File: | build/source/llvm/lib/Transforms/IPO/SCCP.cpp |
Warning: | line 397, column 3 Potential leak of memory pointed to by field '_M_head_impl' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===-- SCCP.cpp ----------------------------------------------------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file implements Interprocedural Sparse Conditional Constant Propagation. | |||
10 | // | |||
11 | //===----------------------------------------------------------------------===// | |||
12 | ||||
13 | #include "llvm/Transforms/IPO/SCCP.h" | |||
14 | #include "llvm/ADT/SetVector.h" | |||
15 | #include "llvm/Analysis/AssumptionCache.h" | |||
16 | #include "llvm/Analysis/LoopInfo.h" | |||
17 | #include "llvm/Analysis/PostDominators.h" | |||
18 | #include "llvm/Analysis/TargetLibraryInfo.h" | |||
19 | #include "llvm/Analysis/TargetTransformInfo.h" | |||
20 | #include "llvm/Analysis/ValueLattice.h" | |||
21 | #include "llvm/Analysis/ValueLatticeUtils.h" | |||
22 | #include "llvm/Analysis/ValueTracking.h" | |||
23 | #include "llvm/InitializePasses.h" | |||
24 | #include "llvm/IR/Constants.h" | |||
25 | #include "llvm/IR/IntrinsicInst.h" | |||
26 | #include "llvm/Support/CommandLine.h" | |||
27 | #include "llvm/Support/ModRef.h" | |||
28 | #include "llvm/Transforms/IPO.h" | |||
29 | #include "llvm/Transforms/IPO/FunctionSpecialization.h" | |||
30 | #include "llvm/Transforms/Scalar/SCCP.h" | |||
31 | #include "llvm/Transforms/Utils/Local.h" | |||
32 | #include "llvm/Transforms/Utils/SCCPSolver.h" | |||
33 | ||||
34 | using namespace llvm; | |||
35 | ||||
36 | #define DEBUG_TYPE"sccp" "sccp" | |||
37 | ||||
38 | STATISTIC(NumInstRemoved, "Number of instructions removed")static llvm::Statistic NumInstRemoved = {"sccp", "NumInstRemoved" , "Number of instructions removed"}; | |||
39 | STATISTIC(NumArgsElimed ,"Number of arguments constant propagated")static llvm::Statistic NumArgsElimed = {"sccp", "NumArgsElimed" , "Number of arguments constant propagated"}; | |||
40 | STATISTIC(NumGlobalConst, "Number of globals found to be constant")static llvm::Statistic NumGlobalConst = {"sccp", "NumGlobalConst" , "Number of globals found to be constant"}; | |||
41 | STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable")static llvm::Statistic NumDeadBlocks = {"sccp", "NumDeadBlocks" , "Number of basic blocks unreachable"}; | |||
42 | STATISTIC(NumInstReplaced,static llvm::Statistic NumInstReplaced = {"sccp", "NumInstReplaced" , "Number of instructions replaced with (simpler) instruction" } | |||
43 | "Number of instructions replaced with (simpler) instruction")static llvm::Statistic NumInstReplaced = {"sccp", "NumInstReplaced" , "Number of instructions replaced with (simpler) instruction" }; | |||
44 | ||||
45 | static cl::opt<unsigned> FuncSpecMaxIters( | |||
46 | "funcspec-max-iters", cl::init(1), cl::Hidden, cl::desc( | |||
47 | "The maximum number of iterations function specialization is run")); | |||
48 | ||||
49 | static void findReturnsToZap(Function &F, | |||
50 | SmallVector<ReturnInst *, 8> &ReturnsToZap, | |||
51 | SCCPSolver &Solver) { | |||
52 | // We can only do this if we know that nothing else can call the function. | |||
53 | if (!Solver.isArgumentTrackedFunction(&F)) | |||
54 | return; | |||
55 | ||||
56 | if (Solver.mustPreserveReturn(&F)) { | |||
57 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail or \"clang.arc.attachedcall\" call of " "it\n"; } } while (false) | |||
58 | dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail or \"clang.arc.attachedcall\" call of " "it\n"; } } while (false) | |||
59 | << "Can't zap returns of the function : " << F.getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail or \"clang.arc.attachedcall\" call of " "it\n"; } } while (false) | |||
60 | << " due to present musttail or \"clang.arc.attachedcall\" call of "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail or \"clang.arc.attachedcall\" call of " "it\n"; } } while (false) | |||
61 | "it\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail or \"clang.arc.attachedcall\" call of " "it\n"; } } while (false); | |||
62 | return; | |||
63 | } | |||
64 | ||||
65 | assert((static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
66 | all_of(F.users(),(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
67 | [&Solver](User *U) {(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
68 | if (isa<Instruction>(U) &&(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
69 | !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
70 | return true;(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
71 | // Non-callsite uses are not impacted by zapping. Also, constant(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
72 | // uses (like blockaddresses) could stuck around, without being(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
73 | // used in the underlying IR, meaning we do not have lattice(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
74 | // values for them.(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
75 | if (!isa<CallBase>(U))(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
76 | return true;(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
77 | if (U->getType()->isStructTy()) {(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
78 | return all_of(Solver.getStructLatticeValueFor(U),(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
79 | [](const ValueLatticeElement &LV) {(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
80 | return !SCCPSolver::isOverdefined(LV);(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
81 | });(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
82 | }(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
83 | ||||
84 | // We don't consider assume-like intrinsics to be actual address(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
85 | // captures.(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
86 | if (auto *II = dyn_cast<IntrinsicInst>(U)) {(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
87 | if (II->isAssumeLikeIntrinsic())(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
88 | return true;(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
89 | }(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
90 | ||||
91 | return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U));(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
92 | }) &&(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )) | |||
93 | "We can only zap functions where all live users have a concrete value")(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 93, __extension__ __PRETTY_FUNCTION__ )); | |||
94 | ||||
95 | for (BasicBlock &BB : F) { | |||
96 | if (CallInst *CI = BB.getTerminatingMustTailCall()) { | |||
97 | LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap return of the block due to present " << "musttail call : " << *CI << "\n"; } } while (false) | |||
98 | << "musttail call : " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap return of the block due to present " << "musttail call : " << *CI << "\n"; } } while (false); | |||
99 | (void)CI; | |||
100 | return; | |||
101 | } | |||
102 | ||||
103 | if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) | |||
104 | if (!isa<UndefValue>(RI->getOperand(0))) | |||
105 | ReturnsToZap.push_back(RI); | |||
106 | } | |||
107 | } | |||
108 | ||||
109 | static bool runIPSCCP( | |||
