Bug Summary

File:llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
Warning:line 347, column 13
2nd function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name RuntimeDyld.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/build-llvm/lib/ExecutionEngine/RuntimeDyld -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/build-llvm/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/build-llvm/lib/ExecutionEngine/RuntimeDyld -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-07-26-235520-9401-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp

/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp

1//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ExecutionEngine/RuntimeDyld.h"
14#include "RuntimeDyldCOFF.h"
15#include "RuntimeDyldELF.h"
16#include "RuntimeDyldImpl.h"
17#include "RuntimeDyldMachO.h"
18#include "llvm/Object/COFF.h"
19#include "llvm/Object/ELFObjectFile.h"
20#include "llvm/Support/Alignment.h"
21#include "llvm/Support/MSVCErrorWorkarounds.h"
22#include "llvm/Support/ManagedStatic.h"
23#include "llvm/Support/MathExtras.h"
24#include <mutex>
25
26#include <future>
27
28using namespace llvm;
29using namespace llvm::object;
30
31#define DEBUG_TYPE"dyld" "dyld"
32
33namespace {
34
35enum RuntimeDyldErrorCode {
36 GenericRTDyldError = 1
37};
38
39// FIXME: This class is only here to support the transition to llvm::Error. It
40// will be removed once this transition is complete. Clients should prefer to
41// deal with the Error value directly, rather than converting to error_code.
42class RuntimeDyldErrorCategory : public std::error_category {
43public:
44 const char *name() const noexcept override { return "runtimedyld"; }
45
46 std::string message(int Condition) const override {
47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48 case GenericRTDyldError: return "Generic RuntimeDyld error";
49 }
50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode")::llvm::llvm_unreachable_internal("Unrecognized RuntimeDyldErrorCode"
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 50)
;
51 }
52};
53
54static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
55
56}
57
58char RuntimeDyldError::ID = 0;
59
60void RuntimeDyldError::log(raw_ostream &OS) const {
61 OS << ErrMsg << "\n";
62}
63
64std::error_code RuntimeDyldError::convertToErrorCode() const {
65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
66}
67
68// Empty out-of-line virtual destructor as the key function.
69RuntimeDyldImpl::~RuntimeDyldImpl() {}
70
71// Pin LoadedObjectInfo's vtables to this file.
72void RuntimeDyld::LoadedObjectInfo::anchor() {}
73
74namespace llvm {
75
76void RuntimeDyldImpl::registerEHFrames() {}
77
78void RuntimeDyldImpl::deregisterEHFrames() {
79 MemMgr.deregisterEHFrames();
80}
81
82#ifndef NDEBUG
83static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84 dbgs() << "----- Contents of section " << S.getName() << " " << State
85 << " -----";
86
87 if (S.getAddress() == nullptr) {
88 dbgs() << "\n <section not emitted>\n";
89 return;
90 }
91
92 const unsigned ColsPerRow = 16;
93
94 uint8_t *DataAddr = S.getAddress();
95 uint64_t LoadAddr = S.getLoadAddress();
96
97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98 unsigned BytesRemaining = S.getSize();
99
100 if (StartPadding) {
101 dbgs() << "\n" << format("0x%016" PRIx64"l" "x",
102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103 while (StartPadding--)
104 dbgs() << " ";
105 }
106
107 while (BytesRemaining > 0) {
108 if ((LoadAddr & (ColsPerRow - 1)) == 0)
109 dbgs() << "\n" << format("0x%016" PRIx64"l" "x", LoadAddr) << ":";
110
111 dbgs() << " " << format("%02x", *DataAddr);
112
113 ++DataAddr;
114 ++LoadAddr;
115 --BytesRemaining;
116 }
117
118 dbgs() << "\n";
119}
120#endif
121
122// Resolve the relocations for all symbols we currently know about.
123void RuntimeDyldImpl::resolveRelocations() {
124 std::lock_guard<sys::Mutex> locked(lock);
125
126 // Print out the sections prior to relocation.
127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "before relocations");; } } while
(false)
128 dumpSectionMemory(Sections[i], "before relocations");)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "before relocations");; } } while
(false)
;
129
130 // First, resolve relocations associated with external symbols.
131 if (auto Err = resolveExternalSymbols()) {
132 HasError = true;
133 ErrorStr = toString(std::move(Err));
134 }
135
136 resolveLocalRelocations();
137
138 // Print out sections after relocation.
139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "after relocations");; } } while
(false)
140 dumpSectionMemory(Sections[i], "after relocations");)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { for (int i = 0, e = Sections.size(); i != e; ++i)
dumpSectionMemory(Sections[i], "after relocations");; } } while
(false)
;
141}
142
143void RuntimeDyldImpl::resolveLocalRelocations() {
144 // Iterate over all outstanding relocations
145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146 // The Section here (Sections[i]) refers to the section in which the
147 // symbol for the relocation is located. The SectionID in the relocation
148 // entry provides the section to which the relocation will be applied.
149 unsigned Idx = it->first;
150 uint64_t Addr = getSectionLoadAddress(Idx);
151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Section #"
<< Idx << "\t" << format("%p", (uintptr_t)
Addr) << "\n"; } } while (false)
152 << format("%p", (uintptr_t)Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Section #"
<< Idx << "\t" << format("%p", (uintptr_t)
Addr) << "\n"; } } while (false)
;
153 resolveRelocationList(it->second, Addr);
154 }
155 Relocations.clear();
156}
157
158void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159 uint64_t TargetAddress) {
160 std::lock_guard<sys::Mutex> locked(lock);
161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162 if (Sections[i].getAddress() == LocalAddress) {
163 reassignSectionAddress(i, TargetAddress);
164 return;
165 }
166 }
167 llvm_unreachable("Attempting to remap address of unknown section!")::llvm::llvm_unreachable_internal("Attempting to remap address of unknown section!"
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 167)
;
168}
169
170static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171 uint64_t &Result) {
172 Expected<uint64_t> AddressOrErr = Sym.getAddress();
173 if (!AddressOrErr)
57
Taking true branch
174 return AddressOrErr.takeError();
58
Returning without writing to 'Result'
175 Result = *AddressOrErr - Sec.getAddress();
176 return Error::success();
177}
178
179Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181 std::lock_guard<sys::Mutex> locked(lock);
182
183 // Save information about our target
184 Arch = (Triple::ArchType)Obj.getArch();
185 IsTargetLittleEndian = Obj.isLittleEndian();
186 setMipsABI(Obj);
187
188 // Compute the memory size required to load all sections to be loaded
189 // and pass this information to the memory manager
190 if (MemMgr.needsToReserveAllocationSpace()) {
1
Assuming the condition is false
2
Taking false branch
191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193 if (auto Err = computeTotalAllocSize(Obj,
194 CodeSize, CodeAlign,
195 RODataSize, RODataAlign,
196 RWDataSize, RWDataAlign))
197 return std::move(Err);
198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199 RWDataSize, RWDataAlign);
200 }
201
202 // Used sections from the object file
203 ObjSectionToIDMap LocalSections;
204
205 // Common symbols requiring allocation, with their sizes and alignments
206 CommonSymbolList CommonSymbolsToAllocate;
207
208 uint64_t CommonSize = 0;
209 uint32_t CommonAlign = 0;
210
211 // First, collect all weak and common symbols. We need to know if stronger
212 // definitions occur elsewhere.
213 JITSymbolResolver::LookupSet ResponsibilitySet;
214 {
215 JITSymbolResolver::LookupSet Symbols;
216 for (auto &Sym : Obj.symbols()) {
217 Expected<uint32_t> FlagsOrErr = Sym.getFlags();
218 if (!FlagsOrErr)
219 // TODO: Test this error.
220 return FlagsOrErr.takeError();
221 if ((*FlagsOrErr & SymbolRef::SF_Common) ||
222 (*FlagsOrErr & SymbolRef::SF_Weak)) {
223 // Get symbol name.
224 if (auto NameOrErr = Sym.getName())
225 Symbols.insert(*NameOrErr);
226 else
227 return NameOrErr.takeError();
228 }
229 }
230
231 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
3
Calling 'Expected::operator bool'
6
Returning from 'Expected::operator bool'
7
Taking true branch
232 ResponsibilitySet = std::move(*ResultOrErr);
233 else
234 return ResultOrErr.takeError();
235 }
236
237 // Parse symbols
238 LLVM_DEBUG(dbgs() << "Parse symbols:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Parse symbols:\n"; } } while (false
)
;
8
Assuming 'DebugFlag' is false
9
Loop condition is false. Exiting loop
239 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
10
Loop condition is true. Entering loop body
240 ++I) {
241 Expected<uint32_t> FlagsOrErr = I->getFlags();
242 if (!FlagsOrErr)
11
Calling 'Expected::operator bool'
14
Returning from 'Expected::operator bool'
15
Taking false branch
243 // TODO: Test this error.
244 return FlagsOrErr.takeError();
245
246 // Skip undefined symbols.
247 if (*FlagsOrErr & SymbolRef::SF_Undefined)
16
Assuming the condition is false
17
Taking false branch
248 continue;
249
250 // Get the symbol type.
251 object::SymbolRef::Type SymType;
252 if (auto SymTypeOrErr = I->getType())
18
Calling 'Expected::operator bool'
21
Returning from 'Expected::operator bool'
22
Taking true branch
253 SymType = *SymTypeOrErr;
254 else
255 return SymTypeOrErr.takeError();
256
257 // Get symbol name.
258 StringRef Name;
259 if (auto NameOrErr = I->getName())
23
Calling 'Expected::operator bool'
26
Returning from 'Expected::operator bool'
27
Taking true branch
260 Name = *NameOrErr;
261 else
262 return NameOrErr.takeError();
263
264 // Compute JIT symbol flags.
265 auto JITSymFlags = getJITSymbolFlags(*I);
266 if (!JITSymFlags)
28
Calling 'Expected::operator bool'
31
Returning from 'Expected::operator bool'
32
Taking false branch
267 return JITSymFlags.takeError();
268
269 // If this is a weak definition, check to see if there's a strong one.
270 // If there is, skip this symbol (we won't be providing it: the strong
271 // definition will). If there's no strong definition, make this definition
272 // strong.
273 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
33
Calling 'JITSymbolFlags::isWeak'
36
Returning from 'JITSymbolFlags::isWeak'
37
Calling 'JITSymbolFlags::isCommon'
40
Returning from 'JITSymbolFlags::isCommon'
41
Taking false branch
274 // First check whether there's already a definition in this instance.
275 if (GlobalSymbolTable.count(Name))
276 continue;
277
278 // If we're not responsible for this symbol, skip it.
279 if (!ResponsibilitySet.count(Name))
280 continue;
281
282 // Otherwise update the flags on the symbol to make this definition
283 // strong.
284 if (JITSymFlags->isWeak())
285 *JITSymFlags &= ~JITSymbolFlags::Weak;
286 if (JITSymFlags->isCommon()) {
287 *JITSymFlags &= ~JITSymbolFlags::Common;
288 uint32_t Align = I->getAlignment();
289 uint64_t Size = I->getCommonSize();
290 if (!CommonAlign)
291 CommonAlign = Align;
292 CommonSize = alignTo(CommonSize, Align) + Size;
293 CommonSymbolsToAllocate.push_back(*I);
294 }
295 }
296
297 if (*FlagsOrErr & SymbolRef::SF_Absolute &&
42
Assuming the condition is false
298 SymType != object::SymbolRef::ST_File) {
299 uint64_t Addr = 0;
300 if (auto AddrOrErr = I->getAddress())
301 Addr = *AddrOrErr;
302 else
303 return AddrOrErr.takeError();
304
305 unsigned SectionID = AbsoluteSymbolSection;
306
307 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << *FlagsOrErr << "\n"
; } } while (false)
308 << " SID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << *FlagsOrErr << "\n"
; } } while (false)
309 << " Offset: " << format("%p", (uintptr_t)Addr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << *FlagsOrErr << "\n"
; } } while (false)
310 << " flags: " << *FlagsOrErr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" (absolute) Name: " << Name << " SID: " <<
SectionID << " Offset: " << format("%p", (uintptr_t
)Addr) << " flags: " << *FlagsOrErr << "\n"
; } } while (false)
;
311 if (!Name.empty()) // Skip absolute symbol relocations.
312 GlobalSymbolTable[Name] =
313 SymbolTableEntry(SectionID, Addr, *JITSymFlags);
314 } else if (SymType == object::SymbolRef::ST_Function ||
43
Assuming 'SymType' is not equal to ST_Function
47
Taking true branch
315 SymType == object::SymbolRef::ST_Data ||
44
Assuming 'SymType' is not equal to ST_Data
316 SymType == object::SymbolRef::ST_Unknown ||
45
Assuming 'SymType' is not equal to ST_Unknown
317 SymType == object::SymbolRef::ST_Other) {
46
Assuming 'SymType' is equal to ST_Other
318
319 section_iterator SI = Obj.section_end();
320 if (auto SIOrErr = I->getSection())
48
Calling 'Expected::operator bool'
51
Returning from 'Expected::operator bool'
52
Taking true branch
321 SI = *SIOrErr;
322 else
323 return SIOrErr.takeError();
324
325 if (SI == Obj.section_end())
53
Assuming the condition is false
54
Taking false branch
326 continue;
327
328 // Get symbol offset.
