Bug Summary

File:llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
Warning:line 337, column 11
2nd function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name RuntimeDyld.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/ExecutionEngine/RuntimeDyld -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp

1//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ExecutionEngine/RuntimeDyld.h"
14#include "RuntimeDyldCOFF.h"
15#include "RuntimeDyldELF.h"
16#include "RuntimeDyldImpl.h"
17#include "RuntimeDyldMachO.h"
18#include "llvm/Object/COFF.h"
19#include "llvm/Object/ELFObjectFile.h"
20#include "llvm/Support/Alignment.h"
21#include "llvm/Support/MSVCErrorWorkarounds.h"
22#include "llvm/Support/ManagedStatic.h"
23#include "llvm/Support/MathExtras.h"
24#include <mutex>
25
26#include <future>
27
28using namespace llvm;
29using namespace llvm::object;
30
31#define DEBUG_TYPE"dyld" "dyld"
32
33namespace {
34
35enum RuntimeDyldErrorCode {
36 GenericRTDyldError = 1
37};
38
39// FIXME: This class is only here to support the transition to llvm::Error. It
40// will be removed once this transition is complete. Clients should prefer to
41// deal with the Error value directly, rather than converting to error_code.
42class RuntimeDyldErrorCategory : public std::error_category {
43public:
44 const char *name() const noexcept override { return "runtimedyld"; }
45
46 std::string message(int Condition) const override {
47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48 case GenericRTDyldError: return "Generic RuntimeDyld error";
49 }
50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode")::llvm::llvm_unreachable_internal("Unrecognized RuntimeDyldErrorCode"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 50)
;
51 }
52};
53
54static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
55
56}
57
58char RuntimeDyldError::ID = 0;
59
60void RuntimeDyldError::log(raw_ostream &OS) const {
61 OS << ErrMsg << "\n";
62}
63
64std::error_code RuntimeDyldError::convertToErrorCode() const {
65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
66}
67
68// Empty out-of-line virtual destructor as the key function.
69RuntimeDyldImpl::~RuntimeDyldImpl() {}
70
71// Pin LoadedObjectInfo's vtables to this file.
72void RuntimeDyld::LoadedObjectInfo::anchor() {}
73
74namespace llvm {
75
76void RuntimeDyldImpl::registerEHFrames() {}
77
78void RuntimeDyldImpl::deregisterEHFrames() {
79 MemMgr.deregisterEHFrames();
80}
81
82#ifndef NDEBUG
83static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84 dbgs() << "----- Contents of section " << S.getName() << " " << State
85 << " -----";
86
87 if (S.getAddress() == nullptr) {
88 dbgs() << "\n <section not emitted>\n";
89 return;
90 }
91
92 const unsigned ColsPerRow = 16;
93
94 uint8_t *DataAddr = S.getAddress();
95 uint64_t LoadAddr = S.getLoadAddress();
96
97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98 unsigned BytesRemaining = S.getSize();
99
100 if (StartPadding) {
101 dbgs() << "\n" << format("0x%016" PRIx64"l" "x",
102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103 while (StartPadding--)
104 dbgs() << " ";
105 }
106
107 while (BytesRemaining > 0) {
108 if ((LoadAddr & (ColsPerRow - 1)) == 0)
109 dbgs() << "\n" << format("0x%016" PRIx64"l" "x", LoadAddr) << ":";
110
111 dbgs() << " " << format("%02x", *DataAddr);
112
113 ++DataAddr;
114 ++LoadAddr;
115 --BytesRemaining;
116 }
117
118 dbgs() << "\n";
119}
120#endif
121
122// Resolve the relocations for all symbols we currently know about.
123void RuntimeDyldImpl::resolveRelocations() {
124 std::lock_guard<sys::Mutex> locked(lock);
125
126 // Print out the sections prior to relocation.
127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "before relocations");; } } while
(false)
128 dumpSectionMemory(Sections[i], "before relocations");)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "before relocations");; } } while
(false)
;
129
130 // First, resolve relocations associated with external symbols.
131 if (auto Err = resolveExternalSymbols()) {
132 HasError = true;
133 ErrorStr = toString(std::move(Err));
134 }
135
136 resolveLocalRelocations();
137
138 // Print out sections after relocation.
139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "after relocations");; } } while
(false)
140 dumpSectionMemory(Sections[i], "after relocations");)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "after relocations");; } } while
(false)
;
141}
142
143void RuntimeDyldImpl::resolveLocalRelocations() {
144 // Iterate over all outstanding relocations
145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146 // The Section here (Sections[i]) refers to the section in which the
147 // symbol for the relocation is located. The SectionID in the relocation
148 // entry provides the section to which the relocation will be applied.
149 int Idx = it->first;
150 uint64_t Addr = Sections[Idx].getLoadAddress();
151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Section #"
<< Idx << "\t" << format("%p", (uintptr_t)
Addr) << "\n"; } } while (false)
152 << format("%p", (uintptr_t)Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Section #"
<< Idx << "\t" << format("%p", (uintptr_t)
Addr) << "\n"; } } while (false)
;
153 resolveRelocationList(it->second, Addr);
154 }
155 Relocations.clear();
156}
157
158void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159 uint64_t TargetAddress) {
160 std::lock_guard<sys::Mutex> locked(lock);
161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162 if (Sections[i].getAddress() == LocalAddress) {
163 reassignSectionAddress(i, TargetAddress);
164 return;
165 }
166 }
167 llvm_unreachable("Attempting to remap address of unknown section!")::llvm::llvm_unreachable_internal("Attempting to remap address of unknown section!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 167)
;
168}
169
170static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171 uint64_t &Result) {
172 Expected<uint64_t> AddressOrErr = Sym.getAddress();
173 if (!AddressOrErr)
52
Taking true branch
174 return AddressOrErr.takeError();
53
Returning without writing to 'Result'
175 Result = *AddressOrErr - Sec.getAddress();
176 return Error::success();
177}
178
179Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181 std::lock_guard<sys::Mutex> locked(lock);
182
183 // Save information about our target
184 Arch = (Triple::ArchType)Obj.getArch();
185 IsTargetLittleEndian = Obj.isLittleEndian();
186 setMipsABI(Obj);
187
188 // Compute the memory size required to load all sections to be loaded
189 // and pass this information to the memory manager
190 if (MemMgr.needsToReserveAllocationSpace()) {
1
Assuming the condition is false
2
Taking false branch
191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193 if (auto Err = computeTotalAllocSize(Obj,
194 CodeSize, CodeAlign,
195 RODataSize, RODataAlign,
196 RWDataSize, RWDataAlign))
197 return std::move(Err);
198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199 RWDataSize, RWDataAlign);
200 }
201
202 // Used sections from the object file
203 ObjSectionToIDMap LocalSections;
204
205 // Common symbols requiring allocation, with their sizes and alignments
206 CommonSymbolList CommonSymbolsToAllocate;
207
208 uint64_t CommonSize = 0;
209 uint32_t CommonAlign = 0;
210
211 // First, collect all weak and common symbols. We need to know if stronger
212 // definitions occur elsewhere.
213 JITSymbolResolver::LookupSet ResponsibilitySet;
214 {
215 JITSymbolResolver::LookupSet Symbols;
216 for (auto &Sym : Obj.symbols()) {
217 uint32_t Flags = Sym.getFlags();
218 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
219 // Get symbol name.
220 if (auto NameOrErr = Sym.getName())
221 Symbols.insert(*NameOrErr);
222 else
223 return NameOrErr.takeError();
224 }
225 }
226
227 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
3
Calling 'Expected::operator bool'
6
Returning from 'Expected::operator bool'
7
Taking true branch
228 ResponsibilitySet = std::move(*ResultOrErr);
229 else
230 return ResultOrErr.takeError();
231 }
232
233 // Parse symbols
234 LLVM_DEBUG(dbgs() << "Parse symbols:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Parse symbols:\n"; } } while (false
)
;
8
Assuming 'DebugFlag' is false
9
Loop condition is false. Exiting loop
235 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
10
Loop condition is true. Entering loop body
236 ++I) {
237 uint32_t Flags = I->getFlags();
238
239 // Skip undefined symbols.
240 if (Flags & SymbolRef::SF_Undefined)
11
Assuming the condition is false
12
Taking false branch
241 continue;
242
243 // Get the symbol type.
244 object::SymbolRef::Type SymType;
245 if (auto SymTypeOrErr = I->getType())
13
Calling 'Expected::operator bool'
16
Returning from 'Expected::operator bool'
17
Taking true branch
246 SymType = *SymTypeOrErr;
247 else
248 return SymTypeOrErr.takeError();
249
250 // Get symbol name.
251 StringRef Name;
252 if (auto NameOrErr = I->getName())
18
Calling 'Expected::operator bool'
21
Returning from 'Expected::operator bool'
22
Taking true branch
253 Name = *NameOrErr;
254 else
255 return NameOrErr.takeError();
256
257 // Compute JIT symbol flags.
258 auto JITSymFlags = getJITSymbolFlags(*I);
259 if (!JITSymFlags)
23
Calling 'Expected::operator bool'
26
Returning from 'Expected::operator bool'
27
Taking false branch
260 return JITSymFlags.takeError();
261
262 // If this is a weak definition, check to see if there's a strong one.
263 // If there is, skip this symbol (we won't be providing it: the strong
264 // definition will). If there's no strong definition, make this definition
265 // strong.
266 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
28
Calling 'JITSymbolFlags::isWeak'
31
Returning from 'JITSymbolFlags::isWeak'
32
Calling 'JITSymbolFlags::isCommon'
35
Returning from 'JITSymbolFlags::isCommon'
36
Taking false branch
267 // First check whether there's already a definition in this instance.
268 if (GlobalSymbolTable.count(Name))
269 continue;
270
271 // If we're not responsible for this symbol, skip it.
272 if (!ResponsibilitySet.count(Name))
273 continue;
274
275 // Otherwise update the flags on the symbol to make this definition
276 // strong.
277 if (JITSymFlags->isWeak())
278 *JITSymFlags &= ~JITSymbolFlags::Weak;
279 if (JITSymFlags->isCommon()) {
280 *JITSymFlags &= ~JITSymbolFlags::Common;
281 uint32_t Align = I->getAlignment();
282 uint64_t Size = I->getCommonSize();
283 if (!CommonAlign)
284 CommonAlign = Align;
285 CommonSize = alignTo(CommonSize, Align) + Size;
286 CommonSymbolsToAllocate.push_back(*I);
287 }
288 }
289
290 if (Flags & SymbolRef::SF_Absolute &&
37
Assuming the condition is false
291 SymType != object::SymbolRef::ST_File) {
292 uint64_t Addr = 0;
293 if (auto AddrOrErr = I->getAddress())
294 Addr = *AddrOrErr;
295 else
296 return AddrOrErr.takeError();
297
298 unsigned SectionID = AbsoluteSymbolSection;
299
300 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
301 << " SID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
302 << " Offset: " << format("%p", (uintptr_t)Addr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
303 << " flags: " << Flags << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << Flags << "\n"; } } while
(false)
;
304 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
305 } else if (SymType == object::SymbolRef::ST_Function ||
38
Assuming 'SymType' is not equal to ST_Function
42
Taking true branch
306 SymType == object::SymbolRef::ST_Data ||
39
Assuming 'SymType' is not equal to ST_Data
307 SymType == object::SymbolRef::ST_Unknown ||
40
Assuming 'SymType' is not equal to ST_Unknown
308 SymType == object::SymbolRef::ST_Other) {
41
Assuming 'SymType' is equal to ST_Other
309
310 section_iterator SI = Obj.section_end();
311 if (auto SIOrErr = I->getSection())
43
Calling 'Expected::operator bool'
46
Returning from 'Expected::operator bool'
47
Taking true branch
312 SI = *SIOrErr;
313 else
314 return SIOrErr.takeError();
315
316 if (SI == Obj.section_end())
48
Assuming the condition is false
49
Taking false branch
317 continue;
318
319 // Get symbol offset.
320 uint64_t SectOffset;
50
'SectOffset' declared without an initial value
321 if (auto Err = getOffset(*I, *SI, SectOffset))
51
Calling 'getOffset'
54
Returning from 'getOffset'
55
Assuming the condition is false
56
Taking false branch
322 return std::move(Err);
323
324 bool IsCode = SI->isText();
325 unsigned SectionID;
326 if (auto SectionIDOrErr =
57
Calling 'Expected::operator bool'
59
Returning from 'Expected::operator bool'
60
Taking true branch
327 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
328 SectionID = *SectionIDOrErr;
329 else
330 return SectionIDOrErr.takeError();
331
332 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
61
Assuming 'DebugFlag' is false
62
Loop condition is false. Exiting loop
333 << " SID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
334 << " Offset: " << format("%p", (uintptr_t)SectOffset)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
335 << " flags: " << Flags << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << Flags << "\n"; } } while
(false)
;
336 GlobalSymbolTable[Name] =
337 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
63
2nd function call argument is an uninitialized value
338 }
339 }
340
341 // Allocate common symbols
342 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
343 CommonAlign))
344 return std::move(Err);
345
346 // Parse and process relocations
347 LLVM_DEBUG(dbgs() << "Parse relocations:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Parse relocations:\n"; } } while
(false)
;
348 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
349 SI != SE; ++SI) {
350 StubMap Stubs;
351
352 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
353 if (!RelSecOrErr)
354 return RelSecOrErr.takeError();
355
356 section_iterator RelocatedSection = *RelSecOrErr;
357 if (RelocatedSection == SE)
358 continue;
359
360 relocation_iterator I = SI->relocation_begin();
361 relocation_iterator E = SI->relocation_end();
362
363 if (I == E && !ProcessAllSections)
364 continue;
365
366 bool IsCode = RelocatedSection->isText();
367 unsigned SectionID = 0;
368 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
369 LocalSections))
370 SectionID = *SectionIDOrErr;
371 else
372 return SectionIDOrErr.takeError();
373
374 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tSectionID: " << SectionID
<< "\n"; } } while (false)
;
375
376 for (; I != E;)
377 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
378 I = *IOrErr;
379 else
380 return IOrErr.takeError();
381
382 // If there is a NotifyStubEmitted callback set, call it to register any
383 // stubs created for this section.
