| File: | build/source/clang/lib/AST/RecordLayoutBuilder.cpp |
| Warning: | line 1181, column 10 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | ||||
| 9 | #include "clang/AST/ASTContext.h" | |||
| 10 | #include "clang/AST/ASTDiagnostic.h" | |||
| 11 | #include "clang/AST/Attr.h" | |||
| 12 | #include "clang/AST/CXXInheritance.h" | |||
| 13 | #include "clang/AST/Decl.h" | |||
| 14 | #include "clang/AST/DeclCXX.h" | |||
| 15 | #include "clang/AST/DeclObjC.h" | |||
| 16 | #include "clang/AST/Expr.h" | |||
| 17 | #include "clang/AST/VTableBuilder.h" | |||
| 18 | #include "clang/AST/RecordLayout.h" | |||
| 19 | #include "clang/Basic/TargetInfo.h" | |||
| 20 | #include "llvm/ADT/SmallSet.h" | |||
| 21 | #include "llvm/Support/Format.h" | |||
| 22 | #include "llvm/Support/MathExtras.h" | |||
| 23 | ||||
| 24 | using namespace clang; | |||
| 25 | ||||
| 26 | namespace { | |||
| 27 | ||||
| 28 | /// BaseSubobjectInfo - Represents a single base subobject in a complete class. | |||
| 29 | /// For a class hierarchy like | |||
| 30 | /// | |||
| 31 | /// class A { }; | |||
| 32 | /// class B : A { }; | |||
| 33 | /// class C : A, B { }; | |||
| 34 | /// | |||
| 35 | /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo | |||
| 36 | /// instances, one for B and two for A. | |||
| 37 | /// | |||
| 38 | /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. | |||
| 39 | struct BaseSubobjectInfo { | |||
| 40 | /// Class - The class for this base info. | |||
| 41 | const CXXRecordDecl *Class; | |||
| 42 | ||||
| 43 | /// IsVirtual - Whether the BaseInfo represents a virtual base or not. | |||
| 44 | bool IsVirtual; | |||
| 45 | ||||
| 46 | /// Bases - Information about the base subobjects. | |||
| 47 | SmallVector<BaseSubobjectInfo*, 4> Bases; | |||
| 48 | ||||
| 49 | /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base | |||
| 50 | /// of this base info (if one exists). | |||
| 51 | BaseSubobjectInfo *PrimaryVirtualBaseInfo; | |||
| 52 | ||||
| 53 | // FIXME: Document. | |||
| 54 | const BaseSubobjectInfo *Derived; | |||
| 55 | }; | |||
| 56 | ||||
| 57 | /// Externally provided layout. Typically used when the AST source, such | |||
| 58 | /// as DWARF, lacks all the information that was available at compile time, such | |||
| 59 | /// as alignment attributes on fields and pragmas in effect. | |||
| 60 | struct ExternalLayout { | |||
| 61 | ExternalLayout() : Size(0), Align(0) {} | |||
| 62 | ||||
| 63 | /// Overall record size in bits. | |||
| 64 | uint64_t Size; | |||
| 65 | ||||
| 66 | /// Overall record alignment in bits. | |||
| 67 | uint64_t Align; | |||
| 68 | ||||
| 69 | /// Record field offsets in bits. | |||
| 70 | llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets; | |||
| 71 | ||||
| 72 | /// Direct, non-virtual base offsets. | |||
| 73 | llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets; | |||
| 74 | ||||
| 75 | /// Virtual base offsets. | |||
| 76 | llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets; | |||
| 77 | ||||
| 78 | /// Get the offset of the given field. The external source must provide | |||
| 79 | /// entries for all fields in the record. | |||
| 80 | uint64_t getExternalFieldOffset(const FieldDecl *FD) { | |||
| 81 | assert(FieldOffsets.count(FD) &&(static_cast <bool> (FieldOffsets.count(FD) && "Field does not have an external offset" ) ? void (0) : __assert_fail ("FieldOffsets.count(FD) && \"Field does not have an external offset\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 82, __extension__ __PRETTY_FUNCTION__ )) | |||
| 82 | "Field does not have an external offset")(static_cast <bool> (FieldOffsets.count(FD) && "Field does not have an external offset" ) ? void (0) : __assert_fail ("FieldOffsets.count(FD) && \"Field does not have an external offset\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 82, __extension__ __PRETTY_FUNCTION__ )); | |||
| 83 | return FieldOffsets[FD]; | |||
| 84 | } | |||
| 85 | ||||
| 86 | bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { | |||
| 87 | auto Known = BaseOffsets.find(RD); | |||
| 88 | if (Known == BaseOffsets.end()) | |||
| 89 | return false; | |||
| 90 | BaseOffset = Known->second; | |||
| 91 | return true; | |||
| 92 | } | |||
| 93 | ||||
| 94 | bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { | |||
| 95 | auto Known = VirtualBaseOffsets.find(RD); | |||
| 96 | if (Known == VirtualBaseOffsets.end()) | |||
| 97 | return false; | |||
| 98 | BaseOffset = Known->second; | |||
| 99 | return true; | |||
| 100 | } | |||
| 101 | }; | |||
| 102 | ||||
| 103 | /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different | |||
| 104 | /// offsets while laying out a C++ class. | |||
| 105 | class EmptySubobjectMap { | |||
| 106 | const ASTContext &Context; | |||
| 107 | uint64_t CharWidth; | |||
| 108 | ||||
| 109 | /// Class - The class whose empty entries we're keeping track of. | |||
| 110 | const CXXRecordDecl *Class; | |||
| 111 | ||||
| 112 | /// EmptyClassOffsets - A map from offsets to empty record decls. | |||
| 113 | typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy; | |||
| 114 | typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy; | |||
| 115 | EmptyClassOffsetsMapTy EmptyClassOffsets; | |||
| 116 | ||||
| 117 | /// MaxEmptyClassOffset - The highest offset known to contain an empty | |||
| 118 | /// base subobject. | |||
| 119 | CharUnits MaxEmptyClassOffset; | |||
| 120 | ||||
| 121 | /// ComputeEmptySubobjectSizes - Compute the size of the largest base or | |||
| 122 | /// member subobject that is empty. | |||
| 123 | void ComputeEmptySubobjectSizes(); | |||
| 124 | ||||
| 125 | void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); | |||
| 126 | ||||
| 127 | void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, | |||
| 128 | CharUnits Offset, bool PlacingEmptyBase); | |||
| 129 | ||||
| 130 | void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, | |||
| 131 | const CXXRecordDecl *Class, CharUnits Offset, | |||
| 132 | bool PlacingOverlappingField); | |||
| 133 | void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset, | |||
| 134 | bool PlacingOverlappingField); | |||
| 135 | ||||
| 136 | /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty | |||
| 137 | /// subobjects beyond the given offset. | |||
| 138 | bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { | |||
| 139 | return Offset <= MaxEmptyClassOffset; | |||
| 140 | } | |||
| 141 | ||||
| 142 | CharUnits | |||
| 143 | getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const { | |||
| 144 | uint64_t FieldOffset = Layout.getFieldOffset(FieldNo); | |||
| 145 | assert(FieldOffset % CharWidth == 0 &&(static_cast <bool> (FieldOffset % CharWidth == 0 && "Field offset not at char boundary!") ? void (0) : __assert_fail ("FieldOffset % CharWidth == 0 && \"Field offset not at char boundary!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 146, __extension__ __PRETTY_FUNCTION__)) | |||
| 146 | "Field offset not at char boundary!")(static_cast <bool> (FieldOffset % CharWidth == 0 && "Field offset not at char boundary!") ? void (0) : __assert_fail ("FieldOffset % CharWidth == 0 && \"Field offset not at char boundary!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 146, __extension__ __PRETTY_FUNCTION__)); | |||
| 147 | ||||
| 148 | return Context.toCharUnitsFromBits(FieldOffset); | |||
| 149 | } | |||
| 150 | ||||
| 151 | protected: | |||
| 152 | bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, | |||
| 153 | CharUnits Offset) const; | |||
| 154 | ||||
| 155 | bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, | |||
| 156 | CharUnits Offset); | |||
| 157 | ||||
| 158 | bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, | |||
| 159 | const CXXRecordDecl *Class, | |||
| 160 | CharUnits Offset) const; | |||
| 161 | bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, | |||
| 162 | CharUnits Offset) const; | |||
| 163 | ||||
| 164 | public: | |||
| 165 | /// This holds the size of the largest empty subobject (either a base | |||
| 166 | /// or a member). Will be zero if the record being built doesn't contain | |||
| 167 | /// any empty classes. | |||
| 168 | CharUnits SizeOfLargestEmptySubobject; | |||
| 169 | ||||
| 170 | EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) | |||
| 171 | : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { | |||
| 172 | ComputeEmptySubobjectSizes(); | |||
| 173 | } | |||
| 174 | ||||
| 175 | /// CanPlaceBaseAtOffset - Return whether the given base class can be placed | |||
| 176 | /// at the given offset. | |||
| 177 | /// Returns false if placing the record will result in two components | |||
| 178 | /// (direct or indirect) of the same type having the same offset. | |||
| 179 | bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, | |||
| 180 | CharUnits Offset); | |||
| 181 | ||||
| 182 | /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given | |||
| 183 | /// offset. | |||
| 184 | bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); | |||
| 185 | }; | |||
| 186 | ||||
| 187 | void EmptySubobjectMap::ComputeEmptySubobjectSizes() { | |||
| 188 | // Check the bases. | |||
| 189 | for (const CXXBaseSpecifier &Base : Class->bases()) { | |||
| 190 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 191 | ||||
| 192 | CharUnits EmptySize; | |||
| 193 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); | |||
| 194 | if (BaseDecl->isEmpty()) { | |||
| 195 | // If the class decl is empty, get its size. | |||
| 196 | EmptySize = Layout.getSize(); | |||
| 197 | } else { | |||
| 198 | // Otherwise, we get the largest empty subobject for the decl. | |||
| 199 | EmptySize = Layout.getSizeOfLargestEmptySubobject(); | |||
| 200 | } | |||
| 201 | ||||
| 202 | if (EmptySize > SizeOfLargestEmptySubobject) | |||
| 203 | SizeOfLargestEmptySubobject = EmptySize; | |||
| 204 | } | |||
| 205 | ||||
| 206 | // Check the fields. | |||
| 207 | for (const FieldDecl *FD : Class->fields()) { | |||
| 208 | const RecordType *RT = | |||
| 209 | Context.getBaseElementType(FD->getType())->getAs<RecordType>(); | |||
| 210 | ||||
| 211 | // We only care about record types. | |||
| 212 | if (!RT) | |||
| 213 | continue; | |||
| 214 | ||||
| 215 | CharUnits EmptySize; | |||
| 216 | const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl(); | |||
| 217 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); | |||
| 218 | if (MemberDecl->isEmpty()) { | |||
| 219 | // If the class decl is empty, get its size. | |||
| 220 | EmptySize = Layout.getSize(); | |||
| 221 | } else { | |||
| 222 | // Otherwise, we get the largest empty subobject for the decl. | |||
| 223 | EmptySize = Layout.getSizeOfLargestEmptySubobject(); | |||
| 224 | } | |||
| 225 | ||||
| 226 | if (EmptySize > SizeOfLargestEmptySubobject) | |||
| 227 | SizeOfLargestEmptySubobject = EmptySize; | |||
| 228 | } | |||
| 229 | } | |||
| 230 | ||||
| 231 | bool | |||
| 232 | EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, | |||
| 233 | CharUnits Offset) const { | |||
| 234 | // We only need to check empty bases. | |||
| 235 | if (!RD->isEmpty()) | |||
| 236 | return true; | |||
| 237 | ||||
| 238 | EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset); | |||
| 239 | if (I == EmptyClassOffsets.end()) | |||
| 240 | return true; | |||
| 241 | ||||
| 242 | const ClassVectorTy &Classes = I->second; | |||
| 243 | if (!llvm::is_contained(Classes, RD)) | |||
| 244 | return true; | |||
| 245 | ||||
| 246 | // There is already an empty class of the same type at this offset. | |||
| 247 | return false; | |||
| 248 | } | |||
| 249 | ||||
| 250 | void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, | |||
| 251 | CharUnits Offset) { | |||
| 252 | // We only care about empty bases. | |||
| 253 | if (!RD->isEmpty()) | |||
| 254 | return; | |||
| 255 | ||||
| 256 | // If we have empty structures inside a union, we can assign both | |||
| 257 | // the same offset. Just avoid pushing them twice in the list. | |||
| 258 | ClassVectorTy &Classes = EmptyClassOffsets[Offset]; | |||
| 259 | if (llvm::is_contained(Classes, RD)) | |||
| 260 | return; | |||
| 261 | ||||
| 262 | Classes.push_back(RD); | |||
| 263 | ||||
| 264 | // Update the empty class offset. | |||
| 265 | if (Offset > MaxEmptyClassOffset) | |||
| 266 | MaxEmptyClassOffset = Offset; | |||
| 267 | } | |||
| 268 | ||||
| 269 | bool | |||
| 270 | EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, | |||
| 271 | CharUnits Offset) { | |||
| 272 | // We don't have to keep looking past the maximum offset that's known to | |||
| 273 | // contain an empty class. | |||
| 274 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) | |||
| 275 | return true; | |||
| 276 | ||||
| 277 | if (!CanPlaceSubobjectAtOffset(Info->Class, Offset)) | |||
| 278 | return false; | |||
| 279 | ||||
| 280 | // Traverse all non-virtual bases. | |||
| 281 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); | |||
| 282 | for (const BaseSubobjectInfo *Base : Info->Bases) { | |||
| 283 | if (Base->IsVirtual) | |||
| 284 | continue; | |||
| 285 | ||||
| 286 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); | |||
| 287 | ||||
| 288 | if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset)) | |||
| 289 | return false; | |||
| 290 | } | |||
| 291 | ||||
| 292 | if (Info->PrimaryVirtualBaseInfo) { | |||
| 293 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; | |||
| 294 | ||||
| 295 | if (Info == PrimaryVirtualBaseInfo->Derived) { | |||
| 296 | if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset)) | |||
| 297 | return false; | |||
| 298 | } | |||
| 299 | } | |||
| 300 | ||||
| 301 | // Traverse all member variables. | |||
| 302 | unsigned FieldNo = 0; | |||
| 303 | for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), | |||
| 304 | E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { | |||
| 305 | if (I->isBitField()) | |||
| 306 | continue; | |||
| 307 | ||||
| 308 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); | |||
| 309 | if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) | |||
| 310 | return false; | |||
| 311 | } | |||
| 312 | ||||
| 313 | return true; | |||
| 314 | } | |||
| 315 | ||||
| 316 | void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, | |||
| 317 | CharUnits Offset, | |||
| 318 | bool PlacingEmptyBase) { | |||
| 319 | if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { | |||
| 320 | // We know that the only empty subobjects that can conflict with empty | |||
| 321 | // subobject of non-empty bases, are empty bases that can be placed at | |||
| 322 | // offset zero. Because of this, we only need to keep track of empty base | |||
| 323 | // subobjects with offsets less than the size of the largest empty | |||
| 324 | // subobject for our class. | |||
| 325 | return; | |||
| 326 | } | |||
| 327 | ||||
| 328 | AddSubobjectAtOffset(Info->Class, Offset); | |||
| 329 | ||||
| 330 | // Traverse all non-virtual bases. | |||
| 331 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); | |||
| 332 | for (const BaseSubobjectInfo *Base : Info->Bases) { | |||
| 333 | if (Base->IsVirtual) | |||
| 334 | continue; | |||
| 335 | ||||
| 336 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); | |||
| 337 | UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase); | |||
| 338 | } | |||
| 339 | ||||
| 340 | if (Info->PrimaryVirtualBaseInfo) { | |||
| 341 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; | |||
| 342 | ||||
| 343 | if (Info == PrimaryVirtualBaseInfo->Derived) | |||
| 344 | UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset, | |||
| 345 | PlacingEmptyBase); | |||
| 346 | } | |||
| 347 | ||||
| 348 | // Traverse all member variables. | |||
| 349 | unsigned FieldNo = 0; | |||
| 350 | for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), | |||
| 351 | E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { | |||
| 352 | if (I->isBitField()) | |||
| 353 | continue; | |||
| 354 | ||||
| 355 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); | |||
| 356 | UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase); | |||
| 357 | } | |||
| 358 | } | |||
| 359 | ||||
| 360 | bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, | |||
| 361 | CharUnits Offset) { | |||
| 362 | // If we know this class doesn't have any empty subobjects we don't need to | |||
| 363 | // bother checking. | |||
| 364 | if (SizeOfLargestEmptySubobject.isZero()) | |||
| 365 | return true; | |||
| 366 | ||||
| 367 | if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) | |||
| 368 | return false; | |||
| 369 | ||||
| 370 | // We are able to place the base at this offset. Make sure to update the | |||
| 371 | // empty base subobject map. | |||
| 372 | UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty()); | |||
| 373 | return true; | |||
| 374 | } | |||
| 375 | ||||
| 376 | bool | |||
| 377 | EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, | |||
| 378 | const CXXRecordDecl *Class, | |||
| 379 | CharUnits Offset) const { | |||
| 380 | // We don't have to keep looking past the maximum offset that's known to | |||
| 381 | // contain an empty class. | |||
| 382 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) | |||
| 383 | return true; | |||
| 384 | ||||
| 385 | if (!CanPlaceSubobjectAtOffset(RD, Offset)) | |||
| 386 | return false; | |||
| 387 | ||||
| 388 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
| 389 | ||||
| 390 | // Traverse all non-virtual bases. | |||
| 391 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
| 392 | if (Base.isVirtual()) | |||
| 393 | continue; | |||
| 394 | ||||
| 395 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 396 | ||||
| 397 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); | |||
| 398 | if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset)) | |||
| 399 | return false; | |||
| 400 | } | |||
| 401 | ||||
| 402 | if (RD == Class) { | |||
| 403 | // This is the most derived class, traverse virtual bases as well. | |||
| 404 | for (const CXXBaseSpecifier &Base : RD->vbases()) { | |||
| 405 | const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 406 | ||||
| 407 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); | |||
| 408 | if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset)) | |||
| 409 | return false; | |||
| 410 | } | |||
| 411 | } | |||
| 412 | ||||
| 413 | // Traverse all member variables. | |||
| 414 | unsigned FieldNo = 0; | |||
| 415 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); | |||
| 416 | I != E; ++I, ++FieldNo) { | |||
| 417 | if (I->isBitField()) | |||
| 418 | continue; | |||
| 419 | ||||
| 420 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); | |||
| 421 | ||||
| 422 | if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) | |||
| 423 | return false; | |||
| 424 | } | |||
| 425 | ||||
| 426 | return true; | |||
| 427 | } | |||
| 428 | ||||
| 429 | bool | |||
| 430 | EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, | |||
| 431 | CharUnits Offset) const { | |||
| 432 | // We don't have to keep looking past the maximum offset that's known to | |||
| 433 | // contain an empty class. | |||
| 434 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) | |||
| 435 | return true; | |||
| 436 | ||||
| 437 | QualType T = FD->getType(); | |||
| 438 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
| 439 | return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset); | |||
| 440 | ||||
| 441 | // If we have an array type we need to look at every element. | |||
| 442 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { | |||
| 443 | QualType ElemTy = Context.getBaseElementType(AT); | |||
| 444 | const RecordType *RT = ElemTy->getAs<RecordType>(); | |||
| 445 | if (!RT) | |||
| 446 | return true; | |||
| 447 | ||||
| 448 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); | |||
| 449 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
| 450 | ||||
| 451 | uint64_t NumElements = Context.getConstantArrayElementCount(AT); | |||
| 452 | CharUnits ElementOffset = Offset; | |||
| 453 | for (uint64_t I = 0; I != NumElements; ++I) { | |||
| 454 | // We don't have to keep looking past the maximum offset that's known to | |||
| 455 | // contain an empty class. | |||
| 456 | if (!AnyEmptySubobjectsBeyondOffset(ElementOffset)) | |||
| 457 | return true; | |||
| 458 | ||||
| 459 | if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset)) | |||
| 460 | return false; | |||
| 461 | ||||
| 462 | ElementOffset += Layout.getSize(); | |||
| 463 | } | |||
| 464 | } | |||
| 465 | ||||
| 466 | return true; | |||
| 467 | } | |||
| 468 | ||||
| 469 | bool | |||
| 470 | EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, | |||
| 471 | CharUnits Offset) { | |||
| 472 | if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) | |||
| 473 | return false; | |||
| 474 | ||||
| 475 | // We are able to place the member variable at this offset. | |||
| 476 | // Make sure to update the empty field subobject map. | |||
| 477 | UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>()); | |||
| 478 | return true; | |||
| 479 | } | |||
| 480 | ||||
| 481 | void EmptySubobjectMap::UpdateEmptyFieldSubobjects( | |||
| 482 | const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset, | |||
| 483 | bool PlacingOverlappingField) { | |||
| 484 | // We know that the only empty subobjects that can conflict with empty | |||
| 485 | // field subobjects are subobjects of empty bases and potentially-overlapping | |||
| 486 | // fields that can be placed at offset zero. Because of this, we only need to | |||
| 487 | // keep track of empty field subobjects with offsets less than the size of | |||
| 488 | // the largest empty subobject for our class. | |||
| 489 | // | |||
| 490 | // (Proof: we will only consider placing a subobject at offset zero or at | |||
| 491 | // >= the current dsize. The only cases where the earlier subobject can be | |||
| 492 | // placed beyond the end of dsize is if it's an empty base or a | |||
| 493 | // potentially-overlapping field.) | |||
| 494 | if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject) | |||
| 495 | return; | |||
| 496 | ||||
| 497 | AddSubobjectAtOffset(RD, Offset); | |||
| 498 | ||||
| 499 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
| 500 | ||||
| 501 | // Traverse all non-virtual bases. | |||
| 502 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
| 503 | if (Base.isVirtual()) | |||
| 504 | continue; | |||
| 505 | ||||
| 506 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 507 | ||||
| 508 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); | |||
| 509 | UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset, | |||
| 510 | PlacingOverlappingField); | |||
| 511 | } | |||
| 512 | ||||
| 513 | if (RD == Class) { | |||
| 514 | // This is the most derived class, traverse virtual bases as well. | |||
| 515 | for (const CXXBaseSpecifier &Base : RD->vbases()) { | |||
| 516 | const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 517 | ||||
| 518 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); | |||
| 519 | UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset, | |||
| 520 | PlacingOverlappingField); | |||
| 521 | } | |||
| 522 | } | |||
| 523 | ||||
| 524 | // Traverse all member variables. | |||
| 525 | unsigned FieldNo = 0; | |||
| 526 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); | |||
| 527 | I != E; ++I, ++FieldNo) { | |||
| 528 | if (I->isBitField()) | |||
| 529 | continue; | |||
| 530 | ||||
| 531 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); | |||
| 532 | ||||
| 533 | UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField); | |||
| 534 | } | |||
| 535 | } | |||
| 536 | ||||
| 537 | void EmptySubobjectMap::UpdateEmptyFieldSubobjects( | |||
| 538 | const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) { | |||
| 539 | QualType T = FD->getType(); | |||
| 540 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { | |||
| 541 | UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField); | |||
| 542 | return; | |||
| 543 | } | |||
| 544 | ||||
| 545 | // If we have an array type we need to update every element. | |||
| 546 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { | |||
| 547 | QualType ElemTy = Context.getBaseElementType(AT); | |||
| 548 | const RecordType *RT = ElemTy->getAs<RecordType>(); | |||
| 549 | if (!RT) | |||
| 550 | return; | |||
| 551 | ||||
| 552 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); | |||
| 553 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
| 554 | ||||
| 555 | uint64_t NumElements = Context.getConstantArrayElementCount(AT); | |||
| 556 | CharUnits ElementOffset = Offset; | |||
| 557 | ||||
| 558 | for (uint64_t I = 0; I != NumElements; ++I) { | |||
| 559 | // We know that the only empty subobjects that can conflict with empty | |||
| 560 | // field subobjects are subobjects of empty bases that can be placed at | |||
| 561 | // offset zero. Because of this, we only need to keep track of empty field | |||
| 562 | // subobjects with offsets less than the size of the largest empty | |||
| 563 | // subobject for our class. | |||
| 564 | if (!PlacingOverlappingField && | |||
| 565 | ElementOffset >= SizeOfLargestEmptySubobject) | |||
| 566 | return; | |||
| 567 | ||||
| 568 | UpdateEmptyFieldSubobjects(RD, RD, ElementOffset, | |||
| 569 | PlacingOverlappingField); | |||
