| File: | build/source/llvm/lib/Transforms/IPO/SCCP.cpp |
| Warning: | line 396, column 3 Potential leak of memory pointed to by field '_M_head_impl' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- SCCP.cpp ----------------------------------------------------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file implements Interprocedural Sparse Conditional Constant Propagation. | |||
| 10 | // | |||
| 11 | //===----------------------------------------------------------------------===// | |||
| 12 | ||||
| 13 | #include "llvm/Transforms/IPO/SCCP.h" | |||
| 14 | #include "llvm/ADT/SetVector.h" | |||
| 15 | #include "llvm/Analysis/AssumptionCache.h" | |||
| 16 | #include "llvm/Analysis/LoopInfo.h" | |||
| 17 | #include "llvm/Analysis/PostDominators.h" | |||
| 18 | #include "llvm/Analysis/TargetLibraryInfo.h" | |||
| 19 | #include "llvm/Analysis/TargetTransformInfo.h" | |||
| 20 | #include "llvm/Analysis/ValueLattice.h" | |||
| 21 | #include "llvm/Analysis/ValueLatticeUtils.h" | |||
| 22 | #include "llvm/Analysis/ValueTracking.h" | |||
| 23 | #include "llvm/IR/Constants.h" | |||
| 24 | #include "llvm/IR/IntrinsicInst.h" | |||
| 25 | #include "llvm/Support/CommandLine.h" | |||
| 26 | #include "llvm/Support/ModRef.h" | |||
| 27 | #include "llvm/Transforms/IPO.h" | |||
| 28 | #include "llvm/Transforms/IPO/FunctionSpecialization.h" | |||
| 29 | #include "llvm/Transforms/Scalar/SCCP.h" | |||
| 30 | #include "llvm/Transforms/Utils/Local.h" | |||
| 31 | #include "llvm/Transforms/Utils/SCCPSolver.h" | |||
| 32 | ||||
| 33 | using namespace llvm; | |||
| 34 | ||||
| 35 | #define DEBUG_TYPE"sccp" "sccp" | |||
| 36 | ||||
| 37 | STATISTIC(NumInstRemoved, "Number of instructions removed")static llvm::Statistic NumInstRemoved = {"sccp", "NumInstRemoved" , "Number of instructions removed"}; | |||
| 38 | STATISTIC(NumArgsElimed ,"Number of arguments constant propagated")static llvm::Statistic NumArgsElimed = {"sccp", "NumArgsElimed" , "Number of arguments constant propagated"}; | |||
| 39 | STATISTIC(NumGlobalConst, "Number of globals found to be constant")static llvm::Statistic NumGlobalConst = {"sccp", "NumGlobalConst" , "Number of globals found to be constant"}; | |||
| 40 | STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable")static llvm::Statistic NumDeadBlocks = {"sccp", "NumDeadBlocks" , "Number of basic blocks unreachable"}; | |||
| 41 | STATISTIC(NumInstReplaced,static llvm::Statistic NumInstReplaced = {"sccp", "NumInstReplaced" , "Number of instructions replaced with (simpler) instruction" } | |||
| 42 | "Number of instructions replaced with (simpler) instruction")static llvm::Statistic NumInstReplaced = {"sccp", "NumInstReplaced" , "Number of instructions replaced with (simpler) instruction" }; | |||
| 43 | ||||
| 44 | static cl::opt<unsigned> FuncSpecMaxIters( | |||
| 45 | "funcspec-max-iters", cl::init(1), cl::Hidden, cl::desc( | |||
| 46 | "The maximum number of iterations function specialization is run")); | |||
| 47 | ||||
| 48 | static void findReturnsToZap(Function &F, | |||
| 49 | SmallVector<ReturnInst *, 8> &ReturnsToZap, | |||
| 50 | SCCPSolver &Solver) { | |||
| 51 | // We can only do this if we know that nothing else can call the function. | |||
| 52 | if (!Solver.isArgumentTrackedFunction(&F)) | |||
| 53 | return; | |||
| 54 | ||||
| 55 | if (Solver.mustPreserveReturn(&F)) { | |||
| 56 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail or \"clang.arc.attachedcall\" call of " "it\n"; } } while (false) | |||
| 57 | dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail or \"clang.arc.attachedcall\" call of " "it\n"; } } while (false) | |||
| 58 | << "Can't zap returns of the function : " << F.getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail or \"clang.arc.attachedcall\" call of " "it\n"; } } while (false) | |||
| 59 | << " due to present musttail or \"clang.arc.attachedcall\" call of "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail or \"clang.arc.attachedcall\" call of " "it\n"; } } while (false) | |||
| 60 | "it\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail or \"clang.arc.attachedcall\" call of " "it\n"; } } while (false); | |||
| 61 | return; | |||
| 62 | } | |||
| 63 | ||||
| 64 | assert((static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 65 | all_of(F.users(),(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 66 | [&Solver](User *U) {(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 67 | if (isa<Instruction>(U) &&(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 68 | !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 69 | return true;(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 70 | // Non-callsite uses are not impacted by zapping. Also, constant(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 71 | // uses (like blockaddresses) could stuck around, without being(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 72 | // used in the underlying IR, meaning we do not have lattice(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 73 | // values for them.(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 74 | if (!isa<CallBase>(U))(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 75 | return true;(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 76 | if (U->getType()->isStructTy()) {(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 77 | return all_of(Solver.getStructLatticeValueFor(U),(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 78 | [](const ValueLatticeElement &LV) {(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 79 | return !SCCPSolver::isOverdefined(LV);(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 80 | });(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 81 | }(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 82 | ||||
| 83 | // We don't consider assume-like intrinsics to be actual address(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 84 | // captures.(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 85 | if (auto *II = dyn_cast<IntrinsicInst>(U)) {(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 86 | if (II->isAssumeLikeIntrinsic())(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 87 | return true;(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 88 | }(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 89 | ||||
| 90 | return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U));(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 91 | }) &&(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )) | |||
| 92 | "We can only zap functions where all live users have a concrete value")(static_cast <bool> (all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable (cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()-> isStructTy()) { return all_of(Solver.getStructLatticeValueFor (U), [](const ValueLatticeElement &LV) { return !SCCPSolver ::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst >(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor( U)); }) && "We can only zap functions where all live users have a concrete value" ) ? void (0) : __assert_fail ("all_of(F.users(), [&Solver](User *U) { if (isa<Instruction>(U) && !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) return true; if (!isa<CallBase>(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !SCCPSolver::isOverdefined(LV); }); } if (auto *II = dyn_cast<IntrinsicInst>(U)) { if (II->isAssumeLikeIntrinsic()) return true; } return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U)); }) && \"We can only zap functions where all live users have a concrete value\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 92, __extension__ __PRETTY_FUNCTION__ )); | |||
| 93 | ||||
| 94 | for (BasicBlock &BB : F) { | |||
| 95 | if (CallInst *CI = BB.getTerminatingMustTailCall()) { | |||
