Bug Summary

File:include/llvm/Support/Error.h
Warning:line 201, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name RuntimeDyldELF.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/ExecutionEngine/RuntimeDyld -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp

1//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of ELF support for the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "RuntimeDyldELF.h"
15#include "RuntimeDyldCheckerImpl.h"
16#include "Targets/RuntimeDyldELFMips.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/BinaryFormat/ELF.h"
21#include "llvm/Object/ELFObjectFile.h"
22#include "llvm/Object/ObjectFile.h"
23#include "llvm/Support/Endian.h"
24#include "llvm/Support/MemoryBuffer.h"
25
26using namespace llvm;
27using namespace llvm::object;
28using namespace llvm::support::endian;
29
30#define DEBUG_TYPE"dyld" "dyld"
31
32static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
33
34static void or32AArch64Imm(void *L, uint64_t Imm) {
35 or32le(L, (Imm & 0xFFF) << 10);
36}
37
38template <class T> static void write(bool isBE, void *P, T V) {
39 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
40}
41
42static void write32AArch64Addr(void *L, uint64_t Imm) {
43 uint32_t ImmLo = (Imm & 0x3) << 29;
44 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
45 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
46 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
47}
48
49// Return the bits [Start, End] from Val shifted Start bits.
50// For instance, getBits(0xF0, 4, 8) returns 0xF.
51static uint64_t getBits(uint64_t Val, int Start, int End) {
52 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
53 return (Val >> Start) & Mask;
54}
55
56namespace {
57
58template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
59 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword;
60
61 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
62 typedef Elf_Sym_Impl<ELFT> Elf_Sym;
63 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
64 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
65
66 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
67
68 typedef typename ELFT::uint addr_type;
69
70 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
71
72public:
73 static Expected<std::unique_ptr<DyldELFObject>>
74 create(MemoryBufferRef Wrapper);
75
76 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
77
78 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
79
80 // Methods for type inquiry through isa, cast and dyn_cast
81 static bool classof(const Binary *v) {
82 return (isa<ELFObjectFile<ELFT>>(v) &&
83 classof(cast<ELFObjectFile<ELFT>>(v)));
84 }
85 static bool classof(const ELFObjectFile<ELFT> *v) {
86 return v->isDyldType();
87 }
88};
89
90
91
92// The MemoryBuffer passed into this constructor is just a wrapper around the
93// actual memory. Ultimately, the Binary parent class will take ownership of
94// this MemoryBuffer object but not the underlying memory.
95template <class ELFT>
96DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
97 : ELFObjectFile<ELFT>(std::move(Obj)) {
98 this->isDyldELFObject = true;
99}
100
101template <class ELFT>
102Expected<std::unique_ptr<DyldELFObject<ELFT>>>
103DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
104 auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
105 if (auto E = Obj.takeError())
106 return std::move(E);
107 std::unique_ptr<DyldELFObject<ELFT>> Ret(
108 new DyldELFObject<ELFT>(std::move(*Obj)));
109 return std::move(Ret);
110}
111
112template <class ELFT>
113void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
114 uint64_t Addr) {
115 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
116 Elf_Shdr *shdr =
117 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
118
119 // This assumes the address passed in matches the target address bitness
120 // The template-based type cast handles everything else.
121 shdr->sh_addr = static_cast<addr_type>(Addr);
122}
123
124template <class ELFT>
125void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
126 uint64_t Addr) {
127
128 Elf_Sym *sym = const_cast<Elf_Sym *>(
129 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
130
131 // This assumes the address passed in matches the target address bitness
132 // The template-based type cast handles everything else.
133 sym->st_value = static_cast<addr_type>(Addr);
134}
135
136class LoadedELFObjectInfo final
137 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
138 RuntimeDyld::LoadedObjectInfo> {
139public:
140 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
141 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
142
143 OwningBinary<ObjectFile>
144 getObjectForDebug(const ObjectFile &Obj) const override;
145};
146
147template <typename ELFT>
148static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
149createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
150 const LoadedELFObjectInfo &L) {
151 typedef typename ELFT::Shdr Elf_Shdr;
152 typedef typename ELFT::uint addr_type;
153
154 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
155 DyldELFObject<ELFT>::create(Buffer);
156 if (Error E = ObjOrErr.takeError())
157 return std::move(E);
158
159 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
160
161 // Iterate over all sections in the object.
162 auto SI = SourceObject.section_begin();
163 for (const auto &Sec : Obj->sections()) {
164 StringRef SectionName;
165 Sec.getName(SectionName);
166 if (SectionName != "") {
167 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
168 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
169 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
170
171 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
172 // This assumes that the address passed in matches the target address
173 // bitness. The template-based type cast handles everything else.
174 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
175 }
176 }
177 ++SI;
178 }
179
180 return std::move(Obj);
181}
182
183static OwningBinary<ObjectFile>
184createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
185 assert(Obj.isELF() && "Not an ELF object file.")((Obj.isELF() && "Not an ELF object file.") ? static_cast
<void> (0) : __assert_fail ("Obj.isELF() && \"Not an ELF object file.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 185, __PRETTY_FUNCTION__))
;
186
187 std::unique_ptr<MemoryBuffer> Buffer =
188 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
189
190 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
191 handleAllErrors(DebugObj.takeError());
192 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
193 DebugObj =
194 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
195 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
196 DebugObj =
197 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
198 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
199 DebugObj =
200 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
201 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
202 DebugObj =
203 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
204 else
205 llvm_unreachable("Unexpected ELF format")::llvm::llvm_unreachable_internal("Unexpected ELF format", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 205)
;
206
207 handleAllErrors(DebugObj.takeError());
208 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
209}
210
211OwningBinary<ObjectFile>
212LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
213 return createELFDebugObject(Obj, *this);
214}
215
216} // anonymous namespace
217
218namespace llvm {
219
220RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
221 JITSymbolResolver &Resolver)
222 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
223RuntimeDyldELF::~RuntimeDyldELF() {}
224
225void RuntimeDyldELF::registerEHFrames() {
226 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
227 SID EHFrameSID = UnregisteredEHFrameSections[i];
228 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
229 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
230 size_t EHFrameSize = Sections[EHFrameSID].getSize();
231 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
232 }
233 UnregisteredEHFrameSections.clear();
234}
235
236std::unique_ptr<RuntimeDyldELF>
237llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
238 RuntimeDyld::MemoryManager &MemMgr,
239 JITSymbolResolver &Resolver) {
240 switch (Arch) {
241 default:
242 return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
243 case Triple::mips:
244 case Triple::mipsel:
245 case Triple::mips64:
246 case Triple::mips64el:
247 return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
248 }
249}
250
251std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
252RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
253 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
254 return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
255 else {
256 HasError = true;
257 raw_string_ostream ErrStream(ErrorStr);
258 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
259 return nullptr;
260 }
261}
262
263void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
264 uint64_t Offset, uint64_t Value,
265 uint32_t Type, int64_t Addend,
266 uint64_t SymOffset) {
267 switch (Type) {
268 default:
269 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 269)
;
270 break;
271 case ELF::R_X86_64_NONE:
272 break;
273 case ELF::R_X86_64_64: {
274 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
275 Value + Addend;
276 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", (
Value + Addend)) << " at " << format("%p\n", Section
.getAddressWithOffset(Offset)); } } while (false)
277 << format("%p\n", Section.getAddressWithOffset(Offset)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", (
Value + Addend)) << " at " << format("%p\n", Section
.getAddressWithOffset(Offset)); } } while (false)
;
278 break;
279 }
280 case ELF::R_X86_64_32:
281 case ELF::R_X86_64_32S: {
282 Value += Addend;
283 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||(((Type == ELF::R_X86_64_32 && (Value <= (4294967295U
))) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <=
(2147483647) && (int64_t)Value >= (-2147483647-1)
))) ? static_cast<void> (0) : __assert_fail ("(Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 285, __PRETTY_FUNCTION__))
284 (Type == ELF::R_X86_64_32S &&(((Type == ELF::R_X86_64_32 && (Value <= (4294967295U
))) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <=
(2147483647) && (int64_t)Value >= (-2147483647-1)
))) ? static_cast<void> (0) : __assert_fail ("(Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 285, __PRETTY_FUNCTION__))
285 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)))(((Type == ELF::R_X86_64_32 && (Value <= (4294967295U
))) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <=
(2147483647) && (int64_t)Value >= (-2147483647-1)
))) ? static_cast<void> (0) : __assert_fail ("(Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 285, __PRETTY_FUNCTION__))
;
286 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
287 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
288 TruncatedAddr;
289 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at " << format("%p\n", Section.getAddressWithOffset
(Offset)); } } while (false)
290 << format("%p\n", Section.getAddressWithOffset(Offset)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at " << format("%p\n", Section.getAddressWithOffset
(Offset)); } } while (false)
;
291 break;
292 }
293 case ELF::R_X86_64_PC8: {
294 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
295 int64_t RealOffset = Value + Addend - FinalAddress;
296 assert(isInt<8>(RealOffset))((isInt<8>(RealOffset)) ? static_cast<void> (0) :
__assert_fail ("isInt<8>(RealOffset)", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 296, __PRETTY_FUNCTION__))
;
297 int8_t TruncOffset = (RealOffset & 0xFF);
298 Section.getAddress()[Offset] = TruncOffset;
299 break;
300 }
301 case ELF::R_X86_64_PC32: {
302 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
303 int64_t RealOffset = Value + Addend - FinalAddress;
304 assert(isInt<32>(RealOffset))((isInt<32>(RealOffset)) ? static_cast<void> (0) :
__assert_fail ("isInt<32>(RealOffset)", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 304, __PRETTY_FUNCTION__))
;
305 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
306 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
307 TruncOffset;
308 break;
309 }
310 case ELF::R_X86_64_PC64: {
311 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
312 int64_t RealOffset = Value + Addend - FinalAddress;
313 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
314 RealOffset;
315 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", RealOffset
) << " at " << format("%p\n", FinalAddress); } } while
(false)
316 << format("%p\n", FinalAddress))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", RealOffset
) << " at " << format("%p\n", FinalAddress); } } while
(false)
;
317 break;
318 }
319 case ELF::R_X86_64_GOTOFF64: {
320 // Compute Value - GOTBase.
321 uint64_t GOTBase = 0;
322 for (const auto &Section : Sections) {
323 if (Section.getName() == ".got") {
324 GOTBase = Section.getLoadAddressWithOffset(0);
325 break;
326 }
327 }
328 assert(GOTBase != 0 && "missing GOT")((GOTBase != 0 && "missing GOT") ? static_cast<void
> (0) : __assert_fail ("GOTBase != 0 && \"missing GOT\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 328, __PRETTY_FUNCTION__))
;
329 int64_t GOTOffset = Value - GOTBase + Addend;
330 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
331 break;
332 }
333 }
334}
335
336void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
337 uint64_t Offset, uint32_t Value,
338 uint32_t Type, int32_t Addend) {
339 switch (Type) {
340 case ELF::R_386_32: {
341 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
342 Value + Addend;
343 break;
344 }
345 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
346 // reach any 32 bit address.
347 case ELF::R_386_PLT32:
348 case ELF::R_386_PC32: {
349 uint32_t FinalAddress =
350 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
351 uint32_t RealOffset = Value + Addend - FinalAddress;
352 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
353 RealOffset;
354 break;
355 }
356 default:
357 // There are other relocation types, but it appears these are the
358 // only ones currently used by the LLVM ELF object writer
359 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 359)
;
360 break;
361 }
362}
363
364void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
365 uint64_t Offset, uint64_t Value,
366 uint32_t Type, int64_t Addend) {
367 uint32_t *TargetPtr =
368 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
369 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
370 // Data should use target endian. Code should always use little endian.
371 bool isBE = Arch == Triple::aarch64_be;
372
373 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
374 << format("%llx", Section.getAddressWithOffset(Offset))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
375 << " FinalAddress: 0x" << format("%llx", FinalAddress)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
376 << " Value: 0x" << format("%llx", Value) << " Type: 0x"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
377 << format("%x", Type) << " Addend: 0x"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
378 << format("%llx", Addend) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.getAddressWithOffset(Offset)
) << " FinalAddress: 0x" << format("%llx", FinalAddress
) << " Value: 0x" << format("%llx", Value) <<
" Type: 0x" << format("%x", Type) << " Addend: 0x"
<< format("%llx", Addend) << "\n"; } } while (false
)
;
379
380 switch (Type) {
381 default:
382 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 382)
;
383 break;
384 case ELF::R_AARCH64_ABS16: {
385 uint64_t Result = Value + Addend;
386 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX)((static_cast<int64_t>(Result) >= (-32767-1) &&
Result < (65535)) ? static_cast<void> (0) : __assert_fail
("static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 386, __PRETTY_FUNCTION__))
;
387 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
388 break;
389 }
390 case ELF::R_AARCH64_ABS32: {
391 uint64_t Result = Value + Addend;
392 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX)((static_cast<int64_t>(Result) >= (-2147483647-1) &&
Result < (4294967295U)) ? static_cast<void> (0) : __assert_fail
("static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 392, __PRETTY_FUNCTION__))
;
393 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
394 break;
395 }
396 case ELF::R_AARCH64_ABS64:
397 write(isBE, TargetPtr, Value + Addend);
398 break;
399 case ELF::R_AARCH64_PREL32: {
400 uint64_t Result = Value + Addend - FinalAddress;
401 assert(static_cast<int64_t>(Result) >= INT32_MIN &&((static_cast<int64_t>(Result) >= (-2147483647-1) &&
static_cast<int64_t>(Result) <= (4294967295U)) ? static_cast
<void> (0) : __assert_fail ("static_cast<int64_t>(Result) >= INT32_MIN && static_cast<int64_t>(Result) <= UINT32_MAX"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 402, __PRETTY_FUNCTION__))
402 static_cast<int64_t>(Result) <= UINT32_MAX)((static_cast<int64_t>(Result) >= (-2147483647-1) &&
static_cast<int64_t>(Result) <= (4294967295U)) ? static_cast
<void> (0) : __assert_fail ("static_cast<int64_t>(Result) >= INT32_MIN && static_cast<int64_t>(Result) <= UINT32_MAX"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 402, __PRETTY_FUNCTION__))
;
403 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
404 break;
405 }
406 case ELF::R_AARCH64_PREL64:
407 write(isBE, TargetPtr, Value + Addend - FinalAddress);
408 break;
409 case ELF::R_AARCH64_CALL26: // fallthrough
410 case ELF::R_AARCH64_JUMP26: {
411 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
412 // calculation.
413 uint64_t BranchImm = Value + Addend - FinalAddress;
414
415 // "Check that -2^27 <= result < 2^27".
416 assert(isInt<28>(BranchImm))((isInt<28>(BranchImm)) ? static_cast<void> (0) :
__assert_fail ("isInt<28>(BranchImm)", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 416, __PRETTY_FUNCTION__))
;
417 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
418 break;
419 }
420 case ELF::R_AARCH64_MOVW_UABS_G3:
421 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
422 break;
423 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
424 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
425 break;
426 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
427 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
428 break;
429 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
430 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
431 break;
432 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
433 // Operation: Page(S+A) - Page(P)
434 uint64_t Result =
435 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
436
437 // Check that -2^32 <= X < 2^32
438 assert(isInt<33>(Result) && "overflow check failed for relocation")((isInt<33>(Result) && "overflow check failed for relocation"
) ? static_cast<void> (0) : __assert_fail ("isInt<33>(Result) && \"overflow check failed for relocation\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 438, __PRETTY_FUNCTION__))
;
439
440 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
441 // from bits 32:12 of X.
442 write32AArch64Addr(TargetPtr, Result >> 12);
443 break;
444 }
445 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
446 // Operation: S + A
447 // Immediate goes in bits 21:10 of LD/ST instruction, taken
448 // from bits 11:0 of X
449 or32AArch64Imm(TargetPtr, Value + Addend);
450 break;
451 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
452 // Operation: S + A
453 // Immediate goes in bits 21:10 of LD/ST instruction, taken
454 // from bits 11:0 of X
455 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
456 break;
457 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
458 // Operation: S + A
459 // Immediate goes in bits 21:10 of LD/ST instruction, taken
460 // from bits 11:1 of X
461 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
462 break;
463 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
464 // Operation: S + A
465 // Immediate goes in bits 21:10 of LD/ST instruction, taken
466 // from bits 11:2 of X
467 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
468 break;
469 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
470 // Operation: S + A
471 // Immediate goes in bits 21:10 of LD/ST instruction, taken
472 // from bits 11:3 of X
473 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
474 break;
475 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
476 // Operation: S + A
477 // Immediate goes in bits 21:10 of LD/ST instruction, taken
478 // from bits 11:4 of X
479 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
480 break;
481 }
482}
483
484void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
485 uint64_t Offset, uint32_t Value,
486 uint32_t Type, int32_t Addend) {
487 // TODO: Add Thumb relocations.
488 uint32_t *TargetPtr =
489 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
490 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
491 Value += Addend;
492
493 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
494 << Section.getAddressWithOffset(Offset)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
495 << " FinalAddress: " << format("%p", FinalAddress)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
496 << " Value: " << format("%x", Value)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
497 << " Type: " << format("%x", Type)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
498 << " Addend: " << format("%x", Addend) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.getAddressWithOffset(Offset) << " FinalAddress: "
<< format("%p", FinalAddress) << " Value: " <<
format("%x", Value) << " Type: " << format("%x",
Type) << " Addend: " << format("%x", Addend) <<
"\n"; } } while (false)
;
499
500 switch (Type) {
501 default:
502 llvm_unreachable("Not implemented relocation type!")::llvm::llvm_unreachable_internal("Not implemented relocation type!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 502)
;
503
504 case ELF::R_ARM_NONE:
505 break;
506 // Write a 31bit signed offset
507 case ELF::R_ARM_PREL31:
508 support::ulittle32_t::ref{TargetPtr} =
509 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
510 ((Value - FinalAddress) & ~0x80000000);
511 break;
512 case ELF::R_ARM_TARGET1:
513 case ELF::R_ARM_ABS32:
514 support::ulittle32_t::ref{TargetPtr} = Value;
515 break;
516 // Write first 16 bit of 32 bit value to the mov instruction.
517 // Last 4 bit should be shifted.
518 case ELF::R_ARM_MOVW_ABS_NC:
519 case ELF::R_ARM_MOVT_ABS:
520 if (Type == ELF::R_ARM_MOVW_ABS_NC)
521 Value = Value & 0xFFFF;
522 else if (Type == ELF::R_ARM_MOVT_ABS)
523 Value = (Value >> 16) & 0xFFFF;
524 support::ulittle32_t::ref{TargetPtr} =
525 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
526 (((Value >> 12) & 0xF) << 16);
527 break;
528 // Write 24 bit relative value to the branch instruction.
529 case ELF::R_ARM_PC24: // Fall through.
530 case ELF::R_ARM_CALL: // Fall through.
