Bug Summary

File:build/source/lld/ELF/Relocations.cpp
Warning:line 2024, column 9
3rd function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name Relocations.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D LLD_VENDOR="Debian" -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/lld/ELF -I /build/source/lld/ELF -I /build/source/lld/include -I tools/lld/include -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/lld/ELF/Relocations.cpp
1//===- Relocations.cpp ----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains platform-independent functions to process relocations.
10// I'll describe the overview of this file here.
11//
12// Simple relocations are easy to handle for the linker. For example,
13// for R_X86_64_PC64 relocs, the linker just has to fix up locations
14// with the relative offsets to the target symbols. It would just be
15// reading records from relocation sections and applying them to output.
16//
17// But not all relocations are that easy to handle. For example, for
18// R_386_GOTOFF relocs, the linker has to create new GOT entries for
19// symbols if they don't exist, and fix up locations with GOT entry
20// offsets from the beginning of GOT section. So there is more than
21// fixing addresses in relocation processing.
22//
23// ELF defines a large number of complex relocations.
24//
25// The functions in this file analyze relocations and do whatever needs
26// to be done. It includes, but not limited to, the following.
27//
28// - create GOT/PLT entries
29// - create new relocations in .dynsym to let the dynamic linker resolve
30// them at runtime (since ELF supports dynamic linking, not all
31// relocations can be resolved at link-time)
32// - create COPY relocs and reserve space in .bss
33// - replace expensive relocs (in terms of runtime cost) with cheap ones
34// - error out infeasible combinations such as PIC and non-relative relocs
35//
36// Note that the functions in this file don't actually apply relocations
37// because it doesn't know about the output file nor the output file buffer.
38// It instead stores Relocation objects to InputSection's Relocations
39// vector to let it apply later in InputSection::writeTo.
40//
41//===----------------------------------------------------------------------===//
42
43#include "Relocations.h"
44#include "Config.h"
45#include "InputFiles.h"
46#include "LinkerScript.h"
47#include "OutputSections.h"
48#include "SymbolTable.h"
49#include "Symbols.h"
50#include "SyntheticSections.h"
51#include "Target.h"
52#include "Thunks.h"
53#include "lld/Common/ErrorHandler.h"
54#include "lld/Common/Memory.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/Demangle/Demangle.h"
57#include "llvm/Support/Endian.h"
58#include <algorithm>
59
60using namespace llvm;
61using namespace llvm::ELF;
62using namespace llvm::object;
63using namespace llvm::support::endian;
64using namespace lld;
65using namespace lld::elf;
66
67static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
68 for (SectionCommand *cmd : script->sectionCommands)
69 if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
70 if (assign->sym == &sym)
71 return assign->location;
72 return std::nullopt;
73}
74
75static std::string getDefinedLocation(const Symbol &sym) {
76 const char msg[] = "\n>>> defined in ";
77 if (sym.file)
78 return msg + toString(sym.file);
79 if (std::optional<std::string> loc = getLinkerScriptLocation(sym))
80 return msg + *loc;
81 return "";
82}
83
84// Construct a message in the following format.
85//
86// >>> defined in /home/alice/src/foo.o
87// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
88// >>> /home/alice/src/bar.o:(.text+0x1)
89static std::string getLocation(InputSectionBase &s, const Symbol &sym,
90 uint64_t off) {
91 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
92 std::string src = s.getSrcMsg(sym, off);
93 if (!src.empty())
94 msg += src + "\n>>> ";
95 return msg + s.getObjMsg(off);
96}
97
98void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
99 int64_t min, uint64_t max) {
100 ErrorPlace errPlace = getErrorPlace(loc);
101 std::string hint;
102 if (rel.sym) {
103 if (!rel.sym->isSection())
104 hint = "; references '" + lld::toString(*rel.sym) + '\'';
105 else if (auto *d = dyn_cast<Defined>(rel.sym))
106 hint = ("; references section '" + d->section->name + "'").str();
107 }
108 if (!errPlace.srcLoc.empty())
109 hint += "\n>>> referenced by " + errPlace.srcLoc;
110 if (rel.sym && !rel.sym->isSection())
111 hint += getDefinedLocation(*rel.sym);
112
113 if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
114 hint += "; consider recompiling with -fdebug-types-section to reduce size "
115 "of debug sections";
116
117 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
118 " out of range: " + v.str() + " is not in [" + Twine(min).str() +
119 ", " + Twine(max).str() + "]" + hint);
120}
121
122void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
123 const Twine &msg) {
124 ErrorPlace errPlace = getErrorPlace(loc);
125 std::string hint;
126 if (!sym.getName().empty())
127 hint =
128 "; references '" + lld::toString(sym) + '\'' + getDefinedLocation(sym);
129 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
130 " is not in [" + Twine(llvm::minIntN(n)) + ", " +
131 Twine(llvm::maxIntN(n)) + "]" + hint);
132}
133
134// Build a bitmask with one bit set for each 64 subset of RelExpr.
135static constexpr uint64_t buildMask() { return 0; }
136
137template <typename... Tails>
138static constexpr uint64_t buildMask(int head, Tails... tails) {
139 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
140 buildMask(tails...);
141}
142
143// Return true if `Expr` is one of `Exprs`.
144// There are more than 64 but less than 128 RelExprs, so we divide the set of
145// exprs into [0, 64) and [64, 128) and represent each range as a constant
146// 64-bit mask. Then we decide which mask to test depending on the value of
147// expr and use a simple shift and bitwise-and to test for membership.
148template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
149 assert(0 <= expr && (int)expr < 128 &&(static_cast <bool> (0 <= expr && (int)expr <
128 && "RelExpr is too large for 128-bit mask!") ? void
(0) : __assert_fail ("0 <= expr && (int)expr < 128 && \"RelExpr is too large for 128-bit mask!\""
, "lld/ELF/Relocations.cpp", 150, __extension__ __PRETTY_FUNCTION__
))
150 "RelExpr is too large for 128-bit mask!")(static_cast <bool> (0 <= expr && (int)expr <
128 && "RelExpr is too large for 128-bit mask!") ? void
(0) : __assert_fail ("0 <= expr && (int)expr < 128 && \"RelExpr is too large for 128-bit mask!\""
, "lld/ELF/Relocations.cpp", 150, __extension__ __PRETTY_FUNCTION__
))
;
151
152 if (expr >= 64)
153 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
154 return (uint64_t(1) << expr) & buildMask(Exprs...);
155}
156
157static RelType getMipsPairType(RelType type, bool isLocal) {
158 switch (type) {
159 case R_MIPS_HI16:
160 return R_MIPS_LO16;
161 case R_MIPS_GOT16:
162 // In case of global symbol, the R_MIPS_GOT16 relocation does not
163 // have a pair. Each global symbol has a unique entry in the GOT
164 // and a corresponding instruction with help of the R_MIPS_GOT16
165 // relocation loads an address of the symbol. In case of local
166 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
167 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
168 // relocations handle low 16 bits of the address. That allows
169 // to allocate only one GOT entry for every 64 KBytes of local data.
170 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
171 case R_MICROMIPS_GOT16:
172 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
173 case R_MIPS_PCHI16:
174 return R_MIPS_PCLO16;
175 case R_MICROMIPS_HI16:
176 return R_MICROMIPS_LO16;
177 default:
178 return R_MIPS_NONE;
179 }
180}
181
182// True if non-preemptable symbol always has the same value regardless of where
183// the DSO is loaded.
184static bool isAbsolute(const Symbol &sym) {
185 if (sym.isUndefWeak())
186 return true;
187 if (const auto *dr = dyn_cast<Defined>(&sym))
188 return dr->section == nullptr; // Absolute symbol.
189 return false;
190}
191
192static bool isAbsoluteValue(const Symbol &sym) {
193 return isAbsolute(sym) || sym.isTls();
194}
195
196// Returns true if Expr refers a PLT entry.
197static bool needsPlt(RelExpr expr) {
198 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT>(
199 expr);
200}
201
202// Returns true if Expr refers a GOT entry. Note that this function
203// returns false for TLS variables even though they need GOT, because
204// TLS variables uses GOT differently than the regular variables.
205static bool needsGot(RelExpr expr) {
206 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
207 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
208 R_AARCH64_GOT_PAGE>(expr);
209}
210
211// True if this expression is of the form Sym - X, where X is a position in the
212// file (PC, or GOT for example).
213static bool isRelExpr(RelExpr expr) {
214 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
215 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
216 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
217}
218
219
220static RelExpr toPlt(RelExpr expr) {
221 switch (expr) {
222 case R_PPC64_CALL:
223 return R_PPC64_CALL_PLT;
224 case R_PC:
225 return R_PLT_PC;
226 case R_ABS:
227 return R_PLT;
228 default:
229 return expr;
230 }
231}
232
233static RelExpr fromPlt(RelExpr expr) {
234 // We decided not to use a plt. Optimize a reference to the plt to a
235 // reference to the symbol itself.
236 switch (expr) {
237 case R_PLT_PC:
238 case R_PPC32_PLTREL:
239 return R_PC;
240 case R_PPC64_CALL_PLT:
241 return R_PPC64_CALL;
242 case R_PLT:
243 return R_ABS;
244 case R_PLT_GOTPLT:
245 return R_GOTPLTREL;
246 default:
247 return expr;
248 }
249}
250
251// Returns true if a given shared symbol is in a read-only segment in a DSO.
252template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
253 using Elf_Phdr = typename ELFT::Phdr;
254
255 // Determine if the symbol is read-only by scanning the DSO's program headers.
256 const auto &file = cast<SharedFile>(*ss.file);
257 for (const Elf_Phdr &phdr :
258 check(file.template getObj<ELFT>().program_headers()))
259 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
260 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
261 ss.value < phdr.p_vaddr + phdr.p_memsz)
262 return true;
263 return false;
264}
265
266// Returns symbols at the same offset as a given symbol, including SS itself.
267//
268// If two or more symbols are at the same offset, and at least one of
269// them are copied by a copy relocation, all of them need to be copied.
270// Otherwise, they would refer to different places at runtime.
271template <class ELFT>
272static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
273 using Elf_Sym = typename ELFT::Sym;
274
275 const auto &file = cast<SharedFile>(*ss.file);
276
277 SmallSet<SharedSymbol *, 4> ret;
278 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
279 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
280 s.getType() == STT_TLS || s.st_value != ss.value)
281 continue;
282 StringRef name = check(s.getName(file.getStringTable()));
283 Symbol *sym = symtab.find(name);
284 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
285 ret.insert(alias);
286 }
287
288 // The loop does not check SHT_GNU_verneed, so ret does not contain
289 // non-default version symbols. If ss has a non-default version, ret won't
290 // contain ss. Just add ss unconditionally. If a non-default version alias is
291 // separately copy relocated, it and ss will have different addresses.
