag kind for | |||
2256 | /// field padding diagnostic message. | |||
2257 | /// WARNING: Indexes apply to particular diagnostics only! | |||
2258 | /// | |||
2259 | /// \returns diagnostic %select index. | |||
2260 | static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { | |||
2261 | switch (Tag) { | |||
2262 | case TTK_Struct: return 0; | |||
2263 | case TTK_Interface: return 1; | |||
2264 | case TTK_Class: return 2; | |||
2265 | default: llvm_unreachable("Invalid tag kind for field padding diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for field padding diagnostic!" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2265); | |||
2266 | } | |||
2267 | } | |||
2268 | ||||
2269 | void ItaniumRecordLayoutBuilder::CheckFieldPadding( | |||
2270 | uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, | |||
2271 | unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { | |||
2272 | // We let objc ivars without warning, objc interfaces generally are not used | |||
2273 | // for padding tricks. | |||
2274 | if (isa<ObjCIvarDecl>(D)) | |||
2275 | return; | |||
2276 | ||||
2277 | // Don't warn about structs created without a SourceLocation. This can | |||
2278 | // be done by clients of the AST, such as codegen. | |||
2279 | if (D->getLocation().isInvalid()) | |||
2280 | return; | |||
2281 | ||||
2282 | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); | |||
2283 | ||||
2284 | // Warn if padding was introduced to the struct/class. | |||
2285 | if (!IsUnion && Offset > UnpaddedOffset) { | |||
2286 | unsigned PadSize = Offset - UnpaddedOffset; | |||
2287 | bool InBits = true; | |||
2288 | if (PadSize % CharBitNum == 0) { | |||
2289 | PadSize = PadSize / CharBitNum; | |||
2290 | InBits = false; | |||
2291 | } | |||
2292 | if (D->getIdentifier()) | |||
2293 | Diag(D->getLocation(), diag::warn_padded_struct_field) | |||
2294 | << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) | |||
2295 | << Context.getTypeDeclType(D->getParent()) | |||
2296 | << PadSize | |||
2297 | << (InBits ? 1 : 0) // (byte|bit) | |||
2298 | << D->getIdentifier(); | |||
2299 | else | |||
2300 | Diag(D->getLocation(), diag::warn_padded_struct_anon_field) | |||
2301 | << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) | |||
2302 | << Context.getTypeDeclType(D->getParent()) | |||
2303 | << PadSize | |||
2304 | << (InBits ? 1 : 0); // (byte|bit) | |||
2305 | } | |||
2306 | if (isPacked && Offset != UnpackedOffset) { | |||
2307 | HasPackedField = true; | |||
2308 | } | |||
2309 | } | |||
2310 | ||||
2311 | static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, | |||
2312 | const CXXRecordDecl *RD) { | |||
2313 | // If a class isn't polymorphic it doesn't have a key function. | |||
2314 | if (!RD->isPolymorphic()) | |||
2315 | return nullptr; | |||
2316 | ||||
2317 | // A class that is not externally visible doesn't have a key function. (Or | |||
2318 | // at least, there's no point to assigning a key function to such a class; | |||
2319 | // this doesn't affect the ABI.) | |||
2320 | if (!RD->isExternallyVisible()) | |||
2321 | return nullptr; | |||
2322 | ||||
2323 | // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6. | |||
2324 | // Same behavior as GCC. | |||
2325 | TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); | |||
2326 | if (TSK == TSK_ImplicitInstantiation || | |||
2327 | TSK == TSK_ExplicitInstantiationDeclaration || | |||
2328 | TSK == TSK_ExplicitInstantiationDefinition) | |||
2329 | return nullptr; | |||
2330 | ||||
2331 | bool allowInlineFunctions = | |||
2332 | Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); | |||
2333 | ||||
2334 | for (const CXXMethodDecl *MD : RD->methods()) { | |||
2335 | if (!MD->isVirtual()) | |||
2336 | continue; | |||
2337 | ||||
2338 | if (MD->isPure()) | |||
2339 | continue; | |||
2340 | ||||
2341 | // Ignore implicit member functions, they are always marked as inline, but | |||
2342 | // they don't have a body until they're defined. | |||
2343 | if (MD->isImplicit()) | |||
2344 | continue; | |||
2345 | ||||
2346 | if (MD->isInlineSpecified() || MD->isConstexpr()) | |||
2347 | continue; | |||
2348 | ||||
2349 | if (MD->hasInlineBody()) | |||
2350 | continue; | |||
2351 | ||||
2352 | // Ignore inline deleted or defaulted functions. | |||
2353 | if (!MD->isUserProvided()) | |||
2354 | continue; | |||
2355 | ||||
2356 | // In certain ABIs, ignore functions with out-of-line inline definitions. | |||
2357 | if (!allowInlineFunctions) { | |||
2358 | const FunctionDecl *Def; | |||
2359 | if (MD->hasBody(Def) && Def->isInlineSpecified()) | |||
2360 | continue; | |||
2361 | } | |||
2362 | ||||
2363 | if (Context.getLangOpts().CUDA) { | |||
2364 | // While compiler may see key method in this TU, during CUDA | |||
2365 | // compilation we should ignore methods that are not accessible | |||
2366 | // on this side of compilation. | |||
2367 | if (Context.getLangOpts().CUDAIsDevice) { | |||
2368 | // In device mode ignore methods without __device__ attribute. | |||
2369 | if (!MD->hasAttr<CUDADeviceAttr>()) | |||
2370 | continue; | |||
2371 | } else { | |||
2372 | // In host mode ignore __device__-only methods. | |||
2373 | if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>()) | |||
2374 | continue; | |||
2375 | } | |||
2376 | } | |||
2377 | ||||
2378 | // If the key function is dllimport but the class isn't, then the class has | |||
2379 | // no key function. The DLL that exports the key function won't export the | |||
2380 | // vtable in this case. | |||
2381 | if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() && | |||
2382 | !Context.getTargetInfo().hasPS4DLLImportExport()) | |||
2383 | return nullptr; | |||
2384 | ||||
2385 | // We found it. | |||
2386 | return MD; | |||
2387 | } | |||
2388 | ||||
2389 | return nullptr; | |||
2390 | } | |||
2391 | ||||
2392 | DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc, | |||
2393 | unsigned DiagID) { | |||
2394 | return Context.getDiagnostics().Report(Loc, DiagID); | |||
2395 | } | |||
2396 | ||||
2397 | /// Does the target C++ ABI require us to skip over the tail-padding | |||
2398 | /// of the given class (considering it as a base class) when allocating | |||
2399 | /// objects? | |||
2400 | static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { | |||
2401 | switch (ABI.getTailPaddingUseRules()) { | |||
2402 | case TargetCXXABI::AlwaysUseTailPadding: | |||
2403 | return false; | |||
2404 | ||||
2405 | case TargetCXXABI::UseTailPaddingUnlessPOD03: | |||
2406 | // FIXME: To the extent that this is meant to cover the Itanium ABI | |||
2407 | // rules, we should implement the restrictions about over-sized | |||
2408 | // bitfields: | |||
2409 | // | |||
2410 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD : | |||
2411 | // In general, a type is considered a POD for the purposes of | |||
2412 | // layout if it is a POD type (in the sense of ISO C++ | |||
2413 | // [basic.types]). However, a POD-struct or POD-union (in the | |||
2414 | // sense of ISO C++ [class]) with a bitfield member whose | |||
2415 | // declared width is wider than the declared type of the | |||
2416 | // bitfield is not a POD for the purpose of layout. Similarly, | |||
2417 | // an array type is not a POD for the purpose of layout if the | |||
2418 | // element type of the array is not a POD for the purpose of | |||
2419 | // layout. | |||
2420 | // | |||
2421 | // Where references to the ISO C++ are made in this paragraph, | |||
2422 | // the Technical Corrigendum 1 version of the standard is | |||
2423 | // intended. | |||
2424 | return RD->isPOD(); | |||
2425 | ||||
2426 | case TargetCXXABI::UseTailPaddingUnlessPOD11: | |||
2427 | // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), | |||
2428 | // but with a lot of abstraction penalty stripped off. This does | |||
2429 | // assume that these properties are set correctly even in C++98 | |||
2430 | // mode; fortunately, that is true because we want to assign | |||
2431 | // consistently semantics to the type-traits intrinsics (or at | |||
2432 | // least as many of them as possible). | |||
2433 | return RD->isTrivial() && RD->isCXX11StandardLayout(); | |||
2434 | } | |||
2435 | ||||
2436 | llvm_unreachable("bad tail-padding use kind")::llvm::llvm_unreachable_internal("bad tail-padding use kind" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2436); | |||
2437 | } | |||
2438 | ||||
2439 | static bool isMsLayout(const ASTContext &Context) { | |||
2440 | return Context.getTargetInfo().getCXXABI().isMicrosoft(); | |||
2441 | } | |||
2442 | ||||
2443 | // This section contains an implementation of struct layout that is, up to the | |||
2444 | // included tests, compatible with cl.exe (2013). The layout produced is | |||
2445 | // significantly different than those produced by the Itanium ABI. Here we note | |||
2446 | // the most important differences. | |||
2447 | // | |||
2448 | // * The alignment of bitfields in unions is ignored when computing the | |||
2449 | // alignment of the union. | |||
2450 | // * The existence of zero-width bitfield that occurs after anything other than | |||
2451 | // a non-zero length bitfield is ignored. | |||
2452 | // * There is no explicit primary base for the purposes of layout. All bases | |||
2453 | // with vfptrs are laid out first, followed by all bases without vfptrs. | |||
2454 | // * The Itanium equivalent vtable pointers are split into a vfptr (virtual | |||
2455 | // function pointer) and a vbptr (virtual base pointer). They can each be | |||
2456 | // shared with a, non-virtual bases. These bases need not be the same. vfptrs | |||
2457 | // always occur at offset 0. vbptrs can occur at an arbitrary offset and are | |||