531 case ELF::R_ARM_JUMP24:
532 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
533 RelValue = (RelValue & 0x03FFFFFC) >> 2;
534 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE)(((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE
) ? static_cast<void> (0) : __assert_fail ("(support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 534, __PRETTY_FUNCTION__))
;
535 support::ulittle32_t::ref{TargetPtr} =
536 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
537 break;
538 }
539}
540
541void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
542 if (Arch == Triple::UnknownArch ||
543 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
544 IsMipsO32ABI = false;
545 IsMipsN32ABI = false;
546 IsMipsN64ABI = false;
547 return;
548 }
549 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
550 unsigned AbiVariant = E->getPlatformFlags();
551 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
552 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
553 }
554 IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
555}
556
557// Return the .TOC. section and offset.
558Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
559 ObjSectionToIDMap &LocalSections,
560 RelocationValueRef &Rel) {
561 // Set a default SectionID in case we do not find a TOC section below.
562 // This may happen for references to TOC base base (sym@toc, .odp
563 // relocation) without a .toc directive. In this case just use the
564 // first section (which is usually the .odp) since the code won't
565 // reference the .toc base directly.
566 Rel.SymbolName = nullptr;
567 Rel.SectionID = 0;
568
569 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
570 // order. The TOC starts where the first of these sections starts.
571 for (auto &Section: Obj.sections()) {
572 StringRef SectionName;
573 if (auto EC = Section.getName(SectionName))
574 return errorCodeToError(EC);
575
576 if (SectionName == ".got"
577 || SectionName == ".toc"
578 || SectionName == ".tocbss"
579 || SectionName == ".plt") {
580 if (auto SectionIDOrErr =
581 findOrEmitSection(Obj, Section, false, LocalSections))
582 Rel.SectionID = *SectionIDOrErr;
583 else
584 return SectionIDOrErr.takeError();
585 break;
586 }
587 }
588
589 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
590 // thus permitting a full 64 Kbytes segment.
591 Rel.Addend = 0x8000;
592
593 return Error::success();
594}
595
596// Returns the sections and offset associated with the ODP entry referenced
597// by Symbol.
598Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
599 ObjSectionToIDMap &LocalSections,
600 RelocationValueRef &Rel) {
601 // Get the ELF symbol value (st_value) to compare with Relocation offset in
602 // .opd entries
603 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
604 si != se; ++si) {
605 section_iterator RelSecI = si->getRelocatedSection();
606 if (RelSecI == Obj.section_end())
607 continue;
608
609 StringRef RelSectionName;
610 if (auto EC = RelSecI->getName(RelSectionName))
611 return errorCodeToError(EC);
612
613 if (RelSectionName != ".opd")
614 continue;
615
616 for (elf_relocation_iterator i = si->relocation_begin(),
617 e = si->relocation_end();
618 i != e;) {
619 // The R_PPC64_ADDR64 relocation indicates the first field
620 // of a .opd entry
621 uint64_t TypeFunc = i->getType();
622 if (TypeFunc != ELF::R_PPC64_ADDR64) {
623 ++i;
624 continue;
625 }
626
627 uint64_t TargetSymbolOffset = i->getOffset();
628 symbol_iterator TargetSymbol = i->getSymbol();
629 int64_t Addend;
630 if (auto AddendOrErr = i->getAddend())
631 Addend = *AddendOrErr;
632 else
633 return AddendOrErr.takeError();
634
635 ++i;
636 if (i == e)
637 break;
638
639 // Just check if following relocation is a R_PPC64_TOC
640 uint64_t TypeTOC = i->getType();
641 if (TypeTOC != ELF::R_PPC64_TOC)
642 continue;
643
644 // Finally compares the Symbol value and the target symbol offset
645 // to check if this .opd entry refers to the symbol the relocation
646 // points to.
647 if (Rel.Addend != (int64_t)TargetSymbolOffset)
648 continue;
649
650 section_iterator TSI = Obj.section_end();
651 if (auto TSIOrErr = TargetSymbol->getSection())
652 TSI = *TSIOrErr;
653 else
654 return TSIOrErr.takeError();
655 assert(TSI != Obj.section_end() && "TSI should refer to a valid section")((TSI != Obj.section_end() && "TSI should refer to a valid section"
) ? static_cast<void> (0) : __assert_fail ("TSI != Obj.section_end() && \"TSI should refer to a valid section\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 655, __PRETTY_FUNCTION__))
;
656
657 bool IsCode = TSI->isText();
658 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
659 LocalSections))
660 Rel.SectionID = *SectionIDOrErr;
661 else
662 return SectionIDOrErr.takeError();
663 Rel.Addend = (intptr_t)Addend;
664 return Error::success();
665 }
666 }
667 llvm_unreachable("Attempting to get address of ODP entry!")::llvm::llvm_unreachable_internal("Attempting to get address of ODP entry!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 667)
;
668}
669
670// Relocation masks following the #lo(value), #hi(value), #ha(value),
671// #higher(value), #highera(value), #highest(value), and #highesta(value)
672// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
673// document.
674
675static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
676
677static inline uint16_t applyPPChi(uint64_t value) {
678 return (value >> 16) & 0xffff;
679}
680
681static inline uint16_t applyPPCha (uint64_t value) {
682 return ((value + 0x8000) >> 16) & 0xffff;
683}
684
685static inline uint16_t applyPPChigher(uint64_t value) {
686 return (value >> 32) & 0xffff;
687}
688
689static inline uint16_t applyPPChighera (uint64_t value) {
690 return ((value + 0x8000) >> 32) & 0xffff;
691}
692
693static inline uint16_t applyPPChighest(uint64_t value) {
694 return (value >> 48) & 0xffff;
695}
696
697static inline uint16_t applyPPChighesta (uint64_t value) {
698 return ((value + 0x8000) >> 48) & 0xffff;
699}
700
701void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
702 uint64_t Offset, uint64_t Value,
703 uint32_t Type, int64_t Addend) {
704 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
705 switch (Type) {
706 default:
707 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 707)
;
708 break;
709 case ELF::R_PPC_ADDR16_LO:
710 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
711 break;
712 case ELF::R_PPC_ADDR16_HI:
713 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
714 break;
715 case ELF::R_PPC_ADDR16_HA:
716 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
717 break;
718 }
719}
720
721void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
722 uint64_t Offset, uint64_t Value,
723 uint32_t Type, int64_t Addend) {
724 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
725 switch (Type) {
726 default:
727 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 727)
;
728 break;
729 case ELF::R_PPC64_ADDR16:
730 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
731 break;
732 case ELF::R_PPC64_ADDR16_DS:
733 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
734 break;
735 case ELF::R_PPC64_ADDR16_LO:
736 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
737 break;
738 case ELF::R_PPC64_ADDR16_LO_DS:
739 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
740 break;
741 case ELF::R_PPC64_ADDR16_HI:
742 case ELF::R_PPC64_ADDR16_HIGH:
743 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
744 break;
745 case ELF::R_PPC64_ADDR16_HA:
746 case ELF::R_PPC64_ADDR16_HIGHA:
747 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
748 break;
749 case ELF::R_PPC64_ADDR16_HIGHER:
750 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
751 break;
752 case ELF::R_PPC64_ADDR16_HIGHERA:
753 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
754 break;
755 case ELF::R_PPC64_ADDR16_HIGHEST:
756 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
757 break;
758 case ELF::R_PPC64_ADDR16_HIGHESTA:
759 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
760 break;
761 case ELF::R_PPC64_ADDR14: {
762 assert(((Value + Addend) & 3) == 0)((((Value + Addend) & 3) == 0) ? static_cast<void> (
0) : __assert_fail ("((Value + Addend) & 3) == 0", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 762, __PRETTY_FUNCTION__))
;
763 // Preserve the AA/LK bits in the branch instruction
764 uint8_t aalk = *(LocalAddress + 3);
765 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
766 } break;
767 case ELF::R_PPC64_REL16_LO: {
768 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
769 uint64_t Delta = Value - FinalAddress + Addend;
770 writeInt16BE(LocalAddress, applyPPClo(Delta));
771 } break;
772 case ELF::R_PPC64_REL16_HI: {
773 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
774 uint64_t Delta = Value - FinalAddress + Addend;
775 writeInt16BE(LocalAddress, applyPPChi(Delta));
776 } break;
777 case ELF::R_PPC64_REL16_HA: {
778 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
779 uint64_t Delta = Value - FinalAddress + Addend;
780 writeInt16BE(LocalAddress, applyPPCha(Delta));
781 } break;
782 case ELF::R_PPC64_ADDR32: {
783 int64_t Result = static_cast<int64_t>(Value + Addend);
784 if (SignExtend64<32>(Result) != Result)
785 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow")::llvm::llvm_unreachable_internal("Relocation R_PPC64_ADDR32 overflow"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 785)
;
786 writeInt32BE(LocalAddress, Result);
787 } break;
788 case ELF::R_PPC64_REL24: {
789 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
790 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
791 if (SignExtend64<26>(delta) != delta)
792 llvm_unreachable("Relocation R_PPC64_REL24 overflow")::llvm::llvm_unreachable_internal("Relocation R_PPC64_REL24 overflow"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 792)
;
793 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
794 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
795 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
796 } break;
797 case ELF::R_PPC64_REL32: {
798 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
799 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
800 if (SignExtend64<32>(delta) != delta)
801 llvm_unreachable("Relocation R_PPC64_REL32 overflow")::llvm::llvm_unreachable_internal("Relocation R_PPC64_REL32 overflow"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 801)
;
802 writeInt32BE(LocalAddress, delta);
803 } break;
804 case ELF::R_PPC64_REL64: {
805 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
806 uint64_t Delta = Value - FinalAddress + Addend;
807 writeInt64BE(LocalAddress, Delta);
808 } break;
809 case ELF::R_PPC64_ADDR64:
810 writeInt64BE(LocalAddress, Value + Addend);
811 break;
812 }
813}
814
815void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
816 uint64_t Offset, uint64_t Value,
817 uint32_t Type, int64_t Addend) {
818 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
819 switch (Type) {
820 default:
821 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 821)
;
822 break;
823 case ELF::R_390_PC16DBL:
824 case ELF::R_390_PLT16DBL: {
825 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
826 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow")((int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow"
) ? static_cast<void> (0) : __assert_fail ("int16_t(Delta / 2) * 2 == Delta && \"R_390_PC16DBL overflow\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 826, __PRETTY_FUNCTION__))
;
827 writeInt16BE(LocalAddress, Delta / 2);
828 break;
829 }
830 case ELF::R_390_PC32DBL:
831 case ELF::R_390_PLT32DBL: {
832 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
833 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow")((int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow"
) ? static_cast<void> (0) : __assert_fail ("int32_t(Delta / 2) * 2 == Delta && \"R_390_PC32DBL overflow\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 833, __PRETTY_FUNCTION__))
;
834 writeInt32BE(LocalAddress, Delta / 2);
835 break;
836 }
837 case ELF::R_390_PC16: {
838 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
839 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow")((int16_t(Delta) == Delta && "R_390_PC16 overflow") ?
static_cast<void> (0) : __assert_fail ("int16_t(Delta) == Delta && \"R_390_PC16 overflow\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 839, __PRETTY_FUNCTION__))
;
840 writeInt16BE(LocalAddress, Delta);
841 break;
842 }
843 case ELF::R_390_PC32: {
844 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
845 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow")((int32_t(Delta) == Delta && "R_390_PC32 overflow") ?
static_cast<void> (0) : __assert_fail ("int32_t(Delta) == Delta && \"R_390_PC32 overflow\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 845, __PRETTY_FUNCTION__))
;
846 writeInt32BE(LocalAddress, Delta);
847 break;
848 }
849 case ELF::R_390_PC64: {
850 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
851 writeInt64BE(LocalAddress, Delta);
852 break;
853 }
854 case ELF::R_390_8:
855 *LocalAddress = (uint8_t)(Value + Addend);
856 break;
857 case ELF::R_390_16:
858 writeInt16BE(LocalAddress, Value + Addend);
859 break;
860 case ELF::R_390_32:
861 writeInt32BE(LocalAddress, Value + Addend);
862 break;
863 case ELF::R_390_64:
864 writeInt64BE(LocalAddress, Value + Addend);
865 break;
866 }
867}
868
869void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
870 uint64_t Offset, uint64_t Value,
871 uint32_t Type, int64_t Addend) {
872 bool isBE = Arch == Triple::bpfeb;
873
874 switch (Type) {
875 default:
876 llvm_unreachable("Relocation type not implemented yet!")::llvm::llvm_unreachable_internal("Relocation type not implemented yet!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 876)
;
877 break;
878 case ELF::R_BPF_NONE:
879 break;
880 case ELF::R_BPF_64_64: {
881 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
882 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", (
Value + Addend)) << " at " << format("%p\n", Section
.getAddressWithOffset(Offset)); } } while (false)
883 << format("%p\n", Section.getAddressWithOffset(Offset)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", (
Value + Addend)) << " at " << format("%p\n", Section
.getAddressWithOffset(Offset)); } } while (false)
;
884 break;
885 }
886 case ELF::R_BPF_64_32: {
887 Value += Addend;
888 assert(Value <= UINT32_MAX)((Value <= (4294967295U)) ? static_cast<void> (0) : __assert_fail
("Value <= UINT32_MAX", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 888, __PRETTY_FUNCTION__))
;
889 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
890 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", Value
) << " at " << format("%p\n", Section.getAddressWithOffset
(Offset)); } } while (false)
891 << format("%p\n", Section.getAddressWithOffset(Offset)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "Writing " << format("%p", Value
) << " at " << format("%p\n", Section.getAddressWithOffset
(Offset)); } } while (false)
;
892 break;
893 }
894 }
895}
896
897// The target location for the relocation is described by RE.SectionID and
898// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
899// SectionEntry has three members describing its location.
900// SectionEntry::Address is the address at which the section has been loaded
901// into memory in the current (host) process. SectionEntry::LoadAddress is the
902// address that the section will have in the target process.
903// SectionEntry::ObjAddress is the address of the bits for this section in the
904// original emitted object image (also in the current address space).
905//
906// Relocations will be applied as if the section were loaded at
907// SectionEntry::LoadAddress, but they will be applied at an address based
908// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
909// Target memory contents if they are required for value calculations.
910//
911// The Value parameter here is the load address of the symbol for the
912// relocation to be applied. For relocations which refer to symbols in the
913// current object Value will be the LoadAddress of the section in which
914// the symbol resides (RE.Addend provides additional information about the
915// symbol location). For external symbols, Value will be the address of the
916// symbol in the target address space.
917void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
918 uint64_t Value) {
919 const SectionEntry &Section = Sections[RE.SectionID];
920 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
921 RE.SymOffset, RE.SectionID);
922}
923
924void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
925 uint64_t Offset, uint64_t Value,
926 uint32_t Type, int64_t Addend,
927 uint64_t SymOffset, SID SectionID) {
928 switch (Arch) {
929 case Triple::x86_64:
930 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
931 break;
932 case Triple::x86:
933 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
934 (uint32_t)(Addend & 0xffffffffL));
935 break;
936 case Triple::aarch64:
937 case Triple::aarch64_be:
938 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
939 break;
940 case Triple::arm: // Fall through.
941 case Triple::armeb:
942 case Triple::thumb:
943 case Triple::thumbeb:
944 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
945 (uint32_t)(Addend & 0xffffffffL));
946 break;
947 case Triple::ppc:
948 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
949 break;
950 case Triple::ppc64: // Fall through.
951 case Triple::ppc64le:
952 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
953 break;
954 case Triple::systemz:
955 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
956 break;
957 case Triple::bpfel:
958 case Triple::bpfeb:
959 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
960 break;
961 default:
962 llvm_unreachable("Unsupported CPU type!")::llvm::llvm_unreachable_internal("Unsupported CPU type!", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 962)
;
963 }
964}
965
966void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
967 return (void *)(Sections[SectionID].getObjAddress() + Offset);
968}
969
970void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
971 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
972 if (Value.SymbolName)
973 addRelocationForSymbol(RE, Value.SymbolName);
974 else
975 addRelocationForSection(RE, Value.SectionID);
976}
977
978uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
979 bool IsLocal) const {
980 switch (RelType) {
981 case ELF::R_MICROMIPS_GOT16:
982 if (IsLocal)
983 return ELF::R_MICROMIPS_LO16;
984 break;
985 case ELF::R_MICROMIPS_HI16:
986 return ELF::R_MICROMIPS_LO16;
987 case ELF::R_MIPS_GOT16:
988 if (IsLocal)
989 return ELF::R_MIPS_LO16;
990 break;
991 case ELF::R_MIPS_HI16:
992 return ELF::R_MIPS_LO16;
993 case ELF::R_MIPS_PCHI16:
994 return ELF::R_MIPS_PCLO16;
995 default:
996 break;
997 }
998 return ELF::R_MIPS_NONE;
999}
1000
1001// Sometimes we don't need to create thunk for a branch.
1002// This typically happens when branch target is located
1003// in the same object file. In such case target is either
1004// a weak symbol or symbol in a different executable section.
1005// This function checks if branch target is located in the
1006// same object file and if distance between source and target
1007// fits R_AARCH64_CALL26 relocation. If both conditions are
1008// met, it emits direct jump to the target and returns true.
1009// Otherwise false is returned and thunk is created.
1010bool RuntimeDyldELF::resolveAArch64ShortBranch(
1011 unsigned SectionID, relocation_iterator RelI,
1012 const RelocationValueRef &Value) {
1013 uint64_t Address;
1014 if (Value.SymbolName) {
1015 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1016
1017 // Don't create direct branch for external symbols.
1018 if (Loc == GlobalSymbolTable.end())
1019 return false;
1020
1021 const auto &SymInfo = Loc->second;
1022 Address =
1023 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1024 SymInfo.getOffset()));
1025 } else {
1026 Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1027 }
1028 uint64_t Offset = RelI->getOffset();
1029 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1030
1031 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1032 // If distance between source and target is out of range then we should
1033 // create thunk.
1034 if (!isInt<28>(Address + Value.Addend - SourceAddress))
1035 return false;
1036
1037 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1038 Value.Addend);
1039
1040 return true;
1041}
1042
1043void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1044 const RelocationValueRef &Value,
1045 relocation_iterator RelI,
1046 StubMap &Stubs) {
1047
1048 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is an AArch64 branch relocation."
; } } while (false)
;
1049 SectionEntry &Section = Sections[SectionID];
1050
1051 uint64_t Offset = RelI->getOffset();
1052 unsigned RelType = RelI->getType();
1053 // Look for an existing stub.
1054 StubMap::const_iterator i = Stubs.find(Value);
1055 if (i != Stubs.end()) {
1056 resolveRelocation(Section, Offset,
1057 (uint64_t)Section.getAddressWithOffset(i->second),
1058 RelType, 0);
1059 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1060 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1061 // Create a new stub function.
