Bug Summary

File:llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
Warning:line 344, column 11
2nd function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name RuntimeDyld.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/build-llvm/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/build-llvm/include -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/build-llvm/lib/ExecutionEngine/RuntimeDyld -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-11-21-121427-42170-1 -x c++ /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp

/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp

1//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ExecutionEngine/RuntimeDyld.h"
14#include "RuntimeDyldCOFF.h"
15#include "RuntimeDyldELF.h"
16#include "RuntimeDyldImpl.h"
17#include "RuntimeDyldMachO.h"
18#include "llvm/Object/COFF.h"
19#include "llvm/Object/ELFObjectFile.h"
20#include "llvm/Support/Alignment.h"
21#include "llvm/Support/MSVCErrorWorkarounds.h"
22#include "llvm/Support/ManagedStatic.h"
23#include "llvm/Support/MathExtras.h"
24#include <mutex>
25
26#include <future>
27
28using namespace llvm;
29using namespace llvm::object;
30
31#define DEBUG_TYPE"dyld" "dyld"
32
33namespace {
34
35enum RuntimeDyldErrorCode {
36 GenericRTDyldError = 1
37};
38
39// FIXME: This class is only here to support the transition to llvm::Error. It
40// will be removed once this transition is complete. Clients should prefer to
41// deal with the Error value directly, rather than converting to error_code.
42class RuntimeDyldErrorCategory : public std::error_category {
43public:
44 const char *name() const noexcept override { return "runtimedyld"; }
45
46 std::string message(int Condition) const override {
47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48 case GenericRTDyldError: return "Generic RuntimeDyld error";
49 }
50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode")::llvm::llvm_unreachable_internal("Unrecognized RuntimeDyldErrorCode"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 50)
;
51 }
52};
53
54static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
55
56}
57
58char RuntimeDyldError::ID = 0;
59
60void RuntimeDyldError::log(raw_ostream &OS) const {
61 OS << ErrMsg << "\n";
62}
63
64std::error_code RuntimeDyldError::convertToErrorCode() const {
65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
66}
67
68// Empty out-of-line virtual destructor as the key function.
69RuntimeDyldImpl::~RuntimeDyldImpl() {}
70
71// Pin LoadedObjectInfo's vtables to this file.
72void RuntimeDyld::LoadedObjectInfo::anchor() {}
73
74namespace llvm {
75
76void RuntimeDyldImpl::registerEHFrames() {}
77
78void RuntimeDyldImpl::deregisterEHFrames() {
79 MemMgr.deregisterEHFrames();
80}
81
82#ifndef NDEBUG
83static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84 dbgs() << "----- Contents of section " << S.getName() << " " << State
85 << " -----";
86
87 if (S.getAddress() == nullptr) {
88 dbgs() << "\n <section not emitted>\n";
89 return;
90 }
91
92 const unsigned ColsPerRow = 16;
93
94 uint8_t *DataAddr = S.getAddress();
95 uint64_t LoadAddr = S.getLoadAddress();
96
97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98 unsigned BytesRemaining = S.getSize();
99
100 if (StartPadding) {
101 dbgs() << "\n" << format("0x%016" PRIx64"l" "x",
102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103 while (StartPadding--)
104 dbgs() << " ";
105 }
106
107 while (BytesRemaining > 0) {
108 if ((LoadAddr & (ColsPerRow - 1)) == 0)
109 dbgs() << "\n" << format("0x%016" PRIx64"l" "x", LoadAddr) << ":";
110
111 dbgs() << " " << format("%02x", *DataAddr);
112
113 ++DataAddr;
114 ++LoadAddr;
115 --BytesRemaining;
116 }
117
118 dbgs() << "\n";
119}
120#endif
121
122// Resolve the relocations for all symbols we currently know about.
123void RuntimeDyldImpl::resolveRelocations() {
124 std::lock_guard<sys::Mutex> locked(lock);
125
126 // Print out the sections prior to relocation.
127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "before relocations");; } } while
(false)
128 dumpSectionMemory(Sections[i], "before relocations");)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "before relocations");; } } while
(false)
;
129
130 // First, resolve relocations associated with external symbols.
131 if (auto Err = resolveExternalSymbols()) {
132 HasError = true;
133 ErrorStr = toString(std::move(Err));
134 }
135
136 resolveLocalRelocations();
137
138 // Print out sections after relocation.
139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "after relocations");; } } while
(false)
140 dumpSectionMemory(Sections[i], "after relocations");)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "after relocations");; } } while
(false)
;
141}
142
143void RuntimeDyldImpl::resolveLocalRelocations() {
144 // Iterate over all outstanding relocations
145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146 // The Section here (Sections[i]) refers to the section in which the
147 // symbol for the relocation is located. The SectionID in the relocation
148 // entry provides the section to which the relocation will be applied.
149 int Idx = it->first;
150 uint64_t Addr = Sections[Idx].getLoadAddress();
151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Section #"
<< Idx << "\t" << format("%p", (uintptr_t)
Addr) << "\n"; } } while (false)
152 << format("%p", (uintptr_t)Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Section #"
<< Idx << "\t" << format("%p", (uintptr_t)
Addr) << "\n"; } } while (false)
;
153 resolveRelocationList(it->second, Addr);
154 }
155 Relocations.clear();
156}
157
158void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159 uint64_t TargetAddress) {
160 std::lock_guard<sys::Mutex> locked(lock);
161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162 if (Sections[i].getAddress() == LocalAddress) {
163 reassignSectionAddress(i, TargetAddress);
164 return;
165 }
166 }
167 llvm_unreachable("Attempting to remap address of unknown section!")::llvm::llvm_unreachable_internal("Attempting to remap address of unknown section!"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 167)
;
168}
169
170static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171 uint64_t &Result) {
172 Expected<uint64_t> AddressOrErr = Sym.getAddress();
173 if (!AddressOrErr)
57
Taking true branch
174 return AddressOrErr.takeError();
58
Returning without writing to 'Result'
175 Result = *AddressOrErr - Sec.getAddress();
176 return Error::success();
177}
178
179Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181 std::lock_guard<sys::Mutex> locked(lock);
182
183 // Save information about our target
184 Arch = (Triple::ArchType)Obj.getArch();
185 IsTargetLittleEndian = Obj.isLittleEndian();
186 setMipsABI(Obj);
187
188 // Compute the memory size required to load all sections to be loaded
189 // and pass this information to the memory manager
190 if (MemMgr.needsToReserveAllocationSpace()) {
1
Assuming the condition is false
2
Taking false branch
191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193 if (auto Err = computeTotalAllocSize(Obj,
194 CodeSize, CodeAlign,
195 RODataSize, RODataAlign,
196 RWDataSize, RWDataAlign))
197 return std::move(Err);
198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199 RWDataSize, RWDataAlign);
200 }
201
202 // Used sections from the object file
203 ObjSectionToIDMap LocalSections;
204
205 // Common symbols requiring allocation, with their sizes and alignments
206 CommonSymbolList CommonSymbolsToAllocate;
207
208 uint64_t CommonSize = 0;
209 uint32_t CommonAlign = 0;
210
211 // First, collect all weak and common symbols. We need to know if stronger
212 // definitions occur elsewhere.
213 JITSymbolResolver::LookupSet ResponsibilitySet;
214 {
215 JITSymbolResolver::LookupSet Symbols;
216 for (auto &Sym : Obj.symbols()) {
217 Expected<uint32_t> FlagsOrErr = Sym.getFlags();
218 if (!FlagsOrErr)
219 // TODO: Test this error.
220 return FlagsOrErr.takeError();
221 if ((*FlagsOrErr & SymbolRef::SF_Common) ||
222 (*FlagsOrErr & SymbolRef::SF_Weak)) {
223 // Get symbol name.
224 if (auto NameOrErr = Sym.getName())
225 Symbols.insert(*NameOrErr);
226 else
227 return NameOrErr.takeError();
228 }
229 }
230
231 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
3
Calling 'Expected::operator bool'
6
Returning from 'Expected::operator bool'
7
Taking true branch
232 ResponsibilitySet = std::move(*ResultOrErr);
233 else
234 return ResultOrErr.takeError();
235 }
236
237 // Parse symbols
238 LLVM_DEBUG(dbgs() << "Parse symbols:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Parse symbols:\n"; } } while (false
)
;
8
Assuming 'DebugFlag' is false
9
Loop condition is false. Exiting loop
239 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
10
Loop condition is true. Entering loop body
240 ++I) {
241 Expected<uint32_t> FlagsOrErr = I->getFlags();
242 if (!FlagsOrErr)
11
Calling 'Expected::operator bool'
14
Returning from 'Expected::operator bool'
15
Taking false branch
243 // TODO: Test this error.
244 return FlagsOrErr.takeError();
245
246 // Skip undefined symbols.
247 if (*FlagsOrErr & SymbolRef::SF_Undefined)
16
Assuming the condition is false
17
Taking false branch
248 continue;
249
250 // Get the symbol type.
251 object::SymbolRef::Type SymType;
252 if (auto SymTypeOrErr = I->getType())
18
Calling 'Expected::operator bool'
21
Returning from 'Expected::operator bool'
22
Taking true branch
253 SymType = *SymTypeOrErr;
254 else
255 return SymTypeOrErr.takeError();
256
257 // Get symbol name.
258 StringRef Name;
259 if (auto NameOrErr = I->getName())
23
Calling 'Expected::operator bool'
26
Returning from 'Expected::operator bool'
27
Taking true branch
260 Name = *NameOrErr;
261 else
262 return NameOrErr.takeError();
263
264 // Compute JIT symbol flags.
265 auto JITSymFlags = getJITSymbolFlags(*I);
266 if (!JITSymFlags)
28
Calling 'Expected::operator bool'
31
Returning from 'Expected::operator bool'
32
Taking false branch
267 return JITSymFlags.takeError();
268
269 // If this is a weak definition, check to see if there's a strong one.
270 // If there is, skip this symbol (we won't be providing it: the strong
271 // definition will). If there's no strong definition, make this definition
272 // strong.
273 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
33
Calling 'JITSymbolFlags::isWeak'
36
Returning from 'JITSymbolFlags::isWeak'
37
Calling 'JITSymbolFlags::isCommon'
40
Returning from 'JITSymbolFlags::isCommon'
41
Taking false branch
274 // First check whether there's already a definition in this instance.
275 if (GlobalSymbolTable.count(Name))
276 continue;
277
278 // If we're not responsible for this symbol, skip it.
279 if (!ResponsibilitySet.count(Name))
280 continue;
281
282 // Otherwise update the flags on the symbol to make this definition
283 // strong.
284 if (JITSymFlags->isWeak())
285 *JITSymFlags &= ~JITSymbolFlags::Weak;
286 if (JITSymFlags->isCommon()) {
287 *JITSymFlags &= ~JITSymbolFlags::Common;
288 uint32_t Align = I->getAlignment();
289 uint64_t Size = I->getCommonSize();
290 if (!CommonAlign)
291 CommonAlign = Align;
292 CommonSize = alignTo(CommonSize, Align) + Size;
293 CommonSymbolsToAllocate.push_back(*I);
294 }
295 }
296
297 if (*FlagsOrErr & SymbolRef::SF_Absolute &&
42
Assuming the condition is false
298 SymType != object::SymbolRef::ST_File) {
299 uint64_t Addr = 0;
300 if (auto AddrOrErr = I->getAddress())
301 Addr = *AddrOrErr;
302 else
303 return AddrOrErr.takeError();
304
305 unsigned SectionID = AbsoluteSymbolSection;
306
307 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << *FlagsOrErr << "\n"
; } } while (false)
308 << " SID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << *FlagsOrErr << "\n"
; } } while (false)
309 << " Offset: " << format("%p", (uintptr_t)Addr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << *FlagsOrErr << "\n"
; } } while (false)
310 << " flags: " << *FlagsOrErr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << *FlagsOrErr << "\n"
; } } while (false)
;
311 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
312 } else if (SymType == object::SymbolRef::ST_Function ||
43
Assuming 'SymType' is not equal to ST_Function
47
Taking true branch
313 SymType == object::SymbolRef::ST_Data ||
44
Assuming 'SymType' is not equal to ST_Data
314 SymType == object::SymbolRef::ST_Unknown ||
45
Assuming 'SymType' is not equal to ST_Unknown
315 SymType == object::SymbolRef::ST_Other) {
46
Assuming 'SymType' is equal to ST_Other
316
317 section_iterator SI = Obj.section_end();
318 if (auto SIOrErr = I->getSection())
48
Calling 'Expected::operator bool'
51
Returning from 'Expected::operator bool'
52
Taking true branch
319 SI = *SIOrErr;
320 else
321 return SIOrErr.takeError();
322
323 if (SI == Obj.section_end())
53
Assuming the condition is false
54
Taking false branch
324 continue;
325
326 // Get symbol offset.