| 96 | LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap return of the block due to present " << "musttail call : " << *CI << "\n"; } } while (false) | |||
| 97 | << "musttail call : " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Can't zap return of the block due to present " << "musttail call : " << *CI << "\n"; } } while (false); | |||
| 98 | (void)CI; | |||
| 99 | return; | |||
| 100 | } | |||
| 101 | ||||
| 102 | if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) | |||
| 103 | if (!isa<UndefValue>(RI->getOperand(0))) | |||
| 104 | ReturnsToZap.push_back(RI); | |||
| 105 | } | |||
| 106 | } | |||
| 107 | ||||
| 108 | static bool runIPSCCP( | |||
| 109 | Module &M, const DataLayout &DL, FunctionAnalysisManager *FAM, | |||
| 110 | std::function<const TargetLibraryInfo &(Function &)> GetTLI, | |||
| 111 | std::function<TargetTransformInfo &(Function &)> GetTTI, | |||
| 112 | std::function<AssumptionCache &(Function &)> GetAC, | |||
| 113 | function_ref<AnalysisResultsForFn(Function &)> getAnalysis, | |||
| 114 | bool IsFuncSpecEnabled) { | |||
| 115 | SCCPSolver Solver(DL, GetTLI, M.getContext()); | |||
| 116 | FunctionSpecializer Specializer(Solver, M, FAM, GetTLI, GetTTI, GetAC); | |||
| 117 | ||||
| 118 | // Loop over all functions, marking arguments to those with their addresses | |||
| 119 | // taken or that are external as overdefined. | |||
| 120 | for (Function &F : M) { | |||
| 121 | if (F.isDeclaration()) | |||
| 122 | continue; | |||
| 123 | ||||
| 124 | Solver.addAnalysis(F, getAnalysis(F)); | |||
| 125 | ||||
| 126 | // Determine if we can track the function's return values. If so, add the | |||
| 127 | // function to the solver's set of return-tracked functions. | |||
| 128 | if (canTrackReturnsInterprocedurally(&F)) | |||
| 129 | Solver.addTrackedFunction(&F); | |||
| 130 | ||||
| 131 | // Determine if we can track the function's arguments. If so, add the | |||
| 132 | // function to the solver's set of argument-tracked functions. | |||
| 133 | if (canTrackArgumentsInterprocedurally(&F)) { | |||
| 134 | Solver.addArgumentTrackedFunction(&F); | |||
| 135 | continue; | |||
| 136 | } | |||
| 137 | ||||
| 138 | // Assume the function is called. | |||
| 139 | Solver.markBlockExecutable(&F.front()); | |||
| 140 | ||||
| 141 | // Assume nothing about the incoming arguments. | |||
| 142 | for (Argument &AI : F.args()) | |||
| 143 | Solver.markOverdefined(&AI); | |||
| 144 | } | |||
| 145 | ||||
| 146 | // Determine if we can track any of the module's global variables. If so, add | |||
| 147 | // the global variables we can track to the solver's set of tracked global | |||
| 148 | // variables. | |||
| 149 | for (GlobalVariable &G : M.globals()) { | |||
| 150 | G.removeDeadConstantUsers(); | |||
| 151 | if (canTrackGlobalVariableInterprocedurally(&G)) | |||
| 152 | Solver.trackValueOfGlobalVariable(&G); | |||
| 153 | } | |||
| 154 | ||||
| 155 | // Solve for constants. | |||
| 156 | Solver.solveWhileResolvedUndefsIn(M); | |||
| 157 | ||||
| 158 | if (IsFuncSpecEnabled) { | |||
| 159 | unsigned Iters = 0; | |||
| 160 | while (Iters++ < FuncSpecMaxIters && Specializer.run()); | |||
| 161 | } | |||
| 162 | ||||
| 163 | // Iterate over all of the instructions in the module, replacing them with | |||
| 164 | // constants if we have found them to be of constant values. | |||
| 165 | bool MadeChanges = false; | |||
| 166 | for (Function &F : M) { | |||
| 167 | if (F.isDeclaration()) | |||
| 168 | continue; | |||
| 169 | ||||
| 170 | SmallVector<BasicBlock *, 512> BlocksToErase; | |||
| 171 | ||||
| 172 | if (Solver.isBlockExecutable(&F.front())) { | |||
| 173 | bool ReplacedPointerArg = false; | |||
| 174 | for (Argument &Arg : F.args()) { | |||
| 175 | if (!Arg.use_empty() && Solver.tryToReplaceWithConstant(&Arg)) { | |||
| 176 | ReplacedPointerArg |= Arg.getType()->isPointerTy(); | |||
| 177 | ++NumArgsElimed; | |||
| 178 | } | |||
| 179 | } | |||
| 180 | ||||
| 181 | // If we replaced an argument, we may now also access a global (currently | |||
| 182 | // classified as "other" memory). Update memory attribute to reflect this. | |||
| 183 | if (ReplacedPointerArg) { | |||
| 184 | auto UpdateAttrs = [&](AttributeList AL) { | |||
| 185 | MemoryEffects ME = AL.getMemoryEffects(); | |||
| 186 | if (ME == MemoryEffects::unknown()) | |||
| 187 | return AL; | |||
| 188 | ||||
| 189 | ME |= MemoryEffects(MemoryEffects::Other, | |||
| 190 | ME.getModRef(MemoryEffects::ArgMem)); | |||
| 191 | return AL.addFnAttribute( | |||
| 192 | F.getContext(), | |||
| 193 | Attribute::getWithMemoryEffects(F.getContext(), ME)); | |||
| 194 | }; | |||
| 195 | ||||
| 196 | F.setAttributes(UpdateAttrs(F.getAttributes())); | |||
| 197 | for (User *U : F.users()) { | |||
| 198 | auto *CB = dyn_cast<CallBase>(U); | |||
| 199 | if (!CB || CB->getCalledFunction() != &F) | |||
| 200 | continue; | |||
| 201 | ||||
| 202 | CB->setAttributes(UpdateAttrs(CB->getAttributes())); | |||
| 203 | } | |||
| 204 | } | |||
| 205 | MadeChanges |= ReplacedPointerArg; | |||
| 206 | } | |||
| 207 | ||||
| 208 | SmallPtrSet<Value *, 32> InsertedValues; | |||
| 209 | for (BasicBlock &BB : F) { | |||
| 210 | if (!Solver.isBlockExecutable(&BB)) { | |||
| 211 | LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << " BasicBlock Dead:" << BB; } } while (false); | |||
| 212 | ++NumDeadBlocks; | |||
| 213 | ||||
| 214 | MadeChanges = true; | |||
| 215 | ||||
| 216 | if (&BB != &F.front()) | |||
| 217 | BlocksToErase.push_back(&BB); | |||
| 218 | continue; | |||
| 219 | } | |||
| 220 | ||||
| 221 | MadeChanges |= Solver.simplifyInstsInBlock( | |||
| 222 | BB, InsertedValues, NumInstRemoved, NumInstReplaced); | |||
| 223 | } | |||
| 224 | ||||
| 225 | DomTreeUpdater DTU = IsFuncSpecEnabled && Specializer.isClonedFunction(&F) | |||
| 226 | ? DomTreeUpdater(DomTreeUpdater::UpdateStrategy::Lazy) | |||
| 227 | : Solver.getDTU(F); | |||
| 228 | ||||
| 229 | // Change dead blocks to unreachable. We do it after replacing constants | |||
| 230 | // in all executable blocks, because changeToUnreachable may remove PHI | |||
| 231 | // nodes in executable blocks we found values for. The function's entry | |||
| 232 | // block is not part of BlocksToErase, so we have to handle it separately. | |||
| 233 | for (BasicBlock *BB : BlocksToErase) { | |||
| 234 | NumInstRemoved += changeToUnreachable(BB->getFirstNonPHI(), | |||
| 235 | /*PreserveLCSSA=*/false, &DTU); | |||
| 236 | } | |||
| 237 | if (!Solver.isBlockExecutable(&F.front())) | |||
| 238 | NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(), | |||
| 239 | /*PreserveLCSSA=*/false, &DTU); | |||
| 240 | ||||
| 241 | BasicBlock *NewUnreachableBB = nullptr; | |||
| 242 | for (BasicBlock &BB : F) | |||
| 243 | MadeChanges |= Solver.removeNonFeasibleEdges(&BB, DTU, NewUnreachableBB); | |||
| 244 | ||||
| 245 | for (BasicBlock *DeadBB : BlocksToErase) | |||
| 246 | if (!DeadBB->hasAddressTaken()) | |||
| 247 | DTU.deleteBB(DeadBB); | |||
| 248 | ||||
| 249 | for (BasicBlock &BB : F) { | |||
| 250 | for (Instruction &Inst : llvm::make_early_inc_range(BB)) { | |||
| 251 | if (Solver.getPredicateInfoFor(&Inst)) { | |||
| 252 | if (auto *II = dyn_cast<IntrinsicInst>(&Inst)) { | |||
| 253 | if (II->getIntrinsicID() == Intrinsic::ssa_copy) { | |||
| 254 | Value *Op = II->getOperand(0); | |||
| 255 | Inst.replaceAllUsesWith(Op); | |||
| 256 | Inst.eraseFromParent(); | |||
| 257 | } | |||
| 258 | } | |||
| 259 | } | |||
| 260 | } | |||
| 261 | } | |||
| 262 | } | |||
| 263 | ||||
| 264 | // If we inferred constant or undef return values for a function, we replaced | |||
| 265 | // all call uses with the inferred value. This means we don't need to bother | |||
| 266 | // actually returning anything from the function. Replace all return | |||
| 267 | // instructions with return undef. | |||
| 268 | // | |||
| 269 | // Do this in two stages: first identify the functions we should process, then | |||