1062 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1063 Stubs[Value] = Section.getStubOffset();
1064 uint8_t *StubTargetAddr = createStubFunction(
1065 Section.getAddressWithOffset(Section.getStubOffset()));
1066
1067 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1068 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1069 RelocationEntry REmovk_g2(SectionID,
1070 StubTargetAddr - Section.getAddress() + 4,
1071 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1072 RelocationEntry REmovk_g1(SectionID,
1073 StubTargetAddr - Section.getAddress() + 8,
1074 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1075 RelocationEntry REmovk_g0(SectionID,
1076 StubTargetAddr - Section.getAddress() + 12,
1077 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1078
1079 if (Value.SymbolName) {
1080 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1081 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1082 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1083 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1084 } else {
1085 addRelocationForSection(REmovz_g3, Value.SectionID);
1086 addRelocationForSection(REmovk_g2, Value.SectionID);
1087 addRelocationForSection(REmovk_g1, Value.SectionID);
1088 addRelocationForSection(REmovk_g0, Value.SectionID);
1089 }
1090 resolveRelocation(Section, Offset,
1091 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1092 Section.getStubOffset())),
1093 RelType, 0);
1094 Section.advanceStubOffset(getMaxStubSize());
1095 }
1096}
1097
1098Expected<relocation_iterator>
1099RuntimeDyldELF::processRelocationRef(
1100 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1101 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1102 const auto &Obj = cast<ELFObjectFileBase>(O);
1103 uint64_t RelType = RelI->getType();
1104 int64_t Addend = 0;
1105 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1106 Addend = *AddendOrErr;
1107 else
1108 consumeError(AddendOrErr.takeError());
1109 elf_symbol_iterator Symbol = RelI->getSymbol();
1110
1111 // Obtain the symbol name which is referenced in the relocation
1112 StringRef TargetName;
1113 if (Symbol != Obj.symbol_end()) {
1114 if (auto TargetNameOrErr = Symbol->getName())
1115 TargetName = *TargetNameOrErr;
1116 else
1117 return TargetNameOrErr.takeError();
1118 }
1119 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addenddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tRelType: " << RelType <<
" Addend: " << Addend << " TargetName: " <<
TargetName << "\n"; } } while (false)
1120 << " TargetName: " << TargetName << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tRelType: " << RelType <<
" Addend: " << Addend << " TargetName: " <<
TargetName << "\n"; } } while (false)
;
1121 RelocationValueRef Value;
1122 // First search for the symbol in the local symbol table
1123 SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1124
1125 // Search for the symbol in the global symbol table
1126 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1127 if (Symbol != Obj.symbol_end()) {
1128 gsi = GlobalSymbolTable.find(TargetName.data());
1129 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1130 if (!SymTypeOrErr) {
1131 std::string Buf;
1132 raw_string_ostream OS(Buf);
1133 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1134 OS.flush();
1135 report_fatal_error(Buf);
1136 }
1137 SymType = *SymTypeOrErr;
1138 }
1139 if (gsi != GlobalSymbolTable.end()) {
1140 const auto &SymInfo = gsi->second;
1141 Value.SectionID = SymInfo.getSectionID();
1142 Value.Offset = SymInfo.getOffset();
1143 Value.Addend = SymInfo.getOffset() + Addend;
1144 } else {
1145 switch (SymType) {
1146 case SymbolRef::ST_Debug: {
1147 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1148 // and can be changed by another developers. Maybe best way is add
1149 // a new symbol type ST_Section to SymbolRef and use it.
1150 auto SectionOrErr = Symbol->getSection();
1151 if (!SectionOrErr) {
1152 std::string Buf;
1153 raw_string_ostream OS(Buf);
1154 logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1155 OS.flush();
1156 report_fatal_error(Buf);
1157 }
1158 section_iterator si = *SectionOrErr;
1159 if (si == Obj.section_end())
1160 llvm_unreachable("Symbol section not found, bad object file format!")::llvm::llvm_unreachable_internal("Symbol section not found, bad object file format!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1160)
;
1161 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is section symbol\n"; }
} while (false)
;
1162 bool isCode = si->isText();
1163 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1164 ObjSectionToID))
1165 Value.SectionID = *SectionIDOrErr;
1166 else
1167 return SectionIDOrErr.takeError();
1168 Value.Addend = Addend;
1169 break;
1170 }
1171 case SymbolRef::ST_Data:
1172 case SymbolRef::ST_Function:
1173 case SymbolRef::ST_Unknown: {
1174 Value.SymbolName = TargetName.data();
1175 Value.Addend = Addend;
1176
1177 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1178 // will manifest here as a NULL symbol name.
1179 // We can set this as a valid (but empty) symbol name, and rely
1180 // on addRelocationForSymbol to handle this.
1181 if (!Value.SymbolName)
1182 Value.SymbolName = "";
1183 break;
1184 }
1185 default:
1186 llvm_unreachable("Unresolved symbol type!")::llvm::llvm_unreachable_internal("Unresolved symbol type!", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1186)
;
1187 break;
1188 }
1189 }
1190
1191 uint64_t Offset = RelI->getOffset();
1192
1193 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offsetdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset << "\n"; } } while
(false)
1194 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset << "\n"; } } while
(false)
;
1195 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1196 if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
1197 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1198 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1199 // Craete new GOT entry or find existing one. If GOT entry is
1200 // to be created, then we also emit ABS64 relocation for it.
1201 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1202 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1203 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1204
1205 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1206 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1207 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1208 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1209 } else {
1210 processSimpleRelocation(SectionID, Offset, RelType, Value);
1211 }
1212 } else if (Arch == Triple::arm) {
1213 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1214 RelType == ELF::R_ARM_JUMP24) {
1215 // This is an ARM branch relocation, need to use a stub function.
1216 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is an ARM branch relocation.\n"
; } } while (false)
;
1217 SectionEntry &Section = Sections[SectionID];
1218
1219 // Look for an existing stub.
1220 StubMap::const_iterator i = Stubs.find(Value);
1221 if (i != Stubs.end()) {
1222 resolveRelocation(
1223 Section, Offset,
1224 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1225 RelType, 0);
1226 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1227 } else {
1228 // Create a new stub function.
1229 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1230 Stubs[Value] = Section.getStubOffset();
1231 uint8_t *StubTargetAddr = createStubFunction(
1232 Section.getAddressWithOffset(Section.getStubOffset()));
1233 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1234 ELF::R_ARM_ABS32, Value.Addend);
1235 if (Value.SymbolName)
1236 addRelocationForSymbol(RE, Value.SymbolName);
1237 else
1238 addRelocationForSection(RE, Value.SectionID);
1239
1240 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1241 Section.getAddressWithOffset(
1242 Section.getStubOffset())),
1243 RelType, 0);
1244 Section.advanceStubOffset(getMaxStubSize());
1245 }
1246 } else {
1247 uint32_t *Placeholder =
1248 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1249 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1250 RelType == ELF::R_ARM_ABS32) {
1251 Value.Addend += *Placeholder;
1252 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1253 // See ELF for ARM documentation
1254 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1255 }
1256 processSimpleRelocation(SectionID, Offset, RelType, Value);
1257 }
1258 } else if (IsMipsO32ABI) {
1259 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1260 computePlaceholderAddress(SectionID, Offset));
1261 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1262 if (RelType == ELF::R_MIPS_26) {
1263 // This is an Mips branch relocation, need to use a stub function.
1264 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is a Mips branch relocation."
; } } while (false)
;
1265 SectionEntry &Section = Sections[SectionID];
1266
1267 // Extract the addend from the instruction.
1268 // We shift up by two since the Value will be down shifted again
1269 // when applying the relocation.
1270 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1271
1272 Value.Addend += Addend;
1273
1274 // Look up for existing stub.
1275 StubMap::const_iterator i = Stubs.find(Value);
1276 if (i != Stubs.end()) {
1277 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1278 addRelocationForSection(RE, SectionID);
1279 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1280 } else {
1281 // Create a new stub function.
1282 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1283 Stubs[Value] = Section.getStubOffset();
1284
1285 unsigned AbiVariant = Obj.getPlatformFlags();
1286
1287 uint8_t *StubTargetAddr = createStubFunction(
1288 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1289
1290 // Creating Hi and Lo relocations for the filled stub instructions.
1291 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1292 ELF::R_MIPS_HI16, Value.Addend);
1293 RelocationEntry RELo(SectionID,
1294 StubTargetAddr - Section.getAddress() + 4,
1295 ELF::R_MIPS_LO16, Value.Addend);
1296
1297 if (Value.SymbolName) {
1298 addRelocationForSymbol(REHi, Value.SymbolName);
1299 addRelocationForSymbol(RELo, Value.SymbolName);
1300 } else {
1301 addRelocationForSection(REHi, Value.SectionID);
1302 addRelocationForSection(RELo, Value.SectionID);
1303 }
1304
1305 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1306 addRelocationForSection(RE, SectionID);
1307 Section.advanceStubOffset(getMaxStubSize());
1308 }
1309 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1310 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1311 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1312 PendingRelocs.push_back(std::make_pair(Value, RE));
1313 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1314 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1315 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1316 const RelocationValueRef &MatchingValue = I->first;
1317 RelocationEntry &Reloc = I->second;
1318 if (MatchingValue == Value &&
1319 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1320 SectionID == Reloc.SectionID) {
1321 Reloc.Addend += Addend;
1322 if (Value.SymbolName)
1323 addRelocationForSymbol(Reloc, Value.SymbolName);
1324 else
1325 addRelocationForSection(Reloc, Value.SectionID);
1326 I = PendingRelocs.erase(I);
1327 } else
1328 ++I;
1329 }
1330 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1331 if (Value.SymbolName)
1332 addRelocationForSymbol(RE, Value.SymbolName);
1333 else
1334 addRelocationForSection(RE, Value.SectionID);
1335 } else {
1336 if (RelType == ELF::R_MIPS_32)
1337 Value.Addend += Opcode;
1338 else if (RelType == ELF::R_MIPS_PC16)
1339 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1340 else if (RelType == ELF::R_MIPS_PC19_S2)
1341 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1342 else if (RelType == ELF::R_MIPS_PC21_S2)
1343 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1344 else if (RelType == ELF::R_MIPS_PC26_S2)
1345 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1346 processSimpleRelocation(SectionID, Offset, RelType, Value);
1347 }
1348 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1349 uint32_t r_type = RelType & 0xff;
1350 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1351 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1352 || r_type == ELF::R_MIPS_GOT_DISP) {
1353 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1354 if (i != GOTSymbolOffsets.end())
1355 RE.SymOffset = i->second;
1356 else {
1357 RE.SymOffset = allocateGOTEntries(1);
1358 GOTSymbolOffsets[TargetName] = RE.SymOffset;
1359 }
1360 if (Value.SymbolName)
1361 addRelocationForSymbol(RE, Value.SymbolName);
1362 else
1363 addRelocationForSection(RE, Value.SectionID);
1364 } else if (RelType == ELF::R_MIPS_26) {
1365 // This is an Mips branch relocation, need to use a stub function.
1366 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is a Mips branch relocation."
; } } while (false)
;
1367 SectionEntry &Section = Sections[SectionID];
1368
1369 // Look up for existing stub.
1370 StubMap::const_iterator i = Stubs.find(Value);
1371 if (i != Stubs.end()) {
1372 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1373 addRelocationForSection(RE, SectionID);
1374 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1375 } else {
1376 // Create a new stub function.
1377 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1378 Stubs[Value] = Section.getStubOffset();
1379
1380 unsigned AbiVariant = Obj.getPlatformFlags();
1381
1382 uint8_t *StubTargetAddr = createStubFunction(
1383 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1384
1385 if (IsMipsN32ABI) {
1386 // Creating Hi and Lo relocations for the filled stub instructions.
1387 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1388 ELF::R_MIPS_HI16, Value.Addend);
1389 RelocationEntry RELo(SectionID,
1390 StubTargetAddr - Section.getAddress() + 4,
1391 ELF::R_MIPS_LO16, Value.Addend);
1392 if (Value.SymbolName) {
1393 addRelocationForSymbol(REHi, Value.SymbolName);
1394 addRelocationForSymbol(RELo, Value.SymbolName);
1395 } else {
1396 addRelocationForSection(REHi, Value.SectionID);
1397 addRelocationForSection(RELo, Value.SectionID);
1398 }
1399 } else {
1400 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1401 // instructions.
1402 RelocationEntry REHighest(SectionID,
1403 StubTargetAddr - Section.getAddress(),
1404 ELF::R_MIPS_HIGHEST, Value.Addend);
1405 RelocationEntry REHigher(SectionID,
1406 StubTargetAddr - Section.getAddress() + 4,
1407 ELF::R_MIPS_HIGHER, Value.Addend);
1408 RelocationEntry REHi(SectionID,
1409 StubTargetAddr - Section.getAddress() + 12,
1410 ELF::R_MIPS_HI16, Value.Addend);
1411 RelocationEntry RELo(SectionID,
1412 StubTargetAddr - Section.getAddress() + 20,
1413 ELF::R_MIPS_LO16, Value.Addend);
1414 if (Value.SymbolName) {
1415 addRelocationForSymbol(REHighest, Value.SymbolName);
1416 addRelocationForSymbol(REHigher, Value.SymbolName);
1417 addRelocationForSymbol(REHi, Value.SymbolName);
1418 addRelocationForSymbol(RELo, Value.SymbolName);
1419 } else {
1420 addRelocationForSection(REHighest, Value.SectionID);
1421 addRelocationForSection(REHigher, Value.SectionID);
1422 addRelocationForSection(REHi, Value.SectionID);
1423 addRelocationForSection(RELo, Value.SectionID);
1424 }
1425 }
1426 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1427 addRelocationForSection(RE, SectionID);
1428 Section.advanceStubOffset(getMaxStubSize());
1429 }
1430 } else {
1431 processSimpleRelocation(SectionID, Offset, RelType, Value);
1432 }
1433
1434 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1435 if (RelType == ELF::R_PPC64_REL24) {
1436 // Determine ABI variant in use for this object.
1437 unsigned AbiVariant = Obj.getPlatformFlags();
1438 AbiVariant &= ELF::EF_PPC64_ABI;
1439 // A PPC branch relocation will need a stub function if the target is
1440 // an external symbol (either Value.SymbolName is set, or SymType is
1441 // Symbol::ST_Unknown) or if the target address is not within the
1442 // signed 24-bits branch address.
1443 SectionEntry &Section = Sections[SectionID];
1444 uint8_t *Target = Section.getAddressWithOffset(Offset);
1445 bool RangeOverflow = false;
1446 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1447 if (!IsExtern) {
1448 if (AbiVariant != 2) {
1449 // In the ELFv1 ABI, a function call may point to the .opd entry,
1450 // so the final symbol value is calculated based on the relocation
1451 // values in the .opd section.
1452 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1453 return std::move(Err);
1454 } else {
1455 // In the ELFv2 ABI, a function symbol may provide a local entry
1456 // point, which must be used for direct calls.
1457 if (Value.SectionID == SectionID){
1458 uint8_t SymOther = Symbol->getOther();
1459 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1460 }
1461 }
1462 uint8_t *RelocTarget =
1463 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1464 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1465 // If it is within 26-bits branch range, just set the branch target
1466 if (SignExtend64<26>(delta) != delta) {
1467 RangeOverflow = true;
1468 } else if ((AbiVariant != 2) ||
1469 (AbiVariant == 2 && Value.SectionID == SectionID)) {
1470 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1471 addRelocationForSection(RE, Value.SectionID);
1472 }
1473 }
1474 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1475 RangeOverflow) {
1476 // It is an external symbol (either Value.SymbolName is set, or
1477 // SymType is SymbolRef::ST_Unknown) or out of range.
1478 StubMap::const_iterator i = Stubs.find(Value);
1479 if (i != Stubs.end()) {
1480 // Symbol function stub already created, just relocate to it
1481 resolveRelocation(Section, Offset,
1482 reinterpret_cast<uint64_t>(
1483 Section.getAddressWithOffset(i->second)),
1484 RelType, 0);
1485 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1486 } else {
1487 // Create a new stub function.
1488 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1489 Stubs[Value] = Section.getStubOffset();
1490 uint8_t *StubTargetAddr = createStubFunction(
1491 Section.getAddressWithOffset(Section.getStubOffset()),
1492 AbiVariant);
1493 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1494 ELF::R_PPC64_ADDR64, Value.Addend);
1495
1496 // Generates the 64-bits address loads as exemplified in section
1497 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1498 // apply to the low part of the instructions, so we have to update
1499 // the offset according to the target endianness.
1500 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1501 if (!IsTargetLittleEndian)
1502 StubRelocOffset += 2;
1503
1504 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1505 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1506 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1507 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1508 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1509 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1510 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1511 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1512
1513 if (Value.SymbolName) {
1514 addRelocationForSymbol(REhst, Value.SymbolName);
1515 addRelocationForSymbol(REhr, Value.SymbolName);
1516 addRelocationForSymbol(REh, Value.SymbolName);
1517 addRelocationForSymbol(REl, Value.SymbolName);
1518 } else {
1519 addRelocationForSection(REhst, Value.SectionID);
1520 addRelocationForSection(REhr, Value.SectionID);
1521 addRelocationForSection(REh, Value.SectionID);
1522 addRelocationForSection(REl, Value.SectionID);
1523 }
1524
1525 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1526 Section.getAddressWithOffset(
1527 Section.getStubOffset())),
1528 RelType, 0);
1529 Section.advanceStubOffset(getMaxStubSize());
1530 }
1531 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1532 // Restore the TOC for external calls
1533 if (AbiVariant == 2)
1534 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1535 else
1536 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1537 }
1538 }
1539 } else if (RelType == ELF::R_PPC64_TOC16 ||
1540 RelType == ELF::R_PPC64_TOC16_DS ||
1541 RelType == ELF::R_PPC64_TOC16_LO ||
1542 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1543 RelType == ELF::R_PPC64_TOC16_HI ||
1544 RelType == ELF::R_PPC64_TOC16_HA) {
1545 // These relocations are supposed to subtract the TOC address from
1546 // the final value. This does not fit cleanly into the RuntimeDyld
1547 // scheme, since there may be *two* sections involved in determining
1548 // the relocation value (the section of the symbol referred to by the
1549 // relocation, and the TOC section associated with the current module).
1550 //
1551 // Fortunately, these relocations are currently only ever generated
1552 // referring to symbols that themselves reside in the TOC, which means
1553 // that the two sections are actually the same. Thus they cancel out
1554 // and we can immediately resolve the relocation right now.
1555 switch (RelType) {
1556 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1557 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1558 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1559 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1560 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1561 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1562 default: llvm_unreachable("Wrong relocation type.")::llvm::llvm_unreachable_internal("Wrong relocation type.", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1562)
;
1563 }
1564
1565 RelocationValueRef TOCValue;
1566 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1567 return std::move(Err);
1568 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1569 llvm_unreachable("Unsupported TOC relocation.")::llvm::llvm_unreachable_internal("Unsupported TOC relocation."
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1569)
;
1570 Value.Addend -= TOCValue.Addend;
1571 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1572 } else {
1573 // There are two ways to refer to the TOC address directly: either
1574 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1575 // ignored), or via any relocation that refers to the magic ".TOC."