384 if (NotifyStubEmitted) {
385 StringRef FileName = Obj.getFileName();
386 StringRef SectionName = Sections[SectionID].getName();
387 for (auto &KV : Stubs) {
388
389 auto &VR = KV.first;
390 uint64_t StubAddr = KV.second;
391
392 // If this is a named stub, just call NotifyStubEmitted.
393 if (VR.SymbolName) {
394 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
395 StubAddr);
396 continue;
397 }
398
399 // Otherwise we will have to try a reverse lookup on the globla symbol table.
400 for (auto &GSTMapEntry : GlobalSymbolTable) {
401 StringRef SymbolName = GSTMapEntry.first();
402 auto &GSTEntry = GSTMapEntry.second;
403 if (GSTEntry.getSectionID() == VR.SectionID &&
404 GSTEntry.getOffset() == VR.Offset) {
405 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
406 StubAddr);
407 break;
408 }
409 }
410 }
411 }
412 }
413
414 // Process remaining sections
415 if (ProcessAllSections) {
416 LLVM_DEBUG(dbgs() << "Process remaining sections:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Process remaining sections:\n"; }
} while (false)
;
417 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
418 SI != SE; ++SI) {
419
420 /* Ignore already loaded sections */
421 if (LocalSections.find(*SI) != LocalSections.end())
422 continue;
423
424 bool IsCode = SI->isText();
425 if (auto SectionIDOrErr =
426 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
427 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tSectionID: " << (*SectionIDOrErr
) << "\n"; } } while (false)
;
428 else
429 return SectionIDOrErr.takeError();
430 }
431 }
432
433 // Give the subclasses a chance to tie-up any loose ends.
434 if (auto Err = finalizeLoad(Obj, LocalSections))
435 return std::move(Err);
436
437// for (auto E : LocalSections)
438// llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
439
440 return LocalSections;
441}
442
443// A helper method for computeTotalAllocSize.
444// Computes the memory size required to allocate sections with the given sizes,
445// assuming that all sections are allocated with the given alignment
446static uint64_t
447computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
448 uint64_t Alignment) {
449 uint64_t TotalSize = 0;
450 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
451 uint64_t AlignedSize =
452 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
453 TotalSize += AlignedSize;
454 }
455 return TotalSize;
456}
457
458static bool isRequiredForExecution(const SectionRef Section) {
459 const ObjectFile *Obj = Section.getObject();
460 if (isa<object::ELFObjectFileBase>(Obj))
461 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
462 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
463 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
464 // Avoid loading zero-sized COFF sections.
465 // In PE files, VirtualSize gives the section size, and SizeOfRawData
466 // may be zero for sections with content. In Obj files, SizeOfRawData
467 // gives the section size, and VirtualSize is always zero. Hence
468 // the need to check for both cases below.
469 bool HasContent =
470 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
471 bool IsDiscardable =
472 CoffSection->Characteristics &
473 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
474 return HasContent && !IsDiscardable;
475 }
476
477 assert(isa<MachOObjectFile>(Obj))((isa<MachOObjectFile>(Obj)) ? static_cast<void> (
0) : __assert_fail ("isa<MachOObjectFile>(Obj)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 477, __PRETTY_FUNCTION__))
;
478 return true;
479}
480
481static bool isReadOnlyData(const SectionRef Section) {
482 const ObjectFile *Obj = Section.getObject();
483 if (isa<object::ELFObjectFileBase>(Obj))
484 return !(ELFSectionRef(Section).getFlags() &
485 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
486 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
487 return ((COFFObj->getCOFFSection(Section)->Characteristics &
488 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
489 | COFF::IMAGE_SCN_MEM_READ
490 | COFF::IMAGE_SCN_MEM_WRITE))
491 ==
492 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
493 | COFF::IMAGE_SCN_MEM_READ));
494
495 assert(isa<MachOObjectFile>(Obj))((isa<MachOObjectFile>(Obj)) ? static_cast<void> (
0) : __assert_fail ("isa<MachOObjectFile>(Obj)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 495, __PRETTY_FUNCTION__))
;
496 return false;
497}
498
499static bool isZeroInit(const SectionRef Section) {
500 const ObjectFile *Obj = Section.getObject();
501 if (isa<object::ELFObjectFileBase>(Obj))
502 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
503 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
504 return COFFObj->getCOFFSection(Section)->Characteristics &
505 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
506
507 auto *MachO = cast<MachOObjectFile>(Obj);
508 unsigned SectionType = MachO->getSectionType(Section);
509 return SectionType == MachO::S_ZEROFILL ||
510 SectionType == MachO::S_GB_ZEROFILL;
511}
512
513// Compute an upper bound of the memory size that is required to load all
514// sections
515Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
516 uint64_t &CodeSize,
517 uint32_t &CodeAlign,
518 uint64_t &RODataSize,
519 uint32_t &RODataAlign,
520 uint64_t &RWDataSize,
521 uint32_t &RWDataAlign) {
522 // Compute the size of all sections required for execution
523 std::vector<uint64_t> CodeSectionSizes;
524 std::vector<uint64_t> ROSectionSizes;
525 std::vector<uint64_t> RWSectionSizes;
526
527 // Collect sizes of all sections to be loaded;
528 // also determine the max alignment of all sections
529 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
530 SI != SE; ++SI) {
531 const SectionRef &Section = *SI;
532
533 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
534
535 // Consider only the sections that are required to be loaded for execution
536 if (IsRequired) {
537 uint64_t DataSize = Section.getSize();
538 uint64_t Alignment64 = Section.getAlignment();
539 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
540 bool IsCode = Section.isText();
541 bool IsReadOnly = isReadOnlyData(Section);
542
543 Expected<StringRef> NameOrErr = Section.getName();
544 if (!NameOrErr)
545 return NameOrErr.takeError();
546 StringRef Name = *NameOrErr;
547
548 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
549
550 uint64_t PaddingSize = 0;
551 if (Name == ".eh_frame")
552 PaddingSize += 4;
553 if (StubBufSize != 0)
554 PaddingSize += getStubAlignment() - 1;
555
556 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
557
558 // The .eh_frame section (at least on Linux) needs an extra four bytes
559 // padded
560 // with zeroes added at the end. For MachO objects, this section has a
561 // slightly different name, so this won't have any effect for MachO
562 // objects.
563 if (Name == ".eh_frame")
564 SectionSize += 4;
565
566 if (!SectionSize)
567 SectionSize = 1;
568
569 if (IsCode) {
570 CodeAlign = std::max(CodeAlign, Alignment);
571 CodeSectionSizes.push_back(SectionSize);
572 } else if (IsReadOnly) {
573 RODataAlign = std::max(RODataAlign, Alignment);
574 ROSectionSizes.push_back(SectionSize);
575 } else {
576 RWDataAlign = std::max(RWDataAlign, Alignment);
577 RWSectionSizes.push_back(SectionSize);
578 }
579 }
580 }
581
582 // Compute Global Offset Table size. If it is not zero we
583 // also update alignment, which is equal to a size of a
584 // single GOT entry.
585 if (unsigned GotSize = computeGOTSize(Obj)) {
586 RWSectionSizes.push_back(GotSize);
587 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
588 }
589
590 // Compute the size of all common symbols
591 uint64_t CommonSize = 0;
592 uint32_t CommonAlign = 1;
593 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
594 ++I) {
595 uint32_t Flags = I->getFlags();
596 if (Flags & SymbolRef::SF_Common) {
597 // Add the common symbols to a list. We'll allocate them all below.
598 uint64_t Size = I->getCommonSize();
599 uint32_t Align = I->getAlignment();
600 // If this is the first common symbol, use its alignment as the alignment
601 // for the common symbols section.
602 if (CommonSize == 0)
603 CommonAlign = Align;
604 CommonSize = alignTo(CommonSize, Align) + Size;
605 }
606 }
607 if (CommonSize != 0) {
608 RWSectionSizes.push_back(CommonSize);
609 RWDataAlign = std::max(RWDataAlign, CommonAlign);
610 }
611
612 // Compute the required allocation space for each different type of sections
613 // (code, read-only data, read-write data) assuming that all sections are
614 // allocated with the max alignment. Note that we cannot compute with the
615 // individual alignments of the sections, because then the required size
616 // depends on the order, in which the sections are allocated.
617 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
618 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
619 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
620
621 return Error::success();
622}
623
624// compute GOT size
625unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
626 size_t GotEntrySize = getGOTEntrySize();
627 if (!GotEntrySize)
628 return 0;
629
630 size_t GotSize = 0;
631 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
632 SI != SE; ++SI) {
633
634 for (const RelocationRef &Reloc : SI->relocations())
635 if (relocationNeedsGot(Reloc))
636 GotSize += GotEntrySize;
637 }
638
639 return GotSize;
640}
641
642// compute stub buffer size for the given section
643unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
644 const SectionRef &Section) {
645 unsigned StubSize = getMaxStubSize();
646 if (StubSize == 0) {
647 return 0;
648 }
649 // FIXME: this is an inefficient way to handle this. We should computed the
650 // necessary section allocation size in loadObject by walking all the sections
651 // once.
652 unsigned StubBufSize = 0;
653 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
654 SI != SE; ++SI) {
655
656 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
657 if (!RelSecOrErr)
658 report_fatal_error(toString(RelSecOrErr.takeError()));
659
660 section_iterator RelSecI = *RelSecOrErr;
661 if (!(RelSecI == Section))
662 continue;
663
664 for (const RelocationRef &Reloc : SI->relocations())
665 if (relocationNeedsStub(Reloc))
666 StubBufSize += StubSize;
667 }
668
669 // Get section data size and alignment
670 uint64_t DataSize = Section.getSize();
671 uint64_t Alignment64 = Section.getAlignment();
672
673 // Add stubbuf size alignment
674 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
675 unsigned StubAlignment = getStubAlignment();
676 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
677 if (StubAlignment > EndAlignment)
678 StubBufSize += StubAlignment - EndAlignment;
679 return StubBufSize;
680}
681
682uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
683 unsigned Size) const {
684 uint64_t Result = 0;
685 if (IsTargetLittleEndian) {
686 Src += Size - 1;
687 while (Size--)
688 Result = (Result << 8) | *Src--;
689 } else
690 while (Size--)
691 Result = (Result << 8) | *Src++;
692
693 return Result;
694}
695
696void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
697 unsigned Size) const {
698 if (IsTargetLittleEndian) {
699 while (Size--) {
700 *Dst++ = Value & 0xFF;
701 Value >>= 8;
702 }
703 } else {
704 Dst += Size - 1;
705 while (Size--) {
706 *Dst-- = Value & 0xFF;
707 Value >>= 8;
708 }
709 }
710}
711
712Expected<JITSymbolFlags>
713RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
714 return JITSymbolFlags::fromObjectSymbol(SR);
715}
716
717Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
718 CommonSymbolList &SymbolsToAllocate,
719 uint64_t CommonSize,
720 uint32_t CommonAlign) {
721 if (SymbolsToAllocate.empty())
722 return Error::success();
723
724 // Allocate memory for the section
725 unsigned SectionID = Sections.size();
726 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
727 "<common symbols>", false);
728 if (!Addr)
729 report_fatal_error("Unable to allocate memory for common symbols!");
730 uint64_t Offset = 0;
731 Sections.push_back(
732 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
733 memset(Addr, 0, CommonSize);
734
735 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
736 << " new addr: " << format("%p", Addr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
737 << " DataSize: " << CommonSize << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
;
738
739 // Assign the address of each symbol
740 for (auto &Sym : SymbolsToAllocate) {
741 uint32_t Alignment = Sym.getAlignment();
742 uint64_t Size = Sym.getCommonSize();
743 StringRef Name;
744 if (auto NameOrErr = Sym.getName())
745 Name = *NameOrErr;
746 else
747 return NameOrErr.takeError();
748 if (Alignment) {
749 // This symbol has an alignment requirement.
750 uint64_t AlignOffset =
751 offsetToAlignment((uint64_t)Addr, Align(Alignment));
752 Addr += AlignOffset;
753 Offset += AlignOffset;
754 }
755 auto JITSymFlags = getJITSymbolFlags(Sym);
756
757 if (!JITSymFlags)
758 return JITSymFlags.takeError();
759
760 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Allocating common symbol " <<
Name << " address " << format("%p", Addr) <<
"\n"; } } while (false)
761 << format("%p", Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Allocating common symbol " <<
Name << " address " << format("%p", Addr) <<
"\n"; } } while (false)
;
762 GlobalSymbolTable[Name] =
763 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
764 Offset += Size;
765 Addr += Size;
766 }
767
768 return Error::success();
769}
770
771Expected<unsigned>
772RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
773 const SectionRef &Section,
774 bool IsCode) {
775 StringRef data;
776 uint64_t Alignment64 = Section.getAlignment();
777
778 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
779 unsigned PaddingSize = 0;
780 unsigned StubBufSize = 0;
781 bool IsRequired = isRequiredForExecution(Section);
782 bool IsVirtual = Section.isVirtual();
783 bool IsZeroInit = isZeroInit(Section);
784 bool IsReadOnly = isReadOnlyData(Section);
785 uint64_t DataSize = Section.getSize();
786
787 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
788 // while being more "polite". Other formats do not support 0-aligned sections
789 // anyway, so we should guarantee that the alignment is always at least 1.