329 uint64_t SectOffset;
55
'SectOffset' declared without an initial value
330 if (auto Err = getOffset(*I, *SI, SectOffset))
56
Calling 'getOffset'
59
Returning from 'getOffset'
60
Assuming the condition is false
61
Taking false branch
331 return std::move(Err);
332
333 bool IsCode = SI->isText();
334 unsigned SectionID;
335 if (auto SectionIDOrErr =
62
Calling 'Expected::operator bool'
64
Returning from 'Expected::operator bool'
65
Taking true branch
336 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
337 SectionID = *SectionIDOrErr;
338 else
339 return SectionIDOrErr.takeError();
340
341 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << *FlagsOrErr << "\n"; } }
while (false)
66
Assuming 'DebugFlag' is false
67
Loop condition is false. Exiting loop
342 << " SID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << *FlagsOrErr << "\n"; } }
while (false)
343 << " Offset: " << format("%p", (uintptr_t)SectOffset)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << *FlagsOrErr << "\n"; } }
while (false)
344 << " flags: " << *FlagsOrErr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tType: " << SymType <<
" Name: " << Name << " SID: " << SectionID
<< " Offset: " << format("%p", (uintptr_t)SectOffset
) << " flags: " << *FlagsOrErr << "\n"; } }
while (false)
;
345 if (!Name.empty()) // Skip absolute symbol relocations
68
Assuming the condition is true
69
Taking true branch
346 GlobalSymbolTable[Name] =
347 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
70
2nd function call argument is an uninitialized value
348 }
349 }
350
351 // Allocate common symbols
352 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
353 CommonAlign))
354 return std::move(Err);
355
356 // Parse and process relocations
357 LLVM_DEBUG(dbgs() << "Parse relocations:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Parse relocations:\n"; } } while
(false)
;
358 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
359 SI != SE; ++SI) {
360 StubMap Stubs;
361
362 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
363 if (!RelSecOrErr)
364 return RelSecOrErr.takeError();
365
366 section_iterator RelocatedSection = *RelSecOrErr;
367 if (RelocatedSection == SE)
368 continue;
369
370 relocation_iterator I = SI->relocation_begin();
371 relocation_iterator E = SI->relocation_end();
372
373 if (I == E && !ProcessAllSections)
374 continue;
375
376 bool IsCode = RelocatedSection->isText();
377 unsigned SectionID = 0;
378 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
379 LocalSections))
380 SectionID = *SectionIDOrErr;
381 else
382 return SectionIDOrErr.takeError();
383
384 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tSectionID: " << SectionID
<< "\n"; } } while (false)
;
385
386 for (; I != E;)
387 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
388 I = *IOrErr;
389 else
390 return IOrErr.takeError();
391
392 // If there is a NotifyStubEmitted callback set, call it to register any
393 // stubs created for this section.
394 if (NotifyStubEmitted) {
395 StringRef FileName = Obj.getFileName();
396 StringRef SectionName = Sections[SectionID].getName();
397 for (auto &KV : Stubs) {
398
399 auto &VR = KV.first;
400 uint64_t StubAddr = KV.second;
401
402 // If this is a named stub, just call NotifyStubEmitted.
403 if (VR.SymbolName) {
404 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
405 StubAddr);
406 continue;
407 }
408
409 // Otherwise we will have to try a reverse lookup on the globla symbol table.
410 for (auto &GSTMapEntry : GlobalSymbolTable) {
411 StringRef SymbolName = GSTMapEntry.first();
412 auto &GSTEntry = GSTMapEntry.second;
413 if (GSTEntry.getSectionID() == VR.SectionID &&
414 GSTEntry.getOffset() == VR.Offset) {
415 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
416 StubAddr);
417 break;
418 }
419 }
420 }
421 }
422 }
423
424 // Process remaining sections
425 if (ProcessAllSections) {
426 LLVM_DEBUG(dbgs() << "Process remaining sections:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Process remaining sections:\n"; }
} while (false)
;
427 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
428 SI != SE; ++SI) {
429
430 /* Ignore already loaded sections */
431 if (LocalSections.find(*SI) != LocalSections.end())
432 continue;
433
434 bool IsCode = SI->isText();
435 if (auto SectionIDOrErr =
436 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
437 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\tSectionID: " << (*SectionIDOrErr
) << "\n"; } } while (false)
;
438 else
439 return SectionIDOrErr.takeError();
440 }
441 }
442
443 // Give the subclasses a chance to tie-up any loose ends.
444 if (auto Err = finalizeLoad(Obj, LocalSections))
445 return std::move(Err);
446
447// for (auto E : LocalSections)
448// llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
449
450 return LocalSections;
451}
452
453// A helper method for computeTotalAllocSize.
454// Computes the memory size required to allocate sections with the given sizes,
455// assuming that all sections are allocated with the given alignment
456static uint64_t
457computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
458 uint64_t Alignment) {
459 uint64_t TotalSize = 0;
460 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
461 uint64_t AlignedSize =
462 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
463 TotalSize += AlignedSize;
464 }
465 return TotalSize;
466}
467
468static bool isRequiredForExecution(const SectionRef Section) {
469 const ObjectFile *Obj = Section.getObject();
470 if (isa<object::ELFObjectFileBase>(Obj))
471 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
472 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
473 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
474 // Avoid loading zero-sized COFF sections.
475 // In PE files, VirtualSize gives the section size, and SizeOfRawData
476 // may be zero for sections with content. In Obj files, SizeOfRawData
477 // gives the section size, and VirtualSize is always zero. Hence
478 // the need to check for both cases below.
479 bool HasContent =
480 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
481 bool IsDiscardable =
482 CoffSection->Characteristics &
483 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
484 return HasContent && !IsDiscardable;
485 }
486
487 assert(isa<MachOObjectFile>(Obj))(static_cast <bool> (isa<MachOObjectFile>(Obj)) ?
void (0) : __assert_fail ("isa<MachOObjectFile>(Obj)",
"/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 487, __extension__ __PRETTY_FUNCTION__))
;
488 return true;
489}
490
491static bool isReadOnlyData(const SectionRef Section) {
492 const ObjectFile *Obj = Section.getObject();
493 if (isa<object::ELFObjectFileBase>(Obj))
494 return !(ELFSectionRef(Section).getFlags() &
495 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
496 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
497 return ((COFFObj->getCOFFSection(Section)->Characteristics &
498 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
499 | COFF::IMAGE_SCN_MEM_READ
500 | COFF::IMAGE_SCN_MEM_WRITE))
501 ==
502 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
503 | COFF::IMAGE_SCN_MEM_READ));
504
505 assert(isa<MachOObjectFile>(Obj))(static_cast <bool> (isa<MachOObjectFile>(Obj)) ?
void (0) : __assert_fail ("isa<MachOObjectFile>(Obj)",
"/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 505, __extension__ __PRETTY_FUNCTION__))
;
506 return false;
507}
508
509static bool isZeroInit(const SectionRef Section) {
510 const ObjectFile *Obj = Section.getObject();
511 if (isa<object::ELFObjectFileBase>(Obj))
512 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
513 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
514 return COFFObj->getCOFFSection(Section)->Characteristics &
515 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
516
517 auto *MachO = cast<MachOObjectFile>(Obj);
518 unsigned SectionType = MachO->getSectionType(Section);
519 return SectionType == MachO::S_ZEROFILL ||
520 SectionType == MachO::S_GB_ZEROFILL;
521}
522
523// Compute an upper bound of the memory size that is required to load all
524// sections
525Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
526 uint64_t &CodeSize,
527 uint32_t &CodeAlign,
528 uint64_t &RODataSize,
529 uint32_t &RODataAlign,
530 uint64_t &RWDataSize,
531 uint32_t &RWDataAlign) {
532 // Compute the size of all sections required for execution
533 std::vector<uint64_t> CodeSectionSizes;
534 std::vector<uint64_t> ROSectionSizes;
535 std::vector<uint64_t> RWSectionSizes;
536
537 // Collect sizes of all sections to be loaded;
538 // also determine the max alignment of all sections
539 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
540 SI != SE; ++SI) {
541 const SectionRef &Section = *SI;
542
543 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
544
545 // Consider only the sections that are required to be loaded for execution
546 if (IsRequired) {
547 uint64_t DataSize = Section.getSize();
548 uint64_t Alignment64 = Section.getAlignment();
549 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
550 bool IsCode = Section.isText();
551 bool IsReadOnly = isReadOnlyData(Section);
552
553 Expected<StringRef> NameOrErr = Section.getName();
554 if (!NameOrErr)
555 return NameOrErr.takeError();
556 StringRef Name = *NameOrErr;
557
558 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
559
560 uint64_t PaddingSize = 0;
561 if (Name == ".eh_frame")
562 PaddingSize += 4;
563 if (StubBufSize != 0)
564 PaddingSize += getStubAlignment() - 1;
565
566 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
567
568 // The .eh_frame section (at least on Linux) needs an extra four bytes
569 // padded
570 // with zeroes added at the end. For MachO objects, this section has a
571 // slightly different name, so this won't have any effect for MachO
572 // objects.
573 if (Name == ".eh_frame")
574 SectionSize += 4;
575
576 if (!SectionSize)
577 SectionSize = 1;
578
579 if (IsCode) {
580 CodeAlign = std::max(CodeAlign, Alignment);
581 CodeSectionSizes.push_back(SectionSize);
582 } else if (IsReadOnly) {
583 RODataAlign = std::max(RODataAlign, Alignment);
584 ROSectionSizes.push_back(SectionSize);
585 } else {
586 RWDataAlign = std::max(RWDataAlign, Alignment);
587 RWSectionSizes.push_back(SectionSize);
588 }
589 }
590 }
591
592 // Compute Global Offset Table size. If it is not zero we
593 // also update alignment, which is equal to a size of a
594 // single GOT entry.
595 if (unsigned GotSize = computeGOTSize(Obj)) {
596 RWSectionSizes.push_back(GotSize);
597 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
598 }
599
600 // Compute the size of all common symbols
601 uint64_t CommonSize = 0;
602 uint32_t CommonAlign = 1;
603 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
604 ++I) {
605 Expected<uint32_t> FlagsOrErr = I->getFlags();
606 if (!FlagsOrErr)
607 // TODO: Test this error.
608 return FlagsOrErr.takeError();
609 if (*FlagsOrErr & SymbolRef::SF_Common) {
610 // Add the common symbols to a list. We'll allocate them all below.
611 uint64_t Size = I->getCommonSize();
612 uint32_t Align = I->getAlignment();
613 // If this is the first common symbol, use its alignment as the alignment
614 // for the common symbols section.
615 if (CommonSize == 0)
616 CommonAlign = Align;
617 CommonSize = alignTo(CommonSize, Align) + Size;
618 }
619 }
620 if (CommonSize != 0) {
621 RWSectionSizes.push_back(CommonSize);
622 RWDataAlign = std::max(RWDataAlign, CommonAlign);
623 }
624
625 // Compute the required allocation space for each different type of sections
626 // (code, read-only data, read-write data) assuming that all sections are
627 // allocated with the max alignment. Note that we cannot compute with the
628 // individual alignments of the sections, because then the required size
629 // depends on the order, in which the sections are allocated.
630 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
631 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
632 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
633
634 return Error::success();
635}
636
637// compute GOT size
638unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
639 size_t GotEntrySize = getGOTEntrySize();
640 if (!GotEntrySize)
641 return 0;
642
643 size_t GotSize = 0;
644 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
645 SI != SE; ++SI) {
646
647 for (const RelocationRef &Reloc : SI->relocations())
648 if (relocationNeedsGot(Reloc))
649 GotSize += GotEntrySize;
650 }
651
652 return GotSize;
653}
654
655// compute stub buffer size for the given section
656unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
657 const SectionRef &Section) {
658 if (!MemMgr.allowStubAllocation()) {
659 return 0;
660 }
661
662 unsigned StubSize = getMaxStubSize();
663 if (StubSize == 0) {
664 return 0;
665 }
666 // FIXME: this is an inefficient way to handle this. We should computed the
667 // necessary section allocation size in loadObject by walking all the sections
668 // once.
669 unsigned StubBufSize = 0;
670 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
671 SI != SE; ++SI) {
672
673 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
674 if (!RelSecOrErr)
675 report_fatal_error(toString(RelSecOrErr.takeError()));
676
677 section_iterator RelSecI = *RelSecOrErr;
678 if (!(RelSecI == Section))
679 continue;
680
681 for (const RelocationRef &Reloc : SI->relocations())
682 if (relocationNeedsStub(Reloc))
683 StubBufSize += StubSize;
684 }
685
686 // Get section data size and alignment
687 uint64_t DataSize = Section.getSize();
688 uint64_t Alignment64 = Section.getAlignment();
689
690 // Add stubbuf size alignment
691 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
692 unsigned StubAlignment = getStubAlignment();
693 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
694 if (StubAlignment > EndAlignment)
695 StubBufSize += StubAlignment - EndAlignment;
696 return StubBufSize;
697}
698
699uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
700 unsigned Size) const {
701 uint64_t Result = 0;
702 if (IsTargetLittleEndian) {
703 Src += Size - 1;
704 while (Size--)
705 Result = (Result << 8) | *Src--;
706 } else
707 while (Size--)
708 Result = (Result << 8) | *Src++;
709
710 return Result;
711}
712
713void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
714 unsigned Size) const {
715 if (IsTargetLittleEndian) {
716 while (Size--) {
717 *Dst++ = Value & 0xFF;
718 Value >>= 8;
719 }
720 } else {
721 Dst += Size - 1;
722 while (Size--) {
723 *Dst-- = Value & 0xFF;
724 Value >>= 8;
725 }
726 }
727}
728
729Expected<JITSymbolFlags>
730RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
731 return JITSymbolFlags::fromObjectSymbol(SR);
732}
733
734Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
735 CommonSymbolList &SymbolsToAllocate,
736 uint64_t CommonSize,
737 uint32_t CommonAlign) {
738 if (SymbolsToAllocate.empty())
739 return Error::success();
740
741 // Allocate memory for the section
742 unsigned SectionID = Sections.size();
743 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
744 "<common symbols>", false);
745 if (!Addr)
746 report_fatal_error("Unable to allocate memory for common symbols!");
747 uint64_t Offset = 0;
748 Sections.push_back(
749 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
750 memset(Addr, 0, CommonSize);
751
752 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionIDdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
753 << " new addr: " << format("%p", Addr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
754 << " DataSize: " << CommonSize << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitCommonSection SectionID: " <<
SectionID << " new addr: " << format("%p", Addr)
<< " DataSize: " << CommonSize << "\n"; } }
while (false)
;
755
756 // Assign the address of each symbol
757 for (auto &Sym : SymbolsToAllocate) {
758 uint32_t Alignment = Sym.getAlignment();
759 uint64_t Size = Sym.getCommonSize();
760 StringRef Name;
761 if (auto NameOrErr = Sym.getName())
762 Name = *NameOrErr;
763 else
764 return NameOrErr.takeError();
765 if (Alignment) {
766 // This symbol has an alignment requirement.
767 uint64_t AlignOffset =
768 offsetToAlignment((uint64_t)Addr, Align(Alignment));
769 Addr += AlignOffset;
770 Offset += AlignOffset;
771 }
772 auto JITSymFlags = getJITSymbolFlags(Sym);
773
774 if (!JITSymFlags)
775 return JITSymFlags.takeError();
776
777 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Allocating common symbol " <<
Name << " address " << format("%p", Addr) <<
"\n"; } } while (false)
778 << format("%p", Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Allocating common symbol " <<
Name << " address " << format("%p", Addr) <<
"\n"; } } while (false)
;
779 if (!Name.empty()) // Skip absolute symbol relocations.