2458 | // placed after the lexicographically last non-virtual base. This placement | |||
2459 | // is always before fields but can be in the middle of the non-virtual bases | |||
2460 | // due to the two-pass layout scheme for non-virtual-bases. | |||
2461 | // * Virtual bases sometimes require a 'vtordisp' field that is laid out before | |||
2462 | // the virtual base and is used in conjunction with virtual overrides during | |||
2463 | // construction and destruction. This is always a 4 byte value and is used as | |||
2464 | // an alternative to constructor vtables. | |||
2465 | // * vtordisps are allocated in a block of memory with size and alignment equal | |||
2466 | // to the alignment of the completed structure (before applying __declspec( | |||
2467 | // align())). The vtordisp always occur at the end of the allocation block, | |||
2468 | // immediately prior to the virtual base. | |||
2469 | // * vfptrs are injected after all bases and fields have been laid out. In | |||
2470 | // order to guarantee proper alignment of all fields, the vfptr injection | |||
2471 | // pushes all bases and fields back by the alignment imposed by those bases | |||
2472 | // and fields. This can potentially add a significant amount of padding. | |||
2473 | // vfptrs are always injected at offset 0. | |||
2474 | // * vbptrs are injected after all bases and fields have been laid out. In | |||
2475 | // order to guarantee proper alignment of all fields, the vfptr injection | |||
2476 | // pushes all bases and fields back by the alignment imposed by those bases | |||
2477 | // and fields. This can potentially add a significant amount of padding. | |||
2478 | // vbptrs are injected immediately after the last non-virtual base as | |||
2479 | // lexicographically ordered in the code. If this site isn't pointer aligned | |||
2480 | // the vbptr is placed at the next properly aligned location. Enough padding | |||
2481 | // is added to guarantee a fit. | |||
2482 | // * The last zero sized non-virtual base can be placed at the end of the | |||
2483 | // struct (potentially aliasing another object), or may alias with the first | |||
2484 | // field, even if they are of the same type. | |||
2485 | // * The last zero size virtual base may be placed at the end of the struct | |||
2486 | // potentially aliasing another object. | |||
2487 | // * The ABI attempts to avoid aliasing of zero sized bases by adding padding | |||
2488 | // between bases or vbases with specific properties. The criteria for | |||
2489 | // additional padding between two bases is that the first base is zero sized | |||
2490 | // or ends with a zero sized subobject and the second base is zero sized or | |||
2491 | // trails with a zero sized base or field (sharing of vfptrs can reorder the | |||
2492 | // layout of the so the leading base is not always the first one declared). | |||
2493 | // This rule does take into account fields that are not records, so padding | |||
2494 | // will occur even if the last field is, e.g. an int. The padding added for | |||
2495 | // bases is 1 byte. The padding added between vbases depends on the alignment | |||
2496 | // of the object but is at least 4 bytes (in both 32 and 64 bit modes). | |||
2497 | // * There is no concept of non-virtual alignment, non-virtual alignment and | |||
2498 | // alignment are always identical. | |||
2499 | // * There is a distinction between alignment and required alignment. | |||
2500 | // __declspec(align) changes the required alignment of a struct. This | |||
2501 | // alignment is _always_ obeyed, even in the presence of #pragma pack. A | |||
2502 | // record inherits required alignment from all of its fields and bases. | |||
2503 | // * __declspec(align) on bitfields has the effect of changing the bitfield's | |||
2504 | // alignment instead of its required alignment. This is the only known way | |||
2505 | // to make the alignment of a struct bigger than 8. Interestingly enough | |||
2506 | // this alignment is also immune to the effects of #pragma pack and can be | |||
2507 | // used to create structures with large alignment under #pragma pack. | |||
2508 | // However, because it does not impact required alignment, such a structure, | |||
2509 | // when used as a field or base, will not be aligned if #pragma pack is | |||
2510 | // still active at the time of use. | |||
2511 | // | |||
2512 | // Known incompatibilities: | |||
2513 | // * all: #pragma pack between fields in a record | |||
2514 | // * 2010 and back: If the last field in a record is a bitfield, every object | |||
2515 | // laid out after the record will have extra padding inserted before it. The | |||
2516 | // extra padding will have size equal to the size of the storage class of the | |||
2517 | // bitfield. 0 sized bitfields don't exhibit this behavior and the extra | |||
2518 | // padding can be avoided by adding a 0 sized bitfield after the non-zero- | |||
2519 | // sized bitfield. | |||
2520 | // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or | |||
2521 | // greater due to __declspec(align()) then a second layout phase occurs after | |||
2522 | // The locations of the vf and vb pointers are known. This layout phase | |||
2523 | // suffers from the "last field is a bitfield" bug in 2010 and results in | |||
2524 | // _every_ field getting padding put in front of it, potentially including the | |||
2525 | // vfptr, leaving the vfprt at a non-zero location which results in a fault if | |||
2526 | // anything tries to read the vftbl. The second layout phase also treats | |||
2527 | // bitfields as separate entities and gives them each storage rather than | |||
2528 | // packing them. Additionally, because this phase appears to perform a | |||
2529 | // (an unstable) sort on the members before laying them out and because merged | |||
2530 | // bitfields have the same address, the bitfields end up in whatever order | |||
2531 | // the sort left them in, a behavior we could never hope to replicate. | |||
2532 | ||||
2533 | namespace { | |||
2534 | struct MicrosoftRecordLayoutBuilder { | |||
2535 | struct ElementInfo { | |||
2536 | CharUnits Size; | |||
2537 | CharUnits Alignment; | |||
2538 | }; | |||
2539 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; | |||
2540 | MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {} | |||
2541 | private: | |||
2542 | MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete; | |||
2543 | void operator=(const MicrosoftRecordLayoutBuilder &) = delete; | |||
2544 | public: | |||
2545 | void layout(const RecordDecl *RD); | |||
2546 | void cxxLayout(const CXXRecordDecl *RD); | |||
2547 | /// Initializes size and alignment and honors some flags. | |||
2548 | void initializeLayout(const RecordDecl *RD); | |||
2549 | /// Initialized C++ layout, compute alignment and virtual alignment and | |||
2550 | /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is | |||
2551 | /// laid out. | |||
2552 | void initializeCXXLayout(const CXXRecordDecl *RD); | |||
2553 | void layoutNonVirtualBases(const CXXRecordDecl *RD); | |||
2554 | void layoutNonVirtualBase(const CXXRecordDecl *RD, | |||
2555 | const CXXRecordDecl *BaseDecl, | |||
2556 | const ASTRecordLayout &BaseLayout, | |||
2557 | const ASTRecordLayout *&PreviousBaseLayout); | |||
2558 | void injectVFPtr(const CXXRecordDecl *RD); | |||
2559 | void injectVBPtr(const CXXRecordDecl *RD); | |||
2560 | /// Lays out the fields of the record. Also rounds size up to | |||
2561 | /// alignment. | |||
2562 | void layoutFields(const RecordDecl *RD); | |||
2563 | void layoutField(const FieldDecl *FD); | |||
2564 | void layoutBitField(const FieldDecl *FD); | |||
2565 | /// Lays out a single zero-width bit-field in the record and handles | |||
2566 | /// special cases associated with zero-width bit-fields. | |||
2567 | void layoutZeroWidthBitField(const FieldDecl *FD); | |||
2568 | void layoutVirtualBases(const CXXRecordDecl *RD); | |||
2569 | void finalizeLayout(const RecordDecl *RD); | |||
2570 | /// Gets the size and alignment of a base taking pragma pack and | |||
2571 | /// __declspec(align) into account. | |||
2572 | ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout); | |||
2573 | /// Gets the size and alignment of a field taking pragma pack and | |||
2574 | /// __declspec(align) into account. It also updates RequiredAlignment as a | |||
2575 | /// side effect because it is most convenient to do so here. | |||
2576 | ElementInfo getAdjustedElementInfo(const FieldDecl *FD); | |||
2577 | /// Places a field at an offset in CharUnits. | |||
2578 | void placeFieldAtOffset(CharUnits FieldOffset) { | |||
2579 | FieldOffsets.push_back(Context.toBits(FieldOffset)); | |||
2580 | } | |||
2581 | /// Places a bitfield at a bit offset. | |||
2582 | void placeFieldAtBitOffset(uint64_t FieldOffset) { | |||
2583 | FieldOffsets.push_back(FieldOffset); | |||
2584 | } | |||
2585 | /// Compute the set of virtual bases for which vtordisps are required. | |||
2586 | void computeVtorDispSet( | |||
2587 | llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet, | |||
2588 | const CXXRecordDecl *RD) const; | |||
2589 | const ASTContext &Context; | |||
2590 | /// The size of the record being laid out. | |||
2591 | CharUnits Size; | |||
2592 | /// The non-virtual size of the record layout. | |||
2593 | CharUnits NonVirtualSize; | |||
2594 | /// The data size of the record layout. | |||
2595 | CharUnits DataSize; | |||
2596 | /// The current alignment of the record layout. | |||
2597 | CharUnits Alignment; | |||
2598 | /// The maximum allowed field alignment. This is set by #pragma pack. | |||
2599 | CharUnits MaxFieldAlignment; | |||
2600 | /// The alignment that this record must obey. This is imposed by | |||
