Bug Summary

File:llvm/lib/Target/AMDGPU/SIISelLowering.cpp
Warning:line 11004, column 52
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SIISelLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/build-llvm/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/build-llvm/lib/Target/AMDGPU -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926=. -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-12-23-165655-6022-1 -x c++ /build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp
1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Custom DAG lowering for SI
11//
12//===----------------------------------------------------------------------===//
13
14#include "SIISelLowering.h"
15#include "AMDGPU.h"
16#include "AMDGPUSubtarget.h"
17#include "AMDGPUTargetMachine.h"
18#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19#include "SIDefines.h"
20#include "SIInstrInfo.h"
21#include "SIMachineFunctionInfo.h"
22#include "SIRegisterInfo.h"
23#include "Utils/AMDGPUBaseInfo.h"
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/ADT/StringSwitch.h"
32#include "llvm/ADT/Twine.h"
33#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
34#include "llvm/CodeGen/Analysis.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/DAGCombine.h"
37#include "llvm/CodeGen/FunctionLoweringInfo.h"
38#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
39#include "llvm/CodeGen/ISDOpcodes.h"
40#include "llvm/CodeGen/MachineBasicBlock.h"
41#include "llvm/CodeGen/MachineFrameInfo.h"
42#include "llvm/CodeGen/MachineFunction.h"
43#include "llvm/CodeGen/MachineInstr.h"
44#include "llvm/CodeGen/MachineInstrBuilder.h"
45#include "llvm/CodeGen/MachineLoopInfo.h"
46#include "llvm/CodeGen/MachineMemOperand.h"
47#include "llvm/CodeGen/MachineModuleInfo.h"
48#include "llvm/CodeGen/MachineOperand.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/SelectionDAG.h"
51#include "llvm/CodeGen/SelectionDAGNodes.h"
52#include "llvm/CodeGen/TargetCallingConv.h"
53#include "llvm/CodeGen/TargetRegisterInfo.h"
54#include "llvm/CodeGen/ValueTypes.h"
55#include "llvm/IR/Constants.h"
56#include "llvm/IR/DataLayout.h"
57#include "llvm/IR/DebugLoc.h"
58#include "llvm/IR/DerivedTypes.h"
59#include "llvm/IR/DiagnosticInfo.h"
60#include "llvm/IR/Function.h"
61#include "llvm/IR/GlobalValue.h"
62#include "llvm/IR/InstrTypes.h"
63#include "llvm/IR/Instruction.h"
64#include "llvm/IR/Instructions.h"
65#include "llvm/IR/IntrinsicInst.h"
66#include "llvm/IR/Type.h"
67#include "llvm/Support/Casting.h"
68#include "llvm/Support/CodeGen.h"
69#include "llvm/Support/CommandLine.h"
70#include "llvm/Support/Compiler.h"
71#include "llvm/Support/ErrorHandling.h"
72#include "llvm/Support/KnownBits.h"
73#include "llvm/Support/MachineValueType.h"
74#include "llvm/Support/MathExtras.h"
75#include "llvm/Target/TargetOptions.h"
76#include <cassert>
77#include <cmath>
78#include <cstdint>
79#include <iterator>
80#include <tuple>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85
86#define DEBUG_TYPE"si-lower" "si-lower"
87
88STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = {"si-lower", "NumTailCalls"
, "Number of tail calls"}
;
89
90static cl::opt<bool> DisableLoopAlignment(
91 "amdgpu-disable-loop-alignment",
92 cl::desc("Do not align and prefetch loops"),
93 cl::init(false));
94
95static cl::opt<bool> VGPRReserveforSGPRSpill(
96 "amdgpu-reserve-vgpr-for-sgpr-spill",
97 cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
98
99static cl::opt<bool> UseDivergentRegisterIndexing(
100 "amdgpu-use-divergent-register-indexing",
101 cl::Hidden,
102 cl::desc("Use indirect register addressing for divergent indexes"),
103 cl::init(false));
104
105static bool hasFP32Denormals(const MachineFunction &MF) {
106 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
107 return Info->getMode().allFP32Denormals();
108}
109
110static bool hasFP64FP16Denormals(const MachineFunction &MF) {
111 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
112 return Info->getMode().allFP64FP16Denormals();
113}
114
115static unsigned findFirstFreeSGPR(CCState &CCInfo) {
116 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
117 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
118 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
119 return AMDGPU::SGPR0 + Reg;
120 }
121 }
122 llvm_unreachable("Cannot allocate sgpr")::llvm::llvm_unreachable_internal("Cannot allocate sgpr", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 122)
;
123}
124
125SITargetLowering::SITargetLowering(const TargetMachine &TM,
126 const GCNSubtarget &STI)
127 : AMDGPUTargetLowering(TM, STI),
128 Subtarget(&STI) {
129 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
130 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
131
132 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
133 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
134
135 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
136 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
137 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
138
139 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
140 addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
141
142 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
143 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
144
145 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
146 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
147
148 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
149 addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
150
151 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
152 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
153
154 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
155 addRegisterClass(MVT::v4f64, &AMDGPU::VReg_256RegClass);
156
157 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
158 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
159
160 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
161 addRegisterClass(MVT::v8f64, &AMDGPU::VReg_512RegClass);
162
163 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
164 addRegisterClass(MVT::v16f64, &AMDGPU::VReg_1024RegClass);
165
166 if (Subtarget->has16BitInsts()) {
167 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
168 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
169
170 // Unless there are also VOP3P operations, not operations are really legal.
171 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
172 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
173 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
174 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
175 }
176
177 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
178 addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
179
180 computeRegisterProperties(Subtarget->getRegisterInfo());
181
182 // The boolean content concept here is too inflexible. Compares only ever
183 // really produce a 1-bit result. Any copy/extend from these will turn into a
184 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
185 // it's what most targets use.
186 setBooleanContents(ZeroOrOneBooleanContent);
187 setBooleanVectorContents(ZeroOrOneBooleanContent);
188
189 // We need to custom lower vector stores from local memory
190 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
191 setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
192 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
193 setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
194 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
195 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
196 setOperationAction(ISD::LOAD, MVT::i1, Custom);
197 setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
198
199 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
200 setOperationAction(ISD::STORE, MVT::v3i32, Custom);
201 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
202 setOperationAction(ISD::STORE, MVT::v5i32, Custom);
203 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
204 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
205 setOperationAction(ISD::STORE, MVT::i1, Custom);
206 setOperationAction(ISD::STORE, MVT::v32i32, Custom);
207
208 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
209 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
210 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
211 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
212 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
213 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
214 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
215 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
216 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
217 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
218 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
219 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
220 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
221 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
222 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
223 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
224
225 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
226 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
227 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
228 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
229 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
230
231 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
232 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
233
234 setOperationAction(ISD::SELECT, MVT::i1, Promote);
235 setOperationAction(ISD::SELECT, MVT::i64, Custom);
236 setOperationAction(ISD::SELECT, MVT::f64, Promote);
237 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
238
239 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
240 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
241 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
242 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
243 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
244
245 setOperationAction(ISD::SETCC, MVT::i1, Promote);
246 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
247 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
248 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
249
250 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
251 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
252 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
253 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
254 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
255 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
256 setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
257 setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
258
259 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
260 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
261 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
262 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
263 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
265 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
267
268 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
269 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
270 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
271 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
272 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
273 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
274
275 setOperationAction(ISD::UADDO, MVT::i32, Legal);
276 setOperationAction(ISD::USUBO, MVT::i32, Legal);
277
278 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
279 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
280
281 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
282 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
283 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
284
285#if 0
286 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
287 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
288#endif
289
290 // We only support LOAD/STORE and vector manipulation ops for vectors
291 // with > 4 elements.
292 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
293 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
294 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
295 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
296 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
297 switch (Op) {
298 case ISD::LOAD:
299 case ISD::STORE:
300 case ISD::BUILD_VECTOR:
301 case ISD::BITCAST:
302 case ISD::EXTRACT_VECTOR_ELT:
303 case ISD::INSERT_VECTOR_ELT:
304 case ISD::INSERT_SUBVECTOR:
305 case ISD::EXTRACT_SUBVECTOR:
306 case ISD::SCALAR_TO_VECTOR:
307 break;
308 case ISD::CONCAT_VECTORS:
309 setOperationAction(Op, VT, Custom);
310 break;
311 default:
312 setOperationAction(Op, VT, Expand);
313 break;
314 }
315 }
316 }
317
318 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
319
320 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
321 // is expanded to avoid having two separate loops in case the index is a VGPR.
322
323 // Most operations are naturally 32-bit vector operations. We only support
324 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
325 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
326 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
327 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
328
329 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
330 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
331
332 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
333 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
334
335 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
336 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
337 }
338
339 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
340 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
341 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
342
343 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
344 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
345
346 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
347 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
348
349 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
350 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
351 }
352
353 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
354 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
355 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
356
357 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
358 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
359
360 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
361 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
362
363 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
364 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
365 }
366
367 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
368 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
369 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
370
371 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
372 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
373
374 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
375 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
376
377 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
378 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
379 }
380
381 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
382 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
383 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
384 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
385
386 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
387 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
388
389 // Avoid stack access for these.
390 // TODO: Generalize to more vector types.
391 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
392 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
393 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
394 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
395
396 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
397 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
398 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
399 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
400 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
401
402 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
403 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
404 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
405
406 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
407 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
408 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
409 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
410
411 // Deal with vec3 vector operations when widened to vec4.
412 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
413 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
414 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
415 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
416
417 // Deal with vec5 vector operations when widened to vec8.
418 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
419 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
420 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
421 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
422
423 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
424 // and output demarshalling
425 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
426 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
427
428 // We can't return success/failure, only the old value,
429 // let LLVM add the comparison
430 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
431 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
432
433 if (Subtarget->hasFlatAddressSpace()) {
434 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
435 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
436 }
437
438 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
439
440 // FIXME: This should be narrowed to i32, but that only happens if i64 is
441 // illegal.
442 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
443 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
444 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
445
446 // On SI this is s_memtime and s_memrealtime on VI.
447 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
448 setOperationAction(ISD::TRAP, MVT::Other, Custom);
449 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
450
451 if (Subtarget->has16BitInsts()) {
452 setOperationAction(ISD::FPOW, MVT::f16, Promote);
453 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
454 setOperationAction(ISD::FLOG, MVT::f16, Custom);
455 setOperationAction(ISD::FEXP, MVT::f16, Custom);
456 setOperationAction(ISD::FLOG10, MVT::f16, Custom);
457 }
458
459 if (Subtarget->hasMadMacF32Insts())
460 setOperationAction(ISD::FMAD, MVT::f32, Legal);
461
462 if (!Subtarget->hasBFI()) {
463 // fcopysign can be done in a single instruction with BFI.
464 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
465 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466 }
467
468 if (!Subtarget->hasBCNT(32))
469 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
470
471 if (!Subtarget->hasBCNT(64))
472 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
473
474 if (Subtarget->hasFFBH())
475 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
476
477 if (Subtarget->hasFFBL())
478 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
479
480 // We only really have 32-bit BFE instructions (and 16-bit on VI).
481 //
482 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
483 // effort to match them now. We want this to be false for i64 cases when the
484 // extraction isn't restricted to the upper or lower half. Ideally we would
485 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
486 // span the midpoint are probably relatively rare, so don't worry about them
487 // for now.
488 if (Subtarget->hasBFE())
489 setHasExtractBitsInsn(true);
490
491 // Clamp modifier on add/sub
492 if (Subtarget->hasIntClamp()) {
493 setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
494 setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
495 }
496
497 if (Subtarget->hasAddNoCarry()) {
498 setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
499 setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
500 setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
501 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
502 }
503
504 setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
505 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
506 setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
507 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
508
509
510 // These are really only legal for ieee_mode functions. We should be avoiding
511 // them for functions that don't have ieee_mode enabled, so just say they are
512 // legal.
513 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
514 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
515 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
516 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
517
518
519 if (Subtarget->haveRoundOpsF64()) {
520 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
521 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
522 setOperationAction(ISD::FRINT, MVT::f64, Legal);
523 } else {
524 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
525 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
526 setOperationAction(ISD::FRINT, MVT::f64, Custom);
527 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
528 }
529
530 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
531
532 setOperationAction(ISD::FSIN, MVT::f32, Custom);
533 setOperationAction(ISD::FCOS, MVT::f32, Custom);
534 setOperationAction(ISD::FDIV, MVT::f32, Custom);
535 setOperationAction(ISD::FDIV, MVT::f64, Custom);
536
537 if (Subtarget->has16BitInsts()) {
538 setOperationAction(ISD::Constant, MVT::i16, Legal);
539
540 setOperationAction(ISD::SMIN, MVT::i16, Legal);
541 setOperationAction(ISD::SMAX, MVT::i16, Legal);
542
543 setOperationAction(ISD::UMIN, MVT::i16, Legal);
544 setOperationAction(ISD::UMAX, MVT::i16, Legal);
545
546 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
547 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
548
549 setOperationAction(ISD::ROTR, MVT::i16, Expand);
550 setOperationAction(ISD::ROTL, MVT::i16, Expand);
551
552 setOperationAction(ISD::SDIV, MVT::i16, Promote);
553 setOperationAction(ISD::UDIV, MVT::i16, Promote);
554 setOperationAction(ISD::SREM, MVT::i16, Promote);
555 setOperationAction(ISD::UREM, MVT::i16, Promote);
556 setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
557 setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
558
559 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
560
561 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
562 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
563 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
564 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
565 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
566
567 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
568
569 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
570
571 setOperationAction(ISD::LOAD, MVT::i16, Custom);
572
573 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
574
575 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
576 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
577 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
578 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
579
580 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
581 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
582
583 // F16 - Constant Actions.
584 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
585
586 // F16 - Load/Store Actions.
587 setOperationAction(ISD::LOAD, MVT::f16, Promote);
588 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
589 setOperationAction(ISD::STORE, MVT::f16, Promote);
590 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
591
592 // F16 - VOP1 Actions.
593 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
594 setOperationAction(ISD::FCOS, MVT::f16, Custom);
595 setOperationAction(ISD::FSIN, MVT::f16, Custom);
596
597 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
598 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
599
600 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
601 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
602 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
603 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
604 setOperationAction(ISD::FROUND, MVT::f16, Custom);
605
606 // F16 - VOP2 Actions.
607 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
608 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
609
610 setOperationAction(ISD::FDIV, MVT::f16, Custom);
611
612 // F16 - VOP3 Actions.
613 setOperationAction(ISD::FMA, MVT::f16, Legal);
614 if (STI.hasMadF16())
615 setOperationAction(ISD::FMAD, MVT::f16, Legal);
616
617 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
618 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
619 switch (Op) {
620 case ISD::LOAD:
621 case ISD::STORE:
622 case ISD::BUILD_VECTOR:
623 case ISD::BITCAST:
624 case ISD::EXTRACT_VECTOR_ELT:
625 case ISD::INSERT_VECTOR_ELT:
626 case ISD::INSERT_SUBVECTOR:
627 case ISD::EXTRACT_SUBVECTOR:
628 case ISD::SCALAR_TO_VECTOR:
629 break;
630 case ISD::CONCAT_VECTORS:
631 setOperationAction(Op, VT, Custom);
632 break;
633 default:
634 setOperationAction(Op, VT, Expand);
635 break;
636 }
637 }
638 }
639
640 // v_perm_b32 can handle either of these.
641 setOperationAction(ISD::BSWAP, MVT::i16, Legal);
642 setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
643 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
644
645 // XXX - Do these do anything? Vector constants turn into build_vector.
646 setOperationAction(ISD::Constant, MVT::v2i16, Legal);
647 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
648
649 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
650 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
651
652 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
653 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
654 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
655 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
656
657 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
658 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
659 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
660 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
661
662 setOperationAction(ISD::AND, MVT::v2i16, Promote);
663 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
664 setOperationAction(ISD::OR, MVT::v2i16, Promote);
665 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
666 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
667 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
668
669 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
670 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
671 setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
672 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
673
674 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
675 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
676 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
677 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
678
679 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
680 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
681 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
682 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
683
684 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
685 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
686 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
687
688 if (!Subtarget->hasVOP3PInsts()) {
689 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
690 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
691 }
692
693 setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
694 // This isn't really legal, but this avoids the legalizer unrolling it (and
695 // allows matching fneg (fabs x) patterns)
696 setOperationAction(ISD::FABS, MVT::v2f16, Legal);
697
698 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
699 setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
700 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
701 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
702
703 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
704 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
705
706 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
707 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
708 }
709
710 if (Subtarget->hasVOP3PInsts()) {
711 setOperationAction(ISD::ADD, MVT::v2i16, Legal);
712 setOperationAction(ISD::SUB, MVT::v2i16, Legal);
713 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
714 setOperationAction(ISD::SHL, MVT::v2i16, Legal);
715 setOperationAction(ISD::SRL, MVT::v2i16, Legal);
716 setOperationAction(ISD::SRA, MVT::v2i16, Legal);
717 setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
718 setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
719 setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
720 setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
721
722 setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
723 setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
724 setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
725 setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
726
727 setOperationAction(ISD::FADD, MVT::v2f16, Legal);
728 setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
729 setOperationAction(ISD::FMA, MVT::v2f16, Legal);
730
731 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
732 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
733
734 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
735
736 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
737 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
738
739 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
740 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
741
742 setOperationAction(ISD::SHL, MVT::v4i16, Custom);
743 setOperationAction(ISD::SRA, MVT::v4i16, Custom);
744 setOperationAction(ISD::SRL, MVT::v4i16, Custom);
745 setOperationAction(ISD::ADD, MVT::v4i16, Custom);
746 setOperationAction(ISD::SUB, MVT::v4i16, Custom);
747 setOperationAction(ISD::MUL, MVT::v4i16, Custom);
748
749 setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
750 setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
751 setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
752 setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
753
754 setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
755 setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
756 setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
757 setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
758
759 setOperationAction(ISD::FADD, MVT::v4f16, Custom);
760 setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
761 setOperationAction(ISD::FMA, MVT::v4f16, Custom);
762
763 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
764 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
765
766 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
767 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
768 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
769
770 setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
771 setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
772 setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
773 }
774
775 setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
776 setOperationAction(ISD::FABS, MVT::v4f16, Custom);
777
778 if (Subtarget->has16BitInsts()) {
779 setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
780 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
781 setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
782 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
783 } else {
784 // Legalization hack.
785 setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
786 setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
787
788 setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
789 setOperationAction(ISD::FABS, MVT::v2f16, Custom);
790 }
791
792 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
793 setOperationAction(ISD::SELECT, VT, Custom);
794 }
795
796 setOperationAction(ISD::SMULO, MVT::i64, Custom);
797 setOperationAction(ISD::UMULO, MVT::i64, Custom);
798
799 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
800 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
801 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
802 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
803 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
804 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
805 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
806
807 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
808 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
809 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
810 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
811 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
812 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
813 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
814 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
815 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
816 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
817 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
818
819 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
820 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
821 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
822 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
823 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
824 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
825 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
826 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
827 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
828 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
829
830 setTargetDAGCombine(ISD::ADD);
831 setTargetDAGCombine(ISD::ADDCARRY);
832 setTargetDAGCombine(ISD::SUB);
833 setTargetDAGCombine(ISD::SUBCARRY);
834 setTargetDAGCombine(ISD::FADD);
835 setTargetDAGCombine(ISD::FSUB);
836 setTargetDAGCombine(ISD::FMINNUM);
837 setTargetDAGCombine(ISD::FMAXNUM);
838 setTargetDAGCombine(ISD::FMINNUM_IEEE);
839 setTargetDAGCombine(ISD::FMAXNUM_IEEE);
840 setTargetDAGCombine(ISD::FMA);
841 setTargetDAGCombine(ISD::SMIN);
842 setTargetDAGCombine(ISD::SMAX);
843 setTargetDAGCombine(ISD::UMIN);
844 setTargetDAGCombine(ISD::UMAX);
845 setTargetDAGCombine(ISD::SETCC);
846 setTargetDAGCombine(ISD::AND);
847 setTargetDAGCombine(ISD::OR);
848 setTargetDAGCombine(ISD::XOR);
849 setTargetDAGCombine(ISD::SINT_TO_FP);
850 setTargetDAGCombine(ISD::UINT_TO_FP);
851 setTargetDAGCombine(ISD::FCANONICALIZE);
852 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
853 setTargetDAGCombine(ISD::ZERO_EXTEND);
854 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
855 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
856 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
857
858 // All memory operations. Some folding on the pointer operand is done to help
859 // matching the constant offsets in the addressing modes.
860 setTargetDAGCombine(ISD::LOAD);
861 setTargetDAGCombine(ISD::STORE);
862 setTargetDAGCombine(ISD::ATOMIC_LOAD);
863 setTargetDAGCombine(ISD::ATOMIC_STORE);
864 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
865 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
866 setTargetDAGCombine(ISD::ATOMIC_SWAP);
867 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
868 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
869 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
870 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
871 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
872 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
873 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
874 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
875 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
876 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
877 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
878 setTargetDAGCombine(ISD::INTRINSIC_VOID);
879 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
880
881 // FIXME: In other contexts we pretend this is a per-function property.
882 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
883
884 setSchedulingPreference(Sched::RegPressure);
885}
886
887const GCNSubtarget *SITargetLowering::getSubtarget() const {
888 return Subtarget;
889}
890
891//===----------------------------------------------------------------------===//
892// TargetLowering queries
893//===----------------------------------------------------------------------===//
894
895// v_mad_mix* support a conversion from f16 to f32.
896//
897// There is only one special case when denormals are enabled we don't currently,
898// where this is OK to use.
899bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
900 EVT DestVT, EVT SrcVT) const {
901 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
902 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
903 DestVT.getScalarType() == MVT::f32 &&
904 SrcVT.getScalarType() == MVT::f16 &&
905 // TODO: This probably only requires no input flushing?
906 !hasFP32Denormals(DAG.getMachineFunction());
907}
908
909bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
910 // SI has some legal vector types, but no legal vector operations. Say no
911 // shuffles are legal in order to prefer scalarizing some vector operations.
912 return false;
913}
914
915MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
916 CallingConv::ID CC,
917 EVT VT) const {
918 if (CC == CallingConv::AMDGPU_KERNEL)
919 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
920
921 if (VT.isVector()) {
922 EVT ScalarVT = VT.getScalarType();
923 unsigned Size = ScalarVT.getSizeInBits();
924 if (Size == 16) {
925 if (Subtarget->has16BitInsts())
926 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
927 return VT.isInteger() ? MVT::i32 : MVT::f32;
928 }
929
930 if (Size < 16)
931 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
932 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
933 }
934
935 if (VT.getSizeInBits() > 32)
936 return MVT::i32;
937
938 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
939}
940
941unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
942 CallingConv::ID CC,
943 EVT VT) const {
944 if (CC == CallingConv::AMDGPU_KERNEL)
945 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
946
947 if (VT.isVector()) {
948 unsigned NumElts = VT.getVectorNumElements();
949 EVT ScalarVT = VT.getScalarType();
950 unsigned Size = ScalarVT.getSizeInBits();
951
952 // FIXME: Should probably promote 8-bit vectors to i16.
953 if (Size == 16 && Subtarget->has16BitInsts())
954 return (NumElts + 1) / 2;
955
956 if (Size <= 32)
957 return NumElts;
958
959 if (Size > 32)
960 return NumElts * ((Size + 31) / 32);
961 } else if (VT.getSizeInBits() > 32)
962 return (VT.getSizeInBits() + 31) / 32;
963
964 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
965}
966
967unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
968 LLVMContext &Context, CallingConv::ID CC,
969 EVT VT, EVT &IntermediateVT,
970 unsigned &NumIntermediates, MVT &RegisterVT) const {
971 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
972 unsigned NumElts = VT.getVectorNumElements();
973 EVT ScalarVT = VT.getScalarType();
974 unsigned Size = ScalarVT.getSizeInBits();
975 // FIXME: We should fix the ABI to be the same on targets without 16-bit
976 // support, but unless we can properly handle 3-vectors, it will be still be
977 // inconsistent.
978 if (Size == 16 && Subtarget->has16BitInsts()) {
979 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
980 IntermediateVT = RegisterVT;
981 NumIntermediates = (NumElts + 1) / 2;
982 return NumIntermediates;
983 }
984
985 if (Size == 32) {
986 RegisterVT = ScalarVT.getSimpleVT();
987 IntermediateVT = RegisterVT;
988 NumIntermediates = NumElts;
989 return NumIntermediates;
990 }
991
992 if (Size < 16 && Subtarget->has16BitInsts()) {
993 // FIXME: Should probably form v2i16 pieces
994 RegisterVT = MVT::i16;
995 IntermediateVT = ScalarVT;
996 NumIntermediates = NumElts;
997 return NumIntermediates;
998 }
999
1000
1001 if (Size != 16 && Size <= 32) {
1002 RegisterVT = MVT::i32;
1003 IntermediateVT = ScalarVT;
1004 NumIntermediates = NumElts;
1005 return NumIntermediates;
1006 }
1007
1008 if (Size > 32) {
1009 RegisterVT = MVT::i32;
1010 IntermediateVT = RegisterVT;
1011 NumIntermediates = NumElts * ((Size + 31) / 32);
1012 return NumIntermediates;
1013 }
1014 }
1015
1016 return TargetLowering::getVectorTypeBreakdownForCallingConv(
1017 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1018}
1019
1020static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1021 assert(DMaskLanes != 0)((DMaskLanes != 0) ? static_cast<void> (0) : __assert_fail
("DMaskLanes != 0", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1021, __PRETTY_FUNCTION__))
;
1022
1023 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1024 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1025 return EVT::getVectorVT(Ty->getContext(),
1026 EVT::getEVT(VT->getElementType()),
1027 NumElts);
1028 }
1029
1030 return EVT::getEVT(Ty);
1031}
1032
1033// Peek through TFE struct returns to only use the data size.
1034static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1035 auto *ST = dyn_cast<StructType>(Ty);
1036 if (!ST)
1037 return memVTFromImageData(Ty, DMaskLanes);
1038
1039 // Some intrinsics return an aggregate type - special case to work out the
1040 // correct memVT.
1041 //
1042 // Only limited forms of aggregate type currently expected.
1043 if (ST->getNumContainedTypes() != 2 ||
1044 !ST->getContainedType(1)->isIntegerTy(32))
1045 return EVT();
1046 return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1047}
1048
1049bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1050 const CallInst &CI,
1051 MachineFunction &MF,
1052 unsigned IntrID) const {
1053 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1054 AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1055 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1056 (Intrinsic::ID)IntrID);
1057 if (Attr.hasFnAttribute(Attribute::ReadNone))
1058 return false;
1059
1060 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1061
1062 if (RsrcIntr->IsImage) {
1063 Info.ptrVal = MFI->getImagePSV(
1064 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1065 CI.getArgOperand(RsrcIntr->RsrcArg));
1066 Info.align.reset();
1067 } else {
1068 Info.ptrVal = MFI->getBufferPSV(
1069 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1070 CI.getArgOperand(RsrcIntr->RsrcArg));
1071 }
1072
1073 Info.flags = MachineMemOperand::MODereferenceable;
1074 if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
1075 unsigned DMaskLanes = 4;
1076
1077 if (RsrcIntr->IsImage) {
1078 const AMDGPU::ImageDimIntrinsicInfo *Intr
1079 = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1080 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1081 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1082
1083 if (!BaseOpcode->Gather4) {
1084 // If this isn't a gather, we may have excess loaded elements in the
1085 // IR type. Check the dmask for the real number of elements loaded.
1086 unsigned DMask
1087 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1088 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1089 }
1090
1091 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1092 } else
1093 Info.memVT = EVT::getEVT(CI.getType());
1094
1095 // FIXME: What does alignment mean for an image?
1096 Info.opc = ISD::INTRINSIC_W_CHAIN;
1097 Info.flags |= MachineMemOperand::MOLoad;
1098 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
1099 Info.opc = ISD::INTRINSIC_VOID;
1100
1101 Type *DataTy = CI.getArgOperand(0)->getType();
1102 if (RsrcIntr->IsImage) {
1103 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1104 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1105 Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1106 } else
1107 Info.memVT = EVT::getEVT(DataTy);
1108
1109 Info.flags |= MachineMemOperand::MOStore;
1110 } else {
1111 // Atomic
1112 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1113 ISD::INTRINSIC_W_CHAIN;
1114 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1115 Info.flags = MachineMemOperand::MOLoad |
1116 MachineMemOperand::MOStore |
1117 MachineMemOperand::MODereferenceable;
1118
1119 // XXX - Should this be volatile without known ordering?
1120 Info.flags |= MachineMemOperand::MOVolatile;
1121 }
1122 return true;
1123 }
1124
1125 switch (IntrID) {
1126 case Intrinsic::amdgcn_atomic_inc:
1127 case Intrinsic::amdgcn_atomic_dec:
1128 case Intrinsic::amdgcn_ds_ordered_add:
1129 case Intrinsic::amdgcn_ds_ordered_swap:
1130 case Intrinsic::amdgcn_ds_fadd:
1131 case Intrinsic::amdgcn_ds_fmin:
1132 case Intrinsic::amdgcn_ds_fmax: {
1133 Info.opc = ISD::INTRINSIC_W_CHAIN;
1134 Info.memVT = MVT::getVT(CI.getType());
1135 Info.ptrVal = CI.getOperand(0);
1136 Info.align.reset();
1137 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1138
1139 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1140 if (!Vol->isZero())
1141 Info.flags |= MachineMemOperand::MOVolatile;
1142
1143 return true;
1144 }
1145 case Intrinsic::amdgcn_buffer_atomic_fadd: {
1146 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1147
1148 Info.opc = ISD::INTRINSIC_W_CHAIN;
1149 Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1150 Info.ptrVal = MFI->getBufferPSV(
1151 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1152 CI.getArgOperand(1));
1153 Info.align.reset();
1154 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1155
1156 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1157 if (!Vol || !Vol->isZero())
1158 Info.flags |= MachineMemOperand::MOVolatile;
1159
1160 return true;
1161 }
1162 case Intrinsic::amdgcn_ds_append:
1163 case Intrinsic::amdgcn_ds_consume: {
1164 Info.opc = ISD::INTRINSIC_W_CHAIN;
1165 Info.memVT = MVT::getVT(CI.getType());
1166 Info.ptrVal = CI.getOperand(0);
1167 Info.align.reset();
1168 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1169
1170 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1171 if (!Vol->isZero())
1172 Info.flags |= MachineMemOperand::MOVolatile;
1173
1174 return true;
1175 }
1176 case Intrinsic::amdgcn_global_atomic_csub: {
1177 Info.opc = ISD::INTRINSIC_W_CHAIN;
1178 Info.memVT = MVT::getVT(CI.getType());
1179 Info.ptrVal = CI.getOperand(0);
1180 Info.align.reset();
1181 Info.flags = MachineMemOperand::MOLoad |
1182 MachineMemOperand::MOStore |
1183 MachineMemOperand::MOVolatile;
1184 return true;
1185 }
1186 case Intrinsic::amdgcn_global_atomic_fadd: {
1187 Info.opc = ISD::INTRINSIC_W_CHAIN;
1188 Info.memVT = MVT::getVT(CI.getType());
1189 Info.ptrVal = CI.getOperand(0);
1190 Info.align.reset();
1191 Info.flags = MachineMemOperand::MOLoad |
1192 MachineMemOperand::MOStore |
1193 MachineMemOperand::MODereferenceable |
1194 MachineMemOperand::MOVolatile;
1195 return true;
1196 }
1197 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1198 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1199 Info.opc = ISD::INTRINSIC_W_CHAIN;
1200 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1201 Info.ptrVal = MFI->getImagePSV(
1202 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), CI.getArgOperand(5));
1203 Info.align.reset();
1204 Info.flags = MachineMemOperand::MOLoad |
1205 MachineMemOperand::MODereferenceable;
1206 return true;
1207 }
1208 case Intrinsic::amdgcn_ds_gws_init:
1209 case Intrinsic::amdgcn_ds_gws_barrier:
1210 case Intrinsic::amdgcn_ds_gws_sema_v:
1211 case Intrinsic::amdgcn_ds_gws_sema_br:
1212 case Intrinsic::amdgcn_ds_gws_sema_p:
1213 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1214 Info.opc = ISD::INTRINSIC_VOID;
1215
1216 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1217 Info.ptrVal =
1218 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1219
1220 // This is an abstract access, but we need to specify a type and size.
1221 Info.memVT = MVT::i32;
1222 Info.size = 4;
1223 Info.align = Align(4);
1224
1225 Info.flags = MachineMemOperand::MOStore;
1226 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1227 Info.flags = MachineMemOperand::MOLoad;
1228 return true;
1229 }
1230 default:
1231 return false;
1232 }
1233}
1234
1235bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1236 SmallVectorImpl<Value*> &Ops,
1237 Type *&AccessTy) const {
1238 switch (II->getIntrinsicID()) {
1239 case Intrinsic::amdgcn_atomic_inc:
1240 case Intrinsic::amdgcn_atomic_dec:
1241 case Intrinsic::amdgcn_ds_ordered_add:
1242 case Intrinsic::amdgcn_ds_ordered_swap:
1243 case Intrinsic::amdgcn_ds_append:
1244 case Intrinsic::amdgcn_ds_consume:
1245 case Intrinsic::amdgcn_ds_fadd:
1246 case Intrinsic::amdgcn_ds_fmin:
1247 case Intrinsic::amdgcn_ds_fmax:
1248 case Intrinsic::amdgcn_global_atomic_fadd:
1249 case Intrinsic::amdgcn_global_atomic_csub: {
1250 Value *Ptr = II->getArgOperand(0);
1251 AccessTy = II->getType();
1252 Ops.push_back(Ptr);
1253 return true;
1254 }
1255 default:
1256 return false;
1257 }
1258}
1259
1260bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1261 if (!Subtarget->hasFlatInstOffsets()) {
1262 // Flat instructions do not have offsets, and only have the register
1263 // address.
1264 return AM.BaseOffs == 0 && AM.Scale == 0;
1265 }
1266
1267 return AM.Scale == 0 &&
1268 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1269 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS,
1270 /*Signed=*/false));
1271}
1272
1273bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1274 if (Subtarget->hasFlatGlobalInsts())
1275 return AM.Scale == 0 &&
1276 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1277 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1278 /*Signed=*/true));
1279
1280 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1281 // Assume the we will use FLAT for all global memory accesses
1282 // on VI.
1283 // FIXME: This assumption is currently wrong. On VI we still use
1284 // MUBUF instructions for the r + i addressing mode. As currently
1285 // implemented, the MUBUF instructions only work on buffer < 4GB.
1286 // It may be possible to support > 4GB buffers with MUBUF instructions,
1287 // by setting the stride value in the resource descriptor which would
1288 // increase the size limit to (stride * 4GB). However, this is risky,
1289 // because it has never been validated.