780 GlobalSymbolTable[Name] =
781 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
782 Offset += Size;
783 Addr += Size;
784 }
785
786 return Error::success();
787}
788
789Expected<unsigned>
790RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
791 const SectionRef &Section,
792 bool IsCode) {
793 StringRef data;
794 uint64_t Alignment64 = Section.getAlignment();
795
796 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
797 unsigned PaddingSize = 0;
798 unsigned StubBufSize = 0;
799 bool IsRequired = isRequiredForExecution(Section);
800 bool IsVirtual = Section.isVirtual();
801 bool IsZeroInit = isZeroInit(Section);
802 bool IsReadOnly = isReadOnlyData(Section);
803 uint64_t DataSize = Section.getSize();
804
805 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
806 // while being more "polite". Other formats do not support 0-aligned sections
807 // anyway, so we should guarantee that the alignment is always at least 1.
808 Alignment = std::max(1u, Alignment);
809
810 Expected<StringRef> NameOrErr = Section.getName();
811 if (!NameOrErr)
812 return NameOrErr.takeError();
813 StringRef Name = *NameOrErr;
814
815 StubBufSize = computeSectionStubBufSize(Obj, Section);
816
817 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
818 // with zeroes added at the end. For MachO objects, this section has a
819 // slightly different name, so this won't have any effect for MachO objects.
820 if (Name == ".eh_frame")
821 PaddingSize = 4;
822
823 uintptr_t Allocate;
824 unsigned SectionID = Sections.size();
825 uint8_t *Addr;
826 const char *pData = nullptr;
827
828 // If this section contains any bits (i.e. isn't a virtual or bss section),
829 // grab a reference to them.
830 if (!IsVirtual && !IsZeroInit) {
831 // In either case, set the location of the unrelocated section in memory,
832 // since we still process relocations for it even if we're not applying them.
833 if (Expected<StringRef> E = Section.getContents())
834 data = *E;
835 else
836 return E.takeError();
837 pData = data.data();
838 }
839
840 // If there are any stubs then the section alignment needs to be at least as
841 // high as stub alignment or padding calculations may by incorrect when the
842 // section is remapped.
843 if (StubBufSize != 0) {
844 Alignment = std::max(Alignment, getStubAlignment());
845 PaddingSize += getStubAlignment() - 1;
846 }
847
848 // Some sections, such as debug info, don't need to be loaded for execution.
849 // Process those only if explicitly requested.
850 if (IsRequired || ProcessAllSections) {
851 Allocate = DataSize + PaddingSize + StubBufSize;
852 if (!Allocate)
853 Allocate = 1;
854 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
855 Name)
856 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
857 Name, IsReadOnly);
858 if (!Addr)
859 report_fatal_error("Unable to allocate section memory!");
860
861 // Zero-initialize or copy the data from the image
862 if (IsZeroInit || IsVirtual)
863 memset(Addr, 0, DataSize);
864 else
865 memcpy(Addr, pData, DataSize);
866
867 // Fill in any extra bytes we allocated for padding
868 if (PaddingSize != 0) {
869 memset(Addr + DataSize, 0, PaddingSize);
870 // Update the DataSize variable to include padding.
871 DataSize += PaddingSize;
872
873 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
874 // have been increased above to account for this).
875 if (StubBufSize > 0)
876 DataSize &= -(uint64_t)getStubAlignment();
877 }
878
879 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
880 << Name << " obj addr: " << format("%p", pData)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
881 << " new addr: " << format("%p", Addr) << " DataSize: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
882 << DataSize << " StubBufSize: " << StubBufSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
883 << " Allocate: " << Allocate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", pData) << " new addr: " <<
format("%p", Addr) << " DataSize: " << DataSize <<
" StubBufSize: " << StubBufSize << " Allocate: "
<< Allocate << "\n"; } } while (false)
;
884 } else {
885 // Even if we didn't load the section, we need to record an entry for it
886 // to handle later processing (and by 'handle' I mean don't do anything
887 // with these sections).
888 Allocate = 0;
889 Addr = nullptr;
890 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
891 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Namedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
892 << " obj addr: " << format("%p", data.data()) << " new addr: 0"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
893 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
894 << " Allocate: " << Allocate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "emitSection SectionID: " <<
SectionID << " Name: " << Name << " obj addr: "
<< format("%p", data.data()) << " new addr: 0" <<
" DataSize: " << DataSize << " StubBufSize: " <<
StubBufSize << " Allocate: " << Allocate <<
"\n"; } } while (false)
;
895 }
896
897 Sections.push_back(
898 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
899
900 // Debug info sections are linked as if their load address was zero
901 if (!IsRequired)
902 Sections.back().setLoadAddress(0);
903
904 return SectionID;
905}
906
907Expected<unsigned>
908RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
909 const SectionRef &Section,
910 bool IsCode,
911 ObjSectionToIDMap &LocalSections) {
912
913 unsigned SectionID = 0;
914 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
915 if (i != LocalSections.end())
916 SectionID = i->second;
917 else {
918 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
919 SectionID = *SectionIDOrErr;
920 else
921 return SectionIDOrErr.takeError();
922 LocalSections[Section] = SectionID;
923 }
924 return SectionID;
925}
926
927void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
928 unsigned SectionID) {
929 Relocations[SectionID].push_back(RE);
930}
931
932void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
933 StringRef SymbolName) {
934 // Relocation by symbol. If the symbol is found in the global symbol table,
935 // create an appropriate section relocation. Otherwise, add it to
936 // ExternalSymbolRelocations.
937 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
938 if (Loc == GlobalSymbolTable.end()) {
939 ExternalSymbolRelocations[SymbolName].push_back(RE);
940 } else {
941 assert(!SymbolName.empty() &&(static_cast <bool> (!SymbolName.empty() && "Empty symbol should not be in GlobalSymbolTable"
) ? void (0) : __assert_fail ("!SymbolName.empty() && \"Empty symbol should not be in GlobalSymbolTable\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 942, __extension__ __PRETTY_FUNCTION__))
942 "Empty symbol should not be in GlobalSymbolTable")(static_cast <bool> (!SymbolName.empty() && "Empty symbol should not be in GlobalSymbolTable"
) ? void (0) : __assert_fail ("!SymbolName.empty() && \"Empty symbol should not be in GlobalSymbolTable\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 942, __extension__ __PRETTY_FUNCTION__))
;
943 // Copy the RE since we want to modify its addend.
944 RelocationEntry RECopy = RE;
945 const auto &SymInfo = Loc->second;
946 RECopy.Addend += SymInfo.getOffset();
947 Relocations[SymInfo.getSectionID()].push_back(RECopy);
948 }
949}
950
951uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
952 unsigned AbiVariant) {
953 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
954 Arch == Triple::aarch64_32) {
955 // This stub has to be able to access the full address space,
956 // since symbol lookup won't necessarily find a handy, in-range,
957 // PLT stub for functions which could be anywhere.
958 // Stub can use ip0 (== x16) to calculate address
959 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
960 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
961 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
962 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
963 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
964
965 return Addr;
966 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
967 // TODO: There is only ARM far stub now. We should add the Thumb stub,
968 // and stubs for branches Thumb - ARM and ARM - Thumb.
969 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
970 return Addr + 4;
971 } else if (IsMipsO32ABI || IsMipsN32ABI) {
972 // 0: 3c190000 lui t9,%hi(addr).
973 // 4: 27390000 addiu t9,t9,%lo(addr).
974 // 8: 03200008 jr t9.
975 // c: 00000000 nop.
976 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
977 const unsigned NopInstr = 0x0;
978 unsigned JrT9Instr = 0x03200008;
979 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
980 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
981 JrT9Instr = 0x03200009;
982
983 writeBytesUnaligned(LuiT9Instr, Addr, 4);
984 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
985 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
986 writeBytesUnaligned(NopInstr, Addr + 12, 4);
987 return Addr;
988 } else if (IsMipsN64ABI) {
989 // 0: 3c190000 lui t9,%highest(addr).
990 // 4: 67390000 daddiu t9,t9,%higher(addr).
991 // 8: 0019CC38 dsll t9,t9,16.
992 // c: 67390000 daddiu t9,t9,%hi(addr).
993 // 10: 0019CC38 dsll t9,t9,16.
994 // 14: 67390000 daddiu t9,t9,%lo(addr).
995 // 18: 03200008 jr t9.
996 // 1c: 00000000 nop.
997 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
998 DsllT9Instr = 0x19CC38;
999 const unsigned NopInstr = 0x0;
1000 unsigned JrT9Instr = 0x03200008;
1001 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
1002 JrT9Instr = 0x03200009;
1003
1004 writeBytesUnaligned(LuiT9Instr, Addr, 4);
1005 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
1006 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
1007 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
1008 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
1009 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
1010 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
1011 writeBytesUnaligned(NopInstr, Addr + 28, 4);
1012 return Addr;
1013 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1014 // Depending on which version of the ELF ABI is in use, we need to
1015 // generate one of two variants of the stub. They both start with
1016 // the same sequence to load the target address into r12.
1017 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
1018 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
1019 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
1020 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
1021 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
1022 if (AbiVariant == 2) {
1023 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1024 // The address is already in r12 as required by the ABI. Branch to it.
1025 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
1026 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1027 writeInt32BE(Addr+28, 0x4E800420); // bctr
1028 } else {
1029 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1030 // Load the function address on r11 and sets it to control register. Also
1031 // loads the function TOC in r2 and environment pointer to r11.
1032 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
1033 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
1034 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
1035 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1036 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
1037 writeInt32BE(Addr+40, 0x4E800420); // bctr
1038 }
1039 return Addr;
1040 } else if (Arch == Triple::systemz) {
1041 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
1042 writeInt16BE(Addr+2, 0x0000);
1043 writeInt16BE(Addr+4, 0x0004);
1044 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
1045 // 8-byte address stored at Addr + 8
1046 return Addr;
1047 } else if (Arch == Triple::x86_64) {
1048 *Addr = 0xFF; // jmp
1049 *(Addr+1) = 0x25; // rip
1050 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1051 } else if (Arch == Triple::x86) {
1052 *Addr = 0xE9; // 32-bit pc-relative jump.
1053 }
1054 return Addr;
1055}
1056
1057// Assign an address to a symbol name and resolve all the relocations
1058// associated with it.
1059void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1060 uint64_t Addr) {
1061 // The address to use for relocation resolution is not
1062 // the address of the local section buffer. We must be doing
1063 // a remote execution environment of some sort. Relocations can't
1064 // be applied until all the sections have been moved. The client must
1065 // trigger this with a call to MCJIT::finalize() or
1066 // RuntimeDyld::resolveRelocations().
1067 //
1068 // Addr is a uint64_t because we can't assume the pointer width
1069 // of the target is the same as that of the host. Just use a generic
1070 // "big enough" type.
1071 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1072 dbgs() << "Reassigning address for section " << SectionID << " ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1073 << Sections[SectionID].getName() << "): "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1074 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
1075 << " -> " << format("0x%016" PRIx64, Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Reassigning address for section "
<< SectionID << " (" << Sections[SectionID
].getName() << "): " << format("0x%016" "l" "x", Sections
[SectionID].getLoadAddress()) << " -> " << format
("0x%016" "l" "x", Addr) << "\n"; } } while (false)
;
1076 Sections[SectionID].setLoadAddress(Addr);
1077}
1078
1079void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1080 uint64_t Value) {
1081 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1082 const RelocationEntry &RE = Relocs[i];
1083 // Ignore relocations for sections that were not loaded
1084 if (RE.SectionID != AbsoluteSymbolSection &&
1085 Sections[RE.SectionID].getAddress() == nullptr)
1086 continue;
1087 resolveRelocation(RE, Value);
1088 }
1089}
1090
1091void RuntimeDyldImpl::applyExternalSymbolRelocations(
1092 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1093 for (auto &RelocKV : ExternalSymbolRelocations) {
1094 StringRef Name = RelocKV.first();
1095 RelocationList &Relocs = RelocKV.second;
1096 if (Name.size() == 0) {
1097 // This is an absolute symbol, use an address of zero.
1098 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving absolute relocations."
<< "\n"; } } while (false)
1099 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving absolute relocations."
<< "\n"; } } while (false)
;
1100 resolveRelocationList(Relocs, 0);
1101 } else {
1102 uint64_t Addr = 0;
1103 JITSymbolFlags Flags;
1104 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1105 if (Loc == GlobalSymbolTable.end()) {
1106 auto RRI = ExternalSymbolMap.find(Name);
1107 assert(RRI != ExternalSymbolMap.end() && "No result for symbol")(static_cast <bool> (RRI != ExternalSymbolMap.end() &&
"No result for symbol") ? void (0) : __assert_fail ("RRI != ExternalSymbolMap.end() && \"No result for symbol\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1107, __extension__ __PRETTY_FUNCTION__))
;
1108 Addr = RRI->second.getAddress();
1109 Flags = RRI->second.getFlags();
1110 } else {
1111 // We found the symbol in our global table. It was probably in a
1112 // Module that we loaded previously.
1113 const auto &SymInfo = Loc->second;
1114 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1115 SymInfo.getOffset();
1116 Flags = SymInfo.getFlags();
1117 }
1118
1119 // FIXME: Implement error handling that doesn't kill the host program!
1120 if (!Addr && !Resolver.allowsZeroSymbols())
1121 report_fatal_error("Program used external function '" + Name +
1122 "' which could not be resolved!");
1123
1124 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1125 // manually and we shouldn't resolve its relocations.
1126 if (Addr != UINT64_MAX(18446744073709551615UL)) {
1127
1128 // Tweak the address based on the symbol flags if necessary.
1129 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1130 // if the target symbol is Thumb.
1131 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1132
1133 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Name: " <<
Name << "\t" << format("0x%lx", Addr) << "\n"
; } } while (false)
1134 << format("0x%lx", Addr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Resolving relocations Name: " <<
Name << "\t" << format("0x%lx", Addr) << "\n"
; } } while (false)
;
1135 resolveRelocationList(Relocs, Addr);
1136 }
1137 }
1138 }
1139 ExternalSymbolRelocations.clear();
1140}
1141
1142Error RuntimeDyldImpl::resolveExternalSymbols() {
1143 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1144
1145 // Resolution can trigger emission of more symbols, so iterate until
1146 // we've resolved *everything*.