| 270 | // actually zap their returns. This is important because we can only do this | |||
| 271 | // if the address of the function isn't taken. In cases where a return is the | |||
| 272 | // last use of a function, the order of processing functions would affect | |||
| 273 | // whether other functions are optimizable. | |||
| 274 | SmallVector<ReturnInst*, 8> ReturnsToZap; | |||
| 275 | ||||
| 276 | for (const auto &I : Solver.getTrackedRetVals()) { | |||
| 277 | Function *F = I.first; | |||
| 278 | const ValueLatticeElement &ReturnValue = I.second; | |||
| 279 | ||||
| 280 | // If there is a known constant range for the return value, add !range | |||
| 281 | // metadata to the function's call sites. | |||
| 282 | if (ReturnValue.isConstantRange() && | |||
| 283 | !ReturnValue.getConstantRange().isSingleElement()) { | |||
| 284 | // Do not add range metadata if the return value may include undef. | |||
| 285 | if (ReturnValue.isConstantRangeIncludingUndef()) | |||
| 286 | continue; | |||
| 287 | ||||
| 288 | auto &CR = ReturnValue.getConstantRange(); | |||
| 289 | for (User *User : F->users()) { | |||
| 290 | auto *CB = dyn_cast<CallBase>(User); | |||
| 291 | if (!CB || CB->getCalledFunction() != F) | |||
| 292 | continue; | |||
| 293 | ||||
| 294 | // Do not touch existing metadata for now. | |||
| 295 | // TODO: We should be able to take the intersection of the existing | |||
| 296 | // metadata and the inferred range. | |||
| 297 | if (CB->getMetadata(LLVMContext::MD_range)) | |||
| 298 | continue; | |||
| 299 | ||||
| 300 | LLVMContext &Context = CB->getParent()->getContext(); | |||
| 301 | Metadata *RangeMD[] = { | |||
| 302 | ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())), | |||
| 303 | ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))}; | |||
| 304 | CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD)); | |||
| 305 | } | |||
| 306 | continue; | |||
| 307 | } | |||
| 308 | if (F->getReturnType()->isVoidTy()) | |||
| 309 | continue; | |||
| 310 | if (SCCPSolver::isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef()) | |||
| 311 | findReturnsToZap(*F, ReturnsToZap, Solver); | |||
| 312 | } | |||
| 313 | ||||
| 314 | for (auto *F : Solver.getMRVFunctionsTracked()) { | |||
| 315 | assert(F->getReturnType()->isStructTy() &&(static_cast <bool> (F->getReturnType()->isStructTy () && "The return type should be a struct") ? void (0 ) : __assert_fail ("F->getReturnType()->isStructTy() && \"The return type should be a struct\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 316, __extension__ __PRETTY_FUNCTION__ )) | |||
| 316 | "The return type should be a struct")(static_cast <bool> (F->getReturnType()->isStructTy () && "The return type should be a struct") ? void (0 ) : __assert_fail ("F->getReturnType()->isStructTy() && \"The return type should be a struct\"" , "llvm/lib/Transforms/IPO/SCCP.cpp", 316, __extension__ __PRETTY_FUNCTION__ )); | |||
| 317 | StructType *STy = cast<StructType>(F->getReturnType()); | |||
| 318 | if (Solver.isStructLatticeConstant(F, STy)) | |||
| 319 | findReturnsToZap(*F, ReturnsToZap, Solver); | |||
| 320 | } | |||
| 321 | ||||
| 322 | // Zap all returns which we've identified as zap to change. | |||
| 323 | SmallSetVector<Function *, 8> FuncZappedReturn; | |||
| 324 | for (ReturnInst *RI : ReturnsToZap) { | |||
| 325 | Function *F = RI->getParent()->getParent(); | |||
| 326 | RI->setOperand(0, UndefValue::get(F->getReturnType())); | |||
| 327 | // Record all functions that are zapped. | |||
| 328 | FuncZappedReturn.insert(F); | |||
| 329 | } | |||
| 330 | ||||
| 331 | // Remove the returned attribute for zapped functions and the | |||
| 332 | // corresponding call sites. | |||
| 333 | // Also remove any attributes that convert an undef return value into | |||
| 334 | // immediate undefined behavior | |||
| 335 | AttributeMask UBImplyingAttributes = | |||
| 336 | AttributeFuncs::getUBImplyingAttributes(); | |||
| 337 | for (Function *F : FuncZappedReturn) { | |||
| 338 | for (Argument &A : F->args()) | |||
| 339 | F->removeParamAttr(A.getArgNo(), Attribute::Returned); | |||
| 340 | F->removeRetAttrs(UBImplyingAttributes); | |||
| 341 | for (Use &U : F->uses()) { | |||
| 342 | CallBase *CB = dyn_cast<CallBase>(U.getUser()); | |||
| 343 | if (!CB) { | |||
| 344 | assert(isa<BlockAddress>(U.getUser()) ||(static_cast <bool> (isa<BlockAddress>(U.getUser( )) || (isa<Constant>(U.getUser()) && all_of(U.getUser ()->users(), [](const User *UserUser) { return cast<IntrinsicInst >(UserUser)->isAssumeLikeIntrinsic(); }))) ? void (0) : __assert_fail ("isa<BlockAddress>(U.getUser()) || (isa<Constant>(U.getUser()) && all_of(U.getUser()->users(), [](const User *UserUser) { return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); }))" , "llvm/lib/Transforms/IPO/SCCP.cpp", 348, __extension__ __PRETTY_FUNCTION__ )) | |||
| 345 | (isa<Constant>(U.getUser()) &&(static_cast <bool> (isa<BlockAddress>(U.getUser( )) || (isa<Constant>(U.getUser()) && all_of(U.getUser ()->users(), [](const User *UserUser) { return cast<IntrinsicInst >(UserUser)->isAssumeLikeIntrinsic(); }))) ? void (0) : __assert_fail ("isa<BlockAddress>(U.getUser()) || (isa<Constant>(U.getUser()) && all_of(U.getUser()->users(), [](const User *UserUser) { return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); }))" , "llvm/lib/Transforms/IPO/SCCP.cpp", 348, __extension__ __PRETTY_FUNCTION__ )) | |||
| 346 | all_of(U.getUser()->users(), [](const User *UserUser) {(static_cast <bool> (isa<BlockAddress>(U.getUser( )) || (isa<Constant>(U.getUser()) && all_of(U.getUser ()->users(), [](const User *UserUser) { return cast<IntrinsicInst >(UserUser)->isAssumeLikeIntrinsic(); }))) ? void (0) : __assert_fail ("isa<BlockAddress>(U.getUser()) || (isa<Constant>(U.getUser()) && all_of(U.getUser()->users(), [](const User *UserUser) { return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); }))" , "llvm/lib/Transforms/IPO/SCCP.cpp", 348, __extension__ __PRETTY_FUNCTION__ )) | |||
| 347 | return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic();(static_cast <bool> (isa<BlockAddress>(U.getUser( )) || (isa<Constant>(U.getUser()) && all_of(U.getUser ()->users(), [](const User *UserUser) { return cast<IntrinsicInst >(UserUser)->isAssumeLikeIntrinsic(); }))) ? void (0) : __assert_fail ("isa<BlockAddress>(U.getUser()) || (isa<Constant>(U.getUser()) && all_of(U.getUser()->users(), [](const User *UserUser) { return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); }))" , "llvm/lib/Transforms/IPO/SCCP.cpp", 348, __extension__ __PRETTY_FUNCTION__ )) | |||
| 348 | })))(static_cast <bool> (isa<BlockAddress>(U.getUser( )) || (isa<Constant>(U.getUser()) && all_of(U.getUser ()->users(), [](const User *UserUser) { return cast<IntrinsicInst >(UserUser)->isAssumeLikeIntrinsic(); }))) ? void (0) : __assert_fail ("isa<BlockAddress>(U.getUser()) || (isa<Constant>(U.getUser()) && all_of(U.getUser()->users(), [](const User *UserUser) { return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic(); }))" , "llvm/lib/Transforms/IPO/SCCP.cpp", 348, __extension__ __PRETTY_FUNCTION__ )); | |||
| 349 | continue; | |||
| 350 | } | |||
| 351 | ||||
| 352 | for (Use &Arg : CB->args()) | |||
| 353 | CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned); | |||
| 354 | CB->removeRetAttrs(UBImplyingAttributes); | |||
| 355 | } | |||
| 356 | } | |||
| 357 | ||||
| 358 | // If we inferred constant or undef values for globals variables, we can | |||
| 359 | // delete the global and any stores that remain to it. | |||
| 360 | for (const auto &I : make_early_inc_range(Solver.getTrackedGlobals())) { | |||
| 361 | GlobalVariable *GV = I.first; | |||
| 362 | if (SCCPSolver::isOverdefined(I.second)) | |||
| 363 | continue; | |||
| 364 | LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Found that GV '" << GV-> getName() << "' is constant!\n"; } } while (false) | |||