790 Alignment = std::max(1u, Alignment);
791
792 Expected<StringRef> NameOrErr = Section.getName();
793 if (!NameOrErr)
794 return NameOrErr.takeError();
795 StringRef Name = *NameOrErr;
796
797 StubBufSize = computeSectionStubBufSize(Obj, Section);
798
799 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
800 // with zeroes added at the end. For MachO objects, this section has a
801 // slightly different name, so this won't have any effect for MachO objects.
802 if (Name == ".eh_frame")
803 PaddingSize = 4;
804
805 uintptr_t Allocate;
806 unsigned SectionID = Sections.size();
807 uint8_t *Addr;
808 const char *pData = nullptr;
809
810 // If this section contains any bits (i.e. isn't a virtual or bss section),
811 // grab a reference to them.
812 if (!IsVirtual && !IsZeroInit) {
813 // In either case, set the location of the unrelocated section in memory,
814 // since we still process relocations for it even if we're not applying them.
815 if (Expected<StringRef> E = Section.getContents())
816 data = *E;
817 else
818 return E.takeError();
819 pData = data.data();
820 }
821
822 // If there are any stubs then the section alignment needs to be at least as
823 // high as stub alignment or padding calculations may by incorrect when the
824 // section is remapped.
825 if (StubBufSize != 0) {
826 Alignment = std::max(Alignment, getStubAlignment());
827 PaddingSize += getStubAlignment() - 1;
828 }
829
830 // Some sections, such as debug info, don't need to be loaded for execution.
831 // Process those only if explicitly requested.
832 if (IsRequired || ProcessAllSections) {
833 Allocate = DataSize + PaddingSize + StubBufSize;
834 if (!Allocate)
835 Allocate = 1;
836 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
837 Name)
838 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
839 Name, IsReadOnly);
840 if (!Addr)
841 report_fatal_error("Unable to allocate section memory!");
842
843 // Zero-initialize or copy the data from the image
844 if (IsZeroInit || IsVirtual)
845 memset(Addr, 0, DataSize);
846 else
847 memcpy(Addr, pData, DataSize);
848
849 // Fill in any extra bytes we allocated for padding
850 if (PaddingSize != 0) {
851 memset(Addr + DataSize, 0, PaddingSize);
852 // Update the DataSize variable to include padding.
853 DataSize += PaddingSize;
854
855 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
856 // have been increased above to account for this).
857 if (StubBufSize > 0)
858 DataSize &= -(uint64_t)getStubAlignment();
859 }
860
861 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
862 << Name << " obj addr: " << format("%p", pData)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
863 << " new addr: " << format("%p", Addr) << " DataSize: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
864 << DataSize << " StubBufSize: " << StubBufSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
865 << " Allocate: " << Allocate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
;
866 } else {
867 // Even if we didn't load the section, we need to record an entry for it
868 // to handle later processing (and by 'handle' I mean don't do anything
869 // with these sections).
870 Allocate = 0;
871 Addr = nullptr;
872 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
873 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
874 << " obj addr: " << format("%p", data.data()) << " new addr: 0"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
875 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
876 << " Allocate: " << Allocate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
;
877 }
878
879 Sections.push_back(
880 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
881
882 // Debug info sections are linked as if their load address was zero
883 if (!IsRequired)
884 Sections.back().setLoadAddress(0);
885
886 return SectionID;
887}
888
889Expected<unsigned>
890RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
891 const SectionRef &Section,
892 bool IsCode,
893 ObjSectionToIDMap &LocalSections) {
894
895 unsigned SectionID = 0;
896 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
897 if (i != LocalSections.end())
898 SectionID = i->second;
899 else {
900 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
901 SectionID = *SectionIDOrErr;
902 else
903 return SectionIDOrErr.takeError();
904 LocalSections[Section] = SectionID;
905 }
906 return SectionID;
907}
908
909void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
910 unsigned SectionID) {
911 Relocations[SectionID].push_back(RE);
912}
913
914void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
915 StringRef SymbolName) {
916 // Relocation by symbol. If the symbol is found in the global symbol table,
917 // create an appropriate section relocation. Otherwise, add it to
918 // ExternalSymbolRelocations.
919 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
920 if (Loc == GlobalSymbolTable.end()) {
921 ExternalSymbolRelocations[SymbolName].push_back(RE);
922 } else {
923 // Copy the RE since we want to modify its addend.
924 RelocationEntry RECopy = RE;
925 const auto &SymInfo = Loc->second;
926 RECopy.Addend += SymInfo.getOffset();
927 Relocations[SymInfo.getSectionID()].push_back(RECopy);
928 }
929}
930
931uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
932 unsigned AbiVariant) {
933 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
934 Arch == Triple::aarch64_32) {
935 // This stub has to be able to access the full address space,
936 // since symbol lookup won't necessarily find a handy, in-range,
937 // PLT stub for functions which could be anywhere.
938 // Stub can use ip0 (== x16) to calculate address
939 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
940 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
941 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
942 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
943 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
944
945 return Addr;
946 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
947 // TODO: There is only ARM far stub now. We should add the Thumb stub,
948 // and stubs for branches Thumb - ARM and ARM - Thumb.
949 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
950 return Addr + 4;
951 } else if (IsMipsO32ABI || IsMipsN32ABI) {
952 // 0: 3c190000 lui t9,%hi(addr).
953 // 4: 27390000 addiu t9,t9,%lo(addr).
954 // 8: 03200008 jr t9.
955 // c: 00000000 nop.
956 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
957 const unsigned NopInstr = 0x0;
958 unsigned JrT9Instr = 0x03200008;
959 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
960 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
961 JrT9Instr = 0x03200009;
962
963 writeBytesUnaligned(LuiT9Instr, Addr, 4);
964 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
965 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
966 writeBytesUnaligned(NopInstr, Addr + 12, 4);
967 return Addr;
968 } else if (IsMipsN64ABI) {
969 // 0: 3c190000 lui t9,%highest(addr).
970 // 4: 67390000 daddiu t9,t9,%higher(addr).
971 // 8: 0019CC38 dsll t9,t9,16.
972 // c: 67390000 daddiu t9,t9,%hi(addr).
973 // 10: 0019CC38 dsll t9,t9,16.
974 // 14: 67390000 daddiu t9,t9,%lo(addr).
975 // 18: 03200008 jr t9.
976 // 1c: 00000000 nop.
977 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
978 DsllT9Instr = 0x19CC38;
979 const unsigned NopInstr = 0x0;
980 unsigned JrT9Instr = 0x03200008;
981 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
982 JrT9Instr = 0x03200009;
983
984 writeBytesUnaligned(LuiT9Instr, Addr, 4);
985 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
986 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
987 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
988 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
989 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
990 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
991 writeBytesUnaligned(NopInstr, Addr + 28, 4);
992 return Addr;
993 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
994 // Depending on which version of the ELF ABI is in use, we need to
995 // generate one of two variants of the stub. They both start with
996 // the same sequence to load the target address into r12.
997 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
998 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
999 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
1000 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
1001 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
1002 if (AbiVariant == 2) {
1003 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1004 // The address is already in r12 as required by the ABI. Branch to it.
1005 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
1006 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1007 writeInt32BE(Addr+28, 0x4E800420); // bctr
1008 } else {
1009 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1010 // Load the function address on r11 and sets it to control register. Also
1011 // loads the function TOC in r2 and environment pointer to r11.
1012 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
1013 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
1014 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
1015 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1016 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
1017 writeInt32BE(Addr+40, 0x4E800420); // bctr
1018 }
1019 return Addr;
1020 } else if (Arch == Triple::systemz) {
1021 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
1022 writeInt16BE(Addr+2, 0x0000);
1023 writeInt16BE(Addr+4, 0x0004);
1024 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
1025 // 8-byte address stored at Addr + 8
1026 return Addr;
1027 } else if (Arch == Triple::x86_64) {
1028 *Addr = 0xFF; // jmp
1029 *(Addr+1) = 0x25; // rip
1030 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1031 } else if (Arch == Triple::x86) {
1032 *Addr = 0xE9; // 32-bit pc-relative jump.
1033 }
1034 return Addr;
1035}
1036
1037// Assign an address to a symbol name and resolve all the relocations
1038// associated with it.
1039void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1040 uint64_t Addr) {
1041 // The address to use for relocation resolution is not
1042 // the address of the local section buffer. We must be doing
1043 // a remote execution environment of some sort. Relocations can't
1044 // be applied until all the sections have been moved. The client must
1045 // trigger this with a call to MCJIT::finalize() or
1046 // RuntimeDyld::resolveRelocations().
1047 //
1048 // Addr is a uint64_t because we can't assume the pointer width
1049 // of the target is the same as that of the host. Just use a generic
1050 // "big enough" type.
1051 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1052 dbgs() << "Reassigning address for section " << SectionID << " ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1053 << Sections[SectionID].getName() << "): "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1054 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1055 << " -> " << format("0x%016" PRIx64, Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
;
1056 Sections[SectionID].setLoadAddress(Addr);
1057}
1058
1059void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1060 uint64_t Value) {
1061 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1062 const RelocationEntry &RE = Relocs[i];
1063 // Ignore relocations for sections that were not loaded
1064 if (Sections[RE.SectionID].getAddress() == nullptr)
1065 continue;
1066 resolveRelocation(RE, Value);
1067 }
1068}
1069
1070void RuntimeDyldImpl::applyExternalSymbolRelocations(
1071 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1072 while (!ExternalSymbolRelocations.empty()) {
1073
1074 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1075
1076 StringRef Name = i->first();
1077 if (Name.size() == 0) {
1078 // This is an absolute symbol, use an address of zero.
1079 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving absolute relocations."
<< "\n"; } } while (false)
1080 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving absolute relocations."
<< "\n"; } } while (false)
;
1081 RelocationList &Relocs = i->second;
1082 resolveRelocationList(Relocs, 0);
1083 } else {
1084 uint64_t Addr = 0;
1085 JITSymbolFlags Flags;
1086 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1087 if (Loc == GlobalSymbolTable.end()) {
1088 auto RRI = ExternalSymbolMap.find(Name);
1089 assert(RRI != ExternalSymbolMap.end() && "No result for symbol")((RRI != ExternalSymbolMap.end() && "No result for symbol"
) ? static_cast<void> (0) : __assert_fail ("RRI != ExternalSymbolMap.end() && \"No result for symbol\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1089, __PRETTY_FUNCTION__))
;
1090 Addr = RRI->second.getAddress();
1091 Flags = RRI->second.getFlags();
1092 // The call to getSymbolAddress may have caused additional modules to
1093 // be loaded, which may have added new entries to the
1094 // ExternalSymbolRelocations map. Consquently, we need to update our
1095 // iterator. This is also why retrieval of the relocation list
1096 // associated with this symbol is deferred until below this point.
1097 // New entries may have been added to the relocation list.
1098 i = ExternalSymbolRelocations.find(Name);
1099 } else {
1100 // We found the symbol in our global table. It was probably in a
1101 // Module that we loaded previously.
1102 const auto &SymInfo = Loc->second;
1103 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1104 SymInfo.getOffset();
1105 Flags = SymInfo.getFlags();
1106 }
1107
1108 // FIXME: Implement error handling that doesn't kill the host program!
1109 if (!Addr)
1110 report_fatal_error("Program used external function '" + Name +
1111 "' which could not be resolved!");
1112
1113 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1114 // manually and we shouldn't resolve its relocations.
1115 if (Addr != UINT64_MAX(18446744073709551615UL)) {
1116
1117 // Tweak the address based on the symbol flags if necessary.
1118 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1119 // if the target symbol is Thumb.
1120 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1121
1122 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Name: " <<
Name << "\t" << format("0x%lx", Addr) << "\n"
; } } while (false)
1123 << format("0x%lx", Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Name: " <<
Name << "\t" << format("0x%lx", Addr) << "\n"
; } } while (false)
;
1124 // This list may have been updated when we called getSymbolAddress, so
1125 // don't change this code to get the list earlier.
1126 RelocationList &Relocs = i->second;
1127 resolveRelocationList(Relocs, Addr);
1128 }
1129 }
1130
1131 ExternalSymbolRelocations.erase(i);
1132 }
1133}
1134
1135Error RuntimeDyldImpl::resolveExternalSymbols() {
1136 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1137
1138 // Resolution can trigger emission of more symbols, so iterate until
1139 // we've resolved *everything*.
