Bug Summary

File:lib/CodeGen/RegisterCoalescer.cpp
Warning:line 3226, column 18
The left operand of '==' is a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name RegisterCoalescer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#include "RegisterCoalescer.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveInterval.h"
25#include "llvm/CodeGen/LiveIntervals.h"
26#include "llvm/CodeGen/LiveRangeEdit.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineOperand.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/CodeGen/RegisterClassInfo.h"
37#include "llvm/CodeGen/SlotIndexes.h"
38#include "llvm/CodeGen/TargetInstrInfo.h"
39#include "llvm/CodeGen/TargetOpcodes.h"
40#include "llvm/CodeGen/TargetRegisterInfo.h"
41#include "llvm/CodeGen/TargetSubtargetInfo.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/MC/LaneBitmask.h"
44#include "llvm/MC/MCInstrDesc.h"
45#include "llvm/MC/MCRegisterInfo.h"
46#include "llvm/Pass.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/raw_ostream.h"
52#include <algorithm>
53#include <cassert>
54#include <iterator>
55#include <limits>
56#include <tuple>
57#include <utility>
58#include <vector>
59
60using namespace llvm;
61
62#define DEBUG_TYPE"regalloc" "regalloc"
63
64STATISTIC(numJoins , "Number of interval joins performed")static llvm::Statistic numJoins = {"regalloc", "numJoins", "Number of interval joins performed"
, {0}, {false}}
;
65STATISTIC(numCrossRCs , "Number of cross class joins performed")static llvm::Statistic numCrossRCs = {"regalloc", "numCrossRCs"
, "Number of cross class joins performed", {0}, {false}}
;
66STATISTIC(numCommutes , "Number of instruction commuting performed")static llvm::Statistic numCommutes = {"regalloc", "numCommutes"
, "Number of instruction commuting performed", {0}, {false}}
;
67STATISTIC(numExtends , "Number of copies extended")static llvm::Statistic numExtends = {"regalloc", "numExtends"
, "Number of copies extended", {0}, {false}}
;
68STATISTIC(NumReMats , "Number of instructions re-materialized")static llvm::Statistic NumReMats = {"regalloc", "NumReMats", "Number of instructions re-materialized"
, {0}, {false}}
;
69STATISTIC(NumInflated , "Number of register classes inflated")static llvm::Statistic NumInflated = {"regalloc", "NumInflated"
, "Number of register classes inflated", {0}, {false}}
;
70STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested")static llvm::Statistic NumLaneConflicts = {"regalloc", "NumLaneConflicts"
, "Number of dead lane conflicts tested", {0}, {false}}
;
71STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved")static llvm::Statistic NumLaneResolves = {"regalloc", "NumLaneResolves"
, "Number of dead lane conflicts resolved", {0}, {false}}
;
72
73static cl::opt<bool> EnableJoining("join-liveintervals",
74 cl::desc("Coalesce copies (default=true)"),
75 cl::init(true), cl::Hidden);
76
77static cl::opt<bool> UseTerminalRule("terminal-rule",
78 cl::desc("Apply the terminal rule"),
79 cl::init(false), cl::Hidden);
80
81/// Temporary flag to test critical edge unsplitting.
82static cl::opt<bool>
83EnableJoinSplits("join-splitedges",
84 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
85
86/// Temporary flag to test global copy optimization.
87static cl::opt<cl::boolOrDefault>
88EnableGlobalCopies("join-globalcopies",
89 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
90 cl::init(cl::BOU_UNSET), cl::Hidden);
91
92static cl::opt<bool>
93VerifyCoalescing("verify-coalescing",
94 cl::desc("Verify machine instrs before and after register coalescing"),
95 cl::Hidden);
96
97namespace {
98
99 class RegisterCoalescer : public MachineFunctionPass,
100 private LiveRangeEdit::Delegate {
101 MachineFunction* MF;
102 MachineRegisterInfo* MRI;
103 const TargetRegisterInfo* TRI;
104 const TargetInstrInfo* TII;
105 LiveIntervals *LIS;
106 const MachineLoopInfo* Loops;
107 AliasAnalysis *AA;
108 RegisterClassInfo RegClassInfo;
109
110 /// A LaneMask to remember on which subregister live ranges we need to call
111 /// shrinkToUses() later.
112 LaneBitmask ShrinkMask;
113
114 /// True if the main range of the currently coalesced intervals should be
115 /// checked for smaller live intervals.
116 bool ShrinkMainRange;
117
118 /// \brief True if the coalescer should aggressively coalesce global copies
119 /// in favor of keeping local copies.
120 bool JoinGlobalCopies;
121
122 /// \brief True if the coalescer should aggressively coalesce fall-thru
123 /// blocks exclusively containing copies.
124 bool JoinSplitEdges;
125
126 /// Copy instructions yet to be coalesced.
127 SmallVector<MachineInstr*, 8> WorkList;
128 SmallVector<MachineInstr*, 8> LocalWorkList;
129
130 /// Set of instruction pointers that have been erased, and
131 /// that may be present in WorkList.
132 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
133
134 /// Dead instructions that are about to be deleted.
135 SmallVector<MachineInstr*, 8> DeadDefs;
136
137 /// Virtual registers to be considered for register class inflation.
138 SmallVector<unsigned, 8> InflateRegs;
139
140 /// Recursively eliminate dead defs in DeadDefs.
141 void eliminateDeadDefs();
142
143 /// LiveRangeEdit callback for eliminateDeadDefs().
144 void LRE_WillEraseInstruction(MachineInstr *MI) override;
145
146 /// Coalesce the LocalWorkList.
147 void coalesceLocals();
148
149 /// Join compatible live intervals
150 void joinAllIntervals();
151
152 /// Coalesce copies in the specified MBB, putting
153 /// copies that cannot yet be coalesced into WorkList.
154 void copyCoalesceInMBB(MachineBasicBlock *MBB);
155
156 /// Tries to coalesce all copies in CurrList. Returns true if any progress
157 /// was made.
158 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
159
160 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
161 /// src/dst of the copy instruction CopyMI. This returns true if the copy
162 /// was successfully coalesced away. If it is not currently possible to
163 /// coalesce this interval, but it may be possible if other things get
164 /// coalesced, then it returns true by reference in 'Again'.
165 bool joinCopy(MachineInstr *TheCopy, bool &Again);
166
167 /// Attempt to join these two intervals. On failure, this
168 /// returns false. The output "SrcInt" will not have been modified, so we
169 /// can use this information below to update aliases.
170 bool joinIntervals(CoalescerPair &CP);
171
172 /// Attempt joining two virtual registers. Return true on success.
173 bool joinVirtRegs(CoalescerPair &CP);
174
175 /// Attempt joining with a reserved physreg.
176 bool joinReservedPhysReg(CoalescerPair &CP);
177
178 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
179 /// Subranges in @p LI which only partially interfere with the desired
180 /// LaneMask are split as necessary. @p LaneMask are the lanes that
181 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
182 /// lanemasks already adjusted to the coalesced register.
183 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
184 LaneBitmask LaneMask, CoalescerPair &CP);
185
186 /// Join the liveranges of two subregisters. Joins @p RRange into
187 /// @p LRange, @p RRange may be invalid afterwards.
188 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
189 LaneBitmask LaneMask, const CoalescerPair &CP);
190
191 /// We found a non-trivially-coalescable copy. If the source value number is
192 /// defined by a copy from the destination reg see if we can merge these two
193 /// destination reg valno# into a single value number, eliminating a copy.
194 /// This returns true if an interval was modified.
195 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
196
197 /// Return true if there are definitions of IntB
198 /// other than BValNo val# that can reach uses of AValno val# of IntA.
199 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
200 VNInfo *AValNo, VNInfo *BValNo);
201
202 /// We found a non-trivially-coalescable copy.
203 /// If the source value number is defined by a commutable instruction and
204 /// its other operand is coalesced to the copy dest register, see if we
205 /// can transform the copy into a noop by commuting the definition.
206 /// This returns true if an interval was modified.
207 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
208
209 /// We found a copy which can be moved to its less frequent predecessor.
210 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
211
212 /// If the source of a copy is defined by a
213 /// trivial computation, replace the copy by rematerialize the definition.
214 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
215 bool &IsDefCopy);
216
217 /// Return true if a copy involving a physreg should be joined.
218 bool canJoinPhys(const CoalescerPair &CP);
219
220 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
221 /// number if it is not zero. If DstReg is a physical register and the
222 /// existing subregister number of the def / use being updated is not zero,
223 /// make sure to set it to the correct physical subregister.
224 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
225
226 /// If the given machine operand reads only undefined lanes add an undef
227 /// flag.
228 /// This can happen when undef uses were previously concealed by a copy
229 /// which we coalesced. Example:
230 /// %0:sub0<def,read-undef> = ...
231 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
232 /// = use %1:sub1 <-- hidden undef use
233 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
234 MachineOperand &MO, unsigned SubRegIdx);
235
236 /// Handle copies of undef values.
237 /// Returns true if @p CopyMI was a copy of an undef value and eliminated.
238 bool eliminateUndefCopy(MachineInstr *CopyMI);
239
240 /// Check whether or not we should apply the terminal rule on the
241 /// destination (Dst) of \p Copy.
242 /// When the terminal rule applies, Copy is not profitable to
243 /// coalesce.
244 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
245 /// at least one interference (Dst, Dst2). If Dst is terminal, the
246 /// terminal rule consists in checking that at least one of
247 /// interfering node, say Dst2, has an affinity of equal or greater
248 /// weight with Src.
249 /// In that case, Dst2 and Dst will not be able to be both coalesced
250 /// with Src. Since Dst2 exposes more coalescing opportunities than
251 /// Dst, we can drop \p Copy.
252 bool applyTerminalRule(const MachineInstr &Copy) const;
253
254 /// Wrapper method for \see LiveIntervals::shrinkToUses.
255 /// This method does the proper fixing of the live-ranges when the afore
256 /// mentioned method returns true.
257 void shrinkToUses(LiveInterval *LI,
258 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
259 if (LIS->shrinkToUses(LI, Dead)) {
260 /// Check whether or not \p LI is composed by multiple connected
261 /// components and if that is the case, fix that.
262 SmallVector<LiveInterval*, 8> SplitLIs;
263 LIS->splitSeparateComponents(*LI, SplitLIs);
264 }
265 }
266
267 /// Wrapper Method to do all the necessary work when an Instruction is
268 /// deleted.
269 /// Optimizations should use this to make sure that deleted instructions
270 /// are always accounted for.
271 void deleteInstr(MachineInstr* MI) {
272 ErasedInstrs.insert(MI);
273 LIS->RemoveMachineInstrFromMaps(*MI);
274 MI->eraseFromParent();
275 }
276
277 public:
278 static char ID; ///< Class identification, replacement for typeinfo
279
280 RegisterCoalescer() : MachineFunctionPass(ID) {
281 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
282 }
283
284 void getAnalysisUsage(AnalysisUsage &AU) const override;
285
286 void releaseMemory() override;
287
288 /// This is the pass entry point.
289 bool runOnMachineFunction(MachineFunction&) override;
290
291 /// Implement the dump method.
292 void print(raw_ostream &O, const Module* = nullptr) const override;
293 };
294
295} // end anonymous namespace
296
297char RegisterCoalescer::ID = 0;
298
299char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
300
301INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",static void *initializeRegisterCoalescerPassOnce(PassRegistry
&Registry) {
302 "Simple Register Coalescing", false, false)static void *initializeRegisterCoalescerPassOnce(PassRegistry
&Registry) {
303INITIALIZE_PASS_DEPENDENCY(LiveIntervals)initializeLiveIntervalsPass(Registry);
304INITIALIZE_PASS_DEPENDENCY(SlotIndexes)initializeSlotIndexesPass(Registry);
305INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry);
306INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
307INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",PassInfo *PI = new PassInfo( "Simple Register Coalescing", "simple-register-coalescing"
, &RegisterCoalescer::ID, PassInfo::NormalCtor_t(callDefaultCtor
<RegisterCoalescer>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeRegisterCoalescerPassFlag
; void llvm::initializeRegisterCoalescerPass(PassRegistry &
Registry) { llvm::call_once(InitializeRegisterCoalescerPassFlag
, initializeRegisterCoalescerPassOnce, std::ref(Registry)); }
308 "Simple Register Coalescing", false, false)PassInfo *PI = new PassInfo( "Simple Register Coalescing", "simple-register-coalescing"
, &RegisterCoalescer::ID, PassInfo::NormalCtor_t(callDefaultCtor
<RegisterCoalescer>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeRegisterCoalescerPassFlag
; void llvm::initializeRegisterCoalescerPass(PassRegistry &
Registry) { llvm::call_once(InitializeRegisterCoalescerPassFlag
, initializeRegisterCoalescerPassOnce, std::ref(Registry)); }
309
310static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
311 unsigned &Src, unsigned &Dst,
312 unsigned &SrcSub, unsigned &DstSub) {
313 if (MI->isCopy()) {
24
Taking false branch
314 Dst = MI->getOperand(0).getReg();
315 DstSub = MI->getOperand(0).getSubReg();
316 Src = MI->getOperand(1).getReg();
317 SrcSub = MI->getOperand(1).getSubReg();
318 } else if (MI->isSubregToReg()) {
25
Taking false branch
319 Dst = MI->getOperand(0).getReg();
320 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
321 MI->getOperand(3).getImm());
322 Src = MI->getOperand(2).getReg();
323 SrcSub = MI->getOperand(2).getSubReg();
324 } else
325 return false;
26
Returning without writing to 'Dst'
326 return true;
327}
328
329/// Return true if this block should be vacated by the coalescer to eliminate
330/// branches. The important cases to handle in the coalescer are critical edges
331/// split during phi elimination which contain only copies. Simple blocks that
332/// contain non-branches should also be vacated, but this can be handled by an
333/// earlier pass similar to early if-conversion.
334static bool isSplitEdge(const MachineBasicBlock *MBB) {
335 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
336 return false;
337
338 for (const auto &MI : *MBB) {
339 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
340 return false;
341 }
342 return true;
343}
344
345bool CoalescerPair::setRegisters(const MachineInstr *MI) {
346 SrcReg = DstReg = 0;
347 SrcIdx = DstIdx = 0;
348 NewRC = nullptr;
349 Flipped = CrossClass = false;
350
351 unsigned Src, Dst, SrcSub, DstSub;
352 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
353 return false;
354 Partial = SrcSub || DstSub;
355
356 // If one register is a physreg, it must be Dst.
357 if (TargetRegisterInfo::isPhysicalRegister(Src)) {
358 if (TargetRegisterInfo::isPhysicalRegister(Dst))
359 return false;
360 std::swap(Src, Dst);
361 std::swap(SrcSub, DstSub);
362 Flipped = true;
363 }
364
365 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
366
367 if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
368 // Eliminate DstSub on a physreg.
369 if (DstSub) {
370 Dst = TRI.getSubReg(Dst, DstSub);
371 if (!Dst) return false;
372 DstSub = 0;
373 }
374
375 // Eliminate SrcSub by picking a corresponding Dst superregister.
376 if (SrcSub) {
377 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
378 if (!Dst) return false;
379 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
380 return false;
381 }
382 } else {
383 // Both registers are virtual.
384 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
385 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
386
387 // Both registers have subreg indices.
388 if (SrcSub && DstSub) {
389 // Copies between different sub-registers are never coalescable.
390 if (Src == Dst && SrcSub != DstSub)
391 return false;
392
393 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
394 SrcIdx, DstIdx);
395 if (!NewRC)
396 return false;
397 } else if (DstSub) {
398 // SrcReg will be merged with a sub-register of DstReg.
399 SrcIdx = DstSub;
400 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
401 } else if (SrcSub) {
402 // DstReg will be merged with a sub-register of SrcReg.
403 DstIdx = SrcSub;
404 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
405 } else {
406 // This is a straight copy without sub-registers.
407 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
408 }
409
410 // The combined constraint may be impossible to satisfy.
411 if (!NewRC)
412 return false;
413
414 // Prefer SrcReg to be a sub-register of DstReg.
415 // FIXME: Coalescer should support subregs symmetrically.
416 if (DstIdx && !SrcIdx) {
417 std::swap(Src, Dst);
418 std::swap(SrcIdx, DstIdx);
419 Flipped = !Flipped;
420 }
421
422 CrossClass = NewRC != DstRC || NewRC != SrcRC;
423 }
424 // Check our invariants
425 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual")(static_cast <bool> (TargetRegisterInfo::isVirtualRegister
(Src) && "Src must be virtual") ? void (0) : __assert_fail
("TargetRegisterInfo::isVirtualRegister(Src) && \"Src must be virtual\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 425, __extension__ __PRETTY_FUNCTION__))
;
426 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&(static_cast <bool> (!(TargetRegisterInfo::isPhysicalRegister
(Dst) && DstSub) && "Cannot have a physical SubIdx"
) ? void (0) : __assert_fail ("!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && \"Cannot have a physical SubIdx\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 427, __extension__ __PRETTY_FUNCTION__))
427 "Cannot have a physical SubIdx")(static_cast <bool> (!(TargetRegisterInfo::isPhysicalRegister
(Dst) && DstSub) && "Cannot have a physical SubIdx"
) ? void (0) : __assert_fail ("!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && \"Cannot have a physical SubIdx\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 427, __extension__ __PRETTY_FUNCTION__))
;
428 SrcReg = Src;
429 DstReg = Dst;
430 return true;
431}
432
433bool CoalescerPair::flip() {
434 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
435 return false;
436 std::swap(SrcReg, DstReg);
437 std::swap(SrcIdx, DstIdx);
438 Flipped = !Flipped;
439 return true;
440}
441
442bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
443 if (!MI)
444 return false;
445 unsigned Src, Dst, SrcSub, DstSub;
446 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
447 return false;
448
449 // Find the virtual register that is SrcReg.
450 if (Dst == SrcReg) {
451 std::swap(Src, Dst);
452 std::swap(SrcSub, DstSub);
453 } else if (Src != SrcReg) {
454 return false;
455 }
456
457 // Now check that Dst matches DstReg.
458 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
459 if (!TargetRegisterInfo::isPhysicalRegister(Dst))
460 return false;
461 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.")(static_cast <bool> (!DstIdx && !SrcIdx &&
"Inconsistent CoalescerPair state.") ? void (0) : __assert_fail
("!DstIdx && !SrcIdx && \"Inconsistent CoalescerPair state.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 461, __extension__ __PRETTY_FUNCTION__))
;
462 // DstSub could be set for a physreg from INSERT_SUBREG.