| 365 | << "' is constant!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("sccp")) { dbgs() << "Found that GV '" << GV-> getName() << "' is constant!\n"; } } while (false); | |||
| 366 | while (!GV->use_empty()) { | |||
| 367 | StoreInst *SI = cast<StoreInst>(GV->user_back()); | |||
| 368 | SI->eraseFromParent(); | |||
| 369 | } | |||
| 370 | MadeChanges = true; | |||
| 371 | M.eraseGlobalVariable(GV); | |||
| 372 | ++NumGlobalConst; | |||
| 373 | } | |||
| 374 | ||||
| 375 | return MadeChanges; | |||
| 376 | } | |||
| 377 | ||||
| 378 | PreservedAnalyses IPSCCPPass::run(Module &M, ModuleAnalysisManager &AM) { | |||
| 379 | const DataLayout &DL = M.getDataLayout(); | |||
| 380 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); | |||
| 381 | auto GetTLI = [&FAM](Function &F) -> const TargetLibraryInfo & { | |||
| 382 | return FAM.getResult<TargetLibraryAnalysis>(F); | |||
| 383 | }; | |||
| 384 | auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { | |||
| 385 | return FAM.getResult<TargetIRAnalysis>(F); | |||
| 386 | }; | |||
| 387 | auto GetAC = [&FAM](Function &F) -> AssumptionCache & { | |||
| 388 | return FAM.getResult<AssumptionAnalysis>(F); | |||
| 389 | }; | |||
| 390 | auto getAnalysis = [&FAM, this](Function &F) -> AnalysisResultsForFn { | |||
| 391 | DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); | |||
| 392 | return { | |||
| 393 | std::make_unique<PredicateInfo>(F, DT, FAM.getResult<AssumptionAnalysis>(F)), | |||
| ||||
| 394 | &DT, FAM.getCachedResult<PostDominatorTreeAnalysis>(F), | |||
| 395 | isFuncSpecEnabled() ? &FAM.getResult<LoopAnalysis>(F) : nullptr }; | |||
| 396 | }; | |||
| ||||
| 397 | ||||
| 398 | if (!runIPSCCP(M, DL, &FAM, GetTLI, GetTTI, GetAC, getAnalysis, | |||
| 399 | isFuncSpecEnabled())) | |||
| 400 | return PreservedAnalyses::all(); | |||
| 401 | ||||
| 402 | PreservedAnalyses PA; | |||
| 403 | PA.preserve<DominatorTreeAnalysis>(); | |||
| 404 | PA.preserve<PostDominatorTreeAnalysis>(); | |||
| 405 | PA.preserve<FunctionAnalysisManagerModuleProxy>(); | |||
| 406 | return PA; | |||
| 407 | } |
| 1 | // unique_ptr implementation -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2008-2020 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file bits/unique_ptr.h |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. @headername{memory} |
| 28 | */ |
| 29 | |
| 30 | #ifndef _UNIQUE_PTR_H1 |
| 31 | #define _UNIQUE_PTR_H1 1 |
| 32 | |
| 33 | #include <bits/c++config.h> |
| 34 | #include <debug/assertions.h> |
| 35 | #include <type_traits> |
| 36 | #include <utility> |
| 37 | #include <tuple> |
| 38 | #include <bits/stl_function.h> |
| 39 | #include <bits/functional_hash.h> |
| 40 | #if __cplusplus201703L > 201703L |
| 41 | # include <compare> |
| 42 | # include <ostream> |
| 43 | #endif |
| 44 | |
| 45 | namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default"))) |
| 46 | { |
| 47 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 48 | |
| 49 | /** |
| 50 | * @addtogroup pointer_abstractions |
| 51 | * @{ |
| 52 | */ |
| 53 | |
| 54 | #if _GLIBCXX_USE_DEPRECATED1 |
| 55 | #pragma GCC diagnostic push |
| 56 | #pragma GCC diagnostic ignored "-Wdeprecated-declarations" |
| 57 | template<typename> class auto_ptr; |
| 58 | #pragma GCC diagnostic pop |
| 59 | #endif |
| 60 | |
| 61 | /// Primary template of default_delete, used by unique_ptr for single objects |
| 62 | template<typename _Tp> |
| 63 | struct default_delete |
| 64 | { |
| 65 | /// Default constructor |
| 66 | constexpr default_delete() noexcept = default; |
| 67 | |
| 68 | /** @brief Converting constructor. |
| 69 | * |
| 70 | * Allows conversion from a deleter for objects of another type, `_Up`, |
| 71 | * only if `_Up*` is convertible to `_Tp*`. |
| 72 | */ |
| 73 | template<typename _Up, |
| 74 | typename = _Require<is_convertible<_Up*, _Tp*>>> |
| 75 | default_delete(const default_delete<_Up>&) noexcept { } |
| 76 | |
| 77 | /// Calls `delete __ptr` |
| 78 | void |
| 79 | operator()(_Tp* __ptr) const |
| 80 | { |
| 81 | static_assert(!is_void<_Tp>::value, |
| 82 | "can't delete pointer to incomplete type"); |
| 83 | static_assert(sizeof(_Tp)>0, |
| 84 | "can't delete pointer to incomplete type"); |
| 85 | delete __ptr; |
| 86 | } |
| 87 | }; |
| 88 | |
| 89 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| 90 | // DR 740 - omit specialization for array objects with a compile time length |
| 91 | |
| 92 | /// Specialization of default_delete for arrays, used by `unique_ptr<T[]>` |
| 93 | template<typename _Tp> |
| 94 | struct default_delete<_Tp[]> |
| 95 | { |
| 96 | public: |
| 97 | /// Default constructor |
| 98 | constexpr default_delete() noexcept = default; |
| 99 | |
| 100 | /** @brief Converting constructor. |
| 101 | * |
| 102 | * Allows conversion from a deleter for arrays of another type, such as |
| 103 | * a const-qualified version of `_Tp`. |
| 104 | * |
| 105 | * Conversions from types derived from `_Tp` are not allowed because |
| 106 | * it is undefined to `delete[]` an array of derived types through a |
| 107 | * pointer to the base type. |
| 108 | */ |
| 109 | template<typename _Up, |
| 110 | typename = _Require<is_convertible<_Up(*)[], _Tp(*)[]>>> |
| 111 | default_delete(const default_delete<_Up[]>&) noexcept { } |
| 112 | |
| 113 | /// Calls `delete[] __ptr` |
| 114 | template<typename _Up> |
| 115 | typename enable_if<is_convertible<_Up(*)[], _Tp(*)[]>::value>::type |
| 116 | operator()(_Up* __ptr) const |
| 117 | { |
| 118 | static_assert(sizeof(_Tp)>0, |
| 119 | "can't delete pointer to incomplete type"); |
| 120 | delete [] __ptr; |
| 121 | } |
| 122 | }; |
| 123 | |
| 124 | /// @cond undocumented |
| 125 | |
| 126 | // Manages the pointer and deleter of a unique_ptr |
| 127 | template <typename _Tp, typename _Dp> |
| 128 | class __uniq_ptr_impl |
| 129 | { |
| 130 | template <typename _Up, typename _Ep, typename = void> |
| 131 | struct _Ptr |
| 132 | { |
| 133 | using type = _Up*; |
| 134 | }; |
| 135 | |
| 136 | template <typename _Up, typename _Ep> |
| 137 | struct |
| 138 | _Ptr<_Up, _Ep, __void_t<typename remove_reference<_Ep>::type::pointer>> |
| 139 | { |
| 140 | using type = typename remove_reference<_Ep>::type::pointer; |
| 141 | }; |
| 142 | |
| 143 | public: |
| 144 | using _DeleterConstraint = enable_if< |
| 145 | __and_<__not_<is_pointer<_Dp>>, |
| 146 | is_default_constructible<_Dp>>::value>; |
| 147 | |
| 148 | using pointer = typename _Ptr<_Tp, _Dp>::type; |
| 149 | |
| 150 | static_assert( !is_rvalue_reference<_Dp>::value, |
| 151 | "unique_ptr's deleter type must be a function object type" |
| 152 | " or an lvalue reference type" ); |
| 153 | |
| 154 | __uniq_ptr_impl() = default; |
| 155 | __uniq_ptr_impl(pointer __p) : _M_t() { _M_ptr() = __p; } |
| 156 | |
| 157 | template<typename _Del> |
| 158 | __uniq_ptr_impl(pointer __p, _Del&& __d) |
| 159 | : _M_t(__p, std::forward<_Del>(__d)) { } |
| 160 | |
| 161 | __uniq_ptr_impl(__uniq_ptr_impl&& __u) noexcept |
| 162 | : _M_t(std::move(__u._M_t)) |
| 163 | { __u._M_ptr() = nullptr; } |
| 164 | |
| 165 | __uniq_ptr_impl& operator=(__uniq_ptr_impl&& __u) noexcept |
| 166 | { |
| 167 | reset(__u.release()); |
| 168 | _M_deleter() = std::forward<_Dp>(__u._M_deleter()); |
| 169 | return *this; |
| 170 | } |
| 171 | |
| 172 | pointer& _M_ptr() { return std::get<0>(_M_t); } |
| 173 | pointer _M_ptr() const { return std::get<0>(_M_t); } |
| 174 | _Dp& _M_deleter() { return std::get<1>(_M_t); } |
| 175 | const _Dp& _M_deleter() const { return std::get<1>(_M_t); } |
| 176 | |
| 177 | void reset(pointer __p) noexcept |
| 178 | { |
| 179 | const pointer __old_p = _M_ptr(); |
| 180 | _M_ptr() = __p; |
| 181 | if (__old_p) |
| 182 | _M_deleter()(__old_p); |
| 183 | } |
| 184 | |
| 185 | pointer release() noexcept |
| 186 | { |
| 187 | pointer __p = _M_ptr(); |
| 188 | _M_ptr() = nullptr; |