1140 {
1141 JITSymbolResolver::LookupSet ResolvedSymbols;
1142
1143 while (true) {
1144 JITSymbolResolver::LookupSet NewSymbols;
1145
1146 for (auto &RelocKV : ExternalSymbolRelocations) {
1147 StringRef Name = RelocKV.first();
1148 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1149 !ResolvedSymbols.count(Name))
1150 NewSymbols.insert(Name);
1151 }
1152
1153 if (NewSymbols.empty())
1154 break;
1155
1156#ifdef _MSC_VER
1157 using ExpectedLookupResult =
1158 MSVCPExpected<JITSymbolResolver::LookupResult>;
1159#else
1160 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1161#endif
1162
1163 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1164 auto NewSymbolsF = NewSymbolsP->get_future();
1165 Resolver.lookup(NewSymbols,
1166 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1167 NewSymbolsP->set_value(std::move(Result));
1168 });
1169
1170 auto NewResolverResults = NewSymbolsF.get();
1171
1172 if (!NewResolverResults)
1173 return NewResolverResults.takeError();
1174
1175 assert(NewResolverResults->size() == NewSymbols.size() &&((NewResolverResults->size() == NewSymbols.size() &&
"Should have errored on unresolved symbols") ? static_cast<
void> (0) : __assert_fail ("NewResolverResults->size() == NewSymbols.size() && \"Should have errored on unresolved symbols\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1176, __PRETTY_FUNCTION__))
1176 "Should have errored on unresolved symbols")((NewResolverResults->size() == NewSymbols.size() &&
"Should have errored on unresolved symbols") ? static_cast<
void> (0) : __assert_fail ("NewResolverResults->size() == NewSymbols.size() && \"Should have errored on unresolved symbols\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1176, __PRETTY_FUNCTION__))
;
1177
1178 for (auto &RRKV : *NewResolverResults) {
1179 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?")((!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"
) ? static_cast<void> (0) : __assert_fail ("!ResolvedSymbols.count(RRKV.first) && \"Redundant resolution?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1179, __PRETTY_FUNCTION__))
;
1180 ExternalSymbolMap.insert(RRKV);
1181 ResolvedSymbols.insert(RRKV.first);
1182 }
1183 }
1184 }
1185
1186 applyExternalSymbolRelocations(ExternalSymbolMap);
1187
1188 return Error::success();
1189}
1190
1191void RuntimeDyldImpl::finalizeAsync(
1192 std::unique_ptr<RuntimeDyldImpl> This,
1193 unique_function<void(Error)> OnEmitted,
1194 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1195
1196 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1197 auto PostResolveContinuation =
1198 [SharedThis, OnEmitted = std::move(OnEmitted),
1199 UnderlyingBuffer = std::move(UnderlyingBuffer)](
1200 Expected<JITSymbolResolver::LookupResult> Result) mutable {
1201 if (!Result) {
1202 OnEmitted(Result.takeError());
1203 return;
1204 }
1205
1206 /// Copy the result into a StringMap, where the keys are held by value.
1207 StringMap<JITEvaluatedSymbol> Resolved;
1208 for (auto &KV : *Result)
1209 Resolved[KV.first] = KV.second;
1210
1211 SharedThis->applyExternalSymbolRelocations(Resolved);
1212 SharedThis->resolveLocalRelocations();
1213 SharedThis->registerEHFrames();
1214 std::string ErrMsg;
1215 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1216 OnEmitted(make_error<StringError>(std::move(ErrMsg),
1217 inconvertibleErrorCode()));
1218 else
1219 OnEmitted(Error::success());
1220 };
1221
1222 JITSymbolResolver::LookupSet Symbols;
1223
1224 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1225 StringRef Name = RelocKV.first();
1226 assert(!Name.empty() && "Symbol has no name?")((!Name.empty() && "Symbol has no name?") ? static_cast
<void> (0) : __assert_fail ("!Name.empty() && \"Symbol has no name?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1226, __PRETTY_FUNCTION__))
;
1227 assert(!SharedThis->GlobalSymbolTable.count(Name) &&((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1229, __PRETTY_FUNCTION__))
1228 "Name already processed. RuntimeDyld instances can not be re-used "((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1229, __PRETTY_FUNCTION__))
1229 "when finalizing with finalizeAsync.")((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1229, __PRETTY_FUNCTION__))
;
1230 Symbols.insert(Name);
1231 }
1232
1233 if (!Symbols.empty()) {
1234 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1235 } else
1236 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1237}
1238
1239//===----------------------------------------------------------------------===//
1240// RuntimeDyld class implementation
1241
1242uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1243 const object::SectionRef &Sec) const {
1244
1245 auto I = ObjSecToIDMap.find(Sec);
1246 if (I != ObjSecToIDMap.end())
1247 return RTDyld.Sections[I->second].getLoadAddress();
1248
1249 return 0;
1250}
1251
1252void RuntimeDyld::MemoryManager::anchor() {}
1253void JITSymbolResolver::anchor() {}
1254void LegacyJITSymbolResolver::anchor() {}
1255
1256RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1257 JITSymbolResolver &Resolver)
1258 : MemMgr(MemMgr), Resolver(Resolver) {
1259 // FIXME: There's a potential issue lurking here if a single instance of
1260 // RuntimeDyld is used to load multiple objects. The current implementation
1261 // associates a single memory manager with a RuntimeDyld instance. Even
1262 // though the public class spawns a new 'impl' instance for each load,
1263 // they share a single memory manager. This can become a problem when page
1264 // permissions are applied.
1265 Dyld = nullptr;
1266 ProcessAllSections = false;
1267}
1268
1269RuntimeDyld::~RuntimeDyld() {}
1270
1271static std::unique_ptr<RuntimeDyldCOFF>
1272createRuntimeDyldCOFF(
1273 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1274 JITSymbolResolver &Resolver, bool ProcessAllSections,
1275 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1276 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1277 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1278 Dyld->setProcessAllSections(ProcessAllSections);
1279 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1280 return Dyld;
1281}
1282
1283static std::unique_ptr<RuntimeDyldELF>
1284createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1285 JITSymbolResolver &Resolver, bool ProcessAllSections,
1286 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1287 std::unique_ptr<RuntimeDyldELF> Dyld =
1288 RuntimeDyldELF::create(Arch, MM, Resolver);
1289 Dyld->setProcessAllSections(ProcessAllSections);
1290 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1291 return Dyld;
1292}
1293
1294static std::unique_ptr<RuntimeDyldMachO>
1295createRuntimeDyldMachO(
1296 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1297 JITSymbolResolver &Resolver,
1298 bool ProcessAllSections,
1299 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1300 std::unique_ptr<RuntimeDyldMachO> Dyld =
1301 RuntimeDyldMachO::create(Arch, MM, Resolver);
1302 Dyld->setProcessAllSections(ProcessAllSections);
1303 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1304 return Dyld;
1305}
1306
1307std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1308RuntimeDyld::loadObject(const ObjectFile &Obj) {
1309 if (!Dyld) {
1310 if (Obj.isELF())
1311 Dyld =
1312 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1313 MemMgr, Resolver, ProcessAllSections,
1314 std::move(NotifyStubEmitted));
1315 else if (Obj.isMachO())
1316 Dyld = createRuntimeDyldMachO(
1317 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1318 ProcessAllSections, std::move(NotifyStubEmitted));
1319 else if (Obj.isCOFF())
1320 Dyld = createRuntimeDyldCOFF(
1321 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1322 ProcessAllSections, std::move(NotifyStubEmitted));
1323 else
1324 report_fatal_error("Incompatible object format!");
1325 }
1326
1327 if (!Dyld->isCompatibleFile(Obj))
1328 report_fatal_error("Incompatible object format!");
1329
1330 auto LoadedObjInfo = Dyld->loadObject(Obj);
1331 MemMgr.notifyObjectLoaded(*this, Obj);
1332 return LoadedObjInfo;
1333}
1334
1335void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1336 if (!Dyld)
1337 return nullptr;
1338 return Dyld->getSymbolLocalAddress(Name);
1339}
1340
1341unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1342 assert(Dyld && "No RuntimeDyld instance attached")((Dyld && "No RuntimeDyld instance attached") ? static_cast
<void> (0) : __assert_fail ("Dyld && \"No RuntimeDyld instance attached\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1342, __PRETTY_FUNCTION__))
;
1343 return Dyld->getSymbolSectionID(Name);
1344}
1345
1346JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1347 if (!Dyld)
1348 return nullptr;
1349 return Dyld->getSymbol(Name);
1350}
1351
1352std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1353 if (!Dyld)
1354 return std::map<StringRef, JITEvaluatedSymbol>();
1355 return Dyld->getSymbolTable();
1356}
1357
1358void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1359
1360void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1361 Dyld->reassignSectionAddress(SectionID, Addr);
1362}
1363
1364void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1365 uint64_t TargetAddress) {
1366 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1367}
1368
1369bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1370
1371StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1372
1373void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1374 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1375 MemMgr.FinalizationLocked = true;
1376 resolveRelocations();
1377 registerEHFrames();
1378 if (!MemoryFinalizationLocked) {
1379 MemMgr.finalizeMemory();
1380 MemMgr.FinalizationLocked = false;
1381 }
1382}
1383
1384StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1385 assert(Dyld && "No Dyld instance attached")((Dyld && "No Dyld instance attached") ? static_cast<
void> (0) : __assert_fail ("Dyld && \"No Dyld instance attached\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1385, __PRETTY_FUNCTION__))
;
1386 return Dyld->getSectionContent(SectionID);
1387}
1388
1389uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1390 assert(Dyld && "No Dyld instance attached")((Dyld && "No Dyld instance attached") ? static_cast<
void> (0) : __assert_fail ("Dyld && \"No Dyld instance attached\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1390, __PRETTY_FUNCTION__))
;
1391 return Dyld->getSectionLoadAddress(SectionID);
1392}
1393
1394void RuntimeDyld::registerEHFrames() {
1395 if (Dyld)
1396 Dyld->registerEHFrames();
1397}
1398
1399void RuntimeDyld::deregisterEHFrames() {
1400 if (Dyld)
1401 Dyld->deregisterEHFrames();
1402}
1403// FIXME: Kill this with fire once we have a new JIT linker: this is only here
1404// so that we can re-use RuntimeDyld's implementation without twisting the
1405// interface any further for ORC's purposes.
1406void jitLinkForORC(object::ObjectFile &Obj,
1407 std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1408 RuntimeDyld::MemoryManager &MemMgr,
1409 JITSymbolResolver &Resolver, bool ProcessAllSections,
1410 unique_function<Error(
1411 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1412 std::map<StringRef, JITEvaluatedSymbol>)>
1413 OnLoaded,
1414 unique_function<void(Error)> OnEmitted) {
1415
1416 RuntimeDyld RTDyld(MemMgr, Resolver);
1417 RTDyld.setProcessAllSections(ProcessAllSections);
1418
1419 auto Info = RTDyld.loadObject(Obj);
1420
1421 if (RTDyld.hasError()) {
1422 OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
1423 inconvertibleErrorCode()));
1424 return;
1425 }
1426
1427 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1428 OnEmitted(std::move(Err));
1429
1430 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1431 std::move(UnderlyingBuffer));
1432}
1433
1434} // end namespace llvm

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <cassert>
31#include <cstdint>
32#include <cstdlib>
33#include <functional>
34#include <memory>
35#include <new>
36#include <string>
37#include <system_error>
38#include <type_traits>
39#include <utility>
40#include <vector>
41
42namespace llvm {
43
44class ErrorSuccess;
45
46/// Base class for error info classes. Do not extend this directly: Extend
47/// the ErrorInfo template subclass instead.
48class ErrorInfoBase {
49public:
50 virtual ~ErrorInfoBase() = default;
51
52 /// Print an error message to an output stream.
53 virtual void log(raw_ostream &OS) const = 0;
54
55 /// Return the error message as a string.
56 virtual std::string message() const {
57 std::string Msg;
58 raw_string_ostream OS(Msg);
59 log(OS);
60 return OS.str();
61 }
62
63 /// Convert this error to a std::error_code.
64 ///
65 /// This is a temporary crutch to enable interaction with code still
66 /// using std::error_code. It will be removed in the future.
67 virtual std::error_code convertToErrorCode() const = 0;
68
69 // Returns the class ID for this type.
70 static const void *classID() { return &ID; }
71
72 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
73 virtual const void *dynamicClassID() const = 0;
74
75 // Check whether this instance is a subclass of the class identified by
76 // ClassID.
77 virtual bool isA(const void *const ClassID) const {
78 return ClassID == classID();
79 }
80
81 // Check whether this instance is a subclass of ErrorInfoT.
82 template <typename ErrorInfoT> bool isA() const {
83 return isA(ErrorInfoT::classID());
84 }
85
86private:
87 virtual void anchor();
88
89 static char ID;
90};
91
92/// Lightweight error class with error context and mandatory checking.
93///
94/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
95/// are represented by setting the pointer to a ErrorInfoBase subclass
96/// instance containing information describing the failure. Success is
97/// represented by a null pointer value.
98///
99/// Instances of Error also contains a 'Checked' flag, which must be set
100/// before the destructor is called, otherwise the destructor will trigger a
101/// runtime error. This enforces at runtime the requirement that all Error
102/// instances be checked or returned to the caller.
103///
104/// There are two ways to set the checked flag, depending on what state the
105/// Error instance is in. For Error instances indicating success, it
106/// is sufficient to invoke the boolean conversion operator. E.g.:
107///
108/// @code{.cpp}
109/// Error foo(<...>);
110///
111/// if (auto E = foo(<...>))
112/// return E; // <- Return E if it is in the error state.
113/// // We have verified that E was in the success state. It can now be safely
114/// // destroyed.
115/// @endcode
116///
117/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
118/// without testing the return value will raise a runtime error, even if foo
119/// returns success.
120///
121/// For Error instances representing failure, you must use either the
122/// handleErrors or handleAllErrors function with a typed handler. E.g.:
123///
124/// @code{.cpp}
125/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
126/// // Custom error info.
