Bug Summary

File:lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
Warning:line 338, column 11
2nd function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name RuntimeDyld.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/lib/ExecutionEngine/RuntimeDyld -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp -faddrsig
1//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ExecutionEngine/RuntimeDyld.h"
15#include "RuntimeDyldCOFF.h"
16#include "RuntimeDyldCheckerImpl.h"
17#include "RuntimeDyldELF.h"
18#include "RuntimeDyldImpl.h"
19#include "RuntimeDyldMachO.h"
20#include "llvm/Object/COFF.h"
21#include "llvm/Object/ELFObjectFile.h"
22#include "llvm/Support/MSVCErrorWorkarounds.h"
23#include "llvm/Support/ManagedStatic.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MutexGuard.h"
26
27#include <future>
28
29using namespace llvm;
30using namespace llvm::object;
31
32#define DEBUG_TYPE"dyld" "dyld"
33
34namespace {
35
36enum RuntimeDyldErrorCode {
37 GenericRTDyldError = 1
38};
39
40// FIXME: This class is only here to support the transition to llvm::Error. It
41// will be removed once this transition is complete. Clients should prefer to
42// deal with the Error value directly, rather than converting to error_code.
43class RuntimeDyldErrorCategory : public std::error_category {
44public:
45 const char *name() const noexcept override { return "runtimedyld"; }
46
47 std::string message(int Condition) const override {
48 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
49 case GenericRTDyldError: return "Generic RuntimeDyld error";
50 }
51 llvm_unreachable("Unrecognized RuntimeDyldErrorCode")::llvm::llvm_unreachable_internal("Unrecognized RuntimeDyldErrorCode"
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 51)
;
52 }
53};
54
55static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
56
57}
58
59char RuntimeDyldError::ID = 0;
60
61void RuntimeDyldError::log(raw_ostream &OS) const {
62 OS << ErrMsg << "\n";
63}
64
65std::error_code RuntimeDyldError::convertToErrorCode() const {
66 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
67}
68
69// Empty out-of-line virtual destructor as the key function.
70RuntimeDyldImpl::~RuntimeDyldImpl() {}
71
72// Pin LoadedObjectInfo's vtables to this file.
73void RuntimeDyld::LoadedObjectInfo::anchor() {}
74
75namespace llvm {
76
77void RuntimeDyldImpl::registerEHFrames() {}
78
79void RuntimeDyldImpl::deregisterEHFrames() {
80 MemMgr.deregisterEHFrames();
81}
82
83#ifndef NDEBUG
84static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
85 dbgs() << "----- Contents of section " << S.getName() << " " << State
86 << " -----";
87
88 if (S.getAddress() == nullptr) {
89 dbgs() << "\n <section not emitted>\n";
90 return;
91 }
92
93 const unsigned ColsPerRow = 16;
94
95 uint8_t *DataAddr = S.getAddress();
96 uint64_t LoadAddr = S.getLoadAddress();
97
98 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
99 unsigned BytesRemaining = S.getSize();
100
101 if (StartPadding) {
102 dbgs() << "\n" << format("0x%016" PRIx64"l" "x",
103 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
104 while (StartPadding--)
105 dbgs() << " ";
106 }
107
108 while (BytesRemaining > 0) {
109 if ((LoadAddr & (ColsPerRow - 1)) == 0)
110 dbgs() << "\n" << format("0x%016" PRIx64"l" "x", LoadAddr) << ":";
111
112 dbgs() << " " << format("%02x", *DataAddr);
113
114 ++DataAddr;
115 ++LoadAddr;
116 --BytesRemaining;
117 }
118
119 dbgs() << "\n";
120}
121#endif
122
123// Resolve the relocations for all symbols we currently know about.
124void RuntimeDyldImpl::resolveRelocations() {
125 MutexGuard locked(lock);
126
127 // Print out the sections prior to relocation.
128 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "before relocations");; } } while
(false)
129 dumpSectionMemory(Sections[i], "before relocations");)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "before relocations");; } } while
(false)
;
130
131 // First, resolve relocations associated with external symbols.
132 if (auto Err = resolveExternalSymbols()) {
133 HasError = true;
134 ErrorStr = toString(std::move(Err));
135 }
136
137 resolveLocalRelocations();
138
139 // Print out sections after relocation.
140 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "after relocations");; } } while
(false)
141 dumpSectionMemory(Sections[i], "after relocations");)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "after relocations");; } } while
(false)
;
142}
143
144void RuntimeDyldImpl::resolveLocalRelocations() {
145 // Iterate over all outstanding relocations
146 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
147 // The Section here (Sections[i]) refers to the section in which the
148 // symbol for the relocation is located. The SectionID in the relocation
149 // entry provides the section to which the relocation will be applied.
150 int Idx = it->first;
151 uint64_t Addr = Sections[Idx].getLoadAddress();
152 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Section #"
<< Idx << "\t" << format("%p", (uintptr_t)
Addr) << "\n"; } } while (false)
153 << format("%p", (uintptr_t)Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Section #"
<< Idx << "\t" << format("%p", (uintptr_t)
Addr) << "\n"; } } while (false)
;
154 resolveRelocationList(it->second, Addr);
155 }
156 Relocations.clear();
157}
158
159void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
160 uint64_t TargetAddress) {
161 MutexGuard locked(lock);
162 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
163 if (Sections[i].getAddress() == LocalAddress) {
164 reassignSectionAddress(i, TargetAddress);
165 return;
166 }
167 }
168 llvm_unreachable("Attempting to remap address of unknown section!")::llvm::llvm_unreachable_internal("Attempting to remap address of unknown section!"