| 189 | return __p; |
| 190 | } |
| 191 | |
| 192 | void |
| 193 | swap(__uniq_ptr_impl& __rhs) noexcept |
| 194 | { |
| 195 | using std::swap; |
| 196 | swap(this->_M_ptr(), __rhs._M_ptr()); |
| 197 | swap(this->_M_deleter(), __rhs._M_deleter()); |
| 198 | } |
| 199 | |
| 200 | private: |
| 201 | tuple<pointer, _Dp> _M_t; |
| 202 | }; |
| 203 | |
| 204 | // Defines move construction + assignment as either defaulted or deleted. |
| 205 | template <typename _Tp, typename _Dp, |
| 206 | bool = is_move_constructible<_Dp>::value, |
| 207 | bool = is_move_assignable<_Dp>::value> |
| 208 | struct __uniq_ptr_data : __uniq_ptr_impl<_Tp, _Dp> |
| 209 | { |
| 210 | using __uniq_ptr_impl<_Tp, _Dp>::__uniq_ptr_impl; |
| 211 | __uniq_ptr_data(__uniq_ptr_data&&) = default; |
| 212 | __uniq_ptr_data& operator=(__uniq_ptr_data&&) = default; |
| 213 | }; |
| 214 | |
| 215 | template <typename _Tp, typename _Dp> |
| 216 | struct __uniq_ptr_data<_Tp, _Dp, true, false> : __uniq_ptr_impl<_Tp, _Dp> |
| 217 | { |
| 218 | using __uniq_ptr_impl<_Tp, _Dp>::__uniq_ptr_impl; |
| 219 | __uniq_ptr_data(__uniq_ptr_data&&) = default; |
| 220 | __uniq_ptr_data& operator=(__uniq_ptr_data&&) = delete; |
| 221 | }; |
| 222 | |
| 223 | template <typename _Tp, typename _Dp> |
| 224 | struct __uniq_ptr_data<_Tp, _Dp, false, true> : __uniq_ptr_impl<_Tp, _Dp> |
| 225 | { |
| 226 | using __uniq_ptr_impl<_Tp, _Dp>::__uniq_ptr_impl; |
| 227 | __uniq_ptr_data(__uniq_ptr_data&&) = delete; |
| 228 | __uniq_ptr_data& operator=(__uniq_ptr_data&&) = default; |
| 229 | }; |
| 230 | |
| 231 | template <typename _Tp, typename _Dp> |
| 232 | struct __uniq_ptr_data<_Tp, _Dp, false, false> : __uniq_ptr_impl<_Tp, _Dp> |
| 233 | { |
| 234 | using __uniq_ptr_impl<_Tp, _Dp>::__uniq_ptr_impl; |
| 235 | __uniq_ptr_data(__uniq_ptr_data&&) = delete; |
| 236 | __uniq_ptr_data& operator=(__uniq_ptr_data&&) = delete; |
| 237 | }; |
| 238 | /// @endcond |
| 239 | |
| 240 | /// 20.7.1.2 unique_ptr for single objects. |
| 241 | template <typename _Tp, typename _Dp = default_delete<_Tp>> |
| 242 | class unique_ptr |
| 243 | { |
| 244 | template <typename _Up> |
| 245 | using _DeleterConstraint = |
| 246 | typename __uniq_ptr_impl<_Tp, _Up>::_DeleterConstraint::type; |
| 247 | |
| 248 | __uniq_ptr_data<_Tp, _Dp> _M_t; |
| 249 | |
| 250 | public: |
| 251 | using pointer = typename __uniq_ptr_impl<_Tp, _Dp>::pointer; |
| 252 | using element_type = _Tp; |
| 253 | using deleter_type = _Dp; |
| 254 | |
| 255 | private: |
| 256 | // helper template for detecting a safe conversion from another |
| 257 | // unique_ptr |
| 258 | template<typename _Up, typename _Ep> |
| 259 | using __safe_conversion_up = __and_< |
| 260 | is_convertible<typename unique_ptr<_Up, _Ep>::pointer, pointer>, |
| 261 | __not_<is_array<_Up>> |
| 262 | >; |
| 263 | |
| 264 | public: |
| 265 | // Constructors. |
| 266 | |
| 267 | /// Default constructor, creates a unique_ptr that owns nothing. |
| 268 | template<typename _Del = _Dp, typename = _DeleterConstraint<_Del>> |
| 269 | constexpr unique_ptr() noexcept |
| 270 | : _M_t() |
| 271 | { } |
| 272 | |
| 273 | /** Takes ownership of a pointer. |
| 274 | * |
| 275 | * @param __p A pointer to an object of @c element_type |
| 276 | * |
| 277 | * The deleter will be value-initialized. |
| 278 | */ |
| 279 | template<typename _Del = _Dp, typename = _DeleterConstraint<_Del>> |
| 280 | explicit |
| 281 | unique_ptr(pointer __p) noexcept |
| 282 | : _M_t(__p) |
| 283 | { } |
| 284 | |
| 285 | /** Takes ownership of a pointer. |
| 286 | * |
| 287 | * @param __p A pointer to an object of @c element_type |
| 288 | * @param __d A reference to a deleter. |
| 289 | * |
| 290 | * The deleter will be initialized with @p __d |
| 291 | */ |
| 292 | template<typename _Del = deleter_type, |
| 293 | typename = _Require<is_copy_constructible<_Del>>> |
| 294 | unique_ptr(pointer __p, const deleter_type& __d) noexcept |
| 295 | : _M_t(__p, __d) { } |
| 296 | |
| 297 | /** Takes ownership of a pointer. |
| 298 | * |
| 299 | * @param __p A pointer to an object of @c element_type |
| 300 | * @param __d An rvalue reference to a (non-reference) deleter. |
| 301 | * |
| 302 | * The deleter will be initialized with @p std::move(__d) |
| 303 | */ |
| 304 | template<typename _Del = deleter_type, |
| 305 | typename = _Require<is_move_constructible<_Del>>> |
| 306 | unique_ptr(pointer __p, |
| 307 | __enable_if_t<!is_lvalue_reference<_Del>::value, |
| 308 | _Del&&> __d) noexcept |
| 309 | : _M_t(__p, std::move(__d)) |
| 310 | { } |
| 311 | |
| 312 | template<typename _Del = deleter_type, |
| 313 | typename _DelUnref = typename remove_reference<_Del>::type> |
| 314 | unique_ptr(pointer, |
| 315 | __enable_if_t<is_lvalue_reference<_Del>::value, |
| 316 | _DelUnref&&>) = delete; |
| 317 | |
| 318 | /// Creates a unique_ptr that owns nothing. |
| 319 | template<typename _Del = _Dp, typename = _DeleterConstraint<_Del>> |
| 320 | constexpr unique_ptr(nullptr_t) noexcept |
| 321 | : _M_t() |
| 322 | { } |
| 323 | |
| 324 | // Move constructors. |
| 325 | |
| 326 | /// Move constructor. |
| 327 | unique_ptr(unique_ptr&&) = default; |
| 328 | |
| 329 | /** @brief Converting constructor from another type |
| 330 | * |
| 331 | * Requires that the pointer owned by @p __u is convertible to the |
| 332 | * type of pointer owned by this object, @p __u does not own an array, |
| 333 | * and @p __u has a compatible deleter type. |
| 334 | */ |
| 335 | template<typename _Up, typename _Ep, typename = _Require< |
| 336 | __safe_conversion_up<_Up, _Ep>, |
| 337 | typename conditional<is_reference<_Dp>::value, |
| 338 | is_same<_Ep, _Dp>, |
| 339 | is_convertible<_Ep, _Dp>>::type>> |
| 340 | unique_ptr(unique_ptr<_Up, _Ep>&& __u) noexcept |
| 341 | : _M_t(__u.release(), std::forward<_Ep>(__u.get_deleter())) |
| 342 | { } |
| 343 | |
| 344 | #if _GLIBCXX_USE_DEPRECATED1 |
| 345 | #pragma GCC diagnostic push |
| 346 | #pragma GCC diagnostic ignored "-Wdeprecated-declarations" |
| 347 | /// Converting constructor from @c auto_ptr |
| 348 | template<typename _Up, typename = _Require< |
| 349 | is_convertible<_Up*, _Tp*>, is_same<_Dp, default_delete<_Tp>>>> |
| 350 | unique_ptr(auto_ptr<_Up>&& __u) noexcept; |
| 351 | #pragma GCC diagnostic pop |
| 352 | #endif |
| 353 | |
| 354 | /// Destructor, invokes the deleter if the stored pointer is not null. |
| 355 | ~unique_ptr() noexcept |
| 356 | { |
| 357 | static_assert(__is_invocable<deleter_type&, pointer>::value, |
| 358 | "unique_ptr's deleter must be invocable with a pointer"); |
| 359 | auto& __ptr = _M_t._M_ptr(); |
| 360 | if (__ptr != nullptr) |
| 361 | get_deleter()(std::move(__ptr)); |
| 362 | __ptr = pointer(); |
| 363 | } |
| 364 | |
| 365 | // Assignment. |
| 366 | |
| 367 | /** @brief Move assignment operator. |
| 368 | * |
| 369 | * Invokes the deleter if this object owns a pointer. |
| 370 | */ |
| 371 | unique_ptr& operator=(unique_ptr&&) = default; |
| 372 | |
| 373 | /** @brief Assignment from another type. |
| 374 | * |
| 375 | * @param __u The object to transfer ownership from, which owns a |
| 376 | * convertible pointer to a non-array object. |
| 377 | * |
| 378 | * Invokes the deleter if this object owns a pointer. |
| 379 | */ |
| 380 | template<typename _Up, typename _Ep> |
| 381 | typename enable_if< __and_< |
| 382 | __safe_conversion_up<_Up, _Ep>, |
| 383 | is_assignable<deleter_type&, _Ep&&> |
| 384 | >::value, |
| 385 | unique_ptr&>::type |
| 386 | operator=(unique_ptr<_Up, _Ep>&& __u) noexcept |
| 387 | { |
| 388 | reset(__u.release()); |
| 389 | get_deleter() = std::forward<_Ep>(__u.get_deleter()); |
| 390 | return *this; |
| 391 | } |
| 392 | |
| 393 | /// Reset the %unique_ptr to empty, invoking the deleter if necessary. |
| 394 | unique_ptr& |
| 395 | operator=(nullptr_t) noexcept |
| 396 | { |
| 397 | reset(); |
| 398 | return *this; |
| 399 | } |