110 | Module &M, const DataLayout &DL, FunctionAnalysisManager *FAM, | |||
111 | std::function<const TargetLibraryInfo &(Function &)> GetTLI, | |||
112 | std::function<TargetTransformInfo &(Function &)> GetTTI, | |||
113 | std::function<AssumptionCache &(Function &)> GetAC, | |||
114 | function_ref<AnalysisResultsForFn(Function &)> getAnalysis, | |||
115 | bool IsFuncSpecEnabled) { | |||
116 | SCCPSolver Solver(DL, GetTLI, M.getContext()); | |||
117 | FunctionSpecializer Specializer(Solver, M, FAM, GetTLI, GetTTI, GetAC); | |||
118 | ||||
119 | // Loop over all functions, marking arguments to those with their addresses | |||
120 | // taken or that are external as overdefined. | |||
121 | for (Function &F : M) { | |||
122 | if (F.isDeclaration()) | |||
123 | continue; | |||
124 | ||||
125 | Solver.addAnalysis(F, getAnalysis(F)); | |||
126 | ||||
127 | // Determine if we can track the function's return values. If so, add the | |||
128 | // function to the solver's set of return-tracked functions. | |||
129 | if (canTrackReturnsInterprocedurally(&F)) | |||
130 | Solver.addTrackedFunction(&F); | |||
131 | ||||
132 | // Determine if we can track the function's arguments. If so, add the | |||
133 | // function to the solver's set of argument-tracked functions. | |||
134 | if (canTrackArgumentsInterprocedurally(&F)) { | |||
135 | Solver.addArgumentTrackedFunction(&F); | |||
136 | continue; | |||
137 | } | |||
138 | ||||
139 | // Assume the function is called. | |||
140 | Solver.markBlockExecutable(&F.front()); | |||
141 | ||||
142 | // Assume nothing about the incoming arguments. | |||
143 | for (Argument &AI : F.args()) | |||
144 | Solver.markOverdefined(&AI); | |||
145 | } | |||
146 | ||||
147 | // Determine if we can track any of the module's global variables. If so, add | |||
148 | // the global variables we can track to the solver's set of tracked global | |||
149 | // variables. | |||
150 | for (GlobalVariable &G : M.globals()) { | |||
151 | G.removeDeadConstantUsers(); | |||
152 | if (canTrackGlobalVariableInterprocedurally(&G)) | |||
153 | Solver.trackValueOfGlobalVariable(&G); | |||
154 | } | |||
155 | ||||
156 | // Solve for constants. | |||
157 | Solver.solveWhileResolvedUndefsIn(M); | |||
158 | ||||
159 | if (IsFuncSpecEnabled) { | |||
160 | unsigned Iters = 0; | |||
161 | while (Iters++ < FuncSpecMaxIters && Specializer.run()); | |||
162 | } | |||
163 | ||||
164 | // Iterate over all of the instructions in the module, replacing them with | |||
165 | // constants if we have found them to be of constant values. | |||
166 | bool MadeChanges = false; | |||
167 | for (Function &F : M) { | |||
168 | if (F.isDeclaration()) | |||
169 | continue; | |||
170 | ||||
171 | SmallVector<BasicBlock *, 512> BlocksToErase; | |||
172 | ||||
173 | if (Solver.isBlockExecutable(&F.front())) { | |||
174 | bool ReplacedPointerArg = false; | |||
175 | for (Argument &Arg : F.args()) { | |||
176 | if (!Arg.use_empty() && Solver.tryToReplaceWithConstant(&Arg)) { | |||
177 | ReplacedPointerArg |= Arg.getType()->isPointerTy(); | |||
178 | ++NumArgsElimed; | |||
179 | } | |||
180 | } | |||
181 | ||||
182 | // If we replaced an argument, we may now also access a global (currently | |||
183 | // classified as "other" memory). Update memory attribute to reflect this. | |||
184 | if (ReplacedPointerArg) { | |||
185 | auto UpdateAttrs = [&](AttributeList AL) { | |||
186 | MemoryEffects ME = AL.getMemoryEffects(); | |||
187 | if (ME == MemoryEffects::unknown()) | |||
188 | return AL; | |||
189 | ||||
190 | ME |= MemoryEffects(MemoryEffects::Other, | |||
191 | ME.getModRef(MemoryEffects::ArgMem)); | |||
192 | return AL.addFnAttribute( | |||
193 | F.getContext(), | |||
194 | Attribute::getWithMemoryEffects(F.getContext(), ME)); | |||
195 | }; | |||
196 | ||||
197 | F.setAttributes(UpdateAttrs(F.getAttributes())); | |||
198 | for (User *U : F.users()) { | |||
199 | auto *CB = dyn_cast<CallBase>(U); | |||
200 | if (!CB || CB->getCalledFunction() != &F) | |||
201 | continue; | |||
202 | ||||
203 | CB->setAttributes(UpdateAttrs(CB->getAttributes())); | |||
204 | } | |||
205 | } | |||
206 | MadeChanges |= ReplacedPointerArg; | |||
207 | } | |||
208 | ||||
209 | SmallPtrSet<Value *, 32> InsertedValues; | |||
210 | for (BasicBlock &BB : F) { | |||
211 | if (!Solver.isBlockExecutable(&BB)) { | |||
212 | LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << " BasicBlock Dead:" << BB; } } while (false); | |||
213 | ++NumDeadBlocks; | |||
214 | ||||
215 | MadeChanges = true; | |||
216 | ||||
217 | if (&BB != &F.front()) | |||
218 | BlocksToErase.push_back(&BB); | |||
219 | continue; | |||
220 | } | |||
221 | ||||
222 | MadeChanges |= Solver.simplifyInstsInBlock( | |||
223 | BB, InsertedValues, NumInstRemoved, NumInstReplaced); | |||
224 | } | |||
225 | ||||
226 | DomTreeUpdater DTU = IsFuncSpecEnabled && Specializer.isClonedFunction(&F) | |||
227 | ? DomTreeUpdater(DomTreeUpdater::UpdateStrategy::Lazy) | |||
228 | : Solver.getDTU(F); | |||
229 | ||||
230 | // Change dead blocks to unreachable. We do it after replacing constants | |||
231 | // in all executable blocks, because changeToUnreachable may remove PHI | |||
232 | // nodes in executable blocks we found values for. The function's entry | |||
233 | // block is not part of BlocksToErase, so we have to handle it separately. | |||
234 | for (BasicBlock *BB : BlocksToErase) { | |||
235 | NumInstRemoved += changeToUnreachable(BB->getFirstNonPHI(), | |||
236 | /*PreserveLCSSA=*/false, &DTU); | |||
237 | } | |||
238 | if (!Solver.isBlockExecutable(&F.front())) | |||
239 | NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(), | |||
240 | /*PreserveLCSSA=*/false, &DTU); | |||
241 | ||||
242 | BasicBlock *NewUnreachableBB = nullptr; | |||
243 | for (BasicBlock &BB : F) | |||
244 | MadeChanges |= Solver.removeNonFeasibleEdges(&BB, DTU, NewUnreachableBB); | |||
245 | ||||
246 | for (BasicBlock *DeadBB : BlocksToErase) | |||
247 | if (!DeadBB->hasAddressTaken()) | |||
248 | DTU.deleteBB(DeadBB); | |||
249 | ||||
250 | for (BasicBlock &BB : F) { | |||
251 | for (Instruction &Inst : llvm::make_early_inc_range(BB)) { | |||
252 | if (Solver.getPredicateInfoFor(&Inst)) { | |||
253 | if (auto *II = dyn_cast<IntrinsicInst>(&Inst)) { | |||
254 | if (II->getIntrinsicID() == Intrinsic::ssa_copy) { | |||
255 | Value *Op = II->getOperand(0); | |||
256 | Inst.replaceAllUsesWith(Op); | |||
257 | Inst.eraseFromParent(); | |||
258 | } | |||
259 | } | |||
260 | } | |||
261 | } | |||
262 | } | |||
263 | } | |||
264 | ||||
265 | // If we inferred constant or undef return values for a function, we replaced | |||
266 | // all call uses with the inferred value. This means we don't need to bother | |||
267 | // actually returning anything from the function. Replace all return | |||
268 | // instructions with return undef. | |||
269 | // | |||
270 | // Do this in two stages: first identify the functions we should process, then | |||
271 | // actually zap their returns. This is important because we can only do this | |||
272 | // if the address of the function isn't taken. In cases where a return is the | |||
273 | // last use of a function, the order of processing functions would affect | |||
274 | // whether other functions are optimizable. | |||
275 | SmallVector<ReturnInst*, 8> ReturnsToZap; | |||
276 | ||||
277 | for (const auto &I : Solver.getTrackedRetVals()) { | |||
278 | Function *F = I.first; | |||