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 168)
;
169}
170
171static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
172 uint64_t &Result) {
173 Expected<uint64_t> AddressOrErr = Sym.getAddress();
174 if (!AddressOrErr)
22
Taking true branch
175 return AddressOrErr.takeError();
23
Returning without writing to 'Result'
176 Result = *AddressOrErr - Sec.getAddress();
177 return Error::success();
178}
179
180Expected<RuntimeDyldImpl::ObjSectionToIDMap>
181RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
182 MutexGuard locked(lock);
183
184 // Save information about our target
185 Arch = (Triple::ArchType)Obj.getArch();
186 IsTargetLittleEndian = Obj.isLittleEndian();
187 setMipsABI(Obj);
188
189 // Compute the memory size required to load all sections to be loaded
190 // and pass this information to the memory manager
191 if (MemMgr.needsToReserveAllocationSpace()) {
1
Assuming the condition is false
2
Taking false branch
192 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
193 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
194 if (auto Err = computeTotalAllocSize(Obj,
195 CodeSize, CodeAlign,
196 RODataSize, RODataAlign,
197 RWDataSize, RWDataAlign))
198 return std::move(Err);
199 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
200 RWDataSize, RWDataAlign);
201 }
202
203 // Used sections from the object file
204 ObjSectionToIDMap LocalSections;
205
206 // Common symbols requiring allocation, with their sizes and alignments
207 CommonSymbolList CommonSymbolsToAllocate;
208
209 uint64_t CommonSize = 0;
210 uint32_t CommonAlign = 0;
211
212 // First, collect all weak and common symbols. We need to know if stronger
213 // definitions occur elsewhere.
214 JITSymbolResolver::LookupSet ResponsibilitySet;
215 {
216 JITSymbolResolver::LookupSet Symbols;
217 for (auto &Sym : Obj.symbols()) {
218 uint32_t Flags = Sym.getFlags();
219 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
220 // Get symbol name.
221 if (auto NameOrErr = Sym.getName())
222 Symbols.insert(*NameOrErr);
223 else
224 return NameOrErr.takeError();
225 }
226 }
227
228 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
3
Taking true branch
229 ResponsibilitySet = std::move(*ResultOrErr);
230 else
231 return ResultOrErr.takeError();
232 }
233
234 // Parse symbols
235 LLVM_DEBUG(dbgs() << "Parse symbols:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Parse symbols:\n"; } } while (false
)
;
236 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
4
Loop condition is true. Entering loop body
237 ++I) {
238 uint32_t Flags = I->getFlags();
239
240 // Skip undefined symbols.
241 if (Flags & SymbolRef::SF_Undefined)
5
Assuming the condition is false
6
Taking false branch
242 continue;
243
244 // Get the symbol type.
245 object::SymbolRef::Type SymType;
246 if (auto SymTypeOrErr = I->getType())
7
Taking true branch
247 SymType = *SymTypeOrErr;
248 else
249 return SymTypeOrErr.takeError();
250
251 // Get symbol name.
252 StringRef Name;
253 if (auto NameOrErr = I->getName())
8
Taking true branch
254 Name = *NameOrErr;
255 else
256 return NameOrErr.takeError();
257
258 // Compute JIT symbol flags.
259 auto JITSymFlags = getJITSymbolFlags(*I);
260 if (!JITSymFlags)
9
Taking false branch
261 return JITSymFlags.takeError();
262
263 // If this is a weak definition, check to see if there's a strong one.
264 // If there is, skip this symbol (we won't be providing it: the strong
265 // definition will). If there's no strong definition, make this definition
266 // strong.
267 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
10
Taking false branch
268 // First check whether there's already a definition in this instance.
269 if (GlobalSymbolTable.count(Name))
270 continue;
271
272 // If we're not responsible for this symbol, skip it.
273 if (!ResponsibilitySet.count(Name))
274 continue;
275
276 // Otherwise update the flags on the symbol to make this definition
277 // strong.
278 if (JITSymFlags->isWeak())
279 *JITSymFlags &= ~JITSymbolFlags::Weak;
280 if (JITSymFlags->isCommon()) {
281 *JITSymFlags &= ~JITSymbolFlags::Common;
282 uint32_t Align = I->getAlignment();
283 uint64_t Size = I->getCommonSize();
284 if (!CommonAlign)
285 CommonAlign = Align;
286 CommonSize = alignTo(CommonSize, Align) + Size;
287 CommonSymbolsToAllocate.push_back(*I);
288 }
289 }
290
291 if (Flags & SymbolRef::SF_Absolute &&
11
Assuming the condition is false
292 SymType != object::SymbolRef::ST_File) {
293 uint64_t Addr = 0;
294 if (auto AddrOrErr = I->getAddress())
295 Addr = *AddrOrErr;
296 else
297 return AddrOrErr.takeError();
298
299 unsigned SectionID = AbsoluteSymbolSection;
300
301 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
302 << " SID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
303 << " Offset: " << format("%p", (uintptr_t)Addr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
304 << " flags: " << Flags << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
;
305 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
306 } else if (SymType == object::SymbolRef::ST_Function ||
12
Assuming 'SymType' is not equal to ST_Function
16
Taking true branch
307 SymType == object::SymbolRef::ST_Data ||
13
Assuming 'SymType' is not equal to ST_Data
308 SymType == object::SymbolRef::ST_Unknown ||
14
Assuming 'SymType' is not equal to ST_Unknown
309 SymType == object::SymbolRef::ST_Other) {
15
Assuming 'SymType' is equal to ST_Other
310
311 section_iterator SI = Obj.section_end();
312 if (auto SIOrErr = I->getSection())
17
Taking true branch
313 SI = *SIOrErr;
314 else
315 return SIOrErr.takeError();
316
317 if (SI == Obj.section_end())
18
Assuming the condition is false
19
Taking false branch
318 continue;
319
320 // Get symbol offset.