| 400 | |
| 401 | // Observers. |
| 402 | |
| 403 | /// Dereference the stored pointer. |
| 404 | typename add_lvalue_reference<element_type>::type |
| 405 | operator*() const |
| 406 | { |
| 407 | __glibcxx_assert(get() != pointer())do { if (! (get() != pointer())) std::__replacement_assert("/usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/unique_ptr.h" , 407, __PRETTY_FUNCTION__, "get() != pointer()"); } while (false ); |
| 408 | return *get(); |
| 409 | } |
| 410 | |
| 411 | /// Return the stored pointer. |
| 412 | pointer |
| 413 | operator->() const noexcept |
| 414 | { |
| 415 | _GLIBCXX_DEBUG_PEDASSERT(get() != pointer()); |
| 416 | return get(); |
| 417 | } |
| 418 | |
| 419 | /// Return the stored pointer. |
| 420 | pointer |
| 421 | get() const noexcept |
| 422 | { return _M_t._M_ptr(); } |
| 423 | |
| 424 | /// Return a reference to the stored deleter. |
| 425 | deleter_type& |
| 426 | get_deleter() noexcept |
| 427 | { return _M_t._M_deleter(); } |
| 428 | |
| 429 | /// Return a reference to the stored deleter. |
| 430 | const deleter_type& |
| 431 | get_deleter() const noexcept |
| 432 | { return _M_t._M_deleter(); } |
| 433 | |
| 434 | /// Return @c true if the stored pointer is not null. |
| 435 | explicit operator bool() const noexcept |
| 436 | { return get() == pointer() ? false : true; } |
| 437 | |
| 438 | // Modifiers. |
| 439 | |
| 440 | /// Release ownership of any stored pointer. |
| 441 | pointer |
| 442 | release() noexcept |
| 443 | { return _M_t.release(); } |
| 444 | |
| 445 | /** @brief Replace the stored pointer. |
| 446 | * |
| 447 | * @param __p The new pointer to store. |
| 448 | * |
| 449 | * The deleter will be invoked if a pointer is already owned. |
| 450 | */ |
| 451 | void |
| 452 | reset(pointer __p = pointer()) noexcept |
| 453 | { |
| 454 | static_assert(__is_invocable<deleter_type&, pointer>::value, |
| 455 | "unique_ptr's deleter must be invocable with a pointer"); |
| 456 | _M_t.reset(std::move(__p)); |
| 457 | } |
| 458 | |
| 459 | /// Exchange the pointer and deleter with another object. |
| 460 | void |
| 461 | swap(unique_ptr& __u) noexcept |
| 462 | { |
| 463 | static_assert(__is_swappable<_Dp>::value, "deleter must be swappable"); |
| 464 | _M_t.swap(__u._M_t); |
| 465 | } |
| 466 | |
| 467 | // Disable copy from lvalue. |
| 468 | unique_ptr(const unique_ptr&) = delete; |
| 469 | unique_ptr& operator=(const unique_ptr&) = delete; |
| 470 | }; |
| 471 | |
| 472 | /// 20.7.1.3 unique_ptr for array objects with a runtime length |
| 473 | // [unique.ptr.runtime] |
| 474 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| 475 | // DR 740 - omit specialization for array objects with a compile time length |
| 476 | template<typename _Tp, typename _Dp> |
| 477 | class unique_ptr<_Tp[], _Dp> |
| 478 | { |
| 479 | template <typename _Up> |
| 480 | using _DeleterConstraint = |
| 481 | typename __uniq_ptr_impl<_Tp, _Up>::_DeleterConstraint::type; |
| 482 | |
| 483 | __uniq_ptr_data<_Tp, _Dp> _M_t; |
| 484 | |
| 485 | template<typename _Up> |
| 486 | using __remove_cv = typename remove_cv<_Up>::type; |
| 487 | |
| 488 | // like is_base_of<_Tp, _Up> but false if unqualified types are the same |
| 489 | template<typename _Up> |
| 490 | using __is_derived_Tp |
| 491 | = __and_< is_base_of<_Tp, _Up>, |
| 492 | __not_<is_same<__remove_cv<_Tp>, __remove_cv<_Up>>> >; |
| 493 | |
| 494 | public: |
| 495 | using pointer = typename __uniq_ptr_impl<_Tp, _Dp>::pointer; |
| 496 | using element_type = _Tp; |
| 497 | using deleter_type = _Dp; |
| 498 | |
| 499 | // helper template for detecting a safe conversion from another |
| 500 | // unique_ptr |
| 501 | template<typename _Up, typename _Ep, |
| 502 | typename _UPtr = unique_ptr<_Up, _Ep>, |
| 503 | typename _UP_pointer = typename _UPtr::pointer, |
| 504 | typename _UP_element_type = typename _UPtr::element_type> |
| 505 | using __safe_conversion_up = __and_< |
| 506 | is_array<_Up>, |
| 507 | is_same<pointer, element_type*>, |
| 508 | is_same<_UP_pointer, _UP_element_type*>, |
| 509 | is_convertible<_UP_element_type(*)[], element_type(*)[]> |
| 510 | >; |
| 511 | |
| 512 | // helper template for detecting a safe conversion from a raw pointer |
| 513 | template<typename _Up> |
| 514 | using __safe_conversion_raw = __and_< |
| 515 | __or_<__or_<is_same<_Up, pointer>, |
| 516 | is_same<_Up, nullptr_t>>, |
| 517 | __and_<is_pointer<_Up>, |
| 518 | is_same<pointer, element_type*>, |
| 519 | is_convertible< |
| 520 | typename remove_pointer<_Up>::type(*)[], |
| 521 | element_type(*)[]> |
| 522 | > |
| 523 | > |
| 524 | >; |
| 525 | |
| 526 | // Constructors. |
| 527 | |
| 528 | /// Default constructor, creates a unique_ptr that owns nothing. |
| 529 | template<typename _Del = _Dp, typename = _DeleterConstraint<_Del>> |
| 530 | constexpr unique_ptr() noexcept |
| 531 | : _M_t() |
| 532 | { } |
| 533 | |
| 534 | /** Takes ownership of a pointer. |
| 535 | * |
| 536 | * @param __p A pointer to an array of a type safely convertible |
| 537 | * to an array of @c element_type |
| 538 | * |
| 539 | * The deleter will be value-initialized. |
| 540 | */ |
| 541 | template<typename _Up, |
| 542 | typename _Vp = _Dp, |
| 543 | typename = _DeleterConstraint<_Vp>, |
| 544 | typename = typename enable_if< |
| 545 | __safe_conversion_raw<_Up>::value, bool>::type> |
| 546 | explicit |
| 547 | unique_ptr(_Up __p) noexcept |
| 548 | : _M_t(__p) |
| 549 | { } |
| 550 | |
| 551 | /** Takes ownership of a pointer. |
| 552 | * |
| 553 | * @param __p A pointer to an array of a type safely convertible |
| 554 | * to an array of @c element_type |
| 555 | * @param __d A reference to a deleter. |
| 556 | * |
| 557 | * The deleter will be initialized with @p __d |
| 558 | */ |
| 559 | template<typename _Up, typename _Del = deleter_type, |
| 560 | typename = _Require<__safe_conversion_raw<_Up>, |
| 561 | is_copy_constructible<_Del>>> |
| 562 | unique_ptr(_Up __p, const deleter_type& __d) noexcept |
| 563 | : _M_t(__p, __d) { } |
| 564 | |
| 565 | /** Takes ownership of a pointer. |
| 566 | * |
| 567 | * @param __p A pointer to an array of a type safely convertible |
| 568 | * to an array of @c element_type |
| 569 | * @param __d A reference to a deleter. |
| 570 | * |
| 571 | * The deleter will be initialized with @p std::move(__d) |
| 572 | */ |
| 573 | template<typename _Up, typename _Del = deleter_type, |
| 574 | typename = _Require<__safe_conversion_raw<_Up>, |
| 575 | is_move_constructible<_Del>>> |
| 576 | unique_ptr(_Up __p, |
| 577 | __enable_if_t<!is_lvalue_reference<_Del>::value, |
| 578 | _Del&&> __d) noexcept |
| 579 | : _M_t(std::move(__p), std::move(__d)) |
| 580 | { } |
| 581 | |
| 582 | template<typename _Up, typename _Del = deleter_type, |
| 583 | typename _DelUnref = typename remove_reference<_Del>::type, |
| 584 | typename = _Require<__safe_conversion_raw<_Up>>> |
| 585 | unique_ptr(_Up, |
| 586 | __enable_if_t<is_lvalue_reference<_Del>::value, |
| 587 | _DelUnref&&>) = delete; |
| 588 | |
| 589 | /// Move constructor. |
| 590 | unique_ptr(unique_ptr&&) = default; |
| 591 | |
| 592 | /// Creates a unique_ptr that owns nothing. |
| 593 | template<typename _Del = _Dp, typename = _DeleterConstraint<_Del>> |
| 594 | constexpr unique_ptr(nullptr_t) noexcept |
| 595 | : _M_t() |
| 596 | { } |
| 597 | |
| 598 | template<typename _Up, typename _Ep, typename = _Require< |
| 599 | __safe_conversion_up<_Up, _Ep>, |
| 600 | typename conditional<is_reference<_Dp>::value, |
| 601 | is_same<_Ep, _Dp>, |
| 602 | is_convertible<_Ep, _Dp>>::type>> |
| 603 | unique_ptr(unique_ptr<_Up, _Ep>&& __u) noexcept |
| 604 | : _M_t(__u.release(), std::forward<_Ep>(__u.get_deleter())) |
| 605 | { } |
| 606 | |
| 607 | /// Destructor, invokes the deleter if the stored pointer is not null. |
| 608 | ~unique_ptr() |
| 609 | { |
| 610 | auto& __ptr = _M_t._M_ptr(); |
| 611 | if (__ptr != nullptr) |
