Bug Summary

File:llvm/lib/CodeGen/RegisterCoalescer.cpp
Warning:line 2586, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name RegisterCoalescer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/CodeGen -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/CodeGen/RegisterCoalescer.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/CodeGen/RegisterCoalescer.cpp

1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the generic RegisterCoalescer interface which
10// is used as the common interface used by all clients and
11// implementations of register coalescing.
12//
13//===----------------------------------------------------------------------===//
14
15#include "RegisterCoalescer.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveInterval.h"
25#include "llvm/CodeGen/LiveIntervals.h"
26#include "llvm/CodeGen/LiveRangeEdit.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineOperand.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/CodeGen/RegisterClassInfo.h"
37#include "llvm/CodeGen/SlotIndexes.h"
38#include "llvm/CodeGen/TargetInstrInfo.h"
39#include "llvm/CodeGen/TargetOpcodes.h"
40#include "llvm/CodeGen/TargetRegisterInfo.h"
41#include "llvm/CodeGen/TargetSubtargetInfo.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/InitializePasses.h"
44#include "llvm/MC/LaneBitmask.h"
45#include "llvm/MC/MCInstrDesc.h"
46#include "llvm/MC/MCRegisterInfo.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/raw_ostream.h"
53#include <algorithm>
54#include <cassert>
55#include <iterator>
56#include <limits>
57#include <tuple>
58#include <utility>
59#include <vector>
60
61using namespace llvm;
62
63#define DEBUG_TYPE"regalloc" "regalloc"
64
65STATISTIC(numJoins , "Number of interval joins performed")static llvm::Statistic numJoins = {"regalloc", "numJoins", "Number of interval joins performed"
}
;
66STATISTIC(numCrossRCs , "Number of cross class joins performed")static llvm::Statistic numCrossRCs = {"regalloc", "numCrossRCs"
, "Number of cross class joins performed"}
;
67STATISTIC(numCommutes , "Number of instruction commuting performed")static llvm::Statistic numCommutes = {"regalloc", "numCommutes"
, "Number of instruction commuting performed"}
;
68STATISTIC(numExtends , "Number of copies extended")static llvm::Statistic numExtends = {"regalloc", "numExtends"
, "Number of copies extended"}
;
69STATISTIC(NumReMats , "Number of instructions re-materialized")static llvm::Statistic NumReMats = {"regalloc", "NumReMats", "Number of instructions re-materialized"
}
;
70STATISTIC(NumInflated , "Number of register classes inflated")static llvm::Statistic NumInflated = {"regalloc", "NumInflated"
, "Number of register classes inflated"}
;
71STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested")static llvm::Statistic NumLaneConflicts = {"regalloc", "NumLaneConflicts"
, "Number of dead lane conflicts tested"}
;
72STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved")static llvm::Statistic NumLaneResolves = {"regalloc", "NumLaneResolves"
, "Number of dead lane conflicts resolved"}
;
73STATISTIC(NumShrinkToUses, "Number of shrinkToUses called")static llvm::Statistic NumShrinkToUses = {"regalloc", "NumShrinkToUses"
, "Number of shrinkToUses called"}
;
74
75static cl::opt<bool> EnableJoining("join-liveintervals",
76 cl::desc("Coalesce copies (default=true)"),
77 cl::init(true), cl::Hidden);
78
79static cl::opt<bool> UseTerminalRule("terminal-rule",
80 cl::desc("Apply the terminal rule"),
81 cl::init(false), cl::Hidden);
82
83/// Temporary flag to test critical edge unsplitting.
84static cl::opt<bool>
85EnableJoinSplits("join-splitedges",
86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87
88/// Temporary flag to test global copy optimization.
89static cl::opt<cl::boolOrDefault>
90EnableGlobalCopies("join-globalcopies",
91 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92 cl::init(cl::BOU_UNSET), cl::Hidden);
93
94static cl::opt<bool>
95VerifyCoalescing("verify-coalescing",
96 cl::desc("Verify machine instrs before and after register coalescing"),
97 cl::Hidden);
98
99static cl::opt<unsigned> LateRematUpdateThreshold(
100 "late-remat-update-threshold", cl::Hidden,
101 cl::desc("During rematerialization for a copy, if the def instruction has "
102 "many other copy uses to be rematerialized, delay the multiple "
103 "separate live interval update work and do them all at once after "
104 "all those rematerialization are done. It will save a lot of "
105 "repeated work. "),
106 cl::init(100));
107
108static cl::opt<unsigned> LargeIntervalSizeThreshold(
109 "large-interval-size-threshold", cl::Hidden,
110 cl::desc("If the valnos size of an interval is larger than the threshold, "
111 "it is regarded as a large interval. "),
112 cl::init(100));
113
114static cl::opt<unsigned> LargeIntervalFreqThreshold(
115 "large-interval-freq-threshold", cl::Hidden,
116 cl::desc("For a large interval, if it is coalesed with other live "
117 "intervals many times more than the threshold, stop its "
118 "coalescing to control the compile time. "),
119 cl::init(100));
120
121namespace {
122
123 class JoinVals;
124
125 class RegisterCoalescer : public MachineFunctionPass,
126 private LiveRangeEdit::Delegate {
127 MachineFunction* MF = nullptr;
128 MachineRegisterInfo* MRI = nullptr;
129 const TargetRegisterInfo* TRI = nullptr;
130 const TargetInstrInfo* TII = nullptr;
131 LiveIntervals *LIS = nullptr;
132 const MachineLoopInfo* Loops = nullptr;
133 AliasAnalysis *AA = nullptr;
134 RegisterClassInfo RegClassInfo;
135
136 /// Position and VReg of a PHI instruction during coalescing.
137 struct PHIValPos {
138 SlotIndex SI; ///< Slot where this PHI occurs.
139 Register Reg; ///< VReg the PHI occurs in.
140 unsigned SubReg; ///< Qualifying subregister for Reg.
141 };
142
143 /// Map from debug instruction number to PHI position during coalescing.
144 DenseMap<unsigned, PHIValPos> PHIValToPos;
145 /// Index of, for each VReg, which debug instruction numbers and
146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147 /// multiple PHI defs, at different positions.
148 DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx;
149
150 /// Debug variable location tracking -- for each VReg, maintain an
151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152 /// identification of whether coalescing may change location validity.
153 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
154 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
155
156 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
157 /// To avoid repeatedly merging sets of DbgValueLocs, instead record
158 /// which vregs have been coalesced, and where to. This map is from
159 /// vreg => {set of vregs merged in}.
160 DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums;
161
162 /// A LaneMask to remember on which subregister live ranges we need to call
163 /// shrinkToUses() later.
164 LaneBitmask ShrinkMask;
165
166 /// True if the main range of the currently coalesced intervals should be
167 /// checked for smaller live intervals.
168 bool ShrinkMainRange = false;
169
170 /// True if the coalescer should aggressively coalesce global copies
171 /// in favor of keeping local copies.
172 bool JoinGlobalCopies = false;
173
174 /// True if the coalescer should aggressively coalesce fall-thru
175 /// blocks exclusively containing copies.
176 bool JoinSplitEdges = false;
177
178 /// Copy instructions yet to be coalesced.
179 SmallVector<MachineInstr*, 8> WorkList;
180 SmallVector<MachineInstr*, 8> LocalWorkList;
181
182 /// Set of instruction pointers that have been erased, and
183 /// that may be present in WorkList.
184 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
185
186 /// Dead instructions that are about to be deleted.
187 SmallVector<MachineInstr*, 8> DeadDefs;
188
189 /// Virtual registers to be considered for register class inflation.
190 SmallVector<Register, 8> InflateRegs;
191
192 /// The collection of live intervals which should have been updated
193 /// immediately after rematerialiation but delayed until
194 /// lateLiveIntervalUpdate is called.
195 DenseSet<Register> ToBeUpdated;
196
197 /// Record how many times the large live interval with many valnos
198 /// has been tried to join with other live interval.
199 DenseMap<Register, unsigned long> LargeLIVisitCounter;
200
201 /// Recursively eliminate dead defs in DeadDefs.
202 void eliminateDeadDefs();
203
204 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
205 /// OrigIdx are also available with the same value at UseIdx.
206 bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
207 SlotIndex UseIdx);
208
209 /// LiveRangeEdit callback for eliminateDeadDefs().
210 void LRE_WillEraseInstruction(MachineInstr *MI) override;
211
212 /// Coalesce the LocalWorkList.
213 void coalesceLocals();
214
215 /// Join compatible live intervals
216 void joinAllIntervals();
217
218 /// Coalesce copies in the specified MBB, putting
219 /// copies that cannot yet be coalesced into WorkList.
220 void copyCoalesceInMBB(MachineBasicBlock *MBB);
221
222 /// Tries to coalesce all copies in CurrList. Returns true if any progress
223 /// was made.
224 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
225
226 /// If one def has many copy like uses, and those copy uses are all
227 /// rematerialized, the live interval update needed for those
228 /// rematerializations will be delayed and done all at once instead
229 /// of being done multiple times. This is to save compile cost because
230 /// live interval update is costly.
231 void lateLiveIntervalUpdate();
232
233 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
234 /// has no value defined in the predecessors. If the incoming value is the
235 /// same as defined by the copy itself, the value is considered undefined.
236 bool copyValueUndefInPredecessors(LiveRange &S,
237 const MachineBasicBlock *MBB,
238 LiveQueryResult SLRQ);
239
240 /// Set necessary undef flags on subregister uses after pruning out undef
241 /// lane segments from the subrange.
242 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
243 LaneBitmask PrunedLanes);
244
245 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
246 /// src/dst of the copy instruction CopyMI. This returns true if the copy
247 /// was successfully coalesced away. If it is not currently possible to
248 /// coalesce this interval, but it may be possible if other things get
249 /// coalesced, then it returns true by reference in 'Again'.
250 bool joinCopy(MachineInstr *CopyMI, bool &Again);
251
252 /// Attempt to join these two intervals. On failure, this
253 /// returns false. The output "SrcInt" will not have been modified, so we
254 /// can use this information below to update aliases.
255 bool joinIntervals(CoalescerPair &CP);
256
257 /// Attempt joining two virtual registers. Return true on success.
258 bool joinVirtRegs(CoalescerPair &CP);
259
260 /// If a live interval has many valnos and is coalesced with other
261 /// live intervals many times, we regard such live interval as having
262 /// high compile time cost.
263 bool isHighCostLiveInterval(LiveInterval &LI);
264
265 /// Attempt joining with a reserved physreg.
266 bool joinReservedPhysReg(CoalescerPair &CP);
267
268 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
269 /// Subranges in @p LI which only partially interfere with the desired
270 /// LaneMask are split as necessary. @p LaneMask are the lanes that
271 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
272 /// lanemasks already adjusted to the coalesced register.
273 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
274 LaneBitmask LaneMask, CoalescerPair &CP,
275 unsigned DstIdx);
276
277 /// Join the liveranges of two subregisters. Joins @p RRange into
278 /// @p LRange, @p RRange may be invalid afterwards.
279 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
280 LaneBitmask LaneMask, const CoalescerPair &CP);
281
282 /// We found a non-trivially-coalescable copy. If the source value number is
283 /// defined by a copy from the destination reg see if we can merge these two
284 /// destination reg valno# into a single value number, eliminating a copy.
285 /// This returns true if an interval was modified.
286 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
287
288 /// Return true if there are definitions of IntB
289 /// other than BValNo val# that can reach uses of AValno val# of IntA.
290 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
291 VNInfo *AValNo, VNInfo *BValNo);
292
293 /// We found a non-trivially-coalescable copy.
294 /// If the source value number is defined by a commutable instruction and
295 /// its other operand is coalesced to the copy dest register, see if we
296 /// can transform the copy into a noop by commuting the definition.
297 /// This returns a pair of two flags:
298 /// - the first element is true if an interval was modified,
299 /// - the second element is true if the destination interval needs
300 /// to be shrunk after deleting the copy.
301 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
302 MachineInstr *CopyMI);
303
304 /// We found a copy which can be moved to its less frequent predecessor.
305 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
306
307 /// If the source of a copy is defined by a
308 /// trivial computation, replace the copy by rematerialize the definition.
309 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
310 bool &IsDefCopy);
311
312 /// Return true if a copy involving a physreg should be joined.
313 bool canJoinPhys(const CoalescerPair &CP);
314
315 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
316 /// number if it is not zero. If DstReg is a physical register and the
317 /// existing subregister number of the def / use being updated is not zero,
318 /// make sure to set it to the correct physical subregister.
319 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
320
321 /// If the given machine operand reads only undefined lanes add an undef
322 /// flag.
323 /// This can happen when undef uses were previously concealed by a copy
324 /// which we coalesced. Example:
325 /// %0:sub0<def,read-undef> = ...
326 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
327 /// = use %1:sub1 <-- hidden undef use
328 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
329 MachineOperand &MO, unsigned SubRegIdx);
330
331 /// Handle copies of undef values. If the undef value is an incoming
332 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
333 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
334 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
335 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
336
337 /// Check whether or not we should apply the terminal rule on the
338 /// destination (Dst) of \p Copy.
339 /// When the terminal rule applies, Copy is not profitable to
340 /// coalesce.
341 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
342 /// at least one interference (Dst, Dst2). If Dst is terminal, the
343 /// terminal rule consists in checking that at least one of
344 /// interfering node, say Dst2, has an affinity of equal or greater
345 /// weight with Src.
346 /// In that case, Dst2 and Dst will not be able to be both coalesced
347 /// with Src. Since Dst2 exposes more coalescing opportunities than
348 /// Dst, we can drop \p Copy.
349 bool applyTerminalRule(const MachineInstr &Copy) const;
350
351 /// Wrapper method for \see LiveIntervals::shrinkToUses.
352 /// This method does the proper fixing of the live-ranges when the afore
353 /// mentioned method returns true.
354 void shrinkToUses(LiveInterval *LI,
355 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
356 NumShrinkToUses++;
357 if (LIS->shrinkToUses(LI, Dead)) {
358 /// Check whether or not \p LI is composed by multiple connected
359 /// components and if that is the case, fix that.
360 SmallVector<LiveInterval*, 8> SplitLIs;
361 LIS->splitSeparateComponents(*LI, SplitLIs);
362 }
363 }
364
365 /// Wrapper Method to do all the necessary work when an Instruction is
366 /// deleted.
367 /// Optimizations should use this to make sure that deleted instructions
368 /// are always accounted for.
369 void deleteInstr(MachineInstr* MI) {
370 ErasedInstrs.insert(MI);
371 LIS->RemoveMachineInstrFromMaps(*MI);
372 MI->eraseFromParent();
373 }
374
375 /// Walk over function and initialize the DbgVRegToValues map.
376 void buildVRegToDbgValueMap(MachineFunction &MF);
377
378 /// Test whether, after merging, any DBG_VALUEs would refer to a
379 /// different value number than before merging, and whether this can
380 /// be resolved. If not, mark the DBG_VALUE as being undef.
381 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
382 JoinVals &LHSVals, LiveRange &RHS,
383 JoinVals &RHSVals);
384
385 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
386 LiveRange &RegRange, JoinVals &Vals2);
387
388 public:
389 static char ID; ///< Class identification, replacement for typeinfo
390
391 RegisterCoalescer() : MachineFunctionPass(ID) {
392 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
393 }
394
395 void getAnalysisUsage(AnalysisUsage &AU) const override;
396
397 void releaseMemory() override;
398
399 /// This is the pass entry point.
400 bool runOnMachineFunction(MachineFunction&) override;
401
402 /// Implement the dump method.
403 void print(raw_ostream &O, const Module* = nullptr) const override;
404 };
405
406} // end anonymous namespace
407
408char RegisterCoalescer::ID = 0;
409
410char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
411
412INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",static void *initializeRegisterCoalescerPassOnce(PassRegistry
&Registry) {
413 "Simple Register Coalescing", false, false)static void *initializeRegisterCoalescerPassOnce(PassRegistry
&Registry) {
414INITIALIZE_PASS_DEPENDENCY(LiveIntervals)initializeLiveIntervalsPass(Registry);
415INITIALIZE_PASS_DEPENDENCY(SlotIndexes)initializeSlotIndexesPass(Registry);
416INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry);
417INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
418INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",PassInfo *PI = new PassInfo( "Simple Register Coalescing", "simple-register-coalescing"
, &RegisterCoalescer::ID, PassInfo::NormalCtor_t(callDefaultCtor
<RegisterCoalescer>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeRegisterCoalescerPassFlag
; void llvm::initializeRegisterCoalescerPass(PassRegistry &
Registry) { llvm::call_once(InitializeRegisterCoalescerPassFlag
, initializeRegisterCoalescerPassOnce, std::ref(Registry)); }
419 "Simple Register Coalescing", false, false)PassInfo *PI = new PassInfo( "Simple Register Coalescing", "simple-register-coalescing"
, &RegisterCoalescer::ID, PassInfo::NormalCtor_t(callDefaultCtor
<RegisterCoalescer>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeRegisterCoalescerPassFlag
; void llvm::initializeRegisterCoalescerPass(PassRegistry &
Registry) { llvm::call_once(InitializeRegisterCoalescerPassFlag
, initializeRegisterCoalescerPassOnce, std::ref(Registry)); }
420
421LLVM_NODISCARD[[clang::warn_unused_result]] static bool isMoveInstr(const TargetRegisterInfo &tri,
422 const MachineInstr *MI, Register &Src,
423 Register &Dst, unsigned &SrcSub,
424 unsigned &DstSub) {
425 if (MI->isCopy()) {
426 Dst = MI->getOperand(0).getReg();
427 DstSub = MI->getOperand(0).getSubReg();
428 Src = MI->getOperand(1).getReg();
429 SrcSub = MI->getOperand(1).getSubReg();
430 } else if (MI->isSubregToReg()) {
431 Dst = MI->getOperand(0).getReg();
432 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
433 MI->getOperand(3).getImm());
434 Src = MI->getOperand(2).getReg();
435 SrcSub = MI->getOperand(2).getSubReg();
436 } else
437 return false;
438 return true;
439}
440
441/// Return true if this block should be vacated by the coalescer to eliminate
442/// branches. The important cases to handle in the coalescer are critical edges
443/// split during phi elimination which contain only copies. Simple blocks that
444/// contain non-branches should also be vacated, but this can be handled by an
445/// earlier pass similar to early if-conversion.
446static bool isSplitEdge(const MachineBasicBlock *MBB) {
447 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
448 return false;
449
450 for (const auto &MI : *MBB) {
451 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
452 return false;
453 }
454 return true;
455}
456
457bool CoalescerPair::setRegisters(const MachineInstr *MI) {
458 SrcReg = DstReg = Register();
459 SrcIdx = DstIdx = 0;
460 NewRC = nullptr;
461 Flipped = CrossClass = false;
462
463 Register Src, Dst;
464 unsigned SrcSub = 0, DstSub = 0;
465 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
466 return false;
467 Partial = SrcSub || DstSub;
468
469 // If one register is a physreg, it must be Dst.
470 if (Register::isPhysicalRegister(Src)) {
471 if (Register::isPhysicalRegister(Dst))
472 return false;
473 std::swap(Src, Dst);
474 std::swap(SrcSub, DstSub);
475 Flipped = true;
476 }
477
478 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
479
480 if (Register::isPhysicalRegister(Dst)) {
481 // Eliminate DstSub on a physreg.
482 if (DstSub) {
483 Dst = TRI.getSubReg(Dst, DstSub);
484 if (!Dst) return false;
485 DstSub = 0;
486 }
487
488 // Eliminate SrcSub by picking a corresponding Dst superregister.
489 if (SrcSub) {
490 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
491 if (!Dst) return false;
492 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
493 return false;
494 }
495 } else {
496 // Both registers are virtual.
497 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
498 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
499
500 // Both registers have subreg indices.
501 if (SrcSub && DstSub) {
502 // Copies between different sub-registers are never coalescable.
503 if (Src == Dst && SrcSub != DstSub)
504 return false;
505
506 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
507 SrcIdx, DstIdx);
508 if (!NewRC)
509 return false;
510 } else if (DstSub) {
511 // SrcReg will be merged with a sub-register of DstReg.
512 SrcIdx = DstSub;
513 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
514 } else if (SrcSub) {
515 // DstReg will be merged with a sub-register of SrcReg.
516 DstIdx = SrcSub;
517 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
518 } else {
519 // This is a straight copy without sub-registers.
520 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
521 }
522
523 // The combined constraint may be impossible to satisfy.
524 if (!NewRC)
525 return false;
526
527 // Prefer SrcReg to be a sub-register of DstReg.
528 // FIXME: Coalescer should support subregs symmetrically.
529 if (DstIdx && !SrcIdx) {
530 std::swap(Src, Dst);
531 std::swap(SrcIdx, DstIdx);
532 Flipped = !Flipped;
533 }
534
535 CrossClass = NewRC != DstRC || NewRC != SrcRC;
536 }
537 // Check our invariants
538 assert(Register::isVirtualRegister(Src) && "Src must be virtual")(static_cast<void> (0));
539 assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&(static_cast<void> (0))
540 "Cannot have a physical SubIdx")(static_cast<void> (0));
541 SrcReg = Src;
542 DstReg = Dst;
543 return true;
544}
545
546bool CoalescerPair::flip() {
547 if (Register::isPhysicalRegister(DstReg))
548 return false;
549 std::swap(SrcReg, DstReg);
550 std::swap(SrcIdx, DstIdx);
551 Flipped = !Flipped;
552 return true;
553}
554
555bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
556 if (!MI)
557 return false;
558 Register Src, Dst;
559 unsigned SrcSub = 0, DstSub = 0;
560 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
561 return false;
562
563 // Find the virtual register that is SrcReg.
564 if (Dst == SrcReg) {
565 std::swap(Src, Dst);
566 std::swap(SrcSub, DstSub);
567 } else if (Src != SrcReg) {
568 return false;
569 }
570
571 // Now check that Dst matches DstReg.
572 if (DstReg.isPhysical()) {
573 if (!Dst.isPhysical())
574 return false;
575 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.")(static_cast<void> (0));
576 // DstSub could be set for a physreg from INSERT_SUBREG.
577 if (DstSub)
578 Dst = TRI.getSubReg(Dst, DstSub);
579 // Full copy of Src.
580 if (!SrcSub)
581 return DstReg == Dst;
582 // This is a partial register copy. Check that the parts match.
583 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
584 } else {
585 // DstReg is virtual.
586 if (DstReg != Dst)
587 return false;
588 // Registers match, do the subregisters line up?
589 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
590 TRI.composeSubRegIndices(DstIdx, DstSub);
591 }
592}
593
594void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
595 AU.setPreservesCFG();
596 AU.addRequired<AAResultsWrapperPass>();
597 AU.addRequired<LiveIntervals>();
598 AU.addPreserved<LiveIntervals>();
599 AU.addPreserved<SlotIndexes>();
600 AU.addRequired<MachineLoopInfo>();
601 AU.addPreserved<MachineLoopInfo>();
602 AU.addPreservedID(MachineDominatorsID);
603 MachineFunctionPass::getAnalysisUsage(AU);
604}
605
606void RegisterCoalescer::eliminateDeadDefs() {
607 SmallVector<Register, 8> NewRegs;
608 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
609 nullptr, this).eliminateDeadDefs(DeadDefs);
610}
611
612bool RegisterCoalescer::allUsesAvailableAt(const MachineInstr *OrigMI,
613 SlotIndex OrigIdx,
614 SlotIndex UseIdx) {
615 SmallVector<Register, 8> NewRegs;
616 return LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, nullptr, this)
617 .allUsesAvailableAt(OrigMI, OrigIdx, UseIdx);
618}
619
620void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
621 // MI may be in WorkList. Make sure we don't visit it.
622 ErasedInstrs.insert(MI);
623}
624
625bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
626 MachineInstr *CopyMI) {
627 assert(!CP.isPartial() && "This doesn't work for partial copies.")(static_cast<void> (0));
628 assert(!CP.isPhys() && "This doesn't work for physreg copies.")(static_cast<void> (0));
629
630 LiveInterval &IntA =
631 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
632 LiveInterval &IntB =
633 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
634 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
635
636 // We have a non-trivially-coalescable copy with IntA being the source and
637 // IntB being the dest, thus this defines a value number in IntB. If the
638 // source value number (in IntA) is defined by a copy from B, see if we can
639 // merge these two pieces of B into a single value number, eliminating a copy.
640 // For example:
641 //
642 // A3 = B0
643 // ...
644 // B1 = A3 <- this copy
645 //
646 // In this case, B0 can be extended to where the B1 copy lives, allowing the
647 // B1 value number to be replaced with B0 (which simplifies the B
648 // liveinterval).
649
650 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
651 // the example above.
652 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
653 if (BS == IntB.end()) return false;
654 VNInfo *BValNo = BS->valno;
655
656 // Get the location that B is defined at. Two options: either this value has
657 // an unknown definition point or it is defined at CopyIdx. If unknown, we
658 // can't process it.
659 if (BValNo->def != CopyIdx) return false;
660
661 // AValNo is the value number in A that defines the copy, A3 in the example.
662 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
663 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
664 // The live segment might not exist after fun with physreg coalescing.
665 if (AS == IntA.end()) return false;
666 VNInfo *AValNo = AS->valno;
667
668 // If AValNo is defined as a copy from IntB, we can potentially process this.
669 // Get the instruction that defines this value number.
670 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
671 // Don't allow any partial copies, even if isCoalescable() allows them.
672 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
673 return false;
674
675 // Get the Segment in IntB that this value number starts with.
676 LiveInterval::iterator ValS =
677 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
678 if (ValS == IntB.end())
679 return false;
680
681 // Make sure that the end of the live segment is inside the same block as
682 // CopyMI.
683 MachineInstr *ValSEndInst =
684 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
685 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
686 return false;
687
688 // Okay, we now know that ValS ends in the same block that the CopyMI
689 // live-range starts. If there are no intervening live segments between them
690 // in IntB, we can merge them.
691 if (ValS+1 != BS) return false;
692
693 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI))do { } while (false);
694
695 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
696 // We are about to delete CopyMI, so need to remove it as the 'instruction
697 // that defines this value #'. Update the valnum with the new defining
698 // instruction #.
699 BValNo->def = FillerStart;
700
701 // Okay, we can merge them. We need to insert a new liverange:
702 // [ValS.end, BS.begin) of either value number, then we merge the
703 // two value numbers.
704 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
705
706 // Okay, merge "B1" into the same value number as "B0".
707 if (BValNo != ValS->valno)
708 IntB.MergeValueNumberInto(BValNo, ValS->valno);
709
710 // Do the same for the subregister segments.