292 // Fortunately this case is impractical and fails with GNU ld as well.
293 ret.insert(&ss);
294 return ret;
295}
296
297// When a symbol is copy relocated or we create a canonical plt entry, it is
298// effectively a defined symbol. In the case of copy relocation the symbol is
299// in .bss and in the case of a canonical plt entry it is in .plt. This function
300// replaces the existing symbol with a Defined pointing to the appropriate
301// location.
302static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
303 uint64_t size) {
304 Symbol old = sym;
305 Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value,
306 size, &sec)
307 .overwrite(sym);
308
309 sym.verdefIndex = old.verdefIndex;
310 sym.exportDynamic = true;
311 sym.isUsedInRegularObj = true;
312 // A copy relocated alias may need a GOT entry.
313 sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT,
314 std::memory_order_relaxed);
315}
316
317// Reserve space in .bss or .bss.rel.ro for copy relocation.
318//
319// The copy relocation is pretty much a hack. If you use a copy relocation
320// in your program, not only the symbol name but the symbol's size, RW/RO
321// bit and alignment become part of the ABI. In addition to that, if the
322// symbol has aliases, the aliases become part of the ABI. That's subtle,
323// but if you violate that implicit ABI, that can cause very counter-
324// intuitive consequences.
325//
326// So, what is the copy relocation? It's for linking non-position
327// independent code to DSOs. In an ideal world, all references to data
328// exported by DSOs should go indirectly through GOT. But if object files
329// are compiled as non-PIC, all data references are direct. There is no
330// way for the linker to transform the code to use GOT, as machine
331// instructions are already set in stone in object files. This is where
332// the copy relocation takes a role.
333//
334// A copy relocation instructs the dynamic linker to copy data from a DSO
335// to a specified address (which is usually in .bss) at load-time. If the
336// static linker (that's us) finds a direct data reference to a DSO
337// symbol, it creates a copy relocation, so that the symbol can be
338// resolved as if it were in .bss rather than in a DSO.
339//
340// As you can see in this function, we create a copy relocation for the
341// dynamic linker, and the relocation contains not only symbol name but
342// various other information about the symbol. So, such attributes become a
343// part of the ABI.
344//
345// Note for application developers: I can give you a piece of advice if
346// you are writing a shared library. You probably should export only
347// functions from your library. You shouldn't export variables.
348//
349// As an example what can happen when you export variables without knowing
350// the semantics of copy relocations, assume that you have an exported
351// variable of type T. It is an ABI-breaking change to add new members at
352// end of T even though doing that doesn't change the layout of the
353// existing members. That's because the space for the new members are not
354// reserved in .bss unless you recompile the main program. That means they
355// are likely to overlap with other data that happens to be laid out next
356// to the variable in .bss. This kind of issue is sometimes very hard to
357// debug. What's a solution? Instead of exporting a variable V from a DSO,
358// define an accessor getV().
359template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
360 // Copy relocation against zero-sized symbol doesn't make sense.
361 uint64_t symSize = ss.getSize();
362 if (symSize == 0 || ss.alignment == 0)
363 fatal("cannot create a copy relocation for symbol " + toString(ss));
364
365 // See if this symbol is in a read-only segment. If so, preserve the symbol's
366 // memory protection by reserving space in the .bss.rel.ro section.
367 bool isRO = isReadOnly<ELFT>(ss);
368 BssSection *sec =
369 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
370 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
371
372 // At this point, sectionBases has been migrated to sections. Append sec to
373 // sections.
374 if (osec->commands.empty() ||
375 !isa<InputSectionDescription>(osec->commands.back()))
376 osec->commands.push_back(make<InputSectionDescription>(""));
377 auto *isd = cast<InputSectionDescription>(osec->commands.back());
378 isd->sections.push_back(sec);
379 osec->commitSection(sec);
380
381 // Look through the DSO's dynamic symbol table for aliases and create a
382 // dynamic symbol for each one. This causes the copy relocation to correctly
383 // interpose any aliases.
384 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
385 replaceWithDefined(*sym, *sec, 0, sym->size);
386
387 mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
388}
389
390// .eh_frame sections are mergeable input sections, so their input
391// offsets are not linearly mapped to output section. For each input
392// offset, we need to find a section piece containing the offset and
393// add the piece's base address to the input offset to compute the
394// output offset. That isn't cheap.
395//
396// This class is to speed up the offset computation. When we process
397// relocations, we access offsets in the monotonically increasing
398// order. So we can optimize for that access pattern.
399//
400// For sections other than .eh_frame, this class doesn't do anything.
401namespace {
402class OffsetGetter {
403public:
404 OffsetGetter() = default;
405 explicit OffsetGetter(InputSectionBase &sec) {
406 if (auto *eh = dyn_cast<EhInputSection>(&sec)) {
407 cies = eh->cies;
408 fdes = eh->fdes;
409 i = cies.begin();
410 j = fdes.begin();
411 }
412 }
413
414 // Translates offsets in input sections to offsets in output sections.
415 // Given offset must increase monotonically. We assume that Piece is
416 // sorted by inputOff.
417 uint64_t get(uint64_t off) {
418 if (cies.empty())
419 return off;
420
421 while (j != fdes.end() && j->inputOff <= off)
422 ++j;
423 auto it = j;
424 if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) {
425 while (i != cies.end() && i->inputOff <= off)
426 ++i;
427 if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off)
428 fatal(".eh_frame: relocation is not in any piece");
429 it = i;
430 }
431
432 // Offset -1 means that the piece is dead (i.e. garbage collected).
433 if (it[-1].outputOff == -1)
434 return -1;
435 return it[-1].outputOff + (off - it[-1].inputOff);
436 }
437
438private:
439 ArrayRef<EhSectionPiece> cies, fdes;
440 ArrayRef<EhSectionPiece>::iterator i, j;
441};
442
443// This class encapsulates states needed to scan relocations for one
444// InputSectionBase.
445class RelocationScanner {
446public:
447 template <class ELFT> void scanSection(InputSectionBase &s);
448
449private:
450 InputSectionBase *sec;
451 OffsetGetter getter;
452
453 // End of relocations, used by Mips/PPC64.
454 const void *end = nullptr;
455
456 template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
457 template <class ELFT, class RelTy>
458 int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
459 bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
460 uint64_t relOff) const;
461 void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
462 int64_t addend) const;
463 template <class ELFT, class RelTy> void scanOne(RelTy *&i);
464 template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels);
465};
466} // namespace
467
468// MIPS has an odd notion of "paired" relocations to calculate addends.
469// For example, if a relocation is of R_MIPS_HI16, there must be a
470// R_MIPS_LO16 relocation after that, and an addend is calculated using
471// the two relocations.
472template <class ELFT, class RelTy>
473int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
474 bool isLocal) const {
475 if (expr == R_MIPS_GOTREL && isLocal)
476 return sec->getFile<ELFT>()->mipsGp0;
477
478 // The ABI says that the paired relocation is used only for REL.
479 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
480 if (RelTy::IsRela)
481 return 0;
482
483 RelType type = rel.getType(config->isMips64EL);
484 uint32_t pairTy = getMipsPairType(type, isLocal);
485 if (pairTy == R_MIPS_NONE)
486 return 0;
487
488 const uint8_t *buf = sec->content().data();
489 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
490
491 // To make things worse, paired relocations might not be contiguous in
492 // the relocation table, so we need to do linear search. *sigh*
493 for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
494 if (ri->getType(config->isMips64EL) == pairTy &&
495 ri->getSymbol(config->isMips64EL) == symIndex)
496 return target->getImplicitAddend(buf + ri->r_offset, pairTy);
497
498 warn("can't find matching " + toString(pairTy) + " relocation for " +
499 toString(type));
500 return 0;
501}
502
503// Custom error message if Sym is defined in a discarded section.
504template <class ELFT>
505static std::string maybeReportDiscarded(Undefined &sym) {
506 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
507 if (!file || !sym.discardedSecIdx ||
508 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
509 return "";
510 ArrayRef<typename ELFT::Shdr> objSections =
511 file->template getELFShdrs<ELFT>();
512
513 std::string msg;
514 if (sym.type == ELF::STT_SECTION) {
515 msg = "relocation refers to a discarded section: ";
516 msg += CHECK(check2((file->getObj().getSectionName(objSections[sym.discardedSecIdx
])), [&] { return toString(file); })
517 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file)check2((file->getObj().getSectionName(objSections[sym.discardedSecIdx
])), [&] { return toString(file); })
;
518 } else {
519 msg = "relocation refers to a symbol in a discarded section: " +
520 toString(sym);
521 }
522 msg += "\n>>> defined in " + toString(file);
523
524 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
525 if (elfSec.sh_type != SHT_GROUP)
526 return msg;
527
528 // If the discarded section is a COMDAT.
529 StringRef signature = file->getShtGroupSignature(objSections, elfSec);
530 if (const InputFile *prevailing =
531 symtab.comdatGroups.lookup(CachedHashStringRef(signature))) {
532 msg += "\n>>> section group signature: " + signature.str() +
533 "\n>>> prevailing definition is in " + toString(prevailing);
534 if (sym.nonPrevailing) {
535 msg += "\n>>> or the symbol in the prevailing group had STB_WEAK "
536 "binding and the symbol in a non-prevailing group had STB_GLOBAL "
537 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
538 "signature is not supported";
539 }
540 }
541 return msg;
542}
543
544namespace {
545// Undefined diagnostics are collected in a vector and emitted once all of
546// them are known, so that some postprocessing on the list of undefined symbols
547// can happen before lld emits diagnostics.
548struct UndefinedDiag {
549 Undefined *sym;
550 struct Loc {
551 InputSectionBase *sec;
552 uint64_t offset;
553 };
554 std::vector<Loc> locs;
555 bool isWarning;
556};
557
558std::vector<UndefinedDiag> undefs;
559std::mutex relocMutex;
560}
561
562// Check whether the definition name def is a mangled function name that matches
563// the reference name ref.
564static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
565 llvm::ItaniumPartialDemangler d;
566 std::string name = def.str();
567 if (d.partialDemangle(name.c_str()))
568 return false;
569 char *buf = d.getFunctionName(nullptr, nullptr);
570 if (!buf)
571 return false;
572 bool ret = ref == buf;
573 free(buf);
574 return ret;
575}
576
577// Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
578// the suggested symbol, which is either in the symbol table, or in the same
579// file of sym.