327 uint64_t SectOffset;
55
'SectOffset' declared without an initial value
328 if (auto Err = getOffset(*I, *SI, SectOffset))
56
Calling 'getOffset'
59
Returning from 'getOffset'
60
Assuming the condition is false
61
Taking false branch
329 return std::move(Err);
330
331 bool IsCode = SI->isText();
332 unsigned SectionID;
333 if (auto SectionIDOrErr =
62
Calling 'Expected::operator bool'
64
Returning from 'Expected::operator bool'
65
Taking true branch
334 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
335 SectionID = *SectionIDOrErr;
336 else
337 return SectionIDOrErr.takeError();
338
339 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << *FlagsOrErr << "\n"; } }
while (false)
66
Assuming 'DebugFlag' is false
67
Loop condition is false. Exiting loop
340 << " SID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << *FlagsOrErr << "\n"; } }
while (false)
341 << " Offset: " << format("%p", (uintptr_t)SectOffset)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << *FlagsOrErr << "\n"; } }
while (false)
342 << " flags: " << *FlagsOrErr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << *FlagsOrErr << "\n"; } }
while (false)
;
343 GlobalSymbolTable[Name] =
344 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
68
2nd function call argument is an uninitialized value
345 }
346 }
347
348 // Allocate common symbols
349 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
350 CommonAlign))
351 return std::move(Err);
352
353 // Parse and process relocations
354 LLVM_DEBUG(dbgs() << "Parse relocations:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Parse relocations:\n"; } } while
(false)
;
355 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
356 SI != SE; ++SI) {
357 StubMap Stubs;
358
359 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
360 if (!RelSecOrErr)
361 return RelSecOrErr.takeError();
362
363 section_iterator RelocatedSection = *RelSecOrErr;
364 if (RelocatedSection == SE)
365 continue;
366
367 relocation_iterator I = SI->relocation_begin();
368 relocation_iterator E = SI->relocation_end();
369
370 if (I == E && !ProcessAllSections)
371 continue;
372
373 bool IsCode = RelocatedSection->isText();
374 unsigned SectionID = 0;
375 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
376 LocalSections))
377 SectionID = *SectionIDOrErr;
378 else
379 return SectionIDOrErr.takeError();
380
381 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tSectionID: " << SectionID
<< "\n"; } } while (false)
;
382
383 for (; I != E;)
384 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
385 I = *IOrErr;
386 else
387 return IOrErr.takeError();
388
389 // If there is a NotifyStubEmitted callback set, call it to register any
390 // stubs created for this section.
391 if (NotifyStubEmitted) {
392 StringRef FileName = Obj.getFileName();
393 StringRef SectionName = Sections[SectionID].getName();
394 for (auto &KV : Stubs) {
395
396 auto &VR = KV.first;
397 uint64_t StubAddr = KV.second;
398
399 // If this is a named stub, just call NotifyStubEmitted.
400 if (VR.SymbolName) {
401 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
402 StubAddr);
403 continue;
404 }
405
406 // Otherwise we will have to try a reverse lookup on the globla symbol table.
407 for (auto &GSTMapEntry : GlobalSymbolTable) {
408 StringRef SymbolName = GSTMapEntry.first();
409 auto &GSTEntry = GSTMapEntry.second;
410 if (GSTEntry.getSectionID() == VR.SectionID &&
411 GSTEntry.getOffset() == VR.Offset) {
412 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
413 StubAddr);
414 break;
415 }
416 }
417 }
418 }
419 }
420
421 // Process remaining sections
422 if (ProcessAllSections) {
423 LLVM_DEBUG(dbgs() << "Process remaining sections:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Process remaining sections:\n"; }
} while (false)
;
424 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
425 SI != SE; ++SI) {
426
427 /* Ignore already loaded sections */
428 if (LocalSections.find(*SI) != LocalSections.end())
429 continue;
430
431 bool IsCode = SI->isText();
432 if (auto SectionIDOrErr =
433 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
434 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tSectionID: " << (*SectionIDOrErr
) << "\n"; } } while (false)
;
435 else
436 return SectionIDOrErr.takeError();
437 }
438 }
439
440 // Give the subclasses a chance to tie-up any loose ends.
441 if (auto Err = finalizeLoad(Obj, LocalSections))
442 return std::move(Err);
443
444// for (auto E : LocalSections)
445// llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
446
447 return LocalSections;
448}
449
450// A helper method for computeTotalAllocSize.
451// Computes the memory size required to allocate sections with the given sizes,
452// assuming that all sections are allocated with the given alignment
453static uint64_t
454computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
455 uint64_t Alignment) {
456 uint64_t TotalSize = 0;
457 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
458 uint64_t AlignedSize =
459 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
460 TotalSize += AlignedSize;
461 }
462 return TotalSize;
463}
464
465static bool isRequiredForExecution(const SectionRef Section) {
466 const ObjectFile *Obj = Section.getObject();
467 if (isa<object::ELFObjectFileBase>(Obj))
468 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
469 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
470 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
471 // Avoid loading zero-sized COFF sections.
472 // In PE files, VirtualSize gives the section size, and SizeOfRawData
473 // may be zero for sections with content. In Obj files, SizeOfRawData
474 // gives the section size, and VirtualSize is always zero. Hence
475 // the need to check for both cases below.
476 bool HasContent =
477 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
478 bool IsDiscardable =
479 CoffSection->Characteristics &
480 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
481 return HasContent && !IsDiscardable;
482 }
483
484 assert(isa<MachOObjectFile>(Obj))((isa<MachOObjectFile>(Obj)) ? static_cast<void> (
0) : __assert_fail ("isa<MachOObjectFile>(Obj)", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 484, __PRETTY_FUNCTION__))
;
485 return true;
486}
487
488static bool isReadOnlyData(const SectionRef Section) {
489 const ObjectFile *Obj = Section.getObject();
490 if (isa<object::ELFObjectFileBase>(Obj))
491 return !(ELFSectionRef(Section).getFlags() &
492 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
493 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
494 return ((COFFObj->getCOFFSection(Section)->Characteristics &
495 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
496 | COFF::IMAGE_SCN_MEM_READ
497 | COFF::IMAGE_SCN_MEM_WRITE))
498 ==
499 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
500 | COFF::IMAGE_SCN_MEM_READ));
501
502 assert(isa<MachOObjectFile>(Obj))((isa<MachOObjectFile>(Obj)) ? static_cast<void> (
0) : __assert_fail ("isa<MachOObjectFile>(Obj)", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 502, __PRETTY_FUNCTION__))
;
503 return false;
504}
505
506static bool isZeroInit(const SectionRef Section) {
507 const ObjectFile *Obj = Section.getObject();
508 if (isa<object::ELFObjectFileBase>(Obj))
509 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
510 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
511 return COFFObj->getCOFFSection(Section)->Characteristics &
512 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
513
514 auto *MachO = cast<MachOObjectFile>(Obj);
515 unsigned SectionType = MachO->getSectionType(Section);
516 return SectionType == MachO::S_ZEROFILL ||
517 SectionType == MachO::S_GB_ZEROFILL;
518}
519
520// Compute an upper bound of the memory size that is required to load all
521// sections
522Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
523 uint64_t &CodeSize,
524 uint32_t &CodeAlign,
525 uint64_t &RODataSize,
526 uint32_t &RODataAlign,
527 uint64_t &RWDataSize,
528 uint32_t &RWDataAlign) {
529 // Compute the size of all sections required for execution
530 std::vector<uint64_t> CodeSectionSizes;
531 std::vector<uint64_t> ROSectionSizes;
532 std::vector<uint64_t> RWSectionSizes;
533
534 // Collect sizes of all sections to be loaded;
535 // also determine the max alignment of all sections
536 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
537 SI != SE; ++SI) {
538 const SectionRef &Section = *SI;
539
540 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
541
542 // Consider only the sections that are required to be loaded for execution
543 if (IsRequired) {
544 uint64_t DataSize = Section.getSize();
545 uint64_t Alignment64 = Section.getAlignment();
546 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
547 bool IsCode = Section.isText();
548 bool IsReadOnly = isReadOnlyData(Section);
549
550 Expected<StringRef> NameOrErr = Section.getName();
551 if (!NameOrErr)
552 return NameOrErr.takeError();
553 StringRef Name = *NameOrErr;
554
555 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
556
557 uint64_t PaddingSize = 0;
558 if (Name == ".eh_frame")
559 PaddingSize += 4;
560 if (StubBufSize != 0)
561 PaddingSize += getStubAlignment() - 1;
562
563 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
564
565 // The .eh_frame section (at least on Linux) needs an extra four bytes
566 // padded
567 // with zeroes added at the end. For MachO objects, this section has a
568 // slightly different name, so this won't have any effect for MachO
569 // objects.
570 if (Name == ".eh_frame")
571 SectionSize += 4;
572
573 if (!SectionSize)
574 SectionSize = 1;
575
576 if (IsCode) {
577 CodeAlign = std::max(CodeAlign, Alignment);
578 CodeSectionSizes.push_back(SectionSize);
579 } else if (IsReadOnly) {
580 RODataAlign = std::max(RODataAlign, Alignment);
581 ROSectionSizes.push_back(SectionSize);
582 } else {
583 RWDataAlign = std::max(RWDataAlign, Alignment);
584 RWSectionSizes.push_back(SectionSize);
585 }
586 }
587 }
588
589 // Compute Global Offset Table size. If it is not zero we
590 // also update alignment, which is equal to a size of a
591 // single GOT entry.
592 if (unsigned GotSize = computeGOTSize(Obj)) {
593 RWSectionSizes.push_back(GotSize);
594 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
595 }
596
597 // Compute the size of all common symbols
598 uint64_t CommonSize = 0;
599 uint32_t CommonAlign = 1;
600 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
601 ++I) {
602 Expected<uint32_t> FlagsOrErr = I->getFlags();
603 if (!FlagsOrErr)
604 // TODO: Test this error.
605 return FlagsOrErr.takeError();
606 if (*FlagsOrErr & SymbolRef::SF_Common) {
607 // Add the common symbols to a list. We'll allocate them all below.
608 uint64_t Size = I->getCommonSize();
609 uint32_t Align = I->getAlignment();
610 // If this is the first common symbol, use its alignment as the alignment
611 // for the common symbols section.
612 if (CommonSize == 0)
613 CommonAlign = Align;
614 CommonSize = alignTo(CommonSize, Align) + Size;
615 }
616 }
617 if (CommonSize != 0) {
618 RWSectionSizes.push_back(CommonSize);
619 RWDataAlign = std::max(RWDataAlign, CommonAlign);
620 }
621
622 // Compute the required allocation space for each different type of sections
623 // (code, read-only data, read-write data) assuming that all sections are
624 // allocated with the max alignment. Note that we cannot compute with the
625 // individual alignments of the sections, because then the required size
626 // depends on the order, in which the sections are allocated.
627 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
628 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
629 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
630
631 return Error::success();
632}
633
634// compute GOT size
635unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
636 size_t GotEntrySize = getGOTEntrySize();
637 if (!GotEntrySize)
638 return 0;
639
640 size_t GotSize = 0;
641 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
642 SI != SE; ++SI) {
643
644 for (const RelocationRef &Reloc : SI->relocations())
645 if (relocationNeedsGot(Reloc))
646 GotSize += GotEntrySize;
647 }
648
649 return GotSize;
650}
651
652// compute stub buffer size for the given section
653unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
654 const SectionRef &Section) {
655 unsigned StubSize = getMaxStubSize();
656 if (StubSize == 0) {
657 return 0;
658 }
659 // FIXME: this is an inefficient way to handle this. We should computed the
660 // necessary section allocation size in loadObject by walking all the sections
661 // once.
662 unsigned StubBufSize = 0;
663 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
664 SI != SE; ++SI) {
665
666 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
667 if (!RelSecOrErr)
668 report_fatal_error(toString(RelSecOrErr.takeError()));
669
670 section_iterator RelSecI = *RelSecOrErr;
671 if (!(RelSecI == Section))
672 continue;
673
674 for (const RelocationRef &Reloc : SI->relocations())
675 if (relocationNeedsStub(Reloc))
676 StubBufSize += StubSize;
677 }
678
679 // Get section data size and alignment
680 uint64_t DataSize = Section.getSize();
681 uint64_t Alignment64 = Section.getAlignment();
682
683 // Add stubbuf size alignment
684 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
685 unsigned StubAlignment = getStubAlignment();
686 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
687 if (StubAlignment > EndAlignment)
688 StubBufSize += StubAlignment - EndAlignment;
689 return StubBufSize;
690}
691
692uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
693 unsigned Size) const {
694 uint64_t Result = 0;
695 if (IsTargetLittleEndian) {
696 Src += Size - 1;
697 while (Size--)
698 Result = (Result << 8) | *Src--;
699 } else
700 while (Size--)
701 Result = (Result << 8) | *Src++;
702
703 return Result;
704}
705
706void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
707 unsigned Size) const {
708 if (IsTargetLittleEndian) {
709 while (Size--) {
710 *Dst++ = Value & 0xFF;
711 Value >>= 8;
712 }
713 } else {
714 Dst += Size - 1;
715 while (Size--) {
716 *Dst-- = Value & 0xFF;
717 Value >>= 8;
718 }
719 }
720}
721
722Expected<JITSymbolFlags>
723RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
724 return JITSymbolFlags::fromObjectSymbol(SR);
725}
726
727Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
728 CommonSymbolList &SymbolsToAllocate,
729 uint64_t CommonSize,
730 uint32_t CommonAlign) {
731 if (SymbolsToAllocate.empty())
732 return Error::success();
733
734 // Allocate memory for the section
735 unsigned SectionID = Sections.size();
736 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
737 "<common symbols>", false);
738 if (!Addr)
739 report_fatal_error("Unable to allocate memory for common symbols!");
740 uint64_t Offset = 0;
741 Sections.push_back(
742 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
743 memset(Addr, 0, CommonSize);
744
745 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
746 << " new addr: " << format("%p", Addr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
747 << " DataSize: " << CommonSize << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
;
748
749 // Assign the address of each symbol
750 for (auto &Sym : SymbolsToAllocate) {
751 uint32_t Alignment = Sym.getAlignment();
752 uint64_t Size = Sym.getCommonSize();
753 StringRef Name;
754 if (auto NameOrErr = Sym.getName())
755 Name = *NameOrErr;
756 else
757 return NameOrErr.takeError();
758 if (Alignment) {
759 // This symbol has an alignment requirement.