279 | const ValueLatticeElement &ReturnValue = I.second; | |||
280 | ||||
281 | // If there is a known constant range for the return value, add !range | |||
282 | // metadata to the function's call sites. | |||
283 | if (ReturnValue.isConstantRange() && | |||
284 | !ReturnValue.getConstantRange().isSingleElement()) { | |||
285 | // Do not add range metadata if the return value may include undef. | |||
286 | if (ReturnValue.isConstantRangeIncludingUndef()) | |||
287 | continue; | |||
288 | ||||
289 | auto &CR = ReturnValue.getConstantRange(); | |||
290 | for (User *User : F->users()) { | |||
291 | auto *CB = dyn_cast<CallBase>(User); | |||
292 | if (!CB || CB->getCalledFunction() != F) | |||
293 | continue; | |||
294 | ||||
295 | // Do not touch existing metadata for now. | |||
296 | // TODO: We should be able to take the intersection of the existing | |||
297 | // metadata and the inferred range. | |||
298 | if (CB->getMetadata(LLVMContext::MD_range)) | |||
299 | continue; | |||
300 | ||||
301 | LLVMContext &Context = CB->getParent()->getContext(); | |||
302 | Metadata *RangeMD[] = { | |||
303 | ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())), | |||
304 | ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))}; | |||
305 | CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD)); | |||
306 | } | |||
307 | continue; | |||
308 | } | |||
309 | if (F->getReturnType()->isVoidTy()) | |||
310 | continue; | |||
311 | if (SCCPSolver::isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef()) | |||
312 | findReturnsToZap(*F, ReturnsToZap, Solver); | |||
313 | } | |||
314 | ||||
315 | for (auto *F : Solver.getMRVFunctionsTracked()) { | |||
316 | assert(F->getReturnType()->isStructTy() &&(static_cast <bool> (F->getReturnType()->isStructTy () && "The return type should be a struct") ? void (0 ) : __assert_fail ("F->getReturnType()->isStructTy() && \"The return type should be a struct\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 317, __extension__ __PRETTY_FUNCTION__ )) | |||
317 | "The return type should be a struct")(static_cast <bool> (F->getReturnType()->isStructTy () && "The return type should be a struct") ? void (0 ) : __assert_fail ("F->getReturnType()->isStructTy() && \"The return type should be a struct\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 317, __extension__ __PRETTY_FUNCTION__ )); | |||
318 | StructType *STy = cast<StructType>(F->getReturnType()); | |||
319 | if (Solver.isStructLatticeConstant(F, STy)) | |||
320 | findReturnsToZap(*F, ReturnsToZap, Solver); | |||
321 | } | |||
322 | ||||
323 | // Zap all returns which we've identified as zap to change. | |||
324 | SmallSetVector<Function *, 8> FuncZappedReturn; | |||
325 | for (ReturnInst *RI : ReturnsToZap) { | |||
326 | Function *F = RI->getParent()->getParent(); | |||
327 | RI->setOperand(0, UndefValue::get(F->getReturnType())); | |||
328 | // Record all functions that are zapped. | |||
329 | FuncZappedReturn.insert(F); | |||
330 | } | |||
331 | ||||
332 | // Remove the returned attribute for zapped functions and the | |||
333 | // corresponding call sites. | |||
334 | // Also remove any attributes that convert an undef return value into | |||
335 | // immediate undefined behavior | |||
336 | AttributeMask UBImplyingAttributes = | |||
337 | AttributeFuncs::getUBImplyingAttributes(); | |||
338 | for (Function *F : FuncZappedReturn) { | |||
339 | for (Argument &A : F->args()) | |||
340 | F->removeParamAttr(A.getArgNo(), Attribute::Returned); | |||
341 | F->removeRetAttrs(UBImplyingAttributes); | |||
342 | for (Use &U : F->uses()) { | |||
343 | CallBase *CB = dyn_cast<CallBase>(U.getUser()); | |||
344 | if (!CB) { | |||
345 | assert(isa<BlockAddress>(U.getUser()) ||(static_cast <bool> (isa<BlockAddress>(U.getUser( )) || (isa<Constant>(U.getUser()) && all_of(U.getUser ()->users(), [](const User *UserUser) { return cast<IntrinsicInst >(UserUser)->isAssumeLikeIntrinsic(); }))) ? void (0) : __assert_fail ("isa<BlockAddress>(U.getUser()) || (isa<Constant>(U.getUser()) && all_of(U.getUser()->users(), [](const User *UserUser) { return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); }))" , "llvm/lib/Transforms/IPO/SCCP.cpp", 349, __extension__ __PRETTY_FUNCTION__ )) | |||
346 | (isa<Constant>(U.getUser()) &&(static_cast <bool> (isa<BlockAddress>(U.getUser( )) || (isa<Constant>(U.getUser()) && all_of(U.getUser ()->users(), [](const User *UserUser) { return cast<IntrinsicInst >(UserUser)->isAssumeLikeIntrinsic(); }))) ? void (0) : __assert_fail ("isa<BlockAddress>(U.getUser()) || (isa<Constant>(U.getUser()) && all_of(U.getUser()->users(), [](const User *UserUser) { return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); }))" , "llvm/lib/Transforms/IPO/SCCP.cpp", 349, __extension__ __PRETTY_FUNCTION__ )) | |||
347 | all_of(U.getUser()->users(), [](const User *UserUser) {(static_cast <bool> (isa<BlockAddress>(U.getUser( )) || (isa<Constant>(U.getUser()) && all_of(U.getUser ()->users(), [](const User *UserUser) { return cast<IntrinsicInst >(UserUser)->isAssumeLikeIntrinsic(); }))) ? void (0) : __assert_fail ("isa<BlockAddress>(U.getUser()) || (isa<Constant>(U.getUser()) && all_of(U.getUser()->users(), [](const User *UserUser) { return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); }))" , "llvm/lib/Transforms/IPO/SCCP.cpp", 349, __extension__ __PRETTY_FUNCTION__ )) | |||
348 | return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic();(static_cast <bool> (isa<BlockAddress>(U.getUser( )) || (isa<Constant>(U.getUser()) && all_of(U.getUser ()->users(), [](const User *UserUser) { return cast<IntrinsicInst >(UserUser)->isAssumeLikeIntrinsic(); }))) ? void (0) : __assert_fail ("isa<BlockAddress>(U.getUser()) || (isa<Constant>(U.getUser()) && all_of(U.getUser()->users(), [](const User *UserUser) { return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); }))" , "llvm/lib/Transforms/IPO/SCCP.cpp", 349, __extension__ __PRETTY_FUNCTION__ )) | |||
349 | })))(static_cast <bool> (isa<BlockAddress>(U.getUser( )) || (isa<Constant>(U.getUser()) && all_of(U.getUser ()->users(), [](const User *UserUser) { return cast<IntrinsicInst >(UserUser)->isAssumeLikeIntrinsic(); }))) ? void (0) : __assert_fail ("isa<BlockAddress>(U.getUser()) || (isa<Constant>(U.getUser()) && all_of(U.getUser()->users(), [](const User *UserUser) { return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); }))" , "llvm/lib/Transforms/IPO/SCCP.cpp", 349, __extension__ __PRETTY_FUNCTION__ )); | |||
350 | continue; | |||
351 | } | |||
352 | ||||
353 | for (Use &Arg : CB->args()) | |||
354 | CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned); | |||
355 | CB->removeRetAttrs(UBImplyingAttributes); | |||
356 | } | |||
357 | } | |||
358 | ||||
359 | // If we inferred constant or undef values for globals variables, we can | |||
360 | // delete the global and any stores that remain to it. | |||
361 | for (const auto &I : make_early_inc_range(Solver.getTrackedGlobals())) { | |||
362 | GlobalVariable *GV = I.first; | |||
363 | if (SCCPSolver::isOverdefined(I.second)) | |||
364 | continue; | |||
365 | LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Found that GV '" << GV-> getName() << "' is constant!\n"; } } while (false) | |||
366 | << "' is constant!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Found that GV '" << GV-> getName() << "' is constant!\n"; } } while (false); | |||
367 | while (!GV->use_empty()) { | |||