580static const Symbol *getAlternativeSpelling(const Undefined &sym,
581 std::string &pre_hint,
582 std::string &post_hint) {
583 DenseMap<StringRef, const Symbol *> map;
584 if (sym.file && sym.file->kind() == InputFile::ObjKind) {
585 auto *file = cast<ELFFileBase>(sym.file);
586 // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
587 // will give an error. Don't suggest an alternative spelling.
588 if (file && sym.discardedSecIdx != 0 &&
589 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
590 return nullptr;
591
592 // Build a map of local defined symbols.
593 for (const Symbol *s : sym.file->getSymbols())
594 if (s->isLocal() && s->isDefined() && !s->getName().empty())
595 map.try_emplace(s->getName(), s);
596 }
597
598 auto suggest = [&](StringRef newName) -> const Symbol * {
599 // If defined locally.
600 if (const Symbol *s = map.lookup(newName))
601 return s;
602
603 // If in the symbol table and not undefined.
604 if (const Symbol *s = symtab.find(newName))
605 if (!s->isUndefined())
606 return s;
607
608 return nullptr;
609 };
610
611 // This loop enumerates all strings of Levenshtein distance 1 as typo
612 // correction candidates and suggests the one that exists as a non-undefined
613 // symbol.
614 StringRef name = sym.getName();
615 for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
616 // Insert a character before name[i].
617 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
618 for (char c = '0'; c <= 'z'; ++c) {
619 newName[i] = c;
620 if (const Symbol *s = suggest(newName))
621 return s;
622 }
623 if (i == e)
624 break;
625
626 // Substitute name[i].
627 newName = std::string(name);
628 for (char c = '0'; c <= 'z'; ++c) {
629 newName[i] = c;
630 if (const Symbol *s = suggest(newName))
631 return s;
632 }
633
634 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
635 // common.
636 if (i + 1 < e) {
637 newName[i] = name[i + 1];
638 newName[i + 1] = name[i];
639 if (const Symbol *s = suggest(newName))
640 return s;
641 }
642
643 // Delete name[i].
644 newName = (name.substr(0, i) + name.substr(i + 1)).str();
645 if (const Symbol *s = suggest(newName))
646 return s;
647 }
648
649 // Case mismatch, e.g. Foo vs FOO.
650 for (auto &it : map)
651 if (name.equals_insensitive(it.first))
652 return it.second;
653 for (Symbol *sym : symtab.getSymbols())
654 if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
655 return sym;
656
657 // The reference may be a mangled name while the definition is not. Suggest a
658 // missing extern "C".
659 if (name.startswith("_Z")) {
660 std::string buf = name.str();
661 llvm::ItaniumPartialDemangler d;
662 if (!d.partialDemangle(buf.c_str()))
663 if (char *buf = d.getFunctionName(nullptr, nullptr)) {
664 const Symbol *s = suggest(buf);
665 free(buf);
666 if (s) {
667 pre_hint = ": extern \"C\" ";
668 return s;
669 }
670 }
671 } else {
672 const Symbol *s = nullptr;
673 for (auto &it : map)
674 if (canSuggestExternCForCXX(name, it.first)) {
675 s = it.second;
676 break;
677 }
678 if (!s)
679 for (Symbol *sym : symtab.getSymbols())
680 if (canSuggestExternCForCXX(name, sym->getName())) {
681 s = sym;
682 break;
683 }
684 if (s) {
685 pre_hint = " to declare ";
686 post_hint = " as extern \"C\"?";
687 return s;
688 }
689 }
690
691 return nullptr;
692}
693
694static void reportUndefinedSymbol(const UndefinedDiag &undef,
695 bool correctSpelling) {
696 Undefined &sym = *undef.sym;
697
698 auto visibility = [&]() -> std::string {
699 switch (sym.visibility()) {
700 case STV_INTERNAL:
701 return "internal ";
702 case STV_HIDDEN:
703 return "hidden ";
704 case STV_PROTECTED:
705 return "protected ";
706 default:
707 return "";
708 }
709 };
710
711 std::string msg;
712 switch (config->ekind) {
713 case ELF32LEKind:
714 msg = maybeReportDiscarded<ELF32LE>(sym);
715 break;
716 case ELF32BEKind:
717 msg = maybeReportDiscarded<ELF32BE>(sym);
718 break;
719 case ELF64LEKind:
720 msg = maybeReportDiscarded<ELF64LE>(sym);
721 break;
722 case ELF64BEKind:
723 msg = maybeReportDiscarded<ELF64BE>(sym);
724 break;
725 default:
726 llvm_unreachable("")::llvm::llvm_unreachable_internal("", "lld/ELF/Relocations.cpp"
, 726)
;
727 }
728 if (msg.empty())
729 msg = "undefined " + visibility() + "symbol: " + toString(sym);
730
731 const size_t maxUndefReferences = 3;
732 size_t i = 0;
733 for (UndefinedDiag::Loc l : undef.locs) {
734 if (i >= maxUndefReferences)
735 break;
736 InputSectionBase &sec = *l.sec;
737 uint64_t offset = l.offset;
738
739 msg += "\n>>> referenced by ";
740 std::string src = sec.getSrcMsg(sym, offset);
741 if (!src.empty())
742 msg += src + "\n>>> ";
743 msg += sec.getObjMsg(offset);
744 i++;
745 }
746
747 if (i < undef.locs.size())
748 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
749 .str();
750
751 if (correctSpelling) {
752 std::string pre_hint = ": ", post_hint;
753 if (const Symbol *corrected =
754 getAlternativeSpelling(sym, pre_hint, post_hint)) {
755 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
756 if (corrected->file)
757 msg += "\n>>> defined in: " + toString(corrected->file);
758 }
759 }
760
761 if (sym.getName().startswith("_ZTV"))
762 msg +=
763 "\n>>> the vtable symbol may be undefined because the class is missing "
764 "its key function (see https://lld.llvm.org/missingkeyfunction)";
765 if (config->gcSections && config->zStartStopGC &&
766 sym.getName().startswith("__start_")) {
767 msg += "\n>>> the encapsulation symbol needs to be retained under "
768 "--gc-sections properly; consider -z nostart-stop-gc "
769 "(see https://lld.llvm.org/ELF/start-stop-gc)";
770 }
771
772 if (undef.isWarning)
773 warn(msg);
774 else
775 error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
776}
777
778void elf::reportUndefinedSymbols() {
779 // Find the first "undefined symbol" diagnostic for each diagnostic, and
780 // collect all "referenced from" lines at the first diagnostic.
781 DenseMap<Symbol *, UndefinedDiag *> firstRef;
782 for (UndefinedDiag &undef : undefs) {
783 assert(undef.locs.size() == 1)(static_cast <bool> (undef.locs.size() == 1) ? void (0)
: __assert_fail ("undef.locs.size() == 1", "lld/ELF/Relocations.cpp"
, 783, __extension__ __PRETTY_FUNCTION__))
;
784 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
785 canon->locs.push_back(undef.locs[0]);
786 undef.locs.clear();
787 } else
788 firstRef[undef.sym] = &undef;
789 }
790
791 // Enable spell corrector for the first 2 diagnostics.
792 for (const auto &[i, undef] : llvm::enumerate(undefs))
793 if (!undef.locs.empty())
794 reportUndefinedSymbol(undef, i < 2);
795 undefs.clear();
796}
797
798// Report an undefined symbol if necessary.
799// Returns true if the undefined symbol will produce an error message.
800static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
801 uint64_t offset) {
802 std::lock_guard<std::mutex> lock(relocMutex);
803 // If versioned, issue an error (even if the symbol is weak) because we don't
804 // know the defining filename which is required to construct a Verneed entry.
805 if (sym.hasVersionSuffix) {
806 undefs.push_back({&sym, {{&sec, offset}}, false});
807 return true;
808 }
809 if (sym.isWeak())
810 return false;
811
812 bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT;
813 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
814 return false;
815
816 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
817 // which references a switch table in a discarded .rodata/.text section. The
818 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
819 // spec says references from outside the group to a STB_LOCAL symbol are not
820 // allowed. Work around the bug.
821 //
822 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
823 // because .LC0-.LTOC is not representable if the two labels are in different
824 // .got2
825 if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
826 return false;
827
828 bool isWarning =
829 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
830 config->noinhibitExec;
831 undefs.push_back({&sym, {{&sec, offset}}, isWarning});
832 return !isWarning;
833}
834
835// MIPS N32 ABI treats series of successive relocations with the same offset
836// as a single relocation. The similar approach used by N64 ABI, but this ABI
837// packs all relocations into the single relocation record. Here we emulate
838// this for the N32 ABI. Iterate over relocation with the same offset and put
839// theirs types into the single bit-set.
840template <class RelTy>
841RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
842 RelType type = 0;
843 uint64_t offset = rel->r_offset;
844
845 int n = 0;
846 while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
847 type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
848 return type;
849}
850
851template <bool shard = false>
852static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
853 Symbol &sym, int64_t addend, RelExpr expr,
854 RelType type) {
855 Partition &part = isec.getPartition();
856
857 // Add a relative relocation. If relrDyn section is enabled, and the
858 // relocation offset is guaranteed to be even, add the relocation to
859 // the relrDyn section, otherwise add it to the relaDyn section.
860 // relrDyn sections don't support odd offsets. Also, relrDyn sections
861 // don't store the addend values, so we must write it to the relocated
862 // address.
863 if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) {
864 isec.addReloc({expr, type, offsetInSec, addend, &sym});
865 if (shard)
866 part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back(
867 {&isec, offsetInSec});
868 else
869 part.relrDyn->relocs.push_back({&isec, offsetInSec});
870 return;
871 }
872 part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec,
873 sym, addend, type, expr);
874}
875
876template <class PltSection, class GotPltSection>
877static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
878 RelocationBaseSection &rel, RelType type, Symbol &sym) {
879 plt.addEntry(sym);
880 gotPlt.addEntry(sym);
881 rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
882 sym.isPreemptible ? DynamicReloc::AgainstSymbol
883 : DynamicReloc::AddendOnlyWithTargetVA,
884 sym, 0, R_ABS});
885}
886
887static void addGotEntry(Symbol &sym) {
888 in.got->addEntry(sym);
889 uint64_t off = sym.getGotOffset();
890
891 // If preemptible, emit a GLOB_DAT relocation.
892 if (sym.isPreemptible) {
893 mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
894 DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
895 return;
896 }
897
898 // Otherwise, the value is either a link-time constant or the load base
899 // plus a constant.