| 570 | ElementOffset += Layout.getSize(); | |||
| 571 | } | |||
| 572 | } | |||
| 573 | } | |||
| 574 | ||||
| 575 | typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy; | |||
| 576 | ||||
| 577 | class ItaniumRecordLayoutBuilder { | |||
| 578 | protected: | |||
| 579 | // FIXME: Remove this and make the appropriate fields public. | |||
| 580 | friend class clang::ASTContext; | |||
| 581 | ||||
| 582 | const ASTContext &Context; | |||
| 583 | ||||
| 584 | EmptySubobjectMap *EmptySubobjects; | |||
| 585 | ||||
| 586 | /// Size - The current size of the record layout. | |||
| 587 | uint64_t Size; | |||
| 588 | ||||
| 589 | /// Alignment - The current alignment of the record layout. | |||
| 590 | CharUnits Alignment; | |||
| 591 | ||||
| 592 | /// PreferredAlignment - The preferred alignment of the record layout. | |||
| 593 | CharUnits PreferredAlignment; | |||
| 594 | ||||
| 595 | /// The alignment if attribute packed is not used. | |||
| 596 | CharUnits UnpackedAlignment; | |||
| 597 | ||||
| 598 | /// \brief The maximum of the alignments of top-level members. | |||
| 599 | CharUnits UnadjustedAlignment; | |||
| 600 | ||||
| 601 | SmallVector<uint64_t, 16> FieldOffsets; | |||
| 602 | ||||
| 603 | /// Whether the external AST source has provided a layout for this | |||
| 604 | /// record. | |||
| 605 | unsigned UseExternalLayout : 1; | |||
| 606 | ||||
| 607 | /// Whether we need to infer alignment, even when we have an | |||
| 608 | /// externally-provided layout. | |||
| 609 | unsigned InferAlignment : 1; | |||
| 610 | ||||
| 611 | /// Packed - Whether the record is packed or not. | |||
| 612 | unsigned Packed : 1; | |||
| 613 | ||||
| 614 | unsigned IsUnion : 1; | |||
| 615 | ||||
| 616 | unsigned IsMac68kAlign : 1; | |||
| 617 | ||||
| 618 | unsigned IsNaturalAlign : 1; | |||
| 619 | ||||
| 620 | unsigned IsMsStruct : 1; | |||
| 621 | ||||
| 622 | /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield, | |||
| 623 | /// this contains the number of bits in the last unit that can be used for | |||
| 624 | /// an adjacent bitfield if necessary. The unit in question is usually | |||
| 625 | /// a byte, but larger units are used if IsMsStruct. | |||
| 626 | unsigned char UnfilledBitsInLastUnit; | |||
| 627 | ||||
| 628 | /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the | |||
| 629 | /// storage unit of the previous field if it was a bitfield. | |||
| 630 | unsigned char LastBitfieldStorageUnitSize; | |||
| 631 | ||||
| 632 | /// MaxFieldAlignment - The maximum allowed field alignment. This is set by | |||
| 633 | /// #pragma pack. | |||
| 634 | CharUnits MaxFieldAlignment; | |||
| 635 | ||||
| 636 | /// DataSize - The data size of the record being laid out. | |||
| 637 | uint64_t DataSize; | |||
| 638 | ||||
| 639 | CharUnits NonVirtualSize; | |||
| 640 | CharUnits NonVirtualAlignment; | |||
| 641 | CharUnits PreferredNVAlignment; | |||
| 642 | ||||
| 643 | /// If we've laid out a field but not included its tail padding in Size yet, | |||
| 644 | /// this is the size up to the end of that field. | |||
| 645 | CharUnits PaddedFieldSize; | |||
| 646 | ||||
| 647 | /// PrimaryBase - the primary base class (if one exists) of the class | |||
| 648 | /// we're laying out. | |||
| 649 | const CXXRecordDecl *PrimaryBase; | |||
| 650 | ||||
| 651 | /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying | |||
| 652 | /// out is virtual. | |||
| 653 | bool PrimaryBaseIsVirtual; | |||
| 654 | ||||
| 655 | /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl | |||
| 656 | /// pointer, as opposed to inheriting one from a primary base class. | |||
| 657 | bool HasOwnVFPtr; | |||
| 658 | ||||
| 659 | /// the flag of field offset changing due to packed attribute. | |||
| 660 | bool HasPackedField; | |||
| 661 | ||||
| 662 | /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX. | |||
| 663 | /// When there are OverlappingEmptyFields existing in the aggregate, the | |||
| 664 | /// flag shows if the following first non-empty or empty-but-non-overlapping | |||
| 665 | /// field has been handled, if any. | |||
| 666 | bool HandledFirstNonOverlappingEmptyField; | |||
| 667 | ||||
| 668 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; | |||
| 669 | ||||
| 670 | /// Bases - base classes and their offsets in the record. | |||
| 671 | BaseOffsetsMapTy Bases; | |||
| 672 | ||||
| 673 | // VBases - virtual base classes and their offsets in the record. | |||
| 674 | ASTRecordLayout::VBaseOffsetsMapTy VBases; | |||
| 675 | ||||
| 676 | /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are | |||
| 677 | /// primary base classes for some other direct or indirect base class. | |||
| 678 | CXXIndirectPrimaryBaseSet IndirectPrimaryBases; | |||
| 679 | ||||
| 680 | /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in | |||
| 681 | /// inheritance graph order. Used for determining the primary base class. | |||
| 682 | const CXXRecordDecl *FirstNearlyEmptyVBase; | |||
| 683 | ||||
| 684 | /// VisitedVirtualBases - A set of all the visited virtual bases, used to | |||
| 685 | /// avoid visiting virtual bases more than once. | |||
| 686 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; | |||
| 687 | ||||
| 688 | /// Valid if UseExternalLayout is true. | |||
| 689 | ExternalLayout External; | |||
| 690 | ||||
| 691 | ItaniumRecordLayoutBuilder(const ASTContext &Context, | |||
| 692 | EmptySubobjectMap *EmptySubobjects) | |||
| 693 | : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), | |||
| 694 | Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()), | |||
| 695 | UnpackedAlignment(CharUnits::One()), | |||
| 696 | UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false), | |||
| 697 | InferAlignment(false), Packed(false), IsUnion(false), | |||
| 698 | IsMac68kAlign(false), | |||
| 699 | IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()), | |||
| 700 | IsMsStruct(false), UnfilledBitsInLastUnit(0), | |||
| 701 | LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()), | |||
| 702 | DataSize(0), NonVirtualSize(CharUnits::Zero()), | |||
| 703 | NonVirtualAlignment(CharUnits::One()), | |||
| 704 | PreferredNVAlignment(CharUnits::One()), | |||
| 705 | PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr), | |||
| 706 | PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false), | |||
| 707 | HandledFirstNonOverlappingEmptyField(false), | |||
| 708 | FirstNearlyEmptyVBase(nullptr) {} | |||
| 709 | ||||
| 710 | void Layout(const RecordDecl *D); | |||
| 711 | void Layout(const CXXRecordDecl *D); | |||
| 712 | void Layout(const ObjCInterfaceDecl *D); | |||
| 713 | ||||
| 714 | void LayoutFields(const RecordDecl *D); | |||
| 715 | void LayoutField(const FieldDecl *D, bool InsertExtraPadding); | |||
| 716 | void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize, | |||
| 717 | bool FieldPacked, const FieldDecl *D); | |||
| 718 | void LayoutBitField(const FieldDecl *D); | |||
| 719 | ||||
| 720 | TargetCXXABI getCXXABI() const { | |||
| 721 | return Context.getTargetInfo().getCXXABI(); | |||
| 722 | } | |||
| 723 | ||||
| 724 | /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. | |||
| 725 | llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator; | |||
| 726 | ||||
| 727 | typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *> | |||
| 728 | BaseSubobjectInfoMapTy; | |||
| 729 | ||||
| 730 | /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases | |||
| 731 | /// of the class we're laying out to their base subobject info. | |||
| 732 | BaseSubobjectInfoMapTy VirtualBaseInfo; | |||
| 733 | ||||
| 734 | /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the | |||
| 735 | /// class we're laying out to their base subobject info. | |||
| 736 | BaseSubobjectInfoMapTy NonVirtualBaseInfo; | |||
| 737 | ||||
| 738 | /// ComputeBaseSubobjectInfo - Compute the base subobject information for the | |||
| 739 | /// bases of the given class. | |||
| 740 | void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); | |||
| 741 | ||||
| 742 | /// ComputeBaseSubobjectInfo - Compute the base subobject information for a | |||
| 743 | /// single class and all of its base classes. | |||
| 744 | BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, | |||
| 745 | bool IsVirtual, | |||
| 746 | BaseSubobjectInfo *Derived); | |||
| 747 | ||||
| 748 | /// DeterminePrimaryBase - Determine the primary base of the given class. | |||
| 749 | void DeterminePrimaryBase(const CXXRecordDecl *RD); | |||
| 750 | ||||
| 751 | void SelectPrimaryVBase(const CXXRecordDecl *RD); | |||
| 752 | ||||
| 753 | void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); | |||
| 754 | ||||
| 755 | /// LayoutNonVirtualBases - Determines the primary base class (if any) and | |||
| 756 | /// lays it out. Will then proceed to lay out all non-virtual base clasess. | |||
| 757 | void LayoutNonVirtualBases(const CXXRecordDecl *RD); | |||
| 758 | ||||
| 759 | /// LayoutNonVirtualBase - Lays out a single non-virtual base. | |||
| 760 | void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); | |||
| 761 | ||||
| 762 | void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, | |||
| 763 | CharUnits Offset); | |||
| 764 | ||||
| 765 | /// LayoutVirtualBases - Lays out all the virtual bases. | |||
| 766 | void LayoutVirtualBases(const CXXRecordDecl *RD, | |||
| 767 | const CXXRecordDecl *MostDerivedClass); | |||
| 768 | ||||
| 769 | /// LayoutVirtualBase - Lays out a single virtual base. | |||
| 770 | void LayoutVirtualBase(const BaseSubobjectInfo *Base); | |||
| 771 | ||||
| 772 | /// LayoutBase - Will lay out a base and return the offset where it was | |||
| 773 | /// placed, in chars. | |||
| 774 | CharUnits LayoutBase(const BaseSubobjectInfo *Base); | |||
| 775 | ||||
| 776 | /// InitializeLayout - Initialize record layout for the given record decl. | |||
| 777 | void InitializeLayout(const Decl *D); | |||
| 778 | ||||
| 779 | /// FinishLayout - Finalize record layout. Adjust record size based on the | |||
| 780 | /// alignment. | |||
| 781 | void FinishLayout(const NamedDecl *D); | |||
| 782 | ||||
| 783 | void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment, | |||
| 784 | CharUnits PreferredAlignment); | |||
| 785 | void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { | |||
| 786 | UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment); | |||
| 787 | } | |||
| 788 | void UpdateAlignment(CharUnits NewAlignment) { | |||
| 789 | UpdateAlignment(NewAlignment, NewAlignment, NewAlignment); | |||
| 790 | } | |||
| 791 | ||||
| 792 | /// Retrieve the externally-supplied field offset for the given | |||
| 793 | /// field. | |||
| 794 | /// | |||
| 795 | /// \param Field The field whose offset is being queried. | |||
| 796 | /// \param ComputedOffset The offset that we've computed for this field. | |||
| 797 | uint64_t updateExternalFieldOffset(const FieldDecl *Field, | |||
| 798 | uint64_t ComputedOffset); | |||
| 799 | ||||
| 800 | void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, | |||
| 801 | uint64_t UnpackedOffset, unsigned UnpackedAlign, | |||
| 802 | bool isPacked, const FieldDecl *D); | |||
| 803 | ||||
| 804 | DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); | |||
| 805 | ||||
| 806 | CharUnits getSize() const { | |||
| 807 | assert(Size % Context.getCharWidth() == 0)(static_cast <bool> (Size % Context.getCharWidth() == 0 ) ? void (0) : __assert_fail ("Size % Context.getCharWidth() == 0" , "clang/lib/AST/RecordLayoutBuilder.cpp", 807, __extension__ __PRETTY_FUNCTION__)); | |||
| 808 | return Context.toCharUnitsFromBits(Size); | |||
| 809 | } | |||
| 810 | uint64_t getSizeInBits() const { return Size; } | |||
| 811 | ||||
| 812 | void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); } | |||
| 813 | void setSize(uint64_t NewSize) { Size = NewSize; } | |||
| 814 | ||||
| 815 | CharUnits getAligment() const { return Alignment; } | |||
| 816 | ||||
| 817 | CharUnits getDataSize() const { | |||
| 818 | assert(DataSize % Context.getCharWidth() == 0)(static_cast <bool> (DataSize % Context.getCharWidth() == 0) ? void (0) : __assert_fail ("DataSize % Context.getCharWidth() == 0" , "clang/lib/AST/RecordLayoutBuilder.cpp", 818, __extension__ __PRETTY_FUNCTION__)); | |||
| 819 | return Context.toCharUnitsFromBits(DataSize); | |||
| 820 | } | |||
| 821 | uint64_t getDataSizeInBits() const { return DataSize; } | |||
| 822 | ||||
| 823 | void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); } | |||
| 824 | void setDataSize(uint64_t NewSize) { DataSize = NewSize; } | |||
| 825 | ||||
| 826 | ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete; | |||
| 827 | void operator=(const ItaniumRecordLayoutBuilder &) = delete; | |||
| 828 | }; | |||
| 829 | } // end anonymous namespace | |||
| 830 | ||||
| 831 | void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { | |||
| 832 | for (const auto &I : RD->bases()) { | |||
| 833 | assert(!I.getType()->isDependentType() &&(static_cast <bool> (!I.getType()->isDependentType() && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!I.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 834, __extension__ __PRETTY_FUNCTION__)) | |||
| 834 | "Cannot layout class with dependent bases.")(static_cast <bool> (!I.getType()->isDependentType() && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!I.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 834, __extension__ __PRETTY_FUNCTION__)); | |||
| 835 | ||||
| 836 | const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); | |||
| 837 | ||||
| 838 | // Check if this is a nearly empty virtual base. | |||
| 839 | if (I.isVirtual() && Context.isNearlyEmpty(Base)) { | |||
| 840 | // If it's not an indirect primary base, then we've found our primary | |||
| 841 | // base. | |||
| 842 | if (!IndirectPrimaryBases.count(Base)) { | |||
| 843 | PrimaryBase = Base; | |||
| 844 | PrimaryBaseIsVirtual = true; | |||
| 845 | return; | |||
| 846 | } | |||
| 847 | ||||
| 848 | // Is this the first nearly empty virtual base? | |||
| 849 | if (!FirstNearlyEmptyVBase) | |||
| 850 | FirstNearlyEmptyVBase = Base; | |||
| 851 | } | |||
| 852 | ||||
| 853 | SelectPrimaryVBase(Base); | |||
| 854 | if (PrimaryBase) | |||
| 855 | return; | |||
| 856 | } | |||
| 857 | } | |||
| 858 | ||||
| 859 | /// DeterminePrimaryBase - Determine the primary base of the given class. | |||
| 860 | void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { | |||
| 861 | // If the class isn't dynamic, it won't have a primary base. | |||
| 862 | if (!RD->isDynamicClass()) | |||
| 863 | return; | |||
| 864 | ||||
| 865 | // Compute all the primary virtual bases for all of our direct and | |||
| 866 | // indirect bases, and record all their primary virtual base classes. | |||
| 867 | RD->getIndirectPrimaryBases(IndirectPrimaryBases); | |||
| 868 | ||||
| 869 | // If the record has a dynamic base class, attempt to choose a primary base | |||
| 870 | // class. It is the first (in direct base class order) non-virtual dynamic | |||
| 871 | // base class, if one exists. | |||
| 872 | for (const auto &I : RD->bases()) { | |||
| 873 | // Ignore virtual bases. | |||
| 874 | if (I.isVirtual()) | |||
| 875 | continue; | |||
| 876 | ||||
| 877 | const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); | |||
| 878 | ||||
| 879 | if (Base->isDynamicClass()) { | |||
| 880 | // We found it. | |||
| 881 | PrimaryBase = Base; | |||
| 882 | PrimaryBaseIsVirtual = false; | |||
| 883 | return; | |||
| 884 | } | |||
| 885 | } | |||
| 886 | ||||
| 887 | // Under the Itanium ABI, if there is no non-virtual primary base class, | |||
| 888 | // try to compute the primary virtual base. The primary virtual base is | |||
| 889 | // the first nearly empty virtual base that is not an indirect primary | |||
| 890 | // virtual base class, if one exists. | |||
| 891 | if (RD->getNumVBases() != 0) { | |||
| 892 | SelectPrimaryVBase(RD); | |||
| 893 | if (PrimaryBase) | |||
| 894 | return; | |||
| 895 | } | |||
| 896 | ||||
| 897 | // Otherwise, it is the first indirect primary base class, if one exists. | |||
| 898 | if (FirstNearlyEmptyVBase) { | |||
| 899 | PrimaryBase = FirstNearlyEmptyVBase; | |||
| 900 | PrimaryBaseIsVirtual = true; | |||
| 901 | return; | |||
| 902 | } | |||
| 903 | ||||
| 904 | assert(!PrimaryBase && "Should not get here with a primary base!")(static_cast <bool> (!PrimaryBase && "Should not get here with a primary base!" ) ? void (0) : __assert_fail ("!PrimaryBase && \"Should not get here with a primary base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 904, __extension__ __PRETTY_FUNCTION__)); | |||
| 905 | } | |||
| 906 | ||||
| 907 | BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( | |||
| 908 | const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { | |||
| 909 | BaseSubobjectInfo *Info; | |||
| 910 | ||||
| 911 | if (IsVirtual) { | |||
| 912 | // Check if we already have info about this virtual base. | |||
| 913 | BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; | |||
| 914 | if (InfoSlot) { | |||
| 915 | assert(InfoSlot->Class == RD && "Wrong class for virtual base info!")(static_cast <bool> (InfoSlot->Class == RD && "Wrong class for virtual base info!") ? void (0) : __assert_fail ("InfoSlot->Class == RD && \"Wrong class for virtual base info!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 915, __extension__ __PRETTY_FUNCTION__)); | |||
| 916 | return InfoSlot; | |||
| 917 | } | |||
| 918 | ||||
| 919 | // We don't, create it. | |||
| 920 | InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; | |||
| 921 | Info = InfoSlot; | |||
| 922 | } else { | |||
| 923 | Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; | |||
| 924 | } | |||
| 925 | ||||
| 926 | Info->Class = RD; | |||
| 927 | Info->IsVirtual = IsVirtual; | |||
| 928 | Info->Derived = nullptr; | |||
| 929 | Info->PrimaryVirtualBaseInfo = nullptr; | |||
| 930 | ||||
| 931 | const CXXRecordDecl *PrimaryVirtualBase = nullptr; | |||
| 932 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr; | |||
| 933 | ||||
| 934 | // Check if this base has a primary virtual base. | |||
| 935 | if (RD->getNumVBases()) { | |||
| 936 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
| 937 | if (Layout.isPrimaryBaseVirtual()) { | |||
| 938 | // This base does have a primary virtual base. | |||
| 939 | PrimaryVirtualBase = Layout.getPrimaryBase(); | |||
| 940 | assert(PrimaryVirtualBase && "Didn't have a primary virtual base!")(static_cast <bool> (PrimaryVirtualBase && "Didn't have a primary virtual base!" ) ? void (0) : __assert_fail ("PrimaryVirtualBase && \"Didn't have a primary virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 940, __extension__ __PRETTY_FUNCTION__)); | |||
| 941 | ||||
| 942 | // Now check if we have base subobject info about this primary base. | |||
| 943 | PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); | |||
| 944 | ||||
| 945 | if (PrimaryVirtualBaseInfo) { | |||
| 946 | if (PrimaryVirtualBaseInfo->Derived) { | |||
| 947 | // We did have info about this primary base, and it turns out that it | |||
| 948 | // has already been claimed as a primary virtual base for another | |||
| 949 | // base. | |||
| 950 | PrimaryVirtualBase = nullptr; | |||
| 951 | } else { | |||
| 952 | // We can claim this base as our primary base. | |||
| 953 | Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; | |||
| 954 | PrimaryVirtualBaseInfo->Derived = Info; | |||
| 955 | } | |||
| 956 | } | |||
| 957 | } | |||
| 958 | } | |||
| 959 | ||||
| 960 | // Now go through all direct bases. | |||
| 961 | for (const auto &I : RD->bases()) { | |||
| 962 | bool IsVirtual = I.isVirtual(); | |||
| 963 | ||||
| 964 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); | |||
| 965 | ||||
| 966 | Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info)); | |||
| 967 | } | |||
| 968 | ||||
| 969 | if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { | |||
| 970 | // Traversing the bases must have created the base info for our primary | |||
| 971 | // virtual base. | |||
| 972 | PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); | |||
| 973 | assert(PrimaryVirtualBaseInfo &&(static_cast <bool> (PrimaryVirtualBaseInfo && "Did not create a primary virtual base!" ) ? void (0) : __assert_fail ("PrimaryVirtualBaseInfo && \"Did not create a primary virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 974, __extension__ __PRETTY_FUNCTION__)) | |||
| 974 | "Did not create a primary virtual base!")(static_cast <bool> (PrimaryVirtualBaseInfo && "Did not create a primary virtual base!" ) ? void (0) : __assert_fail ("PrimaryVirtualBaseInfo && \"Did not create a primary virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 974, __extension__ __PRETTY_FUNCTION__)); | |||
| 975 | ||||
| 976 | // Claim the primary virtual base as our primary virtual base. | |||
| 977 | Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; | |||
| 978 | PrimaryVirtualBaseInfo->Derived = Info; | |||
| 979 | } | |||
| 980 | ||||
| 981 | return Info; | |||
| 982 | } | |||
| 983 | ||||
| 984 | void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( | |||
| 985 | const CXXRecordDecl *RD) { | |||
| 986 | for (const auto &I : RD->bases()) { | |||
| 987 | bool IsVirtual = I.isVirtual(); | |||
| 988 | ||||
| 989 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); | |||
| 990 | ||||
| 991 | // Compute the base subobject info for this base. | |||
| 992 | BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, | |||
| 993 | nullptr); | |||
| 994 | ||||
| 995 | if (IsVirtual) { | |||
| 996 | // ComputeBaseInfo has already added this base for us. | |||
| 997 | assert(VirtualBaseInfo.count(BaseDecl) &&(static_cast <bool> (VirtualBaseInfo.count(BaseDecl) && "Did not add virtual base!") ? void (0) : __assert_fail ("VirtualBaseInfo.count(BaseDecl) && \"Did not add virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 998, __extension__ __PRETTY_FUNCTION__)) | |||
| 998 | "Did not add virtual base!")(static_cast <bool> (VirtualBaseInfo.count(BaseDecl) && "Did not add virtual base!") ? void (0) : __assert_fail ("VirtualBaseInfo.count(BaseDecl) && \"Did not add virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 998, __extension__ __PRETTY_FUNCTION__)); | |||
| 999 | } else { | |||
| 1000 | // Add the base info to the map of non-virtual bases. | |||
| 1001 | assert(!NonVirtualBaseInfo.count(BaseDecl) &&(static_cast <bool> (!NonVirtualBaseInfo.count(BaseDecl ) && "Non-virtual base already exists!") ? void (0) : __assert_fail ("!NonVirtualBaseInfo.count(BaseDecl) && \"Non-virtual base already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1002, __extension__ __PRETTY_FUNCTION__)) | |||
| 1002 | "Non-virtual base already exists!")(static_cast <bool> (!NonVirtualBaseInfo.count(BaseDecl ) && "Non-virtual base already exists!") ? void (0) : __assert_fail ("!NonVirtualBaseInfo.count(BaseDecl) && \"Non-virtual base already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1002, __extension__ __PRETTY_FUNCTION__)); | |||
| 1003 | NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info)); | |||
| 1004 | } | |||
| 1005 | } | |||
| 1006 | } | |||
| 1007 | ||||
| 1008 | void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment( | |||
| 1009 | CharUnits UnpackedBaseAlign) { | |||
| 1010 | CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign; | |||
| 1011 | ||||
| 1012 | // The maximum field alignment overrides base align. | |||
| 1013 | if (!MaxFieldAlignment.isZero()) { | |||
| 1014 | BaseAlign = std::min(BaseAlign, MaxFieldAlignment); | |||
| 1015 | UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); | |||
| 1016 | } | |||
| 1017 | ||||
| 1018 | // Round up the current record size to pointer alignment. | |||
| 1019 | setSize(getSize().alignTo(BaseAlign)); | |||
| 1020 | ||||
| 1021 | // Update the alignment. | |||
| 1022 | UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign); | |||
| 1023 | } | |||
| 1024 | ||||
| 1025 | void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases( | |||
| 1026 | const CXXRecordDecl *RD) { | |||
| 1027 | // Then, determine the primary base class. | |||
| 1028 | DeterminePrimaryBase(RD); | |||
| 1029 | ||||
| 1030 | // Compute base subobject info. | |||
| 1031 | ComputeBaseSubobjectInfo(RD); | |||
| 1032 | ||||
| 1033 | // If we have a primary base class, lay it out. | |||
| 1034 | if (PrimaryBase) { | |||
| 1035 | if (PrimaryBaseIsVirtual) { | |||
| 1036 | // If the primary virtual base was a primary virtual base of some other | |||
| 1037 | // base class we'll have to steal it. | |||
| 1038 | BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase); | |||
| 1039 | PrimaryBaseInfo->Derived = nullptr; | |||
| 1040 | ||||
| 1041 | // We have a virtual primary base, insert it as an indirect primary base. | |||
| 1042 | IndirectPrimaryBases.insert(PrimaryBase); | |||
| 1043 | ||||
| 1044 | assert(!VisitedVirtualBases.count(PrimaryBase) &&(static_cast <bool> (!VisitedVirtualBases.count(PrimaryBase ) && "vbase already visited!") ? void (0) : __assert_fail ("!VisitedVirtualBases.count(PrimaryBase) && \"vbase already visited!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1045, __extension__ __PRETTY_FUNCTION__)) | |||