127/// };
128///
129/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
130///
131/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
132/// auto NewE =
133/// handleErrors(E,
134/// [](const MyErrorInfo &M) {
135/// // Deal with the error.
136/// },
137/// [](std::unique_ptr<OtherError> M) -> Error {
138/// if (canHandle(*M)) {
139/// // handle error.
140/// return Error::success();
141/// }
142/// // Couldn't handle this error instance. Pass it up the stack.
143/// return Error(std::move(M));
144/// );
145/// // Note - we must check or return NewE in case any of the handlers
146/// // returned a new error.
147/// @endcode
148///
149/// The handleAllErrors function is identical to handleErrors, except
150/// that it has a void return type, and requires all errors to be handled and
151/// no new errors be returned. It prevents errors (assuming they can all be
152/// handled) from having to be bubbled all the way to the top-level.
153///
154/// *All* Error instances must be checked before destruction, even if
155/// they're moved-assigned or constructed from Success values that have already
156/// been checked. This enforces checking through all levels of the call stack.
157class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
158 // ErrorList needs to be able to yank ErrorInfoBase pointers out of Errors
159 // to add to the error list. It can't rely on handleErrors for this, since
160 // handleErrors does not support ErrorList handlers.
161 friend class ErrorList;
162
163 // handleErrors needs to be able to set the Checked flag.
164 template <typename... HandlerTs>
165 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
166
167 // Expected<T> needs to be able to steal the payload when constructed from an
168 // error.
169 template <typename T> friend class Expected;
170
171 // wrap needs to be able to steal the payload.
172 friend LLVMErrorRef wrap(Error);
173
174protected:
175 /// Create a success value. Prefer using 'Error::success()' for readability
176 Error() {
177 setPtr(nullptr);
178 setChecked(false);
179 }
180
181public:
182 /// Create a success value.
183 static ErrorSuccess success();
184
185 // Errors are not copy-constructable.
186 Error(const Error &Other) = delete;
187
188 /// Move-construct an error value. The newly constructed error is considered
189 /// unchecked, even if the source error had been checked. The original error
190 /// becomes a checked Success value, regardless of its original state.
191 Error(Error &&Other) {
192 setChecked(true);
193 *this = std::move(Other);
194 }
195
196 /// Create an error value. Prefer using the 'make_error' function, but
197 /// this constructor can be useful when "re-throwing" errors from handlers.
198 Error(std::unique_ptr<ErrorInfoBase> Payload) {
199 setPtr(Payload.release());
200 setChecked(false);
201 }
202
203 // Errors are not copy-assignable.
204 Error &operator=(const Error &Other) = delete;
205
206 /// Move-assign an error value. The current error must represent success, you
207 /// you cannot overwrite an unhandled error. The current error is then
208 /// considered unchecked. The source error becomes a checked success value,
209 /// regardless of its original state.
210 Error &operator=(Error &&Other) {
211 // Don't allow overwriting of unchecked values.
212 assertIsChecked();
213 setPtr(Other.getPtr());
214
215 // This Error is unchecked, even if the source error was checked.
216 setChecked(false);
217
218 // Null out Other's payload and set its checked bit.
219 Other.setPtr(nullptr);
220 Other.setChecked(true);
221
222 return *this;
223 }
224
225 /// Destroy a Error. Fails with a call to abort() if the error is
226 /// unchecked.
227 ~Error() {
228 assertIsChecked();
229 delete getPtr();
230 }
231
232 /// Bool conversion. Returns true if this Error is in a failure state,
233 /// and false if it is in an accept state. If the error is in a Success state
234 /// it will be considered checked.
235 explicit operator bool() {
236 setChecked(getPtr() == nullptr);
237 return getPtr() != nullptr;
238 }
239
240 /// Check whether one error is a subclass of another.
241 template <typename ErrT> bool isA() const {
242 return getPtr() && getPtr()->isA(ErrT::classID());
243 }
244
245 /// Returns the dynamic class id of this error, or null if this is a success
246 /// value.
247 const void* dynamicClassID() const {
248 if (!getPtr())
249 return nullptr;
250 return getPtr()->dynamicClassID();
251 }
252
253private:
254#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
255 // assertIsChecked() happens very frequently, but under normal circumstances
256 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
257 // of debug prints can cause the function to be too large for inlining. So
258 // it's important that we define this function out of line so that it can't be
259 // inlined.
260 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
261 void fatalUncheckedError() const;
262#endif
263
264 void assertIsChecked() {
265#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
266 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
267 fatalUncheckedError();
268#endif
269 }
270
271 ErrorInfoBase *getPtr() const {
272 return reinterpret_cast<ErrorInfoBase*>(
273 reinterpret_cast<uintptr_t>(Payload) &
274 ~static_cast<uintptr_t>(0x1));
275 }
276
277 void setPtr(ErrorInfoBase *EI) {
278#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
279 Payload = reinterpret_cast<ErrorInfoBase*>(
280 (reinterpret_cast<uintptr_t>(EI) &
281 ~static_cast<uintptr_t>(0x1)) |
282 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
283#else
284 Payload = EI;
285#endif
286 }
287
288 bool getChecked() const {
289#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
290 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
291#else
292 return true;
293#endif
294 }
295
296 void setChecked(bool V) {
297 Payload = reinterpret_cast<ErrorInfoBase*>(
298 (reinterpret_cast<uintptr_t>(Payload) &
299 ~static_cast<uintptr_t>(0x1)) |
300 (V ? 0 : 1));
301 }
302
303 std::unique_ptr<ErrorInfoBase> takePayload() {
304 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
305 setPtr(nullptr);
306 setChecked(true);
307 return Tmp;
308 }
309
310 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
311 if (auto P = E.getPtr())
312 P->log(OS);
313 else
314 OS << "success";
315 return OS;
316 }
317
318 ErrorInfoBase *Payload = nullptr;
319};
320
321/// Subclass of Error for the sole purpose of identifying the success path in
322/// the type system. This allows to catch invalid conversion to Expected<T> at
323/// compile time.
324class ErrorSuccess final : public Error {};
325
326inline ErrorSuccess Error::success() { return ErrorSuccess(); }
327
328/// Make a Error instance representing failure using the given error info
329/// type.
330template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
331 return Error(std::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
332}
333
334/// Base class for user error types. Users should declare their error types
335/// like:
336///
337/// class MyError : public ErrorInfo<MyError> {
338/// ....
339/// };
340///
341/// This class provides an implementation of the ErrorInfoBase::kind
342/// method, which is used by the Error RTTI system.
343template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
344class ErrorInfo : public ParentErrT {
345public:
346 using ParentErrT::ParentErrT; // inherit constructors
347
348 static const void *classID() { return &ThisErrT::ID; }
349
350 const void *dynamicClassID() const override { return &ThisErrT::ID; }
351
352 bool isA(const void *const ClassID) const override {
353 return ClassID == classID() || ParentErrT::isA(ClassID);
354 }
355};
356
357/// Special ErrorInfo subclass representing a list of ErrorInfos.
358/// Instances of this class are constructed by joinError.
359class ErrorList final : public ErrorInfo<ErrorList> {
360 // handleErrors needs to be able to iterate the payload list of an
361 // ErrorList.
362 template <typename... HandlerTs>
363 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
364
365 // joinErrors is implemented in terms of join.
366 friend Error joinErrors(Error, Error);
367
368public:
369 void log(raw_ostream &OS) const override {
370 OS << "Multiple errors:\n";
371 for (auto &ErrPayload : Payloads) {
372 ErrPayload->log(OS);
373 OS << "\n";
374 }
375 }
376
377 std::error_code convertToErrorCode() const override;
378
379 // Used by ErrorInfo::classID.
380 static char ID;
381
382private:
383 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
384 std::unique_ptr<ErrorInfoBase> Payload2) {
385 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
386 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
;
387 Payloads.push_back(std::move(Payload1));
388 Payloads.push_back(std::move(Payload2));
389 }
390
391 static Error join(Error E1, Error E2) {
392 if (!E1)
393 return E2;
394 if (!E2)
395 return E1;
396 if (E1.isA<ErrorList>()) {
397 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
398 if (E2.isA<ErrorList>()) {
399 auto E2Payload = E2.takePayload();
400 auto &E2List = static_cast<ErrorList &>(*E2Payload);
401 for (auto &Payload : E2List.Payloads)
402 E1List.Payloads.push_back(std::move(Payload));
403 } else
404 E1List.Payloads.push_back(E2.takePayload());
405
406 return E1;
407 }
408 if (E2.isA<ErrorList>()) {
409 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
410 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
411 return E2;
412 }
413 return Error(std::unique_ptr<ErrorList>(
414 new ErrorList(E1.takePayload(), E2.takePayload())));
415 }
416
417 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
418};
419
420/// Concatenate errors. The resulting Error is unchecked, and contains the
421/// ErrorInfo(s), if any, contained in E1, followed by the
422/// ErrorInfo(s), if any, contained in E2.
423inline Error joinErrors(Error E1, Error E2) {
424 return ErrorList::join(std::move(E1), std::move(E2));
425}
426
427/// Tagged union holding either a T or a Error.
428///
429/// This class parallels ErrorOr, but replaces error_code with Error. Since
430/// Error cannot be copied, this class replaces getError() with
431/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
432/// error class type.
433template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
434 template <class T1> friend class ExpectedAsOutParameter;
435 template <class OtherT> friend class Expected;
436
437 static const bool isRef = std::is_reference<T>::value;
438
439 using wrap = std::reference_wrapper<std::remove_reference_t<T>>;
440
441 using error_type = std::unique_ptr<ErrorInfoBase>;
442
443public:
444 using storage_type = std::conditional_t<isRef, wrap, T>;
445 using value_type = T;
446
447private:
448 using reference = std::remove_reference_t<T> &;
449 using const_reference = const std::remove_reference_t<T> &;
450 using pointer = std::remove_reference_t<T> *;
451 using const_pointer = const std::remove_reference_t<T> *;
452
453public:
454 /// Create an Expected<T> error value from the given Error.
455 Expected(Error Err)
456 : HasError(true)
457#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
458 // Expected is unchecked upon construction in Debug builds.
459 , Unchecked(true)
460#endif
461 {
462 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 462, __PRETTY_FUNCTION__))
;
463 new (getErrorStorage()) error_type(Err.takePayload());
464 }
465
466 /// Forbid to convert from Error::success() implicitly, this avoids having
467 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
468 /// but triggers the assertion above.
469 Expected(ErrorSuccess) = delete;
470
471 /// Create an Expected<T> success value from the given OtherT value, which
472 /// must be convertible to T.
473 template <typename OtherT>
474 Expected(OtherT &&Val,
475 std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr)
476 : HasError(false)
477#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
478 // Expected is unchecked upon construction in Debug builds.
479 ,
480 Unchecked(true)
481#endif
482 {
483 new (getStorage()) storage_type(std::forward<OtherT>(Val));
484 }
485
486 /// Move construct an Expected<T> value.
487 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
488
489 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
490 /// must be convertible to T.
491 template <class OtherT>
492 Expected(
493 Expected<OtherT> &&Other,
494 std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr) {
495 moveConstruct(std::move(Other));
496 }
497
498 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
499 /// isn't convertible to T.
500 template <class OtherT>
501 explicit Expected(
502 Expected<OtherT> &&Other,
503 std::enable_if_t<!std::is_convertible<OtherT, T>::value> * = nullptr) {
504 moveConstruct(std::move(Other));
505 }
506
507 /// Move-assign from another Expected<T>.
508 Expected &operator=(Expected &&Other) {
509 moveAssign(std::move(Other));
510 return *this;
511 }
512
513 /// Destroy an Expected<T>.
514 ~Expected() {
515 assertIsChecked();
516 if (!HasError)
517 getStorage()->~storage_type();
518 else
519 getErrorStorage()->~error_type();
520 }
521
522 /// Return false if there is an error.
523 explicit operator bool() {
524#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
525 Unchecked = HasError;
526#endif
527 return !HasError;
4
Assuming field 'HasError' is false, which participates in a condition later
5
Returning the value 1, which participates in a condition later
14
Assuming field 'HasError' is false, which participates in a condition later
15
Returning the value 1, which participates in a condition later
19
Assuming field 'HasError' is false, which participates in a condition later
20
Returning the value 1, which participates in a condition later
24
Assuming field 'HasError' is false, which participates in a condition later
25
Returning the value 1, which participates in a condition later
44
Assuming field 'HasError' is false, which participates in a condition later
45
Returning the value 1, which participates in a condition later
58
Returning the value 1, which participates in a condition later
528 }
529
530 /// Returns a reference to the stored T value.
531 reference get() {
532 assertIsChecked();
533 return *getStorage();
534 }
535
536 /// Returns a const reference to the stored T value.
537 const_reference get() const {
538 assertIsChecked();
539 return const_cast<Expected<T> *>(this)->get();
540 }
541
542 /// Check that this Expected<T> is an error of type ErrT.
543 template <typename ErrT> bool errorIsA() const {
544 return HasError && (*getErrorStorage())->template isA<ErrT>();
545 }
546
547 /// Take ownership of the stored error.
548 /// After calling this the Expected<T> is in an indeterminate state that can
549 /// only be safely destructed. No further calls (beside the destructor) should
550 /// be made on the Expected<T> value.
551 Error takeError() {
552#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
553 Unchecked = false;
554#endif
555 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
556 }
557
558 /// Returns a pointer to the stored T value.