368 | StoreInst *SI = cast<StoreInst>(GV->user_back()); | |||
369 | SI->eraseFromParent(); | |||
370 | MadeChanges = true; | |||
371 | } | |||
372 | M.eraseGlobalVariable(GV); | |||
373 | ++NumGlobalConst; | |||
374 | } | |||
375 | ||||
376 | return MadeChanges; | |||
377 | } | |||
378 | ||||
379 | PreservedAnalyses IPSCCPPass::run(Module &M, ModuleAnalysisManager &AM) { | |||
380 | const DataLayout &DL = M.getDataLayout(); | |||
381 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); | |||
382 | auto GetTLI = [&FAM](Function &F) -> const TargetLibraryInfo & { | |||
383 | return FAM.getResult<TargetLibraryAnalysis>(F); | |||
384 | }; | |||
385 | auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { | |||
386 | return FAM.getResult<TargetIRAnalysis>(F); | |||
387 | }; | |||
388 | auto GetAC = [&FAM](Function &F) -> AssumptionCache & { | |||
389 | return FAM.getResult<AssumptionAnalysis>(F); | |||
390 | }; | |||
391 | auto getAnalysis = [&FAM, this](Function &F) -> AnalysisResultsForFn { | |||
392 | DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); | |||
393 | return { | |||
394 | std::make_unique<PredicateInfo>(F, DT, FAM.getResult<AssumptionAnalysis>(F)), | |||
| ||||
395 | &DT, FAM.getCachedResult<PostDominatorTreeAnalysis>(F), | |||
396 | isFuncSpecEnabled() ? &FAM.getResult<LoopAnalysis>(F) : nullptr }; | |||
397 | }; | |||
| ||||
398 | ||||
399 | if (!runIPSCCP(M, DL, &FAM, GetTLI, GetTTI, GetAC, getAnalysis, | |||
400 | isFuncSpecEnabled())) | |||
401 | return PreservedAnalyses::all(); | |||
402 | ||||
403 | PreservedAnalyses PA; | |||
404 | PA.preserve<DominatorTreeAnalysis>(); | |||
405 | PA.preserve<PostDominatorTreeAnalysis>(); | |||
406 | PA.preserve<FunctionAnalysisManagerModuleProxy>(); | |||
407 | return PA; | |||
408 | } |
1 | // unique_ptr implementation -*- C++ -*- |
2 | |
3 | // Copyright (C) 2008-2020 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file bits/unique_ptr.h |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. @headername{memory} |
28 | */ |
29 | |
30 | #ifndef _UNIQUE_PTR_H1 |
31 | #define _UNIQUE_PTR_H1 1 |
32 | |
33 | #include <bits/c++config.h> |
34 | #include <debug/assertions.h> |
35 | #include <type_traits> |
36 | #include <utility> |
37 | #include <tuple> |
38 | #include <bits/stl_function.h> |
39 | #include <bits/functional_hash.h> |
40 | #if __cplusplus201703L > 201703L |
41 | # include <compare> |
42 | # include <ostream> |
43 | #endif |
44 | |
45 | namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default"))) |
46 | { |
47 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
48 | |
49 | /** |
50 | * @addtogroup pointer_abstractions |
51 | * @{ |
52 | */ |
53 | |
54 | #if _GLIBCXX_USE_DEPRECATED1 |
55 | #pragma GCC diagnostic push |
56 | #pragma GCC diagnostic ignored "-Wdeprecated-declarations" |
57 | template<typename> class auto_ptr; |
58 | #pragma GCC diagnostic pop |
59 | #endif |
60 | |
61 | /// Primary template of default_delete, used by unique_ptr for single objects |
62 | template<typename _Tp> |
63 | struct default_delete |
64 | { |
65 | /// Default constructor |
66 | constexpr default_delete() noexcept = default; |
67 | |
68 | /** @brief Converting constructor. |
69 | * |
70 | * Allows conversion from a deleter for objects of another type, `_Up`, |
71 | * only if `_Up*` is convertible to `_Tp*`. |
72 | */ |
73 | template<typename _Up, |
74 | typename = _Require<is_convertible<_Up*, _Tp*>>> |
75 | default_delete(const default_delete<_Up>&) noexcept { } |
76 | |
77 | /// Calls `delete __ptr` |
78 | void |
79 | operator()(_Tp* __ptr) const |
80 | { |
81 | static_assert(!is_void<_Tp>::value, |
82 | "can't delete pointer to incomplete type"); |
83 | static_assert(sizeof(_Tp)>0, |
84 | "can't delete pointer to incomplete type"); |
85 | delete __ptr; |
86 | } |
87 | }; |
88 | |
89 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
90 | // DR 740 - omit specialization for array objects with a compile time length |
91 | |
92 | /// Specialization of default_delete for arrays, used by `unique_ptr<T[]>` |
93 | template<typename _Tp> |
94 | struct default_delete<_Tp[]> |
95 | { |
96 | public: |
97 | /// Default constructor |
98 | constexpr default_delete() noexcept = default; |
99 | |
100 | /** @brief Converting constructor. |
101 | * |
102 | * Allows conversion from a deleter for arrays of another type, such as |
103 | * a const-qualified version of `_Tp`. |
104 | * |
105 | * Conversions from types derived from `_Tp` are not allowed because |
106 | * it is undefined to `delete[]` an array of derived types through a |
107 | * pointer to the base type. |
108 | */ |
109 | template<typename _Up, |
110 | typename = _Require<is_convertible<_Up(*)[], _Tp(*)[]>>> |
111 | default_delete(const default_delete<_Up[]>&) noexcept { } |
112 | |
113 | /// Calls `delete[] __ptr` |
114 | template<typename _Up> |
115 | typename enable_if<is_convertible<_Up(*)[], _Tp(*)[]>::value>::type |
116 | operator()(_Up* __ptr) const |
117 | { |
118 | static_assert(sizeof(_Tp)>0, |
119 | "can't delete pointer to incomplete type"); |
120 | delete [] __ptr; |
121 | } |
122 | }; |
123 | |
124 | /// @cond undocumented |
125 | |
126 | // Manages the pointer and deleter of a unique_ptr |
127 | template <typename _Tp, typename _Dp> |
128 | class __uniq_ptr_impl |
129 | { |
130 | template <typename _Up, typename _Ep, typename = void> |
131 | struct _Ptr |
132 | { |
133 | using type = _Up*; |
134 | }; |
135 | |
136 | template <typename _Up, typename _Ep> |
137 | struct |
138 | _Ptr<_Up, _Ep, __void_t<typename remove_reference<_Ep>::type::pointer>> |
139 | { |
140 | using type = typename remove_reference<_Ep>::type::pointer; |
141 | }; |
142 | |
143 | public: |
144 | using _DeleterConstraint = enable_if< |
145 | __and_<__not_<is_pointer<_Dp>>, |
146 | is_default_constructible<_Dp>>::value>; |
147 | |
148 | using pointer = typename _Ptr<_Tp, _Dp>::type; |
149 | |
150 | static_assert( !is_rvalue_reference<_Dp>::value, |
151 | "unique_ptr's deleter type must be a function object type" |
152 | " or an lvalue reference type" ); |
153 | |
154 | __uniq_ptr_impl() = default; |
155 | __uniq_ptr_impl(pointer __p) : _M_t() { _M_ptr() = __p; } |
156 | |
157 | template<typename _Del> |
158 | __uniq_ptr_impl(pointer __p, _Del&& __d) |
159 | : _M_t(__p, std::forward<_Del>(__d)) { } |
160 | |
161 | __uniq_ptr_impl(__uniq_ptr_impl&& __u) noexcept |
162 | : _M_t(std::move(__u._M_t)) |
163 | { __u._M_ptr() = nullptr; } |
164 | |
165 | __uniq_ptr_impl& operator=(__uniq_ptr_impl&& __u) noexcept |
166 | { |
167 | reset(__u.release()); |
168 | _M_deleter() = std::forward<_Dp>(__u._M_deleter()); |
169 | return *this; |
170 | } |
171 | |
172 | pointer& _M_ptr() { return std::get<0>(_M_t); } |
173 | pointer _M_ptr() const { return std::get<0>(_M_t); } |
174 | _Dp& _M_deleter() { return std::get<1>(_M_t); } |
175 | const _Dp& _M_deleter() const { return std::get<1>(_M_t); } |
176 | |
177 | void reset(pointer __p) noexcept |
178 | { |
179 | const pointer __old_p = _M_ptr(); |
180 | _M_ptr() = __p; |
181 | if (__old_p) |
182 | _M_deleter()(__old_p); |
183 | } |
184 | |
185 | pointer release() noexcept |
186 | { |
187 | pointer __p = _M_ptr(); |
188 | _M_ptr() = nullptr; |
189 | return __p; |
190 | } |
191 | |
192 | void |
193 | swap(__uniq_ptr_impl& __rhs) noexcept |
194 | { |
195 | using std::swap; |
196 | swap(this->_M_ptr(), __rhs._M_ptr()); |
197 | swap(this->_M_deleter(), __rhs._M_deleter()); |