| 1045 | "vbase already visited!")(static_cast <bool> (!VisitedVirtualBases.count(PrimaryBase ) && "vbase already visited!") ? void (0) : __assert_fail ("!VisitedVirtualBases.count(PrimaryBase) && \"vbase already visited!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1045, __extension__ __PRETTY_FUNCTION__)); | |||
| 1046 | VisitedVirtualBases.insert(PrimaryBase); | |||
| 1047 | ||||
| 1048 | LayoutVirtualBase(PrimaryBaseInfo); | |||
| 1049 | } else { | |||
| 1050 | BaseSubobjectInfo *PrimaryBaseInfo = | |||
| 1051 | NonVirtualBaseInfo.lookup(PrimaryBase); | |||
| 1052 | assert(PrimaryBaseInfo &&(static_cast <bool> (PrimaryBaseInfo && "Did not find base info for non-virtual primary base!" ) ? void (0) : __assert_fail ("PrimaryBaseInfo && \"Did not find base info for non-virtual primary base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1053, __extension__ __PRETTY_FUNCTION__)) | |||
| 1053 | "Did not find base info for non-virtual primary base!")(static_cast <bool> (PrimaryBaseInfo && "Did not find base info for non-virtual primary base!" ) ? void (0) : __assert_fail ("PrimaryBaseInfo && \"Did not find base info for non-virtual primary base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1053, __extension__ __PRETTY_FUNCTION__)); | |||
| 1054 | ||||
| 1055 | LayoutNonVirtualBase(PrimaryBaseInfo); | |||
| 1056 | } | |||
| 1057 | ||||
| 1058 | // If this class needs a vtable/vf-table and didn't get one from a | |||
| 1059 | // primary base, add it in now. | |||
| 1060 | } else if (RD->isDynamicClass()) { | |||
| 1061 | assert(DataSize == 0 && "Vtable pointer must be at offset zero!")(static_cast <bool> (DataSize == 0 && "Vtable pointer must be at offset zero!" ) ? void (0) : __assert_fail ("DataSize == 0 && \"Vtable pointer must be at offset zero!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1061, __extension__ __PRETTY_FUNCTION__)); | |||
| 1062 | CharUnits PtrWidth = Context.toCharUnitsFromBits( | |||
| 1063 | Context.getTargetInfo().getPointerWidth(LangAS::Default)); | |||
| 1064 | CharUnits PtrAlign = Context.toCharUnitsFromBits( | |||
| 1065 | Context.getTargetInfo().getPointerAlign(LangAS::Default)); | |||
| 1066 | EnsureVTablePointerAlignment(PtrAlign); | |||
| 1067 | HasOwnVFPtr = true; | |||
| 1068 | ||||
| 1069 | assert(!IsUnion && "Unions cannot be dynamic classes.")(static_cast <bool> (!IsUnion && "Unions cannot be dynamic classes." ) ? void (0) : __assert_fail ("!IsUnion && \"Unions cannot be dynamic classes.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1069, __extension__ __PRETTY_FUNCTION__)); | |||
| 1070 | HandledFirstNonOverlappingEmptyField = true; | |||
| 1071 | ||||
| 1072 | setSize(getSize() + PtrWidth); | |||
| 1073 | setDataSize(getSize()); | |||
| 1074 | } | |||
| 1075 | ||||
| 1076 | // Now lay out the non-virtual bases. | |||
| 1077 | for (const auto &I : RD->bases()) { | |||
| 1078 | ||||
| 1079 | // Ignore virtual bases. | |||
| 1080 | if (I.isVirtual()) | |||
| 1081 | continue; | |||
| 1082 | ||||
| 1083 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); | |||
| 1084 | ||||
| 1085 | // Skip the primary base, because we've already laid it out. The | |||
| 1086 | // !PrimaryBaseIsVirtual check is required because we might have a | |||
| 1087 | // non-virtual base of the same type as a primary virtual base. | |||
| 1088 | if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) | |||
| 1089 | continue; | |||
| 1090 | ||||
| 1091 | // Lay out the base. | |||
| 1092 | BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl); | |||
| 1093 | assert(BaseInfo && "Did not find base info for non-virtual base!")(static_cast <bool> (BaseInfo && "Did not find base info for non-virtual base!" ) ? void (0) : __assert_fail ("BaseInfo && \"Did not find base info for non-virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1093, __extension__ __PRETTY_FUNCTION__)); | |||
| 1094 | ||||
| 1095 | LayoutNonVirtualBase(BaseInfo); | |||
| 1096 | } | |||
| 1097 | } | |||
| 1098 | ||||
| 1099 | void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase( | |||
| 1100 | const BaseSubobjectInfo *Base) { | |||
| 1101 | // Layout the base. | |||
| 1102 | CharUnits Offset = LayoutBase(Base); | |||
| 1103 | ||||
| 1104 | // Add its base class offset. | |||
| 1105 | assert(!Bases.count(Base->Class) && "base offset already exists!")(static_cast <bool> (!Bases.count(Base->Class) && "base offset already exists!") ? void (0) : __assert_fail ("!Bases.count(Base->Class) && \"base offset already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1105, __extension__ __PRETTY_FUNCTION__)); | |||
| 1106 | Bases.insert(std::make_pair(Base->Class, Offset)); | |||
| 1107 | ||||
| 1108 | AddPrimaryVirtualBaseOffsets(Base, Offset); | |||
| 1109 | } | |||
| 1110 | ||||
| 1111 | void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets( | |||
| 1112 | const BaseSubobjectInfo *Info, CharUnits Offset) { | |||
| 1113 | // This base isn't interesting, it has no virtual bases. | |||
| 1114 | if (!Info->Class->getNumVBases()) | |||
| 1115 | return; | |||
| 1116 | ||||
| 1117 | // First, check if we have a virtual primary base to add offsets for. | |||
| 1118 | if (Info->PrimaryVirtualBaseInfo) { | |||
| 1119 | assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&(static_cast <bool> (Info->PrimaryVirtualBaseInfo-> IsVirtual && "Primary virtual base is not virtual!") ? void (0) : __assert_fail ("Info->PrimaryVirtualBaseInfo->IsVirtual && \"Primary virtual base is not virtual!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1120, __extension__ __PRETTY_FUNCTION__)) | |||
| 1120 | "Primary virtual base is not virtual!")(static_cast <bool> (Info->PrimaryVirtualBaseInfo-> IsVirtual && "Primary virtual base is not virtual!") ? void (0) : __assert_fail ("Info->PrimaryVirtualBaseInfo->IsVirtual && \"Primary virtual base is not virtual!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1120, __extension__ __PRETTY_FUNCTION__)); | |||
| 1121 | if (Info->PrimaryVirtualBaseInfo->Derived == Info) { | |||
| 1122 | // Add the offset. | |||
| 1123 | assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&(static_cast <bool> (!VBases.count(Info->PrimaryVirtualBaseInfo ->Class) && "primary vbase offset already exists!" ) ? void (0) : __assert_fail ("!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && \"primary vbase offset already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1124, __extension__ __PRETTY_FUNCTION__)) | |||
| 1124 | "primary vbase offset already exists!")(static_cast <bool> (!VBases.count(Info->PrimaryVirtualBaseInfo ->Class) && "primary vbase offset already exists!" ) ? void (0) : __assert_fail ("!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && \"primary vbase offset already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1124, __extension__ __PRETTY_FUNCTION__)); | |||
| 1125 | VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class, | |||
| 1126 | ASTRecordLayout::VBaseInfo(Offset, false))); | |||
| 1127 | ||||
| 1128 | // Traverse the primary virtual base. | |||
| 1129 | AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset); | |||
| 1130 | } | |||
| 1131 | } | |||
| 1132 | ||||
| 1133 | // Now go through all direct non-virtual bases. | |||
| 1134 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); | |||
| 1135 | for (const BaseSubobjectInfo *Base : Info->Bases) { | |||
| 1136 | if (Base->IsVirtual) | |||
| 1137 | continue; | |||
| 1138 | ||||
| 1139 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); | |||
| 1140 | AddPrimaryVirtualBaseOffsets(Base, BaseOffset); | |||
| 1141 | } | |||
| 1142 | } | |||
| 1143 | ||||
| 1144 | void ItaniumRecordLayoutBuilder::LayoutVirtualBases( | |||
| 1145 | const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { | |||
| 1146 | const CXXRecordDecl *PrimaryBase; | |||
| 1147 | bool PrimaryBaseIsVirtual; | |||
| 1148 | ||||
| 1149 | if (MostDerivedClass
| |||
| 1150 | PrimaryBase = this->PrimaryBase; | |||
| 1151 | PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; | |||
| 1152 | } else { | |||
| 1153 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | |||
| 1154 | PrimaryBase = Layout.getPrimaryBase(); | |||
| 1155 | PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); | |||
| 1156 | } | |||
| 1157 | ||||
| 1158 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
| 1159 | assert(!Base.getType()->isDependentType() &&(static_cast <bool> (!Base.getType()->isDependentType () && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1160, __extension__ __PRETTY_FUNCTION__)) | |||
| 1160 | "Cannot layout class with dependent bases.")(static_cast <bool> (!Base.getType()->isDependentType () && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1160, __extension__ __PRETTY_FUNCTION__)); | |||
| 1161 | ||||
| 1162 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 1163 | ||||
| 1164 | if (Base.isVirtual()) { | |||
| 1165 | if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { | |||
| 1166 | bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl); | |||
| 1167 | ||||
| 1168 | // Only lay out the virtual base if it's not an indirect primary base. | |||
| 1169 | if (!IndirectPrimaryBase) { | |||
| 1170 | // Only visit virtual bases once. | |||
| 1171 | if (!VisitedVirtualBases.insert(BaseDecl).second) | |||
| 1172 | continue; | |||
| 1173 | ||||
| 1174 | const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); | |||
| 1175 | assert(BaseInfo && "Did not find virtual base info!")(static_cast <bool> (BaseInfo && "Did not find virtual base info!" ) ? void (0) : __assert_fail ("BaseInfo && \"Did not find virtual base info!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1175, __extension__ __PRETTY_FUNCTION__)); | |||
| 1176 | LayoutVirtualBase(BaseInfo); | |||
| 1177 | } | |||
| 1178 | } | |||
| 1179 | } | |||
| 1180 | ||||
| 1181 | if (!BaseDecl->getNumVBases()) { | |||
| ||||
| 1182 | // This base isn't interesting since it doesn't have any virtual bases. | |||
| 1183 | continue; | |||
| 1184 | } | |||
| 1185 | ||||
| 1186 | LayoutVirtualBases(BaseDecl, MostDerivedClass); | |||
| 1187 | } | |||
| 1188 | } | |||
| 1189 | ||||
| 1190 | void ItaniumRecordLayoutBuilder::LayoutVirtualBase( | |||
| 1191 | const BaseSubobjectInfo *Base) { | |||
| 1192 | assert(!Base->Derived && "Trying to lay out a primary virtual base!")(static_cast <bool> (!Base->Derived && "Trying to lay out a primary virtual base!" ) ? void (0) : __assert_fail ("!Base->Derived && \"Trying to lay out a primary virtual base!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1192, __extension__ __PRETTY_FUNCTION__)); | |||
| 1193 | ||||
| 1194 | // Layout the base. | |||
| 1195 | CharUnits Offset = LayoutBase(Base); | |||
| 1196 | ||||
| 1197 | // Add its base class offset. | |||
| 1198 | assert(!VBases.count(Base->Class) && "vbase offset already exists!")(static_cast <bool> (!VBases.count(Base->Class) && "vbase offset already exists!") ? void (0) : __assert_fail ( "!VBases.count(Base->Class) && \"vbase offset already exists!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1198, __extension__ __PRETTY_FUNCTION__)); | |||
| 1199 | VBases.insert(std::make_pair(Base->Class, | |||
| 1200 | ASTRecordLayout::VBaseInfo(Offset, false))); | |||
| 1201 | ||||
| 1202 | AddPrimaryVirtualBaseOffsets(Base, Offset); | |||
| 1203 | } | |||
| 1204 | ||||
| 1205 | CharUnits | |||
| 1206 | ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { | |||
| 1207 | assert(!IsUnion && "Unions cannot have base classes.")(static_cast <bool> (!IsUnion && "Unions cannot have base classes." ) ? void (0) : __assert_fail ("!IsUnion && \"Unions cannot have base classes.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1207, __extension__ __PRETTY_FUNCTION__)); | |||
| 1208 | ||||
| 1209 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); | |||
| 1210 | CharUnits Offset; | |||
| 1211 | ||||
| 1212 | // Query the external layout to see if it provides an offset. | |||
| 1213 | bool HasExternalLayout = false; | |||
| 1214 | if (UseExternalLayout) { | |||
| 1215 | if (Base->IsVirtual) | |||
| 1216 | HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset); | |||
| 1217 | else | |||
| 1218 | HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset); | |||
| 1219 | } | |||
| 1220 | ||||
| 1221 | auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) { | |||
| 1222 | // Clang <= 6 incorrectly applied the 'packed' attribute to base classes. | |||
| 1223 | // Per GCC's documentation, it only applies to non-static data members. | |||
| 1224 | return (Packed && ((Context.getLangOpts().getClangABICompat() <= | |||
| 1225 | LangOptions::ClangABI::Ver6) || | |||
| 1226 | Context.getTargetInfo().getTriple().isPS() || | |||
| 1227 | Context.getTargetInfo().getTriple().isOSAIX())) | |||
| 1228 | ? CharUnits::One() | |||
| 1229 | : UnpackedAlign; | |||
| 1230 | }; | |||
| 1231 | ||||
| 1232 | CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment(); | |||
| 1233 | CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment(); | |||
| 1234 | CharUnits BaseAlign = | |||
| 1235 | getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign); | |||
| 1236 | CharUnits PreferredBaseAlign = | |||
| 1237 | getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign); | |||
| 1238 | ||||
| 1239 | const bool DefaultsToAIXPowerAlignment = | |||
| 1240 | Context.getTargetInfo().defaultsToAIXPowerAlignment(); | |||
| 1241 | if (DefaultsToAIXPowerAlignment) { | |||
| 1242 | // AIX `power` alignment does not apply the preferred alignment for | |||
| 1243 | // non-union classes if the source of the alignment (the current base in | |||
| 1244 | // this context) follows introduction of the first subobject with | |||
| 1245 | // exclusively allocated space or zero-extent array. | |||
| 1246 | if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) { | |||
| 1247 | // By handling a base class that is not empty, we're handling the | |||
| 1248 | // "first (inherited) member". | |||
| 1249 | HandledFirstNonOverlappingEmptyField = true; | |||
| 1250 | } else if (!IsNaturalAlign) { | |||
| 1251 | UnpackedPreferredBaseAlign = UnpackedBaseAlign; | |||
| 1252 | PreferredBaseAlign = BaseAlign; | |||
| 1253 | } | |||
| 1254 | } | |||
| 1255 | ||||
| 1256 | CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment | |||
| 1257 | ? UnpackedBaseAlign | |||
| 1258 | : UnpackedPreferredBaseAlign; | |||
| 1259 | // If we have an empty base class, try to place it at offset 0. | |||
| 1260 | if (Base->Class->isEmpty() && | |||
| 1261 | (!HasExternalLayout || Offset == CharUnits::Zero()) && | |||
| 1262 | EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) { | |||
| 1263 | setSize(std::max(getSize(), Layout.getSize())); | |||
| 1264 | // On PS4/PS5, don't update the alignment, to preserve compatibility. | |||
| 1265 | if (!Context.getTargetInfo().getTriple().isPS()) | |||
| 1266 | UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign); | |||
| 1267 | ||||
| 1268 | return CharUnits::Zero(); | |||
| 1269 | } | |||
| 1270 | ||||
| 1271 | // The maximum field alignment overrides the base align/(AIX-only) preferred | |||
| 1272 | // base align. | |||
| 1273 | if (!MaxFieldAlignment.isZero()) { | |||
| 1274 | BaseAlign = std::min(BaseAlign, MaxFieldAlignment); | |||
| 1275 | PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment); | |||
| 1276 | UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment); | |||
| 1277 | } | |||
| 1278 | ||||
| 1279 | CharUnits AlignTo = | |||
| 1280 | !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign; | |||
| 1281 | if (!HasExternalLayout) { | |||
| 1282 | // Round up the current record size to the base's alignment boundary. | |||
| 1283 | Offset = getDataSize().alignTo(AlignTo); | |||
| 1284 | ||||
| 1285 | // Try to place the base. | |||
| 1286 | while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset)) | |||
| 1287 | Offset += AlignTo; | |||
| 1288 | } else { | |||
| 1289 | bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset); | |||
| 1290 | (void)Allowed; | |||
| 1291 | assert(Allowed && "Base subobject externally placed at overlapping offset")(static_cast <bool> (Allowed && "Base subobject externally placed at overlapping offset" ) ? void (0) : __assert_fail ("Allowed && \"Base subobject externally placed at overlapping offset\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1291, __extension__ __PRETTY_FUNCTION__)); | |||
| 1292 | ||||
| 1293 | if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) { | |||
| 1294 | // The externally-supplied base offset is before the base offset we | |||
| 1295 | // computed. Assume that the structure is packed. | |||
| 1296 | Alignment = CharUnits::One(); | |||
| 1297 | InferAlignment = false; | |||
| 1298 | } | |||
| 1299 | } | |||
| 1300 | ||||
| 1301 | if (!Base->Class->isEmpty()) { | |||
| 1302 | // Update the data size. | |||
| 1303 | setDataSize(Offset + Layout.getNonVirtualSize()); | |||
| 1304 | ||||
| 1305 | setSize(std::max(getSize(), getDataSize())); | |||
| 1306 | } else | |||
| 1307 | setSize(std::max(getSize(), Offset + Layout.getSize())); | |||
| 1308 | ||||
| 1309 | // Remember max struct/class alignment. | |||
| 1310 | UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign); | |||
| 1311 | ||||
| 1312 | return Offset; | |||
| 1313 | } | |||
| 1314 | ||||
| 1315 | void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) { | |||
| 1316 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { | |||
| 1317 | IsUnion = RD->isUnion(); | |||
| 1318 | IsMsStruct = RD->isMsStruct(Context); | |||
| 1319 | } | |||
| 1320 | ||||
| 1321 | Packed = D->hasAttr<PackedAttr>(); | |||
| 1322 | ||||
| 1323 | // Honor the default struct packing maximum alignment flag. | |||
| 1324 | if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { | |||
| 1325 | MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); | |||
| 1326 | } | |||
| 1327 | ||||
| 1328 | // mac68k alignment supersedes maximum field alignment and attribute aligned, | |||
| 1329 | // and forces all structures to have 2-byte alignment. The IBM docs on it | |||
| 1330 | // allude to additional (more complicated) semantics, especially with regard | |||
| 1331 | // to bit-fields, but gcc appears not to follow that. | |||
| 1332 | if (D->hasAttr<AlignMac68kAttr>()) { | |||
| 1333 | assert((static_cast <bool> (!D->hasAttr<AlignNaturalAttr >() && "Having both mac68k and natural alignment on a decl is not allowed." ) ? void (0) : __assert_fail ("!D->hasAttr<AlignNaturalAttr>() && \"Having both mac68k and natural alignment on a decl is not allowed.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1335, __extension__ __PRETTY_FUNCTION__)) | |||
| 1334 | !D->hasAttr<AlignNaturalAttr>() &&(static_cast <bool> (!D->hasAttr<AlignNaturalAttr >() && "Having both mac68k and natural alignment on a decl is not allowed." ) ? void (0) : __assert_fail ("!D->hasAttr<AlignNaturalAttr>() && \"Having both mac68k and natural alignment on a decl is not allowed.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1335, __extension__ __PRETTY_FUNCTION__)) | |||
| 1335 | "Having both mac68k and natural alignment on a decl is not allowed.")(static_cast <bool> (!D->hasAttr<AlignNaturalAttr >() && "Having both mac68k and natural alignment on a decl is not allowed." ) ? void (0) : __assert_fail ("!D->hasAttr<AlignNaturalAttr>() && \"Having both mac68k and natural alignment on a decl is not allowed.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1335, __extension__ __PRETTY_FUNCTION__)); | |||
| 1336 | IsMac68kAlign = true; | |||
| 1337 | MaxFieldAlignment = CharUnits::fromQuantity(2); | |||
| 1338 | Alignment = CharUnits::fromQuantity(2); | |||
| 1339 | PreferredAlignment = CharUnits::fromQuantity(2); | |||
| 1340 | } else { | |||
| 1341 | if (D->hasAttr<AlignNaturalAttr>()) | |||
| 1342 | IsNaturalAlign = true; | |||
| 1343 | ||||
| 1344 | if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>()) | |||
| 1345 | MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment()); | |||
| 1346 | ||||
| 1347 | if (unsigned MaxAlign = D->getMaxAlignment()) | |||
| 1348 | UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign)); | |||
| 1349 | } | |||
| 1350 | ||||
| 1351 | HandledFirstNonOverlappingEmptyField = | |||
| 1352 | !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign; | |||
| 1353 | ||||
| 1354 | // If there is an external AST source, ask it for the various offsets. | |||
| 1355 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) | |||
| 1356 | if (ExternalASTSource *Source = Context.getExternalSource()) { | |||
| 1357 | UseExternalLayout = Source->layoutRecordType( | |||
| 1358 | RD, External.Size, External.Align, External.FieldOffsets, | |||
| 1359 | External.BaseOffsets, External.VirtualBaseOffsets); | |||
| 1360 | ||||
| 1361 | // Update based on external alignment. | |||
| 1362 | if (UseExternalLayout) { | |||
| 1363 | if (External.Align > 0) { | |||
| 1364 | Alignment = Context.toCharUnitsFromBits(External.Align); | |||
| 1365 | PreferredAlignment = Context.toCharUnitsFromBits(External.Align); | |||
| 1366 | } else { | |||
| 1367 | // The external source didn't have alignment information; infer it. | |||
| 1368 | InferAlignment = true; | |||
| 1369 | } | |||
| 1370 | } | |||
| 1371 | } | |||
| 1372 | } | |||
| 1373 | ||||
| 1374 | void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) { | |||
| 1375 | InitializeLayout(D); | |||
| 1376 | LayoutFields(D); | |||
| 1377 | ||||
| 1378 | // Finally, round the size of the total struct up to the alignment of the | |||
| 1379 | // struct itself. | |||
| 1380 | FinishLayout(D); | |||
| 1381 | } | |||
| 1382 | ||||
| 1383 | void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { | |||
| 1384 | InitializeLayout(RD); | |||
| 1385 | ||||
| 1386 | // Lay out the vtable and the non-virtual bases. | |||
| 1387 | LayoutNonVirtualBases(RD); | |||
| 1388 | ||||
| 1389 | LayoutFields(RD); | |||
| 1390 | ||||
| 1391 | NonVirtualSize = Context.toCharUnitsFromBits( | |||
| 1392 | llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign())); | |||
| 1393 | NonVirtualAlignment = Alignment; | |||
| 1394 | PreferredNVAlignment = PreferredAlignment; | |||
| 1395 | ||||
| 1396 | // Lay out the virtual bases and add the primary virtual base offsets. | |||
| 1397 | LayoutVirtualBases(RD, RD); | |||
| 1398 | ||||
| 1399 | // Finally, round the size of the total struct up to the alignment | |||
| 1400 | // of the struct itself. | |||
| 1401 | FinishLayout(RD); | |||
| 1402 | ||||
| 1403 | #ifndef NDEBUG | |||
| 1404 | // Check that we have base offsets for all bases. | |||
| 1405 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
| 1406 | if (Base.isVirtual()) | |||
| 1407 | continue; | |||
| 1408 | ||||
| 1409 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 1410 | ||||
| 1411 | assert(Bases.count(BaseDecl) && "Did not find base offset!")(static_cast <bool> (Bases.count(BaseDecl) && "Did not find base offset!" ) ? void (0) : __assert_fail ("Bases.count(BaseDecl) && \"Did not find base offset!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1411, __extension__ __PRETTY_FUNCTION__)); | |||
| 1412 | } | |||
| 1413 | ||||
| 1414 | // And all virtual bases. | |||
| 1415 | for (const CXXBaseSpecifier &Base : RD->vbases()) { | |||
| 1416 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 1417 | ||||
| 1418 | assert(VBases.count(BaseDecl) && "Did not find base offset!")(static_cast <bool> (VBases.count(BaseDecl) && "Did not find base offset!" ) ? void (0) : __assert_fail ("VBases.count(BaseDecl) && \"Did not find base offset!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1418, __extension__ __PRETTY_FUNCTION__)); | |||
| 1419 | } | |||
| 1420 | #endif | |||
| 1421 | } | |||
| 1422 | ||||
| 1423 | void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { | |||
| 1424 | if (ObjCInterfaceDecl *SD = D->getSuperClass()) { | |||
| 1425 | const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD); | |||
| 1426 | ||||
| 1427 | UpdateAlignment(SL.getAlignment()); | |||
| 1428 | ||||
| 1429 | // We start laying out ivars not at the end of the superclass | |||
| 1430 | // structure, but at the next byte following the last field. | |||
| 1431 | setDataSize(SL.getDataSize()); | |||
| 1432 | setSize(getDataSize()); | |||
| 1433 | } | |||
| 1434 | ||||
| 1435 | InitializeLayout(D); | |||
| 1436 | // Layout each ivar sequentially. | |||
| 1437 | for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; | |||
| 1438 | IVD = IVD->getNextIvar()) | |||
| 1439 | LayoutField(IVD, false); | |||
| 1440 | ||||
| 1441 | // Finally, round the size of the total struct up to the alignment of the | |||
| 1442 | // struct itself. | |||
| 1443 | FinishLayout(D); | |||
| 1444 | } | |||
| 1445 | ||||
| 1446 | void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { | |||
| 1447 | // Layout each field, for now, just sequentially, respecting alignment. In | |||
| 1448 | // the future, this will need to be tweakable by targets. | |||
| 1449 | bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true); | |||
| 1450 | bool HasFlexibleArrayMember = D->hasFlexibleArrayMember(); | |||
| 1451 | for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) { | |||
| 1452 | auto Next(I); | |||
| 1453 | ++Next; | |||
| 1454 | LayoutField(*I, | |||
| 1455 | InsertExtraPadding && (Next != End || !HasFlexibleArrayMember)); | |||
| 1456 | } | |||
| 1457 | } | |||
| 1458 | ||||