1576 // symbols (in which case the addend is respected).
1577 if (RelType == ELF::R_PPC64_TOC) {
1578 RelType = ELF::R_PPC64_ADDR64;
1579 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1580 return std::move(Err);
1581 } else if (TargetName == ".TOC.") {
1582 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1583 return std::move(Err);
1584 Value.Addend += Addend;
1585 }
1586
1587 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1588
1589 if (Value.SymbolName)
1590 addRelocationForSymbol(RE, Value.SymbolName);
1591 else
1592 addRelocationForSection(RE, Value.SectionID);
1593 }
1594 } else if (Arch == Triple::systemz &&
1595 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1596 // Create function stubs for both PLT and GOT references, regardless of
1597 // whether the GOT reference is to data or code. The stub contains the
1598 // full address of the symbol, as needed by GOT references, and the
1599 // executable part only adds an overhead of 8 bytes.
1600 //
1601 // We could try to conserve space by allocating the code and data
1602 // parts of the stub separately. However, as things stand, we allocate
1603 // a stub for every relocation, so using a GOT in JIT code should be
1604 // no less space efficient than using an explicit constant pool.
1605 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << "\t\tThis is a SystemZ indirect relocation."
; } } while (false)
;
1606 SectionEntry &Section = Sections[SectionID];
1607
1608 // Look for an existing stub.
1609 StubMap::const_iterator i = Stubs.find(Value);
1610 uintptr_t StubAddress;
1611 if (i != Stubs.end()) {
1612 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1613 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1614 } else {
1615 // Create a new stub function.
1616 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1617
1618 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1619 uintptr_t StubAlignment = getStubAlignment();
1620 StubAddress =
1621 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1622 -StubAlignment;
1623 unsigned StubOffset = StubAddress - BaseAddress;
1624
1625 Stubs[Value] = StubOffset;
1626 createStubFunction((uint8_t *)StubAddress);
1627 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1628 Value.Offset);
1629 if (Value.SymbolName)
1630 addRelocationForSymbol(RE, Value.SymbolName);
1631 else
1632 addRelocationForSection(RE, Value.SectionID);
1633 Section.advanceStubOffset(getMaxStubSize());
1634 }
1635
1636 if (RelType == ELF::R_390_GOTENT)
1637 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1638 Addend);
1639 else
1640 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1641 } else if (Arch == Triple::x86_64) {
1642 if (RelType == ELF::R_X86_64_PLT32) {
1643 // The way the PLT relocations normally work is that the linker allocates
1644 // the
1645 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1646 // entry will then jump to an address provided by the GOT. On first call,
1647 // the
1648 // GOT address will point back into PLT code that resolves the symbol. After
1649 // the first call, the GOT entry points to the actual function.
1650 //
1651 // For local functions we're ignoring all of that here and just replacing
1652 // the PLT32 relocation type with PC32, which will translate the relocation
1653 // into a PC-relative call directly to the function. For external symbols we
1654 // can't be sure the function will be within 2^32 bytes of the call site, so
1655 // we need to create a stub, which calls into the GOT. This case is
1656 // equivalent to the usual PLT implementation except that we use the stub
1657 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1658 // rather than allocating a PLT section.
1659 if (Value.SymbolName) {
1660 // This is a call to an external function.
1661 // Look for an existing stub.
1662 SectionEntry &Section = Sections[SectionID];
1663 StubMap::const_iterator i = Stubs.find(Value);
1664 uintptr_t StubAddress;
1665 if (i != Stubs.end()) {
1666 StubAddress = uintptr_t(Section.getAddress()) + i->second;
1667 LLVM_DEBUG(dbgs() << " Stub function found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Stub function found\n"; } } while
(false)
;
1668 } else {
1669 // Create a new stub function (equivalent to a PLT entry).
1670 LLVM_DEBUG(dbgs() << " Create a new stub function\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dyld")) { dbgs() << " Create a new stub function\n"; }
} while (false)
;
1671
1672 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1673 uintptr_t StubAlignment = getStubAlignment();
1674 StubAddress =
1675 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1676 -StubAlignment;
1677 unsigned StubOffset = StubAddress - BaseAddress;
1678 Stubs[Value] = StubOffset;
1679 createStubFunction((uint8_t *)StubAddress);
1680
1681 // Bump our stub offset counter
1682 Section.advanceStubOffset(getMaxStubSize());
1683
1684 // Allocate a GOT Entry
1685 uint64_t GOTOffset = allocateGOTEntries(1);
1686
1687 // The load of the GOT address has an addend of -4
1688 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1689 ELF::R_X86_64_PC32);
1690
1691 // Fill in the value of the symbol we're targeting into the GOT
1692 addRelocationForSymbol(
1693 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1694 Value.SymbolName);
1695 }
1696
1697 // Make the target call a call into the stub table.
1698 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1699 Addend);
1700 } else {
1701 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1702 Value.Offset);
1703 addRelocationForSection(RE, Value.SectionID);
1704 }
1705 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1706 RelType == ELF::R_X86_64_GOTPCRELX ||
1707 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1708 uint64_t GOTOffset = allocateGOTEntries(1);
1709 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1710 ELF::R_X86_64_PC32);
1711
1712 // Fill in the value of the symbol we're targeting into the GOT
1713 RelocationEntry RE =
1714 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1715 if (Value.SymbolName)
1716 addRelocationForSymbol(RE, Value.SymbolName);
1717 else
1718 addRelocationForSection(RE, Value.SectionID);
1719 } else if (RelType == ELF::R_X86_64_GOT64) {
1720 // Fill in a 64-bit GOT offset.
1721 uint64_t GOTOffset = allocateGOTEntries(1);
1722 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1723 ELF::R_X86_64_64, 0);
1724
1725 // Fill in the value of the symbol we're targeting into the GOT
1726 RelocationEntry RE =
1727 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1728 if (Value.SymbolName)
1729 addRelocationForSymbol(RE, Value.SymbolName);
1730 else
1731 addRelocationForSection(RE, Value.SectionID);
1732 } else if (RelType == ELF::R_X86_64_GOTPC64) {
1733 // Materialize the address of the base of the GOT relative to the PC.
1734 // This doesn't create a GOT entry, but it does mean we need a GOT
1735 // section.
1736 (void)allocateGOTEntries(0);
1737 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1738 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1739 // GOTOFF relocations ultimately require a section difference relocation.
1740 (void)allocateGOTEntries(0);
1741 processSimpleRelocation(SectionID, Offset, RelType, Value);
1742 } else if (RelType == ELF::R_X86_64_PC32) {
1743 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1744 processSimpleRelocation(SectionID, Offset, RelType, Value);
1745 } else if (RelType == ELF::R_X86_64_PC64) {
1746 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1747 processSimpleRelocation(SectionID, Offset, RelType, Value);
1748 } else {
1749 processSimpleRelocation(SectionID, Offset, RelType, Value);
1750 }
1751 } else {
1752 if (Arch == Triple::x86) {
1753 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1754 }
1755 processSimpleRelocation(SectionID, Offset, RelType, Value);
1756 }
1757 return ++RelI;
1758}
1759
1760size_t RuntimeDyldELF::getGOTEntrySize() {
1761 // We don't use the GOT in all of these cases, but it's essentially free
1762 // to put them all here.
1763 size_t Result = 0;
1764 switch (Arch) {
1765 case Triple::x86_64:
1766 case Triple::aarch64:
1767 case Triple::aarch64_be:
1768 case Triple::ppc64:
1769 case Triple::ppc64le:
1770 case Triple::systemz:
1771 Result = sizeof(uint64_t);
1772 break;
1773 case Triple::x86:
1774 case Triple::arm:
1775 case Triple::thumb:
1776 Result = sizeof(uint32_t);
1777 break;
1778 case Triple::mips:
1779 case Triple::mipsel:
1780 case Triple::mips64:
1781 case Triple::mips64el:
1782 if (IsMipsO32ABI || IsMipsN32ABI)
1783 Result = sizeof(uint32_t);
1784 else if (IsMipsN64ABI)
1785 Result = sizeof(uint64_t);
1786 else
1787 llvm_unreachable("Mips ABI not handled")::llvm::llvm_unreachable_internal("Mips ABI not handled", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1787)
;
1788 break;
1789 default:
1790 llvm_unreachable("Unsupported CPU type!")::llvm::llvm_unreachable_internal("Unsupported CPU type!", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1790)
;
1791 }
1792 return Result;
1793}
1794
1795uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
1796 if (GOTSectionID == 0) {
1797 GOTSectionID = Sections.size();
1798 // Reserve a section id. We'll allocate the section later
1799 // once we know the total size
1800 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1801 }
1802 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1803 CurrentGOTIndex += no;
1804 return StartOffset;
1805}
1806
1807uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
1808 unsigned GOTRelType) {
1809 auto E = GOTOffsetMap.insert({Value, 0});
1810 if (E.second) {
1811 uint64_t GOTOffset = allocateGOTEntries(1);
1812
1813 // Create relocation for newly created GOT entry
1814 RelocationEntry RE =
1815 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
1816 if (Value.SymbolName)
1817 addRelocationForSymbol(RE, Value.SymbolName);
1818 else
1819 addRelocationForSection(RE, Value.SectionID);
1820
1821 E.first->second = GOTOffset;
1822 }
1823
1824 return E.first->second;
1825}
1826
1827void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
1828 uint64_t Offset,
1829 uint64_t GOTOffset,
1830 uint32_t Type) {
1831 // Fill in the relative address of the GOT Entry into the stub
1832 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
1833 addRelocationForSection(GOTRE, GOTSectionID);
1834}
1835
1836RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
1837 uint64_t SymbolOffset,
1838 uint32_t Type) {
1839 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1840}
1841
1842Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1843 ObjSectionToIDMap &SectionMap) {
1844 if (IsMipsO32ABI)
1
Assuming the condition is true
2
Taking true branch
1845 if (!PendingRelocs.empty())
3
Taking true branch
1846 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
4
Calling 'make_error<llvm::RuntimeDyldError, char const (&)[31]>'
1847
1848 // If necessary, allocate the global offset table
1849 if (GOTSectionID != 0) {
1850 // Allocate memory for the section
1851 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1852 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1853 GOTSectionID, ".got", false);
1854 if (!Addr)
1855 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1856
1857 Sections[GOTSectionID] =
1858 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1859
1860 if (Checker)
1861 Checker->registerSection(Obj.getFileName(), GOTSectionID);
1862
1863 // For now, initialize all GOT entries to zero. We'll fill them in as
1864 // needed when GOT-based relocations are applied.
1865 memset(Addr, 0, TotalSize);
1866 if (IsMipsN32ABI || IsMipsN64ABI) {
1867 // To correctly resolve Mips GOT relocations, we need a mapping from
1868 // object's sections to GOTs.
1869 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1870 SI != SE; ++SI) {
1871 if (SI->relocation_begin() != SI->relocation_end()) {
1872 section_iterator RelocatedSection = SI->getRelocatedSection();
1873 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1874 assert (i != SectionMap.end())((i != SectionMap.end()) ? static_cast<void> (0) : __assert_fail
("i != SectionMap.end()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp"
, 1874, __PRETTY_FUNCTION__))
;
1875 SectionToGOTMap[i->second] = GOTSectionID;
1876 }
1877 }
1878 GOTSymbolOffsets.clear();
1879 }
1880 }
1881
1882 // Look for and record the EH frame section.
1883 ObjSectionToIDMap::iterator i, e;
1884 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1885 const SectionRef &Section = i->first;
1886 StringRef Name;
1887 Section.getName(Name);
1888 if (Name == ".eh_frame") {
1889 UnregisteredEHFrameSections.push_back(i->second);
1890 break;
1891 }
1892 }
1893
1894 GOTSectionID = 0;
1895 CurrentGOTIndex = 0;
1896
1897 return Error::success();
1898}
1899
1900bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1901 return Obj.isELF();
1902}
1903
1904bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
1905 unsigned RelTy = R.getType();
1906 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
1907 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
1908 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
1909
1910 if (Arch == Triple::x86_64)
1911 return RelTy == ELF::R_X86_64_GOTPCREL ||
1912 RelTy == ELF::R_X86_64_GOTPCRELX ||
1913 RelTy == ELF::R_X86_64_GOT64 ||
1914 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
1915 return false;
1916}
1917
1918bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1919 if (Arch != Triple::x86_64)
1920 return true; // Conservative answer
1921
1922 switch (R.getType()) {
1923 default:
1924 return true; // Conservative answer
1925
1926
1927 case ELF::R_X86_64_GOTPCREL:
1928 case ELF::R_X86_64_GOTPCRELX:
1929 case ELF::R_X86_64_REX_GOTPCRELX:
1930 case ELF::R_X86_64_GOTPC64:
1931 case ELF::R_X86_64_GOT64:
1932 case ELF::R_X86_64_GOTOFF64:
1933 case ELF::R_X86_64_PC32:
1934 case ELF::R_X86_64_PC64:
1935 case ELF::R_X86_64_64:
1936 // We know that these reloation types won't need a stub function. This list
1937 // can be extended as needed.
1938 return false;
1939 }
1940}
1941
1942} // namespace llvm

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm-c/Error.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Config/abi-breaking.h"
23#include "llvm/Support/AlignOf.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/ErrorOr.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <cstdlib>
34#include <functional>
35#include <memory>
36#include <new>
37#include <string>
38#include <system_error>
39#include <type_traits>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class ErrorSuccess;
46
47/// Base class for error info classes. Do not extend this directly: Extend
48/// the ErrorInfo template subclass instead.
49class ErrorInfoBase {
50public:
51 virtual ~ErrorInfoBase() = default;
52
53 /// Print an error message to an output stream.
54 virtual void log(raw_ostream &OS) const = 0;
55
56 /// Return the error message as a string.
57 virtual std::string message() const {
58 std::string Msg;
59 raw_string_ostream OS(Msg);
60 log(OS);
61 return OS.str();
62 }
63
64 /// Convert this error to a std::error_code.
65 ///
66 /// This is a temporary crutch to enable interaction with code still
67 /// using std::error_code. It will be removed in the future.
68 virtual std::error_code convertToErrorCode() const = 0;
69
70 // Returns the class ID for this type.
71 static const void *classID() { return &ID; }
72
73 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
74 virtual const void *dynamicClassID() const = 0;
75
76 // Check whether this instance is a subclass of the class identified by
77 // ClassID.
78 virtual bool isA(const void *const ClassID) const {
79 return ClassID == classID();
80 }
81
82 // Check whether this instance is a subclass of ErrorInfoT.
83 template <typename ErrorInfoT> bool isA() const {
84 return isA(ErrorInfoT::classID());
85 }
86
87private:
88 virtual void anchor();
89
90 static char ID;
91};
92
93/// Lightweight error class with error context and mandatory checking.
94///
95/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
96/// are represented by setting the pointer to a ErrorInfoBase subclass
97/// instance containing information describing the failure. Success is
98/// represented by a null pointer value.
99///
100/// Instances of Error also contains a 'Checked' flag, which must be set
101/// before the destructor is called, otherwise the destructor will trigger a
102/// runtime error. This enforces at runtime the requirement that all Error
103/// instances be checked or returned to the caller.
104///
105/// There are two ways to set the checked flag, depending on what state the
106/// Error instance is in. For Error instances indicating success, it
107/// is sufficient to invoke the boolean conversion operator. E.g.:
108///
109/// @code{.cpp}
110/// Error foo(<...>);
111///
112/// if (auto E = foo(<...>))
113/// return E; // <- Return E if it is in the error state.
114/// // We have verified that E was in the success state. It can now be safely
115/// // destroyed.
116/// @endcode
117///
118/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
119/// without testing the return value will raise a runtime error, even if foo
120/// returns success.
121///
122/// For Error instances representing failure, you must use either the
123/// handleErrors or handleAllErrors function with a typed handler. E.g.:
124///
125/// @code{.cpp}
126/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
127/// // Custom error info.
128/// };
129///
130/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
131///
132/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
133/// auto NewE =
134/// handleErrors(E,
135/// [](const MyErrorInfo &M) {
136/// // Deal with the error.
137/// },
138/// [](std::unique_ptr<OtherError> M) -> Error {
139/// if (canHandle(*M)) {
140/// // handle error.
141/// return Error::success();
142/// }
143/// // Couldn't handle this error instance. Pass it up the stack.
144/// return Error(std::move(M));
145/// );
146/// // Note - we must check or return NewE in case any of the handlers
147/// // returned a new error.
148/// @endcode
149///
150/// The handleAllErrors function is identical to handleErrors, except
151/// that it has a void return type, and requires all errors to be handled and
152/// no new errors be returned. It prevents errors (assuming they can all be
153/// handled) from having to be bubbled all the way to the top-level.
154///
155/// *All* Error instances must be checked before destruction, even if
156/// they're moved-assigned or constructed from Success values that have already
157/// been checked. This enforces checking through all levels of the call stack.
158class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
159 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
160 // pointers out of this class to add to the error list.
161 friend class ErrorList;
162 friend class FileError;
163
164 // handleErrors needs to be able to set the Checked flag.
165 template <typename... HandlerTs>
166 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
167
168 // Expected<T> needs to be able to steal the payload when constructed from an
169 // error.
170 template <typename T> friend class Expected;
171
172 // wrap needs to be able to steal the payload.
173 friend LLVMErrorRef wrap(Error);
174
175protected:
176 /// Create a success value. Prefer using 'Error::success()' for readability
177 Error() {
178 setPtr(nullptr);
179 setChecked(false);
180 }
181
182public:
183 /// Create a success value.
184 static ErrorSuccess success();
185
186 // Errors are not copy-constructable.
187 Error(const Error &Other) = delete;
188
189 /// Move-construct an error value. The newly constructed error is considered
190 /// unchecked, even if the source error had been checked. The original error
191 /// becomes a checked Success value, regardless of its original state.
192 Error(Error &&Other) {
193 setChecked(true);
194 *this = std::move(Other);
195 }
196
197 /// Create an error value. Prefer using the 'make_error' function, but
198 /// this constructor can be useful when "re-throwing" errors from handlers.
199 Error(std::unique_ptr<ErrorInfoBase> Payload) {
200 setPtr(Payload.release());
201 setChecked(false);
9
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
202 }
203
204 // Errors are not copy-assignable.
205 Error &operator=(const Error &Other) = delete;
206
207 /// Move-assign an error value. The current error must represent success, you
208 /// you cannot overwrite an unhandled error. The current error is then
209 /// considered unchecked. The source error becomes a checked success value,
210 /// regardless of its original state.
211 Error &operator=(Error &&Other) {
212 // Don't allow overwriting of unchecked values.
213 assertIsChecked();
214 setPtr(Other.getPtr());
215
216 // This Error is unchecked, even if the source error was checked.
217 setChecked(false);
218
219 // Null out Other's payload and set its checked bit.