321 uint64_t SectOffset;
20
'SectOffset' declared without an initial value
322 if (auto Err = getOffset(*I, *SI, SectOffset))
21
Calling 'getOffset'
24
Returning from 'getOffset'
25
Taking false branch
323 return std::move(Err);
324
325 bool IsCode = SI->isText();
326 unsigned SectionID;
327 if (auto SectionIDOrErr =
26
Taking true branch
328 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
329 SectionID = *SectionIDOrErr;
330 else
331 return SectionIDOrErr.takeError();
332
333 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
334 << " SID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
335 << " Offset: " << format("%p", (uintptr_t)SectOffset)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
336 << " flags: " << Flags << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
;
337 GlobalSymbolTable[Name] =
338 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
27
2nd function call argument is an uninitialized value
339 }
340 }
341
342 // Allocate common symbols
343 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
344 CommonAlign))
345 return std::move(Err);
346
347 // Parse and process relocations
348 LLVM_DEBUG(dbgs() << "Parse relocations:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Parse relocations:\n"; } } while
(false)
;
349 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
350 SI != SE; ++SI) {
351 StubMap Stubs;
352 section_iterator RelocatedSection = SI->getRelocatedSection();
353
354 if (RelocatedSection == SE)
355 continue;
356
357 relocation_iterator I = SI->relocation_begin();
358 relocation_iterator E = SI->relocation_end();
359
360 if (I == E && !ProcessAllSections)
361 continue;
362
363 bool IsCode = RelocatedSection->isText();
364 unsigned SectionID = 0;
365 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
366 LocalSections))
367 SectionID = *SectionIDOrErr;
368 else
369 return SectionIDOrErr.takeError();
370
371 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tSectionID: " << SectionID
<< "\n"; } } while (false)
;
372
373 for (; I != E;)
374 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
375 I = *IOrErr;
376 else
377 return IOrErr.takeError();
378
379 // If there is an attached checker, notify it about the stubs for this
380 // section so that they can be verified.
381 if (Checker)
382 Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
383 }
384
385 // Give the subclasses a chance to tie-up any loose ends.
386 if (auto Err = finalizeLoad(Obj, LocalSections))
387 return std::move(Err);
388
389// for (auto E : LocalSections)
390// llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
391
392 return LocalSections;
393}
394
395// A helper method for computeTotalAllocSize.
396// Computes the memory size required to allocate sections with the given sizes,
397// assuming that all sections are allocated with the given alignment
398static uint64_t
399computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
400 uint64_t Alignment) {
401 uint64_t TotalSize = 0;
402 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
403 uint64_t AlignedSize =
404 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
405 TotalSize += AlignedSize;
406 }
407 return TotalSize;
408}
409
410static bool isRequiredForExecution(const SectionRef Section) {
411 const ObjectFile *Obj = Section.getObject();
412 if (isa<object::ELFObjectFileBase>(Obj))
413 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
414 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
415 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
416 // Avoid loading zero-sized COFF sections.
417 // In PE files, VirtualSize gives the section size, and SizeOfRawData
418 // may be zero for sections with content. In Obj files, SizeOfRawData
419 // gives the section size, and VirtualSize is always zero. Hence
420 // the need to check for both cases below.
421 bool HasContent =
422 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
423 bool IsDiscardable =
424 CoffSection->Characteristics &
425 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
426 return HasContent && !IsDiscardable;
427 }
428
429 assert(isa<MachOObjectFile>(Obj))((isa<MachOObjectFile>(Obj)) ? static_cast<void> (
0) : __assert_fail ("isa<MachOObjectFile>(Obj)", "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 429, __PRETTY_FUNCTION__))
;
430 return true;
431}
432
433static bool isReadOnlyData(const SectionRef Section) {
434 const ObjectFile *Obj = Section.getObject();
435 if (isa<object::ELFObjectFileBase>(Obj))
436 return !(ELFSectionRef(Section).getFlags() &
437 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
438 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
439 return ((COFFObj->getCOFFSection(Section)->Characteristics &
440 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
441 | COFF::IMAGE_SCN_MEM_READ
442 | COFF::IMAGE_SCN_MEM_WRITE))
443 ==
444 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
445 | COFF::IMAGE_SCN_MEM_READ));
446
447 assert(isa<MachOObjectFile>(Obj))((isa<MachOObjectFile>(Obj)) ? static_cast<void> (
0) : __assert_fail ("isa<MachOObjectFile>(Obj)", "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 447, __PRETTY_FUNCTION__))
;
448 return false;
449}
450
451static bool isZeroInit(const SectionRef Section) {
452 const ObjectFile *Obj = Section.getObject();
453 if (isa<object::ELFObjectFileBase>(Obj))
454 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
455 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
456 return COFFObj->getCOFFSection(Section)->Characteristics &
457 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
458
459 auto *MachO = cast<MachOObjectFile>(Obj);
460 unsigned SectionType = MachO->getSectionType(Section);
461 return SectionType == MachO::S_ZEROFILL ||
462 SectionType == MachO::S_GB_ZEROFILL;
463}
464
465// Compute an upper bound of the memory size that is required to load all
466// sections
467Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
468 uint64_t &CodeSize,
469 uint32_t &CodeAlign,
470 uint64_t &RODataSize,
471 uint32_t &RODataAlign,
472 uint64_t &RWDataSize,
473 uint32_t &RWDataAlign) {
474 // Compute the size of all sections required for execution
475 std::vector<uint64_t> CodeSectionSizes;
476 std::vector<uint64_t> ROSectionSizes;
477 std::vector<uint64_t> RWSectionSizes;
478
479 // Collect sizes of all sections to be loaded;
480 // also determine the max alignment of all sections
481 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
482 SI != SE; ++SI) {
483 const SectionRef &Section = *SI;
484
485 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
486
487 // Consider only the sections that are required to be loaded for execution
488 if (IsRequired) {
489 uint64_t DataSize = Section.getSize();
490 uint64_t Alignment64 = Section.getAlignment();
491 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
492 bool IsCode = Section.isText();
493 bool IsReadOnly = isReadOnlyData(Section);
494
495 StringRef Name;
496 if (auto EC = Section.getName(Name))
497 return errorCodeToError(EC);
498
499 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
500 uint64_t SectionSize = DataSize + StubBufSize;
501
502 // The .eh_frame section (at least on Linux) needs an extra four bytes
503 // padded
504 // with zeroes added at the end. For MachO objects, this section has a
505 // slightly different name, so this won't have any effect for MachO
506 // objects.