| 1459 | // Rounds the specified size to have it a multiple of the char size. | |||
| 1460 | static uint64_t | |||
| 1461 | roundUpSizeToCharAlignment(uint64_t Size, | |||
| 1462 | const ASTContext &Context) { | |||
| 1463 | uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); | |||
| 1464 | return llvm::alignTo(Size, CharAlignment); | |||
| 1465 | } | |||
| 1466 | ||||
| 1467 | void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, | |||
| 1468 | uint64_t StorageUnitSize, | |||
| 1469 | bool FieldPacked, | |||
| 1470 | const FieldDecl *D) { | |||
| 1471 | assert(Context.getLangOpts().CPlusPlus &&(static_cast <bool> (Context.getLangOpts().CPlusPlus && "Can only have wide bit-fields in C++!") ? void (0) : __assert_fail ("Context.getLangOpts().CPlusPlus && \"Can only have wide bit-fields in C++!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1472, __extension__ __PRETTY_FUNCTION__)) | |||
| 1472 | "Can only have wide bit-fields in C++!")(static_cast <bool> (Context.getLangOpts().CPlusPlus && "Can only have wide bit-fields in C++!") ? void (0) : __assert_fail ("Context.getLangOpts().CPlusPlus && \"Can only have wide bit-fields in C++!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1472, __extension__ __PRETTY_FUNCTION__)); | |||
| 1473 | ||||
| 1474 | // Itanium C++ ABI 2.4: | |||
| 1475 | // If sizeof(T)*8 < n, let T' be the largest integral POD type with | |||
| 1476 | // sizeof(T')*8 <= n. | |||
| 1477 | ||||
| 1478 | QualType IntegralPODTypes[] = { | |||
| 1479 | Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy, | |||
| 1480 | Context.UnsignedLongTy, Context.UnsignedLongLongTy | |||
| 1481 | }; | |||
| 1482 | ||||
| 1483 | QualType Type; | |||
| 1484 | for (const QualType &QT : IntegralPODTypes) { | |||
| 1485 | uint64_t Size = Context.getTypeSize(QT); | |||
| 1486 | ||||
| 1487 | if (Size > FieldSize) | |||
| 1488 | break; | |||
| 1489 | ||||
| 1490 | Type = QT; | |||
| 1491 | } | |||
| 1492 | assert(!Type.isNull() && "Did not find a type!")(static_cast <bool> (!Type.isNull() && "Did not find a type!" ) ? void (0) : __assert_fail ("!Type.isNull() && \"Did not find a type!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1492, __extension__ __PRETTY_FUNCTION__)); | |||
| 1493 | ||||
| 1494 | CharUnits TypeAlign = Context.getTypeAlignInChars(Type); | |||
| 1495 | ||||
| 1496 | // We're not going to use any of the unfilled bits in the last byte. | |||
| 1497 | UnfilledBitsInLastUnit = 0; | |||
| 1498 | LastBitfieldStorageUnitSize = 0; | |||
| 1499 | ||||
| 1500 | uint64_t FieldOffset; | |||
| 1501 | uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; | |||
| 1502 | ||||
| 1503 | if (IsUnion) { | |||
| 1504 | uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, | |||
| 1505 | Context); | |||
| 1506 | setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); | |||
| 1507 | FieldOffset = 0; | |||
| 1508 | } else { | |||
| 1509 | // The bitfield is allocated starting at the next offset aligned | |||
| 1510 | // appropriately for T', with length n bits. | |||
| 1511 | FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign)); | |||
| 1512 | ||||
| 1513 | uint64_t NewSizeInBits = FieldOffset + FieldSize; | |||
| 1514 | ||||
| 1515 | setDataSize( | |||
| 1516 | llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign())); | |||
| 1517 | UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; | |||
| 1518 | } | |||
| 1519 | ||||
| 1520 | // Place this field at the current location. | |||
| 1521 | FieldOffsets.push_back(FieldOffset); | |||
| 1522 | ||||
| 1523 | CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset, | |||
| 1524 | Context.toBits(TypeAlign), FieldPacked, D); | |||
| 1525 | ||||
| 1526 | // Update the size. | |||
| 1527 | setSize(std::max(getSizeInBits(), getDataSizeInBits())); | |||
| 1528 | ||||
| 1529 | // Remember max struct/class alignment. | |||
| 1530 | UpdateAlignment(TypeAlign); | |||
| 1531 | } | |||
| 1532 | ||||
| 1533 | static bool isAIXLayout(const ASTContext &Context) { | |||
| 1534 | return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX; | |||
| 1535 | } | |||
| 1536 | ||||
| 1537 | void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { | |||
| 1538 | bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); | |||
| 1539 | uint64_t FieldSize = D->getBitWidthValue(Context); | |||
| 1540 | TypeInfo FieldInfo = Context.getTypeInfo(D->getType()); | |||
| 1541 | uint64_t StorageUnitSize = FieldInfo.Width; | |||
| 1542 | unsigned FieldAlign = FieldInfo.Align; | |||
| 1543 | bool AlignIsRequired = FieldInfo.isAlignRequired(); | |||
| 1544 | ||||
| 1545 | // UnfilledBitsInLastUnit is the difference between the end of the | |||
| 1546 | // last allocated bitfield (i.e. the first bit offset available for | |||
| 1547 | // bitfields) and the end of the current data size in bits (i.e. the | |||
| 1548 | // first bit offset available for non-bitfields). The current data | |||
| 1549 | // size in bits is always a multiple of the char size; additionally, | |||
| 1550 | // for ms_struct records it's also a multiple of the | |||
| 1551 | // LastBitfieldStorageUnitSize (if set). | |||
| 1552 | ||||
| 1553 | // The struct-layout algorithm is dictated by the platform ABI, | |||
| 1554 | // which in principle could use almost any rules it likes. In | |||
| 1555 | // practice, UNIXy targets tend to inherit the algorithm described | |||
| 1556 | // in the System V generic ABI. The basic bitfield layout rule in | |||
| 1557 | // System V is to place bitfields at the next available bit offset | |||
| 1558 | // where the entire bitfield would fit in an aligned storage unit of | |||
| 1559 | // the declared type; it's okay if an earlier or later non-bitfield | |||
| 1560 | // is allocated in the same storage unit. However, some targets | |||
| 1561 | // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't | |||
| 1562 | // require this storage unit to be aligned, and therefore always put | |||
| 1563 | // the bitfield at the next available bit offset. | |||
| 1564 | ||||
| 1565 | // ms_struct basically requests a complete replacement of the | |||
| 1566 | // platform ABI's struct-layout algorithm, with the high-level goal | |||
| 1567 | // of duplicating MSVC's layout. For non-bitfields, this follows | |||
| 1568 | // the standard algorithm. The basic bitfield layout rule is to | |||
| 1569 | // allocate an entire unit of the bitfield's declared type | |||
| 1570 | // (e.g. 'unsigned long'), then parcel it up among successive | |||
| 1571 | // bitfields whose declared types have the same size, making a new | |||
| 1572 | // unit as soon as the last can no longer store the whole value. | |||
| 1573 | // Since it completely replaces the platform ABI's algorithm, | |||
| 1574 | // settings like !useBitFieldTypeAlignment() do not apply. | |||
| 1575 | ||||
| 1576 | // A zero-width bitfield forces the use of a new storage unit for | |||
| 1577 | // later bitfields. In general, this occurs by rounding up the | |||
| 1578 | // current size of the struct as if the algorithm were about to | |||
| 1579 | // place a non-bitfield of the field's formal type. Usually this | |||
| 1580 | // does not change the alignment of the struct itself, but it does | |||
| 1581 | // on some targets (those that useZeroLengthBitfieldAlignment(), | |||
| 1582 | // e.g. ARM). In ms_struct layout, zero-width bitfields are | |||
| 1583 | // ignored unless they follow a non-zero-width bitfield. | |||
| 1584 | ||||
| 1585 | // A field alignment restriction (e.g. from #pragma pack) or | |||
| 1586 | // specification (e.g. from __attribute__((aligned))) changes the | |||
| 1587 | // formal alignment of the field. For System V, this alters the | |||
| 1588 | // required alignment of the notional storage unit that must contain | |||
| 1589 | // the bitfield. For ms_struct, this only affects the placement of | |||
| 1590 | // new storage units. In both cases, the effect of #pragma pack is | |||
| 1591 | // ignored on zero-width bitfields. | |||
| 1592 | ||||
| 1593 | // On System V, a packed field (e.g. from #pragma pack or | |||
| 1594 | // __attribute__((packed))) always uses the next available bit | |||
| 1595 | // offset. | |||
| 1596 | ||||
| 1597 | // In an ms_struct struct, the alignment of a fundamental type is | |||
| 1598 | // always equal to its size. This is necessary in order to mimic | |||
| 1599 | // the i386 alignment rules on targets which might not fully align | |||
| 1600 | // all types (e.g. Darwin PPC32, where alignof(long long) == 4). | |||
| 1601 | ||||
| 1602 | // First, some simple bookkeeping to perform for ms_struct structs. | |||
| 1603 | if (IsMsStruct) { | |||
| 1604 | // The field alignment for integer types is always the size. | |||
| 1605 | FieldAlign = StorageUnitSize; | |||
| 1606 | ||||
| 1607 | // If the previous field was not a bitfield, or was a bitfield | |||
| 1608 | // with a different storage unit size, or if this field doesn't fit into | |||
| 1609 | // the current storage unit, we're done with that storage unit. | |||
| 1610 | if (LastBitfieldStorageUnitSize != StorageUnitSize || | |||
| 1611 | UnfilledBitsInLastUnit < FieldSize) { | |||
| 1612 | // Also, ignore zero-length bitfields after non-bitfields. | |||
| 1613 | if (!LastBitfieldStorageUnitSize && !FieldSize) | |||
| 1614 | FieldAlign = 1; | |||
| 1615 | ||||
| 1616 | UnfilledBitsInLastUnit = 0; | |||
| 1617 | LastBitfieldStorageUnitSize = 0; | |||
| 1618 | } | |||
| 1619 | } | |||
| 1620 | ||||
| 1621 | if (isAIXLayout(Context)) { | |||
| 1622 | if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) { | |||
| 1623 | // On AIX, [bool, char, short] bitfields have the same alignment | |||
| 1624 | // as [unsigned]. | |||
| 1625 | StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy); | |||
| 1626 | } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) && | |||
| 1627 | Context.getTargetInfo().getTriple().isArch32Bit() && | |||
| 1628 | FieldSize <= 32) { | |||
| 1629 | // Under 32-bit compile mode, the bitcontainer is 32 bits if a single | |||
| 1630 | // long long bitfield has length no greater than 32 bits. | |||
| 1631 | StorageUnitSize = 32; | |||
| 1632 | ||||
| 1633 | if (!AlignIsRequired) | |||
| 1634 | FieldAlign = 32; | |||
| 1635 | } | |||
| 1636 | ||||
| 1637 | if (FieldAlign < StorageUnitSize) { | |||
| 1638 | // The bitfield alignment should always be greater than or equal to | |||
| 1639 | // bitcontainer size. | |||
| 1640 | FieldAlign = StorageUnitSize; | |||
| 1641 | } | |||
| 1642 | } | |||
| 1643 | ||||
| 1644 | // If the field is wider than its declared type, it follows | |||
| 1645 | // different rules in all cases, except on AIX. | |||
| 1646 | // On AIX, wide bitfield follows the same rules as normal bitfield. | |||
| 1647 | if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) { | |||
| 1648 | LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D); | |||
| 1649 | return; | |||
| 1650 | } | |||
| 1651 | ||||
| 1652 | // Compute the next available bit offset. | |||
| 1653 | uint64_t FieldOffset = | |||
| 1654 | IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit); | |||
| 1655 | ||||
| 1656 | // Handle targets that don't honor bitfield type alignment. | |||
| 1657 | if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) { | |||
| 1658 | // Some such targets do honor it on zero-width bitfields. | |||
| 1659 | if (FieldSize == 0 && | |||
| 1660 | Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { | |||
| 1661 | // Some targets don't honor leading zero-width bitfield. | |||
| 1662 | if (!IsUnion && FieldOffset == 0 && | |||
| 1663 | !Context.getTargetInfo().useLeadingZeroLengthBitfield()) | |||
| 1664 | FieldAlign = 1; | |||
| 1665 | else { | |||
| 1666 | // The alignment to round up to is the max of the field's natural | |||
| 1667 | // alignment and a target-specific fixed value (sometimes zero). | |||
| 1668 | unsigned ZeroLengthBitfieldBoundary = | |||
| 1669 | Context.getTargetInfo().getZeroLengthBitfieldBoundary(); | |||
| 1670 | FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary); | |||
| 1671 | } | |||
| 1672 | // If that doesn't apply, just ignore the field alignment. | |||
| 1673 | } else { | |||
| 1674 | FieldAlign = 1; | |||
| 1675 | } | |||
| 1676 | } | |||
| 1677 | ||||
| 1678 | // Remember the alignment we would have used if the field were not packed. | |||
| 1679 | unsigned UnpackedFieldAlign = FieldAlign; | |||
| 1680 | ||||
| 1681 | // Ignore the field alignment if the field is packed unless it has zero-size. | |||
| 1682 | if (!IsMsStruct && FieldPacked && FieldSize != 0) | |||
| 1683 | FieldAlign = 1; | |||
| 1684 | ||||
| 1685 | // But, if there's an 'aligned' attribute on the field, honor that. | |||
| 1686 | unsigned ExplicitFieldAlign = D->getMaxAlignment(); | |||
| 1687 | if (ExplicitFieldAlign) { | |||
| 1688 | FieldAlign = std::max(FieldAlign, ExplicitFieldAlign); | |||
| 1689 | UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign); | |||
| 1690 | } | |||
| 1691 | ||||
| 1692 | // But, if there's a #pragma pack in play, that takes precedent over | |||
| 1693 | // even the 'aligned' attribute, for non-zero-width bitfields. | |||
| 1694 | unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment); | |||
| 1695 | if (!MaxFieldAlignment.isZero() && FieldSize) { | |||
| 1696 | UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); | |||
| 1697 | if (FieldPacked) | |||
| 1698 | FieldAlign = UnpackedFieldAlign; | |||
| 1699 | else | |||
| 1700 | FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); | |||
| 1701 | } | |||
| 1702 | ||||
| 1703 | // But, ms_struct just ignores all of that in unions, even explicit | |||
| 1704 | // alignment attributes. | |||
| 1705 | if (IsMsStruct && IsUnion) { | |||
| 1706 | FieldAlign = UnpackedFieldAlign = 1; | |||
| 1707 | } | |||
| 1708 | ||||
| 1709 | // For purposes of diagnostics, we're going to simultaneously | |||
| 1710 | // compute the field offsets that we would have used if we weren't | |||
| 1711 | // adding any alignment padding or if the field weren't packed. | |||
| 1712 | uint64_t UnpaddedFieldOffset = FieldOffset; | |||
| 1713 | uint64_t UnpackedFieldOffset = FieldOffset; | |||
| 1714 | ||||
| 1715 | // Check if we need to add padding to fit the bitfield within an | |||
| 1716 | // allocation unit with the right size and alignment. The rules are | |||
| 1717 | // somewhat different here for ms_struct structs. | |||
| 1718 | if (IsMsStruct) { | |||
| 1719 | // If it's not a zero-width bitfield, and we can fit the bitfield | |||
| 1720 | // into the active storage unit (and we haven't already decided to | |||
| 1721 | // start a new storage unit), just do so, regardless of any other | |||
| 1722 | // other consideration. Otherwise, round up to the right alignment. | |||
| 1723 | if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) { | |||
| 1724 | FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); | |||
| 1725 | UnpackedFieldOffset = | |||
| 1726 | llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); | |||
| 1727 | UnfilledBitsInLastUnit = 0; | |||
| 1728 | } | |||
| 1729 | ||||
| 1730 | } else { | |||
| 1731 | // #pragma pack, with any value, suppresses the insertion of padding. | |||
| 1732 | bool AllowPadding = MaxFieldAlignment.isZero(); | |||
| 1733 | ||||
| 1734 | // Compute the real offset. | |||
| 1735 | if (FieldSize == 0 || | |||
| 1736 | (AllowPadding && | |||
| 1737 | (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) { | |||
| 1738 | FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); | |||
| 1739 | } else if (ExplicitFieldAlign && | |||
| 1740 | (MaxFieldAlignmentInBits == 0 || | |||
| 1741 | ExplicitFieldAlign <= MaxFieldAlignmentInBits) && | |||
| 1742 | Context.getTargetInfo().useExplicitBitFieldAlignment()) { | |||
| 1743 | // TODO: figure it out what needs to be done on targets that don't honor | |||
| 1744 | // bit-field type alignment like ARM APCS ABI. | |||
| 1745 | FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign); | |||
| 1746 | } | |||
| 1747 | ||||
| 1748 | // Repeat the computation for diagnostic purposes. | |||
| 1749 | if (FieldSize == 0 || | |||
| 1750 | (AllowPadding && | |||
| 1751 | (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize > | |||
| 1752 | StorageUnitSize)) | |||
| 1753 | UnpackedFieldOffset = | |||
| 1754 | llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); | |||
| 1755 | else if (ExplicitFieldAlign && | |||
| 1756 | (MaxFieldAlignmentInBits == 0 || | |||
| 1757 | ExplicitFieldAlign <= MaxFieldAlignmentInBits) && | |||
| 1758 | Context.getTargetInfo().useExplicitBitFieldAlignment()) | |||
| 1759 | UnpackedFieldOffset = | |||
| 1760 | llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign); | |||
| 1761 | } | |||
| 1762 | ||||
| 1763 | // If we're using external layout, give the external layout a chance | |||
| 1764 | // to override this information. | |||
| 1765 | if (UseExternalLayout) | |||
| 1766 | FieldOffset = updateExternalFieldOffset(D, FieldOffset); | |||
| 1767 | ||||
| 1768 | // Okay, place the bitfield at the calculated offset. | |||
| 1769 | FieldOffsets.push_back(FieldOffset); | |||
| 1770 | ||||
| 1771 | // Bookkeeping: | |||
| 1772 | ||||
| 1773 | // Anonymous members don't affect the overall record alignment, | |||
| 1774 | // except on targets where they do. | |||
| 1775 | if (!IsMsStruct && | |||
| 1776 | !Context.getTargetInfo().useZeroLengthBitfieldAlignment() && | |||
| 1777 | !D->getIdentifier()) | |||
| 1778 | FieldAlign = UnpackedFieldAlign = 1; | |||
| 1779 | ||||
| 1780 | // On AIX, zero-width bitfields pad out to the natural alignment boundary, | |||
| 1781 | // but do not increase the alignment greater than the MaxFieldAlignment, or 1 | |||
| 1782 | // if packed. | |||
| 1783 | if (isAIXLayout(Context) && !FieldSize) { | |||
| 1784 | if (FieldPacked) | |||
| 1785 | FieldAlign = 1; | |||
| 1786 | if (!MaxFieldAlignment.isZero()) { | |||
| 1787 | UnpackedFieldAlign = | |||
| 1788 | std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); | |||
| 1789 | FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); | |||
| 1790 | } | |||
| 1791 | } | |||
| 1792 | ||||
| 1793 | // Diagnose differences in layout due to padding or packing. | |||
| 1794 | if (!UseExternalLayout) | |||
| 1795 | CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset, | |||
| 1796 | UnpackedFieldAlign, FieldPacked, D); | |||
| 1797 | ||||
| 1798 | // Update DataSize to include the last byte containing (part of) the bitfield. | |||
| 1799 | ||||
| 1800 | // For unions, this is just a max operation, as usual. | |||
| 1801 | if (IsUnion) { | |||
| 1802 | // For ms_struct, allocate the entire storage unit --- unless this | |||
| 1803 | // is a zero-width bitfield, in which case just use a size of 1. | |||
| 1804 | uint64_t RoundedFieldSize; | |||
| 1805 | if (IsMsStruct) { | |||
| 1806 | RoundedFieldSize = (FieldSize ? StorageUnitSize | |||
| 1807 | : Context.getTargetInfo().getCharWidth()); | |||
| 1808 | ||||
| 1809 | // Otherwise, allocate just the number of bytes required to store | |||
| 1810 | // the bitfield. | |||
| 1811 | } else { | |||
| 1812 | RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context); | |||
| 1813 | } | |||
| 1814 | setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); | |||
| 1815 | ||||
| 1816 | // For non-zero-width bitfields in ms_struct structs, allocate a new | |||
| 1817 | // storage unit if necessary. | |||
| 1818 | } else if (IsMsStruct && FieldSize) { | |||
| 1819 | // We should have cleared UnfilledBitsInLastUnit in every case | |||
| 1820 | // where we changed storage units. | |||
| 1821 | if (!UnfilledBitsInLastUnit) { | |||
| 1822 | setDataSize(FieldOffset + StorageUnitSize); | |||
| 1823 | UnfilledBitsInLastUnit = StorageUnitSize; | |||
| 1824 | } | |||
| 1825 | UnfilledBitsInLastUnit -= FieldSize; | |||
| 1826 | LastBitfieldStorageUnitSize = StorageUnitSize; | |||
| 1827 | ||||
| 1828 | // Otherwise, bump the data size up to include the bitfield, | |||
| 1829 | // including padding up to char alignment, and then remember how | |||
| 1830 | // bits we didn't use. | |||
| 1831 | } else { | |||
| 1832 | uint64_t NewSizeInBits = FieldOffset + FieldSize; | |||
| 1833 | uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); | |||
| 1834 | setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment)); | |||
| 1835 | UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; | |||
| 1836 | ||||
| 1837 | // The only time we can get here for an ms_struct is if this is a | |||
| 1838 | // zero-width bitfield, which doesn't count as anything for the | |||
| 1839 | // purposes of unfilled bits. | |||
| 1840 | LastBitfieldStorageUnitSize = 0; | |||
| 1841 | } | |||
| 1842 | ||||
| 1843 | // Update the size. | |||
| 1844 | setSize(std::max(getSizeInBits(), getDataSizeInBits())); | |||
| 1845 | ||||
| 1846 | // Remember max struct/class alignment. | |||
| 1847 | UnadjustedAlignment = | |||
| 1848 | std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign)); | |||
| 1849 | UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), | |||
| 1850 | Context.toCharUnitsFromBits(UnpackedFieldAlign)); | |||
| 1851 | } | |||
| 1852 | ||||
| 1853 | void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D, | |||
| 1854 | bool InsertExtraPadding) { | |||
| 1855 | auto *FieldClass = D->getType()->getAsCXXRecordDecl(); | |||
| 1856 | bool IsOverlappingEmptyField = | |||
| 1857 | D->isPotentiallyOverlapping() && FieldClass->isEmpty(); | |||
| 1858 | ||||
| 1859 | CharUnits FieldOffset = | |||
| 1860 | (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize(); | |||
| 1861 | ||||
| 1862 | const bool DefaultsToAIXPowerAlignment = | |||
| 1863 | Context.getTargetInfo().defaultsToAIXPowerAlignment(); | |||
| 1864 | bool FoundFirstNonOverlappingEmptyFieldForAIX = false; | |||
| 1865 | if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) { | |||
| 1866 | assert(FieldOffset == CharUnits::Zero() &&(static_cast <bool> (FieldOffset == CharUnits::Zero() && "The first non-overlapping empty field should have been handled." ) ? void (0) : __assert_fail ("FieldOffset == CharUnits::Zero() && \"The first non-overlapping empty field should have been handled.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1867, __extension__ __PRETTY_FUNCTION__)) | |||
| 1867 | "The first non-overlapping empty field should have been handled.")(static_cast <bool> (FieldOffset == CharUnits::Zero() && "The first non-overlapping empty field should have been handled." ) ? void (0) : __assert_fail ("FieldOffset == CharUnits::Zero() && \"The first non-overlapping empty field should have been handled.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1867, __extension__ __PRETTY_FUNCTION__)); | |||
| 1868 | ||||
| 1869 | if (!IsOverlappingEmptyField) { | |||
| 1870 | FoundFirstNonOverlappingEmptyFieldForAIX = true; | |||
| 1871 | ||||
| 1872 | // We're going to handle the "first member" based on | |||
| 1873 | // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current | |||
| 1874 | // invocation of this function; record it as handled for future | |||
| 1875 | // invocations (except for unions, because the current field does not | |||
| 1876 | // represent all "firsts"). | |||
| 1877 | HandledFirstNonOverlappingEmptyField = !IsUnion; | |||
| 1878 | } | |||
| 1879 | } | |||
| 1880 | ||||
| 1881 | if (D->isBitField()) { | |||
| 1882 | LayoutBitField(D); | |||
| 1883 | return; | |||
| 1884 | } | |||
| 1885 | ||||
| 1886 | uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; | |||
| 1887 | // Reset the unfilled bits. | |||
| 1888 | UnfilledBitsInLastUnit = 0; | |||
| 1889 | LastBitfieldStorageUnitSize = 0; | |||
| 1890 | ||||
| 1891 | llvm::Triple Target = Context.getTargetInfo().getTriple(); | |||
| 1892 | ||||
| 1893 | AlignRequirementKind AlignRequirement = AlignRequirementKind::None; | |||
| 1894 | CharUnits FieldSize; | |||
| 1895 | CharUnits FieldAlign; | |||
| 1896 | // The amount of this class's dsize occupied by the field. | |||
| 1897 | // This is equal to FieldSize unless we're permitted to pack | |||
| 1898 | // into the field's tail padding. | |||
| 1899 | CharUnits EffectiveFieldSize; | |||
| 1900 | ||||
| 1901 | auto setDeclInfo = [&](bool IsIncompleteArrayType) { | |||
| 1902 | auto TI = Context.getTypeInfoInChars(D->getType()); | |||
| 1903 | FieldAlign = TI.Align; | |||
| 1904 | // Flexible array members don't have any size, but they have to be | |||
| 1905 | // aligned appropriately for their element type. | |||
| 1906 | EffectiveFieldSize = FieldSize = | |||
| 1907 | IsIncompleteArrayType ? CharUnits::Zero() : TI.Width; | |||
| 1908 | AlignRequirement = TI.AlignRequirement; | |||
| 1909 | }; | |||
| 1910 | ||||
| 1911 | if (D->getType()->isIncompleteArrayType()) { | |||
| 1912 | setDeclInfo(true /* IsIncompleteArrayType */); | |||
| 1913 | } else { | |||
| 1914 | setDeclInfo(false /* IsIncompleteArrayType */); | |||
| 1915 | ||||
| 1916 | // A potentially-overlapping field occupies its dsize or nvsize, whichever | |||
| 1917 | // is larger. | |||
| 1918 | if (D->isPotentiallyOverlapping()) { | |||
| 1919 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass); | |||
| 1920 | EffectiveFieldSize = | |||
| 1921 | std::max(Layout.getNonVirtualSize(), Layout.getDataSize()); | |||
| 1922 | } | |||
| 1923 | ||||