220 Other.setPtr(nullptr);
221 Other.setChecked(true);
222
223 return *this;
224 }
225
226 /// Destroy a Error. Fails with a call to abort() if the error is
227 /// unchecked.
228 ~Error() {
229 assertIsChecked();
230 delete getPtr();
231 }
232
233 /// Bool conversion. Returns true if this Error is in a failure state,
234 /// and false if it is in an accept state. If the error is in a Success state
235 /// it will be considered checked.
236 explicit operator bool() {
237 setChecked(getPtr() == nullptr);
238 return getPtr() != nullptr;
239 }
240
241 /// Check whether one error is a subclass of another.
242 template <typename ErrT> bool isA() const {
243 return getPtr() && getPtr()->isA(ErrT::classID());
244 }
245
246 /// Returns the dynamic class id of this error, or null if this is a success
247 /// value.
248 const void* dynamicClassID() const {
249 if (!getPtr())
250 return nullptr;
251 return getPtr()->dynamicClassID();
252 }
253
254private:
255#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
256 // assertIsChecked() happens very frequently, but under normal circumstances
257 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
258 // of debug prints can cause the function to be too large for inlining. So
259 // it's important that we define this function out of line so that it can't be
260 // inlined.
261 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
262 void fatalUncheckedError() const;
263#endif
264
265 void assertIsChecked() {
266#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
267 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
268 fatalUncheckedError();
269#endif
270 }
271
272 ErrorInfoBase *getPtr() const {
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298 Payload = reinterpret_cast<ErrorInfoBase*>(
299 (reinterpret_cast<uintptr_t>(Payload) &
300 ~static_cast<uintptr_t>(0x1)) |
301 (V ? 0 : 1));
302 }
303
304 std::unique_ptr<ErrorInfoBase> takePayload() {
305 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
306 setPtr(nullptr);
307 setChecked(true);
308 return Tmp;
309 }
310
311 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
312 if (auto P = E.getPtr())
313 P->log(OS);
314 else
315 OS << "success";
316 return OS;
317 }
318
319 ErrorInfoBase *Payload = nullptr;
320};
321
322/// Subclass of Error for the sole purpose of identifying the success path in
323/// the type system. This allows to catch invalid conversion to Expected<T> at
324/// compile time.
325class ErrorSuccess final : public Error {};
326
327inline ErrorSuccess Error::success() { return ErrorSuccess(); }
328
329/// Make a Error instance representing failure using the given error info
330/// type.
331template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
332 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
5
Calling 'make_unique<llvm::RuntimeDyldError, char const (&)[31]>'
7
Returned allocated memory
8
Calling constructor for 'Error'
333}
334
335/// Base class for user error types. Users should declare their error types
336/// like:
337///
338/// class MyError : public ErrorInfo<MyError> {
339/// ....
340/// };
341///
342/// This class provides an implementation of the ErrorInfoBase::kind
343/// method, which is used by the Error RTTI system.
344template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
345class ErrorInfo : public ParentErrT {
346public:
347 using ParentErrT::ParentErrT; // inherit constructors
348
349 static const void *classID() { return &ThisErrT::ID; }
350
351 const void *dynamicClassID() const override { return &ThisErrT::ID; }
352
353 bool isA(const void *const ClassID) const override {
354 return ClassID == classID() || ParentErrT::isA(ClassID);
355 }
356};
357
358/// Special ErrorInfo subclass representing a list of ErrorInfos.
359/// Instances of this class are constructed by joinError.
360class ErrorList final : public ErrorInfo<ErrorList> {
361 // handleErrors needs to be able to iterate the payload list of an
362 // ErrorList.
363 template <typename... HandlerTs>
364 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
365
366 // joinErrors is implemented in terms of join.
367 friend Error joinErrors(Error, Error);
368
369public:
370 void log(raw_ostream &OS) const override {
371 OS << "Multiple errors:\n";
372 for (auto &ErrPayload : Payloads) {
373 ErrPayload->log(OS);
374 OS << "\n";
375 }
376 }
377
378 std::error_code convertToErrorCode() const override;
379
380 // Used by ErrorInfo::classID.
381 static char ID;
382
383private:
384 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
385 std::unique_ptr<ErrorInfoBase> Payload2) {
386 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
387 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
;
388 Payloads.push_back(std::move(Payload1));
389 Payloads.push_back(std::move(Payload2));
390 }
391
392 static Error join(Error E1, Error E2) {
393 if (!E1)
394 return E2;
395 if (!E2)
396 return E1;
397 if (E1.isA<ErrorList>()) {
398 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
399 if (E2.isA<ErrorList>()) {
400 auto E2Payload = E2.takePayload();
401 auto &E2List = static_cast<ErrorList &>(*E2Payload);
402 for (auto &Payload : E2List.Payloads)
403 E1List.Payloads.push_back(std::move(Payload));
404 } else
405 E1List.Payloads.push_back(E2.takePayload());
406
407 return E1;
408 }
409 if (E2.isA<ErrorList>()) {
410 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
411 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
412 return E2;
413 }
414 return Error(std::unique_ptr<ErrorList>(
415 new ErrorList(E1.takePayload(), E2.takePayload())));
416 }
417
418 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
419};
420
421/// Concatenate errors. The resulting Error is unchecked, and contains the
422/// ErrorInfo(s), if any, contained in E1, followed by the
423/// ErrorInfo(s), if any, contained in E2.
424inline Error joinErrors(Error E1, Error E2) {
425 return ErrorList::join(std::move(E1), std::move(E2));
426}
427
428/// Tagged union holding either a T or a Error.
429///
430/// This class parallels ErrorOr, but replaces error_code with Error. Since
431/// Error cannot be copied, this class replaces getError() with
432/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
433/// error class type.
434template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
435 template <class T1> friend class ExpectedAsOutParameter;
436 template <class OtherT> friend class Expected;
437
438 static const bool isRef = std::is_reference<T>::value;
439
440 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
441
442 using error_type = std::unique_ptr<ErrorInfoBase>;
443
444public:
445 using storage_type = typename std::conditional<isRef, wrap, T>::type;
446 using value_type = T;
447
448private:
449 using reference = typename std::remove_reference<T>::type &;
450 using const_reference = const typename std::remove_reference<T>::type &;
451 using pointer = typename std::remove_reference<T>::type *;
452 using const_pointer = const typename std::remove_reference<T>::type *;
453
454public:
455 /// Create an Expected<T> error value from the given Error.
456 Expected(Error Err)
457 : HasError(true)
458#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
459 // Expected is unchecked upon construction in Debug builds.
460 , Unchecked(true)
461#endif
462 {
463 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 463, __PRETTY_FUNCTION__))
;
464 new (getErrorStorage()) error_type(Err.takePayload());
465 }
466
467 /// Forbid to convert from Error::success() implicitly, this avoids having
468 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
469 /// but triggers the assertion above.
470 Expected(ErrorSuccess) = delete;
471
472 /// Create an Expected<T> success value from the given OtherT value, which
473 /// must be convertible to T.
474 template <typename OtherT>
475 Expected(OtherT &&Val,
476 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
477 * = nullptr)
478 : HasError(false)
479#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
480 // Expected is unchecked upon construction in Debug builds.
481 , Unchecked(true)
482#endif
483 {
484 new (getStorage()) storage_type(std::forward<OtherT>(Val));
485 }
486
487 /// Move construct an Expected<T> value.
488 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
489
490 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
491 /// must be convertible to T.
492 template <class OtherT>
493 Expected(Expected<OtherT> &&Other,
494 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
495 * = nullptr) {
496 moveConstruct(std::move(Other));
497 }
498
499 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
500 /// isn't convertible to T.
501 template <class OtherT>
502 explicit Expected(
503 Expected<OtherT> &&Other,
504 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
505 nullptr) {
506 moveConstruct(std::move(Other));
507 }
508
509 /// Move-assign from another Expected<T>.
510 Expected &operator=(Expected &&Other) {
511 moveAssign(std::move(Other));
512 return *this;
513 }
514
515 /// Destroy an Expected<T>.
516 ~Expected() {
517 assertIsChecked();
518 if (!HasError)
519 getStorage()->~storage_type();
520 else
521 getErrorStorage()->~error_type();
522 }
523
524 /// Return false if there is an error.
525 explicit operator bool() {
526#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
527 Unchecked = HasError;
528#endif
529 return !HasError;
530 }
531
532 /// Returns a reference to the stored T value.
533 reference get() {
534 assertIsChecked();
535 return *getStorage();
536 }
537
538 /// Returns a const reference to the stored T value.
539 const_reference get() const {
540 assertIsChecked();
541 return const_cast<Expected<T> *>(this)->get();
542 }
543
544 /// Check that this Expected<T> is an error of type ErrT.
545 template <typename ErrT> bool errorIsA() const {
546 return HasError && (*getErrorStorage())->template isA<ErrT>();
547 }
548
549 /// Take ownership of the stored error.
550 /// After calling this the Expected<T> is in an indeterminate state that can
551 /// only be safely destructed. No further calls (beside the destructor) should
552 /// be made on the Expected<T> vaule.
553 Error takeError() {
554#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
555 Unchecked = false;
556#endif
557 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
558 }
559
560 /// Returns a pointer to the stored T value.
561 pointer operator->() {
562 assertIsChecked();
563 return toPointer(getStorage());
564 }
565
566 /// Returns a const pointer to the stored T value.
567 const_pointer operator->() const {
568 assertIsChecked();
569 return toPointer(getStorage());
570 }
571
572 /// Returns a reference to the stored T value.
573 reference operator*() {
574 assertIsChecked();
575 return *getStorage();
576 }
577
578 /// Returns a const reference to the stored T value.
579 const_reference operator*() const {
580 assertIsChecked();
581 return *getStorage();
582 }
583
584private:
585 template <class T1>
586 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
587 return &a == &b;
588 }
589
590 template <class T1, class T2>
591 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
592 return false;
593 }
594
595 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
596 HasError = Other.HasError;
597#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
598 Unchecked = true;
599 Other.Unchecked = false;
600#endif
601
602 if (!HasError)
603 new (getStorage()) storage_type(std::move(*Other.getStorage()));
604 else
605 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
606 }
607
608 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
609 assertIsChecked();
610
611 if (compareThisIfSameType(*this, Other))
612 return;
613
614 this->~Expected();
615 new (this) Expected(std::move(Other));
616 }
617
618 pointer toPointer(pointer Val) { return Val; }
619
620 const_pointer toPointer(const_pointer Val) const { return Val; }
621
622 pointer toPointer(wrap *Val) { return &Val->get(); }
623
624 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
625
626 storage_type *getStorage() {
627 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 627, __PRETTY_FUNCTION__))
;
628 return reinterpret_cast<storage_type *>(TStorage.buffer);
629 }
630
631 const storage_type *getStorage() const {
632 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 632, __PRETTY_FUNCTION__))
;
633 return reinterpret_cast<const storage_type *>(TStorage.buffer);
634 }
635
636 error_type *getErrorStorage() {
637 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 637, __PRETTY_FUNCTION__))
;
638 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
639 }
640
641 const error_type *getErrorStorage() const {
642 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 642, __PRETTY_FUNCTION__))
;
643 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
644 }
645
646 // Used by ExpectedAsOutParameter to reset the checked flag.
647 void setUnchecked() {
648#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
649 Unchecked = true;
650#endif
651 }
652
653#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
654 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
655 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
656 void fatalUncheckedExpected() const {
657 dbgs() << "Expected<T> must be checked before access or destruction.\n";
658 if (HasError) {
659 dbgs() << "Unchecked Expected<T> contained error:\n";
660 (*getErrorStorage())->log(dbgs());
661 } else
662 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
663 "values in success mode must still be checked prior to being "
664 "destroyed).\n";
665 abort();
666 }
667#endif
668
669 void assertIsChecked() {
670#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
671 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
672 fatalUncheckedExpected();
673#endif
674 }
675
676 union {
677 AlignedCharArrayUnion<storage_type> TStorage;
678 AlignedCharArrayUnion<error_type> ErrorStorage;
679 };
680 bool HasError : 1;
681#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
682 bool Unchecked : 1;
683#endif
684};
685
686/// Report a serious error, calling any installed error handler. See
687/// ErrorHandling.h.
688LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
689 bool gen_crash_diag = true);
690
691/// Report a fatal error if Err is a failure value.
692///
693/// This function can be used to wrap calls to fallible functions ONLY when it
694/// is known that the Error will always be a success value. E.g.
695///
696/// @code{.cpp}
697/// // foo only attempts the fallible operation if DoFallibleOperation is
698/// // true. If DoFallibleOperation is false then foo always returns
699/// // Error::success().
700/// Error foo(bool DoFallibleOperation);
701///
702/// cantFail(foo(false));
703/// @endcode
704inline void cantFail(Error Err, const char *Msg = nullptr) {
705 if (Err) {
706 if (!Msg)
707 Msg = "Failure value returned from cantFail wrapped call";
708 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 708)
;
709 }
710}
711
712/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
713/// returns the contained value.
714///
715/// This function can be used to wrap calls to fallible functions ONLY when it
716/// is known that the Error will always be a success value. E.g.
717///
718/// @code{.cpp}
719/// // foo only attempts the fallible operation if DoFallibleOperation is
720/// // true. If DoFallibleOperation is false then foo always returns an int.
721/// Expected<int> foo(bool DoFallibleOperation);
722///
723/// int X = cantFail(foo(false));
724/// @endcode
725template <typename T>
726T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
727 if (ValOrErr)
728 return std::move(*ValOrErr);
729 else {
730 if (!Msg)
731 Msg = "Failure value returned from cantFail wrapped call";
732 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 732)
;
733 }
734}
735
736/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
737/// returns the contained reference.
738///
739/// This function can be used to wrap calls to fallible functions ONLY when it
740/// is known that the Error will always be a success value. E.g.
741///
742/// @code{.cpp}
743/// // foo only attempts the fallible operation if DoFallibleOperation is
744/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
745/// Expected<Bar&> foo(bool DoFallibleOperation);
746///
747/// Bar &X = cantFail(foo(false));
748/// @endcode
749template <typename T>
750T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
751 if (ValOrErr)
752 return *ValOrErr;
753 else {
754 if (!Msg)
755 Msg = "Failure value returned from cantFail wrapped call";
756 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 756)
;
757 }
758}
759
760/// Helper for testing applicability of, and applying, handlers for
761/// ErrorInfo types.
762template <typename HandlerT>
763class ErrorHandlerTraits
764 : public ErrorHandlerTraits<decltype(
765 &std::remove_reference<HandlerT>::type::operator())> {};
766
767// Specialization functions of the form 'Error (const ErrT&)'.
768template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
769public:
770 static bool appliesTo(const ErrorInfoBase &E) {
771 return E.template isA<ErrT>();
772 }
773
774 template <typename HandlerT>
775 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
776 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 776, __PRETTY_FUNCTION__))
;
777 return H(static_cast<ErrT &>(*E));
778 }
779};
780
781// Specialization functions of the form 'void (const ErrT&)'.
782template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 790, __PRETTY_FUNCTION__))
;
791 H(static_cast<ErrT &>(*E));
792 return Error::success();
793 }
794};
795
796/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 806, __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 return H(std::move(SubE));
809 }
810};
811
812/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
813template <typename ErrT>
814class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
815public:
816 static bool appliesTo(const ErrorInfoBase &E) {
817 return E.template isA<ErrT>();
818 }
819
820 template <typename HandlerT>
821 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
822 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 822, __PRETTY_FUNCTION__))
;
823 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
824 H(std::move(SubE));
825 return Error::success();
826 }
827};
828
829// Specialization for member functions of the form 'RetT (const ErrT&)'.
830template <typename C, typename RetT, typename ErrT>
831class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
832 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
833
834// Specialization for member functions of the form 'RetT (const ErrT&) const'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
837 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
838
839// Specialization for member functions of the form 'RetT (const ErrT&)'.
840template <typename C, typename RetT, typename ErrT>
841class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
842 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
843
844// Specialization for member functions of the form 'RetT (const ErrT&) const'.
845template <typename C, typename RetT, typename ErrT>
846class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
847 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
848
849/// Specialization for member functions of the form
850/// 'RetT (std::unique_ptr<ErrT>)'.
851template <typename C, typename RetT, typename ErrT>
852class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
853 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
854
855/// Specialization for member functions of the form
856/// 'RetT (std::unique_ptr<ErrT>) const'.
857template <typename C, typename RetT, typename ErrT>
858class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
859 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
860
861inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
862 return Error(std::move(Payload));
863}
864
865template <typename HandlerT, typename... HandlerTs>
866Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
867 HandlerT &&Handler, HandlerTs &&... Handlers) {
868 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
869 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
870 std::move(Payload));
871 return handleErrorImpl(std::move(Payload),
872 std::forward<HandlerTs>(Handlers)...);
873}
874
875/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
876/// unhandled errors (or Errors returned by handlers) are re-concatenated and
877/// returned.
878/// Because this function returns an error, its result must also be checked
879/// or returned. If you intend to handle all errors use handleAllErrors
880/// (which returns void, and will abort() on unhandled errors) instead.
881template <typename... HandlerTs>
882Error handleErrors(Error E, HandlerTs &&... Hs) {
883 if (!E)
884 return Error::success();
885
886 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
887
888 if (Payload->isA<ErrorList>()) {
889 ErrorList &List = static_cast<ErrorList &>(*Payload);
890 Error R;
891 for (auto &P : List.Payloads)
892 R = ErrorList::join(
893 std::move(R),
894 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
895 return R;
896 }
897
898 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
899}
900
901/// Behaves the same as handleErrors, except that by contract all errors
902/// *must* be handled by the given handlers (i.e. there must be no remaining
903/// errors after running the handlers, or llvm_unreachable is called).
904template <typename... HandlerTs>
905void handleAllErrors(Error E, HandlerTs &&... Handlers) {
906 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
907}
908
909/// Check that E is a non-error, then drop it.
910/// If E is an error, llvm_unreachable will be called.
911inline void handleAllErrors(Error E) {
912 cantFail(std::move(E));
913}
914
915/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
916///
917/// If the incoming value is a success value it is returned unmodified. If it
918/// is a failure value then it the contained error is passed to handleErrors.
919/// If handleErrors is able to handle the error then the RecoveryPath functor
920/// is called to supply the final result. If handleErrors is not able to
921/// handle all errors then the unhandled errors are returned.
922///
923/// This utility enables the follow pattern:
924///
925/// @code{.cpp}
926/// enum FooStrategy { Aggressive, Conservative };
927/// Expected<Foo> foo(FooStrategy S);
928///
929/// auto ResultOrErr =
930/// handleExpected(
931/// foo(Aggressive),
932/// []() { return foo(Conservative); },
933/// [](AggressiveStrategyError&) {
934/// // Implicitly conusme this - we'll recover by using a conservative
935/// // strategy.
936/// });
937///
938/// @endcode
939template <typename T, typename RecoveryFtor, typename... HandlerTs>
940Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
941 HandlerTs &&... Handlers) {
942 if (ValOrErr)
943 return ValOrErr;
944
945 if (auto Err = handleErrors(ValOrErr.takeError(),
946 std::forward<HandlerTs>(Handlers)...))