1290 return isLegalFlatAddressingMode(AM);
1291 }
1292
1293 return isLegalMUBUFAddressingMode(AM);
1294}
1295
1296bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1297 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1298 // additionally can do r + r + i with addr64. 32-bit has more addressing
1299 // mode options. Depending on the resource constant, it can also do
1300 // (i64 r0) + (i32 r1) * (i14 i).
1301 //
1302 // Private arrays end up using a scratch buffer most of the time, so also
1303 // assume those use MUBUF instructions. Scratch loads / stores are currently
1304 // implemented as mubuf instructions with offen bit set, so slightly
1305 // different than the normal addr64.
1306 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1307 return false;
1308
1309 // FIXME: Since we can split immediate into soffset and immediate offset,
1310 // would it make sense to allow any immediate?
1311
1312 switch (AM.Scale) {
1313 case 0: // r + i or just i, depending on HasBaseReg.
1314 return true;
1315 case 1:
1316 return true; // We have r + r or r + i.
1317 case 2:
1318 if (AM.HasBaseReg) {
1319 // Reject 2 * r + r.
1320 return false;
1321 }
1322
1323 // Allow 2 * r as r + r
1324 // Or 2 * r + i is allowed as r + r + i.
1325 return true;
1326 default: // Don't allow n * r
1327 return false;
1328 }
1329}
1330
1331bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1332 const AddrMode &AM, Type *Ty,
1333 unsigned AS, Instruction *I) const {
1334 // No global is ever allowed as a base.
1335 if (AM.BaseGV)
1336 return false;
1337
1338 if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1339 return isLegalGlobalAddressingMode(AM);
1340
1341 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1342 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1343 AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1344 // If the offset isn't a multiple of 4, it probably isn't going to be
1345 // correctly aligned.
1346 // FIXME: Can we get the real alignment here?
1347 if (AM.BaseOffs % 4 != 0)
1348 return isLegalMUBUFAddressingMode(AM);
1349
1350 // There are no SMRD extloads, so if we have to do a small type access we
1351 // will use a MUBUF load.
1352 // FIXME?: We also need to do this if unaligned, but we don't know the
1353 // alignment here.
1354 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1355 return isLegalGlobalAddressingMode(AM);
1356
1357 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1358 // SMRD instructions have an 8-bit, dword offset on SI.
1359 if (!isUInt<8>(AM.BaseOffs / 4))
1360 return false;
1361 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1362 // On CI+, this can also be a 32-bit literal constant offset. If it fits
1363 // in 8-bits, it can use a smaller encoding.
1364 if (!isUInt<32>(AM.BaseOffs / 4))
1365 return false;
1366 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1367 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1368 if (!isUInt<20>(AM.BaseOffs))
1369 return false;
1370 } else
1371 llvm_unreachable("unhandled generation")::llvm::llvm_unreachable_internal("unhandled generation", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1371)
;
1372
1373 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1374 return true;
1375
1376 if (AM.Scale == 1 && AM.HasBaseReg)
1377 return true;
1378
1379 return false;
1380
1381 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1382 return isLegalMUBUFAddressingMode(AM);
1383 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1384 AS == AMDGPUAS::REGION_ADDRESS) {
1385 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1386 // field.
1387 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1388 // an 8-bit dword offset but we don't know the alignment here.
1389 if (!isUInt<16>(AM.BaseOffs))
1390 return false;
1391
1392 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1393 return true;
1394
1395 if (AM.Scale == 1 && AM.HasBaseReg)
1396 return true;
1397
1398 return false;
1399 } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1400 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1401 // For an unknown address space, this usually means that this is for some
1402 // reason being used for pure arithmetic, and not based on some addressing
1403 // computation. We don't have instructions that compute pointers with any
1404 // addressing modes, so treat them as having no offset like flat
1405 // instructions.
1406 return isLegalFlatAddressingMode(AM);
1407 }
1408
1409 // Assume a user alias of global for unknown address spaces.
1410 return isLegalGlobalAddressingMode(AM);
1411}
1412
1413bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1414 const SelectionDAG &DAG) const {
1415 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1416 return (MemVT.getSizeInBits() <= 4 * 32);
1417 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1418 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1419 return (MemVT.getSizeInBits() <= MaxPrivateBits);
1420 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1421 return (MemVT.getSizeInBits() <= 2 * 32);
1422 }
1423 return true;
1424}
1425
1426bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1427 unsigned Size, unsigned AddrSpace, Align Alignment,
1428 MachineMemOperand::Flags Flags, bool *IsFast) const {
1429 if (IsFast)
1430 *IsFast = false;
1431
1432 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1433 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1434 // Check if alignment requirements for ds_read/write instructions are
1435 // disabled.
1436 if (Subtarget->hasUnalignedDSAccessEnabled() &&
1437 !Subtarget->hasLDSMisalignedBug()) {
1438 if (IsFast)
1439 *IsFast = Alignment != Align(2);
1440 return true;
1441 }
1442
1443 if (Size == 64) {
1444 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1445 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1446 // with adjacent offsets.
1447 bool AlignedBy4 = Alignment >= Align(4);
1448 if (IsFast)
1449 *IsFast = AlignedBy4;
1450
1451 return AlignedBy4;
1452 }
1453 if (Size == 96) {
1454 // ds_read/write_b96 require 16-byte alignment on gfx8 and older.
1455 bool Aligned = Alignment >= Align(16);
1456 if (IsFast)
1457 *IsFast = Aligned;
1458
1459 return Aligned;
1460 }
1461 if (Size == 128) {
1462 // ds_read/write_b128 require 16-byte alignment on gfx8 and older, but we
1463 // can do a 8 byte aligned, 16 byte access in a single operation using
1464 // ds_read2/write2_b64.
1465 bool Aligned = Alignment >= Align(8);
1466 if (IsFast)
1467 *IsFast = Aligned;
1468
1469 return Aligned;
1470 }
1471 }
1472
1473 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1474 bool AlignedBy4 = Alignment >= Align(4);
1475 if (IsFast)
1476 *IsFast = AlignedBy4;
1477
1478 return AlignedBy4 ||
1479 Subtarget->enableFlatScratch() ||
1480 Subtarget->hasUnalignedScratchAccess();
1481 }
1482
1483 // FIXME: We have to be conservative here and assume that flat operations
1484 // will access scratch. If we had access to the IR function, then we
1485 // could determine if any private memory was used in the function.
1486 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1487 !Subtarget->hasUnalignedScratchAccess()) {
1488 bool AlignedBy4 = Alignment >= Align(4);
1489 if (IsFast)
1490 *IsFast = AlignedBy4;
1491
1492 return AlignedBy4;
1493 }
1494
1495 if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1496 !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1497 AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1498 // If we have an uniform constant load, it still requires using a slow
1499 // buffer instruction if unaligned.
1500 if (IsFast) {
1501 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1502 // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1503 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1504 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1505 Alignment >= Align(4) : Alignment != Align(2);
1506 }
1507
1508 return true;
1509 }
1510
1511 // Smaller than dword value must be aligned.
1512 if (Size < 32)
1513 return false;
1514
1515 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1516 // byte-address are ignored, thus forcing Dword alignment.
1517 // This applies to private, global, and constant memory.
1518 if (IsFast)
1519 *IsFast = true;
1520
1521 return Size >= 32 && Alignment >= Align(4);
1522}
1523
1524bool SITargetLowering::allowsMisalignedMemoryAccesses(
1525 EVT VT, unsigned AddrSpace, unsigned Alignment,
1526 MachineMemOperand::Flags Flags, bool *IsFast) const {
1527 if (IsFast)
1528 *IsFast = false;
1529
1530 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1531 // which isn't a simple VT.
1532 // Until MVT is extended to handle this, simply check for the size and
1533 // rely on the condition below: allow accesses if the size is a multiple of 4.
1534 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1535 VT.getStoreSize() > 16)) {
1536 return false;
1537 }
1538
1539 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1540 Align(Alignment), Flags, IsFast);
1541}
1542
1543EVT SITargetLowering::getOptimalMemOpType(
1544 const MemOp &Op, const AttributeList &FuncAttributes) const {
1545 // FIXME: Should account for address space here.
1546
1547 // The default fallback uses the private pointer size as a guess for a type to
1548 // use. Make sure we switch these to 64-bit accesses.
1549
1550 if (Op.size() >= 16 &&
1551 Op.isDstAligned(Align(4))) // XXX: Should only do for global
1552 return MVT::v4i32;
1553
1554 if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1555 return MVT::v2i32;
1556
1557 // Use the default.
1558 return MVT::Other;
1559}
1560
1561bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1562 const MemSDNode *MemNode = cast<MemSDNode>(N);
1563 const Value *Ptr = MemNode->getMemOperand()->getValue();
1564 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1565 return I && I->getMetadata("amdgpu.noclobber");
1566}
1567
1568bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1569 unsigned DestAS) const {
1570 // Flat -> private/local is a simple truncate.
1571 // Flat -> global is no-op
1572 if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1573 return true;
1574
1575 const GCNTargetMachine &TM =
1576 static_cast<const GCNTargetMachine &>(getTargetMachine());
1577 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1578}
1579
1580bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1581 const MemSDNode *MemNode = cast<MemSDNode>(N);
1582
1583 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1584}
1585
1586TargetLoweringBase::LegalizeTypeAction
1587SITargetLowering::getPreferredVectorAction(MVT VT) const {
1588 int NumElts = VT.getVectorNumElements();
1589 if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1590 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1591 return TargetLoweringBase::getPreferredVectorAction(VT);
1592}
1593
1594bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1595 Type *Ty) const {
1596 // FIXME: Could be smarter if called for vector constants.
1597 return true;
1598}
1599
1600bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1601 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1602 switch (Op) {
1603 case ISD::LOAD:
1604 case ISD::STORE:
1605
1606 // These operations are done with 32-bit instructions anyway.
1607 case ISD::AND:
1608 case ISD::OR:
1609 case ISD::XOR:
1610 case ISD::SELECT:
1611 // TODO: Extensions?
1612 return true;
1613 default:
1614 return false;
1615 }
1616 }
1617
1618 // SimplifySetCC uses this function to determine whether or not it should
1619 // create setcc with i1 operands. We don't have instructions for i1 setcc.
1620 if (VT == MVT::i1 && Op == ISD::SETCC)
1621 return false;
1622
1623 return TargetLowering::isTypeDesirableForOp(Op, VT);
1624}
1625
1626SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1627 const SDLoc &SL,
1628 SDValue Chain,
1629 uint64_t Offset) const {
1630 const DataLayout &DL = DAG.getDataLayout();
1631 MachineFunction &MF = DAG.getMachineFunction();
1632 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1633
1634 const ArgDescriptor *InputPtrReg;
1635 const TargetRegisterClass *RC;
1636 LLT ArgTy;
1637
1638 std::tie(InputPtrReg, RC, ArgTy) =
1639 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1640
1641 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1642 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1643 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1644 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1645
1646 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1647}
1648
1649SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1650 const SDLoc &SL) const {
1651 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1652 FIRST_IMPLICIT);
1653 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1654}
1655
1656SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1657 const SDLoc &SL, SDValue Val,
1658 bool Signed,
1659 const ISD::InputArg *Arg) const {
1660 // First, if it is a widened vector, narrow it.
1661 if (VT.isVector() &&
1662 VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1663 EVT NarrowedVT =
1664 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1665 VT.getVectorNumElements());
1666 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1667 DAG.getConstant(0, SL, MVT::i32));
1668 }
1669
1670 // Then convert the vector elements or scalar value.
1671 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1672 VT.bitsLT(MemVT)) {
1673 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1674 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1675 }
1676
1677 if (MemVT.isFloatingPoint())
1678 Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1679 else if (Signed)
1680 Val = DAG.getSExtOrTrunc(Val, SL, VT);
1681 else
1682 Val = DAG.getZExtOrTrunc(Val, SL, VT);
1683
1684 return Val;
1685}
1686
1687SDValue SITargetLowering::lowerKernargMemParameter(
1688 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1689 uint64_t Offset, Align Alignment, bool Signed,
1690 const ISD::InputArg *Arg) const {
1691 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1692
1693 // Try to avoid using an extload by loading earlier than the argument address,
1694 // and extracting the relevant bits. The load should hopefully be merged with
1695 // the previous argument.
1696 if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1697 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1698 int64_t AlignDownOffset = alignDown(Offset, 4);
1699 int64_t OffsetDiff = Offset - AlignDownOffset;
1700
1701 EVT IntVT = MemVT.changeTypeToInteger();
1702
1703 // TODO: If we passed in the base kernel offset we could have a better
1704 // alignment than 4, but we don't really need it.
1705 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1706 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1707 MachineMemOperand::MODereferenceable |
1708 MachineMemOperand::MOInvariant);
1709
1710 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1711 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1712
1713 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1714 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1715 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1716
1717
1718 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1719 }
1720
1721 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1722 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1723 MachineMemOperand::MODereferenceable |
1724 MachineMemOperand::MOInvariant);
1725
1726 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1727 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1728}
1729
1730SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1731 const SDLoc &SL, SDValue Chain,
1732 const ISD::InputArg &Arg) const {
1733 MachineFunction &MF = DAG.getMachineFunction();
1734 MachineFrameInfo &MFI = MF.getFrameInfo();
1735
1736 if (Arg.Flags.isByVal()) {
1737 unsigned Size = Arg.Flags.getByValSize();
1738 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1739 return DAG.getFrameIndex(FrameIdx, MVT::i32);
1740 }
1741
1742 unsigned ArgOffset = VA.getLocMemOffset();
1743 unsigned ArgSize = VA.getValVT().getStoreSize();
1744
1745 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1746
1747 // Create load nodes to retrieve arguments from the stack.
1748 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1749 SDValue ArgValue;
1750
1751 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1752 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1753 MVT MemVT = VA.getValVT();
1754
1755 switch (VA.getLocInfo()) {
1756 default:
1757 break;
1758 case CCValAssign::BCvt:
1759 MemVT = VA.getLocVT();
1760 break;
1761 case CCValAssign::SExt:
1762 ExtType = ISD::SEXTLOAD;
1763 break;
1764 case CCValAssign::ZExt:
1765 ExtType = ISD::ZEXTLOAD;
1766 break;
1767 case CCValAssign::AExt:
1768 ExtType = ISD::EXTLOAD;
1769 break;
1770 }
1771
1772 ArgValue = DAG.getExtLoad(
1773 ExtType, SL, VA.getLocVT(), Chain, FIN,
1774 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1775 MemVT);
1776 return ArgValue;
1777}
1778
1779SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1780 const SIMachineFunctionInfo &MFI,
1781 EVT VT,
1782 AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1783 const ArgDescriptor *Reg;
1784 const TargetRegisterClass *RC;
1785 LLT Ty;
1786
1787 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1788 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1789}
1790
1791static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1792 CallingConv::ID CallConv,
1793 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1794 FunctionType *FType,
1795 SIMachineFunctionInfo *Info) {
1796 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1797 const ISD::InputArg *Arg = &Ins[I];
1798
1799 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&(((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits()
== 16) && "vector type argument should have been split"
) ? static_cast<void> (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"vector type argument should have been split\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1800, __PRETTY_FUNCTION__))
1800 "vector type argument should have been split")(((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits()
== 16) && "vector type argument should have been split"
) ? static_cast<void> (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"vector type argument should have been split\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1800, __PRETTY_FUNCTION__))
;
1801
1802 // First check if it's a PS input addr.
1803 if (CallConv == CallingConv::AMDGPU_PS &&
1804 !Arg->Flags.isInReg() && PSInputNum <= 15) {
1805 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1806
1807 // Inconveniently only the first part of the split is marked as isSplit,
1808 // so skip to the end. We only want to increment PSInputNum once for the
1809 // entire split argument.
1810 if (Arg->Flags.isSplit()) {
1811 while (!Arg->Flags.isSplitEnd()) {
1812 assert((!Arg->VT.isVector() ||(((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits()
== 16) && "unexpected vector split in ps argument type"
) ? static_cast<void> (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1814, __PRETTY_FUNCTION__))
1813 Arg->VT.getScalarSizeInBits() == 16) &&(((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits()
== 16) && "unexpected vector split in ps argument type"
) ? static_cast<void> (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1814, __PRETTY_FUNCTION__))
1814 "unexpected vector split in ps argument type")(((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits()
== 16) && "unexpected vector split in ps argument type"
) ? static_cast<void> (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1814, __PRETTY_FUNCTION__))
;
1815 if (!SkipArg)
1816 Splits.push_back(*Arg);
1817 Arg = &Ins[++I];
1818 }
1819 }
1820
1821 if (SkipArg) {
1822 // We can safely skip PS inputs.
1823 Skipped.set(Arg->getOrigArgIndex());
1824 ++PSInputNum;
1825 continue;
1826 }
1827
1828 Info->markPSInputAllocated(PSInputNum);
1829 if (Arg->Used)
1830 Info->markPSInputEnabled(PSInputNum);
1831
1832 ++PSInputNum;
1833 }
1834
1835 Splits.push_back(*Arg);
1836 }
1837}
1838
1839// Allocate special inputs passed in VGPRs.
1840void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1841 MachineFunction &MF,
1842 const SIRegisterInfo &TRI,
1843 SIMachineFunctionInfo &Info) const {
1844 const LLT S32 = LLT::scalar(32);
1845 MachineRegisterInfo &MRI = MF.getRegInfo();
1846
1847 if (Info.hasWorkItemIDX()) {
1848 Register Reg = AMDGPU::VGPR0;
1849 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1850
1851 CCInfo.AllocateReg(Reg);
1852 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1853 }
1854
1855 if (Info.hasWorkItemIDY()) {
1856 Register Reg = AMDGPU::VGPR1;
1857 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1858
1859 CCInfo.AllocateReg(Reg);
1860 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1861 }
1862
1863 if (Info.hasWorkItemIDZ()) {
1864 Register Reg = AMDGPU::VGPR2;
1865 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1866
1867 CCInfo.AllocateReg(Reg);
1868 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1869 }
1870}
1871
1872// Try to allocate a VGPR at the end of the argument list, or if no argument
1873// VGPRs are left allocating a stack slot.
1874// If \p Mask is is given it indicates bitfield position in the register.
1875// If \p Arg is given use it with new ]p Mask instead of allocating new.
1876static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1877 ArgDescriptor Arg = ArgDescriptor()) {
1878 if (Arg.isSet())
1879 return ArgDescriptor::createArg(Arg, Mask);
1880
1881 ArrayRef<MCPhysReg> ArgVGPRs
1882 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1883 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1884 if (RegIdx == ArgVGPRs.size()) {
1885 // Spill to stack required.
1886 int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1887
1888 return ArgDescriptor::createStack(Offset, Mask);
1889 }
1890
1891 unsigned Reg = ArgVGPRs[RegIdx];
1892 Reg = CCInfo.AllocateReg(Reg);
1893 assert(Reg != AMDGPU::NoRegister)((Reg != AMDGPU::NoRegister) ? static_cast<void> (0) : __assert_fail
("Reg != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1893, __PRETTY_FUNCTION__))
;
1894
1895 MachineFunction &MF = CCInfo.getMachineFunction();
1896 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1897 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1898 return ArgDescriptor::createRegister(Reg, Mask);
1899}
1900
1901static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1902 const TargetRegisterClass *RC,
1903 unsigned NumArgRegs) {
1904 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1905 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1906 if (RegIdx == ArgSGPRs.size())
1907 report_fatal_error("ran out of SGPRs for arguments");
1908
1909 unsigned Reg = ArgSGPRs[RegIdx];
1910 Reg = CCInfo.AllocateReg(Reg);
1911 assert(Reg != AMDGPU::NoRegister)((Reg != AMDGPU::NoRegister) ? static_cast<void> (0) : __assert_fail
("Reg != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1911, __PRETTY_FUNCTION__))
;
1912
1913 MachineFunction &MF = CCInfo.getMachineFunction();
1914 MF.addLiveIn(Reg, RC);
1915 return ArgDescriptor::createRegister(Reg);
1916}
1917
1918static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1919 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1920}
1921
1922static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1923 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1924}
1925
1926/// Allocate implicit function VGPR arguments at the end of allocated user
1927/// arguments.
1928void SITargetLowering::allocateSpecialInputVGPRs(
1929 CCState &CCInfo, MachineFunction &MF,
1930 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1931 const unsigned Mask = 0x3ff;
1932 ArgDescriptor Arg;
1933
1934 if (Info.hasWorkItemIDX()) {
1935 Arg = allocateVGPR32Input(CCInfo, Mask);
1936 Info.setWorkItemIDX(Arg);
1937 }
1938
1939 if (Info.hasWorkItemIDY()) {
1940 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1941 Info.setWorkItemIDY(Arg);
1942 }
1943
1944 if (Info.hasWorkItemIDZ())
1945 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1946}
1947
1948/// Allocate implicit function VGPR arguments in fixed registers.
1949void SITargetLowering::allocateSpecialInputVGPRsFixed(
1950 CCState &CCInfo, MachineFunction &MF,
1951 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1952 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
1953 if (!Reg)
1954 report_fatal_error("failed to allocated VGPR for implicit arguments");
1955
1956 const unsigned Mask = 0x3ff;
1957 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1958 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
1959 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
1960}
1961
1962void SITargetLowering::allocateSpecialInputSGPRs(
1963 CCState &CCInfo,
1964 MachineFunction &MF,
1965 const SIRegisterInfo &TRI,
1966 SIMachineFunctionInfo &Info) const {
1967 auto &ArgInfo = Info.getArgInfo();
1968
1969 // TODO: Unify handling with private memory pointers.
1970
1971 if (Info.hasDispatchPtr())
1972 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1973
1974 if (Info.hasQueuePtr())
1975 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1976
1977 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
1978 // constant offset from the kernarg segment.
1979 if (Info.hasImplicitArgPtr())
1980 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1981
1982 if (Info.hasDispatchID())
1983 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1984
1985 // flat_scratch_init is not applicable for non-kernel functions.
1986
1987 if (Info.hasWorkGroupIDX())
1988 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1989
1990 if (Info.hasWorkGroupIDY())
1991 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1992
1993 if (Info.hasWorkGroupIDZ())
1994 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1995}
1996
1997// Allocate special inputs passed in user SGPRs.
1998void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1999 MachineFunction &MF,
2000 const SIRegisterInfo &TRI,
2001 SIMachineFunctionInfo &Info) const {
2002 if (Info.hasImplicitBufferPtr()) {
2003 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2004 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2005 CCInfo.AllocateReg(ImplicitBufferPtrReg);
2006 }
2007
2008 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2009 if (Info.hasPrivateSegmentBuffer()) {
2010 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2011 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2012 CCInfo.AllocateReg(PrivateSegmentBufferReg);
2013 }
2014
2015 if (Info.hasDispatchPtr()) {
2016 Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2017 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2018 CCInfo.AllocateReg(DispatchPtrReg);
2019 }
2020
2021 if (Info.hasQueuePtr()) {
2022 Register QueuePtrReg = Info.addQueuePtr(TRI);
2023 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2024 CCInfo.AllocateReg(QueuePtrReg);
2025 }
2026
2027 if (Info.hasKernargSegmentPtr()) {
2028 MachineRegisterInfo &MRI = MF.getRegInfo();
2029 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2030 CCInfo.AllocateReg(InputPtrReg);
2031
2032 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2033 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2034 }
2035
2036 if (Info.hasDispatchID()) {
2037 Register DispatchIDReg = Info.addDispatchID(TRI);
2038 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2039 CCInfo.AllocateReg(DispatchIDReg);
2040 }
2041
2042 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2043 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2044 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2045 CCInfo.AllocateReg(FlatScratchInitReg);
2046 }
2047
2048 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2049 // these from the dispatch pointer.
2050}
2051
2052// Allocate special input registers that are initialized per-wave.
2053void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2054 MachineFunction &MF,
2055 SIMachineFunctionInfo &Info,
2056 CallingConv::ID CallConv,
2057 bool IsShader) const {
2058 if (Info.hasWorkGroupIDX()) {
2059 Register Reg = Info.addWorkGroupIDX();
2060 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2061 CCInfo.AllocateReg(Reg);
2062 }
2063
2064 if (Info.hasWorkGroupIDY()) {
2065 Register Reg = Info.addWorkGroupIDY();
2066 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2067 CCInfo.AllocateReg(Reg);
2068 }
2069
2070 if (Info.hasWorkGroupIDZ()) {
2071 Register Reg = Info.addWorkGroupIDZ();
2072 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2073 CCInfo.AllocateReg(Reg);
2074 }
2075
2076 if (Info.hasWorkGroupInfo()) {
2077 Register Reg = Info.addWorkGroupInfo();
2078 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2079 CCInfo.AllocateReg(Reg);
2080 }
2081
2082 if (Info.hasPrivateSegmentWaveByteOffset()) {
2083 // Scratch wave offset passed in system SGPR.
2084 unsigned PrivateSegmentWaveByteOffsetReg;
2085
2086 if (IsShader) {
2087 PrivateSegmentWaveByteOffsetReg =
2088 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2089
2090 // This is true if the scratch wave byte offset doesn't have a fixed
2091 // location.
2092 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2093 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2094 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2095 }
2096 } else
2097 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2098
2099 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2100 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2101 }
2102}
2103
2104static void reservePrivateMemoryRegs(const TargetMachine &TM,
2105 MachineFunction &MF,
2106 const SIRegisterInfo &TRI,
2107 SIMachineFunctionInfo &Info) {
2108 // Now that we've figured out where the scratch register inputs are, see if
2109 // should reserve the arguments and use them directly.
2110 MachineFrameInfo &MFI = MF.getFrameInfo();
2111 bool HasStackObjects = MFI.hasStackObjects();
2112 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2113
2114 // Record that we know we have non-spill stack objects so we don't need to
2115 // check all stack objects later.
2116 if (HasStackObjects)
2117 Info.setHasNonSpillStackObjects(true);
2118
2119 // Everything live out of a block is spilled with fast regalloc, so it's
2120 // almost certain that spilling will be required.
2121 if (TM.getOptLevel() == CodeGenOpt::None)
2122 HasStackObjects = true;
2123
2124 // For now assume stack access is needed in any callee functions, so we need
2125 // the scratch registers to pass in.
2126 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2127
2128 if (!ST.enableFlatScratch()) {
2129 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2130 // If we have stack objects, we unquestionably need the private buffer
2131 // resource. For the Code Object V2 ABI, this will be the first 4 user
2132 // SGPR inputs. We can reserve those and use them directly.
2133
2134 Register PrivateSegmentBufferReg =
2135 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2136 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2137 } else {
2138 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2139 // We tentatively reserve the last registers (skipping the last registers
2140 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2141 // we'll replace these with the ones immediately after those which were
2142 // really allocated. In the prologue copies will be inserted from the
2143 // argument to these reserved registers.
2144
2145 // Without HSA, relocations are used for the scratch pointer and the
2146 // buffer resource setup is always inserted in the prologue. Scratch wave
2147 // offset is still in an input SGPR.
2148 Info.setScratchRSrcReg(ReservedBufferReg);
2149 }
2150 }
2151
2152 MachineRegisterInfo &MRI = MF.getRegInfo();
2153
2154 // For entry functions we have to set up the stack pointer if we use it,
2155 // whereas non-entry functions get this "for free". This means there is no
2156 // intrinsic advantage to using S32 over S34 in cases where we do not have
2157 // calls but do need a frame pointer (i.e. if we are requested to have one
2158 // because frame pointer elimination is disabled). To keep things simple we
2159 // only ever use S32 as the call ABI stack pointer, and so using it does not
2160 // imply we need a separate frame pointer.
2161 //
2162 // Try to use s32 as the SP, but move it if it would interfere with input
2163 // arguments. This won't work with calls though.
2164 //
2165 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2166 // registers.
2167 if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2168 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2169 } else {
2170 assert(AMDGPU::isShader(MF.getFunction().getCallingConv()))((AMDGPU::isShader(MF.getFunction().getCallingConv())) ? static_cast
<void> (0) : __assert_fail ("AMDGPU::isShader(MF.getFunction().getCallingConv())"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2170, __PRETTY_FUNCTION__))
;
2171
2172 if (MFI.hasCalls())
2173 report_fatal_error("call in graphics shader with too many input SGPRs");
2174
2175 for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2176 if (!MRI.isLiveIn(Reg)) {
2177 Info.setStackPtrOffsetReg(Reg);
2178 break;
2179 }
2180 }
2181
2182 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2183 report_fatal_error("failed to find register for SP");
2184 }
2185
2186 // hasFP should be accurate for entry functions even before the frame is
2187 // finalized, because it does not rely on the known stack size, only
2188 // properties like whether variable sized objects are present.
2189 if (ST.getFrameLowering()->hasFP(MF)) {
2190 Info.setFrameOffsetReg(AMDGPU::SGPR33);
2191 }
2192}
2193
2194bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2195 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2196 return !Info->isEntryFunction();
2197}
2198
2199void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2200
2201}
2202
2203void SITargetLowering::insertCopiesSplitCSR(
2204 MachineBasicBlock *Entry,
2205 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2206 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2207
2208 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2209 if (!IStart)
2210 return;
2211
2212 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2213 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2214 MachineBasicBlock::iterator MBBI = Entry->begin();
2215 for (const MCPhysReg *I = IStart; *I; ++I) {
2216 const TargetRegisterClass *RC = nullptr;
2217 if (AMDGPU::SReg_64RegClass.contains(*I))
2218 RC = &AMDGPU::SGPR_64RegClass;
2219 else if (AMDGPU::SReg_32RegClass.contains(*I))
2220 RC = &AMDGPU::SGPR_32RegClass;
2221 else
2222 llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2222)
;
2223
2224 Register NewVR = MRI->createVirtualRegister(RC);
2225 // Create copy from CSR to a virtual register.
2226 Entry->addLiveIn(*I);
2227 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2228 .addReg(*I);
2229
2230 // Insert the copy-back instructions right before the terminator.
2231 for (auto *Exit : Exits)
2232 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2233 TII->get(TargetOpcode::COPY), *I)
2234 .addReg(NewVR);
2235 }
2236}
2237
2238SDValue SITargetLowering::LowerFormalArguments(
2239 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2240 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2241 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2242 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2243
2244 MachineFunction &MF = DAG.getMachineFunction();
2245 const Function &Fn = MF.getFunction();
2246 FunctionType *FType = MF.getFunction().getFunctionType();
2247 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2248
2249 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2250 DiagnosticInfoUnsupported NoGraphicsHSA(
2251 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2252 DAG.getContext()->diagnose(NoGraphicsHSA);
2253 return DAG.getEntryNode();
2254 }
2255
2256 SmallVector<ISD::InputArg, 16> Splits;
2257 SmallVector<CCValAssign, 16> ArgLocs;
2258 BitVector Skipped(Ins.size());
2259 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2260 *DAG.getContext());
2261
2262 bool IsGraphics = AMDGPU::isGraphics(CallConv);
2263 bool IsKernel = AMDGPU::isKernel(CallConv);
2264 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2265
2266 if (IsGraphics) {
2267 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && (!Info->hasFlatScratchInit() || Subtarget->
enableFlatScratch()) && !Info->hasWorkGroupIDX() &&
!Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ
() && !Info->hasWorkGroupInfo() && !Info->
hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
!Info->hasWorkItemIDZ()) ? static_cast<void> (0) : __assert_fail
("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2272, __PRETTY_FUNCTION__))
2268 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && (!Info->hasFlatScratchInit() || Subtarget->
enableFlatScratch()) && !Info->hasWorkGroupIDX() &&
!Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ
() && !Info->hasWorkGroupInfo() && !Info->
hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
!Info->hasWorkItemIDZ()) ? static_cast<void> (0) : __assert_fail
("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2272, __PRETTY_FUNCTION__))
2269 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && (!Info->hasFlatScratchInit() || Subtarget->
enableFlatScratch()) && !Info->hasWorkGroupIDX() &&
!Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ
() && !Info->hasWorkGroupInfo() && !Info->
hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
!Info->hasWorkItemIDZ()) ? static_cast<void> (0) : __assert_fail
("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2272, __PRETTY_FUNCTION__))
2270 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && (!Info->hasFlatScratchInit() || Subtarget->
enableFlatScratch()) && !Info->hasWorkGroupIDX() &&
!Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ
() && !Info->hasWorkGroupInfo() && !Info->
hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
!Info->hasWorkItemIDZ()) ? static_cast<void> (0) : __assert_fail
("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2272, __PRETTY_FUNCTION__))
2271 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && (!Info->hasFlatScratchInit() || Subtarget->
enableFlatScratch()) && !Info->hasWorkGroupIDX() &&
!Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ
() && !Info->hasWorkGroupInfo() && !Info->
hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
!Info->hasWorkItemIDZ()) ? static_cast<void> (0) : __assert_fail
("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2272, __PRETTY_FUNCTION__))
2272 !Info->hasWorkItemIDZ())((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && (!Info->hasFlatScratchInit() || Subtarget->
enableFlatScratch()) && !Info->hasWorkGroupIDX() &&
!Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ
() && !Info->hasWorkGroupInfo() && !Info->
hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
!Info->hasWorkItemIDZ()) ? static_cast<void> (0) : __assert_fail
("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2272, __PRETTY_FUNCTION__))
;
2273 }
2274
2275 if (CallConv == CallingConv::AMDGPU_PS) {
2276 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2277
2278 // At least one interpolation mode must be enabled or else the GPU will
2279 // hang.
2280 //
2281 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2282 // set PSInputAddr, the user wants to enable some bits after the compilation
2283 // based on run-time states. Since we can't know what the final PSInputEna
2284 // will look like, so we shouldn't do anything here and the user should take
2285 // responsibility for the correct programming.
2286 //
2287 // Otherwise, the following restrictions apply:
2288 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2289 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2290 // enabled too.
2291 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2292 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2293 CCInfo.AllocateReg(AMDGPU::VGPR0);
2294 CCInfo.AllocateReg(AMDGPU::VGPR1);
2295 Info->markPSInputAllocated(0);
2296 Info->markPSInputEnabled(0);
2297 }
2298 if (Subtarget->isAmdPalOS()) {
2299 // For isAmdPalOS, the user does not enable some bits after compilation
2300 // based on run-time states; the register values being generated here are
2301 // the final ones set in hardware. Therefore we need to apply the
2302 // workaround to PSInputAddr and PSInputEnable together. (The case where
2303 // a bit is set in PSInputAddr but not PSInputEnable is where the
2304 // frontend set up an input arg for a particular interpolation mode, but
2305 // nothing uses that input arg. Really we should have an earlier pass
2306 // that removes such an arg.)
2307 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2308 if ((PsInputBits & 0x7F) == 0 ||
2309 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2310 Info->markPSInputEnabled(
2311 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2312 }
2313 } else if (IsKernel) {
2314 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX())((Info->hasWorkGroupIDX() && Info->hasWorkItemIDX
()) ? static_cast<void> (0) : __assert_fail ("Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2314, __PRETTY_FUNCTION__))
;
2315 } else {
2316 Splits.append(Ins.begin(), Ins.end());
2317 }
2318
2319 if (IsEntryFunc) {
2320 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2321 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2322 } else {
2323 // For the fixed ABI, pass workitem IDs in the last argument register.