2601 | /// __declspec(align()) on the record itself or one of its fields or bases. | |||
2602 | CharUnits RequiredAlignment; | |||
2603 | /// The size of the allocation of the currently active bitfield. | |||
2604 | /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield | |||
2605 | /// is true. | |||
2606 | CharUnits CurrentBitfieldSize; | |||
2607 | /// Offset to the virtual base table pointer (if one exists). | |||
2608 | CharUnits VBPtrOffset; | |||
2609 | /// Minimum record size possible. | |||
2610 | CharUnits MinEmptyStructSize; | |||
2611 | /// The size and alignment info of a pointer. | |||
2612 | ElementInfo PointerInfo; | |||
2613 | /// The primary base class (if one exists). | |||
2614 | const CXXRecordDecl *PrimaryBase; | |||
2615 | /// The class we share our vb-pointer with. | |||
2616 | const CXXRecordDecl *SharedVBPtrBase; | |||
2617 | /// The collection of field offsets. | |||
2618 | SmallVector<uint64_t, 16> FieldOffsets; | |||
2619 | /// Base classes and their offsets in the record. | |||
2620 | BaseOffsetsMapTy Bases; | |||
2621 | /// virtual base classes and their offsets in the record. | |||
2622 | ASTRecordLayout::VBaseOffsetsMapTy VBases; | |||
2623 | /// The number of remaining bits in our last bitfield allocation. | |||
2624 | /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is | |||
2625 | /// true. | |||
2626 | unsigned RemainingBitsInField; | |||
2627 | bool IsUnion : 1; | |||
2628 | /// True if the last field laid out was a bitfield and was not 0 | |||
2629 | /// width. | |||
2630 | bool LastFieldIsNonZeroWidthBitfield : 1; | |||
2631 | /// True if the class has its own vftable pointer. | |||
2632 | bool HasOwnVFPtr : 1; | |||
2633 | /// True if the class has a vbtable pointer. | |||
2634 | bool HasVBPtr : 1; | |||
2635 | /// True if the last sub-object within the type is zero sized or the | |||
2636 | /// object itself is zero sized. This *does not* count members that are not | |||
2637 | /// records. Only used for MS-ABI. | |||
2638 | bool EndsWithZeroSizedObject : 1; | |||
2639 | /// True if this class is zero sized or first base is zero sized or | |||
2640 | /// has this property. Only used for MS-ABI. | |||
2641 | bool LeadsWithZeroSizedBase : 1; | |||
2642 | ||||
2643 | /// True if the external AST source provided a layout for this record. | |||
2644 | bool UseExternalLayout : 1; | |||
2645 | ||||
2646 | /// The layout provided by the external AST source. Only active if | |||
2647 | /// UseExternalLayout is true. | |||
2648 | ExternalLayout External; | |||
2649 | }; | |||
2650 | } // namespace | |||
2651 | ||||
2652 | MicrosoftRecordLayoutBuilder::ElementInfo | |||
2653 | MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( | |||
2654 | const ASTRecordLayout &Layout) { | |||
2655 | ElementInfo Info; | |||
2656 | Info.Alignment = Layout.getAlignment(); | |||
2657 | // Respect pragma pack. | |||
2658 | if (!MaxFieldAlignment.isZero()) | |||
2659 | Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); | |||
2660 | // Track zero-sized subobjects here where it's already available. | |||
2661 | EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); | |||
2662 | // Respect required alignment, this is necessary because we may have adjusted | |||
2663 | // the alignment in the case of pragma pack. Note that the required alignment | |||
2664 | // doesn't actually apply to the struct alignment at this point. | |||
2665 | Alignment = std::max(Alignment, Info.Alignment); | |||
2666 | RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment()); | |||
2667 | Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment()); | |||
2668 | Info.Size = Layout.getNonVirtualSize(); | |||
2669 | return Info; | |||
2670 | } | |||
2671 | ||||
2672 | MicrosoftRecordLayoutBuilder::ElementInfo | |||
2673 | MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( | |||
2674 | const FieldDecl *FD) { | |||
2675 | // Get the alignment of the field type's natural alignment, ignore any | |||
2676 | // alignment attributes. | |||
2677 | auto TInfo = | |||
2678 | Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType()); | |||
2679 | ElementInfo Info{TInfo.Width, TInfo.Align}; | |||
2680 | // Respect align attributes on the field. | |||
2681 | CharUnits FieldRequiredAlignment = | |||
2682 | Context.toCharUnitsFromBits(FD->getMaxAlignment()); | |||
2683 | // Respect align attributes on the type. | |||
2684 | if (Context.isAlignmentRequired(FD->getType())) | |||
2685 | FieldRequiredAlignment = std::max( | |||
2686 | Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment); | |||
2687 | // Respect attributes applied to subobjects of the field. | |||
2688 | if (FD->isBitField()) | |||
2689 | // For some reason __declspec align impacts alignment rather than required | |||
2690 | // alignment when it is applied to bitfields. | |||
2691 | Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); | |||
2692 | else { | |||
2693 | if (auto RT = | |||
2694 | FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { | |||
2695 | auto const &Layout = Context.getASTRecordLayout(RT->getDecl()); | |||
2696 | EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); | |||
2697 | FieldRequiredAlignment = std::max(FieldRequiredAlignment, | |||
2698 | Layout.getRequiredAlignment()); | |||
2699 | } | |||
2700 | // Capture required alignment as a side-effect. | |||
2701 | RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment); | |||
2702 | } | |||
2703 | // Respect pragma pack, attribute pack and declspec align | |||
2704 | if (!MaxFieldAlignment.isZero()) | |||
2705 | Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); | |||
2706 | if (FD->hasAttr<PackedAttr>()) | |||
2707 | Info.Alignment = CharUnits::One(); | |||
2708 | Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); | |||
2709 | return Info; | |||
2710 | } | |||
2711 | ||||
2712 | void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) { | |||
2713 | // For C record layout, zero-sized records always have size 4. | |||
2714 | MinEmptyStructSize = CharUnits::fromQuantity(4); | |||
2715 | initializeLayout(RD); | |||
2716 | layoutFields(RD); | |||
2717 | DataSize = Size = Size.alignTo(Alignment); | |||
2718 | RequiredAlignment = std::max( | |||
2719 | RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); | |||
2720 | finalizeLayout(RD); | |||
2721 | } | |||
2722 | ||||
2723 | void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) { | |||
2724 | // The C++ standard says that empty structs have size 1. | |||
2725 | MinEmptyStructSize = CharUnits::One(); | |||
2726 | initializeLayout(RD); | |||
2727 | initializeCXXLayout(RD); | |||
2728 | layoutNonVirtualBases(RD); | |||
2729 | layoutFields(RD); | |||
2730 | injectVBPtr(RD); | |||
2731 | injectVFPtr(RD); | |||
2732 | if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase)) | |||
2733 | Alignment = std::max(Alignment, PointerInfo.Alignment); | |||
2734 | auto RoundingAlignment = Alignment; | |||
2735 | if (!MaxFieldAlignment.isZero()) | |||
2736 | RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); | |||
2737 | if (!UseExternalLayout) | |||
2738 | Size = Size.alignTo(RoundingAlignment); | |||
2739 | NonVirtualSize = Size; | |||
2740 | RequiredAlignment = std::max( | |||
2741 | RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); | |||
2742 | layoutVirtualBases(RD); | |||
2743 | finalizeLayout(RD); | |||
2744 | } | |||
2745 | ||||
2746 | void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) { | |||
2747 | IsUnion = RD->isUnion(); | |||
2748 | Size = CharUnits::Zero(); | |||
2749 | Alignment = CharUnits::One(); | |||
2750 | // In 64-bit mode we always perform an alignment step after laying out vbases. | |||
2751 | // In 32-bit mode we do not. The check to see if we need to perform alignment | |||
2752 | // checks the RequiredAlignment field and performs alignment if it isn't 0. | |||
2753 | RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit() | |||
2754 | ? CharUnits::One() | |||
2755 | : CharUnits::Zero(); | |||
2756 | // Compute the maximum field alignment. | |||
2757 | MaxFieldAlignment = CharUnits::Zero(); | |||
2758 | // Honor the default struct packing maximum alignment flag. | |||
2759 | if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) | |||
2760 | MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); | |||
2761 | // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger | |||
2762 | // than the pointer size. | |||
2763 | if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){ | |||
2764 | unsigned PackedAlignment = MFAA->getAlignment(); | |||
2765 | if (PackedAlignment <= | |||
2766 | Context.getTargetInfo().getPointerWidth(LangAS::Default)) | |||
2767 | MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment); | |||
2768 | } | |||
2769 | // Packed attribute forces max field alignment to be 1. | |||
2770 | if (RD->hasAttr<PackedAttr>()) | |||
2771 | MaxFieldAlignment = CharUnits::One(); | |||
2772 | ||||
2773 | // Try to respect the external layout if present. | |||
2774 | UseExternalLayout = false; | |||
2775 | if (ExternalASTSource *Source = Context.getExternalSource()) | |||
2776 | UseExternalLayout = Source->layoutRecordType( | |||
2777 | RD, External.Size, External.Align, External.FieldOffsets, | |||
2778 | External.BaseOffsets, External.VirtualBaseOffsets); | |||
2779 | } | |||
2780 | ||||
2781 | void | |||
2782 | MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) { | |||
2783 | EndsWithZeroSizedObject = false; | |||
2784 | LeadsWithZeroSizedBase = false; | |||
2785 | HasOwnVFPtr = false; | |||
2786 | HasVBPtr = false; | |||
2787 | PrimaryBase = nullptr; | |||
2788 | SharedVBPtrBase = nullptr; | |||
2789 | // Calculate pointer size and alignment. These are used for vfptr and vbprt | |||