507 if (Name == ".eh_frame")
508 SectionSize += 4;
509
510 if (!SectionSize)
511 SectionSize = 1;
512
513 if (IsCode) {
514 CodeAlign = std::max(CodeAlign, Alignment);
515 CodeSectionSizes.push_back(SectionSize);
516 } else if (IsReadOnly) {
517 RODataAlign = std::max(RODataAlign, Alignment);
518 ROSectionSizes.push_back(SectionSize);
519 } else {
520 RWDataAlign = std::max(RWDataAlign, Alignment);
521 RWSectionSizes.push_back(SectionSize);
522 }
523 }
524 }
525
526 // Compute Global Offset Table size. If it is not zero we
527 // also update alignment, which is equal to a size of a
528 // single GOT entry.
529 if (unsigned GotSize = computeGOTSize(Obj)) {
530 RWSectionSizes.push_back(GotSize);
531 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
532 }
533
534 // Compute the size of all common symbols
535 uint64_t CommonSize = 0;
536 uint32_t CommonAlign = 1;
537 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
538 ++I) {
539 uint32_t Flags = I->getFlags();
540 if (Flags & SymbolRef::SF_Common) {
541 // Add the common symbols to a list. We'll allocate them all below.
542 uint64_t Size = I->getCommonSize();
543 uint32_t Align = I->getAlignment();
544 // If this is the first common symbol, use its alignment as the alignment
545 // for the common symbols section.
546 if (CommonSize == 0)
547 CommonAlign = Align;
548 CommonSize = alignTo(CommonSize, Align) + Size;
549 }
550 }
551 if (CommonSize != 0) {
552 RWSectionSizes.push_back(CommonSize);
553 RWDataAlign = std::max(RWDataAlign, CommonAlign);
554 }
555
556 // Compute the required allocation space for each different type of sections
557 // (code, read-only data, read-write data) assuming that all sections are
558 // allocated with the max alignment. Note that we cannot compute with the
559 // individual alignments of the sections, because then the required size
560 // depends on the order, in which the sections are allocated.
561 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
562 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
563 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
564
565 return Error::success();
566}
567
568// compute GOT size
569unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
570 size_t GotEntrySize = getGOTEntrySize();
571 if (!GotEntrySize)
572 return 0;
573
574 size_t GotSize = 0;
575 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
576 SI != SE; ++SI) {
577
578 for (const RelocationRef &Reloc : SI->relocations())
579 if (relocationNeedsGot(Reloc))
580 GotSize += GotEntrySize;
581 }
582
583 return GotSize;
584}
585
586// compute stub buffer size for the given section
587unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
588 const SectionRef &Section) {
589 unsigned StubSize = getMaxStubSize();
590 if (StubSize == 0) {
591 return 0;
592 }
593 // FIXME: this is an inefficient way to handle this. We should computed the
594 // necessary section allocation size in loadObject by walking all the sections
595 // once.
596 unsigned StubBufSize = 0;
597 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
598 SI != SE; ++SI) {
599 section_iterator RelSecI = SI->getRelocatedSection();
600 if (!(RelSecI == Section))
601 continue;
602
603 for (const RelocationRef &Reloc : SI->relocations())
604 if (relocationNeedsStub(Reloc))
605 StubBufSize += StubSize;
606 }
607
608 // Get section data size and alignment
609 uint64_t DataSize = Section.getSize();
610 uint64_t Alignment64 = Section.getAlignment();
611
612 // Add stubbuf size alignment
613 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
614 unsigned StubAlignment = getStubAlignment();
615 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
616 if (StubAlignment > EndAlignment)
617 StubBufSize += StubAlignment - EndAlignment;
618 return StubBufSize;
619}
620
621uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
622 unsigned Size) const {
623 uint64_t Result = 0;
624 if (IsTargetLittleEndian) {
625 Src += Size - 1;
626 while (Size--)
627 Result = (Result << 8) | *Src--;
628 } else
629 while (Size--)
630 Result = (Result << 8) | *Src++;
631
632 return Result;
633}
634
635void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
636 unsigned Size) const {
637 if (IsTargetLittleEndian) {
638 while (Size--) {
639 *Dst++ = Value & 0xFF;
640 Value >>= 8;
641 }
642 } else {
643 Dst += Size - 1;
644 while (Size--) {
645 *Dst-- = Value & 0xFF;
646 Value >>= 8;
647 }
648 }
649}
650
651Expected<JITSymbolFlags>
652RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
653 return JITSymbolFlags::fromObjectSymbol(SR);
654}
655
656Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
657 CommonSymbolList &SymbolsToAllocate,
658 uint64_t CommonSize,
659 uint32_t CommonAlign) {
660 if (SymbolsToAllocate.empty())
661 return Error::success();
662
663 // Allocate memory for the section
664 unsigned SectionID = Sections.size();
665 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
666 "<common symbols>", false);
667 if (!Addr)
668 report_fatal_error("Unable to allocate memory for common symbols!");
669 uint64_t Offset = 0;
670 Sections.push_back(
671 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
672 memset(Addr, 0, CommonSize);
673
674 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
675 << " new addr: " << format("%p", Addr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
676 << " DataSize: " << CommonSize << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
;
677
678 // Assign the address of each symbol
679 for (auto &Sym : SymbolsToAllocate) {
680 uint32_t Align = Sym.getAlignment();
681 uint64_t Size = Sym.getCommonSize();
682 StringRef Name;
683 if (auto NameOrErr = Sym.getName())
684 Name = *NameOrErr;
685 else
686 return NameOrErr.takeError();
687 if (Align) {
688 // This symbol has an alignment requirement.