760 uint64_t AlignOffset =
761 offsetToAlignment((uint64_t)Addr, Align(Alignment));
762 Addr += AlignOffset;
763 Offset += AlignOffset;
764 }
765 auto JITSymFlags = getJITSymbolFlags(Sym);
766
767 if (!JITSymFlags)
768 return JITSymFlags.takeError();
769
770 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Allocating common symbol " <<
Name << " address " << format("%p", Addr) <<
"\n"; } } while (false)
771 << format("%p", Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Allocating common symbol " <<
Name << " address " << format("%p", Addr) <<
"\n"; } } while (false)
;
772 GlobalSymbolTable[Name] =
773 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
774 Offset += Size;
775 Addr += Size;
776 }
777
778 return Error::success();
779}
780
781Expected<unsigned>
782RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
783 const SectionRef &Section,
784 bool IsCode) {
785 StringRef data;
786 uint64_t Alignment64 = Section.getAlignment();
787
788 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
789 unsigned PaddingSize = 0;
790 unsigned StubBufSize = 0;
791 bool IsRequired = isRequiredForExecution(Section);
792 bool IsVirtual = Section.isVirtual();
793 bool IsZeroInit = isZeroInit(Section);
794 bool IsReadOnly = isReadOnlyData(Section);
795 uint64_t DataSize = Section.getSize();
796
797 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
798 // while being more "polite". Other formats do not support 0-aligned sections
799 // anyway, so we should guarantee that the alignment is always at least 1.
800 Alignment = std::max(1u, Alignment);
801
802 Expected<StringRef> NameOrErr = Section.getName();
803 if (!NameOrErr)
804 return NameOrErr.takeError();
805 StringRef Name = *NameOrErr;
806
807 StubBufSize = computeSectionStubBufSize(Obj, Section);
808
809 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
810 // with zeroes added at the end. For MachO objects, this section has a
811 // slightly different name, so this won't have any effect for MachO objects.
812 if (Name == ".eh_frame")
813 PaddingSize = 4;
814
815 uintptr_t Allocate;
816 unsigned SectionID = Sections.size();
817 uint8_t *Addr;
818 const char *pData = nullptr;
819
820 // If this section contains any bits (i.e. isn't a virtual or bss section),
821 // grab a reference to them.
822 if (!IsVirtual && !IsZeroInit) {
823 // In either case, set the location of the unrelocated section in memory,
824 // since we still process relocations for it even if we're not applying them.
825 if (Expected<StringRef> E = Section.getContents())
826 data = *E;
827 else
828 return E.takeError();
829 pData = data.data();
830 }
831
832 // If there are any stubs then the section alignment needs to be at least as
833 // high as stub alignment or padding calculations may by incorrect when the
834 // section is remapped.
835 if (StubBufSize != 0) {
836 Alignment = std::max(Alignment, getStubAlignment());
837 PaddingSize += getStubAlignment() - 1;
838 }
839
840 // Some sections, such as debug info, don't need to be loaded for execution.
841 // Process those only if explicitly requested.
842 if (IsRequired || ProcessAllSections) {
843 Allocate = DataSize + PaddingSize + StubBufSize;
844 if (!Allocate)
845 Allocate = 1;
846 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
847 Name)
848 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
849 Name, IsReadOnly);
850 if (!Addr)
851 report_fatal_error("Unable to allocate section memory!");
852
853 // Zero-initialize or copy the data from the image
854 if (IsZeroInit || IsVirtual)
855 memset(Addr, 0, DataSize);
856 else
857 memcpy(Addr, pData, DataSize);
858
859 // Fill in any extra bytes we allocated for padding
860 if (PaddingSize != 0) {
861 memset(Addr + DataSize, 0, PaddingSize);
862 // Update the DataSize variable to include padding.
863 DataSize += PaddingSize;
864
865 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
866 // have been increased above to account for this).
867 if (StubBufSize > 0)
868 DataSize &= -(uint64_t)getStubAlignment();
869 }
870
871 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
872 << Name << " obj addr: " << format("%p", pData)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
873 << " new addr: " << format("%p", Addr) << " DataSize: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
874 << DataSize << " StubBufSize: " << StubBufSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
875 << " Allocate: " << Allocate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
;
876 } else {
877 // Even if we didn't load the section, we need to record an entry for it
878 // to handle later processing (and by 'handle' I mean don't do anything
879 // with these sections).
880 Allocate = 0;
881 Addr = nullptr;
882 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
883 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
884 << " obj addr: " << format("%p", data.data()) << " new addr: 0"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
885 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
886 << " Allocate: " << Allocate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
;
887 }
888
889 Sections.push_back(
890 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
891
892 // Debug info sections are linked as if their load address was zero
893 if (!IsRequired)
894 Sections.back().setLoadAddress(0);
895
896 return SectionID;
897}
898
899Expected<unsigned>
900RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
901 const SectionRef &Section,
902 bool IsCode,
903 ObjSectionToIDMap &LocalSections) {
904
905 unsigned SectionID = 0;
906 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
907 if (i != LocalSections.end())
908 SectionID = i->second;
909 else {
910 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
911 SectionID = *SectionIDOrErr;
912 else
913 return SectionIDOrErr.takeError();
914 LocalSections[Section] = SectionID;
915 }
916 return SectionID;
917}
918
919void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
920 unsigned SectionID) {
921 Relocations[SectionID].push_back(RE);
922}
923
924void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
925 StringRef SymbolName) {
926 // Relocation by symbol. If the symbol is found in the global symbol table,
927 // create an appropriate section relocation. Otherwise, add it to
928 // ExternalSymbolRelocations.
929 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
930 if (Loc == GlobalSymbolTable.end()) {
931 ExternalSymbolRelocations[SymbolName].push_back(RE);
932 } else {
933 // Copy the RE since we want to modify its addend.
934 RelocationEntry RECopy = RE;
935 const auto &SymInfo = Loc->second;
936 RECopy.Addend += SymInfo.getOffset();
937 Relocations[SymInfo.getSectionID()].push_back(RECopy);
938 }
939}
940
941uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
942 unsigned AbiVariant) {
943 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
944 Arch == Triple::aarch64_32) {
945 // This stub has to be able to access the full address space,
946 // since symbol lookup won't necessarily find a handy, in-range,
947 // PLT stub for functions which could be anywhere.
948 // Stub can use ip0 (== x16) to calculate address
949 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
950 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
951 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
952 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
953 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
954
955 return Addr;
956 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
957 // TODO: There is only ARM far stub now. We should add the Thumb stub,
958 // and stubs for branches Thumb - ARM and ARM - Thumb.
959 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
960 return Addr + 4;
961 } else if (IsMipsO32ABI || IsMipsN32ABI) {
962 // 0: 3c190000 lui t9,%hi(addr).
963 // 4: 27390000 addiu t9,t9,%lo(addr).
964 // 8: 03200008 jr t9.
965 // c: 00000000 nop.
966 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
967 const unsigned NopInstr = 0x0;
968 unsigned JrT9Instr = 0x03200008;
969 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
970 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
971 JrT9Instr = 0x03200009;
972
973 writeBytesUnaligned(LuiT9Instr, Addr, 4);
974 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
975 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
976 writeBytesUnaligned(NopInstr, Addr + 12, 4);
977 return Addr;
978 } else if (IsMipsN64ABI) {
979 // 0: 3c190000 lui t9,%highest(addr).
980 // 4: 67390000 daddiu t9,t9,%higher(addr).
981 // 8: 0019CC38 dsll t9,t9,16.
982 // c: 67390000 daddiu t9,t9,%hi(addr).
983 // 10: 0019CC38 dsll t9,t9,16.
984 // 14: 67390000 daddiu t9,t9,%lo(addr).
985 // 18: 03200008 jr t9.
986 // 1c: 00000000 nop.
987 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
988 DsllT9Instr = 0x19CC38;
989 const unsigned NopInstr = 0x0;
990 unsigned JrT9Instr = 0x03200008;
991 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
992 JrT9Instr = 0x03200009;
993
994 writeBytesUnaligned(LuiT9Instr, Addr, 4);
995 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
996 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
997 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
998 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
999 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
1000 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
1001 writeBytesUnaligned(NopInstr, Addr + 28, 4);
1002 return Addr;
1003 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1004 // Depending on which version of the ELF ABI is in use, we need to
1005 // generate one of two variants of the stub. They both start with
1006 // the same sequence to load the target address into r12.
1007 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
1008 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
1009 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
1010 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
1011 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
1012 if (AbiVariant == 2) {
1013 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1014 // The address is already in r12 as required by the ABI. Branch to it.
1015 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
1016 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1017 writeInt32BE(Addr+28, 0x4E800420); // bctr
1018 } else {
1019 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1020 // Load the function address on r11 and sets it to control register. Also
1021 // loads the function TOC in r2 and environment pointer to r11.
1022 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
1023 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
1024 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
1025 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1026 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
1027 writeInt32BE(Addr+40, 0x4E800420); // bctr
1028 }
1029 return Addr;
1030 } else if (Arch == Triple::systemz) {
1031 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
1032 writeInt16BE(Addr+2, 0x0000);
1033 writeInt16BE(Addr+4, 0x0004);
1034 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
1035 // 8-byte address stored at Addr + 8
1036 return Addr;
1037 } else if (Arch == Triple::x86_64) {
1038 *Addr = 0xFF; // jmp
1039 *(Addr+1) = 0x25; // rip
1040 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1041 } else if (Arch == Triple::x86) {
1042 *Addr = 0xE9; // 32-bit pc-relative jump.
1043 }
1044 return Addr;
1045}
1046
1047// Assign an address to a symbol name and resolve all the relocations
1048// associated with it.
1049void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1050 uint64_t Addr) {
1051 // The address to use for relocation resolution is not
1052 // the address of the local section buffer. We must be doing
1053 // a remote execution environment of some sort. Relocations can't
1054 // be applied until all the sections have been moved. The client must
1055 // trigger this with a call to MCJIT::finalize() or
1056 // RuntimeDyld::resolveRelocations().
1057 //
1058 // Addr is a uint64_t because we can't assume the pointer width
1059 // of the target is the same as that of the host. Just use a generic
1060 // "big enough" type.
1061 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1062 dbgs() << "Reassigning address for section " << SectionID << " ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1063 << Sections[SectionID].getName() << "): "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1064 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1065 << " -> " << format("0x%016" PRIx64, Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
;
1066 Sections[SectionID].setLoadAddress(Addr);
1067}
1068
1069void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1070 uint64_t Value) {
1071 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1072 const RelocationEntry &RE = Relocs[i];
1073 // Ignore relocations for sections that were not loaded
1074 if (Sections[RE.SectionID].getAddress() == nullptr)
1075 continue;
1076 resolveRelocation(RE, Value);
1077 }
1078}
1079
1080void RuntimeDyldImpl::applyExternalSymbolRelocations(
1081 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1082 while (!ExternalSymbolRelocations.empty()) {
1083
1084 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1085
1086 StringRef Name = i->first();
1087 if (Name.size() == 0) {
1088 // This is an absolute symbol, use an address of zero.
1089 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving absolute relocations."
<< "\n"; } } while (false)
1090 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving absolute relocations."
<< "\n"; } } while (false)
;
1091 RelocationList &Relocs = i->second;
1092 resolveRelocationList(Relocs, 0);
1093 } else {
1094 uint64_t Addr = 0;
1095 JITSymbolFlags Flags;
1096 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1097 if (Loc == GlobalSymbolTable.end()) {
1098 auto RRI = ExternalSymbolMap.find(Name);
1099 assert(RRI != ExternalSymbolMap.end() && "No result for symbol")((RRI != ExternalSymbolMap.end() && "No result for symbol"
) ? static_cast<void> (0) : __assert_fail ("RRI != ExternalSymbolMap.end() && \"No result for symbol\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1099, __PRETTY_FUNCTION__))
;
1100 Addr = RRI->second.getAddress();
1101 Flags = RRI->second.getFlags();
1102 // The call to getSymbolAddress may have caused additional modules to
1103 // be loaded, which may have added new entries to the
1104 // ExternalSymbolRelocations map. Consquently, we need to update our
1105 // iterator. This is also why retrieval of the relocation list
1106 // associated with this symbol is deferred until below this point.
1107 // New entries may have been added to the relocation list.
1108 i = ExternalSymbolRelocations.find(Name);
1109 } else {
1110 // We found the symbol in our global table. It was probably in a
1111 // Module that we loaded previously.
1112 const auto &SymInfo = Loc->second;
1113 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1114 SymInfo.getOffset();
1115 Flags = SymInfo.getFlags();
1116 }
1117
1118 // FIXME: Implement error handling that doesn't kill the host program!
1119 if (!Addr)
1120 report_fatal_error("Program used external function '" + Name +
1121 "' which could not be resolved!");
1122
1123 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1124 // manually and we shouldn't resolve its relocations.
1125 if (Addr != UINT64_MAX(18446744073709551615UL)) {
1126
1127 // Tweak the address based on the symbol flags if necessary.
1128 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1129 // if the target symbol is Thumb.
1130 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1131
1132 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Name: " <<
Name << "\t" << format("0x%lx", Addr) << "\n"
; } } while (false)
1133 << format("0x%lx", Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Name: " <<
Name << "\t" << format("0x%lx", Addr) << "\n"
; } } while (false)
;
1134 // This list may have been updated when we called getSymbolAddress, so
1135 // don't change this code to get the list earlier.
1136 RelocationList &Relocs = i->second;
1137 resolveRelocationList(Relocs, Addr);
1138 }
1139 }
1140
1141 ExternalSymbolRelocations.erase(i);
1142 }
1143}
1144
1145Error RuntimeDyldImpl::resolveExternalSymbols() {
1146 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1147
1148 // Resolution can trigger emission of more symbols, so iterate until
1149 // we've resolved *everything*.