1147 {
1148 JITSymbolResolver::LookupSet ResolvedSymbols;
1149
1150 while (true) {
1151 JITSymbolResolver::LookupSet NewSymbols;
1152
1153 for (auto &RelocKV : ExternalSymbolRelocations) {
1154 StringRef Name = RelocKV.first();
1155 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1156 !ResolvedSymbols.count(Name))
1157 NewSymbols.insert(Name);
1158 }
1159
1160 if (NewSymbols.empty())
1161 break;
1162
1163#ifdef _MSC_VER
1164 using ExpectedLookupResult =
1165 MSVCPExpected<JITSymbolResolver::LookupResult>;
1166#else
1167 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1168#endif
1169
1170 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1171 auto NewSymbolsF = NewSymbolsP->get_future();
1172 Resolver.lookup(NewSymbols,
1173 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1174 NewSymbolsP->set_value(std::move(Result));
1175 });
1176
1177 auto NewResolverResults = NewSymbolsF.get();
1178
1179 if (!NewResolverResults)
1180 return NewResolverResults.takeError();
1181
1182 assert(NewResolverResults->size() == NewSymbols.size() &&(static_cast <bool> (NewResolverResults->size() == NewSymbols
.size() && "Should have errored on unresolved symbols"
) ? void (0) : __assert_fail ("NewResolverResults->size() == NewSymbols.size() && \"Should have errored on unresolved symbols\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1183, __extension__ __PRETTY_FUNCTION__))
1183 "Should have errored on unresolved symbols")(static_cast <bool> (NewResolverResults->size() == NewSymbols
.size() && "Should have errored on unresolved symbols"
) ? void (0) : __assert_fail ("NewResolverResults->size() == NewSymbols.size() && \"Should have errored on unresolved symbols\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1183, __extension__ __PRETTY_FUNCTION__))
;
1184
1185 for (auto &RRKV : *NewResolverResults) {
1186 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?")(static_cast <bool> (!ResolvedSymbols.count(RRKV.first)
&& "Redundant resolution?") ? void (0) : __assert_fail
("!ResolvedSymbols.count(RRKV.first) && \"Redundant resolution?\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1186, __extension__ __PRETTY_FUNCTION__))
;
1187 ExternalSymbolMap.insert(RRKV);
1188 ResolvedSymbols.insert(RRKV.first);
1189 }
1190 }
1191 }
1192
1193 applyExternalSymbolRelocations(ExternalSymbolMap);
1194
1195 return Error::success();
1196}
1197
1198void RuntimeDyldImpl::finalizeAsync(
1199 std::unique_ptr<RuntimeDyldImpl> This,
1200 unique_function<void(object::OwningBinary<object::ObjectFile>,
1201 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1202 OnEmitted,
1203 object::OwningBinary<object::ObjectFile> O,
1204 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) {
1205
1206 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1207 auto PostResolveContinuation =
1208 [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O),
1209 Info = std::move(Info)](
1210 Expected<JITSymbolResolver::LookupResult> Result) mutable {
1211 if (!Result) {
1212 OnEmitted(std::move(O), std::move(Info), Result.takeError());
1213 return;
1214 }
1215
1216 /// Copy the result into a StringMap, where the keys are held by value.
1217 StringMap<JITEvaluatedSymbol> Resolved;
1218 for (auto &KV : *Result)
1219 Resolved[KV.first] = KV.second;
1220
1221 SharedThis->applyExternalSymbolRelocations(Resolved);
1222 SharedThis->resolveLocalRelocations();
1223 SharedThis->registerEHFrames();
1224 std::string ErrMsg;
1225 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1226 OnEmitted(std::move(O), std::move(Info),
1227 make_error<StringError>(std::move(ErrMsg),
1228 inconvertibleErrorCode()));
1229 else
1230 OnEmitted(std::move(O), std::move(Info), Error::success());
1231 };
1232
1233 JITSymbolResolver::LookupSet Symbols;
1234
1235 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1236 StringRef Name = RelocKV.first();
1237 if (Name.empty()) // Skip absolute symbol relocations.
1238 continue;
1239 assert(!SharedThis->GlobalSymbolTable.count(Name) &&(static_cast <bool> (!SharedThis->GlobalSymbolTable.
count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? void (0) : __assert_fail
("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1241, __extension__ __PRETTY_FUNCTION__))
1240 "Name already processed. RuntimeDyld instances can not be re-used "(static_cast <bool> (!SharedThis->GlobalSymbolTable.
count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? void (0) : __assert_fail
("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1241, __extension__ __PRETTY_FUNCTION__))
1241 "when finalizing with finalizeAsync.")(static_cast <bool> (!SharedThis->GlobalSymbolTable.
count(Name) && "Name already processed. RuntimeDyld instances can not be re-used "
"when finalizing with finalizeAsync.") ? void (0) : __assert_fail
("!SharedThis->GlobalSymbolTable.count(Name) && \"Name already processed. RuntimeDyld instances can not be re-used \" \"when finalizing with finalizeAsync.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1241, __extension__ __PRETTY_FUNCTION__))
;
1242 Symbols.insert(Name);
1243 }
1244
1245 if (!Symbols.empty()) {
1246 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1247 } else
1248 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1249}
1250
1251//===----------------------------------------------------------------------===//
1252// RuntimeDyld class implementation
1253
1254uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1255 const object::SectionRef &Sec) const {
1256
1257 auto I = ObjSecToIDMap.find(Sec);
1258 if (I != ObjSecToIDMap.end())
1259 return RTDyld.Sections[I->second].getLoadAddress();
1260
1261 return 0;
1262}
1263
1264void RuntimeDyld::MemoryManager::anchor() {}
1265void JITSymbolResolver::anchor() {}
1266void LegacyJITSymbolResolver::anchor() {}
1267
1268RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1269 JITSymbolResolver &Resolver)
1270 : MemMgr(MemMgr), Resolver(Resolver) {
1271 // FIXME: There's a potential issue lurking here if a single instance of
1272 // RuntimeDyld is used to load multiple objects. The current implementation
1273 // associates a single memory manager with a RuntimeDyld instance. Even
1274 // though the public class spawns a new 'impl' instance for each load,
1275 // they share a single memory manager. This can become a problem when page
1276 // permissions are applied.
1277 Dyld = nullptr;
1278 ProcessAllSections = false;
1279}
1280
1281RuntimeDyld::~RuntimeDyld() {}
1282
1283static std::unique_ptr<RuntimeDyldCOFF>
1284createRuntimeDyldCOFF(
1285 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1286 JITSymbolResolver &Resolver, bool ProcessAllSections,
1287 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1288 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1289 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1290 Dyld->setProcessAllSections(ProcessAllSections);
1291 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1292 return Dyld;
1293}
1294
1295static std::unique_ptr<RuntimeDyldELF>
1296createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1297 JITSymbolResolver &Resolver, bool ProcessAllSections,
1298 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1299 std::unique_ptr<RuntimeDyldELF> Dyld =
1300 RuntimeDyldELF::create(Arch, MM, Resolver);
1301 Dyld->setProcessAllSections(ProcessAllSections);
1302 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1303 return Dyld;
1304}
1305
1306static std::unique_ptr<RuntimeDyldMachO>
1307createRuntimeDyldMachO(
1308 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1309 JITSymbolResolver &Resolver,
1310 bool ProcessAllSections,
1311 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1312 std::unique_ptr<RuntimeDyldMachO> Dyld =
1313 RuntimeDyldMachO::create(Arch, MM, Resolver);
1314 Dyld->setProcessAllSections(ProcessAllSections);
1315 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1316 return Dyld;
1317}
1318
1319std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1320RuntimeDyld::loadObject(const ObjectFile &Obj) {
1321 if (!Dyld) {
1322 if (Obj.isELF())
1323 Dyld =
1324 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1325 MemMgr, Resolver, ProcessAllSections,
1326 std::move(NotifyStubEmitted));
1327 else if (Obj.isMachO())
1328 Dyld = createRuntimeDyldMachO(
1329 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1330 ProcessAllSections, std::move(NotifyStubEmitted));
1331 else if (Obj.isCOFF())
1332 Dyld = createRuntimeDyldCOFF(
1333 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1334 ProcessAllSections, std::move(NotifyStubEmitted));
1335 else
1336 report_fatal_error("Incompatible object format!");
1337 }
1338
1339 if (!Dyld->isCompatibleFile(Obj))
1340 report_fatal_error("Incompatible object format!");
1341
1342 auto LoadedObjInfo = Dyld->loadObject(Obj);
1343 MemMgr.notifyObjectLoaded(*this, Obj);
1344 return LoadedObjInfo;
1345}
1346
1347void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1348 if (!Dyld)
1349 return nullptr;
1350 return Dyld->getSymbolLocalAddress(Name);
1351}
1352
1353unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1354 assert(Dyld && "No RuntimeDyld instance attached")(static_cast <bool> (Dyld && "No RuntimeDyld instance attached"
) ? void (0) : __assert_fail ("Dyld && \"No RuntimeDyld instance attached\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1354, __extension__ __PRETTY_FUNCTION__))
;
1355 return Dyld->getSymbolSectionID(Name);
1356}
1357
1358JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1359 if (!Dyld)
1360 return nullptr;
1361 return Dyld->getSymbol(Name);
1362}
1363
1364std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1365 if (!Dyld)
1366 return std::map<StringRef, JITEvaluatedSymbol>();
1367 return Dyld->getSymbolTable();
1368}
1369
1370void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1371
1372void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1373 Dyld->reassignSectionAddress(SectionID, Addr);
1374}
1375
1376void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1377 uint64_t TargetAddress) {
1378 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1379}
1380
1381bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1382
1383StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1384
1385void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1386 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1387 MemMgr.FinalizationLocked = true;
1388 resolveRelocations();
1389 registerEHFrames();
1390 if (!MemoryFinalizationLocked) {
1391 MemMgr.finalizeMemory();
1392 MemMgr.FinalizationLocked = false;
1393 }
1394}
1395
1396StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1397 assert(Dyld && "No Dyld instance attached")(static_cast <bool> (Dyld && "No Dyld instance attached"
) ? void (0) : __assert_fail ("Dyld && \"No Dyld instance attached\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1397, __extension__ __PRETTY_FUNCTION__))
;
1398 return Dyld->getSectionContent(SectionID);
1399}
1400
1401uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1402 assert(Dyld && "No Dyld instance attached")(static_cast <bool> (Dyld && "No Dyld instance attached"
) ? void (0) : __assert_fail ("Dyld && \"No Dyld instance attached\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp"
, 1402, __extension__ __PRETTY_FUNCTION__))
;
1403 return Dyld->getSectionLoadAddress(SectionID);
1404}
1405
1406void RuntimeDyld::registerEHFrames() {
1407 if (Dyld)
1408 Dyld->registerEHFrames();
1409}
1410
1411void RuntimeDyld::deregisterEHFrames() {
1412 if (Dyld)
1413 Dyld->deregisterEHFrames();
1414}
1415// FIXME: Kill this with fire once we have a new JIT linker: this is only here
1416// so that we can re-use RuntimeDyld's implementation without twisting the
1417// interface any further for ORC's purposes.
1418void jitLinkForORC(
1419 object::OwningBinary<object::ObjectFile> O,
1420 RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
1421 bool ProcessAllSections,
1422 unique_function<Error(const object::ObjectFile &Obj,
1423 RuntimeDyld::LoadedObjectInfo &LoadedObj,
1424 std::map<StringRef, JITEvaluatedSymbol>)>
1425 OnLoaded,
1426 unique_function<void(object::OwningBinary<object::ObjectFile>,
1427 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1428 OnEmitted) {
1429
1430 RuntimeDyld RTDyld(MemMgr, Resolver);
1431 RTDyld.setProcessAllSections(ProcessAllSections);
1432
1433 auto Info = RTDyld.loadObject(*O.getBinary());
1434
1435 if (RTDyld.hasError()) {
1436 OnEmitted(std::move(O), std::move(Info),
1437 make_error<StringError>(RTDyld.getErrorString(),
1438 inconvertibleErrorCode()));
1439 return;
1440 }
1441
1442 if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable()))
1443 OnEmitted(std::move(O), std::move(Info), std::move(Err));
1444
1445 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1446 std::move(O), std::move(Info));
1447}
1448
1449} // end namespace llvm

/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <cassert>
31#include <cstdint>
32#include <cstdlib>
33#include <functional>
34#include <memory>
35#include <new>
36#include <string>
37#include <system_error>
38#include <type_traits>
39#include <utility>
40#include <vector>
41
42namespace llvm {
43
44class ErrorSuccess;
45
46/// Base class for error info classes. Do not extend this directly: Extend
47/// the ErrorInfo template subclass instead.
48class ErrorInfoBase {
49public:
50 virtual ~ErrorInfoBase() = default;
51
52 /// Print an error message to an output stream.
53 virtual void log(raw_ostream &OS) const = 0;
54
55 /// Return the error message as a string.
56 virtual std::string message() const {
57 std::string Msg;
58 raw_string_ostream OS(Msg);
59 log(OS);
60 return OS.str();
61 }
62
63 /// Convert this error to a std::error_code.
64 ///
65 /// This is a temporary crutch to enable interaction with code still
66 /// using std::error_code. It will be removed in the future.
67 virtual std::error_code convertToErrorCode() const = 0;
68
69 // Returns the class ID for this type.
70 static const void *classID() { return &ID; }
71
72 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
73 virtual const void *dynamicClassID() const = 0;
74
75 // Check whether this instance is a subclass of the class identified by
76 // ClassID.
77 virtual bool isA(const void *const ClassID) const {
78 return ClassID == classID();
79 }
80
81 // Check whether this instance is a subclass of ErrorInfoT.
82 template <typename ErrorInfoT> bool isA() const {
83 return isA(ErrorInfoT::classID());
84 }
85
86private:
87 virtual void anchor();
88
89 static char ID;
90};
91
92/// Lightweight error class with error context and mandatory checking.
93///
94/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
95/// are represented by setting the pointer to a ErrorInfoBase subclass
96/// instance containing information describing the failure. Success is
97/// represented by a null pointer value.
98///
99/// Instances of Error also contains a 'Checked' flag, which must be set
100/// before the destructor is called, otherwise the destructor will trigger a
101/// runtime error. This enforces at runtime the requirement that all Error
102/// instances be checked or returned to the caller.
103///
104/// There are two ways to set the checked flag, depending on what state the
105/// Error instance is in. For Error instances indicating success, it
106/// is sufficient to invoke the boolean conversion operator. E.g.:
107///
108/// @code{.cpp}
109/// Error foo(<...>);
110///
111/// if (auto E = foo(<...>))
112/// return E; // <- Return E if it is in the error state.
113/// // We have verified that E was in the success state. It can now be safely
114/// // destroyed.
115/// @endcode
116///
117/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
118/// without testing the return value will raise a runtime error, even if foo
119/// returns success.
120///
121/// For Error instances representing failure, you must use either the
122/// handleErrors or handleAllErrors function with a typed handler. E.g.:
123///
124/// @code{.cpp}
125/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
126/// // Custom error info.