900 if (!config->isPic || isAbsolute(sym))
901 in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym});
902 else
903 addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
904}
905
906static void addTpOffsetGotEntry(Symbol &sym) {
907 in.got->addEntry(sym);
908 uint64_t off = sym.getGotOffset();
909 if (!sym.isPreemptible && !config->isPic) {
910 in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym});
911 return;
912 }
913 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
914 target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
915}
916
917// Return true if we can define a symbol in the executable that
918// contains the value/function of a symbol defined in a shared
919// library.
920static bool canDefineSymbolInExecutable(Symbol &sym) {
921 // If the symbol has default visibility the symbol defined in the
922 // executable will preempt it.
923 // Note that we want the visibility of the shared symbol itself, not
924 // the visibility of the symbol in the output file we are producing.
925 if (!sym.dsoProtected)
926 return true;
927
928 // If we are allowed to break address equality of functions, defining
929 // a plt entry will allow the program to call the function in the
930 // .so, but the .so and the executable will no agree on the address
931 // of the function. Similar logic for objects.
932 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
933 (sym.isObject() && config->ignoreDataAddressEquality));
934}
935
936// Returns true if a given relocation can be computed at link-time.
937// This only handles relocation types expected in processAux.
938//
939// For instance, we know the offset from a relocation to its target at
940// link-time if the relocation is PC-relative and refers a
941// non-interposable function in the same executable. This function
942// will return true for such relocation.
943//
944// If this function returns false, that means we need to emit a
945// dynamic relocation so that the relocation will be fixed at load-time.
946bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
947 const Symbol &sym,
948 uint64_t relOff) const {
949 // These expressions always compute a constant
950 if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE,
951 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
952 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
953 R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT,
954 R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE>(e))
955 return true;
956
957 // These never do, except if the entire file is position dependent or if
958 // only the low bits are used.
959 if (e == R_GOT || e == R_PLT)
960 return target->usesOnlyLowPageBits(type) || !config->isPic;
961
962 if (sym.isPreemptible)
963 return false;
964 if (!config->isPic)
965 return true;
966
967 // The size of a non preemptible symbol is a constant.
968 if (e == R_SIZE)
969 return true;
970
971 // For the target and the relocation, we want to know if they are
972 // absolute or relative.
973 bool absVal = isAbsoluteValue(sym);
974 bool relE = isRelExpr(e);
975 if (absVal && !relE)
976 return true;
977 if (!absVal && relE)
978 return true;
979 if (!absVal && !relE)
980 return target->usesOnlyLowPageBits(type);
981
982 assert(absVal && relE)(static_cast <bool> (absVal && relE) ? void (0)
: __assert_fail ("absVal && relE", "lld/ELF/Relocations.cpp"
, 982, __extension__ __PRETTY_FUNCTION__))
;
983
984 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
985 // in PIC mode. This is a little strange, but it allows us to link function
986 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
987 // Normally such a call will be guarded with a comparison, which will load a
988 // zero from the GOT.
989 if (sym.isUndefWeak())
990 return true;
991
992 // We set the final symbols values for linker script defined symbols later.
993 // They always can be computed as a link time constant.
994 if (sym.scriptDefined)
995 return true;
996
997 error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
998 toString(sym) + getLocation(*sec, sym, relOff));
999 return true;
1000}
1001
1002// The reason we have to do this early scan is as follows
1003// * To mmap the output file, we need to know the size
1004// * For that, we need to know how many dynamic relocs we will have.
1005// It might be possible to avoid this by outputting the file with write:
1006// * Write the allocated output sections, computing addresses.
1007// * Apply relocations, recording which ones require a dynamic reloc.
1008// * Write the dynamic relocations.
1009// * Write the rest of the file.
1010// This would have some drawbacks. For example, we would only know if .rela.dyn
1011// is needed after applying relocations. If it is, it will go after rw and rx
1012// sections. Given that it is ro, we will need an extra PT_LOAD. This
1013// complicates things for the dynamic linker and means we would have to reserve
1014// space for the extra PT_LOAD even if we end up not using it.
1015void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1016 Symbol &sym, int64_t addend) const {
1017 // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT
1018 // indirection.
1019 const bool isIfunc = sym.isGnuIFunc();
1020 if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) {
1021 if (expr != R_GOT_PC) {
1022 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1023 // stub type. It should be ignored if optimized to R_PC.
1024 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1025 addend &= ~0x8000;
1026 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1027 // call __tls_get_addr even if the symbol is non-preemptible.
1028 if (!(config->emachine == EM_HEXAGON &&
1029 (type == R_HEX_GD_PLT_B22_PCREL ||
1030 type == R_HEX_GD_PLT_B22_PCREL_X ||
1031 type == R_HEX_GD_PLT_B32_PCREL_X)))
1032 expr = fromPlt(expr);
1033 } else if (!isAbsoluteValue(sym)) {
1034 expr =
1035 target->adjustGotPcExpr(type, addend, sec->content().data() + offset);
1036 }
1037 }
1038
1039 // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1040 // direct relocation on through.
1041 if (LLVM_UNLIKELY(isIfunc)__builtin_expect((bool)(isIfunc), false) && config->zIfuncNoplt) {
1042 std::lock_guard<std::mutex> lock(relocMutex);
1043 sym.exportDynamic = true;
1044 mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type);
1045 return;
1046 }
1047
1048 if (needsGot(expr)) {
1049 if (config->emachine == EM_MIPS) {
1050 // MIPS ABI has special rules to process GOT entries and doesn't
1051 // require relocation entries for them. A special case is TLS
1052 // relocations. In that case dynamic loader applies dynamic
1053 // relocations to initialize TLS GOT entries.
1054 // See "Global Offset Table" in Chapter 5 in the following document
1055 // for detailed description:
1056 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1057 in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1058 } else {
1059 sym.setFlags(NEEDS_GOT);
1060 }
1061 } else if (needsPlt(expr)) {
1062 sym.setFlags(NEEDS_PLT);
1063 } else if (LLVM_UNLIKELY(isIfunc)__builtin_expect((bool)(isIfunc), false)) {
1064 sym.setFlags(HAS_DIRECT_RELOC);
1065 }
1066
1067 // If the relocation is known to be a link-time constant, we know no dynamic
1068 // relocation will be created, pass the control to relocateAlloc() or
1069 // relocateNonAlloc() to resolve it.
1070 //
1071 // The behavior of an undefined weak reference is implementation defined. For
1072 // non-link-time constants, we resolve relocations statically (let
1073 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1074 // relocations for -pie and -shared.
1075 //
1076 // The general expectation of -no-pie static linking is that there is no
1077 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1078 // -shared matches the spirit of its -z undefs default. -pie has freedom on
1079 // choices, and we choose dynamic relocations to be consistent with the
1080 // handling of GOT-generating relocations.
1081 if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1082 (!config->isPic && sym.isUndefWeak())) {
1083 sec->addReloc({expr, type, offset, addend, &sym});
1084 return;
1085 }
1086
1087 // Use a simple -z notext rule that treats all sections except .eh_frame as
1088 // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our
1089 // SectionBase::getOffset would incorrectly adjust the offset).
1090 //
1091 // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel
1092 // conversion. We still emit a dynamic relocation.
1093 bool canWrite = (sec->flags & SHF_WRITE) ||
1094 !(config->zText ||
1095 (isa<EhInputSection>(sec) && config->emachine != EM_MIPS));
1096 if (canWrite) {
1097 RelType rel = target->getDynRel(type);
1098 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1099 addRelativeReloc<true>(*sec, offset, sym, addend, expr, type);
1100 return;
1101 } else if (rel != 0) {
1102 if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1103 rel = target->relativeRel;
1104 std::lock_guard<std::mutex> lock(relocMutex);
1105 sec->getPartition().relaDyn->addSymbolReloc(rel, *sec, offset, sym,
1106 addend, type);
1107
1108 // MIPS ABI turns using of GOT and dynamic relocations inside out.
1109 // While regular ABI uses dynamic relocations to fill up GOT entries
1110 // MIPS ABI requires dynamic linker to fills up GOT entries using
1111 // specially sorted dynamic symbol table. This affects even dynamic
1112 // relocations against symbols which do not require GOT entries
1113 // creation explicitly, i.e. do not have any GOT-relocations. So if
1114 // a preemptible symbol has a dynamic relocation we anyway have
1115 // to create a GOT entry for it.
1116 // If a non-preemptible symbol has a dynamic relocation against it,
1117 // dynamic linker takes it st_value, adds offset and writes down
1118 // result of the dynamic relocation. In case of preemptible symbol
1119 // dynamic linker performs symbol resolution, writes the symbol value
1120 // to the GOT entry and reads the GOT entry when it needs to perform
1121 // a dynamic relocation.
1122 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1123 if (config->emachine == EM_MIPS)
1124 in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1125 return;
1126 }
1127 }
1128
1129 // When producing an executable, we can perform copy relocations (for
1130 // STT_OBJECT) and canonical PLT (for STT_FUNC).
1131 if (!config->shared) {
1132 if (!canDefineSymbolInExecutable(sym)) {
1133 errorOrWarn("cannot preempt symbol: " + toString(sym) +
1134 getLocation(*sec, sym, offset));
1135 return;
1136 }
1137
1138 if (sym.isObject()) {
1139 // Produce a copy relocation.
1140 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1141 if (!config->zCopyreloc)
1142 error("unresolvable relocation " + toString(type) +
1143 " against symbol '" + toString(*ss) +
1144 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1145 getLocation(*sec, sym, offset));
1146 sym.setFlags(NEEDS_COPY);
1147 }
1148 sec->addReloc({expr, type, offset, addend, &sym});
1149 return;
1150 }
1151
1152 // This handles a non PIC program call to function in a shared library. In
1153 // an ideal world, we could just report an error saying the relocation can
1154 // overflow at runtime. In the real world with glibc, crt1.o has a
1155 // R_X86_64_PC32 pointing to libc.so.
1156 //
1157 // The general idea on how to handle such cases is to create a PLT entry and
1158 // use that as the function value.
1159 //
1160 // For the static linking part, we just return a plt expr and everything
1161 // else will use the PLT entry as the address.
1162 //
1163 // The remaining problem is making sure pointer equality still works. We
1164 // need the help of the dynamic linker for that. We let it know that we have
1165 // a direct reference to a so symbol by creating an undefined symbol with a
1166 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1167 // the value of the symbol we created. This is true even for got entries, so
1168 // pointer equality is maintained. To avoid an infinite loop, the only entry
1169 // that points to the real function is a dedicated got entry used by the
1170 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1171 // R_386_JMP_SLOT, etc).
1172
1173 // For position independent executable on i386, the plt entry requires ebx
1174 // to be set. This causes two problems:
1175 // * If some code has a direct reference to a function, it was probably
1176 // compiled without -fPIE/-fPIC and doesn't maintain ebx.