463 if (DstSub)
464 Dst = TRI.getSubReg(Dst, DstSub);
465 // Full copy of Src.
466 if (!SrcSub)
467 return DstReg == Dst;
468 // This is a partial register copy. Check that the parts match.
469 return TRI.getSubReg(DstReg, SrcSub) == Dst;
470 } else {
471 // DstReg is virtual.
472 if (DstReg != Dst)
473 return false;
474 // Registers match, do the subregisters line up?
475 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
476 TRI.composeSubRegIndices(DstIdx, DstSub);
477 }
478}
479
480void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
481 AU.setPreservesCFG();
482 AU.addRequired<AAResultsWrapperPass>();
483 AU.addRequired<LiveIntervals>();
484 AU.addPreserved<LiveIntervals>();
485 AU.addPreserved<SlotIndexes>();
486 AU.addRequired<MachineLoopInfo>();
487 AU.addPreserved<MachineLoopInfo>();
488 AU.addPreservedID(MachineDominatorsID);
489 MachineFunctionPass::getAnalysisUsage(AU);
490}
491
492void RegisterCoalescer::eliminateDeadDefs() {
493 SmallVector<unsigned, 8> NewRegs;
494 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
495 nullptr, this).eliminateDeadDefs(DeadDefs);
496}
497
498void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
499 // MI may be in WorkList. Make sure we don't visit it.
500 ErasedInstrs.insert(MI);
501}
502
503bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
504 MachineInstr *CopyMI) {
505 assert(!CP.isPartial() && "This doesn't work for partial copies.")(static_cast <bool> (!CP.isPartial() && "This doesn't work for partial copies."
) ? void (0) : __assert_fail ("!CP.isPartial() && \"This doesn't work for partial copies.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 505, __extension__ __PRETTY_FUNCTION__))
;
506 assert(!CP.isPhys() && "This doesn't work for physreg copies.")(static_cast <bool> (!CP.isPhys() && "This doesn't work for physreg copies."
) ? void (0) : __assert_fail ("!CP.isPhys() && \"This doesn't work for physreg copies.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 506, __extension__ __PRETTY_FUNCTION__))
;
507
508 LiveInterval &IntA =
509 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
510 LiveInterval &IntB =
511 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
512 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
513
514 // We have a non-trivially-coalescable copy with IntA being the source and
515 // IntB being the dest, thus this defines a value number in IntB. If the
516 // source value number (in IntA) is defined by a copy from B, see if we can
517 // merge these two pieces of B into a single value number, eliminating a copy.
518 // For example:
519 //
520 // A3 = B0
521 // ...
522 // B1 = A3 <- this copy
523 //
524 // In this case, B0 can be extended to where the B1 copy lives, allowing the
525 // B1 value number to be replaced with B0 (which simplifies the B
526 // liveinterval).
527
528 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
529 // the example above.
530 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
531 if (BS == IntB.end()) return false;
532 VNInfo *BValNo = BS->valno;
533
534 // Get the location that B is defined at. Two options: either this value has
535 // an unknown definition point or it is defined at CopyIdx. If unknown, we
536 // can't process it.
537 if (BValNo->def != CopyIdx) return false;
538
539 // AValNo is the value number in A that defines the copy, A3 in the example.
540 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
541 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
542 // The live segment might not exist after fun with physreg coalescing.
543 if (AS == IntA.end()) return false;
544 VNInfo *AValNo = AS->valno;
545
546 // If AValNo is defined as a copy from IntB, we can potentially process this.
547 // Get the instruction that defines this value number.
548 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
549 // Don't allow any partial copies, even if isCoalescable() allows them.
550 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
551 return false;
552
553 // Get the Segment in IntB that this value number starts with.
554 LiveInterval::iterator ValS =
555 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
556 if (ValS == IntB.end())
557 return false;
558
559 // Make sure that the end of the live segment is inside the same block as
560 // CopyMI.
561 MachineInstr *ValSEndInst =
562 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
563 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
564 return false;
565
566 // Okay, we now know that ValS ends in the same block that the CopyMI
567 // live-range starts. If there are no intervening live segments between them
568 // in IntB, we can merge them.
569 if (ValS+1 != BS) return false;
570
571 DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Extending: " << printReg
(IntB.reg, TRI); } } while (false)
;
572
573 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
574 // We are about to delete CopyMI, so need to remove it as the 'instruction
575 // that defines this value #'. Update the valnum with the new defining
576 // instruction #.
577 BValNo->def = FillerStart;
578
579 // Okay, we can merge them. We need to insert a new liverange:
580 // [ValS.end, BS.begin) of either value number, then we merge the
581 // two value numbers.
582 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
583
584 // Okay, merge "B1" into the same value number as "B0".
585 if (BValNo != ValS->valno)
586 IntB.MergeValueNumberInto(BValNo, ValS->valno);
587
588 // Do the same for the subregister segments.
589 for (LiveInterval::SubRange &S : IntB.subranges()) {
590 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
591 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
592 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
593 if (SubBValNo != SubValSNo)
594 S.MergeValueNumberInto(SubBValNo, SubValSNo);
595 }
596
597 DEBUG(dbgs() << " result = " << IntB << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << " result = " << IntB <<
'\n'; } } while (false)
;
598
599 // If the source instruction was killing the source register before the
600 // merge, unset the isKill marker given the live range has been extended.
601 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
602 if (UIdx != -1) {
603 ValSEndInst->getOperand(UIdx).setIsKill(false);
604 }
605
606 // Rewrite the copy. If the copy instruction was killing the destination
607 // register before the merge, find the last use and trim the live range. That
608 // will also add the isKill marker.
609 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
610 if (AS->end == CopyIdx)
611 shrinkToUses(&IntA);
612
613 ++numExtends;
614 return true;
615}
616
617bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
618 LiveInterval &IntB,
619 VNInfo *AValNo,
620 VNInfo *BValNo) {
621 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
622 // the PHI values.
623 if (LIS->hasPHIKill(IntA, AValNo))
624 return true;
625
626 for (LiveRange::Segment &ASeg : IntA.segments) {
627 if (ASeg.valno != AValNo) continue;
628 LiveInterval::iterator BI =
629 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
630 if (BI != IntB.begin())
631 --BI;
632 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
633 if (BI->valno == BValNo)
634 continue;
635 if (BI->start <= ASeg.start && BI->end > ASeg.start)
636 return true;
637 if (BI->start > ASeg.start && BI->start < ASeg.end)
638 return true;
639 }
640 }
641 return false;
642}
643
644/// Copy segements with value number @p SrcValNo from liverange @p Src to live
645/// range @Dst and use value number @p DstValNo there.
646static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
647 const LiveRange &Src, const VNInfo *SrcValNo) {
648 for (const LiveRange::Segment &S : Src.segments) {
649 if (S.valno != SrcValNo)
650 continue;
651 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
652 }
653}
654
655bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
656 MachineInstr *CopyMI) {
657 assert(!CP.isPhys())(static_cast <bool> (!CP.isPhys()) ? void (0) : __assert_fail
("!CP.isPhys()", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 657, __extension__ __PRETTY_FUNCTION__))
;
658
659 LiveInterval &IntA =
660 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
661 LiveInterval &IntB =
662 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
663
664 // We found a non-trivially-coalescable copy with IntA being the source and
665 // IntB being the dest, thus this defines a value number in IntB. If the
666 // source value number (in IntA) is defined by a commutable instruction and
667 // its other operand is coalesced to the copy dest register, see if we can
668 // transform the copy into a noop by commuting the definition. For example,
669 //
670 // A3 = op A2 killed B0
671 // ...
672 // B1 = A3 <- this copy
673 // ...
674 // = op A3 <- more uses
675 //
676 // ==>
677 //
678 // B2 = op B0 killed A2
679 // ...
680 // B1 = B2 <- now an identity copy
681 // ...
682 // = op B2 <- more uses
683
684 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
685 // the example above.
686 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
687 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
688 assert(BValNo != nullptr && BValNo->def == CopyIdx)(static_cast <bool> (BValNo != nullptr && BValNo
->def == CopyIdx) ? void (0) : __assert_fail ("BValNo != nullptr && BValNo->def == CopyIdx"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 688, __extension__ __PRETTY_FUNCTION__))
;
689
690 // AValNo is the value number in A that defines the copy, A3 in the example.
691 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
692 assert(AValNo && !AValNo->isUnused() && "COPY source not live")(static_cast <bool> (AValNo && !AValNo->isUnused
() && "COPY source not live") ? void (0) : __assert_fail
("AValNo && !AValNo->isUnused() && \"COPY source not live\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 692, __extension__ __PRETTY_FUNCTION__))
;
693 if (AValNo->isPHIDef())
694 return false;
695 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
696 if (!DefMI)
697 return false;
698 if (!DefMI->isCommutable())
699 return false;
700 // If DefMI is a two-address instruction then commuting it will change the
701 // destination register.
702 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
703 assert(DefIdx != -1)(static_cast <bool> (DefIdx != -1) ? void (0) : __assert_fail
("DefIdx != -1", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 703, __extension__ __PRETTY_FUNCTION__))
;
704 unsigned UseOpIdx;
705 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
706 return false;
707
708 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
709 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
710 // passed to the method. That _other_ operand is chosen by
711 // the findCommutedOpIndices() method.
712 //
713 // That is obviously an area for improvement in case of instructions having
714 // more than 2 operands. For example, if some instruction has 3 commutable
715 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
716 // op#2<->op#3) of commute transformation should be considered/tried here.
717 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
718 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
719 return false;
720
721 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
722 unsigned NewReg = NewDstMO.getReg();
723 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
724 return false;
725
726 // Make sure there are no other definitions of IntB that would reach the
727 // uses which the new definition can reach.
728 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
729 return false;
730
731 // If some of the uses of IntA.reg is already coalesced away, return false.
732 // It's not possible to determine whether it's safe to perform the coalescing.
733 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
734 MachineInstr *UseMI = MO.getParent();
735 unsigned OpNo = &MO - &UseMI->getOperand(0);
736 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
737 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
738 if (US == IntA.end() || US->valno != AValNo)
739 continue;
740 // If this use is tied to a def, we can't rewrite the register.
741 if (UseMI->isRegTiedToDefOperand(OpNo))
742 return false;
743 }
744
745 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tremoveCopyByCommutingDef: "
<< AValNo->def << '\t' << *DefMI; } } while
(false)
746 << *DefMI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tremoveCopyByCommutingDef: "
<< AValNo->def << '\t' << *DefMI; } } while
(false)
;
747
748 // At this point we have decided that it is legal to do this
749 // transformation. Start by commuting the instruction.
750 MachineBasicBlock *MBB = DefMI->getParent();
751 MachineInstr *NewMI =
752 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
753 if (!NewMI)
754 return false;
755 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
756 TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
757 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
758 return false;
759 if (NewMI != DefMI) {
760 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
761 MachineBasicBlock::iterator Pos = DefMI;
762 MBB->insert(Pos, NewMI);
763 MBB->erase(DefMI);
764 }
765
766 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
767 // A = or A, B
768 // ...
769 // B = A
770 // ...
771 // C = killed A
772 // ...
773 // = B
774
775 // Update uses of IntA of the specific Val# with IntB.
776 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
777 UE = MRI->use_end();
778 UI != UE; /* ++UI is below because of possible MI removal */) {
779 MachineOperand &UseMO = *UI;
780 ++UI;
781 if (UseMO.isUndef())
782 continue;
783 MachineInstr *UseMI = UseMO.getParent();
784 if (UseMI->isDebugValue()) {
785 // FIXME These don't have an instruction index. Not clear we have enough
786 // info to decide whether to do this replacement or not. For now do it.
787 UseMO.setReg(NewReg);
788 continue;
789 }
790 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
791 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
792 assert(US != IntA.end() && "Use must be live")(static_cast <bool> (US != IntA.end() && "Use must be live"
) ? void (0) : __assert_fail ("US != IntA.end() && \"Use must be live\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 792, __extension__ __PRETTY_FUNCTION__))
;
793 if (US->valno != AValNo)
794 continue;
795 // Kill flags are no longer accurate. They are recomputed after RA.
796 UseMO.setIsKill(false);
797 if (TargetRegisterInfo::isPhysicalRegister(NewReg))
798 UseMO.substPhysReg(NewReg, *TRI);
799 else
800 UseMO.setReg(NewReg);
801 if (UseMI == CopyMI)
802 continue;
803 if (!UseMI->isCopy())
804 continue;
805 if (UseMI->getOperand(0).getReg() != IntB.reg ||
806 UseMI->getOperand(0).getSubReg())
807 continue;
808
809 // This copy will become a noop. If it's defining a new val#, merge it into
810 // BValNo.
811 SlotIndex DefIdx = UseIdx.getRegSlot();
812 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
813 if (!DVNI)
814 continue;
815 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tnoop: " << DefIdx <<
'\t' << *UseMI; } } while (false)
;
816 assert(DVNI->def == DefIdx)(static_cast <bool> (DVNI->def == DefIdx) ? void (0)
: __assert_fail ("DVNI->def == DefIdx", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 816, __extension__ __PRETTY_FUNCTION__))
;
817 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
818 for (LiveInterval::SubRange &S : IntB.subranges()) {
819 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
820 if (!SubDVNI)
821 continue;
822 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
823 assert(SubBValNo->def == CopyIdx)(static_cast <bool> (SubBValNo->def == CopyIdx) ? void
(0) : __assert_fail ("SubBValNo->def == CopyIdx", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 823, __extension__ __PRETTY_FUNCTION__))
;
824 S.MergeValueNumberInto(SubDVNI, SubBValNo);
825 }
826
827 deleteInstr(UseMI);
828 }
829
830 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
831 // is updated.
832 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
833 if (IntB.hasSubRanges()) {
834 if (!IntA.hasSubRanges()) {
835 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
836 IntA.createSubRangeFrom(Allocator, Mask, IntA);
837 }
838 SlotIndex AIdx = CopyIdx.getRegSlot(true);
839 for (LiveInterval::SubRange &SA : IntA.subranges()) {
840 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
841 assert(ASubValNo != nullptr)(static_cast <bool> (ASubValNo != nullptr) ? void (0) :
__assert_fail ("ASubValNo != nullptr", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 841, __extension__ __PRETTY_FUNCTION__))
;
842
843 IntB.refineSubRanges(Allocator, SA.LaneMask,
844 [&Allocator,&SA,CopyIdx,ASubValNo](LiveInterval::SubRange &SR) {
845 VNInfo *BSubValNo = SR.empty()
846 ? SR.getNextValue(CopyIdx, Allocator)
847 : SR.getVNInfoAt(CopyIdx);
848 assert(BSubValNo != nullptr)(static_cast <bool> (BSubValNo != nullptr) ? void (0) :
__assert_fail ("BSubValNo != nullptr", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 848, __extension__ __PRETTY_FUNCTION__))
;
849 addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
850 });
851 }
852 }
853
854 BValNo->def = AValNo->def;
855 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
856 DEBUG(dbgs() << "\t\textended: " << IntB << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\textended: " << IntB
<< '\n'; } } while (false)
;
857
858 LIS->removeVRegDefAt(IntA, AValNo->def);
859
860 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\ttrimmed: " << IntA
<< '\n'; } } while (false)
;
861 ++numCommutes;
862 return true;
863}
864
865/// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
866/// predecessor of BB2, and if B is not redefined on the way from A = B
867/// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the
868/// execution goes through the path from BB0 to BB2. We may move B = A
869/// to the predecessor without such reversed copy.
870/// So we will transform the program from:
871/// BB0:
872/// A = B; BB1:
873/// ... ...
874/// / \ /
875/// BB2:
876/// ...
877/// B = A;
878///
879/// to:
880///
881/// BB0: BB1:
882/// A = B; ...
883/// ... B = A;
884/// / \ /
885/// BB2:
886/// ...
887///
888/// A special case is when BB0 and BB2 are the same BB which is the only
889/// BB in a loop:
890/// BB1:
891/// ...
892/// BB0/BB2: ----
893/// B = A; |
894/// ... |
895/// A = B; |
896/// |-------
897/// |
898/// We may hoist B = A from BB0/BB2 to BB1.
899///
900/// The major preconditions for correctness to remove such partial
901/// redundancy include:
902/// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
903/// the PHI is defined by the reversed copy A = B in BB0.
904/// 2. No B is referenced from the start of BB2 to B = A.
905/// 3. No B is defined from A = B to the end of BB0.
906/// 4. BB1 has only one successor.
907///
908/// 2 and 4 implicitly ensure B is not live at the end of BB1.
909/// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
910/// colder place, which not only prevent endless loop, but also make sure
911/// the movement of copy is beneficial.
912bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
913 MachineInstr &CopyMI) {
914 assert(!CP.isPhys())(static_cast <bool> (!CP.isPhys()) ? void (0) : __assert_fail
("!CP.isPhys()", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 914, __extension__ __PRETTY_FUNCTION__))
;
915 if (!CopyMI.isFullCopy())
916 return false;
917
918 MachineBasicBlock &MBB = *CopyMI.getParent();
919 if (MBB.isEHPad())
920 return false;
921
922 if (MBB.pred_size() != 2)
923 return false;
924
925 LiveInterval &IntA =
926 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
927 LiveInterval &IntB =
928 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
929
930 // A is defined by PHI at the entry of MBB.
931 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
932 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
933 assert(AValNo && !AValNo->isUnused() && "COPY source not live")(static_cast <bool> (AValNo && !AValNo->isUnused
() && "COPY source not live") ? void (0) : __assert_fail
("AValNo && !AValNo->isUnused() && \"COPY source not live\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 933, __extension__ __PRETTY_FUNCTION__))
;
934 if (!AValNo->isPHIDef())
935 return false;
936
937 // No B is referenced before CopyMI in MBB.
938 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
939 return false;
940
941 // MBB has two predecessors: one contains A = B so no copy will be inserted
942 // for it. The other one will have a copy moved from MBB.
943 bool FoundReverseCopy = false;
944 MachineBasicBlock *CopyLeftBB = nullptr;
945 for (MachineBasicBlock *Pred : MBB.predecessors()) {
946 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
947 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
948 if (!DefMI || !DefMI->isFullCopy()) {
949 CopyLeftBB = Pred;
950 continue;
951 }
952 // Check DefMI is a reverse copy and it is in BB Pred.