711 for (LiveInterval::SubRange &S : IntB.subranges()) {
712 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
713 // removed to prevent creating bogus SubRange Segments.
714 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
715 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
716 S.removeSegment(*SS, true);
717 continue;
718 }
719 // The subrange may have ended before FillerStart. If so, extend it.
720 if (!S.getVNInfoAt(FillerStart)) {
721 SlotIndex BBStart =
722 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
723 S.extendInBlock(BBStart, FillerStart);
724 }
725 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
726 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
727 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
728 if (SubBValNo != SubValSNo)
729 S.MergeValueNumberInto(SubBValNo, SubValSNo);
730 }
731
732 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n')do { } while (false);
733
734 // If the source instruction was killing the source register before the
735 // merge, unset the isKill marker given the live range has been extended.
736 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
737 if (UIdx != -1) {
738 ValSEndInst->getOperand(UIdx).setIsKill(false);
739 }
740
741 // Rewrite the copy.
742 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
743 // If the copy instruction was killing the destination register or any
744 // subrange before the merge trim the live range.
745 bool RecomputeLiveRange = AS->end == CopyIdx;
746 if (!RecomputeLiveRange) {
747 for (LiveInterval::SubRange &S : IntA.subranges()) {
748 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
749 if (SS != S.end() && SS->end == CopyIdx) {
750 RecomputeLiveRange = true;
751 break;
752 }
753 }
754 }
755 if (RecomputeLiveRange)
756 shrinkToUses(&IntA);
757
758 ++numExtends;
759 return true;
760}
761
762bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
763 LiveInterval &IntB,
764 VNInfo *AValNo,
765 VNInfo *BValNo) {
766 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
767 // the PHI values.
768 if (LIS->hasPHIKill(IntA, AValNo))
769 return true;
770
771 for (LiveRange::Segment &ASeg : IntA.segments) {
772 if (ASeg.valno != AValNo) continue;
773 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
774 if (BI != IntB.begin())
775 --BI;
776 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
777 if (BI->valno == BValNo)
778 continue;
779 if (BI->start <= ASeg.start && BI->end > ASeg.start)
780 return true;
781 if (BI->start > ASeg.start && BI->start < ASeg.end)
782 return true;
783 }
784 }
785 return false;
786}
787
788/// Copy segments with value number @p SrcValNo from liverange @p Src to live
789/// range @Dst and use value number @p DstValNo there.
790static std::pair<bool,bool>
791addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
792 const VNInfo *SrcValNo) {
793 bool Changed = false;
794 bool MergedWithDead = false;
795 for (const LiveRange::Segment &S : Src.segments) {
796 if (S.valno != SrcValNo)
797 continue;
798 // This is adding a segment from Src that ends in a copy that is about
799 // to be removed. This segment is going to be merged with a pre-existing
800 // segment in Dst. This works, except in cases when the corresponding
801 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
802 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
803 // Recognized such cases, so that the segments can be shrunk.
804 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
805 LiveRange::Segment &Merged = *Dst.addSegment(Added);
806 if (Merged.end.isDead())
807 MergedWithDead = true;
808 Changed = true;
809 }
810 return std::make_pair(Changed, MergedWithDead);
811}
812
813std::pair<bool,bool>
814RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
815 MachineInstr *CopyMI) {
816 assert(!CP.isPhys())(static_cast<void> (0));
817
818 LiveInterval &IntA =
819 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
820 LiveInterval &IntB =
821 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
822
823 // We found a non-trivially-coalescable copy with IntA being the source and
824 // IntB being the dest, thus this defines a value number in IntB. If the
825 // source value number (in IntA) is defined by a commutable instruction and
826 // its other operand is coalesced to the copy dest register, see if we can
827 // transform the copy into a noop by commuting the definition. For example,
828 //
829 // A3 = op A2 killed B0
830 // ...
831 // B1 = A3 <- this copy
832 // ...
833 // = op A3 <- more uses
834 //
835 // ==>
836 //
837 // B2 = op B0 killed A2
838 // ...
839 // B1 = B2 <- now an identity copy
840 // ...
841 // = op B2 <- more uses
842
843 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
844 // the example above.
845 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
846 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
847 assert(BValNo != nullptr && BValNo->def == CopyIdx)(static_cast<void> (0));
848
849 // AValNo is the value number in A that defines the copy, A3 in the example.
850 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
851 assert(AValNo && !AValNo->isUnused() && "COPY source not live")(static_cast<void> (0));
852 if (AValNo->isPHIDef())
853 return { false, false };
854 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
855 if (!DefMI)
856 return { false, false };
857 if (!DefMI->isCommutable())
858 return { false, false };
859 // If DefMI is a two-address instruction then commuting it will change the
860 // destination register.
861 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
862 assert(DefIdx != -1)(static_cast<void> (0));
863 unsigned UseOpIdx;
864 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
865 return { false, false };
866
867 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
868 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
869 // passed to the method. That _other_ operand is chosen by
870 // the findCommutedOpIndices() method.
871 //
872 // That is obviously an area for improvement in case of instructions having
873 // more than 2 operands. For example, if some instruction has 3 commutable
874 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
875 // op#2<->op#3) of commute transformation should be considered/tried here.
876 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
877 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
878 return { false, false };
879
880 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
881 Register NewReg = NewDstMO.getReg();
882 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
883 return { false, false };
884
885 // Make sure there are no other definitions of IntB that would reach the
886 // uses which the new definition can reach.
887 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
888 return { false, false };
889
890 // If some of the uses of IntA.reg is already coalesced away, return false.
891 // It's not possible to determine whether it's safe to perform the coalescing.
892 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
893 MachineInstr *UseMI = MO.getParent();
894 unsigned OpNo = &MO - &UseMI->getOperand(0);
895 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
896 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
897 if (US == IntA.end() || US->valno != AValNo)
898 continue;
899 // If this use is tied to a def, we can't rewrite the register.
900 if (UseMI->isRegTiedToDefOperand(OpNo))
901 return { false, false };
902 }
903
904 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'do { } while (false)
905 << *DefMI)do { } while (false);
906
907 // At this point we have decided that it is legal to do this
908 // transformation. Start by commuting the instruction.
909 MachineBasicBlock *MBB = DefMI->getParent();
910 MachineInstr *NewMI =
911 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
912 if (!NewMI)
913 return { false, false };
914 if (Register::isVirtualRegister(IntA.reg()) &&
915 Register::isVirtualRegister(IntB.reg()) &&
916 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
917 return { false, false };
918 if (NewMI != DefMI) {
919 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
920 MachineBasicBlock::iterator Pos = DefMI;
921 MBB->insert(Pos, NewMI);
922 MBB->erase(DefMI);
923 }
924
925 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
926 // A = or A, B
927 // ...
928 // B = A
929 // ...
930 // C = killed A
931 // ...
932 // = B
933
934 // Update uses of IntA of the specific Val# with IntB.
935 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()),
936 UE = MRI->use_end();
937 UI != UE;
938 /* ++UI is below because of possible MI removal */) {
939 MachineOperand &UseMO = *UI;
940 ++UI;
941 if (UseMO.isUndef())
942 continue;
943 MachineInstr *UseMI = UseMO.getParent();
944 if (UseMI->isDebugInstr()) {
945 // FIXME These don't have an instruction index. Not clear we have enough
946 // info to decide whether to do this replacement or not. For now do it.
947 UseMO.setReg(NewReg);
948 continue;
949 }
950 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
951 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
952 assert(US != IntA.end() && "Use must be live")(static_cast<void> (0));
953 if (US->valno != AValNo)
954 continue;
955 // Kill flags are no longer accurate. They are recomputed after RA.
956 UseMO.setIsKill(false);
957 if (Register::isPhysicalRegister(NewReg))
958 UseMO.substPhysReg(NewReg, *TRI);
959 else
960 UseMO.setReg(NewReg);
961 if (UseMI == CopyMI)
962 continue;
963 if (!UseMI->isCopy())
964 continue;
965 if (UseMI->getOperand(0).getReg() != IntB.reg() ||
966 UseMI->getOperand(0).getSubReg())
967 continue;
968
969 // This copy will become a noop. If it's defining a new val#, merge it into
970 // BValNo.
971 SlotIndex DefIdx = UseIdx.getRegSlot();
972 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
973 if (!DVNI)
974 continue;
975 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI)do { } while (false);
976 assert(DVNI->def == DefIdx)(static_cast<void> (0));
977 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
978 for (LiveInterval::SubRange &S : IntB.subranges()) {
979 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
980 if (!SubDVNI)
981 continue;
982 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
983 assert(SubBValNo->def == CopyIdx)(static_cast<void> (0));
984 S.MergeValueNumberInto(SubDVNI, SubBValNo);
985 }
986
987 deleteInstr(UseMI);
988 }
989
990 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
991 // is updated.
992 bool ShrinkB = false;
993 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
994 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
995 if (!IntA.hasSubRanges()) {
996 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
997 IntA.createSubRangeFrom(Allocator, Mask, IntA);
998 } else if (!IntB.hasSubRanges()) {
999 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
1000 IntB.createSubRangeFrom(Allocator, Mask, IntB);
1001 }
1002 SlotIndex AIdx = CopyIdx.getRegSlot(true);
1003 LaneBitmask MaskA;
1004 const SlotIndexes &Indexes = *LIS->getSlotIndexes();
1005 for (LiveInterval::SubRange &SA : IntA.subranges()) {
1006 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
1007 // Even if we are dealing with a full copy, some lanes can
1008 // still be undefined.
1009 // E.g.,
1010 // undef A.subLow = ...
1011 // B = COPY A <== A.subHigh is undefined here and does
1012 // not have a value number.
1013 if (!ASubValNo)
1014 continue;
1015 MaskA |= SA.LaneMask;
1016
1017 IntB.refineSubRanges(
1018 Allocator, SA.LaneMask,
1019 [&Allocator, &SA, CopyIdx, ASubValNo,
1020 &ShrinkB](LiveInterval::SubRange &SR) {
1021 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
1022 : SR.getVNInfoAt(CopyIdx);
1023 assert(BSubValNo != nullptr)(static_cast<void> (0));
1024 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
1025 ShrinkB |= P.second;
1026 if (P.first)
1027 BSubValNo->def = ASubValNo->def;
1028 },
1029 Indexes, *TRI);
1030 }
1031 // Go over all subranges of IntB that have not been covered by IntA,
1032 // and delete the segments starting at CopyIdx. This can happen if
1033 // IntA has undef lanes that are defined in IntB.
1034 for (LiveInterval::SubRange &SB : IntB.subranges()) {
1035 if ((SB.LaneMask & MaskA).any())
1036 continue;
1037 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
1038 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1039 SB.removeSegment(*S, true);
1040 }
1041 }
1042
1043 BValNo->def = AValNo->def;
1044 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1045 ShrinkB |= P.second;
1046 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n')do { } while (false);
1047
1048 LIS->removeVRegDefAt(IntA, AValNo->def);
1049
1050 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n')do { } while (false);
1051 ++numCommutes;
1052 return { true, ShrinkB };
1053}
1054
1055/// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1056/// predecessor of BB2, and if B is not redefined on the way from A = B
1057/// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1058/// execution goes through the path from BB0 to BB2. We may move B = A
1059/// to the predecessor without such reversed copy.
1060/// So we will transform the program from:
1061/// BB0:
1062/// A = B; BB1:
1063/// ... ...
1064/// / \ /
1065/// BB2:
1066/// ...
1067/// B = A;
1068///
1069/// to:
1070///
1071/// BB0: BB1:
1072/// A = B; ...
1073/// ... B = A;
1074/// / \ /
1075/// BB2:
1076/// ...
1077///
1078/// A special case is when BB0 and BB2 are the same BB which is the only
1079/// BB in a loop:
1080/// BB1:
1081/// ...
1082/// BB0/BB2: ----
1083/// B = A; |
1084/// ... |
1085/// A = B; |
1086/// |-------
1087/// |
1088/// We may hoist B = A from BB0/BB2 to BB1.
1089///
1090/// The major preconditions for correctness to remove such partial
1091/// redundancy include:
1092/// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1093/// the PHI is defined by the reversed copy A = B in BB0.
1094/// 2. No B is referenced from the start of BB2 to B = A.
1095/// 3. No B is defined from A = B to the end of BB0.
1096/// 4. BB1 has only one successor.
1097///
1098/// 2 and 4 implicitly ensure B is not live at the end of BB1.
1099/// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1100/// colder place, which not only prevent endless loop, but also make sure
1101/// the movement of copy is beneficial.
1102bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1103 MachineInstr &CopyMI) {
1104 assert(!CP.isPhys())(static_cast<void> (0));
1105 if (!CopyMI.isFullCopy())
1106 return false;
1107
1108 MachineBasicBlock &MBB = *CopyMI.getParent();
1109 // If this block is the target of an invoke/inlineasm_br, moving the copy into
1110 // the predecessor is tricker, and we don't handle it.
1111 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1112 return false;
1113
1114 if (MBB.pred_size() != 2)
1115 return false;
1116
1117 LiveInterval &IntA =
1118 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1119 LiveInterval &IntB =
1120 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1121
1122 // A is defined by PHI at the entry of MBB.
1123 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1124 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1125 assert(AValNo && !AValNo->isUnused() && "COPY source not live")(static_cast<void> (0));
1126 if (!AValNo->isPHIDef())
1127 return false;
1128
1129 // No B is referenced before CopyMI in MBB.
1130 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1131 return false;
1132
1133 // MBB has two predecessors: one contains A = B so no copy will be inserted
1134 // for it. The other one will have a copy moved from MBB.
1135 bool FoundReverseCopy = false;
1136 MachineBasicBlock *CopyLeftBB = nullptr;
1137 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1138 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1139 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1140 if (!DefMI || !DefMI->isFullCopy()) {
1141 CopyLeftBB = Pred;
1142 continue;
1143 }
1144 // Check DefMI is a reverse copy and it is in BB Pred.
1145 if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1146 DefMI->getOperand(1).getReg() != IntB.reg() ||
1147 DefMI->getParent() != Pred) {
1148 CopyLeftBB = Pred;
1149 continue;
1150 }
1151 // If there is any other def of B after DefMI and before the end of Pred,
1152 // we need to keep the copy of B = A at the end of Pred if we remove
1153 // B = A from MBB.
1154 bool ValB_Changed = false;
1155 for (auto VNI : IntB.valnos) {
1156 if (VNI->isUnused())
1157 continue;
1158 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1159 ValB_Changed = true;
1160 break;
1161 }
1162 }
1163 if (ValB_Changed) {
1164 CopyLeftBB = Pred;
1165 continue;
1166 }
1167 FoundReverseCopy = true;
1168 }
1169
1170 // If no reverse copy is found in predecessors, nothing to do.
1171 if (!FoundReverseCopy)
1172 return false;
1173
1174 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1175 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1176 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1177 // update IntA/IntB.
1178 //
1179 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1180 // MBB is hotter than CopyLeftBB.
1181 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1182 return false;
1183
1184 // Now (almost sure it's) ok to move copy.
1185 if (CopyLeftBB) {
1186 // Position in CopyLeftBB where we should insert new copy.
1187 auto InsPos = CopyLeftBB->getFirstTerminator();
1188
1189 // Make sure that B isn't referenced in the terminators (if any) at the end
1190 // of the predecessor since we're about to insert a new definition of B
1191 // before them.
1192 if (InsPos != CopyLeftBB->end()) {
1193 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1194 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1195 return false;
1196 }
1197
1198 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "do { } while (false)
1199 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI)do { } while (false);
1200
1201 // Insert new copy to CopyLeftBB.
1202 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1203 TII->get(TargetOpcode::COPY), IntB.reg())
1204 .addReg(IntA.reg());
1205 SlotIndex NewCopyIdx =
1206 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1207 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1208 for (LiveInterval::SubRange &SR : IntB.subranges())
1209 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1210
1211 // If the newly created Instruction has an address of an instruction that was
1212 // deleted before (object recycled by the allocator) it needs to be removed from
1213 // the deleted list.
1214 ErasedInstrs.erase(NewCopyMI);
1215 } else {
1216 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "do { } while (false)
1217 << printMBBReference(MBB) << '\t' << CopyMI)do { } while (false);
1218 }
1219
1220 // Remove CopyMI.
1221 // Note: This is fine to remove the copy before updating the live-ranges.
1222 // While updating the live-ranges, we only look at slot indices and
1223 // never go back to the instruction.
1224 // Mark instructions as deleted.
1225 deleteInstr(&CopyMI);
1226
1227 // Update the liveness.
1228 SmallVector<SlotIndex, 8> EndPoints;
1229 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1230 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1231 &EndPoints);
1232 BValNo->markUnused();
1233 // Extend IntB to the EndPoints of its original live interval.
1234 LIS->extendToIndices(IntB, EndPoints);
1235
1236 // Now, do the same for its subranges.
1237 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1238 EndPoints.clear();
1239 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1240 assert(BValNo && "All sublanes should be live")(static_cast<void> (0));
1241 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1242 BValNo->markUnused();
1243 // We can have a situation where the result of the original copy is live,
1244 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1245 // the copy appear as an endpoint from pruneValue(), but we don't want it
1246 // to because the copy has been removed. We can go ahead and remove that
1247 // endpoint; there is no other situation here that there could be a use at
1248 // the same place as we know that the copy is a full copy.
1249 for (unsigned I = 0; I != EndPoints.size(); ) {
1250 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1251 EndPoints[I] = EndPoints.back();
1252 EndPoints.pop_back();
1253 continue;
1254 }
1255 ++I;
1256 }
1257 SmallVector<SlotIndex, 8> Undefs;
1258 IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1259 *LIS->getSlotIndexes());
1260 LIS->extendToIndices(SR, EndPoints, Undefs);
1261 }
1262 // If any dead defs were extended, truncate them.
1263 shrinkToUses(&IntB);
1264
1265 // Finally, update the live-range of IntA.
1266 shrinkToUses(&IntA);
1267 return true;
1268}
1269
1270/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1271/// defining a subregister.
1272static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1273 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing")(static_cast<void> (0));
1274
1275 for (const MachineOperand &Op : MI.operands()) {
1276 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1277 continue;
1278 // Return true if we define the full register or don't care about the value
1279 // inside other subregisters.
1280 if (Op.getSubReg() == 0 || Op.isUndef())
1281 return true;
1282 }
1283 return false;
1284}
1285
1286bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1287 MachineInstr *CopyMI,
1288 bool &IsDefCopy) {
1289 IsDefCopy = false;
1290 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1291 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1292 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1293 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1294 if (Register::isPhysicalRegister(SrcReg))
1295 return false;
1296
1297 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1298 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1299 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1300 if (!ValNo)
1301 return false;
1302 if (ValNo->isPHIDef() || ValNo->isUnused())
1303 return false;
1304 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1305 if (!DefMI)
1306 return false;
1307 if (DefMI->isCopyLike()) {
1308 IsDefCopy = true;
1309 return false;
1310 }
1311 if (!TII->isAsCheapAsAMove(*DefMI))
1312 return false;
1313 if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1314 return false;
1315 if (!definesFullReg(*DefMI, SrcReg))
1316 return false;
1317 bool SawStore = false;
1318 if (!DefMI->isSafeToMove(AA, SawStore))
1319 return false;
1320 const MCInstrDesc &MCID = DefMI->getDesc();
1321 if (MCID.getNumDefs() != 1)
1322 return false;
1323 // Only support subregister destinations when the def is read-undef.
1324 MachineOperand &DstOperand = CopyMI->getOperand(0);
1325 Register CopyDstReg = DstOperand.getReg();
1326 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1327 return false;
1328
1329 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1330 // the register substantially (beyond both source and dest size). This is bad
1331 // for performance since it can cascade through a function, introducing many
1332 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1333 // around after a few subreg copies).
1334 if (SrcIdx && DstIdx)
1335 return false;
1336
1337 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1338 if (!DefMI->isImplicitDef()) {
1339 if (DstReg.isPhysical()) {
1340 Register NewDstReg = DstReg;
1341
1342 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1343 DefMI->getOperand(0).getSubReg());
1344 if (NewDstIdx)
1345 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1346
1347 // Finally, make sure that the physical subregister that will be
1348 // constructed later is permitted for the instruction.
1349 if (!DefRC->contains(NewDstReg))
1350 return false;
1351 } else {
1352 // Theoretically, some stack frame reference could exist. Just make sure
1353 // it hasn't actually happened.
1354 assert(Register::isVirtualRegister(DstReg) &&(static_cast<void> (0))
1355 "Only expect to deal with virtual or physical registers")(static_cast<void> (0));
1356 }
1357 }
1358
1359 if (!allUsesAvailableAt(DefMI, ValNo->def, CopyIdx))
1360 return false;
1361
1362 DebugLoc DL = CopyMI->getDebugLoc();
1363 MachineBasicBlock *MBB = CopyMI->getParent();
1364 MachineBasicBlock::iterator MII =
1365 std::next(MachineBasicBlock::iterator(CopyMI));
1366 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1367 MachineInstr &NewMI = *std::prev(MII);
1368 NewMI.setDebugLoc(DL);
1369
1370 // In a situation like the following:
1371 // %0:subreg = instr ; DefMI, subreg = DstIdx
1372 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1373 // instead of widening %1 to the register class of %0 simply do:
1374 // %1 = instr
1375 const TargetRegisterClass *NewRC = CP.getNewRC();
1376 if (DstIdx != 0) {
1377 MachineOperand &DefMO = NewMI.getOperand(0);
1378 if (DefMO.getSubReg() == DstIdx) {
1379 assert(SrcIdx == 0 && CP.isFlipped()(static_cast<void> (0))
1380 && "Shouldn't have SrcIdx+DstIdx at this point")(static_cast<void> (0));
1381 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1382 const TargetRegisterClass *CommonRC =
1383 TRI->getCommonSubClass(DefRC, DstRC);
1384 if (CommonRC != nullptr) {
1385 NewRC = CommonRC;
1386 DstIdx = 0;
1387 DefMO.setSubReg(0);
1388 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1389 }
1390 }
1391 }
1392
1393 // CopyMI may have implicit operands, save them so that we can transfer them
1394 // over to the newly materialized instruction after CopyMI is removed.
1395 SmallVector<MachineOperand, 4> ImplicitOps;
1396 ImplicitOps.reserve(CopyMI->getNumOperands() -
1397 CopyMI->getDesc().getNumOperands());
1398 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1399 E = CopyMI->getNumOperands();
1400 I != E; ++I) {
1401 MachineOperand &MO = CopyMI->getOperand(I);
1402 if (MO.isReg()) {
1403 assert(MO.isImplicit() && "No explicit operands after implicit operands.")(static_cast<void> (0));
1404 // Discard VReg implicit defs.
1405 if (Register::isPhysicalRegister(MO.getReg()))
1406 ImplicitOps.push_back(MO);
1407 }
1408 }
1409
1410 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1411 CopyMI->eraseFromParent();
1412 ErasedInstrs.insert(CopyMI);
1413
1414 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1415 // We need to remember these so we can add intervals once we insert
1416 // NewMI into SlotIndexes.
1417 SmallVector<MCRegister, 4> NewMIImplDefs;
1418 for (unsigned i = NewMI.getDesc().getNumOperands(),
1419 e = NewMI.getNumOperands();
1420 i != e; ++i) {
1421 MachineOperand &MO = NewMI.getOperand(i);
1422 if (MO.isReg() && MO.isDef()) {
1423 assert(MO.isImplicit() && MO.isDead() &&(static_cast<void> (0))
1424 Register::isPhysicalRegister(MO.getReg()))(static_cast<void> (0));
1425 NewMIImplDefs.push_back(MO.getReg().asMCReg());
1426 }
1427 }
1428
1429 if (DstReg.isVirtual()) {
1430 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1431
1432 if (DefRC != nullptr) {
1433 if (NewIdx)
1434 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1435 else
1436 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1437 assert(NewRC && "subreg chosen for remat incompatible with instruction")(static_cast<void> (0));
1438 }
1439 // Remap subranges to new lanemask and change register class.
1440 LiveInterval &DstInt = LIS->getInterval(DstReg);
1441 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1442 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1443 }
1444 MRI->setRegClass(DstReg, NewRC);
1445
1446 // Update machine operands and add flags.
1447 updateRegDefsUses(DstReg, DstReg, DstIdx);
1448 NewMI.getOperand(0).setSubReg(NewIdx);
1449 // updateRegDefUses can add an "undef" flag to the definition, since
1450 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1451 // sure that "undef" is not set.
1452 if (NewIdx == 0)
1453 NewMI.getOperand(0).setIsUndef(false);
1454 // Add dead subregister definitions if we are defining the whole register
1455 // but only part of it is live.
1456 // This could happen if the rematerialization instruction is rematerializing
1457 // more than actually is used in the register.
1458 // An example would be:
1459 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1460 // ; Copying only part of the register here, but the rest is undef.
1461 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1462 // ==>
1463 // ; Materialize all the constants but only using one
1464 // %2 = LOAD_CONSTANTS 5, 8
1465 //
1466 // at this point for the part that wasn't defined before we could have
1467 // subranges missing the definition.
1468 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1469 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1470 SlotIndex DefIndex =
1471 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1472 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1473 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1474 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1475 if (!SR.liveAt(DefIndex))
1476 SR.createDeadDef(DefIndex, Alloc);
1477 MaxMask &= ~SR.LaneMask;
1478 }
1479 if (MaxMask.any()) {
1480 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1481 SR->createDeadDef(DefIndex, Alloc);
1482 }
1483 }
1484
1485 // Make sure that the subrange for resultant undef is removed
1486 // For example:
1487 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1488 // %2 = COPY %1
1489 // ==>
1490 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1491 // ; Correct but need to remove the subrange for %2:sub0
1492 // ; as it is now undef
1493 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1494 // The affected subregister segments can be removed.
1495 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1496 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1497 bool UpdatedSubRanges = false;
1498 SlotIndex DefIndex =
1499 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1500 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1501 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1502 if ((SR.LaneMask & DstMask).none()) {
1503 LLVM_DEBUG(dbgs()do { } while (false)
1504 << "Removing undefined SubRange "do { } while (false)
1505 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n")do { } while (false);
1506 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1507 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1508 SR.removeValNo(RmValNo);
1509 UpdatedSubRanges = true;
1510 }
1511 } else {
1512 // We know that this lane is defined by this instruction,
1513 // but at this point it may be empty because it is not used by
1514 // anything. This happens when updateRegDefUses adds the missing
1515 // lanes. Assign that lane a dead def so that the interferences
1516 // are properly modeled.