559 pointer operator->() {
560 assertIsChecked();
561 return toPointer(getStorage());
562 }
563
564 /// Returns a const pointer to the stored T value.
565 const_pointer operator->() const {
566 assertIsChecked();
567 return toPointer(getStorage());
568 }
569
570 /// Returns a reference to the stored T value.
571 reference operator*() {
572 assertIsChecked();
573 return *getStorage();
574 }
575
576 /// Returns a const reference to the stored T value.
577 const_reference operator*() const {
578 assertIsChecked();
579 return *getStorage();
580 }
581
582private:
583 template <class T1>
584 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
585 return &a == &b;
586 }
587
588 template <class T1, class T2>
589 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
590 return false;
591 }
592
593 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
594 HasError = Other.HasError;
595#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
596 Unchecked = true;
597 Other.Unchecked = false;
598#endif
599
600 if (!HasError)
601 new (getStorage()) storage_type(std::move(*Other.getStorage()));
602 else
603 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
604 }
605
606 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
607 assertIsChecked();
608
609 if (compareThisIfSameType(*this, Other))
610 return;
611
612 this->~Expected();
613 new (this) Expected(std::move(Other));
614 }
615
616 pointer toPointer(pointer Val) { return Val; }
617
618 const_pointer toPointer(const_pointer Val) const { return Val; }
619
620 pointer toPointer(wrap *Val) { return &Val->get(); }
621
622 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
623
624 storage_type *getStorage() {
625 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 625, __PRETTY_FUNCTION__))
;
626 return reinterpret_cast<storage_type *>(TStorage.buffer);
627 }
628
629 const storage_type *getStorage() const {
630 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 630, __PRETTY_FUNCTION__))
;
631 return reinterpret_cast<const storage_type *>(TStorage.buffer);
632 }
633
634 error_type *getErrorStorage() {
635 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 635, __PRETTY_FUNCTION__))
;
636 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
637 }
638
639 const error_type *getErrorStorage() const {
640 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 640, __PRETTY_FUNCTION__))
;
641 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
642 }
643
644 // Used by ExpectedAsOutParameter to reset the checked flag.
645 void setUnchecked() {
646#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
647 Unchecked = true;
648#endif
649 }
650
651#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
652 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
653 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
654 void fatalUncheckedExpected() const {
655 dbgs() << "Expected<T> must be checked before access or destruction.\n";
656 if (HasError) {
657 dbgs() << "Unchecked Expected<T> contained error:\n";
658 (*getErrorStorage())->log(dbgs());
659 } else
660 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
661 "values in success mode must still be checked prior to being "
662 "destroyed).\n";
663 abort();
664 }
665#endif
666
667 void assertIsChecked() {
668#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
669 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
670 fatalUncheckedExpected();
671#endif
672 }
673
674 union {
675 AlignedCharArrayUnion<storage_type> TStorage;
676 AlignedCharArrayUnion<error_type> ErrorStorage;
677 };
678 bool HasError : 1;
679#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
680 bool Unchecked : 1;
681#endif
682};
683
684/// Report a serious error, calling any installed error handler. See
685/// ErrorHandling.h.
686LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
687 bool gen_crash_diag = true);
688
689/// Report a fatal error if Err is a failure value.
690///
691/// This function can be used to wrap calls to fallible functions ONLY when it
692/// is known that the Error will always be a success value. E.g.
693///
694/// @code{.cpp}
695/// // foo only attempts the fallible operation if DoFallibleOperation is
696/// // true. If DoFallibleOperation is false then foo always returns
697/// // Error::success().
698/// Error foo(bool DoFallibleOperation);
699///
700/// cantFail(foo(false));
701/// @endcode
702inline void cantFail(Error Err, const char *Msg = nullptr) {
703 if (Err) {
704 if (!Msg)
705 Msg = "Failure value returned from cantFail wrapped call";
706#ifndef NDEBUG
707 std::string Str;
708 raw_string_ostream OS(Str);
709 OS << Msg << "\n" << Err;
710 Msg = OS.str().c_str();
711#endif
712 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 712)
;
713 }
714}
715
716/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
717/// returns the contained value.
718///
719/// This function can be used to wrap calls to fallible functions ONLY when it
720/// is known that the Error will always be a success value. E.g.
721///
722/// @code{.cpp}
723/// // foo only attempts the fallible operation if DoFallibleOperation is
724/// // true. If DoFallibleOperation is false then foo always returns an int.
725/// Expected<int> foo(bool DoFallibleOperation);
726///
727/// int X = cantFail(foo(false));
728/// @endcode
729template <typename T>
730T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
731 if (ValOrErr)
732 return std::move(*ValOrErr);
733 else {
734 if (!Msg)
735 Msg = "Failure value returned from cantFail wrapped call";
736#ifndef NDEBUG
737 std::string Str;
738 raw_string_ostream OS(Str);
739 auto E = ValOrErr.takeError();
740 OS << Msg << "\n" << E;
741 Msg = OS.str().c_str();
742#endif
743 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 743)
;
744 }
745}
746
747/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
748/// returns the contained reference.
749///
750/// This function can be used to wrap calls to fallible functions ONLY when it
751/// is known that the Error will always be a success value. E.g.
752///
753/// @code{.cpp}
754/// // foo only attempts the fallible operation if DoFallibleOperation is
755/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
756/// Expected<Bar&> foo(bool DoFallibleOperation);
757///
758/// Bar &X = cantFail(foo(false));
759/// @endcode
760template <typename T>
761T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
762 if (ValOrErr)
763 return *ValOrErr;
764 else {
765 if (!Msg)
766 Msg = "Failure value returned from cantFail wrapped call";
767#ifndef NDEBUG
768 std::string Str;
769 raw_string_ostream OS(Str);
770 auto E = ValOrErr.takeError();
771 OS << Msg << "\n" << E;
772 Msg = OS.str().c_str();
773#endif
774 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 774)
;
775 }
776}
777
778/// Helper for testing applicability of, and applying, handlers for
779/// ErrorInfo types.
780template <typename HandlerT>
781class ErrorHandlerTraits
782 : public ErrorHandlerTraits<decltype(
783 &std::remove_reference<HandlerT>::type::operator())> {};
784
785// Specialization functions of the form 'Error (const ErrT&)'.
786template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
787public:
788 static bool appliesTo(const ErrorInfoBase &E) {
789 return E.template isA<ErrT>();
790 }
791
792 template <typename HandlerT>
793 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
794 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 794, __PRETTY_FUNCTION__))
;
795 return H(static_cast<ErrT &>(*E));
796 }
797};
798
799// Specialization functions of the form 'void (const ErrT&)'.
800template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
801public:
802 static bool appliesTo(const ErrorInfoBase &E) {
803 return E.template isA<ErrT>();
804 }
805
806 template <typename HandlerT>
807 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
808 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 808, __PRETTY_FUNCTION__))
;
809 H(static_cast<ErrT &>(*E));
810 return Error::success();
811 }
812};
813
814/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
815template <typename ErrT>
816class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
817public:
818 static bool appliesTo(const ErrorInfoBase &E) {
819 return E.template isA<ErrT>();
820 }
821
822 template <typename HandlerT>
823 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
824 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 824, __PRETTY_FUNCTION__))
;
825 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
826 return H(std::move(SubE));
827 }
828};
829
830/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
831template <typename ErrT>
832class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
833public:
834 static bool appliesTo(const ErrorInfoBase &E) {
835 return E.template isA<ErrT>();
836 }
837
838 template <typename HandlerT>
839 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
840 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 840, __PRETTY_FUNCTION__))
;
841 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
842 H(std::move(SubE));
843 return Error::success();
844 }
845};
846
847// Specialization for member functions of the form 'RetT (const ErrT&)'.
848template <typename C, typename RetT, typename ErrT>
849class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
850 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
851
852// Specialization for member functions of the form 'RetT (const ErrT&) const'.
853template <typename C, typename RetT, typename ErrT>
854class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
855 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
856
857// Specialization for member functions of the form 'RetT (const ErrT&)'.
858template <typename C, typename RetT, typename ErrT>
859class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
860 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
861
862// Specialization for member functions of the form 'RetT (const ErrT&) const'.
863template <typename C, typename RetT, typename ErrT>
864class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
865 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
866
867/// Specialization for member functions of the form
868/// 'RetT (std::unique_ptr<ErrT>)'.
869template <typename C, typename RetT, typename ErrT>
870class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
871 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
872
873/// Specialization for member functions of the form
874/// 'RetT (std::unique_ptr<ErrT>) const'.
875template <typename C, typename RetT, typename ErrT>
876class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
877 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
878
879inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
880 return Error(std::move(Payload));
881}
882
883template <typename HandlerT, typename... HandlerTs>
884Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
885 HandlerT &&Handler, HandlerTs &&... Handlers) {
886 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
887 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
888 std::move(Payload));
889 return handleErrorImpl(std::move(Payload),
890 std::forward<HandlerTs>(Handlers)...);
891}
892
893/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
894/// unhandled errors (or Errors returned by handlers) are re-concatenated and
895/// returned.
896/// Because this function returns an error, its result must also be checked
897/// or returned. If you intend to handle all errors use handleAllErrors
898/// (which returns void, and will abort() on unhandled errors) instead.
899template <typename... HandlerTs>
900Error handleErrors(Error E, HandlerTs &&... Hs) {
901 if (!E)
902 return Error::success();
903
904 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
905
906 if (Payload->isA<ErrorList>()) {
907 ErrorList &List = static_cast<ErrorList &>(*Payload);
908 Error R;
909 for (auto &P : List.Payloads)
910 R = ErrorList::join(
911 std::move(R),
912 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
913 return R;
914 }
915
916 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
917}
918
919/// Behaves the same as handleErrors, except that by contract all errors
920/// *must* be handled by the given handlers (i.e. there must be no remaining
921/// errors after running the handlers, or llvm_unreachable is called).
922template <typename... HandlerTs>
923void handleAllErrors(Error E, HandlerTs &&... Handlers) {
924 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
925}
926
927/// Check that E is a non-error, then drop it.
928/// If E is an error, llvm_unreachable will be called.
929inline void handleAllErrors(Error E) {
930 cantFail(std::move(E));
931}
932
933/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
934///
935/// If the incoming value is a success value it is returned unmodified. If it
936/// is a failure value then it the contained error is passed to handleErrors.
937/// If handleErrors is able to handle the error then the RecoveryPath functor
938/// is called to supply the final result. If handleErrors is not able to
939/// handle all errors then the unhandled errors are returned.
940///
941/// This utility enables the follow pattern:
942///
943/// @code{.cpp}
944/// enum FooStrategy { Aggressive, Conservative };
945/// Expected<Foo> foo(FooStrategy S);
946///
947/// auto ResultOrErr =
948/// handleExpected(
949/// foo(Aggressive),
950/// []() { return foo(Conservative); },
951/// [](AggressiveStrategyError&) {
952/// // Implicitly conusme this - we'll recover by using a conservative
953/// // strategy.
954/// });
955///
956/// @endcode
957template <typename T, typename RecoveryFtor, typename... HandlerTs>
958Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
959 HandlerTs &&... Handlers) {
960 if (ValOrErr)
961 return ValOrErr;
962
963 if (auto Err = handleErrors(ValOrErr.takeError(),
964 std::forward<HandlerTs>(Handlers)...))
965 return std::move(Err);
966
967 return RecoveryPath();
968}
969
970/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
971/// will be printed before the first one is logged. A newline will be printed
972/// after each error.
973///
974/// This function is compatible with the helpers from Support/WithColor.h. You
975/// can pass any of them as the OS. Please consider using them instead of
976/// including 'error: ' in the ErrorBanner.
977///
978/// This is useful in the base level of your program to allow clean termination
979/// (allowing clean deallocation of resources, etc.), while reporting error
980/// information to the user.
981void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
982
983/// Write all error messages (if any) in E to a string. The newline character
984/// is used to separate error messages.
985inline std::string toString(Error E) {
986 SmallVector<std::string, 2> Errors;
987 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
988 Errors.push_back(EI.message());
989 });
990 return join(Errors.begin(), Errors.end(), "\n");
991}
992
993/// Consume a Error without doing anything. This method should be used
994/// only where an error can be considered a reasonable and expected return
995/// value.
996///
997/// Uses of this method are potentially indicative of design problems: If it's
998/// legitimate to do nothing while processing an "error", the error-producer
999/// might be more clearly refactored to return an Optional<T>.
1000inline void consumeError(Error Err) {
1001 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
1002}
1003
1004/// Convert an Expected to an Optional without doing anything. This method
1005/// should be used only where an error can be considered a reasonable and
1006/// expected return value.
1007///
1008/// Uses of this method are potentially indicative of problems: perhaps the
1009/// error should be propagated further, or the error-producer should just
1010/// return an Optional in the first place.
1011template <typename T> Optional<T> expectedToOptional(Expected<T> &&E) {
1012 if (E)
1013 return std::move(*E);
1014 consumeError(E.takeError());
1015 return None;
1016}
1017
1018/// Helper for converting an Error to a bool.
1019///
1020/// This method returns true if Err is in an error state, or false if it is
1021/// in a success state. Puts Err in a checked state in both cases (unlike
1022/// Error::operator bool(), which only does this for success states).
1023inline bool errorToBool(Error Err) {
1024 bool IsError = static_cast<bool>(Err);
1025 if (IsError)
1026 consumeError(std::move(Err));
1027 return IsError;
1028}
1029
1030/// Helper for Errors used as out-parameters.