689 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
690 Addr += AlignOffset;
691 Offset += AlignOffset;
692 }
693 auto JITSymFlags = getJITSymbolFlags(Sym);
694
695 if (!JITSymFlags)
696 return JITSymFlags.takeError();
697
698 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Allocating common symbol " <<
Name << " address " << format("%p", Addr) <<
"\n"; } } while (false)
699 << format("%p", Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Allocating common symbol " <<
Name << " address " << format("%p", Addr) <<
"\n"; } } while (false)
;
700 GlobalSymbolTable[Name] =
701 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
702 Offset += Size;
703 Addr += Size;
704 }
705
706 if (Checker)
707 Checker->registerSection(Obj.getFileName(), SectionID);
708
709 return Error::success();
710}
711
712Expected<unsigned>
713RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
714 const SectionRef &Section,
715 bool IsCode) {
716 StringRef data;
717 uint64_t Alignment64 = Section.getAlignment();
718
719 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
720 unsigned PaddingSize = 0;
721 unsigned StubBufSize = 0;
722 bool IsRequired = isRequiredForExecution(Section);
723 bool IsVirtual = Section.isVirtual();
724 bool IsZeroInit = isZeroInit(Section);
725 bool IsReadOnly = isReadOnlyData(Section);
726 uint64_t DataSize = Section.getSize();
727
728 StringRef Name;
729 if (auto EC = Section.getName(Name))
730 return errorCodeToError(EC);
731
732 StubBufSize = computeSectionStubBufSize(Obj, Section);
733
734 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
735 // with zeroes added at the end. For MachO objects, this section has a
736 // slightly different name, so this won't have any effect for MachO objects.
737 if (Name == ".eh_frame")
738 PaddingSize = 4;
739
740 uintptr_t Allocate;
741 unsigned SectionID = Sections.size();
742 uint8_t *Addr;
743 const char *pData = nullptr;
744
745 // If this section contains any bits (i.e. isn't a virtual or bss section),
746 // grab a reference to them.
747 if (!IsVirtual && !IsZeroInit) {
748 // In either case, set the location of the unrelocated section in memory,
749 // since we still process relocations for it even if we're not applying them.
750 if (auto EC = Section.getContents(data))
751 return errorCodeToError(EC);
752 pData = data.data();
753 }
754
755 // Code section alignment needs to be at least as high as stub alignment or
756 // padding calculations may by incorrect when the section is remapped to a
757 // higher alignment.
758 if (IsCode) {
759 Alignment = std::max(Alignment, getStubAlignment());
760 if (StubBufSize > 0)
761 PaddingSize += getStubAlignment() - 1;
762 }
763
764 // Some sections, such as debug info, don't need to be loaded for execution.
765 // Process those only if explicitly requested.
766 if (IsRequired || ProcessAllSections) {
767 Allocate = DataSize + PaddingSize + StubBufSize;
768 if (!Allocate)
769 Allocate = 1;
770 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
771 Name)
772 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
773 Name, IsReadOnly);
774 if (!Addr)
775 report_fatal_error("Unable to allocate section memory!");
776
777 // Zero-initialize or copy the data from the image
778 if (IsZeroInit || IsVirtual)
779 memset(Addr, 0, DataSize);
780 else
781 memcpy(Addr, pData, DataSize);
782
783 // Fill in any extra bytes we allocated for padding
784 if (PaddingSize != 0) {
785 memset(Addr + DataSize, 0, PaddingSize);
786 // Update the DataSize variable to include padding.
787 DataSize += PaddingSize;
788
789 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
790 // have been increased above to account for this).
791 if (StubBufSize > 0)
792 DataSize &= ~(getStubAlignment() - 1);
793 }
794
795 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
796 << Name << " obj addr: " << format("%p", pData)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
797 << " new addr: " << format("%p", Addr) << " DataSize: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
798 << DataSize << " StubBufSize: " << StubBufSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
799 << " Allocate: " << Allocate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
;
800 } else {
801 // Even if we didn't load the section, we need to record an entry for it
802 // to handle later processing (and by 'handle' I mean don't do anything
803 // with these sections).
804 Allocate = 0;
805 Addr = nullptr;
806 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
807 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
808 << " obj addr: " << format("%p", data.data()) << " new addr: 0"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
809 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
810 << " Allocate: " << Allocate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
;
811 }
812
813 Sections.push_back(
814 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
815
816 // Debug info sections are linked as if their load address was zero
817 if (!IsRequired)
818 Sections.back().setLoadAddress(0);
819
820 if (Checker)
821 Checker->registerSection(Obj.getFileName(), SectionID);
822
823 return SectionID;
824}
825
826Expected<unsigned>
827RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
828 const SectionRef &Section,
829 bool IsCode,
830 ObjSectionToIDMap &LocalSections) {
831
832 unsigned SectionID = 0;
833 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
834 if (i != LocalSections.end())
835 SectionID = i->second;
836 else {
837 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
838 SectionID = *SectionIDOrErr;
839 else
840 return SectionIDOrErr.takeError();
841 LocalSections[Section] = SectionID;
842 }
843 return SectionID;
844}
845
846void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
847 unsigned SectionID) {
848 Relocations[SectionID].push_back(RE);
849}
850
851void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
852 StringRef SymbolName) {
853 // Relocation by symbol. If the symbol is found in the global symbol table,
854 // create an appropriate section relocation. Otherwise, add it to
855 // ExternalSymbolRelocations.
856 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
857 if (Loc == GlobalSymbolTable.end()) {
858 ExternalSymbolRelocations[SymbolName].push_back(RE);
859 } else {
860 // Copy the RE since we want to modify its addend.
861 RelocationEntry RECopy = RE;
862 const auto &SymInfo = Loc->second;
863 RECopy.Addend += SymInfo.getOffset();
864 Relocations[SymInfo.getSectionID()].push_back(RECopy);
865 }
866}
867
868uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
869 unsigned AbiVariant) {
870 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
871 // This stub has to be able to access the full address space,
872 // since symbol lookup won't necessarily find a handy, in-range,
873 // PLT stub for functions which could be anywhere.
874 // Stub can use ip0 (== x16) to calculate address
875 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
876 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
877 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
878 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
879 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
880
881 return Addr;
882 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
883 // TODO: There is only ARM far stub now. We should add the Thumb stub,
884 // and stubs for branches Thumb - ARM and ARM - Thumb.