1517 if (SR.empty())
1518 SR.createDeadDef(DefIndex, Alloc);
1519 }
1520 }
1521 if (UpdatedSubRanges)
1522 DstInt.removeEmptySubRanges();
1523 }
1524 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1525 // The New instruction may be defining a sub-register of what's actually
1526 // been asked for. If so it must implicitly define the whole thing.
1527 assert(Register::isPhysicalRegister(DstReg) &&(static_cast<void> (0))
1528 "Only expect virtual or physical registers in remat")(static_cast<void> (0));
1529 NewMI.getOperand(0).setIsDead(true);
1530 NewMI.addOperand(MachineOperand::CreateReg(
1531 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1532 // Record small dead def live-ranges for all the subregisters
1533 // of the destination register.
1534 // Otherwise, variables that live through may miss some
1535 // interferences, thus creating invalid allocation.
1536 // E.g., i386 code:
1537 // %1 = somedef ; %1 GR8
1538 // %2 = remat ; %2 GR32
1539 // CL = COPY %2.sub_8bit
1540 // = somedef %1 ; %1 GR8
1541 // =>
1542 // %1 = somedef ; %1 GR8
1543 // dead ECX = remat ; implicit-def CL
1544 // = somedef %1 ; %1 GR8
1545 // %1 will see the interferences with CL but not with CH since
1546 // no live-ranges would have been created for ECX.
1547 // Fix that!
1548 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1549 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1550 Units.isValid(); ++Units)
1551 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1552 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1553 }
1554
1555 if (NewMI.getOperand(0).getSubReg())
1556 NewMI.getOperand(0).setIsUndef();
1557
1558 // Transfer over implicit operands to the rematerialized instruction.
1559 for (MachineOperand &MO : ImplicitOps)
1560 NewMI.addOperand(MO);
1561
1562 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1563 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1564 MCRegister Reg = NewMIImplDefs[i];
1565 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1566 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1567 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1568 }
1569
1570 LLVM_DEBUG(dbgs() << "Remat: " << NewMI)do { } while (false);
1571 ++NumReMats;
1572
1573 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1574 // to describe DstReg instead.
1575 if (MRI->use_nodbg_empty(SrcReg)) {
1576 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg);
1577 UI != MRI->use_end();) {
1578 MachineOperand &UseMO = *UI++;
1579 MachineInstr *UseMI = UseMO.getParent();
1580 if (UseMI->isDebugInstr()) {
1581 if (Register::isPhysicalRegister(DstReg))
1582 UseMO.substPhysReg(DstReg, *TRI);
1583 else
1584 UseMO.setReg(DstReg);
1585 // Move the debug value directly after the def of the rematerialized
1586 // value in DstReg.
1587 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1588 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI)do { } while (false);
1589 }
1590 }
1591 }
1592
1593 if (ToBeUpdated.count(SrcReg))
1594 return true;
1595
1596 unsigned NumCopyUses = 0;
1597 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1598 if (UseMO.getParent()->isCopyLike())
1599 NumCopyUses++;
1600 }
1601 if (NumCopyUses < LateRematUpdateThreshold) {
1602 // The source interval can become smaller because we removed a use.
1603 shrinkToUses(&SrcInt, &DeadDefs);
1604 if (!DeadDefs.empty())
1605 eliminateDeadDefs();
1606 } else {
1607 ToBeUpdated.insert(SrcReg);
1608 }
1609 return true;
1610}
1611
1612MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1613 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1614 // removes local variables. When we have a copy like:
1615 //
1616 // %1 = COPY undef %2
1617 //
1618 // We delete the copy and remove the corresponding value number from %1.
1619 // Any uses of that value number are marked as <undef>.
1620
1621 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1622 // CoalescerPair may have a new register class with adjusted subreg indices
1623 // at this point.
1624 Register SrcReg, DstReg;
1625 unsigned SrcSubIdx = 0, DstSubIdx = 0;
1626 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1627 return nullptr;
1628
1629 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1630 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1631 // CopyMI is undef iff SrcReg is not live before the instruction.
1632 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1633 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1634 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1635 if ((SR.LaneMask & SrcMask).none())
1636 continue;
1637 if (SR.liveAt(Idx))
1638 return nullptr;
1639 }
1640 } else if (SrcLI.liveAt(Idx))
1641 return nullptr;
1642
1643 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1644 // then replace it with an IMPLICIT_DEF.
1645 LiveInterval &DstLI = LIS->getInterval(DstReg);
1646 SlotIndex RegIndex = Idx.getRegSlot();
1647 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1648 assert(Seg != nullptr && "No segment for defining instruction")(static_cast<void> (0));
1649 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1650 if (V->isPHIDef()) {
1651 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1652 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1653 MachineOperand &MO = CopyMI->getOperand(i-1);
1654 if (MO.isReg() && MO.isUse())
1655 CopyMI->RemoveOperand(i-1);
1656 }
1657 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "do { } while (false)
1658 "implicit def\n")do { } while (false);
1659 return CopyMI;
1660 }
1661 }
1662
1663 // Remove any DstReg segments starting at the instruction.
1664 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n")do { } while (false);
1665
1666 // Remove value or merge with previous one in case of a subregister def.
1667 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1668 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1669 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1670
1671 // The affected subregister segments can be removed.
1672 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1673 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1674 if ((SR.LaneMask & DstMask).none())
1675 continue;
1676
1677 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1678 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex))(static_cast<void> (0));
1679 SR.removeValNo(SVNI);
1680 }
1681 DstLI.removeEmptySubRanges();
1682 } else
1683 LIS->removeVRegDefAt(DstLI, RegIndex);
1684
1685 // Mark uses as undef.
1686 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1687 if (MO.isDef() /*|| MO.isUndef()*/)
1688 continue;
1689 const MachineInstr &MI = *MO.getParent();
1690 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1691 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1692 bool isLive;
1693 if (!UseMask.all() && DstLI.hasSubRanges()) {
1694 isLive = false;
1695 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1696 if ((SR.LaneMask & UseMask).none())
1697 continue;
1698 if (SR.liveAt(UseIdx)) {
1699 isLive = true;
1700 break;
1701 }
1702 }
1703 } else
1704 isLive = DstLI.liveAt(UseIdx);
1705 if (isLive)
1706 continue;
1707 MO.setIsUndef(true);
1708 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI)do { } while (false);
1709 }
1710
1711 // A def of a subregister may be a use of the other subregisters, so
1712 // deleting a def of a subregister may also remove uses. Since CopyMI
1713 // is still part of the function (but about to be erased), mark all
1714 // defs of DstReg in it as <undef>, so that shrinkToUses would
1715 // ignore them.
1716 for (MachineOperand &MO : CopyMI->operands())
1717 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1718 MO.setIsUndef(true);
1719 LIS->shrinkToUses(&DstLI);
1720
1721 return CopyMI;
1722}
1723
1724void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1725 MachineOperand &MO, unsigned SubRegIdx) {
1726 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1727 if (MO.isDef())
1728 Mask = ~Mask;
1729 bool IsUndef = true;
1730 for (const LiveInterval::SubRange &S : Int.subranges()) {
1731 if ((S.LaneMask & Mask).none())
1732 continue;
1733 if (S.liveAt(UseIdx)) {
1734 IsUndef = false;
1735 break;
1736 }
1737 }
1738 if (IsUndef) {
1739 MO.setIsUndef(true);
1740 // We found out some subregister use is actually reading an undefined
1741 // value. In some cases the whole vreg has become undefined at this
1742 // point so we have to potentially shrink the main range if the
1743 // use was ending a live segment there.
1744 LiveQueryResult Q = Int.Query(UseIdx);
1745 if (Q.valueOut() == nullptr)
1746 ShrinkMainRange = true;
1747 }
1748}
1749
1750void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1751 unsigned SubIdx) {
1752 bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1753 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1754
1755 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1756 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1757 unsigned SubReg = MO.getSubReg();
1758 if (SubReg == 0 || MO.isUndef())
1759 continue;
1760 MachineInstr &MI = *MO.getParent();
1761 if (MI.isDebugInstr())
1762 continue;
1763 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1764 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1765 }
1766 }
1767
1768 SmallPtrSet<MachineInstr*, 8> Visited;
1769 for (MachineRegisterInfo::reg_instr_iterator
1770 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1771 I != E; ) {
1772 MachineInstr *UseMI = &*(I++);
1773
1774 // Each instruction can only be rewritten once because sub-register
1775 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1776 // the UseMI operands removes them from the SrcReg use-def chain, but when
1777 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1778 // operands mentioning the virtual register.
1779 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1780 continue;
1781
1782 SmallVector<unsigned,8> Ops;
1783 bool Reads, Writes;
1784 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1785
1786 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1787 // because SrcReg is a sub-register.
1788 if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr())
1789 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1790
1791 // Replace SrcReg with DstReg in all UseMI operands.
1792 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1793 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1794
1795 // Adjust <undef> flags in case of sub-register joins. We don't want to
1796 // turn a full def into a read-modify-write sub-register def and vice
1797 // versa.
1798 if (SubIdx && MO.isDef())
1799 MO.setIsUndef(!Reads);
1800
1801 // A subreg use of a partially undef (super) register may be a complete
1802 // undef use now and then has to be marked that way.
1803 if (MO.isUse() && !DstIsPhys) {
1804 unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
1805 if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) {
1806 if (!DstInt->hasSubRanges()) {
1807 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1808 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1809 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1810 LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1811 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1812 // The unused lanes are just empty live-ranges at this point.
1813 // It is the caller responsibility to set the proper
1814 // dead segments if there is an actual dead def of the
1815 // unused lanes. This may happen with rematerialization.
1816 DstInt->createSubRange(Allocator, UnusedLanes);
1817 }
1818 SlotIndex MIIdx = UseMI->isDebugInstr()
1819 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1820 : LIS->getInstructionIndex(*UseMI);
1821 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1822 addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx);
1823 }
1824 }
1825
1826 if (DstIsPhys)
1827 MO.substPhysReg(DstReg, *TRI);
1828 else
1829 MO.substVirtReg(DstReg, SubIdx, *TRI);
1830 }
1831
1832 LLVM_DEBUG({do { } while (false)
1833 dbgs() << "\t\tupdated: ";do { } while (false)
1834 if (!UseMI->isDebugInstr())do { } while (false)
1835 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";do { } while (false)
1836 dbgs() << *UseMI;do { } while (false)
1837 })do { } while (false);
1838 }
1839}
1840
1841bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1842 // Always join simple intervals that are defined by a single copy from a
1843 // reserved register. This doesn't increase register pressure, so it is
1844 // always beneficial.
1845 if (!MRI->isReserved(CP.getDstReg())) {
1846 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n")do { } while (false);
1847 return false;
1848 }
1849
1850 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1851 if (JoinVInt.containsOneValue())
1852 return true;
1853
1854 LLVM_DEBUG(do { } while (false)
1855 dbgs() << "\tCannot join complex intervals into reserved register.\n")do { } while (false);
1856 return false;
1857}
1858
1859bool RegisterCoalescer::copyValueUndefInPredecessors(
1860 LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
1861 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1862 SlotIndex PredEnd = LIS->getMBBEndIdx(Pred);
1863 if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) {
1864 // If this is a self loop, we may be reading the same value.
1865 if (V->id != SLRQ.valueOutOrDead()->id)
1866 return false;
1867 }
1868 }
1869
1870 return true;
1871}
1872
1873void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
1874 Register Reg,
1875 LaneBitmask PrunedLanes) {
1876 // If we had other instructions in the segment reading the undef sublane
1877 // value, we need to mark them with undef.
1878 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
1879 unsigned SubRegIdx = MO.getSubReg();
1880 if (SubRegIdx == 0 || MO.isUndef())
1881 continue;
1882
1883 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1884 SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
1885 for (LiveInterval::SubRange &S : LI.subranges()) {
1886 if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
1887 MO.setIsUndef();
1888 break;
1889 }
1890 }
1891 }
1892
1893 LI.removeEmptySubRanges();
1894
1895 // A def of a subregister may be a use of other register lanes. Replacing
1896 // such a def with a def of a different register will eliminate the use,
1897 // and may cause the recorded live range to be larger than the actual
1898 // liveness in the program IR.
1899 LIS->shrinkToUses(&LI);
1900}
1901
1902bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1903 Again = false;
1904 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI)do { } while (false);
1905
1906 CoalescerPair CP(*TRI);
1907 if (!CP.setRegisters(CopyMI)) {
1908 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n")do { } while (false);
1909 return false;
1910 }
1911
1912 if (CP.getNewRC()) {
1913 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1914 auto DstRC = MRI->getRegClass(CP.getDstReg());
1915 unsigned SrcIdx = CP.getSrcIdx();
1916 unsigned DstIdx = CP.getDstIdx();
1917 if (CP.isFlipped()) {
1918 std::swap(SrcIdx, DstIdx);
1919 std::swap(SrcRC, DstRC);
1920 }
1921 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1922 CP.getNewRC(), *LIS)) {
1923 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n")do { } while (false);
1924 return false;
1925 }
1926 }
1927
1928 // Dead code elimination. This really should be handled by MachineDCE, but
1929 // sometimes dead copies slip through, and we can't generate invalid live
1930 // ranges.
1931 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1932 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n")do { } while (false);
1933 DeadDefs.push_back(CopyMI);
1934 eliminateDeadDefs();
1935 return true;
1936 }
1937
1938 // Eliminate undefs.
1939 if (!CP.isPhys()) {
1940 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1941 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1942 if (UndefMI->isImplicitDef())
1943 return false;
1944 deleteInstr(CopyMI);
1945 return false; // Not coalescable.
1946 }
1947 }
1948
1949 // Coalesced copies are normally removed immediately, but transformations
1950 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1951 // When that happens, just join the values and remove the copy.
1952 if (CP.getSrcReg() == CP.getDstReg()) {
1953 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1954 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n')do { } while (false);
1955 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1956 LiveQueryResult LRQ = LI.Query(CopyIdx);
1957 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1958 VNInfo *ReadVNI = LRQ.valueIn();
1959 assert(ReadVNI && "No value before copy and no <undef> flag.")(static_cast<void> (0));
1960 assert(ReadVNI != DefVNI && "Cannot read and define the same value.")(static_cast<void> (0));
1961
1962 // Track incoming undef lanes we need to eliminate from the subrange.
1963 LaneBitmask PrunedLanes;
1964 MachineBasicBlock *MBB = CopyMI->getParent();
1965
1966 // Process subregister liveranges.
1967 for (LiveInterval::SubRange &S : LI.subranges()) {
1968 LiveQueryResult SLRQ = S.Query(CopyIdx);
1969 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1970 if (VNInfo *SReadVNI = SLRQ.valueIn())
1971 SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI);
1972
1973 // If this copy introduced an undef subrange from an incoming value,
1974 // we need to eliminate the undef live in values from the subrange.
1975 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
1976 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n")do { } while (false);
1977 PrunedLanes |= S.LaneMask;
1978 S.removeValNo(SDefVNI);
1979 }
1980 }
1981 }
1982
1983 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1984 if (PrunedLanes.any()) {
1985 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "do { } while (false)
1986 << PrunedLanes << '\n')do { } while (false);
1987 setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes);
1988 }
1989
1990 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n')do { } while (false);
1991 }
1992 deleteInstr(CopyMI);
1993 return true;
1994 }
1995
1996 // Enforce policies.
1997 if (CP.isPhys()) {
1998 LLVM_DEBUG(dbgs() << "\tConsidering merging "do { } while (false)
1999 << printReg(CP.getSrcReg(), TRI) << " with "do { } while (false)
2000 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n')do { } while (false);
2001 if (!canJoinPhys(CP)) {
2002 // Before giving up coalescing, if definition of source is defined by
2003 // trivial computation, try rematerializing it.
2004 bool IsDefCopy = false;
2005 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2006 return true;
2007 if (IsDefCopy)
2008 Again = true; // May be possible to coalesce later.
2009 return false;
2010 }
2011 } else {
2012 // When possible, let DstReg be the larger interval.
2013 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
2014 LIS->getInterval(CP.getDstReg()).size())
2015 CP.flip();
2016
2017 LLVM_DEBUG({do { } while (false)
2018 dbgs() << "\tConsidering merging to "do { } while (false)
2019 << TRI->getRegClassName(CP.getNewRC()) << " with ";do { } while (false)
2020 if (CP.getDstIdx() && CP.getSrcIdx())do { } while (false)
2021 dbgs() << printReg(CP.getDstReg()) << " in "do { } while (false)
2022 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "do { } while (false)
2023 << printReg(CP.getSrcReg()) << " in "do { } while (false)
2024 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';do { } while (false)
2025 elsedo { } while (false)
2026 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "do { } while (false)
2027 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';do { } while (false)
2028 })do { } while (false);
2029 }
2030
2031 ShrinkMask = LaneBitmask::getNone();
2032 ShrinkMainRange = false;
2033
2034 // Okay, attempt to join these two intervals. On failure, this returns false.
2035 // Otherwise, if one of the intervals being joined is a physreg, this method
2036 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
2037 // been modified, so we can use this information below to update aliases.
2038 if (!joinIntervals(CP)) {
2039 // Coalescing failed.
2040
2041 // If definition of source is defined by trivial computation, try
2042 // rematerializing it.
2043 bool IsDefCopy = false;
2044 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2045 return true;
2046
2047 // If we can eliminate the copy without merging the live segments, do so
2048 // now.
2049 if (!CP.isPartial() && !CP.isPhys()) {
2050 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2051 bool Shrink = false;
2052 if (!Changed)
2053 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2054 if (Changed) {
2055 deleteInstr(CopyMI);
2056 if (Shrink) {
2057 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2058 LiveInterval &DstLI = LIS->getInterval(DstReg);
2059 shrinkToUses(&DstLI);
2060 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n')do { } while (false);
2061 }
2062 LLVM_DEBUG(dbgs() << "\tTrivial!\n")do { } while (false);
2063 return true;
2064 }
2065 }
2066
2067 // Try and see if we can partially eliminate the copy by moving the copy to
2068 // its predecessor.
2069 if (!CP.isPartial() && !CP.isPhys())
2070 if (removePartialRedundancy(CP, *CopyMI))
2071 return true;
2072
2073 // Otherwise, we are unable to join the intervals.
2074 LLVM_DEBUG(dbgs() << "\tInterference!\n")do { } while (false);
2075 Again = true; // May be possible to coalesce later.
2076 return false;
2077 }
2078
2079 // Coalescing to a virtual register that is of a sub-register class of the
2080 // other. Make sure the resulting register is set to the right register class.
2081 if (CP.isCrossClass()) {
2082 ++numCrossRCs;
2083 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
2084 }
2085
2086 // Removing sub-register copies can ease the register class constraints.
2087 // Make sure we attempt to inflate the register class of DstReg.
2088 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
2089 InflateRegs.push_back(CP.getDstReg());
2090
2091 // CopyMI has been erased by joinIntervals at this point. Remove it from
2092 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2093 // to the work list. This keeps ErasedInstrs from growing needlessly.
2094 ErasedInstrs.erase(CopyMI);
2095
2096 // Rewrite all SrcReg operands to DstReg.
2097 // Also update DstReg operands to include DstIdx if it is set.
2098 if (CP.getDstIdx())
2099 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
2100 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
2101
2102 // Shrink subregister ranges if necessary.
2103 if (ShrinkMask.any()) {
2104 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2105 for (LiveInterval::SubRange &S : LI.subranges()) {
2106 if ((S.LaneMask & ShrinkMask).none())
2107 continue;
2108 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)do { } while (false)
2109 << ")\n")do { } while (false);
2110 LIS->shrinkToUses(S, LI.reg());
2111 }
2112 LI.removeEmptySubRanges();
2113 }
2114
2115 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2116 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2117 // is not up-to-date, need to update the merged live interval here.
2118 if (ToBeUpdated.count(CP.getSrcReg()))
2119 ShrinkMainRange = true;
2120
2121 if (ShrinkMainRange) {
2122 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2123 shrinkToUses(&LI);
2124 }
2125
2126 // SrcReg is guaranteed to be the register whose live interval that is
2127 // being merged.
2128 LIS->removeInterval(CP.getSrcReg());
2129
2130 // Update regalloc hint.
2131 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2132
2133 LLVM_DEBUG({do { } while (false)
2134 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())do { } while (false)
2135 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';do { } while (false)
2136 dbgs() << "\tResult = ";do { } while (false)
2137 if (CP.isPhys())do { } while (false)
2138 dbgs() << printReg(CP.getDstReg(), TRI);do { } while (false)
2139 elsedo { } while (false)
2140 dbgs() << LIS->getInterval(CP.getDstReg());do { } while (false)
2141 dbgs() << '\n';do { } while (false)
2142 })do { } while (false);
2143
2144 ++numJoins;
2145 return true;
2146}
2147
2148bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2149 Register DstReg = CP.getDstReg();
2150 Register SrcReg = CP.getSrcReg();
2151 assert(CP.isPhys() && "Must be a physreg copy")(static_cast<void> (0));
2152 assert(MRI->isReserved(DstReg) && "Not a reserved register")(static_cast<void> (0));
2153 LiveInterval &RHS = LIS->getInterval(SrcReg);
2154 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n')do { } while (false);
2155
2156 assert(RHS.containsOneValue() && "Invalid join with reserved register")(static_cast<void> (0));
2157
2158 // Optimization for reserved registers like ESP. We can only merge with a
2159 // reserved physreg if RHS has a single value that is a copy of DstReg.
2160 // The live range of the reserved register will look like a set of dead defs
2161 // - we don't properly track the live range of reserved registers.
2162
2163 // Deny any overlapping intervals. This depends on all the reserved
2164 // register live ranges to look like dead defs.
2165 if (!MRI->isConstantPhysReg(DstReg)) {
2166 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2167 // Abort if not all the regunits are reserved.
2168 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2169 if (!MRI->isReserved(*RI))
2170 return false;
2171 }
2172 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2173 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)do { } while (false)
2174 << '\n')do { } while (false);
2175 return false;
2176 }
2177 }
2178
2179 // We must also check for overlaps with regmask clobbers.
2180 BitVector RegMaskUsable;
2181 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2182 !RegMaskUsable.test(DstReg)) {
2183 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n")do { } while (false);
2184 return false;
2185 }
2186 }
2187
2188 // Skip any value computations, we are not adding new values to the
2189 // reserved register. Also skip merging the live ranges, the reserved
2190 // register live range doesn't need to be accurate as long as all the
2191 // defs are there.
2192
2193 // Delete the identity copy.
2194 MachineInstr *CopyMI;
2195 if (CP.isFlipped()) {
2196 // Physreg is copied into vreg
2197 // %y = COPY %physreg_x
2198 // ... //< no other def of %physreg_x here
2199 // use %y
2200 // =>
2201 // ...
2202 // use %physreg_x
2203 CopyMI = MRI->getVRegDef(SrcReg);
2204 } else {
2205 // VReg is copied into physreg:
2206 // %y = def
2207 // ... //< no other def or use of %physreg_x here
2208 // %physreg_x = COPY %y
2209 // =>
2210 // %physreg_x = def
2211 // ...
2212 if (!MRI->hasOneNonDBGUse(SrcReg)) {
2213 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n")do { } while (false);
2214 return false;
2215 }
2216
2217 if (!LIS->intervalIsInOneMBB(RHS)) {
2218 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n")do { } while (false);
2219 return false;
2220 }
2221
2222 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2223 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2224 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2225 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2226
2227 if (!MRI->isConstantPhysReg(DstReg)) {
2228 // We checked above that there are no interfering defs of the physical
2229 // register. However, for this case, where we intend to move up the def of
2230 // the physical register, we also need to check for interfering uses.
2231 SlotIndexes *Indexes = LIS->getSlotIndexes();
2232 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2233 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2234 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2235 if (MI->readsRegister(DstReg, TRI)) {
2236 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI)do { } while (false);
2237 return false;
2238 }
2239 }
2240 }
2241
2242 // We're going to remove the copy which defines a physical reserved
2243 // register, so remove its valno, etc.
2244 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "do { } while (false)
2245 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n")do { } while (false);
2246
2247 LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2248 // Create a new dead def at the new def location.
2249 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2250 LiveRange &LR = LIS->getRegUnit(*UI);
2251 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2252 }
2253 }
2254
2255 deleteInstr(CopyMI);
2256
2257 // We don't track kills for reserved registers.
2258 MRI->clearKillFlags(CP.getSrcReg());
2259
2260 return true;
2261}
2262
2263//===----------------------------------------------------------------------===//
2264// Interference checking and interval joining
2265//===----------------------------------------------------------------------===//
2266//
2267// In the easiest case, the two live ranges being joined are disjoint, and
2268// there is no interference to consider. It is quite common, though, to have
2269// overlapping live ranges, and we need to check if the interference can be
2270// resolved.
2271//
2272// The live range of a single SSA value forms a sub-tree of the dominator tree.
2273// This means that two SSA values overlap if and only if the def of one value
2274// is contained in the live range of the other value. As a special case, the
2275// overlapping values can be defined at the same index.
2276//
2277// The interference from an overlapping def can be resolved in these cases:
2278//
2279// 1. Coalescable copies. The value is defined by a copy that would become an
2280// identity copy after joining SrcReg and DstReg. The copy instruction will
2281// be removed, and the value will be merged with the source value.
2282//
2283// There can be several copies back and forth, causing many values to be
2284// merged into one. We compute a list of ultimate values in the joined live
2285// range as well as a mappings from the old value numbers.
2286//
2287// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2288// predecessors have a live out value. It doesn't cause real interference,
2289// and can be merged into the value it overlaps. Like a coalescable copy, it
2290// can be erased after joining.
2291//
2292// 3. Copy of external value. The overlapping def may be a copy of a value that
2293// is already in the other register. This is like a coalescable copy, but
2294// the live range of the source register must be trimmed after erasing the
2295// copy instruction:
2296//
2297// %src = COPY %ext
2298// %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2299//
2300// 4. Clobbering undefined lanes. Vector registers are sometimes built by
2301// defining one lane at a time:
2302//
2303// %dst:ssub0<def,read-undef> = FOO
2304// %src = BAR
2305// %dst:ssub1 = COPY %src
2306//
2307// The live range of %src overlaps the %dst value defined by FOO, but
2308// merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2309// which was undef anyway.
2310//
2311// The value mapping is more complicated in this case. The final live range
2312// will have different value numbers for both FOO and BAR, but there is no
2313// simple mapping from old to new values. It may even be necessary to add
2314// new PHI values.
2315//
2316// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2317// is live, but never read. This can happen because we don't compute
2318// individual live ranges per lane.