1031///
1032/// This helper is for use with the Error-as-out-parameter idiom, where an error
1033/// is passed to a function or method by reference, rather than being returned.
1034/// In such cases it is helpful to set the checked bit on entry to the function
1035/// so that the error can be written to (unchecked Errors abort on assignment)
1036/// and clear the checked bit on exit so that clients cannot accidentally forget
1037/// to check the result. This helper performs these actions automatically using
1038/// RAII:
1039///
1040/// @code{.cpp}
1041/// Result foo(Error &Err) {
1042/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1043/// // <body of foo>
1044/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1045/// }
1046/// @endcode
1047///
1048/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1049/// used with optional Errors (Error pointers that are allowed to be null). If
1050/// ErrorAsOutParameter took an Error reference, an instance would have to be
1051/// created inside every condition that verified that Error was non-null. By
1052/// taking an Error pointer we can just create one instance at the top of the
1053/// function.
1054class ErrorAsOutParameter {
1055public:
1056 ErrorAsOutParameter(Error *Err) : Err(Err) {
1057 // Raise the checked bit if Err is success.
1058 if (Err)
1059 (void)!!*Err;
1060 }
1061
1062 ~ErrorAsOutParameter() {
1063 // Clear the checked bit.
1064 if (Err && !*Err)
1065 *Err = Error::success();
1066 }
1067
1068private:
1069 Error *Err;
1070};
1071
1072/// Helper for Expected<T>s used as out-parameters.
1073///
1074/// See ErrorAsOutParameter.
1075template <typename T>
1076class ExpectedAsOutParameter {
1077public:
1078 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1079 : ValOrErr(ValOrErr) {
1080 if (ValOrErr)
1081 (void)!!*ValOrErr;
1082 }
1083
1084 ~ExpectedAsOutParameter() {
1085 if (ValOrErr)
1086 ValOrErr->setUnchecked();
1087 }
1088
1089private:
1090 Expected<T> *ValOrErr;
1091};
1092
1093/// This class wraps a std::error_code in a Error.
1094///
1095/// This is useful if you're writing an interface that returns a Error
1096/// (or Expected) and you want to call code that still returns
1097/// std::error_codes.
1098class ECError : public ErrorInfo<ECError> {
1099 friend Error errorCodeToError(std::error_code);
1100
1101 virtual void anchor() override;
1102
1103public:
1104 void setErrorCode(std::error_code EC) { this->EC = EC; }
1105 std::error_code convertToErrorCode() const override { return EC; }
1106 void log(raw_ostream &OS) const override { OS << EC.message(); }
1107
1108 // Used by ErrorInfo::classID.
1109 static char ID;
1110
1111protected:
1112 ECError() = default;
1113 ECError(std::error_code EC) : EC(EC) {}
1114
1115 std::error_code EC;
1116};
1117
1118/// The value returned by this function can be returned from convertToErrorCode
1119/// for Error values where no sensible translation to std::error_code exists.
1120/// It should only be used in this situation, and should never be used where a
1121/// sensible conversion to std::error_code is available, as attempts to convert
1122/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1123///error to try to convert such a value).
1124std::error_code inconvertibleErrorCode();
1125
1126/// Helper for converting an std::error_code to a Error.
1127Error errorCodeToError(std::error_code EC);
1128
1129/// Helper for converting an ECError to a std::error_code.
1130///
1131/// This method requires that Err be Error() or an ECError, otherwise it
1132/// will trigger a call to abort().
1133std::error_code errorToErrorCode(Error Err);
1134
1135/// Convert an ErrorOr<T> to an Expected<T>.
1136template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1137 if (auto EC = EO.getError())
1138 return errorCodeToError(EC);
1139 return std::move(*EO);
1140}
1141
1142/// Convert an Expected<T> to an ErrorOr<T>.
1143template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1144 if (auto Err = E.takeError())
1145 return errorToErrorCode(std::move(Err));
1146 return std::move(*E);
1147}
1148
1149/// This class wraps a string in an Error.
1150///
1151/// StringError is useful in cases where the client is not expected to be able
1152/// to consume the specific error message programmatically (for example, if the
1153/// error message is to be presented to the user).
1154///
1155/// StringError can also be used when additional information is to be printed
1156/// along with a error_code message. Depending on the constructor called, this
1157/// class can either display:
1158/// 1. the error_code message (ECError behavior)
1159/// 2. a string
1160/// 3. the error_code message and a string
1161///
1162/// These behaviors are useful when subtyping is required; for example, when a
1163/// specific library needs an explicit error type. In the example below,
1164/// PDBError is derived from StringError:
1165///
1166/// @code{.cpp}
1167/// Expected<int> foo() {
1168/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1169/// "Additional information");
1170/// }
1171/// @endcode
1172///
1173class StringError : public ErrorInfo<StringError> {
1174public:
1175 static char ID;
1176
1177 // Prints EC + S and converts to EC
1178 StringError(std::error_code EC, const Twine &S = Twine());
1179
1180 // Prints S and converts to EC
1181 StringError(const Twine &S, std::error_code EC);
1182
1183 void log(raw_ostream &OS) const override;
1184 std::error_code convertToErrorCode() const override;
1185
1186 const std::string &getMessage() const { return Msg; }
1187
1188private:
1189 std::string Msg;
1190 std::error_code EC;
1191 const bool PrintMsgOnly = false;
1192};
1193
1194/// Create formatted StringError object.
1195template <typename... Ts>
1196inline Error createStringError(std::error_code EC, char const *Fmt,
1197 const Ts &... Vals) {
1198 std::string Buffer;
1199 raw_string_ostream Stream(Buffer);
1200 Stream << format(Fmt, Vals...);
1201 return make_error<StringError>(Stream.str(), EC);
1202}
1203
1204Error createStringError(std::error_code EC, char const *Msg);
1205
1206inline Error createStringError(std::error_code EC, const Twine &S) {
1207 return createStringError(EC, S.str().c_str());
1208}
1209
1210template <typename... Ts>
1211inline Error createStringError(std::errc EC, char const *Fmt,
1212 const Ts &... Vals) {
1213 return createStringError(std::make_error_code(EC), Fmt, Vals...);
1214}
1215
1216/// This class wraps a filename and another Error.
1217///
1218/// In some cases, an error needs to live along a 'source' name, in order to
1219/// show more detailed information to the user.
1220class FileError final : public ErrorInfo<FileError> {
1221
1222 friend Error createFileError(const Twine &, Error);
1223 friend Error createFileError(const Twine &, size_t, Error);
1224
1225public:
1226 void log(raw_ostream &OS) const override {
1227 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 1227, __PRETTY_FUNCTION__))
;
1228 OS << "'" << FileName << "': ";
1229 if (Line.hasValue())
1230 OS << "line " << Line.getValue() << ": ";
1231 Err->log(OS);
1232 }
1233
1234 StringRef getFileName() { return FileName; }
1235
1236 Error takeError() { return Error(std::move(Err)); }
1237
1238 std::error_code convertToErrorCode() const override;
1239
1240 // Used by ErrorInfo::classID.
1241 static char ID;
1242
1243private:
1244 FileError(const Twine &F, Optional<size_t> LineNum,
1245 std::unique_ptr<ErrorInfoBase> E) {
1246 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 1246, __PRETTY_FUNCTION__))
;
1247 assert(!F.isTriviallyEmpty() &&((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 1248, __PRETTY_FUNCTION__))
1248 "The file name provided to FileError must not be empty.")((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/Error.h"
, 1248, __PRETTY_FUNCTION__))
;
1249 FileName = F.str();
1250 Err = std::move(E);
1251 Line = std::move(LineNum);
1252 }
1253
1254 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1255 std::unique_ptr<ErrorInfoBase> Payload;
1256 handleAllErrors(std::move(E),
1257 [&](std::unique_ptr<ErrorInfoBase> EIB) -> Error {
1258 Payload = std::move(EIB);
1259 return Error::success();
1260 });
1261 return Error(
1262 std::unique_ptr<FileError>(new FileError(F, Line, std::move(Payload))));
1263 }
1264
1265 std::string FileName;
1266 Optional<size_t> Line;
1267 std::unique_ptr<ErrorInfoBase> Err;
1268};
1269
1270/// Concatenate a source file path and/or name with an Error. The resulting
1271/// Error is unchecked.
1272inline Error createFileError(const Twine &F, Error E) {
1273 return FileError::build(F, Optional<size_t>(), std::move(E));
1274}
1275
1276/// Concatenate a source file path and/or name with line number and an Error.
1277/// The resulting Error is unchecked.
1278inline Error createFileError(const Twine &F, size_t Line, Error E) {
1279 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1280}
1281
1282/// Concatenate a source file path and/or name with a std::error_code
1283/// to form an Error object.
1284inline Error createFileError(const Twine &F, std::error_code EC) {
1285 return createFileError(F, errorCodeToError(EC));
1286}
1287
1288/// Concatenate a source file path and/or name with line number and
1289/// std::error_code to form an Error object.
1290inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1291 return createFileError(F, Line, errorCodeToError(EC));
1292}
1293
1294Error createFileError(const Twine &F, ErrorSuccess) = delete;
1295
1296/// Helper for check-and-exit error handling.
1297///
1298/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1299///
1300class ExitOnError {
1301public:
1302 /// Create an error on exit helper.
1303 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1304 : Banner(std::move(Banner)),
1305 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1306
1307 /// Set the banner string for any errors caught by operator().
1308 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1309
1310 /// Set the exit-code mapper function.
1311 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1312 this->GetExitCode = std::move(GetExitCode);
1313 }
1314
1315 /// Check Err. If it's in a failure state log the error(s) and exit.
1316 void operator()(Error Err) const { checkError(std::move(Err)); }
1317
1318 /// Check E. If it's in a success state then return the contained value. If
1319 /// it's in a failure state log the error(s) and exit.
1320 template <typename T> T operator()(Expected<T> &&E) const {
1321 checkError(E.takeError());
1322 return std::move(*E);
1323 }
1324
1325 /// Check E. If it's in a success state then return the contained reference. If
1326 /// it's in a failure state log the error(s) and exit.
1327 template <typename T> T& operator()(Expected<T&> &&E) const {
1328 checkError(E.takeError());
1329 return *E;
1330 }
1331
1332private:
1333 void checkError(Error Err) const {
1334 if (Err) {
1335 int ExitCode = GetExitCode(Err);
1336 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1337 exit(ExitCode);
1338 }
1339 }
1340
1341 std::string Banner;
1342 std::function<int(const Error &)> GetExitCode;
1343};
1344
1345/// Conversion from Error to LLVMErrorRef for C error bindings.
1346inline LLVMErrorRef wrap(Error Err) {
1347 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1348}
1349
1350/// Conversion from LLVMErrorRef to Error for C error bindings.
1351inline Error unwrap(LLVMErrorRef ErrRef) {
1352 return Error(std::unique_ptr<ErrorInfoBase>(
1353 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1354}
1355
1356} // end namespace llvm
1357
1358#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ExecutionEngine/JITSymbol.h

1//===- JITSymbol.h - JIT symbol abstraction ---------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Abstraction for target process addresses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_EXECUTIONENGINE_JITSYMBOL_H
14#define LLVM_EXECUTIONENGINE_JITSYMBOL_H
15
16#include <algorithm>
17#include <cassert>
18#include <cstddef>
19#include <cstdint>
20#include <functional>
21#include <map>
22#include <set>
23#include <string>
24
25#include "llvm/ADT/BitmaskEnum.h"
26#include "llvm/ADT/FunctionExtras.h"
27#include "llvm/ADT/StringRef.h"
28#include "llvm/Support/Error.h"
29
30namespace llvm {
31
32class GlobalValue;
33class GlobalValueSummary;
34
35namespace object {
36
37class SymbolRef;
38
39} // end namespace object
40
41/// Represents an address in the target process's address space.
42using JITTargetAddress = uint64_t;
43
44/// Convert a JITTargetAddress to a pointer.
45///
46/// Note: This is a raw cast of the address bit pattern to the given pointer
47/// type. When casting to a function pointer in order to execute JIT'd code
48/// jitTargetAddressToFunction should be preferred, as it will also perform
49/// pointer signing on targets that require it.
50template <typename T> T jitTargetAddressToPointer(JITTargetAddress Addr) {
51 static_assert(std::is_pointer<T>::value, "T must be a pointer type");
52 uintptr_t IntPtr = static_cast<uintptr_t>(Addr);
53 assert(IntPtr == Addr && "JITTargetAddress value out of range for uintptr_t")((IntPtr == Addr && "JITTargetAddress value out of range for uintptr_t"
) ? static_cast<void> (0) : __assert_fail ("IntPtr == Addr && \"JITTargetAddress value out of range for uintptr_t\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ExecutionEngine/JITSymbol.h"
, 53, __PRETTY_FUNCTION__))
;
54 return reinterpret_cast<T>(IntPtr);
55}
56
57/// Convert a JITTargetAddress to a callable function pointer.
58///
59/// Casts the given address to a callable function pointer. This operation
60/// will perform pointer signing for platforms that require it (e.g. arm64e).
61template <typename T> T jitTargetAddressToFunction(JITTargetAddress Addr) {
62 static_assert(std::is_pointer<T>::value &&
63 std::is_function<std::remove_pointer_t<T>>::value,
64 "T must be a function pointer type");
65 return jitTargetAddressToPointer<T>(Addr);
66}
67
68/// Convert a pointer to a JITTargetAddress.