| 612 | get_deleter()(__ptr); |
| 613 | __ptr = pointer(); |
| 614 | } |
| 615 | |
| 616 | // Assignment. |
| 617 | |
| 618 | /** @brief Move assignment operator. |
| 619 | * |
| 620 | * Invokes the deleter if this object owns a pointer. |
| 621 | */ |
| 622 | unique_ptr& |
| 623 | operator=(unique_ptr&&) = default; |
| 624 | |
| 625 | /** @brief Assignment from another type. |
| 626 | * |
| 627 | * @param __u The object to transfer ownership from, which owns a |
| 628 | * convertible pointer to an array object. |
| 629 | * |
| 630 | * Invokes the deleter if this object owns a pointer. |
| 631 | */ |
| 632 | template<typename _Up, typename _Ep> |
| 633 | typename |
| 634 | enable_if<__and_<__safe_conversion_up<_Up, _Ep>, |
| 635 | is_assignable<deleter_type&, _Ep&&> |
| 636 | >::value, |
| 637 | unique_ptr&>::type |
| 638 | operator=(unique_ptr<_Up, _Ep>&& __u) noexcept |
| 639 | { |
| 640 | reset(__u.release()); |
| 641 | get_deleter() = std::forward<_Ep>(__u.get_deleter()); |
| 642 | return *this; |
| 643 | } |
| 644 | |
| 645 | /// Reset the %unique_ptr to empty, invoking the deleter if necessary. |
| 646 | unique_ptr& |
| 647 | operator=(nullptr_t) noexcept |
| 648 | { |
| 649 | reset(); |
| 650 | return *this; |
| 651 | } |
| 652 | |
| 653 | // Observers. |
| 654 | |
| 655 | /// Access an element of owned array. |
| 656 | typename std::add_lvalue_reference<element_type>::type |
| 657 | operator[](size_t __i) const |
| 658 | { |
| 659 | __glibcxx_assert(get() != pointer())do { if (! (get() != pointer())) std::__replacement_assert("/usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/unique_ptr.h" , 659, __PRETTY_FUNCTION__, "get() != pointer()"); } while (false ); |
| 660 | return get()[__i]; |
| 661 | } |
| 662 | |
| 663 | /// Return the stored pointer. |
| 664 | pointer |
| 665 | get() const noexcept |
| 666 | { return _M_t._M_ptr(); } |
| 667 | |
| 668 | /// Return a reference to the stored deleter. |
| 669 | deleter_type& |
| 670 | get_deleter() noexcept |
| 671 | { return _M_t._M_deleter(); } |
| 672 | |
| 673 | /// Return a reference to the stored deleter. |
| 674 | const deleter_type& |
| 675 | get_deleter() const noexcept |
| 676 | { return _M_t._M_deleter(); } |
| 677 | |
| 678 | /// Return @c true if the stored pointer is not null. |
| 679 | explicit operator bool() const noexcept |
| 680 | { return get() == pointer() ? false : true; } |
| 681 | |
| 682 | // Modifiers. |
| 683 | |
| 684 | /// Release ownership of any stored pointer. |
| 685 | pointer |
| 686 | release() noexcept |
| 687 | { return _M_t.release(); } |
| 688 | |
| 689 | /** @brief Replace the stored pointer. |
| 690 | * |
| 691 | * @param __p The new pointer to store. |
| 692 | * |
| 693 | * The deleter will be invoked if a pointer is already owned. |
| 694 | */ |
| 695 | template <typename _Up, |
| 696 | typename = _Require< |
| 697 | __or_<is_same<_Up, pointer>, |
| 698 | __and_<is_same<pointer, element_type*>, |
| 699 | is_pointer<_Up>, |
| 700 | is_convertible< |
| 701 | typename remove_pointer<_Up>::type(*)[], |
| 702 | element_type(*)[] |
| 703 | > |
| 704 | > |
| 705 | > |
| 706 | >> |
| 707 | void |
| 708 | reset(_Up __p) noexcept |
| 709 | { _M_t.reset(std::move(__p)); } |
| 710 | |
| 711 | void reset(nullptr_t = nullptr) noexcept |
| 712 | { reset(pointer()); } |
| 713 | |
| 714 | /// Exchange the pointer and deleter with another object. |
| 715 | void |
| 716 | swap(unique_ptr& __u) noexcept |
| 717 | { |
| 718 | static_assert(__is_swappable<_Dp>::value, "deleter must be swappable"); |
| 719 | _M_t.swap(__u._M_t); |
| 720 | } |
| 721 | |
| 722 | // Disable copy from lvalue. |
| 723 | unique_ptr(const unique_ptr&) = delete; |
| 724 | unique_ptr& operator=(const unique_ptr&) = delete; |
| 725 | }; |
| 726 | |
| 727 | /// @relates unique_ptr @{ |
| 728 | |
| 729 | /// Swap overload for unique_ptr |
| 730 | template<typename _Tp, typename _Dp> |
| 731 | inline |
| 732 | #if __cplusplus201703L > 201402L || !defined(__STRICT_ANSI__1) // c++1z or gnu++11 |
| 733 | // Constrained free swap overload, see p0185r1 |
| 734 | typename enable_if<__is_swappable<_Dp>::value>::type |
| 735 | #else |
| 736 | void |
| 737 | #endif |
| 738 | swap(unique_ptr<_Tp, _Dp>& __x, |
| 739 | unique_ptr<_Tp, _Dp>& __y) noexcept |
| 740 | { __x.swap(__y); } |
| 741 | |
| 742 | #if __cplusplus201703L > 201402L || !defined(__STRICT_ANSI__1) // c++1z or gnu++11 |
| 743 | template<typename _Tp, typename _Dp> |
| 744 | typename enable_if<!__is_swappable<_Dp>::value>::type |
| 745 | swap(unique_ptr<_Tp, _Dp>&, |
| 746 | unique_ptr<_Tp, _Dp>&) = delete; |
| 747 | #endif |
| 748 | |
| 749 | /// Equality operator for unique_ptr objects, compares the owned pointers |
| 750 | template<typename _Tp, typename _Dp, |
| 751 | typename _Up, typename _Ep> |
| 752 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 753 | operator==(const unique_ptr<_Tp, _Dp>& __x, |
| 754 | const unique_ptr<_Up, _Ep>& __y) |
| 755 | { return __x.get() == __y.get(); } |
| 756 | |
| 757 | /// unique_ptr comparison with nullptr |
| 758 | template<typename _Tp, typename _Dp> |
| 759 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 760 | operator==(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) noexcept |
| 761 | { return !__x; } |
| 762 | |
| 763 | #ifndef __cpp_lib_three_way_comparison |
| 764 | /// unique_ptr comparison with nullptr |
| 765 | template<typename _Tp, typename _Dp> |
| 766 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 767 | operator==(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) noexcept |
| 768 | { return !__x; } |
| 769 | |
| 770 | /// Inequality operator for unique_ptr objects, compares the owned pointers |
| 771 | template<typename _Tp, typename _Dp, |
| 772 | typename _Up, typename _Ep> |
| 773 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 774 | operator!=(const unique_ptr<_Tp, _Dp>& __x, |
| 775 | const unique_ptr<_Up, _Ep>& __y) |
| 776 | { return __x.get() != __y.get(); } |
| 777 | |
| 778 | /// unique_ptr comparison with nullptr |
| 779 | template<typename _Tp, typename _Dp> |
| 780 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 781 | operator!=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) noexcept |
| 782 | { return (bool)__x; } |
| 783 | |
| 784 | /// unique_ptr comparison with nullptr |
| 785 | template<typename _Tp, typename _Dp> |
| 786 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 787 | operator!=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) noexcept |
| 788 | { return (bool)__x; } |
| 789 | #endif // three way comparison |
| 790 | |
| 791 | /// Relational operator for unique_ptr objects, compares the owned pointers |
| 792 | template<typename _Tp, typename _Dp, |
| 793 | typename _Up, typename _Ep> |
| 794 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 795 | operator<(const unique_ptr<_Tp, _Dp>& __x, |
| 796 | const unique_ptr<_Up, _Ep>& __y) |
| 797 | { |
| 798 | typedef typename |
| 799 | std::common_type<typename unique_ptr<_Tp, _Dp>::pointer, |
| 800 | typename unique_ptr<_Up, _Ep>::pointer>::type _CT; |
| 801 | return std::less<_CT>()(__x.get(), __y.get()); |
| 802 | } |
| 803 | |
| 804 | /// unique_ptr comparison with nullptr |
| 805 | template<typename _Tp, typename _Dp> |
| 806 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 807 | operator<(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) |
| 808 | { |
| 809 | return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(__x.get(), |
| 810 | nullptr); |
| 811 | } |
| 812 | |
| 813 | /// unique_ptr comparison with nullptr |
| 814 | template<typename _Tp, typename _Dp> |
| 815 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 816 | operator<(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) |
| 817 | { |
| 818 | return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(nullptr, |
| 819 | __x.get()); |