127/// };
128///
129/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
130///
131/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
132/// auto NewE =
133/// handleErrors(E,
134/// [](const MyErrorInfo &M) {
135/// // Deal with the error.
136/// },
137/// [](std::unique_ptr<OtherError> M) -> Error {
138/// if (canHandle(*M)) {
139/// // handle error.
140/// return Error::success();
141/// }
142/// // Couldn't handle this error instance. Pass it up the stack.
143/// return Error(std::move(M));
144/// );
145/// // Note - we must check or return NewE in case any of the handlers
146/// // returned a new error.
147/// @endcode
148///
149/// The handleAllErrors function is identical to handleErrors, except
150/// that it has a void return type, and requires all errors to be handled and
151/// no new errors be returned. It prevents errors (assuming they can all be
152/// handled) from having to be bubbled all the way to the top-level.
153///
154/// *All* Error instances must be checked before destruction, even if
155/// they're moved-assigned or constructed from Success values that have already
156/// been checked. This enforces checking through all levels of the call stack.
157class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
158 // ErrorList needs to be able to yank ErrorInfoBase pointers out of Errors
159 // to add to the error list. It can't rely on handleErrors for this, since
160 // handleErrors does not support ErrorList handlers.
161 friend class ErrorList;
162
163 // handleErrors needs to be able to set the Checked flag.
164 template <typename... HandlerTs>
165 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
166
167 // Expected<T> needs to be able to steal the payload when constructed from an
168 // error.
169 template <typename T> friend class Expected;
170
171 // wrap needs to be able to steal the payload.
172 friend LLVMErrorRef wrap(Error);
173
174protected:
175 /// Create a success value. Prefer using 'Error::success()' for readability
176 Error() {
177 setPtr(nullptr);
178 setChecked(false);
179 }
180
181public:
182 /// Create a success value.
183 static ErrorSuccess success();
184
185 // Errors are not copy-constructable.
186 Error(const Error &Other) = delete;
187
188 /// Move-construct an error value. The newly constructed error is considered
189 /// unchecked, even if the source error had been checked. The original error
190 /// becomes a checked Success value, regardless of its original state.
191 Error(Error &&Other) {
192 setChecked(true);
193 *this = std::move(Other);
194 }
195
196 /// Create an error value. Prefer using the 'make_error' function, but
197 /// this constructor can be useful when "re-throwing" errors from handlers.
198 Error(std::unique_ptr<ErrorInfoBase> Payload) {
199 setPtr(Payload.release());
200 setChecked(false);
201 }
202
203 // Errors are not copy-assignable.
204 Error &operator=(const Error &Other) = delete;
205
206 /// Move-assign an error value. The current error must represent success, you
207 /// you cannot overwrite an unhandled error. The current error is then
208 /// considered unchecked. The source error becomes a checked success value,
209 /// regardless of its original state.
210 Error &operator=(Error &&Other) {
211 // Don't allow overwriting of unchecked values.
212 assertIsChecked();
213 setPtr(Other.getPtr());
214
215 // This Error is unchecked, even if the source error was checked.
216 setChecked(false);
217
218 // Null out Other's payload and set its checked bit.
219 Other.setPtr(nullptr);
220 Other.setChecked(true);
221
222 return *this;
223 }
224
225 /// Destroy a Error. Fails with a call to abort() if the error is
226 /// unchecked.
227 ~Error() {
228 assertIsChecked();
229 delete getPtr();
230 }
231
232 /// Bool conversion. Returns true if this Error is in a failure state,
233 /// and false if it is in an accept state. If the error is in a Success state
234 /// it will be considered checked.
235 explicit operator bool() {
236 setChecked(getPtr() == nullptr);
237 return getPtr() != nullptr;
238 }
239
240 /// Check whether one error is a subclass of another.
241 template <typename ErrT> bool isA() const {
242 return getPtr() && getPtr()->isA(ErrT::classID());
243 }
244
245 /// Returns the dynamic class id of this error, or null if this is a success
246 /// value.
247 const void* dynamicClassID() const {
248 if (!getPtr())
249 return nullptr;
250 return getPtr()->dynamicClassID();
251 }
252
253private:
254#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
255 // assertIsChecked() happens very frequently, but under normal circumstances
256 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
257 // of debug prints can cause the function to be too large for inlining. So
258 // it's important that we define this function out of line so that it can't be
259 // inlined.
260 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
261 void fatalUncheckedError() const;
262#endif
263
264 void assertIsChecked() {
265#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
266 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
267 fatalUncheckedError();
268#endif
269 }
270
271 ErrorInfoBase *getPtr() const {
272#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276#else
277 return Payload;
278#endif
279 }
280
281 void setPtr(ErrorInfoBase *EI) {
282#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
283 Payload = reinterpret_cast<ErrorInfoBase*>(
284 (reinterpret_cast<uintptr_t>(EI) &
285 ~static_cast<uintptr_t>(0x1)) |
286 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
287#else
288 Payload = EI;
289#endif
290 }
291
292 bool getChecked() const {
293#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
294 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
295#else
296 return true;
297#endif
298 }
299
300 void setChecked(bool V) {
301#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
302 Payload = reinterpret_cast<ErrorInfoBase*>(
303 (reinterpret_cast<uintptr_t>(Payload) &
304 ~static_cast<uintptr_t>(0x1)) |
305 (V ? 0 : 1));
306#endif
307 }
308
309 std::unique_ptr<ErrorInfoBase> takePayload() {
310 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
311 setPtr(nullptr);
312 setChecked(true);
313 return Tmp;
314 }
315
316 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
317 if (auto P = E.getPtr())
318 P->log(OS);
319 else
320 OS << "success";
321 return OS;
322 }
323
324 ErrorInfoBase *Payload = nullptr;
325};
326
327/// Subclass of Error for the sole purpose of identifying the success path in
328/// the type system. This allows to catch invalid conversion to Expected<T> at
329/// compile time.
330class ErrorSuccess final : public Error {};
331
332inline ErrorSuccess Error::success() { return ErrorSuccess(); }
333
334/// Make a Error instance representing failure using the given error info
335/// type.
336template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
337 return Error(std::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
338}
339
340/// Base class for user error types. Users should declare their error types
341/// like:
342///
343/// class MyError : public ErrorInfo<MyError> {
344/// ....
345/// };
346///
347/// This class provides an implementation of the ErrorInfoBase::kind
348/// method, which is used by the Error RTTI system.
349template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
350class ErrorInfo : public ParentErrT {
351public:
352 using ParentErrT::ParentErrT; // inherit constructors
353
354 static const void *classID() { return &ThisErrT::ID; }
355
356 const void *dynamicClassID() const override { return &ThisErrT::ID; }
357
358 bool isA(const void *const ClassID) const override {
359 return ClassID == classID() || ParentErrT::isA(ClassID);
360 }
361};
362
363/// Special ErrorInfo subclass representing a list of ErrorInfos.
364/// Instances of this class are constructed by joinError.
365class ErrorList final : public ErrorInfo<ErrorList> {
366 // handleErrors needs to be able to iterate the payload list of an
367 // ErrorList.
368 template <typename... HandlerTs>
369 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
370
371 // joinErrors is implemented in terms of join.
372 friend Error joinErrors(Error, Error);
373
374public:
375 void log(raw_ostream &OS) const override {
376 OS << "Multiple errors:\n";
377 for (auto &ErrPayload : Payloads) {
378 ErrPayload->log(OS);
379 OS << "\n";
380 }
381 }
382
383 std::error_code convertToErrorCode() const override;
384
385 // Used by ErrorInfo::classID.
386 static char ID;
387
388private:
389 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
390 std::unique_ptr<ErrorInfoBase> Payload2) {
391 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&(static_cast <bool> (!Payload1->isA<ErrorList>
() && !Payload2->isA<ErrorList>() &&
"ErrorList constructor payloads should be singleton errors")
? void (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 392, __extension__ __PRETTY_FUNCTION__))
392 "ErrorList constructor payloads should be singleton errors")(static_cast <bool> (!Payload1->isA<ErrorList>
() && !Payload2->isA<ErrorList>() &&
"ErrorList constructor payloads should be singleton errors")
? void (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 392, __extension__ __PRETTY_FUNCTION__))
;
393 Payloads.push_back(std::move(Payload1));
394 Payloads.push_back(std::move(Payload2));
395 }
396
397 static Error join(Error E1, Error E2) {
398 if (!E1)
399 return E2;
400 if (!E2)
401 return E1;
402 if (E1.isA<ErrorList>()) {
403 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
404 if (E2.isA<ErrorList>()) {
405 auto E2Payload = E2.takePayload();
406 auto &E2List = static_cast<ErrorList &>(*E2Payload);
407 for (auto &Payload : E2List.Payloads)
408 E1List.Payloads.push_back(std::move(Payload));
409 } else
410 E1List.Payloads.push_back(E2.takePayload());
411
412 return E1;
413 }
414 if (E2.isA<ErrorList>()) {
415 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
416 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
417 return E2;
418 }
419 return Error(std::unique_ptr<ErrorList>(
420 new ErrorList(E1.takePayload(), E2.takePayload())));
421 }
422
423 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
424};
425
426/// Concatenate errors. The resulting Error is unchecked, and contains the
427/// ErrorInfo(s), if any, contained in E1, followed by the
428/// ErrorInfo(s), if any, contained in E2.
429inline Error joinErrors(Error E1, Error E2) {
430 return ErrorList::join(std::move(E1), std::move(E2));
431}
432
433/// Tagged union holding either a T or a Error.
434///
435/// This class parallels ErrorOr, but replaces error_code with Error. Since
436/// Error cannot be copied, this class replaces getError() with
437/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
438/// error class type.
439///
440/// Example usage of 'Expected<T>' as a function return type:
441///
442/// @code{.cpp}
443/// Expected<int> myDivide(int A, int B) {
444/// if (B == 0) {
445/// // return an Error
446/// return createStringError(inconvertibleErrorCode(),
447/// "B must not be zero!");
448/// }
449/// // return an integer
450/// return A / B;
451/// }
452/// @endcode
453///
454/// Checking the results of to a function returning 'Expected<T>':
455/// @code{.cpp}
456/// if (auto E = Result.takeError()) {
457/// // We must consume the error. Typically one of:
458/// // - return the error to our caller
459/// // - toString(), when logging
460/// // - consumeError(), to silently swallow the error
461/// // - handleErrors(), to distinguish error types
462/// errs() << "Problem with division " << toString(std::move(E)) << "\n";
463/// return;
464/// }
465/// // use the result
466/// outs() << "The answer is " << *Result << "\n";
467/// @endcode
468///
469/// For unit-testing a function returning an 'Expceted<T>', see the
470/// 'EXPECT_THAT_EXPECTED' macros in llvm/Testing/Support/Error.h
471
472template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
473 template <class T1> friend class ExpectedAsOutParameter;
474 template <class OtherT> friend class Expected;
475
476 static constexpr bool isRef = std::is_reference<T>::value;
477
478 using wrap = std::reference_wrapper<std::remove_reference_t<T>>;
479
480 using error_type = std::unique_ptr<ErrorInfoBase>;
481
482public:
483 using storage_type = std::conditional_t<isRef, wrap, T>;
484 using value_type = T;
485
486private:
487 using reference = std::remove_reference_t<T> &;
488 using const_reference = const std::remove_reference_t<T> &;
489 using pointer = std::remove_reference_t<T> *;
490 using const_pointer = const std::remove_reference_t<T> *;
491
492public:
493 /// Create an Expected<T> error value from the given Error.
494 Expected(Error Err)
495 : HasError(true)
496#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
497 // Expected is unchecked upon construction in Debug builds.
498 , Unchecked(true)
499#endif
500 {
501 assert(Err && "Cannot create Expected<T> from Error success value.")(static_cast <bool> (Err && "Cannot create Expected<T> from Error success value."
) ? void (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 501, __extension__ __PRETTY_FUNCTION__))
;
502 new (getErrorStorage()) error_type(Err.takePayload());
503 }
504
505 /// Forbid to convert from Error::success() implicitly, this avoids having
506 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
507 /// but triggers the assertion above.
508 Expected(ErrorSuccess) = delete;
509
510 /// Create an Expected<T> success value from the given OtherT value, which
511 /// must be convertible to T.
512 template <typename OtherT>
513 Expected(OtherT &&Val,
514 std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr)
515 : HasError(false)
516#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
517 // Expected is unchecked upon construction in Debug builds.
518 ,
519 Unchecked(true)
520#endif
521 {
522 new (getStorage()) storage_type(std::forward<OtherT>(Val));
523 }
524
525 /// Move construct an Expected<T> value.
526 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
527
528 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
529 /// must be convertible to T.
530 template <class OtherT>
531 Expected(
532 Expected<OtherT> &&Other,
533 std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr) {
534 moveConstruct(std::move(Other));
535 }
536
537 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
538 /// isn't convertible to T.
539 template <class OtherT>
540 explicit Expected(
541 Expected<OtherT> &&Other,
542 std::enable_if_t<!std::is_convertible<OtherT, T>::value> * = nullptr) {
543 moveConstruct(std::move(Other));
544 }
545
546 /// Move-assign from another Expected<T>.
547 Expected &operator=(Expected &&Other) {
548 moveAssign(std::move(Other));
549 return *this;
550 }
551
552 /// Destroy an Expected<T>.
553 ~Expected() {
554 assertIsChecked();
555 if (!HasError)
556 getStorage()->~storage_type();
557 else
558 getErrorStorage()->~error_type();
559 }
560
561 /// Return false if there is an error.
562 explicit operator bool() {
563#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
564 Unchecked = HasError;
565#endif
566 return !HasError;
4
Assuming field 'HasError' is false, which participates in a condition later
5
Returning the value 1, which participates in a condition later
12
Assuming field 'HasError' is false, which participates in a condition later
13
Returning the value 1, which participates in a condition later
19
Assuming field 'HasError' is false, which participates in a condition later
20
Returning the value 1, which participates in a condition later
24
Assuming field 'HasError' is false, which participates in a condition later
25
Returning the value 1, which participates in a condition later
29
Assuming field 'HasError' is false, which participates in a condition later
30
Returning the value 1, which participates in a condition later
49
Assuming field 'HasError' is false, which participates in a condition later
50
Returning the value 1, which participates in a condition later
63
Returning the value 1, which participates in a condition later
567 }
568
569 /// Returns a reference to the stored T value.
570 reference get() {
571 assertIsChecked();
572 return *getStorage();
573 }
574
575 /// Returns a const reference to the stored T value.
576 const_reference get() const {
577 assertIsChecked();
578 return const_cast<Expected<T> *>(this)->get();
579 }
580
581 /// Check that this Expected<T> is an error of type ErrT.