1177 // * If a library definition gets preempted to the executable, it will have
1178 // the wrong ebx value.
1179 if (sym.isFunc()) {
1180 if (config->pie && config->emachine == EM_386)
1181 errorOrWarn("symbol '" + toString(sym) +
1182 "' cannot be preempted; recompile with -fPIE" +
1183 getLocation(*sec, sym, offset));
1184 sym.setFlags(NEEDS_COPY | NEEDS_PLT);
1185 sec->addReloc({expr, type, offset, addend, &sym});
1186 return;
1187 }
1188 }
1189
1190 errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1191 (sym.getName().empty() ? "local symbol"
1192 : "symbol '" + toString(sym) + "'") +
1193 "; recompile with -fPIC" + getLocation(*sec, sym, offset));
1194}
1195
1196// This function is similar to the `handleTlsRelocation`. MIPS does not
1197// support any relaxations for TLS relocations so by factoring out MIPS
1198// handling in to the separate function we can simplify the code and do not
1199// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1200// Mips has a custom MipsGotSection that handles the writing of GOT entries
1201// without dynamic relocations.
1202static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1203 InputSectionBase &c, uint64_t offset,
1204 int64_t addend, RelExpr expr) {
1205 if (expr == R_MIPS_TLSLD) {
1206 in.mipsGot->addTlsIndex(*c.file);
1207 c.addReloc({expr, type, offset, addend, &sym});
1208 return 1;
1209 }
1210 if (expr == R_MIPS_TLSGD) {
1211 in.mipsGot->addDynTlsEntry(*c.file, sym);
1212 c.addReloc({expr, type, offset, addend, &sym});
1213 return 1;
1214 }
1215 return 0;
1216}
1217
1218// Notes about General Dynamic and Local Dynamic TLS models below. They may
1219// require the generation of a pair of GOT entries that have associated dynamic
1220// relocations. The pair of GOT entries created are of the form GOT[e0] Module
1221// Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1222// symbol in TLS block.
1223//
1224// Returns the number of relocations processed.
1225static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1226 InputSectionBase &c, uint64_t offset,
1227 int64_t addend, RelExpr expr) {
1228 if (expr == R_TPREL || expr == R_TPREL_NEG) {
1229 if (config->shared) {
1230 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1231 " cannot be used with -shared" + getLocation(c, sym, offset));
1232 return 1;
1233 }
1234 return 0;
1235 }
1236
1237 if (config->emachine == EM_MIPS)
1238 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1239
1240 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1241 R_TLSDESC_GOTPLT>(expr) &&
1242 config->shared) {
1243 if (expr != R_TLSDESC_CALL) {
1244 sym.setFlags(NEEDS_TLSDESC);
1245 c.addReloc({expr, type, offset, addend, &sym});
1246 }
1247 return 1;
1248 }
1249
1250 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For
1251 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1252 // relaxation as well.
1253 bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
1254 config->emachine != EM_HEXAGON &&
1255 config->emachine != EM_RISCV &&
1256 !c.file->ppc64DisableTLSRelax;
1257
1258 // If we are producing an executable and the symbol is non-preemptable, it
1259 // must be defined and the code sequence can be relaxed to use Local-Exec.
1260 //
1261 // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1262 // we can omit the DTPMOD dynamic relocations and resolve them at link time
1263 // because them are always 1. This may be necessary for static linking as
1264 // DTPMOD may not be expected at load time.
1265 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1266
1267 // Local Dynamic is for access to module local TLS variables, while still
1268 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1269 // module index, with a special value of 0 for the current module. GOT[e1] is
1270 // unused. There only needs to be one module index entry.
1271 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
1272 expr)) {
1273 // Local-Dynamic relocs can be relaxed to Local-Exec.
1274 if (toExecRelax) {
1275 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type,
1276 offset, addend, &sym});
1277 return target->getTlsGdRelaxSkip(type);
1278 }
1279 if (expr == R_TLSLD_HINT)
1280 return 1;
1281 ctx.needsTlsLd.store(true, std::memory_order_relaxed);
1282 c.addReloc({expr, type, offset, addend, &sym});
1283 return 1;
1284 }
1285
1286 // Local-Dynamic relocs can be relaxed to Local-Exec.
1287 if (expr == R_DTPREL) {
1288 if (toExecRelax)
1289 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1290 c.addReloc({expr, type, offset, addend, &sym});
1291 return 1;
1292 }
1293
1294 // Local-Dynamic sequence where offset of tls variable relative to dynamic
1295 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1296 if (expr == R_TLSLD_GOT_OFF) {
1297 sym.setFlags(NEEDS_GOT_DTPREL);
1298 c.addReloc({expr, type, offset, addend, &sym});
1299 return 1;
1300 }
1301
1302 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1303 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
1304 if (!toExecRelax) {
1305 sym.setFlags(NEEDS_TLSGD);
1306 c.addReloc({expr, type, offset, addend, &sym});
1307 return 1;
1308 }
1309
1310 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1311 // depending on the symbol being locally defined or not.
1312 if (sym.isPreemptible) {
1313 sym.setFlags(NEEDS_TLSGD_TO_IE);
1314 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type,
1315 offset, addend, &sym});
1316 } else {
1317 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type,
1318 offset, addend, &sym});
1319 }
1320 return target->getTlsGdRelaxSkip(type);
1321 }
1322
1323 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
1324 R_TLSIE_HINT>(expr)) {
1325 ctx.hasTlsIe.store(true, std::memory_order_relaxed);
1326 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1327 // defined.
1328 if (toExecRelax && isLocalInExecutable) {
1329 c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1330 } else if (expr != R_TLSIE_HINT) {
1331 sym.setFlags(NEEDS_TLSIE);
1332 // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1333 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1334 addRelativeReloc<true>(c, offset, sym, addend, expr, type);
1335 else
1336 c.addReloc({expr, type, offset, addend, &sym});
1337 }
1338 return 1;
1339 }
1340
1341 return 0;
1342}
1343
1344template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) {
1345 const RelTy &rel = *i;
1346 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1347 Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex);
1348 RelType type;
1349 if (config->mipsN32Abi) {
1350 type = getMipsN32RelType(i);
1351 } else {
1352 type = rel.getType(config->isMips64EL);
1353 ++i;
1354 }
1355 // Get an offset in an output section this relocation is applied to.
1356 uint64_t offset = getter.get(rel.r_offset);
1357 if (offset == uint64_t(-1))
1358 return;
1359
1360 RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset);
1361 int64_t addend = RelTy::IsRela
1362 ? getAddend<ELFT>(rel)
1363 : target->getImplicitAddend(
1364 sec->content().data() + rel.r_offset, type);
1365 if (LLVM_UNLIKELY(config->emachine == EM_MIPS)__builtin_expect((bool)(config->emachine == EM_MIPS), false
)
)
1366 addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal());
1367 else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
1368 addend += getPPC64TocBase();
1369
1370 // Ignore R_*_NONE and other marker relocations.
1371 if (expr == R_NONE)
1372 return;
1373
1374 // Error if the target symbol is undefined. Symbol index 0 may be used by
1375 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1376 if (sym.isUndefined() && symIndex != 0 &&
1377 maybeReportUndefined(cast<Undefined>(sym), *sec, offset))
1378 return;
1379
1380 if (config->emachine == EM_PPC64) {
1381 // We can separate the small code model relocations into 2 categories:
1382 // 1) Those that access the compiler generated .toc sections.
1383 // 2) Those that access the linker allocated got entries.
1384 // lld allocates got entries to symbols on demand. Since we don't try to
1385 // sort the got entries in any way, we don't have to track which objects
1386 // have got-based small code model relocs. The .toc sections get placed
1387 // after the end of the linker allocated .got section and we do sort those
1388 // so sections addressed with small code model relocations come first.
1389 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1390 sec->file->ppc64SmallCodeModelTocRelocs = true;
1391
1392 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1393 // InputSectionBase::relocateAlloc().
1394 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1395 cast<Defined>(sym).section->name == ".toc")
1396 ppc64noTocRelax.insert({&sym, addend});
1397
1398 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1399 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1400 if (i == end) {
1401 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1402 "relocation" +
1403 getLocation(*sec, sym, offset));
1404 return;
1405 }
1406
1407 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1408 // so we can discern it later from the toc-case.
1409 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1410 ++offset;
1411 }
1412 }
1413
1414 // If the relocation does not emit a GOT or GOTPLT entry but its computation
1415 // uses their addresses, we need GOT or GOTPLT to be created.
1416 //
1417 // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1418 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1419 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1420 in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed);
1421 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1422 R_PPC64_RELAX_TOC>(expr)) {
1423 in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1424 }
1425
1426 // Process TLS relocations, including relaxing TLS relocations. Note that
1427 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1428 if (sym.isTls()) {
1429 if (unsigned processed =
1430 handleTlsRelocation(type, sym, *sec, offset, addend, expr)) {
1431 i += processed - 1;
1432 return;
1433 }
1434 }
1435
1436 processAux(expr, type, offset, sym, addend);
1437}
1438
1439// R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1440// General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1441// found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1442// instructions are generated by very old IBM XL compilers. Work around the
1443// issue by disabling GD/LD to IE/LE relaxation.
1444template <class RelTy>
1445static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1446 // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1447 if (!sec.file || sec.file->ppc64DisableTLSRelax)
1448 return;
1449 bool hasGDLD = false;
1450 for (const RelTy &rel : rels) {
1451 RelType type = rel.getType(false);
1452 switch (type) {
1453 case R_PPC64_TLSGD:
1454 case R_PPC64_TLSLD:
1455 return; // Found a marker
1456 case R_PPC64_GOT_TLSGD16:
1457 case R_PPC64_GOT_TLSGD16_HA:
1458 case R_PPC64_GOT_TLSGD16_HI:
1459 case R_PPC64_GOT_TLSGD16_LO:
1460 case R_PPC64_GOT_TLSLD16:
1461 case R_PPC64_GOT_TLSLD16_HA:
1462 case R_PPC64_GOT_TLSLD16_HI:
1463 case R_PPC64_GOT_TLSLD16_LO:
1464 hasGDLD = true;
1465 break;
1466 }
1467 }
1468 if (hasGDLD) {
1469 sec.file->ppc64DisableTLSRelax = true;
1470 warn(toString(sec.file) +
1471 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1472 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1473 }
1474}
1475
1476template <class ELFT, class RelTy>
1477void RelocationScanner::scan(ArrayRef<RelTy> rels) {
1478 // Not all relocations end up in Sec->Relocations, but a lot do.