2319//
2320// %dst = FOO
2321// %src = BAR
2322// %dst:ssub1 = COPY %src
2323//
2324// This kind of interference is only resolved locally. If the clobbered
2325// lane value escapes the block, the join is aborted.
2326
2327namespace {
2328
2329/// Track information about values in a single virtual register about to be
2330/// joined. Objects of this class are always created in pairs - one for each
2331/// side of the CoalescerPair (or one for each lane of a side of the coalescer
2332/// pair)
2333class JoinVals {
2334 /// Live range we work on.
2335 LiveRange &LR;
2336
2337 /// (Main) register we work on.
2338 const Register Reg;
2339
2340 /// Reg (and therefore the values in this liverange) will end up as
2341 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2342 /// CP.SrcIdx.
2343 const unsigned SubIdx;
2344
2345 /// The LaneMask that this liverange will occupy the coalesced register. May
2346 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2347 const LaneBitmask LaneMask;
2348
2349 /// This is true when joining sub register ranges, false when joining main
2350 /// ranges.
2351 const bool SubRangeJoin;
2352
2353 /// Whether the current LiveInterval tracks subregister liveness.
2354 const bool TrackSubRegLiveness;
2355
2356 /// Values that will be present in the final live range.
2357 SmallVectorImpl<VNInfo*> &NewVNInfo;
2358
2359 const CoalescerPair &CP;
2360 LiveIntervals *LIS;
2361 SlotIndexes *Indexes;
2362 const TargetRegisterInfo *TRI;
2363
2364 /// Value number assignments. Maps value numbers in LI to entries in
2365 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2366 SmallVector<int, 8> Assignments;
2367
2368 public:
2369 /// Conflict resolution for overlapping values.
2370 enum ConflictResolution {
2371 /// No overlap, simply keep this value.
2372 CR_Keep,
2373
2374 /// Merge this value into OtherVNI and erase the defining instruction.
2375 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2376 /// values.
2377 CR_Erase,
2378
2379 /// Merge this value into OtherVNI but keep the defining instruction.
2380 /// This is for the special case where OtherVNI is defined by the same
2381 /// instruction.
2382 CR_Merge,
2383
2384 /// Keep this value, and have it replace OtherVNI where possible. This
2385 /// complicates value mapping since OtherVNI maps to two different values
2386 /// before and after this def.
2387 /// Used when clobbering undefined or dead lanes.
2388 CR_Replace,
2389
2390 /// Unresolved conflict. Visit later when all values have been mapped.
2391 CR_Unresolved,
2392
2393 /// Unresolvable conflict. Abort the join.
2394 CR_Impossible
2395 };
2396
2397 private:
2398 /// Per-value info for LI. The lane bit masks are all relative to the final
2399 /// joined register, so they can be compared directly between SrcReg and
2400 /// DstReg.
2401 struct Val {
2402 ConflictResolution Resolution = CR_Keep;
2403
2404 /// Lanes written by this def, 0 for unanalyzed values.
2405 LaneBitmask WriteLanes;
2406
2407 /// Lanes with defined values in this register. Other lanes are undef and
2408 /// safe to clobber.
2409 LaneBitmask ValidLanes;
2410
2411 /// Value in LI being redefined by this def.
2412 VNInfo *RedefVNI = nullptr;
2413
2414 /// Value in the other live range that overlaps this def, if any.
2415 VNInfo *OtherVNI = nullptr;
2416
2417 /// Is this value an IMPLICIT_DEF that can be erased?
2418 ///
2419 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2420 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2421 /// safely erased if they are overlapping a live value in the other live
2422 /// interval.
2423 ///
2424 /// Weird control flow graphs and incomplete PHI handling in
2425 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2426 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2427 /// normal values.
2428 bool ErasableImplicitDef = false;
2429
2430 /// True when the live range of this value will be pruned because of an
2431 /// overlapping CR_Replace value in the other live range.
2432 bool Pruned = false;
2433
2434 /// True once Pruned above has been computed.
2435 bool PrunedComputed = false;
2436
2437 /// True if this value is determined to be identical to OtherVNI
2438 /// (in valuesIdentical). This is used with CR_Erase where the erased
2439 /// copy is redundant, i.e. the source value is already the same as
2440 /// the destination. In such cases the subranges need to be updated
2441 /// properly. See comment at pruneSubRegValues for more info.
2442 bool Identical = false;
2443
2444 Val() = default;
2445
2446 bool isAnalyzed() const { return WriteLanes.any(); }
2447 };
2448
2449 /// One entry per value number in LI.
2450 SmallVector<Val, 8> Vals;
2451
2452 /// Compute the bitmask of lanes actually written by DefMI.
2453 /// Set Redef if there are any partial register definitions that depend on the
2454 /// previous value of the register.
2455 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2456
2457 /// Find the ultimate value that VNI was copied from.
2458 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2459
2460 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2461
2462 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2463 /// Return a conflict resolution when possible, but leave the hard cases as
2464 /// CR_Unresolved.
2465 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2466 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2467 /// The recursion always goes upwards in the dominator tree, making loops
2468 /// impossible.
2469 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2470
2471 /// Compute the value assignment for ValNo in RI.
2472 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2473 /// the stack.
2474 void computeAssignment(unsigned ValNo, JoinVals &Other);
2475
2476 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2477 /// the extent of the tainted lanes in the block.
2478 ///
2479 /// Multiple values in Other.LR can be affected since partial redefinitions
2480 /// can preserve previously tainted lanes.
2481 ///
2482 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2483 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2484 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2485 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2486 ///
2487 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2488 /// entry to TaintedVals.
2489 ///
2490 /// Returns false if the tainted lanes extend beyond the basic block.
2491 bool
2492 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2493 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2494
2495 /// Return true if MI uses any of the given Lanes from Reg.
2496 /// This does not include partial redefinitions of Reg.
2497 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2498
2499 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2500 /// be pruned:
2501 ///
2502 /// %dst = COPY %src
2503 /// %src = COPY %dst <-- This value to be pruned.
2504 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2505 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2506
2507public:
2508 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2509 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2510 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2511 bool TrackSubRegLiveness)
2512 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2513 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2514 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2515 TRI(TRI), Assignments(LR.getNumValNums(), -1),
2516 Vals(LR.getNumValNums()) {}
2517
2518 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2519 /// Returns false if any conflicts were impossible to resolve.
2520 bool mapValues(JoinVals &Other);
2521
2522 /// Try to resolve conflicts that require all values to be mapped.
2523 /// Returns false if any conflicts were impossible to resolve.
2524 bool resolveConflicts(JoinVals &Other);
2525
2526 /// Prune the live range of values in Other.LR where they would conflict with
2527 /// CR_Replace values in LR. Collect end points for restoring the live range
2528 /// after joining.
2529 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2530 bool changeInstrs);
2531
2532 /// Removes subranges starting at copies that get removed. This sometimes
2533 /// happens when undefined subranges are copied around. These ranges contain
2534 /// no useful information and can be removed.
2535 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2536
2537 /// Pruning values in subranges can lead to removing segments in these
2538 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2539 /// the main range also need to be removed. This function will mark
2540 /// the corresponding values in the main range as pruned, so that
2541 /// eraseInstrs can do the final cleanup.
2542 /// The parameter @p LI must be the interval whose main range is the
2543 /// live range LR.
2544 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2545
2546 /// Erase any machine instructions that have been coalesced away.
2547 /// Add erased instructions to ErasedInstrs.
2548 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2549 /// the erased instrs.
2550 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2551 SmallVectorImpl<Register> &ShrinkRegs,
2552 LiveInterval *LI = nullptr);
2553
2554 /// Remove liverange defs at places where implicit defs will be removed.
2555 void removeImplicitDefs();
2556
2557 /// Get the value assignments suitable for passing to LiveInterval::join.
2558 const int *getAssignments() const { return Assignments.data(); }
2559
2560 /// Get the conflict resolution for a value number.
2561 ConflictResolution getResolution(unsigned Num) const {
2562 return Vals[Num].Resolution;
2563 }
2564};
2565
2566} // end anonymous namespace
2567
2568LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2569 const {
2570 LaneBitmask L;
2571 for (const MachineOperand &MO : DefMI->operands()) {
2572 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2573 continue;
2574 L |= TRI->getSubRegIndexLaneMask(
2575 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2576 if (MO.readsReg())
2577 Redef = true;
2578 }
2579 return L;
2580}
2581
2582std::pair<const VNInfo *, Register>
2583JoinVals::followCopyChain(const VNInfo *VNI) const {
2584 Register TrackReg = Reg;
2585
2586 while (!VNI->isPHIDef()) {
2
Calling 'VNInfo::isPHIDef'
8
Returning from 'VNInfo::isPHIDef'
9
Loop condition is true. Entering loop body
24
Called C++ object pointer is null
2587 SlotIndex Def = VNI->def;
2588 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2589 assert(MI && "No defining instruction")(static_cast<void> (0));
2590 if (!MI->isFullCopy())
10
Taking false branch
2591 return std::make_pair(VNI, TrackReg);
2592 Register SrcReg = MI->getOperand(1).getReg();
2593 if (!SrcReg.isVirtual())
11
Taking false branch
2594 return std::make_pair(VNI, TrackReg);
2595
2596 const LiveInterval &LI = LIS->getInterval(SrcReg);
2597 const VNInfo *ValueIn;
2598 // No subrange involved.
2599 if (!SubRangeJoin || !LI.hasSubRanges()) {
12
Assuming field 'SubRangeJoin' is false
2600 LiveQueryResult LRQ = LI.Query(Def);
2601 ValueIn = LRQ.valueIn();
2602 } else {
2603 // Query subranges. Ensure that all matching ones take us to the same def
2604 // (allowing some of them to be undef).
2605 ValueIn = nullptr;
2606 for (const LiveInterval::SubRange &S : LI.subranges()) {
2607 // Transform lanemask to a mask in the joined live interval.
2608 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2609 if ((SMask & LaneMask).none())
2610 continue;
2611 LiveQueryResult LRQ = S.Query(Def);
2612 if (!ValueIn) {
2613 ValueIn = LRQ.valueIn();
2614 continue;
2615 }
2616 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2617 return std::make_pair(VNI, TrackReg);
2618 }
2619 }
2620 if (ValueIn == nullptr) {
13
Assuming the condition is true
14
Taking true branch
2621 // Reaching an undefined value is legitimate, for example:
2622 //
2623 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2624 // 2 %1 = COPY %0 ;; %1 is defined here.
2625 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2626 // ;; but it's equivalent to "undef".
2627 return std::make_pair(nullptr, SrcReg);
2628 }
2629 VNI = ValueIn;
2630 TrackReg = SrcReg;
2631 }
2632 return std::make_pair(VNI, TrackReg);
2633}
2634
2635bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2636 const JoinVals &Other) const {
2637 const VNInfo *Orig0;
2638 Register Reg0;
2639 std::tie(Orig0, Reg0) = followCopyChain(Value0);
1
Calling 'JoinVals::followCopyChain'
15
Returning from 'JoinVals::followCopyChain'
2640 if (Orig0 == Value1 && Reg0 == Other.Reg)
16
Assuming 'Orig0' is equal to 'Value1'
17
Calling 'Register::operator=='
20
Returning from 'Register::operator=='
21
Taking false branch
2641 return true;
2642
2643 const VNInfo *Orig1;
2644 Register Reg1;
2645 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
22
Passing null pointer value via 1st parameter 'VNI'
23
Calling 'JoinVals::followCopyChain'
2646 // If both values are undefined, and the source registers are the same
2647 // register, the values are identical. Filter out cases where only one
2648 // value is defined.
2649 if (Orig0 == nullptr || Orig1 == nullptr)
2650 return Orig0 == Orig1 && Reg0 == Reg1;
2651
2652 // The values are equal if they are defined at the same place and use the
2653 // same register. Note that we cannot compare VNInfos directly as some of
2654 // them might be from a copy created in mergeSubRangeInto() while the other
2655 // is from the original LiveInterval.
2656 return Orig0->def == Orig1->def && Reg0 == Reg1;
2657}
2658
2659JoinVals::ConflictResolution
2660JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2661 Val &V = Vals[ValNo];
2662 assert(!V.isAnalyzed() && "Value has already been analyzed!")(static_cast<void> (0));
2663 VNInfo *VNI = LR.getValNumInfo(ValNo);
2664 if (VNI->isUnused()) {
2665 V.WriteLanes = LaneBitmask::getAll();
2666 return CR_Keep;
2667 }
2668
2669 // Get the instruction defining this value, compute the lanes written.
2670 const MachineInstr *DefMI = nullptr;
2671 if (VNI->isPHIDef()) {
2672 // Conservatively assume that all lanes in a PHI are valid.
2673 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2674 : TRI->getSubRegIndexLaneMask(SubIdx);
2675 V.ValidLanes = V.WriteLanes = Lanes;
2676 } else {
2677 DefMI = Indexes->getInstructionFromIndex(VNI->def);
2678 assert(DefMI != nullptr)(static_cast<void> (0));
2679 if (SubRangeJoin) {
2680 // We don't care about the lanes when joining subregister ranges.
2681 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2682 if (DefMI->isImplicitDef()) {
2683 V.ValidLanes = LaneBitmask::getNone();
2684 V.ErasableImplicitDef = true;
2685 }
2686 } else {
2687 bool Redef = false;
2688 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2689
2690 // If this is a read-modify-write instruction, there may be more valid
2691 // lanes than the ones written by this instruction.
2692 // This only covers partial redef operands. DefMI may have normal use
2693 // operands reading the register. They don't contribute valid lanes.
2694 //
2695 // This adds ssub1 to the set of valid lanes in %src:
2696 //
2697 // %src:ssub1 = FOO
2698 //
2699 // This leaves only ssub1 valid, making any other lanes undef:
2700 //
2701 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2702 //
2703 // The <read-undef> flag on the def operand means that old lane values are
2704 // not important.
2705 if (Redef) {
2706 V.RedefVNI = LR.Query(VNI->def).valueIn();
2707 assert((TrackSubRegLiveness || V.RedefVNI) &&(static_cast<void> (0))
2708 "Instruction is reading nonexistent value")(static_cast<void> (0));
2709 if (V.RedefVNI != nullptr) {
2710 computeAssignment(V.RedefVNI->id, Other);
2711 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2712 }
2713 }
2714
2715 // An IMPLICIT_DEF writes undef values.
2716 if (DefMI->isImplicitDef()) {
2717 // We normally expect IMPLICIT_DEF values to be live only until the end
2718 // of their block. If the value is really live longer and gets pruned in
2719 // another block, this flag is cleared again.
2720 //
2721 // Clearing the valid lanes is deferred until it is sure this can be
2722 // erased.
2723 V.ErasableImplicitDef = true;
2724 }
2725 }
2726 }
2727
2728 // Find the value in Other that overlaps VNI->def, if any.
2729 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2730
2731 // It is possible that both values are defined by the same instruction, or
2732 // the values are PHIs defined in the same block. When that happens, the two
2733 // values should be merged into one, but not into any preceding value.
2734 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2735 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2736 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ")(static_cast<void> (0));
2737
2738 // One value stays, the other is merged. Keep the earlier one, or the first
2739 // one we see.
2740 if (OtherVNI->def < VNI->def)
2741 Other.computeAssignment(OtherVNI->id, *this);
2742 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2743 // This is an early-clobber def overlapping a live-in value in the other
2744 // register. Not mergeable.
2745 V.OtherVNI = OtherLRQ.valueIn();
2746 return CR_Impossible;
2747 }
2748 V.OtherVNI = OtherVNI;
2749 Val &OtherV = Other.Vals[OtherVNI->id];
2750 // Keep this value, check for conflicts when analyzing OtherVNI.
2751 if (!OtherV.isAnalyzed())
2752 return CR_Keep;
2753 // Both sides have been analyzed now.
2754 // Allow overlapping PHI values. Any real interference would show up in a
2755 // predecessor, the PHI itself can't introduce any conflicts.
2756 if (VNI->isPHIDef())
2757 return CR_Merge;
2758 if ((V.ValidLanes & OtherV.ValidLanes).any())
2759 // Overlapping lanes can't be resolved.
2760 return CR_Impossible;
2761 else
2762 return CR_Merge;
2763 }
2764
2765 // No simultaneous def. Is Other live at the def?
2766 V.OtherVNI = OtherLRQ.valueIn();
2767 if (!V.OtherVNI)
2768 // No overlap, no conflict.
2769 return CR_Keep;
2770
2771 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ")(static_cast<void> (0));
2772
2773 // We have overlapping values, or possibly a kill of Other.
2774 // Recursively compute assignments up the dominator tree.
2775 Other.computeAssignment(V.OtherVNI->id, *this);
2776 Val &OtherV = Other.Vals[V.OtherVNI->id];
2777
2778 if (OtherV.ErasableImplicitDef) {
2779 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2780 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2781 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2782 // technically.
2783 //
2784 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2785 // to erase the IMPLICIT_DEF instruction.
2786 if (DefMI &&
2787 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2788 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->defdo { } while (false)
2789 << " extends into "do { } while (false)
2790 << printMBBReference(*DefMI->getParent())do { } while (false)
2791 << ", keeping it.\n")do { } while (false);
2792 OtherV.ErasableImplicitDef = false;
2793 } else {
2794 // We deferred clearing these lanes in case we needed to save them
2795 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2796 }
2797 }
2798
2799 // Allow overlapping PHI values. Any real interference would show up in a
2800 // predecessor, the PHI itself can't introduce any conflicts.
2801 if (VNI->isPHIDef())
2802 return CR_Replace;
2803
2804 // Check for simple erasable conflicts.
2805 if (DefMI->isImplicitDef())
2806 return CR_Erase;
2807
2808 // Include the non-conflict where DefMI is a coalescable copy that kills
2809 // OtherVNI. We still want the copy erased and value numbers merged.
2810 if (CP.isCoalescable(DefMI)) {
2811 // Some of the lanes copied from OtherVNI may be undef, making them undef
2812 // here too.
2813 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2814 return CR_Erase;
2815 }
2816
2817 // This may not be a real conflict if DefMI simply kills Other and defines
2818 // VNI.
2819 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2820 return CR_Keep;
2821
2822 // Handle the case where VNI and OtherVNI can be proven to be identical:
2823 //
2824 // %other = COPY %ext
2825 // %this = COPY %ext <-- Erase this copy
2826 //
2827 if (DefMI->isFullCopy() && !CP.isPartial() &&
2828 valuesIdentical(VNI, V.OtherVNI, Other)) {
2829 V.Identical = true;
2830 return CR_Erase;
2831 }
2832
2833 // The remaining checks apply to the lanes, which aren't tracked here. This
2834 // was already decided to be OK via the following CR_Replace condition.
2835 // CR_Replace.
2836 if (SubRangeJoin)
2837 return CR_Replace;
2838
2839 // If the lanes written by this instruction were all undef in OtherVNI, it is
2840 // still safe to join the live ranges. This can't be done with a simple value
2841 // mapping, though - OtherVNI will map to multiple values:
2842 //
2843 // 1 %dst:ssub0 = FOO <-- OtherVNI
2844 // 2 %src = BAR <-- VNI
2845 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2846 // 4 BAZ killed %dst
2847 // 5 QUUX killed %src
2848 //
2849 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2850 // handles this complex value mapping.
2851 if ((V.WriteLanes & OtherV.ValidLanes).none())
2852 return CR_Replace;
2853
2854 // If the other live range is killed by DefMI and the live ranges are still
2855 // overlapping, it must be because we're looking at an early clobber def:
2856 //
2857 // %dst<def,early-clobber> = ASM killed %src
2858 //
2859 // In this case, it is illegal to merge the two live ranges since the early
2860 // clobber def would clobber %src before it was read.
2861 if (OtherLRQ.isKill()) {
2862 // This case where the def doesn't overlap the kill is handled above.
2863 assert(VNI->def.isEarlyClobber() &&(static_cast<void> (0))
2864 "Only early clobber defs can overlap a kill")(static_cast<void> (0));
2865 return CR_Impossible;
2866 }
2867
2868 // VNI is clobbering live lanes in OtherVNI, but there is still the
2869 // possibility that no instructions actually read the clobbered lanes.
2870 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2871 // Otherwise Other.RI wouldn't be live here.
2872 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2873 return CR_Impossible;
2874
2875 if (TrackSubRegLiveness) {
2876 auto &OtherLI = LIS->getInterval(Other.Reg);
2877 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
2878 // share the same live range, so we just need to check whether they have
2879 // any conflict bit in their LaneMask.
2880 if (!OtherLI.hasSubRanges()) {
2881 LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(Other.SubIdx);
2882 return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible;
2883 }
2884
2885 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
2886 // impossible to resolve the conflict. Otherwise, we can just replace
2887 // OtherVNI because of no real conflict.
2888 for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) {
2889 LaneBitmask OtherMask =
2890 TRI->composeSubRegIndexLaneMask(Other.SubIdx, OtherSR.LaneMask);
2891 if ((OtherMask & V.WriteLanes).none())
2892 continue;
2893
2894 auto OtherSRQ = OtherSR.Query(VNI->def);
2895 if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) {
2896 // VNI is clobbering some lanes of OtherVNI, they have real conflict.
2897 return CR_Impossible;
2898 }
2899 }
2900
2901 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
2902 return CR_Replace;
2903 }
2904
2905 // We need to verify that no instructions are reading the clobbered lanes.
2906 // To save compile time, we'll only check that locally. Don't allow the
2907 // tainted value to escape the basic block.
2908 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2909 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2910 return CR_Impossible;
2911
2912 // There are still some things that could go wrong besides clobbered lanes
2913 // being read, for example OtherVNI may be only partially redefined in MBB,
2914 // and some clobbered lanes could escape the block. Save this analysis for
2915 // resolveConflicts() when all values have been mapped. We need to know
2916 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2917 // that now - the recursive analyzeValue() calls must go upwards in the
2918 // dominator tree.
2919 return CR_Unresolved;
2920}
2921
2922void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2923 Val &V = Vals[ValNo];
2924 if (V.isAnalyzed()) {
2925 // Recursion should always move up the dominator tree, so ValNo is not
2926 // supposed to reappear before it has been assigned.
2927 assert(Assignments[ValNo] != -1 && "Bad recursion?")(static_cast<void> (0));
2928 return;
2929 }
2930 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2931 case CR_Erase:
2932 case CR_Merge:
2933 // Merge this ValNo into OtherVNI.
2934 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.")(static_cast<void> (0));
2935 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion")(static_cast<void> (0));
2936 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2937 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'do { } while (false)
2938 << LR.getValNumInfo(ValNo)->def << " into "do { } while (false)
2939 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'do { } while (false)
2940 << V.OtherVNI->def << " --> @"do { } while (false)
2941 << NewVNInfo[Assignments[ValNo]]->def << '\n')do { } while (false);
2942 break;
2943 case CR_Replace:
2944 case CR_Unresolved: {
2945 // The other value is going to be pruned if this join is successful.
2946 assert(V.OtherVNI && "OtherVNI not assigned, can't prune")(static_cast<void> (0));
2947 Val &OtherV = Other.Vals[V.OtherVNI->id];
2948 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2949 // its lanes.
2950 if (OtherV.ErasableImplicitDef &&
2951 TrackSubRegLiveness &&
2952 (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2953 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n")do { } while (false);
2954
2955 OtherV.ErasableImplicitDef = false;
2956 // The valid lanes written by the implicit_def were speculatively cleared
2957 // before, so make this more conservative. It may be better to track this,
2958 // I haven't found a testcase where it matters.
2959 OtherV.ValidLanes = LaneBitmask::getAll();
2960 }
2961
2962 OtherV.Pruned = true;
2963 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2964 }
2965 default:
2966 // This value number needs to go in the final joined live range.
2967 Assignments[ValNo] = NewVNInfo.size();
2968 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2969 break;
2970 }
2971}
2972
2973bool JoinVals::mapValues(JoinVals &Other) {
2974 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2975 computeAssignment(i, Other);
2976 if (Vals[i].Resolution == CR_Impossible) {
2977 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << ido { } while (false)
2978 << '@' << LR.getValNumInfo(i)->def << '\n')do { } while (false);
2979 return false;
2980 }
2981 }
2982 return true;
2983}
2984
2985bool JoinVals::
2986taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2987 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2988 VNInfo *VNI = LR.getValNumInfo(ValNo);
2989 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2990 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2991
2992 // Scan Other.LR from VNI.def to MBBEnd.
2993 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2994 assert(OtherI != Other.LR.end() && "No conflict?")(static_cast<void> (0));
2995 do {
2996 // OtherI is pointing to a tainted value. Abort the join if the tainted
2997 // lanes escape the block.
2998 SlotIndex End = OtherI->end;
2999 if (End >= MBBEnd) {
3000 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'do { } while (false)
3001 << OtherI->valno->id << '@' << OtherI->start << '\n')do { } while (false);
3002 return false;
3003 }
3004 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'do { } while (false)
3005 << OtherI->valno->id << '@' << OtherI->start << " to "do { } while (false)
3006 << End << '\n')do { } while (false);
3007 // A dead def is not a problem.
3008 if (End.isDead())
3009 break;
3010 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
3011
3012 // Check for another def in the MBB.
3013 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
3014 break;
3015
3016 // Lanes written by the new def are no longer tainted.
3017 const Val &OV = Other.Vals[OtherI->valno->id];
3018 TaintedLanes &= ~OV.WriteLanes;
3019 if (!OV.RedefVNI)
3020 break;
3021 } while (TaintedLanes.any());
3022 return true;
3023}
3024
3025bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
3026 LaneBitmask Lanes) const {
3027 if (MI.isDebugOrPseudoInstr())
3028 return false;
3029 for (const MachineOperand &MO : MI.operands()) {
3030 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
3031 continue;
3032 if (!MO.readsReg())
3033 continue;
3034 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
3035 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
3036 return true;
3037 }
3038 return false;
3039}
3040
3041bool JoinVals::resolveConflicts(JoinVals &Other) {
3042 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3043 Val &V = Vals[i];
3044 assert(V.Resolution != CR_Impossible && "Unresolvable conflict")(static_cast<void> (0));
3045 if (V.Resolution != CR_Unresolved)
3046 continue;
3047 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'do { } while (false)
3048 << LR.getValNumInfo(i)->defdo { } while (false)
3049 << ' ' << PrintLaneMask(LaneMask) << '\n')do { } while (false);
3050 if (SubRangeJoin)
3051 return false;
3052
3053 ++NumLaneConflicts;
3054 assert(V.OtherVNI && "Inconsistent conflict resolution.")(static_cast<void> (0));
3055 VNInfo *VNI = LR.getValNumInfo(i);
3056 const Val &OtherV = Other.Vals[V.OtherVNI->id];
3057
3058 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3059 // join, those lanes will be tainted with a wrong value. Get the extent of
3060 // the tainted lanes.