2324 if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2325 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2326 }
2327
2328 if (IsKernel) {
2329 analyzeFormalArgumentsCompute(CCInfo, Ins);
2330 } else {
2331 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2332 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2333 }
2334
2335 SmallVector<SDValue, 16> Chains;
2336
2337 // FIXME: This is the minimum kernel argument alignment. We should improve
2338 // this to the maximum alignment of the arguments.
2339 //
2340 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2341 // kern arg offset.
2342 const Align KernelArgBaseAlign = Align(16);
2343
2344 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2345 const ISD::InputArg &Arg = Ins[i];
2346 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2347 InVals.push_back(DAG.getUNDEF(Arg.VT));
2348 continue;
2349 }
2350
2351 CCValAssign &VA = ArgLocs[ArgIdx++];
2352 MVT VT = VA.getLocVT();
2353
2354 if (IsEntryFunc && VA.isMemLoc()) {
2355 VT = Ins[i].VT;
2356 EVT MemVT = VA.getLocVT();
2357
2358 const uint64_t Offset = VA.getLocMemOffset();
2359 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2360
2361 if (Arg.Flags.isByRef()) {
2362 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2363
2364 const GCNTargetMachine &TM =
2365 static_cast<const GCNTargetMachine &>(getTargetMachine());
2366 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2367 Arg.Flags.getPointerAddrSpace())) {
2368 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2369 Arg.Flags.getPointerAddrSpace());
2370 }
2371
2372 InVals.push_back(Ptr);
2373 continue;
2374 }
2375
2376 SDValue Arg = lowerKernargMemParameter(
2377 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2378 Chains.push_back(Arg.getValue(1));
2379
2380 auto *ParamTy =
2381 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2382 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2383 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2384 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2385 // On SI local pointers are just offsets into LDS, so they are always
2386 // less than 16-bits. On CI and newer they could potentially be
2387 // real pointers, so we can't guarantee their size.
2388 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2389 DAG.getValueType(MVT::i16));
2390 }
2391
2392 InVals.push_back(Arg);
2393 continue;
2394 } else if (!IsEntryFunc && VA.isMemLoc()) {
2395 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2396 InVals.push_back(Val);
2397 if (!Arg.Flags.isByVal())
2398 Chains.push_back(Val.getValue(1));
2399 continue;
2400 }
2401
2402 assert(VA.isRegLoc() && "Parameter must be in a register!")((VA.isRegLoc() && "Parameter must be in a register!"
) ? static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Parameter must be in a register!\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2402, __PRETTY_FUNCTION__))
;
2403
2404 Register Reg = VA.getLocReg();
2405 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2406 EVT ValVT = VA.getValVT();
2407
2408 Reg = MF.addLiveIn(Reg, RC);
2409 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2410
2411 if (Arg.Flags.isSRet()) {
2412 // The return object should be reasonably addressable.
2413
2414 // FIXME: This helps when the return is a real sret. If it is a
2415 // automatically inserted sret (i.e. CanLowerReturn returns false), an
2416 // extra copy is inserted in SelectionDAGBuilder which obscures this.
2417 unsigned NumBits
2418 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2419 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2420 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2421 }
2422
2423 // If this is an 8 or 16-bit value, it is really passed promoted
2424 // to 32 bits. Insert an assert[sz]ext to capture this, then
2425 // truncate to the right size.
2426 switch (VA.getLocInfo()) {
2427 case CCValAssign::Full:
2428 break;
2429 case CCValAssign::BCvt:
2430 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2431 break;
2432 case CCValAssign::SExt:
2433 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2434 DAG.getValueType(ValVT));
2435 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2436 break;
2437 case CCValAssign::ZExt:
2438 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2439 DAG.getValueType(ValVT));
2440 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2441 break;
2442 case CCValAssign::AExt:
2443 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2444 break;
2445 default:
2446 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2446)
;
2447 }
2448
2449 InVals.push_back(Val);
2450 }
2451
2452 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2453 // Special inputs come after user arguments.
2454 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2455 }
2456
2457 // Start adding system SGPRs.
2458 if (IsEntryFunc) {
2459 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2460 } else {
2461 CCInfo.AllocateReg(Info->getScratchRSrcReg());
2462 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2463 }
2464
2465 auto &ArgUsageInfo =
2466 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2467 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2468
2469 unsigned StackArgSize = CCInfo.getNextStackOffset();
2470 Info->setBytesInStackArgArea(StackArgSize);
2471
2472 return Chains.empty() ? Chain :
2473 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2474}
2475
2476// TODO: If return values can't fit in registers, we should return as many as
2477// possible in registers before passing on stack.
2478bool SITargetLowering::CanLowerReturn(
2479 CallingConv::ID CallConv,
2480 MachineFunction &MF, bool IsVarArg,
2481 const SmallVectorImpl<ISD::OutputArg> &Outs,
2482 LLVMContext &Context) const {
2483 // Replacing returns with sret/stack usage doesn't make sense for shaders.
2484 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2485 // for shaders. Vector types should be explicitly handled by CC.
2486 if (AMDGPU::isEntryFunctionCC(CallConv))
2487 return true;
2488
2489 SmallVector<CCValAssign, 16> RVLocs;
2490 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2491 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2492}
2493
2494SDValue
2495SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2496 bool isVarArg,
2497 const SmallVectorImpl<ISD::OutputArg> &Outs,
2498 const SmallVectorImpl<SDValue> &OutVals,
2499 const SDLoc &DL, SelectionDAG &DAG) const {
2500 MachineFunction &MF = DAG.getMachineFunction();
2501 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2502
2503 if (AMDGPU::isKernel(CallConv)) {
2504 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2505 OutVals, DL, DAG);
2506 }
2507
2508 bool IsShader = AMDGPU::isShader(CallConv);
2509
2510 Info->setIfReturnsVoid(Outs.empty());
2511 bool IsWaveEnd = Info->returnsVoid() && IsShader;
2512
2513 // CCValAssign - represent the assignment of the return value to a location.
2514 SmallVector<CCValAssign, 48> RVLocs;
2515 SmallVector<ISD::OutputArg, 48> Splits;
2516
2517 // CCState - Info about the registers and stack slots.
2518 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2519 *DAG.getContext());
2520
2521 // Analyze outgoing return values.
2522 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2523
2524 SDValue Flag;
2525 SmallVector<SDValue, 48> RetOps;
2526 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2527
2528 // Add return address for callable functions.
2529 if (!Info->isEntryFunction()) {
2530 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2531 SDValue ReturnAddrReg = CreateLiveInRegister(
2532 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2533
2534 SDValue ReturnAddrVirtualReg = DAG.getRegister(
2535 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2536 MVT::i64);
2537 Chain =
2538 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2539 Flag = Chain.getValue(1);
2540 RetOps.push_back(ReturnAddrVirtualReg);
2541 }
2542
2543 // Copy the result values into the output registers.
2544 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2545 ++I, ++RealRVLocIdx) {
2546 CCValAssign &VA = RVLocs[I];
2547 assert(VA.isRegLoc() && "Can only return in registers!")((VA.isRegLoc() && "Can only return in registers!") ?
static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2547, __PRETTY_FUNCTION__))
;
2548 // TODO: Partially return in registers if return values don't fit.
2549 SDValue Arg = OutVals[RealRVLocIdx];
2550
2551 // Copied from other backends.
2552 switch (VA.getLocInfo()) {
2553 case CCValAssign::Full:
2554 break;
2555 case CCValAssign::BCvt:
2556 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2557 break;
2558 case CCValAssign::SExt:
2559 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2560 break;
2561 case CCValAssign::ZExt:
2562 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2563 break;
2564 case CCValAssign::AExt:
2565 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2566 break;
2567 default:
2568 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2568)
;
2569 }
2570
2571 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2572 Flag = Chain.getValue(1);
2573 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2574 }
2575
2576 // FIXME: Does sret work properly?
2577 if (!Info->isEntryFunction()) {
2578 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2579 const MCPhysReg *I =
2580 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2581 if (I) {
2582 for (; *I; ++I) {
2583 if (AMDGPU::SReg_64RegClass.contains(*I))
2584 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2585 else if (AMDGPU::SReg_32RegClass.contains(*I))
2586 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2587 else
2588 llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2588)
;
2589 }
2590 }
2591 }
2592
2593 // Update chain and glue.
2594 RetOps[0] = Chain;
2595 if (Flag.getNode())
2596 RetOps.push_back(Flag);
2597
2598 unsigned Opc = AMDGPUISD::ENDPGM;
2599 if (!IsWaveEnd)
2600 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2601 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2602}
2603
2604SDValue SITargetLowering::LowerCallResult(
2605 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2606 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2607 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2608 SDValue ThisVal) const {
2609 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2610
2611 // Assign locations to each value returned by this call.
2612 SmallVector<CCValAssign, 16> RVLocs;
2613 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2614 *DAG.getContext());
2615 CCInfo.AnalyzeCallResult(Ins, RetCC);
2616
2617 // Copy all of the result registers out of their specified physreg.
2618 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2619 CCValAssign VA = RVLocs[i];
2620 SDValue Val;
2621
2622 if (VA.isRegLoc()) {
2623 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2624 Chain = Val.getValue(1);
2625 InFlag = Val.getValue(2);
2626 } else if (VA.isMemLoc()) {
2627 report_fatal_error("TODO: return values in memory");
2628 } else
2629 llvm_unreachable("unknown argument location type")::llvm::llvm_unreachable_internal("unknown argument location type"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2629)
;
2630
2631 switch (VA.getLocInfo()) {
2632 case CCValAssign::Full:
2633 break;
2634 case CCValAssign::BCvt:
2635 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2636 break;
2637 case CCValAssign::ZExt:
2638 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2639 DAG.getValueType(VA.getValVT()));
2640 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2641 break;
2642 case CCValAssign::SExt:
2643 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2644 DAG.getValueType(VA.getValVT()));
2645 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2646 break;
2647 case CCValAssign::AExt:
2648 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2649 break;
2650 default:
2651 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2651)
;
2652 }
2653
2654 InVals.push_back(Val);
2655 }
2656
2657 return Chain;
2658}
2659
2660// Add code to pass special inputs required depending on used features separate
2661// from the explicit user arguments present in the IR.
2662void SITargetLowering::passSpecialInputs(
2663 CallLoweringInfo &CLI,
2664 CCState &CCInfo,
2665 const SIMachineFunctionInfo &Info,
2666 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2667 SmallVectorImpl<SDValue> &MemOpChains,
2668 SDValue Chain) const {
2669 // If we don't have a call site, this was a call inserted by
2670 // legalization. These can never use special inputs.
2671 if (!CLI.CB)
2672 return;
2673
2674 SelectionDAG &DAG = CLI.DAG;
2675 const SDLoc &DL = CLI.DL;
2676
2677 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2678 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2679
2680 const AMDGPUFunctionArgInfo *CalleeArgInfo
2681 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2682 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2683 auto &ArgUsageInfo =
2684 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2685 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2686 }
2687
2688 // TODO: Unify with private memory register handling. This is complicated by
2689 // the fact that at least in kernels, the input argument is not necessarily
2690 // in the same location as the input.
2691 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2692 AMDGPUFunctionArgInfo::DISPATCH_PTR,
2693 AMDGPUFunctionArgInfo::QUEUE_PTR,
2694 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
2695 AMDGPUFunctionArgInfo::DISPATCH_ID,
2696 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2697 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2698 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
2699 };
2700
2701 for (auto InputID : InputRegs) {
2702 const ArgDescriptor *OutgoingArg;
2703 const TargetRegisterClass *ArgRC;
2704 LLT ArgTy;
2705
2706 std::tie(OutgoingArg, ArgRC, ArgTy) =
2707 CalleeArgInfo->getPreloadedValue(InputID);
2708 if (!OutgoingArg)
2709 continue;
2710
2711 const ArgDescriptor *IncomingArg;
2712 const TargetRegisterClass *IncomingArgRC;
2713 LLT Ty;
2714 std::tie(IncomingArg, IncomingArgRC, Ty) =
2715 CallerArgInfo.getPreloadedValue(InputID);
2716 assert(IncomingArgRC == ArgRC)((IncomingArgRC == ArgRC) ? static_cast<void> (0) : __assert_fail
("IncomingArgRC == ArgRC", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2716, __PRETTY_FUNCTION__))
;
2717
2718 // All special arguments are ints for now.
2719 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2720 SDValue InputReg;
2721
2722 if (IncomingArg) {
2723 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2724 } else {
2725 // The implicit arg ptr is special because it doesn't have a corresponding
2726 // input for kernels, and is computed from the kernarg segment pointer.
2727 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR)((InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) ? static_cast
<void> (0) : __assert_fail ("InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2727, __PRETTY_FUNCTION__))
;
2728 InputReg = getImplicitArgPtr(DAG, DL);
2729 }
2730
2731 if (OutgoingArg->isRegister()) {
2732 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2733 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2734 report_fatal_error("failed to allocate implicit input argument");
2735 } else {
2736 unsigned SpecialArgOffset =
2737 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2738 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2739 SpecialArgOffset);
2740 MemOpChains.push_back(ArgStore);
2741 }
2742 }
2743
2744 // Pack workitem IDs into a single register or pass it as is if already
2745 // packed.
2746 const ArgDescriptor *OutgoingArg;
2747 const TargetRegisterClass *ArgRC;
2748 LLT Ty;
2749
2750 std::tie(OutgoingArg, ArgRC, Ty) =
2751 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2752 if (!OutgoingArg)
2753 std::tie(OutgoingArg, ArgRC, Ty) =
2754 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2755 if (!OutgoingArg)
2756 std::tie(OutgoingArg, ArgRC, Ty) =
2757 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2758 if (!OutgoingArg)
2759 return;
2760
2761 const ArgDescriptor *IncomingArgX = std::get<0>(
2762 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2763 const ArgDescriptor *IncomingArgY = std::get<0>(
2764 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2765 const ArgDescriptor *IncomingArgZ = std::get<0>(
2766 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2767
2768 SDValue InputReg;
2769 SDLoc SL;
2770
2771 // If incoming ids are not packed we need to pack them.
2772 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX)
2773 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2774
2775 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
2776 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2777 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2778 DAG.getShiftAmountConstant(10, MVT::i32, SL));
2779 InputReg = InputReg.getNode() ?
2780 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2781 }
2782
2783 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
2784 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2785 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2786 DAG.getShiftAmountConstant(20, MVT::i32, SL));
2787 InputReg = InputReg.getNode() ?
2788 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2789 }
2790
2791 if (!InputReg.getNode()) {
2792 // Workitem ids are already packed, any of present incoming arguments
2793 // will carry all required fields.
2794 ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2795 IncomingArgX ? *IncomingArgX :
2796 IncomingArgY ? *IncomingArgY :
2797 *IncomingArgZ, ~0u);
2798 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2799 }
2800
2801 if (OutgoingArg->isRegister()) {
2802 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2803 CCInfo.AllocateReg(OutgoingArg->getRegister());
2804 } else {
2805 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2806 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2807 SpecialArgOffset);
2808 MemOpChains.push_back(ArgStore);
2809 }
2810}
2811
2812static bool canGuaranteeTCO(CallingConv::ID CC) {
2813 return CC == CallingConv::Fast;
2814}
2815
2816/// Return true if we might ever do TCO for calls with this calling convention.
2817static bool mayTailCallThisCC(CallingConv::ID CC) {
2818 switch (CC) {
2819 case CallingConv::C:
2820 return true;
2821 default:
2822 return canGuaranteeTCO(CC);
2823 }
2824}
2825
2826bool SITargetLowering::isEligibleForTailCallOptimization(
2827 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2828 const SmallVectorImpl<ISD::OutputArg> &Outs,
2829 const SmallVectorImpl<SDValue> &OutVals,
2830 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2831 if (!mayTailCallThisCC(CalleeCC))
2832 return false;
2833
2834 MachineFunction &MF = DAG.getMachineFunction();
2835 const Function &CallerF = MF.getFunction();
2836 CallingConv::ID CallerCC = CallerF.getCallingConv();
2837 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2838 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2839
2840 // Kernels aren't callable, and don't have a live in return address so it
2841 // doesn't make sense to do a tail call with entry functions.
2842 if (!CallerPreserved)
2843 return false;
2844
2845 bool CCMatch = CallerCC == CalleeCC;
2846
2847 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2848 if (canGuaranteeTCO(CalleeCC) && CCMatch)
2849 return true;
2850 return false;
2851 }
2852
2853 // TODO: Can we handle var args?
2854 if (IsVarArg)
2855 return false;
2856
2857 for (const Argument &Arg : CallerF.args()) {
2858 if (Arg.hasByValAttr())
2859 return false;
2860 }
2861
2862 LLVMContext &Ctx = *DAG.getContext();
2863
2864 // Check that the call results are passed in the same way.
2865 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2866 CCAssignFnForCall(CalleeCC, IsVarArg),
2867 CCAssignFnForCall(CallerCC, IsVarArg)))
2868 return false;
2869
2870 // The callee has to preserve all registers the caller needs to preserve.
2871 if (!CCMatch) {
2872 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2873 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2874 return false;
2875 }
2876
2877 // Nothing more to check if the callee is taking no arguments.
2878 if (Outs.empty())
2879 return true;
2880
2881 SmallVector<CCValAssign, 16> ArgLocs;
2882 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2883
2884 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2885
2886 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2887 // If the stack arguments for this call do not fit into our own save area then
2888 // the call cannot be made tail.
2889 // TODO: Is this really necessary?
2890 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2891 return false;
2892
2893 const MachineRegisterInfo &MRI = MF.getRegInfo();
2894 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2895}
2896
2897bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2898 if (!CI->isTailCall())
2899 return false;
2900
2901 const Function *ParentFn = CI->getParent()->getParent();
2902 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2903 return false;
2904 return true;
2905}
2906
2907// The wave scratch offset register is used as the global base pointer.
2908SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2909 SmallVectorImpl<SDValue> &InVals) const {
2910 SelectionDAG &DAG = CLI.DAG;
2911 const SDLoc &DL = CLI.DL;
2912 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2913 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2914 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2915 SDValue Chain = CLI.Chain;
2916 SDValue Callee = CLI.Callee;
2917 bool &IsTailCall = CLI.IsTailCall;
2918 CallingConv::ID CallConv = CLI.CallConv;
2919 bool IsVarArg = CLI.IsVarArg;
2920 bool IsSibCall = false;
2921 bool IsThisReturn = false;
2922 MachineFunction &MF = DAG.getMachineFunction();
2923
2924 if (Callee.isUndef() || isNullConstant(Callee)) {
2925 if (!CLI.IsTailCall) {
2926 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2927 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2928 }
2929
2930 return Chain;
2931 }
2932
2933 if (IsVarArg) {
2934 return lowerUnhandledCall(CLI, InVals,
2935 "unsupported call to variadic function ");
2936 }
2937
2938 if (!CLI.CB)
2939 report_fatal_error("unsupported libcall legalization");
2940
2941 if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
2942 !CLI.CB->getCalledFunction() && CallConv != CallingConv::AMDGPU_Gfx) {
2943 return lowerUnhandledCall(CLI, InVals,
2944 "unsupported indirect call to function ");
2945 }
2946
2947 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2948 return lowerUnhandledCall(CLI, InVals,
2949 "unsupported required tail call to function ");
2950 }
2951
2952 if (AMDGPU::isShader(CallConv)) {
2953 // Note the issue is with the CC of the called function, not of the call
2954 // itself.
2955 return lowerUnhandledCall(CLI, InVals,
2956 "unsupported call to a shader function ");
2957 }
2958
2959 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
2960 CallConv != CallingConv::AMDGPU_Gfx) {
2961 // Only allow calls with specific calling conventions.
2962 return lowerUnhandledCall(CLI, InVals,
2963 "unsupported calling convention for call from "
2964 "graphics shader of function ");
2965 }
2966
2967 if (IsTailCall) {
2968 IsTailCall = isEligibleForTailCallOptimization(
2969 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2970 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
2971 report_fatal_error("failed to perform tail call elimination on a call "
2972 "site marked musttail");
2973 }
2974
2975 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2976
2977 // A sibling call is one where we're under the usual C ABI and not planning
2978 // to change that but can still do a tail call:
2979 if (!TailCallOpt && IsTailCall)
2980 IsSibCall = true;
2981
2982 if (IsTailCall)
2983 ++NumTailCalls;
2984 }
2985
2986 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2987 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2988 SmallVector<SDValue, 8> MemOpChains;
2989
2990 // Analyze operands of the call, assigning locations to each operand.
2991 SmallVector<CCValAssign, 16> ArgLocs;
2992 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2993 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2994
2995 if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
2996 CallConv != CallingConv::AMDGPU_Gfx) {
2997 // With a fixed ABI, allocate fixed registers before user arguments.
2998 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2999 }
3000
3001 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3002
3003 // Get a count of how many bytes are to be pushed on the stack.
3004 unsigned NumBytes = CCInfo.getNextStackOffset();
3005
3006 if (IsSibCall) {
3007 // Since we're not changing the ABI to make this a tail call, the memory
3008 // operands are already available in the caller's incoming argument space.
3009 NumBytes = 0;
3010 }
3011
3012 // FPDiff is the byte offset of the call's argument area from the callee's.
3013 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3014 // by this amount for a tail call. In a sibling call it must be 0 because the
3015 // caller will deallocate the entire stack and the callee still expects its
3016 // arguments to begin at SP+0. Completely unused for non-tail calls.
3017 int32_t FPDiff = 0;
3018 MachineFrameInfo &MFI = MF.getFrameInfo();
3019
3020 // Adjust the stack pointer for the new arguments...
3021 // These operations are automatically eliminated by the prolog/epilog pass
3022 if (!IsSibCall) {
3023 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3024
3025 if (!Subtarget->enableFlatScratch()) {
3026 SmallVector<SDValue, 4> CopyFromChains;
3027
3028 // In the HSA case, this should be an identity copy.
3029 SDValue ScratchRSrcReg
3030 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3031 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3032 CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3033 Chain = DAG.getTokenFactor(DL, CopyFromChains);
3034 }
3035 }
3036
3037 MVT PtrVT = MVT::i32;
3038
3039 // Walk the register/memloc assignments, inserting copies/loads.
3040 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3041 CCValAssign &VA = ArgLocs[i];
3042 SDValue Arg = OutVals[i];
3043
3044 // Promote the value if needed.
3045 switch (VA.getLocInfo()) {
3046 case CCValAssign::Full:
3047 break;
3048 case CCValAssign::BCvt:
3049 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3050 break;
3051 case CCValAssign::ZExt:
3052 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3053 break;
3054 case CCValAssign::SExt:
3055 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3056 break;
3057 case CCValAssign::AExt:
3058 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3059 break;
3060 case CCValAssign::FPExt:
3061 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3062 break;
3063 default:
3064 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3064)
;
3065 }
3066
3067 if (VA.isRegLoc()) {
3068 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3069 } else {
3070 assert(VA.isMemLoc())((VA.isMemLoc()) ? static_cast<void> (0) : __assert_fail
("VA.isMemLoc()", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3070, __PRETTY_FUNCTION__))
;
3071
3072 SDValue DstAddr;
3073 MachinePointerInfo DstInfo;
3074
3075 unsigned LocMemOffset = VA.getLocMemOffset();
3076 int32_t Offset = LocMemOffset;
3077
3078 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3079 MaybeAlign Alignment;
3080
3081 if (IsTailCall) {
3082 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3083 unsigned OpSize = Flags.isByVal() ?
3084 Flags.getByValSize() : VA.getValVT().getStoreSize();
3085
3086 // FIXME: We can have better than the minimum byval required alignment.
3087 Alignment =
3088 Flags.isByVal()
3089 ? Flags.getNonZeroByValAlign()
3090 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3091
3092 Offset = Offset + FPDiff;
3093 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3094
3095 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3096 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3097
3098 // Make sure any stack arguments overlapping with where we're storing
3099 // are loaded before this eventual operation. Otherwise they'll be
3100 // clobbered.
3101
3102 // FIXME: Why is this really necessary? This seems to just result in a
3103 // lot of code to copy the stack and write them back to the same
3104 // locations, which are supposed to be immutable?
3105 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3106 } else {
3107 DstAddr = PtrOff;
3108 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3109 Alignment =
3110 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3111 }
3112
3113 if (Outs[i].Flags.isByVal()) {
3114 SDValue SizeNode =
3115 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3116 SDValue Cpy =
3117 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3118 Outs[i].Flags.getNonZeroByValAlign(),
3119 /*isVol = */ false, /*AlwaysInline = */ true,
3120 /*isTailCall = */ false, DstInfo,
3121 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3122
3123 MemOpChains.push_back(Cpy);
3124 } else {
3125 SDValue Store =
3126 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3127 MemOpChains.push_back(Store);
3128 }
3129 }
3130 }
3131
3132 if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
3133 CallConv != CallingConv::AMDGPU_Gfx) {
3134 // Copy special input registers after user input arguments.
3135 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3136 }
3137
3138 if (!MemOpChains.empty())
3139 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3140
3141 // Build a sequence of copy-to-reg nodes chained together with token chain
3142 // and flag operands which copy the outgoing args into the appropriate regs.
3143 SDValue InFlag;
3144 for (auto &RegToPass : RegsToPass) {
3145 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3146 RegToPass.second, InFlag);
3147 InFlag = Chain.getValue(1);
3148 }
3149
3150
3151 SDValue PhysReturnAddrReg;
3152 if (IsTailCall) {
3153 // Since the return is being combined with the call, we need to pass on the
3154 // return address.
3155
3156 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3157 SDValue ReturnAddrReg = CreateLiveInRegister(
3158 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3159
3160 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3161 MVT::i64);
3162 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3163 InFlag = Chain.getValue(1);
3164 }
3165
3166 // We don't usually want to end the call-sequence here because we would tidy
3167 // the frame up *after* the call, however in the ABI-changing tail-call case
3168 // we've carefully laid out the parameters so that when sp is reset they'll be
3169 // in the correct location.
3170 if (IsTailCall && !IsSibCall) {
3171 Chain = DAG.getCALLSEQ_END(Chain,
3172 DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3173 DAG.getTargetConstant(0, DL, MVT::i32),
3174 InFlag, DL);
3175 InFlag = Chain.getValue(1);
3176 }
3177
3178 std::vector<SDValue> Ops;
3179 Ops.push_back(Chain);
3180 Ops.push_back(Callee);
3181 // Add a redundant copy of the callee global which will not be legalized, as
3182 // we need direct access to the callee later.
3183 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3184 const GlobalValue *GV = GSD->getGlobal();
3185 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3186 } else {
3187 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3188 }
3189
3190 if (IsTailCall) {
3191 // Each tail call may have to adjust the stack by a different amount, so
3192 // this information must travel along with the operation for eventual
3193 // consumption by emitEpilogue.
3194 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3195
3196 Ops.push_back(PhysReturnAddrReg);
3197 }
3198
3199 // Add argument registers to the end of the list so that they are known live
3200 // into the call.
3201 for (auto &RegToPass : RegsToPass) {
3202 Ops.push_back(DAG.getRegister(RegToPass.first,
3203 RegToPass.second.getValueType()));
3204 }
3205
3206 // Add a register mask operand representing the call-preserved registers.
3207
3208 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3209 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3210 assert(Mask && "Missing call preserved mask for calling convention")((Mask && "Missing call preserved mask for calling convention"
) ? static_cast<void> (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3210, __PRETTY_FUNCTION__))
;
3211 Ops.push_back(DAG.getRegisterMask(Mask));
3212
3213 if (InFlag.getNode())
3214 Ops.push_back(InFlag);
3215
3216 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3217
3218 // If we're doing a tall call, use a TC_RETURN here rather than an
3219 // actual call instruction.
3220 if (IsTailCall) {
3221 MFI.setHasTailCall();
3222 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3223 }
3224
3225 // Returns a chain and a flag for retval copy to use.
3226 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3227 Chain = Call.getValue(0);
3228 InFlag = Call.getValue(1);
3229
3230 uint64_t CalleePopBytes = NumBytes;
3231 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3232 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3233 InFlag, DL);
3234 if (!Ins.empty())
3235 InFlag = Chain.getValue(1);
3236
3237 // Handle result values, copying them out of physregs into vregs that we
3238 // return.
3239 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3240 InVals, IsThisReturn,
3241 IsThisReturn ? OutVals[0] : SDValue());
3242}
3243
3244// This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3245// except for applying the wave size scale to the increment amount.
3246SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3247 SDValue Op, SelectionDAG &DAG) const {
3248 const MachineFunction &MF = DAG.getMachineFunction();
3249 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3250
3251 SDLoc dl(Op);
3252 EVT VT = Op.getValueType();
3253 SDValue Tmp1 = Op;
3254 SDValue Tmp2 = Op.getValue(1);
3255 SDValue Tmp3 = Op.getOperand(2);
3256 SDValue Chain = Tmp1.getOperand(0);
3257
3258 Register SPReg = Info->getStackPtrOffsetReg();
3259
3260 // Chain the dynamic stack allocation so that it doesn't modify the stack
3261 // pointer when other instructions are using the stack.
3262 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3263
3264 SDValue Size = Tmp2.getOperand(1);
3265 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3266 Chain = SP.getValue(1);
3267 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3268 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3269 const TargetFrameLowering *TFL = ST.getFrameLowering();
3270 unsigned Opc =
3271 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3272 ISD::ADD : ISD::SUB;
3273
3274 SDValue ScaledSize = DAG.getNode(
3275 ISD::SHL, dl, VT, Size,
3276 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3277
3278 Align StackAlign = TFL->getStackAlign();
3279 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3280 if (Alignment && *Alignment > StackAlign) {
3281 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3282 DAG.getConstant(-(uint64_t)Alignment->value()
3283 << ST.getWavefrontSizeLog2(),
3284 dl, VT));
3285 }
3286
3287 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
3288 Tmp2 = DAG.getCALLSEQ_END(
3289 Chain, DAG.getIntPtrConstant(0, dl, true),
3290 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3291
3292 return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3293}
3294
3295SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3296 SelectionDAG &DAG) const {
3297 // We only handle constant sizes here to allow non-entry block, static sized
3298 // allocas. A truly dynamic value is more difficult to support because we
3299 // don't know if the size value is uniform or not. If the size isn't uniform,
3300 // we would need to do a wave reduction to get the maximum size to know how
3301 // much to increment the uniform stack pointer.
3302 SDValue Size = Op.getOperand(1);
3303 if (isa<ConstantSDNode>(Size))
3304 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3305
3306 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3307}
3308
3309Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3310 const MachineFunction &MF) const {
3311 Register Reg = StringSwitch<Register>(RegName)
3312 .Case("m0", AMDGPU::M0)
3313 .Case("exec", AMDGPU::EXEC)
3314 .Case("exec_lo", AMDGPU::EXEC_LO)
3315 .Case("exec_hi", AMDGPU::EXEC_HI)
3316 .Case("flat_scratch", AMDGPU::FLAT_SCR)
3317 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3318 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3319 .Default(Register());
3320
3321 if (Reg == AMDGPU::NoRegister) {
3322 report_fatal_error(Twine("invalid register name \""
3323 + StringRef(RegName) + "\"."));
3324
3325 }
3326
3327 if (!Subtarget->hasFlatScrRegister() &&
3328 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3329 report_fatal_error(Twine("invalid register \""
3330 + StringRef(RegName) + "\" for subtarget."));
3331 }
3332
3333 switch (Reg) {
3334 case AMDGPU::M0:
3335 case AMDGPU::EXEC_LO:
3336 case AMDGPU::EXEC_HI:
3337 case AMDGPU::FLAT_SCR_LO:
3338 case AMDGPU::FLAT_SCR_HI:
3339 if (VT.getSizeInBits() == 32)
3340 return Reg;
3341 break;
3342 case AMDGPU::EXEC:
3343 case AMDGPU::FLAT_SCR:
3344 if (VT.getSizeInBits() == 64)
3345 return Reg;
3346 break;
3347 default:
3348 llvm_unreachable("missing register type checking")::llvm::llvm_unreachable_internal("missing register type checking"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3348)
;
3349 }
3350
3351 report_fatal_error(Twine("invalid type for register \""
3352 + StringRef(RegName) + "\"."));
3353}
3354
3355// If kill is not the last instruction, split the block so kill is always a
3356// proper terminator.
3357MachineBasicBlock *
3358SITargetLowering::splitKillBlock(MachineInstr &MI,
3359 MachineBasicBlock *BB) const {
3360 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3361 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3362 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3363 return SplitBB;
3364}
3365
3366// Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3367// \p MI will be the only instruction in the loop body block. Otherwise, it will
3368// be the first instruction in the remainder block.
3369//
3370/// \returns { LoopBody, Remainder }
3371static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3372splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3373 MachineFunction *MF = MBB.getParent();
3374 MachineBasicBlock::iterator I(&MI);
3375
3376 // To insert the loop we need to split the block. Move everything after this
3377 // point to a new block, and insert a new empty block between the two.
3378 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3379 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3380 MachineFunction::iterator MBBI(MBB);
3381 ++MBBI;
3382
3383 MF->insert(MBBI, LoopBB);
3384 MF->insert(MBBI, RemainderBB);
3385
3386 LoopBB->addSuccessor(LoopBB);
3387 LoopBB->addSuccessor(RemainderBB);
3388
3389 // Move the rest of the block into a new block.
3390 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3391
3392 if (InstInLoop) {
3393 auto Next = std::next(I);
3394
3395 // Move instruction to loop body.
3396 LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3397
3398 // Move the rest of the block.
3399 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3400 } else {
3401 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3402 }
3403
3404 MBB.addSuccessor(LoopBB);
3405
3406 return std::make_pair(LoopBB, RemainderBB);
3407}
3408
3409/// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3410void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3411 MachineBasicBlock *MBB = MI.getParent();
3412 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3413 auto I = MI.getIterator();
3414 auto E = std::next(I);
3415
3416 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3417 .addImm(0);
3418
3419 MIBundleBuilder Bundler(*MBB, I, E);
3420 finalizeBundle(*MBB, Bundler.begin());
3421}
3422
3423MachineBasicBlock *
3424SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3425 MachineBasicBlock *BB) const {
3426 const DebugLoc &DL = MI.getDebugLoc();
3427
3428 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3429
3430 MachineBasicBlock *LoopBB;
3431 MachineBasicBlock *RemainderBB;
3432 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3433
3434 // Apparently kill flags are only valid if the def is in the same block?
3435 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3436 Src->setIsKill(false);
3437
3438 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3439
3440 MachineBasicBlock::iterator I = LoopBB->end();
3441
3442 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3443 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3444
3445 // Clear TRAP_STS.MEM_VIOL
3446 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3447 .addImm(0)
3448 .addImm(EncodedReg);
3449
3450 bundleInstWithWaitcnt(MI);
3451
3452 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3453
3454 // Load and check TRAP_STS.MEM_VIOL
3455 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3456 .addImm(EncodedReg);
3457
3458 // FIXME: Do we need to use an isel pseudo that may clobber scc?