947 return std::move(Err);
948
949 return RecoveryPath();
950}
951
952/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
953/// will be printed before the first one is logged. A newline will be printed
954/// after each error.
955///
956/// This function is compatible with the helpers from Support/WithColor.h. You
957/// can pass any of them as the OS. Please consider using them instead of
958/// including 'error: ' in the ErrorBanner.
959///
960/// This is useful in the base level of your program to allow clean termination
961/// (allowing clean deallocation of resources, etc.), while reporting error
962/// information to the user.
963void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
964
965/// Write all error messages (if any) in E to a string. The newline character
966/// is used to separate error messages.
967inline std::string toString(Error E) {
968 SmallVector<std::string, 2> Errors;
969 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
970 Errors.push_back(EI.message());
971 });
972 return join(Errors.begin(), Errors.end(), "\n");
973}
974
975/// Consume a Error without doing anything. This method should be used
976/// only where an error can be considered a reasonable and expected return
977/// value.
978///
979/// Uses of this method are potentially indicative of design problems: If it's
980/// legitimate to do nothing while processing an "error", the error-producer
981/// might be more clearly refactored to return an Optional<T>.
982inline void consumeError(Error Err) {
983 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
984}
985
986/// Helper for converting an Error to a bool.
987///
988/// This method returns true if Err is in an error state, or false if it is
989/// in a success state. Puts Err in a checked state in both cases (unlike
990/// Error::operator bool(), which only does this for success states).
991inline bool errorToBool(Error Err) {
992 bool IsError = static_cast<bool>(Err);
993 if (IsError)
994 consumeError(std::move(Err));
995 return IsError;
996}
997
998/// Helper for Errors used as out-parameters.
999///
1000/// This helper is for use with the Error-as-out-parameter idiom, where an error
1001/// is passed to a function or method by reference, rather than being returned.
1002/// In such cases it is helpful to set the checked bit on entry to the function
1003/// so that the error can be written to (unchecked Errors abort on assignment)
1004/// and clear the checked bit on exit so that clients cannot accidentally forget
1005/// to check the result. This helper performs these actions automatically using
1006/// RAII:
1007///
1008/// @code{.cpp}
1009/// Result foo(Error &Err) {
1010/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1011/// // <body of foo>
1012/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1013/// }
1014/// @endcode
1015///
1016/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1017/// used with optional Errors (Error pointers that are allowed to be null). If
1018/// ErrorAsOutParameter took an Error reference, an instance would have to be
1019/// created inside every condition that verified that Error was non-null. By
1020/// taking an Error pointer we can just create one instance at the top of the
1021/// function.
1022class ErrorAsOutParameter {
1023public:
1024 ErrorAsOutParameter(Error *Err) : Err(Err) {
1025 // Raise the checked bit if Err is success.
1026 if (Err)
1027 (void)!!*Err;
1028 }
1029
1030 ~ErrorAsOutParameter() {
1031 // Clear the checked bit.
1032 if (Err && !*Err)
1033 *Err = Error::success();
1034 }
1035
1036private:
1037 Error *Err;
1038};
1039
1040/// Helper for Expected<T>s used as out-parameters.
1041///
1042/// See ErrorAsOutParameter.
1043template <typename T>
1044class ExpectedAsOutParameter {
1045public:
1046 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1047 : ValOrErr(ValOrErr) {
1048 if (ValOrErr)
1049 (void)!!*ValOrErr;
1050 }
1051
1052 ~ExpectedAsOutParameter() {
1053 if (ValOrErr)
1054 ValOrErr->setUnchecked();
1055 }
1056
1057private:
1058 Expected<T> *ValOrErr;
1059};
1060
1061/// This class wraps a std::error_code in a Error.
1062///
1063/// This is useful if you're writing an interface that returns a Error
1064/// (or Expected) and you want to call code that still returns
1065/// std::error_codes.
1066class ECError : public ErrorInfo<ECError> {
1067 friend Error errorCodeToError(std::error_code);
1068
1069public:
1070 void setErrorCode(std::error_code EC) { this->EC = EC; }
1071 std::error_code convertToErrorCode() const override { return EC; }
1072 void log(raw_ostream &OS) const override { OS << EC.message(); }
1073
1074 // Used by ErrorInfo::classID.
1075 static char ID;
1076
1077protected:
1078 ECError() = default;
1079 ECError(std::error_code EC) : EC(EC) {}
1080
1081 std::error_code EC;
1082};
1083
1084/// The value returned by this function can be returned from convertToErrorCode
1085/// for Error values where no sensible translation to std::error_code exists.
1086/// It should only be used in this situation, and should never be used where a
1087/// sensible conversion to std::error_code is available, as attempts to convert
1088/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1089///error to try to convert such a value).
1090std::error_code inconvertibleErrorCode();
1091
1092/// Helper for converting an std::error_code to a Error.
1093Error errorCodeToError(std::error_code EC);
1094
1095/// Helper for converting an ECError to a std::error_code.
1096///
1097/// This method requires that Err be Error() or an ECError, otherwise it
1098/// will trigger a call to abort().
1099std::error_code errorToErrorCode(Error Err);
1100
1101/// Convert an ErrorOr<T> to an Expected<T>.
1102template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1103 if (auto EC = EO.getError())
1104 return errorCodeToError(EC);
1105 return std::move(*EO);
1106}
1107
1108/// Convert an Expected<T> to an ErrorOr<T>.
1109template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1110 if (auto Err = E.takeError())
1111 return errorToErrorCode(std::move(Err));
1112 return std::move(*E);
1113}
1114
1115/// This class wraps a string in an Error.
1116///
1117/// StringError is useful in cases where the client is not expected to be able
1118/// to consume the specific error message programmatically (for example, if the
1119/// error message is to be presented to the user).
1120///
1121/// StringError can also be used when additional information is to be printed
1122/// along with a error_code message. Depending on the constructor called, this
1123/// class can either display:
1124/// 1. the error_code message (ECError behavior)
1125/// 2. a string
1126/// 3. the error_code message and a string
1127///
1128/// These behaviors are useful when subtyping is required; for example, when a
1129/// specific library needs an explicit error type. In the example below,
1130/// PDBError is derived from StringError:
1131///
1132/// @code{.cpp}
1133/// Expected<int> foo() {
1134/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1135/// "Additional information");
1136/// }
1137/// @endcode
1138///
1139class StringError : public ErrorInfo<StringError> {
1140public:
1141 static char ID;
1142
1143 // Prints EC + S and converts to EC
1144 StringError(std::error_code EC, const Twine &S = Twine());
1145
1146 // Prints S and converts to EC
1147 StringError(const Twine &S, std::error_code EC);
1148
1149 void log(raw_ostream &OS) const override;
1150 std::error_code convertToErrorCode() const override;
1151
1152 const std::string &getMessage() const { return Msg; }
1153
1154private:
1155 std::string Msg;
1156 std::error_code EC;
1157 const bool PrintMsgOnly = false;
1158};
1159
1160/// Create formatted StringError object.
1161template <typename... Ts>
1162Error createStringError(std::error_code EC, char const *Fmt,
1163 const Ts &... Vals) {
1164 std::string Buffer;
1165 raw_string_ostream Stream(Buffer);
1166 Stream << format(Fmt, Vals...);
1167 return make_error<StringError>(Stream.str(), EC);
1168}
1169
1170Error createStringError(std::error_code EC, char const *Msg);
1171
1172/// This class wraps a filename and another Error.
1173///
1174/// In some cases, an error needs to live along a 'source' name, in order to
1175/// show more detailed information to the user.
1176class FileError final : public ErrorInfo<FileError> {
1177
1178 friend Error createFileError(std::string, Error);
1179
1180public:
1181 void log(raw_ostream &OS) const override {
1182 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1182, __PRETTY_FUNCTION__))
;
1183 OS << "'" << FileName << "': ";
1184 Err->log(OS);
1185 }
1186
1187 Error takeError() { return Error(std::move(Err)); }
1188
1189 std::error_code convertToErrorCode() const override;
1190
1191 // Used by ErrorInfo::classID.
1192 static char ID;
1193
1194private:
1195 FileError(std::string F, std::unique_ptr<ErrorInfoBase> E) {
1196 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1196, __PRETTY_FUNCTION__))
;
1197 assert(!F.empty() &&((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1198, __PRETTY_FUNCTION__))
1198 "The file name provided to FileError must not be empty.")((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1198, __PRETTY_FUNCTION__))
;
1199 FileName = F;
1200 Err = std::move(E);
1201 }
1202
1203 static Error build(std::string F, Error E) {
1204 return Error(std::unique_ptr<FileError>(new FileError(F, E.takePayload())));
1205 }
1206
1207 std::string FileName;
1208 std::unique_ptr<ErrorInfoBase> Err;
1209};
1210
1211/// Concatenate a source file path and/or name with an Error. The resulting
1212/// Error is unchecked.
1213inline Error createFileError(std::string F, Error E) {
1214 return FileError::build(F, std::move(E));
1215}
1216
1217Error createFileError(std::string F, ErrorSuccess) = delete;
1218
1219/// Helper for check-and-exit error handling.
1220///
1221/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1222///
1223class ExitOnError {
1224public:
1225 /// Create an error on exit helper.
1226 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1227 : Banner(std::move(Banner)),
1228 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1229
1230 /// Set the banner string for any errors caught by operator().
1231 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1232
1233 /// Set the exit-code mapper function.
1234 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1235 this->GetExitCode = std::move(GetExitCode);
1236 }
1237
1238 /// Check Err. If it's in a failure state log the error(s) and exit.
1239 void operator()(Error Err) const { checkError(std::move(Err)); }
1240
1241 /// Check E. If it's in a success state then return the contained value. If
1242 /// it's in a failure state log the error(s) and exit.
1243 template <typename T> T operator()(Expected<T> &&E) const {
1244 checkError(E.takeError());
1245 return std::move(*E);
1246 }
1247
1248 /// Check E. If it's in a success state then return the contained reference. If
1249 /// it's in a failure state log the error(s) and exit.
1250 template <typename T> T& operator()(Expected<T&> &&E) const {
1251 checkError(E.takeError());
1252 return *E;
1253 }
1254
1255private:
1256 void checkError(Error Err) const {
1257 if (Err) {
1258 int ExitCode = GetExitCode(Err);
1259 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1260 exit(ExitCode);
1261 }
1262 }
1263
1264 std::string Banner;
1265 std::function<int(const Error &)> GetExitCode;
1266};
1267
1268/// Conversion from Error to LLVMErrorRef for C error bindings.
1269inline LLVMErrorRef wrap(Error Err) {
1270 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1271}
1272
1273/// Conversion from LLVMErrorRef to Error for C error bindings.
1274inline Error unwrap(LLVMErrorRef ErrRef) {
1275 return Error(std::unique_ptr<ErrorInfoBase>(
1276 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1277}
1278
1279} // end namespace llvm
1280
1281#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Config/abi-breaking.h"
25#include "llvm/Support/ErrorHandling.h"
26#include <algorithm>
27#include <cassert>
28#include <cstddef>
29#include <cstdint>
30#include <cstdlib>
31#include <functional>
32#include <initializer_list>
33#include <iterator>
34#include <limits>
35#include <memory>
36#include <tuple>
37#include <type_traits>
38#include <utility>
39
40#ifdef EXPENSIVE_CHECKS
41#include <random> // for std::mt19937
42#endif
43
44namespace llvm {
45
46// Only used by compiler if both template types are the same. Useful when
47// using SFINAE to test for the existence of member functions.
48template <typename T, T> struct SameType;
49
50namespace detail {
51
52template <typename RangeT>
53using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
54
55template <typename RangeT>
56using ValueOfRange = typename std::remove_reference<decltype(
57 *std::begin(std::declval<RangeT &>()))>::type;
58
59} // end namespace detail
60
61//===----------------------------------------------------------------------===//
62// Extra additions to <type_traits>
63//===----------------------------------------------------------------------===//
64
65template <typename T>
66struct negation : std::integral_constant<bool, !bool(T::value)> {};
67
68template <typename...> struct conjunction : std::true_type {};
69template <typename B1> struct conjunction<B1> : B1 {};
70template <typename B1, typename... Bn>
71struct conjunction<B1, Bn...>
72 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
73
74template <typename T> struct make_const_ptr {
75 using type =
76 typename std::add_pointer<typename std::add_const<T>::type>::type;
77};
78//===----------------------------------------------------------------------===//
79// Extra additions to <functional>
80//===----------------------------------------------------------------------===//
81
82template <class Ty> struct identity {
83 using argument_type = Ty;
84
85 Ty &operator()(Ty &self) const {
86 return self;
87 }
88 const Ty &operator()(const Ty &self) const {
89 return self;
90 }
91};
92
93template <class Ty> struct less_ptr {
94 bool operator()(const Ty* left, const Ty* right) const {
95 return *left < *right;
96 }
97};
98
99template <class Ty> struct greater_ptr {
100 bool operator()(const Ty* left, const Ty* right) const {
101 return *right < *left;
102 }
103};
104
105/// An efficient, type-erasing, non-owning reference to a callable. This is
106/// intended for use as the type of a function parameter that is not used
107/// after the function in question returns.
108///
109/// This class does not own the callable, so it is not in general safe to store
110/// a function_ref.
111template<typename Fn> class function_ref;
112
113template<typename Ret, typename ...Params>
114class function_ref<Ret(Params...)> {
115 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
116 intptr_t callable;
117
118 template<typename Callable>
119 static Ret callback_fn(intptr_t callable, Params ...params) {
120 return (*reinterpret_cast<Callable*>(callable))(
121 std::forward<Params>(params)...);
122 }
123
124public:
125 function_ref() = default;
126 function_ref(std::nullptr_t) {}
127
128 template <typename Callable>
129 function_ref(Callable &&callable,
130 typename std::enable_if<
131 !std::is_same<typename std::remove_reference<Callable>::type,
132 function_ref>::value>::type * = nullptr)
133 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
134 callable(reinterpret_cast<intptr_t>(&callable)) {}
135
136 Ret operator()(Params ...params) const {
137 return callback(callable, std::forward<Params>(params)...);
138 }
139
140 operator bool() const { return callback; }
141};
142
143// deleter - Very very very simple method that is used to invoke operator
144// delete on something. It is used like this:
145//
146// for_each(V.begin(), B.end(), deleter<Interval>);
147template <class T>
148inline void deleter(T *Ptr) {
149 delete Ptr;
150}
151
152//===----------------------------------------------------------------------===//
153// Extra additions to <iterator>
154//===----------------------------------------------------------------------===//
155
156namespace adl_detail {
157
158using std::begin;
159
160template <typename ContainerTy>
161auto adl_begin(ContainerTy &&container)
162 -> decltype(begin(std::forward<ContainerTy>(container))) {
163 return begin(std::forward<ContainerTy>(container));
164}
165
166using std::end;
167
168template <typename ContainerTy>
169auto adl_end(ContainerTy &&container)
170 -> decltype(end(std::forward<ContainerTy>(container))) {
171 return end(std::forward<ContainerTy>(container));
172}
173
174using std::swap;
175
176template <typename T>
177void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
178 std::declval<T>()))) {
179 swap(std::forward<T>(lhs), std::forward<T>(rhs));
180}
181
182} // end namespace adl_detail
183
184template <typename ContainerTy>
185auto adl_begin(ContainerTy &&container)
186 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
187 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
188}
189
190template <typename ContainerTy>
191auto adl_end(ContainerTy &&container)
192 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
193 return adl_detail::adl_end(std::forward<ContainerTy>(container));
194}
195
196template <typename T>
197void adl_swap(T &&lhs, T &&rhs) noexcept(
198 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
199 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
200}
201
202/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
203template <typename T>
204constexpr bool empty(const T &RangeOrContainer) {
205 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
206}
207
208// mapped_iterator - This is a simple iterator adapter that causes a function to
209// be applied whenever operator* is invoked on the iterator.
210
211template <typename ItTy, typename FuncTy,
212 typename FuncReturnTy =
213 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
214class mapped_iterator
215 : public iterator_adaptor_base<
216 mapped_iterator<ItTy, FuncTy>, ItTy,
217 typename std::iterator_traits<ItTy>::iterator_category,
218 typename std::remove_reference<FuncReturnTy>::type> {
219public:
220 mapped_iterator(ItTy U, FuncTy F)
221 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
222
223 ItTy getCurrent() { return this->I; }
224
225 FuncReturnTy operator*() { return F(*this->I); }
226
227private:
228 FuncTy F;
229};
230
231// map_iterator - Provide a convenient way to create mapped_iterators, just like
232// make_pair is useful for creating pairs...
233template <class ItTy, class FuncTy>
234inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
235 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
236}
237
238/// Helper to determine if type T has a member called rbegin().
239template <typename Ty> class has_rbegin_impl {
240 using yes = char[1];
241 using no = char[2];
242
243 template <typename Inner>
244 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
245
246 template <typename>
247 static no& test(...);
248
249public:
250 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
251};
252
253/// Metafunction to determine if T& or T has a member called rbegin().
254template <typename Ty>
255struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
256};
257
258// Returns an iterator_range over the given container which iterates in reverse.
259// Note that the container must have rbegin()/rend() methods for this to work.
260template <typename ContainerTy>
261auto reverse(ContainerTy &&C,
262 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
263 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
264 return make_range(C.rbegin(), C.rend());
265}
266
267// Returns a std::reverse_iterator wrapped around the given iterator.
268template <typename IteratorTy>
269std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
270 return std::reverse_iterator<IteratorTy>(It);
271}
272
273// Returns an iterator_range over the given container which iterates in reverse.
274// Note that the container must have begin()/end() methods which return
275// bidirectional iterators for this to work.
276template <typename ContainerTy>
277auto reverse(
278 ContainerTy &&C,
279 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
280 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
281 llvm::make_reverse_iterator(std::begin(C)))) {
282 return make_range(llvm::make_reverse_iterator(std::end(C)),
283 llvm::make_reverse_iterator(std::begin(C)));
284}
285
286/// An iterator adaptor that filters the elements of given inner iterators.
287///
288/// The predicate parameter should be a callable object that accepts the wrapped
289/// iterator's reference type and returns a bool. When incrementing or
290/// decrementing the iterator, it will call the predicate on each element and
291/// skip any where it returns false.
292///
293/// \code
294/// int A[] = { 1, 2, 3, 4 };
295/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
296/// // R contains { 1, 3 }.
297/// \endcode
298///
299/// Note: filter_iterator_base implements support for forward iteration.
300/// filter_iterator_impl exists to provide support for bidirectional iteration,
301/// conditional on whether the wrapped iterator supports it.