1479 sec->relocations.reserve(rels.size());
1480
1481 if (config->emachine == EM_PPC64)
1482 checkPPC64TLSRelax<RelTy>(*sec, rels);
1483
1484 // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1485 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1486 // script), the relocations may be unordered.
1487 SmallVector<RelTy, 0> storage;
1488 if (isa<EhInputSection>(sec))
1489 rels = sortRels(rels, storage);
1490
1491 end = static_cast<const void *>(rels.end());
1492 for (auto i = rels.begin(); i != end;)
1493 scanOne<ELFT>(i);
1494
1495 // Sort relocations by offset for more efficient searching for
1496 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1497 if (config->emachine == EM_RISCV ||
1498 (config->emachine == EM_PPC64 && sec->name == ".toc"))
1499 llvm::stable_sort(sec->relocs(),
1500 [](const Relocation &lhs, const Relocation &rhs) {
1501 return lhs.offset < rhs.offset;
1502 });
1503}
1504
1505template <class ELFT> void RelocationScanner::scanSection(InputSectionBase &s) {
1506 sec = &s;
1507 getter = OffsetGetter(s);
1508 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>();
1509 if (rels.areRelocsRel())
1510 scan<ELFT>(rels.rels);
1511 else
1512 scan<ELFT>(rels.relas);
1513}
1514
1515template <class ELFT> void elf::scanRelocations() {
1516 // Scan all relocations. Each relocation goes through a series of tests to
1517 // determine if it needs special treatment, such as creating GOT, PLT,
1518 // copy relocations, etc. Note that relocations for non-alloc sections are
1519 // directly processed by InputSection::relocateNonAlloc.
1520
1521 // Deterministic parallellism needs sorting relocations which is unsuitable
1522 // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable
1523 // for parallelism.
1524 bool serial = !config->zCombreloc || config->emachine == EM_MIPS ||
1525 config->emachine == EM_PPC64;
1526 parallel::TaskGroup tg;
1527 for (ELFFileBase *f : ctx.objectFiles) {
1528 auto fn = [f]() {
1529 RelocationScanner scanner;
1530 for (InputSectionBase *s : f->getSections()) {
1531 if (s && s->kind() == SectionBase::Regular && s->isLive() &&
1532 (s->flags & SHF_ALLOC) &&
1533 !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM))
1534 scanner.template scanSection<ELFT>(*s);
1535 }
1536 };
1537 tg.spawn(fn, serial);
1538 }
1539
1540 tg.spawn([] {
1541 RelocationScanner scanner;
1542 for (Partition &part : partitions) {
1543 for (EhInputSection *sec : part.ehFrame->sections)
1544 scanner.template scanSection<ELFT>(*sec);
1545 if (part.armExidx && part.armExidx->isLive())
1546 for (InputSection *sec : part.armExidx->exidxSections)
1547 scanner.template scanSection<ELFT>(*sec);
1548 }
1549 });
1550}
1551
1552static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) {
1553 // Handle a reference to a non-preemptible ifunc. These are special in a
1554 // few ways:
1555 //
1556 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1557 // a fixed value. But assuming that all references to the ifunc are
1558 // GOT-generating or PLT-generating, the handling of an ifunc is
1559 // relatively straightforward. We create a PLT entry in Iplt, which is
1560 // usually at the end of .plt, which makes an indirect call using a
1561 // matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1562 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1563 // which is usually at the end of .rela.plt. Unlike most relocations in
1564 // .rela.plt, which may be evaluated lazily without -z now, dynamic
1565 // loaders evaluate IRELATIVE relocs eagerly, which means that for
1566 // IRELATIVE relocs only, GOT-generating relocations can point directly to
1567 // .got.plt without requiring a separate GOT entry.
1568 //
1569 // - Despite the fact that an ifunc does not have a fixed value, compilers
1570 // that are not passed -fPIC will assume that they do, and will emit
1571 // direct (non-GOT-generating, non-PLT-generating) relocations to the
1572 // symbol. This means that if a direct relocation to the symbol is
1573 // seen, the linker must set a value for the symbol, and this value must
1574 // be consistent no matter what type of reference is made to the symbol.
1575 // This can be done by creating a PLT entry for the symbol in the way
1576 // described above and making it canonical, that is, making all references
1577 // point to the PLT entry instead of the resolver. In lld we also store
1578 // the address of the PLT entry in the dynamic symbol table, which means
1579 // that the symbol will also have the same value in other modules.
1580 // Because the value loaded from the GOT needs to be consistent with
1581 // the value computed using a direct relocation, a non-preemptible ifunc
1582 // may end up with two GOT entries, one in .got.plt that points to the
1583 // address returned by the resolver and is used only by the PLT entry,
1584 // and another in .got that points to the PLT entry and is used by
1585 // GOT-generating relocations.
1586 //
1587 // - The fact that these symbols do not have a fixed value makes them an
1588 // exception to the general rule that a statically linked executable does
1589 // not require any form of dynamic relocation. To handle these relocations
1590 // correctly, the IRELATIVE relocations are stored in an array which a
1591 // statically linked executable's startup code must enumerate using the
1592 // linker-defined symbols __rela?_iplt_{start,end}.
1593 if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1594 return false;
1595 // Skip unreferenced non-preemptible ifunc.
1596 if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC)))
1597 return true;
1598
1599 sym.isInIplt = true;
1600
1601 // Create an Iplt and the associated IRELATIVE relocation pointing to the
1602 // original section/value pairs. For non-GOT non-PLT relocation case below, we
1603 // may alter section/value, so create a copy of the symbol to make
1604 // section/value fixed.
1605 auto *directSym = makeDefined(cast<Defined>(sym));
1606 directSym->allocateAux();
1607 addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel,
1608 *directSym);
1609 sym.allocateAux();
1610 symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1611
1612 if (flags & HAS_DIRECT_RELOC) {
1613 // Change the value to the IPLT and redirect all references to it.
1614 auto &d = cast<Defined>(sym);
1615 d.section = in.iplt.get();
1616 d.value = d.getPltIdx() * target->ipltEntrySize;
1617 d.size = 0;
1618 // It's important to set the symbol type here so that dynamic loaders
1619 // don't try to call the PLT as if it were an ifunc resolver.
1620 d.type = STT_FUNC;
1621
1622 if (flags & NEEDS_GOT)
1623 addGotEntry(sym);
1624 } else if (flags & NEEDS_GOT) {
1625 // Redirect GOT accesses to point to the Igot.
1626 sym.gotInIgot = true;
1627 }
1628 return true;
1629}
1630
1631void elf::postScanRelocations() {
1632 auto fn = [](Symbol &sym) {
1633 auto flags = sym.flags.load(std::memory_order_relaxed);
1634 if (handleNonPreemptibleIfunc(sym, flags))
1635 return;
1636 if (!sym.needsDynReloc())
1637 return;
1638 sym.allocateAux();
1639
1640 if (flags & NEEDS_GOT)
1641 addGotEntry(sym);
1642 if (flags & NEEDS_PLT)
1643 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1644 if (flags & NEEDS_COPY) {
1645 if (sym.isObject()) {
1646 invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym))switch (config->ekind) { case ELF32LEKind: addCopyRelSymbol
<ELF32LE>(cast<SharedSymbol>(sym)); break; case ELF32BEKind
: addCopyRelSymbol<ELF32BE>(cast<SharedSymbol>(sym
)); break; case ELF64LEKind: addCopyRelSymbol<ELF64LE>(
cast<SharedSymbol>(sym)); break; case ELF64BEKind: addCopyRelSymbol
<ELF64BE>(cast<SharedSymbol>(sym)); break; default
: ::llvm::llvm_unreachable_internal("unknown config->ekind"
, "lld/ELF/Relocations.cpp", 1646); }
;
1647 // NEEDS_COPY is cleared for sym and its aliases so that in
1648 // later iterations aliases won't cause redundant copies.
1649 assert(!sym.hasFlag(NEEDS_COPY))(static_cast <bool> (!sym.hasFlag(NEEDS_COPY)) ? void (
0) : __assert_fail ("!sym.hasFlag(NEEDS_COPY)", "lld/ELF/Relocations.cpp"
, 1649, __extension__ __PRETTY_FUNCTION__))
;
1650 } else {
1651 assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT))(static_cast <bool> (sym.isFunc() && sym.hasFlag
(NEEDS_PLT)) ? void (0) : __assert_fail ("sym.isFunc() && sym.hasFlag(NEEDS_PLT)"
, "lld/ELF/Relocations.cpp", 1651, __extension__ __PRETTY_FUNCTION__
))
;
1652 if (!sym.isDefined()) {
1653 replaceWithDefined(sym, *in.plt,
1654 target->pltHeaderSize +
1655 target->pltEntrySize * sym.getPltIdx(),
1656 0);
1657 sym.setFlags(NEEDS_COPY);
1658 if (config->emachine == EM_PPC) {
1659 // PPC32 canonical PLT entries are at the beginning of .glink
1660 cast<Defined>(sym).value = in.plt->headerSize;
1661 in.plt->headerSize += 16;
1662 cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1663 }
1664 }
1665 }
1666 }
1667
1668 if (!sym.isTls())
1669 return;
1670 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1671 GotSection *got = in.got.get();
1672
1673 if (flags & NEEDS_TLSDESC) {
1674 got->addTlsDescEntry(sym);
1675 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1676 target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym,
1677 target->tlsDescRel);
1678 }
1679 if (flags & NEEDS_TLSGD) {
1680 got->addDynTlsEntry(sym);
1681 uint64_t off = got->getGlobalDynOffset(sym);
1682 if (isLocalInExecutable)
1683 // Write one to the GOT slot.
1684 got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym});
1685 else
1686 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off,
1687 sym);
1688
1689 // If the symbol is preemptible we need the dynamic linker to write
1690 // the offset too.
1691 uint64_t offsetOff = off + config->wordsize;
1692 if (sym.isPreemptible)
1693 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff,
1694 sym);
1695 else
1696 got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1697 }
1698 if (flags & NEEDS_TLSGD_TO_IE) {
1699 got->addEntry(sym);
1700 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got,
1701 sym.getGotOffset(), sym);
1702 }
1703 if (flags & NEEDS_GOT_DTPREL) {
1704 got->addEntry(sym);
1705 got->addConstant(
1706 {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1707 }
1708
1709 if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE))
1710 addTpOffsetGotEntry(sym);
1711 };
1712
1713 GotSection *got = in.got.get();
1714 if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) {
1715 static Undefined dummy(nullptr, "", STB_LOCAL, 0, 0);
1716 if (config->shared)
1717 mainPart->relaDyn->addReloc(
1718 {target->tlsModuleIndexRel, got, got->getTlsIndexOff()});
1719 else
1720 got->addConstant(
1721 {R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy});
1722 }
1723
1724 assert(symAux.size() == 1)(static_cast <bool> (symAux.size() == 1) ? void (0) : __assert_fail
("symAux.size() == 1", "lld/ELF/Relocations.cpp", 1724, __extension__
__PRETTY_FUNCTION__))
;
1725 for (Symbol *sym : symtab.getSymbols())
1726 fn(*sym);
1727
1728 // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1729 // handling. They don't need regular PLT.