3459 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3460 .addReg(Reg, RegState::Kill)
3461 .addImm(0);
3462 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3463 .addMBB(LoopBB);
3464
3465 return RemainderBB;
3466}
3467
3468// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3469// wavefront. If the value is uniform and just happens to be in a VGPR, this
3470// will only do one iteration. In the worst case, this will loop 64 times.
3471//
3472// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3473static MachineBasicBlock::iterator
3474emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3475 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3476 const DebugLoc &DL, const MachineOperand &Idx,
3477 unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3478 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3479 Register &SGPRIdxReg) {
3480
3481 MachineFunction *MF = OrigBB.getParent();
3482 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3483 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3484 MachineBasicBlock::iterator I = LoopBB.begin();
3485
3486 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3487 Register PhiExec = MRI.createVirtualRegister(BoolRC);
3488 Register NewExec = MRI.createVirtualRegister(BoolRC);
3489 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3490 Register CondReg = MRI.createVirtualRegister(BoolRC);
3491
3492 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3493 .addReg(InitReg)
3494 .addMBB(&OrigBB)
3495 .addReg(ResultReg)
3496 .addMBB(&LoopBB);
3497
3498 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3499 .addReg(InitSaveExecReg)
3500 .addMBB(&OrigBB)
3501 .addReg(NewExec)
3502 .addMBB(&LoopBB);
3503
3504 // Read the next variant <- also loop target.
3505 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3506 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3507
3508 // Compare the just read M0 value to all possible Idx values.
3509 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3510 .addReg(CurrentIdxReg)
3511 .addReg(Idx.getReg(), 0, Idx.getSubReg());
3512
3513 // Update EXEC, save the original EXEC value to VCC.
3514 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3515 : AMDGPU::S_AND_SAVEEXEC_B64),
3516 NewExec)
3517 .addReg(CondReg, RegState::Kill);
3518
3519 MRI.setSimpleHint(NewExec, CondReg);
3520
3521 if (UseGPRIdxMode) {
3522 if (Offset == 0) {
3523 SGPRIdxReg = CurrentIdxReg;
3524 } else {
3525 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3526 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3527 .addReg(CurrentIdxReg, RegState::Kill)
3528 .addImm(Offset);
3529 }
3530 } else {
3531 // Move index from VCC into M0
3532 if (Offset == 0) {
3533 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3534 .addReg(CurrentIdxReg, RegState::Kill);
3535 } else {
3536 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3537 .addReg(CurrentIdxReg, RegState::Kill)
3538 .addImm(Offset);
3539 }
3540 }
3541
3542 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3543 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3544 MachineInstr *InsertPt =
3545 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3546 : AMDGPU::S_XOR_B64_term), Exec)
3547 .addReg(Exec)
3548 .addReg(NewExec);
3549
3550 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3551 // s_cbranch_scc0?
3552
3553 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3554 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3555 .addMBB(&LoopBB);
3556
3557 return InsertPt->getIterator();
3558}
3559
3560// This has slightly sub-optimal regalloc when the source vector is killed by
3561// the read. The register allocator does not understand that the kill is
3562// per-workitem, so is kept alive for the whole loop so we end up not re-using a
3563// subregister from it, using 1 more VGPR than necessary. This was saved when
3564// this was expanded after register allocation.
3565static MachineBasicBlock::iterator
3566loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3567 unsigned InitResultReg, unsigned PhiReg, int Offset,
3568 bool UseGPRIdxMode, Register &SGPRIdxReg) {
3569 MachineFunction *MF = MBB.getParent();
3570 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3571 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3572 MachineRegisterInfo &MRI = MF->getRegInfo();
3573 const DebugLoc &DL = MI.getDebugLoc();
3574 MachineBasicBlock::iterator I(&MI);
3575
3576 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3577 Register DstReg = MI.getOperand(0).getReg();
3578 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3579 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3580 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3581 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3582
3583 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3584
3585 // Save the EXEC mask
3586 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3587 .addReg(Exec);
3588
3589 MachineBasicBlock *LoopBB;
3590 MachineBasicBlock *RemainderBB;
3591 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3592
3593 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3594
3595 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3596 InitResultReg, DstReg, PhiReg, TmpExec,
3597 Offset, UseGPRIdxMode, SGPRIdxReg);
3598
3599 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3600 MachineFunction::iterator MBBI(LoopBB);
3601 ++MBBI;
3602 MF->insert(MBBI, LandingPad);
3603 LoopBB->removeSuccessor(RemainderBB);
3604 LandingPad->addSuccessor(RemainderBB);
3605 LoopBB->addSuccessor(LandingPad);
3606 MachineBasicBlock::iterator First = LandingPad->begin();
3607 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3608 .addReg(SaveExec);
3609
3610 return InsPt;
3611}
3612
3613// Returns subreg index, offset
3614static std::pair<unsigned, int>
3615computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3616 const TargetRegisterClass *SuperRC,
3617 unsigned VecReg,
3618 int Offset) {
3619 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3620
3621 // Skip out of bounds offsets, or else we would end up using an undefined
3622 // register.
3623 if (Offset >= NumElts || Offset < 0)
3624 return std::make_pair(AMDGPU::sub0, Offset);
3625
3626 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3627}
3628
3629static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3630 MachineRegisterInfo &MRI, MachineInstr &MI,
3631 int Offset) {
3632 MachineBasicBlock *MBB = MI.getParent();
3633 const DebugLoc &DL = MI.getDebugLoc();
3634 MachineBasicBlock::iterator I(&MI);
3635
3636 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3637
3638 assert(Idx->getReg() != AMDGPU::NoRegister)((Idx->getReg() != AMDGPU::NoRegister) ? static_cast<void
> (0) : __assert_fail ("Idx->getReg() != AMDGPU::NoRegister"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3638, __PRETTY_FUNCTION__))
;
3639
3640 if (Offset == 0) {
3641 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3642 } else {
3643 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3644 .add(*Idx)
3645 .addImm(Offset);
3646 }
3647}
3648
3649static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3650 MachineRegisterInfo &MRI, MachineInstr &MI,
3651 int Offset) {
3652 MachineBasicBlock *MBB = MI.getParent();
3653 const DebugLoc &DL = MI.getDebugLoc();
3654 MachineBasicBlock::iterator I(&MI);
3655
3656 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3657
3658 if (Offset == 0)
3659 return Idx->getReg();
3660
3661 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3662 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3663 .add(*Idx)
3664 .addImm(Offset);
3665 return Tmp;
3666}
3667
3668static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3669 MachineBasicBlock &MBB,
3670 const GCNSubtarget &ST) {
3671 const SIInstrInfo *TII = ST.getInstrInfo();
3672 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3673 MachineFunction *MF = MBB.getParent();
3674 MachineRegisterInfo &MRI = MF->getRegInfo();
3675
3676 Register Dst = MI.getOperand(0).getReg();
3677 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3678 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3679 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3680
3681 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3682 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3683
3684 unsigned SubReg;
3685 std::tie(SubReg, Offset)
3686 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3687
3688 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3689
3690 // Check for a SGPR index.
3691 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3692 MachineBasicBlock::iterator I(&MI);
3693 const DebugLoc &DL = MI.getDebugLoc();
3694
3695 if (UseGPRIdxMode) {
3696 // TODO: Look at the uses to avoid the copy. This may require rescheduling
3697 // to avoid interfering with other uses, so probably requires a new
3698 // optimization pass.
3699 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3700
3701 const MCInstrDesc &GPRIDXDesc =
3702 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3703 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3704 .addReg(SrcReg)
3705 .addReg(Idx)
3706 .addImm(SubReg);
3707 } else {
3708 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3709
3710 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3711 .addReg(SrcReg, 0, SubReg)
3712 .addReg(SrcReg, RegState::Implicit);
3713 }
3714
3715 MI.eraseFromParent();
3716
3717 return &MBB;
3718 }
3719
3720 // Control flow needs to be inserted if indexing with a VGPR.
3721 const DebugLoc &DL = MI.getDebugLoc();
3722 MachineBasicBlock::iterator I(&MI);
3723
3724 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3725 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3726
3727 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3728
3729 Register SGPRIdxReg;
3730 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3731 UseGPRIdxMode, SGPRIdxReg);
3732
3733 MachineBasicBlock *LoopBB = InsPt->getParent();
3734
3735 if (UseGPRIdxMode) {
3736 const MCInstrDesc &GPRIDXDesc =
3737 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3738
3739 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3740 .addReg(SrcReg)
3741 .addReg(SGPRIdxReg)
3742 .addImm(SubReg);
3743 } else {
3744 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3745 .addReg(SrcReg, 0, SubReg)
3746 .addReg(SrcReg, RegState::Implicit);
3747 }
3748
3749 MI.eraseFromParent();
3750
3751 return LoopBB;
3752}
3753
3754static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3755 MachineBasicBlock &MBB,
3756 const GCNSubtarget &ST) {
3757 const SIInstrInfo *TII = ST.getInstrInfo();
3758 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3759 MachineFunction *MF = MBB.getParent();
3760 MachineRegisterInfo &MRI = MF->getRegInfo();
3761
3762 Register Dst = MI.getOperand(0).getReg();
3763 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3764 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3765 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3766 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3767 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3768 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3769
3770 // This can be an immediate, but will be folded later.
3771 assert(Val->getReg())((Val->getReg()) ? static_cast<void> (0) : __assert_fail
("Val->getReg()", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3771, __PRETTY_FUNCTION__))
;
3772
3773 unsigned SubReg;
3774 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3775 SrcVec->getReg(),
3776 Offset);
3777 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3778
3779 if (Idx->getReg() == AMDGPU::NoRegister) {
3780 MachineBasicBlock::iterator I(&MI);
3781 const DebugLoc &DL = MI.getDebugLoc();
3782
3783 assert(Offset == 0)((Offset == 0) ? static_cast<void> (0) : __assert_fail (
"Offset == 0", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3783, __PRETTY_FUNCTION__))
;
3784
3785 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3786 .add(*SrcVec)
3787 .add(*Val)
3788 .addImm(SubReg);
3789
3790 MI.eraseFromParent();
3791 return &MBB;
3792 }
3793
3794 // Check for a SGPR index.
3795 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3796 MachineBasicBlock::iterator I(&MI);
3797 const DebugLoc &DL = MI.getDebugLoc();
3798
3799 if (UseGPRIdxMode) {
3800 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3801
3802 const MCInstrDesc &GPRIDXDesc =
3803 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3804 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3805 .addReg(SrcVec->getReg())
3806 .add(*Val)
3807 .addReg(Idx)
3808 .addImm(SubReg);
3809 } else {
3810 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3811
3812 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3813 TRI.getRegSizeInBits(*VecRC), 32, false);
3814 BuildMI(MBB, I, DL, MovRelDesc, Dst)
3815 .addReg(SrcVec->getReg())
3816 .add(*Val)
3817 .addImm(SubReg);
3818 }
3819 MI.eraseFromParent();
3820 return &MBB;
3821 }
3822
3823 // Control flow needs to be inserted if indexing with a VGPR.
3824 if (Val->isReg())
3825 MRI.clearKillFlags(Val->getReg());
3826
3827 const DebugLoc &DL = MI.getDebugLoc();
3828
3829 Register PhiReg = MRI.createVirtualRegister(VecRC);
3830
3831 Register SGPRIdxReg;
3832 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3833 UseGPRIdxMode, SGPRIdxReg);
3834 MachineBasicBlock *LoopBB = InsPt->getParent();
3835
3836 if (UseGPRIdxMode) {
3837 const MCInstrDesc &GPRIDXDesc =
3838 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3839
3840 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3841 .addReg(PhiReg)
3842 .add(*Val)
3843 .addReg(SGPRIdxReg)
3844 .addImm(AMDGPU::sub0);
3845 } else {
3846 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3847 TRI.getRegSizeInBits(*VecRC), 32, false);
3848 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3849 .addReg(PhiReg)
3850 .add(*Val)
3851 .addImm(AMDGPU::sub0);
3852 }
3853
3854 MI.eraseFromParent();
3855 return LoopBB;
3856}
3857
3858MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3859 MachineInstr &MI, MachineBasicBlock *BB) const {
3860
3861 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3862 MachineFunction *MF = BB->getParent();
3863 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3864
3865 switch (MI.getOpcode()) {
3866 case AMDGPU::S_UADDO_PSEUDO:
3867 case AMDGPU::S_USUBO_PSEUDO: {
3868 const DebugLoc &DL = MI.getDebugLoc();
3869 MachineOperand &Dest0 = MI.getOperand(0);
3870 MachineOperand &Dest1 = MI.getOperand(1);
3871 MachineOperand &Src0 = MI.getOperand(2);
3872 MachineOperand &Src1 = MI.getOperand(3);
3873
3874 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3875 ? AMDGPU::S_ADD_I32
3876 : AMDGPU::S_SUB_I32;
3877 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3878
3879 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3880 .addImm(1)
3881 .addImm(0);
3882
3883 MI.eraseFromParent();
3884 return BB;
3885 }
3886 case AMDGPU::S_ADD_U64_PSEUDO:
3887 case AMDGPU::S_SUB_U64_PSEUDO: {
3888 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3889 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3890 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3891 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3892 const DebugLoc &DL = MI.getDebugLoc();
3893
3894 MachineOperand &Dest = MI.getOperand(0);
3895 MachineOperand &Src0 = MI.getOperand(1);
3896 MachineOperand &Src1 = MI.getOperand(2);
3897
3898 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3899 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3900
3901 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3902 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3903 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3904 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3905
3906 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3907 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3908 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3909 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3910
3911 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3912
3913 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3914 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3915 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3916 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3917 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3918 .addReg(DestSub0)
3919 .addImm(AMDGPU::sub0)
3920 .addReg(DestSub1)
3921 .addImm(AMDGPU::sub1);
3922 MI.eraseFromParent();
3923 return BB;
3924 }
3925 case AMDGPU::V_ADD_U64_PSEUDO:
3926 case AMDGPU::V_SUB_U64_PSEUDO: {
3927 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3928 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3929 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3930 const DebugLoc &DL = MI.getDebugLoc();
3931
3932 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
3933
3934 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3935
3936 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3937 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3938
3939 Register CarryReg = MRI.createVirtualRegister(CarryRC);
3940 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
3941
3942 MachineOperand &Dest = MI.getOperand(0);
3943 MachineOperand &Src0 = MI.getOperand(1);
3944 MachineOperand &Src1 = MI.getOperand(2);
3945
3946 const TargetRegisterClass *Src0RC = Src0.isReg()
3947 ? MRI.getRegClass(Src0.getReg())
3948 : &AMDGPU::VReg_64RegClass;
3949 const TargetRegisterClass *Src1RC = Src1.isReg()
3950 ? MRI.getRegClass(Src1.getReg())
3951 : &AMDGPU::VReg_64RegClass;
3952
3953 const TargetRegisterClass *Src0SubRC =
3954 TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
3955 const TargetRegisterClass *Src1SubRC =
3956 TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
3957
3958 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
3959 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
3960 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
3961 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
3962
3963 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
3964 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
3965 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
3966 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
3967
3968 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
3969 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3970 .addReg(CarryReg, RegState::Define)
3971 .add(SrcReg0Sub0)
3972 .add(SrcReg1Sub0)
3973 .addImm(0); // clamp bit
3974
3975 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
3976 MachineInstr *HiHalf =
3977 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3978 .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
3979 .add(SrcReg0Sub1)
3980 .add(SrcReg1Sub1)
3981 .addReg(CarryReg, RegState::Kill)
3982 .addImm(0); // clamp bit
3983
3984 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3985 .addReg(DestSub0)
3986 .addImm(AMDGPU::sub0)
3987 .addReg(DestSub1)
3988 .addImm(AMDGPU::sub1);
3989 TII->legalizeOperands(*LoHalf);
3990 TII->legalizeOperands(*HiHalf);
3991 MI.eraseFromParent();
3992 return BB;
3993 }
3994 case AMDGPU::S_ADD_CO_PSEUDO:
3995 case AMDGPU::S_SUB_CO_PSEUDO: {
3996 // This pseudo has a chance to be selected
3997 // only from uniform add/subcarry node. All the VGPR operands
3998 // therefore assumed to be splat vectors.
3999 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4000 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4001 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4002 MachineBasicBlock::iterator MII = MI;
4003 const DebugLoc &DL = MI.getDebugLoc();
4004 MachineOperand &Dest = MI.getOperand(0);
4005 MachineOperand &CarryDest = MI.getOperand(1);
4006 MachineOperand &Src0 = MI.getOperand(2);
4007 MachineOperand &Src1 = MI.getOperand(3);
4008 MachineOperand &Src2 = MI.getOperand(4);
4009 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4010 ? AMDGPU::S_ADDC_U32
4011 : AMDGPU::S_SUBB_U32;
4012 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4013 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4014 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4015 .addReg(Src0.getReg());
4016 Src0.setReg(RegOp0);
4017 }
4018 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4019 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4020 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4021 .addReg(Src1.getReg());
4022 Src1.setReg(RegOp1);
4023 }
4024 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4025 if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4026 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4027 .addReg(Src2.getReg());
4028 Src2.setReg(RegOp2);
4029 }
4030
4031 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4032 if (TRI->getRegSizeInBits(*Src2RC) == 64) {
4033 if (ST.hasScalarCompareEq64()) {
4034 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4035 .addReg(Src2.getReg())
4036 .addImm(0);
4037 } else {
4038 const TargetRegisterClass *SubRC =
4039 TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4040 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4041 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4042 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4043 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4044 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4045
4046 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4047 .add(Src2Sub0)
4048 .add(Src2Sub1);
4049
4050 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4051 .addReg(Src2_32, RegState::Kill)
4052 .addImm(0);
4053 }
4054 } else {
4055 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4056 .addReg(Src2.getReg())
4057 .addImm(0);
4058 }
4059
4060 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4061
4062 BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg())
4063 .addReg(AMDGPU::SCC);
4064 MI.eraseFromParent();
4065 return BB;
4066 }
4067 case AMDGPU::SI_INIT_M0: {
4068 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4069 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4070 .add(MI.getOperand(0));
4071 MI.eraseFromParent();
4072 return BB;
4073 }
4074 case AMDGPU::SI_INIT_EXEC:
4075 // This should be before all vector instructions.
4076 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
4077 AMDGPU::EXEC)
4078 .addImm(MI.getOperand(0).getImm());
4079 MI.eraseFromParent();
4080 return BB;
4081
4082 case AMDGPU::SI_INIT_EXEC_LO:
4083 // This should be before all vector instructions.
4084 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
4085 AMDGPU::EXEC_LO)
4086 .addImm(MI.getOperand(0).getImm());
4087 MI.eraseFromParent();
4088 return BB;
4089
4090 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
4091 // Extract the thread count from an SGPR input and set EXEC accordingly.
4092 // Since BFM can't shift by 64, handle that case with CMP + CMOV.
4093 //
4094 // S_BFE_U32 count, input, {shift, 7}
4095 // S_BFM_B64 exec, count, 0
4096 // S_CMP_EQ_U32 count, 64
4097 // S_CMOV_B64 exec, -1
4098 MachineInstr *FirstMI = &*BB->begin();
4099 MachineRegisterInfo &MRI = MF->getRegInfo();
4100 Register InputReg = MI.getOperand(0).getReg();
4101 Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
4102 bool Found = false;
4103
4104 // Move the COPY of the input reg to the beginning, so that we can use it.
4105 for (auto I = BB->begin(); I != &MI; I++) {
4106 if (I->getOpcode() != TargetOpcode::COPY ||
4107 I->getOperand(0).getReg() != InputReg)
4108 continue;
4109
4110 if (I == FirstMI) {
4111 FirstMI = &*++BB->begin();
4112 } else {
4113 I->removeFromParent();
4114 BB->insert(FirstMI, &*I);
4115 }
4116 Found = true;
4117 break;
4118 }
4119 assert(Found)((Found) ? static_cast<void> (0) : __assert_fail ("Found"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4119, __PRETTY_FUNCTION__))
;
4120 (void)Found;
4121
4122 // This should be before all vector instructions.
4123 unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
4124 bool isWave32 = getSubtarget()->isWave32();
4125 unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4126 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
4127 .addReg(InputReg)
4128 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
4129 BuildMI(*BB, FirstMI, DebugLoc(),
4130 TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
4131 Exec)
4132 .addReg(CountReg)
4133 .addImm(0);
4134 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
4135 .addReg(CountReg, RegState::Kill)
4136 .addImm(getSubtarget()->getWavefrontSize());
4137 BuildMI(*BB, FirstMI, DebugLoc(),
4138 TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
4139 Exec)
4140 .addImm(-1);
4141 MI.eraseFromParent();
4142 return BB;
4143 }
4144
4145 case AMDGPU::GET_GROUPSTATICSIZE: {
4146 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||((getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA
|| getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL
) ? static_cast<void> (0) : __assert_fail ("getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4147, __PRETTY_FUNCTION__))
4147 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)((getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA
|| getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL
) ? static_cast<void> (0) : __assert_fail ("getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4147, __PRETTY_FUNCTION__))
;
4148 DebugLoc DL = MI.getDebugLoc();
4149 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4150 .add(MI.getOperand(0))
4151 .addImm(MFI->getLDSSize());
4152 MI.eraseFromParent();
4153 return BB;
4154 }
4155 case AMDGPU::SI_INDIRECT_SRC_V1:
4156 case AMDGPU::SI_INDIRECT_SRC_V2:
4157 case AMDGPU::SI_INDIRECT_SRC_V4:
4158 case AMDGPU::SI_INDIRECT_SRC_V8:
4159 case AMDGPU::SI_INDIRECT_SRC_V16:
4160 case AMDGPU::SI_INDIRECT_SRC_V32:
4161 return emitIndirectSrc(MI, *BB, *getSubtarget());
4162 case AMDGPU::SI_INDIRECT_DST_V1:
4163 case AMDGPU::SI_INDIRECT_DST_V2:
4164 case AMDGPU::SI_INDIRECT_DST_V4:
4165 case AMDGPU::SI_INDIRECT_DST_V8:
4166 case AMDGPU::SI_INDIRECT_DST_V16:
4167 case AMDGPU::SI_INDIRECT_DST_V32:
4168 return emitIndirectDst(MI, *BB, *getSubtarget());
4169 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4170 case AMDGPU::SI_KILL_I1_PSEUDO:
4171 return splitKillBlock(MI, BB);
4172 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4173 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4174 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4175 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4176
4177 Register Dst = MI.getOperand(0).getReg();
4178 Register Src0 = MI.getOperand(1).getReg();
4179 Register Src1 = MI.getOperand(2).getReg();
4180 const DebugLoc &DL = MI.getDebugLoc();
4181 Register SrcCond = MI.getOperand(3).getReg();
4182
4183 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4184 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4185 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4186 Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4187
4188 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4189 .addReg(SrcCond);
4190 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4191 .addImm(0)
4192 .addReg(Src0, 0, AMDGPU::sub0)
4193 .addImm(0)
4194 .addReg(Src1, 0, AMDGPU::sub0)
4195 .addReg(SrcCondCopy);
4196 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4197 .addImm(0)
4198 .addReg(Src0, 0, AMDGPU::sub1)
4199 .addImm(0)
4200 .addReg(Src1, 0, AMDGPU::sub1)
4201 .addReg(SrcCondCopy);
4202
4203 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4204 .addReg(DstLo)
4205 .addImm(AMDGPU::sub0)
4206 .addReg(DstHi)
4207 .addImm(AMDGPU::sub1);
4208 MI.eraseFromParent();
4209 return BB;
4210 }
4211 case AMDGPU::SI_BR_UNDEF: {
4212 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4213 const DebugLoc &DL = MI.getDebugLoc();
4214 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4215 .add(MI.getOperand(0));
4216 Br->getOperand(1).setIsUndef(true); // read undef SCC
4217 MI.eraseFromParent();
4218 return BB;
4219 }
4220 case AMDGPU::ADJCALLSTACKUP:
4221 case AMDGPU::ADJCALLSTACKDOWN: {
4222 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4223 MachineInstrBuilder MIB(*MF, &MI);
4224 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4225 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4226 return BB;
4227 }
4228 case AMDGPU::SI_CALL_ISEL: {
4229 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4230 const DebugLoc &DL = MI.getDebugLoc();
4231
4232 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4233
4234 MachineInstrBuilder MIB;
4235 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4236
4237 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
4238 MIB.add(MI.getOperand(I));
4239
4240 MIB.cloneMemRefs(MI);
4241 MI.eraseFromParent();
4242 return BB;
4243 }
4244 case AMDGPU::V_ADD_CO_U32_e32:
4245 case AMDGPU::V_SUB_CO_U32_e32:
4246 case AMDGPU::V_SUBREV_CO_U32_e32: {
4247 // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4248 const DebugLoc &DL = MI.getDebugLoc();
4249 unsigned Opc = MI.getOpcode();
4250
4251 bool NeedClampOperand = false;
4252 if (TII->pseudoToMCOpcode(Opc) == -1) {
4253 Opc = AMDGPU::getVOPe64(Opc);
4254 NeedClampOperand = true;
4255 }
4256
4257 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4258 if (TII->isVOP3(*I)) {
4259 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4260 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4261 I.addReg(TRI->getVCC(), RegState::Define);
4262 }
4263 I.add(MI.getOperand(1))
4264 .add(MI.getOperand(2));
4265 if (NeedClampOperand)
4266 I.addImm(0); // clamp bit for e64 encoding
4267
4268 TII->legalizeOperands(*I);
4269
4270 MI.eraseFromParent();
4271 return BB;
4272 }
4273 case AMDGPU::DS_GWS_INIT:
4274 case AMDGPU::DS_GWS_SEMA_V:
4275 case AMDGPU::DS_GWS_SEMA_BR:
4276 case AMDGPU::DS_GWS_SEMA_P:
4277 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4278 case AMDGPU::DS_GWS_BARRIER:
4279 // A s_waitcnt 0 is required to be the instruction immediately following.
4280 if (getSubtarget()->hasGWSAutoReplay()) {
4281 bundleInstWithWaitcnt(MI);
4282 return BB;
4283 }
4284
4285 return emitGWSMemViolTestLoop(MI, BB);
4286 case AMDGPU::S_SETREG_B32: {
4287 // Try to optimize cases that only set the denormal mode or rounding mode.
4288 //
4289 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4290 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4291 // instead.
4292 //
4293 // FIXME: This could be predicates on the immediate, but tablegen doesn't
4294 // allow you to have a no side effect instruction in the output of a
4295 // sideeffecting pattern.
4296 unsigned ID, Offset, Width;
4297 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4298 if (ID != AMDGPU::Hwreg::ID_MODE)
4299 return BB;
4300
4301 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4302 const unsigned SetMask = WidthMask << Offset;
4303
4304 if (getSubtarget()->hasDenormModeInst()) {
4305 unsigned SetDenormOp = 0;
4306 unsigned SetRoundOp = 0;
4307
4308 // The dedicated instructions can only set the whole denorm or round mode
4309 // at once, not a subset of bits in either.
4310 if (SetMask ==
4311 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4312 // If this fully sets both the round and denorm mode, emit the two
4313 // dedicated instructions for these.
4314 SetRoundOp = AMDGPU::S_ROUND_MODE;
4315 SetDenormOp = AMDGPU::S_DENORM_MODE;
4316 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4317 SetRoundOp = AMDGPU::S_ROUND_MODE;
4318 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4319 SetDenormOp = AMDGPU::S_DENORM_MODE;
4320 }
4321
4322 if (SetRoundOp || SetDenormOp) {
4323 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4324 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4325 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4326 unsigned ImmVal = Def->getOperand(1).getImm();
4327 if (SetRoundOp) {
4328 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4329 .addImm(ImmVal & 0xf);
4330
4331 // If we also have the denorm mode, get just the denorm mode bits.
4332 ImmVal >>= 4;
4333 }
4334
4335 if (SetDenormOp) {
4336 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4337 .addImm(ImmVal & 0xf);
4338 }
4339
4340 MI.eraseFromParent();
4341 return BB;
4342 }
4343 }
4344 }
4345
4346 // If only FP bits are touched, used the no side effects pseudo.
4347 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4348 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4349 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4350
4351 return BB;
4352 }
4353 default:
4354 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4355 }
4356}
4357
4358bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4359 return isTypeLegal(VT.getScalarType());
4360}
4361
4362bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4363 // This currently forces unfolding various combinations of fsub into fma with
4364 // free fneg'd operands. As long as we have fast FMA (controlled by
4365 // isFMAFasterThanFMulAndFAdd), we should perform these.
4366
4367 // When fma is quarter rate, for f64 where add / sub are at best half rate,
4368 // most of these combines appear to be cycle neutral but save on instruction
4369 // count / code size.
4370 return true;
4371}
4372
4373EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4374 EVT VT) const {
4375 if (!VT.isVector()) {
4376 return MVT::i1;
4377 }
4378 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4379}
4380
4381MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4382 // TODO: Should i16 be used always if legal? For now it would force VALU
4383 // shifts.
4384 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4385}
4386
4387LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4388 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4389 ? Ty.changeElementSize(16)
4390 : Ty.changeElementSize(32);
4391}
4392
4393// Answering this is somewhat tricky and depends on the specific device which
4394// have different rates for fma or all f64 operations.
4395//
4396// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4397// regardless of which device (although the number of cycles differs between
4398// devices), so it is always profitable for f64.
4399//
4400// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4401// only on full rate devices. Normally, we should prefer selecting v_mad_f32
4402// which we can always do even without fused FP ops since it returns the same
4403// result as the separate operations and since it is always full
4404// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4405// however does not support denormals, so we do report fma as faster if we have
4406// a fast fma device and require denormals.
4407//
4408bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4409 EVT VT) const {
4410 VT = VT.getScalarType();
4411
4412 switch (VT.getSimpleVT().SimpleTy) {
4413 case MVT::f32: {
4414 // If mad is not available this depends only on if f32 fma is full rate.
4415 if (!Subtarget->hasMadMacF32Insts())
4416 return Subtarget->hasFastFMAF32();
4417
4418 // Otherwise f32 mad is always full rate and returns the same result as
4419 // the separate operations so should be preferred over fma.
4420 // However does not support denomals.
4421 if (hasFP32Denormals(MF))
4422 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4423
4424 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4425 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4426 }
4427 case MVT::f64:
4428 return true;
4429 case MVT::f16:
4430 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4431 default:
4432 break;
4433 }
4434
4435 return false;
4436}
4437
4438bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4439 const SDNode *N) const {
4440 // TODO: Check future ftz flag
4441 // v_mad_f32/v_mac_f32 do not support denormals.
4442 EVT VT = N->getValueType(0);
4443 if (VT == MVT::f32)
4444 return Subtarget->hasMadMacF32Insts() &&
4445 !hasFP32Denormals(DAG.getMachineFunction());
4446 if (VT == MVT::f16) {
4447 return Subtarget->hasMadF16() &&
4448 !hasFP64FP16Denormals(DAG.getMachineFunction());
4449 }
4450
4451 return false;
4452}
4453
4454//===----------------------------------------------------------------------===//
4455// Custom DAG Lowering Operations
4456//===----------------------------------------------------------------------===//
4457
4458// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4459// wider vector type is legal.
4460SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4461 SelectionDAG &DAG) const {
4462 unsigned Opc = Op.getOpcode();
4463 EVT VT = Op.getValueType();
4464 assert(VT == MVT::v4f16 || VT == MVT::v4i16)((VT == MVT::v4f16 || VT == MVT::v4i16) ? static_cast<void
> (0) : __assert_fail ("VT == MVT::v4f16 || VT == MVT::v4i16"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4464, __PRETTY_FUNCTION__))
;
4465
4466 SDValue Lo, Hi;
4467 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4468
4469 SDLoc SL(Op);
4470 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4471 Op->getFlags());
4472 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4473 Op->getFlags());
4474
4475 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4476}
4477
4478// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4479// wider vector type is legal.
4480SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4481 SelectionDAG &DAG) const {
4482 unsigned Opc = Op.getOpcode();
4483 EVT VT = Op.getValueType();
4484 assert(VT == MVT::v4i16 || VT == MVT::v4f16)((VT == MVT::v4i16 || VT == MVT::v4f16) ? static_cast<void
> (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4484, __PRETTY_FUNCTION__))
;
4485
4486 SDValue Lo0, Hi0;
4487 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4488 SDValue Lo1, Hi1;
4489 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4490
4491 SDLoc SL(Op);
4492
4493 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4494 Op->getFlags());
4495 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4496 Op->getFlags());
4497
4498 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4499}
4500
4501SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4502 SelectionDAG &DAG) const {
4503 unsigned Opc = Op.getOpcode();
4504 EVT VT = Op.getValueType();
4505 assert(VT == MVT::v4i16 || VT == MVT::v4f16)((VT == MVT::v4i16 || VT == MVT::v4f16) ? static_cast<void
> (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4505, __PRETTY_FUNCTION__))
;
4506
4507 SDValue Lo0, Hi0;
4508 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4509 SDValue Lo1, Hi1;
4510 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4511 SDValue Lo2, Hi2;
4512 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4513
4514 SDLoc SL(Op);
4515
4516 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4517 Op->getFlags());
4518 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4519 Op->getFlags());
4520
4521 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4522}
4523
4524
4525SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4526 switch (Op.getOpcode()) {
4527 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4528 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4529 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4530 case ISD::LOAD: {
4531 SDValue Result = LowerLOAD(Op, DAG);
4532 assert((!Result.getNode() ||(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4534, __PRETTY_FUNCTION__))
4533 Result.getNode()->getNumValues() == 2) &&(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4534, __PRETTY_FUNCTION__))
4534 "Load should return a value and a chain")(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4534, __PRETTY_FUNCTION__))
;
4535 return Result;
4536 }
4537
4538 case ISD::FSIN:
4539 case ISD::FCOS:
4540 return LowerTrig(Op, DAG);
4541 case ISD::SELECT: return LowerSELECT(Op, DAG);
4542 case ISD::FDIV: return LowerFDIV(Op, DAG);
4543 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4544 case ISD::STORE: return LowerSTORE(Op, DAG);
4545 case ISD::GlobalAddress: {
4546 MachineFunction &MF = DAG.getMachineFunction();
4547 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4548 return LowerGlobalAddress(MFI, Op, DAG);
4549 }
4550 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4551 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4552 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4553 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4554 case ISD::INSERT_SUBVECTOR:
4555 return lowerINSERT_SUBVECTOR(Op, DAG);
4556 case ISD::INSERT_VECTOR_ELT:
4557 return lowerINSERT_VECTOR_ELT(Op, DAG);
4558 case ISD::EXTRACT_VECTOR_ELT:
4559 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4560 case ISD::VECTOR_SHUFFLE:
4561 return lowerVECTOR_SHUFFLE(Op, DAG);
4562 case ISD::BUILD_VECTOR:
4563 return lowerBUILD_VECTOR(Op, DAG);
4564 case ISD::FP_ROUND:
4565 return lowerFP_ROUND(Op, DAG);
4566 case ISD::TRAP:
4567 return lowerTRAP(Op, DAG);
4568 case ISD::DEBUGTRAP:
4569 return lowerDEBUGTRAP(Op, DAG);
4570 case ISD::FABS:
4571 case ISD::FNEG:
4572 case ISD::FCANONICALIZE:
4573 case ISD::BSWAP:
4574 return splitUnaryVectorOp(Op, DAG);
4575 case ISD::FMINNUM:
4576 case ISD::FMAXNUM:
4577 return lowerFMINNUM_FMAXNUM(Op, DAG);
4578 case ISD::FMA:
4579 return splitTernaryVectorOp(Op, DAG);
4580 case ISD::SHL:
4581 case ISD::SRA:
4582 case ISD::SRL:
4583 case ISD::ADD:
4584 case ISD::SUB:
4585 case ISD::MUL:
4586 case ISD::SMIN:
4587 case ISD::SMAX:
4588 case ISD::UMIN:
4589 case ISD::UMAX:
4590 case ISD::FADD:
4591 case ISD::FMUL:
4592 case ISD::FMINNUM_IEEE:
4593 case ISD::FMAXNUM_IEEE:
4594 case ISD::UADDSAT:
4595 case ISD::USUBSAT:
4596 case ISD::SADDSAT:
4597 case ISD::SSUBSAT:
4598 return splitBinaryVectorOp(Op, DAG);
4599 case ISD::SMULO:
4600 case ISD::UMULO:
4601 return lowerXMULO(Op, DAG);
4602 case ISD::DYNAMIC_STACKALLOC:
4603 return LowerDYNAMIC_STACKALLOC(Op, DAG);
4604 }
4605 return SDValue();
4606}
4607
4608// Used for D16: Casts the result of an instruction into the right vector,
4609// packs values if loads return unpacked values.