| 820 | } |
| 821 | |
| 822 | /// Relational operator for unique_ptr objects, compares the owned pointers |
| 823 | template<typename _Tp, typename _Dp, |
| 824 | typename _Up, typename _Ep> |
| 825 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 826 | operator<=(const unique_ptr<_Tp, _Dp>& __x, |
| 827 | const unique_ptr<_Up, _Ep>& __y) |
| 828 | { return !(__y < __x); } |
| 829 | |
| 830 | /// unique_ptr comparison with nullptr |
| 831 | template<typename _Tp, typename _Dp> |
| 832 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 833 | operator<=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) |
| 834 | { return !(nullptr < __x); } |
| 835 | |
| 836 | /// unique_ptr comparison with nullptr |
| 837 | template<typename _Tp, typename _Dp> |
| 838 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 839 | operator<=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) |
| 840 | { return !(__x < nullptr); } |
| 841 | |
| 842 | /// Relational operator for unique_ptr objects, compares the owned pointers |
| 843 | template<typename _Tp, typename _Dp, |
| 844 | typename _Up, typename _Ep> |
| 845 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 846 | operator>(const unique_ptr<_Tp, _Dp>& __x, |
| 847 | const unique_ptr<_Up, _Ep>& __y) |
| 848 | { return (__y < __x); } |
| 849 | |
| 850 | /// unique_ptr comparison with nullptr |
| 851 | template<typename _Tp, typename _Dp> |
| 852 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 853 | operator>(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) |
| 854 | { |
| 855 | return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(nullptr, |
| 856 | __x.get()); |
| 857 | } |
| 858 | |
| 859 | /// unique_ptr comparison with nullptr |
| 860 | template<typename _Tp, typename _Dp> |
| 861 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 862 | operator>(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) |
| 863 | { |
| 864 | return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(__x.get(), |
| 865 | nullptr); |
| 866 | } |
| 867 | |
| 868 | /// Relational operator for unique_ptr objects, compares the owned pointers |
| 869 | template<typename _Tp, typename _Dp, |
| 870 | typename _Up, typename _Ep> |
| 871 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 872 | operator>=(const unique_ptr<_Tp, _Dp>& __x, |
| 873 | const unique_ptr<_Up, _Ep>& __y) |
| 874 | { return !(__x < __y); } |
| 875 | |
| 876 | /// unique_ptr comparison with nullptr |
| 877 | template<typename _Tp, typename _Dp> |
| 878 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 879 | operator>=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) |
| 880 | { return !(__x < nullptr); } |
| 881 | |
| 882 | /// unique_ptr comparison with nullptr |
| 883 | template<typename _Tp, typename _Dp> |
| 884 | _GLIBCXX_NODISCARD[[__nodiscard__]] inline bool |
| 885 | operator>=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) |
| 886 | { return !(nullptr < __x); } |
| 887 | |
| 888 | #ifdef __cpp_lib_three_way_comparison |
| 889 | template<typename _Tp, typename _Dp, typename _Up, typename _Ep> |
| 890 | requires three_way_comparable_with<typename unique_ptr<_Tp, _Dp>::pointer, |
| 891 | typename unique_ptr<_Up, _Ep>::pointer> |
| 892 | inline |
| 893 | compare_three_way_result_t<typename unique_ptr<_Tp, _Dp>::pointer, |
| 894 | typename unique_ptr<_Up, _Ep>::pointer> |
| 895 | operator<=>(const unique_ptr<_Tp, _Dp>& __x, |
| 896 | const unique_ptr<_Up, _Ep>& __y) |
| 897 | { return compare_three_way()(__x.get(), __y.get()); } |
| 898 | |
| 899 | template<typename _Tp, typename _Dp> |
| 900 | requires three_way_comparable<typename unique_ptr<_Tp, _Dp>::pointer> |
| 901 | inline |
| 902 | compare_three_way_result_t<typename unique_ptr<_Tp, _Dp>::pointer> |
| 903 | operator<=>(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) |
| 904 | { |
| 905 | using pointer = typename unique_ptr<_Tp, _Dp>::pointer; |
| 906 | return compare_three_way()(__x.get(), static_cast<pointer>(nullptr)); |
| 907 | } |
| 908 | #endif |
| 909 | // @} relates unique_ptr |
| 910 | |
| 911 | /// @cond undocumented |
| 912 | template<typename _Up, typename _Ptr = typename _Up::pointer, |
| 913 | bool = __poison_hash<_Ptr>::__enable_hash_call> |
| 914 | struct __uniq_ptr_hash |
| 915 | #if ! _GLIBCXX_INLINE_VERSION0 |
| 916 | : private __poison_hash<_Ptr> |
| 917 | #endif |
| 918 | { |
| 919 | size_t |
| 920 | operator()(const _Up& __u) const |
| 921 | noexcept(noexcept(std::declval<hash<_Ptr>>()(std::declval<_Ptr>()))) |
| 922 | { return hash<_Ptr>()(__u.get()); } |
| 923 | }; |
| 924 | |
| 925 | template<typename _Up, typename _Ptr> |
| 926 | struct __uniq_ptr_hash<_Up, _Ptr, false> |
| 927 | : private __poison_hash<_Ptr> |
| 928 | { }; |
| 929 | /// @endcond |
| 930 | |
| 931 | /// std::hash specialization for unique_ptr. |
| 932 | template<typename _Tp, typename _Dp> |
| 933 | struct hash<unique_ptr<_Tp, _Dp>> |
| 934 | : public __hash_base<size_t, unique_ptr<_Tp, _Dp>>, |
| 935 | public __uniq_ptr_hash<unique_ptr<_Tp, _Dp>> |
| 936 | { }; |
| 937 | |
| 938 | #if __cplusplus201703L >= 201402L |
| 939 | /// @relates unique_ptr @{ |
| 940 | #define __cpp_lib_make_unique201304 201304 |
| 941 | |
| 942 | /// @cond undocumented |
| 943 | |
| 944 | template<typename _Tp> |
| 945 | struct _MakeUniq |
| 946 | { typedef unique_ptr<_Tp> __single_object; }; |
| 947 | |
| 948 | template<typename _Tp> |
| 949 | struct _MakeUniq<_Tp[]> |
| 950 | { typedef unique_ptr<_Tp[]> __array; }; |
| 951 | |
| 952 | template<typename _Tp, size_t _Bound> |
| 953 | struct _MakeUniq<_Tp[_Bound]> |
| 954 | { struct __invalid_type { }; }; |
| 955 | |
| 956 | /// @endcond |
| 957 | |
| 958 | /// std::make_unique for single objects |
| 959 | template<typename _Tp, typename... _Args> |
| 960 | inline typename _MakeUniq<_Tp>::__single_object |
| 961 | make_unique(_Args&&... __args) |
| 962 | { return unique_ptr<_Tp>(new _Tp(std::forward<_Args>(__args)...)); } |
| 963 | |
| 964 | /// std::make_unique for arrays of unknown bound |
| 965 | template<typename _Tp> |
| 966 | inline typename _MakeUniq<_Tp>::__array |
| 967 | make_unique(size_t __num) |
| 968 | { return unique_ptr<_Tp>(new remove_extent_t<_Tp>[__num]()); } |
| 969 | |
| 970 | /// Disable std::make_unique for arrays of known bound |
| 971 | template<typename _Tp, typename... _Args> |
| 972 | inline typename _MakeUniq<_Tp>::__invalid_type |
| 973 | make_unique(_Args&&...) = delete; |
| 974 | // @} relates unique_ptr |
| 975 | #endif // C++14 |
| 976 | |
| 977 | #if __cplusplus201703L > 201703L && __cpp_concepts |
| 978 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| 979 | // 2948. unique_ptr does not define operator<< for stream output |
| 980 | /// Stream output operator for unique_ptr |
| 981 | template<typename _CharT, typename _Traits, typename _Tp, typename _Dp> |
| 982 | inline basic_ostream<_CharT, _Traits>& |
| 983 | operator<<(basic_ostream<_CharT, _Traits>& __os, |
| 984 | const unique_ptr<_Tp, _Dp>& __p) |
| 985 | requires requires { __os << __p.get(); } |
| 986 | { |
| 987 | __os << __p.get(); |
| 988 | return __os; |
| 989 | } |
| 990 | #endif // C++20 |
| 991 | |
| 992 | // @} group pointer_abstractions |
| 993 | |
| 994 | #if __cplusplus201703L >= 201703L |
| 995 | namespace __detail::__variant |
| 996 | { |
| 997 | template<typename> struct _Never_valueless_alt; // see <variant> |
| 998 | |
| 999 | // Provide the strong exception-safety guarantee when emplacing a |
| 1000 | // unique_ptr into a variant. |
| 1001 | template<typename _Tp, typename _Del> |
| 1002 | struct _Never_valueless_alt<std::unique_ptr<_Tp, _Del>> |
| 1003 | : std::true_type |
| 1004 | { }; |
| 1005 | } // namespace __detail::__variant |
| 1006 | #endif // C++17 |
| 1007 | |
| 1008 | _GLIBCXX_END_NAMESPACE_VERSION |
| 1009 | } // namespace |
| 1010 | |
| 1011 | #endif /* _UNIQUE_PTR_H */ |