302template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
303class filter_iterator_base
304 : public iterator_adaptor_base<
305 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
306 WrappedIteratorT,
307 typename std::common_type<
308 IterTag, typename std::iterator_traits<
309 WrappedIteratorT>::iterator_category>::type> {
310 using BaseT = iterator_adaptor_base<
311 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
312 WrappedIteratorT,
313 typename std::common_type<
314 IterTag, typename std::iterator_traits<
315 WrappedIteratorT>::iterator_category>::type>;
316
317protected:
318 WrappedIteratorT End;
319 PredicateT Pred;
320
321 void findNextValid() {
322 while (this->I != End && !Pred(*this->I))
323 BaseT::operator++();
324 }
325
326 // Construct the iterator. The begin iterator needs to know where the end
327 // is, so that it can properly stop when it gets there. The end iterator only
328 // needs the predicate to support bidirectional iteration.
329 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
330 PredicateT Pred)
331 : BaseT(Begin), End(End), Pred(Pred) {
332 findNextValid();
333 }
334
335public:
336 using BaseT::operator++;
337
338 filter_iterator_base &operator++() {
339 BaseT::operator++();
340 findNextValid();
341 return *this;
342 }
343};
344
345/// Specialization of filter_iterator_base for forward iteration only.
346template <typename WrappedIteratorT, typename PredicateT,
347 typename IterTag = std::forward_iterator_tag>
348class filter_iterator_impl
349 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
350 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
351
352public:
353 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
354 PredicateT Pred)
355 : BaseT(Begin, End, Pred) {}
356};
357
358/// Specialization of filter_iterator_base for bidirectional iteration.
359template <typename WrappedIteratorT, typename PredicateT>
360class filter_iterator_impl<WrappedIteratorT, PredicateT,
361 std::bidirectional_iterator_tag>
362 : public filter_iterator_base<WrappedIteratorT, PredicateT,
363 std::bidirectional_iterator_tag> {
364 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
365 std::bidirectional_iterator_tag>;
366 void findPrevValid() {
367 while (!this->Pred(*this->I))
368 BaseT::operator--();
369 }
370
371public:
372 using BaseT::operator--;
373
374 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
375 PredicateT Pred)
376 : BaseT(Begin, End, Pred) {}
377
378 filter_iterator_impl &operator--() {
379 BaseT::operator--();
380 findPrevValid();
381 return *this;
382 }
383};
384
385namespace detail {
386
387template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
388 using type = std::forward_iterator_tag;
389};
390
391template <> struct fwd_or_bidi_tag_impl<true> {
392 using type = std::bidirectional_iterator_tag;
393};
394
395/// Helper which sets its type member to forward_iterator_tag if the category
396/// of \p IterT does not derive from bidirectional_iterator_tag, and to
397/// bidirectional_iterator_tag otherwise.
398template <typename IterT> struct fwd_or_bidi_tag {
399 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
400 std::bidirectional_iterator_tag,
401 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
402};
403
404} // namespace detail
405
406/// Defines filter_iterator to a suitable specialization of
407/// filter_iterator_impl, based on the underlying iterator's category.
408template <typename WrappedIteratorT, typename PredicateT>
409using filter_iterator = filter_iterator_impl<
410 WrappedIteratorT, PredicateT,
411 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
412
413/// Convenience function that takes a range of elements and a predicate,
414/// and return a new filter_iterator range.
415///
416/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
417/// lifetime of that temporary is not kept by the returned range object, and the
418/// temporary is going to be dropped on the floor after the make_iterator_range
419/// full expression that contains this function call.
420template <typename RangeT, typename PredicateT>
421iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
422make_filter_range(RangeT &&Range, PredicateT Pred) {
423 using FilterIteratorT =
424 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
425 return make_range(
426 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
427 std::end(std::forward<RangeT>(Range)), Pred),
428 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
429 std::end(std::forward<RangeT>(Range)), Pred));
430}
431
432/// A pseudo-iterator adaptor that is designed to implement "early increment"
433/// style loops.
434///
435/// This is *not a normal iterator* and should almost never be used directly. It
436/// is intended primarily to be used with range based for loops and some range
437/// algorithms.
438///
439/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
440/// somewhere between them. The constraints of these iterators are:
441///
442/// - On construction or after being incremented, it is comparable and
443/// dereferencable. It is *not* incrementable.
444/// - After being dereferenced, it is neither comparable nor dereferencable, it
445/// is only incrementable.
446///
447/// This means you can only dereference the iterator once, and you can only
448/// increment it once between dereferences.
449template <typename WrappedIteratorT>
450class early_inc_iterator_impl
451 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
452 WrappedIteratorT, std::input_iterator_tag> {
453 using BaseT =
454 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
455 WrappedIteratorT, std::input_iterator_tag>;
456
457 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
458
459protected:
460#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
461 bool IsEarlyIncremented = false;
462#endif
463
464public:
465 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
466
467 using BaseT::operator*;
468 typename BaseT::reference operator*() {
469#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
470 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 470, __PRETTY_FUNCTION__))
;
471 IsEarlyIncremented = true;
472#endif
473 return *(this->I)++;
474 }
475
476 using BaseT::operator++;
477 early_inc_iterator_impl &operator++() {
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 479, __PRETTY_FUNCTION__))
;
480 IsEarlyIncremented = false;
481#endif
482 return *this;
483 }
484
485 using BaseT::operator==;
486 bool operator==(const early_inc_iterator_impl &RHS) const {
487#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
488 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 488, __PRETTY_FUNCTION__))
;
489#endif
490 return BaseT::operator==(RHS);
491 }
492};
493
494/// Make a range that does early increment to allow mutation of the underlying
495/// range without disrupting iteration.
496///
497/// The underlying iterator will be incremented immediately after it is
498/// dereferenced, allowing deletion of the current node or insertion of nodes to
499/// not disrupt iteration provided they do not invalidate the *next* iterator --
500/// the current iterator can be invalidated.
501///
502/// This requires a very exact pattern of use that is only really suitable to
503/// range based for loops and other range algorithms that explicitly guarantee
504/// to dereference exactly once each element, and to increment exactly once each
505/// element.
506template <typename RangeT>
507iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
508make_early_inc_range(RangeT &&Range) {
509 using EarlyIncIteratorT =
510 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
511 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
512 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
513}
514
515// forward declarations required by zip_shortest/zip_first/zip_longest
516template <typename R, typename UnaryPredicate>
517bool all_of(R &&range, UnaryPredicate P);
518template <typename R, typename UnaryPredicate>
519bool any_of(R &&range, UnaryPredicate P);
520
521template <size_t... I> struct index_sequence;
522
523template <class... Ts> struct index_sequence_for;
524
525namespace detail {
526
527using std::declval;
528
529// We have to alias this since inlining the actual type at the usage site
530// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
531template<typename... Iters> struct ZipTupleType {
532 using type = std::tuple<decltype(*declval<Iters>())...>;
533};
534
535template <typename ZipType, typename... Iters>
536using zip_traits = iterator_facade_base<
537 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
538 typename std::iterator_traits<
539 Iters>::iterator_category...>::type,
540 // ^ TODO: Implement random access methods.
541 typename ZipTupleType<Iters...>::type,
542 typename std::iterator_traits<typename std::tuple_element<
543 0, std::tuple<Iters...>>::type>::difference_type,
544 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
545 // inner iterators have the same difference_type. It would fail if, for
546 // instance, the second field's difference_type were non-numeric while the
547 // first is.
548 typename ZipTupleType<Iters...>::type *,
549 typename ZipTupleType<Iters...>::type>;
550
551template <typename ZipType, typename... Iters>
552struct zip_common : public zip_traits<ZipType, Iters...> {
553 using Base = zip_traits<ZipType, Iters...>;
554 using value_type = typename Base::value_type;
555
556 std::tuple<Iters...> iterators;
557
558protected:
559 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
560 return value_type(*std::get<Ns>(iterators)...);
561 }
562
563 template <size_t... Ns>
564 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
565 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
571 }
572
573public:
574 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
575
576 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
577
578 const value_type operator*() const {
579 return deref(index_sequence_for<Iters...>{});
580 }
581
582 ZipType &operator++() {
583 iterators = tup_inc(index_sequence_for<Iters...>{});
584 return *reinterpret_cast<ZipType *>(this);
585 }
586
587 ZipType &operator--() {
588 static_assert(Base::IsBidirectional,
589 "All inner iterators must be at least bidirectional.");
590 iterators = tup_dec(index_sequence_for<Iters...>{});
591 return *reinterpret_cast<ZipType *>(this);
592 }
593};
594
595template <typename... Iters>
596struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
597 using Base = zip_common<zip_first<Iters...>, Iters...>;
598
599 bool operator==(const zip_first<Iters...> &other) const {
600 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
601 }
602
603 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
604};
605
606template <typename... Iters>
607class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
608 template <size_t... Ns>
609 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
610 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
611 std::get<Ns>(other.iterators)...},
612 identity<bool>{});
613 }
614
615public:
616 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
617
618 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
619
620 bool operator==(const zip_shortest<Iters...> &other) const {
621 return !test(other, index_sequence_for<Iters...>{});
622 }
623};
624
625template <template <typename...> class ItType, typename... Args> class zippy {
626public:
627 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
628 using iterator_category = typename iterator::iterator_category;
629 using value_type = typename iterator::value_type;
630 using difference_type = typename iterator::difference_type;
631 using pointer = typename iterator::pointer;
632 using reference = typename iterator::reference;
633
634private:
635 std::tuple<Args...> ts;
636
637 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
638 return iterator(std::begin(std::get<Ns>(ts))...);
639 }
640 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
641 return iterator(std::end(std::get<Ns>(ts))...);
642 }
643
644public:
645 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
646
647 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
648 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
649};
650
651} // end namespace detail
652
653/// zip iterator for two or more iteratable types.
654template <typename T, typename U, typename... Args>
655detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
656 Args &&... args) {
657 return detail::zippy<detail::zip_shortest, T, U, Args...>(
658 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
659}
660
661/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
662/// be the shortest.
663template <typename T, typename U, typename... Args>
664detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
665 Args &&... args) {
666 return detail::zippy<detail::zip_first, T, U, Args...>(
667 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
668}
669
670namespace detail {
671template <typename Iter>
672static Iter next_or_end(const Iter &I, const Iter &End) {
673 if (I == End)
674 return End;
675 return std::next(I);
676}
677
678template <typename Iter>
679static auto deref_or_none(const Iter &I, const Iter &End)
680 -> llvm::Optional<typename std::remove_const<
681 typename std::remove_reference<decltype(*I)>::type>::type> {
682 if (I == End)
683 return None;
684 return *I;
685}
686
687template <typename Iter> struct ZipLongestItemType {
688 using type =
689 llvm::Optional<typename std::remove_const<typename std::remove_reference<
690 decltype(*std::declval<Iter>())>::type>::type>;
691};
692
693template <typename... Iters> struct ZipLongestTupleType {
694 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
695};
696
697template <typename... Iters>
698class zip_longest_iterator
699 : public iterator_facade_base<
700 zip_longest_iterator<Iters...>,
701 typename std::common_type<
702 std::forward_iterator_tag,
703 typename std::iterator_traits<Iters>::iterator_category...>::type,
704 typename ZipLongestTupleType<Iters...>::type,
705 typename std::iterator_traits<typename std::tuple_element<
706 0, std::tuple<Iters...>>::type>::difference_type,
707 typename ZipLongestTupleType<Iters...>::type *,
708 typename ZipLongestTupleType<Iters...>::type> {
709public:
710 using value_type = typename ZipLongestTupleType<Iters...>::type;
711
712private:
713 std::tuple<Iters...> iterators;
714 std::tuple<Iters...> end_iterators;
715
716 template <size_t... Ns>
717 bool test(const zip_longest_iterator<Iters...> &other,
718 index_sequence<Ns...>) const {
719 return llvm::any_of(
720 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
721 std::get<Ns>(other.iterators)...},
722 identity<bool>{});
723 }
724
725 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
726 return value_type(
727 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
728 }
729
730 template <size_t... Ns>
731 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
732 return std::tuple<Iters...>(
733 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
734 }
735
736public:
737 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
738 : iterators(std::forward<Iters>(ts.first)...),
739 end_iterators(std::forward<Iters>(ts.second)...) {}
740
741 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
742
743 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
744
745 zip_longest_iterator<Iters...> &operator++() {
746 iterators = tup_inc(index_sequence_for<Iters...>{});
747 return *this;
748 }
749
750 bool operator==(const zip_longest_iterator<Iters...> &other) const {
751 return !test(other, index_sequence_for<Iters...>{});
752 }
753};
754
755template <typename... Args> class zip_longest_range {
756public:
757 using iterator =
758 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
759 using iterator_category = typename iterator::iterator_category;
760 using value_type = typename iterator::value_type;
761 using difference_type = typename iterator::difference_type;
762 using pointer = typename iterator::pointer;
763 using reference = typename iterator::reference;
764
765private:
766 std::tuple<Args...> ts;
767
768 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
769 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
770 adl_end(std::get<Ns>(ts)))...);
771 }
772
773 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778public:
779 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
780
781 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
782 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
783};
784} // namespace detail
785
786/// Iterate over two or more iterators at the same time. Iteration continues
787/// until all iterators reach the end. The llvm::Optional only contains a value
788/// if the iterator has not reached the end.
789template <typename T, typename U, typename... Args>
790detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
791 Args &&... args) {
792 return detail::zip_longest_range<T, U, Args...>(
793 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
794}
795
796/// Iterator wrapper that concatenates sequences together.
797///
798/// This can concatenate different iterators, even with different types, into
799/// a single iterator provided the value types of all the concatenated
800/// iterators expose `reference` and `pointer` types that can be converted to
801/// `ValueT &` and `ValueT *` respectively. It doesn't support more
802/// interesting/customized pointer or reference types.
803///
804/// Currently this only supports forward or higher iterator categories as
805/// inputs and always exposes a forward iterator interface.
806template <typename ValueT, typename... IterTs>
807class concat_iterator
808 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
809 std::forward_iterator_tag, ValueT> {
810 using BaseT = typename concat_iterator::iterator_facade_base;
811
812 /// We store both the current and end iterators for each concatenated
813 /// sequence in a tuple of pairs.
814 ///
815 /// Note that something like iterator_range seems nice at first here, but the
816 /// range properties are of little benefit and end up getting in the way
817 /// because we need to do mutation on the current iterators.
818 std::tuple<IterTs...> Begins;
819 std::tuple<IterTs...> Ends;
820
821 /// Attempts to increment a specific iterator.
822 ///
823 /// Returns true if it was able to increment the iterator. Returns false if
824 /// the iterator is already at the end iterator.
825 template <size_t Index> bool incrementHelper() {
826 auto &Begin = std::get<Index>(Begins);
827 auto &End = std::get<Index>(Ends);
828 if (Begin == End)
829 return false;
830
831 ++Begin;
832 return true;
833 }
834
835 /// Increments the first non-end iterator.
836 ///
837 /// It is an error to call this with all iterators at the end.
838 template <size_t... Ns> void increment(index_sequence<Ns...>) {
839 // Build a sequence of functions to increment each iterator if possible.
840 bool (concat_iterator::*IncrementHelperFns[])() = {
841 &concat_iterator::incrementHelper<Ns>...};
842
843 // Loop over them, and stop as soon as we succeed at incrementing one.
844 for (auto &IncrementHelperFn : IncrementHelperFns)
845 if ((this->*IncrementHelperFn)())
846 return;
847
848 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 848)
;
849 }
850
851 /// Returns null if the specified iterator is at the end. Otherwise,
852 /// dereferences the iterator and returns the address of the resulting
853 /// reference.
854 template <size_t Index> ValueT *getHelper() const {
855 auto &Begin = std::get<Index>(Begins);
856 auto &End = std::get<Index>(Ends);
857 if (Begin == End)
858 return nullptr;
859
860 return &*Begin;
861 }
862
863 /// Finds the first non-end iterator, dereferences, and returns the resulting
864 /// reference.
865 ///
866 /// It is an error to call this with all iterators at the end.
867 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
868 // Build a sequence of functions to get from iterator if possible.
869 ValueT *(concat_iterator::*GetHelperFns[])() const = {
870 &concat_iterator::getHelper<Ns>...};
871
872 // Loop over them, and return the first result we find.
873 for (auto &GetHelperFn : GetHelperFns)
874 if (ValueT *P = (this->*GetHelperFn)())
875 return *P;
876
877 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 877)
;
878 }
879
880public:
881 /// Constructs an iterator from a squence of ranges.
882 ///
883 /// We need the full range to know how to switch between each of the
884 /// iterators.
885 template <typename... RangeTs>
886 explicit concat_iterator(RangeTs &&... Ranges)
887 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
888
889 using BaseT::operator++;
890
891 concat_iterator &operator++() {
892 increment(index_sequence_for<IterTs...>());
893 return *this;
894 }
895
896 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
897
898 bool operator==(const concat_iterator &RHS) const {
899 return Begins == RHS.Begins && Ends == RHS.Ends;
900 }
901};
902
903namespace detail {
904
905/// Helper to store a sequence of ranges being concatenated and access them.
906///
907/// This is designed to facilitate providing actual storage when temporaries
908/// are passed into the constructor such that we can use it as part of range
909/// based for loops.
910template <typename ValueT, typename... RangeTs> class concat_range {
911public:
912 using iterator =
913 concat_iterator<ValueT,
914 decltype(std::begin(std::declval<RangeTs &>()))...>;
915
916private:
917 std::tuple<RangeTs...> Ranges;
918
919 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
920 return iterator(std::get<Ns>(Ranges)...);
921 }
922 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
923 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
924 std::end(std::get<Ns>(Ranges)))...);
925 }
926
927public:
928 concat_range(RangeTs &&... Ranges)
929 : Ranges(std::forward<RangeTs>(Ranges)...) {}
930
931 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
932 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
933};
934
935} // end namespace detail
936
937/// Concatenated range across two or more ranges.
938///
939/// The desired value type must be explicitly specified.
940template <typename ValueT, typename... RangeTs>
941detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
942 static_assert(sizeof...(RangeTs) > 1,
943 "Need more than one range to concatenate!");
944 return detail::concat_range<ValueT, RangeTs...>(
945 std::forward<RangeTs>(Ranges)...);
946}
947
948//===----------------------------------------------------------------------===//
949// Extra additions to <utility>
950//===----------------------------------------------------------------------===//
951
952/// Function object to check whether the first component of a std::pair
953/// compares less than the first component of another std::pair.
954struct less_first {
955 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
956 return lhs.first < rhs.first;
957 }
958};
959
960/// Function object to check whether the second component of a std::pair
961/// compares less than the second component of another std::pair.
962struct less_second {
963 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
964 return lhs.second < rhs.second;
965 }
966};
967
968/// \brief Function object to apply a binary function to the first component of
969/// a std::pair.
970template<typename FuncTy>
971struct on_first {
972 FuncTy func;
973
974 template <typename T>
975 auto operator()(const T &lhs, const T &rhs) const
976 -> decltype(func(lhs.first, rhs.first)) {
977 return func(lhs.first, rhs.first);
978 }
979};
980
981// A subset of N3658. More stuff can be added as-needed.