4610static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4611 const SDLoc &DL,
4612 SelectionDAG &DAG, bool Unpacked) {
4613 if (!LoadVT.isVector())
4614 return Result;
4615
4616 // Cast back to the original packed type or to a larger type that is a
4617 // multiple of 32 bit for D16. Widening the return type is a required for
4618 // legalization.
4619 EVT FittingLoadVT = LoadVT;
4620 if ((LoadVT.getVectorNumElements() % 2) == 1) {
4621 FittingLoadVT =
4622 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4623 LoadVT.getVectorNumElements() + 1);
4624 }
4625
4626 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4627 // Truncate to v2i16/v4i16.
4628 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4629
4630 // Workaround legalizer not scalarizing truncate after vector op
4631 // legalization but not creating intermediate vector trunc.
4632 SmallVector<SDValue, 4> Elts;
4633 DAG.ExtractVectorElements(Result, Elts);
4634 for (SDValue &Elt : Elts)
4635 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4636
4637 // Pad illegal v1i16/v3fi6 to v4i16
4638 if ((LoadVT.getVectorNumElements() % 2) == 1)
4639 Elts.push_back(DAG.getUNDEF(MVT::i16));
4640
4641 Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4642
4643 // Bitcast to original type (v2f16/v4f16).
4644 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4645 }
4646
4647 // Cast back to the original packed type.
4648 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4649}
4650
4651SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4652 MemSDNode *M,
4653 SelectionDAG &DAG,
4654 ArrayRef<SDValue> Ops,
4655 bool IsIntrinsic) const {
4656 SDLoc DL(M);
4657
4658 bool Unpacked = Subtarget->hasUnpackedD16VMem();
4659 EVT LoadVT = M->getValueType(0);
4660
4661 EVT EquivLoadVT = LoadVT;
4662 if (LoadVT.isVector()) {
4663 if (Unpacked) {
4664 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4665 LoadVT.getVectorNumElements());
4666 } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4667 // Widen v3f16 to legal type
4668 EquivLoadVT =
4669 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4670 LoadVT.getVectorNumElements() + 1);
4671 }
4672 }
4673
4674 // Change from v4f16/v2f16 to EquivLoadVT.
4675 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4676
4677 SDValue Load
4678 = DAG.getMemIntrinsicNode(
4679 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4680 VTList, Ops, M->getMemoryVT(),
4681 M->getMemOperand());
4682
4683 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4684
4685 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4686}
4687
4688SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4689 SelectionDAG &DAG,
4690 ArrayRef<SDValue> Ops) const {
4691 SDLoc DL(M);
4692 EVT LoadVT = M->getValueType(0);
4693 EVT EltType = LoadVT.getScalarType();
4694 EVT IntVT = LoadVT.changeTypeToInteger();
4695
4696 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4697
4698 unsigned Opc =
4699 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4700
4701 if (IsD16) {
4702 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4703 }
4704
4705 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4706 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4707 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4708
4709 if (isTypeLegal(LoadVT)) {
4710 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4711 M->getMemOperand(), DAG);
4712 }
4713
4714 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4715 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4716 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4717 M->getMemOperand(), DAG);
4718 return DAG.getMergeValues(
4719 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4720 DL);
4721}
4722
4723static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4724 SDNode *N, SelectionDAG &DAG) {
4725 EVT VT = N->getValueType(0);
4726 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4727 unsigned CondCode = CD->getZExtValue();
4728 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4729 return DAG.getUNDEF(VT);
4730
4731 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4732
4733 SDValue LHS = N->getOperand(1);
4734 SDValue RHS = N->getOperand(2);
4735
4736 SDLoc DL(N);
4737
4738 EVT CmpVT = LHS.getValueType();
4739 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4740 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4741 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4742 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4743 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4744 }
4745
4746 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4747
4748 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4749 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4750
4751 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4752 DAG.getCondCode(CCOpcode));
4753 if (VT.bitsEq(CCVT))
4754 return SetCC;
4755 return DAG.getZExtOrTrunc(SetCC, DL, VT);
4756}
4757
4758static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4759 SDNode *N, SelectionDAG &DAG) {
4760 EVT VT = N->getValueType(0);
4761 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4762
4763 unsigned CondCode = CD->getZExtValue();
4764 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4765 return DAG.getUNDEF(VT);
4766
4767 SDValue Src0 = N->getOperand(1);
4768 SDValue Src1 = N->getOperand(2);
4769 EVT CmpVT = Src0.getValueType();
4770 SDLoc SL(N);
4771
4772 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4773 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4774 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4775 }
4776
4777 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4778 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4779 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4780 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4781 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4782 Src1, DAG.getCondCode(CCOpcode));
4783 if (VT.bitsEq(CCVT))
4784 return SetCC;
4785 return DAG.getZExtOrTrunc(SetCC, SL, VT);
4786}
4787
4788static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4789 SelectionDAG &DAG) {
4790 EVT VT = N->getValueType(0);
4791 SDValue Src = N->getOperand(1);
4792 SDLoc SL(N);
4793
4794 if (Src.getOpcode() == ISD::SETCC) {
4795 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4796 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4797 Src.getOperand(1), Src.getOperand(2));
4798 }
4799 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4800 // (ballot 0) -> 0
4801 if (Arg->isNullValue())
4802 return DAG.getConstant(0, SL, VT);
4803
4804 // (ballot 1) -> EXEC/EXEC_LO
4805 if (Arg->isOne()) {
4806 Register Exec;
4807 if (VT.getScalarSizeInBits() == 32)
4808 Exec = AMDGPU::EXEC_LO;
4809 else if (VT.getScalarSizeInBits() == 64)
4810 Exec = AMDGPU::EXEC;
4811 else
4812 return SDValue();
4813
4814 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4815 }
4816 }
4817
4818 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4819 // ISD::SETNE)
4820 return DAG.getNode(
4821 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4822 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4823}
4824
4825void SITargetLowering::ReplaceNodeResults(SDNode *N,
4826 SmallVectorImpl<SDValue> &Results,
4827 SelectionDAG &DAG) const {
4828 switch (N->getOpcode()) {
4829 case ISD::INSERT_VECTOR_ELT: {
4830 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4831 Results.push_back(Res);
4832 return;
4833 }
4834 case ISD::EXTRACT_VECTOR_ELT: {
4835 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4836 Results.push_back(Res);
4837 return;
4838 }
4839 case ISD::INTRINSIC_WO_CHAIN: {
4840 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4841 switch (IID) {
4842 case Intrinsic::amdgcn_cvt_pkrtz: {
4843 SDValue Src0 = N->getOperand(1);
4844 SDValue Src1 = N->getOperand(2);
4845 SDLoc SL(N);
4846 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4847 Src0, Src1);
4848 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4849 return;
4850 }
4851 case Intrinsic::amdgcn_cvt_pknorm_i16:
4852 case Intrinsic::amdgcn_cvt_pknorm_u16:
4853 case Intrinsic::amdgcn_cvt_pk_i16:
4854 case Intrinsic::amdgcn_cvt_pk_u16: {
4855 SDValue Src0 = N->getOperand(1);
4856 SDValue Src1 = N->getOperand(2);
4857 SDLoc SL(N);
4858 unsigned Opcode;
4859
4860 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4861 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4862 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4863 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4864 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4865 Opcode = AMDGPUISD::CVT_PK_I16_I32;
4866 else
4867 Opcode = AMDGPUISD::CVT_PK_U16_U32;
4868
4869 EVT VT = N->getValueType(0);
4870 if (isTypeLegal(VT))
4871 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4872 else {
4873 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4874 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4875 }
4876 return;
4877 }
4878 }
4879 break;
4880 }
4881 case ISD::INTRINSIC_W_CHAIN: {
4882 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4883 if (Res.getOpcode() == ISD::MERGE_VALUES) {
4884 // FIXME: Hacky
4885 for (unsigned I = 0; I < Res.getNumOperands(); I++) {
4886 Results.push_back(Res.getOperand(I));
4887 }
4888 } else {
4889 Results.push_back(Res);
4890 Results.push_back(Res.getValue(1));
4891 }
4892 return;
4893 }
4894
4895 break;
4896 }
4897 case ISD::SELECT: {
4898 SDLoc SL(N);
4899 EVT VT = N->getValueType(0);
4900 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4901 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4902 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4903
4904 EVT SelectVT = NewVT;
4905 if (NewVT.bitsLT(MVT::i32)) {
4906 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4907 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4908 SelectVT = MVT::i32;
4909 }
4910
4911 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4912 N->getOperand(0), LHS, RHS);
4913
4914 if (NewVT != SelectVT)
4915 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4916 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4917 return;
4918 }
4919 case ISD::FNEG: {
4920 if (N->getValueType(0) != MVT::v2f16)
4921 break;
4922
4923 SDLoc SL(N);
4924 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4925
4926 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4927 BC,
4928 DAG.getConstant(0x80008000, SL, MVT::i32));
4929 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4930 return;
4931 }
4932 case ISD::FABS: {
4933 if (N->getValueType(0) != MVT::v2f16)
4934 break;
4935
4936 SDLoc SL(N);
4937 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4938
4939 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4940 BC,
4941 DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4942 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4943 return;
4944 }
4945 default:
4946 break;
4947 }
4948}
4949
4950/// Helper function for LowerBRCOND
4951static SDNode *findUser(SDValue Value, unsigned Opcode) {
4952
4953 SDNode *Parent = Value.getNode();
4954 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4955 I != E; ++I) {
4956
4957 if (I.getUse().get() != Value)
4958 continue;
4959
4960 if (I->getOpcode() == Opcode)
4961 return *I;
4962 }
4963 return nullptr;
4964}
4965
4966unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4967 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4968 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4969 case Intrinsic::amdgcn_if:
4970 return AMDGPUISD::IF;
4971 case Intrinsic::amdgcn_else:
4972 return AMDGPUISD::ELSE;
4973 case Intrinsic::amdgcn_loop:
4974 return AMDGPUISD::LOOP;
4975 case Intrinsic::amdgcn_end_cf:
4976 llvm_unreachable("should not occur")::llvm::llvm_unreachable_internal("should not occur", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4976)
;
4977 default:
4978 return 0;
4979 }
4980 }
4981
4982 // break, if_break, else_break are all only used as inputs to loop, not
4983 // directly as branch conditions.
4984 return 0;
4985}
4986
4987bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4988 const Triple &TT = getTargetMachine().getTargetTriple();
4989 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4990 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4991 AMDGPU::shouldEmitConstantsToTextSection(TT);
4992}
4993
4994bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4995 // FIXME: Either avoid relying on address space here or change the default
4996 // address space for functions to avoid the explicit check.
4997 return (GV->getValueType()->isFunctionTy() ||
4998 !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
4999 !shouldEmitFixup(GV) &&
5000 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5001}
5002
5003bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5004 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5005}
5006
5007bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5008 if (!GV->hasExternalLinkage())
5009 return true;
5010
5011 const auto OS = getTargetMachine().getTargetTriple().getOS();
5012 return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5013}
5014
5015/// This transforms the control flow intrinsics to get the branch destination as
5016/// last parameter, also switches branch target with BR if the need arise
5017SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5018 SelectionDAG &DAG) const {
5019 SDLoc DL(BRCOND);
5020
5021 SDNode *Intr = BRCOND.getOperand(1).getNode();
5022 SDValue Target = BRCOND.getOperand(2);
5023 SDNode *BR = nullptr;
5024 SDNode *SetCC = nullptr;
5025
5026 if (Intr->getOpcode() == ISD::SETCC) {
5027 // As long as we negate the condition everything is fine
5028 SetCC = Intr;
5029 Intr = SetCC->getOperand(0).getNode();
5030
5031 } else {
5032 // Get the target from BR if we don't negate the condition
5033 BR = findUser(BRCOND, ISD::BR);
5034 assert(BR && "brcond missing unconditional branch user")((BR && "brcond missing unconditional branch user") ?
static_cast<void> (0) : __assert_fail ("BR && \"brcond missing unconditional branch user\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5034, __PRETTY_FUNCTION__))
;
5035 Target = BR->getOperand(1);
5036 }
5037
5038 unsigned CFNode = isCFIntrinsic(Intr);
5039 if (CFNode == 0) {
5040 // This is a uniform branch so we don't need to legalize.
5041 return BRCOND;
5042 }
5043
5044 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5045 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5046
5047 assert(!SetCC ||((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5050, __PRETTY_FUNCTION__))
5048 (SetCC->getConstantOperandVal(1) == 1 &&((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5050, __PRETTY_FUNCTION__))
5049 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5050, __PRETTY_FUNCTION__))
5050 ISD::SETNE))((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5050, __PRETTY_FUNCTION__))
;
5051
5052 // operands of the new intrinsic call
5053 SmallVector<SDValue, 4> Ops;
5054 if (HaveChain)
5055 Ops.push_back(BRCOND.getOperand(0));
5056
5057 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
5058 Ops.push_back(Target);
5059
5060 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5061
5062 // build the new intrinsic call
5063 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5064
5065 if (!HaveChain) {
5066 SDValue Ops[] = {
5067 SDValue(Result, 0),
5068 BRCOND.getOperand(0)
5069 };
5070
5071 Result = DAG.getMergeValues(Ops, DL).getNode();
5072 }
5073
5074 if (BR) {
5075 // Give the branch instruction our target
5076 SDValue Ops[] = {
5077 BR->getOperand(0),
5078 BRCOND.getOperand(2)
5079 };
5080 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5081 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5082 }
5083
5084 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5085
5086 // Copy the intrinsic results to registers
5087 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5088 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5089 if (!CopyToReg)
5090 continue;
5091
5092 Chain = DAG.getCopyToReg(
5093 Chain, DL,
5094 CopyToReg->getOperand(1),
5095 SDValue(Result, i - 1),
5096 SDValue());
5097
5098 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5099 }
5100
5101 // Remove the old intrinsic from the chain
5102 DAG.ReplaceAllUsesOfValueWith(
5103 SDValue(Intr, Intr->getNumValues() - 1),
5104 Intr->getOperand(0));
5105
5106 return Chain;
5107}
5108
5109SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5110 SelectionDAG &DAG) const {
5111 MVT VT = Op.getSimpleValueType();
5112 SDLoc DL(Op);
5113 // Checking the depth
5114 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5115 return DAG.getConstant(0, DL, VT);
5116
5117 MachineFunction &MF = DAG.getMachineFunction();
5118 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5119 // Check for kernel and shader functions
5120 if (Info->isEntryFunction())
5121 return DAG.getConstant(0, DL, VT);
5122
5123 MachineFrameInfo &MFI = MF.getFrameInfo();
5124 // There is a call to @llvm.returnaddress in this function
5125 MFI.setReturnAddressIsTaken(true);
5126
5127 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5128 // Get the return address reg and mark it as an implicit live-in
5129 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5130
5131 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5132}
5133
5134SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5135 SDValue Op,
5136 const SDLoc &DL,
5137 EVT VT) const {
5138 return Op.getValueType().bitsLE(VT) ?
5139 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5140 DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5141 DAG.getTargetConstant(0, DL, MVT::i32));
5142}
5143
5144SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5145 assert(Op.getValueType() == MVT::f16 &&((Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5146, __PRETTY_FUNCTION__))
5146 "Do not know how to custom lower FP_ROUND for non-f16 type")((Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5146, __PRETTY_FUNCTION__))
;
5147
5148 SDValue Src = Op.getOperand(0);
5149 EVT SrcVT = Src.getValueType();
5150 if (SrcVT != MVT::f64)
5151 return Op;
5152
5153 SDLoc DL(Op);
5154
5155 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5156 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5157 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5158}
5159
5160SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5161 SelectionDAG &DAG) const {
5162 EVT VT = Op.getValueType();
5163 const MachineFunction &MF = DAG.getMachineFunction();
5164 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5165 bool IsIEEEMode = Info->getMode().IEEE;
5166
5167 // FIXME: Assert during selection that this is only selected for
5168 // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5169 // mode functions, but this happens to be OK since it's only done in cases
5170 // where there is known no sNaN.
5171 if (IsIEEEMode)
5172 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5173
5174 if (VT == MVT::v4f16)
5175 return splitBinaryVectorOp(Op, DAG);
5176 return Op;
5177}
5178
5179SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5180 EVT VT = Op.getValueType();
5181 SDLoc SL(Op);
5182 SDValue LHS = Op.getOperand(0);
5183 SDValue RHS = Op.getOperand(1);
5184 bool isSigned = Op.getOpcode() == ISD::SMULO;
5185
5186 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5187 const APInt &C = RHSC->getAPIntValue();
5188 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5189 if (C.isPowerOf2()) {
5190 // smulo(x, signed_min) is same as umulo(x, signed_min).
5191 bool UseArithShift = isSigned && !C.isMinSignedValue();
5192 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5193 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5194 SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5195 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5196 SL, VT, Result, ShiftAmt),
5197 LHS, ISD::SETNE);
5198 return DAG.getMergeValues({ Result, Overflow }, SL);
5199 }
5200 }
5201
5202 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5203 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5204 SL, VT, LHS, RHS);
5205
5206 SDValue Sign = isSigned
5207 ? DAG.getNode(ISD::SRA, SL, VT, Result,
5208 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5209 : DAG.getConstant(0, SL, VT);
5210 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5211
5212 return DAG.getMergeValues({ Result, Overflow }, SL);
5213}
5214
5215SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5216 SDLoc SL(Op);
5217 SDValue Chain = Op.getOperand(0);
5218
5219 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5220 !Subtarget->isTrapHandlerEnabled())
5221 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5222
5223 MachineFunction &MF = DAG.getMachineFunction();
5224 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5225 Register UserSGPR = Info->getQueuePtrUserSGPR();
5226 assert(UserSGPR != AMDGPU::NoRegister)((UserSGPR != AMDGPU::NoRegister) ? static_cast<void> (
0) : __assert_fail ("UserSGPR != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5226, __PRETTY_FUNCTION__))
;
5227 SDValue QueuePtr = CreateLiveInRegister(
5228 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5229 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5230 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5231 QueuePtr, SDValue());
5232 SDValue Ops[] = {
5233 ToReg,
5234 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
5235 SGPR01,
5236 ToReg.getValue(1)
5237 };
5238 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5239}
5240
5241SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5242 SDLoc SL(Op);
5243 SDValue Chain = Op.getOperand(0);
5244 MachineFunction &MF = DAG.getMachineFunction();
5245
5246 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5247 !Subtarget->isTrapHandlerEnabled()) {
5248 DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5249 "debugtrap handler not supported",
5250 Op.getDebugLoc(),
5251 DS_Warning);
5252 LLVMContext &Ctx = MF.getFunction().getContext();
5253 Ctx.diagnose(NoTrap);
5254 return Chain;
5255 }
5256
5257 SDValue Ops[] = {
5258 Chain,
5259 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
5260 };
5261 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5262}
5263
5264SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5265 SelectionDAG &DAG) const {
5266 // FIXME: Use inline constants (src_{shared, private}_base) instead.
5267 if (Subtarget->hasApertureRegs()) {
5268 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5269 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5270 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5271 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5272 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5273 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5274 unsigned Encoding =
5275 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5276 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5277 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5278
5279 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5280 SDValue ApertureReg = SDValue(
5281 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5282 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5283 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5284 }
5285
5286 MachineFunction &MF = DAG.getMachineFunction();
5287 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5288 Register UserSGPR = Info->getQueuePtrUserSGPR();
5289 assert(UserSGPR != AMDGPU::NoRegister)((UserSGPR != AMDGPU::NoRegister) ? static_cast<void> (
0) : __assert_fail ("UserSGPR != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5289, __PRETTY_FUNCTION__))
;
5290
5291 SDValue QueuePtr = CreateLiveInRegister(
5292 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5293
5294 // Offset into amd_queue_t for group_segment_aperture_base_hi /
5295 // private_segment_aperture_base_hi.
5296 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5297
5298 SDValue Ptr =
5299 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5300
5301 // TODO: Use custom target PseudoSourceValue.
5302 // TODO: We should use the value from the IR intrinsic call, but it might not
5303 // be available and how do we get it?
5304 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5305 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5306 commonAlignment(Align(64), StructOffset),
5307 MachineMemOperand::MODereferenceable |
5308 MachineMemOperand::MOInvariant);
5309}
5310
5311SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5312 SelectionDAG &DAG) const {
5313 SDLoc SL(Op);
5314 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5315
5316 SDValue Src = ASC->getOperand(0);
5317 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5318
5319 const AMDGPUTargetMachine &TM =
5320 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5321
5322 // flat -> local/private
5323 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5324 unsigned DestAS = ASC->getDestAddressSpace();
5325
5326 if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5327 DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5328 unsigned NullVal = TM.getNullPointerValue(DestAS);
5329 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5330 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5331 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5332
5333 return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5334 NonNull, Ptr, SegmentNullPtr);
5335 }
5336 }
5337
5338 // local/private -> flat
5339 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5340 unsigned SrcAS = ASC->getSrcAddressSpace();
5341
5342 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5343 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5344 unsigned NullVal = TM.getNullPointerValue(SrcAS);
5345 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5346
5347 SDValue NonNull
5348 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5349
5350 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5351 SDValue CvtPtr
5352 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5353
5354 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5355 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5356 FlatNullPtr);
5357 }
5358 }
5359
5360 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5361 Src.getValueType() == MVT::i64)
5362 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5363
5364 // global <-> flat are no-ops and never emitted.
5365
5366 const MachineFunction &MF = DAG.getMachineFunction();
5367 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5368 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5369 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5370
5371 return DAG.getUNDEF(ASC->getValueType(0));
5372}
5373
5374// This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5375// the small vector and inserting them into the big vector. That is better than
5376// the default expansion of doing it via a stack slot. Even though the use of
5377// the stack slot would be optimized away afterwards, the stack slot itself
5378// remains.
5379SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5380 SelectionDAG &DAG) const {
5381 SDValue Vec = Op.getOperand(0);
5382 SDValue Ins = Op.getOperand(1);
5383 SDValue Idx = Op.getOperand(2);
5384 EVT VecVT = Vec.getValueType();
5385 EVT InsVT = Ins.getValueType();
5386 EVT EltVT = VecVT.getVectorElementType();
5387 unsigned InsNumElts = InsVT.getVectorNumElements();
5388 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5389 SDLoc SL(Op);
5390
5391 for (unsigned I = 0; I != InsNumElts; ++I) {
5392 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5393 DAG.getConstant(I, SL, MVT::i32));
5394 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5395 DAG.getConstant(IdxVal + I, SL, MVT::i32));
5396 }
5397 return Vec;
5398}
5399
5400SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5401 SelectionDAG &DAG) const {
5402 SDValue Vec = Op.getOperand(0);
5403 SDValue InsVal = Op.getOperand(1);
5404 SDValue Idx = Op.getOperand(2);
5405 EVT VecVT = Vec.getValueType();
5406 EVT EltVT = VecVT.getVectorElementType();
5407 unsigned VecSize = VecVT.getSizeInBits();
5408 unsigned EltSize = EltVT.getSizeInBits();
5409
5410
5411 assert(VecSize <= 64)((VecSize <= 64) ? static_cast<void> (0) : __assert_fail
("VecSize <= 64", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5411, __PRETTY_FUNCTION__))
;
5412
5413 unsigned NumElts = VecVT.getVectorNumElements();
5414 SDLoc SL(Op);
5415 auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5416
5417 if (NumElts == 4 && EltSize == 16 && KIdx) {
5418 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5419
5420 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5421 DAG.getConstant(0, SL, MVT::i32));
5422 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5423 DAG.getConstant(1, SL, MVT::i32));
5424
5425 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5426 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5427
5428 unsigned Idx = KIdx->getZExtValue();
5429 bool InsertLo = Idx < 2;
5430 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5431 InsertLo ? LoVec : HiVec,
5432 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5433 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5434
5435 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5436
5437 SDValue Concat = InsertLo ?
5438 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5439 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5440
5441 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5442 }
5443
5444 if (isa<ConstantSDNode>(Idx))
5445 return SDValue();
5446
5447 MVT IntVT = MVT::getIntegerVT(VecSize);
5448
5449 // Avoid stack access for dynamic indexing.
5450 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5451
5452 // Create a congruent vector with the target value in each element so that
5453 // the required element can be masked and ORed into the target vector.
5454 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5455 DAG.getSplatBuildVector(VecVT, SL, InsVal));
5456
5457 assert(isPowerOf2_32(EltSize))((isPowerOf2_32(EltSize)) ? static_cast<void> (0) : __assert_fail
("isPowerOf2_32(EltSize)", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5457, __PRETTY_FUNCTION__))
;
5458 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5459
5460 // Convert vector index to bit-index.
5461 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5462
5463 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5464 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5465 DAG.getConstant(0xffff, SL, IntVT),
5466 ScaledIdx);
5467
5468 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5469 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5470 DAG.getNOT(SL, BFM, IntVT), BCVec);
5471
5472 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5473 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5474}
5475
5476SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5477 SelectionDAG &DAG) const {
5478 SDLoc SL(Op);
5479
5480 EVT ResultVT = Op.getValueType();
5481 SDValue Vec = Op.getOperand(0);
5482 SDValue Idx = Op.getOperand(1);
5483 EVT VecVT = Vec.getValueType();
5484 unsigned VecSize = VecVT.getSizeInBits();
5485 EVT EltVT = VecVT.getVectorElementType();
5486 assert(VecSize <= 64)((VecSize <= 64) ? static_cast<void> (0) : __assert_fail
("VecSize <= 64", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5486, __PRETTY_FUNCTION__))
;
5487
5488 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5489
5490 // Make sure we do any optimizations that will make it easier to fold
5491 // source modifiers before obscuring it with bit operations.
5492
5493 // XXX - Why doesn't this get called when vector_shuffle is expanded?
5494 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5495 return Combined;
5496
5497 unsigned EltSize = EltVT.getSizeInBits();
5498 assert(isPowerOf2_32(EltSize))((isPowerOf2_32(EltSize)) ? static_cast<void> (0) : __assert_fail
("isPowerOf2_32(EltSize)", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5498, __PRETTY_FUNCTION__))
;
5499
5500 MVT IntVT = MVT::getIntegerVT(VecSize);
5501 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5502
5503 // Convert vector index to bit-index (* EltSize)
5504 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5505
5506 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5507 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5508
5509 if (ResultVT == MVT::f16) {
5510 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5511 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5512 }
5513
5514 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5515}
5516
5517static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5518 assert(Elt % 2 == 0)((Elt % 2 == 0) ? static_cast<void> (0) : __assert_fail
("Elt % 2 == 0", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5518, __PRETTY_FUNCTION__))
;
5519 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5520}
5521
5522SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5523 SelectionDAG &DAG) const {
5524 SDLoc SL(Op);
5525 EVT ResultVT = Op.getValueType();
5526 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5527
5528 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5529 EVT EltVT = PackVT.getVectorElementType();
5530 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5531
5532 // vector_shuffle <0,1,6,7> lhs, rhs
5533 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5534 //
5535 // vector_shuffle <6,7,2,3> lhs, rhs
5536 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5537 //
5538 // vector_shuffle <6,7,0,1> lhs, rhs
5539 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5540
5541 // Avoid scalarizing when both halves are reading from consecutive elements.
5542 SmallVector<SDValue, 4> Pieces;
5543 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5544 if (elementPairIsContiguous(SVN->getMask(), I)) {
5545 const int Idx = SVN->getMaskElt(I);
5546 int VecIdx = Idx < SrcNumElts ? 0 : 1;
5547 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5548 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5549 PackVT, SVN->getOperand(VecIdx),
5550 DAG.getConstant(EltIdx, SL, MVT::i32));
5551 Pieces.push_back(SubVec);
5552 } else {
5553 const int Idx0 = SVN->getMaskElt(I);
5554 const int Idx1 = SVN->getMaskElt(I + 1);
5555 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5556 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5557 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5558 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5559
5560 SDValue Vec0 = SVN->getOperand(VecIdx0);
5561 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5562 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5563
5564 SDValue Vec1 = SVN->getOperand(VecIdx1);
5565 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5566 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5567 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5568 }
5569 }
5570
5571 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5572}
5573
5574SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5575 SelectionDAG &DAG) const {
5576 SDLoc SL(Op);
5577 EVT VT = Op.getValueType();
5578
5579 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5580 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5581
5582 // Turn into pair of packed build_vectors.
5583 // TODO: Special case for constants that can be materialized with s_mov_b64.
5584 SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5585 { Op.getOperand(0), Op.getOperand(1) });
5586 SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5587 { Op.getOperand(2), Op.getOperand(3) });
5588
5589 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5590 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5591
5592 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5593 return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5594 }
5595
5596 assert(VT == MVT::v2f16 || VT == MVT::v2i16)((VT == MVT::v2f16 || VT == MVT::v2i16) ? static_cast<void
> (0) : __assert_fail ("VT == MVT::v2f16 || VT == MVT::v2i16"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5596, __PRETTY_FUNCTION__))
;
5597 assert(!Subtarget->hasVOP3PInsts() && "this should be legal")((!Subtarget->hasVOP3PInsts() && "this should be legal"
) ? static_cast<void> (0) : __assert_fail ("!Subtarget->hasVOP3PInsts() && \"this should be legal\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5597, __PRETTY_FUNCTION__))
;
5598
5599 SDValue Lo = Op.getOperand(0);
5600 SDValue Hi = Op.getOperand(1);
5601
5602 // Avoid adding defined bits with the zero_extend.
5603 if (Hi.isUndef()) {
5604 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5605 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5606 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5607 }
5608
5609 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5610 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5611
5612 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5613 DAG.getConstant(16, SL, MVT::i32));
5614 if (Lo.isUndef())
5615 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5616
5617 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5618 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5619
5620 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5621 return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5622}
5623
5624bool
5625SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5626 // We can fold offsets for anything that doesn't require a GOT relocation.
5627 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5628 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5629 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5630 !shouldEmitGOTReloc(GA->getGlobal());
5631}
5632
5633static SDValue
5634buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5635 const SDLoc &DL, int64_t Offset, EVT PtrVT,
5636 unsigned GAFlags = SIInstrInfo::MO_NONE) {
5637 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!")((isInt<32>(Offset + 4) && "32-bit offset is expected!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(Offset + 4) && \"32-bit offset is expected!\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5637, __PRETTY_FUNCTION__))
;
5638 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5639 // lowered to the following code sequence:
5640 //
5641 // For constant address space:
5642 // s_getpc_b64 s[0:1]
5643 // s_add_u32 s0, s0, $symbol
5644 // s_addc_u32 s1, s1, 0
5645 //
5646 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5647 // a fixup or relocation is emitted to replace $symbol with a literal
5648 // constant, which is a pc-relative offset from the encoding of the $symbol
5649 // operand to the global variable.
5650 //
5651 // For global address space:
5652 // s_getpc_b64 s[0:1]
5653 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5654 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5655 //
5656 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5657 // fixups or relocations are emitted to replace $symbol@*@lo and
5658 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5659 // which is a 64-bit pc-relative offset from the encoding of the $symbol
5660 // operand to the global variable.
5661 //
5662 // What we want here is an offset from the value returned by s_getpc
5663 // (which is the address of the s_add_u32 instruction) to the global
5664 // variable, but since the encoding of $symbol starts 4 bytes after the start
5665 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5666 // small. This requires us to add 4 to the global variable offset in order to
5667 // compute the correct address. Similarly for the s_addc_u32 instruction, the
5668 // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5669 // instruction.
5670 SDValue PtrLo =
5671 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5672 SDValue PtrHi;
5673 if (GAFlags == SIInstrInfo::MO_NONE) {
5674 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5675 } else {
5676 PtrHi =
5677 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5678 }
5679 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5680}
5681
5682SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5683 SDValue Op,
5684 SelectionDAG &DAG) const {
5685 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5686 SDLoc DL(GSD);
5687 EVT PtrVT = Op.getValueType();
5688
5689 const GlobalValue *GV = GSD->getGlobal();
5690 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5691 shouldUseLDSConstAddress(GV)) ||
5692 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5693 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5694 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5695 GV->hasExternalLinkage()) {
5696 Type *Ty = GV->getValueType();
5697 // HIP uses an unsized array `extern __shared__ T s[]` or similar
5698 // zero-sized type in other languages to declare the dynamic shared
5699 // memory which size is not known at the compile time. They will be
5700 // allocated by the runtime and placed directly after the static
5701 // allocated ones. They all share the same offset.
5702 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5703 assert(PtrVT == MVT::i32 && "32-bit pointer is expected.")((PtrVT == MVT::i32 && "32-bit pointer is expected.")
? static_cast<void> (0) : __assert_fail ("PtrVT == MVT::i32 && \"32-bit pointer is expected.\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5703, __PRETTY_FUNCTION__))
;
5704 // Adjust alignment for that dynamic shared memory array.
5705 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5706 return SDValue(
5707 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5708 }
5709 }
5710 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5711 }
5712
5713 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5714 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5715 SIInstrInfo::MO_ABS32_LO);
5716 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5717 }
5718
5719 if (shouldEmitFixup(GV))
5720 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5721 else if (shouldEmitPCReloc(GV))
5722 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5723 SIInstrInfo::MO_REL32);
5724
5725 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5726 SIInstrInfo::MO_GOTPCREL32);
5727
5728 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5729 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5730 const DataLayout &DataLayout = DAG.getDataLayout();
5731 Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5732 MachinePointerInfo PtrInfo
5733 = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5734
5735 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5736 MachineMemOperand::MODereferenceable |
5737 MachineMemOperand::MOInvariant);
5738}
5739
5740SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5741 const SDLoc &DL, SDValue V) const {
5742 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5743 // the destination register.