2790 | // injection. | |||
2791 | PointerInfo.Size = Context.toCharUnitsFromBits( | |||
2792 | Context.getTargetInfo().getPointerWidth(LangAS::Default)); | |||
2793 | PointerInfo.Alignment = Context.toCharUnitsFromBits( | |||
2794 | Context.getTargetInfo().getPointerAlign(LangAS::Default)); | |||
2795 | // Respect pragma pack. | |||
2796 | if (!MaxFieldAlignment.isZero()) | |||
2797 | PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment); | |||
2798 | } | |||
2799 | ||||
2800 | void | |||
2801 | MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) { | |||
2802 | // The MS-ABI lays out all bases that contain leading vfptrs before it lays | |||
2803 | // out any bases that do not contain vfptrs. We implement this as two passes | |||
2804 | // over the bases. This approach guarantees that the primary base is laid out | |||
2805 | // first. We use these passes to calculate some additional aggregated | |||
2806 | // information about the bases, such as required alignment and the presence of | |||
2807 | // zero sized members. | |||
2808 | const ASTRecordLayout *PreviousBaseLayout = nullptr; | |||
2809 | bool HasPolymorphicBaseClass = false; | |||
2810 | // Iterate through the bases and lay out the non-virtual ones. | |||
2811 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
2812 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
2813 | HasPolymorphicBaseClass |= BaseDecl->isPolymorphic(); | |||
2814 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | |||
2815 | // Mark and skip virtual bases. | |||
2816 | if (Base.isVirtual()) { | |||
2817 | HasVBPtr = true; | |||
2818 | continue; | |||
2819 | } | |||
2820 | // Check for a base to share a VBPtr with. | |||
2821 | if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) { | |||
2822 | SharedVBPtrBase = BaseDecl; | |||
2823 | HasVBPtr = true; | |||
2824 | } | |||
2825 | // Only lay out bases with extendable VFPtrs on the first pass. | |||
2826 | if (!BaseLayout.hasExtendableVFPtr()) | |||
2827 | continue; | |||
2828 | // If we don't have a primary base, this one qualifies. | |||
2829 | if (!PrimaryBase) { | |||
2830 | PrimaryBase = BaseDecl; | |||
2831 | LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); | |||
2832 | } | |||
2833 | // Lay out the base. | |||
2834 | layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); | |||
2835 | } | |||
2836 | // Figure out if we need a fresh VFPtr for this class. | |||
2837 | if (RD->isPolymorphic()) { | |||
2838 | if (!HasPolymorphicBaseClass) | |||
2839 | // This class introduces polymorphism, so we need a vftable to store the | |||
2840 | // RTTI information. | |||
2841 | HasOwnVFPtr = true; | |||
2842 | else if (!PrimaryBase) { | |||
2843 | // We have a polymorphic base class but can't extend its vftable. Add a | |||
2844 | // new vfptr if we would use any vftable slots. | |||
2845 | for (CXXMethodDecl *M : RD->methods()) { | |||
2846 | if (MicrosoftVTableContext::hasVtableSlot(M) && | |||
2847 | M->size_overridden_methods() == 0) { | |||
2848 | HasOwnVFPtr = true; | |||
2849 | break; | |||
2850 | } | |||
2851 | } | |||
2852 | } | |||
2853 | } | |||
2854 | // If we don't have a primary base then we have a leading object that could | |||
2855 | // itself lead with a zero-sized object, something we track. | |||
2856 | bool CheckLeadingLayout = !PrimaryBase; | |||
2857 | // Iterate through the bases and lay out the non-virtual ones. | |||
2858 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
2859 | if (Base.isVirtual()) | |||
2860 | continue; | |||
2861 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
2862 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | |||
2863 | // Only lay out bases without extendable VFPtrs on the second pass. | |||
2864 | if (BaseLayout.hasExtendableVFPtr()) { | |||
2865 | VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); | |||
2866 | continue; | |||
2867 | } | |||
2868 | // If this is the first layout, check to see if it leads with a zero sized | |||
2869 | // object. If it does, so do we. | |||
2870 | if (CheckLeadingLayout) { | |||
2871 | CheckLeadingLayout = false; | |||
2872 | LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); | |||
2873 | } | |||
2874 | // Lay out the base. | |||
2875 | layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); | |||
2876 | VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); | |||
2877 | } | |||
2878 | // Set our VBPtroffset if we know it at this point. | |||
2879 | if (!HasVBPtr) | |||
2880 | VBPtrOffset = CharUnits::fromQuantity(-1); | |||
2881 | else if (SharedVBPtrBase) { | |||
2882 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase); | |||
2883 | VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset(); | |||
2884 | } | |||
2885 | } | |||
2886 | ||||
2887 | static bool recordUsesEBO(const RecordDecl *RD) { | |||
2888 | if (!isa<CXXRecordDecl>(RD)) | |||
2889 | return false; | |||
2890 | if (RD->hasAttr<EmptyBasesAttr>()) | |||
2891 | return true; | |||
2892 | if (auto *LVA = RD->getAttr<LayoutVersionAttr>()) | |||
2893 | // TODO: Double check with the next version of MSVC. | |||
2894 | if (LVA->getVersion() <= LangOptions::MSVC2015) | |||
2895 | return false; | |||
2896 | // TODO: Some later version of MSVC will change the default behavior of the | |||
2897 | // compiler to enable EBO by default. When this happens, we will need an | |||
2898 | // additional isCompatibleWithMSVC check. | |||
2899 | return false; | |||
2900 | } | |||
2901 | ||||
2902 | void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase( | |||
2903 | const CXXRecordDecl *RD, | |||
2904 | const CXXRecordDecl *BaseDecl, | |||
2905 | const ASTRecordLayout &BaseLayout, | |||
2906 | const ASTRecordLayout *&PreviousBaseLayout) { | |||
2907 | // Insert padding between two bases if the left first one is zero sized or | |||
2908 | // contains a zero sized subobject and the right is zero sized or one leads | |||
2909 | // with a zero sized base. | |||
2910 | bool MDCUsesEBO = recordUsesEBO(RD); | |||
2911 | if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && | |||
2912 | BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO) | |||
2913 | Size++; | |||
2914 | ElementInfo Info = getAdjustedElementInfo(BaseLayout); | |||
2915 | CharUnits BaseOffset; | |||
2916 | ||||
2917 | // Respect the external AST source base offset, if present. | |||
2918 | bool FoundBase = false; | |||
2919 | if (UseExternalLayout) { | |||
2920 | FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset); | |||
2921 | if (FoundBase) { | |||
2922 | assert(BaseOffset >= Size && "base offset already allocated")(static_cast <bool> (BaseOffset >= Size && "base offset already allocated" ) ? void (0) : __assert_fail ("BaseOffset >= Size && \"base offset already allocated\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2922, __extension__ __PRETTY_FUNCTION__)); | |||
2923 | Size = BaseOffset; | |||
2924 | } | |||
2925 | } | |||
2926 | ||||
2927 | if (!FoundBase) { | |||
2928 | if (MDCUsesEBO && BaseDecl->isEmpty()) { | |||
2929 | assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero())(static_cast <bool> (BaseLayout.getNonVirtualSize() == CharUnits ::Zero()) ? void (0) : __assert_fail ("BaseLayout.getNonVirtualSize() == CharUnits::Zero()" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2929, __extension__ __PRETTY_FUNCTION__)); | |||
2930 | BaseOffset = CharUnits::Zero(); | |||
2931 | } else { | |||
2932 | // Otherwise, lay the base out at the end of the MDC. | |||
2933 | BaseOffset = Size = Size.alignTo(Info.Alignment); | |||
2934 | } | |||
2935 | } | |||
2936 | Bases.insert(std::make_pair(BaseDecl, BaseOffset)); | |||
2937 | Size += BaseLayout.getNonVirtualSize(); | |||
2938 | PreviousBaseLayout = &BaseLayout; | |||
2939 | } | |||
2940 | ||||
2941 | void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) { | |||
2942 | LastFieldIsNonZeroWidthBitfield = false; | |||
2943 | for (const FieldDecl *Field : RD->fields()) | |||
2944 | layoutField(Field); | |||
2945 | } | |||
2946 | ||||
2947 | void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) { | |||
2948 | if (FD->isBitField()) { | |||
2949 | layoutBitField(FD); | |||
2950 | return; | |||
2951 | } | |||
2952 | LastFieldIsNonZeroWidthBitfield = false; | |||
2953 | ElementInfo Info = getAdjustedElementInfo(FD); | |||
2954 | Alignment = std::max(Alignment, Info.Alignment); | |||
2955 | CharUnits FieldOffset; | |||
2956 | if (UseExternalLayout) | |||
2957 | FieldOffset = | |||
2958 | Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD)); | |||
2959 | else if (IsUnion) | |||
2960 | FieldOffset = CharUnits::Zero(); | |||
2961 | else | |||
2962 | FieldOffset = Size.alignTo(Info.Alignment); | |||
2963 | placeFieldAtOffset(FieldOffset); | |||
2964 | Size = std::max(Size, FieldOffset + Info.Size); | |||
2965 | } | |||
2966 | ||||
2967 | void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) { | |||
2968 | unsigned Width = FD->getBitWidthValue(Context); | |||
2969 | if (Width == 0) { | |||
2970 | layoutZeroWidthBitField(FD); | |||
2971 | return; | |||
2972 | } | |||
2973 | ElementInfo Info = getAdjustedElementInfo(FD); | |||
2974 | // Clamp the bitfield to a containable size for the sake of being able | |||
2975 | // to lay them out. Sema will throw an error. | |||
2976 | if (Width > Context.toBits(Info.Size)) | |||
2977 | Width = Context.toBits(Info.Size); | |||
2978 | // Check to see if this bitfield fits into an existing allocation. Note: | |||
2979 | // MSVC refuses to pack bitfields of formal types with different sizes | |||
2980 | // into the same allocation. | |||
2981 | if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield && | |||
2982 | CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) { | |||