| 1924 | if (IsMsStruct) { | |||
| 1925 | // If MS bitfield layout is required, figure out what type is being | |||
| 1926 | // laid out and align the field to the width of that type. | |||
| 1927 | ||||
| 1928 | // Resolve all typedefs down to their base type and round up the field | |||
| 1929 | // alignment if necessary. | |||
| 1930 | QualType T = Context.getBaseElementType(D->getType()); | |||
| 1931 | if (const BuiltinType *BTy = T->getAs<BuiltinType>()) { | |||
| 1932 | CharUnits TypeSize = Context.getTypeSizeInChars(BTy); | |||
| 1933 | ||||
| 1934 | if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) { | |||
| 1935 | assert((static_cast <bool> (!Context.getTargetInfo().getTriple ().isWindowsMSVCEnvironment() && "Non PowerOf2 size in MSVC mode" ) ? void (0) : __assert_fail ("!Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && \"Non PowerOf2 size in MSVC mode\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1937, __extension__ __PRETTY_FUNCTION__)) | |||
| 1936 | !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&(static_cast <bool> (!Context.getTargetInfo().getTriple ().isWindowsMSVCEnvironment() && "Non PowerOf2 size in MSVC mode" ) ? void (0) : __assert_fail ("!Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && \"Non PowerOf2 size in MSVC mode\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1937, __extension__ __PRETTY_FUNCTION__)) | |||
| 1937 | "Non PowerOf2 size in MSVC mode")(static_cast <bool> (!Context.getTargetInfo().getTriple ().isWindowsMSVCEnvironment() && "Non PowerOf2 size in MSVC mode" ) ? void (0) : __assert_fail ("!Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && \"Non PowerOf2 size in MSVC mode\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 1937, __extension__ __PRETTY_FUNCTION__)); | |||
| 1938 | // Base types with sizes that aren't a power of two don't work | |||
| 1939 | // with the layout rules for MS structs. This isn't an issue in | |||
| 1940 | // MSVC itself since there are no such base data types there. | |||
| 1941 | // On e.g. x86_32 mingw and linux, long double is 12 bytes though. | |||
| 1942 | // Any structs involving that data type obviously can't be ABI | |||
| 1943 | // compatible with MSVC regardless of how it is laid out. | |||
| 1944 | ||||
| 1945 | // Since ms_struct can be mass enabled (via a pragma or via the | |||
| 1946 | // -mms-bitfields command line parameter), this can trigger for | |||
| 1947 | // structs that don't actually need MSVC compatibility, so we | |||
| 1948 | // need to be able to sidestep the ms_struct layout for these types. | |||
| 1949 | ||||
| 1950 | // Since the combination of -mms-bitfields together with structs | |||
| 1951 | // like max_align_t (which contains a long double) for mingw is | |||
| 1952 | // quite common (and GCC handles it silently), just handle it | |||
| 1953 | // silently there. For other targets that have ms_struct enabled | |||
| 1954 | // (most probably via a pragma or attribute), trigger a diagnostic | |||
| 1955 | // that defaults to an error. | |||
| 1956 | if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) | |||
| 1957 | Diag(D->getLocation(), diag::warn_npot_ms_struct); | |||
| 1958 | } | |||
| 1959 | if (TypeSize > FieldAlign && | |||
| 1960 | llvm::isPowerOf2_64(TypeSize.getQuantity())) | |||
| 1961 | FieldAlign = TypeSize; | |||
| 1962 | } | |||
| 1963 | } | |||
| 1964 | } | |||
| 1965 | ||||
| 1966 | bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() || | |||
| 1967 | FieldClass->hasAttr<PackedAttr>() || | |||
| 1968 | Context.getLangOpts().getClangABICompat() <= | |||
| 1969 | LangOptions::ClangABI::Ver15 || | |||
| 1970 | Target.isPS() || Target.isOSDarwin() || | |||
| 1971 | Target.isOSAIX())) || | |||
| 1972 | D->hasAttr<PackedAttr>(); | |||
| 1973 | ||||
| 1974 | // When used as part of a typedef, or together with a 'packed' attribute, the | |||
| 1975 | // 'aligned' attribute can be used to decrease alignment. In that case, it | |||
| 1976 | // overrides any computed alignment we have, and there is no need to upgrade | |||
| 1977 | // the alignment. | |||
| 1978 | auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] { | |||
| 1979 | // Enum alignment sources can be safely ignored here, because this only | |||
| 1980 | // helps decide whether we need the AIX alignment upgrade, which only | |||
| 1981 | // applies to floating-point types. | |||
| 1982 | return AlignRequirement == AlignRequirementKind::RequiredByTypedef || | |||
| 1983 | (AlignRequirement == AlignRequirementKind::RequiredByRecord && | |||
| 1984 | FieldPacked); | |||
| 1985 | }; | |||
| 1986 | ||||
| 1987 | // The AIX `power` alignment rules apply the natural alignment of the | |||
| 1988 | // "first member" if it is of a floating-point data type (or is an aggregate | |||
| 1989 | // whose recursively "first" member or element is such a type). The alignment | |||
| 1990 | // associated with these types for subsequent members use an alignment value | |||
| 1991 | // where the floating-point data type is considered to have 4-byte alignment. | |||
| 1992 | // | |||
| 1993 | // For the purposes of the foregoing: vtable pointers, non-empty base classes, | |||
| 1994 | // and zero-width bit-fields count as prior members; members of empty class | |||
| 1995 | // types marked `no_unique_address` are not considered to be prior members. | |||
| 1996 | CharUnits PreferredAlign = FieldAlign; | |||
| 1997 | if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() && | |||
| 1998 | (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) { | |||
| 1999 | auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) { | |||
| 2000 | if (BTy->getKind() == BuiltinType::Double || | |||
| 2001 | BTy->getKind() == BuiltinType::LongDouble) { | |||
| 2002 | assert(PreferredAlign == CharUnits::fromQuantity(4) &&(static_cast <bool> (PreferredAlign == CharUnits::fromQuantity (4) && "No need to upgrade the alignment value.") ? void (0) : __assert_fail ("PreferredAlign == CharUnits::fromQuantity(4) && \"No need to upgrade the alignment value.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2003, __extension__ __PRETTY_FUNCTION__)) | |||
| 2003 | "No need to upgrade the alignment value.")(static_cast <bool> (PreferredAlign == CharUnits::fromQuantity (4) && "No need to upgrade the alignment value.") ? void (0) : __assert_fail ("PreferredAlign == CharUnits::fromQuantity(4) && \"No need to upgrade the alignment value.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2003, __extension__ __PRETTY_FUNCTION__)); | |||
| 2004 | PreferredAlign = CharUnits::fromQuantity(8); | |||
| 2005 | } | |||
| 2006 | }; | |||
| 2007 | ||||
| 2008 | const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe(); | |||
| 2009 | if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) { | |||
| 2010 | performBuiltinTypeAlignmentUpgrade( | |||
| 2011 | CTy->getElementType()->castAs<BuiltinType>()); | |||
| 2012 | } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) { | |||
| 2013 | performBuiltinTypeAlignmentUpgrade(BTy); | |||
| 2014 | } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) { | |||
| 2015 | const RecordDecl *RD = RT->getDecl(); | |||
| 2016 | assert(RD && "Expected non-null RecordDecl.")(static_cast <bool> (RD && "Expected non-null RecordDecl." ) ? void (0) : __assert_fail ("RD && \"Expected non-null RecordDecl.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2016, __extension__ __PRETTY_FUNCTION__)); | |||
| 2017 | const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD); | |||
| 2018 | PreferredAlign = FieldRecord.getPreferredAlignment(); | |||
| 2019 | } | |||
| 2020 | } | |||
| 2021 | ||||
| 2022 | // The align if the field is not packed. This is to check if the attribute | |||
| 2023 | // was unnecessary (-Wpacked). | |||
| 2024 | CharUnits UnpackedFieldAlign = FieldAlign; | |||
| 2025 | CharUnits PackedFieldAlign = CharUnits::One(); | |||
| 2026 | CharUnits UnpackedFieldOffset = FieldOffset; | |||
| 2027 | CharUnits OriginalFieldAlign = UnpackedFieldAlign; | |||
| 2028 | ||||
| 2029 | CharUnits MaxAlignmentInChars = | |||
| 2030 | Context.toCharUnitsFromBits(D->getMaxAlignment()); | |||
| 2031 | PackedFieldAlign = std::max(PackedFieldAlign, MaxAlignmentInChars); | |||
| 2032 | PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars); | |||
| 2033 | UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars); | |||
| 2034 | ||||
| 2035 | // The maximum field alignment overrides the aligned attribute. | |||
| 2036 | if (!MaxFieldAlignment.isZero()) { | |||
| 2037 | PackedFieldAlign = std::min(PackedFieldAlign, MaxFieldAlignment); | |||
| 2038 | PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment); | |||
| 2039 | UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment); | |||
| 2040 | } | |||
| 2041 | ||||
| 2042 | ||||
| 2043 | if (!FieldPacked) | |||
| 2044 | FieldAlign = UnpackedFieldAlign; | |||
| 2045 | if (DefaultsToAIXPowerAlignment) | |||
| 2046 | UnpackedFieldAlign = PreferredAlign; | |||
| 2047 | if (FieldPacked) { | |||
| 2048 | PreferredAlign = PackedFieldAlign; | |||
| 2049 | FieldAlign = PackedFieldAlign; | |||
| 2050 | } | |||
| 2051 | ||||
| 2052 | CharUnits AlignTo = | |||
| 2053 | !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign; | |||
| 2054 | // Round up the current record size to the field's alignment boundary. | |||
| 2055 | FieldOffset = FieldOffset.alignTo(AlignTo); | |||
| 2056 | UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign); | |||
| 2057 | ||||
| 2058 | if (UseExternalLayout) { | |||
| 2059 | FieldOffset = Context.toCharUnitsFromBits( | |||
| 2060 | updateExternalFieldOffset(D, Context.toBits(FieldOffset))); | |||
| 2061 | ||||
| 2062 | if (!IsUnion && EmptySubobjects) { | |||
| 2063 | // Record the fact that we're placing a field at this offset. | |||
| 2064 | bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset); | |||
| 2065 | (void)Allowed; | |||
| 2066 | assert(Allowed && "Externally-placed field cannot be placed here")(static_cast <bool> (Allowed && "Externally-placed field cannot be placed here" ) ? void (0) : __assert_fail ("Allowed && \"Externally-placed field cannot be placed here\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2066, __extension__ __PRETTY_FUNCTION__)); | |||
| 2067 | } | |||
| 2068 | } else { | |||
| 2069 | if (!IsUnion && EmptySubobjects) { | |||
| 2070 | // Check if we can place the field at this offset. | |||
| 2071 | while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) { | |||
| 2072 | // We couldn't place the field at the offset. Try again at a new offset. | |||
| 2073 | // We try offset 0 (for an empty field) and then dsize(C) onwards. | |||
| 2074 | if (FieldOffset == CharUnits::Zero() && | |||
| 2075 | getDataSize() != CharUnits::Zero()) | |||
| 2076 | FieldOffset = getDataSize().alignTo(AlignTo); | |||
| 2077 | else | |||
| 2078 | FieldOffset += AlignTo; | |||
| 2079 | } | |||
| 2080 | } | |||
| 2081 | } | |||
| 2082 | ||||
| 2083 | // Place this field at the current location. | |||
| 2084 | FieldOffsets.push_back(Context.toBits(FieldOffset)); | |||
| 2085 | ||||
| 2086 | if (!UseExternalLayout) | |||
| 2087 | CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, | |||
| 2088 | Context.toBits(UnpackedFieldOffset), | |||
| 2089 | Context.toBits(UnpackedFieldAlign), FieldPacked, D); | |||
| 2090 | ||||
| 2091 | if (InsertExtraPadding) { | |||
| 2092 | CharUnits ASanAlignment = CharUnits::fromQuantity(8); | |||
| 2093 | CharUnits ExtraSizeForAsan = ASanAlignment; | |||
| 2094 | if (FieldSize % ASanAlignment) | |||
| 2095 | ExtraSizeForAsan += | |||
| 2096 | ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment); | |||
| 2097 | EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan; | |||
| 2098 | } | |||
| 2099 | ||||
| 2100 | // Reserve space for this field. | |||
| 2101 | if (!IsOverlappingEmptyField) { | |||
| 2102 | uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize); | |||
| 2103 | if (IsUnion) | |||
| 2104 | setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits)); | |||
| 2105 | else | |||
| 2106 | setDataSize(FieldOffset + EffectiveFieldSize); | |||
| 2107 | ||||
| 2108 | PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize); | |||
| 2109 | setSize(std::max(getSizeInBits(), getDataSizeInBits())); | |||
| 2110 | } else { | |||
| 2111 | setSize(std::max(getSizeInBits(), | |||
| 2112 | (uint64_t)Context.toBits(FieldOffset + FieldSize))); | |||
| 2113 | } | |||
| 2114 | ||||
| 2115 | // Remember max struct/class ABI-specified alignment. | |||
| 2116 | UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign); | |||
| 2117 | UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign); | |||
| 2118 | ||||
| 2119 | // For checking the alignment of inner fields against | |||
| 2120 | // the alignment of its parent record. | |||
| 2121 | if (const RecordDecl *RD = D->getParent()) { | |||
| 2122 | // Check if packed attribute or pragma pack is present. | |||
| 2123 | if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero()) | |||
| 2124 | if (FieldAlign < OriginalFieldAlign) | |||
| 2125 | if (D->getType()->isRecordType()) { | |||
| 2126 | // If the offset is a multiple of the alignment of | |||
| 2127 | // the type, raise the warning. | |||
| 2128 | // TODO: Takes no account the alignment of the outer struct | |||
| 2129 | if (FieldOffset % OriginalFieldAlign != 0) | |||
| 2130 | Diag(D->getLocation(), diag::warn_unaligned_access) | |||
| 2131 | << Context.getTypeDeclType(RD) << D->getName() << D->getType(); | |||
| 2132 | } | |||
| 2133 | } | |||
| 2134 | ||||
| 2135 | if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign) | |||
| 2136 | Diag(D->getLocation(), diag::warn_unpacked_field) << D; | |||
| 2137 | } | |||
| 2138 | ||||
| 2139 | void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) { | |||
| 2140 | // In C++, records cannot be of size 0. | |||
| 2141 | if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { | |||
| 2142 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { | |||
| 2143 | // Compatibility with gcc requires a class (pod or non-pod) | |||
| 2144 | // which is not empty but of size 0; such as having fields of | |||
| 2145 | // array of zero-length, remains of Size 0 | |||
| 2146 | if (RD->isEmpty()) | |||
| 2147 | setSize(CharUnits::One()); | |||
| 2148 | } | |||
| 2149 | else | |||
| 2150 | setSize(CharUnits::One()); | |||
| 2151 | } | |||
| 2152 | ||||
| 2153 | // If we have any remaining field tail padding, include that in the overall | |||
| 2154 | // size. | |||
| 2155 | setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize))); | |||
| 2156 | ||||
| 2157 | // Finally, round the size of the record up to the alignment of the | |||
| 2158 | // record itself. | |||
| 2159 | uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit; | |||
| 2160 | uint64_t UnpackedSizeInBits = | |||
| 2161 | llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment)); | |||
| 2162 | ||||
| 2163 | uint64_t RoundedSize = llvm::alignTo( | |||
| 2164 | getSizeInBits(), | |||
| 2165 | Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment() | |||
| 2166 | ? Alignment | |||
| 2167 | : PreferredAlignment)); | |||
| 2168 | ||||
| 2169 | if (UseExternalLayout) { | |||
| 2170 | // If we're inferring alignment, and the external size is smaller than | |||
| 2171 | // our size after we've rounded up to alignment, conservatively set the | |||
| 2172 | // alignment to 1. | |||
| 2173 | if (InferAlignment && External.Size < RoundedSize) { | |||
| 2174 | Alignment = CharUnits::One(); | |||
| 2175 | PreferredAlignment = CharUnits::One(); | |||
| 2176 | InferAlignment = false; | |||
| 2177 | } | |||
| 2178 | setSize(External.Size); | |||
| 2179 | return; | |||
| 2180 | } | |||
| 2181 | ||||
| 2182 | // Set the size to the final size. | |||
| 2183 | setSize(RoundedSize); | |||
| 2184 | ||||
| 2185 | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); | |||
| 2186 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { | |||
| 2187 | // Warn if padding was introduced to the struct/class/union. | |||
| 2188 | if (getSizeInBits() > UnpaddedSize) { | |||
| 2189 | unsigned PadSize = getSizeInBits() - UnpaddedSize; | |||
| 2190 | bool InBits = true; | |||
| 2191 | if (PadSize % CharBitNum == 0) { | |||
| 2192 | PadSize = PadSize / CharBitNum; | |||
| 2193 | InBits = false; | |||
| 2194 | } | |||
| 2195 | Diag(RD->getLocation(), diag::warn_padded_struct_size) | |||
| 2196 | << Context.getTypeDeclType(RD) | |||
| 2197 | << PadSize | |||
| 2198 | << (InBits ? 1 : 0); // (byte|bit) | |||
| 2199 | } | |||
| 2200 | ||||
| 2201 | // Warn if we packed it unnecessarily, when the unpacked alignment is not | |||
| 2202 | // greater than the one after packing, the size in bits doesn't change and | |||
| 2203 | // the offset of each field is identical. | |||
| 2204 | if (Packed && UnpackedAlignment <= Alignment && | |||
| 2205 | UnpackedSizeInBits == getSizeInBits() && !HasPackedField) | |||
| 2206 | Diag(D->getLocation(), diag::warn_unnecessary_packed) | |||
| 2207 | << Context.getTypeDeclType(RD); | |||
| 2208 | } | |||
| 2209 | } | |||
| 2210 | ||||
| 2211 | void ItaniumRecordLayoutBuilder::UpdateAlignment( | |||
| 2212 | CharUnits NewAlignment, CharUnits UnpackedNewAlignment, | |||
| 2213 | CharUnits PreferredNewAlignment) { | |||
| 2214 | // The alignment is not modified when using 'mac68k' alignment or when | |||
| 2215 | // we have an externally-supplied layout that also provides overall alignment. | |||
| 2216 | if (IsMac68kAlign || (UseExternalLayout && !InferAlignment)) | |||
| 2217 | return; | |||
| 2218 | ||||
| 2219 | if (NewAlignment > Alignment) { | |||
| 2220 | assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&(static_cast <bool> (llvm::isPowerOf2_64(NewAlignment.getQuantity ()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(NewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2221, __extension__ __PRETTY_FUNCTION__)) | |||
| 2221 | "Alignment not a power of 2")(static_cast <bool> (llvm::isPowerOf2_64(NewAlignment.getQuantity ()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(NewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2221, __extension__ __PRETTY_FUNCTION__)); | |||
| 2222 | Alignment = NewAlignment; | |||
| 2223 | } | |||
| 2224 | ||||
| 2225 | if (UnpackedNewAlignment > UnpackedAlignment) { | |||
| 2226 | assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&(static_cast <bool> (llvm::isPowerOf2_64(UnpackedNewAlignment .getQuantity()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2227, __extension__ __PRETTY_FUNCTION__)) | |||
| 2227 | "Alignment not a power of 2")(static_cast <bool> (llvm::isPowerOf2_64(UnpackedNewAlignment .getQuantity()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2227, __extension__ __PRETTY_FUNCTION__)); | |||
| 2228 | UnpackedAlignment = UnpackedNewAlignment; | |||
| 2229 | } | |||
| 2230 | ||||
| 2231 | if (PreferredNewAlignment > PreferredAlignment) { | |||
| 2232 | assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&(static_cast <bool> (llvm::isPowerOf2_64(PreferredNewAlignment .getQuantity()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2233, __extension__ __PRETTY_FUNCTION__)) | |||
| 2233 | "Alignment not a power of 2")(static_cast <bool> (llvm::isPowerOf2_64(PreferredNewAlignment .getQuantity()) && "Alignment not a power of 2") ? void (0) : __assert_fail ("llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && \"Alignment not a power of 2\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2233, __extension__ __PRETTY_FUNCTION__)); | |||
| 2234 | PreferredAlignment = PreferredNewAlignment; | |||
| 2235 | } | |||
| 2236 | } | |||
| 2237 | ||||
| 2238 | uint64_t | |||
| 2239 | ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, | |||
| 2240 | uint64_t ComputedOffset) { | |||
| 2241 | uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field); | |||
| 2242 | ||||
| 2243 | if (InferAlignment && ExternalFieldOffset < ComputedOffset) { | |||
| 2244 | // The externally-supplied field offset is before the field offset we | |||
| 2245 | // computed. Assume that the structure is packed. | |||
| 2246 | Alignment = CharUnits::One(); | |||
| 2247 | PreferredAlignment = CharUnits::One(); | |||
| 2248 | InferAlignment = false; | |||
| 2249 | } | |||
| 2250 | ||||
| 2251 | // Use the externally-supplied field offset. | |||
| 2252 | return ExternalFieldOffset; | |||
| 2253 | } | |||
| 2254 | ||||
| 2255 | /// Get diagnostic %select index for tag kind for | |||
| 2256 | /// field padding diagnostic message. | |||
| 2257 | /// WARNING: Indexes apply to particular diagnostics only! | |||
| 2258 | /// | |||
| 2259 | /// \returns diagnostic %select index. | |||
| 2260 | static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { | |||
| 2261 | switch (Tag) { | |||
| 2262 | case TTK_Struct: return 0; | |||
| 2263 | case TTK_Interface: return 1; | |||
| 2264 | case TTK_Class: return 2; | |||
| 2265 | default: llvm_unreachable("Invalid tag kind for field padding diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for field padding diagnostic!" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2265); | |||
| 2266 | } | |||
| 2267 | } | |||
| 2268 | ||||
| 2269 | void ItaniumRecordLayoutBuilder::CheckFieldPadding( | |||
| 2270 | uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, | |||
| 2271 | unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { | |||
| 2272 | // We let objc ivars without warning, objc interfaces generally are not used | |||
| 2273 | // for padding tricks. | |||
| 2274 | if (isa<ObjCIvarDecl>(D)) | |||
| 2275 | return; | |||
| 2276 | ||||
| 2277 | // Don't warn about structs created without a SourceLocation. This can | |||
| 2278 | // be done by clients of the AST, such as codegen. | |||
| 2279 | if (D->getLocation().isInvalid()) | |||
| 2280 | return; | |||
| 2281 | ||||
| 2282 | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); | |||
| 2283 | ||||
| 2284 | // Warn if padding was introduced to the struct/class. | |||
| 2285 | if (!IsUnion && Offset > UnpaddedOffset) { | |||
| 2286 | unsigned PadSize = Offset - UnpaddedOffset; | |||
| 2287 | bool InBits = true; | |||
| 2288 | if (PadSize % CharBitNum == 0) { | |||
| 2289 | PadSize = PadSize / CharBitNum; | |||
| 2290 | InBits = false; | |||
| 2291 | } | |||
| 2292 | if (D->getIdentifier()) | |||
| 2293 | Diag(D->getLocation(), diag::warn_padded_struct_field) | |||
| 2294 | << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) | |||
| 2295 | << Context.getTypeDeclType(D->getParent()) | |||
| 2296 | << PadSize | |||
| 2297 | << (InBits ? 1 : 0) // (byte|bit) | |||
| 2298 | << D->getIdentifier(); | |||
| 2299 | else | |||
| 2300 | Diag(D->getLocation(), diag::warn_padded_struct_anon_field) | |||
| 2301 | << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) | |||
| 2302 | << Context.getTypeDeclType(D->getParent()) | |||
| 2303 | << PadSize | |||
| 2304 | << (InBits ? 1 : 0); // (byte|bit) | |||
| 2305 | } | |||
| 2306 | if (isPacked && Offset != UnpackedOffset) { | |||
| 2307 | HasPackedField = true; | |||
| 2308 | } | |||
| 2309 | } | |||
| 2310 | ||||
| 2311 | static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, | |||
| 2312 | const CXXRecordDecl *RD) { | |||
| 2313 | // If a class isn't polymorphic it doesn't have a key function. | |||
| 2314 | if (!RD->isPolymorphic()) | |||
| 2315 | return nullptr; | |||
| 2316 | ||||
| 2317 | // A class that is not externally visible doesn't have a key function. (Or | |||
| 2318 | // at least, there's no point to assigning a key function to such a class; | |||
| 2319 | // this doesn't affect the ABI.) | |||
| 2320 | if (!RD->isExternallyVisible()) | |||
| 2321 | return nullptr; | |||
| 2322 | ||||
| 2323 | // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6. | |||
| 2324 | // Same behavior as GCC. | |||
| 2325 | TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); | |||
| 2326 | if (TSK == TSK_ImplicitInstantiation || | |||
| 2327 | TSK == TSK_ExplicitInstantiationDeclaration || | |||
| 2328 | TSK == TSK_ExplicitInstantiationDefinition) | |||
| 2329 | return nullptr; | |||
| 2330 | ||||
| 2331 | bool allowInlineFunctions = | |||
| 2332 | Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); | |||
| 2333 | ||||
| 2334 | for (const CXXMethodDecl *MD : RD->methods()) { | |||
| 2335 | if (!MD->isVirtual()) | |||
| 2336 | continue; | |||
| 2337 | ||||
| 2338 | if (MD->isPure()) | |||
| 2339 | continue; | |||
| 2340 | ||||
| 2341 | // Ignore implicit member functions, they are always marked as inline, but | |||
| 2342 | // they don't have a body until they're defined. | |||
| 2343 | if (MD->isImplicit()) | |||
| 2344 | continue; | |||
| 2345 | ||||
| 2346 | if (MD->isInlineSpecified() || MD->isConstexpr()) | |||
| 2347 | continue; | |||
| 2348 | ||||
| 2349 | if (MD->hasInlineBody()) | |||
| 2350 | continue; | |||
| 2351 | ||||
| 2352 | // Ignore inline deleted or defaulted functions. | |||
| 2353 | if (!MD->isUserProvided()) | |||
| 2354 | continue; | |||
| 2355 | ||||
| 2356 | // In certain ABIs, ignore functions with out-of-line inline definitions. | |||
| 2357 | if (!allowInlineFunctions) { | |||
| 2358 | const FunctionDecl *Def; | |||
| 2359 | if (MD->hasBody(Def) && Def->isInlineSpecified()) | |||
| 2360 | continue; | |||
| 2361 | } | |||
| 2362 | ||||