198 | } |
199 | |
200 | private: |
201 | tuple<pointer, _Dp> _M_t; |
202 | }; |
203 | |
204 | // Defines move construction + assignment as either defaulted or deleted. |
205 | template <typename _Tp, typename _Dp, |
206 | bool = is_move_constructible<_Dp>::value, |
207 | bool = is_move_assignable<_Dp>::value> |
208 | struct __uniq_ptr_data : __uniq_ptr_impl<_Tp, _Dp> |
209 | { |
210 | using __uniq_ptr_impl<_Tp, _Dp>::__uniq_ptr_impl; |
211 | __uniq_ptr_data(__uniq_ptr_data&&) = default; |
212 | __uniq_ptr_data& operator=(__uniq_ptr_data&&) = default; |
213 | }; |
214 | |
215 | template <typename _Tp, typename _Dp> |
216 | struct __uniq_ptr_data<_Tp, _Dp, true, false> : __uniq_ptr_impl<_Tp, _Dp> |
217 | { |
218 | using __uniq_ptr_impl<_Tp, _Dp>::__uniq_ptr_impl; |
219 | __uniq_ptr_data(__uniq_ptr_data&&) = default; |
220 | __uniq_ptr_data& operator=(__uniq_ptr_data&&) = delete; |
221 | }; |
222 | |
223 | template <typename _Tp, typename _Dp> |
224 | struct __uniq_ptr_data<_Tp, _Dp, false, true> : __uniq_ptr_impl<_Tp, _Dp> |
225 | { |
226 | using __uniq_ptr_impl<_Tp, _Dp>::__uniq_ptr_impl; |
227 | __uniq_ptr_data(__uniq_ptr_data&&) = delete; |
228 | __uniq_ptr_data& operator=(__uniq_ptr_data&&) = default; |
229 | }; |
230 | |
231 | template <typename _Tp, typename _Dp> |
232 | struct __uniq_ptr_data<_Tp, _Dp, false, false> : __uniq_ptr_impl<_Tp, _Dp> |
233 | { |
234 | using __uniq_ptr_impl<_Tp, _Dp>::__uniq_ptr_impl; |
235 | __uniq_ptr_data(__uniq_ptr_data&&) = delete; |
236 | __uniq_ptr_data& operator=(__uniq_ptr_data&&) = delete; |
237 | }; |
238 | /// @endcond |
239 | |
240 | /// 20.7.1.2 unique_ptr for single objects. |
241 | template <typename _Tp, typename _Dp = default_delete<_Tp>> |
242 | class unique_ptr |
243 | { |
244 | template <typename _Up> |
245 | using _DeleterConstraint = |
246 | typename __uniq_ptr_impl<_Tp, _Up>::_DeleterConstraint::type; |
247 | |
248 | __uniq_ptr_data<_Tp, _Dp> _M_t; |
249 | |
250 | public: |
251 | using pointer = typename __uniq_ptr_impl<_Tp, _Dp>::pointer; |
252 | using element_type = _Tp; |
253 | using deleter_type = _Dp; |
254 | |
255 | private: |
256 | // helper template for detecting a safe conversion from another |
257 | // unique_ptr |
258 | template<typename _Up, typename _Ep> |
259 | using __safe_conversion_up = __and_< |
260 | is_convertible<typename unique_ptr<_Up, _Ep>::pointer, pointer>, |
261 | __not_<is_array<_Up>> |
262 | >; |
263 | |
264 | public: |
265 | // Constructors. |
266 | |
267 | /// Default constructor, creates a unique_ptr that owns nothing. |
268 | template<typename _Del = _Dp, typename = _DeleterConstraint<_Del>> |
269 | constexpr unique_ptr() noexcept |
270 | : _M_t() |
271 | { } |
272 | |
273 | /** Takes ownership of a pointer. |
274 | * |
275 | * @param __p A pointer to an object of @c element_type |
276 | * |
277 | * The deleter will be value-initialized. |
278 | */ |
279 | template<typename _Del = _Dp, typename = _DeleterConstraint<_Del>> |
280 | explicit |
281 | unique_ptr(pointer __p) noexcept |
282 | : _M_t(__p) |
283 | { } |
284 | |
285 | /** Takes ownership of a pointer. |
286 | * |
287 | * @param __p A pointer to an object of @c element_type |
288 | * @param __d A reference to a deleter. |
289 | * |
290 | * The deleter will be initialized with @p __d |
291 | */ |
292 | template<typename _Del = deleter_type, |
293 | typename = _Require<is_copy_constructible<_Del>>> |
294 | unique_ptr(pointer __p, const deleter_type& __d) noexcept |
295 | : _M_t(__p, __d) { } |
296 | |
297 | /** Takes ownership of a pointer. |
298 | * |
299 | * @param __p A pointer to an object of @c element_type |
300 | * @param __d An rvalue reference to a (non-reference) deleter. |
301 | * |
302 | * The deleter will be initialized with @p std::move(__d) |
303 | */ |
304 | template<typename _Del = deleter_type, |
305 | typename = _Require<is_move_constructible<_Del>>> |
306 | unique_ptr(pointer __p, |
307 | __enable_if_t<!is_lvalue_reference<_Del>::value, |
308 | _Del&&> __d) noexcept |
309 | : _M_t(__p, std::move(__d)) |
310 | { } |
311 | |
312 | template<typename _Del = deleter_type, |
313 | typename _DelUnref = typename remove_reference<_Del>::type> |
314 | unique_ptr(pointer, |
315 | __enable_if_t<is_lvalue_reference<_Del>::value, |
316 | _DelUnref&&>) = delete; |
317 | |
318 | /// Creates a unique_ptr that owns nothing. |
319 | template<typename _Del = _Dp, typename = _DeleterConstraint<_Del>> |
320 | constexpr unique_ptr(nullptr_t) noexcept |
321 | : _M_t() |
322 | { } |
323 | |
324 | // Move constructors. |
325 | |
326 | /// Move constructor. |
327 | unique_ptr(unique_ptr&&) = default; |
328 | |
329 | /** @brief Converting constructor from another type |
330 | * |
331 | * Requires that the pointer owned by @p __u is convertible to the |
332 | * type of pointer owned by this object, @p __u does not own an array, |
333 | * and @p __u has a compatible deleter type. |
334 | */ |
335 | template<typename _Up, typename _Ep, typename = _Require< |
336 | __safe_conversion_up<_Up, _Ep>, |
337 | typename conditional<is_reference<_Dp>::value, |
338 | is_same<_Ep, _Dp>, |
339 | is_convertible<_Ep, _Dp>>::type>> |
340 | unique_ptr(unique_ptr<_Up, _Ep>&& __u) noexcept |
341 | : _M_t(__u.release(), std::forward<_Ep>(__u.get_deleter())) |
342 | { } |
343 | |
344 | #if _GLIBCXX_USE_DEPRECATED1 |
345 | #pragma GCC diagnostic push |
346 | #pragma GCC diagnostic ignored "-Wdeprecated-declarations" |
347 | /// Converting constructor from @c auto_ptr |
348 | template<typename _Up, typename = _Require< |
349 | is_convertible<_Up*, _Tp*>, is_same<_Dp, default_delete<_Tp>>>> |
350 | unique_ptr(auto_ptr<_Up>&& __u) noexcept; |
351 | #pragma GCC diagnostic pop |
352 | #endif |
353 | |
354 | /// Destructor, invokes the deleter if the stored pointer is not null. |
355 | ~unique_ptr() noexcept |
356 | { |
357 | static_assert(__is_invocable<deleter_type&, pointer>::value, |
358 | "unique_ptr's deleter must be invocable with a pointer"); |
359 | auto& __ptr = _M_t._M_ptr(); |
360 | if (__ptr != nullptr) |
361 | get_deleter()(std::move(__ptr)); |
362 | __ptr = pointer(); |
363 | } |
364 | |
365 | // Assignment. |
366 | |
367 | /** @brief Move assignment operator. |
368 | * |
369 | * Invokes the deleter if this object owns a pointer. |
370 | */ |
371 | unique_ptr& operator=(unique_ptr&&) = default; |
372 | |
373 | /** @brief Assignment from another type. |
374 | * |
375 | * @param __u The object to transfer ownership from, which owns a |
376 | * convertible pointer to a non-array object. |
377 | * |
378 | * Invokes the deleter if this object owns a pointer. |
379 | */ |
380 | template<typename _Up, typename _Ep> |
381 | typename enable_if< __and_< |
382 | __safe_conversion_up<_Up, _Ep>, |
383 | is_assignable<deleter_type&, _Ep&&> |
384 | >::value, |
385 | unique_ptr&>::type |
386 | operator=(unique_ptr<_Up, _Ep>&& __u) noexcept |
387 | { |
388 | reset(__u.release()); |
389 | get_deleter() = std::forward<_Ep>(__u.get_deleter()); |
390 | return *this; |
391 | } |
392 | |
393 | /// Reset the %unique_ptr to empty, invoking the deleter if necessary. |
394 | unique_ptr& |
395 | operator=(nullptr_t) noexcept |
396 | { |
397 | reset(); |
398 | return *this; |
399 | } |
400 | |
401 | // Observers. |
402 | |
403 | /// Dereference the stored pointer. |
404 | typename add_lvalue_reference<element_type>::type |
405 | operator*() const |
406 | { |