3061 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
3062 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
3063 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
3064 // Tainted lanes would extend beyond the basic block.
3065 return false;
3066
3067 assert(!TaintExtent.empty() && "There should be at least one conflict.")(static_cast<void> (0));
3068
3069 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3070 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3071 MachineBasicBlock::iterator MI = MBB->begin();
3072 if (!VNI->isPHIDef()) {
3073 MI = Indexes->getInstructionFromIndex(VNI->def);
3074 if (!VNI->def.isEarlyClobber()) {
3075 // No need to check the instruction defining VNI for reads.
3076 ++MI;
3077 }
3078 }
3079 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&(static_cast<void> (0))
3080 "Interference ends on VNI->def. Should have been handled earlier")(static_cast<void> (0));
3081 MachineInstr *LastMI =
3082 Indexes->getInstructionFromIndex(TaintExtent.front().first);
3083 assert(LastMI && "Range must end at a proper instruction")(static_cast<void> (0));
3084 unsigned TaintNum = 0;
3085 while (true) {
3086 assert(MI != MBB->end() && "Bad LastMI")(static_cast<void> (0));
3087 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
3088 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI)do { } while (false);
3089 return false;
3090 }
3091 // LastMI is the last instruction to use the current value.
3092 if (&*MI == LastMI) {
3093 if (++TaintNum == TaintExtent.size())
3094 break;
3095 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
3096 assert(LastMI && "Range must end at a proper instruction")(static_cast<void> (0));
3097 TaintedLanes = TaintExtent[TaintNum].second;
3098 }
3099 ++MI;
3100 }
3101
3102 // The tainted lanes are unused.
3103 V.Resolution = CR_Replace;
3104 ++NumLaneResolves;
3105 }
3106 return true;
3107}
3108
3109bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3110 Val &V = Vals[ValNo];
3111 if (V.Pruned || V.PrunedComputed)
3112 return V.Pruned;
3113
3114 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3115 return V.Pruned;
3116
3117 // Follow copies up the dominator tree and check if any intermediate value
3118 // has been pruned.
3119 V.PrunedComputed = true;
3120 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
3121 return V.Pruned;
3122}
3123
3124void JoinVals::pruneValues(JoinVals &Other,
3125 SmallVectorImpl<SlotIndex> &EndPoints,
3126 bool changeInstrs) {
3127 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3128 SlotIndex Def = LR.getValNumInfo(i)->def;
3129 switch (Vals[i].Resolution) {
3130 case CR_Keep:
3131 break;
3132 case CR_Replace: {
3133 // This value takes precedence over the value in Other.LR.
3134 LIS->pruneValue(Other.LR, Def, &EndPoints);
3135 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3136 // instructions are only inserted to provide a live-out value for PHI
3137 // predecessors, so the instruction should simply go away once its value
3138 // has been replaced.
3139 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3140 bool EraseImpDef = OtherV.ErasableImplicitDef &&
3141 OtherV.Resolution == CR_Keep;
3142 if (!Def.isBlock()) {
3143 if (changeInstrs) {
3144 // Remove <def,read-undef> flags. This def is now a partial redef.
3145 // Also remove dead flags since the joined live range will
3146 // continue past this instruction.
3147 for (MachineOperand &MO :
3148 Indexes->getInstructionFromIndex(Def)->operands()) {
3149 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3150 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3151 MO.setIsUndef(false);
3152 MO.setIsDead(false);
3153 }
3154 }
3155 }
3156 // This value will reach instructions below, but we need to make sure
3157 // the live range also reaches the instruction at Def.
3158 if (!EraseImpDef)
3159 EndPoints.push_back(Def);
3160 }
3161 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Defdo { } while (false)
3162 << ": " << Other.LR << '\n')do { } while (false);
3163 break;
3164 }
3165 case CR_Erase:
3166 case CR_Merge:
3167 if (isPrunedValue(i, Other)) {
3168 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3169 // We can no longer trust the value mapping computed by
3170 // computeAssignment(), the value that was originally copied could have
3171 // been replaced.
3172 LIS->pruneValue(LR, Def, &EndPoints);
3173 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "do { } while (false)
3174 << Def << ": " << LR << '\n')do { } while (false);
3175 }
3176 break;
3177 case CR_Unresolved:
3178 case CR_Impossible:
3179 llvm_unreachable("Unresolved conflicts")__builtin_unreachable();
3180 }
3181 }
3182}
3183
3184// Check if the segment consists of a copied live-through value (i.e. the copy
3185// in the block only extended the liveness, of an undef value which we may need
3186// to handle).
3187static bool isLiveThrough(const LiveQueryResult Q) {
3188 return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
3189}
3190
3191/// Consider the following situation when coalescing the copy between
3192/// %31 and %45 at 800. (The vertical lines represent live range segments.)
3193///
3194/// Main range Subrange 0004 (sub2)
3195/// %31 %45 %31 %45
3196/// 544 %45 = COPY %28 + +
3197/// | v1 | v1
3198/// 560B bb.1: + +
3199/// 624 = %45.sub2 | v2 | v2
3200/// 800 %31 = COPY %45 + + + +
3201/// | v0 | v0
3202/// 816 %31.sub1 = ... + |
3203/// 880 %30 = COPY %31 | v1 +
3204/// 928 %45 = COPY %30 | + +
3205/// | | v0 | v0 <--+
3206/// 992B ; backedge -> bb.1 | + + |
3207/// 1040 = %31.sub0 + |
3208/// This value must remain
3209/// live-out!
3210///
3211/// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3212/// redundant, since it copies the value from %45 back into it. The
3213/// conflict resolution for the main range determines that %45.v0 is
3214/// to be erased, which is ok since %31.v1 is identical to it.
3215/// The problem happens with the subrange for sub2: it has to be live
3216/// on exit from the block, but since 928 was actually a point of
3217/// definition of %45.sub2, %45.sub2 was not live immediately prior
3218/// to that definition. As a result, when 928 was erased, the value v0
3219/// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3220/// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3221/// providing an incorrect value to the use at 624.
3222///
3223/// Since the main-range values %31.v1 and %45.v0 were proved to be
3224/// identical, the corresponding values in subranges must also be the
3225/// same. A redundant copy is removed because it's not needed, and not
3226/// because it copied an undefined value, so any liveness that originated
3227/// from that copy cannot disappear. When pruning a value that started
3228/// at the removed copy, the corresponding identical value must be
3229/// extended to replace it.
3230void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3231 // Look for values being erased.
3232 bool DidPrune = false;
3233 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3234 Val &V = Vals[i];
3235 // We should trigger in all cases in which eraseInstrs() does something.
3236 // match what eraseInstrs() is doing, print a message so
3237 if (V.Resolution != CR_Erase &&
3238 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3239 continue;
3240
3241 // Check subranges at the point where the copy will be removed.
3242 SlotIndex Def = LR.getValNumInfo(i)->def;
3243 SlotIndex OtherDef;
3244 if (V.Identical)
3245 OtherDef = V.OtherVNI->def;
3246
3247 // Print message so mismatches with eraseInstrs() can be diagnosed.
3248 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Defdo { } while (false)
3249 << '\n')do { } while (false);
3250 for (LiveInterval::SubRange &S : LI.subranges()) {
3251 LiveQueryResult Q = S.Query(Def);
3252
3253 // If a subrange starts at the copy then an undefined value has been
3254 // copied and we must remove that subrange value as well.
3255 VNInfo *ValueOut = Q.valueOutOrDead();
3256 if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3257 (V.Identical && V.Resolution == CR_Erase &&
3258 ValueOut->def == Def))) {
3259 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)do { } while (false)
3260 << " at " << Def << "\n")do { } while (false);
3261 SmallVector<SlotIndex,8> EndPoints;
3262 LIS->pruneValue(S, Def, &EndPoints);
3263 DidPrune = true;
3264 // Mark value number as unused.
3265 ValueOut->markUnused();
3266
3267 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3268 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3269 // then we can't simply prune V from S. V needs to be replaced
3270 // with V.OtherVNI.
3271 LIS->extendToIndices(S, EndPoints);
3272 }
3273
3274 // We may need to eliminate the subrange if the copy introduced a live
3275 // out undef value.
3276 if (ValueOut->isPHIDef())
3277 ShrinkMask |= S.LaneMask;
3278 continue;
3279 }
3280
3281 // If a subrange ends at the copy, then a value was copied but only
3282 // partially used later. Shrink the subregister range appropriately.
3283 //
3284 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3285 // conservatively correct.
3286 if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
3287 (V.Resolution == CR_Erase && isLiveThrough(Q))) {
3288 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "do { } while (false)
3289 << PrintLaneMask(S.LaneMask) << " at " << Defdo { } while (false)
3290 << "\n")do { } while (false);
3291 ShrinkMask |= S.LaneMask;
3292 }
3293 }
3294 }
3295 if (DidPrune)
3296 LI.removeEmptySubRanges();
3297}
3298
3299/// Check if any of the subranges of @p LI contain a definition at @p Def.
3300static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3301 for (LiveInterval::SubRange &SR : LI.subranges()) {
3302 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3303 if (VNI->def == Def)
3304 return true;
3305 }
3306 return false;
3307}
3308
3309void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3310 assert(&static_cast<LiveRange&>(LI) == &LR)(static_cast<void> (0));
3311
3312 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3313 if (Vals[i].Resolution != CR_Keep)
3314 continue;
3315 VNInfo *VNI = LR.getValNumInfo(i);
3316 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3317 continue;
3318 Vals[i].Pruned = true;
3319 ShrinkMainRange = true;
3320 }
3321}
3322
3323void JoinVals::removeImplicitDefs() {
3324 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3325 Val &V = Vals[i];
3326 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3327 continue;
3328
3329 VNInfo *VNI = LR.getValNumInfo(i);
3330 VNI->markUnused();
3331 LR.removeValNo(VNI);
3332 }
3333}
3334
3335void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3336 SmallVectorImpl<Register> &ShrinkRegs,
3337 LiveInterval *LI) {
3338 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3339 // Get the def location before markUnused() below invalidates it.
3340 VNInfo *VNI = LR.getValNumInfo(i);
3341 SlotIndex Def = VNI->def;
3342 switch (Vals[i].Resolution) {
3343 case CR_Keep: {
3344 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3345 // longer. The IMPLICIT_DEF instructions are only inserted by
3346 // PHIElimination to guarantee that all PHI predecessors have a value.
3347 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3348 break;
3349 // Remove value number i from LR.
3350 // For intervals with subranges, removing a segment from the main range
3351 // may require extending the previous segment: for each definition of
3352 // a subregister, there will be a corresponding def in the main range.
3353 // That def may fall in the middle of a segment from another subrange.
3354 // In such cases, removing this def from the main range must be
3355 // complemented by extending the main range to account for the liveness
3356 // of the other subrange.
3357 // The new end point of the main range segment to be extended.
3358 SlotIndex NewEnd;
3359 if (LI != nullptr) {
3360 LiveRange::iterator I = LR.FindSegmentContaining(Def);
3361 assert(I != LR.end())(static_cast<void> (0));
3362 // Do not extend beyond the end of the segment being removed.
3363 // The segment may have been pruned in preparation for joining
3364 // live ranges.
3365 NewEnd = I->end;
3366 }
3367
3368 LR.removeValNo(VNI);
3369 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3370 // make it appear like an unused value number.
3371 VNI->markUnused();
3372
3373 if (LI != nullptr && LI->hasSubRanges()) {
3374 assert(static_cast<LiveRange*>(LI) == &LR)(static_cast<void> (0));
3375 // Determine the end point based on the subrange information:
3376 // minimum of (earliest def of next segment,
3377 // latest end point of containing segment)
3378 SlotIndex ED, LE;
3379 for (LiveInterval::SubRange &SR : LI->subranges()) {
3380 LiveRange::iterator I = SR.find(Def);
3381 if (I == SR.end())
3382 continue;
3383 if (I->start > Def)
3384 ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3385 else
3386 LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3387 }
3388 if (LE.isValid())
3389 NewEnd = std::min(NewEnd, LE);
3390 if (ED.isValid())
3391 NewEnd = std::min(NewEnd, ED);
3392
3393 // We only want to do the extension if there was a subrange that
3394 // was live across Def.
3395 if (LE.isValid()) {
3396 LiveRange::iterator S = LR.find(Def);
3397 if (S != LR.begin())
3398 std::prev(S)->end = NewEnd;
3399 }
3400 }
3401 LLVM_DEBUG({do { } while (false)
3402 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';do { } while (false)
3403 if (LI != nullptr)do { } while (false)
3404 dbgs() << "\t\t LHS = " << *LI << '\n';do { } while (false)
3405 })do { } while (false);
3406 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3407 }
3408
3409 case CR_Erase: {
3410 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3411 assert(MI && "No instruction to erase")(static_cast<void> (0));
3412 if (MI->isCopy()) {
3413 Register Reg = MI->getOperand(1).getReg();
3414 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3415 Reg != CP.getDstReg())
3416 ShrinkRegs.push_back(Reg);
3417 }
3418 ErasedInstrs.insert(MI);
3419 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI)do { } while (false);
3420 LIS->RemoveMachineInstrFromMaps(*MI);
3421 MI->eraseFromParent();
3422 break;
3423 }
3424 default:
3425 break;
3426 }
3427 }
3428}
3429
3430void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3431 LaneBitmask LaneMask,
3432 const CoalescerPair &CP) {
3433 SmallVector<VNInfo*, 16> NewVNInfo;
3434 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3435 NewVNInfo, CP, LIS, TRI, true, true);
3436 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3437 NewVNInfo, CP, LIS, TRI, true, true);
3438
3439 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3440 // We should be able to resolve all conflicts here as we could successfully do
3441 // it on the mainrange already. There is however a problem when multiple
3442 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3443 // interferences.
3444 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3445 // We already determined that it is legal to merge the intervals, so this
3446 // should never fail.
3447 llvm_unreachable("*** Couldn't join subrange!\n")__builtin_unreachable();
3448 }
3449 if (!LHSVals.resolveConflicts(RHSVals) ||
3450 !RHSVals.resolveConflicts(LHSVals)) {
3451 // We already determined that it is legal to merge the intervals, so this
3452 // should never fail.
3453 llvm_unreachable("*** Couldn't join subrange!\n")__builtin_unreachable();
3454 }
3455
3456 // The merging algorithm in LiveInterval::join() can't handle conflicting
3457 // value mappings, so we need to remove any live ranges that overlap a
3458 // CR_Replace resolution. Collect a set of end points that can be used to
3459 // restore the live range after joining.
3460 SmallVector<SlotIndex, 8> EndPoints;
3461 LHSVals.pruneValues(RHSVals, EndPoints, false);
3462 RHSVals.pruneValues(LHSVals, EndPoints, false);
3463
3464 LHSVals.removeImplicitDefs();
3465 RHSVals.removeImplicitDefs();
3466
3467 LRange.verify();
3468 RRange.verify();
3469
3470 // Join RRange into LHS.
3471 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3472 NewVNInfo);
3473
3474 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)do { } while (false)
3475 << ' ' << LRange << "\n")do { } while (false);
3476 if (EndPoints.empty())
3477 return;
3478
3479 // Recompute the parts of the live range we had to remove because of
3480 // CR_Replace conflicts.
3481 LLVM_DEBUG({do { } while (false)
3482 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";do { } while (false)
3483 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {do { } while (false)
3484 dbgs() << EndPoints[i];do { } while (false)
3485 if (i != n-1)do { } while (false)
3486 dbgs() << ',';do { } while (false)
3487 }do { } while (false)
3488 dbgs() << ": " << LRange << '\n';do { } while (false)
3489 })do { } while (false);
3490 LIS->extendToIndices(LRange, EndPoints);
3491}
3492
3493void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3494 const LiveRange &ToMerge,
3495 LaneBitmask LaneMask,
3496 CoalescerPair &CP,
3497 unsigned ComposeSubRegIdx) {
3498 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3499 LI.refineSubRanges(
3500 Allocator, LaneMask,
3501 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3502 if (SR.empty()) {
3503 SR.assign(ToMerge, Allocator);
3504 } else {
3505 // joinSubRegRange() destroys the merged range, so we need a copy.
3506 LiveRange RangeCopy(ToMerge, Allocator);
3507 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3508 }
3509 },
3510 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3511}
3512
3513bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3514 if (LI.valnos.size() < LargeIntervalSizeThreshold)
3515 return false;
3516 auto &Counter = LargeLIVisitCounter[LI.reg()];
3517 if (Counter < LargeIntervalFreqThreshold) {
3518 Counter++;
3519 return false;
3520 }
3521 return true;
3522}
3523
3524bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3525 SmallVector<VNInfo*, 16> NewVNInfo;
3526 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3527 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3528 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3529 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3530 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3531 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3532 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3533
3534 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n')do { } while (false);
3535
3536 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3537 return false;
3538
3539 // First compute NewVNInfo and the simple value mappings.
3540 // Detect impossible conflicts early.
3541 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3542 return false;
3543
3544 // Some conflicts can only be resolved after all values have been mapped.
3545 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3546 return false;
3547
3548 // All clear, the live ranges can be merged.
3549 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3550 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3551
3552 // Transform lanemasks from the LHS to masks in the coalesced register and
3553 // create initial subranges if necessary.
3554 unsigned DstIdx = CP.getDstIdx();
3555 if (!LHS.hasSubRanges()) {
3556 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3557 : TRI->getSubRegIndexLaneMask(DstIdx);
3558 // LHS must support subregs or we wouldn't be in this codepath.
3559 assert(Mask.any())(static_cast<void> (0));
3560 LHS.createSubRangeFrom(Allocator, Mask, LHS);
3561 } else if (DstIdx != 0) {
3562 // Transform LHS lanemasks to new register class if necessary.
3563 for (LiveInterval::SubRange &R : LHS.subranges()) {
3564 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3565 R.LaneMask = Mask;
3566 }
3567 }
3568 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHSdo { } while (false)
3569 << '\n')do { } while (false);
3570
3571 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3572 unsigned SrcIdx = CP.getSrcIdx();
3573 if (!RHS.hasSubRanges()) {
3574 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3575 : TRI->getSubRegIndexLaneMask(SrcIdx);
3576 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3577 } else {
3578 // Pair up subranges and merge.
3579 for (LiveInterval::SubRange &R : RHS.subranges()) {
3580 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3581 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3582 }
3583 }
3584 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n")do { } while (false);
3585
3586 // Pruning implicit defs from subranges may result in the main range
3587 // having stale segments.
3588 LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3589
3590 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3591 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3592 }
3593
3594 // The merging algorithm in LiveInterval::join() can't handle conflicting
3595 // value mappings, so we need to remove any live ranges that overlap a
3596 // CR_Replace resolution. Collect a set of end points that can be used to
3597 // restore the live range after joining.
3598 SmallVector<SlotIndex, 8> EndPoints;
3599 LHSVals.pruneValues(RHSVals, EndPoints, true);
3600 RHSVals.pruneValues(LHSVals, EndPoints, true);
3601
3602 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3603 // registers to require trimming.
3604 SmallVector<Register, 8> ShrinkRegs;
3605 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3606 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3607 while (!ShrinkRegs.empty())
3608 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3609
3610 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3611 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3612
3613 // If the RHS covers any PHI locations that were tracked for debug-info, we
3614 // must update tracking information to reflect the join.
3615 auto RegIt = RegToPHIIdx.find(CP.getSrcReg());
3616 if (RegIt != RegToPHIIdx.end()) {
3617 // Iterate over all the debug instruction numbers assigned this register.
3618 for (unsigned InstID : RegIt->second) {
3619 auto PHIIt = PHIValToPos.find(InstID);
3620 assert(PHIIt != PHIValToPos.end())(static_cast<void> (0));
3621 const SlotIndex &SI = PHIIt->second.SI;
3622
3623 // Does the RHS cover the position of this PHI?
3624 auto LII = RHS.find(SI);
3625 if (LII == RHS.end() || LII->start > SI)
3626 continue;
3627
3628 // Accept two kinds of subregister movement:
3629 // * When we merge from one register class into a larger register:
3630 // %1:gr16 = some-inst
3631 // ->
3632 // %2:gr32.sub_16bit = some-inst
3633 // * When the PHI is already in a subregister, and the larger class
3634 // is coalesced:
3635 // %2:gr32.sub_16bit = some-inst
3636 // %3:gr32 = COPY %2
3637 // ->
3638 // %3:gr32.sub_16bit = some-inst
3639 // Test for subregister move:
3640 if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0)
3641 // If we're moving between different subregisters, ignore this join.
3642 // The PHI will not get a location, dropping variable locations.
3643 if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx())
3644 continue;
3645
3646 // Update our tracking of where the PHI is.
3647 PHIIt->second.Reg = CP.getDstReg();
3648
3649 // If we merge into a sub-register of a larger class (test above),
3650 // update SubReg.
3651 if (CP.getSrcIdx() != 0)
3652 PHIIt->second.SubReg = CP.getSrcIdx();
3653 }
3654
3655 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3656 // different VRegs now. Copy old collection of debug instruction numbers and
3657 // erase the old one:
3658 auto InstrNums = RegIt->second;
3659 RegToPHIIdx.erase(RegIt);
3660
3661 // There might already be PHIs being tracked in the destination VReg. Insert
3662 // into an existing tracking collection, or insert a new one.
3663 RegIt = RegToPHIIdx.find(CP.getDstReg());
3664 if (RegIt != RegToPHIIdx.end())
3665 RegIt->second.insert(RegIt->second.end(), InstrNums.begin(),
3666 InstrNums.end());
3667 else
3668 RegToPHIIdx.insert({CP.getDstReg(), InstrNums});
3669 }
3670
3671 // Join RHS into LHS.
3672 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3673
3674 // Kill flags are going to be wrong if the live ranges were overlapping.
3675 // Eventually, we should simply clear all kill flags when computing live
3676 // ranges. They are reinserted after register allocation.
3677 MRI->clearKillFlags(LHS.reg());
3678 MRI->clearKillFlags(RHS.reg());
3679
3680 if (!EndPoints.empty()) {
3681 // Recompute the parts of the live range we had to remove because of
3682 // CR_Replace conflicts.
3683 LLVM_DEBUG({do { } while (false)
3684 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";do { } while (false)
3685 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {do { } while (false)
3686 dbgs() << EndPoints[i];do { } while (false)
3687 if (i != n-1)do { } while (false)
3688 dbgs() << ',';do { } while (false)
3689 }do { } while (false)
3690 dbgs() << ": " << LHS << '\n';do { } while (false)
3691 })do { } while (false);
3692 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3693 }
3694
3695 return true;
3696}
3697
3698bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3699 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3700}
3701
3702void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3703{
3704 const SlotIndexes &Slots = *LIS->getSlotIndexes();
3705 SmallVector<MachineInstr *, 8> ToInsert;
3706
3707 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3708 // vreg => DbgValueLoc map.
3709 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3710 for (auto *X : ToInsert) {
3711 for (auto Op : X->debug_operands()) {
3712 if (Op.isReg() && Op.getReg().isVirtual())
3713 DbgVRegToValues[Op.getReg()].push_back({Slot, X});
3714 }
3715 }
3716
3717 ToInsert.clear();
3718 };
3719
3720 // Iterate over all instructions, collecting them into the ToInsert vector.
3721 // Once a non-debug instruction is found, record the slot index of the
3722 // collected DBG_VALUEs.
3723 for (auto &MBB : MF) {
3724 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3725
3726 for (auto &MI : MBB) {
3727 if (MI.isDebugValue()) {
3728 if (any_of(MI.debug_operands(), [](const MachineOperand &MO) {
3729 return MO.isReg() && MO.getReg().isVirtual();
3730 }))
3731 ToInsert.push_back(&MI);
3732 } else if (!MI.isDebugOrPseudoInstr()) {
3733 CurrentSlot = Slots.getInstructionIndex(MI);
3734 CloseNewDVRange(CurrentSlot);
3735 }
3736 }
3737
3738 // Close range of DBG_VALUEs at the end of blocks.
3739 CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3740 }
3741
3742 // Sort all DBG_VALUEs we've seen by slot number.
3743 for (auto &Pair : DbgVRegToValues)
3744 llvm::sort(Pair.second);
3745}
3746
3747void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3748 LiveRange &LHS,
3749 JoinVals &LHSVals,
3750 LiveRange &RHS,
3751 JoinVals &RHSVals) {
3752 auto ScanForDstReg = [&](Register Reg) {
3753 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3754 };
3755
3756 auto ScanForSrcReg = [&](Register Reg) {
3757 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3758 };
3759
3760 // Scan for potentially unsound DBG_VALUEs: examine first the register number
3761 // Reg, and then any other vregs that may have been merged into it.
3762 auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) {
3763 Func(Reg);
3764 if (DbgMergedVRegNums.count(Reg))
3765 for (Register X : DbgMergedVRegNums[Reg])
3766 Func(X);
3767 };
3768
3769 // Scan for unsound updates of both the source and destination register.
3770 PerformScan(CP.getSrcReg(), ScanForSrcReg);
3771 PerformScan(CP.getDstReg(), ScanForDstReg);
3772}
3773
3774void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3775 LiveRange &OtherLR,
3776 LiveRange &RegLR,
3777 JoinVals &RegVals) {
3778 // Are there any DBG_VALUEs to examine?
3779 auto VRegMapIt = DbgVRegToValues.find(Reg);
3780 if (VRegMapIt == DbgVRegToValues.end())
3781 return;
3782
3783 auto &DbgValueSet = VRegMapIt->second;
3784 auto DbgValueSetIt = DbgValueSet.begin();
3785 auto SegmentIt = OtherLR.begin();
3786
3787 bool LastUndefResult = false;
3788 SlotIndex LastUndefIdx;
3789
3790 // If the "Other" register is live at a slot Idx, test whether Reg can
3791 // safely be merged with it, or should be marked undef.
3792 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3793 &LastUndefIdx](SlotIndex Idx) -> bool {
3794 // Our worst-case performance typically happens with asan, causing very
3795 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3796 // result for this edge-case.
3797 if (LastUndefIdx == Idx)
3798 return LastUndefResult;
3799
3800 // If the other range was live, and Reg's was not, the register coalescer
3801 // will not have tried to resolve any conflicts. We don't know whether
3802 // the DBG_VALUE will refer to the same value number, so it must be made
3803 // undef.