5744 //
5745 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5746 // so we will end up with redundant moves to m0.
5747 //
5748 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5749
5750 // A Null SDValue creates a glue result.
5751 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5752 V, Chain);
5753 return SDValue(M0, 0);
5754}
5755
5756SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5757 SDValue Op,
5758 MVT VT,
5759 unsigned Offset) const {
5760 SDLoc SL(Op);
5761 SDValue Param = lowerKernargMemParameter(
5762 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5763 // The local size values will have the hi 16-bits as zero.
5764 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5765 DAG.getValueType(VT));
5766}
5767
5768static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5769 EVT VT) {
5770 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5771 "non-hsa intrinsic with hsa target",
5772 DL.getDebugLoc());
5773 DAG.getContext()->diagnose(BadIntrin);
5774 return DAG.getUNDEF(VT);
5775}
5776
5777static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5778 EVT VT) {
5779 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5780 "intrinsic not supported on subtarget",
5781 DL.getDebugLoc());
5782 DAG.getContext()->diagnose(BadIntrin);
5783 return DAG.getUNDEF(VT);
5784}
5785
5786static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5787 ArrayRef<SDValue> Elts) {
5788 assert(!Elts.empty())((!Elts.empty()) ? static_cast<void> (0) : __assert_fail
("!Elts.empty()", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5788, __PRETTY_FUNCTION__))
;
5789 MVT Type;
5790 unsigned NumElts;
5791
5792 if (Elts.size() == 1) {
5793 Type = MVT::f32;
5794 NumElts = 1;
5795 } else if (Elts.size() == 2) {
5796 Type = MVT::v2f32;
5797 NumElts = 2;
5798 } else if (Elts.size() == 3) {
5799 Type = MVT::v3f32;
5800 NumElts = 3;
5801 } else if (Elts.size() <= 4) {
5802 Type = MVT::v4f32;
5803 NumElts = 4;
5804 } else if (Elts.size() <= 8) {
5805 Type = MVT::v8f32;
5806 NumElts = 8;
5807 } else {
5808 assert(Elts.size() <= 16)((Elts.size() <= 16) ? static_cast<void> (0) : __assert_fail
("Elts.size() <= 16", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5808, __PRETTY_FUNCTION__))
;
5809 Type = MVT::v16f32;
5810 NumElts = 16;
5811 }
5812
5813 SmallVector<SDValue, 16> VecElts(NumElts);
5814 for (unsigned i = 0; i < Elts.size(); ++i) {
5815 SDValue Elt = Elts[i];
5816 if (Elt.getValueType() != MVT::f32)
5817 Elt = DAG.getBitcast(MVT::f32, Elt);
5818 VecElts[i] = Elt;
5819 }
5820 for (unsigned i = Elts.size(); i < NumElts; ++i)
5821 VecElts[i] = DAG.getUNDEF(MVT::f32);
5822
5823 if (NumElts == 1)
5824 return VecElts[0];
5825 return DAG.getBuildVector(Type, DL, VecElts);
5826}
5827
5828static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5829 SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5830 auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5831
5832 uint64_t Value = CachePolicyConst->getZExtValue();
5833 SDLoc DL(CachePolicy);
5834 if (GLC) {
5835 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5836 Value &= ~(uint64_t)0x1;
5837 }
5838 if (SLC) {
5839 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5840 Value &= ~(uint64_t)0x2;
5841 }
5842 if (DLC) {
5843 *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5844 Value &= ~(uint64_t)0x4;
5845 }
5846
5847 return Value == 0;
5848}
5849
5850static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
5851 SDValue Src, int ExtraElts) {
5852 EVT SrcVT = Src.getValueType();
5853
5854 SmallVector<SDValue, 8> Elts;
5855
5856 if (SrcVT.isVector())
5857 DAG.ExtractVectorElements(Src, Elts);
5858 else
5859 Elts.push_back(Src);
5860
5861 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
5862 while (ExtraElts--)
5863 Elts.push_back(Undef);
5864
5865 return DAG.getBuildVector(CastVT, DL, Elts);
5866}
5867
5868// Re-construct the required return value for a image load intrinsic.
5869// This is more complicated due to the optional use TexFailCtrl which means the required
5870// return type is an aggregate
5871static SDValue constructRetValue(SelectionDAG &DAG,
5872 MachineSDNode *Result,
5873 ArrayRef<EVT> ResultTypes,
5874 bool IsTexFail, bool Unpacked, bool IsD16,
5875 int DMaskPop, int NumVDataDwords,
5876 const SDLoc &DL, LLVMContext &Context) {
5877 // Determine the required return type. This is the same regardless of IsTexFail flag
5878 EVT ReqRetVT = ResultTypes[0];
5879 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5880 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5881 ReqRetNumElts : (ReqRetNumElts + 1) / 2;
5882
5883 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5884 DMaskPop : (DMaskPop + 1) / 2;
5885
5886 MVT DataDwordVT = NumDataDwords == 1 ?
5887 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
5888
5889 MVT MaskPopVT = MaskPopDwords == 1 ?
5890 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
5891
5892 SDValue Data(Result, 0);
5893 SDValue TexFail;
5894
5895 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
5896 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
5897 if (MaskPopVT.isVector()) {
5898 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
5899 SDValue(Result, 0), ZeroIdx);
5900 } else {
5901 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
5902 SDValue(Result, 0), ZeroIdx);
5903 }
5904 }
5905
5906 if (DataDwordVT.isVector())
5907 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
5908 NumDataDwords - MaskPopDwords);
5909
5910 if (IsD16)
5911 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
5912
5913 EVT LegalReqRetVT = ReqRetVT;
5914 if (!ReqRetVT.isVector()) {
5915 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
5916 } else {
5917 // We need to widen the return vector to a legal type
5918 if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
5919 ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
5920 LegalReqRetVT =
5921 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
5922 ReqRetVT.getVectorNumElements() + 1);
5923 }
5924 }
5925 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
5926
5927 if (IsTexFail) {
5928 TexFail =
5929 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
5930 DAG.getConstant(MaskPopDwords, DL, MVT::i32));
5931
5932 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
5933 }
5934
5935 if (Result->getNumValues() == 1)
5936 return Data;
5937
5938 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
5939}
5940
5941static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5942 SDValue *LWE, bool &IsTexFail) {
5943 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5944
5945 uint64_t Value = TexFailCtrlConst->getZExtValue();
5946 if (Value) {
5947 IsTexFail = true;
5948 }
5949
5950 SDLoc DL(TexFailCtrlConst);
5951 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5952 Value &= ~(uint64_t)0x1;
5953 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5954 Value &= ~(uint64_t)0x2;
5955
5956 return Value == 0;
5957}
5958
5959static void packImageA16AddressToDwords(SelectionDAG &DAG, SDValue Op,
5960 MVT PackVectorVT,
5961 SmallVectorImpl<SDValue> &PackedAddrs,
5962 unsigned DimIdx, unsigned EndIdx,
5963 unsigned NumGradients) {
5964 SDLoc DL(Op);
5965 for (unsigned I = DimIdx; I < EndIdx; I++) {
5966 SDValue Addr = Op.getOperand(I);
5967
5968 // Gradients are packed with undef for each coordinate.
5969 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
5970 // 1D: undef,dx/dh; undef,dx/dv
5971 // 2D: dy/dh,dx/dh; dy/dv,dx/dv
5972 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
5973 if (((I + 1) >= EndIdx) ||
5974 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
5975 I == DimIdx + NumGradients - 1))) {
5976 if (Addr.getValueType() != MVT::i16)
5977 Addr = DAG.getBitcast(MVT::i16, Addr);
5978 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
5979 } else {
5980 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
5981 I++;
5982 }
5983 Addr = DAG.getBitcast(MVT::f32, Addr);
5984 PackedAddrs.push_back(Addr);
5985 }
5986}
5987
5988SDValue SITargetLowering::lowerImage(SDValue Op,
5989 const AMDGPU::ImageDimIntrinsicInfo *Intr,
5990 SelectionDAG &DAG, bool WithChain) const {
5991 SDLoc DL(Op);
5992 MachineFunction &MF = DAG.getMachineFunction();
5993 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5994 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5995 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5996 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5997 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5998 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5999 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
6000 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
6001 unsigned IntrOpcode = Intr->BaseOpcode;
6002 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6003
6004 SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
6005 SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
6006 bool IsD16 = false;
6007 bool IsG16 = false;
6008 bool IsA16 = false;
6009 SDValue VData;
6010 int NumVDataDwords;
6011 bool AdjustRetType = false;
6012
6013 // Offset of intrinsic arguments
6014 const unsigned ArgOffset = WithChain ? 2 : 1;
6015
6016 unsigned DMask;
6017 unsigned DMaskLanes = 0;
6018
6019 if (BaseOpcode->Atomic) {
6020 VData = Op.getOperand(2);
6021
6022 bool Is64Bit = VData.getValueType() == MVT::i64;
6023 if (BaseOpcode->AtomicX2) {
6024 SDValue VData2 = Op.getOperand(3);
6025 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6026 {VData, VData2});
6027 if (Is64Bit)
6028 VData = DAG.getBitcast(MVT::v4i32, VData);
6029
6030 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6031 DMask = Is64Bit ? 0xf : 0x3;
6032 NumVDataDwords = Is64Bit ? 4 : 2;
6033 } else {
6034 DMask = Is64Bit ? 0x3 : 0x1;
6035 NumVDataDwords = Is64Bit ? 2 : 1;
6036 }
6037 } else {
6038 auto *DMaskConst =
6039 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6040 DMask = DMaskConst->getZExtValue();
6041 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6042
6043 if (BaseOpcode->Store) {
6044 VData = Op.getOperand(2);
6045
6046 MVT StoreVT = VData.getSimpleValueType();
6047 if (StoreVT.getScalarType() == MVT::f16) {
6048 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6049 return Op; // D16 is unsupported for this instruction
6050
6051 IsD16 = true;
6052 VData = handleD16VData(VData, DAG, true);
6053 }
6054
6055 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6056 } else {
6057 // Work out the num dwords based on the dmask popcount and underlying type
6058 // and whether packing is supported.
6059 MVT LoadVT = ResultTypes[0].getSimpleVT();
6060 if (LoadVT.getScalarType() == MVT::f16) {
6061 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6062 return Op; // D16 is unsupported for this instruction
6063
6064 IsD16 = true;
6065 }
6066
6067 // Confirm that the return type is large enough for the dmask specified
6068 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6069 (!LoadVT.isVector() && DMaskLanes > 1))
6070 return Op;
6071
6072 // The sq block of gfx8 and gfx9 do not estimate register use correctly
6073 // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6074 // instructions.
6075 if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6076 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6077 NumVDataDwords = (DMaskLanes + 1) / 2;
6078 else
6079 NumVDataDwords = DMaskLanes;
6080
6081 AdjustRetType = true;
6082 }
6083 }
6084
6085 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6086 SmallVector<SDValue, 4> VAddrs;
6087
6088 // Optimize _L to _LZ when _L is zero
6089 if (LZMappingInfo) {
6090 if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
6091 Op.getOperand(ArgOffset + Intr->LodIndex))) {
6092 if (ConstantLod->isZero() || ConstantLod->isNegative()) {
6093 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
6094 VAddrEnd--; // remove 'lod'
6095 }
6096 }
6097 }
6098
6099 // Optimize _mip away, when 'lod' is zero
6100 if (MIPMappingInfo) {
6101 if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
6102 Op.getOperand(ArgOffset + Intr->MipIndex))) {
6103 if (ConstantLod->isNullValue()) {
6104 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip
6105 VAddrEnd--; // remove 'mip'
6106 }
6107 }
6108 }
6109
6110 // Push back extra arguments.
6111 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++)
6112 VAddrs.push_back(Op.getOperand(ArgOffset + I));
6113
6114 // Check for 16 bit addresses or derivatives and pack if true.
6115 MVT VAddrVT =
6116 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6117 MVT VAddrScalarVT = VAddrVT.getScalarType();
6118 MVT PackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6119 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6120
6121 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6122 VAddrScalarVT = VAddrVT.getScalarType();
6123 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6124 if (IsA16 || IsG16) {
6125 if (IsA16) {
6126 if (!ST->hasA16()) {
6127 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: Target does not "
"support 16 bit addresses\n"; } } while (false)
6128 "support 16 bit addresses\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: Target does not "
"support 16 bit addresses\n"; } } while (false)
;
6129 return Op;
6130 }
6131 if (!IsG16) {
6132 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
"need 16 bit derivatives but got 32 bit derivatives\n"; } } while
(false)
6133 dbgs() << "Failed to lower image intrinsic: 16 bit addresses "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
"need 16 bit derivatives but got 32 bit derivatives\n"; } } while
(false)
6134 "need 16 bit derivatives but got 32 bit derivatives\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
"need 16 bit derivatives but got 32 bit derivatives\n"; } } while
(false)
;
6135 return Op;
6136 }
6137 } else if (!ST->hasG16()) {
6138 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: Target does not "
"support 16 bit derivatives\n"; } } while (false)
6139 "support 16 bit derivatives\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: Target does not "
"support 16 bit derivatives\n"; } } while (false)
;
6140 return Op;
6141 }
6142
6143 if (BaseOpcode->Gradients && !IsA16) {
6144 if (!ST->hasG16()) {
6145 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: Target does not "
"support 16 bit derivatives\n"; } } while (false)
6146 "support 16 bit derivatives\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: Target does not "
"support 16 bit derivatives\n"; } } while (false)
;
6147 return Op;
6148 }
6149 // Activate g16
6150 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6151 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6152 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6153 }
6154
6155 // Don't compress addresses for G16
6156 const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6157 packImageA16AddressToDwords(DAG, Op, PackVectorVT, VAddrs,
6158 ArgOffset + Intr->GradientStart, PackEndIdx,
6159 Intr->NumGradients);
6160
6161 if (!IsA16) {
6162 // Add uncompressed address
6163 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6164 VAddrs.push_back(Op.getOperand(I));
6165 }
6166 } else {
6167 for (unsigned I = ArgOffset + Intr->GradientStart; I < VAddrEnd; I++)
6168 VAddrs.push_back(Op.getOperand(I));
6169 }
6170
6171 // If the register allocator cannot place the address registers contiguously
6172 // without introducing moves, then using the non-sequential address encoding
6173 // is always preferable, since it saves VALU instructions and is usually a
6174 // wash in terms of code size or even better.
6175 //
6176 // However, we currently have no way of hinting to the register allocator that
6177 // MIMG addresses should be placed contiguously when it is possible to do so,
6178 // so force non-NSA for the common 2-address case as a heuristic.
6179 //
6180 // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6181 // allocation when possible.
6182 bool UseNSA =
6183 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
6184 SDValue VAddr;
6185 if (!UseNSA)
6186 VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6187
6188 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6189 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6190 SDValue Unorm;
6191 if (!BaseOpcode->Sampler) {
6192 Unorm = True;
6193 } else {
6194 auto UnormConst =
6195 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6196
6197 Unorm = UnormConst->getZExtValue() ? True : False;
6198 }
6199
6200 SDValue TFE;
6201 SDValue LWE;
6202 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6203 bool IsTexFail = false;
6204 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6205 return Op;
6206
6207 if (IsTexFail) {
6208 if (!DMaskLanes) {
6209 // Expecting to get an error flag since TFC is on - and dmask is 0
6210 // Force dmask to be at least 1 otherwise the instruction will fail
6211 DMask = 0x1;
6212 DMaskLanes = 1;
6213 NumVDataDwords = 1;
6214 }
6215 NumVDataDwords += 1;
6216 AdjustRetType = true;
6217 }
6218
6219 // Has something earlier tagged that the return type needs adjusting
6220 // This happens if the instruction is a load or has set TexFailCtrl flags
6221 if (AdjustRetType) {
6222 // NumVDataDwords reflects the true number of dwords required in the return type
6223 if (DMaskLanes == 0 && !BaseOpcode->Store) {
6224 // This is a no-op load. This can be eliminated
6225 SDValue Undef = DAG.getUNDEF(Op.getValueType());
6226 if (isa<MemSDNode>(Op))
6227 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6228 return Undef;
6229 }
6230
6231 EVT NewVT = NumVDataDwords > 1 ?
6232 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6233 : MVT::i32;
6234
6235 ResultTypes[0] = NewVT;
6236 if (ResultTypes.size() == 3) {
6237 // Original result was aggregate type used for TexFailCtrl results
6238 // The actual instruction returns as a vector type which has now been
6239 // created. Remove the aggregate result.
6240 ResultTypes.erase(&ResultTypes[1]);
6241 }
6242 }
6243
6244 SDValue GLC;
6245 SDValue SLC;
6246 SDValue DLC;
6247 if (BaseOpcode->Atomic) {
6248 GLC = True; // TODO no-return optimization
6249 if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex),
6250 DAG, nullptr, &SLC, IsGFX10Plus ? &DLC : nullptr))
6251 return Op;
6252 } else {
6253 if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex),
6254 DAG, &GLC, &SLC, IsGFX10Plus ? &DLC : nullptr))
6255 return Op;
6256 }
6257
6258 SmallVector<SDValue, 26> Ops;
6259 if (BaseOpcode->Store || BaseOpcode->Atomic)
6260 Ops.push_back(VData); // vdata
6261 if (UseNSA) {
6262 for (const SDValue &Addr : VAddrs)
6263 Ops.push_back(Addr);
6264 } else {
6265 Ops.push_back(VAddr);
6266 }
6267 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6268 if (BaseOpcode->Sampler)
6269 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6270 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6271 if (IsGFX10Plus)
6272 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6273 Ops.push_back(Unorm);
6274 if (IsGFX10Plus)
6275 Ops.push_back(DLC);
6276 Ops.push_back(GLC);
6277 Ops.push_back(SLC);
6278 Ops.push_back(IsA16 && // r128, a16 for gfx9
6279 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6280 if (IsGFX10Plus)
6281 Ops.push_back(IsA16 ? True : False);
6282 Ops.push_back(TFE);
6283 Ops.push_back(LWE);
6284 if (!IsGFX10Plus)
6285 Ops.push_back(DimInfo->DA ? True : False);
6286 if (BaseOpcode->HasD16)
6287 Ops.push_back(IsD16 ? True : False);
6288 if (isa<MemSDNode>(Op))
6289 Ops.push_back(Op.getOperand(0)); // chain
6290
6291 int NumVAddrDwords =
6292 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6293 int Opcode = -1;
6294
6295 if (IsGFX10Plus) {
6296 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6297 UseNSA ? AMDGPU::MIMGEncGfx10NSA
6298 : AMDGPU::MIMGEncGfx10Default,
6299 NumVDataDwords, NumVAddrDwords);
6300 } else {
6301 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6302 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6303 NumVDataDwords, NumVAddrDwords);
6304 if (Opcode == -1)
6305 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6306 NumVDataDwords, NumVAddrDwords);
6307 }
6308 assert(Opcode != -1)((Opcode != -1) ? static_cast<void> (0) : __assert_fail
("Opcode != -1", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 6308, __PRETTY_FUNCTION__))
;
6309
6310 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6311 if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6312 MachineMemOperand *MemRef = MemOp->getMemOperand();
6313 DAG.setNodeMemRefs(NewNode, {MemRef});
6314 }
6315
6316 if (BaseOpcode->AtomicX2) {
6317 SmallVector<SDValue, 1> Elt;
6318 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6319 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6320 } else if (!BaseOpcode->Store) {
6321 return constructRetValue(DAG, NewNode,
6322 OrigResultTypes, IsTexFail,
6323 Subtarget->hasUnpackedD16VMem(), IsD16,
6324 DMaskLanes, NumVDataDwords, DL,
6325 *DAG.getContext());
6326 }
6327
6328 return SDValue(NewNode, 0);
6329}
6330
6331SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6332 SDValue Offset, SDValue CachePolicy,
6333 SelectionDAG &DAG) const {
6334 MachineFunction &MF = DAG.getMachineFunction();
6335
6336 const DataLayout &DataLayout = DAG.getDataLayout();
6337 Align Alignment =
6338 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6339
6340 MachineMemOperand *MMO = MF.getMachineMemOperand(
6341 MachinePointerInfo(),
6342 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6343 MachineMemOperand::MOInvariant,
6344 VT.getStoreSize(), Alignment);
6345
6346 if (!Offset->isDivergent()) {
6347 SDValue Ops[] = {
6348 Rsrc,
6349 Offset, // Offset
6350 CachePolicy
6351 };
6352
6353 // Widen vec3 load to vec4.
6354 if (VT.isVector() && VT.getVectorNumElements() == 3) {
6355 EVT WidenedVT =
6356 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6357 auto WidenedOp = DAG.getMemIntrinsicNode(
6358 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6359 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6360 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6361 DAG.getVectorIdxConstant(0, DL));
6362 return Subvector;
6363 }
6364
6365 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6366 DAG.getVTList(VT), Ops, VT, MMO);
6367 }
6368
6369 // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6370 // assume that the buffer is unswizzled.
6371 SmallVector<SDValue, 4> Loads;
6372 unsigned NumLoads = 1;
6373 MVT LoadVT = VT.getSimpleVT();
6374 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6375 assert((LoadVT.getScalarType() == MVT::i32 ||(((LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType
() == MVT::f32)) ? static_cast<void> (0) : __assert_fail
("(LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32)"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 6376, __PRETTY_FUNCTION__))
6376 LoadVT.getScalarType() == MVT::f32))(((LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType
() == MVT::f32)) ? static_cast<void> (0) : __assert_fail
("(LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32)"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 6376, __PRETTY_FUNCTION__))
;
6377
6378 if (NumElts == 8 || NumElts == 16) {
6379 NumLoads = NumElts / 4;
6380 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6381 }
6382
6383 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6384 SDValue Ops[] = {
6385 DAG.getEntryNode(), // Chain
6386 Rsrc, // rsrc
6387 DAG.getConstant(0, DL, MVT::i32), // vindex
6388 {}, // voffset
6389 {}, // soffset
6390 {}, // offset
6391 CachePolicy, // cachepolicy
6392 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6393 };
6394
6395 // Use the alignment to ensure that the required offsets will fit into the
6396 // immediate offsets.
6397 setBufferOffsets(Offset, DAG, &Ops[3],
6398 NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6399
6400 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6401 for (unsigned i = 0; i < NumLoads; ++i) {
6402 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6403 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6404 LoadVT, MMO, DAG));
6405 }
6406
6407 if (NumElts == 8 || NumElts == 16)
6408 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6409
6410 return Loads[0];
6411}
6412
6413SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6414 SelectionDAG &DAG) const {
6415 MachineFunction &MF = DAG.getMachineFunction();
6416 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6417
6418 EVT VT = Op.getValueType();
6419 SDLoc DL(Op);
6420 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6421
6422 // TODO: Should this propagate fast-math-flags?
6423
6424 switch (IntrinsicID) {
6425 case Intrinsic::amdgcn_implicit_buffer_ptr: {
6426 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6427 return emitNonHSAIntrinsicError(DAG, DL, VT);
6428 return getPreloadedValue(DAG, *MFI, VT,
6429 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6430 }
6431 case Intrinsic::amdgcn_dispatch_ptr:
6432 case Intrinsic::amdgcn_queue_ptr: {
6433 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6434 DiagnosticInfoUnsupported BadIntrin(
6435 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6436 DL.getDebugLoc());
6437 DAG.getContext()->diagnose(BadIntrin);
6438 return DAG.getUNDEF(VT);
6439 }
6440
6441 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6442 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6443 return getPreloadedValue(DAG, *MFI, VT, RegID);
6444 }
6445 case Intrinsic::amdgcn_implicitarg_ptr: {
6446 if (MFI->isEntryFunction())
6447 return getImplicitArgPtr(DAG, DL);
6448 return getPreloadedValue(DAG, *MFI, VT,
6449 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6450 }
6451 case Intrinsic::amdgcn_kernarg_segment_ptr: {
6452 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6453 // This only makes sense to call in a kernel, so just lower to null.
6454 return DAG.getConstant(0, DL, VT);
6455 }
6456
6457 return getPreloadedValue(DAG, *MFI, VT,
6458 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6459 }
6460 case Intrinsic::amdgcn_dispatch_id: {
6461 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6462 }
6463 case Intrinsic::amdgcn_rcp:
6464 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6465 case Intrinsic::amdgcn_rsq:
6466 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6467 case Intrinsic::amdgcn_rsq_legacy:
6468 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6469 return emitRemovedIntrinsicError(DAG, DL, VT);
6470 return SDValue();
6471 case Intrinsic::amdgcn_rcp_legacy:
6472 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6473 return emitRemovedIntrinsicError(DAG, DL, VT);
6474 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6475 case Intrinsic::amdgcn_rsq_clamp: {
6476 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6477 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6478
6479 Type *Type = VT.getTypeForEVT(*DAG.getContext());
6480 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6481 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6482
6483 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6484 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6485 DAG.getConstantFP(Max, DL, VT));
6486 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6487 DAG.getConstantFP(Min, DL, VT));
6488 }
6489 case Intrinsic::r600_read_ngroups_x:
6490 if (Subtarget->isAmdHsaOS())
6491 return emitNonHSAIntrinsicError(DAG, DL, VT);
6492
6493 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6494 SI::KernelInputOffsets::NGROUPS_X, Align(4),
6495 false);
6496 case Intrinsic::r600_read_ngroups_y:
6497 if (Subtarget->isAmdHsaOS())
6498 return emitNonHSAIntrinsicError(DAG, DL, VT);
6499
6500 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6501 SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6502 false);
6503 case Intrinsic::r600_read_ngroups_z:
6504 if (Subtarget->isAmdHsaOS())
6505 return emitNonHSAIntrinsicError(DAG, DL, VT);
6506
6507 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6508 SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6509 false);
6510 case Intrinsic::r600_read_global_size_x:
6511 if (Subtarget->isAmdHsaOS())
6512 return emitNonHSAIntrinsicError(DAG, DL, VT);
6513
6514 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6515 SI::KernelInputOffsets::GLOBAL_SIZE_X,
6516 Align(4), false);
6517 case Intrinsic::r600_read_global_size_y:
6518 if (Subtarget->isAmdHsaOS())
6519 return emitNonHSAIntrinsicError(DAG, DL, VT);
6520
6521 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6522 SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6523 Align(4), false);
6524 case Intrinsic::r600_read_global_size_z:
6525 if (Subtarget->isAmdHsaOS())
6526 return emitNonHSAIntrinsicError(DAG, DL, VT);
6527
6528 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6529 SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6530 Align(4), false);
6531 case Intrinsic::r600_read_local_size_x:
6532 if (Subtarget->isAmdHsaOS())
6533 return emitNonHSAIntrinsicError(DAG, DL, VT);
6534
6535 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6536 SI::KernelInputOffsets::LOCAL_SIZE_X);
6537 case Intrinsic::r600_read_local_size_y:
6538 if (Subtarget->isAmdHsaOS())
6539 return emitNonHSAIntrinsicError(DAG, DL, VT);
6540
6541 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6542 SI::KernelInputOffsets::LOCAL_SIZE_Y);
6543 case Intrinsic::r600_read_local_size_z:
6544 if (Subtarget->isAmdHsaOS())
6545 return emitNonHSAIntrinsicError(DAG, DL, VT);
6546
6547 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6548 SI::KernelInputOffsets::LOCAL_SIZE_Z);
6549 case Intrinsic::amdgcn_workgroup_id_x:
6550 return getPreloadedValue(DAG, *MFI, VT,
6551 AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6552 case Intrinsic::amdgcn_workgroup_id_y:
6553 return getPreloadedValue(DAG, *MFI, VT,
6554 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6555 case Intrinsic::amdgcn_workgroup_id_z:
6556 return getPreloadedValue(DAG, *MFI, VT,
6557 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6558 case Intrinsic::amdgcn_workitem_id_x:
6559 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6560 SDLoc(DAG.getEntryNode()),
6561 MFI->getArgInfo().WorkItemIDX);
6562 case Intrinsic::amdgcn_workitem_id_y:
6563 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6564 SDLoc(DAG.getEntryNode()),
6565 MFI->getArgInfo().WorkItemIDY);
6566 case Intrinsic::amdgcn_workitem_id_z:
6567 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6568 SDLoc(DAG.getEntryNode()),
6569 MFI->getArgInfo().WorkItemIDZ);
6570 case Intrinsic::amdgcn_wavefrontsize:
6571 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6572 SDLoc(Op), MVT::i32);
6573 case Intrinsic::amdgcn_s_buffer_load: {
6574 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6575 SDValue GLC;
6576 SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
6577 if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
6578 IsGFX10Plus ? &DLC : nullptr))
6579 return Op;
6580 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6581 DAG);
6582 }
6583 case Intrinsic::amdgcn_fdiv_fast:
6584 return lowerFDIV_FAST(Op, DAG);
6585 case Intrinsic::amdgcn_sin:
6586 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6587
6588 case Intrinsic::amdgcn_cos:
6589 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6590
6591 case Intrinsic::amdgcn_mul_u24:
6592 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6593 case Intrinsic::amdgcn_mul_i24:
6594 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6595
6596 case Intrinsic::amdgcn_log_clamp: {
6597 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6598 return SDValue();
6599
6600 return emitRemovedIntrinsicError(DAG, DL, VT);
6601 }
6602 case Intrinsic::amdgcn_ldexp:
6603 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6604 Op.getOperand(1), Op.getOperand(2));
6605
6606 case Intrinsic::amdgcn_fract:
6607 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6608
6609 case Intrinsic::amdgcn_class:
6610 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6611 Op.getOperand(1), Op.getOperand(2));
6612 case Intrinsic::amdgcn_div_fmas:
6613 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6614 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6615 Op.getOperand(4));
6616
6617 case Intrinsic::amdgcn_div_fixup:
6618 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6619 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6620
6621 case Intrinsic::amdgcn_div_scale: {
6622 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6623
6624 // Translate to the operands expected by the machine instruction. The
6625 // first parameter must be the same as the first instruction.
6626 SDValue Numerator = Op.getOperand(1);
6627 SDValue Denominator = Op.getOperand(2);
6628
6629 // Note this order is opposite of the machine instruction's operations,
6630 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6631 // intrinsic has the numerator as the first operand to match a normal
6632 // division operation.
6633
6634 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6635
6636 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6637 Denominator, Numerator);
6638 }
6639 case Intrinsic::amdgcn_icmp: {
6640 // There is a Pat that handles this variant, so return it as-is.
6641 if (Op.getOperand(1).getValueType() == MVT::i1 &&
6642 Op.getConstantOperandVal(2) == 0 &&
6643 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6644 return Op;
6645 return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6646 }
6647 case Intrinsic::amdgcn_fcmp: {
6648 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6649 }
6650 case Intrinsic::amdgcn_ballot:
6651 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6652 case Intrinsic::amdgcn_fmed3:
6653 return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6654 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6655 case Intrinsic::amdgcn_fdot2:
6656 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6657 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6658 Op.getOperand(4));
6659 case Intrinsic::amdgcn_fmul_legacy:
6660 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6661 Op.getOperand(1), Op.getOperand(2));
6662 case Intrinsic::amdgcn_sffbh:
6663 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6664 case Intrinsic::amdgcn_sbfe:
6665 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6666 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6667 case Intrinsic::amdgcn_ubfe:
6668 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6669 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6670 case Intrinsic::amdgcn_cvt_pkrtz:
6671 case Intrinsic::amdgcn_cvt_pknorm_i16:
6672 case Intrinsic::amdgcn_cvt_pknorm_u16:
6673 case Intrinsic::amdgcn_cvt_pk_i16:
6674 case Intrinsic::amdgcn_cvt_pk_u16: {
6675 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6676 EVT VT = Op.getValueType();
6677 unsigned Opcode;
6678
6679 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6680 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6681 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6682 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6683 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6684 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6685 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6686 Opcode = AMDGPUISD::CVT_PK_I16_I32;
6687 else
6688 Opcode = AMDGPUISD::CVT_PK_U16_U32;
6689
6690 if (isTypeLegal(VT))
6691 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6692
6693 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6694 Op.getOperand(1), Op.getOperand(2));
6695 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6696 }
6697 case Intrinsic::amdgcn_fmad_ftz:
6698 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6699 Op.getOperand(2), Op.getOperand(3));
6700
6701 case Intrinsic::amdgcn_if_break:
6702 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6703 Op->getOperand(1), Op->getOperand(2)), 0);
6704
6705 case Intrinsic::amdgcn_groupstaticsize: {
6706 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6707 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6708 return Op;
6709
6710 const Module *M = MF.getFunction().getParent();
6711 const GlobalValue *GV =
6712 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6713 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6714 SIInstrInfo::MO_ABS32_LO);
6715 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6716 }
6717 case Intrinsic::amdgcn_is_shared:
6718 case Intrinsic::amdgcn_is_private: {
6719 SDLoc SL(Op);
6720 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6721 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6722 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6723 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6724 Op.getOperand(1));
6725
6726 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6727 DAG.getConstant(1, SL, MVT::i32));
6728 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6729 }
6730 case Intrinsic::amdgcn_alignbit:
6731 return DAG.getNode(ISD::FSHR, DL, VT,
6732 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6733 case Intrinsic::amdgcn_reloc_constant: {
6734 Module *M = const_cast<Module *>(MF.getFunction().getParent());
6735 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6736 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6737 auto RelocSymbol = cast<GlobalVariable>(
6738 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6739 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6740 SIInstrInfo::MO_ABS32_LO);
6741 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6742 }
6743 default:
6744 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6745 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6746 return lowerImage(Op, ImageDimIntr, DAG, false);
6747
6748 return Op;
6749 }
6750}
6751
6752// This function computes an appropriate offset to pass to
6753// MachineMemOperand::setOffset() based on the offset inputs to
6754// an intrinsic. If any of the offsets are non-contstant or
6755// if VIndex is non-zero then this function returns 0. Otherwise,
6756// it returns the sum of VOffset, SOffset, and Offset.