1150 {
1151 JITSymbolResolver::LookupSet ResolvedSymbols;
1152
1153 while (true) {
1154 JITSymbolResolver::LookupSet NewSymbols;
1155
1156 for (auto &RelocKV : ExternalSymbolRelocations) {
1157 StringRef Name = RelocKV.first();
1158 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1159 !ResolvedSymbols.count(Name))
1160 NewSymbols.insert(Name);
1161 }
1162
1163 if (NewSymbols.empty())
1164 break;
1165
1166#ifdef _MSC_VER
1167 using ExpectedLookupResult =
1168 MSVCPExpected<JITSymbolResolver::LookupResult>;
1169#else
1170 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1171#endif
1172
1173 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1174 auto NewSymbolsF = NewSymbolsP->get_future();
1175 Resolver.lookup(NewSymbols,
1176 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1177 NewSymbolsP->set_value(std::move(Result));
1178 });
1179
1180 auto NewResolverResults = NewSymbolsF.get();
1181
1182 if (!NewResolverResults)
1183 return NewResolverResults.takeError();
1184
1185 assert(NewResolverResults->size() == NewSymbols.size() &&((NewResolverResults->size() == NewSymbols.size() &&
"Should have errored on unresolved symbols") ? static_cast<
void> (0) : __assert_fail ("NewResolverResults->size() == NewSymbols.size() && \"Should have errored on unresolved symbols\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1186, __PRETTY_FUNCTION__))
1186 "Should have errored on unresolved symbols")((NewResolverResults->size() == NewSymbols.size() &&
"Should have errored on unresolved symbols") ? static_cast<
void> (0) : __assert_fail ("NewResolverResults->size() == NewSymbols.size() && \"Should have errored on unresolved symbols\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1186, __PRETTY_FUNCTION__))
;
1187
1188 for (auto &RRKV : *NewResolverResults) {
1189 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?")((!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"
) ? static_cast<void> (0) : __assert_fail ("!ResolvedSymbols.count(RRKV.first) && \"Redundant resolution?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1189, __PRETTY_FUNCTION__))
;
1190 ExternalSymbolMap.insert(RRKV);
1191 ResolvedSymbols.insert(RRKV.first);
1192 }
1193 }
1194 }
1195
1196 applyExternalSymbolRelocations(ExternalSymbolMap);
1197
1198 return Error::success();
1199}
1200
1201void RuntimeDyldImpl::finalizeAsync(
1202 std::unique_ptr<RuntimeDyldImpl> This,
1203 unique_function<void(object::OwningBinary<object::ObjectFile>,
1204 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1205 OnEmitted,
1206 object::OwningBinary<object::ObjectFile> O,
1207 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) {
1208
1209 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1210 auto PostResolveContinuation =
1211 [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O),
1212 Info = std::move(Info)](
1213 Expected<JITSymbolResolver::LookupResult> Result) mutable {
1214 if (!Result) {
1215 OnEmitted(std::move(O), std::move(Info), Result.takeError());
1216 return;
1217 }
1218
1219 /// Copy the result into a StringMap, where the keys are held by value.
1220 StringMap<JITEvaluatedSymbol> Resolved;
1221 for (auto &KV : *Result)
1222 Resolved[KV.first] = KV.second;
1223
1224 SharedThis->applyExternalSymbolRelocations(Resolved);
1225 SharedThis->resolveLocalRelocations();
1226 SharedThis->registerEHFrames();
1227 std::string ErrMsg;
1228 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1229 OnEmitted(std::move(O), std::move(Info),
1230 make_error<StringError>(std::move(ErrMsg),
1231 inconvertibleErrorCode()));
1232 else
1233 OnEmitted(std::move(O), std::move(Info), Error::success());
1234 };
1235
1236 JITSymbolResolver::LookupSet Symbols;
1237
1238 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1239 StringRef Name = RelocKV.first();
1240 assert(!Name.empty() && "Symbol has no name?")((!Name.empty() && "Symbol has no name?") ? static_cast
<void> (0) : __assert_fail ("!Name.empty() && \"Symbol has no name?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1240, __PRETTY_FUNCTION__))
;
1241 assert(!SharedThis->GlobalSymbolTable.count(Name) &&((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1243, __PRETTY_FUNCTION__))
1242 "Name already processed. RuntimeDyld instances can not be re-used "((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1243, __PRETTY_FUNCTION__))
1243 "when finalizing with finalizeAsync.")((!SharedThis->GlobalSymbolTable.count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? static_cast<void
> (0) : __assert_fail ("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1243, __PRETTY_FUNCTION__))
;
1244 Symbols.insert(Name);
1245 }
1246
1247 if (!Symbols.empty()) {
1248 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1249 } else
1250 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1251}
1252
1253//===----------------------------------------------------------------------===//
1254// RuntimeDyld class implementation
1255
1256uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1257 const object::SectionRef &Sec) const {
1258
1259 auto I = ObjSecToIDMap.find(Sec);
1260 if (I != ObjSecToIDMap.end())
1261 return RTDyld.Sections[I->second].getLoadAddress();
1262
1263 return 0;
1264}
1265
1266void RuntimeDyld::MemoryManager::anchor() {}
1267void JITSymbolResolver::anchor() {}
1268void LegacyJITSymbolResolver::anchor() {}
1269
1270RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1271 JITSymbolResolver &Resolver)
1272 : MemMgr(MemMgr), Resolver(Resolver) {
1273 // FIXME: There's a potential issue lurking here if a single instance of
1274 // RuntimeDyld is used to load multiple objects. The current implementation
1275 // associates a single memory manager with a RuntimeDyld instance. Even
1276 // though the public class spawns a new 'impl' instance for each load,
1277 // they share a single memory manager. This can become a problem when page
1278 // permissions are applied.
1279 Dyld = nullptr;
1280 ProcessAllSections = false;
1281}
1282
1283RuntimeDyld::~RuntimeDyld() {}
1284
1285static std::unique_ptr<RuntimeDyldCOFF>
1286createRuntimeDyldCOFF(
1287 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1288 JITSymbolResolver &Resolver, bool ProcessAllSections,
1289 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1290 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1291 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1292 Dyld->setProcessAllSections(ProcessAllSections);
1293 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1294 return Dyld;
1295}
1296
1297static std::unique_ptr<RuntimeDyldELF>
1298createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1299 JITSymbolResolver &Resolver, bool ProcessAllSections,
1300 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1301 std::unique_ptr<RuntimeDyldELF> Dyld =
1302 RuntimeDyldELF::create(Arch, MM, Resolver);
1303 Dyld->setProcessAllSections(ProcessAllSections);
1304 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1305 return Dyld;
1306}
1307
1308static std::unique_ptr<RuntimeDyldMachO>
1309createRuntimeDyldMachO(
1310 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1311 JITSymbolResolver &Resolver,
1312 bool ProcessAllSections,
1313 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1314 std::unique_ptr<RuntimeDyldMachO> Dyld =
1315 RuntimeDyldMachO::create(Arch, MM, Resolver);
1316 Dyld->setProcessAllSections(ProcessAllSections);
1317 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1318 return Dyld;
1319}
1320
1321std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1322RuntimeDyld::loadObject(const ObjectFile &Obj) {
1323 if (!Dyld) {
1324 if (Obj.isELF())
1325 Dyld =
1326 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1327 MemMgr, Resolver, ProcessAllSections,
1328 std::move(NotifyStubEmitted));
1329 else if (Obj.isMachO())
1330 Dyld = createRuntimeDyldMachO(
1331 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1332 ProcessAllSections, std::move(NotifyStubEmitted));
1333 else if (Obj.isCOFF())
1334 Dyld = createRuntimeDyldCOFF(
1335 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1336 ProcessAllSections, std::move(NotifyStubEmitted));
1337 else
1338 report_fatal_error("Incompatible object format!");
1339 }
1340
1341 if (!Dyld->isCompatibleFile(Obj))
1342 report_fatal_error("Incompatible object format!");
1343
1344 auto LoadedObjInfo = Dyld->loadObject(Obj);
1345 MemMgr.notifyObjectLoaded(*this, Obj);
1346 return LoadedObjInfo;
1347}
1348
1349void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1350 if (!Dyld)
1351 return nullptr;
1352 return Dyld->getSymbolLocalAddress(Name);
1353}
1354
1355unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1356 assert(Dyld && "No RuntimeDyld instance attached")((Dyld && "No RuntimeDyld instance attached") ? static_cast
<void> (0) : __assert_fail ("Dyld && \"No RuntimeDyld instance attached\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1356, __PRETTY_FUNCTION__))
;
1357 return Dyld->getSymbolSectionID(Name);
1358}
1359
1360JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1361 if (!Dyld)
1362 return nullptr;
1363 return Dyld->getSymbol(Name);
1364}
1365
1366std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1367 if (!Dyld)
1368 return std::map<StringRef, JITEvaluatedSymbol>();
1369 return Dyld->getSymbolTable();
1370}
1371
1372void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1373
1374void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1375 Dyld->reassignSectionAddress(SectionID, Addr);
1376}
1377
1378void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1379 uint64_t TargetAddress) {
1380 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1381}
1382
1383bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1384
1385StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1386
1387void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1388 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1389 MemMgr.FinalizationLocked = true;
1390 resolveRelocations();
1391 registerEHFrames();
1392 if (!MemoryFinalizationLocked) {
1393 MemMgr.finalizeMemory();
1394 MemMgr.FinalizationLocked = false;
1395 }
1396}
1397
1398StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1399 assert(Dyld && "No Dyld instance attached")((Dyld && "No Dyld instance attached") ? static_cast<
void> (0) : __assert_fail ("Dyld && \"No Dyld instance attached\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1399, __PRETTY_FUNCTION__))
;
1400 return Dyld->getSectionContent(SectionID);
1401}
1402
1403uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1404 assert(Dyld && "No Dyld instance attached")((Dyld && "No Dyld instance attached") ? static_cast<
void> (0) : __assert_fail ("Dyld && \"No Dyld instance attached\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1404, __PRETTY_FUNCTION__))
;
1405 return Dyld->getSectionLoadAddress(SectionID);
1406}
1407
1408void RuntimeDyld::registerEHFrames() {
1409 if (Dyld)
1410 Dyld->registerEHFrames();
1411}
1412
1413void RuntimeDyld::deregisterEHFrames() {
1414 if (Dyld)
1415 Dyld->deregisterEHFrames();
1416}
1417// FIXME: Kill this with fire once we have a new JIT linker: this is only here
1418// so that we can re-use RuntimeDyld's implementation without twisting the
1419// interface any further for ORC's purposes.
1420void jitLinkForORC(
1421 object::OwningBinary<object::ObjectFile> O,
1422 RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
1423 bool ProcessAllSections,
1424 unique_function<Error(const object::ObjectFile &Obj,
1425 RuntimeDyld::LoadedObjectInfo &LoadedObj,
1426 std::map<StringRef, JITEvaluatedSymbol>)>
1427 OnLoaded,
1428 unique_function<void(object::OwningBinary<object::ObjectFile>,
1429 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1430 OnEmitted) {
1431
1432 RuntimeDyld RTDyld(MemMgr, Resolver);
1433 RTDyld.setProcessAllSections(ProcessAllSections);
1434
1435 auto Info = RTDyld.loadObject(*O.getBinary());
1436
1437 if (RTDyld.hasError()) {
1438 OnEmitted(std::move(O), std::move(Info),
1439 make_error<StringError>(RTDyld.getErrorString(),
1440 inconvertibleErrorCode()));
1441 return;
1442 }
1443
1444 if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable()))
1445 OnEmitted(std::move(O), std::move(Info), std::move(Err));
1446
1447 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1448 std::move(O), std::move(Info));
1449}
1450
1451} // end namespace llvm

/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <cassert>
31#include <cstdint>
32#include <cstdlib>
33#include <functional>
34#include <memory>
35#include <new>
36#include <string>
37#include <system_error>
38#include <type_traits>
39#include <utility>
40#include <vector>
41
42namespace llvm {
43
44class ErrorSuccess;
45
46/// Base class for error info classes. Do not extend this directly: Extend
47/// the ErrorInfo template subclass instead.
48class ErrorInfoBase {
49public:
50 virtual ~ErrorInfoBase() = default;
51
52 /// Print an error message to an output stream.
53 virtual void log(raw_ostream &OS) const = 0;
54
55 /// Return the error message as a string.
56 virtual std::string message() const {
57 std::string Msg;
58 raw_string_ostream OS(Msg);
59 log(OS);
60 return OS.str();
61 }
62
63 /// Convert this error to a std::error_code.
64 ///
65 /// This is a temporary crutch to enable interaction with code still
66 /// using std::error_code. It will be removed in the future.
67 virtual std::error_code convertToErrorCode() const = 0;
68
69 // Returns the class ID for this type.
70 static const void *classID() { return &ID; }
71
72 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
73 virtual const void *dynamicClassID() const = 0;
74
75 // Check whether this instance is a subclass of the class identified by
76 // ClassID.
77 virtual bool isA(const void *const ClassID) const {
78 return ClassID == classID();
79 }
80
81 // Check whether this instance is a subclass of ErrorInfoT.
82 template <typename ErrorInfoT> bool isA() const {
83 return isA(ErrorInfoT::classID());
84 }
85
86private:
87 virtual void anchor();
88
89 static char ID;
90};
91
92/// Lightweight error class with error context and mandatory checking.
93///
94/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
95/// are represented by setting the pointer to a ErrorInfoBase subclass
96/// instance containing information describing the failure. Success is
97/// represented by a null pointer value.
98///
99/// Instances of Error also contains a 'Checked' flag, which must be set
100/// before the destructor is called, otherwise the destructor will trigger a
101/// runtime error. This enforces at runtime the requirement that all Error
102/// instances be checked or returned to the caller.
103///
104/// There are two ways to set the checked flag, depending on what state the
105/// Error instance is in. For Error instances indicating success, it
106/// is sufficient to invoke the boolean conversion operator. E.g.:
107///
108/// @code{.cpp}
109/// Error foo(<...>);
110///
111/// if (auto E = foo(<...>))
112/// return E; // <- Return E if it is in the error state.
113/// // We have verified that E was in the success state. It can now be safely
114/// // destroyed.
115/// @endcode
116///
117/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
118/// without testing the return value will raise a runtime error, even if foo
119/// returns success.