953 if (DefMI->getOperand(0).getReg() != IntA.reg ||
954 DefMI->getOperand(1).getReg() != IntB.reg ||
955 DefMI->getParent() != Pred) {
956 CopyLeftBB = Pred;
957 continue;
958 }
959 // If there is any other def of B after DefMI and before the end of Pred,
960 // we need to keep the copy of B = A at the end of Pred if we remove
961 // B = A from MBB.
962 bool ValB_Changed = false;
963 for (auto VNI : IntB.valnos) {
964 if (VNI->isUnused())
965 continue;
966 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
967 ValB_Changed = true;
968 break;
969 }
970 }
971 if (ValB_Changed) {
972 CopyLeftBB = Pred;
973 continue;
974 }
975 FoundReverseCopy = true;
976 }
977
978 // If no reverse copy is found in predecessors, nothing to do.
979 if (!FoundReverseCopy)
980 return false;
981
982 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
983 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
984 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
985 // update IntA/IntB.
986 //
987 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
988 // MBB is hotter than CopyLeftBB.
989 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
990 return false;
991
992 // Now (almost sure it's) ok to move copy.
993 if (CopyLeftBB) {
994 // Position in CopyLeftBB where we should insert new copy.
995 auto InsPos = CopyLeftBB->getFirstTerminator();
996
997 // Make sure that B isn't referenced in the terminators (if any) at the end
998 // of the predecessor since we're about to insert a new definition of B
999 // before them.
1000 if (InsPos != CopyLeftBB->end()) {
1001 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1002 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1003 return false;
1004 }
1005
1006 DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tremovePartialRedundancy: Move the copy to "
<< printMBBReference(*CopyLeftBB) << '\t' <<
CopyMI; } } while (false)
1007 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tremovePartialRedundancy: Move the copy to "
<< printMBBReference(*CopyLeftBB) << '\t' <<
CopyMI; } } while (false)
;
1008
1009 // Insert new copy to CopyLeftBB.
1010 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1011 TII->get(TargetOpcode::COPY), IntB.reg)
1012 .addReg(IntA.reg);
1013 SlotIndex NewCopyIdx =
1014 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1015 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1016 for (LiveInterval::SubRange &SR : IntB.subranges())
1017 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1018
1019 // If the newly created Instruction has an address of an instruction that was
1020 // deleted before (object recycled by the allocator) it needs to be removed from
1021 // the deleted list.
1022 ErasedInstrs.erase(NewCopyMI);
1023 } else {
1024 DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tremovePartialRedundancy: Remove the copy from "
<< printMBBReference(MBB) << '\t' << CopyMI
; } } while (false)
1025 << printMBBReference(MBB) << '\t' << CopyMI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tremovePartialRedundancy: Remove the copy from "
<< printMBBReference(MBB) << '\t' << CopyMI
; } } while (false)
;
1026 }
1027
1028 // Remove CopyMI.
1029 // Note: This is fine to remove the copy before updating the live-ranges.
1030 // While updating the live-ranges, we only look at slot indices and
1031 // never go back to the instruction.
1032 // Mark instructions as deleted.
1033 deleteInstr(&CopyMI);
1034
1035 // Update the liveness.
1036 SmallVector<SlotIndex, 8> EndPoints;
1037 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1038 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1039 &EndPoints);
1040 BValNo->markUnused();
1041 // Extend IntB to the EndPoints of its original live interval.
1042 LIS->extendToIndices(IntB, EndPoints);
1043
1044 // Now, do the same for its subranges.
1045 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1046 EndPoints.clear();
1047 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1048 assert(BValNo && "All sublanes should be live")(static_cast <bool> (BValNo && "All sublanes should be live"
) ? void (0) : __assert_fail ("BValNo && \"All sublanes should be live\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1048, __extension__ __PRETTY_FUNCTION__))
;
1049 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1050 BValNo->markUnused();
1051 LIS->extendToIndices(SR, EndPoints);
1052 }
1053
1054 // Finally, update the live-range of IntA.
1055 shrinkToUses(&IntA);
1056 return true;
1057}
1058
1059/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1060/// defining a subregister.
1061static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1062 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&(static_cast <bool> (!TargetRegisterInfo::isPhysicalRegister
(Reg) && "This code cannot handle physreg aliasing") ?
void (0) : __assert_fail ("!TargetRegisterInfo::isPhysicalRegister(Reg) && \"This code cannot handle physreg aliasing\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1063, __extension__ __PRETTY_FUNCTION__))
1063 "This code cannot handle physreg aliasing")(static_cast <bool> (!TargetRegisterInfo::isPhysicalRegister
(Reg) && "This code cannot handle physreg aliasing") ?
void (0) : __assert_fail ("!TargetRegisterInfo::isPhysicalRegister(Reg) && \"This code cannot handle physreg aliasing\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1063, __extension__ __PRETTY_FUNCTION__))
;
1064 for (const MachineOperand &Op : MI.operands()) {
1065 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1066 continue;
1067 // Return true if we define the full register or don't care about the value
1068 // inside other subregisters.
1069 if (Op.getSubReg() == 0 || Op.isUndef())
1070 return true;
1071 }
1072 return false;
1073}
1074
1075bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1076 MachineInstr *CopyMI,
1077 bool &IsDefCopy) {
1078 IsDefCopy = false;
1079 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1080 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1081 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1082 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1083 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1084 return false;
1085
1086 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1087 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1088 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1089 assert(ValNo && "CopyMI input register not live")(static_cast <bool> (ValNo && "CopyMI input register not live"
) ? void (0) : __assert_fail ("ValNo && \"CopyMI input register not live\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1089, __extension__ __PRETTY_FUNCTION__))
;
1090 if (ValNo->isPHIDef() || ValNo->isUnused())
1091 return false;
1092 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1093 if (!DefMI)
1094 return false;
1095 if (DefMI->isCopyLike()) {
1096 IsDefCopy = true;
1097 return false;
1098 }
1099 if (!TII->isAsCheapAsAMove(*DefMI))
1100 return false;
1101 if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1102 return false;
1103 if (!definesFullReg(*DefMI, SrcReg))
1104 return false;
1105 bool SawStore = false;
1106 if (!DefMI->isSafeToMove(AA, SawStore))
1107 return false;
1108 const MCInstrDesc &MCID = DefMI->getDesc();
1109 if (MCID.getNumDefs() != 1)
1110 return false;
1111 // Only support subregister destinations when the def is read-undef.
1112 MachineOperand &DstOperand = CopyMI->getOperand(0);
1113 unsigned CopyDstReg = DstOperand.getReg();
1114 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1115 return false;
1116
1117 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1118 // the register substantially (beyond both source and dest size). This is bad
1119 // for performance since it can cascade through a function, introducing many
1120 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1121 // around after a few subreg copies).
1122 if (SrcIdx && DstIdx)
1123 return false;
1124
1125 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1126 if (!DefMI->isImplicitDef()) {
1127 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1128 unsigned NewDstReg = DstReg;
1129
1130 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1131 DefMI->getOperand(0).getSubReg());
1132 if (NewDstIdx)
1133 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1134
1135 // Finally, make sure that the physical subregister that will be
1136 // constructed later is permitted for the instruction.
1137 if (!DefRC->contains(NewDstReg))
1138 return false;
1139 } else {
1140 // Theoretically, some stack frame reference could exist. Just make sure
1141 // it hasn't actually happened.
1142 assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&(static_cast <bool> (TargetRegisterInfo::isVirtualRegister
(DstReg) && "Only expect to deal with virtual or physical registers"
) ? void (0) : __assert_fail ("TargetRegisterInfo::isVirtualRegister(DstReg) && \"Only expect to deal with virtual or physical registers\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1143, __extension__ __PRETTY_FUNCTION__))
1143 "Only expect to deal with virtual or physical registers")(static_cast <bool> (TargetRegisterInfo::isVirtualRegister
(DstReg) && "Only expect to deal with virtual or physical registers"
) ? void (0) : __assert_fail ("TargetRegisterInfo::isVirtualRegister(DstReg) && \"Only expect to deal with virtual or physical registers\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1143, __extension__ __PRETTY_FUNCTION__))
;
1144 }
1145 }
1146
1147 DebugLoc DL = CopyMI->getDebugLoc();
1148 MachineBasicBlock *MBB = CopyMI->getParent();
1149 MachineBasicBlock::iterator MII =
1150 std::next(MachineBasicBlock::iterator(CopyMI));
1151 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1152 MachineInstr &NewMI = *std::prev(MII);
1153 NewMI.setDebugLoc(DL);
1154
1155 // In a situation like the following:
1156 // %0:subreg = instr ; DefMI, subreg = DstIdx
1157 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1158 // instead of widening %1 to the register class of %0 simply do:
1159 // %1 = instr
1160 const TargetRegisterClass *NewRC = CP.getNewRC();
1161 if (DstIdx != 0) {
1162 MachineOperand &DefMO = NewMI.getOperand(0);
1163 if (DefMO.getSubReg() == DstIdx) {
1164 assert(SrcIdx == 0 && CP.isFlipped()(static_cast <bool> (SrcIdx == 0 && CP.isFlipped
() && "Shouldn't have SrcIdx+DstIdx at this point") ?
void (0) : __assert_fail ("SrcIdx == 0 && CP.isFlipped() && \"Shouldn't have SrcIdx+DstIdx at this point\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1165, __extension__ __PRETTY_FUNCTION__))
1165 && "Shouldn't have SrcIdx+DstIdx at this point")(static_cast <bool> (SrcIdx == 0 && CP.isFlipped
() && "Shouldn't have SrcIdx+DstIdx at this point") ?
void (0) : __assert_fail ("SrcIdx == 0 && CP.isFlipped() && \"Shouldn't have SrcIdx+DstIdx at this point\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1165, __extension__ __PRETTY_FUNCTION__))
;
1166 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1167 const TargetRegisterClass *CommonRC =
1168 TRI->getCommonSubClass(DefRC, DstRC);
1169 if (CommonRC != nullptr) {
1170 NewRC = CommonRC;
1171 DstIdx = 0;
1172 DefMO.setSubReg(0);
1173 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1174 }
1175 }
1176 }
1177
1178 // CopyMI may have implicit operands, save them so that we can transfer them
1179 // over to the newly materialized instruction after CopyMI is removed.
1180 SmallVector<MachineOperand, 4> ImplicitOps;
1181 ImplicitOps.reserve(CopyMI->getNumOperands() -
1182 CopyMI->getDesc().getNumOperands());
1183 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1184 E = CopyMI->getNumOperands();
1185 I != E; ++I) {
1186 MachineOperand &MO = CopyMI->getOperand(I);
1187 if (MO.isReg()) {
1188 assert(MO.isImplicit() && "No explicit operands after implict operands.")(static_cast <bool> (MO.isImplicit() && "No explicit operands after implict operands."
) ? void (0) : __assert_fail ("MO.isImplicit() && \"No explicit operands after implict operands.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1188, __extension__ __PRETTY_FUNCTION__))
;
1189 // Discard VReg implicit defs.
1190 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1191 ImplicitOps.push_back(MO);
1192 }
1193 }
1194
1195 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1196 CopyMI->eraseFromParent();
1197 ErasedInstrs.insert(CopyMI);
1198
1199 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1200 // We need to remember these so we can add intervals once we insert
1201 // NewMI into SlotIndexes.
1202 SmallVector<unsigned, 4> NewMIImplDefs;
1203 for (unsigned i = NewMI.getDesc().getNumOperands(),
1204 e = NewMI.getNumOperands();
1205 i != e; ++i) {
1206 MachineOperand &MO = NewMI.getOperand(i);
1207 if (MO.isReg() && MO.isDef()) {
1208 assert(MO.isImplicit() && MO.isDead() &&(static_cast <bool> (MO.isImplicit() && MO.isDead
() && TargetRegisterInfo::isPhysicalRegister(MO.getReg
())) ? void (0) : __assert_fail ("MO.isImplicit() && MO.isDead() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1209, __extension__ __PRETTY_FUNCTION__))
1209 TargetRegisterInfo::isPhysicalRegister(MO.getReg()))(static_cast <bool> (MO.isImplicit() && MO.isDead
() && TargetRegisterInfo::isPhysicalRegister(MO.getReg
())) ? void (0) : __assert_fail ("MO.isImplicit() && MO.isDead() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1209, __extension__ __PRETTY_FUNCTION__))
;
1210 NewMIImplDefs.push_back(MO.getReg());
1211 }
1212 }
1213
1214 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
1215 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1216
1217 if (DefRC != nullptr) {
1218 if (NewIdx)
1219 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1220 else
1221 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1222 assert(NewRC && "subreg chosen for remat incompatible with instruction")(static_cast <bool> (NewRC && "subreg chosen for remat incompatible with instruction"
) ? void (0) : __assert_fail ("NewRC && \"subreg chosen for remat incompatible with instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1222, __extension__ __PRETTY_FUNCTION__))
;
1223 }
1224 // Remap subranges to new lanemask and change register class.
1225 LiveInterval &DstInt = LIS->getInterval(DstReg);
1226 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1227 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1228 }
1229 MRI->setRegClass(DstReg, NewRC);
1230
1231 // Update machine operands and add flags.
1232 updateRegDefsUses(DstReg, DstReg, DstIdx);
1233 NewMI.getOperand(0).setSubReg(NewIdx);
1234 // Add dead subregister definitions if we are defining the whole register
1235 // but only part of it is live.
1236 // This could happen if the rematerialization instruction is rematerializing
1237 // more than actually is used in the register.
1238 // An example would be:
1239 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1240 // ; Copying only part of the register here, but the rest is undef.
1241 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1242 // ==>
1243 // ; Materialize all the constants but only using one
1244 // %2 = LOAD_CONSTANTS 5, 8
1245 //
1246 // at this point for the part that wasn't defined before we could have
1247 // subranges missing the definition.
1248 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1249 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1250 SlotIndex DefIndex =
1251 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1252 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1253 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1254 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1255 if (!SR.liveAt(DefIndex))
1256 SR.createDeadDef(DefIndex, Alloc);
1257 MaxMask &= ~SR.LaneMask;
1258 }
1259 if (MaxMask.any()) {
1260 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1261 SR->createDeadDef(DefIndex, Alloc);
1262 }
1263 }
1264
1265 // Make sure that the subrange for resultant undef is removed
1266 // For example:
1267 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1268 // %2 = COPY %1
1269 // ==>
1270 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1271 // ; Correct but need to remove the subrange for %2:sub0
1272 // ; as it is now undef
1273 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1274 // The affected subregister segments can be removed.
1275 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1276 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1277 bool UpdatedSubRanges = false;
1278 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1279 if ((SR.LaneMask & DstMask).none()) {
1280 DEBUG(dbgs() << "Removing undefined SubRange "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Removing undefined SubRange "
<< PrintLaneMask(SR.LaneMask) << " : " << SR
<< "\n"; } } while (false)
1281 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Removing undefined SubRange "
<< PrintLaneMask(SR.LaneMask) << " : " << SR
<< "\n"; } } while (false)
;
1282 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1283 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1284 SR.removeValNo(RmValNo);
1285 UpdatedSubRanges = true;
1286 }
1287 }
1288 }
1289 if (UpdatedSubRanges)
1290 DstInt.removeEmptySubRanges();
1291 }
1292 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1293 // The New instruction may be defining a sub-register of what's actually
1294 // been asked for. If so it must implicitly define the whole thing.
1295 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&(static_cast <bool> (TargetRegisterInfo::isPhysicalRegister
(DstReg) && "Only expect virtual or physical registers in remat"
) ? void (0) : __assert_fail ("TargetRegisterInfo::isPhysicalRegister(DstReg) && \"Only expect virtual or physical registers in remat\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1296, __extension__ __PRETTY_FUNCTION__))
1296 "Only expect virtual or physical registers in remat")(static_cast <bool> (TargetRegisterInfo::isPhysicalRegister
(DstReg) && "Only expect virtual or physical registers in remat"
) ? void (0) : __assert_fail ("TargetRegisterInfo::isPhysicalRegister(DstReg) && \"Only expect virtual or physical registers in remat\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1296, __extension__ __PRETTY_FUNCTION__))
;
1297 NewMI.getOperand(0).setIsDead(true);
1298 NewMI.addOperand(MachineOperand::CreateReg(
1299 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1300 // Record small dead def live-ranges for all the subregisters
1301 // of the destination register.
1302 // Otherwise, variables that live through may miss some
1303 // interferences, thus creating invalid allocation.
1304 // E.g., i386 code:
1305 // %1 = somedef ; %1 GR8
1306 // %2 = remat ; %2 GR32
1307 // CL = COPY %2.sub_8bit
1308 // = somedef %1 ; %1 GR8
1309 // =>
1310 // %1 = somedef ; %1 GR8
1311 // dead ECX = remat ; implicit-def CL
1312 // = somedef %1 ; %1 GR8
1313 // %1 will see the inteferences with CL but not with CH since
1314 // no live-ranges would have been created for ECX.
1315 // Fix that!
1316 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1317 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1318 Units.isValid(); ++Units)
1319 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1320 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1321 }
1322
1323 if (NewMI.getOperand(0).getSubReg())
1324 NewMI.getOperand(0).setIsUndef();
1325
1326 // Transfer over implicit operands to the rematerialized instruction.
1327 for (MachineOperand &MO : ImplicitOps)
1328 NewMI.addOperand(MO);
1329
1330 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1331 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1332 unsigned Reg = NewMIImplDefs[i];
1333 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1334 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1335 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1336 }
1337
1338 DEBUG(dbgs() << "Remat: " << NewMI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Remat: " << NewMI; } }
while (false)
;
1339 ++NumReMats;
1340
1341 // The source interval can become smaller because we removed a use.
1342 shrinkToUses(&SrcInt, &DeadDefs);
1343 if (!DeadDefs.empty()) {
1344 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1345 // to describe DstReg instead.
1346 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1347 MachineInstr *UseMI = UseMO.getParent();
1348 if (UseMI->isDebugValue()) {
1349 UseMO.setReg(DstReg);
1350 // Move the debug value directly after the def of the rematerialized
1351 // value in DstReg.
1352 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1353 DEBUG(dbgs() << "\t\tupdated: " << *UseMI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tupdated: " << *UseMI
; } } while (false)
;
1354 }
1355 }
1356 eliminateDeadDefs();
1357 }
1358
1359 return true;
1360}
1361
1362bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1363 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes
1364 // local variables. When we have a copy like:
1365 //
1366 // %1 = COPY undef %2
1367 //
1368 // We delete the copy and remove the corresponding value number from %1.