69template <typename T> JITTargetAddress pointerToJITTargetAddress(T *Ptr) {
70 return static_cast<JITTargetAddress>(reinterpret_cast<uintptr_t>(Ptr));
71}
72
73/// Flags for symbols in the JIT.
74class JITSymbolFlags {
75public:
76 using UnderlyingType = uint8_t;
77 using TargetFlagsType = uint8_t;
78
79 enum FlagNames : UnderlyingType {
80 None = 0,
81 HasError = 1U << 0,
82 Weak = 1U << 1,
83 Common = 1U << 2,
84 Absolute = 1U << 3,
85 Exported = 1U << 4,
86 Callable = 1U << 5,
87 LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ Callable)LLVM_BITMASK_LARGEST_ENUMERATOR = Callable
88 };
89
90 /// Default-construct a JITSymbolFlags instance.
91 JITSymbolFlags() = default;
92
93 /// Construct a JITSymbolFlags instance from the given flags.
94 JITSymbolFlags(FlagNames Flags) : Flags(Flags) {}
95
96 /// Construct a JITSymbolFlags instance from the given flags and target
97 /// flags.
98 JITSymbolFlags(FlagNames Flags, TargetFlagsType TargetFlags)
99 : TargetFlags(TargetFlags), Flags(Flags) {}
100
101 /// Implicitly convert to bool. Returs true if any flag is set.
102 explicit operator bool() const { return Flags != None || TargetFlags != 0; }
103
104 /// Compare for equality.
105 bool operator==(const JITSymbolFlags &RHS) const {
106 return Flags == RHS.Flags && TargetFlags == RHS.TargetFlags;
107 }
108
109 /// Bitwise AND-assignment for FlagNames.
110 JITSymbolFlags &operator&=(const FlagNames &RHS) {
111 Flags &= RHS;
112 return *this;
113 }
114
115 /// Bitwise OR-assignment for FlagNames.
116 JITSymbolFlags &operator|=(const FlagNames &RHS) {
117 Flags |= RHS;
118 return *this;
119 }
120
121 /// Return true if there was an error retrieving this symbol.
122 bool hasError() const {
123 return (Flags & HasError) == HasError;
124 }
125
126 /// Returns true if the Weak flag is set.
127 bool isWeak() const {
128 return (Flags & Weak) == Weak;
29
Assuming the condition is false
30
Returning zero, which participates in a condition later
129 }
130
131 /// Returns true if the Common flag is set.
132 bool isCommon() const {
133 return (Flags & Common) == Common;
33
Assuming the condition is false
34
Returning zero, which participates in a condition later
134 }
135
136 /// Returns true if the symbol isn't weak or common.
137 bool isStrong() const {
138 return !isWeak() && !isCommon();
139 }
140
141 /// Returns true if the Exported flag is set.
142 bool isExported() const {
143 return (Flags & Exported) == Exported;
144 }
145
146 /// Returns true if the given symbol is known to be callable.
147 bool isCallable() const { return (Flags & Callable) == Callable; }
148
149 /// Get the underlying flags value as an integer.
150 UnderlyingType getRawFlagsValue() const {
151 return static_cast<UnderlyingType>(Flags);
152 }
153
154 /// Return a reference to the target-specific flags.
155 TargetFlagsType& getTargetFlags() { return TargetFlags; }
156
157 /// Return a reference to the target-specific flags.
158 const TargetFlagsType& getTargetFlags() const { return TargetFlags; }
159
160 /// Construct a JITSymbolFlags value based on the flags of the given global
161 /// value.
162 static JITSymbolFlags fromGlobalValue(const GlobalValue &GV);
163
164 /// Construct a JITSymbolFlags value based on the flags of the given global
165 /// value summary.
166 static JITSymbolFlags fromSummary(GlobalValueSummary *S);
167
168 /// Construct a JITSymbolFlags value based on the flags of the given libobject
169 /// symbol.
170 static Expected<JITSymbolFlags>
171 fromObjectSymbol(const object::SymbolRef &Symbol);
172
173private:
174 TargetFlagsType TargetFlags = 0;
175 FlagNames Flags = None;
176};
177
178inline JITSymbolFlags operator&(const JITSymbolFlags &LHS,
179 const JITSymbolFlags::FlagNames &RHS) {
180 JITSymbolFlags Tmp = LHS;
181 Tmp &= RHS;
182 return Tmp;
183}
184
185inline JITSymbolFlags operator|(const JITSymbolFlags &LHS,
186 const JITSymbolFlags::FlagNames &RHS) {
187 JITSymbolFlags Tmp = LHS;
188 Tmp |= RHS;
189 return Tmp;
190}
191
192/// ARM-specific JIT symbol flags.
193/// FIXME: This should be moved into a target-specific header.
194class ARMJITSymbolFlags {
195public:
196 ARMJITSymbolFlags() = default;
197
198 enum FlagNames {
199 None = 0,
200 Thumb = 1 << 0
201 };
202
203 operator JITSymbolFlags::TargetFlagsType&() { return Flags; }
204
205 static ARMJITSymbolFlags fromObjectSymbol(const object::SymbolRef &Symbol);
206
207private:
208 JITSymbolFlags::TargetFlagsType Flags = 0;
209};
210
211/// Represents a symbol that has been evaluated to an address already.
212class JITEvaluatedSymbol {
213public:
214 JITEvaluatedSymbol() = default;
215
216 /// Create a 'null' symbol.
217 JITEvaluatedSymbol(std::nullptr_t) {}
218
219 /// Create a symbol for the given address and flags.
220 JITEvaluatedSymbol(JITTargetAddress Address, JITSymbolFlags Flags)
221 : Address(Address), Flags(Flags) {}
222
223 /// An evaluated symbol converts to 'true' if its address is non-zero.
224 explicit operator bool() const { return Address != 0; }
225
226 /// Return the address of this symbol.
227 JITTargetAddress getAddress() const { return Address; }
228
229 /// Return the flags for this symbol.
230 JITSymbolFlags getFlags() const { return Flags; }
231
232 /// Set the flags for this symbol.
233 void setFlags(JITSymbolFlags Flags) { this->Flags = std::move(Flags); }
234
235private:
236 JITTargetAddress Address = 0;
237 JITSymbolFlags Flags;
238};
239
240/// Represents a symbol in the JIT.
241class JITSymbol {
242public:
243 using GetAddressFtor = unique_function<Expected<JITTargetAddress>()>;
244
245 /// Create a 'null' symbol, used to represent a "symbol not found"
246 /// result from a successful (non-erroneous) lookup.
247 JITSymbol(std::nullptr_t)
248 : CachedAddr(0) {}
249
250 /// Create a JITSymbol representing an error in the symbol lookup
251 /// process (e.g. a network failure during a remote lookup).
252 JITSymbol(Error Err)
253 : Err(std::move(Err)), Flags(JITSymbolFlags::HasError) {}
254
255 /// Create a symbol for a definition with a known address.
256 JITSymbol(JITTargetAddress Addr, JITSymbolFlags Flags)
257 : CachedAddr(Addr), Flags(Flags) {}
258
259 /// Construct a JITSymbol from a JITEvaluatedSymbol.
260 JITSymbol(JITEvaluatedSymbol Sym)
261 : CachedAddr(Sym.getAddress()), Flags(Sym.getFlags()) {}
262
263 /// Create a symbol for a definition that doesn't have a known address
264 /// yet.
265 /// @param GetAddress A functor to materialize a definition (fixing the
266 /// address) on demand.
267 ///
268 /// This constructor allows a JIT layer to provide a reference to a symbol
269 /// definition without actually materializing the definition up front. The
270 /// user can materialize the definition at any time by calling the getAddress
271 /// method.
272 JITSymbol(GetAddressFtor GetAddress, JITSymbolFlags Flags)
273 : GetAddress(std::move(GetAddress)), CachedAddr(0), Flags(Flags) {}
274
275 JITSymbol(const JITSymbol&) = delete;
276 JITSymbol& operator=(const JITSymbol&) = delete;
277
278 JITSymbol(JITSymbol &&Other)
279 : GetAddress(std::move(Other.GetAddress)), Flags(std::move(Other.Flags)) {
280 if (Flags.hasError())
281 Err = std::move(Other.Err);
282 else
283 CachedAddr = std::move(Other.CachedAddr);
284 }
285
286 JITSymbol& operator=(JITSymbol &&Other) {
287 GetAddress = std::move(Other.GetAddress);
288 Flags = std::move(Other.Flags);
289 if (Flags.hasError())
290 Err = std::move(Other.Err);
291 else
292 CachedAddr = std::move(Other.CachedAddr);
293 return *this;
294 }
295
296 ~JITSymbol() {
297 if (Flags.hasError())
298 Err.~Error();
299 else
300 CachedAddr.~JITTargetAddress();
301 }
302
303 /// Returns true if the symbol exists, false otherwise.
304 explicit operator bool() const {
305 return !Flags.hasError() && (CachedAddr || GetAddress);
306 }
307
308 /// Move the error field value out of this JITSymbol.
309 Error takeError() {
310 if (Flags.hasError())
311 return std::move(Err);
312 return Error::success();
313 }
314
315 /// Get the address of the symbol in the target address space. Returns
316 /// '0' if the symbol does not exist.
317 Expected<JITTargetAddress> getAddress() {
318 assert(!Flags.hasError() && "getAddress called on error value")((!Flags.hasError() && "getAddress called on error value"
) ? static_cast<void> (0) : __assert_fail ("!Flags.hasError() && \"getAddress called on error value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ExecutionEngine/JITSymbol.h"
, 318, __PRETTY_FUNCTION__))
;
319 if (GetAddress) {
320 if (auto CachedAddrOrErr = GetAddress()) {
321 GetAddress = nullptr;
322 CachedAddr = *CachedAddrOrErr;
323 assert(CachedAddr && "Symbol could not be materialized.")((CachedAddr && "Symbol could not be materialized.") ?
static_cast<void> (0) : __assert_fail ("CachedAddr && \"Symbol could not be materialized.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ExecutionEngine/JITSymbol.h"
, 323, __PRETTY_FUNCTION__))
;
324 } else
325 return CachedAddrOrErr.takeError();
326 }
327 return CachedAddr;
328 }
329
330 JITSymbolFlags getFlags() const { return Flags; }
331
332private:
333 GetAddressFtor GetAddress;
334 union {
335 JITTargetAddress CachedAddr;
336 Error Err;
337 };
338 JITSymbolFlags Flags;
339};
340
341/// Symbol resolution interface.
342///
343/// Allows symbol flags and addresses to be looked up by name.
344/// Symbol queries are done in bulk (i.e. you request resolution of a set of
345/// symbols, rather than a single one) to reduce IPC overhead in the case of
346/// remote JITing, and expose opportunities for parallel compilation.
347class JITSymbolResolver {
348public:
349 using LookupSet = std::set<StringRef>;
350 using LookupResult = std::map<StringRef, JITEvaluatedSymbol>;
351 using OnResolvedFunction = unique_function<void(Expected<LookupResult>)>;
352
353 virtual ~JITSymbolResolver() = default;
354
355 /// Returns the fully resolved address and flags for each of the given
356 /// symbols.
357 ///
358 /// This method will return an error if any of the given symbols can not be
359 /// resolved, or if the resolution process itself triggers an error.
360 virtual void lookup(const LookupSet &Symbols,
361 OnResolvedFunction OnResolved) = 0;
362
363 /// Returns the subset of the given symbols that should be materialized by
364 /// the caller. Only weak/common symbols should be looked up, as strong
365 /// definitions are implicitly always part of the caller's responsibility.
366 virtual Expected<LookupSet>
367 getResponsibilitySet(const LookupSet &Symbols) = 0;
368
369private:
370 virtual void anchor();
371};
372
373/// Legacy symbol resolution interface.
374class LegacyJITSymbolResolver : public JITSymbolResolver {
375public:
376 /// Performs lookup by, for each symbol, first calling
377 /// findSymbolInLogicalDylib and if that fails calling
378 /// findSymbol.
379 void lookup(const LookupSet &Symbols, OnResolvedFunction OnResolved) final;
380
381 /// Performs flags lookup by calling findSymbolInLogicalDylib and
382 /// returning the flags value for that symbol.
383 Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) final;
384
385 /// This method returns the address of the specified symbol if it exists
386 /// within the logical dynamic library represented by this JITSymbolResolver.
387 /// Unlike findSymbol, queries through this interface should return addresses
388 /// for hidden symbols.
389 ///
390 /// This is of particular importance for the Orc JIT APIs, which support lazy
391 /// compilation by breaking up modules: Each of those broken out modules
392 /// must be able to resolve hidden symbols provided by the others. Clients
393 /// writing memory managers for MCJIT can usually ignore this method.
394 ///
395 /// This method will be queried by RuntimeDyld when checking for previous
396 /// definitions of common symbols.
397 virtual JITSymbol findSymbolInLogicalDylib(const std::string &Name) = 0;
398
399 /// This method returns the address of the specified function or variable.
400 /// It is used to resolve symbols during module linking.
401 ///
402 /// If the returned symbol's address is equal to ~0ULL then RuntimeDyld will
403 /// skip all relocations for that symbol, and the client will be responsible
404 /// for handling them manually.
405 virtual JITSymbol findSymbol(const std::string &Name) = 0;
406
407private:
408 virtual void anchor();
409};
410
411} // end namespace llvm
412
413#endif // LLVM_EXECUTIONENGINE_JITSYMBOL_H