120///
121/// For Error instances representing failure, you must use either the
122/// handleErrors or handleAllErrors function with a typed handler. E.g.:
123///
124/// @code{.cpp}
125/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
126/// // Custom error info.
127/// };
128///
129/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
130///
131/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
132/// auto NewE =
133/// handleErrors(E,
134/// [](const MyErrorInfo &M) {
135/// // Deal with the error.
136/// },
137/// [](std::unique_ptr<OtherError> M) -> Error {
138/// if (canHandle(*M)) {
139/// // handle error.
140/// return Error::success();
141/// }
142/// // Couldn't handle this error instance. Pass it up the stack.
143/// return Error(std::move(M));
144/// );
145/// // Note - we must check or return NewE in case any of the handlers
146/// // returned a new error.
147/// @endcode
148///
149/// The handleAllErrors function is identical to handleErrors, except
150/// that it has a void return type, and requires all errors to be handled and
151/// no new errors be returned. It prevents errors (assuming they can all be
152/// handled) from having to be bubbled all the way to the top-level.
153///
154/// *All* Error instances must be checked before destruction, even if
155/// they're moved-assigned or constructed from Success values that have already
156/// been checked. This enforces checking through all levels of the call stack.
157class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
158 // ErrorList needs to be able to yank ErrorInfoBase pointers out of Errors
159 // to add to the error list. It can't rely on handleErrors for this, since
160 // handleErrors does not support ErrorList handlers.
161 friend class ErrorList;
162
163 // handleErrors needs to be able to set the Checked flag.
164 template <typename... HandlerTs>
165 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
166
167 // Expected<T> needs to be able to steal the payload when constructed from an
168 // error.
169 template <typename T> friend class Expected;
170
171 // wrap needs to be able to steal the payload.
172 friend LLVMErrorRef wrap(Error);
173
174protected:
175 /// Create a success value. Prefer using 'Error::success()' for readability
176 Error() {
177 setPtr(nullptr);
178 setChecked(false);
179 }
180
181public:
182 /// Create a success value.
183 static ErrorSuccess success();
184
185 // Errors are not copy-constructable.
186 Error(const Error &Other) = delete;
187
188 /// Move-construct an error value. The newly constructed error is considered
189 /// unchecked, even if the source error had been checked. The original error
190 /// becomes a checked Success value, regardless of its original state.
191 Error(Error &&Other) {
192 setChecked(true);
193 *this = std::move(Other);
194 }
195
196 /// Create an error value. Prefer using the 'make_error' function, but
197 /// this constructor can be useful when "re-throwing" errors from handlers.
198 Error(std::unique_ptr<ErrorInfoBase> Payload) {
199 setPtr(Payload.release());
200 setChecked(false);
201 }
202
203 // Errors are not copy-assignable.
204 Error &operator=(const Error &Other) = delete;
205
206 /// Move-assign an error value. The current error must represent success, you
207 /// you cannot overwrite an unhandled error. The current error is then
208 /// considered unchecked. The source error becomes a checked success value,
209 /// regardless of its original state.
210 Error &operator=(Error &&Other) {
211 // Don't allow overwriting of unchecked values.
212 assertIsChecked();
213 setPtr(Other.getPtr());
214
215 // This Error is unchecked, even if the source error was checked.
216 setChecked(false);
217
218 // Null out Other's payload and set its checked bit.
219 Other.setPtr(nullptr);
220 Other.setChecked(true);
221
222 return *this;
223 }
224
225 /// Destroy a Error. Fails with a call to abort() if the error is
226 /// unchecked.
227 ~Error() {
228 assertIsChecked();
229 delete getPtr();
230 }
231
232 /// Bool conversion. Returns true if this Error is in a failure state,
233 /// and false if it is in an accept state. If the error is in a Success state
234 /// it will be considered checked.
235 explicit operator bool() {
236 setChecked(getPtr() == nullptr);
237 return getPtr() != nullptr;
238 }
239
240 /// Check whether one error is a subclass of another.
241 template <typename ErrT> bool isA() const {
242 return getPtr() && getPtr()->isA(ErrT::classID());
243 }
244
245 /// Returns the dynamic class id of this error, or null if this is a success
246 /// value.
247 const void* dynamicClassID() const {
248 if (!getPtr())
249 return nullptr;
250 return getPtr()->dynamicClassID();
251 }
252
253private:
254#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
255 // assertIsChecked() happens very frequently, but under normal circumstances
256 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
257 // of debug prints can cause the function to be too large for inlining. So
258 // it's important that we define this function out of line so that it can't be
259 // inlined.
260 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
261 void fatalUncheckedError() const;
262#endif
263
264 void assertIsChecked() {
265#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
266 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
267 fatalUncheckedError();
268#endif
269 }
270
271 ErrorInfoBase *getPtr() const {
272#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276#else
277 return Payload;
278#endif
279 }
280
281 void setPtr(ErrorInfoBase *EI) {
282#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
283 Payload = reinterpret_cast<ErrorInfoBase*>(
284 (reinterpret_cast<uintptr_t>(EI) &
285 ~static_cast<uintptr_t>(0x1)) |
286 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
287#else
288 Payload = EI;
289#endif
290 }
291
292 bool getChecked() const {
293#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
294 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
295#else
296 return true;
297#endif
298 }
299
300 void setChecked(bool V) {
301#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
302 Payload = reinterpret_cast<ErrorInfoBase*>(
303 (reinterpret_cast<uintptr_t>(Payload) &
304 ~static_cast<uintptr_t>(0x1)) |
305 (V ? 0 : 1));
306#endif
307 }
308
309 std::unique_ptr<ErrorInfoBase> takePayload() {
310 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
311 setPtr(nullptr);
312 setChecked(true);
313 return Tmp;
314 }
315
316 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
317 if (auto P = E.getPtr())
318 P->log(OS);
319 else
320 OS << "success";
321 return OS;
322 }
323
324 ErrorInfoBase *Payload = nullptr;
325};
326
327/// Subclass of Error for the sole purpose of identifying the success path in
328/// the type system. This allows to catch invalid conversion to Expected<T> at
329/// compile time.
330class ErrorSuccess final : public Error {};
331
332inline ErrorSuccess Error::success() { return ErrorSuccess(); }
333
334/// Make a Error instance representing failure using the given error info
335/// type.
336template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
337 return Error(std::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
338}
339
340/// Base class for user error types. Users should declare their error types
341/// like:
342///
343/// class MyError : public ErrorInfo<MyError> {
344/// ....
345/// };
346///
347/// This class provides an implementation of the ErrorInfoBase::kind
348/// method, which is used by the Error RTTI system.
349template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
350class ErrorInfo : public ParentErrT {
351public:
352 using ParentErrT::ParentErrT; // inherit constructors
353
354 static const void *classID() { return &ThisErrT::ID; }
355
356 const void *dynamicClassID() const override { return &ThisErrT::ID; }
357
358 bool isA(const void *const ClassID) const override {
359 return ClassID == classID() || ParentErrT::isA(ClassID);
360 }
361};
362
363/// Special ErrorInfo subclass representing a list of ErrorInfos.
364/// Instances of this class are constructed by joinError.
365class ErrorList final : public ErrorInfo<ErrorList> {
366 // handleErrors needs to be able to iterate the payload list of an
367 // ErrorList.
368 template <typename... HandlerTs>
369 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
370
371 // joinErrors is implemented in terms of join.
372 friend Error joinErrors(Error, Error);
373
374public:
375 void log(raw_ostream &OS) const override {
376 OS << "Multiple errors:\n";
377 for (auto &ErrPayload : Payloads) {
378 ErrPayload->log(OS);
379 OS << "\n";
380 }
381 }
382
383 std::error_code convertToErrorCode() const override;
384
385 // Used by ErrorInfo::classID.
386 static char ID;
387
388private:
389 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
390 std::unique_ptr<ErrorInfoBase> Payload2) {
391 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 392, __PRETTY_FUNCTION__))
392 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 392, __PRETTY_FUNCTION__))
;
393 Payloads.push_back(std::move(Payload1));
394 Payloads.push_back(std::move(Payload2));
395 }
396
397 static Error join(Error E1, Error E2) {
398 if (!E1)
399 return E2;
400 if (!E2)
401 return E1;
402 if (E1.isA<ErrorList>()) {
403 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
404 if (E2.isA<ErrorList>()) {
405 auto E2Payload = E2.takePayload();
406 auto &E2List = static_cast<ErrorList &>(*E2Payload);
407 for (auto &Payload : E2List.Payloads)
408 E1List.Payloads.push_back(std::move(Payload));
409 } else
410 E1List.Payloads.push_back(E2.takePayload());
411
412 return E1;
413 }
414 if (E2.isA<ErrorList>()) {
415 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
416 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
417 return E2;
418 }
419 return Error(std::unique_ptr<ErrorList>(
420 new ErrorList(E1.takePayload(), E2.takePayload())));
421 }
422
423 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
424};
425
426/// Concatenate errors. The resulting Error is unchecked, and contains the
427/// ErrorInfo(s), if any, contained in E1, followed by the
428/// ErrorInfo(s), if any, contained in E2.
429inline Error joinErrors(Error E1, Error E2) {
430 return ErrorList::join(std::move(E1), std::move(E2));
431}
432
433/// Tagged union holding either a T or a Error.
434///
435/// This class parallels ErrorOr, but replaces error_code with Error. Since
436/// Error cannot be copied, this class replaces getError() with
437/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
438/// error class type.
439template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
440 template <class T1> friend class ExpectedAsOutParameter;
441 template <class OtherT> friend class Expected;
442
443 static constexpr bool isRef = std::is_reference<T>::value;
444
445 using wrap = std::reference_wrapper<std::remove_reference_t<T>>;
446
447 using error_type = std::unique_ptr<ErrorInfoBase>;
448
449public:
450 using storage_type = std::conditional_t<isRef, wrap, T>;
451 using value_type = T;
452
453private:
454 using reference = std::remove_reference_t<T> &;
455 using const_reference = const std::remove_reference_t<T> &;
456 using pointer = std::remove_reference_t<T> *;
457 using const_pointer = const std::remove_reference_t<T> *;
458
459public:
460 /// Create an Expected<T> error value from the given Error.
461 Expected(Error Err)
462 : HasError(true)
463#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
464 // Expected is unchecked upon construction in Debug builds.
465 , Unchecked(true)
466#endif
467 {
468 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 468, __PRETTY_FUNCTION__))
;
469 new (getErrorStorage()) error_type(Err.takePayload());
470 }
471
472 /// Forbid to convert from Error::success() implicitly, this avoids having
473 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
474 /// but triggers the assertion above.
475 Expected(ErrorSuccess) = delete;
476
477 /// Create an Expected<T> success value from the given OtherT value, which
478 /// must be convertible to T.
479 template <typename OtherT>
480 Expected(OtherT &&Val,
481 std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr)
482 : HasError(false)
483#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
484 // Expected is unchecked upon construction in Debug builds.
485 ,
486 Unchecked(true)
487#endif
488 {
489 new (getStorage()) storage_type(std::forward<OtherT>(Val));
490 }
491
492 /// Move construct an Expected<T> value.
493 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
494
495 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
496 /// must be convertible to T.
497 template <class OtherT>
498 Expected(
499 Expected<OtherT> &&Other,
500 std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr) {
501 moveConstruct(std::move(Other));
502 }
503
504 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
505 /// isn't convertible to T.
506 template <class OtherT>
507 explicit Expected(
508 Expected<OtherT> &&Other,
509 std::enable_if_t<!std::is_convertible<OtherT, T>::value> * = nullptr) {
510 moveConstruct(std::move(Other));
511 }
512
513 /// Move-assign from another Expected<T>.
514 Expected &operator=(Expected &&Other) {
515 moveAssign(std::move(Other));
516 return *this;
517 }
518
519 /// Destroy an Expected<T>.
520 ~Expected() {
521 assertIsChecked();
522 if (!HasError)
523 getStorage()->~storage_type();
524 else
525 getErrorStorage()->~error_type();
526 }
527
528 /// Return false if there is an error.
529 explicit operator bool() {
530#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
531 Unchecked = HasError;
532#endif
533 return !HasError;
4
Assuming field 'HasError' is false, which participates in a condition later
5
Returning the value 1, which participates in a condition later
12
Assuming field 'HasError' is false, which participates in a condition later
13
Returning the value 1, which participates in a condition later
19
Assuming field 'HasError' is false, which participates in a condition later
20
Returning the value 1, which participates in a condition later
24
Assuming field 'HasError' is false, which participates in a condition later
25
Returning the value 1, which participates in a condition later
29
Assuming field 'HasError' is false, which participates in a condition later
30
Returning the value 1, which participates in a condition later
49
Assuming field 'HasError' is false, which participates in a condition later
50
Returning the value 1, which participates in a condition later
63
Returning the value 1, which participates in a condition later
534 }
535
536 /// Returns a reference to the stored T value.
537 reference get() {
538 assertIsChecked();
539 return *getStorage();
540 }
541
542 /// Returns a const reference to the stored T value.
543 const_reference get() const {
544 assertIsChecked();
545 return const_cast<Expected<T> *>(this)->get();
546 }
547
548 /// Check that this Expected<T> is an error of type ErrT.
549 template <typename ErrT> bool errorIsA() const {
550 return HasError && (*getErrorStorage())->template isA<ErrT>();
551 }
552
553 /// Take ownership of the stored error.
554 /// After calling this the Expected<T> is in an indeterminate state that can
555 /// only be safely destructed. No further calls (beside the destructor) should
556 /// be made on the Expected<T> value.
557 Error takeError() {
558#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
559 Unchecked = false;
560#endif
561 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
562 }
563
564 /// Returns a pointer to the stored T value.
565 pointer operator->() {
566 assertIsChecked();
567 return toPointer(getStorage());
568 }
569
570 /// Returns a const pointer to the stored T value.