582 template <typename ErrT> bool errorIsA() const {
583 return HasError && (*getErrorStorage())->template isA<ErrT>();
584 }
585
586 /// Take ownership of the stored error.
587 /// After calling this the Expected<T> is in an indeterminate state that can
588 /// only be safely destructed. No further calls (beside the destructor) should
589 /// be made on the Expected<T> value.
590 Error takeError() {
591#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
592 Unchecked = false;
593#endif
594 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
595 }
596
597 /// Returns a pointer to the stored T value.
598 pointer operator->() {
599 assertIsChecked();
600 return toPointer(getStorage());
601 }
602
603 /// Returns a const pointer to the stored T value.
604 const_pointer operator->() const {
605 assertIsChecked();
606 return toPointer(getStorage());
607 }
608
609 /// Returns a reference to the stored T value.
610 reference operator*() {
611 assertIsChecked();
612 return *getStorage();
613 }
614
615 /// Returns a const reference to the stored T value.
616 const_reference operator*() const {
617 assertIsChecked();
618 return *getStorage();
619 }
620
621private:
622 template <class T1>
623 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
624 return &a == &b;
625 }
626
627 template <class T1, class T2>
628 static bool compareThisIfSameType(const T1 &, const T2 &) {
629 return false;
630 }
631
632 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
633 HasError = Other.HasError;
634#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
635 Unchecked = true;
636 Other.Unchecked = false;
637#endif
638
639 if (!HasError)
640 new (getStorage()) storage_type(std::move(*Other.getStorage()));
641 else
642 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
643 }
644
645 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
646 assertIsChecked();
647
648 if (compareThisIfSameType(*this, Other))
649 return;
650
651 this->~Expected();
652 new (this) Expected(std::move(Other));
653 }
654
655 pointer toPointer(pointer Val) { return Val; }
656
657 const_pointer toPointer(const_pointer Val) const { return Val; }
658
659 pointer toPointer(wrap *Val) { return &Val->get(); }
660
661 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
662
663 storage_type *getStorage() {
664 assert(!HasError && "Cannot get value when an error exists!")(static_cast <bool> (!HasError && "Cannot get value when an error exists!"
) ? void (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 664, __extension__ __PRETTY_FUNCTION__))
;
665 return reinterpret_cast<storage_type *>(&TStorage);
666 }
667
668 const storage_type *getStorage() const {
669 assert(!HasError && "Cannot get value when an error exists!")(static_cast <bool> (!HasError && "Cannot get value when an error exists!"
) ? void (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 669, __extension__ __PRETTY_FUNCTION__))
;
670 return reinterpret_cast<const storage_type *>(&TStorage);
671 }
672
673 error_type *getErrorStorage() {
674 assert(HasError && "Cannot get error when a value exists!")(static_cast <bool> (HasError && "Cannot get error when a value exists!"
) ? void (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 674, __extension__ __PRETTY_FUNCTION__))
;
675 return reinterpret_cast<error_type *>(&ErrorStorage);
676 }
677
678 const error_type *getErrorStorage() const {
679 assert(HasError && "Cannot get error when a value exists!")(static_cast <bool> (HasError && "Cannot get error when a value exists!"
) ? void (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 679, __extension__ __PRETTY_FUNCTION__))
;
680 return reinterpret_cast<const error_type *>(&ErrorStorage);
681 }
682
683 // Used by ExpectedAsOutParameter to reset the checked flag.
684 void setUnchecked() {
685#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
686 Unchecked = true;
687#endif
688 }
689
690#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
691 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
692 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
693 void fatalUncheckedExpected() const {
694 dbgs() << "Expected<T> must be checked before access or destruction.\n";
695 if (HasError) {
696 dbgs() << "Unchecked Expected<T> contained error:\n";
697 (*getErrorStorage())->log(dbgs());
698 } else
699 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
700 "values in success mode must still be checked prior to being "
701 "destroyed).\n";
702 abort();
703 }
704#endif
705
706 void assertIsChecked() const {
707#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
708 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
709 fatalUncheckedExpected();
710#endif
711 }
712
713 union {
714 AlignedCharArrayUnion<storage_type> TStorage;
715 AlignedCharArrayUnion<error_type> ErrorStorage;
716 };
717 bool HasError : 1;
718#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
719 bool Unchecked : 1;
720#endif
721};
722
723/// Report a serious error, calling any installed error handler. See
724/// ErrorHandling.h.
725LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
726 bool gen_crash_diag = true);
727
728/// Report a fatal error if Err is a failure value.
729///
730/// This function can be used to wrap calls to fallible functions ONLY when it
731/// is known that the Error will always be a success value. E.g.
732///
733/// @code{.cpp}
734/// // foo only attempts the fallible operation if DoFallibleOperation is
735/// // true. If DoFallibleOperation is false then foo always returns
736/// // Error::success().
737/// Error foo(bool DoFallibleOperation);
738///
739/// cantFail(foo(false));
740/// @endcode
741inline void cantFail(Error Err, const char *Msg = nullptr) {
742 if (Err) {
743 if (!Msg)
744 Msg = "Failure value returned from cantFail wrapped call";
745#ifndef NDEBUG
746 std::string Str;
747 raw_string_ostream OS(Str);
748 OS << Msg << "\n" << Err;
749 Msg = OS.str().c_str();
750#endif
751 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 751)
;
752 }
753}
754
755/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
756/// returns the contained value.
757///
758/// This function can be used to wrap calls to fallible functions ONLY when it
759/// is known that the Error will always be a success value. E.g.
760///
761/// @code{.cpp}
762/// // foo only attempts the fallible operation if DoFallibleOperation is
763/// // true. If DoFallibleOperation is false then foo always returns an int.
764/// Expected<int> foo(bool DoFallibleOperation);
765///
766/// int X = cantFail(foo(false));
767/// @endcode
768template <typename T>
769T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
770 if (ValOrErr)
771 return std::move(*ValOrErr);
772 else {
773 if (!Msg)
774 Msg = "Failure value returned from cantFail wrapped call";
775#ifndef NDEBUG
776 std::string Str;
777 raw_string_ostream OS(Str);
778 auto E = ValOrErr.takeError();
779 OS << Msg << "\n" << E;
780 Msg = OS.str().c_str();
781#endif
782 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 782)
;
783 }
784}
785
786/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
787/// returns the contained reference.
788///
789/// This function can be used to wrap calls to fallible functions ONLY when it
790/// is known that the Error will always be a success value. E.g.
791///
792/// @code{.cpp}
793/// // foo only attempts the fallible operation if DoFallibleOperation is
794/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
795/// Expected<Bar&> foo(bool DoFallibleOperation);
796///
797/// Bar &X = cantFail(foo(false));
798/// @endcode
799template <typename T>
800T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
801 if (ValOrErr)
802 return *ValOrErr;
803 else {
804 if (!Msg)
805 Msg = "Failure value returned from cantFail wrapped call";
806#ifndef NDEBUG
807 std::string Str;
808 raw_string_ostream OS(Str);
809 auto E = ValOrErr.takeError();
810 OS << Msg << "\n" << E;
811 Msg = OS.str().c_str();
812#endif
813 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 813)
;
814 }
815}
816
817/// Helper for testing applicability of, and applying, handlers for
818/// ErrorInfo types.
819template <typename HandlerT>
820class ErrorHandlerTraits
821 : public ErrorHandlerTraits<decltype(
822 &std::remove_reference<HandlerT>::type::operator())> {};
823
824// Specialization functions of the form 'Error (const ErrT&)'.
825template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
826public:
827 static bool appliesTo(const ErrorInfoBase &E) {
828 return E.template isA<ErrT>();
829 }
830
831 template <typename HandlerT>
832 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
833 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 833, __extension__ __PRETTY_FUNCTION__))
;
834 return H(static_cast<ErrT &>(*E));
835 }
836};
837
838// Specialization functions of the form 'void (const ErrT&)'.
839template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
840public:
841 static bool appliesTo(const ErrorInfoBase &E) {
842 return E.template isA<ErrT>();
843 }
844
845 template <typename HandlerT>
846 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
847 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 847, __extension__ __PRETTY_FUNCTION__))
;
848 H(static_cast<ErrT &>(*E));
849 return Error::success();
850 }
851};
852
853/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
854template <typename ErrT>
855class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
856public:
857 static bool appliesTo(const ErrorInfoBase &E) {
858 return E.template isA<ErrT>();
859 }
860
861 template <typename HandlerT>
862 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
863 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 863, __extension__ __PRETTY_FUNCTION__))
;
864 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
865 return H(std::move(SubE));
866 }
867};
868
869/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
870template <typename ErrT>
871class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
872public:
873 static bool appliesTo(const ErrorInfoBase &E) {
874 return E.template isA<ErrT>();
875 }
876
877 template <typename HandlerT>
878 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
879 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 879, __extension__ __PRETTY_FUNCTION__))
;
880 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
881 H(std::move(SubE));
882 return Error::success();
883 }
884};
885
886// Specialization for member functions of the form 'RetT (const ErrT&)'.
887template <typename C, typename RetT, typename ErrT>
888class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
889 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
890
891// Specialization for member functions of the form 'RetT (const ErrT&) const'.
892template <typename C, typename RetT, typename ErrT>
893class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
894 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
895
896// Specialization for member functions of the form 'RetT (const ErrT&)'.
897template <typename C, typename RetT, typename ErrT>
898class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
899 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
900
901// Specialization for member functions of the form 'RetT (const ErrT&) const'.
902template <typename C, typename RetT, typename ErrT>
903class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
904 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
905
906/// Specialization for member functions of the form
907/// 'RetT (std::unique_ptr<ErrT>)'.
908template <typename C, typename RetT, typename ErrT>
909class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
910 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
911
912/// Specialization for member functions of the form
913/// 'RetT (std::unique_ptr<ErrT>) const'.
914template <typename C, typename RetT, typename ErrT>
915class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
916 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
917
918inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
919 return Error(std::move(Payload));
920}
921
922template <typename HandlerT, typename... HandlerTs>
923Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
924 HandlerT &&Handler, HandlerTs &&... Handlers) {
925 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
926 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
927 std::move(Payload));
928 return handleErrorImpl(std::move(Payload),
929 std::forward<HandlerTs>(Handlers)...);
930}
931
932/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
933/// unhandled errors (or Errors returned by handlers) are re-concatenated and
934/// returned.
935/// Because this function returns an error, its result must also be checked
936/// or returned. If you intend to handle all errors use handleAllErrors
937/// (which returns void, and will abort() on unhandled errors) instead.
938template <typename... HandlerTs>
939Error handleErrors(Error E, HandlerTs &&... Hs) {
940 if (!E)
941 return Error::success();
942
943 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
944
945 if (Payload->isA<ErrorList>()) {
946 ErrorList &List = static_cast<ErrorList &>(*Payload);
947 Error R;
948 for (auto &P : List.Payloads)
949 R = ErrorList::join(
950 std::move(R),
951 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
952 return R;
953 }
954
955 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
956}
957
958/// Behaves the same as handleErrors, except that by contract all errors
959/// *must* be handled by the given handlers (i.e. there must be no remaining
960/// errors after running the handlers, or llvm_unreachable is called).
961template <typename... HandlerTs>
962void handleAllErrors(Error E, HandlerTs &&... Handlers) {
963 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
964}
965
966/// Check that E is a non-error, then drop it.
967/// If E is an error, llvm_unreachable will be called.
968inline void handleAllErrors(Error E) {
969 cantFail(std::move(E));
970}
971
972/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
973///
974/// If the incoming value is a success value it is returned unmodified. If it
975/// is a failure value then it the contained error is passed to handleErrors.
976/// If handleErrors is able to handle the error then the RecoveryPath functor
977/// is called to supply the final result. If handleErrors is not able to
978/// handle all errors then the unhandled errors are returned.
979///
980/// This utility enables the follow pattern:
981///
982/// @code{.cpp}
983/// enum FooStrategy { Aggressive, Conservative };
984/// Expected<Foo> foo(FooStrategy S);
985///
986/// auto ResultOrErr =
987/// handleExpected(
988/// foo(Aggressive),
989/// []() { return foo(Conservative); },
990/// [](AggressiveStrategyError&) {
991/// // Implicitly conusme this - we'll recover by using a conservative
992/// // strategy.
993/// });
994///
995/// @endcode
996template <typename T, typename RecoveryFtor, typename... HandlerTs>
997Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
998 HandlerTs &&... Handlers) {
999 if (ValOrErr)
1000 return ValOrErr;
1001
1002 if (auto Err = handleErrors(ValOrErr.takeError(),
1003 std::forward<HandlerTs>(Handlers)...))
1004 return std::move(Err);
1005
1006 return RecoveryPath();
1007}
1008
1009/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
1010/// will be printed before the first one is logged. A newline will be printed
1011/// after each error.
1012///
1013/// This function is compatible with the helpers from Support/WithColor.h. You
1014/// can pass any of them as the OS. Please consider using them instead of
1015/// including 'error: ' in the ErrorBanner.
1016///
1017/// This is useful in the base level of your program to allow clean termination
1018/// (allowing clean deallocation of resources, etc.), while reporting error
1019/// information to the user.
1020void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
1021
1022/// Write all error messages (if any) in E to a string. The newline character
1023/// is used to separate error messages.
1024inline std::string toString(Error E) {
1025 SmallVector<std::string, 2> Errors;
1026 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
1027 Errors.push_back(EI.message());
1028 });
1029 return join(Errors.begin(), Errors.end(), "\n");
1030}
1031
1032/// Consume a Error without doing anything. This method should be used
1033/// only where an error can be considered a reasonable and expected return
1034/// value.
1035///
1036/// Uses of this method are potentially indicative of design problems: If it's
1037/// legitimate to do nothing while processing an "error", the error-producer
1038/// might be more clearly refactored to return an Optional<T>.
1039inline void consumeError(Error Err) {
1040 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
1041}
1042
1043/// Convert an Expected to an Optional without doing anything. This method
1044/// should be used only where an error can be considered a reasonable and
1045/// expected return value.
1046///
1047/// Uses of this method are potentially indicative of problems: perhaps the
1048/// error should be propagated further, or the error-producer should just
1049/// return an Optional in the first place.
1050template <typename T> Optional<T> expectedToOptional(Expected<T> &&E) {
1051 if (E)
1052 return std::move(*E);
1053 consumeError(E.takeError());
1054 return None;
1055}
1056
1057/// Helper for converting an Error to a bool.
1058///
1059/// This method returns true if Err is in an error state, or false if it is
1060/// in a success state. Puts Err in a checked state in both cases (unlike
1061/// Error::operator bool(), which only does this for success states).