885 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
886 return Addr + 4;
887 } else if (IsMipsO32ABI || IsMipsN32ABI) {
888 // 0: 3c190000 lui t9,%hi(addr).
889 // 4: 27390000 addiu t9,t9,%lo(addr).
890 // 8: 03200008 jr t9.
891 // c: 00000000 nop.
892 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
893 const unsigned NopInstr = 0x0;
894 unsigned JrT9Instr = 0x03200008;
895 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
896 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
897 JrT9Instr = 0x03200009;
898
899 writeBytesUnaligned(LuiT9Instr, Addr, 4);
900 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
901 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
902 writeBytesUnaligned(NopInstr, Addr + 12, 4);
903 return Addr;
904 } else if (IsMipsN64ABI) {
905 // 0: 3c190000 lui t9,%highest(addr).
906 // 4: 67390000 daddiu t9,t9,%higher(addr).
907 // 8: 0019CC38 dsll t9,t9,16.
908 // c: 67390000 daddiu t9,t9,%hi(addr).
909 // 10: 0019CC38 dsll t9,t9,16.
910 // 14: 67390000 daddiu t9,t9,%lo(addr).
911 // 18: 03200008 jr t9.
912 // 1c: 00000000 nop.
913 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
914 DsllT9Instr = 0x19CC38;
915 const unsigned NopInstr = 0x0;
916 unsigned JrT9Instr = 0x03200008;
917 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
918 JrT9Instr = 0x03200009;
919
920 writeBytesUnaligned(LuiT9Instr, Addr, 4);
921 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
922 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
923 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
924 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
925 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
926 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
927 writeBytesUnaligned(NopInstr, Addr + 28, 4);
928 return Addr;
929 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
930 // Depending on which version of the ELF ABI is in use, we need to
931 // generate one of two variants of the stub. They both start with
932 // the same sequence to load the target address into r12.
933 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
934 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
935 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
936 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
937 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
938 if (AbiVariant == 2) {
939 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
940 // The address is already in r12 as required by the ABI. Branch to it.
941 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
942 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
943 writeInt32BE(Addr+28, 0x4E800420); // bctr
944 } else {
945 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
946 // Load the function address on r11 and sets it to control register. Also
947 // loads the function TOC in r2 and environment pointer to r11.
948 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
949 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
950 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
951 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
952 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
953 writeInt32BE(Addr+40, 0x4E800420); // bctr
954 }
955 return Addr;
956 } else if (Arch == Triple::systemz) {
957 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
958 writeInt16BE(Addr+2, 0x0000);
959 writeInt16BE(Addr+4, 0x0004);
960 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
961 // 8-byte address stored at Addr + 8
962 return Addr;
963 } else if (Arch == Triple::x86_64) {
964 *Addr = 0xFF; // jmp
965 *(Addr+1) = 0x25; // rip
966 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
967 } else if (Arch == Triple::x86) {
968 *Addr = 0xE9; // 32-bit pc-relative jump.
969 }
970 return Addr;
971}
972
973// Assign an address to a symbol name and resolve all the relocations
974// associated with it.
975void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
976 uint64_t Addr) {
977 // The address to use for relocation resolution is not
978 // the address of the local section buffer. We must be doing
979 // a remote execution environment of some sort. Relocations can't
980 // be applied until all the sections have been moved. The client must
981 // trigger this with a call to MCJIT::finalize() or
982 // RuntimeDyld::resolveRelocations().
983 //
984 // Addr is a uint64_t because we can't assume the pointer width
985 // of the target is the same as that of the host. Just use a generic
986 // "big enough" type.
987 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
988 dbgs() << "Reassigning address for section " << SectionID << " ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
989 << Sections[SectionID].getName() << "): "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
990 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
991 << " -> " << format("0x%016" PRIx64, Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
;
992 Sections[SectionID].setLoadAddress(Addr);
993}
994
995void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
996 uint64_t Value) {
997 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
998 const RelocationEntry &RE = Relocs[i];
999 // Ignore relocations for sections that were not loaded
1000 if (Sections[RE.SectionID].getAddress() == nullptr)
1001 continue;
1002 resolveRelocation(RE, Value);
1003 }
1004}
1005
1006void RuntimeDyldImpl::applyExternalSymbolRelocations(
1007 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1008 while (!ExternalSymbolRelocations.empty()) {
1009
1010 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1011
1012 StringRef Name = i->first();
1013 if (Name.size() == 0) {
1014 // This is an absolute symbol, use an address of zero.
1015 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving absolute relocations."
<< "\n"; } } while (false)
1016 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving absolute relocations."
<< "\n"; } } while (false)
;
1017 RelocationList &Relocs = i->second;
1018 resolveRelocationList(Relocs, 0);
1019 } else {
1020 uint64_t Addr = 0;
1021 JITSymbolFlags Flags;
1022 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1023 if (Loc == GlobalSymbolTable.end()) {
1024 auto RRI = ExternalSymbolMap.find(Name);
1025 assert(RRI != ExternalSymbolMap.end() && "No result for symbol")((RRI != ExternalSymbolMap.end() && "No result for symbol"
) ? static_cast<void> (0) : __assert_fail ("RRI != ExternalSymbolMap.end() && \"No result for symbol\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1025, __PRETTY_FUNCTION__))
;
1026 Addr = RRI->second.getAddress();
1027 Flags = RRI->second.getFlags();
1028 // The call to getSymbolAddress may have caused additional modules to
1029 // be loaded, which may have added new entries to the
1030 // ExternalSymbolRelocations map. Consquently, we need to update our
1031 // iterator. This is also why retrieval of the relocation list
1032 // associated with this symbol is deferred until below this point.
1033 // New entries may have been added to the relocation list.
1034 i = ExternalSymbolRelocations.find(Name);
1035 } else {
1036 // We found the symbol in our global table. It was probably in a
1037 // Module that we loaded previously.
1038 const auto &SymInfo = Loc->second;
1039 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1040 SymInfo.getOffset();
1041 Flags = SymInfo.getFlags();
1042 }
1043
1044 // FIXME: Implement error handling that doesn't kill the host program!