| 2363 | if (Context.getLangOpts().CUDA) { | |||
| 2364 | // While compiler may see key method in this TU, during CUDA | |||
| 2365 | // compilation we should ignore methods that are not accessible | |||
| 2366 | // on this side of compilation. | |||
| 2367 | if (Context.getLangOpts().CUDAIsDevice) { | |||
| 2368 | // In device mode ignore methods without __device__ attribute. | |||
| 2369 | if (!MD->hasAttr<CUDADeviceAttr>()) | |||
| 2370 | continue; | |||
| 2371 | } else { | |||
| 2372 | // In host mode ignore __device__-only methods. | |||
| 2373 | if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>()) | |||
| 2374 | continue; | |||
| 2375 | } | |||
| 2376 | } | |||
| 2377 | ||||
| 2378 | // If the key function is dllimport but the class isn't, then the class has | |||
| 2379 | // no key function. The DLL that exports the key function won't export the | |||
| 2380 | // vtable in this case. | |||
| 2381 | if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() && | |||
| 2382 | !Context.getTargetInfo().hasPS4DLLImportExport()) | |||
| 2383 | return nullptr; | |||
| 2384 | ||||
| 2385 | // We found it. | |||
| 2386 | return MD; | |||
| 2387 | } | |||
| 2388 | ||||
| 2389 | return nullptr; | |||
| 2390 | } | |||
| 2391 | ||||
| 2392 | DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc, | |||
| 2393 | unsigned DiagID) { | |||
| 2394 | return Context.getDiagnostics().Report(Loc, DiagID); | |||
| 2395 | } | |||
| 2396 | ||||
| 2397 | /// Does the target C++ ABI require us to skip over the tail-padding | |||
| 2398 | /// of the given class (considering it as a base class) when allocating | |||
| 2399 | /// objects? | |||
| 2400 | static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { | |||
| 2401 | switch (ABI.getTailPaddingUseRules()) { | |||
| 2402 | case TargetCXXABI::AlwaysUseTailPadding: | |||
| 2403 | return false; | |||
| 2404 | ||||
| 2405 | case TargetCXXABI::UseTailPaddingUnlessPOD03: | |||
| 2406 | // FIXME: To the extent that this is meant to cover the Itanium ABI | |||
| 2407 | // rules, we should implement the restrictions about over-sized | |||
| 2408 | // bitfields: | |||
| 2409 | // | |||
| 2410 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD : | |||
| 2411 | // In general, a type is considered a POD for the purposes of | |||
| 2412 | // layout if it is a POD type (in the sense of ISO C++ | |||
| 2413 | // [basic.types]). However, a POD-struct or POD-union (in the | |||
| 2414 | // sense of ISO C++ [class]) with a bitfield member whose | |||
| 2415 | // declared width is wider than the declared type of the | |||
| 2416 | // bitfield is not a POD for the purpose of layout. Similarly, | |||
| 2417 | // an array type is not a POD for the purpose of layout if the | |||
| 2418 | // element type of the array is not a POD for the purpose of | |||
| 2419 | // layout. | |||
| 2420 | // | |||
| 2421 | // Where references to the ISO C++ are made in this paragraph, | |||
| 2422 | // the Technical Corrigendum 1 version of the standard is | |||
| 2423 | // intended. | |||
| 2424 | return RD->isPOD(); | |||
| 2425 | ||||
| 2426 | case TargetCXXABI::UseTailPaddingUnlessPOD11: | |||
| 2427 | // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), | |||
| 2428 | // but with a lot of abstraction penalty stripped off. This does | |||
| 2429 | // assume that these properties are set correctly even in C++98 | |||
| 2430 | // mode; fortunately, that is true because we want to assign | |||
| 2431 | // consistently semantics to the type-traits intrinsics (or at | |||
| 2432 | // least as many of them as possible). | |||
| 2433 | return RD->isTrivial() && RD->isCXX11StandardLayout(); | |||
| 2434 | } | |||
| 2435 | ||||
| 2436 | llvm_unreachable("bad tail-padding use kind")::llvm::llvm_unreachable_internal("bad tail-padding use kind" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2436); | |||
| 2437 | } | |||
| 2438 | ||||
| 2439 | static bool isMsLayout(const ASTContext &Context) { | |||
| 2440 | return Context.getTargetInfo().getCXXABI().isMicrosoft(); | |||
| 2441 | } | |||
| 2442 | ||||
| 2443 | // This section contains an implementation of struct layout that is, up to the | |||
| 2444 | // included tests, compatible with cl.exe (2013). The layout produced is | |||
| 2445 | // significantly different than those produced by the Itanium ABI. Here we note | |||
| 2446 | // the most important differences. | |||
| 2447 | // | |||
| 2448 | // * The alignment of bitfields in unions is ignored when computing the | |||
| 2449 | // alignment of the union. | |||
| 2450 | // * The existence of zero-width bitfield that occurs after anything other than | |||
| 2451 | // a non-zero length bitfield is ignored. | |||
| 2452 | // * There is no explicit primary base for the purposes of layout. All bases | |||
| 2453 | // with vfptrs are laid out first, followed by all bases without vfptrs. | |||
| 2454 | // * The Itanium equivalent vtable pointers are split into a vfptr (virtual | |||
| 2455 | // function pointer) and a vbptr (virtual base pointer). They can each be | |||
| 2456 | // shared with a, non-virtual bases. These bases need not be the same. vfptrs | |||
| 2457 | // always occur at offset 0. vbptrs can occur at an arbitrary offset and are | |||
| 2458 | // placed after the lexicographically last non-virtual base. This placement | |||
| 2459 | // is always before fields but can be in the middle of the non-virtual bases | |||
| 2460 | // due to the two-pass layout scheme for non-virtual-bases. | |||
| 2461 | // * Virtual bases sometimes require a 'vtordisp' field that is laid out before | |||
| 2462 | // the virtual base and is used in conjunction with virtual overrides during | |||
| 2463 | // construction and destruction. This is always a 4 byte value and is used as | |||
| 2464 | // an alternative to constructor vtables. | |||
| 2465 | // * vtordisps are allocated in a block of memory with size and alignment equal | |||
| 2466 | // to the alignment of the completed structure (before applying __declspec( | |||
| 2467 | // align())). The vtordisp always occur at the end of the allocation block, | |||
| 2468 | // immediately prior to the virtual base. | |||
| 2469 | // * vfptrs are injected after all bases and fields have been laid out. In | |||
| 2470 | // order to guarantee proper alignment of all fields, the vfptr injection | |||
| 2471 | // pushes all bases and fields back by the alignment imposed by those bases | |||
| 2472 | // and fields. This can potentially add a significant amount of padding. | |||
| 2473 | // vfptrs are always injected at offset 0. | |||
| 2474 | // * vbptrs are injected after all bases and fields have been laid out. In | |||
| 2475 | // order to guarantee proper alignment of all fields, the vfptr injection | |||
| 2476 | // pushes all bases and fields back by the alignment imposed by those bases | |||
| 2477 | // and fields. This can potentially add a significant amount of padding. | |||
| 2478 | // vbptrs are injected immediately after the last non-virtual base as | |||
| 2479 | // lexicographically ordered in the code. If this site isn't pointer aligned | |||
| 2480 | // the vbptr is placed at the next properly aligned location. Enough padding | |||
| 2481 | // is added to guarantee a fit. | |||
| 2482 | // * The last zero sized non-virtual base can be placed at the end of the | |||
| 2483 | // struct (potentially aliasing another object), or may alias with the first | |||
| 2484 | // field, even if they are of the same type. | |||
| 2485 | // * The last zero size virtual base may be placed at the end of the struct | |||
| 2486 | // potentially aliasing another object. | |||
| 2487 | // * The ABI attempts to avoid aliasing of zero sized bases by adding padding | |||
| 2488 | // between bases or vbases with specific properties. The criteria for | |||
| 2489 | // additional padding between two bases is that the first base is zero sized | |||
| 2490 | // or ends with a zero sized subobject and the second base is zero sized or | |||
| 2491 | // trails with a zero sized base or field (sharing of vfptrs can reorder the | |||
| 2492 | // layout of the so the leading base is not always the first one declared). | |||
| 2493 | // This rule does take into account fields that are not records, so padding | |||
| 2494 | // will occur even if the last field is, e.g. an int. The padding added for | |||
| 2495 | // bases is 1 byte. The padding added between vbases depends on the alignment | |||
| 2496 | // of the object but is at least 4 bytes (in both 32 and 64 bit modes). | |||
| 2497 | // * There is no concept of non-virtual alignment, non-virtual alignment and | |||
| 2498 | // alignment are always identical. | |||
| 2499 | // * There is a distinction between alignment and required alignment. | |||
| 2500 | // __declspec(align) changes the required alignment of a struct. This | |||
| 2501 | // alignment is _always_ obeyed, even in the presence of #pragma pack. A | |||
| 2502 | // record inherits required alignment from all of its fields and bases. | |||
| 2503 | // * __declspec(align) on bitfields has the effect of changing the bitfield's | |||
| 2504 | // alignment instead of its required alignment. This is the only known way | |||
| 2505 | // to make the alignment of a struct bigger than 8. Interestingly enough | |||
| 2506 | // this alignment is also immune to the effects of #pragma pack and can be | |||
| 2507 | // used to create structures with large alignment under #pragma pack. | |||
| 2508 | // However, because it does not impact required alignment, such a structure, | |||
| 2509 | // when used as a field or base, will not be aligned if #pragma pack is | |||
| 2510 | // still active at the time of use. | |||
| 2511 | // | |||
| 2512 | // Known incompatibilities: | |||
| 2513 | // * all: #pragma pack between fields in a record | |||
| 2514 | // * 2010 and back: If the last field in a record is a bitfield, every object | |||
| 2515 | // laid out after the record will have extra padding inserted before it. The | |||
| 2516 | // extra padding will have size equal to the size of the storage class of the | |||
| 2517 | // bitfield. 0 sized bitfields don't exhibit this behavior and the extra | |||
| 2518 | // padding can be avoided by adding a 0 sized bitfield after the non-zero- | |||
| 2519 | // sized bitfield. | |||
| 2520 | // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or | |||
| 2521 | // greater due to __declspec(align()) then a second layout phase occurs after | |||
| 2522 | // The locations of the vf and vb pointers are known. This layout phase | |||
| 2523 | // suffers from the "last field is a bitfield" bug in 2010 and results in | |||
| 2524 | // _every_ field getting padding put in front of it, potentially including the | |||
| 2525 | // vfptr, leaving the vfprt at a non-zero location which results in a fault if | |||
| 2526 | // anything tries to read the vftbl. The second layout phase also treats | |||
| 2527 | // bitfields as separate entities and gives them each storage rather than | |||
| 2528 | // packing them. Additionally, because this phase appears to perform a | |||
| 2529 | // (an unstable) sort on the members before laying them out and because merged | |||
| 2530 | // bitfields have the same address, the bitfields end up in whatever order | |||
| 2531 | // the sort left them in, a behavior we could never hope to replicate. | |||
| 2532 | ||||
| 2533 | namespace { | |||
| 2534 | struct MicrosoftRecordLayoutBuilder { | |||
| 2535 | struct ElementInfo { | |||
| 2536 | CharUnits Size; | |||
| 2537 | CharUnits Alignment; | |||
| 2538 | }; | |||
| 2539 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; | |||
| 2540 | MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {} | |||
| 2541 | private: | |||
| 2542 | MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete; | |||
| 2543 | void operator=(const MicrosoftRecordLayoutBuilder &) = delete; | |||
| 2544 | public: | |||
| 2545 | void layout(const RecordDecl *RD); | |||
| 2546 | void cxxLayout(const CXXRecordDecl *RD); | |||
| 2547 | /// Initializes size and alignment and honors some flags. | |||
| 2548 | void initializeLayout(const RecordDecl *RD); | |||
| 2549 | /// Initialized C++ layout, compute alignment and virtual alignment and | |||
| 2550 | /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is | |||
| 2551 | /// laid out. | |||
| 2552 | void initializeCXXLayout(const CXXRecordDecl *RD); | |||
| 2553 | void layoutNonVirtualBases(const CXXRecordDecl *RD); | |||
| 2554 | void layoutNonVirtualBase(const CXXRecordDecl *RD, | |||
| 2555 | const CXXRecordDecl *BaseDecl, | |||
| 2556 | const ASTRecordLayout &BaseLayout, | |||
| 2557 | const ASTRecordLayout *&PreviousBaseLayout); | |||
| 2558 | void injectVFPtr(const CXXRecordDecl *RD); | |||
| 2559 | void injectVBPtr(const CXXRecordDecl *RD); | |||
| 2560 | /// Lays out the fields of the record. Also rounds size up to | |||
| 2561 | /// alignment. | |||
| 2562 | void layoutFields(const RecordDecl *RD); | |||
| 2563 | void layoutField(const FieldDecl *FD); | |||
| 2564 | void layoutBitField(const FieldDecl *FD); | |||
| 2565 | /// Lays out a single zero-width bit-field in the record and handles | |||
| 2566 | /// special cases associated with zero-width bit-fields. | |||
| 2567 | void layoutZeroWidthBitField(const FieldDecl *FD); | |||
| 2568 | void layoutVirtualBases(const CXXRecordDecl *RD); | |||
| 2569 | void finalizeLayout(const RecordDecl *RD); | |||
| 2570 | /// Gets the size and alignment of a base taking pragma pack and | |||
| 2571 | /// __declspec(align) into account. | |||
| 2572 | ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout); | |||
| 2573 | /// Gets the size and alignment of a field taking pragma pack and | |||
| 2574 | /// __declspec(align) into account. It also updates RequiredAlignment as a | |||
| 2575 | /// side effect because it is most convenient to do so here. | |||
| 2576 | ElementInfo getAdjustedElementInfo(const FieldDecl *FD); | |||
| 2577 | /// Places a field at an offset in CharUnits. | |||
| 2578 | void placeFieldAtOffset(CharUnits FieldOffset) { | |||
| 2579 | FieldOffsets.push_back(Context.toBits(FieldOffset)); | |||
| 2580 | } | |||
| 2581 | /// Places a bitfield at a bit offset. | |||
| 2582 | void placeFieldAtBitOffset(uint64_t FieldOffset) { | |||
| 2583 | FieldOffsets.push_back(FieldOffset); | |||
| 2584 | } | |||
| 2585 | /// Compute the set of virtual bases for which vtordisps are required. | |||
| 2586 | void computeVtorDispSet( | |||
| 2587 | llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet, | |||
| 2588 | const CXXRecordDecl *RD) const; | |||
| 2589 | const ASTContext &Context; | |||
| 2590 | /// The size of the record being laid out. | |||
| 2591 | CharUnits Size; | |||
| 2592 | /// The non-virtual size of the record layout. | |||
| 2593 | CharUnits NonVirtualSize; | |||
| 2594 | /// The data size of the record layout. | |||
| 2595 | CharUnits DataSize; | |||
| 2596 | /// The current alignment of the record layout. | |||
| 2597 | CharUnits Alignment; | |||
| 2598 | /// The maximum allowed field alignment. This is set by #pragma pack. | |||
| 2599 | CharUnits MaxFieldAlignment; | |||
| 2600 | /// The alignment that this record must obey. This is imposed by | |||
| 2601 | /// __declspec(align()) on the record itself or one of its fields or bases. | |||
| 2602 | CharUnits RequiredAlignment; | |||
| 2603 | /// The size of the allocation of the currently active bitfield. | |||
| 2604 | /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield | |||
| 2605 | /// is true. | |||
| 2606 | CharUnits CurrentBitfieldSize; | |||
| 2607 | /// Offset to the virtual base table pointer (if one exists). | |||
| 2608 | CharUnits VBPtrOffset; | |||
| 2609 | /// Minimum record size possible. | |||
| 2610 | CharUnits MinEmptyStructSize; | |||
| 2611 | /// The size and alignment info of a pointer. | |||
| 2612 | ElementInfo PointerInfo; | |||
| 2613 | /// The primary base class (if one exists). | |||
| 2614 | const CXXRecordDecl *PrimaryBase; | |||
| 2615 | /// The class we share our vb-pointer with. | |||
| 2616 | const CXXRecordDecl *SharedVBPtrBase; | |||
| 2617 | /// The collection of field offsets. | |||
| 2618 | SmallVector<uint64_t, 16> FieldOffsets; | |||
| 2619 | /// Base classes and their offsets in the record. | |||
| 2620 | BaseOffsetsMapTy Bases; | |||
| 2621 | /// virtual base classes and their offsets in the record. | |||
| 2622 | ASTRecordLayout::VBaseOffsetsMapTy VBases; | |||
| 2623 | /// The number of remaining bits in our last bitfield allocation. | |||
| 2624 | /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is | |||
| 2625 | /// true. | |||
| 2626 | unsigned RemainingBitsInField; | |||
| 2627 | bool IsUnion : 1; | |||
| 2628 | /// True if the last field laid out was a bitfield and was not 0 | |||
| 2629 | /// width. | |||
| 2630 | bool LastFieldIsNonZeroWidthBitfield : 1; | |||
| 2631 | /// True if the class has its own vftable pointer. | |||
| 2632 | bool HasOwnVFPtr : 1; | |||
| 2633 | /// True if the class has a vbtable pointer. | |||
| 2634 | bool HasVBPtr : 1; | |||
| 2635 | /// True if the last sub-object within the type is zero sized or the | |||
| 2636 | /// object itself is zero sized. This *does not* count members that are not | |||
| 2637 | /// records. Only used for MS-ABI. | |||
| 2638 | bool EndsWithZeroSizedObject : 1; | |||
| 2639 | /// True if this class is zero sized or first base is zero sized or | |||
| 2640 | /// has this property. Only used for MS-ABI. | |||
| 2641 | bool LeadsWithZeroSizedBase : 1; | |||
| 2642 | ||||
| 2643 | /// True if the external AST source provided a layout for this record. | |||
| 2644 | bool UseExternalLayout : 1; | |||
| 2645 | ||||
| 2646 | /// The layout provided by the external AST source. Only active if | |||
| 2647 | /// UseExternalLayout is true. | |||
| 2648 | ExternalLayout External; | |||
| 2649 | }; | |||
| 2650 | } // namespace | |||
| 2651 | ||||
| 2652 | MicrosoftRecordLayoutBuilder::ElementInfo | |||
| 2653 | MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( | |||
| 2654 | const ASTRecordLayout &Layout) { | |||
| 2655 | ElementInfo Info; | |||
| 2656 | Info.Alignment = Layout.getAlignment(); | |||
| 2657 | // Respect pragma pack. | |||
| 2658 | if (!MaxFieldAlignment.isZero()) | |||
| 2659 | Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); | |||
| 2660 | // Track zero-sized subobjects here where it's already available. | |||
| 2661 | EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); | |||
| 2662 | // Respect required alignment, this is necessary because we may have adjusted | |||
| 2663 | // the alignment in the case of pragma pack. Note that the required alignment | |||
| 2664 | // doesn't actually apply to the struct alignment at this point. | |||
| 2665 | Alignment = std::max(Alignment, Info.Alignment); | |||
| 2666 | RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment()); | |||
| 2667 | Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment()); | |||
| 2668 | Info.Size = Layout.getNonVirtualSize(); | |||
| 2669 | return Info; | |||
| 2670 | } | |||
| 2671 | ||||
| 2672 | MicrosoftRecordLayoutBuilder::ElementInfo | |||
| 2673 | MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( | |||
| 2674 | const FieldDecl *FD) { | |||
| 2675 | // Get the alignment of the field type's natural alignment, ignore any | |||
| 2676 | // alignment attributes. | |||
| 2677 | auto TInfo = | |||
| 2678 | Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType()); | |||
| 2679 | ElementInfo Info{TInfo.Width, TInfo.Align}; | |||
| 2680 | // Respect align attributes on the field. | |||
| 2681 | CharUnits FieldRequiredAlignment = | |||
| 2682 | Context.toCharUnitsFromBits(FD->getMaxAlignment()); | |||
| 2683 | // Respect align attributes on the type. | |||
| 2684 | if (Context.isAlignmentRequired(FD->getType())) | |||
| 2685 | FieldRequiredAlignment = std::max( | |||
| 2686 | Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment); | |||
| 2687 | // Respect attributes applied to subobjects of the field. | |||
| 2688 | if (FD->isBitField()) | |||
| 2689 | // For some reason __declspec align impacts alignment rather than required | |||
| 2690 | // alignment when it is applied to bitfields. | |||
| 2691 | Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); | |||
| 2692 | else { | |||
| 2693 | if (auto RT = | |||
| 2694 | FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { | |||
| 2695 | auto const &Layout = Context.getASTRecordLayout(RT->getDecl()); | |||
| 2696 | EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); | |||
| 2697 | FieldRequiredAlignment = std::max(FieldRequiredAlignment, | |||
| 2698 | Layout.getRequiredAlignment()); | |||
| 2699 | } | |||
| 2700 | // Capture required alignment as a side-effect. | |||
| 2701 | RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment); | |||
| 2702 | } | |||
| 2703 | // Respect pragma pack, attribute pack and declspec align | |||
| 2704 | if (!MaxFieldAlignment.isZero()) | |||
| 2705 | Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); | |||
| 2706 | if (FD->hasAttr<PackedAttr>()) | |||
| 2707 | Info.Alignment = CharUnits::One(); | |||
| 2708 | Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); | |||
| 2709 | return Info; | |||
| 2710 | } | |||
| 2711 | ||||
| 2712 | void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) { | |||
| 2713 | // For C record layout, zero-sized records always have size 4. | |||
| 2714 | MinEmptyStructSize = CharUnits::fromQuantity(4); | |||
| 2715 | initializeLayout(RD); | |||
| 2716 | layoutFields(RD); | |||
| 2717 | DataSize = Size = Size.alignTo(Alignment); | |||
| 2718 | RequiredAlignment = std::max( | |||
| 2719 | RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); | |||
| 2720 | finalizeLayout(RD); | |||
| 2721 | } | |||
| 2722 | ||||
| 2723 | void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) { | |||
| 2724 | // The C++ standard says that empty structs have size 1. | |||
| 2725 | MinEmptyStructSize = CharUnits::One(); | |||
| 2726 | initializeLayout(RD); | |||
| 2727 | initializeCXXLayout(RD); | |||
| 2728 | layoutNonVirtualBases(RD); | |||
| 2729 | layoutFields(RD); | |||
| 2730 | injectVBPtr(RD); | |||
| 2731 | injectVFPtr(RD); | |||
| 2732 | if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase)) | |||
| 2733 | Alignment = std::max(Alignment, PointerInfo.Alignment); | |||
| 2734 | auto RoundingAlignment = Alignment; | |||
| 2735 | if (!MaxFieldAlignment.isZero()) | |||
| 2736 | RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); | |||
| 2737 | if (!UseExternalLayout) | |||
| 2738 | Size = Size.alignTo(RoundingAlignment); | |||
| 2739 | NonVirtualSize = Size; | |||
| 2740 | RequiredAlignment = std::max( | |||
| 2741 | RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); | |||
| 2742 | layoutVirtualBases(RD); | |||
| 2743 | finalizeLayout(RD); | |||
| 2744 | } | |||
| 2745 | ||||
| 2746 | void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) { | |||
| 2747 | IsUnion = RD->isUnion(); | |||
| 2748 | Size = CharUnits::Zero(); | |||
| 2749 | Alignment = CharUnits::One(); | |||
| 2750 | // In 64-bit mode we always perform an alignment step after laying out vbases. | |||
| 2751 | // In 32-bit mode we do not. The check to see if we need to perform alignment | |||
| 2752 | // checks the RequiredAlignment field and performs alignment if it isn't 0. | |||
| 2753 | RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit() | |||
| 2754 | ? CharUnits::One() | |||
| 2755 | : CharUnits::Zero(); | |||
| 2756 | // Compute the maximum field alignment. | |||
| 2757 | MaxFieldAlignment = CharUnits::Zero(); | |||
| 2758 | // Honor the default struct packing maximum alignment flag. | |||
| 2759 | if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) | |||
| 2760 | MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); | |||
| 2761 | // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger | |||
| 2762 | // than the pointer size. | |||
| 2763 | if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){ | |||
| 2764 | unsigned PackedAlignment = MFAA->getAlignment(); | |||
| 2765 | if (PackedAlignment <= | |||
| 2766 | Context.getTargetInfo().getPointerWidth(LangAS::Default)) | |||
| 2767 | MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment); | |||
| 2768 | } | |||
| 2769 | // Packed attribute forces max field alignment to be 1. | |||
| 2770 | if (RD->hasAttr<PackedAttr>()) | |||
| 2771 | MaxFieldAlignment = CharUnits::One(); | |||
| 2772 | ||||
| 2773 | // Try to respect the external layout if present. | |||
| 2774 | UseExternalLayout = false; | |||
| 2775 | if (ExternalASTSource *Source = Context.getExternalSource()) | |||
| 2776 | UseExternalLayout = Source->layoutRecordType( | |||
| 2777 | RD, External.Size, External.Align, External.FieldOffsets, | |||
| 2778 | External.BaseOffsets, External.VirtualBaseOffsets); | |||
| 2779 | } | |||
| 2780 | ||||
| 2781 | void | |||
| 2782 | MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) { | |||
| 2783 | EndsWithZeroSizedObject = false; | |||
| 2784 | LeadsWithZeroSizedBase = false; | |||
| 2785 | HasOwnVFPtr = false; | |||
| 2786 | HasVBPtr = false; | |||
| 2787 | PrimaryBase = nullptr; | |||
| 2788 | SharedVBPtrBase = nullptr; | |||