6757static unsigned getBufferOffsetForMMO(SDValue VOffset,
6758 SDValue SOffset,
6759 SDValue Offset,
6760 SDValue VIndex = SDValue()) {
6761
6762 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6763 !isa<ConstantSDNode>(Offset))
6764 return 0;
6765
6766 if (VIndex) {
6767 if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6768 return 0;
6769 }
6770
6771 return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6772 cast<ConstantSDNode>(SOffset)->getSExtValue() +
6773 cast<ConstantSDNode>(Offset)->getSExtValue();
6774}
6775
6776SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6777 SelectionDAG &DAG,
6778 unsigned NewOpcode) const {
6779 SDLoc DL(Op);
6780
6781 SDValue VData = Op.getOperand(2);
6782 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6783 SDValue Ops[] = {
6784 Op.getOperand(0), // Chain
6785 VData, // vdata
6786 Op.getOperand(3), // rsrc
6787 DAG.getConstant(0, DL, MVT::i32), // vindex
6788 Offsets.first, // voffset
6789 Op.getOperand(5), // soffset
6790 Offsets.second, // offset
6791 Op.getOperand(6), // cachepolicy
6792 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6793 };
6794
6795 auto *M = cast<MemSDNode>(Op);
6796 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6797
6798 EVT MemVT = VData.getValueType();
6799 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6800 M->getMemOperand());
6801}
6802
6803SDValue
6804SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
6805 unsigned NewOpcode) const {
6806 SDLoc DL(Op);
6807
6808 SDValue VData = Op.getOperand(2);
6809 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6810 SDValue Ops[] = {
6811 Op.getOperand(0), // Chain
6812 VData, // vdata
6813 Op.getOperand(3), // rsrc
6814 Op.getOperand(4), // vindex
6815 Offsets.first, // voffset
6816 Op.getOperand(6), // soffset
6817 Offsets.second, // offset
6818 Op.getOperand(7), // cachepolicy
6819 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6820 };
6821
6822 auto *M = cast<MemSDNode>(Op);
6823 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
6824 Ops[3]));
6825
6826 EVT MemVT = VData.getValueType();
6827 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6828 M->getMemOperand());
6829}
6830
6831SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6832 SelectionDAG &DAG) const {
6833 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6834 SDLoc DL(Op);
6835
6836 switch (IntrID) {
6837 case Intrinsic::amdgcn_ds_ordered_add:
6838 case Intrinsic::amdgcn_ds_ordered_swap: {
6839 MemSDNode *M = cast<MemSDNode>(Op);
6840 SDValue Chain = M->getOperand(0);
6841 SDValue M0 = M->getOperand(2);
6842 SDValue Value = M->getOperand(3);
6843 unsigned IndexOperand = M->getConstantOperandVal(7);
6844 unsigned WaveRelease = M->getConstantOperandVal(8);
6845 unsigned WaveDone = M->getConstantOperandVal(9);
6846
6847 unsigned OrderedCountIndex = IndexOperand & 0x3f;
6848 IndexOperand &= ~0x3f;
6849 unsigned CountDw = 0;
6850
6851 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6852 CountDw = (IndexOperand >> 24) & 0xf;
6853 IndexOperand &= ~(0xf << 24);
6854
6855 if (CountDw < 1 || CountDw > 4) {
6856 report_fatal_error(
6857 "ds_ordered_count: dword count must be between 1 and 4");
6858 }
6859 }
6860
6861 if (IndexOperand)
6862 report_fatal_error("ds_ordered_count: bad index operand");
6863
6864 if (WaveDone && !WaveRelease)
6865 report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6866
6867 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
6868 unsigned ShaderType =
6869 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
6870 unsigned Offset0 = OrderedCountIndex << 2;
6871 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6872 (Instruction << 4);
6873
6874 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6875 Offset1 |= (CountDw - 1) << 6;
6876
6877 unsigned Offset = Offset0 | (Offset1 << 8);
6878
6879 SDValue Ops[] = {
6880 Chain,
6881 Value,
6882 DAG.getTargetConstant(Offset, DL, MVT::i16),
6883 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6884 };
6885 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6886 M->getVTList(), Ops, M->getMemoryVT(),
6887 M->getMemOperand());
6888 }
6889 case Intrinsic::amdgcn_ds_fadd: {
6890 MemSDNode *M = cast<MemSDNode>(Op);
6891 unsigned Opc;
6892 switch (IntrID) {
6893 case Intrinsic::amdgcn_ds_fadd:
6894 Opc = ISD::ATOMIC_LOAD_FADD;
6895 break;
6896 }
6897
6898 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6899 M->getOperand(0), M->getOperand(2), M->getOperand(3),
6900 M->getMemOperand());
6901 }
6902 case Intrinsic::amdgcn_atomic_inc:
6903 case Intrinsic::amdgcn_atomic_dec:
6904 case Intrinsic::amdgcn_ds_fmin:
6905 case Intrinsic::amdgcn_ds_fmax: {
6906 MemSDNode *M = cast<MemSDNode>(Op);
6907 unsigned Opc;
6908 switch (IntrID) {
6909 case Intrinsic::amdgcn_atomic_inc:
6910 Opc = AMDGPUISD::ATOMIC_INC;
6911 break;
6912 case Intrinsic::amdgcn_atomic_dec:
6913 Opc = AMDGPUISD::ATOMIC_DEC;
6914 break;
6915 case Intrinsic::amdgcn_ds_fmin:
6916 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6917 break;
6918 case Intrinsic::amdgcn_ds_fmax:
6919 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6920 break;
6921 default:
6922 llvm_unreachable("Unknown intrinsic!")::llvm::llvm_unreachable_internal("Unknown intrinsic!", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 6922)
;
6923 }
6924 SDValue Ops[] = {
6925 M->getOperand(0), // Chain
6926 M->getOperand(2), // Ptr
6927 M->getOperand(3) // Value
6928 };
6929
6930 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6931 M->getMemoryVT(), M->getMemOperand());
6932 }
6933 case Intrinsic::amdgcn_buffer_load:
6934 case Intrinsic::amdgcn_buffer_load_format: {
6935 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6936 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6937 unsigned IdxEn = 1;
6938 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6939 IdxEn = Idx->getZExtValue() != 0;
6940 SDValue Ops[] = {
6941 Op.getOperand(0), // Chain
6942 Op.getOperand(2), // rsrc
6943 Op.getOperand(3), // vindex
6944 SDValue(), // voffset -- will be set by setBufferOffsets
6945 SDValue(), // soffset -- will be set by setBufferOffsets
6946 SDValue(), // offset -- will be set by setBufferOffsets
6947 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6948 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6949 };
6950
6951 unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6952 // We don't know the offset if vindex is non-zero, so clear it.
6953 if (IdxEn)
6954 Offset = 0;
6955
6956 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6957 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6958
6959 EVT VT = Op.getValueType();
6960 EVT IntVT = VT.changeTypeToInteger();
6961 auto *M = cast<MemSDNode>(Op);
6962 M->getMemOperand()->setOffset(Offset);
6963 EVT LoadVT = Op.getValueType();
6964
6965 if (LoadVT.getScalarType() == MVT::f16)
6966 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6967 M, DAG, Ops);
6968
6969 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6970 if (LoadVT.getScalarType() == MVT::i8 ||
6971 LoadVT.getScalarType() == MVT::i16)
6972 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6973
6974 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6975 M->getMemOperand(), DAG);
6976 }
6977 case Intrinsic::amdgcn_raw_buffer_load:
6978 case Intrinsic::amdgcn_raw_buffer_load_format: {
6979 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6980
6981 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6982 SDValue Ops[] = {
6983 Op.getOperand(0), // Chain
6984 Op.getOperand(2), // rsrc
6985 DAG.getConstant(0, DL, MVT::i32), // vindex
6986 Offsets.first, // voffset
6987 Op.getOperand(4), // soffset
6988 Offsets.second, // offset
6989 Op.getOperand(5), // cachepolicy, swizzled buffer
6990 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6991 };
6992
6993 auto *M = cast<MemSDNode>(Op);
6994 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6995 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6996 }
6997 case Intrinsic::amdgcn_struct_buffer_load:
6998 case Intrinsic::amdgcn_struct_buffer_load_format: {
6999 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7000
7001 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7002 SDValue Ops[] = {
7003 Op.getOperand(0), // Chain
7004 Op.getOperand(2), // rsrc
7005 Op.getOperand(3), // vindex
7006 Offsets.first, // voffset
7007 Op.getOperand(5), // soffset
7008 Offsets.second, // offset
7009 Op.getOperand(6), // cachepolicy, swizzled buffer
7010 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7011 };
7012
7013 auto *M = cast<MemSDNode>(Op);
7014 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
7015 Ops[2]));
7016 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7017 }
7018 case Intrinsic::amdgcn_tbuffer_load: {
7019 MemSDNode *M = cast<MemSDNode>(Op);
7020 EVT LoadVT = Op.getValueType();
7021
7022 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7023 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7024 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7025 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7026 unsigned IdxEn = 1;
7027 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
7028 IdxEn = Idx->getZExtValue() != 0;
7029 SDValue Ops[] = {
7030 Op.getOperand(0), // Chain
7031 Op.getOperand(2), // rsrc
7032 Op.getOperand(3), // vindex
7033 Op.getOperand(4), // voffset
7034 Op.getOperand(5), // soffset
7035 Op.getOperand(6), // offset
7036 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7037 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7038 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7039 };
7040
7041 if (LoadVT.getScalarType() == MVT::f16)
7042 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7043 M, DAG, Ops);
7044 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7045 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7046 DAG);
7047 }
7048 case Intrinsic::amdgcn_raw_tbuffer_load: {
7049 MemSDNode *M = cast<MemSDNode>(Op);
7050 EVT LoadVT = Op.getValueType();
7051 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7052
7053 SDValue Ops[] = {
7054 Op.getOperand(0), // Chain
7055 Op.getOperand(2), // rsrc
7056 DAG.getConstant(0, DL, MVT::i32), // vindex
7057 Offsets.first, // voffset
7058 Op.getOperand(4), // soffset
7059 Offsets.second, // offset
7060 Op.getOperand(5), // format
7061 Op.getOperand(6), // cachepolicy, swizzled buffer
7062 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7063 };
7064
7065 if (LoadVT.getScalarType() == MVT::f16)
7066 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7067 M, DAG, Ops);
7068 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7069 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7070 DAG);
7071 }
7072 case Intrinsic::amdgcn_struct_tbuffer_load: {
7073 MemSDNode *M = cast<MemSDNode>(Op);
7074 EVT LoadVT = Op.getValueType();
7075 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7076
7077 SDValue Ops[] = {
7078 Op.getOperand(0), // Chain
7079 Op.getOperand(2), // rsrc
7080 Op.getOperand(3), // vindex
7081 Offsets.first, // voffset
7082 Op.getOperand(5), // soffset
7083 Offsets.second, // offset
7084 Op.getOperand(6), // format
7085 Op.getOperand(7), // cachepolicy, swizzled buffer
7086 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7087 };
7088
7089 if (LoadVT.getScalarType() == MVT::f16)
7090 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7091 M, DAG, Ops);
7092 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7093 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7094 DAG);
7095 }
7096 case Intrinsic::amdgcn_buffer_atomic_swap:
7097 case Intrinsic::amdgcn_buffer_atomic_add:
7098 case Intrinsic::amdgcn_buffer_atomic_sub:
7099 case Intrinsic::amdgcn_buffer_atomic_csub:
7100 case Intrinsic::amdgcn_buffer_atomic_smin:
7101 case Intrinsic::amdgcn_buffer_atomic_umin:
7102 case Intrinsic::amdgcn_buffer_atomic_smax:
7103 case Intrinsic::amdgcn_buffer_atomic_umax:
7104 case Intrinsic::amdgcn_buffer_atomic_and:
7105 case Intrinsic::amdgcn_buffer_atomic_or:
7106 case Intrinsic::amdgcn_buffer_atomic_xor:
7107 case Intrinsic::amdgcn_buffer_atomic_fadd: {
7108 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7109 unsigned IdxEn = 1;
7110 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7111 IdxEn = Idx->getZExtValue() != 0;
7112 SDValue Ops[] = {
7113 Op.getOperand(0), // Chain
7114 Op.getOperand(2), // vdata
7115 Op.getOperand(3), // rsrc
7116 Op.getOperand(4), // vindex
7117 SDValue(), // voffset -- will be set by setBufferOffsets
7118 SDValue(), // soffset -- will be set by setBufferOffsets
7119 SDValue(), // offset -- will be set by setBufferOffsets
7120 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7121 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7122 };
7123 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7124 // We don't know the offset if vindex is non-zero, so clear it.
7125 if (IdxEn)
7126 Offset = 0;
7127 EVT VT = Op.getValueType();
7128
7129 auto *M = cast<MemSDNode>(Op);
7130 M->getMemOperand()->setOffset(Offset);
7131 unsigned Opcode = 0;
7132
7133 switch (IntrID) {
7134 case Intrinsic::amdgcn_buffer_atomic_swap:
7135 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7136 break;
7137 case Intrinsic::amdgcn_buffer_atomic_add:
7138 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7139 break;
7140 case Intrinsic::amdgcn_buffer_atomic_sub:
7141 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7142 break;
7143 case Intrinsic::amdgcn_buffer_atomic_csub:
7144 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7145 break;
7146 case Intrinsic::amdgcn_buffer_atomic_smin:
7147 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7148 break;
7149 case Intrinsic::amdgcn_buffer_atomic_umin:
7150 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7151 break;
7152 case Intrinsic::amdgcn_buffer_atomic_smax:
7153 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7154 break;
7155 case Intrinsic::amdgcn_buffer_atomic_umax:
7156 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7157 break;
7158 case Intrinsic::amdgcn_buffer_atomic_and:
7159 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7160 break;
7161 case Intrinsic::amdgcn_buffer_atomic_or:
7162 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7163 break;
7164 case Intrinsic::amdgcn_buffer_atomic_xor:
7165 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7166 break;
7167 case Intrinsic::amdgcn_buffer_atomic_fadd:
7168 if (!Op.getValue(0).use_empty()) {
7169 DiagnosticInfoUnsupported
7170 NoFpRet(DAG.getMachineFunction().getFunction(),
7171 "return versions of fp atomics not supported",
7172 DL.getDebugLoc(), DS_Error);
7173 DAG.getContext()->diagnose(NoFpRet);
7174 return SDValue();
7175 }
7176 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7177 break;
7178 default:
7179 llvm_unreachable("unhandled atomic opcode")::llvm::llvm_unreachable_internal("unhandled atomic opcode", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7179)
;
7180 }
7181
7182 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7183 M->getMemOperand());
7184 }
7185 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7186 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7187 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7188 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7189 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7190 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7191 case Intrinsic::amdgcn_raw_buffer_atomic_add:
7192 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7193 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7194 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7195 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7196 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7197 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7198 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7199 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7200 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7201 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7202 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7203 case Intrinsic::amdgcn_raw_buffer_atomic_and:
7204 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7205 case Intrinsic::amdgcn_raw_buffer_atomic_or:
7206 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7207 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7208 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7209 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7210 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7211 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7212 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7213 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7214 return lowerStructBufferAtomicIntrin(Op, DAG,
7215 AMDGPUISD::BUFFER_ATOMIC_SWAP);
7216 case Intrinsic::amdgcn_struct_buffer_atomic_add:
7217 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7218 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7219 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7220 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7221 return lowerStructBufferAtomicIntrin(Op, DAG,
7222 AMDGPUISD::BUFFER_ATOMIC_SMIN);
7223 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7224 return lowerStructBufferAtomicIntrin(Op, DAG,
7225 AMDGPUISD::BUFFER_ATOMIC_UMIN);
7226 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7227 return lowerStructBufferAtomicIntrin(Op, DAG,
7228 AMDGPUISD::BUFFER_ATOMIC_SMAX);
7229 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7230 return lowerStructBufferAtomicIntrin(Op, DAG,
7231 AMDGPUISD::BUFFER_ATOMIC_UMAX);
7232 case Intrinsic::amdgcn_struct_buffer_atomic_and:
7233 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7234 case Intrinsic::amdgcn_struct_buffer_atomic_or:
7235 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7236 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7237 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7238 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7239 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7240 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7241 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7242
7243 case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7244 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7245 unsigned IdxEn = 1;
7246 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
7247 IdxEn = Idx->getZExtValue() != 0;
7248 SDValue Ops[] = {
7249 Op.getOperand(0), // Chain
7250 Op.getOperand(2), // src
7251 Op.getOperand(3), // cmp
7252 Op.getOperand(4), // rsrc
7253 Op.getOperand(5), // vindex
7254 SDValue(), // voffset -- will be set by setBufferOffsets
7255 SDValue(), // soffset -- will be set by setBufferOffsets
7256 SDValue(), // offset -- will be set by setBufferOffsets
7257 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7258 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7259 };
7260 unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7261 // We don't know the offset if vindex is non-zero, so clear it.
7262 if (IdxEn)
7263 Offset = 0;
7264 EVT VT = Op.getValueType();
7265 auto *M = cast<MemSDNode>(Op);
7266 M->getMemOperand()->setOffset(Offset);
7267
7268 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7269 Op->getVTList(), Ops, VT, M->getMemOperand());
7270 }
7271 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7272 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7273 SDValue Ops[] = {
7274 Op.getOperand(0), // Chain
7275 Op.getOperand(2), // src
7276 Op.getOperand(3), // cmp
7277 Op.getOperand(4), // rsrc
7278 DAG.getConstant(0, DL, MVT::i32), // vindex
7279 Offsets.first, // voffset
7280 Op.getOperand(6), // soffset
7281 Offsets.second, // offset
7282 Op.getOperand(7), // cachepolicy
7283 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7284 };
7285 EVT VT = Op.getValueType();
7286 auto *M = cast<MemSDNode>(Op);
7287 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
7288
7289 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7290 Op->getVTList(), Ops, VT, M->getMemOperand());
7291 }
7292 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7293 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7294 SDValue Ops[] = {
7295 Op.getOperand(0), // Chain
7296 Op.getOperand(2), // src
7297 Op.getOperand(3), // cmp
7298 Op.getOperand(4), // rsrc
7299 Op.getOperand(5), // vindex
7300 Offsets.first, // voffset
7301 Op.getOperand(7), // soffset
7302 Offsets.second, // offset
7303 Op.getOperand(8), // cachepolicy
7304 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7305 };
7306 EVT VT = Op.getValueType();
7307 auto *M = cast<MemSDNode>(Op);
7308 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
7309 Ops[4]));
7310
7311 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7312 Op->getVTList(), Ops, VT, M->getMemOperand());
7313 }
7314 case Intrinsic::amdgcn_global_atomic_fadd: {
7315 if (!Op.getValue(0).use_empty()) {
7316 DiagnosticInfoUnsupported
7317 NoFpRet(DAG.getMachineFunction().getFunction(),
7318 "return versions of fp atomics not supported",
7319 DL.getDebugLoc(), DS_Error);
7320 DAG.getContext()->diagnose(NoFpRet);
7321 return SDValue();
7322 }
7323 MemSDNode *M = cast<MemSDNode>(Op);
7324 SDValue Ops[] = {
7325 M->getOperand(0), // Chain
7326 M->getOperand(2), // Ptr
7327 M->getOperand(3) // Value
7328 };
7329
7330 EVT VT = Op.getOperand(3).getValueType();
7331 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7332 DAG.getVTList(VT, MVT::Other), Ops,
7333 M->getMemOperand());
7334 }
7335 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7336 SDLoc DL(Op);
7337 MemSDNode *M = cast<MemSDNode>(Op);
7338 SDValue NodePtr = M->getOperand(2);
7339 SDValue RayExtent = M->getOperand(3);
7340 SDValue RayOrigin = M->getOperand(4);
7341 SDValue RayDir = M->getOperand(5);
7342 SDValue RayInvDir = M->getOperand(6);
7343 SDValue TDescr = M->getOperand(7);
7344
7345 assert(NodePtr.getValueType() == MVT::i32 ||((NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType(
) == MVT::i64) ? static_cast<void> (0) : __assert_fail (
"NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType() == MVT::i64"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7346, __PRETTY_FUNCTION__))
7346 NodePtr.getValueType() == MVT::i64)((NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType(
) == MVT::i64) ? static_cast<void> (0) : __assert_fail (
"NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType() == MVT::i64"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7346, __PRETTY_FUNCTION__))
;
7347 assert(RayDir.getValueType() == MVT::v4f16 ||((RayDir.getValueType() == MVT::v4f16 || RayDir.getValueType(
) == MVT::v4f32) ? static_cast<void> (0) : __assert_fail
("RayDir.getValueType() == MVT::v4f16 || RayDir.getValueType() == MVT::v4f32"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7348, __PRETTY_FUNCTION__))
7348 RayDir.getValueType() == MVT::v4f32)((RayDir.getValueType() == MVT::v4f16 || RayDir.getValueType(
) == MVT::v4f32) ? static_cast<void> (0) : __assert_fail
("RayDir.getValueType() == MVT::v4f16 || RayDir.getValueType() == MVT::v4f32"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7348, __PRETTY_FUNCTION__))
;
7349
7350 bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7351 bool Is64 = NodePtr.getValueType() == MVT::i64;
7352 unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa
7353 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa
7354 : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa
7355 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa;
7356
7357 SmallVector<SDValue, 16> Ops;
7358
7359 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7360 SmallVector<SDValue, 3> Lanes;
7361 DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7362 if (Lanes[0].getValueSizeInBits() == 32) {
7363 for (unsigned I = 0; I < 3; ++I)
7364 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7365 } else {
7366 if (IsAligned) {
7367 Ops.push_back(
7368 DAG.getBitcast(MVT::i32,
7369 DAG.getBuildVector(MVT::v2f16, DL,
7370 { Lanes[0], Lanes[1] })));
7371 Ops.push_back(Lanes[2]);
7372 } else {
7373 SDValue Elt0 = Ops.pop_back_val();
7374 Ops.push_back(
7375 DAG.getBitcast(MVT::i32,
7376 DAG.getBuildVector(MVT::v2f16, DL,
7377 { Elt0, Lanes[0] })));
7378 Ops.push_back(
7379 DAG.getBitcast(MVT::i32,
7380 DAG.getBuildVector(MVT::v2f16, DL,
7381 { Lanes[1], Lanes[2] })));
7382 }
7383 }
7384 };
7385
7386 if (Is64)
7387 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7388 else
7389 Ops.push_back(NodePtr);
7390
7391 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7392 packLanes(RayOrigin, true);
7393 packLanes(RayDir, true);
7394 packLanes(RayInvDir, false);
7395 Ops.push_back(TDescr);
7396 if (IsA16)
7397 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7398 Ops.push_back(M->getChain());
7399
7400 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7401 MachineMemOperand *MemRef = M->getMemOperand();
7402 DAG.setNodeMemRefs(NewNode, {MemRef});
7403 return SDValue(NewNode, 0);
7404 }
7405 default:
7406 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7407 AMDGPU::getImageDimIntrinsicInfo(IntrID))
7408 return lowerImage(Op, ImageDimIntr, DAG, true);
7409
7410 return SDValue();
7411 }
7412}
7413
7414// Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7415// dwordx4 if on SI.
7416SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7417 SDVTList VTList,
7418 ArrayRef<SDValue> Ops, EVT MemVT,
7419 MachineMemOperand *MMO,
7420 SelectionDAG &DAG) const {
7421 EVT VT = VTList.VTs[0];
7422 EVT WidenedVT = VT;
7423 EVT WidenedMemVT = MemVT;
7424 if (!Subtarget->hasDwordx3LoadStores() &&
7425 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7426 WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7427 WidenedVT.getVectorElementType(), 4);
7428 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7429 WidenedMemVT.getVectorElementType(), 4);
7430 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7431 }
7432
7433 assert(VTList.NumVTs == 2)((VTList.NumVTs == 2) ? static_cast<void> (0) : __assert_fail
("VTList.NumVTs == 2", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7433, __PRETTY_FUNCTION__))
;
7434 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7435
7436 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7437 WidenedMemVT, MMO);
7438 if (WidenedVT != VT) {
7439 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7440 DAG.getVectorIdxConstant(0, DL));
7441 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7442 }
7443 return NewOp;
7444}
7445
7446SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7447 bool ImageStore) const {
7448 EVT StoreVT = VData.getValueType();
7449
7450 // No change for f16 and legal vector D16 types.
7451 if (!StoreVT.isVector())
7452 return VData;
7453
7454 SDLoc DL(VData);
7455 unsigned NumElements = StoreVT.getVectorNumElements();
7456
7457 if (Subtarget->hasUnpackedD16VMem()) {
7458 // We need to unpack the packed data to store.
7459 EVT IntStoreVT = StoreVT.changeTypeToInteger();
7460 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7461
7462 EVT EquivStoreVT =
7463 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7464 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7465 return DAG.UnrollVectorOp(ZExt.getNode());
7466 }
7467
7468 // The sq block of gfx8.1 does not estimate register use correctly for d16
7469 // image store instructions. The data operand is computed as if it were not a
7470 // d16 image instruction.
7471 if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7472 // Bitcast to i16
7473 EVT IntStoreVT = StoreVT.changeTypeToInteger();
7474 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7475
7476 // Decompose into scalars
7477 SmallVector<SDValue, 4> Elts;
7478 DAG.ExtractVectorElements(IntVData, Elts);
7479
7480 // Group pairs of i16 into v2i16 and bitcast to i32
7481 SmallVector<SDValue, 4> PackedElts;
7482 for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7483 SDValue Pair =
7484 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7485 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7486 PackedElts.push_back(IntPair);
7487 }
7488 if ((NumElements % 2) == 1) {
7489 // Handle v3i16
7490 unsigned I = Elts.size() / 2;
7491 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7492 {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7493 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7494 PackedElts.push_back(IntPair);
7495 }
7496
7497 // Pad using UNDEF
7498 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7499
7500 // Build final vector
7501 EVT VecVT =
7502 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7503 return DAG.getBuildVector(VecVT, DL, PackedElts);
7504 }
7505
7506 if (NumElements == 3) {
7507 EVT IntStoreVT =
7508 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7509 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7510
7511 EVT WidenedStoreVT = EVT::getVectorVT(
7512 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7513 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7514 WidenedStoreVT.getStoreSizeInBits());
7515 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7516 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7517 }
7518
7519 assert(isTypeLegal(StoreVT))((isTypeLegal(StoreVT)) ? static_cast<void> (0) : __assert_fail
("isTypeLegal(StoreVT)", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7519, __PRETTY_FUNCTION__))
;
7520 return VData;
7521}
7522
7523SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7524 SelectionDAG &DAG) const {
7525 SDLoc DL(Op);
7526 SDValue Chain = Op.getOperand(0);
7527 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7528 MachineFunction &MF = DAG.getMachineFunction();
7529
7530 switch (IntrinsicID) {
7531 case Intrinsic::amdgcn_exp_compr: {
7532 SDValue Src0 = Op.getOperand(4);
7533 SDValue Src1 = Op.getOperand(5);
7534 // Hack around illegal type on SI by directly selecting it.
7535 if (isTypeLegal(Src0.getValueType()))
7536 return SDValue();
7537
7538 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7539 SDValue Undef = DAG.getUNDEF(MVT::f32);
7540 const SDValue Ops[] = {
7541 Op.getOperand(2), // tgt
7542 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7543 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7544 Undef, // src2
7545 Undef, // src3
7546 Op.getOperand(7), // vm
7547 DAG.getTargetConstant(1, DL, MVT::i1), // compr
7548 Op.getOperand(3), // en
7549 Op.getOperand(0) // Chain
7550 };
7551
7552 unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7553 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7554 }
7555 case Intrinsic::amdgcn_s_barrier: {
7556 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7557 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7558 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7559 if (WGSize <= ST.getWavefrontSize())
7560 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7561 Op.getOperand(0)), 0);
7562 }
7563 return SDValue();
7564 };
7565 case Intrinsic::amdgcn_tbuffer_store: {
7566 SDValue VData = Op.getOperand(2);
7567 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7568 if (IsD16)
7569 VData = handleD16VData(VData, DAG);
7570 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7571 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7572 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7573 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7574 unsigned IdxEn = 1;
7575 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7576 IdxEn = Idx->getZExtValue() != 0;
7577 SDValue Ops[] = {
7578 Chain,
7579 VData, // vdata
7580 Op.getOperand(3), // rsrc
7581 Op.getOperand(4), // vindex
7582 Op.getOperand(5), // voffset
7583 Op.getOperand(6), // soffset
7584 Op.getOperand(7), // offset
7585 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7586 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7587 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
7588 };
7589 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7590 AMDGPUISD::TBUFFER_STORE_FORMAT;
7591 MemSDNode *M = cast<MemSDNode>(Op);
7592 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7593 M->getMemoryVT(), M->getMemOperand());
7594 }
7595
7596 case Intrinsic::amdgcn_struct_tbuffer_store: {
7597 SDValue VData = Op.getOperand(2);
7598 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7599 if (IsD16)
7600 VData = handleD16VData(VData, DAG);
7601 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7602 SDValue Ops[] = {
7603 Chain,
7604 VData, // vdata
7605 Op.getOperand(3), // rsrc
7606 Op.getOperand(4), // vindex
7607 Offsets.first, // voffset
7608 Op.getOperand(6), // soffset
7609 Offsets.second, // offset
7610 Op.getOperand(7), // format
7611 Op.getOperand(8), // cachepolicy, swizzled buffer
7612 DAG.getTargetConstant(1, DL, MVT::i1), // idexen
7613 };
7614 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7615 AMDGPUISD::TBUFFER_STORE_FORMAT;
7616 MemSDNode *M = cast<MemSDNode>(Op);
7617 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7618 M->getMemoryVT(), M->getMemOperand());
7619 }
7620
7621 case Intrinsic::amdgcn_raw_tbuffer_store: {
7622 SDValue VData = Op.getOperand(2);
7623 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7624 if (IsD16)
7625 VData = handleD16VData(VData, DAG);
7626 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7627 SDValue Ops[] = {
7628 Chain,
7629 VData, // vdata
7630 Op.getOperand(3), // rsrc
7631 DAG.getConstant(0, DL, MVT::i32), // vindex
7632 Offsets.first, // voffset
7633 Op.getOperand(5), // soffset
7634 Offsets.second, // offset
7635 Op.getOperand(6), // format
7636 Op.getOperand(7), // cachepolicy, swizzled buffer
7637 DAG.getTargetConstant(0, DL, MVT::i1), // idexen
7638 };
7639 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7640 AMDGPUISD::TBUFFER_STORE_FORMAT;
7641 MemSDNode *M = cast<MemSDNode>(Op);
7642 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7643 M->getMemoryVT(), M->getMemOperand());
7644 }
7645
7646 case Intrinsic::amdgcn_buffer_store:
7647 case Intrinsic::amdgcn_buffer_store_format: {
7648 SDValue VData = Op.getOperand(2);
7649 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7650 if (IsD16)
7651 VData = handleD16VData(VData, DAG);
7652 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7653 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7654 unsigned IdxEn = 1;
7655 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7656 IdxEn = Idx->getZExtValue() != 0;
7657 SDValue Ops[] = {
7658 Chain,
7659 VData,
7660 Op.getOperand(3), // rsrc
7661 Op.getOperand(4), // vindex
7662 SDValue(), // voffset -- will be set by setBufferOffsets
7663 SDValue(), // soffset -- will be set by setBufferOffsets
7664 SDValue(), // offset -- will be set by setBufferOffsets
7665 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7666 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7667 };
7668 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7669 // We don't know the offset if vindex is non-zero, so clear it.
7670 if (IdxEn)
7671 Offset = 0;
7672 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7673 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7674 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7675 MemSDNode *M = cast<MemSDNode>(Op);
7676 M->getMemOperand()->setOffset(Offset);
7677
7678 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7679 EVT VDataType = VData.getValueType().getScalarType();
7680 if (VDataType == MVT::i8 || VDataType == MVT::i16)
7681 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7682
7683 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7684 M->getMemoryVT(), M->getMemOperand());
7685 }
7686
7687 case Intrinsic::amdgcn_raw_buffer_store:
7688 case Intrinsic::amdgcn_raw_buffer_store_format: {
7689 const bool IsFormat =
7690 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7691
7692 SDValue VData = Op.getOperand(2);
7693 EVT VDataVT = VData.getValueType();
7694 EVT EltType = VDataVT.getScalarType();
7695 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7696 if (IsD16) {
7697 VData = handleD16VData(VData, DAG);
7698 VDataVT = VData.getValueType();
7699 }
7700
7701 if (!isTypeLegal(VDataVT)) {
7702 VData =
7703 DAG.getNode(ISD::BITCAST, DL,
7704 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7705 }
7706
7707 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7708 SDValue Ops[] = {
7709 Chain,
7710 VData,
7711 Op.getOperand(3), // rsrc
7712 DAG.getConstant(0, DL, MVT::i32), // vindex
7713 Offsets.first, // voffset
7714 Op.getOperand(5), // soffset
7715 Offsets.second, // offset
7716 Op.getOperand(6), // cachepolicy, swizzled buffer
7717 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7718 };
7719 unsigned Opc =
7720 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7721 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7722 MemSDNode *M = cast<MemSDNode>(Op);
7723 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
7724
7725 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7726 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7727 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7728
7729 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7730 M->getMemoryVT(), M->getMemOperand());
7731 }
7732
7733 case Intrinsic::amdgcn_struct_buffer_store:
7734 case Intrinsic::amdgcn_struct_buffer_store_format: {
7735 const bool IsFormat =
7736 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7737
7738 SDValue VData = Op.getOperand(2);
7739 EVT VDataVT = VData.getValueType();
7740 EVT EltType = VDataVT.getScalarType();
7741 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7742
7743 if (IsD16) {
7744 VData = handleD16VData(VData, DAG);
7745 VDataVT = VData.getValueType();
7746 }
7747
7748 if (!isTypeLegal(VDataVT)) {
7749 VData =
7750 DAG.getNode(ISD::BITCAST, DL,
7751 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7752 }
7753
7754 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7755 SDValue Ops[] = {
7756 Chain,
7757 VData,
7758 Op.getOperand(3), // rsrc
7759 Op.getOperand(4), // vindex
7760 Offsets.first, // voffset
7761 Op.getOperand(6), // soffset
7762 Offsets.second, // offset
7763 Op.getOperand(7), // cachepolicy, swizzled buffer
7764 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7765 };
7766 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7767 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7768 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7769 MemSDNode *M = cast<MemSDNode>(Op);
7770 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7771 Ops[3]));
7772
7773 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7774 EVT VDataType = VData.getValueType().getScalarType();
7775 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7776 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7777
7778 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7779 M->getMemoryVT(), M->getMemOperand());
7780 }
7781 case Intrinsic::amdgcn_end_cf:
7782 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7783 Op->getOperand(2), Chain), 0);
7784
7785 default: {
7786 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7787 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7788 return lowerImage(Op, ImageDimIntr, DAG, true);
7789
7790 return Op;
7791 }
7792 }
7793}
7794
7795// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7796// offset (the offset that is included in bounds checking and swizzling, to be
7797// split between the instruction's voffset and immoffset fields) and soffset
7798// (the offset that is excluded from bounds checking and swizzling, to go in
7799// the instruction's soffset field). This function takes the first kind of
7800// offset and figures out how to split it between voffset and immoffset.