1369 // Any uses of that value number are marked as <undef>.
1370
1371 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1372 // CoalescerPair may have a new register class with adjusted subreg indices
1373 // at this point.
1374 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1375 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1376
1377 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1378 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1379 // CopyMI is undef iff SrcReg is not live before the instruction.
1380 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1381 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1382 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1383 if ((SR.LaneMask & SrcMask).none())
1384 continue;
1385 if (SR.liveAt(Idx))
1386 return false;
1387 }
1388 } else if (SrcLI.liveAt(Idx))
1389 return false;
1390
1391 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tEliminating copy of <undef> value\n"
; } } while (false)
;
1392
1393 // Remove any DstReg segments starting at the instruction.
1394 LiveInterval &DstLI = LIS->getInterval(DstReg);
1395 SlotIndex RegIndex = Idx.getRegSlot();
1396 // Remove value or merge with previous one in case of a subregister def.
1397 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1398 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1399 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1400
1401 // The affected subregister segments can be removed.
1402 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1403 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1404 if ((SR.LaneMask & DstMask).none())
1405 continue;
1406
1407 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1408 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex))(static_cast <bool> (SVNI != nullptr && SlotIndex
::isSameInstr(SVNI->def, RegIndex)) ? void (0) : __assert_fail
("SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1408, __extension__ __PRETTY_FUNCTION__))
;
1409 SR.removeValNo(SVNI);
1410 }
1411 DstLI.removeEmptySubRanges();
1412 } else
1413 LIS->removeVRegDefAt(DstLI, RegIndex);
1414
1415 // Mark uses as undef.
1416 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1417 if (MO.isDef() /*|| MO.isUndef()*/)
1418 continue;
1419 const MachineInstr &MI = *MO.getParent();
1420 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1421 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1422 bool isLive;
1423 if (!UseMask.all() && DstLI.hasSubRanges()) {
1424 isLive = false;
1425 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1426 if ((SR.LaneMask & UseMask).none())
1427 continue;
1428 if (SR.liveAt(UseIdx)) {
1429 isLive = true;
1430 break;
1431 }
1432 }
1433 } else
1434 isLive = DstLI.liveAt(UseIdx);
1435 if (isLive)
1436 continue;
1437 MO.setIsUndef(true);
1438 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tnew undef: " << UseIdx
<< '\t' << MI; } } while (false)
;
1439 }
1440
1441 // A def of a subregister may be a use of the other subregisters, so
1442 // deleting a def of a subregister may also remove uses. Since CopyMI
1443 // is still part of the function (but about to be erased), mark all
1444 // defs of DstReg in it as <undef>, so that shrinkToUses would
1445 // ignore them.
1446 for (MachineOperand &MO : CopyMI->operands())
1447 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1448 MO.setIsUndef(true);
1449 LIS->shrinkToUses(&DstLI);
1450
1451 return true;
1452}
1453
1454void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1455 MachineOperand &MO, unsigned SubRegIdx) {
1456 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1457 if (MO.isDef())
1458 Mask = ~Mask;
1459 bool IsUndef = true;
1460 for (const LiveInterval::SubRange &S : Int.subranges()) {
1461 if ((S.LaneMask & Mask).none())
1462 continue;
1463 if (S.liveAt(UseIdx)) {
1464 IsUndef = false;
1465 break;
1466 }
1467 }
1468 if (IsUndef) {
1469 MO.setIsUndef(true);
1470 // We found out some subregister use is actually reading an undefined
1471 // value. In some cases the whole vreg has become undefined at this
1472 // point so we have to potentially shrink the main range if the
1473 // use was ending a live segment there.
1474 LiveQueryResult Q = Int.Query(UseIdx);
1475 if (Q.valueOut() == nullptr)
1476 ShrinkMainRange = true;
1477 }
1478}
1479
1480void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1481 unsigned DstReg,
1482 unsigned SubIdx) {
1483 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1484 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1485
1486 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1487 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1488 unsigned SubReg = MO.getSubReg();
1489 if (SubReg == 0 || MO.isUndef())
1490 continue;
1491 MachineInstr &MI = *MO.getParent();
1492 if (MI.isDebugValue())
1493 continue;
1494 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1495 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1496 }
1497 }
1498
1499 SmallPtrSet<MachineInstr*, 8> Visited;
1500 for (MachineRegisterInfo::reg_instr_iterator
1501 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1502 I != E; ) {
1503 MachineInstr *UseMI = &*(I++);
1504
1505 // Each instruction can only be rewritten once because sub-register
1506 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1507 // the UseMI operands removes them from the SrcReg use-def chain, but when
1508 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1509 // operands mentioning the virtual register.
1510 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1511 continue;
1512
1513 SmallVector<unsigned,8> Ops;
1514 bool Reads, Writes;
1515 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1516
1517 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1518 // because SrcReg is a sub-register.
1519 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1520 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1521
1522 // Replace SrcReg with DstReg in all UseMI operands.
1523 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1524 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1525
1526 // Adjust <undef> flags in case of sub-register joins. We don't want to
1527 // turn a full def into a read-modify-write sub-register def and vice
1528 // versa.
1529 if (SubIdx && MO.isDef())
1530 MO.setIsUndef(!Reads);
1531
1532 // A subreg use of a partially undef (super) register may be a complete
1533 // undef use now and then has to be marked that way.
1534 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1535 if (!DstInt->hasSubRanges()) {
1536 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1537 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1538 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1539 }
1540 SlotIndex MIIdx = UseMI->isDebugValue()
1541 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1542 : LIS->getInstructionIndex(*UseMI);
1543 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1544 addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1545 }
1546
1547 if (DstIsPhys)
1548 MO.substPhysReg(DstReg, *TRI);
1549 else
1550 MO.substVirtReg(DstReg, SubIdx, *TRI);
1551 }
1552
1553 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tupdated: "; if (!UseMI
->isDebugValue()) dbgs() << LIS->getInstructionIndex
(*UseMI) << "\t"; dbgs() << *UseMI; }; } } while (
false)
1554 dbgs() << "\t\tupdated: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tupdated: "; if (!UseMI
->isDebugValue()) dbgs() << LIS->getInstructionIndex
(*UseMI) << "\t"; dbgs() << *UseMI; }; } } while (
false)
1555 if (!UseMI->isDebugValue())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tupdated: "; if (!UseMI
->isDebugValue()) dbgs() << LIS->getInstructionIndex
(*UseMI) << "\t"; dbgs() << *UseMI; }; } } while (
false)
1556 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tupdated: "; if (!UseMI
->isDebugValue()) dbgs() << LIS->getInstructionIndex
(*UseMI) << "\t"; dbgs() << *UseMI; }; } } while (
false)
1557 dbgs() << *UseMI;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tupdated: "; if (!UseMI
->isDebugValue()) dbgs() << LIS->getInstructionIndex
(*UseMI) << "\t"; dbgs() << *UseMI; }; } } while (
false)
1558 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tupdated: "; if (!UseMI
->isDebugValue()) dbgs() << LIS->getInstructionIndex
(*UseMI) << "\t"; dbgs() << *UseMI; }; } } while (
false)
;
1559 }
1560}
1561
1562bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1563 // Always join simple intervals that are defined by a single copy from a
1564 // reserved register. This doesn't increase register pressure, so it is
1565 // always beneficial.
1566 if (!MRI->isReserved(CP.getDstReg())) {
1567 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tCan only merge into reserved registers.\n"
; } } while (false)
;
1568 return false;
1569 }
1570
1571 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1572 if (JoinVInt.containsOneValue())
1573 return true;
1574
1575 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tCannot join complex intervals into reserved register.\n"
; } } while (false)
;
1576 return false;
1577}
1578
1579bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1580 Again = false;
1581 DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << LIS->getInstructionIndex(*
CopyMI) << '\t' << *CopyMI; } } while (false)
;
1582
1583 CoalescerPair CP(*TRI);
1584 if (!CP.setRegisters(CopyMI)) {
1585 DEBUG(dbgs() << "\tNot coalescable.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tNot coalescable.\n"; } } while
(false)
;
1586 return false;
1587 }
1588
1589 if (CP.getNewRC()) {
1590 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1591 auto DstRC = MRI->getRegClass(CP.getDstReg());
1592 unsigned SrcIdx = CP.getSrcIdx();
1593 unsigned DstIdx = CP.getDstIdx();
1594 if (CP.isFlipped()) {
1595 std::swap(SrcIdx, DstIdx);
1596 std::swap(SrcRC, DstRC);
1597 }
1598 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1599 CP.getNewRC(), *LIS)) {
1600 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tSubtarget bailed on coalescing.\n"
; } } while (false)
;
1601 return false;
1602 }
1603 }
1604
1605 // Dead code elimination. This really should be handled by MachineDCE, but
1606 // sometimes dead copies slip through, and we can't generate invalid live
1607 // ranges.
1608 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1609 DEBUG(dbgs() << "\tCopy is dead.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tCopy is dead.\n"; } } while
(false)
;
1610 DeadDefs.push_back(CopyMI);
1611 eliminateDeadDefs();
1612 return true;
1613 }
1614
1615 // Eliminate undefs.
1616 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
1617 deleteInstr(CopyMI);
1618 return false; // Not coalescable.
1619 }
1620
1621 // Coalesced copies are normally removed immediately, but transformations
1622 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1623 // When that happens, just join the values and remove the copy.
1624 if (CP.getSrcReg() == CP.getDstReg()) {
1625 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1626 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tCopy already coalesced: " <<
LI << '\n'; } } while (false)
;
1627 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1628 LiveQueryResult LRQ = LI.Query(CopyIdx);
1629 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1630 VNInfo *ReadVNI = LRQ.valueIn();
1631 assert(ReadVNI && "No value before copy and no <undef> flag.")(static_cast <bool> (ReadVNI && "No value before copy and no <undef> flag."
) ? void (0) : __assert_fail ("ReadVNI && \"No value before copy and no <undef> flag.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1631, __extension__ __PRETTY_FUNCTION__))
;
1632 assert(ReadVNI != DefVNI && "Cannot read and define the same value.")(static_cast <bool> (ReadVNI != DefVNI && "Cannot read and define the same value."
) ? void (0) : __assert_fail ("ReadVNI != DefVNI && \"Cannot read and define the same value.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1632, __extension__ __PRETTY_FUNCTION__))
;
1633 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1634
1635 // Process subregister liveranges.
1636 for (LiveInterval::SubRange &S : LI.subranges()) {
1637 LiveQueryResult SLRQ = S.Query(CopyIdx);
1638 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1639 VNInfo *SReadVNI = SLRQ.valueIn();
1640 S.MergeValueNumberInto(SDefVNI, SReadVNI);
1641 }
1642 }
1643 DEBUG(dbgs() << "\tMerged values: " << LI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tMerged values: " <<
LI << '\n'; } } while (false)
;
1644 }
1645 deleteInstr(CopyMI);
1646 return true;
1647 }
1648
1649 // Enforce policies.
1650 if (CP.isPhys()) {
1651 DEBUG(dbgs() << "\tConsidering merging " << printReg(CP.getSrcReg(), TRI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tConsidering merging " <<
printReg(CP.getSrcReg(), TRI) << " with " << printReg
(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; } } while
(false)
1652 << " with " << printReg(CP.getDstReg(), TRI, CP.getSrcIdx())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tConsidering merging " <<
printReg(CP.getSrcReg(), TRI) << " with " << printReg
(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; } } while
(false)
1653 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tConsidering merging " <<
printReg(CP.getSrcReg(), TRI) << " with " << printReg
(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; } } while
(false)
;
1654 if (!canJoinPhys(CP)) {
1655 // Before giving up coalescing, if definition of source is defined by
1656 // trivial computation, try rematerializing it.
1657 bool IsDefCopy;
1658 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1659 return true;
1660 if (IsDefCopy)
1661 Again = true; // May be possible to coalesce later.
1662 return false;
1663 }
1664 } else {
1665 // When possible, let DstReg be the larger interval.
1666 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1667 LIS->getInterval(CP.getDstReg()).size())
1668 CP.flip();
1669
1670 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1671 dbgs() << "\tConsidering merging to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1672 << TRI->getRegClassName(CP.getNewRC()) << " with ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1673 if (CP.getDstIdx() && CP.getSrcIdx())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1674 dbgs() << printReg(CP.getDstReg()) << " in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1675 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1676 << printReg(CP.getSrcReg()) << " in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1677 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1678 elsedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1679 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1680 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
1681 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with "
; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() <<
printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName
(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg
()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx
()) << '\n'; else dbgs() << printReg(CP.getSrcReg
(), TRI) << " in " << printReg(CP.getDstReg(), TRI
, CP.getSrcIdx()) << '\n'; }; } } while (false)
;
1682 }
1683
1684 ShrinkMask = LaneBitmask::getNone();
1685 ShrinkMainRange = false;
1686
1687 // Okay, attempt to join these two intervals. On failure, this returns false.
1688 // Otherwise, if one of the intervals being joined is a physreg, this method
1689 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1690 // been modified, so we can use this information below to update aliases.
1691 if (!joinIntervals(CP)) {
1692 // Coalescing failed.
1693
1694 // If definition of source is defined by trivial computation, try
1695 // rematerializing it.
1696 bool IsDefCopy;
1697 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1698 return true;
1699
1700 // If we can eliminate the copy without merging the live segments, do so
1701 // now.
1702 if (!CP.isPartial() && !CP.isPhys()) {
1703 if (adjustCopiesBackFrom(CP, CopyMI) ||
1704 removeCopyByCommutingDef(CP, CopyMI)) {
1705 deleteInstr(CopyMI);
1706 DEBUG(dbgs() << "\tTrivial!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tTrivial!\n"; } } while (false
)
;
1707 return true;
1708 }
1709 }
1710
1711 // Try and see if we can partially eliminate the copy by moving the copy to
1712 // its predecessor.
1713 if (!CP.isPartial() && !CP.isPhys())
1714 if (removePartialRedundancy(CP, *CopyMI))
1715 return true;
1716
1717 // Otherwise, we are unable to join the intervals.
1718 DEBUG(dbgs() << "\tInterference!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tInterference!\n"; } } while
(false)
;
1719 Again = true; // May be possible to coalesce later.
1720 return false;
1721 }
1722
1723 // Coalescing to a virtual register that is of a sub-register class of the
1724 // other. Make sure the resulting register is set to the right register class.
1725 if (CP.isCrossClass()) {
1726 ++numCrossRCs;
1727 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1728 }
1729
1730 // Removing sub-register copies can ease the register class constraints.
1731 // Make sure we attempt to inflate the register class of DstReg.
1732 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1733 InflateRegs.push_back(CP.getDstReg());
1734
1735 // CopyMI has been erased by joinIntervals at this point. Remove it from
1736 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1737 // to the work list. This keeps ErasedInstrs from growing needlessly.
1738 ErasedInstrs.erase(CopyMI);
1739
1740 // Rewrite all SrcReg operands to DstReg.
1741 // Also update DstReg operands to include DstIdx if it is set.
1742 if (CP.getDstIdx())
1743 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1744 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1745
1746 // Shrink subregister ranges if necessary.
1747 if (ShrinkMask.any()) {
1748 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1749 for (LiveInterval::SubRange &S : LI.subranges()) {
1750 if ((S.LaneMask & ShrinkMask).none())
1751 continue;
1752 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Shrink LaneUses (Lane " <<
PrintLaneMask(S.LaneMask) << ")\n"; } } while (false)
1753 << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Shrink LaneUses (Lane " <<
PrintLaneMask(S.LaneMask) << ")\n"; } } while (false)
;
1754 LIS->shrinkToUses(S, LI.reg);
1755 }
1756 LI.removeEmptySubRanges();
1757 }
1758 if (ShrinkMainRange) {
1759 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1760 shrinkToUses(&LI);
1761 }
1762
1763 // SrcReg is guaranteed to be the register whose live interval that is
1764 // being merged.
1765 LIS->removeInterval(CP.getSrcReg());
1766
1767 // Update regalloc hint.
1768 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1769
1770 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tSuccess: " << printReg
(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " <<
printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() <<
printReg(CP.getDstReg(), TRI); else dbgs() << LIS->
getInterval(CP.getDstReg()); dbgs() << '\n'; }; } } while
(false)
1771 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tSuccess: " << printReg
(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " <<
printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() <<
printReg(CP.getDstReg(), TRI); else dbgs() << LIS->
getInterval(CP.getDstReg()); dbgs() << '\n'; }; } } while
(false)
1772 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tSuccess: " << printReg
(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " <<
printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() <<
printReg(CP.getDstReg(), TRI); else dbgs() << LIS->
getInterval(CP.getDstReg()); dbgs() << '\n'; }; } } while
(false)
1773 dbgs() << "\tResult = ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tSuccess: " << printReg
(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " <<
printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() <<
printReg(CP.getDstReg(), TRI); else dbgs() << LIS->
getInterval(CP.getDstReg()); dbgs() << '\n'; }; } } while
(false)
1774 if (CP.isPhys())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tSuccess: " << printReg
(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " <<
printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() <<
printReg(CP.getDstReg(), TRI); else dbgs() << LIS->
getInterval(CP.getDstReg()); dbgs() << '\n'; }; } } while
(false)
1775 dbgs() << printReg(CP.getDstReg(), TRI);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tSuccess: " << printReg
(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " <<
printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() <<
printReg(CP.getDstReg(), TRI); else dbgs() << LIS->
getInterval(CP.getDstReg()); dbgs() << '\n'; }; } } while
(false)
1776 elsedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tSuccess: " << printReg
(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " <<
printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() <<
printReg(CP.getDstReg(), TRI); else dbgs() << LIS->
getInterval(CP.getDstReg()); dbgs() << '\n'; }; } } while
(false)
1777 dbgs() << LIS->getInterval(CP.getDstReg());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tSuccess: " << printReg
(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " <<
printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() <<
printReg(CP.getDstReg(), TRI); else dbgs() << LIS->
getInterval(CP.getDstReg()); dbgs() << '\n'; }; } } while
(false)
1778 dbgs() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tSuccess: " << printReg
(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " <<
printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() <<
printReg(CP.getDstReg(), TRI); else dbgs() << LIS->
getInterval(CP.getDstReg()); dbgs() << '\n'; }; } } while
(false)
1779 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\tSuccess: " << printReg
(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " <<
printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() <<
printReg(CP.getDstReg(), TRI); else dbgs() << LIS->
getInterval(CP.getDstReg()); dbgs() << '\n'; }; } } while
(false)
;
1780
1781 ++numJoins;
1782 return true;
1783}
1784
1785bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1786 unsigned DstReg = CP.getDstReg();
1787 unsigned SrcReg = CP.getSrcReg();
1788 assert(CP.isPhys() && "Must be a physreg copy")(static_cast <bool> (CP.isPhys() && "Must be a physreg copy"
) ? void (0) : __assert_fail ("CP.isPhys() && \"Must be a physreg copy\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1788, __extension__ __PRETTY_FUNCTION__))
;
1789 assert(MRI->isReserved(DstReg) && "Not a reserved register")(static_cast <bool> (MRI->isReserved(DstReg) &&
"Not a reserved register") ? void (0) : __assert_fail ("MRI->isReserved(DstReg) && \"Not a reserved register\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1789, __extension__ __PRETTY_FUNCTION__))
;
1790 LiveInterval &RHS = LIS->getInterval(SrcReg);
1791 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tRHS = " << RHS <<
'\n'; } } while (false)
;
1792
1793 assert(RHS.containsOneValue() && "Invalid join with reserved register")(static_cast <bool> (RHS.containsOneValue() && "Invalid join with reserved register"
) ? void (0) : __assert_fail ("RHS.containsOneValue() && \"Invalid join with reserved register\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 1793, __extension__ __PRETTY_FUNCTION__))
;
1794
1795 // Optimization for reserved registers like ESP. We can only merge with a
1796 // reserved physreg if RHS has a single value that is a copy of DstReg.