571 const_pointer operator->() const {
572 assertIsChecked();
573 return toPointer(getStorage());
574 }
575
576 /// Returns a reference to the stored T value.
577 reference operator*() {
578 assertIsChecked();
579 return *getStorage();
580 }
581
582 /// Returns a const reference to the stored T value.
583 const_reference operator*() const {
584 assertIsChecked();
585 return *getStorage();
586 }
587
588private:
589 template <class T1>
590 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
591 return &a == &b;
592 }
593
594 template <class T1, class T2>
595 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
596 return false;
597 }
598
599 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
600 HasError = Other.HasError;
601#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
602 Unchecked = true;
603 Other.Unchecked = false;
604#endif
605
606 if (!HasError)
607 new (getStorage()) storage_type(std::move(*Other.getStorage()));
608 else
609 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
610 }
611
612 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
613 assertIsChecked();
614
615 if (compareThisIfSameType(*this, Other))
616 return;
617
618 this->~Expected();
619 new (this) Expected(std::move(Other));
620 }
621
622 pointer toPointer(pointer Val) { return Val; }
623
624 const_pointer toPointer(const_pointer Val) const { return Val; }
625
626 pointer toPointer(wrap *Val) { return &Val->get(); }
627
628 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
629
630 storage_type *getStorage() {
631 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 631, __PRETTY_FUNCTION__))
;
632 return reinterpret_cast<storage_type *>(TStorage.buffer);
633 }
634
635 const storage_type *getStorage() const {
636 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 636, __PRETTY_FUNCTION__))
;
637 return reinterpret_cast<const storage_type *>(TStorage.buffer);
638 }
639
640 error_type *getErrorStorage() {
641 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 641, __PRETTY_FUNCTION__))
;
642 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
643 }
644
645 const error_type *getErrorStorage() const {
646 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 646, __PRETTY_FUNCTION__))
;
647 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
648 }
649
650 // Used by ExpectedAsOutParameter to reset the checked flag.
651 void setUnchecked() {
652#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
653 Unchecked = true;
654#endif
655 }
656
657#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
658 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
659 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
660 void fatalUncheckedExpected() const {
661 dbgs() << "Expected<T> must be checked before access or destruction.\n";
662 if (HasError) {
663 dbgs() << "Unchecked Expected<T> contained error:\n";
664 (*getErrorStorage())->log(dbgs());
665 } else
666 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
667 "values in success mode must still be checked prior to being "
668 "destroyed).\n";
669 abort();
670 }
671#endif
672
673 void assertIsChecked() {
674#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
675 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
676 fatalUncheckedExpected();
677#endif
678 }
679
680 union {
681 AlignedCharArrayUnion<storage_type> TStorage;
682 AlignedCharArrayUnion<error_type> ErrorStorage;
683 };
684 bool HasError : 1;
685#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
686 bool Unchecked : 1;
687#endif
688};
689
690/// Report a serious error, calling any installed error handler. See
691/// ErrorHandling.h.
692LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
693 bool gen_crash_diag = true);
694
695/// Report a fatal error if Err is a failure value.
696///
697/// This function can be used to wrap calls to fallible functions ONLY when it
698/// is known that the Error will always be a success value. E.g.
699///
700/// @code{.cpp}
701/// // foo only attempts the fallible operation if DoFallibleOperation is
702/// // true. If DoFallibleOperation is false then foo always returns
703/// // Error::success().
704/// Error foo(bool DoFallibleOperation);
705///
706/// cantFail(foo(false));
707/// @endcode
708inline void cantFail(Error Err, const char *Msg = nullptr) {
709 if (Err) {
710 if (!Msg)
711 Msg = "Failure value returned from cantFail wrapped call";
712#ifndef NDEBUG
713 std::string Str;
714 raw_string_ostream OS(Str);
715 OS << Msg << "\n" << Err;
716 Msg = OS.str().c_str();
717#endif
718 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 718)
;
719 }
720}
721
722/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
723/// returns the contained value.
724///
725/// This function can be used to wrap calls to fallible functions ONLY when it
726/// is known that the Error will always be a success value. E.g.
727///
728/// @code{.cpp}
729/// // foo only attempts the fallible operation if DoFallibleOperation is
730/// // true. If DoFallibleOperation is false then foo always returns an int.
731/// Expected<int> foo(bool DoFallibleOperation);
732///
733/// int X = cantFail(foo(false));
734/// @endcode
735template <typename T>
736T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
737 if (ValOrErr)
738 return std::move(*ValOrErr);
739 else {
740 if (!Msg)
741 Msg = "Failure value returned from cantFail wrapped call";
742#ifndef NDEBUG
743 std::string Str;
744 raw_string_ostream OS(Str);
745 auto E = ValOrErr.takeError();
746 OS << Msg << "\n" << E;
747 Msg = OS.str().c_str();
748#endif
749 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 749)
;
750 }
751}
752
753/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
754/// returns the contained reference.
755///
756/// This function can be used to wrap calls to fallible functions ONLY when it
757/// is known that the Error will always be a success value. E.g.
758///
759/// @code{.cpp}
760/// // foo only attempts the fallible operation if DoFallibleOperation is
761/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
762/// Expected<Bar&> foo(bool DoFallibleOperation);
763///
764/// Bar &X = cantFail(foo(false));
765/// @endcode
766template <typename T>
767T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
768 if (ValOrErr)
769 return *ValOrErr;
770 else {
771 if (!Msg)
772 Msg = "Failure value returned from cantFail wrapped call";
773#ifndef NDEBUG
774 std::string Str;
775 raw_string_ostream OS(Str);
776 auto E = ValOrErr.takeError();
777 OS << Msg << "\n" << E;
778 Msg = OS.str().c_str();
779#endif
780 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 780)
;
781 }
782}
783
784/// Helper for testing applicability of, and applying, handlers for
785/// ErrorInfo types.
786template <typename HandlerT>
787class ErrorHandlerTraits
788 : public ErrorHandlerTraits<decltype(
789 &std::remove_reference<HandlerT>::type::operator())> {};
790
791// Specialization functions of the form 'Error (const ErrT&)'.
792template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
793public:
794 static bool appliesTo(const ErrorInfoBase &E) {
795 return E.template isA<ErrT>();
796 }
797
798 template <typename HandlerT>
799 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
800 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 800, __PRETTY_FUNCTION__))
;
801 return H(static_cast<ErrT &>(*E));
802 }
803};
804
805// Specialization functions of the form 'void (const ErrT&)'.
806template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
807public:
808 static bool appliesTo(const ErrorInfoBase &E) {
809 return E.template isA<ErrT>();
810 }
811
812 template <typename HandlerT>
813 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
814 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 814, __PRETTY_FUNCTION__))
;
815 H(static_cast<ErrT &>(*E));
816 return Error::success();
817 }
818};
819
820/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
821template <typename ErrT>
822class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
823public:
824 static bool appliesTo(const ErrorInfoBase &E) {
825 return E.template isA<ErrT>();
826 }
827
828 template <typename HandlerT>
829 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
830 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 830, __PRETTY_FUNCTION__))
;
831 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
832 return H(std::move(SubE));
833 }
834};
835
836/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
837template <typename ErrT>
838class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
839public:
840 static bool appliesTo(const ErrorInfoBase &E) {
841 return E.template isA<ErrT>();
842 }
843
844 template <typename HandlerT>
845 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
846 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 846, __PRETTY_FUNCTION__))
;
847 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
848 H(std::move(SubE));
849 return Error::success();
850 }
851};
852
853// Specialization for member functions of the form 'RetT (const ErrT&)'.
854template <typename C, typename RetT, typename ErrT>
855class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
856 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
857
858// Specialization for member functions of the form 'RetT (const ErrT&) const'.
859template <typename C, typename RetT, typename ErrT>
860class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
861 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
862
863// Specialization for member functions of the form 'RetT (const ErrT&)'.
864template <typename C, typename RetT, typename ErrT>
865class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
866 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
867
868// Specialization for member functions of the form 'RetT (const ErrT&) const'.
869template <typename C, typename RetT, typename ErrT>
870class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
871 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
872
873/// Specialization for member functions of the form
874/// 'RetT (std::unique_ptr<ErrT>)'.
875template <typename C, typename RetT, typename ErrT>
876class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
877 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
878
879/// Specialization for member functions of the form
880/// 'RetT (std::unique_ptr<ErrT>) const'.
881template <typename C, typename RetT, typename ErrT>
882class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
883 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
884
885inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
886 return Error(std::move(Payload));
887}
888
889template <typename HandlerT, typename... HandlerTs>
890Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
891 HandlerT &&Handler, HandlerTs &&... Handlers) {
892 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
893 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
894 std::move(Payload));
895 return handleErrorImpl(std::move(Payload),
896 std::forward<HandlerTs>(Handlers)...);
897}
898
899/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
900/// unhandled errors (or Errors returned by handlers) are re-concatenated and
901/// returned.
902/// Because this function returns an error, its result must also be checked
903/// or returned. If you intend to handle all errors use handleAllErrors
904/// (which returns void, and will abort() on unhandled errors) instead.
905template <typename... HandlerTs>
906Error handleErrors(Error E, HandlerTs &&... Hs) {
907 if (!E)
908 return Error::success();
909
910 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
911
912 if (Payload->isA<ErrorList>()) {
913 ErrorList &List = static_cast<ErrorList &>(*Payload);
914 Error R;
915 for (auto &P : List.Payloads)
916 R = ErrorList::join(
917 std::move(R),
918 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
919 return R;
920 }
921
922 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
923}
924
925/// Behaves the same as handleErrors, except that by contract all errors
926/// *must* be handled by the given handlers (i.e. there must be no remaining
927/// errors after running the handlers, or llvm_unreachable is called).
928template <typename... HandlerTs>
929void handleAllErrors(Error E, HandlerTs &&... Handlers) {
930 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
931}
932
933/// Check that E is a non-error, then drop it.
934/// If E is an error, llvm_unreachable will be called.
935inline void handleAllErrors(Error E) {
936 cantFail(std::move(E));
937}
938
939/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
940///
941/// If the incoming value is a success value it is returned unmodified. If it
942/// is a failure value then it the contained error is passed to handleErrors.
943/// If handleErrors is able to handle the error then the RecoveryPath functor
944/// is called to supply the final result. If handleErrors is not able to
945/// handle all errors then the unhandled errors are returned.
946///
947/// This utility enables the follow pattern:
948///
949/// @code{.cpp}
950/// enum FooStrategy { Aggressive, Conservative };
951/// Expected<Foo> foo(FooStrategy S);
952///
953/// auto ResultOrErr =
954/// handleExpected(
955/// foo(Aggressive),
956/// []() { return foo(Conservative); },
957/// [](AggressiveStrategyError&) {
958/// // Implicitly conusme this - we'll recover by using a conservative
959/// // strategy.
960/// });
961///
962/// @endcode
963template <typename T, typename RecoveryFtor, typename... HandlerTs>
964Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
965 HandlerTs &&... Handlers) {
966 if (ValOrErr)
967 return ValOrErr;
968
969 if (auto Err = handleErrors(ValOrErr.takeError(),
970 std::forward<HandlerTs>(Handlers)...))
971 return std::move(Err);
972
973 return RecoveryPath();
974}
975
976/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
977/// will be printed before the first one is logged. A newline will be printed
978/// after each error.
979///
980/// This function is compatible with the helpers from Support/WithColor.h. You
981/// can pass any of them as the OS. Please consider using them instead of
982/// including 'error: ' in the ErrorBanner.
983///
984/// This is useful in the base level of your program to allow clean termination
985/// (allowing clean deallocation of resources, etc.), while reporting error
986/// information to the user.
987void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
988
989/// Write all error messages (if any) in E to a string. The newline character
990/// is used to separate error messages.
991inline std::string toString(Error E) {
992 SmallVector<std::string, 2> Errors;
993 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
994 Errors.push_back(EI.message());
995 });
996 return join(Errors.begin(), Errors.end(), "\n");
997}
998
999/// Consume a Error without doing anything. This method should be used
1000/// only where an error can be considered a reasonable and expected return
1001/// value.
1002///
1003/// Uses of this method are potentially indicative of design problems: If it's
1004/// legitimate to do nothing while processing an "error", the error-producer
1005/// might be more clearly refactored to return an Optional<T>.
1006inline void consumeError(Error Err) {
1007 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
1008}
1009
1010/// Convert an Expected to an Optional without doing anything. This method
1011/// should be used only where an error can be considered a reasonable and
1012/// expected return value.
1013///
1014/// Uses of this method are potentially indicative of problems: perhaps the
1015/// error should be propagated further, or the error-producer should just
1016/// return an Optional in the first place.
1017template <typename T> Optional<T> expectedToOptional(Expected<T> &&E) {
1018 if (E)
1019 return std::move(*E);
1020 consumeError(E.takeError());
1021 return None;
1022}
1023
1024/// Helper for converting an Error to a bool.
1025///
1026/// This method returns true if Err is in an error state, or false if it is
1027/// in a success state. Puts Err in a checked state in both cases (unlike
1028/// Error::operator bool(), which only does this for success states).
1029inline bool errorToBool(Error Err) {
1030 bool IsError = static_cast<bool>(Err);
1031 if (IsError)
1032 consumeError(std::move(Err));
1033 return IsError;
1034}
1035
1036/// Helper for Errors used as out-parameters.
1037///
1038/// This helper is for use with the Error-as-out-parameter idiom, where an error
1039/// is passed to a function or method by reference, rather than being returned.
1040/// In such cases it is helpful to set the checked bit on entry to the function
1041/// so that the error can be written to (unchecked Errors abort on assignment)
1042/// and clear the checked bit on exit so that clients cannot accidentally forget
1043/// to check the result. This helper performs these actions automatically using
1044/// RAII:
1045///
1046/// @code{.cpp}
1047/// Result foo(Error &Err) {
1048/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1049/// // <body of foo>
1050/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1051/// }
1052/// @endcode
1053///
1054/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1055/// used with optional Errors (Error pointers that are allowed to be null). If
1056/// ErrorAsOutParameter took an Error reference, an instance would have to be
1057/// created inside every condition that verified that Error was non-null. By
1058/// taking an Error pointer we can just create one instance at the top of the
1059/// function.