1730 for (ELFFileBase *file : ctx.objectFiles)
1731 for (Symbol *sym : file->getLocalSymbols())
1732 fn(*sym);
1733}
1734
1735static bool mergeCmp(const InputSection *a, const InputSection *b) {
1736 // std::merge requires a strict weak ordering.
1737 if (a->outSecOff < b->outSecOff)
1738 return true;
1739
1740 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection.
1741 if (a->outSecOff == b->outSecOff && a != b) {
1742 auto *ta = dyn_cast<ThunkSection>(a);
1743 auto *tb = dyn_cast<ThunkSection>(b);
1744
1745 // Check if Thunk is immediately before any specific Target
1746 // InputSection for example Mips LA25 Thunks.
1747 if (ta && ta->getTargetInputSection() == b)
1748 return true;
1749
1750 // Place Thunk Sections without specific targets before
1751 // non-Thunk Sections.
1752 if (ta && !tb && !ta->getTargetInputSection())
1753 return true;
1754 }
1755
1756 return false;
1757}
1758
1759// Call Fn on every executable InputSection accessed via the linker script
1760// InputSectionDescription::Sections.
1761static void forEachInputSectionDescription(
1762 ArrayRef<OutputSection *> outputSections,
1763 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1764 for (OutputSection *os : outputSections) {
1765 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1766 continue;
1767 for (SectionCommand *bc : os->commands)
1768 if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1769 fn(os, isd);
1770 }
1771}
1772
1773// Thunk Implementation
1774//
1775// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1776// of code that the linker inserts inbetween a caller and a callee. The thunks
1777// are added at link time rather than compile time as the decision on whether
1778// a thunk is needed, such as the caller and callee being out of range, can only
1779// be made at link time.
1780//
1781// It is straightforward to tell given the current state of the program when a
1782// thunk is needed for a particular call. The more difficult part is that
1783// the thunk needs to be placed in the program such that the caller can reach
1784// the thunk and the thunk can reach the callee; furthermore, adding thunks to
1785// the program alters addresses, which can mean more thunks etc.
1786//
1787// In lld we have a synthetic ThunkSection that can hold many Thunks.
1788// The decision to have a ThunkSection act as a container means that we can
1789// more easily handle the most common case of a single block of contiguous
1790// Thunks by inserting just a single ThunkSection.
1791//
1792// The implementation of Thunks in lld is split across these areas
1793// Relocations.cpp : Framework for creating and placing thunks
1794// Thunks.cpp : The code generated for each supported thunk
1795// Target.cpp : Target specific hooks that the framework uses to decide when
1796// a thunk is used
1797// Synthetic.cpp : Implementation of ThunkSection
1798// Writer.cpp : Iteratively call framework until no more Thunks added
1799//
1800// Thunk placement requirements:
1801// Mips LA25 thunks. These must be placed immediately before the callee section
1802// We can assume that the caller is in range of the Thunk. These are modelled
1803// by Thunks that return the section they must precede with
1804// getTargetInputSection().
1805//
1806// ARM interworking and range extension thunks. These thunks must be placed
1807// within range of the caller. All implemented ARM thunks can always reach the
1808// callee as they use an indirect jump via a register that has no range
1809// restrictions.
1810//
1811// Thunk placement algorithm:
1812// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1813// getTargetInputSection().
1814//
1815// For thunks that must be placed within range of the caller there are many
1816// possible choices given that the maximum range from the caller is usually
1817// much larger than the average InputSection size. Desirable properties include:
1818// - Maximize reuse of thunks by multiple callers
1819// - Minimize number of ThunkSections to simplify insertion
1820// - Handle impact of already added Thunks on addresses
1821// - Simple to understand and implement
1822//
1823// In lld for the first pass, we pre-create one or more ThunkSections per
1824// InputSectionDescription at Target specific intervals. A ThunkSection is
1825// placed so that the estimated end of the ThunkSection is within range of the
1826// start of the InputSectionDescription or the previous ThunkSection. For
1827// example:
1828// InputSectionDescription
1829// Section 0
1830// ...
1831// Section N
1832// ThunkSection 0
1833// Section N + 1
1834// ...
1835// Section N + K
1836// Thunk Section 1
1837//
1838// The intention is that we can add a Thunk to a ThunkSection that is well
1839// spaced enough to service a number of callers without having to do a lot
1840// of work. An important principle is that it is not an error if a Thunk cannot
1841// be placed in a pre-created ThunkSection; when this happens we create a new
1842// ThunkSection placed next to the caller. This allows us to handle the vast
1843// majority of thunks simply, but also handle rare cases where the branch range
1844// is smaller than the target specific spacing.
1845//
1846// The algorithm is expected to create all the thunks that are needed in a
1847// single pass, with a small number of programs needing a second pass due to
1848// the insertion of thunks in the first pass increasing the offset between
1849// callers and callees that were only just in range.
1850//
1851// A consequence of allowing new ThunkSections to be created outside of the
1852// pre-created ThunkSections is that in rare cases calls to Thunks that were in
1853// range in pass K, are out of range in some pass > K due to the insertion of
1854// more Thunks in between the caller and callee. When this happens we retarget
1855// the relocation back to the original target and create another Thunk.
1856
1857// Remove ThunkSections that are empty, this should only be the initial set
1858// precreated on pass 0.
1859
1860// Insert the Thunks for OutputSection OS into their designated place
1861// in the Sections vector, and recalculate the InputSection output section
1862// offsets.
1863// This may invalidate any output section offsets stored outside of InputSection
1864void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1865 forEachInputSectionDescription(
1866 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1867 if (isd->thunkSections.empty())
1868 return;
1869
1870 // Remove any zero sized precreated Thunks.
1871 llvm::erase_if(isd->thunkSections,
1872 [](const std::pair<ThunkSection *, uint32_t> &ts) {
1873 return ts.first->getSize() == 0;
1874 });
1875
1876 // ISD->ThunkSections contains all created ThunkSections, including
1877 // those inserted in previous passes. Extract the Thunks created this
1878 // pass and order them in ascending outSecOff.
1879 std::vector<ThunkSection *> newThunks;
1880 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1881 if (ts.second == pass)
1882 newThunks.push_back(ts.first);
1883 llvm::stable_sort(newThunks,
1884 [](const ThunkSection *a, const ThunkSection *b) {
1885 return a->outSecOff < b->outSecOff;
1886 });
1887
1888 // Merge sorted vectors of Thunks and InputSections by outSecOff
1889 SmallVector<InputSection *, 0> tmp;
1890 tmp.reserve(isd->sections.size() + newThunks.size());
1891
1892 std::merge(isd->sections.begin(), isd->sections.end(),
1893 newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1894 mergeCmp);
1895
1896 isd->sections = std::move(tmp);
1897 });
1898}
1899
1900static int64_t getPCBias(RelType type) {
1901 if (config->emachine != EM_ARM)
1902 return 0;
1903 switch (type) {
1904 case R_ARM_THM_JUMP19:
1905 case R_ARM_THM_JUMP24:
1906 case R_ARM_THM_CALL:
1907 return 4;
1908 default:
1909 return 8;
1910 }
1911}
1912
1913// Find or create a ThunkSection within the InputSectionDescription (ISD) that
1914// is in range of Src. An ISD maps to a range of InputSections described by a
1915// linker script section pattern such as { .text .text.* }.
1916ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1917 InputSection *isec,
1918 InputSectionDescription *isd,
1919 const Relocation &rel,
1920 uint64_t src) {
1921 // See the comment in getThunk for -pcBias below.
1922 const int64_t pcBias = getPCBias(rel.type);
1923 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1924 ThunkSection *ts = tp.first;
1925 uint64_t tsBase = os->addr + ts->outSecOff - pcBias;
1926 uint64_t tsLimit = tsBase + ts->getSize();
1927 if (target->inBranchRange(rel.type, src,
1928 (src > tsLimit) ? tsBase : tsLimit))
1929 return ts;
1930 }
1931
1932 // No suitable ThunkSection exists. This can happen when there is a branch
1933 // with lower range than the ThunkSection spacing or when there are too
1934 // many Thunks. Create a new ThunkSection as close to the InputSection as
1935 // possible. Error if InputSection is so large we cannot place ThunkSection
1936 // anywhere in Range.
1937 uint64_t thunkSecOff = isec->outSecOff;
1938 if (!target->inBranchRange(rel.type, src,
1939 os->addr + thunkSecOff + rel.addend)) {
1940 thunkSecOff = isec->outSecOff + isec->getSize();
1941 if (!target->inBranchRange(rel.type, src,
1942 os->addr + thunkSecOff + rel.addend))
1943 fatal("InputSection too large for range extension thunk " +
1944 isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1945 }
1946 return addThunkSection(os, isd, thunkSecOff);
1947}
1948
1949// Add a Thunk that needs to be placed in a ThunkSection that immediately
1950// precedes its Target.
1951ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1952 ThunkSection *ts = thunkedSections.lookup(isec);
1953 if (ts)
1954 return ts;
1955
1956 // Find InputSectionRange within Target Output Section (TOS) that the
1957 // InputSection (IS) that we need to precede is in.
1958 OutputSection *tos = isec->getParent();
1959 for (SectionCommand *bc : tos->commands) {
1960 auto *isd = dyn_cast<InputSectionDescription>(bc);
1961 if (!isd || isd->sections.empty())
1962 continue;
1963
1964 InputSection *first = isd->sections.front();
1965 InputSection *last = isd->sections.back();
1966
1967 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1968 continue;
1969
1970 ts = addThunkSection(tos, isd, isec->outSecOff);
1971 thunkedSections[isec] = ts;
1972 return ts;
1973 }
1974
1975 return nullptr;
1976}
1977
1978// Create one or more ThunkSections per OS that can be used to place Thunks.
1979// We attempt to place the ThunkSections using the following desirable
1980// properties:
1981// - Within range of the maximum number of callers
1982// - Minimise the number of ThunkSections
1983//
1984// We follow a simple but conservative heuristic to place ThunkSections at
1985// offsets that are multiples of a Target specific branch range.