1797 // The live range of the reserved register will look like a set of dead defs
1798 // - we don't properly track the live range of reserved registers.
1799
1800 // Deny any overlapping intervals. This depends on all the reserved
1801 // register live ranges to look like dead defs.
1802 if (!MRI->isConstantPhysReg(DstReg)) {
1803 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1804 // Abort if not all the regunits are reserved.
1805 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
1806 if (!MRI->isReserved(*RI))
1807 return false;
1808 }
1809 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1810 DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tInterference: " <<
printRegUnit(*UI, TRI) << '\n'; } } while (false)
;
1811 return false;
1812 }
1813 }
1814
1815 // We must also check for overlaps with regmask clobbers.
1816 BitVector RegMaskUsable;
1817 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
1818 !RegMaskUsable.test(DstReg)) {
1819 DEBUG(dbgs() << "\t\tRegMask interference\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tRegMask interference\n";
} } while (false)
;
1820 return false;
1821 }
1822 }
1823
1824 // Skip any value computations, we are not adding new values to the
1825 // reserved register. Also skip merging the live ranges, the reserved
1826 // register live range doesn't need to be accurate as long as all the
1827 // defs are there.
1828
1829 // Delete the identity copy.
1830 MachineInstr *CopyMI;
1831 if (CP.isFlipped()) {
1832 // Physreg is copied into vreg
1833 // %y = COPY %physreg_x
1834 // ... //< no other def of %x here
1835 // use %y
1836 // =>
1837 // ...
1838 // use %x
1839 CopyMI = MRI->getVRegDef(SrcReg);
1840 } else {
1841 // VReg is copied into physreg:
1842 // %y = def
1843 // ... //< no other def or use of %y here
1844 // %y = COPY %physreg_x
1845 // =>
1846 // %y = def
1847 // ...
1848 if (!MRI->hasOneNonDBGUse(SrcReg)) {
1849 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tMultiple vreg uses!\n"; }
} while (false)
;
1850 return false;
1851 }
1852
1853 if (!LIS->intervalIsInOneMBB(RHS)) {
1854 DEBUG(dbgs() << "\t\tComplex control flow!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tComplex control flow!\n"
; } } while (false)
;
1855 return false;
1856 }
1857
1858 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
1859 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
1860 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
1861 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
1862
1863 if (!MRI->isConstantPhysReg(DstReg)) {
1864 // We checked above that there are no interfering defs of the physical
1865 // register. However, for this case, where we intend to move up the def of
1866 // the physical register, we also need to check for interfering uses.
1867 SlotIndexes *Indexes = LIS->getSlotIndexes();
1868 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
1869 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
1870 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
1871 if (MI->readsRegister(DstReg, TRI)) {
1872 DEBUG(dbgs() << "\t\tInterference (read): " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tInterference (read): " <<
*MI; } } while (false)
;
1873 return false;
1874 }
1875 }
1876 }
1877
1878 // We're going to remove the copy which defines a physical reserved
1879 // register, so remove its valno, etc.
1880 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << printReg(DstReg, TRI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tRemoving phys reg def of "
<< printReg(DstReg, TRI) << " at " << CopyRegIdx
<< "\n"; } } while (false)
1881 << " at " << CopyRegIdx << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tRemoving phys reg def of "
<< printReg(DstReg, TRI) << " at " << CopyRegIdx
<< "\n"; } } while (false)
;
1882
1883 LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
1884 // Create a new dead def at the new def location.
1885 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1886 LiveRange &LR = LIS->getRegUnit(*UI);
1887 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
1888 }
1889 }
1890
1891 deleteInstr(CopyMI);
1892
1893 // We don't track kills for reserved registers.
1894 MRI->clearKillFlags(CP.getSrcReg());
1895
1896 return true;
1897}
1898
1899//===----------------------------------------------------------------------===//
1900// Interference checking and interval joining
1901//===----------------------------------------------------------------------===//
1902//
1903// In the easiest case, the two live ranges being joined are disjoint, and
1904// there is no interference to consider. It is quite common, though, to have
1905// overlapping live ranges, and we need to check if the interference can be
1906// resolved.
1907//
1908// The live range of a single SSA value forms a sub-tree of the dominator tree.
1909// This means that two SSA values overlap if and only if the def of one value
1910// is contained in the live range of the other value. As a special case, the
1911// overlapping values can be defined at the same index.
1912//
1913// The interference from an overlapping def can be resolved in these cases:
1914//
1915// 1. Coalescable copies. The value is defined by a copy that would become an
1916// identity copy after joining SrcReg and DstReg. The copy instruction will
1917// be removed, and the value will be merged with the source value.
1918//
1919// There can be several copies back and forth, causing many values to be
1920// merged into one. We compute a list of ultimate values in the joined live
1921// range as well as a mappings from the old value numbers.
1922//
1923// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1924// predecessors have a live out value. It doesn't cause real interference,
1925// and can be merged into the value it overlaps. Like a coalescable copy, it
1926// can be erased after joining.
1927//
1928// 3. Copy of external value. The overlapping def may be a copy of a value that
1929// is already in the other register. This is like a coalescable copy, but
1930// the live range of the source register must be trimmed after erasing the
1931// copy instruction:
1932//
1933// %src = COPY %ext
1934// %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
1935//
1936// 4. Clobbering undefined lanes. Vector registers are sometimes built by
1937// defining one lane at a time:
1938//
1939// %dst:ssub0<def,read-undef> = FOO
1940// %src = BAR
1941// %dst:ssub1 = COPY %src
1942//
1943// The live range of %src overlaps the %dst value defined by FOO, but
1944// merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1945// which was undef anyway.
1946//
1947// The value mapping is more complicated in this case. The final live range
1948// will have different value numbers for both FOO and BAR, but there is no
1949// simple mapping from old to new values. It may even be necessary to add
1950// new PHI values.
1951//
1952// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1953// is live, but never read. This can happen because we don't compute
1954// individual live ranges per lane.
1955//
1956// %dst = FOO
1957// %src = BAR
1958// %dst:ssub1 = COPY %src
1959//
1960// This kind of interference is only resolved locally. If the clobbered
1961// lane value escapes the block, the join is aborted.
1962
1963namespace {
1964
1965/// Track information about values in a single virtual register about to be
1966/// joined. Objects of this class are always created in pairs - one for each
1967/// side of the CoalescerPair (or one for each lane of a side of the coalescer
1968/// pair)
1969class JoinVals {
1970 /// Live range we work on.
1971 LiveRange &LR;
1972
1973 /// (Main) register we work on.
1974 const unsigned Reg;
1975
1976 /// Reg (and therefore the values in this liverange) will end up as
1977 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
1978 /// CP.SrcIdx.
1979 const unsigned SubIdx;
1980
1981 /// The LaneMask that this liverange will occupy the coalesced register. May
1982 /// be smaller than the lanemask produced by SubIdx when merging subranges.
1983 const LaneBitmask LaneMask;
1984
1985 /// This is true when joining sub register ranges, false when joining main
1986 /// ranges.
1987 const bool SubRangeJoin;
1988
1989 /// Whether the current LiveInterval tracks subregister liveness.
1990 const bool TrackSubRegLiveness;
1991
1992 /// Values that will be present in the final live range.
1993 SmallVectorImpl<VNInfo*> &NewVNInfo;
1994
1995 const CoalescerPair &CP;
1996 LiveIntervals *LIS;
1997 SlotIndexes *Indexes;
1998 const TargetRegisterInfo *TRI;
1999
2000 /// Value number assignments. Maps value numbers in LI to entries in
2001 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2002 SmallVector<int, 8> Assignments;
2003
2004 /// Conflict resolution for overlapping values.
2005 enum ConflictResolution {
2006 /// No overlap, simply keep this value.
2007 CR_Keep,
2008
2009 /// Merge this value into OtherVNI and erase the defining instruction.
2010 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2011 /// values.
2012 CR_Erase,
2013
2014 /// Merge this value into OtherVNI but keep the defining instruction.
2015 /// This is for the special case where OtherVNI is defined by the same
2016 /// instruction.
2017 CR_Merge,
2018
2019 /// Keep this value, and have it replace OtherVNI where possible. This
2020 /// complicates value mapping since OtherVNI maps to two different values
2021 /// before and after this def.
2022 /// Used when clobbering undefined or dead lanes.
2023 CR_Replace,
2024
2025 /// Unresolved conflict. Visit later when all values have been mapped.
2026 CR_Unresolved,
2027
2028 /// Unresolvable conflict. Abort the join.
2029 CR_Impossible
2030 };
2031
2032 /// Per-value info for LI. The lane bit masks are all relative to the final
2033 /// joined register, so they can be compared directly between SrcReg and
2034 /// DstReg.
2035 struct Val {
2036 ConflictResolution Resolution = CR_Keep;
2037
2038 /// Lanes written by this def, 0 for unanalyzed values.
2039 LaneBitmask WriteLanes;
2040
2041 /// Lanes with defined values in this register. Other lanes are undef and
2042 /// safe to clobber.
2043 LaneBitmask ValidLanes;
2044
2045 /// Value in LI being redefined by this def.
2046 VNInfo *RedefVNI = nullptr;
2047
2048 /// Value in the other live range that overlaps this def, if any.
2049 VNInfo *OtherVNI = nullptr;
2050
2051 /// Is this value an IMPLICIT_DEF that can be erased?
2052 ///
2053 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2054 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2055 /// safely erased if they are overlapping a live value in the other live
2056 /// interval.
2057 ///
2058 /// Weird control flow graphs and incomplete PHI handling in
2059 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2060 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2061 /// normal values.
2062 bool ErasableImplicitDef = false;
2063
2064 /// True when the live range of this value will be pruned because of an
2065 /// overlapping CR_Replace value in the other live range.
2066 bool Pruned = false;
2067
2068 /// True once Pruned above has been computed.
2069 bool PrunedComputed = false;
2070
2071 Val() = default;
2072
2073 bool isAnalyzed() const { return WriteLanes.any(); }
2074 };
2075
2076 /// One entry per value number in LI.
2077 SmallVector<Val, 8> Vals;
2078
2079 /// Compute the bitmask of lanes actually written by DefMI.
2080 /// Set Redef if there are any partial register definitions that depend on the
2081 /// previous value of the register.
2082 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2083
2084 /// Find the ultimate value that VNI was copied from.
2085 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2086
2087 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
2088
2089 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2090 /// Return a conflict resolution when possible, but leave the hard cases as
2091 /// CR_Unresolved.
2092 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2093 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2094 /// The recursion always goes upwards in the dominator tree, making loops
2095 /// impossible.
2096 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2097
2098 /// Compute the value assignment for ValNo in RI.
2099 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2100 /// the stack.
2101 void computeAssignment(unsigned ValNo, JoinVals &Other);
2102
2103 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2104 /// the extent of the tainted lanes in the block.
2105 ///
2106 /// Multiple values in Other.LR can be affected since partial redefinitions
2107 /// can preserve previously tainted lanes.
2108 ///
2109 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2110 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2111 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2112 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2113 ///
2114 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2115 /// entry to TaintedVals.
2116 ///
2117 /// Returns false if the tainted lanes extend beyond the basic block.
2118 bool
2119 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2120 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2121
2122 /// Return true if MI uses any of the given Lanes from Reg.
2123 /// This does not include partial redefinitions of Reg.
2124 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2125
2126 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2127 /// be pruned:
2128 ///
2129 /// %dst = COPY %src
2130 /// %src = COPY %dst <-- This value to be pruned.
2131 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2132 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2133
2134public:
2135 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2136 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2137 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2138 bool TrackSubRegLiveness)
2139 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2140 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2141 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2142 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2143
2144 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2145 /// Returns false if any conflicts were impossible to resolve.
2146 bool mapValues(JoinVals &Other);
2147
2148 /// Try to resolve conflicts that require all values to be mapped.
2149 /// Returns false if any conflicts were impossible to resolve.
2150 bool resolveConflicts(JoinVals &Other);
2151
2152 /// Prune the live range of values in Other.LR where they would conflict with
2153 /// CR_Replace values in LR. Collect end points for restoring the live range
2154 /// after joining.
2155 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2156 bool changeInstrs);
2157
2158 /// Removes subranges starting at copies that get removed. This sometimes
2159 /// happens when undefined subranges are copied around. These ranges contain
2160 /// no useful information and can be removed.
2161 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2162
2163 /// Pruning values in subranges can lead to removing segments in these
2164 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2165 /// the main range also need to be removed. This function will mark
2166 /// the corresponding values in the main range as pruned, so that
2167 /// eraseInstrs can do the final cleanup.
2168 /// The parameter @p LI must be the interval whose main range is the
2169 /// live range LR.
2170 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2171
2172 /// Erase any machine instructions that have been coalesced away.
2173 /// Add erased instructions to ErasedInstrs.
2174 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2175 /// the erased instrs.
2176 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2177 SmallVectorImpl<unsigned> &ShrinkRegs,
2178 LiveInterval *LI = nullptr);
2179
2180 /// Remove liverange defs at places where implicit defs will be removed.
2181 void removeImplicitDefs();
2182
2183 /// Get the value assignments suitable for passing to LiveInterval::join.
2184 const int *getAssignments() const { return Assignments.data(); }
2185};
2186
2187} // end anonymous namespace
2188
2189LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2190 const {
2191 LaneBitmask L;
2192 for (const MachineOperand &MO : DefMI->operands()) {
2193 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2194 continue;
2195 L |= TRI->getSubRegIndexLaneMask(
2196 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2197 if (MO.readsReg())
2198 Redef = true;
2199 }
2200 return L;
2201}
2202
2203std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2204 const VNInfo *VNI) const {
2205 unsigned Reg = this->Reg;
2206
2207 while (!VNI->isPHIDef()) {
2208 SlotIndex Def = VNI->def;
2209 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2210 assert(MI && "No defining instruction")(static_cast <bool> (MI && "No defining instruction"
) ? void (0) : __assert_fail ("MI && \"No defining instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2210, __extension__ __PRETTY_FUNCTION__))
;
2211 if (!MI->isFullCopy())
2212 return std::make_pair(VNI, Reg);
2213 unsigned SrcReg = MI->getOperand(1).getReg();
2214 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2215 return std::make_pair(VNI, Reg);
2216
2217 const LiveInterval &LI = LIS->getInterval(SrcReg);
2218 const VNInfo *ValueIn;
2219 // No subrange involved.
2220 if (!SubRangeJoin || !LI.hasSubRanges()) {
2221 LiveQueryResult LRQ = LI.Query(Def);
2222 ValueIn = LRQ.valueIn();
2223 } else {
2224 // Query subranges. Pick the first matching one.
2225 ValueIn = nullptr;
2226 for (const LiveInterval::SubRange &S : LI.subranges()) {
2227 // Transform lanemask to a mask in the joined live interval.
2228 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2229 if ((SMask & LaneMask).none())
2230 continue;
2231 LiveQueryResult LRQ = S.Query(Def);
2232 ValueIn = LRQ.valueIn();
2233 break;
2234 }
2235 }
2236 if (ValueIn == nullptr)
2237 break;
2238 VNI = ValueIn;
2239 Reg = SrcReg;
2240 }
2241 return std::make_pair(VNI, Reg);
2242}
2243
2244bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2245 const JoinVals &Other) const {
2246 const VNInfo *Orig0;
2247 unsigned Reg0;
2248 std::tie(Orig0, Reg0) = followCopyChain(Value0);
2249 if (Orig0 == Value1)
2250 return true;
2251
2252 const VNInfo *Orig1;
2253 unsigned Reg1;
2254 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2255
2256 // The values are equal if they are defined at the same place and use the
2257 // same register. Note that we cannot compare VNInfos directly as some of
2258 // them might be from a copy created in mergeSubRangeInto() while the other
2259 // is from the original LiveInterval.
2260 return Orig0->def == Orig1->def && Reg0 == Reg1;
2261}
2262
2263JoinVals::ConflictResolution
2264JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2265 Val &V = Vals[ValNo];
2266 assert(!V.isAnalyzed() && "Value has already been analyzed!")(static_cast <bool> (!V.isAnalyzed() && "Value has already been analyzed!"
) ? void (0) : __assert_fail ("!V.isAnalyzed() && \"Value has already been analyzed!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2266, __extension__ __PRETTY_FUNCTION__))
;
2267 VNInfo *VNI = LR.getValNumInfo(ValNo);
2268 if (VNI->isUnused()) {
2269 V.WriteLanes = LaneBitmask::getAll();
2270 return CR_Keep;
2271 }
2272
2273 // Get the instruction defining this value, compute the lanes written.
2274 const MachineInstr *DefMI = nullptr;
2275 if (VNI->isPHIDef()) {
2276 // Conservatively assume that all lanes in a PHI are valid.