| 2789 | // Calculate pointer size and alignment. These are used for vfptr and vbprt | |||
| 2790 | // injection. | |||
| 2791 | PointerInfo.Size = Context.toCharUnitsFromBits( | |||
| 2792 | Context.getTargetInfo().getPointerWidth(LangAS::Default)); | |||
| 2793 | PointerInfo.Alignment = Context.toCharUnitsFromBits( | |||
| 2794 | Context.getTargetInfo().getPointerAlign(LangAS::Default)); | |||
| 2795 | // Respect pragma pack. | |||
| 2796 | if (!MaxFieldAlignment.isZero()) | |||
| 2797 | PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment); | |||
| 2798 | } | |||
| 2799 | ||||
| 2800 | void | |||
| 2801 | MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) { | |||
| 2802 | // The MS-ABI lays out all bases that contain leading vfptrs before it lays | |||
| 2803 | // out any bases that do not contain vfptrs. We implement this as two passes | |||
| 2804 | // over the bases. This approach guarantees that the primary base is laid out | |||
| 2805 | // first. We use these passes to calculate some additional aggregated | |||
| 2806 | // information about the bases, such as required alignment and the presence of | |||
| 2807 | // zero sized members. | |||
| 2808 | const ASTRecordLayout *PreviousBaseLayout = nullptr; | |||
| 2809 | bool HasPolymorphicBaseClass = false; | |||
| 2810 | // Iterate through the bases and lay out the non-virtual ones. | |||
| 2811 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
| 2812 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 2813 | HasPolymorphicBaseClass |= BaseDecl->isPolymorphic(); | |||
| 2814 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | |||
| 2815 | // Mark and skip virtual bases. | |||
| 2816 | if (Base.isVirtual()) { | |||
| 2817 | HasVBPtr = true; | |||
| 2818 | continue; | |||
| 2819 | } | |||
| 2820 | // Check for a base to share a VBPtr with. | |||
| 2821 | if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) { | |||
| 2822 | SharedVBPtrBase = BaseDecl; | |||
| 2823 | HasVBPtr = true; | |||
| 2824 | } | |||
| 2825 | // Only lay out bases with extendable VFPtrs on the first pass. | |||
| 2826 | if (!BaseLayout.hasExtendableVFPtr()) | |||
| 2827 | continue; | |||
| 2828 | // If we don't have a primary base, this one qualifies. | |||
| 2829 | if (!PrimaryBase) { | |||
| 2830 | PrimaryBase = BaseDecl; | |||
| 2831 | LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); | |||
| 2832 | } | |||
| 2833 | // Lay out the base. | |||
| 2834 | layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); | |||
| 2835 | } | |||
| 2836 | // Figure out if we need a fresh VFPtr for this class. | |||
| 2837 | if (RD->isPolymorphic()) { | |||
| 2838 | if (!HasPolymorphicBaseClass) | |||
| 2839 | // This class introduces polymorphism, so we need a vftable to store the | |||
| 2840 | // RTTI information. | |||
| 2841 | HasOwnVFPtr = true; | |||
| 2842 | else if (!PrimaryBase) { | |||
| 2843 | // We have a polymorphic base class but can't extend its vftable. Add a | |||
| 2844 | // new vfptr if we would use any vftable slots. | |||
| 2845 | for (CXXMethodDecl *M : RD->methods()) { | |||
| 2846 | if (MicrosoftVTableContext::hasVtableSlot(M) && | |||
| 2847 | M->size_overridden_methods() == 0) { | |||
| 2848 | HasOwnVFPtr = true; | |||
| 2849 | break; | |||
| 2850 | } | |||
| 2851 | } | |||
| 2852 | } | |||
| 2853 | } | |||
| 2854 | // If we don't have a primary base then we have a leading object that could | |||
| 2855 | // itself lead with a zero-sized object, something we track. | |||
| 2856 | bool CheckLeadingLayout = !PrimaryBase; | |||
| 2857 | // Iterate through the bases and lay out the non-virtual ones. | |||
| 2858 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
| 2859 | if (Base.isVirtual()) | |||
| 2860 | continue; | |||
| 2861 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 2862 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | |||
| 2863 | // Only lay out bases without extendable VFPtrs on the second pass. | |||
| 2864 | if (BaseLayout.hasExtendableVFPtr()) { | |||
| 2865 | VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); | |||
| 2866 | continue; | |||
| 2867 | } | |||
| 2868 | // If this is the first layout, check to see if it leads with a zero sized | |||
| 2869 | // object. If it does, so do we. | |||
| 2870 | if (CheckLeadingLayout) { | |||
| 2871 | CheckLeadingLayout = false; | |||
| 2872 | LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); | |||
| 2873 | } | |||
| 2874 | // Lay out the base. | |||
| 2875 | layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); | |||
| 2876 | VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); | |||
| 2877 | } | |||
| 2878 | // Set our VBPtroffset if we know it at this point. | |||
| 2879 | if (!HasVBPtr) | |||
| 2880 | VBPtrOffset = CharUnits::fromQuantity(-1); | |||
| 2881 | else if (SharedVBPtrBase) { | |||
| 2882 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase); | |||
| 2883 | VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset(); | |||
| 2884 | } | |||
| 2885 | } | |||
| 2886 | ||||
| 2887 | static bool recordUsesEBO(const RecordDecl *RD) { | |||
| 2888 | if (!isa<CXXRecordDecl>(RD)) | |||
| 2889 | return false; | |||
| 2890 | if (RD->hasAttr<EmptyBasesAttr>()) | |||
| 2891 | return true; | |||
| 2892 | if (auto *LVA = RD->getAttr<LayoutVersionAttr>()) | |||
| 2893 | // TODO: Double check with the next version of MSVC. | |||
| 2894 | if (LVA->getVersion() <= LangOptions::MSVC2015) | |||
| 2895 | return false; | |||
| 2896 | // TODO: Some later version of MSVC will change the default behavior of the | |||
| 2897 | // compiler to enable EBO by default. When this happens, we will need an | |||
| 2898 | // additional isCompatibleWithMSVC check. | |||
| 2899 | return false; | |||
| 2900 | } | |||
| 2901 | ||||
| 2902 | void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase( | |||
| 2903 | const CXXRecordDecl *RD, | |||
| 2904 | const CXXRecordDecl *BaseDecl, | |||
| 2905 | const ASTRecordLayout &BaseLayout, | |||
| 2906 | const ASTRecordLayout *&PreviousBaseLayout) { | |||
| 2907 | // Insert padding between two bases if the left first one is zero sized or | |||
| 2908 | // contains a zero sized subobject and the right is zero sized or one leads | |||
| 2909 | // with a zero sized base. | |||
| 2910 | bool MDCUsesEBO = recordUsesEBO(RD); | |||
| 2911 | if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && | |||
| 2912 | BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO) | |||
| 2913 | Size++; | |||
| 2914 | ElementInfo Info = getAdjustedElementInfo(BaseLayout); | |||
| 2915 | CharUnits BaseOffset; | |||
| 2916 | ||||
| 2917 | // Respect the external AST source base offset, if present. | |||
| 2918 | bool FoundBase = false; | |||
| 2919 | if (UseExternalLayout) { | |||
| 2920 | FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset); | |||
| 2921 | if (FoundBase) { | |||
| 2922 | assert(BaseOffset >= Size && "base offset already allocated")(static_cast <bool> (BaseOffset >= Size && "base offset already allocated" ) ? void (0) : __assert_fail ("BaseOffset >= Size && \"base offset already allocated\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2922, __extension__ __PRETTY_FUNCTION__)); | |||
| 2923 | Size = BaseOffset; | |||
| 2924 | } | |||
| 2925 | } | |||
| 2926 | ||||
| 2927 | if (!FoundBase) { | |||
| 2928 | if (MDCUsesEBO && BaseDecl->isEmpty()) { | |||
| 2929 | assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero())(static_cast <bool> (BaseLayout.getNonVirtualSize() == CharUnits ::Zero()) ? void (0) : __assert_fail ("BaseLayout.getNonVirtualSize() == CharUnits::Zero()" , "clang/lib/AST/RecordLayoutBuilder.cpp", 2929, __extension__ __PRETTY_FUNCTION__)); | |||
| 2930 | BaseOffset = CharUnits::Zero(); | |||
| 2931 | } else { | |||
| 2932 | // Otherwise, lay the base out at the end of the MDC. | |||
| 2933 | BaseOffset = Size = Size.alignTo(Info.Alignment); | |||
| 2934 | } | |||
| 2935 | } | |||
| 2936 | Bases.insert(std::make_pair(BaseDecl, BaseOffset)); | |||
| 2937 | Size += BaseLayout.getNonVirtualSize(); | |||
| 2938 | PreviousBaseLayout = &BaseLayout; | |||
| 2939 | } | |||
| 2940 | ||||
| 2941 | void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) { | |||
| 2942 | LastFieldIsNonZeroWidthBitfield = false; | |||
| 2943 | for (const FieldDecl *Field : RD->fields()) | |||
| 2944 | layoutField(Field); | |||
| 2945 | } | |||
| 2946 | ||||
| 2947 | void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) { | |||
| 2948 | if (FD->isBitField()) { | |||
| 2949 | layoutBitField(FD); | |||
| 2950 | return; | |||
| 2951 | } | |||
| 2952 | LastFieldIsNonZeroWidthBitfield = false; | |||
| 2953 | ElementInfo Info = getAdjustedElementInfo(FD); | |||
| 2954 | Alignment = std::max(Alignment, Info.Alignment); | |||
| 2955 | CharUnits FieldOffset; | |||
| 2956 | if (UseExternalLayout) | |||
| 2957 | FieldOffset = | |||
| 2958 | Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD)); | |||
| 2959 | else if (IsUnion) | |||
| 2960 | FieldOffset = CharUnits::Zero(); | |||
| 2961 | else | |||
| 2962 | FieldOffset = Size.alignTo(Info.Alignment); | |||
| 2963 | placeFieldAtOffset(FieldOffset); | |||
| 2964 | Size = std::max(Size, FieldOffset + Info.Size); | |||
| 2965 | } | |||
| 2966 | ||||
| 2967 | void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) { | |||
| 2968 | unsigned Width = FD->getBitWidthValue(Context); | |||
| 2969 | if (Width == 0) { | |||
| 2970 | layoutZeroWidthBitField(FD); | |||
| 2971 | return; | |||
| 2972 | } | |||
| 2973 | ElementInfo Info = getAdjustedElementInfo(FD); | |||
| 2974 | // Clamp the bitfield to a containable size for the sake of being able | |||
| 2975 | // to lay them out. Sema will throw an error. | |||
| 2976 | if (Width > Context.toBits(Info.Size)) | |||
| 2977 | Width = Context.toBits(Info.Size); | |||
| 2978 | // Check to see if this bitfield fits into an existing allocation. Note: | |||
| 2979 | // MSVC refuses to pack bitfields of formal types with different sizes | |||
| 2980 | // into the same allocation. | |||
| 2981 | if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield && | |||
| 2982 | CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) { | |||
| 2983 | placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField); | |||
| 2984 | RemainingBitsInField -= Width; | |||
| 2985 | return; | |||
| 2986 | } | |||
| 2987 | LastFieldIsNonZeroWidthBitfield = true; | |||
| 2988 | CurrentBitfieldSize = Info.Size; | |||
| 2989 | if (UseExternalLayout) { | |||
| 2990 | auto FieldBitOffset = External.getExternalFieldOffset(FD); | |||
| 2991 | placeFieldAtBitOffset(FieldBitOffset); | |||
| 2992 | auto NewSize = Context.toCharUnitsFromBits( | |||
| 2993 | llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) + | |||
| 2994 | Context.toBits(Info.Size)); | |||
| 2995 | Size = std::max(Size, NewSize); | |||
| 2996 | Alignment = std::max(Alignment, Info.Alignment); | |||
| 2997 | } else if (IsUnion) { | |||
| 2998 | placeFieldAtOffset(CharUnits::Zero()); | |||
| 2999 | Size = std::max(Size, Info.Size); | |||
| 3000 | // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. | |||
| 3001 | } else { | |||
| 3002 | // Allocate a new block of memory and place the bitfield in it. | |||
| 3003 | CharUnits FieldOffset = Size.alignTo(Info.Alignment); | |||
| 3004 | placeFieldAtOffset(FieldOffset); | |||
| 3005 | Size = FieldOffset + Info.Size; | |||
| 3006 | Alignment = std::max(Alignment, Info.Alignment); | |||
| 3007 | RemainingBitsInField = Context.toBits(Info.Size) - Width; | |||
| 3008 | } | |||
| 3009 | } | |||
| 3010 | ||||
| 3011 | void | |||
| 3012 | MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) { | |||
| 3013 | // Zero-width bitfields are ignored unless they follow a non-zero-width | |||
| 3014 | // bitfield. | |||
| 3015 | if (!LastFieldIsNonZeroWidthBitfield) { | |||
| 3016 | placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size); | |||
| 3017 | // TODO: Add a Sema warning that MS ignores alignment for zero | |||
| 3018 | // sized bitfields that occur after zero-size bitfields or non-bitfields. | |||
| 3019 | return; | |||
| 3020 | } | |||
| 3021 | LastFieldIsNonZeroWidthBitfield = false; | |||
| 3022 | ElementInfo Info = getAdjustedElementInfo(FD); | |||
| 3023 | if (IsUnion) { | |||
| 3024 | placeFieldAtOffset(CharUnits::Zero()); | |||
| 3025 | Size = std::max(Size, Info.Size); | |||
| 3026 | // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. | |||
| 3027 | } else { | |||
| 3028 | // Round up the current record size to the field's alignment boundary. | |||
| 3029 | CharUnits FieldOffset = Size.alignTo(Info.Alignment); | |||
| 3030 | placeFieldAtOffset(FieldOffset); | |||
| 3031 | Size = FieldOffset; | |||
| 3032 | Alignment = std::max(Alignment, Info.Alignment); | |||
| 3033 | } | |||
| 3034 | } | |||
| 3035 | ||||
| 3036 | void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) { | |||
| 3037 | if (!HasVBPtr || SharedVBPtrBase) | |||
| 3038 | return; | |||
| 3039 | // Inject the VBPointer at the injection site. | |||
| 3040 | CharUnits InjectionSite = VBPtrOffset; | |||
| 3041 | // But before we do, make sure it's properly aligned. | |||
| 3042 | VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment); | |||
| 3043 | // Determine where the first field should be laid out after the vbptr. | |||
| 3044 | CharUnits FieldStart = VBPtrOffset + PointerInfo.Size; | |||
| 3045 | // Shift everything after the vbptr down, unless we're using an external | |||
| 3046 | // layout. | |||
| 3047 | if (UseExternalLayout) { | |||
| 3048 | // It is possible that there were no fields or bases located after vbptr, | |||
| 3049 | // so the size was not adjusted before. | |||
| 3050 | if (Size < FieldStart) | |||
| 3051 | Size = FieldStart; | |||
| 3052 | return; | |||
| 3053 | } | |||
| 3054 | // Make sure that the amount we push the fields back by is a multiple of the | |||
| 3055 | // alignment. | |||
| 3056 | CharUnits Offset = (FieldStart - InjectionSite) | |||
| 3057 | .alignTo(std::max(RequiredAlignment, Alignment)); | |||
| 3058 | Size += Offset; | |||
| 3059 | for (uint64_t &FieldOffset : FieldOffsets) | |||
| 3060 | FieldOffset += Context.toBits(Offset); | |||
| 3061 | for (BaseOffsetsMapTy::value_type &Base : Bases) | |||
| 3062 | if (Base.second >= InjectionSite) | |||
| 3063 | Base.second += Offset; | |||
| 3064 | } | |||
| 3065 | ||||
| 3066 | void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) { | |||
| 3067 | if (!HasOwnVFPtr) | |||
| 3068 | return; | |||
| 3069 | // Make sure that the amount we push the struct back by is a multiple of the | |||
| 3070 | // alignment. | |||
| 3071 | CharUnits Offset = | |||
| 3072 | PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment)); | |||
| 3073 | // Push back the vbptr, but increase the size of the object and push back | |||
| 3074 | // regular fields by the offset only if not using external record layout. | |||
| 3075 | if (HasVBPtr) | |||
| 3076 | VBPtrOffset += Offset; | |||
| 3077 | ||||
| 3078 | if (UseExternalLayout) { | |||
| 3079 | // The class may have size 0 and a vfptr (e.g. it's an interface class). The | |||
| 3080 | // size was not correctly set before in this case. | |||
| 3081 | if (Size.isZero()) | |||
| 3082 | Size += Offset; | |||
| 3083 | return; | |||
| 3084 | } | |||
| 3085 | ||||
| 3086 | Size += Offset; | |||
| 3087 | ||||
| 3088 | // If we're using an external layout, the fields offsets have already | |||
| 3089 | // accounted for this adjustment. | |||
| 3090 | for (uint64_t &FieldOffset : FieldOffsets) | |||
| 3091 | FieldOffset += Context.toBits(Offset); | |||
| 3092 | for (BaseOffsetsMapTy::value_type &Base : Bases) | |||
| 3093 | Base.second += Offset; | |||
| 3094 | } | |||
| 3095 | ||||
| 3096 | void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) { | |||
| 3097 | if (!HasVBPtr) | |||
| 3098 | return; | |||
| 3099 | // Vtordisps are always 4 bytes (even in 64-bit mode) | |||
| 3100 | CharUnits VtorDispSize = CharUnits::fromQuantity(4); | |||
| 3101 | CharUnits VtorDispAlignment = VtorDispSize; | |||
| 3102 | // vtordisps respect pragma pack. | |||
| 3103 | if (!MaxFieldAlignment.isZero()) | |||
| 3104 | VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment); | |||
| 3105 | // The alignment of the vtordisp is at least the required alignment of the | |||
| 3106 | // entire record. This requirement may be present to support vtordisp | |||
| 3107 | // injection. | |||
| 3108 | for (const CXXBaseSpecifier &VBase : RD->vbases()) { | |||
| 3109 | const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); | |||
| 3110 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | |||
| 3111 | RequiredAlignment = | |||
| 3112 | std::max(RequiredAlignment, BaseLayout.getRequiredAlignment()); | |||
| 3113 | } | |||
| 3114 | VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment); | |||
| 3115 | // Compute the vtordisp set. | |||
| 3116 | llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet; | |||
| 3117 | computeVtorDispSet(HasVtorDispSet, RD); | |||
| 3118 | // Iterate through the virtual bases and lay them out. | |||
| 3119 | const ASTRecordLayout *PreviousBaseLayout = nullptr; | |||
| 3120 | for (const CXXBaseSpecifier &VBase : RD->vbases()) { | |||
| 3121 | const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); | |||
| 3122 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | |||
| 3123 | bool HasVtordisp = HasVtorDispSet.contains(BaseDecl); | |||
| 3124 | // Insert padding between two bases if the left first one is zero sized or | |||
| 3125 | // contains a zero sized subobject and the right is zero sized or one leads | |||
| 3126 | // with a zero sized base. The padding between virtual bases is 4 | |||
| 3127 | // bytes (in both 32 and 64 bits modes) and always involves rounding up to | |||
| 3128 | // the required alignment, we don't know why. | |||
| 3129 | if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && | |||
| 3130 | BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) || | |||
| 3131 | HasVtordisp) { | |||
| 3132 | Size = Size.alignTo(VtorDispAlignment) + VtorDispSize; | |||
| 3133 | Alignment = std::max(VtorDispAlignment, Alignment); | |||
| 3134 | } | |||
| 3135 | // Insert the virtual base. | |||
| 3136 | ElementInfo Info = getAdjustedElementInfo(BaseLayout); | |||
| 3137 | CharUnits BaseOffset; | |||
| 3138 | ||||
| 3139 | // Respect the external AST source base offset, if present. | |||
| 3140 | if (UseExternalLayout) { | |||
| 3141 | if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset)) | |||
| 3142 | BaseOffset = Size; | |||
| 3143 | } else | |||
| 3144 | BaseOffset = Size.alignTo(Info.Alignment); | |||
| 3145 | ||||
| 3146 | assert(BaseOffset >= Size && "base offset already allocated")(static_cast <bool> (BaseOffset >= Size && "base offset already allocated" ) ? void (0) : __assert_fail ("BaseOffset >= Size && \"base offset already allocated\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3146, __extension__ __PRETTY_FUNCTION__)); | |||
| 3147 | ||||
| 3148 | VBases.insert(std::make_pair(BaseDecl, | |||
| 3149 | ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp))); | |||
| 3150 | Size = BaseOffset + BaseLayout.getNonVirtualSize(); | |||
| 3151 | PreviousBaseLayout = &BaseLayout; | |||
| 3152 | } | |||
| 3153 | } | |||
| 3154 | ||||
| 3155 | void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) { | |||
| 3156 | // Respect required alignment. Note that in 32-bit mode Required alignment | |||
| 3157 | // may be 0 and cause size not to be updated. | |||
| 3158 | DataSize = Size; | |||
| 3159 | if (!RequiredAlignment.isZero()) { | |||
| 3160 | Alignment = std::max(Alignment, RequiredAlignment); | |||
| 3161 | auto RoundingAlignment = Alignment; | |||
| 3162 | if (!MaxFieldAlignment.isZero()) | |||
| 3163 | RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); | |||
| 3164 | RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment); | |||
| 3165 | Size = Size.alignTo(RoundingAlignment); | |||
| 3166 | } | |||
| 3167 | if (Size.isZero()) { | |||
| 3168 | if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) { | |||
| 3169 | EndsWithZeroSizedObject = true; | |||
| 3170 | LeadsWithZeroSizedBase = true; | |||
| 3171 | } | |||
| 3172 | // Zero-sized structures have size equal to their alignment if a | |||
| 3173 | // __declspec(align) came into play. | |||
| 3174 | if (RequiredAlignment >= MinEmptyStructSize) | |||
| 3175 | Size = Alignment; | |||
| 3176 | else | |||
| 3177 | Size = MinEmptyStructSize; | |||
| 3178 | } | |||
| 3179 | ||||
| 3180 | if (UseExternalLayout) { | |||
| 3181 | Size = Context.toCharUnitsFromBits(External.Size); | |||
| 3182 | if (External.Align) | |||
| 3183 | Alignment = Context.toCharUnitsFromBits(External.Align); | |||
| 3184 | } | |||
| 3185 | } | |||
| 3186 | ||||
| 3187 | // Recursively walks the non-virtual bases of a class and determines if any of | |||
| 3188 | // them are in the bases with overridden methods set. | |||
| 3189 | static bool | |||
| 3190 | RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> & | |||
| 3191 | BasesWithOverriddenMethods, | |||
| 3192 | const CXXRecordDecl *RD) { | |||
| 3193 | if (BasesWithOverriddenMethods.count(RD)) | |||
| 3194 | return true; | |||
| 3195 | // If any of a virtual bases non-virtual bases (recursively) requires a | |||
| 3196 | // vtordisp than so does this virtual base. | |||
| 3197 | for (const CXXBaseSpecifier &Base : RD->bases()) | |||
| 3198 | if (!Base.isVirtual() && | |||
| 3199 | RequiresVtordisp(BasesWithOverriddenMethods, | |||
| 3200 | Base.getType()->getAsCXXRecordDecl())) | |||
| 3201 | return true; | |||
| 3202 | return false; | |||
| 3203 | } | |||
| 3204 | ||||
| 3205 | void MicrosoftRecordLayoutBuilder::computeVtorDispSet( | |||
| 3206 | llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet, | |||
| 3207 | const CXXRecordDecl *RD) const { | |||
| 3208 | // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with | |||
| 3209 | // vftables. | |||
| 3210 | if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) { | |||
| 3211 | for (const CXXBaseSpecifier &Base : RD->vbases()) { | |||
| 3212 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 3213 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); | |||
| 3214 | if (Layout.hasExtendableVFPtr()) | |||
| 3215 | HasVtordispSet.insert(BaseDecl); | |||
| 3216 | } | |||
| 3217 | return; | |||
| 3218 | } | |||
| 3219 | ||||
| 3220 | // If any of our bases need a vtordisp for this type, so do we. Check our | |||
| 3221 | // direct bases for vtordisp requirements. | |||
| 3222 | for (const CXXBaseSpecifier &Base : RD->bases()) { | |||
| 3223 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 3224 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); | |||
| 3225 | for (const auto &bi : Layout.getVBaseOffsetsMap()) | |||
| 3226 | if (bi.second.hasVtorDisp()) | |||
| 3227 | HasVtordispSet.insert(bi.first); | |||
| 3228 | } | |||
| 3229 | // We don't introduce any additional vtordisps if either: | |||
| 3230 | // * A user declared constructor or destructor aren't declared. | |||
| 3231 | // * #pragma vtordisp(0) or the /vd0 flag are in use. | |||
| 3232 | if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) || | |||
| 3233 | RD->getMSVtorDispMode() == MSVtorDispMode::Never) | |||
| 3234 | return; | |||
| 3235 | // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's | |||
| 3236 | // possible for a partially constructed object with virtual base overrides to | |||
| 3237 | // escape a non-trivial constructor. | |||
| 3238 | assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride)(static_cast <bool> (RD->getMSVtorDispMode() == MSVtorDispMode ::ForVBaseOverride) ? void (0) : __assert_fail ("RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3238, __extension__ __PRETTY_FUNCTION__)); | |||
| 3239 | // Compute a set of base classes which define methods we override. A virtual | |||
| 3240 | // base in this set will require a vtordisp. A virtual base that transitively | |||
| 3241 | // contains one of these bases as a non-virtual base will also require a | |||
| 3242 | // vtordisp. | |||
| 3243 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work; | |||
| 3244 | llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods; | |||
| 3245 | // Seed the working set with our non-destructor, non-pure virtual methods. | |||
| 3246 | for (const CXXMethodDecl *MD : RD->methods()) | |||
| 3247 | if (MicrosoftVTableContext::hasVtableSlot(MD) && | |||
| 3248 | !isa<CXXDestructorDecl>(MD) && !MD->isPure()) | |||
| 3249 | Work.insert(MD); | |||
| 3250 | while (!Work.empty()) { | |||
| 3251 | const CXXMethodDecl *MD = *Work.begin(); | |||
| 3252 | auto MethodRange = MD->overridden_methods(); | |||
| 3253 | // If a virtual method has no-overrides it lives in its parent's vtable. | |||
| 3254 | if (MethodRange.begin() == MethodRange.end()) | |||
| 3255 | BasesWithOverriddenMethods.insert(MD->getParent()); | |||
| 3256 | else | |||
| 3257 | Work.insert(MethodRange.begin(), MethodRange.end()); | |||
| 3258 | // We've finished processing this element, remove it from the working set. | |||
| 3259 | Work.erase(MD); | |||
| 3260 | } | |||
| 3261 | // For each of our virtual bases, check if it is in the set of overridden | |||
| 3262 | // bases or if it transitively contains a non-virtual base that is. | |||