2983 | placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField); | |||
2984 | RemainingBitsInField -= Width; | |||
2985 | return; | |||
2986 | } | |||
2987 | LastFieldIsNonZeroWidthBitfield = true; | |||
2988 | CurrentBitfieldSize = Info.Size; | |||
2989 | if (UseExternalLayout) { | |||
2990 | auto FieldBitOffset = External.getExternalFieldOffset(FD); | |||
2991 | placeFieldAtBitOffset(FieldBitOffset); | |||
2992 | auto NewSize = Context.toCharUnitsFromBits( | |||
2993 | llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) + | |||
2994 | Context.toBits(Info.Size)); | |||
2995 | Size = std::max(Size, NewSize); | |||
2996 | Alignment = std::max(Alignment, Info.Alignment); | |||
2997 | } else if (IsUnion) { | |||
2998 | placeFieldAtOffset(CharUnits::Zero()); | |||
2999 | Size = std::max(Size, Info.Size); | |||
3000 | // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. | |||
3001 | } else { | |||
3002 | // Allocate a new block of memory and place the bitfield in it. | |||
3003 | CharUnits FieldOffset = Size.alignTo(Info.Alignment); | |||
3004 | placeFieldAtOffset(FieldOffset); | |||
3005 | Size = FieldOffset + Info.Size; | |||
3006 | Alignment = std::max(Alignment, Info.Alignment); | |||
3007 | RemainingBitsInField = Context.toBits(Info.Size) - Width; | |||
3008 | } | |||
3009 | } | |||
3010 | ||||
3011 | void | |||
3012 | MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) { | |||
3013 | // Zero-width bitfields are ignored unless they follow a non-zero-width | |||
3014 | // bitfield. | |||
3015 | if (!LastFieldIsNonZeroWidthBitfield) { | |||
3016 | placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size); | |||
3017 | // TODO: Add a Sema warning that MS ignores alignment for zero | |||
3018 | // sized bitfields that occur after zero-size bitfields or non-bitfields. | |||
3019 | return; | |||
3020 | } | |||
3021 | LastFieldIsNonZeroWidthBitfield = false; | |||
3022 | ElementInfo Info = getAdjustedElementInfo(FD); | |||
3023 | if (IsUnion) { | |||
3024 | placeFieldAtOffset(CharUnits::Zero()); | |||
3025 | Size = std::max(Size, Info.Size); | |||
3026 | // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. | |||
3027 | } else { | |||
3028 | // Round up the current record size to the field's alignment boundary. | |||
3029 | CharUnits FieldOffset = Size.alignTo(Info.Alignment); | |||
3030 | placeFieldAtOffset(FieldOffset); | |||
3031 | Size = FieldOffset; | |||
3032 | Alignment = std::max(Alignment, Info.Alignment); | |||
3033 | } | |||
3034 | } | |||
3035 | ||||
3036 | void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) { | |||
3037 | if (!HasVBPtr || SharedVBPtrBase) | |||
3038 | return; | |||
3039 | // Inject the VBPointer at the injection site. | |||
3040 | CharUnits InjectionSite = VBPtrOffset; | |||
3041 | // But before we do, make sure it's properly aligned. | |||
3042 | VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment); | |||
3043 | // Determine where the first field should be laid out after the vbptr. | |||
3044 | CharUnits FieldStart = VBPtrOffset + PointerInfo.Size; | |||
3045 | // Shift everything after the vbptr down, unless we're using an external | |||
3046 | // layout. | |||
3047 | if (UseExternalLayout) { | |||
3048 | // It is possible that there were no fields or bases located after vbptr, | |||
3049 | // so the size was not adjusted before. | |||
3050 | if (Size < FieldStart) | |||
3051 | Size = FieldStart; | |||
3052 | return; | |||
3053 | } | |||
3054 | // Make sure that the amount we push the fields back by is a multiple of the | |||
3055 | // alignment. | |||
3056 | CharUnits Offset = (FieldStart - InjectionSite) | |||
3057 | .alignTo(std::max(RequiredAlignment, Alignment)); | |||
3058 | Size += Offset; | |||
3059 | for (uint64_t &FieldOffset : FieldOffsets) | |||
3060 | FieldOffset += Context.toBits(Offset); | |||
3061 | for (BaseOffsetsMapTy::value_type &Base : Bases) | |||
3062 | if (Base.second >= InjectionSite) | |||
3063 | Base.second += Offset; | |||
3064 | } | |||
3065 | ||||
3066 | void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) { | |||
3067 | if (!HasOwnVFPtr) | |||
3068 | return; | |||
3069 | // Make sure that the amount we push the struct back by is a multiple of the | |||
3070 | // alignment. | |||
3071 | CharUnits Offset = | |||
3072 | PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment)); | |||
3073 | // Push back the vbptr, but increase the size of the object and push back | |||
3074 | // regular fields by the offset only if not using external record layout. | |||
3075 | if (HasVBPtr) | |||
3076 | VBPtrOffset += Offset; | |||
3077 | ||||
3078 | if (UseExternalLayout) { | |||
3079 | // The class may have size 0 and a vfptr (e.g. it's an interface class). The | |||
3080 | // size was not correctly set before in this case. | |||
3081 | if (Size.isZero()) | |||
3082 | Size += Offset; | |||
3083 | return; | |||
3084 | } | |||
3085 | ||||
3086 | Size += Offset; | |||
3087 | ||||
3088 | // If we're using an external layout, the fields offsets have already | |||
3089 | // accounted for this adjustment. | |||
3090 | for (uint64_t &FieldOffset : FieldOffsets) | |||
3091 | FieldOffset += Context.toBits(Offset); | |||
3092 | for (BaseOffsetsMapTy::value_type &Base : Bases) | |||
3093 | Base.second += Offset; | |||
3094 | } | |||
3095 | ||||
3096 | void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) { | |||
3097 | if (!HasVBPtr) | |||
3098 | return; | |||
3099 | // Vtordisps are always 4 bytes (even in 64-bit mode) | |||
3100 | CharUnits VtorDispSize = CharUnits::fromQuantity(4); | |||
3101 | CharUnits VtorDispAlignment = VtorDispSize; | |||
3102 | // vtordisps respect pragma pack. | |||
3103 | if (!MaxFieldAlignment.isZero()) | |||
3104 | VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment); | |||
3105 | // The alignment of the vtordisp is at least the required alignment of the | |||
3106 | // entire record. This requirement may be present to support vtordisp | |||
3107 | // injection. | |||
3108 | for (const CXXBaseSpecifier &VBase : RD->vbases()) { | |||
3109 | const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); | |||
3110 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | |||
3111 | RequiredAlignment = | |||
3112 | std::max(RequiredAlignment, BaseLayout.getRequiredAlignment()); | |||
3113 | } | |||
3114 | VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment); | |||
3115 | // Compute the vtordisp set. | |||
3116 | llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet; | |||
3117 | computeVtorDispSet(HasVtorDispSet, RD); | |||
3118 | // Iterate through the virtual bases and lay them out. | |||
3119 | const ASTRecordLayout *PreviousBaseLayout = nullptr; | |||
3120 | for (const CXXBaseSpecifier &VBase : RD->vbases()) { | |||
3121 | const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); | |||
3122 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | |||
3123 | bool HasVtordisp = HasVtorDispSet.contains(BaseDecl); | |||
3124 | // Insert padding between two bases if the left first one is zero sized or | |||
3125 | // contains a zero sized subobject and the right is zero sized or one leads | |||
3126 | // with a zero sized base. The padding between virtual bases is 4 | |||
3127 | // bytes (in both 32 and 64 bits modes) and always involves rounding up to | |||
3128 | // the required alignment, we don't know why. | |||
3129 | if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && | |||
3130 | BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) || | |||
3131 | HasVtordisp) { | |||
3132 | Size = Size.alignTo(VtorDispAlignment) + VtorDispSize; | |||
3133 | Alignment = std::max(VtorDispAlignment, Alignment); | |||
3134 | } | |||
3135 | // Insert the virtual base. | |||
3136 | ElementInfo Info = getAdjustedElementInfo(BaseLayout); | |||
3137 | CharUnits BaseOffset; | |||
3138 | ||||
3139 | // Respect the external AST source base offset, if present. | |||
3140 | if (UseExternalLayout) { | |||
3141 | if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset)) | |||
3142 | BaseOffset = Size; | |||
3143 | } else | |||
3144 | BaseOffset = Size.alignTo(Info.Alignment); | |||
3145 | ||||
3146 | assert(BaseOffset >= Size && "base offset already allocated")(static_cast <bool> (BaseOffset >= Size && "base offset already allocated" ) ? void (0) : __assert_fail ("BaseOffset >= Size && \"base offset already allocated\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3146, __extension__ __PRETTY_FUNCTION__)); | |||
3147 | ||||
3148 | VBases.insert(std::make_pair(BaseDecl, | |||
3149 | ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp))); | |||
3150 | Size = BaseOffset + BaseLayout.getNonVirtualSize(); | |||
3151 | PreviousBaseLayout = &BaseLayout; | |||
3152 | } | |||
3153 | } | |||
3154 | ||||
3155 | void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) { | |||
3156 | // Respect required alignment. Note that in 32-bit mode Required alignment | |||
3157 | // may be 0 and cause size not to be updated. | |||
3158 | DataSize = Size; | |||
3159 | if (!RequiredAlignment.isZero()) { | |||
3160 | Alignment = std::max(Alignment, RequiredAlignment); | |||
3161 | auto RoundingAlignment = Alignment; | |||
3162 | if (!MaxFieldAlignment.isZero()) | |||
3163 | RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); | |||
3164 | RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment); | |||
3165 | Size = Size.alignTo(RoundingAlignment); | |||
3166 | } | |||
3167 | if (Size.isZero()) { | |||
3168 | if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) { | |||
3169 | EndsWithZeroSizedObject = true; | |||
3170 | LeadsWithZeroSizedBase = true; | |||
3171 | } | |||
3172 | // Zero-sized structures have size equal to their alignment if a | |||