1060class ErrorAsOutParameter {
1061public:
1062 ErrorAsOutParameter(Error *Err) : Err(Err) {
1063 // Raise the checked bit if Err is success.
1064 if (Err)
1065 (void)!!*Err;
1066 }
1067
1068 ~ErrorAsOutParameter() {
1069 // Clear the checked bit.
1070 if (Err && !*Err)
1071 *Err = Error::success();
1072 }
1073
1074private:
1075 Error *Err;
1076};
1077
1078/// Helper for Expected<T>s used as out-parameters.
1079///
1080/// See ErrorAsOutParameter.
1081template <typename T>
1082class ExpectedAsOutParameter {
1083public:
1084 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1085 : ValOrErr(ValOrErr) {
1086 if (ValOrErr)
1087 (void)!!*ValOrErr;
1088 }
1089
1090 ~ExpectedAsOutParameter() {
1091 if (ValOrErr)
1092 ValOrErr->setUnchecked();
1093 }
1094
1095private:
1096 Expected<T> *ValOrErr;
1097};
1098
1099/// This class wraps a std::error_code in a Error.
1100///
1101/// This is useful if you're writing an interface that returns a Error
1102/// (or Expected) and you want to call code that still returns
1103/// std::error_codes.
1104class ECError : public ErrorInfo<ECError> {
1105 friend Error errorCodeToError(std::error_code);
1106
1107 virtual void anchor() override;
1108
1109public:
1110 void setErrorCode(std::error_code EC) { this->EC = EC; }
1111 std::error_code convertToErrorCode() const override { return EC; }
1112 void log(raw_ostream &OS) const override { OS << EC.message(); }
1113
1114 // Used by ErrorInfo::classID.
1115 static char ID;
1116
1117protected:
1118 ECError() = default;
1119 ECError(std::error_code EC) : EC(EC) {}
1120
1121 std::error_code EC;
1122};
1123
1124/// The value returned by this function can be returned from convertToErrorCode
1125/// for Error values where no sensible translation to std::error_code exists.
1126/// It should only be used in this situation, and should never be used where a
1127/// sensible conversion to std::error_code is available, as attempts to convert
1128/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1129///error to try to convert such a value).
1130std::error_code inconvertibleErrorCode();
1131
1132/// Helper for converting an std::error_code to a Error.
1133Error errorCodeToError(std::error_code EC);
1134
1135/// Helper for converting an ECError to a std::error_code.
1136///
1137/// This method requires that Err be Error() or an ECError, otherwise it
1138/// will trigger a call to abort().
1139std::error_code errorToErrorCode(Error Err);
1140
1141/// Convert an ErrorOr<T> to an Expected<T>.
1142template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1143 if (auto EC = EO.getError())
1144 return errorCodeToError(EC);
1145 return std::move(*EO);
1146}
1147
1148/// Convert an Expected<T> to an ErrorOr<T>.
1149template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1150 if (auto Err = E.takeError())
1151 return errorToErrorCode(std::move(Err));
1152 return std::move(*E);
1153}
1154
1155/// This class wraps a string in an Error.
1156///
1157/// StringError is useful in cases where the client is not expected to be able
1158/// to consume the specific error message programmatically (for example, if the
1159/// error message is to be presented to the user).
1160///
1161/// StringError can also be used when additional information is to be printed
1162/// along with a error_code message. Depending on the constructor called, this
1163/// class can either display:
1164/// 1. the error_code message (ECError behavior)
1165/// 2. a string
1166/// 3. the error_code message and a string
1167///
1168/// These behaviors are useful when subtyping is required; for example, when a
1169/// specific library needs an explicit error type. In the example below,
1170/// PDBError is derived from StringError:
1171///
1172/// @code{.cpp}
1173/// Expected<int> foo() {
1174/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1175/// "Additional information");
1176/// }
1177/// @endcode
1178///
1179class StringError : public ErrorInfo<StringError> {
1180public:
1181 static char ID;
1182
1183 // Prints EC + S and converts to EC
1184 StringError(std::error_code EC, const Twine &S = Twine());
1185
1186 // Prints S and converts to EC
1187 StringError(const Twine &S, std::error_code EC);
1188
1189 void log(raw_ostream &OS) const override;
1190 std::error_code convertToErrorCode() const override;
1191
1192 const std::string &getMessage() const { return Msg; }
1193
1194private:
1195 std::string Msg;
1196 std::error_code EC;
1197 const bool PrintMsgOnly = false;
1198};
1199
1200/// Create formatted StringError object.
1201template <typename... Ts>
1202inline Error createStringError(std::error_code EC, char const *Fmt,
1203 const Ts &... Vals) {
1204 std::string Buffer;
1205 raw_string_ostream Stream(Buffer);
1206 Stream << format(Fmt, Vals...);
1207 return make_error<StringError>(Stream.str(), EC);
1208}
1209
1210Error createStringError(std::error_code EC, char const *Msg);
1211
1212inline Error createStringError(std::error_code EC, const Twine &S) {
1213 return createStringError(EC, S.str().c_str());
1214}
1215
1216template <typename... Ts>
1217inline Error createStringError(std::errc EC, char const *Fmt,
1218 const Ts &... Vals) {
1219 return createStringError(std::make_error_code(EC), Fmt, Vals...);
1220}
1221
1222/// This class wraps a filename and another Error.
1223///
1224/// In some cases, an error needs to live along a 'source' name, in order to
1225/// show more detailed information to the user.
1226class FileError final : public ErrorInfo<FileError> {
1227
1228 friend Error createFileError(const Twine &, Error);
1229 friend Error createFileError(const Twine &, size_t, Error);
1230
1231public:
1232 void log(raw_ostream &OS) const override {
1233 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 1233, __PRETTY_FUNCTION__))
;
1234 OS << "'" << FileName << "': ";
1235 if (Line.hasValue())
1236 OS << "line " << Line.getValue() << ": ";
1237 Err->log(OS);
1238 }
1239
1240 StringRef getFileName() { return FileName; }
1241
1242 Error takeError() { return Error(std::move(Err)); }
1243
1244 std::error_code convertToErrorCode() const override;
1245
1246 // Used by ErrorInfo::classID.
1247 static char ID;
1248
1249private:
1250 FileError(const Twine &F, Optional<size_t> LineNum,
1251 std::unique_ptr<ErrorInfoBase> E) {
1252 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 1252, __PRETTY_FUNCTION__))
;
1253 assert(!F.isTriviallyEmpty() &&((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 1254, __PRETTY_FUNCTION__))
1254 "The file name provided to FileError must not be empty.")((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/Support/Error.h"
, 1254, __PRETTY_FUNCTION__))
;
1255 FileName = F.str();
1256 Err = std::move(E);
1257 Line = std::move(LineNum);
1258 }
1259
1260 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1261 std::unique_ptr<ErrorInfoBase> Payload;
1262 handleAllErrors(std::move(E),
1263 [&](std::unique_ptr<ErrorInfoBase> EIB) -> Error {
1264 Payload = std::move(EIB);
1265 return Error::success();
1266 });
1267 return Error(
1268 std::unique_ptr<FileError>(new FileError(F, Line, std::move(Payload))));
1269 }
1270
1271 std::string FileName;
1272 Optional<size_t> Line;
1273 std::unique_ptr<ErrorInfoBase> Err;
1274};
1275
1276/// Concatenate a source file path and/or name with an Error. The resulting
1277/// Error is unchecked.
1278inline Error createFileError(const Twine &F, Error E) {
1279 return FileError::build(F, Optional<size_t>(), std::move(E));
1280}
1281
1282/// Concatenate a source file path and/or name with line number and an Error.
1283/// The resulting Error is unchecked.
1284inline Error createFileError(const Twine &F, size_t Line, Error E) {
1285 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1286}
1287
1288/// Concatenate a source file path and/or name with a std::error_code
1289/// to form an Error object.
1290inline Error createFileError(const Twine &F, std::error_code EC) {
1291 return createFileError(F, errorCodeToError(EC));
1292}
1293
1294/// Concatenate a source file path and/or name with line number and
1295/// std::error_code to form an Error object.
1296inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1297 return createFileError(F, Line, errorCodeToError(EC));
1298}
1299
1300Error createFileError(const Twine &F, ErrorSuccess) = delete;
1301
1302/// Helper for check-and-exit error handling.
1303///
1304/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1305///
1306class ExitOnError {
1307public:
1308 /// Create an error on exit helper.
1309 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1310 : Banner(std::move(Banner)),
1311 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1312
1313 /// Set the banner string for any errors caught by operator().
1314 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1315
1316 /// Set the exit-code mapper function.
1317 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1318 this->GetExitCode = std::move(GetExitCode);
1319 }
1320
1321 /// Check Err. If it's in a failure state log the error(s) and exit.
1322 void operator()(Error Err) const { checkError(std::move(Err)); }
1323
1324 /// Check E. If it's in a success state then return the contained value. If
1325 /// it's in a failure state log the error(s) and exit.
1326 template <typename T> T operator()(Expected<T> &&E) const {
1327 checkError(E.takeError());
1328 return std::move(*E);
1329 }
1330
1331 /// Check E. If it's in a success state then return the contained reference. If
1332 /// it's in a failure state log the error(s) and exit.
1333 template <typename T> T& operator()(Expected<T&> &&E) const {
1334 checkError(E.takeError());
1335 return *E;
1336 }
1337
1338private:
1339 void checkError(Error Err) const {
1340 if (Err) {
1341 int ExitCode = GetExitCode(Err);
1342 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1343 exit(ExitCode);
1344 }
1345 }
1346
1347 std::string Banner;
1348 std::function<int(const Error &)> GetExitCode;
1349};
1350
1351/// Conversion from Error to LLVMErrorRef for C error bindings.
1352inline LLVMErrorRef wrap(Error Err) {
1353 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1354}
1355
1356/// Conversion from LLVMErrorRef to Error for C error bindings.
1357inline Error unwrap(LLVMErrorRef ErrRef) {
1358 return Error(std::unique_ptr<ErrorInfoBase>(
1359 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1360}
1361
1362} // end namespace llvm
1363
1364#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/ExecutionEngine/JITSymbol.h

1//===- JITSymbol.h - JIT symbol abstraction ---------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Abstraction for target process addresses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_EXECUTIONENGINE_JITSYMBOL_H
14#define LLVM_EXECUTIONENGINE_JITSYMBOL_H
15
16#include <algorithm>
17#include <cassert>
18#include <cstddef>
19#include <cstdint>
20#include <functional>
21#include <map>
22#include <set>
23#include <string>
24
25#include "llvm/ADT/BitmaskEnum.h"
26#include "llvm/ADT/FunctionExtras.h"
27#include "llvm/ADT/StringRef.h"
28#include "llvm/Support/Error.h"
29
30namespace llvm {
31
32class GlobalValue;
33class GlobalValueSummary;
34
35namespace object {
36
37class SymbolRef;
38
39} // end namespace object
40
41/// Represents an address in the target process's address space.
42using JITTargetAddress = uint64_t;
43
44/// Convert a JITTargetAddress to a pointer.
45///
46/// Note: This is a raw cast of the address bit pattern to the given pointer
47/// type. When casting to a function pointer in order to execute JIT'd code
48/// jitTargetAddressToFunction should be preferred, as it will also perform
49/// pointer signing on targets that require it.
50template <typename T> T jitTargetAddressToPointer(JITTargetAddress Addr) {
51 static_assert(std::is_pointer<T>::value, "T must be a pointer type");
52 uintptr_t IntPtr = static_cast<uintptr_t>(Addr);
53 assert(IntPtr == Addr && "JITTargetAddress value out of range for uintptr_t")((IntPtr == Addr && "JITTargetAddress value out of range for uintptr_t"
) ? static_cast<void> (0) : __assert_fail ("IntPtr == Addr && \"JITTargetAddress value out of range for uintptr_t\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/ExecutionEngine/JITSymbol.h"
, 53, __PRETTY_FUNCTION__))
;
54 return reinterpret_cast<T>(IntPtr);
55}
56
57/// Convert a JITTargetAddress to a callable function pointer.
58///
59/// Casts the given address to a callable function pointer. This operation
60/// will perform pointer signing for platforms that require it (e.g. arm64e).
61template <typename T> T jitTargetAddressToFunction(JITTargetAddress Addr) {
62 static_assert(std::is_pointer<T>::value &&
63 std::is_function<std::remove_pointer_t<T>>::value,
64 "T must be a function pointer type");
65 return jitTargetAddressToPointer<T>(Addr);
66}
67
68/// Convert a pointer to a JITTargetAddress.
69template <typename T> JITTargetAddress pointerToJITTargetAddress(T *Ptr) {
70 return static_cast<JITTargetAddress>(reinterpret_cast<uintptr_t>(Ptr));
71}
72
73/// Flags for symbols in the JIT.
74class JITSymbolFlags {
75public:
76 using UnderlyingType = uint8_t;
77 using TargetFlagsType = uint8_t;
78
79 enum FlagNames : UnderlyingType {
80 None = 0,
81 HasError = 1U << 0,
82 Weak = 1U << 1,
83 Common = 1U << 2,
84 Absolute = 1U << 3,
85 Exported = 1U << 4,
86 Callable = 1U << 5,
87 MaterializationSideEffectsOnly = 1U << 6,
88 LLVM_MARK_AS_BITMASK_ENUM( // LargestValue =LLVM_BITMASK_LARGEST_ENUMERATOR = MaterializationSideEffectsOnly
89 MaterializationSideEffectsOnly)LLVM_BITMASK_LARGEST_ENUMERATOR = MaterializationSideEffectsOnly
90 };
91
92 /// Default-construct a JITSymbolFlags instance.