407 | __glibcxx_assert(get() != pointer())do { if (! (get() != pointer())) std::__replacement_assert("/usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/unique_ptr.h" , 407, __PRETTY_FUNCTION__, "get() != pointer()"); } while (false ); |
408 | return *get(); |
409 | } |
410 | |
411 | /// Return the stored pointer. |
412 | pointer |
413 | operator->() const noexcept |
414 | { |
415 | _GLIBCXX_DEBUG_PEDASSERT(get() != pointer()); |
416 | return get(); |
417 | } |
418 | |
419 | /// Return the stored pointer. |
420 | pointer |
421 | get() const noexcept |
422 | { return _M_t._M_ptr(); } |
423 | |
424 | /// Return a reference to the stored deleter. |
425 | deleter_type& |
426 | get_deleter() noexcept |
427 | { return _M_t._M_deleter(); } |
428 | |
429 | /// Return a reference to the stored deleter. |
430 | const deleter_type& |
431 | get_deleter() const noexcept |
432 | { return _M_t._M_deleter(); } |
433 | |
434 | /// Return @c true if the stored pointer is not null. |
435 | explicit operator bool() const noexcept |
436 | { return get() == pointer() ? false : true; } |
437 | |
438 | // Modifiers. |
439 | |
440 | /// Release ownership of any stored pointer. |
441 | pointer |
442 | release() noexcept |
443 | { return _M_t.release(); } |
444 | |
445 | /** @brief Replace the stored pointer. |
446 | * |
447 | * @param __p The new pointer to store. |
448 | * |
449 | * The deleter will be invoked if a pointer is already owned. |
450 | */ |
451 | void |
452 | reset(pointer __p = pointer()) noexcept |
453 | { |
454 | static_assert(__is_invocable<deleter_type&, pointer>::value, |
455 | "unique_ptr's deleter must be invocable with a pointer"); |
456 | _M_t.reset(std::move(__p)); |
457 | } |
458 | |
459 | /// Exchange the pointer and deleter with another object. |
460 | void |
461 | swap(unique_ptr& __u) noexcept |
462 | { |
463 | static_assert(__is_swappable<_Dp>::value, "deleter must be swappable"); |
464 | _M_t.swap(__u._M_t); |
465 | } |
466 | |
467 | // Disable copy from lvalue. |
468 | unique_ptr(const unique_ptr&) = delete; |
469 | unique_ptr& operator=(const unique_ptr&) = delete; |
470 | }; |
471 | |
472 | /// 20.7.1.3 unique_ptr for array objects with a runtime length |
473 | // [unique.ptr.runtime] |
474 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
475 | // DR 740 - omit specialization for array objects with a compile time length |
476 | template<typename _Tp, typename _Dp> |
477 | class unique_ptr<_Tp[], _Dp> |
478 | { |
479 | template <typename _Up> |
480 | using _DeleterConstraint = |
481 | typename __uniq_ptr_impl<_Tp, _Up>::_DeleterConstraint::type; |
482 | |
483 | __uniq_ptr_data<_Tp, _Dp> _M_t; |
484 | |
485 | template<typename _Up> |
486 | using __remove_cv = typename remove_cv<_Up>::type; |
487 | |
488 | // like is_base_of<_Tp, _Up> but false if unqualified types are the same |
489 | template<typename _Up> |
490 | using __is_derived_Tp |
491 | = __and_< is_base_of<_Tp, _Up>, |
492 | __not_<is_same<__remove_cv<_Tp>, __remove_cv<_Up>>> >; |
493 | |
494 | public: |
495 | using pointer = typename __uniq_ptr_impl<_Tp, _Dp>::pointer; |
496 | using element_type = _Tp; |
497 | using deleter_type = _Dp; |
498 | |
499 | // helper template for detecting a safe conversion from another |
500 | // unique_ptr |
501 | template<typename _Up, typename _Ep, |
502 | typename _UPtr = unique_ptr<_Up, _Ep>, |
503 | typename _UP_pointer = typename _UPtr::pointer, |
504 | typename _UP_element_type = typename _UPtr::element_type> |
505 | using __safe_conversion_up = __and_< |
506 | is_array<_Up>, |
507 | is_same<pointer, element_type*>, |
508 | is_same<_UP_pointer, _UP_element_type*>, |
509 | is_convertible<_UP_element_type(*)[], element_type(*)[]> |
510 | >; |
511 | |
512 | // helper template for detecting a safe conversion from a raw pointer |
513 | template<typename _Up> |
514 | using __safe_conversion_raw = __and_< |
515 | __or_<__or_<is_same<_Up, pointer>, |
516 | is_same<_Up, nullptr_t>>, |
517 | __and_<is_pointer<_Up>, |
518 | is_same<pointer, element_type*>, |
519 | is_convertible< |
520 | typename remove_pointer<_Up>::type(*)[], |
521 | element_type(*)[]> |
522 | > |
523 | > |
524 | >; |
525 | |
526 | // Constructors. |
527 | |
528 | /// Default constructor, creates a unique_ptr that owns nothing. |
529 | template<typename _Del = _Dp, typename = _DeleterConstraint<_Del>> |
530 | constexpr unique_ptr() noexcept |
531 | : _M_t() |
532 | { } |
533 | |
534 | /** Takes ownership of a pointer. |
535 | * |
536 | * @param __p A pointer to an array of a type safely convertible |
537 | * to an array of @c element_type |
538 | * |
539 | * The deleter will be value-initialized. |
540 | */ |
541 | template<typename _Up, |
542 | typename _Vp = _Dp, |
543 | typename = _DeleterConstraint<_Vp>, |
544 | typename = typename enable_if< |
545 | __safe_conversion_raw<_Up>::value, bool>::type> |
546 | explicit |
547 | unique_ptr(_Up __p) noexcept |
548 | : _M_t(__p) |
549 | { } |
550 | |
551 | /** Takes ownership of a pointer. |
552 | * |
553 | * @param __p A pointer to an array of a type safely convertible |
554 | * to an array of @c element_type |
555 | * @param __d A reference to a deleter. |
556 | * |
557 | * The deleter will be initialized with @p __d |
558 | */ |
559 | template<typename _Up, typename _Del = deleter_type, |
560 | typename = _Require<__safe_conversion_raw<_Up>, |
561 | is_copy_constructible<_Del>>> |
562 | unique_ptr(_Up __p, const deleter_type& __d) noexcept |
563 | : _M_t(__p, __d) { } |
564 | |
565 | /** Takes ownership of a pointer. |
566 | * |
567 | * @param __p A pointer to an array of a type safely convertible |
568 | * to an array of @c element_type |
569 | * @param __d A reference to a deleter. |
570 | * |
571 | * The deleter will be initialized with @p std::move(__d) |
572 | */ |
573 | template<typename _Up, typename _Del = deleter_type, |
574 | typename = _Require<__safe_conversion_raw<_Up>, |
575 | is_move_constructible<_Del>>> |
576 | unique_ptr(_Up __p, |
577 | __enable_if_t<!is_lvalue_reference<_Del>::value, |
578 | _Del&&> __d) noexcept |
579 | : _M_t(std::move(__p), std::move(__d)) |
580 | { } |
581 | |
582 | template<typename _Up, typename _Del = deleter_type, |
583 | typename _DelUnref = typename remove_reference<_Del>::type, |
584 | typename = _Require<__safe_conversion_raw<_Up>>> |
585 | unique_ptr(_Up, |
586 | __enable_if_t<is_lvalue_reference<_Del>::value, |
587 | _DelUnref&&>) = delete; |
588 | |
589 | /// Move constructor. |
590 | unique_ptr(unique_ptr&&) = default; |
591 | |
592 | /// Creates a unique_ptr that owns nothing. |
593 | template<typename _Del = _Dp, typename = _DeleterConstraint<_Del>> |
594 | constexpr unique_ptr(nullptr_t) noexcept |
595 | : _M_t() |
596 | { } |
597 | |
598 | template<typename _Up, typename _Ep, typename = _Require< |
599 | __safe_conversion_up<_Up, _Ep>, |
600 | typename conditional<is_reference<_Dp>::value, |
601 | is_same<_Ep, _Dp>, |
602 | is_convertible<_Ep, _Dp>>::type>> |
603 | unique_ptr(unique_ptr<_Up, _Ep>&& __u) noexcept |
604 | : _M_t(__u.release(), std::forward<_Ep>(__u.get_deleter())) |
605 | { } |
606 | |
607 | /// Destructor, invokes the deleter if the stored pointer is not null. |
608 | ~unique_ptr() |
609 | { |
610 | auto& __ptr = _M_t._M_ptr(); |
611 | if (__ptr != nullptr) |
612 | get_deleter()(__ptr); |
613 | __ptr = pointer(); |
614 | } |
615 | |
616 | // Assignment. |
617 | |
618 | /** @brief Move assignment operator. |