3173 | // __declspec(align) came into play. | |||
3174 | if (RequiredAlignment >= MinEmptyStructSize) | |||
3175 | Size = Alignment; | |||
3176 | else | |||
3177 | Size = MinEmptyStructSize; | |||
3178 | } | |||
3179 | ||||
3180 | if (UseExternalLayout) { | |||
3181 | Size = Context.toCharUnitsFromBits(External.Size); | |||
3182 | if (External.Align) | |||
3183 | Alignment = Context.toCharUnitsFromBits(External.Align); | |||
3184 | } | |||
3185 | } | |||
3186 | ||||
3187 | // Recursively walks the non-virtual bases of a class and determines if any of | |||
3188 | // them are in the bases with overridden methods set. | |||
3189 | static bool | |||
3190 | RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> & | |||
3191 | BasesWithOverriddenMethods, | |||
3192 | const CXXRecordDecl *RD) { | |||
3193 | if (BasesWithOverriddenMethods.count(RD)) | |||
3194 | return true; | |||
3195 | // If any of a virtual bases non-virtual bases (recursively) requires a | |||
3196 | // vtordisp than so does this virtual base. | |||
3197 | for (const CXXBaseSpecifier &Base : RD->bases()) | |||
3198 | if (!Base.isVirtual() && | |||
3199 | RequiresVtordisp(BasesWithOverriddenMethods, | |||
3200 | Base.getType()->getAsCXXRecordDecl())) | |||
3201 | return true; | |||
3202 | return false; | |||
3203 | } | |||
3204 | ||||
3205 | void MicrosoftRecordLayoutBuilder::computeVtorDispSet( | |||
3206 | llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet, | |||
3207 | const CXXRecordDecl *RD) const { | |||
3208 | // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with | |||
3209 | // vftables. | |||
3210 | if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) { | |||
3211 | for (const CXXBaseSpecifier &Base : RD->vbases()) { | |||
3212 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
3213 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); | |||
3214 | if (Layout.hasExtendableVFPtr()) | |||
3215 | HasVtordispSet.insert(BaseDecl); | |||
3216 | } | |||
3217 | return; | |||
3218 | } | |||
3219 | ||||
3220 | // If any of our bases need a vtordisp for this type, so do we. Check our | |||
3221 | // direct bases for vtordisp requirements. | |||
3222 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
3223 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
3224 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); | |||
3225 | for (const auto &bi : Layout.getVBaseOffsetsMap()) | |||
3226 | if (bi.second.hasVtorDisp()) | |||
3227 | HasVtordispSet.insert(bi.first); | |||
3228 | } | |||
3229 | // We don't introduce any additional vtordisps if either: | |||
3230 | // * A user declared constructor or destructor aren't declared. | |||
3231 | // * #pragma vtordisp(0) or the /vd0 flag are in use. | |||
3232 | if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) || | |||
3233 | RD->getMSVtorDispMode() == MSVtorDispMode::Never) | |||
3234 | return; | |||
3235 | // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's | |||
3236 | // possible for a partially constructed object with virtual base overrides to | |||
3237 | // escape a non-trivial constructor. | |||
3238 | assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride)(static_cast <bool> (RD->getMSVtorDispMode() == MSVtorDispMode ::ForVBaseOverride) ? void (0) : __assert_fail ("RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3238, __extension__ __PRETTY_FUNCTION__)); | |||
3239 | // Compute a set of base classes which define methods we override. A virtual | |||
3240 | // base in this set will require a vtordisp. A virtual base that transitively | |||
3241 | // contains one of these bases as a non-virtual base will also require a | |||
3242 | // vtordisp. | |||
3243 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work; | |||
3244 | llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods; | |||
3245 | // Seed the working set with our non-destructor, non-pure virtual methods. | |||
3246 | for (const CXXMethodDecl *MD : RD->methods()) | |||
3247 | if (MicrosoftVTableContext::hasVtableSlot(MD) && | |||
3248 | !isa<CXXDestructorDecl>(MD) && !MD->isPure()) | |||
3249 | Work.insert(MD); | |||
3250 | while (!Work.empty()) { | |||
3251 | const CXXMethodDecl *MD = *Work.begin(); | |||
3252 | auto MethodRange = MD->overridden_methods(); | |||
3253 | // If a virtual method has no-overrides it lives in its parent's vtable. | |||
3254 | if (MethodRange.begin() == MethodRange.end()) | |||
3255 | BasesWithOverriddenMethods.insert(MD->getParent()); | |||
3256 | else | |||
3257 | Work.insert(MethodRange.begin(), MethodRange.end()); | |||
3258 | // We've finished processing this element, remove it from the working set. | |||
3259 | Work.erase(MD); | |||
3260 | } | |||
3261 | // For each of our virtual bases, check if it is in the set of overridden | |||
3262 | // bases or if it transitively contains a non-virtual base that is. | |||
3263 | for (const CXXBaseSpecifier &Base : RD->vbases()) { | |||
3264 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
3265 | if (!HasVtordispSet.count(BaseDecl) && | |||
3266 | RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl)) | |||
3267 | HasVtordispSet.insert(BaseDecl); | |||
3268 | } | |||
3269 | } | |||
3270 | ||||
3271 | /// getASTRecordLayout - Get or compute information about the layout of the | |||
3272 | /// specified record (struct/union/class), which indicates its size and field | |||
3273 | /// position information. | |||
3274 | const ASTRecordLayout & | |||
3275 | ASTContext::getASTRecordLayout(const RecordDecl *D) const { | |||
3276 | // These asserts test different things. A record has a definition | |||
3277 | // as soon as we begin to parse the definition. That definition is | |||
3278 | // not a complete definition (which is what isDefinition() tests) | |||
3279 | // until we *finish* parsing the definition. | |||
3280 | ||||
3281 | if (D->hasExternalLexicalStorage() && !D->getDefinition()) | |||
3282 | getExternalSource()->CompleteType(const_cast<RecordDecl*>(D)); | |||
3283 | // Complete the redecl chain (if necessary). | |||
3284 | (void)D->getMostRecentDecl(); | |||
3285 | ||||
3286 | D = D->getDefinition(); | |||
3287 | assert(D && "Cannot get layout of forward declarations!")(static_cast <bool> (D && "Cannot get layout of forward declarations!" ) ? void (0) : __assert_fail ("D && \"Cannot get layout of forward declarations!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3287, __extension__ __PRETTY_FUNCTION__)); | |||
3288 | assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!")(static_cast <bool> (!D->isInvalidDecl() && "Cannot get layout of invalid decl!" ) ? void (0) : __assert_fail ("!D->isInvalidDecl() && \"Cannot get layout of invalid decl!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3288, __extension__ __PRETTY_FUNCTION__)); | |||
3289 | assert(D->isCompleteDefinition() && "Cannot layout type before complete!")(static_cast <bool> (D->isCompleteDefinition() && "Cannot layout type before complete!") ? void (0) : __assert_fail ("D->isCompleteDefinition() && \"Cannot layout type before complete!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3289, __extension__ __PRETTY_FUNCTION__)); | |||
3290 | ||||
3291 | // Look up this layout, if already laid out, return what we have. | |||
3292 | // Note that we can't save a reference to the entry because this function | |||
3293 | // is recursive. | |||
3294 | const ASTRecordLayout *Entry = ASTRecordLayouts[D]; | |||
3295 | if (Entry) return *Entry; | |||
3296 | ||||
3297 | const ASTRecordLayout *NewEntry = nullptr; | |||
3298 | ||||
3299 | if (isMsLayout(*this)) { | |||
3300 | MicrosoftRecordLayoutBuilder Builder(*this); | |||
3301 | if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { | |||
3302 | Builder.cxxLayout(RD); | |||
3303 | NewEntry = new (*this) ASTRecordLayout( | |||
3304 | *this, Builder.Size, Builder.Alignment, Builder.Alignment, | |||
3305 | Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr, | |||
3306 | Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset, | |||
3307 | Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize, | |||
3308 | Builder.Alignment, Builder.Alignment, CharUnits::Zero(), | |||
3309 | Builder.PrimaryBase, false, Builder.SharedVBPtrBase, | |||
3310 | Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase, | |||
3311 | Builder.Bases, Builder.VBases); | |||
3312 | } else { | |||
3313 | Builder.layout(D); | |||
3314 | NewEntry = new (*this) ASTRecordLayout( | |||
3315 | *this, Builder.Size, Builder.Alignment, Builder.Alignment, | |||
3316 | Builder.Alignment, Builder.RequiredAlignment, Builder.Size, | |||
3317 | Builder.FieldOffsets); | |||
3318 | } | |||
3319 | } else { | |||
3320 | if (const auto *RD
| |||
3321 | EmptySubobjectMap EmptySubobjects(*this, RD); | |||
3322 | ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects); | |||
3323 | Builder.Layout(RD); | |||
3324 | ||||
3325 | // In certain situations, we are allowed to lay out objects in the | |||
3326 | // tail-padding of base classes. This is ABI-dependent. | |||
3327 | // FIXME: this should be stored in the record layout. | |||
3328 | bool skipTailPadding = | |||
3329 | mustSkipTailPadding(getTargetInfo().getCXXABI(), RD); | |||
3330 | ||||
3331 | // FIXME: This should be done in FinalizeLayout. | |||
3332 | CharUnits DataSize = | |||
3333 | skipTailPadding ? Builder.getSize() : Builder.getDataSize(); | |||
3334 | CharUnits NonVirtualSize = | |||
3335 | skipTailPadding ? DataSize : Builder.NonVirtualSize; | |||
3336 | NewEntry = new (*this) ASTRecordLayout( | |||
3337 | *this, Builder.getSize(), Builder.Alignment, | |||
3338 | Builder.PreferredAlignment, Builder.UnadjustedAlignment, | |||
3339 | /*RequiredAlignment : used by MS-ABI)*/ | |||