3804 auto OtherIt = RegLR.find(Idx);
3805 if (OtherIt == RegLR.end())
3806 return true;
3807
3808 // Both the registers were live: examine the conflict resolution record for
3809 // the value number Reg refers to. CR_Keep meant that this value number
3810 // "won" and the merged register definitely refers to that value. CR_Erase
3811 // means the value number was a redundant copy of the other value, which
3812 // was coalesced and Reg deleted. It's safe to refer to the other register
3813 // (which will be the source of the copy).
3814 auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3815 LastUndefResult = Resolution != JoinVals::CR_Keep &&
3816 Resolution != JoinVals::CR_Erase;
3817 LastUndefIdx = Idx;
3818 return LastUndefResult;
3819 };
3820
3821 // Iterate over both the live-range of the "Other" register, and the set of
3822 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3823 // slot index. This relies on the DbgValueSet being ordered.
3824 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3825 if (DbgValueSetIt->first < SegmentIt->end) {
3826 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3827 // set it undef.
3828 if (DbgValueSetIt->first >= SegmentIt->start) {
3829 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
3830 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3831 if (HasReg && ShouldUndefReg) {
3832 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3833 DbgValueSetIt->second->setDebugValueUndef();
3834 continue;
3835 }
3836 }
3837 ++DbgValueSetIt;
3838 } else {
3839 ++SegmentIt;
3840 }
3841 }
3842}
3843
3844namespace {
3845
3846/// Information concerning MBB coalescing priority.
3847struct MBBPriorityInfo {
3848 MachineBasicBlock *MBB;
3849 unsigned Depth;
3850 bool IsSplit;
3851
3852 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3853 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3854};
3855
3856} // end anonymous namespace
3857
3858/// C-style comparator that sorts first based on the loop depth of the basic
3859/// block (the unsigned), and then on the MBB number.
3860///
3861/// EnableGlobalCopies assumes that the primary sort key is loop depth.
3862static int compareMBBPriority(const MBBPriorityInfo *LHS,
3863 const MBBPriorityInfo *RHS) {
3864 // Deeper loops first
3865 if (LHS->Depth != RHS->Depth)
3866 return LHS->Depth > RHS->Depth ? -1 : 1;
3867
3868 // Try to unsplit critical edges next.
3869 if (LHS->IsSplit != RHS->IsSplit)
3870 return LHS->IsSplit ? -1 : 1;
3871
3872 // Prefer blocks that are more connected in the CFG. This takes care of
3873 // the most difficult copies first while intervals are short.
3874 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3875 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3876 if (cl != cr)
3877 return cl > cr ? -1 : 1;
3878
3879 // As a last resort, sort by block number.
3880 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3881}
3882
3883/// \returns true if the given copy uses or defines a local live range.
3884static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3885 if (!Copy->isCopy())
3886 return false;
3887
3888 if (Copy->getOperand(1).isUndef())
3889 return false;
3890
3891 Register SrcReg = Copy->getOperand(1).getReg();
3892 Register DstReg = Copy->getOperand(0).getReg();
3893 if (Register::isPhysicalRegister(SrcReg) ||
3894 Register::isPhysicalRegister(DstReg))
3895 return false;
3896
3897 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3898 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3899}
3900
3901void RegisterCoalescer::lateLiveIntervalUpdate() {
3902 for (Register reg : ToBeUpdated) {
3903 if (!LIS->hasInterval(reg))
3904 continue;
3905 LiveInterval &LI = LIS->getInterval(reg);
3906 shrinkToUses(&LI, &DeadDefs);
3907 if (!DeadDefs.empty())
3908 eliminateDeadDefs();
3909 }
3910 ToBeUpdated.clear();
3911}
3912
3913bool RegisterCoalescer::
3914copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3915 bool Progress = false;
3916 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3917 if (!CurrList[i])
3918 continue;
3919 // Skip instruction pointers that have already been erased, for example by
3920 // dead code elimination.
3921 if (ErasedInstrs.count(CurrList[i])) {
3922 CurrList[i] = nullptr;
3923 continue;
3924 }
3925 bool Again = false;
3926 bool Success = joinCopy(CurrList[i], Again);
3927 Progress |= Success;
3928 if (Success || !Again)
3929 CurrList[i] = nullptr;
3930 }
3931 return Progress;
3932}
3933
3934/// Check if DstReg is a terminal node.
3935/// I.e., it does not have any affinity other than \p Copy.
3936static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
3937 const MachineRegisterInfo *MRI) {
3938 assert(Copy.isCopyLike())(static_cast<void> (0));
3939 // Check if the destination of this copy as any other affinity.
3940 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3941 if (&MI != &Copy && MI.isCopyLike())
3942 return false;
3943 return true;
3944}
3945
3946bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3947 assert(Copy.isCopyLike())(static_cast<void> (0));
3948 if (!UseTerminalRule)
3949 return false;
3950 Register SrcReg, DstReg;
3951 unsigned SrcSubReg = 0, DstSubReg = 0;
3952 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3953 return false;
3954 // Check if the destination of this copy has any other affinity.
3955 if (DstReg.isPhysical() ||
3956 // If SrcReg is a physical register, the copy won't be coalesced.
3957 // Ignoring it may have other side effect (like missing
3958 // rematerialization). So keep it.
3959 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
3960 return false;
3961
3962 // DstReg is a terminal node. Check if it interferes with any other
3963 // copy involving SrcReg.
3964 const MachineBasicBlock *OrigBB = Copy.getParent();
3965 const LiveInterval &DstLI = LIS->getInterval(DstReg);
3966 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3967 // Technically we should check if the weight of the new copy is
3968 // interesting compared to the other one and update the weight
3969 // of the copies accordingly. However, this would only work if
3970 // we would gather all the copies first then coalesce, whereas
3971 // right now we interleave both actions.
3972 // For now, just consider the copies that are in the same block.
3973 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3974 continue;
3975 Register OtherSrcReg, OtherReg;
3976 unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
3977 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3978 OtherSubReg))
3979 return false;
3980 if (OtherReg == SrcReg)
3981 OtherReg = OtherSrcReg;
3982 // Check if OtherReg is a non-terminal.
3983 if (Register::isPhysicalRegister(OtherReg) ||
3984 isTerminalReg(OtherReg, MI, MRI))
3985 continue;
3986 // Check that OtherReg interfere with DstReg.
3987 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3988 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)do { } while (false)
3989 << '\n')do { } while (false);
3990 return true;
3991 }
3992 }
3993 return false;
3994}
3995
3996void
3997RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3998 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n")do { } while (false);
3999
4000 // Collect all copy-like instructions in MBB. Don't start coalescing anything
4001 // yet, it might invalidate the iterator.
4002 const unsigned PrevSize = WorkList.size();
4003 if (JoinGlobalCopies) {
4004 SmallVector<MachineInstr*, 2> LocalTerminals;
4005 SmallVector<MachineInstr*, 2> GlobalTerminals;
4006 // Coalesce copies bottom-up to coalesce local defs before local uses. They
4007 // are not inherently easier to resolve, but slightly preferable until we
4008 // have local live range splitting. In particular this is required by
4009 // cmp+jmp macro fusion.
4010 for (MachineInstr &MI : *MBB) {
4011 if (!MI.isCopyLike())
4012 continue;
4013 bool ApplyTerminalRule = applyTerminalRule(MI);
4014 if (isLocalCopy(&MI, LIS)) {
4015 if (ApplyTerminalRule)
4016 LocalTerminals.push_back(&MI);
4017 else
4018 LocalWorkList.push_back(&MI);
4019 } else {
4020 if (ApplyTerminalRule)
4021 GlobalTerminals.push_back(&MI);
4022 else
4023 WorkList.push_back(&MI);
4024 }
4025 }
4026 // Append the copies evicted by the terminal rule at the end of the list.
4027 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
4028 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
4029 }
4030 else {
4031 SmallVector<MachineInstr*, 2> Terminals;
4032 for (MachineInstr &MII : *MBB)
4033 if (MII.isCopyLike()) {
4034 if (applyTerminalRule(MII))
4035 Terminals.push_back(&MII);
4036 else
4037 WorkList.push_back(&MII);
4038 }
4039 // Append the copies evicted by the terminal rule at the end of the list.
4040 WorkList.append(Terminals.begin(), Terminals.end());
4041 }
4042 // Try coalescing the collected copies immediately, and remove the nulls.
4043 // This prevents the WorkList from getting too large since most copies are
4044 // joinable on the first attempt.
4045 MutableArrayRef<MachineInstr*>
4046 CurrList(WorkList.begin() + PrevSize, WorkList.end());
4047 if (copyCoalesceWorkList(CurrList))
4048 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
4049 nullptr), WorkList.end());
4050}
4051
4052void RegisterCoalescer::coalesceLocals() {
4053 copyCoalesceWorkList(LocalWorkList);
4054 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
4055 if (LocalWorkList[j])
4056 WorkList.push_back(LocalWorkList[j]);
4057 }
4058 LocalWorkList.clear();
4059}
4060
4061void RegisterCoalescer::joinAllIntervals() {
4062 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n")do { } while (false);
4063 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.")(static_cast<void> (0));
4064
4065 std::vector<MBBPriorityInfo> MBBs;
4066 MBBs.reserve(MF->size());
4067 for (MachineBasicBlock &MBB : *MF) {
4068 MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB),
4069 JoinSplitEdges && isSplitEdge(&MBB)));
4070 }
4071 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
4072
4073 // Coalesce intervals in MBB priority order.
4074 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
4075 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
4076 // Try coalescing the collected local copies for deeper loops.
4077 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
4078 coalesceLocals();
4079 CurrDepth = MBBs[i].Depth;
4080 }
4081 copyCoalesceInMBB(MBBs[i].MBB);
4082 }
4083 lateLiveIntervalUpdate();
4084 coalesceLocals();
4085
4086 // Joining intervals can allow other intervals to be joined. Iteratively join
4087 // until we make no progress.
4088 while (copyCoalesceWorkList(WorkList))
4089 /* empty */ ;
4090 lateLiveIntervalUpdate();
4091}
4092
4093void RegisterCoalescer::releaseMemory() {
4094 ErasedInstrs.clear();
4095 WorkList.clear();
4096 DeadDefs.clear();
4097 InflateRegs.clear();
4098 LargeLIVisitCounter.clear();
4099}
4100
4101bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
4102 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"do { } while (false)
4103 << "********** Function: " << fn.getName() << '\n')do { } while (false);
4104
4105 // Variables changed between a setjmp and a longjump can have undefined value
4106 // after the longjmp. This behaviour can be observed if such a variable is
4107 // spilled, so longjmp won't restore the value in the spill slot.
4108 // RegisterCoalescer should not run in functions with a setjmp to avoid
4109 // merging such undefined variables with predictable ones.
4110 //
4111 // TODO: Could specifically disable coalescing registers live across setjmp
4112 // calls
4113 if (fn.exposesReturnsTwice()) {
4114 LLVM_DEBUG(do { } while (false)
4115 dbgs() << "* Skipped as it exposes funcions that returns twice.\n")do { } while (false);
4116 return false;
4117 }
4118
4119 MF = &fn;
4120 MRI = &fn.getRegInfo();
4121 const TargetSubtargetInfo &STI = fn.getSubtarget();
4122 TRI = STI.getRegisterInfo();
4123 TII = STI.getInstrInfo();
4124 LIS = &getAnalysis<LiveIntervals>();
4125 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4126 Loops = &getAnalysis<MachineLoopInfo>();
4127 if (EnableGlobalCopies == cl::BOU_UNSET)
4128 JoinGlobalCopies = STI.enableJoinGlobalCopies();
4129 else
4130 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
4131
4132 // If there are PHIs tracked by debug-info, they will need updating during
4133 // coalescing. Build an index of those PHIs to ease updating.
4134 SlotIndexes *Slots = LIS->getSlotIndexes();
4135 for (const auto &DebugPHI : MF->DebugPHIPositions) {
4136 MachineBasicBlock *MBB = DebugPHI.second.MBB;
4137 Register Reg = DebugPHI.second.Reg;
4138 unsigned SubReg = DebugPHI.second.SubReg;
4139 SlotIndex SI = Slots->getMBBStartIdx(MBB);
4140 PHIValPos P = {SI, Reg, SubReg};
4141 PHIValToPos.insert(std::make_pair(DebugPHI.first, P));
4142 RegToPHIIdx[Reg].push_back(DebugPHI.first);
4143 }
4144
4145 // The MachineScheduler does not currently require JoinSplitEdges. This will
4146 // either be enabled unconditionally or replaced by a more general live range
4147 // splitting optimization.
4148 JoinSplitEdges = EnableJoinSplits;
4149
4150 if (VerifyCoalescing)
4151 MF->verify(this, "Before register coalescing");
4152
4153 DbgVRegToValues.clear();
4154 DbgMergedVRegNums.clear();
4155 buildVRegToDbgValueMap(fn);
4156
4157 RegClassInfo.runOnMachineFunction(fn);
4158
4159 // Join (coalesce) intervals if requested.
4160 if (EnableJoining)
4161 joinAllIntervals();
4162
4163 // After deleting a lot of copies, register classes may be less constrained.
4164 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4165 // DPR inflation.
4166 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
4167 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
4168 InflateRegs.end());
4169 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()do { } while (false)
4170 << " regs.\n")do { } while (false);
4171 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
4172 Register Reg = InflateRegs[i];
4173 if (MRI->reg_nodbg_empty(Reg))
4174 continue;
4175 if (MRI->recomputeRegClass(Reg)) {
4176 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "do { } while (false)
4177 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n')do { } while (false);
4178 ++NumInflated;
4179
4180 LiveInterval &LI = LIS->getInterval(Reg);
4181 if (LI.hasSubRanges()) {
4182 // If the inflated register class does not support subregisters anymore
4183 // remove the subranges.
4184 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
4185 LI.clearSubRanges();
4186 } else {
4187#ifndef NDEBUG1
4188 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4189 // If subranges are still supported, then the same subregs
4190 // should still be supported.
4191 for (LiveInterval::SubRange &S : LI.subranges()) {
4192 assert((S.LaneMask & ~MaxMask).none())(static_cast<void> (0));
4193 }
4194#endif
4195 }
4196 }
4197 }
4198 }
4199
4200 // After coalescing, update any PHIs that are being tracked by debug-info
4201 // with their new VReg locations.
4202 for (auto &p : MF->DebugPHIPositions) {
4203 auto it = PHIValToPos.find(p.first);
4204 assert(it != PHIValToPos.end())(static_cast<void> (0));
4205 p.second.Reg = it->second.Reg;
4206 p.second.SubReg = it->second.SubReg;
4207 }
4208
4209 PHIValToPos.clear();
4210 RegToPHIIdx.clear();
4211
4212 LLVM_DEBUG(dump())do { } while (false);
4213 if (VerifyCoalescing)
4214 MF->verify(this, "After register coalescing");
4215 return true;
4216}
4217
4218void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
4219 LIS->print(O, m);
4220}

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/CodeGen/LiveInterval.h

1//===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the LiveRange and LiveInterval classes. Given some
10// numbering of each the machine instructions an interval [i, j) is said to be a
11// live range for register v if there is no instruction with number j' >= j
12// such that v is live at j' and there is no instruction with number i' < i such
13// that v is live at i'. In this implementation ranges can have holes,
14// i.e. a range might look like [1,20), [50,65), [1000,1001). Each
15// individual segment is represented as an instance of LiveRange::Segment,
16// and the whole range is represented as an instance of LiveRange.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
21#define LLVM_CODEGEN_LIVEINTERVAL_H
22
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/IntEqClasses.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/CodeGen/Register.h"
29#include "llvm/CodeGen/SlotIndexes.h"
30#include "llvm/MC/LaneBitmask.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/MathExtras.h"
33#include <algorithm>
34#include <cassert>
35#include <cstddef>
36#include <functional>
37#include <memory>
38#include <set>
39#include <tuple>
40#include <utility>
41
42namespace llvm {
43
44 class CoalescerPair;
45 class LiveIntervals;
46 class MachineRegisterInfo;
47 class raw_ostream;
48
49 /// VNInfo - Value Number Information.
50 /// This class holds information about a machine level values, including
51 /// definition and use points.
52 ///
53 class VNInfo {
54 public:
55 using Allocator = BumpPtrAllocator;
56
57 /// The ID number of this value.
58 unsigned id;
59
60 /// The index of the defining instruction.
61 SlotIndex def;
62
63 /// VNInfo constructor.
64 VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
65
66 /// VNInfo constructor, copies values from orig, except for the value number.
67 VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
68
69 /// Copy from the parameter into this VNInfo.
70 void copyFrom(VNInfo &src) {
71 def = src.def;
72 }
73
74 /// Returns true if this value is defined by a PHI instruction (or was,
75 /// PHI instructions may have been eliminated).
76 /// PHI-defs begin at a block boundary, all other defs begin at register or
77 /// EC slots.
78 bool isPHIDef() const { return def.isBlock(); }
3
Calling 'SlotIndex::isBlock'
6
Returning from 'SlotIndex::isBlock'
7
Returning zero, which participates in a condition later
79
80 /// Returns true if this value is unused.
81 bool isUnused() const { return !def.isValid(); }
82
83 /// Mark this value as unused.
84 void markUnused() { def = SlotIndex(); }
85 };
86
87 /// Result of a LiveRange query. This class hides the implementation details
88 /// of live ranges, and it should be used as the primary interface for
89 /// examining live ranges around instructions.
90 class LiveQueryResult {
91 VNInfo *const EarlyVal;
92 VNInfo *const LateVal;
93 const SlotIndex EndPoint;
94 const bool Kill;
95
96 public:
97 LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
98 bool Kill)
99 : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
100 {}
101
102 /// Return the value that is live-in to the instruction. This is the value
103 /// that will be read by the instruction's use operands. Return NULL if no
104 /// value is live-in.
105 VNInfo *valueIn() const {
106 return EarlyVal;
107 }
108
109 /// Return true if the live-in value is killed by this instruction. This
110 /// means that either the live range ends at the instruction, or it changes
111 /// value.
112 bool isKill() const {
113 return Kill;
114 }
115
116 /// Return true if this instruction has a dead def.
117 bool isDeadDef() const {
118 return EndPoint.isDead();
119 }
120
121 /// Return the value leaving the instruction, if any. This can be a
122 /// live-through value, or a live def. A dead def returns NULL.
123 VNInfo *valueOut() const {
124 return isDeadDef() ? nullptr : LateVal;
125 }
126
127 /// Returns the value alive at the end of the instruction, if any. This can
128 /// be a live-through value, a live def or a dead def.
129 VNInfo *valueOutOrDead() const {
130 return LateVal;
131 }
132
133 /// Return the value defined by this instruction, if any. This includes
134 /// dead defs, it is the value created by the instruction's def operands.
135 VNInfo *valueDefined() const {
136 return EarlyVal == LateVal ? nullptr : LateVal;
137 }
138
139 /// Return the end point of the last live range segment to interact with
140 /// the instruction, if any.
141 ///
142 /// The end point is an invalid SlotIndex only if the live range doesn't
143 /// intersect the instruction at all.
144 ///
145 /// The end point may be at or past the end of the instruction's basic
146 /// block. That means the value was live out of the block.
147 SlotIndex endPoint() const {
148 return EndPoint;
149 }
150 };
151
152 /// This class represents the liveness of a register, stack slot, etc.
153 /// It manages an ordered list of Segment objects.
154 /// The Segments are organized in a static single assignment form: At places
155 /// where a new value is defined or different values reach a CFG join a new
156 /// segment with a new value number is used.
157 class LiveRange {
158 public:
159 /// This represents a simple continuous liveness interval for a value.
160 /// The start point is inclusive, the end point exclusive. These intervals
161 /// are rendered as [start,end).
162 struct Segment {
163 SlotIndex start; // Start point of the interval (inclusive)
164 SlotIndex end; // End point of the interval (exclusive)
165 VNInfo *valno = nullptr; // identifier for the value contained in this
166 // segment.
167
168 Segment() = default;
169
170 Segment(SlotIndex S, SlotIndex E, VNInfo *V)
171 : start(S), end(E), valno(V) {
172 assert(S < E && "Cannot create empty or backwards segment")(static_cast<void> (0));
173 }
174
175 /// Return true if the index is covered by this segment.
176 bool contains(SlotIndex I) const {
177 return start <= I && I < end;
178 }
179
180 /// Return true if the given interval, [S, E), is covered by this segment.
181 bool containsInterval(SlotIndex S, SlotIndex E) const {
182 assert((S < E) && "Backwards interval?")(static_cast<void> (0));
183 return (start <= S && S < end) && (start < E && E <= end);
184 }
185
186 bool operator<(const Segment &Other) const {
187 return std::tie(start, end) < std::tie(Other.start, Other.end);
188 }
189 bool operator==(const Segment &Other) const {
190 return start == Other.start && end == Other.end;
191 }
192
193 bool operator!=(const Segment &Other) const {
194 return !(*this == Other);
195 }
196
197 void dump() const;
198 };
199
200 using Segments = SmallVector<Segment, 2>;
201 using VNInfoList = SmallVector<VNInfo *, 2>;
202
203 Segments segments; // the liveness segments
204 VNInfoList valnos; // value#'s
205
206 // The segment set is used temporarily to accelerate initial computation
207 // of live ranges of physical registers in computeRegUnitRange.
208 // After that the set is flushed to the segment vector and deleted.
209 using SegmentSet = std::set<Segment>;
210 std::unique_ptr<SegmentSet> segmentSet;
211
212 using iterator = Segments::iterator;
213 using const_iterator = Segments::const_iterator;
214
215 iterator begin() { return segments.begin(); }
216 iterator end() { return segments.end(); }
217
218 const_iterator begin() const { return segments.begin(); }
219 const_iterator end() const { return segments.end(); }
220
221 using vni_iterator = VNInfoList::iterator;
222 using const_vni_iterator = VNInfoList::const_iterator;
223
224 vni_iterator vni_begin() { return valnos.begin(); }
225 vni_iterator vni_end() { return valnos.end(); }
226
227 const_vni_iterator vni_begin() const { return valnos.begin(); }
228 const_vni_iterator vni_end() const { return valnos.end(); }
229
230 /// Constructs a new LiveRange object.
231 LiveRange(bool UseSegmentSet = false)
232 : segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>()
233 : nullptr) {}
234
235 /// Constructs a new LiveRange object by copying segments and valnos from
236 /// another LiveRange.
237 LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
238 assert(Other.segmentSet == nullptr &&(static_cast<void> (0))
239 "Copying of LiveRanges with active SegmentSets is not supported")(static_cast<void> (0));
240 assign(Other, Allocator);
241 }
242
243 /// Copies values numbers and live segments from \p Other into this range.
244 void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
245 if (this == &Other)
246 return;
247
248 assert(Other.segmentSet == nullptr &&(static_cast<void> (0))
249 "Copying of LiveRanges with active SegmentSets is not supported")(static_cast<void> (0));
250 // Duplicate valnos.
251 for (const VNInfo *VNI : Other.valnos)
252 createValueCopy(VNI, Allocator);
253 // Now we can copy segments and remap their valnos.
254 for (const Segment &S : Other.segments)
255 segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
256 }
257
258 /// advanceTo - Advance the specified iterator to point to the Segment
259 /// containing the specified position, or end() if the position is past the
260 /// end of the range. If no Segment contains this position, but the
261 /// position is in a hole, this method returns an iterator pointing to the
262 /// Segment immediately after the hole.
263 iterator advanceTo(iterator I, SlotIndex Pos) {
264 assert(I != end())(static_cast<void> (0));
265 if (Pos >= endIndex())
266 return end();
267 while (I->end <= Pos) ++I;
268 return I;
269 }
270
271 const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
272 assert(I != end())(static_cast<void> (0));
273 if (Pos >= endIndex())
274 return end();
275 while (I->end <= Pos) ++I;
276 return I;
277 }
278
279 /// find - Return an iterator pointing to the first segment that ends after
280 /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
281 /// when searching large ranges.
282 ///
283 /// If Pos is contained in a Segment, that segment is returned.
284 /// If Pos is in a hole, the following Segment is returned.
285 /// If Pos is beyond endIndex, end() is returned.
286 iterator find(SlotIndex Pos);
287
288 const_iterator find(SlotIndex Pos) const {
289 return const_cast<LiveRange*>(this)->find(Pos);
290 }
291
292 void clear() {
293 valnos.clear();
294 segments.clear();
295 }
296
297 size_t size() const {
298 return segments.size();
299 }
300
301 bool hasAtLeastOneValue() const { return !valnos.empty(); }
302
303 bool containsOneValue() const { return valnos.size() == 1; }
304
305 unsigned getNumValNums() const { return (unsigned)valnos.size(); }
306
307 /// getValNumInfo - Returns pointer to the specified val#.
308 ///
309 inline VNInfo *getValNumInfo(unsigned ValNo) {
310 return valnos[ValNo];
311 }
312 inline const VNInfo *getValNumInfo(unsigned ValNo) const {
313 return valnos[ValNo];
314 }
315
316 /// containsValue - Returns true if VNI belongs to this range.
317 bool containsValue(const VNInfo *VNI) const {
318 return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
319 }
320
321 /// getNextValue - Create a new value number and return it. MIIdx specifies
322 /// the instruction that defines the value number.
323 VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
324 VNInfo *VNI =
325 new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
326 valnos.push_back(VNI);
327 return VNI;
328 }
329
330 /// createDeadDef - Make sure the range has a value defined at Def.
331 /// If one already exists, return it. Otherwise allocate a new value and
332 /// add liveness for a dead def.
333 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc);
334
335 /// Create a def of value @p VNI. Return @p VNI. If there already exists
336 /// a definition at VNI->def, the value defined there must be @p VNI.
337 VNInfo *createDeadDef(VNInfo *VNI);
338
339 /// Create a copy of the given value. The new value will be identical except
340 /// for the Value number.
341 VNInfo *createValueCopy(const VNInfo *orig,
342 VNInfo::Allocator &VNInfoAllocator) {
343 VNInfo *VNI =
344 new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
345 valnos.push_back(VNI);
346 return VNI;
347 }
348
349 /// RenumberValues - Renumber all values in order of appearance and remove
350 /// unused values.
351 void RenumberValues();
352
353 /// MergeValueNumberInto - This method is called when two value numbers
354 /// are found to be equivalent. This eliminates V1, replacing all
355 /// segments with the V1 value number with the V2 value number. This can
356 /// cause merging of V1/V2 values numbers and compaction of the value space.