2277 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2278 : TRI->getSubRegIndexLaneMask(SubIdx);
2279 V.ValidLanes = V.WriteLanes = Lanes;
2280 } else {
2281 DefMI = Indexes->getInstructionFromIndex(VNI->def);
2282 assert(DefMI != nullptr)(static_cast <bool> (DefMI != nullptr) ? void (0) : __assert_fail
("DefMI != nullptr", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2282, __extension__ __PRETTY_FUNCTION__))
;
2283 if (SubRangeJoin) {
2284 // We don't care about the lanes when joining subregister ranges.
2285 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2286 if (DefMI->isImplicitDef()) {
2287 V.ValidLanes = LaneBitmask::getNone();
2288 V.ErasableImplicitDef = true;
2289 }
2290 } else {
2291 bool Redef = false;
2292 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2293
2294 // If this is a read-modify-write instruction, there may be more valid
2295 // lanes than the ones written by this instruction.
2296 // This only covers partial redef operands. DefMI may have normal use
2297 // operands reading the register. They don't contribute valid lanes.
2298 //
2299 // This adds ssub1 to the set of valid lanes in %src:
2300 //
2301 // %src:ssub1 = FOO
2302 //
2303 // This leaves only ssub1 valid, making any other lanes undef:
2304 //
2305 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2306 //
2307 // The <read-undef> flag on the def operand means that old lane values are
2308 // not important.
2309 if (Redef) {
2310 V.RedefVNI = LR.Query(VNI->def).valueIn();
2311 assert((TrackSubRegLiveness || V.RedefVNI) &&(static_cast <bool> ((TrackSubRegLiveness || V.RedefVNI
) && "Instruction is reading nonexistent value") ? void
(0) : __assert_fail ("(TrackSubRegLiveness || V.RedefVNI) && \"Instruction is reading nonexistent value\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2312, __extension__ __PRETTY_FUNCTION__))
2312 "Instruction is reading nonexistent value")(static_cast <bool> ((TrackSubRegLiveness || V.RedefVNI
) && "Instruction is reading nonexistent value") ? void
(0) : __assert_fail ("(TrackSubRegLiveness || V.RedefVNI) && \"Instruction is reading nonexistent value\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2312, __extension__ __PRETTY_FUNCTION__))
;
2313 if (V.RedefVNI != nullptr) {
2314 computeAssignment(V.RedefVNI->id, Other);
2315 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2316 }
2317 }
2318
2319 // An IMPLICIT_DEF writes undef values.
2320 if (DefMI->isImplicitDef()) {
2321 // We normally expect IMPLICIT_DEF values to be live only until the end
2322 // of their block. If the value is really live longer and gets pruned in
2323 // another block, this flag is cleared again.
2324 V.ErasableImplicitDef = true;
2325 V.ValidLanes &= ~V.WriteLanes;
2326 }
2327 }
2328 }
2329
2330 // Find the value in Other that overlaps VNI->def, if any.
2331 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2332
2333 // It is possible that both values are defined by the same instruction, or
2334 // the values are PHIs defined in the same block. When that happens, the two
2335 // values should be merged into one, but not into any preceding value.
2336 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2337 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2338 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ")(static_cast <bool> (SlotIndex::isSameInstr(VNI->def
, OtherVNI->def) && "Broken LRQ") ? void (0) : __assert_fail
("SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && \"Broken LRQ\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2338, __extension__ __PRETTY_FUNCTION__))
;
2339
2340 // One value stays, the other is merged. Keep the earlier one, or the first
2341 // one we see.
2342 if (OtherVNI->def < VNI->def)
2343 Other.computeAssignment(OtherVNI->id, *this);
2344 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2345 // This is an early-clobber def overlapping a live-in value in the other
2346 // register. Not mergeable.
2347 V.OtherVNI = OtherLRQ.valueIn();
2348 return CR_Impossible;
2349 }
2350 V.OtherVNI = OtherVNI;
2351 Val &OtherV = Other.Vals[OtherVNI->id];
2352 // Keep this value, check for conflicts when analyzing OtherVNI.
2353 if (!OtherV.isAnalyzed())
2354 return CR_Keep;
2355 // Both sides have been analyzed now.
2356 // Allow overlapping PHI values. Any real interference would show up in a
2357 // predecessor, the PHI itself can't introduce any conflicts.
2358 if (VNI->isPHIDef())
2359 return CR_Merge;
2360 if ((V.ValidLanes & OtherV.ValidLanes).any())
2361 // Overlapping lanes can't be resolved.
2362 return CR_Impossible;
2363 else
2364 return CR_Merge;
2365 }
2366
2367 // No simultaneous def. Is Other live at the def?
2368 V.OtherVNI = OtherLRQ.valueIn();
2369 if (!V.OtherVNI)
2370 // No overlap, no conflict.
2371 return CR_Keep;
2372
2373 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ")(static_cast <bool> (!SlotIndex::isSameInstr(VNI->def
, V.OtherVNI->def) && "Broken LRQ") ? void (0) : __assert_fail
("!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && \"Broken LRQ\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2373, __extension__ __PRETTY_FUNCTION__))
;
2374
2375 // We have overlapping values, or possibly a kill of Other.
2376 // Recursively compute assignments up the dominator tree.
2377 Other.computeAssignment(V.OtherVNI->id, *this);
2378 Val &OtherV = Other.Vals[V.OtherVNI->id];
2379
2380 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2381 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2382 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2383 // technically.
2384 //
2385 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2386 // to erase the IMPLICIT_DEF instruction.
2387 if (OtherV.ErasableImplicitDef && DefMI &&
2388 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2389 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->defdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "IMPLICIT_DEF defined at " <<
V.OtherVNI->def << " extends into " << printMBBReference
(*DefMI->getParent()) << ", keeping it.\n"; } } while
(false)
2390 << " extends into " << printMBBReference(*DefMI->getParent())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "IMPLICIT_DEF defined at " <<
V.OtherVNI->def << " extends into " << printMBBReference
(*DefMI->getParent()) << ", keeping it.\n"; } } while
(false)
2391 << ", keeping it.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "IMPLICIT_DEF defined at " <<
V.OtherVNI->def << " extends into " << printMBBReference
(*DefMI->getParent()) << ", keeping it.\n"; } } while
(false)
;
2392 OtherV.ErasableImplicitDef = false;
2393 }
2394
2395 // Allow overlapping PHI values. Any real interference would show up in a
2396 // predecessor, the PHI itself can't introduce any conflicts.
2397 if (VNI->isPHIDef())
2398 return CR_Replace;
2399
2400 // Check for simple erasable conflicts.
2401 if (DefMI->isImplicitDef()) {
2402 // We need the def for the subregister if there is nothing else live at the
2403 // subrange at this point.
2404 if (TrackSubRegLiveness
2405 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2406 return CR_Replace;
2407 return CR_Erase;
2408 }
2409
2410 // Include the non-conflict where DefMI is a coalescable copy that kills
2411 // OtherVNI. We still want the copy erased and value numbers merged.
2412 if (CP.isCoalescable(DefMI)) {
2413 // Some of the lanes copied from OtherVNI may be undef, making them undef
2414 // here too.
2415 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2416 return CR_Erase;
2417 }
2418
2419 // This may not be a real conflict if DefMI simply kills Other and defines
2420 // VNI.
2421 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2422 return CR_Keep;
2423
2424 // Handle the case where VNI and OtherVNI can be proven to be identical:
2425 //
2426 // %other = COPY %ext
2427 // %this = COPY %ext <-- Erase this copy
2428 //
2429 if (DefMI->isFullCopy() && !CP.isPartial()
2430 && valuesIdentical(VNI, V.OtherVNI, Other))
2431 return CR_Erase;
2432
2433 // If the lanes written by this instruction were all undef in OtherVNI, it is
2434 // still safe to join the live ranges. This can't be done with a simple value
2435 // mapping, though - OtherVNI will map to multiple values:
2436 //
2437 // 1 %dst:ssub0 = FOO <-- OtherVNI
2438 // 2 %src = BAR <-- VNI
2439 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2440 // 4 BAZ killed %dst
2441 // 5 QUUX killed %src
2442 //
2443 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2444 // handles this complex value mapping.
2445 if ((V.WriteLanes & OtherV.ValidLanes).none())
2446 return CR_Replace;
2447
2448 // If the other live range is killed by DefMI and the live ranges are still
2449 // overlapping, it must be because we're looking at an early clobber def:
2450 //
2451 // %dst<def,early-clobber> = ASM killed %src
2452 //
2453 // In this case, it is illegal to merge the two live ranges since the early
2454 // clobber def would clobber %src before it was read.
2455 if (OtherLRQ.isKill()) {
2456 // This case where the def doesn't overlap the kill is handled above.
2457 assert(VNI->def.isEarlyClobber() &&(static_cast <bool> (VNI->def.isEarlyClobber() &&
"Only early clobber defs can overlap a kill") ? void (0) : __assert_fail
("VNI->def.isEarlyClobber() && \"Only early clobber defs can overlap a kill\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2458, __extension__ __PRETTY_FUNCTION__))
2458 "Only early clobber defs can overlap a kill")(static_cast <bool> (VNI->def.isEarlyClobber() &&
"Only early clobber defs can overlap a kill") ? void (0) : __assert_fail
("VNI->def.isEarlyClobber() && \"Only early clobber defs can overlap a kill\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2458, __extension__ __PRETTY_FUNCTION__))
;
2459 return CR_Impossible;
2460 }
2461
2462 // VNI is clobbering live lanes in OtherVNI, but there is still the
2463 // possibility that no instructions actually read the clobbered lanes.
2464 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2465 // Otherwise Other.RI wouldn't be live here.
2466 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2467 return CR_Impossible;
2468
2469 // We need to verify that no instructions are reading the clobbered lanes. To
2470 // save compile time, we'll only check that locally. Don't allow the tainted
2471 // value to escape the basic block.
2472 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2473 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2474 return CR_Impossible;
2475
2476 // There are still some things that could go wrong besides clobbered lanes
2477 // being read, for example OtherVNI may be only partially redefined in MBB,
2478 // and some clobbered lanes could escape the block. Save this analysis for
2479 // resolveConflicts() when all values have been mapped. We need to know
2480 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2481 // that now - the recursive analyzeValue() calls must go upwards in the
2482 // dominator tree.
2483 return CR_Unresolved;
2484}
2485
2486void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2487 Val &V = Vals[ValNo];
2488 if (V.isAnalyzed()) {
2489 // Recursion should always move up the dominator tree, so ValNo is not
2490 // supposed to reappear before it has been assigned.
2491 assert(Assignments[ValNo] != -1 && "Bad recursion?")(static_cast <bool> (Assignments[ValNo] != -1 &&
"Bad recursion?") ? void (0) : __assert_fail ("Assignments[ValNo] != -1 && \"Bad recursion?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2491, __extension__ __PRETTY_FUNCTION__))
;
2492 return;
2493 }
2494 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2495 case CR_Erase:
2496 case CR_Merge:
2497 // Merge this ValNo into OtherVNI.
2498 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.")(static_cast <bool> (V.OtherVNI && "OtherVNI not assigned, can't merge."
) ? void (0) : __assert_fail ("V.OtherVNI && \"OtherVNI not assigned, can't merge.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2498, __extension__ __PRETTY_FUNCTION__))
;
2499 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion")(static_cast <bool> (Other.Vals[V.OtherVNI->id].isAnalyzed
() && "Missing recursion") ? void (0) : __assert_fail
("Other.Vals[V.OtherVNI->id].isAnalyzed() && \"Missing recursion\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2499, __extension__ __PRETTY_FUNCTION__))
;
2500 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2501 DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tmerge " << printReg
(Reg) << ':' << ValNo << '@' << LR.getValNumInfo
(ValNo)->def << " into " << printReg(Other.Reg
) << ':' << V.OtherVNI->id << '@' <<
V.OtherVNI->def << " --> @" << NewVNInfo[Assignments
[ValNo]]->def << '\n'; } } while (false)
2502 << LR.getValNumInfo(ValNo)->def << " into "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tmerge " << printReg
(Reg) << ':' << ValNo << '@' << LR.getValNumInfo
(ValNo)->def << " into " << printReg(Other.Reg
) << ':' << V.OtherVNI->id << '@' <<
V.OtherVNI->def << " --> @" << NewVNInfo[Assignments
[ValNo]]->def << '\n'; } } while (false)
2503 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tmerge " << printReg
(Reg) << ':' << ValNo << '@' << LR.getValNumInfo
(ValNo)->def << " into " << printReg(Other.Reg
) << ':' << V.OtherVNI->id << '@' <<
V.OtherVNI->def << " --> @" << NewVNInfo[Assignments
[ValNo]]->def << '\n'; } } while (false)
2504 << V.OtherVNI->def << " --> @"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tmerge " << printReg
(Reg) << ':' << ValNo << '@' << LR.getValNumInfo
(ValNo)->def << " into " << printReg(Other.Reg
) << ':' << V.OtherVNI->id << '@' <<
V.OtherVNI->def << " --> @" << NewVNInfo[Assignments
[ValNo]]->def << '\n'; } } while (false)
2505 << NewVNInfo[Assignments[ValNo]]->def << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tmerge " << printReg
(Reg) << ':' << ValNo << '@' << LR.getValNumInfo
(ValNo)->def << " into " << printReg(Other.Reg
) << ':' << V.OtherVNI->id << '@' <<
V.OtherVNI->def << " --> @" << NewVNInfo[Assignments
[ValNo]]->def << '\n'; } } while (false)
;
2506 break;
2507 case CR_Replace:
2508 case CR_Unresolved: {
2509 // The other value is going to be pruned if this join is successful.
2510 assert(V.OtherVNI && "OtherVNI not assigned, can't prune")(static_cast <bool> (V.OtherVNI && "OtherVNI not assigned, can't prune"
) ? void (0) : __assert_fail ("V.OtherVNI && \"OtherVNI not assigned, can't prune\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2510, __extension__ __PRETTY_FUNCTION__))
;
2511 Val &OtherV = Other.Vals[V.OtherVNI->id];
2512 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2513 // its lanes.
2514 if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness)
2515 OtherV.ErasableImplicitDef = false;
2516 OtherV.Pruned = true;
2517 LLVM_FALLTHROUGH[[clang::fallthrough]];
2518 }
2519 default:
2520 // This value number needs to go in the final joined live range.
2521 Assignments[ValNo] = NewVNInfo.size();
2522 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2523 break;
2524 }
2525}
2526
2527bool JoinVals::mapValues(JoinVals &Other) {
2528 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2529 computeAssignment(i, Other);
2530 if (Vals[i].Resolution == CR_Impossible) {
2531 DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tinterference at " <<
printReg(Reg) << ':' << i << '@' << LR
.getValNumInfo(i)->def << '\n'; } } while (false)
2532 << '@' << LR.getValNumInfo(i)->def << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tinterference at " <<
printReg(Reg) << ':' << i << '@' << LR
.getValNumInfo(i)->def << '\n'; } } while (false)
;
2533 return false;
2534 }
2535 }
2536 return true;
2537}
2538
2539bool JoinVals::
2540taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2541 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2542 VNInfo *VNI = LR.getValNumInfo(ValNo);
2543 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2544 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2545
2546 // Scan Other.LR from VNI.def to MBBEnd.
2547 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2548 assert(OtherI != Other.LR.end() && "No conflict?")(static_cast <bool> (OtherI != Other.LR.end() &&
"No conflict?") ? void (0) : __assert_fail ("OtherI != Other.LR.end() && \"No conflict?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2548, __extension__ __PRETTY_FUNCTION__))
;
2549 do {
2550 // OtherI is pointing to a tainted value. Abort the join if the tainted
2551 // lanes escape the block.
2552 SlotIndex End = OtherI->end;
2553 if (End >= MBBEnd) {
2554 DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\ttaints global " <<
printReg(Other.Reg) << ':' << OtherI->valno->
id << '@' << OtherI->start << '\n'; } } while
(false)
2555 << OtherI->valno->id << '@' << OtherI->start << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\ttaints global " <<
printReg(Other.Reg) << ':' << OtherI->valno->
id << '@' << OtherI->start << '\n'; } } while
(false)
;
2556 return false;
2557 }
2558 DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\ttaints local " << printReg
(Other.Reg) << ':' << OtherI->valno->id <<
'@' << OtherI->start << " to " << End <<
'\n'; } } while (false)
2559 << OtherI->valno->id << '@' << OtherI->startdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\ttaints local " << printReg
(Other.Reg) << ':' << OtherI->valno->id <<
'@' << OtherI->start << " to " << End <<
'\n'; } } while (false)
2560 << " to " << End << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\ttaints local " << printReg
(Other.Reg) << ':' << OtherI->valno->id <<
'@' << OtherI->start << " to " << End <<
'\n'; } } while (false)
;
2561 // A dead def is not a problem.
2562 if (End.isDead())
2563 break;
2564 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2565
2566 // Check for another def in the MBB.
2567 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2568 break;
2569
2570 // Lanes written by the new def are no longer tainted.
2571 const Val &OV = Other.Vals[OtherI->valno->id];
2572 TaintedLanes &= ~OV.WriteLanes;
2573 if (!OV.RedefVNI)
2574 break;
2575 } while (TaintedLanes.any());
2576 return true;
2577}
2578
2579bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2580 LaneBitmask Lanes) const {
2581 if (MI.isDebugValue())
2582 return false;
2583 for (const MachineOperand &MO : MI.operands()) {
2584 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2585 continue;
2586 if (!MO.readsReg())
2587 continue;
2588 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2589 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2590 return true;
2591 }
2592 return false;
2593}
2594
2595bool JoinVals::resolveConflicts(JoinVals &Other) {
2596 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2597 Val &V = Vals[i];
2598 assert(V.Resolution != CR_Impossible && "Unresolvable conflict")(static_cast <bool> (V.Resolution != CR_Impossible &&
"Unresolvable conflict") ? void (0) : __assert_fail ("V.Resolution != CR_Impossible && \"Unresolvable conflict\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2598, __extension__ __PRETTY_FUNCTION__))
;
2599 if (V.Resolution != CR_Unresolved)
2600 continue;
2601 DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tconflict at " << printReg
(Reg) << ':' << i << '@' << LR.getValNumInfo
(i)->def << '\n'; } } while (false)
2602 << '@' << LR.getValNumInfo(i)->def << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tconflict at " << printReg
(Reg) << ':' << i << '@' << LR.getValNumInfo
(i)->def << '\n'; } } while (false)
;
2603 if (SubRangeJoin)
2604 return false;
2605
2606 ++NumLaneConflicts;
2607 assert(V.OtherVNI && "Inconsistent conflict resolution.")(static_cast <bool> (V.OtherVNI && "Inconsistent conflict resolution."