619 | * |
620 | * Invokes the deleter if this object owns a pointer. |
621 | */ |
622 | unique_ptr& |
623 | operator=(unique_ptr&&) = default; |
624 | |
625 | /** @brief Assignment from another type. |
626 | * |
627 | * @param __u The object to transfer ownership from, which owns a |
628 | * convertible pointer to an array object. |
629 | * |
630 | * Invokes the deleter if this object owns a pointer. |
631 | */ |
632 | template<typename _Up, typename _Ep> |
633 | typename |
634 | enable_if<__and_<__safe_conversion_up<_Up, _Ep>, |
635 | is_assignable<deleter_type&, _Ep&&> |
636 | >::value, |
637 | unique_ptr&>::type |
638 | operator=(unique_ptr<_Up, _Ep>&& __u) noexcept |
639 | { |
640 | reset(__u.release()); |
641 | get_deleter() = std::forward<_Ep>(__u.get_deleter()); |
642 | return *this; |
643 | } |
644 | |
645 | /// Reset the %unique_ptr to empty, invoking the deleter if necessary. |
646 | unique_ptr& |
647 | operator=(nullptr_t) noexcept |
648 | { |
649 | reset(); |
650 | return *this; |
651 | } |
652 | |
653 | // Observers. |
654 | |
655 | /// Access an element of owned array. |
656 | typename std::add_lvalue_reference<element_type>::type |
657 | operator[](size_t __i) const |
658 | { |
659 | __glibcxx_assert(get() != pointer())do { if (! (get() != pointer())) std::__replacement_assert("/usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/unique_ptr.h" , 659, __PRETTY_FUNCTION__, "get() != pointer()"); } while (false ); |
660 | return get()[__i]; |
661 | } |
662 | |
663 | /// Return the stored pointer. |
664 | pointer |
665 | get() const noexcept |
666 | { return _M_t._M_ptr(); } |
667 | |
668 | /// Return a reference to the stored deleter. |
669 | deleter_type& |
670 | get_deleter() noexcept |
671 | { return _M_t._M_deleter(); } |
672 | |
673 | /// Return a reference to the stored deleter. |
674 | const deleter_type& |
675 | get_deleter() const noexcept |
676 | { return _M_t._M_deleter(); } |
677 | |
678 | /// Return @c true if the stored pointer is not null. |
679 | explicit operator bool() const noexcept |
680 | { return get() == pointer() ? false : true; } |
681 | |
682 | // Modifiers. |
683 | |
684 | /// Release ownership of any stored pointer. |
685 | pointer |
686 | release() noexcept |
687 | { return _M_t.release(); } |
688 | |
689 | /** @brief Replace the stored pointer. |
690 | * |
691 | * @param __p The new pointer to store. |
692 | * |
693 | * The deleter will be invoked if a pointer is already owned. |
694 | */ |
695 | template <typename _Up, |
696 | typename = _Require< |
697 | __or_<is_same<_Up, pointer>, |
698 | __and_<is_same<pointer, element_type*>, |
699 | is_pointer<_Up>, |
700 | is_convertible< |
701 | typename remove_pointer<_Up>::type(*)[], |
702 | element_type(*)[] |
703 | > |
704 | > |
705 | > |
706 | >> |
707 | void |
708 | reset(_Up __p) noexcept |
709 | { _M_t.reset(std::move(__p)); } |
710 | |
711 | void reset(nullptr_t = nullptr) noexcept |
712 | { reset(pointer()); } |
713 | |
714 | /// Exchange the pointer and deleter with another object. |
715 | void |
716 | swap(unique_ptr& __u) noexcept |
717 | { |
718 | static_assert(__is_swappable<_Dp>::value, "deleter must be swappable"); |
719 | _M_t.swap(__u._M_t); |
720 | } |
721 | |
722 | // Disable copy from lvalue. |
723 | unique_ptr(const unique_ptr&) = delete; |
724 | unique_ptr& operator=(const unique_ptr&) = delete; |
725 | }; |
726 | |
727 | /// @relates unique_ptr @{ |
728 | |
729 | /// Swap overload for unique_ptr |
730 | template<typename _Tp, typename _Dp> |
731 | inline |
732 | #if __cplusplus201703L > 201402L || !defined(__STRICT_ANSI__1) // c++1z or gnu++11 |
733 | // Constrained free swap overload, see p0185r1 |
734 | typename enable_if<__is_swappable<_Dp>::value>::type |
735 | #else |
736 | void |
737 | #endif |
738 | swap(unique_ptr<_Tp, _Dp>& __x, |
739 | unique_ptr<_Tp, _Dp>& __y) noexcept |
740 | { __x.swap(__y); } |
741 | |
742 | #if __cplusplus201703L > 201402L || !defined(__STRICT_ANSI__1) // c++1z or gnu++11 |
743 | template<typename _Tp, typename _Dp> |
744 | typename enable_if<!__is_swappable<_Dp>::value>::type |
745 | swap(unique_ptr<_Tp, _Dp>&, |
746 | unique_ptr<_Tp, _Dp>&) = delete; |
747 | #endif |
748 | |
749 | /// Equality operator for unique_ptr objects, compares the owned pointers |
750 | template<typename _Tp, typename _Dp, |
751 | typename _Up, typename _Ep> |
752 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
753 | operator==(const unique_ptr<_Tp, _Dp>& __x, |
754 | const unique_ptr<_Up, _Ep>& __y) |
755 | { return __x.get() == __y.get(); } |
756 | |
757 | /// unique_ptr comparison with nullptr |
758 | template<typename _Tp, typename _Dp> |
759 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
760 | operator==(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) noexcept |
761 | { return !__x; } |
762 | |
763 | #ifndef __cpp_lib_three_way_comparison |
764 | /// unique_ptr comparison with nullptr |
765 | template<typename _Tp, typename _Dp> |
766 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
767 | operator==(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) noexcept |
768 | { return !__x; } |
769 | |
770 | /// Inequality operator for unique_ptr objects, compares the owned pointers |
771 | template<typename _Tp, typename _Dp, |
772 | typename _Up, typename _Ep> |
773 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
774 | operator!=(const unique_ptr<_Tp, _Dp>& __x, |
775 | const unique_ptr<_Up, _Ep>& __y) |
776 | { return __x.get() != __y.get(); } |
777 | |
778 | /// unique_ptr comparison with nullptr |
779 | template<typename _Tp, typename _Dp> |
780 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
781 | operator!=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) noexcept |
782 | { return (bool)__x; } |
783 | |
784 | /// unique_ptr comparison with nullptr |
785 | template<typename _Tp, typename _Dp> |
786 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
787 | operator!=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) noexcept |
788 | { return (bool)__x; } |
789 | #endif // three way comparison |
790 | |
791 | /// Relational operator for unique_ptr objects, compares the owned pointers |
792 | template<typename _Tp, typename _Dp, |
793 | typename _Up, typename _Ep> |
794 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
795 | operator<(const unique_ptr<_Tp, _Dp>& __x, |
796 | const unique_ptr<_Up, _Ep>& __y) |
797 | { |
798 | typedef typename |
799 | std::common_type<typename unique_ptr<_Tp, _Dp>::pointer, |
800 | typename unique_ptr<_Up, _Ep>::pointer>::type _CT; |
801 | return std::less<_CT>()(__x.get(), __y.get()); |
802 | } |
803 | |
804 | /// unique_ptr comparison with nullptr |
805 | template<typename _Tp, typename _Dp> |
806 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
807 | operator<(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) |
808 | { |
809 | return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(__x.get(), |
810 | nullptr); |
811 | } |
812 | |
813 | /// unique_ptr comparison with nullptr |
814 | template<typename _Tp, typename _Dp> |
815 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
816 | operator<(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) |
817 | { |
818 | return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(nullptr, |
819 | __x.get()); |
820 | } |
821 | |
822 | /// Relational operator for unique_ptr objects, compares the owned pointers |