3340 | Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(), | |||
3341 | CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets, | |||
3342 | NonVirtualSize, Builder.NonVirtualAlignment, | |||
3343 | Builder.PreferredNVAlignment, | |||
3344 | EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, | |||
3345 | Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases, | |||
3346 | Builder.VBases); | |||
3347 | } else { | |||
3348 | ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); | |||
3349 | Builder.Layout(D); | |||
3350 | ||||
3351 | NewEntry = new (*this) ASTRecordLayout( | |||
3352 | *this, Builder.getSize(), Builder.Alignment, | |||
3353 | Builder.PreferredAlignment, Builder.UnadjustedAlignment, | |||
3354 | /*RequiredAlignment : used by MS-ABI)*/ | |||
3355 | Builder.Alignment, Builder.getSize(), Builder.FieldOffsets); | |||
3356 | } | |||
3357 | } | |||
3358 | ||||
3359 | ASTRecordLayouts[D] = NewEntry; | |||
3360 | ||||
3361 | if (getLangOpts().DumpRecordLayouts) { | |||
3362 | llvm::outs() << "\n*** Dumping AST Record Layout\n"; | |||
3363 | DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple); | |||
3364 | } | |||
3365 | ||||
3366 | return *NewEntry; | |||
3367 | } | |||
3368 | ||||
3369 | const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { | |||
3370 | if (!getTargetInfo().getCXXABI().hasKeyFunctions()) | |||
3371 | return nullptr; | |||
3372 | ||||
3373 | assert(RD->getDefinition() && "Cannot get key function for forward decl!")(static_cast <bool> (RD->getDefinition() && "Cannot get key function for forward decl!" ) ? void (0) : __assert_fail ("RD->getDefinition() && \"Cannot get key function for forward decl!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3373, __extension__ __PRETTY_FUNCTION__)); | |||
3374 | RD = RD->getDefinition(); | |||
3375 | ||||
3376 | // Beware: | |||
3377 | // 1) computing the key function might trigger deserialization, which might | |||
3378 | // invalidate iterators into KeyFunctions | |||
3379 | // 2) 'get' on the LazyDeclPtr might also trigger deserialization and | |||
3380 | // invalidate the LazyDeclPtr within the map itself | |||
3381 | LazyDeclPtr Entry = KeyFunctions[RD]; | |||
3382 | const Decl *Result = | |||
3383 | Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD); | |||
3384 | ||||
3385 | // Store it back if it changed. | |||
3386 | if (Entry.isOffset() || Entry.isValid() != bool(Result)) | |||
3387 | KeyFunctions[RD] = const_cast<Decl*>(Result); | |||
3388 | ||||
3389 | return cast_or_null<CXXMethodDecl>(Result); | |||
3390 | } | |||
3391 | ||||
3392 | void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) { | |||
3393 | assert(Method == Method->getFirstDecl() &&(static_cast <bool> (Method == Method->getFirstDecl( ) && "not working with method declaration from class definition" ) ? void (0) : __assert_fail ("Method == Method->getFirstDecl() && \"not working with method declaration from class definition\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3394, __extension__ __PRETTY_FUNCTION__)) | |||
3394 | "not working with method declaration from class definition")(static_cast <bool> (Method == Method->getFirstDecl( ) && "not working with method declaration from class definition" ) ? void (0) : __assert_fail ("Method == Method->getFirstDecl() && \"not working with method declaration from class definition\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3394, __extension__ __PRETTY_FUNCTION__)); | |||
3395 | ||||
3396 | // Look up the cache entry. Since we're working with the first | |||
3397 | // declaration, its parent must be the class definition, which is | |||
3398 | // the correct key for the KeyFunctions hash. | |||
3399 | const auto &Map = KeyFunctions; | |||
3400 | auto I = Map.find(Method->getParent()); | |||
3401 | ||||
3402 | // If it's not cached, there's nothing to do. | |||
3403 | if (I == Map.end()) return; | |||
3404 | ||||
3405 | // If it is cached, check whether it's the target method, and if so, | |||
3406 | // remove it from the cache. Note, the call to 'get' might invalidate | |||
3407 | // the iterator and the LazyDeclPtr object within the map. | |||
3408 | LazyDeclPtr Ptr = I->second; | |||
3409 | if (Ptr.get(getExternalSource()) == Method) { | |||
3410 | // FIXME: remember that we did this for module / chained PCH state? | |||
3411 | KeyFunctions.erase(Method->getParent()); | |||
3412 | } | |||
3413 | } | |||
3414 | ||||
3415 | static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { | |||
3416 | const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent()); | |||
3417 | return Layout.getFieldOffset(FD->getFieldIndex()); | |||
3418 | } | |||
3419 | ||||
3420 | uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { | |||
3421 | uint64_t OffsetInBits; | |||
3422 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) { | |||
3423 | OffsetInBits = ::getFieldOffset(*this, FD); | |||
3424 | } else { | |||
3425 | const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD); | |||
3426 | ||||
3427 | OffsetInBits = 0; | |||
3428 | for (const NamedDecl *ND : IFD->chain()) | |||
3429 | OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND)); | |||
3430 | } | |||
3431 | ||||
3432 | return OffsetInBits; | |||
3433 | } | |||
3434 | ||||
3435 | uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID, | |||
3436 | const ObjCImplementationDecl *ID, | |||
3437 | const ObjCIvarDecl *Ivar) const { | |||
3438 | Ivar = Ivar->getCanonicalDecl(); | |||
3439 | const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); | |||
3440 | ||||
3441 | // FIXME: We should eliminate the need to have ObjCImplementationDecl passed | |||
3442 | // in here; it should never be necessary because that should be the lexical | |||
3443 | // decl context for the ivar. | |||
3444 | ||||
3445 | // If we know have an implementation (and the ivar is in it) then | |||
3446 | // look up in the implementation layout. | |||
3447 | const ASTRecordLayout *RL; | |||
3448 | if (ID && declaresSameEntity(ID->getClassInterface(), Container)) | |||
3449 | RL = &getASTObjCImplementationLayout(ID); | |||
3450 | else | |||
3451 | RL = &getASTObjCInterfaceLayout(Container); | |||
3452 | ||||
3453 | // Compute field index. | |||
3454 | // | |||
3455 | // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is | |||
3456 | // implemented. This should be fixed to get the information from the layout | |||
3457 | // directly. | |||
3458 | unsigned Index = 0; | |||
3459 | ||||
3460 | for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin(); | |||
3461 | IVD; IVD = IVD->getNextIvar()) { | |||
3462 | if (Ivar == IVD) | |||
3463 | break; | |||
3464 | ++Index; | |||
3465 | } | |||
3466 | assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!")(static_cast <bool> (Index < RL->getFieldCount() && "Ivar is not inside record layout!") ? void (0) : __assert_fail ("Index < RL->getFieldCount() && \"Ivar is not inside record layout!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3466, __extension__ __PRETTY_FUNCTION__)); | |||
3467 | ||||
3468 | return RL->getFieldOffset(Index); | |||
3469 | } | |||
3470 | ||||
3471 | /// getObjCLayout - Get or compute information about the layout of the | |||
3472 | /// given interface. | |||
3473 | /// | |||
3474 | /// \param Impl - If given, also include the layout of the interface's | |||
3475 | /// implementation. This may differ by including synthesized ivars. | |||
3476 | const ASTRecordLayout & | |||
3477 | ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, | |||
3478 | const ObjCImplementationDecl *Impl) const { | |||
3479 | // Retrieve the definition | |||
3480 | if (D->hasExternalLexicalStorage() && !D->getDefinition()) | |||
3481 | getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D)); | |||
3482 | D = D->getDefinition(); | |||
3483 | assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&(static_cast <bool> (D && !D->isInvalidDecl( ) && D->isThisDeclarationADefinition() && "Invalid interface decl!" ) ? void (0) : __assert_fail ("D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && \"Invalid interface decl!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3484, __extension__ __PRETTY_FUNCTION__)) | |||
3484 | "Invalid interface decl!")(static_cast <bool> (D && !D->isInvalidDecl( ) && D->isThisDeclarationADefinition() && "Invalid interface decl!" ) ? void (0) : __assert_fail ("D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && \"Invalid interface decl!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3484, __extension__ __PRETTY_FUNCTION__)); | |||
3485 | ||||
3486 | // Look up this layout, if already laid out, return what we have. | |||
3487 | const ObjCContainerDecl *Key = | |||
3488 | Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D; | |||
3489 | if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) | |||
3490 | return *Entry; | |||
3491 | ||||
3492 | // Add in synthesized ivar count if laying out an implementation. | |||
3493 | if (Impl) { | |||
3494 | unsigned SynthCount = CountNonClassIvars(D); | |||
3495 | // If there aren't any synthesized ivars then reuse the interface | |||
3496 | // entry. Note we can't cache this because we simply free all | |||
3497 | // entries later; however we shouldn't look up implementations | |||
3498 | // frequently. | |||
3499 | if (SynthCount == 0) | |||
3500 | return getObjCLayout(D, nullptr); | |||
3501 | } | |||
3502 | ||||
3503 | ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); | |||
3504 | Builder.Layout(D); | |||
3505 | ||||
3506 | const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout( | |||
3507 | *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment, | |||
3508 | Builder.UnadjustedAlignment, | |||