357 VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
358
359 /// Merge all of the live segments of a specific val# in RHS into this live
360 /// range as the specified value number. The segments in RHS are allowed
361 /// to overlap with segments in the current range, it will replace the
362 /// value numbers of the overlaped live segments with the specified value
363 /// number.
364 void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
365
366 /// MergeValueInAsValue - Merge all of the segments of a specific val#
367 /// in RHS into this live range as the specified value number.
368 /// The segments in RHS are allowed to overlap with segments in the
369 /// current range, but only if the overlapping segments have the
370 /// specified value number.
371 void MergeValueInAsValue(const LiveRange &RHS,
372 const VNInfo *RHSValNo, VNInfo *LHSValNo);
373
374 bool empty() const { return segments.empty(); }
375
376 /// beginIndex - Return the lowest numbered slot covered.
377 SlotIndex beginIndex() const {
378 assert(!empty() && "Call to beginIndex() on empty range.")(static_cast<void> (0));
379 return segments.front().start;
380 }
381
382 /// endNumber - return the maximum point of the range of the whole,
383 /// exclusive.
384 SlotIndex endIndex() const {
385 assert(!empty() && "Call to endIndex() on empty range.")(static_cast<void> (0));
386 return segments.back().end;
387 }
388
389 bool expiredAt(SlotIndex index) const {
390 return index >= endIndex();
391 }
392
393 bool liveAt(SlotIndex index) const {
394 const_iterator r = find(index);
395 return r != end() && r->start <= index;
396 }
397
398 /// Return the segment that contains the specified index, or null if there
399 /// is none.
400 const Segment *getSegmentContaining(SlotIndex Idx) const {
401 const_iterator I = FindSegmentContaining(Idx);
402 return I == end() ? nullptr : &*I;
403 }
404
405 /// Return the live segment that contains the specified index, or null if
406 /// there is none.
407 Segment *getSegmentContaining(SlotIndex Idx) {
408 iterator I = FindSegmentContaining(Idx);
409 return I == end() ? nullptr : &*I;
410 }
411
412 /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
413 VNInfo *getVNInfoAt(SlotIndex Idx) const {
414 const_iterator I = FindSegmentContaining(Idx);
415 return I == end() ? nullptr : I->valno;
416 }
417
418 /// getVNInfoBefore - Return the VNInfo that is live up to but not
419 /// necessarilly including Idx, or NULL. Use this to find the reaching def
420 /// used by an instruction at this SlotIndex position.
421 VNInfo *getVNInfoBefore(SlotIndex Idx) const {
422 const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
423 return I == end() ? nullptr : I->valno;
424 }
425
426 /// Return an iterator to the segment that contains the specified index, or
427 /// end() if there is none.
428 iterator FindSegmentContaining(SlotIndex Idx) {
429 iterator I = find(Idx);
430 return I != end() && I->start <= Idx ? I : end();
431 }
432
433 const_iterator FindSegmentContaining(SlotIndex Idx) const {
434 const_iterator I = find(Idx);
435 return I != end() && I->start <= Idx ? I : end();
436 }
437
438 /// overlaps - Return true if the intersection of the two live ranges is
439 /// not empty.
440 bool overlaps(const LiveRange &other) const {
441 if (other.empty())
442 return false;
443 return overlapsFrom(other, other.begin());
444 }
445
446 /// overlaps - Return true if the two ranges have overlapping segments
447 /// that are not coalescable according to CP.
448 ///
449 /// Overlapping segments where one range is defined by a coalescable
450 /// copy are allowed.
451 bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
452 const SlotIndexes&) const;
453
454 /// overlaps - Return true if the live range overlaps an interval specified
455 /// by [Start, End).
456 bool overlaps(SlotIndex Start, SlotIndex End) const;
457
458 /// overlapsFrom - Return true if the intersection of the two live ranges
459 /// is not empty. The specified iterator is a hint that we can begin
460 /// scanning the Other range starting at I.
461 bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const;
462
463 /// Returns true if all segments of the @p Other live range are completely
464 /// covered by this live range.
465 /// Adjacent live ranges do not affect the covering:the liverange
466 /// [1,5](5,10] covers (3,7].
467 bool covers(const LiveRange &Other) const;
468
469 /// Add the specified Segment to this range, merging segments as
470 /// appropriate. This returns an iterator to the inserted segment (which
471 /// may have grown since it was inserted).
472 iterator addSegment(Segment S);
473
474 /// Attempt to extend a value defined after @p StartIdx to include @p Use.
475 /// Both @p StartIdx and @p Use should be in the same basic block. In case
476 /// of subranges, an extension could be prevented by an explicit "undef"
477 /// caused by a <def,read-undef> on a non-overlapping lane. The list of
478 /// location of such "undefs" should be provided in @p Undefs.
479 /// The return value is a pair: the first element is VNInfo of the value
480 /// that was extended (possibly nullptr), the second is a boolean value
481 /// indicating whether an "undef" was encountered.
482 /// If this range is live before @p Use in the basic block that starts at
483 /// @p StartIdx, and there is no intervening "undef", extend it to be live
484 /// up to @p Use, and return the pair {value, false}. If there is no
485 /// segment before @p Use and there is no "undef" between @p StartIdx and
486 /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
487 /// return {nullptr, true}.
488 std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
489 SlotIndex StartIdx, SlotIndex Kill);
490
491 /// Simplified version of the above "extendInBlock", which assumes that
492 /// no register lanes are undefined by <def,read-undef> operands.
493 /// If this range is live before @p Use in the basic block that starts
494 /// at @p StartIdx, extend it to be live up to @p Use, and return the
495 /// value. If there is no segment before @p Use, return nullptr.
496 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
497
498 /// join - Join two live ranges (this, and other) together. This applies
499 /// mappings to the value numbers in the LHS/RHS ranges as specified. If
500 /// the ranges are not joinable, this aborts.
501 void join(LiveRange &Other,
502 const int *ValNoAssignments,
503 const int *RHSValNoAssignments,
504 SmallVectorImpl<VNInfo *> &NewVNInfo);
505
506 /// True iff this segment is a single segment that lies between the
507 /// specified boundaries, exclusively. Vregs live across a backedge are not
508 /// considered local. The boundaries are expected to lie within an extended
509 /// basic block, so vregs that are not live out should contain no holes.
510 bool isLocal(SlotIndex Start, SlotIndex End) const {
511 return beginIndex() > Start.getBaseIndex() &&
512 endIndex() < End.getBoundaryIndex();
513 }
514
515 /// Remove the specified segment from this range. Note that the segment
516 /// must be a single Segment in its entirety.
517 void removeSegment(SlotIndex Start, SlotIndex End,
518 bool RemoveDeadValNo = false);
519
520 void removeSegment(Segment S, bool RemoveDeadValNo = false) {
521 removeSegment(S.start, S.end, RemoveDeadValNo);
522 }
523
524 /// Remove segment pointed to by iterator @p I from this range. This does
525 /// not remove dead value numbers.
526 iterator removeSegment(iterator I) {
527 return segments.erase(I);
528 }
529
530 /// Query Liveness at Idx.
531 /// The sub-instruction slot of Idx doesn't matter, only the instruction
532 /// it refers to is considered.
533 LiveQueryResult Query(SlotIndex Idx) const {
534 // Find the segment that enters the instruction.
535 const_iterator I = find(Idx.getBaseIndex());
536 const_iterator E = end();
537 if (I == E)
538 return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
539
540 // Is this an instruction live-in segment?
541 // If Idx is the start index of a basic block, include live-in segments
542 // that start at Idx.getBaseIndex().
543 VNInfo *EarlyVal = nullptr;
544 VNInfo *LateVal = nullptr;
545 SlotIndex EndPoint;
546 bool Kill = false;
547 if (I->start <= Idx.getBaseIndex()) {
548 EarlyVal = I->valno;
549 EndPoint = I->end;
550 // Move to the potentially live-out segment.
551 if (SlotIndex::isSameInstr(Idx, I->end)) {
552 Kill = true;
553 if (++I == E)
554 return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
555 }
556 // Special case: A PHIDef value can have its def in the middle of a
557 // segment if the value happens to be live out of the layout
558 // predecessor.
559 // Such a value is not live-in.
560 if (EarlyVal->def == Idx.getBaseIndex())
561 EarlyVal = nullptr;
562 }
563 // I now points to the segment that may be live-through, or defined by
564 // this instr. Ignore segments starting after the current instr.
565 if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
566 LateVal = I->valno;
567 EndPoint = I->end;
568 }
569 return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
570 }
571
572 /// removeValNo - Remove all the segments defined by the specified value#.
573 /// Also remove the value# from value# list.
574 void removeValNo(VNInfo *ValNo);
575
576 /// Returns true if the live range is zero length, i.e. no live segments
577 /// span instructions. It doesn't pay to spill such a range.
578 bool isZeroLength(SlotIndexes *Indexes) const {
579 for (const Segment &S : segments)
580 if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
581 S.end.getBaseIndex())
582 return false;
583 return true;
584 }
585
586 // Returns true if any segment in the live range contains any of the
587 // provided slot indexes. Slots which occur in holes between
588 // segments will not cause the function to return true.
589 bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
590
591 bool operator<(const LiveRange& other) const {
592 const SlotIndex &thisIndex = beginIndex();
593 const SlotIndex &otherIndex = other.beginIndex();
594 return thisIndex < otherIndex;
595 }
596
597 /// Returns true if there is an explicit "undef" between @p Begin
598 /// @p End.
599 bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
600 SlotIndex End) const {
601 return llvm::any_of(Undefs, [Begin, End](SlotIndex Idx) -> bool {
602 return Begin <= Idx && Idx < End;
603 });
604 }
605
606 /// Flush segment set into the regular segment vector.
607 /// The method is to be called after the live range
608 /// has been created, if use of the segment set was
609 /// activated in the constructor of the live range.
610 void flushSegmentSet();
611
612 /// Stores indexes from the input index sequence R at which this LiveRange
613 /// is live to the output O iterator.
614 /// R is a range of _ascending sorted_ _random_ access iterators
615 /// to the input indexes. Indexes stored at O are ascending sorted so it
616 /// can be used directly in the subsequent search (for example for
617 /// subranges). Returns true if found at least one index.
618 template <typename Range, typename OutputIt>
619 bool findIndexesLiveAt(Range &&R, OutputIt O) const {
620 assert(llvm::is_sorted(R))(static_cast<void> (0));
621 auto Idx = R.begin(), EndIdx = R.end();
622 auto Seg = segments.begin(), EndSeg = segments.end();
623 bool Found = false;
624 while (Idx != EndIdx && Seg != EndSeg) {
625 // if the Seg is lower find first segment that is above Idx using binary
626 // search
627 if (Seg->end <= *Idx) {
628 Seg = std::upper_bound(
629 ++Seg, EndSeg, *Idx,
630 [=](std::remove_reference_t<decltype(*Idx)> V,
631 const std::remove_reference_t<decltype(*Seg)> &S) {
632 return V < S.end;
633 });
634 if (Seg == EndSeg)
635 break;
636 }
637 auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start);
638 if (NotLessStart == EndIdx)
639 break;
640 auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end);
641 if (NotLessEnd != NotLessStart) {
642 Found = true;
643 O = std::copy(NotLessStart, NotLessEnd, O);
644 }
645 Idx = NotLessEnd;
646 ++Seg;
647 }
648 return Found;
649 }
650
651 void print(raw_ostream &OS) const;
652 void dump() const;
653
654 /// Walk the range and assert if any invariants fail to hold.
655 ///
656 /// Note that this is a no-op when asserts are disabled.
657#ifdef NDEBUG1
658 void verify() const {}
659#else
660 void verify() const;
661#endif
662
663 protected:
664 /// Append a segment to the list of segments.
665 void append(const LiveRange::Segment S);
666
667 private:
668 friend class LiveRangeUpdater;
669 void addSegmentToSet(Segment S);
670 void markValNoForDeletion(VNInfo *V);
671 };
672
673 inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
674 LR.print(OS);
675 return OS;
676 }
677
678 /// LiveInterval - This class represents the liveness of a register,
679 /// or stack slot.
680 class LiveInterval : public LiveRange {
681 public:
682 using super = LiveRange;
683
684 /// A live range for subregisters. The LaneMask specifies which parts of the
685 /// super register are covered by the interval.
686 /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
687 class SubRange : public LiveRange {
688 public:
689 SubRange *Next = nullptr;
690 LaneBitmask LaneMask;
691
692 /// Constructs a new SubRange object.
693 SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
694
695 /// Constructs a new SubRange object by copying liveness from @p Other.
696 SubRange(LaneBitmask LaneMask, const LiveRange &Other,
697 BumpPtrAllocator &Allocator)
698 : LiveRange(Other, Allocator), LaneMask(LaneMask) {}
699
700 void print(raw_ostream &OS) const;
701 void dump() const;
702 };
703
704 private:
705 SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
706 /// ranges.
707 const Register Reg; // the register or stack slot of this interval.
708 float Weight = 0.0; // weight of this interval
709
710 public:
711 Register reg() const { return Reg; }
712 float weight() const { return Weight; }
713 void incrementWeight(float Inc) { Weight += Inc; }
714 void setWeight(float Value) { Weight = Value; }
715
716 LiveInterval(unsigned Reg, float Weight) : Reg(Reg), Weight(Weight) {}
717
718 ~LiveInterval() {
719 clearSubRanges();
720 }
721
722 template<typename T>
723 class SingleLinkedListIterator {
724 T *P;
725
726 public:
727 SingleLinkedListIterator<T>(T *P) : P(P) {}
728
729 SingleLinkedListIterator<T> &operator++() {
730 P = P->Next;
731 return *this;
732 }
733 SingleLinkedListIterator<T> operator++(int) {
734 SingleLinkedListIterator res = *this;
735 ++*this;
736 return res;
737 }
738 bool operator!=(const SingleLinkedListIterator<T> &Other) const {
739 return P != Other.operator->();
740 }
741 bool operator==(const SingleLinkedListIterator<T> &Other) const {
742 return P == Other.operator->();
743 }
744 T &operator*() const {
745 return *P;
746 }
747 T *operator->() const {
748 return P;
749 }
750 };
751
752 using subrange_iterator = SingleLinkedListIterator<SubRange>;
753 using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
754
755 subrange_iterator subrange_begin() {
756 return subrange_iterator(SubRanges);
757 }
758 subrange_iterator subrange_end() {
759 return subrange_iterator(nullptr);
760 }
761
762 const_subrange_iterator subrange_begin() const {
763 return const_subrange_iterator(SubRanges);
764 }
765 const_subrange_iterator subrange_end() const {
766 return const_subrange_iterator(nullptr);
767 }
768
769 iterator_range<subrange_iterator> subranges() {
770 return make_range(subrange_begin(), subrange_end());
771 }
772
773 iterator_range<const_subrange_iterator> subranges() const {
774 return make_range(subrange_begin(), subrange_end());
775 }
776
777 /// Creates a new empty subregister live range. The range is added at the
778 /// beginning of the subrange list; subrange iterators stay valid.
779 SubRange *createSubRange(BumpPtrAllocator &Allocator,
780 LaneBitmask LaneMask) {
781 SubRange *Range = new (Allocator) SubRange(LaneMask);
782 appendSubRange(Range);
783 return Range;
784 }
785
786 /// Like createSubRange() but the new range is filled with a copy of the
787 /// liveness information in @p CopyFrom.
788 SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
789 LaneBitmask LaneMask,
790 const LiveRange &CopyFrom) {
791 SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
792 appendSubRange(Range);
793 return Range;
794 }
795
796 /// Returns true if subregister liveness information is available.
797 bool hasSubRanges() const {
798 return SubRanges != nullptr;
799 }
800
801 /// Removes all subregister liveness information.
802 void clearSubRanges();
803
804 /// Removes all subranges without any segments (subranges without segments
805 /// are not considered valid and should only exist temporarily).
806 void removeEmptySubRanges();
807
808 /// getSize - Returns the sum of sizes of all the LiveRange's.
809 ///
810 unsigned getSize() const;
811
812 /// isSpillable - Can this interval be spilled?
813 bool isSpillable() const { return Weight != huge_valf; }
814
815 /// markNotSpillable - Mark interval as not spillable
816 void markNotSpillable() { Weight = huge_valf; }
817
818 /// For a given lane mask @p LaneMask, compute indexes at which the
819 /// lane is marked undefined by subregister <def,read-undef> definitions.
820 void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
821 LaneBitmask LaneMask,
822 const MachineRegisterInfo &MRI,
823 const SlotIndexes &Indexes) const;
824
825 /// Refines the subranges to support \p LaneMask. This may only be called
826 /// for LI.hasSubrange()==true. Subregister ranges are split or created
827 /// until \p LaneMask can be matched exactly. \p Mod is executed on the
828 /// matching subranges.
829 ///
830 /// Example:
831 /// Given an interval with subranges with lanemasks L0F00, L00F0 and
832 /// L000F, refining for mask L0018. Will split the L00F0 lane into
833 /// L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
834 /// function will be applied to the L0010 and L0008 subranges.
835 ///
836 /// \p Indexes and \p TRI are required to clean up the VNIs that
837 /// don't define the related lane masks after they get shrunk. E.g.,
838 /// when L000F gets split into L0007 and L0008 maybe only a subset
839 /// of the VNIs that defined L000F defines L0007.
840 ///
841 /// The clean up of the VNIs need to look at the actual instructions
842 /// to decide what is or is not live at a definition point. If the
843 /// update of the subranges occurs while the IR does not reflect these
844 /// changes, \p ComposeSubRegIdx can be used to specify how the
845 /// definition are going to be rewritten.
846 /// E.g., let say we want to merge:
847 /// V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32>
848 /// We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32>
849 /// overlap, i.e., by choosing a class where we can find "offset + 1 == 3".
850 /// Put differently we align V2's sub3 with V1's sub1:
851 /// V2: sub0 sub1 sub2 sub3
852 /// V1: <offset> sub0 sub1
853 ///
854 /// This offset will look like a composed subregidx in the the class:
855 /// V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
856 /// => V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
857 ///
858 /// Now if we didn't rewrite the uses and def of V1, all the checks for V1
859 /// need to account for this offset.
860 /// This happens during coalescing where we update the live-ranges while
861 /// still having the old IR around because updating the IR on-the-fly
862 /// would actually clobber some information on how the live-ranges that
863 /// are being updated look like.
864 void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
865 std::function<void(LiveInterval::SubRange &)> Apply,
866 const SlotIndexes &Indexes,
867 const TargetRegisterInfo &TRI,
868 unsigned ComposeSubRegIdx = 0);
869
870 bool operator<(const LiveInterval& other) const {
871 const SlotIndex &thisIndex = beginIndex();
872 const SlotIndex &otherIndex = other.beginIndex();
873 return std::tie(thisIndex, Reg) < std::tie(otherIndex, other.Reg);
874 }
875
876 void print(raw_ostream &OS) const;
877 void dump() const;
878
879 /// Walks the interval and assert if any invariants fail to hold.
880 ///
881 /// Note that this is a no-op when asserts are disabled.
882#ifdef NDEBUG1
883 void verify(const MachineRegisterInfo *MRI = nullptr) const {}
884#else
885 void verify(const MachineRegisterInfo *MRI = nullptr) const;
886#endif
887
888 private:
889 /// Appends @p Range to SubRanges list.
890 void appendSubRange(SubRange *Range) {
891 Range->Next = SubRanges;
892 SubRanges = Range;
893 }
894
895 /// Free memory held by SubRange.
896 void freeSubRange(SubRange *S);
897 };
898
899 inline raw_ostream &operator<<(raw_ostream &OS,
900 const LiveInterval::SubRange &SR) {
901 SR.print(OS);
902 return OS;
903 }
904
905 inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
906 LI.print(OS);
907 return OS;
908 }
909
910 raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
911
912 inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
913 return V < S.start;
914 }
915
916 inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
917 return S.start < V;
918 }
919
920 /// Helper class for performant LiveRange bulk updates.
921 ///
922 /// Calling LiveRange::addSegment() repeatedly can be expensive on large
923 /// live ranges because segments after the insertion point may need to be
924 /// shifted. The LiveRangeUpdater class can defer the shifting when adding
925 /// many segments in order.
926 ///
927 /// The LiveRange will be in an invalid state until flush() is called.
928 class LiveRangeUpdater {
929 LiveRange *LR;
930 SlotIndex LastStart;
931 LiveRange::iterator WriteI;
932 LiveRange::iterator ReadI;
933 SmallVector<LiveRange::Segment, 16> Spills;
934 void mergeSpills();
935
936 public:
937 /// Create a LiveRangeUpdater for adding segments to LR.
938 /// LR will temporarily be in an invalid state until flush() is called.
939 LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
940
941 ~LiveRangeUpdater() { flush(); }
942
943 /// Add a segment to LR and coalesce when possible, just like
944 /// LR.addSegment(). Segments should be added in increasing start order for
945 /// best performance.
946 void add(LiveRange::Segment);
947
948 void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
949 add(LiveRange::Segment(Start, End, VNI));
950 }
951
952 /// Return true if the LR is currently in an invalid state, and flush()
953 /// needs to be called.
954 bool isDirty() const { return LastStart.isValid(); }
955
956 /// Flush the updater state to LR so it is valid and contains all added
957 /// segments.
958 void flush();
959
960 /// Select a different destination live range.
961 void setDest(LiveRange *lr) {
962 if (LR != lr && isDirty())
963 flush();
964 LR = lr;
965 }
966
967 /// Get the current destination live range.
968 LiveRange *getDest() const { return LR; }
969
970 void dump() const;
971 void print(raw_ostream&) const;
972 };
973
974 inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
975 X.print(OS);
976 return OS;
977 }
978
979 /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
980 /// LiveInterval into equivalence clases of connected components. A
981 /// LiveInterval that has multiple connected components can be broken into
982 /// multiple LiveIntervals.
983 ///
984 /// Given a LiveInterval that may have multiple connected components, run:
985 ///
986 /// unsigned numComps = ConEQ.Classify(LI);
987 /// if (numComps > 1) {
988 /// // allocate numComps-1 new LiveIntervals into LIS[1..]
989 /// ConEQ.Distribute(LIS);
990 /// }
991
992 class ConnectedVNInfoEqClasses {
993 LiveIntervals &LIS;
994 IntEqClasses EqClass;
995
996 public:
997 explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
998
999 /// Classify the values in \p LR into connected components.
1000 /// Returns the number of connected components.
1001 unsigned Classify(const LiveRange &LR);
1002
1003 /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
1004 /// the equivalence class assigned the VNI.
1005 unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
1006
1007 /// Distribute values in \p LI into a separate LiveIntervals
1008 /// for each connected component. LIV must have an empty LiveInterval for
1009 /// each additional connected component. The first connected component is
1010 /// left in \p LI.
1011 void Distribute(LiveInterval &LI, LiveInterval *LIV[],
1012 MachineRegisterInfo &MRI);
1013 };
1014
1015} // end namespace llvm
1016
1017#endif // LLVM_CODEGEN_LIVEINTERVAL_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/CodeGen/SlotIndexes.h

1//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements SlotIndex and related classes. The purpose of SlotIndex
10// is to describe a position at which a register can become live, or cease to
11// be live.
12//
13// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
14// is held is LiveIntervals and provides the real numbering. This allows
15// LiveIntervals to perform largely transparent renumbering.
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SLOTINDEXES_H
19#define LLVM_CODEGEN_SLOTINDEXES_H
20
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/IntervalMap.h"
23#include "llvm/ADT/PointerIntPair.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/ilist.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineInstrBundle.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/Allocator.h"
33#include <algorithm>
34#include <cassert>
35#include <iterator>
36#include <utility>
37
38namespace llvm {
39
40class raw_ostream;
41
42 /// This class represents an entry in the slot index list held in the
43 /// SlotIndexes pass. It should not be used directly. See the
44 /// SlotIndex & SlotIndexes classes for the public interface to this
45 /// information.
46 class IndexListEntry : public ilist_node<IndexListEntry> {
47 MachineInstr *mi;
48 unsigned index;
49
50 public:
51 IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
52
53 MachineInstr* getInstr() const { return mi; }
54 void setInstr(MachineInstr *mi) {
55 this->mi = mi;
56 }
57
58 unsigned getIndex() const { return index; }
59 void setIndex(unsigned index) {
60 this->index = index;
61 }
62
63#ifdef EXPENSIVE_CHECKS
64 // When EXPENSIVE_CHECKS is defined, "erased" index list entries will
65 // actually be moved to a "graveyard" list, and have their pointers
66 // poisoned, so that dangling SlotIndex access can be reliably detected.
67 void setPoison() {
68 intptr_t tmp = reinterpret_cast<intptr_t>(mi);
69 assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?")(static_cast<void> (0));
70 tmp |= 0x1;
71 mi = reinterpret_cast<MachineInstr*>(tmp);
72 }
73
74 bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
75#endif // EXPENSIVE_CHECKS
76 };
77
78 template <>
79 struct ilist_alloc_traits<IndexListEntry>
80 : public ilist_noalloc_traits<IndexListEntry> {};
81
82 /// SlotIndex - An opaque wrapper around machine indexes.
83 class SlotIndex {
84 friend class SlotIndexes;
85
86 enum Slot {
87 /// Basic block boundary. Used for live ranges entering and leaving a
88 /// block without being live in the layout neighbor. Also used as the
89 /// def slot of PHI-defs.
90 Slot_Block,
91
92 /// Early-clobber register use/def slot. A live range defined at
93 /// Slot_EarlyClobber interferes with normal live ranges killed at
94 /// Slot_Register. Also used as the kill slot for live ranges tied to an
95 /// early-clobber def.
96 Slot_EarlyClobber,
97
98 /// Normal register use/def slot. Normal instructions kill and define
99 /// register live ranges at this slot.
100 Slot_Register,
101
102 /// Dead def kill point. Kill slot for a live range that is defined by
103 /// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
104 /// used anywhere.
105 Slot_Dead,
106
107 Slot_Count
108 };
109
110 PointerIntPair<IndexListEntry*, 2, unsigned> lie;
111
112 SlotIndex(IndexListEntry *entry, unsigned slot)
113 : lie(entry, slot) {}
114
115 IndexListEntry* listEntry() const {
116 assert(isValid() && "Attempt to compare reserved index.")(static_cast<void> (0));
117#ifdef EXPENSIVE_CHECKS
118 assert(!lie.getPointer()->isPoisoned() &&(static_cast<void> (0))
119 "Attempt to access deleted list-entry.")(static_cast<void> (0));
120#endif // EXPENSIVE_CHECKS
121 return lie.getPointer();
122 }
123
124 unsigned getIndex() const {
125 return listEntry()->getIndex() | getSlot();
126 }
127
128 /// Returns the slot for this SlotIndex.