1045 if (!Addr)
1046 report_fatal_error("Program used external function '" + Name +
1047 "' which could not be resolved!");
1048
1049 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1050 // manually and we shouldn't resolve its relocations.
1051 if (Addr != UINT64_MAX(18446744073709551615UL)) {
1052
1053 // Tweak the address based on the symbol flags if necessary.
1054 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1055 // if the target symbol is Thumb.
1056 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1057
1058 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Name: " <<
Name << "\t" << format("0x%lx", Addr) << "\n"
; } } while (false)
1059 << format("0x%lx", Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Name: " <<
Name << "\t" << format("0x%lx", Addr) << "\n"
; } } while (false)
;
1060 // This list may have been updated when we called getSymbolAddress, so
1061 // don't change this code to get the list earlier.
1062 RelocationList &Relocs = i->second;
1063 resolveRelocationList(Relocs, Addr);
1064 }
1065 }
1066
1067 ExternalSymbolRelocations.erase(i);
1068 }
1069}
1070
1071Error RuntimeDyldImpl::resolveExternalSymbols() {
1072 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1073
1074 // Resolution can trigger emission of more symbols, so iterate until
1075 // we've resolved *everything*.
1076 {
1077 JITSymbolResolver::LookupSet ResolvedSymbols;
1078
1079 while (true) {
1080 JITSymbolResolver::LookupSet NewSymbols;
1081
1082 for (auto &RelocKV : ExternalSymbolRelocations) {
1083 StringRef Name = RelocKV.first();
1084 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1085 !ResolvedSymbols.count(Name))
1086 NewSymbols.insert(Name);
1087 }
1088
1089 if (NewSymbols.empty())
1090 break;
1091
1092#ifdef _MSC_VER
1093 using ExpectedLookupResult =
1094 MSVCPExpected<JITSymbolResolver::LookupResult>;
1095#else
1096 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1097#endif
1098
1099 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1100 auto NewSymbolsF = NewSymbolsP->get_future();
1101 Resolver.lookup(NewSymbols,
1102 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1103 NewSymbolsP->set_value(std::move(Result));
1104 });
1105
1106 auto NewResolverResults = NewSymbolsF.get();
1107
1108 if (!NewResolverResults)
1109 return NewResolverResults.takeError();
1110
1111 assert(NewResolverResults->size() == NewSymbols.size() &&((NewResolverResults->size() == NewSymbols.size() &&
"Should have errored on unresolved symbols") ? static_cast<
void> (0) : __assert_fail ("NewResolverResults->size() == NewSymbols.size() && \"Should have errored on unresolved symbols\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1112, __PRETTY_FUNCTION__))
1112 "Should have errored on unresolved symbols")((NewResolverResults->size() == NewSymbols.size() &&
"Should have errored on unresolved symbols") ? static_cast<
void> (0) : __assert_fail ("NewResolverResults->size() == NewSymbols.size() && \"Should have errored on unresolved symbols\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1112, __PRETTY_FUNCTION__))
;
1113
1114 for (auto &RRKV : *NewResolverResults) {
1115 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?")((!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"
) ? static_cast<void> (0) : __assert_fail ("!ResolvedSymbols.count(RRKV.first) && \"Redundant resolution?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1115, __PRETTY_FUNCTION__))
;
1116 ExternalSymbolMap.insert(RRKV);
1117 ResolvedSymbols.insert(RRKV.first);
1118 }
1119 }
1120 }
1121
1122 applyExternalSymbolRelocations(ExternalSymbolMap);
1123
1124 return Error::success();
1125}
1126
1127void RuntimeDyldImpl::finalizeAsync(
1128 std::unique_ptr<RuntimeDyldImpl> This, std::function<void(Error)> OnEmitted,
1129 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1130
1131 // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have
1132 // c++14.
1133 auto SharedUnderlyingBuffer =
1134 std::shared_ptr<MemoryBuffer>(std::move(UnderlyingBuffer));
1135 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1136 auto PostResolveContinuation =
1137 [SharedThis, OnEmitted, SharedUnderlyingBuffer](
1138 Expected<JITSymbolResolver::LookupResult> Result) {
1139 if (!Result) {
1140 OnEmitted(Result.takeError());
1141 return;
1142 }
1143
1144 /// Copy the result into a StringMap, where the keys are held by value.
1145 StringMap<JITEvaluatedSymbol> Resolved;
1146 for (auto &KV : *Result)
1147 Resolved[KV.first] = KV.second;
1148
1149 SharedThis->applyExternalSymbolRelocations(Resolved);
1150 SharedThis->resolveLocalRelocations();
1151 SharedThis->registerEHFrames();
1152 std::string ErrMsg;
1153 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1154 OnEmitted(make_error<StringError>(std::move(ErrMsg),
1155 inconvertibleErrorCode()));
1156 else
1157 OnEmitted(Error::success());
1158 };
1159
1160 JITSymbolResolver::LookupSet Symbols;
1161
1162 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1163 StringRef Name = RelocKV.first();
1164 assert(!Name.empty() && "Symbol has no name?")((!Name.empty() && "Symbol has no name?") ? static_cast
<void> (0) : __assert_fail ("!Name.empty() && \"Symbol has no name?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1164, __PRETTY_FUNCTION__))
;
1165 assert(!SharedThis->GlobalSymbolTable.count(Name) &&((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1167, __PRETTY_FUNCTION__))
1166 "Name already processed. RuntimeDyld instances can not be re-used "((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1167, __PRETTY_FUNCTION__))
1167 "when finalizing with finalizeAsync.")((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1167, __PRETTY_FUNCTION__))
;
1168 Symbols.insert(Name);
1169 }
1170
1171 if (!Symbols.empty()) {
1172 SharedThis->Resolver.lookup(Symbols, PostResolveContinuation);
1173 } else
1174 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1175}
1176
1177//===----------------------------------------------------------------------===//
1178// RuntimeDyld class implementation
1179
1180uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1181 const object::SectionRef &Sec) const {
1182
1183 auto I = ObjSecToIDMap.find(Sec);
1184 if (I != ObjSecToIDMap.end())
1185 return RTDyld.Sections[I->second].getLoadAddress();
1186
1187 return 0;
1188}
1189
1190void RuntimeDyld::MemoryManager::anchor() {}
1191void JITSymbolResolver::anchor() {}
1192void LegacyJITSymbolResolver::anchor() {}
1193
1194RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1195 JITSymbolResolver &Resolver)
1196 : MemMgr(MemMgr), Resolver(Resolver) {
1197 // FIXME: There's a potential issue lurking here if a single instance of
1198 // RuntimeDyld is used to load multiple objects. The current implementation
1199 // associates a single memory manager with a RuntimeDyld instance. Even
1200 // though the public class spawns a new 'impl' instance for each load,
1201 // they share a single memory manager. This can become a problem when page
1202 // permissions are applied.