) ? void (0) : __assert_fail ("V.OtherVNI && \"Inconsistent conflict resolution.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2607, __extension__ __PRETTY_FUNCTION__))
;
2608 VNInfo *VNI = LR.getValNumInfo(i);
2609 const Val &OtherV = Other.Vals[V.OtherVNI->id];
2610
2611 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2612 // join, those lanes will be tainted with a wrong value. Get the extent of
2613 // the tainted lanes.
2614 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2615 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2616 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2617 // Tainted lanes would extend beyond the basic block.
2618 return false;
2619
2620 assert(!TaintExtent.empty() && "There should be at least one conflict.")(static_cast <bool> (!TaintExtent.empty() && "There should be at least one conflict."
) ? void (0) : __assert_fail ("!TaintExtent.empty() && \"There should be at least one conflict.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2620, __extension__ __PRETTY_FUNCTION__))
;
2621
2622 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2623 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2624 MachineBasicBlock::iterator MI = MBB->begin();
2625 if (!VNI->isPHIDef()) {
2626 MI = Indexes->getInstructionFromIndex(VNI->def);
2627 // No need to check the instruction defining VNI for reads.
2628 ++MI;
2629 }
2630 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&(static_cast <bool> (!SlotIndex::isSameInstr(VNI->def
, TaintExtent.front().first) && "Interference ends on VNI->def. Should have been handled earlier"
) ? void (0) : __assert_fail ("!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && \"Interference ends on VNI->def. Should have been handled earlier\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2631, __extension__ __PRETTY_FUNCTION__))
2631 "Interference ends on VNI->def. Should have been handled earlier")(static_cast <bool> (!SlotIndex::isSameInstr(VNI->def
, TaintExtent.front().first) && "Interference ends on VNI->def. Should have been handled earlier"
) ? void (0) : __assert_fail ("!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && \"Interference ends on VNI->def. Should have been handled earlier\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2631, __extension__ __PRETTY_FUNCTION__))
;
2632 MachineInstr *LastMI =
2633 Indexes->getInstructionFromIndex(TaintExtent.front().first);
2634 assert(LastMI && "Range must end at a proper instruction")(static_cast <bool> (LastMI && "Range must end at a proper instruction"
) ? void (0) : __assert_fail ("LastMI && \"Range must end at a proper instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2634, __extension__ __PRETTY_FUNCTION__))
;
2635 unsigned TaintNum = 0;
2636 while (true) {
2637 assert(MI != MBB->end() && "Bad LastMI")(static_cast <bool> (MI != MBB->end() && "Bad LastMI"
) ? void (0) : __assert_fail ("MI != MBB->end() && \"Bad LastMI\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2637, __extension__ __PRETTY_FUNCTION__))
;
2638 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2639 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\ttainted lanes used by: "
<< *MI; } } while (false)
;
2640 return false;
2641 }
2642 // LastMI is the last instruction to use the current value.
2643 if (&*MI == LastMI) {
2644 if (++TaintNum == TaintExtent.size())
2645 break;
2646 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2647 assert(LastMI && "Range must end at a proper instruction")(static_cast <bool> (LastMI && "Range must end at a proper instruction"
) ? void (0) : __assert_fail ("LastMI && \"Range must end at a proper instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2647, __extension__ __PRETTY_FUNCTION__))
;
2648 TaintedLanes = TaintExtent[TaintNum].second;
2649 }
2650 ++MI;
2651 }
2652
2653 // The tainted lanes are unused.
2654 V.Resolution = CR_Replace;
2655 ++NumLaneResolves;
2656 }
2657 return true;
2658}
2659
2660bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2661 Val &V = Vals[ValNo];
2662 if (V.Pruned || V.PrunedComputed)
2663 return V.Pruned;
2664
2665 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2666 return V.Pruned;
2667
2668 // Follow copies up the dominator tree and check if any intermediate value
2669 // has been pruned.
2670 V.PrunedComputed = true;
2671 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2672 return V.Pruned;
2673}
2674
2675void JoinVals::pruneValues(JoinVals &Other,
2676 SmallVectorImpl<SlotIndex> &EndPoints,
2677 bool changeInstrs) {
2678 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2679 SlotIndex Def = LR.getValNumInfo(i)->def;
2680 switch (Vals[i].Resolution) {
2681 case CR_Keep:
2682 break;
2683 case CR_Replace: {
2684 // This value takes precedence over the value in Other.LR.
2685 LIS->pruneValue(Other.LR, Def, &EndPoints);
2686 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2687 // instructions are only inserted to provide a live-out value for PHI
2688 // predecessors, so the instruction should simply go away once its value
2689 // has been replaced.
2690 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2691 bool EraseImpDef = OtherV.ErasableImplicitDef &&
2692 OtherV.Resolution == CR_Keep;
2693 if (!Def.isBlock()) {
2694 if (changeInstrs) {
2695 // Remove <def,read-undef> flags. This def is now a partial redef.
2696 // Also remove dead flags since the joined live range will
2697 // continue past this instruction.
2698 for (MachineOperand &MO :
2699 Indexes->getInstructionFromIndex(Def)->operands()) {
2700 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2701 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2702 MO.setIsUndef(false);
2703 MO.setIsDead(false);
2704 }
2705 }
2706 }
2707 // This value will reach instructions below, but we need to make sure
2708 // the live range also reaches the instruction at Def.
2709 if (!EraseImpDef)
2710 EndPoints.push_back(Def);
2711 }
2712 DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Defdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tpruned " << printReg
(Other.Reg) << " at " << Def << ": " <<
Other.LR << '\n'; } } while (false)
2713 << ": " << Other.LR << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tpruned " << printReg
(Other.Reg) << " at " << Def << ": " <<
Other.LR << '\n'; } } while (false)
;
2714 break;
2715 }
2716 case CR_Erase:
2717 case CR_Merge:
2718 if (isPrunedValue(i, Other)) {
2719 // This value is ultimately a copy of a pruned value in LR or Other.LR.
2720 // We can no longer trust the value mapping computed by
2721 // computeAssignment(), the value that was originally copied could have
2722 // been replaced.
2723 LIS->pruneValue(LR, Def, &EndPoints);
2724 DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tpruned all of " <<
printReg(Reg) << " at " << Def << ": " <<
LR << '\n'; } } while (false)
2725 << Def << ": " << LR << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tpruned all of " <<
printReg(Reg) << " at " << Def << ": " <<
LR << '\n'; } } while (false)
;
2726 }
2727 break;
2728 case CR_Unresolved:
2729 case CR_Impossible:
2730 llvm_unreachable("Unresolved conflicts")::llvm::llvm_unreachable_internal("Unresolved conflicts", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2730)
;
2731 }
2732 }
2733}
2734
2735void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
2736 // Look for values being erased.
2737 bool DidPrune = false;
2738 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2739 // We should trigger in all cases in which eraseInstrs() does something.
2740 // match what eraseInstrs() is doing, print a message so
2741 if (Vals[i].Resolution != CR_Erase &&
2742 (Vals[i].Resolution != CR_Keep || !Vals[i].ErasableImplicitDef ||
2743 !Vals[i].Pruned))
2744 continue;
2745
2746 // Check subranges at the point where the copy will be removed.
2747 SlotIndex Def = LR.getValNumInfo(i)->def;
2748 // Print message so mismatches with eraseInstrs() can be diagnosed.
2749 DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tExpecting instruction removal at "
<< Def << '\n'; } } while (false)
;
2750 for (LiveInterval::SubRange &S : LI.subranges()) {
2751 LiveQueryResult Q = S.Query(Def);
2752
2753 // If a subrange starts at the copy then an undefined value has been
2754 // copied and we must remove that subrange value as well.
2755 VNInfo *ValueOut = Q.valueOutOrDead();
2756 if (ValueOut != nullptr && Q.valueIn() == nullptr) {
2757 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tPrune sublane " <<
PrintLaneMask(S.LaneMask) << " at " << Def <<
"\n"; } } while (false)
2758 << " at " << Def << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tPrune sublane " <<
PrintLaneMask(S.LaneMask) << " at " << Def <<
"\n"; } } while (false)
;
2759 LIS->pruneValue(S, Def, nullptr);
2760 DidPrune = true;
2761 // Mark value number as unused.
2762 ValueOut->markUnused();
2763 continue;
2764 }
2765 // If a subrange ends at the copy, then a value was copied but only
2766 // partially used later. Shrink the subregister range appropriately.
2767 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
2768 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tDead uses at sublane " <<
PrintLaneMask(S.LaneMask) << " at " << Def <<
"\n"; } } while (false)
2769 << " at " << Def << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tDead uses at sublane " <<
PrintLaneMask(S.LaneMask) << " at " << Def <<
"\n"; } } while (false)
;
2770 ShrinkMask |= S.LaneMask;
2771 }
2772 }
2773 }
2774 if (DidPrune)
2775 LI.removeEmptySubRanges();
2776}
2777
2778/// Check if any of the subranges of @p LI contain a definition at @p Def.
2779static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
2780 for (LiveInterval::SubRange &SR : LI.subranges()) {
2781 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
2782 if (VNI->def == Def)
2783 return true;
2784 }
2785 return false;
2786}
2787
2788void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
2789 assert(&static_cast<LiveRange&>(LI) == &LR)(static_cast <bool> (&static_cast<LiveRange&
>(LI) == &LR) ? void (0) : __assert_fail ("&static_cast<LiveRange&>(LI) == &LR"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2789, __extension__ __PRETTY_FUNCTION__))
;
2790
2791 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2792 if (Vals[i].Resolution != CR_Keep)
2793 continue;
2794 VNInfo *VNI = LR.getValNumInfo(i);
2795 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
2796 continue;
2797 Vals[i].Pruned = true;
2798 ShrinkMainRange = true;
2799 }
2800}
2801
2802void JoinVals::removeImplicitDefs() {
2803 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2804 Val &V = Vals[i];
2805 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
2806 continue;
2807
2808 VNInfo *VNI = LR.getValNumInfo(i);
2809 VNI->markUnused();
2810 LR.removeValNo(VNI);
2811 }
2812}
2813
2814void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2815 SmallVectorImpl<unsigned> &ShrinkRegs,
2816 LiveInterval *LI) {
2817 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2818 // Get the def location before markUnused() below invalidates it.
2819 SlotIndex Def = LR.getValNumInfo(i)->def;
2820 switch (Vals[i].Resolution) {
2821 case CR_Keep: {
2822 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
2823 // longer. The IMPLICIT_DEF instructions are only inserted by
2824 // PHIElimination to guarantee that all PHI predecessors have a value.
2825 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
2826 break;
2827 // Remove value number i from LR.
2828 // For intervals with subranges, removing a segment from the main range
2829 // may require extending the previous segment: for each definition of
2830 // a subregister, there will be a corresponding def in the main range.
2831 // That def may fall in the middle of a segment from another subrange.
2832 // In such cases, removing this def from the main range must be
2833 // complemented by extending the main range to account for the liveness
2834 // of the other subrange.
2835 VNInfo *VNI = LR.getValNumInfo(i);
2836 SlotIndex Def = VNI->def;
2837 // The new end point of the main range segment to be extended.
2838 SlotIndex NewEnd;
2839 if (LI != nullptr) {
2840 LiveRange::iterator I = LR.FindSegmentContaining(Def);
2841 assert(I != LR.end())(static_cast <bool> (I != LR.end()) ? void (0) : __assert_fail
("I != LR.end()", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2841, __extension__ __PRETTY_FUNCTION__))
;
2842 // Do not extend beyond the end of the segment being removed.
2843 // The segment may have been pruned in preparation for joining
2844 // live ranges.
2845 NewEnd = I->end;
2846 }
2847
2848 LR.removeValNo(VNI);
2849 // Note that this VNInfo is reused and still referenced in NewVNInfo,
2850 // make it appear like an unused value number.
2851 VNI->markUnused();
2852
2853 if (LI != nullptr && LI->hasSubRanges()) {
2854 assert(static_cast<LiveRange*>(LI) == &LR)(static_cast <bool> (static_cast<LiveRange*>(LI) ==
&LR) ? void (0) : __assert_fail ("static_cast<LiveRange*>(LI) == &LR"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2854, __extension__ __PRETTY_FUNCTION__))
;
2855 // Determine the end point based on the subrange information:
2856 // minimum of (earliest def of next segment,
2857 // latest end point of containing segment)
2858 SlotIndex ED, LE;
2859 for (LiveInterval::SubRange &SR : LI->subranges()) {
2860 LiveRange::iterator I = SR.find(Def);
2861 if (I == SR.end())
2862 continue;
2863 if (I->start > Def)
2864 ED = ED.isValid() ? std::min(ED, I->start) : I->start;
2865 else
2866 LE = LE.isValid() ? std::max(LE, I->end) : I->end;
2867 }
2868 if (LE.isValid())
2869 NewEnd = std::min(NewEnd, LE);
2870 if (ED.isValid())
2871 NewEnd = std::min(NewEnd, ED);
2872
2873 // We only want to do the extension if there was a subrange that
2874 // was live across Def.
2875 if (LE.isValid()) {
2876 LiveRange::iterator S = LR.find(Def);
2877 if (S != LR.begin())
2878 std::prev(S)->end = NewEnd;
2879 }
2880 }
2881 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tremoved " << i <<
'@' << Def << ": " << LR << '\n'; if
(LI != nullptr) dbgs() << "\t\t LHS = " << *LI <<
'\n'; }; } } while (false)
2882 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tremoved " << i <<
'@' << Def << ": " << LR << '\n'; if
(LI != nullptr) dbgs() << "\t\t LHS = " << *LI <<
'\n'; }; } } while (false)
2883 if (LI != nullptr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tremoved " << i <<
'@' << Def << ": " << LR << '\n'; if
(LI != nullptr) dbgs() << "\t\t LHS = " << *LI <<
'\n'; }; } } while (false)
2884 dbgs() << "\t\t LHS = " << *LI << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tremoved " << i <<
'@' << Def << ": " << LR << '\n'; if
(LI != nullptr) dbgs() << "\t\t LHS = " << *LI <<
'\n'; }; } } while (false)
2885 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\tremoved " << i <<
'@' << Def << ": " << LR << '\n'; if
(LI != nullptr) dbgs() << "\t\t LHS = " << *LI <<
'\n'; }; } } while (false)
;
2886 LLVM_FALLTHROUGH[[clang::fallthrough]];
2887 }
2888
2889 case CR_Erase: {
2890 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2891 assert(MI && "No instruction to erase")(static_cast <bool> (MI && "No instruction to erase"
) ? void (0) : __assert_fail ("MI && \"No instruction to erase\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2891, __extension__ __PRETTY_FUNCTION__))
;
2892 if (MI->isCopy()) {
2893 unsigned Reg = MI->getOperand(1).getReg();
2894 if (TargetRegisterInfo::isVirtualRegister(Reg) &&
2895 Reg != CP.getSrcReg() && Reg != CP.getDstReg())
2896 ShrinkRegs.push_back(Reg);
2897 }
2898 ErasedInstrs.insert(MI);
2899 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\terased:\t" << Def <<
'\t' << *MI; } } while (false)
;
2900 LIS->RemoveMachineInstrFromMaps(*MI);
2901 MI->eraseFromParent();
2902 break;
2903 }
2904 default:
2905 break;
2906 }
2907 }
2908}
2909
2910void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
2911 LaneBitmask LaneMask,
2912 const CoalescerPair &CP) {
2913 SmallVector<VNInfo*, 16> NewVNInfo;
2914 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
2915 NewVNInfo, CP, LIS, TRI, true, true);
2916 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
2917 NewVNInfo, CP, LIS, TRI, true, true);
2918
2919 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
2920 // We should be able to resolve all conflicts here as we could successfully do
2921 // it on the mainrange already. There is however a problem when multiple
2922 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
2923 // interferences.
2924 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
2925 // We already determined that it is legal to merge the intervals, so this
2926 // should never fail.
2927 llvm_unreachable("*** Couldn't join subrange!\n")::llvm::llvm_unreachable_internal("*** Couldn't join subrange!\n"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2927)
;
2928 }
2929 if (!LHSVals.resolveConflicts(RHSVals) ||
2930 !RHSVals.resolveConflicts(LHSVals)) {
2931 // We already determined that it is legal to merge the intervals, so this
2932 // should never fail.
2933 llvm_unreachable("*** Couldn't join subrange!\n")::llvm::llvm_unreachable_internal("*** Couldn't join subrange!\n"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 2933)
;
2934 }
2935
2936 // The merging algorithm in LiveInterval::join() can't handle conflicting
2937 // value mappings, so we need to remove any live ranges that overlap a
2938 // CR_Replace resolution. Collect a set of end points that can be used to
2939 // restore the live range after joining.
2940 SmallVector<SlotIndex, 8> EndPoints;
2941 LHSVals.pruneValues(RHSVals, EndPoints, false);
2942 RHSVals.pruneValues(LHSVals, EndPoints, false);
2943
2944 LHSVals.removeImplicitDefs();
2945 RHSVals.removeImplicitDefs();
2946
2947 LRange.verify();
2948 RRange.verify();
2949
2950 // Join RRange into LHS.
2951 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
2952 NewVNInfo);
2953
2954 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tjoined lanes: " <<
LRange << "\n"; } } while (false)
;
2955 if (EndPoints.empty())
2956 return;
2957
2958 // Recompute the parts of the live range we had to remove because of
2959 // CR_Replace conflicts.
2960 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LRange << '\n'; }; } } while (false)
2961 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LRange << '\n'; }; } } while (false)
2962 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LRange << '\n'; }; } } while (false)
2963 dbgs() << EndPoints[i];do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LRange << '\n'; }; } } while (false)
2964 if (i != n-1)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LRange << '\n'; }; } } while (false)
2965 dbgs() << ',';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LRange << '\n'; }; } } while (false)
2966 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LRange << '\n'; }; } } while (false)
2967 dbgs() << ": " << LRange << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LRange << '\n'; }; } } while (false)
2968 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LRange << '\n'; }; } } while (false)
;
2969 LIS->extendToIndices(LRange, EndPoints);
2970}
2971
2972void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
2973 const LiveRange &ToMerge,
2974 LaneBitmask LaneMask,
2975 CoalescerPair &CP) {
2976 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2977 LI.refineSubRanges(Allocator, LaneMask,
2978 [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) {
2979 if (SR.empty()) {
2980 SR.assign(ToMerge, Allocator);
2981 } else {
2982 // joinSubRegRange() destroys the merged range, so we need a copy.