1986// For an InputSectionDescription that is smaller than the range, a single
1987// ThunkSection at the end of the range will do.
1988//
1989// For an InputSectionDescription that is more than twice the size of the range,
1990// we place the last ThunkSection at range bytes from the end of the
1991// InputSectionDescription in order to increase the likelihood that the
1992// distance from a thunk to its target will be sufficiently small to
1993// allow for the creation of a short thunk.
1994void ThunkCreator::createInitialThunkSections(
1995 ArrayRef<OutputSection *> outputSections) {
1996 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1997
1998 forEachInputSectionDescription(
1999 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2000 if (isd->sections.empty())
1
Taking false branch
2001 return;
2002
2003 uint32_t isdBegin = isd->sections.front()->outSecOff;
2004 uint32_t isdEnd =
2005 isd->sections.back()->outSecOff + isd->sections.back()->getSize();
2006 uint32_t lastThunkLowerBound = -1;
2007 if (isdEnd - isdBegin > thunkSectionSpacing * 2)
2
Assuming the condition is false
3
Taking false branch
2008 lastThunkLowerBound = isdEnd - thunkSectionSpacing;
2009
2010 uint32_t isecLimit;
4
'isecLimit' declared without an initial value
2011 uint32_t prevIsecLimit = isdBegin;
2012 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
2013
2014 for (const InputSection *isec : isd->sections) {
5
Assuming '__begin2' is equal to '__end2'
2015 isecLimit = isec->outSecOff + isec->getSize();
2016 if (isecLimit > thunkUpperBound) {
2017 addThunkSection(os, isd, prevIsecLimit);
2018 thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
2019 }
2020 if (isecLimit > lastThunkLowerBound)
2021 break;
2022 prevIsecLimit = isecLimit;
2023 }
2024 addThunkSection(os, isd, isecLimit);
6
3rd function call argument is an uninitialized value
2025 });
2026}
2027
2028ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
2029 InputSectionDescription *isd,
2030 uint64_t off) {
2031 auto *ts = make<ThunkSection>(os, off);
2032 ts->partition = os->partition;
2033 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
2034 !isd->sections.empty()) {
2035 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2036 // thunks we disturb the base addresses of sections placed after the thunks
2037 // this makes patches we have generated redundant, and may cause us to
2038 // generate more patches as different instructions are now in sensitive
2039 // locations. When we generate more patches we may force more branches to
2040 // go out of range, causing more thunks to be generated. In pathological
2041 // cases this can cause the address dependent content pass not to converge.
2042 // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2043 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2044 // which means that adding Thunks to the section does not invalidate
2045 // errata patches for following code.
2046 // Rounding up the size to 4KiB has consequences for code-size and can
2047 // trip up linker script defined assertions. For example the linux kernel
2048 // has an assertion that what LLD represents as an InputSectionDescription
2049 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2050 // We use the heuristic of rounding up the size when both of the following
2051 // conditions are true:
2052 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2053 // accounts for the case where no single InputSectionDescription is
2054 // larger than the OutputSection size. This is conservative but simple.
2055 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2056 // any assertion failures that an InputSectionDescription is < 4 KiB
2057 // in size.
2058 uint64_t isdSize = isd->sections.back()->outSecOff +
2059 isd->sections.back()->getSize() -
2060 isd->sections.front()->outSecOff;
2061 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2062 ts->roundUpSizeForErrata = true;
2063 }
2064 isd->thunkSections.push_back({ts, pass});
2065 return ts;
2066}
2067
2068static bool isThunkSectionCompatible(InputSection *source,
2069 SectionBase *target) {
2070 // We can't reuse thunks in different loadable partitions because they might
2071 // not be loaded. But partition 1 (the main partition) will always be loaded.
2072 if (source->partition != target->partition)
2073 return target->partition == 1;
2074 return true;
2075}
2076
2077std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2078 Relocation &rel, uint64_t src) {
2079 std::vector<Thunk *> *thunkVec = nullptr;
2080 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2081 // out in the relocation addend. We compensate for the PC bias so that
2082 // an Arm and Thumb relocation to the same destination get the same keyAddend,
2083 // which is usually 0.
2084 const int64_t pcBias = getPCBias(rel.type);
2085 const int64_t keyAddend = rel.addend + pcBias;
2086
2087 // We use a ((section, offset), addend) pair to find the thunk position if
2088 // possible so that we create only one thunk for aliased symbols or ICFed
2089 // sections. There may be multiple relocations sharing the same (section,
2090 // offset + addend) pair. We may revert the relocation back to its original
2091 // non-Thunk target, so we cannot fold offset + addend.
2092 if (auto *d = dyn_cast<Defined>(rel.sym))
2093 if (!d->isInPlt() && d->section)
2094 thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2095 keyAddend}];
2096 if (!thunkVec)
2097 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2098
2099 // Check existing Thunks for Sym to see if they can be reused
2100 for (Thunk *t : *thunkVec)
2101 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2102 t->isCompatibleWith(*isec, rel) &&
2103 target->inBranchRange(rel.type, src,
2104 t->getThunkTargetSym()->getVA(-pcBias)))
2105 return std::make_pair(t, false);
2106
2107 // No existing compatible Thunk in range, create a new one
2108 Thunk *t = addThunk(*isec, rel);
2109 thunkVec->push_back(t);
2110 return std::make_pair(t, true);
2111}
2112
2113// Return true if the relocation target is an in range Thunk.
2114// Return false if the relocation is not to a Thunk. If the relocation target
2115// was originally to a Thunk, but is no longer in range we revert the
2116// relocation back to its original non-Thunk target.
2117bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2118 if (Thunk *t = thunks.lookup(rel.sym)) {
2119 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2120 return true;
2121 rel.sym = &t->destination;
2122 rel.addend = t->addend;
2123 if (rel.sym->isInPlt())
2124 rel.expr = toPlt(rel.expr);
2125 }
2126 return false;
2127}
2128
2129// Process all relocations from the InputSections that have been assigned
2130// to InputSectionDescriptions and redirect through Thunks if needed. The
2131// function should be called iteratively until it returns false.
2132//
2133// PreConditions:
2134// All InputSections that may need a Thunk are reachable from
2135// OutputSectionCommands.
2136//
2137// All OutputSections have an address and all InputSections have an offset
2138// within the OutputSection.
2139//
2140// The offsets between caller (relocation place) and callee
2141// (relocation target) will not be modified outside of createThunks().
2142//
2143// PostConditions:
2144// If return value is true then ThunkSections have been inserted into
2145// OutputSections. All relocations that needed a Thunk based on the information
2146// available to createThunks() on entry have been redirected to a Thunk. Note
2147// that adding Thunks changes offsets between caller and callee so more Thunks
2148// may be required.
2149//
2150// If return value is false then no more Thunks are needed, and createThunks has
2151// made no changes. If the target requires range extension thunks, currently
2152// ARM, then any future change in offset between caller and callee risks a
2153// relocation out of range error.
2154bool ThunkCreator::createThunks(uint32_t pass,
2155 ArrayRef<OutputSection *> outputSections) {
2156 this->pass = pass;
2157 bool addressesChanged = false;
2158
2159 if (pass == 0 && target->getThunkSectionSpacing())
2160 createInitialThunkSections(outputSections);
2161
2162 // Create all the Thunks and insert them into synthetic ThunkSections. The
2163 // ThunkSections are later inserted back into InputSectionDescriptions.
2164 // We separate the creation of ThunkSections from the insertion of the
2165 // ThunkSections as ThunkSections are not always inserted into the same
2166 // InputSectionDescription as the caller.
2167 forEachInputSectionDescription(
2168 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2169 for (InputSection *isec : isd->sections)
2170 for (Relocation &rel : isec->relocs()) {
2171 uint64_t src = isec->getVA(rel.offset);
2172
2173 // If we are a relocation to an existing Thunk, check if it is
2174 // still in range. If not then Rel will be altered to point to its
2175 // original target so another Thunk can be generated.
2176 if (pass > 0 && normalizeExistingThunk(rel, src))
2177 continue;
2178
2179 if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2180 *rel.sym, rel.addend))
2181 continue;
2182
2183 Thunk *t;
2184 bool isNew;
2185 std::tie(t, isNew) = getThunk(isec, rel, src);
2186
2187 if (isNew) {
2188 // Find or create a ThunkSection for the new Thunk
2189 ThunkSection *ts;
2190 if (auto *tis = t->getTargetInputSection())
2191 ts = getISThunkSec(tis);
2192 else
2193 ts = getISDThunkSec(os, isec, isd, rel, src);
2194 ts->addThunk(t);
2195 thunks[t->getThunkTargetSym()] = t;
2196 }
2197
2198 // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2199 rel.sym = t->getThunkTargetSym();
2200 rel.expr = fromPlt(rel.expr);
2201
2202 // On AArch64 and PPC, a jump/call relocation may be encoded as
2203 // STT_SECTION + non-zero addend, clear the addend after
2204 // redirection.
2205 if (config->emachine != EM_MIPS)
2206 rel.addend = -getPCBias(rel.type);
2207 }
2208
2209 for (auto &p : isd->thunkSections)
2210 addressesChanged |= p.first->assignOffsets();
2211 });
2212
2213 for (auto &p : thunkedSections)
2214 addressesChanged |= p.second->assignOffsets();
2215
2216 // Merge all created synthetic ThunkSections back into OutputSection
2217 mergeThunks(outputSections);
2218 return addressesChanged;
2219}
2220
2221// The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2222// hexagonNeedsTLSSymbol scans for relocations would require a call to
2223// __tls_get_addr.
2224// hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2225bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2226 bool needTlsSymbol = false;
2227 forEachInputSectionDescription(
2228 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2229 for (InputSection *isec : isd->sections)
2230 for (Relocation &rel : isec->relocs())
2231 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2232 needTlsSymbol = true;
2233 return;
2234 }
2235 });
2236 return needTlsSymbol;
2237}
2238
2239void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2240 Symbol *sym = symtab.find("__tls_get_addr");
2241 if (!sym)
2242 return;
2243 bool needEntry = true;
2244 forEachInputSectionDescription(
2245 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2246 for (InputSection *isec : isd->sections)
2247 for (Relocation &rel : isec->relocs())
2248 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2249 if (needEntry) {
2250 sym->allocateAux();
2251 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2252 *sym);
2253 needEntry = false;
2254 }
2255 rel.sym = sym;
2256 }
2257 });
2258}
2259
2260template void elf::scanRelocations<ELF32LE>();
2261template void elf::scanRelocations<ELF32BE>();
2262template void elf::scanRelocations<ELF64LE>();
2263template void elf::scanRelocations<ELF64BE>();