1203 Dyld = nullptr;
1204 ProcessAllSections = false;
1205 Checker = nullptr;
1206}
1207
1208RuntimeDyld::~RuntimeDyld() {}
1209
1210static std::unique_ptr<RuntimeDyldCOFF>
1211createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1212 JITSymbolResolver &Resolver, bool ProcessAllSections,
1213 RuntimeDyldCheckerImpl *Checker) {
1214 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1215 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1216 Dyld->setProcessAllSections(ProcessAllSections);
1217 Dyld->setRuntimeDyldChecker(Checker);
1218 return Dyld;
1219}
1220
1221static std::unique_ptr<RuntimeDyldELF>
1222createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1223 JITSymbolResolver &Resolver, bool ProcessAllSections,
1224 RuntimeDyldCheckerImpl *Checker) {
1225 std::unique_ptr<RuntimeDyldELF> Dyld =
1226 RuntimeDyldELF::create(Arch, MM, Resolver);
1227 Dyld->setProcessAllSections(ProcessAllSections);
1228 Dyld->setRuntimeDyldChecker(Checker);
1229 return Dyld;
1230}
1231
1232static std::unique_ptr<RuntimeDyldMachO>
1233createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1234 JITSymbolResolver &Resolver,
1235 bool ProcessAllSections,
1236 RuntimeDyldCheckerImpl *Checker) {
1237 std::unique_ptr<RuntimeDyldMachO> Dyld =
1238 RuntimeDyldMachO::create(Arch, MM, Resolver);
1239 Dyld->setProcessAllSections(ProcessAllSections);
1240 Dyld->setRuntimeDyldChecker(Checker);
1241 return Dyld;
1242}
1243
1244std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1245RuntimeDyld::loadObject(const ObjectFile &Obj) {
1246 if (!Dyld) {
1247 if (Obj.isELF())
1248 Dyld =
1249 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1250 MemMgr, Resolver, ProcessAllSections, Checker);
1251 else if (Obj.isMachO())
1252 Dyld = createRuntimeDyldMachO(
1253 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1254 ProcessAllSections, Checker);
1255 else if (Obj.isCOFF())
1256 Dyld = createRuntimeDyldCOFF(
1257 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1258 ProcessAllSections, Checker);
1259 else
1260 report_fatal_error("Incompatible object format!");
1261 }
1262
1263 if (!Dyld->isCompatibleFile(Obj))
1264 report_fatal_error("Incompatible object format!");
1265
1266 auto LoadedObjInfo = Dyld->loadObject(Obj);
1267 MemMgr.notifyObjectLoaded(*this, Obj);
1268 return LoadedObjInfo;
1269}
1270
1271void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1272 if (!Dyld)
1273 return nullptr;
1274 return Dyld->getSymbolLocalAddress(Name);
1275}
1276
1277JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1278 if (!Dyld)
1279 return nullptr;
1280 return Dyld->getSymbol(Name);
1281}
1282
1283std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1284 if (!Dyld)
1285 return std::map<StringRef, JITEvaluatedSymbol>();
1286 return Dyld->getSymbolTable();
1287}
1288
1289void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1290
1291void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1292 Dyld->reassignSectionAddress(SectionID, Addr);
1293}
1294
1295void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1296 uint64_t TargetAddress) {
1297 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1298}
1299
1300bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1301
1302StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1303
1304void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1305 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1306 MemMgr.FinalizationLocked = true;
1307 resolveRelocations();
1308 registerEHFrames();
1309 if (!MemoryFinalizationLocked) {
1310 MemMgr.finalizeMemory();
1311 MemMgr.FinalizationLocked = false;
1312 }
1313}
1314
1315void RuntimeDyld::registerEHFrames() {
1316 if (Dyld)
1317 Dyld->registerEHFrames();
1318}
1319
1320void RuntimeDyld::deregisterEHFrames() {
1321 if (Dyld)
1322 Dyld->deregisterEHFrames();
1323}
1324// FIXME: Kill this with fire once we have a new JIT linker: this is only here
1325// so that we can re-use RuntimeDyld's implementation without twisting the
1326// interface any further for ORC's purposes.
1327void jitLinkForORC(object::ObjectFile &Obj,
1328 std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1329 RuntimeDyld::MemoryManager &MemMgr,
1330 JITSymbolResolver &Resolver, bool ProcessAllSections,
1331 std::function<Error(
1332 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1333 std::map<StringRef, JITEvaluatedSymbol>)>
1334 OnLoaded,
1335 std::function<void(Error)> OnEmitted) {
1336
1337 RuntimeDyld RTDyld(MemMgr, Resolver);
1338 RTDyld.setProcessAllSections(ProcessAllSections);
1339
1340 auto Info = RTDyld.loadObject(Obj);
1341
1342 if (RTDyld.hasError()) {
1343 OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
1344 inconvertibleErrorCode()));
1345 return;
1346 }
1347
1348 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1349 OnEmitted(std::move(Err));
1350
1351 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1352 std::move(UnderlyingBuffer));
1353}
1354
1355} // end namespace llvm