| 3263 | for (const CXXBaseSpecifier &Base : RD->vbases()) { | |||
| 3264 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | |||
| 3265 | if (!HasVtordispSet.count(BaseDecl) && | |||
| 3266 | RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl)) | |||
| 3267 | HasVtordispSet.insert(BaseDecl); | |||
| 3268 | } | |||
| 3269 | } | |||
| 3270 | ||||
| 3271 | /// getASTRecordLayout - Get or compute information about the layout of the | |||
| 3272 | /// specified record (struct/union/class), which indicates its size and field | |||
| 3273 | /// position information. | |||
| 3274 | const ASTRecordLayout & | |||
| 3275 | ASTContext::getASTRecordLayout(const RecordDecl *D) const { | |||
| 3276 | // These asserts test different things. A record has a definition | |||
| 3277 | // as soon as we begin to parse the definition. That definition is | |||
| 3278 | // not a complete definition (which is what isDefinition() tests) | |||
| 3279 | // until we *finish* parsing the definition. | |||
| 3280 | ||||
| 3281 | if (D->hasExternalLexicalStorage() && !D->getDefinition()) | |||
| 3282 | getExternalSource()->CompleteType(const_cast<RecordDecl*>(D)); | |||
| 3283 | // Complete the redecl chain (if necessary). | |||
| 3284 | (void)D->getMostRecentDecl(); | |||
| 3285 | ||||
| 3286 | D = D->getDefinition(); | |||
| 3287 | assert(D && "Cannot get layout of forward declarations!")(static_cast <bool> (D && "Cannot get layout of forward declarations!" ) ? void (0) : __assert_fail ("D && \"Cannot get layout of forward declarations!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3287, __extension__ __PRETTY_FUNCTION__)); | |||
| 3288 | assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!")(static_cast <bool> (!D->isInvalidDecl() && "Cannot get layout of invalid decl!" ) ? void (0) : __assert_fail ("!D->isInvalidDecl() && \"Cannot get layout of invalid decl!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3288, __extension__ __PRETTY_FUNCTION__)); | |||
| 3289 | assert(D->isCompleteDefinition() && "Cannot layout type before complete!")(static_cast <bool> (D->isCompleteDefinition() && "Cannot layout type before complete!") ? void (0) : __assert_fail ("D->isCompleteDefinition() && \"Cannot layout type before complete!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3289, __extension__ __PRETTY_FUNCTION__)); | |||
| 3290 | ||||
| 3291 | // Look up this layout, if already laid out, return what we have. | |||
| 3292 | // Note that we can't save a reference to the entry because this function | |||
| 3293 | // is recursive. | |||
| 3294 | const ASTRecordLayout *Entry = ASTRecordLayouts[D]; | |||
| 3295 | if (Entry) return *Entry; | |||
| 3296 | ||||
| 3297 | const ASTRecordLayout *NewEntry = nullptr; | |||
| 3298 | ||||
| 3299 | if (isMsLayout(*this)) { | |||
| 3300 | MicrosoftRecordLayoutBuilder Builder(*this); | |||
| 3301 | if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { | |||
| 3302 | Builder.cxxLayout(RD); | |||
| 3303 | NewEntry = new (*this) ASTRecordLayout( | |||
| 3304 | *this, Builder.Size, Builder.Alignment, Builder.Alignment, | |||
| 3305 | Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr, | |||
| 3306 | Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset, | |||
| 3307 | Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize, | |||
| 3308 | Builder.Alignment, Builder.Alignment, CharUnits::Zero(), | |||
| 3309 | Builder.PrimaryBase, false, Builder.SharedVBPtrBase, | |||
| 3310 | Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase, | |||
| 3311 | Builder.Bases, Builder.VBases); | |||
| 3312 | } else { | |||
| 3313 | Builder.layout(D); | |||
| 3314 | NewEntry = new (*this) ASTRecordLayout( | |||
| 3315 | *this, Builder.Size, Builder.Alignment, Builder.Alignment, | |||
| 3316 | Builder.Alignment, Builder.RequiredAlignment, Builder.Size, | |||
| 3317 | Builder.FieldOffsets); | |||
| 3318 | } | |||
| 3319 | } else { | |||
| 3320 | if (const auto *RD
| |||
| 3321 | EmptySubobjectMap EmptySubobjects(*this, RD); | |||
| 3322 | ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects); | |||
| 3323 | Builder.Layout(RD); | |||
| 3324 | ||||
| 3325 | // In certain situations, we are allowed to lay out objects in the | |||
| 3326 | // tail-padding of base classes. This is ABI-dependent. | |||
| 3327 | // FIXME: this should be stored in the record layout. | |||
| 3328 | bool skipTailPadding = | |||
| 3329 | mustSkipTailPadding(getTargetInfo().getCXXABI(), RD); | |||
| 3330 | ||||
| 3331 | // FIXME: This should be done in FinalizeLayout. | |||
| 3332 | CharUnits DataSize = | |||
| 3333 | skipTailPadding ? Builder.getSize() : Builder.getDataSize(); | |||
| 3334 | CharUnits NonVirtualSize = | |||
| 3335 | skipTailPadding ? DataSize : Builder.NonVirtualSize; | |||
| 3336 | NewEntry = new (*this) ASTRecordLayout( | |||
| 3337 | *this, Builder.getSize(), Builder.Alignment, | |||
| 3338 | Builder.PreferredAlignment, Builder.UnadjustedAlignment, | |||
| 3339 | /*RequiredAlignment : used by MS-ABI)*/ | |||
| 3340 | Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(), | |||
| 3341 | CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets, | |||
| 3342 | NonVirtualSize, Builder.NonVirtualAlignment, | |||
| 3343 | Builder.PreferredNVAlignment, | |||
| 3344 | EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, | |||
| 3345 | Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases, | |||
| 3346 | Builder.VBases); | |||
| 3347 | } else { | |||
| 3348 | ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); | |||
| 3349 | Builder.Layout(D); | |||
| 3350 | ||||
| 3351 | NewEntry = new (*this) ASTRecordLayout( | |||
| 3352 | *this, Builder.getSize(), Builder.Alignment, | |||
| 3353 | Builder.PreferredAlignment, Builder.UnadjustedAlignment, | |||
| 3354 | /*RequiredAlignment : used by MS-ABI)*/ | |||
| 3355 | Builder.Alignment, Builder.getSize(), Builder.FieldOffsets); | |||
| 3356 | } | |||
| 3357 | } | |||
| 3358 | ||||
| 3359 | ASTRecordLayouts[D] = NewEntry; | |||
| 3360 | ||||
| 3361 | if (getLangOpts().DumpRecordLayouts) { | |||
| 3362 | llvm::outs() << "\n*** Dumping AST Record Layout\n"; | |||
| 3363 | DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple); | |||
| 3364 | } | |||
| 3365 | ||||
| 3366 | return *NewEntry; | |||
| 3367 | } | |||
| 3368 | ||||
| 3369 | const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { | |||
| 3370 | if (!getTargetInfo().getCXXABI().hasKeyFunctions()) | |||
| 3371 | return nullptr; | |||
| 3372 | ||||
| 3373 | assert(RD->getDefinition() && "Cannot get key function for forward decl!")(static_cast <bool> (RD->getDefinition() && "Cannot get key function for forward decl!" ) ? void (0) : __assert_fail ("RD->getDefinition() && \"Cannot get key function for forward decl!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3373, __extension__ __PRETTY_FUNCTION__)); | |||
| 3374 | RD = RD->getDefinition(); | |||
| 3375 | ||||
| 3376 | // Beware: | |||
| 3377 | // 1) computing the key function might trigger deserialization, which might | |||
| 3378 | // invalidate iterators into KeyFunctions | |||
| 3379 | // 2) 'get' on the LazyDeclPtr might also trigger deserialization and | |||
| 3380 | // invalidate the LazyDeclPtr within the map itself | |||
| 3381 | LazyDeclPtr Entry = KeyFunctions[RD]; | |||
| 3382 | const Decl *Result = | |||
| 3383 | Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD); | |||
| 3384 | ||||
| 3385 | // Store it back if it changed. | |||
| 3386 | if (Entry.isOffset() || Entry.isValid() != bool(Result)) | |||
| 3387 | KeyFunctions[RD] = const_cast<Decl*>(Result); | |||
| 3388 | ||||
| 3389 | return cast_or_null<CXXMethodDecl>(Result); | |||
| 3390 | } | |||
| 3391 | ||||
| 3392 | void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) { | |||
| 3393 | assert(Method == Method->getFirstDecl() &&(static_cast <bool> (Method == Method->getFirstDecl( ) && "not working with method declaration from class definition" ) ? void (0) : __assert_fail ("Method == Method->getFirstDecl() && \"not working with method declaration from class definition\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3394, __extension__ __PRETTY_FUNCTION__)) | |||
| 3394 | "not working with method declaration from class definition")(static_cast <bool> (Method == Method->getFirstDecl( ) && "not working with method declaration from class definition" ) ? void (0) : __assert_fail ("Method == Method->getFirstDecl() && \"not working with method declaration from class definition\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3394, __extension__ __PRETTY_FUNCTION__)); | |||
| 3395 | ||||
| 3396 | // Look up the cache entry. Since we're working with the first | |||
| 3397 | // declaration, its parent must be the class definition, which is | |||
| 3398 | // the correct key for the KeyFunctions hash. | |||
| 3399 | const auto &Map = KeyFunctions; | |||
| 3400 | auto I = Map.find(Method->getParent()); | |||
| 3401 | ||||
| 3402 | // If it's not cached, there's nothing to do. | |||
| 3403 | if (I == Map.end()) return; | |||
| 3404 | ||||
| 3405 | // If it is cached, check whether it's the target method, and if so, | |||
| 3406 | // remove it from the cache. Note, the call to 'get' might invalidate | |||
| 3407 | // the iterator and the LazyDeclPtr object within the map. | |||
| 3408 | LazyDeclPtr Ptr = I->second; | |||
| 3409 | if (Ptr.get(getExternalSource()) == Method) { | |||
| 3410 | // FIXME: remember that we did this for module / chained PCH state? | |||
| 3411 | KeyFunctions.erase(Method->getParent()); | |||
| 3412 | } | |||
| 3413 | } | |||
| 3414 | ||||
| 3415 | static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { | |||
| 3416 | const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent()); | |||
| 3417 | return Layout.getFieldOffset(FD->getFieldIndex()); | |||
| 3418 | } | |||
| 3419 | ||||
| 3420 | uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { | |||
| 3421 | uint64_t OffsetInBits; | |||
| 3422 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) { | |||
| 3423 | OffsetInBits = ::getFieldOffset(*this, FD); | |||
| 3424 | } else { | |||
| 3425 | const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD); | |||
| 3426 | ||||
| 3427 | OffsetInBits = 0; | |||
| 3428 | for (const NamedDecl *ND : IFD->chain()) | |||
| 3429 | OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND)); | |||
| 3430 | } | |||
| 3431 | ||||
| 3432 | return OffsetInBits; | |||
| 3433 | } | |||
| 3434 | ||||
| 3435 | uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID, | |||
| 3436 | const ObjCImplementationDecl *ID, | |||
| 3437 | const ObjCIvarDecl *Ivar) const { | |||
| 3438 | Ivar = Ivar->getCanonicalDecl(); | |||
| 3439 | const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); | |||
| 3440 | ||||
| 3441 | // FIXME: We should eliminate the need to have ObjCImplementationDecl passed | |||
| 3442 | // in here; it should never be necessary because that should be the lexical | |||
| 3443 | // decl context for the ivar. | |||
| 3444 | ||||
| 3445 | // If we know have an implementation (and the ivar is in it) then | |||
| 3446 | // look up in the implementation layout. | |||
| 3447 | const ASTRecordLayout *RL; | |||
| 3448 | if (ID && declaresSameEntity(ID->getClassInterface(), Container)) | |||
| 3449 | RL = &getASTObjCImplementationLayout(ID); | |||
| 3450 | else | |||
| 3451 | RL = &getASTObjCInterfaceLayout(Container); | |||
| 3452 | ||||
| 3453 | // Compute field index. | |||
| 3454 | // | |||
| 3455 | // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is | |||
| 3456 | // implemented. This should be fixed to get the information from the layout | |||
| 3457 | // directly. | |||
| 3458 | unsigned Index = 0; | |||
| 3459 | ||||
| 3460 | for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin(); | |||
| 3461 | IVD; IVD = IVD->getNextIvar()) { | |||
| 3462 | if (Ivar == IVD) | |||
| 3463 | break; | |||
| 3464 | ++Index; | |||
| 3465 | } | |||
| 3466 | assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!")(static_cast <bool> (Index < RL->getFieldCount() && "Ivar is not inside record layout!") ? void (0) : __assert_fail ("Index < RL->getFieldCount() && \"Ivar is not inside record layout!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3466, __extension__ __PRETTY_FUNCTION__)); | |||
| 3467 | ||||
| 3468 | return RL->getFieldOffset(Index); | |||
| 3469 | } | |||
| 3470 | ||||
| 3471 | /// getObjCLayout - Get or compute information about the layout of the | |||
| 3472 | /// given interface. | |||
| 3473 | /// | |||
| 3474 | /// \param Impl - If given, also include the layout of the interface's | |||
| 3475 | /// implementation. This may differ by including synthesized ivars. | |||
| 3476 | const ASTRecordLayout & | |||
| 3477 | ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, | |||
| 3478 | const ObjCImplementationDecl *Impl) const { | |||
| 3479 | // Retrieve the definition | |||
| 3480 | if (D->hasExternalLexicalStorage() && !D->getDefinition()) | |||
| 3481 | getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D)); | |||
| 3482 | D = D->getDefinition(); | |||
| 3483 | assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&(static_cast <bool> (D && !D->isInvalidDecl( ) && D->isThisDeclarationADefinition() && "Invalid interface decl!" ) ? void (0) : __assert_fail ("D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && \"Invalid interface decl!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3484, __extension__ __PRETTY_FUNCTION__)) | |||
| 3484 | "Invalid interface decl!")(static_cast <bool> (D && !D->isInvalidDecl( ) && D->isThisDeclarationADefinition() && "Invalid interface decl!" ) ? void (0) : __assert_fail ("D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && \"Invalid interface decl!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3484, __extension__ __PRETTY_FUNCTION__)); | |||
| 3485 | ||||
| 3486 | // Look up this layout, if already laid out, return what we have. | |||
| 3487 | const ObjCContainerDecl *Key = | |||
| 3488 | Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D; | |||
| 3489 | if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) | |||
| 3490 | return *Entry; | |||
| 3491 | ||||
| 3492 | // Add in synthesized ivar count if laying out an implementation. | |||
| 3493 | if (Impl) { | |||
| 3494 | unsigned SynthCount = CountNonClassIvars(D); | |||
| 3495 | // If there aren't any synthesized ivars then reuse the interface | |||
| 3496 | // entry. Note we can't cache this because we simply free all | |||
| 3497 | // entries later; however we shouldn't look up implementations | |||
| 3498 | // frequently. | |||
| 3499 | if (SynthCount == 0) | |||
| 3500 | return getObjCLayout(D, nullptr); | |||
| 3501 | } | |||
| 3502 | ||||
| 3503 | ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); | |||
| 3504 | Builder.Layout(D); | |||
| 3505 | ||||
| 3506 | const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout( | |||
| 3507 | *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment, | |||
| 3508 | Builder.UnadjustedAlignment, | |||
| 3509 | /*RequiredAlignment : used by MS-ABI)*/ | |||
| 3510 | Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets); | |||
| 3511 | ||||
| 3512 | ObjCLayouts[Key] = NewEntry; | |||
| 3513 | ||||
| 3514 | return *NewEntry; | |||
| 3515 | } | |||
| 3516 | ||||
| 3517 | static void PrintOffset(raw_ostream &OS, | |||
| 3518 | CharUnits Offset, unsigned IndentLevel) { | |||
| 3519 | OS << llvm::format("%10" PRId64"l" "d" " | ", (int64_t)Offset.getQuantity()); | |||
| 3520 | OS.indent(IndentLevel * 2); | |||
| 3521 | } | |||
| 3522 | ||||
| 3523 | static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset, | |||
| 3524 | unsigned Begin, unsigned Width, | |||
| 3525 | unsigned IndentLevel) { | |||
| 3526 | llvm::SmallString<10> Buffer; | |||
| 3527 | { | |||
| 3528 | llvm::raw_svector_ostream BufferOS(Buffer); | |||
| 3529 | BufferOS << Offset.getQuantity() << ':'; | |||
| 3530 | if (Width == 0) { | |||
| 3531 | BufferOS << '-'; | |||
| 3532 | } else { | |||
| 3533 | BufferOS << Begin << '-' << (Begin + Width - 1); | |||
| 3534 | } | |||
| 3535 | } | |||
| 3536 | ||||
| 3537 | OS << llvm::right_justify(Buffer, 10) << " | "; | |||
| 3538 | OS.indent(IndentLevel * 2); | |||
| 3539 | } | |||
| 3540 | ||||
| 3541 | static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { | |||
| 3542 | OS << " | "; | |||
| 3543 | OS.indent(IndentLevel * 2); | |||
| 3544 | } | |||
| 3545 | ||||
| 3546 | static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD, | |||
| 3547 | const ASTContext &C, | |||
| 3548 | CharUnits Offset, | |||
| 3549 | unsigned IndentLevel, | |||
| 3550 | const char* Description, | |||
| 3551 | bool PrintSizeInfo, | |||
| 3552 | bool IncludeVirtualBases) { | |||
| 3553 | const ASTRecordLayout &Layout = C.getASTRecordLayout(RD); | |||
| 3554 | auto CXXRD = dyn_cast<CXXRecordDecl>(RD); | |||
| 3555 | ||||
| 3556 | PrintOffset(OS, Offset, IndentLevel); | |||
| 3557 | OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD)); | |||
| 3558 | if (Description) | |||
| 3559 | OS << ' ' << Description; | |||
| 3560 | if (CXXRD && CXXRD->isEmpty()) | |||
| 3561 | OS << " (empty)"; | |||
| 3562 | OS << '\n'; | |||
| 3563 | ||||
| 3564 | IndentLevel++; | |||
| 3565 | ||||
| 3566 | // Dump bases. | |||
| 3567 | if (CXXRD) { | |||
| 3568 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); | |||
| 3569 | bool HasOwnVFPtr = Layout.hasOwnVFPtr(); | |||
| 3570 | bool HasOwnVBPtr = Layout.hasOwnVBPtr(); | |||
| 3571 | ||||
| 3572 | // Vtable pointer. | |||
| 3573 | if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) { | |||
| 3574 | PrintOffset(OS, Offset, IndentLevel); | |||
| 3575 | OS << '(' << *RD << " vtable pointer)\n"; | |||
| 3576 | } else if (HasOwnVFPtr) { | |||
| 3577 | PrintOffset(OS, Offset, IndentLevel); | |||
| 3578 | // vfptr (for Microsoft C++ ABI) | |||
| 3579 | OS << '(' << *RD << " vftable pointer)\n"; | |||
| 3580 | } | |||
| 3581 | ||||
| 3582 | // Collect nvbases. | |||
| 3583 | SmallVector<const CXXRecordDecl *, 4> Bases; | |||
| 3584 | for (const CXXBaseSpecifier &Base : CXXRD->bases()) { | |||
| 3585 | assert(!Base.getType()->isDependentType() &&(static_cast <bool> (!Base.getType()->isDependentType () && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3586, __extension__ __PRETTY_FUNCTION__)) | |||
| 3586 | "Cannot layout class with dependent bases.")(static_cast <bool> (!Base.getType()->isDependentType () && "Cannot layout class with dependent bases.") ? void (0) : __assert_fail ("!Base.getType()->isDependentType() && \"Cannot layout class with dependent bases.\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3586, __extension__ __PRETTY_FUNCTION__)); | |||
| 3587 | if (!Base.isVirtual()) | |||
| 3588 | Bases.push_back(Base.getType()->getAsCXXRecordDecl()); | |||
| 3589 | } | |||
| 3590 | ||||
| 3591 | // Sort nvbases by offset. | |||
| 3592 | llvm::stable_sort( | |||
| 3593 | Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { | |||
| 3594 | return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); | |||
| 3595 | }); | |||
| 3596 | ||||
| 3597 | // Dump (non-virtual) bases | |||
| 3598 | for (const CXXRecordDecl *Base : Bases) { | |||
| 3599 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); | |||
| 3600 | DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel, | |||
| 3601 | Base == PrimaryBase ? "(primary base)" : "(base)", | |||
| 3602 | /*PrintSizeInfo=*/false, | |||
| 3603 | /*IncludeVirtualBases=*/false); | |||
| 3604 | } | |||
| 3605 | ||||
| 3606 | // vbptr (for Microsoft C++ ABI) | |||
| 3607 | if (HasOwnVBPtr) { | |||
| 3608 | PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel); | |||
| 3609 | OS << '(' << *RD << " vbtable pointer)\n"; | |||
| 3610 | } | |||
| 3611 | } | |||
| 3612 | ||||
| 3613 | // Dump fields. | |||
| 3614 | uint64_t FieldNo = 0; | |||
| 3615 | for (RecordDecl::field_iterator I = RD->field_begin(), | |||
| 3616 | E = RD->field_end(); I != E; ++I, ++FieldNo) { | |||
| 3617 | const FieldDecl &Field = **I; | |||
| 3618 | uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo); | |||
| 3619 | CharUnits FieldOffset = | |||
| 3620 | Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits); | |||
| 3621 | ||||
| 3622 | // Recursively dump fields of record type. | |||
| 3623 | if (auto RT = Field.getType()->getAs<RecordType>()) { | |||
| 3624 | DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel, | |||
| 3625 | Field.getName().data(), | |||
| 3626 | /*PrintSizeInfo=*/false, | |||
| 3627 | /*IncludeVirtualBases=*/true); | |||
| 3628 | continue; | |||
| 3629 | } | |||
| 3630 | ||||
| 3631 | if (Field.isBitField()) { | |||
| 3632 | uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset); | |||
| 3633 | unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits; | |||
| 3634 | unsigned Width = Field.getBitWidthValue(C); | |||
| 3635 | PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel); | |||
| 3636 | } else { | |||
| 3637 | PrintOffset(OS, FieldOffset, IndentLevel); | |||
| 3638 | } | |||
| 3639 | const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical | |||
| 3640 | ? Field.getType().getCanonicalType() | |||
| 3641 | : Field.getType(); | |||
| 3642 | OS << FieldType << ' ' << Field << '\n'; | |||
| 3643 | } | |||
| 3644 | ||||
| 3645 | // Dump virtual bases. | |||
| 3646 | if (CXXRD && IncludeVirtualBases) { | |||
| 3647 | const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps = | |||
| 3648 | Layout.getVBaseOffsetsMap(); | |||
| 3649 | ||||
| 3650 | for (const CXXBaseSpecifier &Base : CXXRD->vbases()) { | |||
| 3651 | assert(Base.isVirtual() && "Found non-virtual class!")(static_cast <bool> (Base.isVirtual() && "Found non-virtual class!" ) ? void (0) : __assert_fail ("Base.isVirtual() && \"Found non-virtual class!\"" , "clang/lib/AST/RecordLayoutBuilder.cpp", 3651, __extension__ __PRETTY_FUNCTION__)); | |||
| 3652 | const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl(); | |||
| 3653 | ||||
| 3654 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); | |||
| 3655 | ||||
| 3656 | if (VtorDisps.find(VBase)->second.hasVtorDisp()) { | |||
| 3657 | PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel); | |||
| 3658 | OS << "(vtordisp for vbase " << *VBase << ")\n"; | |||
| 3659 | } | |||
| 3660 | ||||
| 3661 | DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, | |||
| 3662 | VBase == Layout.getPrimaryBase() ? | |||
| 3663 | "(primary virtual base)" : "(virtual base)", | |||
| 3664 | /*PrintSizeInfo=*/false, | |||
| 3665 | /*IncludeVirtualBases=*/false); | |||
| 3666 | } | |||
| 3667 | } | |||
| 3668 | ||||
| 3669 | if (!PrintSizeInfo) return; | |||
| 3670 | ||||
| 3671 | PrintIndentNoOffset(OS, IndentLevel - 1); | |||
| 3672 | OS << "[sizeof=" << Layout.getSize().getQuantity(); | |||
| 3673 | if (CXXRD && !isMsLayout(C)) | |||
| 3674 | OS << ", dsize=" << Layout.getDataSize().getQuantity(); | |||
| 3675 | OS << ", align=" << Layout.getAlignment().getQuantity(); | |||
| 3676 | if (C.getTargetInfo().defaultsToAIXPowerAlignment()) | |||
| 3677 | OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity(); | |||
| 3678 | ||||
| 3679 | if (CXXRD) { | |||
| 3680 | OS << ",\n"; | |||
| 3681 | PrintIndentNoOffset(OS, IndentLevel - 1); | |||
| 3682 | OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity(); | |||
| 3683 | OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity(); | |||
| 3684 | if (C.getTargetInfo().defaultsToAIXPowerAlignment()) | |||
| 3685 | OS << ", preferrednvalign=" | |||
| 3686 | << Layout.getPreferredNVAlignment().getQuantity(); | |||
| 3687 | } | |||
| 3688 | OS << "]\n"; | |||
| 3689 | } | |||
| 3690 | ||||
| 3691 | void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS, | |||
| 3692 | bool Simple) const { | |||
| 3693 | if (!Simple) { | |||
| ||||
| 3694 | ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr, | |||
| 3695 | /*PrintSizeInfo*/ true, | |||
| 3696 | /*IncludeVirtualBases=*/true); | |||
| 3697 | return; | |||
| 3698 | } | |||
| 3699 | ||||
| 3700 | // The "simple" format is designed to be parsed by the | |||
| 3701 | // layout-override testing code. There shouldn't be any external | |||
| 3702 | // uses of this format --- when LLDB overrides a layout, it sets up | |||
| 3703 | // the data structures directly --- so feel free to adjust this as | |||
| 3704 | // you like as long as you also update the rudimentary parser for it | |||
| 3705 | // in libFrontend. | |||
| 3706 | ||||
| 3707 | const ASTRecordLayout &Info = getASTRecordLayout(RD); | |||
| 3708 | OS << "Type: " << getTypeDeclType(RD) << "\n"; | |||
| 3709 | OS << "\nLayout: "; | |||
| 3710 | OS << "<ASTRecordLayout\n"; | |||
| 3711 | OS << " Size:" << toBits(Info.getSize()) << "\n"; | |||
| 3712 | if (!isMsLayout(*this)) | |||
| 3713 | OS << " DataSize:" << toBits(Info.getDataSize()) << "\n"; | |||
| 3714 | OS << " Alignment:" << toBits(Info.getAlignment()) << "\n"; | |||
| 3715 | if (Target->defaultsToAIXPowerAlignment()) | |||
| 3716 | OS << " PreferredAlignment:" << toBits(Info.getPreferredAlignment()) | |||
| 3717 | << "\n"; | |||
| 3718 | OS << " FieldOffsets: ["; | |||
| 3719 | for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) { | |||
| 3720 | if (i) | |||
| 3721 | OS << ", "; | |||
| 3722 | OS << Info.getFieldOffset(i); | |||
| 3723 | } | |||
| 3724 | OS << "]>\n"; | |||
| 3725 | } |