823 | template<typename _Tp, typename _Dp, |
824 | typename _Up, typename _Ep> |
825 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
826 | operator<=(const unique_ptr<_Tp, _Dp>& __x, |
827 | const unique_ptr<_Up, _Ep>& __y) |
828 | { return !(__y < __x); } |
829 | |
830 | /// unique_ptr comparison with nullptr |
831 | template<typename _Tp, typename _Dp> |
832 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
833 | operator<=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) |
834 | { return !(nullptr < __x); } |
835 | |
836 | /// unique_ptr comparison with nullptr |
837 | template<typename _Tp, typename _Dp> |
838 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
839 | operator<=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) |
840 | { return !(__x < nullptr); } |
841 | |
842 | /// Relational operator for unique_ptr objects, compares the owned pointers |
843 | template<typename _Tp, typename _Dp, |
844 | typename _Up, typename _Ep> |
845 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
846 | operator>(const unique_ptr<_Tp, _Dp>& __x, |
847 | const unique_ptr<_Up, _Ep>& __y) |
848 | { return (__y < __x); } |
849 | |
850 | /// unique_ptr comparison with nullptr |
851 | template<typename _Tp, typename _Dp> |
852 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
853 | operator>(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) |
854 | { |
855 | return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(nullptr, |
856 | __x.get()); |
857 | } |
858 | |
859 | /// unique_ptr comparison with nullptr |
860 | template<typename _Tp, typename _Dp> |
861 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
862 | operator>(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) |
863 | { |
864 | return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(__x.get(), |
865 | nullptr); |
866 | } |
867 | |
868 | /// Relational operator for unique_ptr objects, compares the owned pointers |
869 | template<typename _Tp, typename _Dp, |
870 | typename _Up, typename _Ep> |
871 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
872 | operator>=(const unique_ptr<_Tp, _Dp>& __x, |
873 | const unique_ptr<_Up, _Ep>& __y) |
874 | { return !(__x < __y); } |
875 | |
876 | /// unique_ptr comparison with nullptr |
877 | template<typename _Tp, typename _Dp> |
878 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
879 | operator>=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) |
880 | { return !(__x < nullptr); } |
881 | |
882 | /// unique_ptr comparison with nullptr |
883 | template<typename _Tp, typename _Dp> |
884 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
885 | operator>=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) |
886 | { return !(nullptr < __x); } |
887 | |
888 | #ifdef __cpp_lib_three_way_comparison |
889 | template<typename _Tp, typename _Dp, typename _Up, typename _Ep> |
890 | requires three_way_comparable_with<typename unique_ptr<_Tp, _Dp>::pointer, |
891 | typename unique_ptr<_Up, _Ep>::pointer> |
892 | inline |
893 | compare_three_way_result_t<typename unique_ptr<_Tp, _Dp>::pointer, |
894 | typename unique_ptr<_Up, _Ep>::pointer> |
895 | operator<=>(const unique_ptr<_Tp, _Dp>& __x, |
896 | const unique_ptr<_Up, _Ep>& __y) |
897 | { return compare_three_way()(__x.get(), __y.get()); } |
898 | |
899 | template<typename _Tp, typename _Dp> |
900 | requires three_way_comparable<typename unique_ptr<_Tp, _Dp>::pointer> |
901 | inline |
902 | compare_three_way_result_t<typename unique_ptr<_Tp, _Dp>::pointer> |
903 | operator<=>(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) |
904 | { |
905 | using pointer = typename unique_ptr<_Tp, _Dp>::pointer; |
906 | return compare_three_way()(__x.get(), static_cast<pointer>(nullptr)); |
907 | } |
908 | #endif |
909 | // @} relates unique_ptr |
910 | |
911 | /// @cond undocumented |
912 | template<typename _Up, typename _Ptr = typename _Up::pointer, |
913 | bool = __poison_hash<_Ptr>::__enable_hash_call> |
914 | struct __uniq_ptr_hash |
915 | #if ! _GLIBCXX_INLINE_VERSION0 |
916 | : private __poison_hash<_Ptr> |
917 | #endif |
918 | { |
919 | size_t |
920 | operator()(const _Up& __u) const |
921 | noexcept(noexcept(std::declval<hash<_Ptr>>()(std::declval<_Ptr>()))) |
922 | { return hash<_Ptr>()(__u.get()); } |
923 | }; |
924 | |
925 | template<typename _Up, typename _Ptr> |
926 | struct __uniq_ptr_hash<_Up, _Ptr, false> |
927 | : private __poison_hash<_Ptr> |
928 | { }; |
929 | /// @endcond |
930 | |
931 | /// std::hash specialization for unique_ptr. |
932 | template<typename _Tp, typename _Dp> |
933 | struct hash<unique_ptr<_Tp, _Dp>> |
934 | : public __hash_base<size_t, unique_ptr<_Tp, _Dp>>, |
935 | public __uniq_ptr_hash<unique_ptr<_Tp, _Dp>> |
936 | { }; |
937 | |
938 | #if __cplusplus201703L >= 201402L |
939 | /// @relates unique_ptr @{ |
940 | #define __cpp_lib_make_unique201304 201304 |
941 | |
942 | /// @cond undocumented |
943 | |
944 | template<typename _Tp> |
945 | struct _MakeUniq |
946 | { typedef unique_ptr<_Tp> __single_object; }; |
947 | |
948 | template<typename _Tp> |
949 | struct _MakeUniq<_Tp[]> |
950 | { typedef unique_ptr<_Tp[]> __array; }; |
951 | |
952 | template<typename _Tp, size_t _Bound> |
953 | struct _MakeUniq<_Tp[_Bound]> |
954 | { struct __invalid_type { }; }; |
955 | |
956 | /// @endcond |
957 | |
958 | /// std::make_unique for single objects |
959 | template<typename _Tp, typename... _Args> |
960 | inline typename _MakeUniq<_Tp>::__single_object |
961 | make_unique(_Args&&... __args) |
962 | { return unique_ptr<_Tp>(new _Tp(std::forward<_Args>(__args)...)); } |
963 | |
964 | /// std::make_unique for arrays of unknown bound |
965 | template<typename _Tp> |
966 | inline typename _MakeUniq<_Tp>::__array |
967 | make_unique(size_t __num) |
968 | { return unique_ptr<_Tp>(new remove_extent_t<_Tp>[__num]()); } |
969 | |
970 | /// Disable std::make_unique for arrays of known bound |
971 | template<typename _Tp, typename... _Args> |
972 | inline typename _MakeUniq<_Tp>::__invalid_type |
973 | make_unique(_Args&&...) = delete; |
974 | // @} relates unique_ptr |
975 | #endif // C++14 |
976 | |
977 | #if __cplusplus201703L > 201703L && __cpp_concepts |
978 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
979 | // 2948. unique_ptr does not define operator<< for stream output |
980 | /// Stream output operator for unique_ptr |
981 | template<typename _CharT, typename _Traits, typename _Tp, typename _Dp> |
982 | inline basic_ostream<_CharT, _Traits>& |
983 | operator<<(basic_ostream<_CharT, _Traits>& __os, |
984 | const unique_ptr<_Tp, _Dp>& __p) |
985 | requires requires { __os << __p.get(); } |
986 | { |
987 | __os << __p.get(); |
988 | return __os; |
989 | } |
990 | #endif // C++20 |
991 | |
992 | // @} group pointer_abstractions |
993 | |
994 | #if __cplusplus201703L >= 201703L |
995 | namespace __detail::__variant |
996 | { |
997 | template<typename> struct _Never_valueless_alt; // see <variant> |
998 | |
999 | // Provide the strong exception-safety guarantee when emplacing a |
1000 | // unique_ptr into a variant. |
1001 | template<typename _Tp, typename _Del> |
1002 | struct _Never_valueless_alt<std::unique_ptr<_Tp, _Del>> |
1003 | : std::true_type |
1004 | { }; |
1005 | } // namespace __detail::__variant |
1006 | #endif // C++17 |
1007 | |
1008 | _GLIBCXX_END_NAMESPACE_VERSION |
1009 | } // namespace |
1010 | |
1011 | #endif /* _UNIQUE_PTR_H */ |