1062inline bool errorToBool(Error Err) {
1063 bool IsError = static_cast<bool>(Err);
1064 if (IsError)
1065 consumeError(std::move(Err));
1066 return IsError;
1067}
1068
1069/// Helper for Errors used as out-parameters.
1070///
1071/// This helper is for use with the Error-as-out-parameter idiom, where an error
1072/// is passed to a function or method by reference, rather than being returned.
1073/// In such cases it is helpful to set the checked bit on entry to the function
1074/// so that the error can be written to (unchecked Errors abort on assignment)
1075/// and clear the checked bit on exit so that clients cannot accidentally forget
1076/// to check the result. This helper performs these actions automatically using
1077/// RAII:
1078///
1079/// @code{.cpp}
1080/// Result foo(Error &Err) {
1081/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1082/// // <body of foo>
1083/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1084/// }
1085/// @endcode
1086///
1087/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1088/// used with optional Errors (Error pointers that are allowed to be null). If
1089/// ErrorAsOutParameter took an Error reference, an instance would have to be
1090/// created inside every condition that verified that Error was non-null. By
1091/// taking an Error pointer we can just create one instance at the top of the
1092/// function.
1093class ErrorAsOutParameter {
1094public:
1095 ErrorAsOutParameter(Error *Err) : Err(Err) {
1096 // Raise the checked bit if Err is success.
1097 if (Err)
1098 (void)!!*Err;
1099 }
1100
1101 ~ErrorAsOutParameter() {
1102 // Clear the checked bit.
1103 if (Err && !*Err)
1104 *Err = Error::success();
1105 }
1106
1107private:
1108 Error *Err;
1109};
1110
1111/// Helper for Expected<T>s used as out-parameters.
1112///
1113/// See ErrorAsOutParameter.
1114template <typename T>
1115class ExpectedAsOutParameter {
1116public:
1117 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1118 : ValOrErr(ValOrErr) {
1119 if (ValOrErr)
1120 (void)!!*ValOrErr;
1121 }
1122
1123 ~ExpectedAsOutParameter() {
1124 if (ValOrErr)
1125 ValOrErr->setUnchecked();
1126 }
1127
1128private:
1129 Expected<T> *ValOrErr;
1130};
1131
1132/// This class wraps a std::error_code in a Error.
1133///
1134/// This is useful if you're writing an interface that returns a Error
1135/// (or Expected) and you want to call code that still returns
1136/// std::error_codes.
1137class ECError : public ErrorInfo<ECError> {
1138 friend Error errorCodeToError(std::error_code);
1139
1140 virtual void anchor() override;
1141
1142public:
1143 void setErrorCode(std::error_code EC) { this->EC = EC; }
1144 std::error_code convertToErrorCode() const override { return EC; }
1145 void log(raw_ostream &OS) const override { OS << EC.message(); }
1146
1147 // Used by ErrorInfo::classID.
1148 static char ID;
1149
1150protected:
1151 ECError() = default;
1152 ECError(std::error_code EC) : EC(EC) {}
1153
1154 std::error_code EC;
1155};
1156
1157/// The value returned by this function can be returned from convertToErrorCode
1158/// for Error values where no sensible translation to std::error_code exists.
1159/// It should only be used in this situation, and should never be used where a
1160/// sensible conversion to std::error_code is available, as attempts to convert
1161/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1162///error to try to convert such a value).
1163std::error_code inconvertibleErrorCode();
1164
1165/// Helper for converting an std::error_code to a Error.
1166Error errorCodeToError(std::error_code EC);
1167
1168/// Helper for converting an ECError to a std::error_code.
1169///
1170/// This method requires that Err be Error() or an ECError, otherwise it
1171/// will trigger a call to abort().
1172std::error_code errorToErrorCode(Error Err);
1173
1174/// Convert an ErrorOr<T> to an Expected<T>.
1175template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1176 if (auto EC = EO.getError())
1177 return errorCodeToError(EC);
1178 return std::move(*EO);
1179}
1180
1181/// Convert an Expected<T> to an ErrorOr<T>.
1182template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1183 if (auto Err = E.takeError())
1184 return errorToErrorCode(std::move(Err));
1185 return std::move(*E);
1186}
1187
1188/// This class wraps a string in an Error.
1189///
1190/// StringError is useful in cases where the client is not expected to be able
1191/// to consume the specific error message programmatically (for example, if the
1192/// error message is to be presented to the user).
1193///
1194/// StringError can also be used when additional information is to be printed
1195/// along with a error_code message. Depending on the constructor called, this
1196/// class can either display:
1197/// 1. the error_code message (ECError behavior)
1198/// 2. a string
1199/// 3. the error_code message and a string
1200///
1201/// These behaviors are useful when subtyping is required; for example, when a
1202/// specific library needs an explicit error type. In the example below,
1203/// PDBError is derived from StringError:
1204///
1205/// @code{.cpp}
1206/// Expected<int> foo() {
1207/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1208/// "Additional information");
1209/// }
1210/// @endcode
1211///
1212class StringError : public ErrorInfo<StringError> {
1213public:
1214 static char ID;
1215
1216 // Prints EC + S and converts to EC
1217 StringError(std::error_code EC, const Twine &S = Twine());
1218
1219 // Prints S and converts to EC
1220 StringError(const Twine &S, std::error_code EC);
1221
1222 void log(raw_ostream &OS) const override;
1223 std::error_code convertToErrorCode() const override;
1224
1225 const std::string &getMessage() const { return Msg; }
1226
1227private:
1228 std::string Msg;
1229 std::error_code EC;
1230 const bool PrintMsgOnly = false;
1231};
1232
1233/// Create formatted StringError object.
1234template <typename... Ts>
1235inline Error createStringError(std::error_code EC, char const *Fmt,
1236 const Ts &... Vals) {
1237 std::string Buffer;
1238 raw_string_ostream Stream(Buffer);
1239 Stream << format(Fmt, Vals...);
1240 return make_error<StringError>(Stream.str(), EC);
1241}
1242
1243Error createStringError(std::error_code EC, char const *Msg);
1244
1245inline Error createStringError(std::error_code EC, const Twine &S) {
1246 return createStringError(EC, S.str().c_str());
1247}
1248
1249template <typename... Ts>
1250inline Error createStringError(std::errc EC, char const *Fmt,
1251 const Ts &... Vals) {
1252 return createStringError(std::make_error_code(EC), Fmt, Vals...);
1253}
1254
1255/// This class wraps a filename and another Error.
1256///
1257/// In some cases, an error needs to live along a 'source' name, in order to
1258/// show more detailed information to the user.
1259class FileError final : public ErrorInfo<FileError> {
1260
1261 friend Error createFileError(const Twine &, Error);
1262 friend Error createFileError(const Twine &, size_t, Error);
1263
1264public:
1265 void log(raw_ostream &OS) const override {
1266 assert(Err && !FileName.empty() && "Trying to log after takeError().")(static_cast <bool> (Err && !FileName.empty() &&
"Trying to log after takeError().") ? void (0) : __assert_fail
("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 1266, __extension__ __PRETTY_FUNCTION__))
;
1267 OS << "'" << FileName << "': ";
1268 if (Line.hasValue())
1269 OS << "line " << Line.getValue() << ": ";
1270 Err->log(OS);
1271 }
1272
1273 StringRef getFileName() { return FileName; }
1274
1275 Error takeError() { return Error(std::move(Err)); }
1276
1277 std::error_code convertToErrorCode() const override;
1278
1279 // Used by ErrorInfo::classID.
1280 static char ID;
1281
1282private:
1283 FileError(const Twine &F, Optional<size_t> LineNum,
1284 std::unique_ptr<ErrorInfoBase> E) {
1285 assert(E && "Cannot create FileError from Error success value.")(static_cast <bool> (E && "Cannot create FileError from Error success value."
) ? void (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 1285, __extension__ __PRETTY_FUNCTION__))
;
1286 assert(!F.isTriviallyEmpty() &&(static_cast <bool> (!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? void (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 1287, __extension__ __PRETTY_FUNCTION__))
1287 "The file name provided to FileError must not be empty.")(static_cast <bool> (!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? void (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/Support/Error.h"
, 1287, __extension__ __PRETTY_FUNCTION__))
;
1288 FileName = F.str();
1289 Err = std::move(E);
1290 Line = std::move(LineNum);
1291 }
1292
1293 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1294 std::unique_ptr<ErrorInfoBase> Payload;
1295 handleAllErrors(std::move(E),
1296 [&](std::unique_ptr<ErrorInfoBase> EIB) -> Error {
1297 Payload = std::move(EIB);
1298 return Error::success();
1299 });
1300 return Error(
1301 std::unique_ptr<FileError>(new FileError(F, Line, std::move(Payload))));
1302 }
1303
1304 std::string FileName;
1305 Optional<size_t> Line;
1306 std::unique_ptr<ErrorInfoBase> Err;
1307};
1308
1309/// Concatenate a source file path and/or name with an Error. The resulting
1310/// Error is unchecked.
1311inline Error createFileError(const Twine &F, Error E) {
1312 return FileError::build(F, Optional<size_t>(), std::move(E));
1313}
1314
1315/// Concatenate a source file path and/or name with line number and an Error.
1316/// The resulting Error is unchecked.
1317inline Error createFileError(const Twine &F, size_t Line, Error E) {
1318 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1319}
1320
1321/// Concatenate a source file path and/or name with a std::error_code
1322/// to form an Error object.
1323inline Error createFileError(const Twine &F, std::error_code EC) {
1324 return createFileError(F, errorCodeToError(EC));
1325}
1326
1327/// Concatenate a source file path and/or name with line number and
1328/// std::error_code to form an Error object.
1329inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1330 return createFileError(F, Line, errorCodeToError(EC));
1331}
1332
1333Error createFileError(const Twine &F, ErrorSuccess) = delete;
1334
1335/// Helper for check-and-exit error handling.
1336///
1337/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1338///
1339class ExitOnError {
1340public:
1341 /// Create an error on exit helper.
1342 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1343 : Banner(std::move(Banner)),
1344 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1345
1346 /// Set the banner string for any errors caught by operator().
1347 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1348
1349 /// Set the exit-code mapper function.
1350 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1351 this->GetExitCode = std::move(GetExitCode);
1352 }
1353
1354 /// Check Err. If it's in a failure state log the error(s) and exit.
1355 void operator()(Error Err) const { checkError(std::move(Err)); }
1356
1357 /// Check E. If it's in a success state then return the contained value. If
1358 /// it's in a failure state log the error(s) and exit.
1359 template <typename T> T operator()(Expected<T> &&E) const {
1360 checkError(E.takeError());
1361 return std::move(*E);
1362 }
1363
1364 /// Check E. If it's in a success state then return the contained reference. If
1365 /// it's in a failure state log the error(s) and exit.
1366 template <typename T> T& operator()(Expected<T&> &&E) const {
1367 checkError(E.takeError());
1368 return *E;
1369 }
1370
1371private:
1372 void checkError(Error Err) const {
1373 if (Err) {
1374 int ExitCode = GetExitCode(Err);
1375 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1376 exit(ExitCode);
1377 }
1378 }
1379
1380 std::string Banner;
1381 std::function<int(const Error &)> GetExitCode;
1382};
1383
1384/// Conversion from Error to LLVMErrorRef for C error bindings.
1385inline LLVMErrorRef wrap(Error Err) {
1386 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1387}
1388
1389/// Conversion from LLVMErrorRef to Error for C error bindings.
1390inline Error unwrap(LLVMErrorRef ErrRef) {
1391 return Error(std::unique_ptr<ErrorInfoBase>(
1392 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1393}
1394
1395} // end namespace llvm
1396
1397#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/ExecutionEngine/JITSymbol.h

1//===- JITSymbol.h - JIT symbol abstraction ---------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Abstraction for target process addresses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_EXECUTIONENGINE_JITSYMBOL_H
14#define LLVM_EXECUTIONENGINE_JITSYMBOL_H
15
16#include <algorithm>
17#include <cassert>
18#include <cstddef>
19#include <cstdint>
20#include <functional>
21#include <map>
22#include <set>
23#include <string>
24
25#include "llvm/ADT/BitmaskEnum.h"
26#include "llvm/ADT/FunctionExtras.h"
27#include "llvm/ADT/StringRef.h"
28#include "llvm/Support/Error.h"
29
30namespace llvm {
31
32class GlobalValue;
33class GlobalValueSummary;
34
35namespace object {
36
37class SymbolRef;
38
39} // end namespace object
40
41/// Represents an address in the target process's address space.
42using JITTargetAddress = uint64_t;
43
44/// Convert a JITTargetAddress to a pointer.
45///
46/// Note: This is a raw cast of the address bit pattern to the given pointer
47/// type. When casting to a function pointer in order to execute JIT'd code
48/// jitTargetAddressToFunction should be preferred, as it will also perform
49/// pointer signing on targets that require it.
50template <typename T> T jitTargetAddressToPointer(JITTargetAddress Addr) {
51 static_assert(std::is_pointer<T>::value, "T must be a pointer type");
52 uintptr_t IntPtr = static_cast<uintptr_t>(Addr);
53 assert(IntPtr == Addr && "JITTargetAddress value out of range for uintptr_t")(static_cast <bool> (IntPtr == Addr && "JITTargetAddress value out of range for uintptr_t"
) ? void (0) : __assert_fail ("IntPtr == Addr && \"JITTargetAddress value out of range for uintptr_t\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/ExecutionEngine/JITSymbol.h"
, 53, __extension__ __PRETTY_FUNCTION__))
;
54 return reinterpret_cast<T>(IntPtr);
55}
56
57/// Convert a JITTargetAddress to a callable function pointer.
58///
59/// Casts the given address to a callable function pointer. This operation
60/// will perform pointer signing for platforms that require it (e.g. arm64e).
61template <typename T> T jitTargetAddressToFunction(JITTargetAddress Addr) {
62 static_assert(std::is_pointer<T>::value &&
63 std::is_function<std::remove_pointer_t<T>>::value,
64 "T must be a function pointer type");
65 return jitTargetAddressToPointer<T>(Addr);
66}
67
68/// Convert a pointer to a JITTargetAddress.
69template <typename T> JITTargetAddress pointerToJITTargetAddress(T *Ptr) {
70 return static_cast<JITTargetAddress>(reinterpret_cast<uintptr_t>(Ptr));
71}
72
73/// Flags for symbols in the JIT.