2983 LiveRange RangeCopy(ToMerge, Allocator);
2984 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
2985 }
2986 });
2987}
2988
2989bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
2990 SmallVector<VNInfo*, 16> NewVNInfo;
2991 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
2992 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
2993 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
2994 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
2995 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
2996 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
2997 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
2998
2999 DEBUG(dbgs() << "\t\tRHS = " << RHSdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tRHS = " << RHS <<
"\n\t\tLHS = " << LHS << '\n'; } } while (false)
3000 << "\n\t\tLHS = " << LHSdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tRHS = " << RHS <<
"\n\t\tLHS = " << LHS << '\n'; } } while (false)
3001 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tRHS = " << RHS <<
"\n\t\tLHS = " << LHS << '\n'; } } while (false)
;
3002
3003 // First compute NewVNInfo and the simple value mappings.
3004 // Detect impossible conflicts early.
3005 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3006 return false;
3007
3008 // Some conflicts can only be resolved after all values have been mapped.
3009 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3010 return false;
3011
3012 // All clear, the live ranges can be merged.
3013 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3014 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3015
3016 // Transform lanemasks from the LHS to masks in the coalesced register and
3017 // create initial subranges if necessary.
3018 unsigned DstIdx = CP.getDstIdx();
3019 if (!LHS.hasSubRanges()) {
3020 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3021 : TRI->getSubRegIndexLaneMask(DstIdx);
3022 // LHS must support subregs or we wouldn't be in this codepath.
3023 assert(Mask.any())(static_cast <bool> (Mask.any()) ? void (0) : __assert_fail
("Mask.any()", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 3023, __extension__ __PRETTY_FUNCTION__))
;
3024 LHS.createSubRangeFrom(Allocator, Mask, LHS);
3025 } else if (DstIdx != 0) {
3026 // Transform LHS lanemasks to new register class if necessary.
3027 for (LiveInterval::SubRange &R : LHS.subranges()) {
3028 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3029 R.LaneMask = Mask;
3030 }
3031 }
3032 DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tLHST = " << printReg
(CP.getDstReg()) << ' ' << LHS << '\n'; } }
while (false)
3033 << ' ' << LHS << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t\tLHST = " << printReg
(CP.getDstReg()) << ' ' << LHS << '\n'; } }
while (false)
;
3034
3035 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3036 unsigned SrcIdx = CP.getSrcIdx();
3037 if (!RHS.hasSubRanges()) {
3038 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3039 : TRI->getSubRegIndexLaneMask(SrcIdx);
3040 mergeSubRangeInto(LHS, RHS, Mask, CP);
3041 } else {
3042 // Pair up subranges and merge.
3043 for (LiveInterval::SubRange &R : RHS.subranges()) {
3044 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3045 mergeSubRangeInto(LHS, R, Mask, CP);
3046 }
3047 }
3048 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tJoined SubRanges " <<
LHS << "\n"; } } while (false)
;
3049
3050 // Pruning implicit defs from subranges may result in the main range
3051 // having stale segments.
3052 LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3053
3054 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3055 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3056 }
3057
3058 // The merging algorithm in LiveInterval::join() can't handle conflicting
3059 // value mappings, so we need to remove any live ranges that overlap a
3060 // CR_Replace resolution. Collect a set of end points that can be used to
3061 // restore the live range after joining.
3062 SmallVector<SlotIndex, 8> EndPoints;
3063 LHSVals.pruneValues(RHSVals, EndPoints, true);
3064 RHSVals.pruneValues(LHSVals, EndPoints, true);
3065
3066 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3067 // registers to require trimming.
3068 SmallVector<unsigned, 8> ShrinkRegs;
3069 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3070 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3071 while (!ShrinkRegs.empty())
3072 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3073
3074 // Join RHS into LHS.
3075 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3076
3077 // Kill flags are going to be wrong if the live ranges were overlapping.
3078 // Eventually, we should simply clear all kill flags when computing live
3079 // ranges. They are reinserted after register allocation.
3080 MRI->clearKillFlags(LHS.reg);
3081 MRI->clearKillFlags(RHS.reg);
3082
3083 if (!EndPoints.empty()) {
3084 // Recompute the parts of the live range we had to remove because of
3085 // CR_Replace conflicts.
3086 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LHS << '\n'; }; } } while (false)
3087 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LHS << '\n'; }; } } while (false)
3088 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LHS << '\n'; }; } } while (false)
3089 dbgs() << EndPoints[i];do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LHS << '\n'; }; } } while (false)
3090 if (i != n-1)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LHS << '\n'; }; } } while (false)
3091 dbgs() << ',';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LHS << '\n'; }; } } while (false)
3092 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LHS << '\n'; }; } } while (false)
3093 dbgs() << ": " << LHS << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LHS << '\n'; }; } } while (false)
3094 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\t\trestoring liveness to "
<< EndPoints.size() << " points: "; for (unsigned
i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints
[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": "
<< LHS << '\n'; }; } } while (false)
;
3095 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3096 }
3097
3098 return true;
3099}
3100
3101bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3102 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3103}
3104
3105namespace {
3106
3107/// Information concerning MBB coalescing priority.
3108struct MBBPriorityInfo {
3109 MachineBasicBlock *MBB;
3110 unsigned Depth;
3111 bool IsSplit;
3112
3113 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3114 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3115};
3116
3117} // end anonymous namespace
3118
3119/// C-style comparator that sorts first based on the loop depth of the basic
3120/// block (the unsigned), and then on the MBB number.
3121///
3122/// EnableGlobalCopies assumes that the primary sort key is loop depth.
3123static int compareMBBPriority(const MBBPriorityInfo *LHS,
3124 const MBBPriorityInfo *RHS) {
3125 // Deeper loops first
3126 if (LHS->Depth != RHS->Depth)
3127 return LHS->Depth > RHS->Depth ? -1 : 1;
3128
3129 // Try to unsplit critical edges next.
3130 if (LHS->IsSplit != RHS->IsSplit)
3131 return LHS->IsSplit ? -1 : 1;
3132
3133 // Prefer blocks that are more connected in the CFG. This takes care of
3134 // the most difficult copies first while intervals are short.
3135 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3136 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3137 if (cl != cr)
3138 return cl > cr ? -1 : 1;
3139
3140 // As a last resort, sort by block number.
3141 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3142}
3143
3144/// \returns true if the given copy uses or defines a local live range.
3145static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3146 if (!Copy->isCopy())
3147 return false;
3148
3149 if (Copy->getOperand(1).isUndef())
3150 return false;
3151
3152 unsigned SrcReg = Copy->getOperand(1).getReg();
3153 unsigned DstReg = Copy->getOperand(0).getReg();
3154 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
3155 || TargetRegisterInfo::isPhysicalRegister(DstReg))
3156 return false;
3157
3158 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3159 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3160}
3161
3162bool RegisterCoalescer::
3163copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3164 bool Progress = false;
3165 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3166 if (!CurrList[i])
3167 continue;
3168 // Skip instruction pointers that have already been erased, for example by
3169 // dead code elimination.
3170 if (ErasedInstrs.count(CurrList[i])) {
3171 CurrList[i] = nullptr;
3172 continue;
3173 }
3174 bool Again = false;
3175 bool Success = joinCopy(CurrList[i], Again);
3176 Progress |= Success;
3177 if (Success || !Again)
3178 CurrList[i] = nullptr;
3179 }
3180 return Progress;
3181}
3182
3183/// Check if DstReg is a terminal node.
3184/// I.e., it does not have any affinity other than \p Copy.
3185static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3186 const MachineRegisterInfo *MRI) {
3187 assert(Copy.isCopyLike())(static_cast <bool> (Copy.isCopyLike()) ? void (0) : __assert_fail
("Copy.isCopyLike()", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 3187, __extension__ __PRETTY_FUNCTION__))
;
3188 // Check if the destination of this copy as any other affinity.
3189 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3190 if (&MI != &Copy && MI.isCopyLike())
3191 return false;
3192 return true;
3193}
3194
3195bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3196 assert(Copy.isCopyLike())(static_cast <bool> (Copy.isCopyLike()) ? void (0) : __assert_fail
("Copy.isCopyLike()", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 3196, __extension__ __PRETTY_FUNCTION__))
;
3197 if (!UseTerminalRule)
16
Assuming the condition is false
17
Taking false branch
3198 return false;
3199 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3200 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
3201 // Check if the destination of this copy has any other affinity.
3202 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
18
Taking false branch
3203 // If SrcReg is a physical register, the copy won't be coalesced.
3204 // Ignoring it may have other side effect (like missing
3205 // rematerialization). So keep it.
3206 TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
3207 !isTerminalReg(DstReg, Copy, MRI))
3208 return false;
3209
3210 // DstReg is a terminal node. Check if it interferes with any other
3211 // copy involving SrcReg.
3212 const MachineBasicBlock *OrigBB = Copy.getParent();
3213 const LiveInterval &DstLI = LIS->getInterval(DstReg);
3214 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3215 // Technically we should check if the weight of the new copy is
3216 // interesting compared to the other one and update the weight
3217 // of the copies accordingly. However, this would only work if
3218 // we would gather all the copies first then coalesce, whereas
3219 // right now we interleave both actions.
3220 // For now, just consider the copies that are in the same block.
3221 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
19
Assuming the condition is false
20
Assuming the condition is false
21
Taking false branch
3222 continue;
3223 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
22
'OtherReg' declared without an initial value
3224 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
23
Calling 'isMoveInstr'
27
Returning from 'isMoveInstr'
3225 OtherSubReg);
3226 if (OtherReg == SrcReg)
28
The left operand of '==' is a garbage value
3227 OtherReg = OtherSrcReg;
3228 // Check if OtherReg is a non-terminal.
3229 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
3230 isTerminalReg(OtherReg, MI, MRI))
3231 continue;
3232 // Check that OtherReg interfere with DstReg.
3233 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3234 DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Apply terminal rule for: " <<
printReg(DstReg) << '\n'; } } while (false)
;
3235 return true;
3236 }
3237 }
3238 return false;
3239}
3240
3241void
3242RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3243 DEBUG(dbgs() << MBB->getName() << ":\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << MBB->getName() << ":\n"
; } } while (false)
;
3244
3245 // Collect all copy-like instructions in MBB. Don't start coalescing anything
3246 // yet, it might invalidate the iterator.
3247 const unsigned PrevSize = WorkList.size();
3248 if (JoinGlobalCopies) {
13
Taking false branch
3249 SmallVector<MachineInstr*, 2> LocalTerminals;
3250 SmallVector<MachineInstr*, 2> GlobalTerminals;
3251 // Coalesce copies bottom-up to coalesce local defs before local uses. They
3252 // are not inherently easier to resolve, but slightly preferable until we
3253 // have local live range splitting. In particular this is required by
3254 // cmp+jmp macro fusion.
3255 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3256 MII != E; ++MII) {
3257 if (!MII->isCopyLike())
3258 continue;
3259 bool ApplyTerminalRule = applyTerminalRule(*MII);
3260 if (isLocalCopy(&(*MII), LIS)) {
3261 if (ApplyTerminalRule)
3262 LocalTerminals.push_back(&(*MII));
3263 else
3264 LocalWorkList.push_back(&(*MII));
3265 } else {
3266 if (ApplyTerminalRule)
3267 GlobalTerminals.push_back(&(*MII));
3268 else
3269 WorkList.push_back(&(*MII));
3270 }
3271 }
3272 // Append the copies evicted by the terminal rule at the end of the list.
3273 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3274 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3275 }
3276 else {
3277 SmallVector<MachineInstr*, 2> Terminals;
3278 for (MachineInstr &MII : *MBB)
3279 if (MII.isCopyLike()) {
14
Taking true branch
3280 if (applyTerminalRule(MII))
15
Calling 'RegisterCoalescer::applyTerminalRule'
3281 Terminals.push_back(&MII);
3282 else
3283 WorkList.push_back(&MII);
3284 }
3285 // Append the copies evicted by the terminal rule at the end of the list.
3286 WorkList.append(Terminals.begin(), Terminals.end());
3287 }
3288 // Try coalescing the collected copies immediately, and remove the nulls.
3289 // This prevents the WorkList from getting too large since most copies are
3290 // joinable on the first attempt.
3291 MutableArrayRef<MachineInstr*>
3292 CurrList(WorkList.begin() + PrevSize, WorkList.end());
3293 if (copyCoalesceWorkList(CurrList))
3294 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3295 nullptr), WorkList.end());
3296}
3297
3298void RegisterCoalescer::coalesceLocals() {
3299 copyCoalesceWorkList(LocalWorkList);
3300 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3301 if (LocalWorkList[j])
3302 WorkList.push_back(LocalWorkList[j]);
3303 }
3304 LocalWorkList.clear();
3305}
3306
3307void RegisterCoalescer::joinAllIntervals() {
3308 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "********** JOINING INTERVALS ***********\n"
; } } while (false)
;
3309 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.")(static_cast <bool> (WorkList.empty() && LocalWorkList
.empty() && "Old data still around.") ? void (0) : __assert_fail
("WorkList.empty() && LocalWorkList.empty() && \"Old data still around.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 3309, __extension__ __PRETTY_FUNCTION__))
;
3310
3311 std::vector<MBBPriorityInfo> MBBs;
3312 MBBs.reserve(MF->size());
3313 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
8
Loop condition is false. Execution continues on line 3318
3314 MachineBasicBlock *MBB = &*I;
3315 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3316 JoinSplitEdges && isSplitEdge(MBB)));
3317 }
3318 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3319
3320 // Coalesce intervals in MBB priority order.
3321 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3322 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
9
Assuming 'i' is not equal to 'e'
10
Loop condition is true. Entering loop body
3323 // Try coalescing the collected local copies for deeper loops.
3324 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
11
Assuming the condition is false
3325 coalesceLocals();
3326 CurrDepth = MBBs[i].Depth;
3327 }
3328 copyCoalesceInMBB(MBBs[i].MBB);
12
Calling 'RegisterCoalescer::copyCoalesceInMBB'
3329 }
3330 coalesceLocals();
3331
3332 // Joining intervals can allow other intervals to be joined. Iteratively join
3333 // until we make no progress.
3334 while (copyCoalesceWorkList(WorkList))
3335 /* empty */ ;
3336}
3337
3338void RegisterCoalescer::releaseMemory() {
3339 ErasedInstrs.clear();
3340 WorkList.clear();
3341 DeadDefs.clear();
3342 InflateRegs.clear();
3343}
3344
3345bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3346 MF = &fn;
3347 MRI = &fn.getRegInfo();
3348 const TargetSubtargetInfo &STI = fn.getSubtarget();
3349 TRI = STI.getRegisterInfo();
3350 TII = STI.getInstrInfo();
3351 LIS = &getAnalysis<LiveIntervals>();
3352 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3353 Loops = &getAnalysis<MachineLoopInfo>();
3354 if (EnableGlobalCopies == cl::BOU_UNSET)
1
Assuming the condition is true
2
Taking true branch
3355 JoinGlobalCopies = STI.enableJoinGlobalCopies();
3356 else
3357 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3358
3359 // The MachineScheduler does not currently require JoinSplitEdges. This will
3360 // either be enabled unconditionally or replaced by a more general live range
3361 // splitting optimization.
3362 JoinSplitEdges = EnableJoinSplits;
3363
3364 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
<< "********** Function: " << MF->getName() <<
'\n'; } } while (false)
3365 << "********** Function: " << MF->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
<< "********** Function: " << MF->getName() <<
'\n'; } } while (false)
;
3366
3367 if (VerifyCoalescing)
3
Assuming the condition is false
4
Taking false branch
3368 MF->verify(this, "Before register coalescing");
3369
3370 RegClassInfo.runOnMachineFunction(fn);
3371
3372 // Join (coalesce) intervals if requested.
3373 if (EnableJoining)
5
Assuming the condition is true
6
Taking true branch
3374 joinAllIntervals();
7
Calling 'RegisterCoalescer::joinAllIntervals'
3375
3376 // After deleting a lot of copies, register classes may be less constrained.
3377 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3378 // DPR inflation.
3379 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3380 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3381 InflateRegs.end());
3382 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Trying to inflate " <<
InflateRegs.size() << " regs.\n"; } } while (false)
;
3383 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3384 unsigned Reg = InflateRegs[i];
3385 if (MRI->reg_nodbg_empty(Reg))
3386 continue;
3387 if (MRI->recomputeRegClass(Reg)) {
3388 DEBUG(dbgs() << printReg(Reg) << " inflated to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << printReg(Reg) << " inflated to "
<< TRI->getRegClassName(MRI->getRegClass(Reg)) <<
'\n'; } } while (false)
3389 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << printReg(Reg) << " inflated to "
<< TRI->getRegClassName(MRI->getRegClass(Reg)) <<
'\n'; } } while (false)
;
3390 ++NumInflated;
3391
3392 LiveInterval &LI = LIS->getInterval(Reg);
3393 if (LI.hasSubRanges()) {
3394 // If the inflated register class does not support subregisters anymore
3395 // remove the subranges.
3396 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3397 LI.clearSubRanges();
3398 } else {
3399#ifndef NDEBUG
3400 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3401 // If subranges are still supported, then the same subregs
3402 // should still be supported.
3403 for (LiveInterval::SubRange &S : LI.subranges()) {
3404 assert((S.LaneMask & ~MaxMask).none())(static_cast <bool> ((S.LaneMask & ~MaxMask).none()
) ? void (0) : __assert_fail ("(S.LaneMask & ~MaxMask).none()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/RegisterCoalescer.cpp"
, 3404, __extension__ __PRETTY_FUNCTION__))
;
3405 }
3406#endif
3407 }
3408 }
3409 }
3410 }
3411
3412 DEBUG(dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dump(); } } while (false)
;
3413 if (VerifyCoalescing)
3414 MF->verify(this, "After register coalescing");
3415 return true;
3416}
3417
3418void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3419 LIS->print(O, m);
3420}