129 Slot getSlot() const {
130 return static_cast<Slot>(lie.getInt());
131 }
132
133 public:
134 enum {
135 /// The default distance between instructions as returned by distance().
136 /// This may vary as instructions are inserted and removed.
137 InstrDist = 4 * Slot_Count
138 };
139
140 /// Construct an invalid index.
141 SlotIndex() = default;
142
143 // Construct a new slot index from the given one, and set the slot.
144 SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
145 assert(lie.getPointer() != nullptr &&(static_cast<void> (0))
146 "Attempt to construct index with 0 pointer.")(static_cast<void> (0));
147 }
148
149 /// Returns true if this is a valid index. Invalid indices do
150 /// not point into an index table, and cannot be compared.
151 bool isValid() const {
152 return lie.getPointer();
153 }
154
155 /// Return true for a valid index.
156 explicit operator bool() const { return isValid(); }
157
158 /// Print this index to the given raw_ostream.
159 void print(raw_ostream &os) const;
160
161 /// Dump this index to stderr.
162 void dump() const;
163
164 /// Compare two SlotIndex objects for equality.
165 bool operator==(SlotIndex other) const {
166 return lie == other.lie;
167 }
168 /// Compare two SlotIndex objects for inequality.
169 bool operator!=(SlotIndex other) const {
170 return lie != other.lie;
171 }
172
173 /// Compare two SlotIndex objects. Return true if the first index
174 /// is strictly lower than the second.
175 bool operator<(SlotIndex other) const {
176 return getIndex() < other.getIndex();
177 }
178 /// Compare two SlotIndex objects. Return true if the first index
179 /// is lower than, or equal to, the second.
180 bool operator<=(SlotIndex other) const {
181 return getIndex() <= other.getIndex();
182 }
183
184 /// Compare two SlotIndex objects. Return true if the first index
185 /// is greater than the second.
186 bool operator>(SlotIndex other) const {
187 return getIndex() > other.getIndex();
188 }
189
190 /// Compare two SlotIndex objects. Return true if the first index
191 /// is greater than, or equal to, the second.
192 bool operator>=(SlotIndex other) const {
193 return getIndex() >= other.getIndex();
194 }
195
196 /// isSameInstr - Return true if A and B refer to the same instruction.
197 static bool isSameInstr(SlotIndex A, SlotIndex B) {
198 return A.lie.getPointer() == B.lie.getPointer();
199 }
200
201 /// isEarlierInstr - Return true if A refers to an instruction earlier than
202 /// B. This is equivalent to A < B && !isSameInstr(A, B).
203 static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
204 return A.listEntry()->getIndex() < B.listEntry()->getIndex();
205 }
206
207 /// Return true if A refers to the same instruction as B or an earlier one.
208 /// This is equivalent to !isEarlierInstr(B, A).
209 static bool isEarlierEqualInstr(SlotIndex A, SlotIndex B) {
210 return !isEarlierInstr(B, A);
211 }
212
213 /// Return the distance from this index to the given one.
214 int distance(SlotIndex other) const {
215 return other.getIndex() - getIndex();
216 }
217
218 /// Return the scaled distance from this index to the given one, where all
219 /// slots on the same instruction have zero distance.
220 int getInstrDistance(SlotIndex other) const {
221 return (other.listEntry()->getIndex() - listEntry()->getIndex())
222 / Slot_Count;
223 }
224
225 /// isBlock - Returns true if this is a block boundary slot.
226 bool isBlock() const { return getSlot() == Slot_Block; }
4
Assuming the condition is false
5
Returning zero, which participates in a condition later
227
228 /// isEarlyClobber - Returns true if this is an early-clobber slot.
229 bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
230
231 /// isRegister - Returns true if this is a normal register use/def slot.
232 /// Note that early-clobber slots may also be used for uses and defs.
233 bool isRegister() const { return getSlot() == Slot_Register; }
234
235 /// isDead - Returns true if this is a dead def kill slot.
236 bool isDead() const { return getSlot() == Slot_Dead; }
237
238 /// Returns the base index for associated with this index. The base index
239 /// is the one associated with the Slot_Block slot for the instruction
240 /// pointed to by this index.
241 SlotIndex getBaseIndex() const {
242 return SlotIndex(listEntry(), Slot_Block);
243 }
244
245 /// Returns the boundary index for associated with this index. The boundary
246 /// index is the one associated with the Slot_Block slot for the instruction
247 /// pointed to by this index.
248 SlotIndex getBoundaryIndex() const {
249 return SlotIndex(listEntry(), Slot_Dead);
250 }
251
252 /// Returns the register use/def slot in the current instruction for a
253 /// normal or early-clobber def.
254 SlotIndex getRegSlot(bool EC = false) const {
255 return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
256 }
257
258 /// Returns the dead def kill slot for the current instruction.
259 SlotIndex getDeadSlot() const {
260 return SlotIndex(listEntry(), Slot_Dead);
261 }
262
263 /// Returns the next slot in the index list. This could be either the
264 /// next slot for the instruction pointed to by this index or, if this
265 /// index is a STORE, the first slot for the next instruction.
266 /// WARNING: This method is considerably more expensive than the methods
267 /// that return specific slots (getUseIndex(), etc). If you can - please
268 /// use one of those methods.
269 SlotIndex getNextSlot() const {
270 Slot s = getSlot();
271 if (s == Slot_Dead) {
272 return SlotIndex(&*++listEntry()->getIterator(), Slot_Block);
273 }
274 return SlotIndex(listEntry(), s + 1);
275 }
276
277 /// Returns the next index. This is the index corresponding to the this
278 /// index's slot, but for the next instruction.
279 SlotIndex getNextIndex() const {
280 return SlotIndex(&*++listEntry()->getIterator(), getSlot());
281 }
282
283 /// Returns the previous slot in the index list. This could be either the
284 /// previous slot for the instruction pointed to by this index or, if this
285 /// index is a Slot_Block, the last slot for the previous instruction.
286 /// WARNING: This method is considerably more expensive than the methods
287 /// that return specific slots (getUseIndex(), etc). If you can - please
288 /// use one of those methods.
289 SlotIndex getPrevSlot() const {
290 Slot s = getSlot();
291 if (s == Slot_Block) {
292 return SlotIndex(&*--listEntry()->getIterator(), Slot_Dead);
293 }
294 return SlotIndex(listEntry(), s - 1);
295 }
296
297 /// Returns the previous index. This is the index corresponding to this
298 /// index's slot, but for the previous instruction.
299 SlotIndex getPrevIndex() const {
300 return SlotIndex(&*--listEntry()->getIterator(), getSlot());
301 }
302 };
303
304 inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
305 li.print(os);
306 return os;
307 }
308
309 using IdxMBBPair = std::pair<SlotIndex, MachineBasicBlock *>;
310
311 /// SlotIndexes pass.
312 ///
313 /// This pass assigns indexes to each instruction.
314 class SlotIndexes : public MachineFunctionPass {
315 private:
316 // IndexListEntry allocator.
317 BumpPtrAllocator ileAllocator;
318
319 using IndexList = ilist<IndexListEntry>;
320 IndexList indexList;
321
322 MachineFunction *mf;
323
324 using Mi2IndexMap = DenseMap<const MachineInstr *, SlotIndex>;
325 Mi2IndexMap mi2iMap;
326
327 /// MBBRanges - Map MBB number to (start, stop) indexes.
328 SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
329
330 /// Idx2MBBMap - Sorted list of pairs of index of first instruction
331 /// and MBB id.
332 SmallVector<IdxMBBPair, 8> idx2MBBMap;
333
334 IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
335 IndexListEntry *entry =
336 static_cast<IndexListEntry *>(ileAllocator.Allocate(
337 sizeof(IndexListEntry), alignof(IndexListEntry)));
338
339 new (entry) IndexListEntry(mi, index);
340
341 return entry;
342 }
343
344 /// Renumber locally after inserting curItr.
345 void renumberIndexes(IndexList::iterator curItr);
346
347 public:
348 static char ID;
349
350 SlotIndexes();
351
352 ~SlotIndexes() override;
353
354 void getAnalysisUsage(AnalysisUsage &au) const override;
355 void releaseMemory() override;
356
357 bool runOnMachineFunction(MachineFunction &fn) override;
358
359 /// Dump the indexes.
360 void dump() const;
361
362 /// Repair indexes after adding and removing instructions.
363 void repairIndexesInRange(MachineBasicBlock *MBB,
364 MachineBasicBlock::iterator Begin,
365 MachineBasicBlock::iterator End);
366
367 /// Returns the zero index for this analysis.
368 SlotIndex getZeroIndex() {
369 assert(indexList.front().getIndex() == 0 && "First index is not 0?")(static_cast<void> (0));
370 return SlotIndex(&indexList.front(), 0);
371 }
372
373 /// Returns the base index of the last slot in this analysis.
374 SlotIndex getLastIndex() {
375 return SlotIndex(&indexList.back(), 0);
376 }
377
378 /// Returns true if the given machine instr is mapped to an index,
379 /// otherwise returns false.
380 bool hasIndex(const MachineInstr &instr) const {
381 return mi2iMap.count(&instr);
382 }
383
384 /// Returns the base index for the given instruction.
385 SlotIndex getInstructionIndex(const MachineInstr &MI,
386 bool IgnoreBundle = false) const {
387 // Instructions inside a bundle have the same number as the bundle itself.
388 auto BundleStart = getBundleStart(MI.getIterator());
389 auto BundleEnd = getBundleEnd(MI.getIterator());
390 // Use the first non-debug instruction in the bundle to get SlotIndex.
391 const MachineInstr &BundleNonDebug =
392 IgnoreBundle ? MI
393 : *skipDebugInstructionsForward(BundleStart, BundleEnd);
394 assert(!BundleNonDebug.isDebugInstr() &&(static_cast<void> (0))
395 "Could not use a debug instruction to query mi2iMap.")(static_cast<void> (0));
396 Mi2IndexMap::const_iterator itr = mi2iMap.find(&BundleNonDebug);
397 assert(itr != mi2iMap.end() && "Instruction not found in maps.")(static_cast<void> (0));
398 return itr->second;
399 }
400
401 /// Returns the instruction for the given index, or null if the given
402 /// index has no instruction associated with it.
403 MachineInstr* getInstructionFromIndex(SlotIndex index) const {
404 return index.isValid() ? index.listEntry()->getInstr() : nullptr;
405 }
406
407 /// Returns the next non-null index, if one exists.
408 /// Otherwise returns getLastIndex().
409 SlotIndex getNextNonNullIndex(SlotIndex Index) {
410 IndexList::iterator I = Index.listEntry()->getIterator();
411 IndexList::iterator E = indexList.end();
412 while (++I != E)
413 if (I->getInstr())
414 return SlotIndex(&*I, Index.getSlot());
415 // We reached the end of the function.
416 return getLastIndex();
417 }
418
419 /// getIndexBefore - Returns the index of the last indexed instruction
420 /// before MI, or the start index of its basic block.
421 /// MI is not required to have an index.
422 SlotIndex getIndexBefore(const MachineInstr &MI) const {
423 const MachineBasicBlock *MBB = MI.getParent();
424 assert(MBB && "MI must be inserted in a basic block")(static_cast<void> (0));
425 MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
426 while (true) {
427 if (I == B)
428 return getMBBStartIdx(MBB);
429 --I;
430 Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
431 if (MapItr != mi2iMap.end())
432 return MapItr->second;
433 }
434 }
435
436 /// getIndexAfter - Returns the index of the first indexed instruction
437 /// after MI, or the end index of its basic block.
438 /// MI is not required to have an index.
439 SlotIndex getIndexAfter(const MachineInstr &MI) const {
440 const MachineBasicBlock *MBB = MI.getParent();
441 assert(MBB && "MI must be inserted in a basic block")(static_cast<void> (0));
442 MachineBasicBlock::const_iterator I = MI, E = MBB->end();
443 while (true) {
444 ++I;
445 if (I == E)
446 return getMBBEndIdx(MBB);
447 Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
448 if (MapItr != mi2iMap.end())
449 return MapItr->second;
450 }
451 }
452
453 /// Return the (start,end) range of the given basic block number.
454 const std::pair<SlotIndex, SlotIndex> &
455 getMBBRange(unsigned Num) const {
456 return MBBRanges[Num];
457 }
458
459 /// Return the (start,end) range of the given basic block.
460 const std::pair<SlotIndex, SlotIndex> &
461 getMBBRange(const MachineBasicBlock *MBB) const {
462 return getMBBRange(MBB->getNumber());
463 }
464
465 /// Returns the first index in the given basic block number.
466 SlotIndex getMBBStartIdx(unsigned Num) const {
467 return getMBBRange(Num).first;
468 }
469
470 /// Returns the first index in the given basic block.
471 SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
472 return getMBBRange(mbb).first;
473 }
474
475 /// Returns the last index in the given basic block number.
476 SlotIndex getMBBEndIdx(unsigned Num) const {
477 return getMBBRange(Num).second;
478 }
479
480 /// Returns the last index in the given basic block.
481 SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
482 return getMBBRange(mbb).second;
483 }
484
485 /// Iterator over the idx2MBBMap (sorted pairs of slot index of basic block
486 /// begin and basic block)
487 using MBBIndexIterator = SmallVectorImpl<IdxMBBPair>::const_iterator;
488
489 /// Move iterator to the next IdxMBBPair where the SlotIndex is greater or
490 /// equal to \p To.
491 MBBIndexIterator advanceMBBIndex(MBBIndexIterator I, SlotIndex To) const {
492 return std::partition_point(
493 I, idx2MBBMap.end(),
494 [=](const IdxMBBPair &IM) { return IM.first < To; });
495 }
496
497 /// Get an iterator pointing to the IdxMBBPair with the biggest SlotIndex
498 /// that is greater or equal to \p Idx.
499 MBBIndexIterator findMBBIndex(SlotIndex Idx) const {
500 return advanceMBBIndex(idx2MBBMap.begin(), Idx);
501 }
502
503 /// Returns an iterator for the begin of the idx2MBBMap.
504 MBBIndexIterator MBBIndexBegin() const {
505 return idx2MBBMap.begin();
506 }
507
508 /// Return an iterator for the end of the idx2MBBMap.
509 MBBIndexIterator MBBIndexEnd() const {
510 return idx2MBBMap.end();
511 }
512
513 /// Returns the basic block which the given index falls in.
514 MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
515 if (MachineInstr *MI = getInstructionFromIndex(index))
516 return MI->getParent();
517
518 MBBIndexIterator I = findMBBIndex(index);
519 // Take the pair containing the index
520 MBBIndexIterator J =
521 ((I != MBBIndexEnd() && I->first > index) ||
522 (I == MBBIndexEnd() && !idx2MBBMap.empty())) ? std::prev(I) : I;
523
524 assert(J != MBBIndexEnd() && J->first <= index &&(static_cast<void> (0))
525 index < getMBBEndIdx(J->second) &&(static_cast<void> (0))
526 "index does not correspond to an MBB")(static_cast<void> (0));
527 return J->second;
528 }
529
530 /// Insert the given machine instruction into the mapping. Returns the
531 /// assigned index.
532 /// If Late is set and there are null indexes between mi's neighboring
533 /// instructions, create the new index after the null indexes instead of
534 /// before them.
535 SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late = false) {
536 assert(!MI.isInsideBundle() &&(static_cast<void> (0))
537 "Instructions inside bundles should use bundle start's slot.")(static_cast<void> (0));
538 assert(mi2iMap.find(&MI) == mi2iMap.end() && "Instr already indexed.")(static_cast<void> (0));
539 // Numbering debug instructions could cause code generation to be
540 // affected by debug information.
541 assert(!MI.isDebugInstr() && "Cannot number debug instructions.")(static_cast<void> (0));
542
543 assert(MI.getParent() != nullptr && "Instr must be added to function.")(static_cast<void> (0));
544
545 // Get the entries where MI should be inserted.
546 IndexList::iterator prevItr, nextItr;
547 if (Late) {
548 // Insert MI's index immediately before the following instruction.
549 nextItr = getIndexAfter(MI).listEntry()->getIterator();
550 prevItr = std::prev(nextItr);
551 } else {
552 // Insert MI's index immediately after the preceding instruction.
553 prevItr = getIndexBefore(MI).listEntry()->getIterator();
554 nextItr = std::next(prevItr);
555 }
556
557 // Get a number for the new instr, or 0 if there's no room currently.
558 // In the latter case we'll force a renumber later.
559 unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
560 unsigned newNumber = prevItr->getIndex() + dist;
561
562 // Insert a new list entry for MI.
563 IndexList::iterator newItr =
564 indexList.insert(nextItr, createEntry(&MI, newNumber));
565
566 // Renumber locally if we need to.
567 if (dist == 0)
568 renumberIndexes(newItr);
569
570 SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
571 mi2iMap.insert(std::make_pair(&MI, newIndex));
572 return newIndex;
573 }
574
575 /// Removes machine instruction (bundle) \p MI from the mapping.
576 /// This should be called before MachineInstr::eraseFromParent() is used to
577 /// remove a whole bundle or an unbundled instruction.
578 /// If \p AllowBundled is set then this can be used on a bundled
579 /// instruction; however, this exists to support handleMoveIntoBundle,
580 /// and in general removeSingleMachineInstrFromMaps should be used instead.
581 void removeMachineInstrFromMaps(MachineInstr &MI,
582 bool AllowBundled = false);
583
584 /// Removes a single machine instruction \p MI from the mapping.
585 /// This should be called before MachineInstr::eraseFromBundle() is used to
586 /// remove a single instruction (out of a bundle).
587 void removeSingleMachineInstrFromMaps(MachineInstr &MI);
588
589 /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
590 /// maps used by register allocator. \returns the index where the new
591 /// instruction was inserted.
592 SlotIndex replaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
593 Mi2IndexMap::iterator mi2iItr = mi2iMap.find(&MI);
594 if (mi2iItr == mi2iMap.end())
595 return SlotIndex();
596 SlotIndex replaceBaseIndex = mi2iItr->second;
597 IndexListEntry *miEntry(replaceBaseIndex.listEntry());
598 assert(miEntry->getInstr() == &MI &&(static_cast<void> (0))
599 "Mismatched instruction in index tables.")(static_cast<void> (0));
600 miEntry->setInstr(&NewMI);
601 mi2iMap.erase(mi2iItr);
602 mi2iMap.insert(std::make_pair(&NewMI, replaceBaseIndex));
603 return replaceBaseIndex;
604 }
605
606 /// Add the given MachineBasicBlock into the maps.
607 /// If it contains any instructions then they must already be in the maps.
608 /// This is used after a block has been split by moving some suffix of its
609 /// instructions into a newly created block.
610 void insertMBBInMaps(MachineBasicBlock *mbb) {
611 assert(mbb != &mbb->getParent()->front() &&(static_cast<void> (0))
612 "Can't insert a new block at the beginning of a function.")(static_cast<void> (0));
613 auto prevMBB = std::prev(MachineFunction::iterator(mbb));
614
615 // Create a new entry to be used for the start of mbb and the end of
616 // prevMBB.
617 IndexListEntry *startEntry = createEntry(nullptr, 0);
618 IndexListEntry *endEntry = getMBBEndIdx(&*prevMBB).listEntry();
619 IndexListEntry *insEntry =
620 mbb->empty() ? endEntry
621 : getInstructionIndex(mbb->front()).listEntry();
622 IndexList::iterator newItr =
623 indexList.insert(insEntry->getIterator(), startEntry);
624
625 SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
626 SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
627
628 MBBRanges[prevMBB->getNumber()].second = startIdx;
629
630 assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&(static_cast<void> (0))
631 "Blocks must be added in order")(static_cast<void> (0));
632 MBBRanges.push_back(std::make_pair(startIdx, endIdx));
633 idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
634
635 renumberIndexes(newItr);
636 llvm::sort(idx2MBBMap, less_first());
637 }
638 };
639
640 // Specialize IntervalMapInfo for half-open slot index intervals.
641 template <>
642 struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
643 };
644
645} // end namespace llvm
646
647#endif // LLVM_CODEGEN_SLOTINDEXES_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/CodeGen/Register.h

1//===-- llvm/CodeGen/Register.h ---------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_CODEGEN_REGISTER_H
10#define LLVM_CODEGEN_REGISTER_H
11
12#include "llvm/MC/MCRegister.h"
13#include <cassert>
14
15namespace llvm {
16
17/// Wrapper class representing virtual and physical registers. Should be passed
18/// by value.
19class Register {
20 unsigned Reg;
21
22public:
23 constexpr Register(unsigned Val = 0): Reg(Val) {}
24 constexpr Register(MCRegister Val): Reg(Val) {}
25
26 // Register numbers can represent physical registers, virtual registers, and
27 // sometimes stack slots. The unsigned values are divided into these ranges:
28 //
29 // 0 Not a register, can be used as a sentinel.
30 // [1;2^30) Physical registers assigned by TableGen.
31 // [2^30;2^31) Stack slots. (Rarely used.)
32 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
33 //
34 // Further sentinels can be allocated from the small negative integers.
35 // DenseMapInfo<unsigned> uses -1u and -2u.
36 static_assert(std::numeric_limits<decltype(Reg)>::max() >= 0xFFFFFFFF,
37 "Reg isn't large enough to hold full range.");
38
39 /// isStackSlot - Sometimes it is useful the be able to store a non-negative
40 /// frame index in a variable that normally holds a register. isStackSlot()
41 /// returns true if Reg is in the range used for stack slots.
42 ///
43 /// FIXME: remove in favor of member.
44 static bool isStackSlot(unsigned Reg) {
45 return MCRegister::isStackSlot(Reg);
46 }
47
48 /// Return true if this is a stack slot.
49 bool isStack() const { return MCRegister::isStackSlot(Reg); }
50
51 /// Compute the frame index from a register value representing a stack slot.
52 static int stackSlot2Index(Register Reg) {
53 assert(Reg.isStack() && "Not a stack slot")(static_cast<void> (0));
54 return int(Reg - MCRegister::FirstStackSlot);
55 }
56
57 /// Convert a non-negative frame index to a stack slot register value.
58 static Register index2StackSlot(int FI) {
59 assert(FI >= 0 && "Cannot hold a negative frame index.")(static_cast<void> (0));
60 return Register(FI + MCRegister::FirstStackSlot);
61 }
62
63 /// Return true if the specified register number is in
64 /// the physical register namespace.
65 static bool isPhysicalRegister(unsigned Reg) {
66 return MCRegister::isPhysicalRegister(Reg);
67 }
68
69 /// Return true if the specified register number is in
70 /// the virtual register namespace.
71 static bool isVirtualRegister(unsigned Reg) {
72 return Reg & MCRegister::VirtualRegFlag && !isStackSlot(Reg);
73 }
74
75 /// Convert a virtual register number to a 0-based index.
76 /// The first virtual register in a function will get the index 0.
77 static unsigned virtReg2Index(Register Reg) {
78 assert(isVirtualRegister(Reg) && "Not a virtual register")(static_cast<void> (0));
79 return Reg & ~MCRegister::VirtualRegFlag;
80 }
81
82 /// Convert a 0-based index to a virtual register number.
83 /// This is the inverse operation of VirtReg2IndexFunctor below.
84 static Register index2VirtReg(unsigned Index) {
85 assert(Index < (1u << 31) && "Index too large for virtual register range.")(static_cast<void> (0));
86 return Index | MCRegister::VirtualRegFlag;
87 }
88
89 /// Return true if the specified register number is in the virtual register
90 /// namespace.
91 bool isVirtual() const {
92 return isVirtualRegister(Reg);
93 }
94
95 /// Return true if the specified register number is in the physical register
96 /// namespace.
97 bool isPhysical() const {
98 return isPhysicalRegister(Reg);
99 }
100
101 /// Convert a virtual register number to a 0-based index. The first virtual
102 /// register in a function will get the index 0.
103 unsigned virtRegIndex() const {
104 return virtReg2Index(Reg);
105 }
106
107 constexpr operator unsigned() const {
108 return Reg;
109 }
110
111 unsigned id() const { return Reg; }
112
113 operator MCRegister() const {
114 return MCRegister(Reg);
115 }
116
117 /// Utility to check-convert this value to a MCRegister. The caller is
118 /// expected to have already validated that this Register is, indeed,
119 /// physical.
120 MCRegister asMCReg() const {
121 assert(Reg == MCRegister::NoRegister ||(static_cast<void> (0))
122 MCRegister::isPhysicalRegister(Reg))(static_cast<void> (0));
123 return MCRegister(Reg);
124 }
125
126 bool isValid() const { return Reg != MCRegister::NoRegister; }
127
128 /// Comparisons between register objects
129 bool operator==(const Register &Other) const { return Reg == Other.Reg; }
18
Assuming 'Reg' is not equal to 'Other.Reg'
19
Returning zero, which participates in a condition later
130 bool operator!=(const Register &Other) const { return Reg != Other.Reg; }
131 bool operator==(const MCRegister &Other) const { return Reg == Other.id(); }
132 bool operator!=(const MCRegister &Other) const { return Reg != Other.id(); }
133
134 /// Comparisons against register constants. E.g.
135 /// * R == AArch64::WZR
136 /// * R == 0
137 /// * R == VirtRegMap::NO_PHYS_REG
138 bool operator==(unsigned Other) const { return Reg == Other; }
139 bool operator!=(unsigned Other) const { return Reg != Other; }
140 bool operator==(int Other) const { return Reg == unsigned(Other); }
141 bool operator!=(int Other) const { return Reg != unsigned(Other); }
142 // MSVC requires that we explicitly declare these two as well.
143 bool operator==(MCPhysReg Other) const { return Reg == unsigned(Other); }
144 bool operator!=(MCPhysReg Other) const { return Reg != unsigned(Other); }
145};
146
147// Provide DenseMapInfo for Register
148template<> struct DenseMapInfo<Register> {
149 static inline unsigned getEmptyKey() {
150 return DenseMapInfo<unsigned>::getEmptyKey();
151 }
152 static inline unsigned getTombstoneKey() {
153 return DenseMapInfo<unsigned>::getTombstoneKey();
154 }
155 static unsigned getHashValue(const Register &Val) {
156 return DenseMapInfo<unsigned>::getHashValue(Val.id());
157 }
158 static bool isEqual(const Register &LHS, const Register &RHS) {
159 return DenseMapInfo<unsigned>::isEqual(LHS.id(), RHS.id());
160 }
161};
162
163}
164
165#endif // LLVM_CODEGEN_REGISTER_H