74class JITSymbolFlags {
75public:
76 using UnderlyingType = uint8_t;
77 using TargetFlagsType = uint8_t;
78
79 enum FlagNames : UnderlyingType {
80 None = 0,
81 HasError = 1U << 0,
82 Weak = 1U << 1,
83 Common = 1U << 2,
84 Absolute = 1U << 3,
85 Exported = 1U << 4,
86 Callable = 1U << 5,
87 MaterializationSideEffectsOnly = 1U << 6,
88 LLVM_MARK_AS_BITMASK_ENUM( // LargestValue =LLVM_BITMASK_LARGEST_ENUMERATOR = MaterializationSideEffectsOnly
89 MaterializationSideEffectsOnly)LLVM_BITMASK_LARGEST_ENUMERATOR = MaterializationSideEffectsOnly
90 };
91
92 /// Default-construct a JITSymbolFlags instance.
93 JITSymbolFlags() = default;
94
95 /// Construct a JITSymbolFlags instance from the given flags.
96 JITSymbolFlags(FlagNames Flags) : Flags(Flags) {}
97
98 /// Construct a JITSymbolFlags instance from the given flags and target
99 /// flags.
100 JITSymbolFlags(FlagNames Flags, TargetFlagsType TargetFlags)
101 : TargetFlags(TargetFlags), Flags(Flags) {}
102
103 /// Implicitly convert to bool. Returs true if any flag is set.
104 explicit operator bool() const { return Flags != None || TargetFlags != 0; }
105
106 /// Compare for equality.
107 bool operator==(const JITSymbolFlags &RHS) const {
108 return Flags == RHS.Flags && TargetFlags == RHS.TargetFlags;
109 }
110
111 /// Bitwise AND-assignment for FlagNames.
112 JITSymbolFlags &operator&=(const FlagNames &RHS) {
113 Flags &= RHS;
114 return *this;
115 }
116
117 /// Bitwise OR-assignment for FlagNames.
118 JITSymbolFlags &operator|=(const FlagNames &RHS) {
119 Flags |= RHS;
120 return *this;
121 }
122
123 /// Return true if there was an error retrieving this symbol.
124 bool hasError() const {
125 return (Flags & HasError) == HasError;
126 }
127
128 /// Returns true if the Weak flag is set.
129 bool isWeak() const {
130 return (Flags & Weak) == Weak;
34
Assuming the condition is false
35
Returning zero, which participates in a condition later
131 }
132
133 /// Returns true if the Common flag is set.
134 bool isCommon() const {
135 return (Flags & Common) == Common;
38
Assuming the condition is false
39
Returning zero, which participates in a condition later
136 }
137
138 /// Returns true if the symbol isn't weak or common.
139 bool isStrong() const {
140 return !isWeak() && !isCommon();
141 }
142
143 /// Returns true if the Exported flag is set.
144 bool isExported() const {
145 return (Flags & Exported) == Exported;
146 }
147
148 /// Returns true if the given symbol is known to be callable.
149 bool isCallable() const { return (Flags & Callable) == Callable; }
150
151 /// Returns true if this symbol is a materialization-side-effects-only
152 /// symbol. Such symbols do not have a real address. They exist to trigger
153 /// and support synchronization of materialization side effects, e.g. for
154 /// collecting initialization information. These symbols will vanish from
155 /// the symbol table immediately upon reaching the ready state, and will
156 /// appear to queries as if they were never defined (except that query
157 /// callback execution will be delayed until they reach the ready state).
158 /// MaterializationSideEffectOnly symbols should only be queried using the
159 /// SymbolLookupFlags::WeaklyReferencedSymbol flag (see
160 /// llvm/include/llvm/ExecutionEngine/Orc/Core.h).
161 bool hasMaterializationSideEffectsOnly() const {
162 return (Flags & MaterializationSideEffectsOnly) ==
163 MaterializationSideEffectsOnly;
164 }
165
166 /// Get the underlying flags value as an integer.
167 UnderlyingType getRawFlagsValue() const {
168 return static_cast<UnderlyingType>(Flags);
169 }
170
171 /// Return a reference to the target-specific flags.
172 TargetFlagsType& getTargetFlags() { return TargetFlags; }
173
174 /// Return a reference to the target-specific flags.
175 const TargetFlagsType& getTargetFlags() const { return TargetFlags; }
176
177 /// Construct a JITSymbolFlags value based on the flags of the given global
178 /// value.
179 static JITSymbolFlags fromGlobalValue(const GlobalValue &GV);
180
181 /// Construct a JITSymbolFlags value based on the flags of the given global
182 /// value summary.
183 static JITSymbolFlags fromSummary(GlobalValueSummary *S);
184
185 /// Construct a JITSymbolFlags value based on the flags of the given libobject
186 /// symbol.
187 static Expected<JITSymbolFlags>
188 fromObjectSymbol(const object::SymbolRef &Symbol);
189
190private:
191 TargetFlagsType TargetFlags = 0;
192 FlagNames Flags = None;
193};
194
195inline JITSymbolFlags operator&(const JITSymbolFlags &LHS,
196 const JITSymbolFlags::FlagNames &RHS) {
197 JITSymbolFlags Tmp = LHS;
198 Tmp &= RHS;
199 return Tmp;
200}
201
202inline JITSymbolFlags operator|(const JITSymbolFlags &LHS,
203 const JITSymbolFlags::FlagNames &RHS) {
204 JITSymbolFlags Tmp = LHS;
205 Tmp |= RHS;
206 return Tmp;
207}
208
209/// ARM-specific JIT symbol flags.
210/// FIXME: This should be moved into a target-specific header.
211class ARMJITSymbolFlags {
212public:
213 ARMJITSymbolFlags() = default;
214
215 enum FlagNames {
216 None = 0,
217 Thumb = 1 << 0
218 };
219
220 operator JITSymbolFlags::TargetFlagsType&() { return Flags; }
221
222 static ARMJITSymbolFlags fromObjectSymbol(const object::SymbolRef &Symbol);
223
224private:
225 JITSymbolFlags::TargetFlagsType Flags = 0;
226};
227
228/// Represents a symbol that has been evaluated to an address already.
229class JITEvaluatedSymbol {
230public:
231 JITEvaluatedSymbol() = default;
232
233 /// Create a 'null' symbol.
234 JITEvaluatedSymbol(std::nullptr_t) {}
235
236 /// Create a symbol for the given address and flags.
237 JITEvaluatedSymbol(JITTargetAddress Address, JITSymbolFlags Flags)
238 : Address(Address), Flags(Flags) {}
239
240 /// Create a symbol from the given pointer with the given flags.
241 template <typename T>
242 static JITEvaluatedSymbol
243 fromPointer(T *P, JITSymbolFlags Flags = JITSymbolFlags::Exported) {
244 return JITEvaluatedSymbol(pointerToJITTargetAddress(P), Flags);
245 }
246
247 /// An evaluated symbol converts to 'true' if its address is non-zero.
248 explicit operator bool() const { return Address != 0; }
249
250 /// Return the address of this symbol.
251 JITTargetAddress getAddress() const { return Address; }
252
253 /// Return the flags for this symbol.
254 JITSymbolFlags getFlags() const { return Flags; }
255
256 /// Set the flags for this symbol.
257 void setFlags(JITSymbolFlags Flags) { this->Flags = std::move(Flags); }
258
259private:
260 JITTargetAddress Address = 0;
261 JITSymbolFlags Flags;
262};
263
264/// Represents a symbol in the JIT.
265class JITSymbol {
266public:
267 using GetAddressFtor = unique_function<Expected<JITTargetAddress>()>;
268
269 /// Create a 'null' symbol, used to represent a "symbol not found"
270 /// result from a successful (non-erroneous) lookup.
271 JITSymbol(std::nullptr_t)
272 : CachedAddr(0) {}
273
274 /// Create a JITSymbol representing an error in the symbol lookup
275 /// process (e.g. a network failure during a remote lookup).
276 JITSymbol(Error Err)
277 : Err(std::move(Err)), Flags(JITSymbolFlags::HasError) {}
278
279 /// Create a symbol for a definition with a known address.
280 JITSymbol(JITTargetAddress Addr, JITSymbolFlags Flags)
281 : CachedAddr(Addr), Flags(Flags) {}
282
283 /// Construct a JITSymbol from a JITEvaluatedSymbol.
284 JITSymbol(JITEvaluatedSymbol Sym)
285 : CachedAddr(Sym.getAddress()), Flags(Sym.getFlags()) {}
286
287 /// Create a symbol for a definition that doesn't have a known address
288 /// yet.
289 /// @param GetAddress A functor to materialize a definition (fixing the
290 /// address) on demand.
291 ///
292 /// This constructor allows a JIT layer to provide a reference to a symbol
293 /// definition without actually materializing the definition up front. The
294 /// user can materialize the definition at any time by calling the getAddress
295 /// method.
296 JITSymbol(GetAddressFtor GetAddress, JITSymbolFlags Flags)
297 : GetAddress(std::move(GetAddress)), CachedAddr(0), Flags(Flags) {}
298
299 JITSymbol(const JITSymbol&) = delete;
300 JITSymbol& operator=(const JITSymbol&) = delete;
301
302 JITSymbol(JITSymbol &&Other)
303 : GetAddress(std::move(Other.GetAddress)), Flags(std::move(Other.Flags)) {
304 if (Flags.hasError())
305 Err = std::move(Other.Err);
306 else
307 CachedAddr = std::move(Other.CachedAddr);
308 }
309
310 JITSymbol& operator=(JITSymbol &&Other) {
311 GetAddress = std::move(Other.GetAddress);
312 Flags = std::move(Other.Flags);
313 if (Flags.hasError())
314 Err = std::move(Other.Err);
315 else
316 CachedAddr = std::move(Other.CachedAddr);
317 return *this;
318 }
319
320 ~JITSymbol() {
321 if (Flags.hasError())
322 Err.~Error();
323 else
324 CachedAddr.~JITTargetAddress();
325 }
326
327 /// Returns true if the symbol exists, false otherwise.
328 explicit operator bool() const {
329 return !Flags.hasError() && (CachedAddr || GetAddress);
330 }
331
332 /// Move the error field value out of this JITSymbol.
333 Error takeError() {
334 if (Flags.hasError())
335 return std::move(Err);
336 return Error::success();
337 }
338
339 /// Get the address of the symbol in the target address space. Returns
340 /// '0' if the symbol does not exist.
341 Expected<JITTargetAddress> getAddress() {
342 assert(!Flags.hasError() && "getAddress called on error value")(static_cast <bool> (!Flags.hasError() && "getAddress called on error value"
) ? void (0) : __assert_fail ("!Flags.hasError() && \"getAddress called on error value\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/ExecutionEngine/JITSymbol.h"
, 342, __extension__ __PRETTY_FUNCTION__))
;
343 if (GetAddress) {
344 if (auto CachedAddrOrErr = GetAddress()) {
345 GetAddress = nullptr;
346 CachedAddr = *CachedAddrOrErr;
347 assert(CachedAddr && "Symbol could not be materialized.")(static_cast <bool> (CachedAddr && "Symbol could not be materialized."
) ? void (0) : __assert_fail ("CachedAddr && \"Symbol could not be materialized.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include/llvm/ExecutionEngine/JITSymbol.h"
, 347, __extension__ __PRETTY_FUNCTION__))
;
348 } else
349 return CachedAddrOrErr.takeError();
350 }
351 return CachedAddr;
352 }
353
354 JITSymbolFlags getFlags() const { return Flags; }
355
356private:
357 GetAddressFtor GetAddress;
358 union {
359 JITTargetAddress CachedAddr;
360 Error Err;
361 };
362 JITSymbolFlags Flags;
363};
364
365/// Symbol resolution interface.
366///
367/// Allows symbol flags and addresses to be looked up by name.
368/// Symbol queries are done in bulk (i.e. you request resolution of a set of
369/// symbols, rather than a single one) to reduce IPC overhead in the case of
370/// remote JITing, and expose opportunities for parallel compilation.
371class JITSymbolResolver {
372public:
373 using LookupSet = std::set<StringRef>;
374 using LookupResult = std::map<StringRef, JITEvaluatedSymbol>;
375 using OnResolvedFunction = unique_function<void(Expected<LookupResult>)>;
376
377 virtual ~JITSymbolResolver() = default;
378
379 /// Returns the fully resolved address and flags for each of the given
380 /// symbols.
381 ///
382 /// This method will return an error if any of the given symbols can not be
383 /// resolved, or if the resolution process itself triggers an error.
384 virtual void lookup(const LookupSet &Symbols,
385 OnResolvedFunction OnResolved) = 0;
386
387 /// Returns the subset of the given symbols that should be materialized by
388 /// the caller. Only weak/common symbols should be looked up, as strong
389 /// definitions are implicitly always part of the caller's responsibility.
390 virtual Expected<LookupSet>
391 getResponsibilitySet(const LookupSet &Symbols) = 0;
392
393 /// Specify if this resolver can return valid symbols with zero value.
394 virtual bool allowsZeroSymbols() { return false; }
395
396private:
397 virtual void anchor();
398};
399
400/// Legacy symbol resolution interface.
401class LegacyJITSymbolResolver : public JITSymbolResolver {
402public:
403 /// Performs lookup by, for each symbol, first calling
404 /// findSymbolInLogicalDylib and if that fails calling
405 /// findSymbol.
406 void lookup(const LookupSet &Symbols, OnResolvedFunction OnResolved) final;
407
408 /// Performs flags lookup by calling findSymbolInLogicalDylib and
409 /// returning the flags value for that symbol.
410 Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) final;
411
412 /// This method returns the address of the specified symbol if it exists
413 /// within the logical dynamic library represented by this JITSymbolResolver.
414 /// Unlike findSymbol, queries through this interface should return addresses
415 /// for hidden symbols.
416 ///
417 /// This is of particular importance for the Orc JIT APIs, which support lazy
418 /// compilation by breaking up modules: Each of those broken out modules
419 /// must be able to resolve hidden symbols provided by the others. Clients
420 /// writing memory managers for MCJIT can usually ignore this method.
421 ///
422 /// This method will be queried by RuntimeDyld when checking for previous
423 /// definitions of common symbols.
424 virtual JITSymbol findSymbolInLogicalDylib(const std::string &Name) = 0;
425
426 /// This method returns the address of the specified function or variable.
427 /// It is used to resolve symbols during module linking.
428 ///
429 /// If the returned symbol's address is equal to ~0ULL then RuntimeDyld will
430 /// skip all relocations for that symbol, and the client will be responsible
431 /// for handling them manually.
432 virtual JITSymbol findSymbol(const std::string &Name) = 0;
433
434private:
435 void anchor() override;
436};
437
438} // end namespace llvm
439
440#endif // LLVM_EXECUTIONENGINE_JITSYMBOL_H