982
983/// Represents a compile-time sequence of integers.
984template <class T, T... I> struct integer_sequence {
985 using value_type = T;
986
987 static constexpr size_t size() { return sizeof...(I); }
988};
989
990/// Alias for the common case of a sequence of size_ts.
991template <size_t... I>
992struct index_sequence : integer_sequence<std::size_t, I...> {};
993
994template <std::size_t N, std::size_t... I>
995struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
996template <std::size_t... I>
997struct build_index_impl<0, I...> : index_sequence<I...> {};
998
999/// Creates a compile-time integer sequence for a parameter pack.
1000template <class... Ts>
1001struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1002
1003/// Utility type to build an inheritance chain that makes it easy to rank
1004/// overload candidates.
1005template <int N> struct rank : rank<N - 1> {};
1006template <> struct rank<0> {};
1007
1008/// traits class for checking whether type T is one of any of the given
1009/// types in the variadic list.
1010template <typename T, typename... Ts> struct is_one_of {
1011 static const bool value = false;
1012};
1013
1014template <typename T, typename U, typename... Ts>
1015struct is_one_of<T, U, Ts...> {
1016 static const bool value =
1017 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1018};
1019
1020/// traits class for checking whether type T is a base class for all
1021/// the given types in the variadic list.
1022template <typename T, typename... Ts> struct are_base_of {
1023 static const bool value = true;
1024};
1025
1026template <typename T, typename U, typename... Ts>
1027struct are_base_of<T, U, Ts...> {
1028 static const bool value =
1029 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1030};
1031
1032//===----------------------------------------------------------------------===//
1033// Extra additions for arrays
1034//===----------------------------------------------------------------------===//
1035
1036/// Find the length of an array.
1037template <class T, std::size_t N>
1038constexpr inline size_t array_lengthof(T (&)[N]) {
1039 return N;
1040}
1041
1042/// Adapt std::less<T> for array_pod_sort.
1043template<typename T>
1044inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1045 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1046 *reinterpret_cast<const T*>(P2)))
1047 return -1;
1048 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1049 *reinterpret_cast<const T*>(P1)))
1050 return 1;
1051 return 0;
1052}
1053
1054/// get_array_pod_sort_comparator - This is an internal helper function used to
1055/// get type deduction of T right.
1056template<typename T>
1057inline int (*get_array_pod_sort_comparator(const T &))
1058 (const void*, const void*) {
1059 return array_pod_sort_comparator<T>;
1060}
1061
1062/// array_pod_sort - This sorts an array with the specified start and end
1063/// extent. This is just like std::sort, except that it calls qsort instead of
1064/// using an inlined template. qsort is slightly slower than std::sort, but
1065/// most sorts are not performance critical in LLVM and std::sort has to be
1066/// template instantiated for each type, leading to significant measured code
1067/// bloat. This function should generally be used instead of std::sort where
1068/// possible.
1069///
1070/// This function assumes that you have simple POD-like types that can be
1071/// compared with std::less and can be moved with memcpy. If this isn't true,
1072/// you should use std::sort.
1073///
1074/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1075/// default to std::less.
1076template<class IteratorTy>
1077inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1078 // Don't inefficiently call qsort with one element or trigger undefined
1079 // behavior with an empty sequence.
1080 auto NElts = End - Start;
1081 if (NElts <= 1) return;
1082#ifdef EXPENSIVE_CHECKS
1083 std::mt19937 Generator(std::random_device{}());
1084 std::shuffle(Start, End, Generator);
1085#endif
1086 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1087}
1088
1089template <class IteratorTy>
1090inline void array_pod_sort(
1091 IteratorTy Start, IteratorTy End,
1092 int (*Compare)(
1093 const typename std::iterator_traits<IteratorTy>::value_type *,
1094 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1095 // Don't inefficiently call qsort with one element or trigger undefined
1096 // behavior with an empty sequence.
1097 auto NElts = End - Start;
1098 if (NElts <= 1) return;
1099#ifdef EXPENSIVE_CHECKS
1100 std::mt19937 Generator(std::random_device{}());
1101 std::shuffle(Start, End, Generator);
1102#endif
1103 qsort(&*Start, NElts, sizeof(*Start),
1104 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1105}
1106
1107// Provide wrappers to std::sort which shuffle the elements before sorting
1108// to help uncover non-deterministic behavior (PR35135).
1109template <typename IteratorTy>
1110inline void sort(IteratorTy Start, IteratorTy End) {
1111#ifdef EXPENSIVE_CHECKS
1112 std::mt19937 Generator(std::random_device{}());
1113 std::shuffle(Start, End, Generator);
1114#endif
1115 std::sort(Start, End);
1116}
1117
1118template <typename Container> inline void sort(Container &&C) {
1119 llvm::sort(adl_begin(C), adl_end(C));
1120}
1121
1122template <typename IteratorTy, typename Compare>
1123inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1124#ifdef EXPENSIVE_CHECKS
1125 std::mt19937 Generator(std::random_device{}());
1126 std::shuffle(Start, End, Generator);
1127#endif
1128 std::sort(Start, End, Comp);
1129}
1130
1131template <typename Container, typename Compare>
1132inline void sort(Container &&C, Compare Comp) {
1133 llvm::sort(adl_begin(C), adl_end(C), Comp);
1134}
1135
1136//===----------------------------------------------------------------------===//
1137// Extra additions to <algorithm>
1138//===----------------------------------------------------------------------===//
1139
1140/// For a container of pointers, deletes the pointers and then clears the
1141/// container.
1142template<typename Container>
1143void DeleteContainerPointers(Container &C) {
1144 for (auto V : C)
1145 delete V;
1146 C.clear();
1147}
1148
1149/// In a container of pairs (usually a map) whose second element is a pointer,
1150/// deletes the second elements and then clears the container.
1151template<typename Container>
1152void DeleteContainerSeconds(Container &C) {
1153 for (auto &V : C)
1154 delete V.second;
1155 C.clear();
1156}
1157
1158/// Get the size of a range. This is a wrapper function around std::distance
1159/// which is only enabled when the operation is O(1).
1160template <typename R>
1161auto size(R &&Range, typename std::enable_if<
1162 std::is_same<typename std::iterator_traits<decltype(
1163 Range.begin())>::iterator_category,
1164 std::random_access_iterator_tag>::value,
1165 void>::type * = nullptr)
1166 -> decltype(std::distance(Range.begin(), Range.end())) {
1167 return std::distance(Range.begin(), Range.end());
1168}
1169
1170/// Provide wrappers to std::for_each which take ranges instead of having to
1171/// pass begin/end explicitly.
1172template <typename R, typename UnaryPredicate>
1173UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1174 return std::for_each(adl_begin(Range), adl_end(Range), P);
1175}
1176
1177/// Provide wrappers to std::all_of which take ranges instead of having to pass
1178/// begin/end explicitly.
1179template <typename R, typename UnaryPredicate>
1180bool all_of(R &&Range, UnaryPredicate P) {
1181 return std::all_of(adl_begin(Range), adl_end(Range), P);
1182}
1183
1184/// Provide wrappers to std::any_of which take ranges instead of having to pass
1185/// begin/end explicitly.
1186template <typename R, typename UnaryPredicate>
1187bool any_of(R &&Range, UnaryPredicate P) {
1188 return std::any_of(adl_begin(Range), adl_end(Range), P);
1189}
1190
1191/// Provide wrappers to std::none_of which take ranges instead of having to pass
1192/// begin/end explicitly.
1193template <typename R, typename UnaryPredicate>
1194bool none_of(R &&Range, UnaryPredicate P) {
1195 return std::none_of(adl_begin(Range), adl_end(Range), P);
1196}
1197
1198/// Provide wrappers to std::find which take ranges instead of having to pass
1199/// begin/end explicitly.
1200template <typename R, typename T>
1201auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1202 return std::find(adl_begin(Range), adl_end(Range), Val);
1203}
1204
1205/// Provide wrappers to std::find_if which take ranges instead of having to pass
1206/// begin/end explicitly.
1207template <typename R, typename UnaryPredicate>
1208auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1209 return std::find_if(adl_begin(Range), adl_end(Range), P);
1210}
1211
1212template <typename R, typename UnaryPredicate>
1213auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217/// Provide wrappers to std::remove_if which take ranges instead of having to
1218/// pass begin/end explicitly.
1219template <typename R, typename UnaryPredicate>
1220auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1221 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1222}
1223
1224/// Provide wrappers to std::copy_if which take ranges instead of having to
1225/// pass begin/end explicitly.
1226template <typename R, typename OutputIt, typename UnaryPredicate>
1227OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1228 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1229}
1230
1231template <typename R, typename OutputIt>
1232OutputIt copy(R &&Range, OutputIt Out) {
1233 return std::copy(adl_begin(Range), adl_end(Range), Out);
1234}
1235
1236/// Wrapper function around std::find to detect if an element exists
1237/// in a container.
1238template <typename R, typename E>
1239bool is_contained(R &&Range, const E &Element) {
1240 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1241}
1242
1243/// Wrapper function around std::count to count the number of times an element
1244/// \p Element occurs in the given range \p Range.
1245template <typename R, typename E>
1246auto count(R &&Range, const E &Element) ->
1247 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1248 return std::count(adl_begin(Range), adl_end(Range), Element);
1249}
1250
1251/// Wrapper function around std::count_if to count the number of times an
1252/// element satisfying a given predicate occurs in a range.
1253template <typename R, typename UnaryPredicate>
1254auto count_if(R &&Range, UnaryPredicate P) ->
1255 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1256 return std::count_if(adl_begin(Range), adl_end(Range), P);
1257}
1258
1259/// Wrapper function around std::transform to apply a function to a range and
1260/// store the result elsewhere.
1261template <typename R, typename OutputIt, typename UnaryPredicate>
1262OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1263 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1264}
1265
1266/// Provide wrappers to std::partition which take ranges instead of having to
1267/// pass begin/end explicitly.
1268template <typename R, typename UnaryPredicate>
1269auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1270 return std::partition(adl_begin(Range), adl_end(Range), P);
1271}
1272
1273/// Provide wrappers to std::lower_bound which take ranges instead of having to
1274/// pass begin/end explicitly.
1275template <typename R, typename ForwardIt>
1276auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1277 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1278}
1279
1280template <typename R, typename ForwardIt, typename Compare>
1281auto lower_bound(R &&Range, ForwardIt I, Compare C)
1282 -> decltype(adl_begin(Range)) {
1283 return std::lower_bound(adl_begin(Range), adl_end(Range), I, C);
1284}
1285
1286/// Provide wrappers to std::upper_bound which take ranges instead of having to
1287/// pass begin/end explicitly.
1288template <typename R, typename ForwardIt>
1289auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1290 return std::upper_bound(adl_begin(Range), adl_end(Range), I);
1291}
1292
1293template <typename R, typename ForwardIt, typename Compare>
1294auto upper_bound(R &&Range, ForwardIt I, Compare C)
1295 -> decltype(adl_begin(Range)) {
1296 return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
1297}
1298/// Wrapper function around std::equal to detect if all elements
1299/// in a container are same.
1300template <typename R>
1301bool is_splat(R &&Range) {
1302 size_t range_size = size(Range);
1303 return range_size != 0 && (range_size == 1 ||
1304 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1305}
1306
1307/// Given a range of type R, iterate the entire range and return a
1308/// SmallVector with elements of the vector. This is useful, for example,
1309/// when you want to iterate a range and then sort the results.
1310template <unsigned Size, typename R>
1311SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1312to_vector(R &&Range) {
1313 return {adl_begin(Range), adl_end(Range)};
1314}
1315
1316/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1317/// `erase_if` which is equivalent to:
1318///
1319/// C.erase(remove_if(C, pred), C.end());
1320///
1321/// This version works for any container with an erase method call accepting
1322/// two iterators.
1323template <typename Container, typename UnaryPredicate>
1324void erase_if(Container &C, UnaryPredicate P) {
1325 C.erase(remove_if(C, P), C.end());
1326}
1327
1328//===----------------------------------------------------------------------===//
1329// Extra additions to <memory>
1330//===----------------------------------------------------------------------===//
1331
1332// Implement make_unique according to N3656.
1333
1334/// Constructs a `new T()` with the given args and returns a
1335/// `unique_ptr<T>` which owns the object.
1336///
1337/// Example:
1338///
1339/// auto p = make_unique<int>();
1340/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1341template <class T, class... Args>
1342typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1343make_unique(Args &&... args) {
1344 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
6
Memory is allocated
1345}
1346
1347/// Constructs a `new T[n]` with the given args and returns a
1348/// `unique_ptr<T[]>` which owns the object.
1349///
1350/// \param n size of the new array.
1351///
1352/// Example:
1353///
1354/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1355template <class T>
1356typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1357 std::unique_ptr<T>>::type
1358make_unique(size_t n) {
1359 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1360}
1361
1362/// This function isn't used and is only here to provide better compile errors.
1363template <class T, class... Args>
1364typename std::enable_if<std::extent<T>::value != 0>::type
1365make_unique(Args &&...) = delete;
1366
1367struct FreeDeleter {
1368 void operator()(void* v) {
1369 ::free(v);
1370 }
1371};
1372
1373template<typename First, typename Second>
1374struct pair_hash {
1375 size_t operator()(const std::pair<First, Second> &P) const {
1376 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1377 }
1378};
1379
1380/// A functor like C++14's std::less<void> in its absence.
1381struct less {
1382 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1383 return std::forward<A>(a) < std::forward<B>(b);
1384 }
1385};
1386
1387/// A functor like C++14's std::equal<void> in its absence.
1388struct equal {
1389 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1390 return std::forward<A>(a) == std::forward<B>(b);
1391 }
1392};
1393
1394/// Binary functor that adapts to any other binary functor after dereferencing
1395/// operands.
1396template <typename T> struct deref {
1397 T func;
1398
1399 // Could be further improved to cope with non-derivable functors and
1400 // non-binary functors (should be a variadic template member function
1401 // operator()).
1402 template <typename A, typename B>
1403 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1404 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1404, __PRETTY_FUNCTION__))
;
1405 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1405, __PRETTY_FUNCTION__))
;
1406 return func(*lhs, *rhs);
1407 }
1408};
1409
1410namespace detail {
1411
1412template <typename R> class enumerator_iter;
1413
1414template <typename R> struct result_pair {
1415 friend class enumerator_iter<R>;
1416
1417 result_pair() = default;
1418 result_pair(std::size_t Index, IterOfRange<R> Iter)
1419 : Index(Index), Iter(Iter) {}
1420
1421 result_pair<R> &operator=(const result_pair<R> &Other) {
1422 Index = Other.Index;
1423 Iter = Other.Iter;
1424 return *this;
1425 }
1426
1427 std::size_t index() const { return Index; }
1428 const ValueOfRange<R> &value() const { return *Iter; }
1429 ValueOfRange<R> &value() { return *Iter; }
1430
1431private:
1432 std::size_t Index = std::numeric_limits<std::size_t>::max();
1433 IterOfRange<R> Iter;
1434};
1435
1436template <typename R>
1437class enumerator_iter
1438 : public iterator_facade_base<
1439 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1440 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1441 typename std::iterator_traits<IterOfRange<R>>::pointer,
1442 typename std::iterator_traits<IterOfRange<R>>::reference> {
1443 using result_type = result_pair<R>;
1444
1445public:
1446 explicit enumerator_iter(IterOfRange<R> EndIter)
1447 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1448
1449 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1450 : Result(Index, Iter) {}
1451
1452 result_type &operator*() { return Result; }
1453 const result_type &operator*() const { return Result; }
1454
1455 enumerator_iter<R> &operator++() {
1456 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1456, __PRETTY_FUNCTION__))
;
1457 ++Result.Iter;
1458 ++Result.Index;
1459 return *this;
1460 }
1461
1462 bool operator==(const enumerator_iter<R> &RHS) const {
1463 // Don't compare indices here, only iterators. It's possible for an end
1464 // iterator to have different indices depending on whether it was created
1465 // by calling std::end() versus incrementing a valid iterator.
1466 return Result.Iter == RHS.Result.Iter;
1467 }
1468
1469 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1470 Result = Other.Result;
1471 return *this;
1472 }
1473
1474private:
1475 result_type Result;
1476};
1477
1478template <typename R> class enumerator {
1479public:
1480 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1481
1482 enumerator_iter<R> begin() {
1483 return enumerator_iter<R>(0, std::begin(TheRange));
1484 }
1485
1486 enumerator_iter<R> end() {
1487 return enumerator_iter<R>(std::end(TheRange));
1488 }
1489
1490private:
1491 R TheRange;
1492};
1493
1494} // end namespace detail
1495
1496/// Given an input range, returns a new range whose values are are pair (A,B)
1497/// such that A is the 0-based index of the item in the sequence, and B is
1498/// the value from the original sequence. Example:
1499///
1500/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1501/// for (auto X : enumerate(Items)) {
1502/// printf("Item %d - %c\n", X.index(), X.value());
1503/// }
1504///
1505/// Output:
1506/// Item 0 - A
1507/// Item 1 - B
1508/// Item 2 - C
1509/// Item 3 - D
1510///
1511template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1512 return detail::enumerator<R>(std::forward<R>(TheRange));
1513}
1514
1515namespace detail {
1516
1517template <typename F, typename Tuple, std::size_t... I>
1518auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1519 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1520 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1521}
1522
1523} // end namespace detail
1524
1525/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1526/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1527/// return the result.
1528template <typename F, typename Tuple>
1529auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1530 std::forward<F>(f), std::forward<Tuple>(t),
1531 build_index_impl<
1532 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1533 using Indices = build_index_impl<
1534 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1535
1536 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1537 Indices{});
1538}
1539
1540/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1541/// time. Not meant for use with random-access iterators.
1542template <typename IterTy>
1543bool hasNItems(
1544 IterTy &&Begin, IterTy &&End, unsigned N,
1545 typename std::enable_if<
1546 !std::is_same<
1547 typename std::iterator_traits<typename std::remove_reference<
1548 decltype(Begin)>::type>::iterator_category,
1549 std::random_access_iterator_tag>::value,
1550 void>::type * = nullptr) {
1551 for (; N; --N, ++Begin)
1552 if (Begin == End)
1553 return false; // Too few.
1554 return Begin == End;
1555}
1556
1557/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1558/// time. Not meant for use with random-access iterators.
1559template <typename IterTy>
1560bool hasNItemsOrMore(
1561 IterTy &&Begin, IterTy &&End, unsigned N,
1562 typename std::enable_if<
1563 !std::is_same<
1564 typename std::iterator_traits<typename std::remove_reference<
1565 decltype(Begin)>::type>::iterator_category,
1566 std::random_access_iterator_tag>::value,
1567 void>::type * = nullptr) {
1568 for (; N; --N, ++Begin)
1569 if (Begin == End)
1570 return false; // Too few.
1571 return true;
1572}
1573
1574} // end namespace llvm
1575
1576#endif // LLVM_ADT_STLEXTRAS_H