3509 | /*RequiredAlignment : used by MS-ABI)*/ | |||
3510 | Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets); | |||
3511 | ||||
3512 | ObjCLayouts[Key] = NewEntry; | |||
3513 | ||||
3514 | return *NewEntry; | |||
3515 | } | |||
3516 | ||||
3517 | static void PrintOffset(raw_ostream &OS, | |||
3518 | CharUnits Offset, unsigned IndentLevel) { | |||
3519 | OS << llvm::format("%10" PRId64"l" "d" " | ", (int64_t)Offset.getQuantity()); | |||
3520 | OS.indent(IndentLevel * 2); | |||
3521 | } | |||
3522 | ||||
3523 | static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset, | |||
3524 | unsigned Begin, unsigned Width, | |||
3525 | unsigned IndentLevel) { | |||
3526 | llvm::SmallString<10> Buffer; | |||
3527 | { | |||
3528 | llvm::raw_svector_ostream BufferOS(Buffer); | |||
3529 | BufferOS << Offset.getQuantity() << ':'; | |||
3530 | if (Width == 0) { | |||
3531 | BufferOS << '-'; | |||
3532 | } else { | |||
3533 | BufferOS << Begin << '-' << (Begin + Width - 1); | |||
3534 | } | |||
3535 | } | |||
3536 | ||||
3537 | OS << llvm::right_justify(Buffer, 10) << " | "; | |||
3538 | OS.indent(IndentLevel * 2); | |||
3539 | } | |||
3540 | ||||
3541 | static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { | |||
3542 | OS << " | "; | |||
3543 | OS.indent(IndentLevel * 2); | |||
3544 | } | |||
3545 | ||||
3546 | static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD, | |||
3547 | const ASTContext &C, | |||
3548 | CharUnits Offset, | |||
3549 | unsigned IndentLevel, | |||
3550 | const char* Description, | |||
3551 | bool PrintSizeInfo, | |||
3552 | bool IncludeVirtualBases) { | |||
3553 | const ASTRecordLayout &Layout = C.getASTRecordLayout(RD); | |||
3554 | auto CXXRD = dyn_cast<CXXRecordDecl>(RD); | |||
3555 | ||||
3556 | PrintOffset(OS, Offset, IndentLevel); | |||
3557 | OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD)); | |||
3558 | if (Description) | |||
3559 | OS << ' ' << Description; | |||
3560 | if (CXXRD && CXXRD->isEmpty()) | |||
3561 | OS << " (empty)"; | |||
3562 | OS << '\n'; | |||
3563 | ||||
3564 | IndentLevel++; | |||
3565 | ||||
3566 | // Dump bases. | |||
3567 | if (CXXRD) { | |||
3568 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); | |||
3569 | bool HasOwnVFPtr = Layout.hasOwnVFPtr(); | |||
3570 | bool HasOwnVBPtr = Layout.hasOwnVBPtr(); | |||
3571 | ||||
3572 | // Vtable pointer. | |||
3573 | if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) { | |||
3574 | PrintOffset(OS, Offset, IndentLevel); | |||
3575 | OS << '(' << *RD << " vtable pointer)\n"; | |||
3576 | } else if (HasOwnVFPtr) { | |||
3577 | PrintOffset(OS, Offset, IndentLevel); | |||
3578 | // vfptr (for Microsoft C++ ABI) | |||
3579 | OS << '(' << *RD << " vftable pointer)\n"; | |||
3580 | } | |||
3581 | ||||
3582 | // Collect nvbases. | |||
3583 | SmallVector<const CXXRecordDecl *, 4> Bases; | |||
3584 | for (const CXXBaseSpecifier &Base : CXXRD->bases()) { | |||
3585 | assert(!Base.getType()->isDependentType() &&(static_cast <bool> (!Base.getType()->isDependentType () && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3586, __extension__ __PRETTY_FUNCTION__)) | |||
3586 | "Cannot layout class with dependent bases.")(static_cast <bool> (!Base.getType()->isDependentType () && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3586, __extension__ __PRETTY_FUNCTION__)); | |||
3587 | if (!Base.isVirtual()) | |||
3588 | Bases.push_back(Base.getType()->getAsCXXRecordDecl()); | |||
3589 | } | |||
3590 | ||||
3591 | // Sort nvbases by offset. | |||
3592 | llvm::stable_sort( | |||
3593 | Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { | |||
3594 | return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); | |||
3595 | }); | |||
3596 | ||||
3597 | // Dump (non-virtual) bases | |||
3598 | for (const CXXRecordDecl *Base : Bases) { | |||
3599 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); | |||
3600 | DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel, | |||
3601 | Base == PrimaryBase ? "(primary base)" : "(base)", | |||
3602 | /*PrintSizeInfo=*/false, | |||
3603 | /*IncludeVirtualBases=*/false); | |||
3604 | } | |||
3605 | ||||
3606 | // vbptr (for Microsoft C++ ABI) | |||
3607 | if (HasOwnVBPtr) { | |||
3608 | PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel); | |||
3609 | OS << '(' << *RD << " vbtable pointer)\n"; | |||
3610 | } | |||
3611 | } | |||
3612 | ||||
3613 | // Dump fields. | |||
3614 | uint64_t FieldNo = 0; | |||
3615 | for (RecordDecl::field_iterator I = RD->field_begin(), | |||
3616 | E = RD->field_end(); I != E; ++I, ++FieldNo) { | |||
3617 | const FieldDecl &Field = **I; | |||
3618 | uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo); | |||
3619 | CharUnits FieldOffset = | |||
3620 | Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits); | |||
3621 | ||||
3622 | // Recursively dump fields of record type. | |||
3623 | if (auto RT = Field.getType()->getAs<RecordType>()) { | |||
3624 | DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel, | |||
3625 | Field.getName().data(), | |||
3626 | /*PrintSizeInfo=*/false, | |||
3627 | /*IncludeVirtualBases=*/true); | |||
3628 | continue; | |||
3629 | } | |||
3630 | ||||
3631 | if (Field.isBitField()) { | |||
3632 | uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset); | |||
3633 | unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits; | |||
3634 | unsigned Width = Field.getBitWidthValue(C); | |||
3635 | PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel); | |||
3636 | } else { | |||
3637 | PrintOffset(OS, FieldOffset, IndentLevel); | |||
3638 | } | |||
3639 | const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical | |||
3640 | ? Field.getType().getCanonicalType() | |||
3641 | : Field.getType(); | |||
3642 | OS << FieldType << ' ' << Field << '\n'; | |||
3643 | } | |||
3644 | ||||
3645 | // Dump virtual bases. | |||
3646 | if (CXXRD && IncludeVirtualBases) { | |||
3647 | const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps = | |||
3648 | Layout.getVBaseOffsetsMap(); | |||
3649 | ||||
3650 | for (const CXXBaseSpecifier &Base : CXXRD->vbases()) { | |||
3651 | assert(Base.isVirtual() && "Found non-virtual class!")(static_cast <bool> (Base.isVirtual() && "Found non-virtual class!" ) ? void (0) : __assert_fail ("Base.isVirtual() && \"Found non-virtual class!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3651, __extension__ __PRETTY_FUNCTION__)); | |||
3652 | const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl(); | |||
3653 | ||||
3654 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); | |||
3655 | ||||
3656 | if (VtorDisps.find(VBase)->second.hasVtorDisp()) { | |||
3657 | PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel); | |||
3658 | OS << "(vtordisp for vbase " << *VBase << ")\n"; | |||
3659 | } | |||
3660 | ||||
3661 | DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, | |||
3662 | VBase == Layout.getPrimaryBase() ? | |||
3663 | "(primary virtual base)" : "(virtual base)", | |||
3664 | /*PrintSizeInfo=*/false, | |||
3665 | /*IncludeVirtualBases=*/false); | |||
3666 | } | |||
3667 | } | |||
3668 | ||||
3669 | if (!PrintSizeInfo) return; | |||
3670 | ||||
3671 | PrintIndentNoOffset(OS, IndentLevel - 1); | |||
3672 | OS << "[sizeof=" << Layout.getSize().getQuantity(); | |||
3673 | if (CXXRD && !isMsLayout(C)) | |||
3674 | OS << ", dsize=" << Layout.getDataSize().getQuantity(); | |||
3675 | OS << ", align=" << Layout.getAlignment().getQuantity(); | |||
3676 | if (C.getTargetInfo().defaultsToAIXPowerAlignment()) | |||
3677 | OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity(); | |||
3678 | ||||
3679 | if (CXXRD) { | |||
3680 | OS << ",\n"; | |||
3681 | PrintIndentNoOffset(OS, IndentLevel - 1); | |||
3682 | OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity(); | |||
3683 | OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity(); | |||
3684 | if (C.getTargetInfo().defaultsToAIXPowerAlignment()) | |||
3685 | OS << ", preferrednvalign=" | |||
3686 | << Layout.getPreferredNVAlignment().getQuantity(); | |||
3687 | } | |||
3688 | OS << "]\n"; | |||
3689 | } | |||
3690 | ||||
3691 | void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS, | |||
3692 | bool Simple) const { | |||
3693 | if (!Simple) { | |||
| ||||
3694 | ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr, | |||
3695 | /*PrintSizeInfo*/ true, | |||
3696 | /*IncludeVirtualBases=*/true); | |||
3697 | return; | |||
3698 | } | |||
3699 | ||||
3700 | // The "simple" format is designed to be parsed by the | |||
3701 | // layout-override testing code. There shouldn't be any external | |||
3702 | // uses of this format --- when LLDB overrides a layout, it sets up | |||
3703 | // the data structures directly --- so feel free to adjust this as | |||
3704 | // you like as long as you also update the rudimentary parser for it | |||
3705 | // in libFrontend. | |||
3706 | ||||
3707 | const ASTRecordLayout &Info = getASTRecordLayout(RD); | |||
3708 | OS << "Type: " << getTypeDeclType(RD) << "\n"; | |||
3709 | OS << "\nLayout: "; | |||
3710 | OS << "<ASTRecordLayout\n"; | |||
3711 | OS << " Size:" << toBits(Info.getSize()) << "\n"; | |||
3712 | if (!isMsLayout(*this)) | |||
3713 | OS << " DataSize:" << toBits(Info.getDataSize()) << "\n"; | |||
3714 | OS << " Alignment:" << toBits(Info.getAlignment()) << "\n"; | |||
3715 | if (Target->defaultsToAIXPowerAlignment()) | |||
3716 | OS << " PreferredAlignment:" << toBits(Info.getPreferredAlignment()) | |||
3717 | << "\n"; | |||
3718 | OS << " FieldOffsets: ["; | |||
3719 | for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) { | |||
3720 | if (i) | |||
3721 | OS << ", "; | |||
3722 | OS << Info.getFieldOffset(i); | |||
3723 | } | |||
3724 | OS << "]>\n"; | |||
3725 | } |