93 JITSymbolFlags() = default;
94
95 /// Construct a JITSymbolFlags instance from the given flags.
96 JITSymbolFlags(FlagNames Flags) : Flags(Flags) {}
97
98 /// Construct a JITSymbolFlags instance from the given flags and target
99 /// flags.
100 JITSymbolFlags(FlagNames Flags, TargetFlagsType TargetFlags)
101 : TargetFlags(TargetFlags), Flags(Flags) {}
102
103 /// Implicitly convert to bool. Returs true if any flag is set.
104 explicit operator bool() const { return Flags != None || TargetFlags != 0; }
105
106 /// Compare for equality.
107 bool operator==(const JITSymbolFlags &RHS) const {
108 return Flags == RHS.Flags && TargetFlags == RHS.TargetFlags;
109 }
110
111 /// Bitwise AND-assignment for FlagNames.
112 JITSymbolFlags &operator&=(const FlagNames &RHS) {
113 Flags &= RHS;
114 return *this;
115 }
116
117 /// Bitwise OR-assignment for FlagNames.
118 JITSymbolFlags &operator|=(const FlagNames &RHS) {
119 Flags |= RHS;
120 return *this;
121 }
122
123 /// Return true if there was an error retrieving this symbol.
124 bool hasError() const {
125 return (Flags & HasError) == HasError;
126 }
127
128 /// Returns true if the Weak flag is set.
129 bool isWeak() const {
130 return (Flags & Weak) == Weak;
34
Assuming the condition is false
35
Returning zero, which participates in a condition later
131 }
132
133 /// Returns true if the Common flag is set.
134 bool isCommon() const {
135 return (Flags & Common) == Common;
38
Assuming the condition is false
39
Returning zero, which participates in a condition later
136 }
137
138 /// Returns true if the symbol isn't weak or common.
139 bool isStrong() const {
140 return !isWeak() && !isCommon();
141 }
142
143 /// Returns true if the Exported flag is set.
144 bool isExported() const {
145 return (Flags & Exported) == Exported;
146 }
147
148 /// Returns true if the given symbol is known to be callable.
149 bool isCallable() const { return (Flags & Callable) == Callable; }
150
151 /// Returns true if this symbol is a materialization-side-effects-only
152 /// symbol. Such symbols do not have a real address. They exist to trigger
153 /// and support synchronization of materialization side effects, e.g. for
154 /// collecting initialization information. These symbols will vanish from
155 /// the symbol table immediately upon reaching the ready state, and will
156 /// appear to queries as if they were never defined (except that query
157 /// callback execution will be delayed until they reach the ready state).
158 /// MaterializationSideEffectOnly symbols should only be queried using the
159 /// SymbolLookupFlags::WeaklyReferencedSymbol flag (see
160 /// llvm/include/llvm/ExecutionEngine/Orc/Core.h).
161 bool hasMaterializationSideEffectsOnly() const {
162 return (Flags & MaterializationSideEffectsOnly) ==
163 MaterializationSideEffectsOnly;
164 }
165
166 /// Get the underlying flags value as an integer.
167 UnderlyingType getRawFlagsValue() const {
168 return static_cast<UnderlyingType>(Flags);
169 }
170
171 /// Return a reference to the target-specific flags.
172 TargetFlagsType& getTargetFlags() { return TargetFlags; }
173
174 /// Return a reference to the target-specific flags.
175 const TargetFlagsType& getTargetFlags() const { return TargetFlags; }
176
177 /// Construct a JITSymbolFlags value based on the flags of the given global
178 /// value.
179 static JITSymbolFlags fromGlobalValue(const GlobalValue &GV);
180
181 /// Construct a JITSymbolFlags value based on the flags of the given global
182 /// value summary.
183 static JITSymbolFlags fromSummary(GlobalValueSummary *S);
184
185 /// Construct a JITSymbolFlags value based on the flags of the given libobject
186 /// symbol.
187 static Expected<JITSymbolFlags>
188 fromObjectSymbol(const object::SymbolRef &Symbol);
189
190private:
191 TargetFlagsType TargetFlags = 0;
192 FlagNames Flags = None;
193};
194
195inline JITSymbolFlags operator&(const JITSymbolFlags &LHS,
196 const JITSymbolFlags::FlagNames &RHS) {
197 JITSymbolFlags Tmp = LHS;
198 Tmp &= RHS;
199 return Tmp;
200}
201
202inline JITSymbolFlags operator|(const JITSymbolFlags &LHS,
203 const JITSymbolFlags::FlagNames &RHS) {
204 JITSymbolFlags Tmp = LHS;
205 Tmp |= RHS;
206 return Tmp;
207}
208
209/// ARM-specific JIT symbol flags.
210/// FIXME: This should be moved into a target-specific header.
211class ARMJITSymbolFlags {
212public:
213 ARMJITSymbolFlags() = default;
214
215 enum FlagNames {
216 None = 0,
217 Thumb = 1 << 0
218 };
219
220 operator JITSymbolFlags::TargetFlagsType&() { return Flags; }
221
222 static ARMJITSymbolFlags fromObjectSymbol(const object::SymbolRef &Symbol);
223
224private:
225 JITSymbolFlags::TargetFlagsType Flags = 0;
226};
227
228/// Represents a symbol that has been evaluated to an address already.
229class JITEvaluatedSymbol {
230public:
231 JITEvaluatedSymbol() = default;
232
233 /// Create a 'null' symbol.
234 JITEvaluatedSymbol(std::nullptr_t) {}
235
236 /// Create a symbol for the given address and flags.
237 JITEvaluatedSymbol(JITTargetAddress Address, JITSymbolFlags Flags)
238 : Address(Address), Flags(Flags) {}
239
240 /// Create a symbol from the given pointer with the given flags.
241 template <typename T>
242 static JITEvaluatedSymbol
243 fromPointer(T *P, JITSymbolFlags Flags = JITSymbolFlags::Exported) {
244 return JITEvaluatedSymbol(pointerToJITTargetAddress(P), Flags);
245 }
246
247 /// An evaluated symbol converts to 'true' if its address is non-zero.
248 explicit operator bool() const { return Address != 0; }
249
250 /// Return the address of this symbol.
251 JITTargetAddress getAddress() const { return Address; }
252
253 /// Return the flags for this symbol.
254 JITSymbolFlags getFlags() const { return Flags; }
255
256 /// Set the flags for this symbol.
257 void setFlags(JITSymbolFlags Flags) { this->Flags = std::move(Flags); }
258
259private:
260 JITTargetAddress Address = 0;
261 JITSymbolFlags Flags;
262};
263
264/// Represents a symbol in the JIT.
265class JITSymbol {
266public:
267 using GetAddressFtor = unique_function<Expected<JITTargetAddress>()>;
268
269 /// Create a 'null' symbol, used to represent a "symbol not found"
270 /// result from a successful (non-erroneous) lookup.
271 JITSymbol(std::nullptr_t)
272 : CachedAddr(0) {}
273
274 /// Create a JITSymbol representing an error in the symbol lookup
275 /// process (e.g. a network failure during a remote lookup).
276 JITSymbol(Error Err)
277 : Err(std::move(Err)), Flags(JITSymbolFlags::HasError) {}
278
279 /// Create a symbol for a definition with a known address.
280 JITSymbol(JITTargetAddress Addr, JITSymbolFlags Flags)
281 : CachedAddr(Addr), Flags(Flags) {}
282
283 /// Construct a JITSymbol from a JITEvaluatedSymbol.
284 JITSymbol(JITEvaluatedSymbol Sym)
285 : CachedAddr(Sym.getAddress()), Flags(Sym.getFlags()) {}
286
287 /// Create a symbol for a definition that doesn't have a known address
288 /// yet.
289 /// @param GetAddress A functor to materialize a definition (fixing the
290 /// address) on demand.
291 ///
292 /// This constructor allows a JIT layer to provide a reference to a symbol
293 /// definition without actually materializing the definition up front. The
294 /// user can materialize the definition at any time by calling the getAddress
295 /// method.
296 JITSymbol(GetAddressFtor GetAddress, JITSymbolFlags Flags)
297 : GetAddress(std::move(GetAddress)), CachedAddr(0), Flags(Flags) {}
298
299 JITSymbol(const JITSymbol&) = delete;
300 JITSymbol& operator=(const JITSymbol&) = delete;
301
302 JITSymbol(JITSymbol &&Other)
303 : GetAddress(std::move(Other.GetAddress)), Flags(std::move(Other.Flags)) {
304 if (Flags.hasError())
305 Err = std::move(Other.Err);
306 else
307 CachedAddr = std::move(Other.CachedAddr);
308 }
309
310 JITSymbol& operator=(JITSymbol &&Other) {
311 GetAddress = std::move(Other.GetAddress);
312 Flags = std::move(Other.Flags);
313 if (Flags.hasError())
314 Err = std::move(Other.Err);
315 else
316 CachedAddr = std::move(Other.CachedAddr);
317 return *this;
318 }
319
320 ~JITSymbol() {
321 if (Flags.hasError())
322 Err.~Error();
323 else
324 CachedAddr.~JITTargetAddress();
325 }
326
327 /// Returns true if the symbol exists, false otherwise.
328 explicit operator bool() const {
329 return !Flags.hasError() && (CachedAddr || GetAddress);
330 }
331
332 /// Move the error field value out of this JITSymbol.
333 Error takeError() {
334 if (Flags.hasError())
335 return std::move(Err);
336 return Error::success();
337 }
338
339 /// Get the address of the symbol in the target address space. Returns
340 /// '0' if the symbol does not exist.
341 Expected<JITTargetAddress> getAddress() {
342 assert(!Flags.hasError() && "getAddress called on error value")((!Flags.hasError() && "getAddress called on error value"
) ? static_cast<void> (0) : __assert_fail ("!Flags.hasError() && \"getAddress called on error value\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/ExecutionEngine/JITSymbol.h"
, 342, __PRETTY_FUNCTION__))
;
343 if (GetAddress) {
344 if (auto CachedAddrOrErr = GetAddress()) {
345 GetAddress = nullptr;
346 CachedAddr = *CachedAddrOrErr;
347 assert(CachedAddr && "Symbol could not be materialized.")((CachedAddr && "Symbol could not be materialized.") ?
static_cast<void> (0) : __assert_fail ("CachedAddr && \"Symbol could not be materialized.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include/llvm/ExecutionEngine/JITSymbol.h"
, 347, __PRETTY_FUNCTION__))
;
348 } else
349 return CachedAddrOrErr.takeError();
350 }
351 return CachedAddr;
352 }
353
354 JITSymbolFlags getFlags() const { return Flags; }
355
356private:
357 GetAddressFtor GetAddress;
358 union {
359 JITTargetAddress CachedAddr;
360 Error Err;
361 };
362 JITSymbolFlags Flags;
363};
364
365/// Symbol resolution interface.
366///
367/// Allows symbol flags and addresses to be looked up by name.
368/// Symbol queries are done in bulk (i.e. you request resolution of a set of
369/// symbols, rather than a single one) to reduce IPC overhead in the case of
370/// remote JITing, and expose opportunities for parallel compilation.
371class JITSymbolResolver {
372public:
373 using LookupSet = std::set<StringRef>;
374 using LookupResult = std::map<StringRef, JITEvaluatedSymbol>;
375 using OnResolvedFunction = unique_function<void(Expected<LookupResult>)>;
376
377 virtual ~JITSymbolResolver() = default;
378
379 /// Returns the fully resolved address and flags for each of the given
380 /// symbols.
381 ///
382 /// This method will return an error if any of the given symbols can not be
383 /// resolved, or if the resolution process itself triggers an error.
384 virtual void lookup(const LookupSet &Symbols,
385 OnResolvedFunction OnResolved) = 0;
386
387 /// Returns the subset of the given symbols that should be materialized by
388 /// the caller. Only weak/common symbols should be looked up, as strong
389 /// definitions are implicitly always part of the caller's responsibility.
390 virtual Expected<LookupSet>
391 getResponsibilitySet(const LookupSet &Symbols) = 0;
392
393private:
394 virtual void anchor();
395};
396
397/// Legacy symbol resolution interface.
398class LegacyJITSymbolResolver : public JITSymbolResolver {
399public:
400 /// Performs lookup by, for each symbol, first calling
401 /// findSymbolInLogicalDylib and if that fails calling
402 /// findSymbol.
403 void lookup(const LookupSet &Symbols, OnResolvedFunction OnResolved) final;
404
405 /// Performs flags lookup by calling findSymbolInLogicalDylib and
406 /// returning the flags value for that symbol.
407 Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) final;
408
409 /// This method returns the address of the specified symbol if it exists
410 /// within the logical dynamic library represented by this JITSymbolResolver.
411 /// Unlike findSymbol, queries through this interface should return addresses
412 /// for hidden symbols.
413 ///
414 /// This is of particular importance for the Orc JIT APIs, which support lazy
415 /// compilation by breaking up modules: Each of those broken out modules
416 /// must be able to resolve hidden symbols provided by the others. Clients
417 /// writing memory managers for MCJIT can usually ignore this method.
418 ///
419 /// This method will be queried by RuntimeDyld when checking for previous
420 /// definitions of common symbols.
421 virtual JITSymbol findSymbolInLogicalDylib(const std::string &Name) = 0;
422
423 /// This method returns the address of the specified function or variable.
424 /// It is used to resolve symbols during module linking.
425 ///
426 /// If the returned symbol's address is equal to ~0ULL then RuntimeDyld will
427 /// skip all relocations for that symbol, and the client will be responsible
428 /// for handling them manually.
429 virtual JITSymbol findSymbol(const std::string &Name) = 0;
430
431private:
432 void anchor() override;
433};
434
435} // end namespace llvm
436
437#endif // LLVM_EXECUTIONENGINE_JITSYMBOL_H