7801std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7802 SDValue Offset, SelectionDAG &DAG) const {
7803 SDLoc DL(Offset);
7804 const unsigned MaxImm = 4095;
7805 SDValue N0 = Offset;
7806 ConstantSDNode *C1 = nullptr;
7807
7808 if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7809 N0 = SDValue();
7810 else if (DAG.isBaseWithConstantOffset(N0)) {
7811 C1 = cast<ConstantSDNode>(N0.getOperand(1));
7812 N0 = N0.getOperand(0);
7813 }
7814
7815 if (C1) {
7816 unsigned ImmOffset = C1->getZExtValue();
7817 // If the immediate value is too big for the immoffset field, put the value
7818 // and -4096 into the immoffset field so that the value that is copied/added
7819 // for the voffset field is a multiple of 4096, and it stands more chance
7820 // of being CSEd with the copy/add for another similar load/store.
7821 // However, do not do that rounding down to a multiple of 4096 if that is a
7822 // negative number, as it appears to be illegal to have a negative offset
7823 // in the vgpr, even if adding the immediate offset makes it positive.
7824 unsigned Overflow = ImmOffset & ~MaxImm;
7825 ImmOffset -= Overflow;
7826 if ((int32_t)Overflow < 0) {
7827 Overflow += ImmOffset;
7828 ImmOffset = 0;
7829 }
7830 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7831 if (Overflow) {
7832 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7833 if (!N0)
7834 N0 = OverflowVal;
7835 else {
7836 SDValue Ops[] = { N0, OverflowVal };
7837 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7838 }
7839 }
7840 }
7841 if (!N0)
7842 N0 = DAG.getConstant(0, DL, MVT::i32);
7843 if (!C1)
7844 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7845 return {N0, SDValue(C1, 0)};
7846}
7847
7848// Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7849// three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7850// pointed to by Offsets.
7851unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7852 SelectionDAG &DAG, SDValue *Offsets,
7853 Align Alignment) const {
7854 SDLoc DL(CombinedOffset);
7855 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7856 uint32_t Imm = C->getZExtValue();
7857 uint32_t SOffset, ImmOffset;
7858 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
7859 Alignment)) {
7860 Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7861 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7862 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7863 return SOffset + ImmOffset;
7864 }
7865 }
7866 if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7867 SDValue N0 = CombinedOffset.getOperand(0);
7868 SDValue N1 = CombinedOffset.getOperand(1);
7869 uint32_t SOffset, ImmOffset;
7870 int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7871 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7872 Subtarget, Alignment)) {
7873 Offsets[0] = N0;
7874 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7875 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7876 return 0;
7877 }
7878 }
7879 Offsets[0] = CombinedOffset;
7880 Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7881 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7882 return 0;
7883}
7884
7885// Handle 8 bit and 16 bit buffer loads
7886SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7887 EVT LoadVT, SDLoc DL,
7888 ArrayRef<SDValue> Ops,
7889 MemSDNode *M) const {
7890 EVT IntVT = LoadVT.changeTypeToInteger();
7891 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7892 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7893
7894 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7895 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7896 Ops, IntVT,
7897 M->getMemOperand());
7898 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7899 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7900
7901 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7902}
7903
7904// Handle 8 bit and 16 bit buffer stores
7905SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7906 EVT VDataType, SDLoc DL,
7907 SDValue Ops[],
7908 MemSDNode *M) const {
7909 if (VDataType == MVT::f16)
7910 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7911
7912 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7913 Ops[1] = BufferStoreExt;
7914 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7915 AMDGPUISD::BUFFER_STORE_SHORT;
7916 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7917 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7918 M->getMemOperand());
7919}
7920
7921static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7922 ISD::LoadExtType ExtType, SDValue Op,
7923 const SDLoc &SL, EVT VT) {
7924 if (VT.bitsLT(Op.getValueType()))
7925 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7926
7927 switch (ExtType) {
7928 case ISD::SEXTLOAD:
7929 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7930 case ISD::ZEXTLOAD:
7931 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7932 case ISD::EXTLOAD:
7933 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7934 case ISD::NON_EXTLOAD:
7935 return Op;
7936 }
7937
7938 llvm_unreachable("invalid ext type")::llvm::llvm_unreachable_internal("invalid ext type", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7938)
;
7939}
7940
7941SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7942 SelectionDAG &DAG = DCI.DAG;
7943 if (Ld->getAlignment() < 4 || Ld->isDivergent())
7944 return SDValue();
7945
7946 // FIXME: Constant loads should all be marked invariant.
7947 unsigned AS = Ld->getAddressSpace();
7948 if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7949 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7950 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7951 return SDValue();
7952
7953 // Don't do this early, since it may interfere with adjacent load merging for
7954 // illegal types. We can avoid losing alignment information for exotic types
7955 // pre-legalize.
7956 EVT MemVT = Ld->getMemoryVT();
7957 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7958 MemVT.getSizeInBits() >= 32)
7959 return SDValue();
7960
7961 SDLoc SL(Ld);
7962
7963 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&(((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD
) && "unexpected vector extload") ? static_cast<void
> (0) : __assert_fail ("(!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && \"unexpected vector extload\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7964, __PRETTY_FUNCTION__))
7964 "unexpected vector extload")(((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD
) && "unexpected vector extload") ? static_cast<void
> (0) : __assert_fail ("(!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && \"unexpected vector extload\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7964, __PRETTY_FUNCTION__))
;
7965
7966 // TODO: Drop only high part of range.
7967 SDValue Ptr = Ld->getBasePtr();
7968 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7969 MVT::i32, SL, Ld->getChain(), Ptr,
7970 Ld->getOffset(),
7971 Ld->getPointerInfo(), MVT::i32,
7972 Ld->getAlignment(),
7973 Ld->getMemOperand()->getFlags(),
7974 Ld->getAAInfo(),
7975 nullptr); // Drop ranges
7976
7977 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7978 if (MemVT.isFloatingPoint()) {
7979 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&((Ld->getExtensionType() == ISD::NON_EXTLOAD && "unexpected fp extload"
) ? static_cast<void> (0) : __assert_fail ("Ld->getExtensionType() == ISD::NON_EXTLOAD && \"unexpected fp extload\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7980, __PRETTY_FUNCTION__))
7980 "unexpected fp extload")((Ld->getExtensionType() == ISD::NON_EXTLOAD && "unexpected fp extload"
) ? static_cast<void> (0) : __assert_fail ("Ld->getExtensionType() == ISD::NON_EXTLOAD && \"unexpected fp extload\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7980, __PRETTY_FUNCTION__))
;
7981 TruncVT = MemVT.changeTypeToInteger();
7982 }
7983
7984 SDValue Cvt = NewLoad;
7985 if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7986 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7987 DAG.getValueType(TruncVT));
7988 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7989 Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7990 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7991 } else {
7992 assert(Ld->getExtensionType() == ISD::EXTLOAD)((Ld->getExtensionType() == ISD::EXTLOAD) ? static_cast<
void> (0) : __assert_fail ("Ld->getExtensionType() == ISD::EXTLOAD"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7992, __PRETTY_FUNCTION__))
;
7993 }
7994
7995 EVT VT = Ld->getValueType(0);
7996 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7997
7998 DCI.AddToWorklist(Cvt.getNode());
7999
8000 // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8001 // the appropriate extension from the 32-bit load.
8002 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8003 DCI.AddToWorklist(Cvt.getNode());
8004
8005 // Handle conversion back to floating point if necessary.
8006 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8007
8008 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8009}
8010
8011SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8012 SDLoc DL(Op);
8013 LoadSDNode *Load = cast<LoadSDNode>(Op);
8014 ISD::LoadExtType ExtType = Load->getExtensionType();
8015 EVT MemVT = Load->getMemoryVT();
8016
8017 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8018 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8019 return SDValue();
8020
8021 // FIXME: Copied from PPC
8022 // First, load into 32 bits, then truncate to 1 bit.
8023
8024 SDValue Chain = Load->getChain();
8025 SDValue BasePtr = Load->getBasePtr();
8026 MachineMemOperand *MMO = Load->getMemOperand();
8027
8028 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8029
8030 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8031 BasePtr, RealMemVT, MMO);
8032
8033 if (!MemVT.isVector()) {
8034 SDValue Ops[] = {
8035 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8036 NewLD.getValue(1)
8037 };
8038
8039 return DAG.getMergeValues(Ops, DL);
8040 }
8041
8042 SmallVector<SDValue, 3> Elts;
8043 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8044 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8045 DAG.getConstant(I, DL, MVT::i32));
8046
8047 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8048 }
8049
8050 SDValue Ops[] = {
8051 DAG.getBuildVector(MemVT, DL, Elts),
8052 NewLD.getValue(1)
8053 };
8054
8055 return DAG.getMergeValues(Ops, DL);
8056 }
8057
8058 if (!MemVT.isVector())
8059 return SDValue();
8060
8061 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&((Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented."
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8062, __PRETTY_FUNCTION__))
8062 "Custom lowering for non-i32 vectors hasn't been implemented.")((Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented."
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8062, __PRETTY_FUNCTION__))
;
8063
8064 unsigned Alignment = Load->getAlignment();
8065 unsigned AS = Load->getAddressSpace();
8066 if (Subtarget->hasLDSMisalignedBug() &&
8067 AS == AMDGPUAS::FLAT_ADDRESS &&
8068 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8069 return SplitVectorLoad(Op, DAG);
8070 }
8071
8072 MachineFunction &MF = DAG.getMachineFunction();
8073 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8074 // If there is a possibilty that flat instruction access scratch memory
8075 // then we need to use the same legalization rules we use for private.
8076 if (AS == AMDGPUAS::FLAT_ADDRESS &&
8077 !Subtarget->hasMultiDwordFlatScratchAddressing())
8078 AS = MFI->hasFlatScratchInit() ?
8079 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8080
8081 unsigned NumElements = MemVT.getVectorNumElements();
8082
8083 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8084 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8085 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8086 if (MemVT.isPow2VectorType())
8087 return SDValue();
8088 return WidenOrSplitVectorLoad(Op, DAG);
8089 }
8090 // Non-uniform loads will be selected to MUBUF instructions, so they
8091 // have the same legalization requirements as global and private
8092 // loads.
8093 //
8094 }
8095
8096 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8097 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8098 AS == AMDGPUAS::GLOBAL_ADDRESS) {
8099 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8100 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8101 Alignment >= 4 && NumElements < 32) {
8102 if (MemVT.isPow2VectorType())
8103 return SDValue();
8104 return WidenOrSplitVectorLoad(Op, DAG);
8105 }
8106 // Non-uniform loads will be selected to MUBUF instructions, so they
8107 // have the same legalization requirements as global and private
8108 // loads.
8109 //
8110 }
8111 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8112 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8113 AS == AMDGPUAS::GLOBAL_ADDRESS ||
8114 AS == AMDGPUAS::FLAT_ADDRESS) {
8115 if (NumElements > 4)
8116 return SplitVectorLoad(Op, DAG);
8117 // v3 loads not supported on SI.
8118 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8119 return WidenOrSplitVectorLoad(Op, DAG);
8120
8121 // v3 and v4 loads are supported for private and global memory.
8122 return SDValue();
8123 }
8124 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8125 // Depending on the setting of the private_element_size field in the
8126 // resource descriptor, we can only make private accesses up to a certain
8127 // size.
8128 switch (Subtarget->getMaxPrivateElementSize()) {
8129 case 4: {
8130 SDValue Ops[2];
8131 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8132 return DAG.getMergeValues(Ops, DL);
8133 }
8134 case 8:
8135 if (NumElements > 2)
8136 return SplitVectorLoad(Op, DAG);
8137 return SDValue();
8138 case 16:
8139 // Same as global/flat
8140 if (NumElements > 4)
8141 return SplitVectorLoad(Op, DAG);
8142 // v3 loads not supported on SI.
8143 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8144 return WidenOrSplitVectorLoad(Op, DAG);
8145
8146 return SDValue();
8147 default:
8148 llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8148)
;
8149 }
8150 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8151 // Use ds_read_b128 or ds_read_b96 when possible.
8152 if (Subtarget->hasDS96AndDS128() &&
8153 ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8154 MemVT.getStoreSize() == 12) &&
8155 allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8156 Load->getAlign()))
8157 return SDValue();
8158
8159 if (NumElements > 2)
8160 return SplitVectorLoad(Op, DAG);
8161
8162 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8163 // address is negative, then the instruction is incorrectly treated as
8164 // out-of-bounds even if base + offsets is in bounds. Split vectorized
8165 // loads here to avoid emitting ds_read2_b32. We may re-combine the
8166 // load later in the SILoadStoreOptimizer.
8167 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8168 NumElements == 2 && MemVT.getStoreSize() == 8 &&
8169 Load->getAlignment() < 8) {
8170 return SplitVectorLoad(Op, DAG);
8171 }
8172 }
8173
8174 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8175 MemVT, *Load->getMemOperand())) {
8176 SDValue Ops[2];
8177 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8178 return DAG.getMergeValues(Ops, DL);
8179 }
8180
8181 return SDValue();
8182}
8183
8184SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8185 EVT VT = Op.getValueType();
8186 assert(VT.getSizeInBits() == 64)((VT.getSizeInBits() == 64) ? static_cast<void> (0) : __assert_fail
("VT.getSizeInBits() == 64", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8186, __PRETTY_FUNCTION__))
;
8187
8188 SDLoc DL(Op);
8189 SDValue Cond = Op.getOperand(0);
8190
8191 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8192 SDValue One = DAG.getConstant(1, DL, MVT::i32);
8193
8194 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8195 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8196
8197 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8198 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8199
8200 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8201
8202 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8203 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8204
8205 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8206
8207 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8208 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8209}
8210
8211// Catch division cases where we can use shortcuts with rcp and rsq
8212// instructions.
8213SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8214 SelectionDAG &DAG) const {
8215 SDLoc SL(Op);
8216 SDValue LHS = Op.getOperand(0);
8217 SDValue RHS = Op.getOperand(1);
8218 EVT VT = Op.getValueType();
8219 const SDNodeFlags Flags = Op->getFlags();
8220
8221 bool AllowInaccurateRcp = DAG.getTarget().Options.UnsafeFPMath ||
8222 Flags.hasApproximateFuncs();
8223
8224 // Without !fpmath accuracy information, we can't do more because we don't
8225 // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8226 if (!AllowInaccurateRcp)
8227 return SDValue();
8228
8229 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8230 if (CLHS->isExactlyValue(1.0)) {
8231 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8232 // the CI documentation has a worst case error of 1 ulp.
8233 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8234 // use it as long as we aren't trying to use denormals.
8235 //
8236 // v_rcp_f16 and v_rsq_f16 DO support denormals.
8237
8238 // 1.0 / sqrt(x) -> rsq(x)
8239
8240 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8241 // error seems really high at 2^29 ULP.
8242 if (RHS.getOpcode() == ISD::FSQRT)
8243 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8244
8245 // 1.0 / x -> rcp(x)
8246 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8247 }
8248
8249 // Same as for 1.0, but expand the sign out of the constant.
8250 if (CLHS->isExactlyValue(-1.0)) {
8251 // -1.0 / x -> rcp (fneg x)
8252 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8253 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8254 }
8255 }
8256
8257 // Turn into multiply by the reciprocal.
8258 // x / y -> x * (1.0 / y)
8259 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8260 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8261}
8262
8263static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8264 EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8265 SDNodeFlags Flags) {
8266 if (GlueChain->getNumValues() <= 1) {
8267 return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8268 }
8269
8270 assert(GlueChain->getNumValues() == 3)((GlueChain->getNumValues() == 3) ? static_cast<void>
(0) : __assert_fail ("GlueChain->getNumValues() == 3", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8270, __PRETTY_FUNCTION__))
;
8271
8272 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8273 switch (Opcode) {
8274 default: llvm_unreachable("no chain equivalent for opcode")::llvm::llvm_unreachable_internal("no chain equivalent for opcode"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8274)
;
8275 case ISD::FMUL:
8276 Opcode = AMDGPUISD::FMUL_W_CHAIN;
8277 break;
8278 }
8279
8280 return DAG.getNode(Opcode, SL, VTList,
8281 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8282 Flags);
8283}
8284
8285static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8286 EVT VT, SDValue A, SDValue B, SDValue C,
8287 SDValue GlueChain, SDNodeFlags Flags) {
8288 if (GlueChain->getNumValues() <= 1) {
8289 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8290 }
8291
8292 assert(GlueChain->getNumValues() == 3)((GlueChain->getNumValues() == 3) ? static_cast<void>
(0) : __assert_fail ("GlueChain->getNumValues() == 3", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8292, __PRETTY_FUNCTION__))
;
8293
8294 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8295 switch (Opcode) {
8296 default: llvm_unreachable("no chain equivalent for opcode")::llvm::llvm_unreachable_internal("no chain equivalent for opcode"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8296)
;
8297 case ISD::FMA:
8298 Opcode = AMDGPUISD::FMA_W_CHAIN;
8299 break;
8300 }
8301
8302 return DAG.getNode(Opcode, SL, VTList,
8303 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8304 Flags);
8305}
8306
8307SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8308 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8309 return FastLowered;
8310
8311 SDLoc SL(Op);
8312 SDValue Src0 = Op.getOperand(0);
8313 SDValue Src1 = Op.getOperand(1);
8314
8315 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8316 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8317
8318 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8319 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8320
8321 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8322 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8323
8324 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8325}
8326
8327// Faster 2.5 ULP division that does not support denormals.
8328SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8329 SDLoc SL(Op);
8330 SDValue LHS = Op.getOperand(1);
8331 SDValue RHS = Op.getOperand(2);
8332
8333 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8334
8335 const APFloat K0Val(BitsToFloat(0x6f800000));
8336 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8337
8338 const APFloat K1Val(BitsToFloat(0x2f800000));
8339 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8340
8341 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8342
8343 EVT SetCCVT =
8344 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8345
8346 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8347
8348 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8349
8350 // TODO: Should this propagate fast-math-flags?
8351 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8352
8353 // rcp does not support denormals.
8354 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8355
8356 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8357
8358 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8359}
8360
8361// Returns immediate value for setting the F32 denorm mode when using the
8362// S_DENORM_MODE instruction.
8363static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8364 const SDLoc &SL, const GCNSubtarget *ST) {
8365 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE")((ST->hasDenormModeInst() && "Requires S_DENORM_MODE"
) ? static_cast<void> (0) : __assert_fail ("ST->hasDenormModeInst() && \"Requires S_DENORM_MODE\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8365, __PRETTY_FUNCTION__))
;
8366 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8367 ? FP_DENORM_FLUSH_NONE3
8368 : FP_DENORM_FLUSH_IN_FLUSH_OUT0;
8369
8370 int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8371 return DAG.getTargetConstant(Mode, SL, MVT::i32);
8372}
8373
8374SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8375 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8376 return FastLowered;
8377
8378 // The selection matcher assumes anything with a chain selecting to a
8379 // mayRaiseFPException machine instruction. Since we're introducing a chain
8380 // here, we need to explicitly report nofpexcept for the regular fdiv
8381 // lowering.
8382 SDNodeFlags Flags = Op->getFlags();
8383 Flags.setNoFPExcept(true);
8384
8385 SDLoc SL(Op);
8386 SDValue LHS = Op.getOperand(0);
8387 SDValue RHS = Op.getOperand(1);
8388
8389 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8390
8391 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8392
8393 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8394 {RHS, RHS, LHS}, Flags);
8395 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8396 {LHS, RHS, LHS}, Flags);
8397
8398 // Denominator is scaled to not be denormal, so using rcp is ok.
8399 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8400 DenominatorScaled, Flags);
8401 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8402 DenominatorScaled, Flags);
8403
8404 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8405 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8406 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8407 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8408
8409 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8410
8411 if (!HasFP32Denormals) {
8412 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8413 // lowering. The chain dependence is insufficient, and we need glue. We do
8414 // not need the glue variants in a strictfp function.
8415
8416 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8417
8418 SDNode *EnableDenorm;
8419 if (Subtarget->hasDenormModeInst()) {
8420 const SDValue EnableDenormValue =
8421 getSPDenormModeValue(FP_DENORM_FLUSH_NONE3, DAG, SL, Subtarget);
8422
8423 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8424 DAG.getEntryNode(), EnableDenormValue).getNode();
8425 } else {
8426 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE3,
8427 SL, MVT::i32);
8428 EnableDenorm =
8429 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8430 {EnableDenormValue, BitField, DAG.getEntryNode()});
8431 }
8432
8433 SDValue Ops[3] = {
8434 NegDivScale0,
8435 SDValue(EnableDenorm, 0),
8436 SDValue(EnableDenorm, 1)
8437 };
8438
8439 NegDivScale0 = DAG.getMergeValues(Ops, SL);
8440 }
8441
8442 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8443 ApproxRcp, One, NegDivScale0, Flags);
8444
8445 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8446 ApproxRcp, Fma0, Flags);
8447
8448 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8449 Fma1, Fma1, Flags);
8450
8451 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8452 NumeratorScaled, Mul, Flags);
8453
8454 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8455 Fma2, Fma1, Mul, Fma2, Flags);
8456
8457 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8458 NumeratorScaled, Fma3, Flags);
8459
8460 if (!HasFP32Denormals) {
8461 SDNode *DisableDenorm;
8462 if (Subtarget->hasDenormModeInst()) {
8463 const SDValue DisableDenormValue =
8464 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT0, DAG, SL, Subtarget);
8465
8466 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8467 Fma4.getValue(1), DisableDenormValue,
8468 Fma4.getValue(2)).getNode();
8469 } else {
8470 const SDValue DisableDenormValue =
8471 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT0, SL, MVT::i32);
8472
8473 DisableDenorm = DAG.getMachineNode(
8474 AMDGPU::S_SETREG_B32, SL, MVT::Other,
8475 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8476 }
8477
8478 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8479 SDValue(DisableDenorm, 0), DAG.getRoot());
8480 DAG.setRoot(OutputChain);
8481 }
8482
8483 SDValue Scale = NumeratorScaled.getValue(1);
8484 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8485 {Fma4, Fma1, Fma3, Scale}, Flags);
8486
8487 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8488}
8489
8490SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8491 if (DAG.getTarget().Options.UnsafeFPMath)
8492 return lowerFastUnsafeFDIV(Op, DAG);
8493
8494 SDLoc SL(Op);
8495 SDValue X = Op.getOperand(0);
8496 SDValue Y = Op.getOperand(1);
8497
8498 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8499
8500 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8501
8502 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8503
8504 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8505
8506 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8507
8508 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8509
8510 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8511
8512 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8513
8514 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8515
8516 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8517 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8518
8519 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8520 NegDivScale0, Mul, DivScale1);
8521
8522 SDValue Scale;
8523
8524 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8525 // Workaround a hardware bug on SI where the condition output from div_scale
8526 // is not usable.
8527
8528 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8529
8530 // Figure out if the scale to use for div_fmas.
8531 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8532 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8533 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8534 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8535
8536 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8537 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8538
8539 SDValue Scale0Hi
8540 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8541 SDValue Scale1Hi
8542 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8543
8544 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8545 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8546 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8547 } else {
8548 Scale = DivScale1.getValue(1);
8549 }
8550
8551 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8552 Fma4, Fma3, Mul, Scale);
8553
8554 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8555}
8556
8557SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8558 EVT VT = Op.getValueType();
8559
8560 if (VT == MVT::f32)
8561 return LowerFDIV32(Op, DAG);
8562
8563 if (VT == MVT::f64)
8564 return LowerFDIV64(Op, DAG);
8565
8566 if (VT == MVT::f16)
8567 return LowerFDIV16(Op, DAG);
8568
8569 llvm_unreachable("Unexpected type for fdiv")::llvm::llvm_unreachable_internal("Unexpected type for fdiv",
"/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8569)
;
8570}
8571
8572SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8573 SDLoc DL(Op);
8574 StoreSDNode *Store = cast<StoreSDNode>(Op);
8575 EVT VT = Store->getMemoryVT();
8576
8577 if (VT == MVT::i1) {
8578 return DAG.getTruncStore(Store->getChain(), DL,
8579 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8580 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8581 }
8582
8583 assert(VT.isVector() &&((VT.isVector() && Store->getValue().getValueType(
).getScalarType() == MVT::i32) ? static_cast<void> (0) :
__assert_fail ("VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8584, __PRETTY_FUNCTION__))
8584 Store->getValue().getValueType().getScalarType() == MVT::i32)((VT.isVector() && Store->getValue().getValueType(
).getScalarType() == MVT::i32) ? static_cast<void> (0) :
__assert_fail ("VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8584, __PRETTY_FUNCTION__))
;
8585
8586 unsigned AS = Store->getAddressSpace();
8587 if (Subtarget->hasLDSMisalignedBug() &&
8588 AS == AMDGPUAS::FLAT_ADDRESS &&
8589 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8590 return SplitVectorStore(Op, DAG);
8591 }
8592
8593 MachineFunction &MF = DAG.getMachineFunction();
8594 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8595 // If there is a possibilty that flat instruction access scratch memory
8596 // then we need to use the same legalization rules we use for private.
8597 if (AS == AMDGPUAS::FLAT_ADDRESS &&
8598 !Subtarget->hasMultiDwordFlatScratchAddressing())
8599 AS = MFI->hasFlatScratchInit() ?
8600 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8601
8602 unsigned NumElements = VT.getVectorNumElements();
8603 if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8604 AS == AMDGPUAS::FLAT_ADDRESS) {
8605 if (NumElements > 4)
8606 return SplitVectorStore(Op, DAG);
8607 // v3 stores not supported on SI.
8608 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8609 return SplitVectorStore(Op, DAG);
8610
8611 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8612 VT, *Store->getMemOperand()))
8613 return expandUnalignedStore(Store, DAG);
8614
8615 return SDValue();
8616 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8617 switch (Subtarget->getMaxPrivateElementSize()) {
8618 case 4:
8619 return scalarizeVectorStore(Store, DAG);
8620 case 8:
8621 if (NumElements > 2)
8622 return SplitVectorStore(Op, DAG);
8623 return SDValue();
8624 case 16:
8625 if (NumElements > 4 ||
8626 (NumElements == 3 && !Subtarget->enableFlatScratch()))
8627 return SplitVectorStore(Op, DAG);
8628 return SDValue();
8629 default:
8630 llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8630)
;
8631 }
8632 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8633 // Use ds_write_b128 or ds_write_b96 when possible.
8634 if (Subtarget->hasDS96AndDS128() &&
8635 ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8636 (VT.getStoreSize() == 12)) &&
8637 allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8638 Store->getAlign()))
8639 return SDValue();
8640
8641 if (NumElements > 2)
8642 return SplitVectorStore(Op, DAG);
8643
8644 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8645 // address is negative, then the instruction is incorrectly treated as
8646 // out-of-bounds even if base + offsets is in bounds. Split vectorized
8647 // stores here to avoid emitting ds_write2_b32. We may re-combine the
8648 // store later in the SILoadStoreOptimizer.
8649 if (!Subtarget->hasUsableDSOffset() &&
8650 NumElements == 2 && VT.getStoreSize() == 8 &&
8651 Store->getAlignment() < 8) {
8652 return SplitVectorStore(Op, DAG);
8653 }
8654
8655 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8656 VT, *Store->getMemOperand())) {
8657 if (VT.isVector())
8658 return SplitVectorStore(Op, DAG);
8659 return expandUnalignedStore(Store, DAG);
8660 }
8661
8662 return SDValue();
8663 } else {
8664 llvm_unreachable("unhandled address space")::llvm::llvm_unreachable_internal("unhandled address space", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8664)
;
8665 }
8666}
8667
8668SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8669 SDLoc DL(Op);
8670 EVT VT = Op.getValueType();
8671 SDValue Arg = Op.getOperand(0);
8672 SDValue TrigVal;
8673
8674 // Propagate fast-math flags so that the multiply we introduce can be folded
8675 // if Arg is already the result of a multiply by constant.
8676 auto Flags = Op->getFlags();
8677
8678 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8679
8680 if (Subtarget->hasTrigReducedRange()) {
8681 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8682 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8683 } else {
8684 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8685 }
8686
8687 switch (Op.getOpcode()) {
8688 case ISD::FCOS:
8689 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8690 case ISD::FSIN:
8691 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8692 default:
8693 llvm_unreachable("Wrong trig opcode")::llvm::llvm_unreachable_internal("Wrong trig opcode", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8693)
;
8694 }
8695}
8696
8697SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8698 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8699 assert(AtomicNode->isCompareAndSwap())((AtomicNode->isCompareAndSwap()) ? static_cast<void>
(0) : __assert_fail ("AtomicNode->isCompareAndSwap()", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8699, __PRETTY_FUNCTION__))
;
8700 unsigned AS = AtomicNode->getAddressSpace();
8701
8702 // No custom lowering required for local address space
8703 if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8704 return Op;
8705
8706 // Non-local address space requires custom lowering for atomic compare
8707 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8708 SDLoc DL(Op);
8709 SDValue ChainIn = Op.getOperand(0);
8710 SDValue Addr = Op.getOperand(1);
8711 SDValue Old = Op.getOperand(2);
8712 SDValue New = Op.getOperand(3);
8713 EVT VT = Op.getValueType();
8714 MVT SimpleVT = VT.getSimpleVT();
8715 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8716
8717 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8718 SDValue Ops[] = { ChainIn, Addr, NewOld };
8719
8720 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8721 Ops, VT, AtomicNode->getMemOperand());
8722}
8723
8724//===----------------------------------------------------------------------===//
8725// Custom DAG optimizations
8726//===----------------------------------------------------------------------===//
8727
8728SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8729 DAGCombinerInfo &DCI) const {
8730 EVT VT = N->getValueType(0);
8731 EVT ScalarVT = VT.getScalarType();
8732 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
8733 return SDValue();
8734
8735 SelectionDAG &DAG = DCI.DAG;
8736 SDLoc DL(N);
8737
8738 SDValue Src = N->getOperand(0);
8739 EVT SrcVT = Src.getValueType();
8740
8741 // TODO: We could try to match extracting the higher bytes, which would be
8742 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8743 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8744 // about in practice.
8745 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8746 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8747 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
8748 DCI.AddToWorklist(Cvt.getNode());
8749
8750 // For the f16 case, fold to a cast to f32 and then cast back to f16.
8751 if (ScalarVT != MVT::f32) {
8752 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
8753 DAG.getTargetConstant(0, DL, MVT::i32));
8754 }
8755 return Cvt;
8756 }
8757 }
8758
8759 return SDValue();
8760}
8761
8762// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8763
8764// This is a variant of
8765// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8766//
8767// The normal DAG combiner will do this, but only if the add has one use since
8768// that would increase the number of instructions.
8769//
8770// This prevents us from seeing a constant offset that can be folded into a
8771// memory instruction's addressing mode. If we know the resulting add offset of
8772// a pointer can be folded into an addressing offset, we can replace the pointer
8773// operand with the add of new constant offset. This eliminates one of the uses,
8774// and may allow the remaining use to also be simplified.
8775//
8776SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8777 unsigned AddrSpace,
8778 EVT MemVT,
8779 DAGCombinerInfo &DCI) const {
8780 SDValue N0 = N->getOperand(0);
8781 SDValue N1 = N->getOperand(1);
8782
8783 // We only do this to handle cases where it's profitable when there are
8784 // multiple uses of the add, so defer to the standard combine.
8785 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8786 N0->hasOneUse())
8787 return SDValue();
8788
8789 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8790 if (!CN1)
8791 return SDValue();
8792
8793 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8794 if (!CAdd)
8795 return SDValue();
8796
8797 // If the resulting offset is too large, we can't fold it into the addressing
8798 // mode offset.
8799 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8800 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8801
8802 AddrMode AM;
8803 AM.HasBaseReg = true;
8804 AM.BaseOffs = Offset.getSExtValue();
8805 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8806 return SDValue();
8807
8808 SelectionDAG &DAG = DCI.DAG;
8809 SDLoc SL(N);
8810 EVT VT = N->getValueType(0);
8811
8812 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8813 SDValue COffset = DAG.getConstant(Offset, SL, VT);
8814
8815 SDNodeFlags Flags;
8816 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8817 (N0.getOpcode() == ISD::OR ||
8818 N0->getFlags().hasNoUnsignedWrap()));
8819
8820 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8821}
8822
8823/// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
8824/// by the chain and intrinsic ID. Theoretically we would also need to check the
8825/// specific intrinsic, but they all place the pointer operand first.
8826static unsigned getBasePtrIndex(const MemSDNode *N) {
8827 switch (N->getOpcode()) {
8828 case ISD::STORE:
8829 case ISD::INTRINSIC_W_CHAIN:
8830 case ISD::INTRINSIC_VOID:
8831 return 2;
8832 default:
8833 return 1;
8834 }
8835}
8836
8837SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8838 DAGCombinerInfo &DCI) const {
8839 SelectionDAG &DAG = DCI.DAG;
8840 SDLoc SL(N);
8841
8842 unsigned PtrIdx = getBasePtrIndex(N);
8843 SDValue Ptr = N->getOperand(PtrIdx);
8844
8845 // TODO: We could also do this for multiplies.
8846 if (Ptr.getOpcode() == ISD::SHL) {
8847 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
8848 N->getMemoryVT(), DCI);
8849 if (NewPtr) {
8850 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8851
8852 NewOps[PtrIdx] = NewPtr;
8853 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8854 }
8855 }
8856
8857 return SDValue();
8858}
8859
8860static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8861 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8862 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8863 (Opc == ISD::XOR && Val == 0);
8864}
8865
8866// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8867// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8868// integer combine opportunities since most 64-bit operations are decomposed
8869// this way. TODO: We won't want this for SALU especially if it is an inline
8870// immediate.
8871SDValue SITargetLowering::splitBinaryBitConstantOp(
8872 DAGCombinerInfo &DCI,
8873 const SDLoc &SL,
8874 unsigned Opc, SDValue LHS,
8875 const ConstantSDNode *CRHS) const {
8876 uint64_t Val = CRHS->getZExtValue();
8877 uint32_t ValLo = Lo_32(Val);
8878 uint32_t ValHi = Hi_32(Val);
8879 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8880
8881 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8882 bitOpWithConstantIsReducible(Opc, ValHi)) ||
8883 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8884 // If we need to materialize a 64-bit immediate, it will be split up later
8885 // anyway. Avoid creating the harder to understand 64-bit immediate
8886 // materialization.
8887 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8888 }
8889
8890 return SDValue();
8891}
8892
8893// Returns true if argument is a boolean value which is not serialized into
8894// memory or argument and does not require v_cmdmask_b32 to be deserialized.
8895static bool isBoolSGPR(SDValue V) {
8896 if (V.getValueType() != MVT::i1)
8897 return false;
8898 switch (V.getOpcode()) {
8899 default: break;
8900 case ISD::SETCC:
8901 case ISD::AND:
8902 case ISD::OR:
8903 case ISD::XOR:
8904 case AMDGPUISD::FP_CLASS:
8905 return true;
8906 }
8907 return false;
8908}
8909
8910// If a constant has all zeroes or all ones within each byte return it.
8911// Otherwise return 0.
8912static uint32_t getConstantPermuteMask(uint32_t C) {
8913 // 0xff for any zero byte in the mask
8914 uint32_t ZeroByteMask = 0;
8915 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8916 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8917 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8918 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8919 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8920 if ((NonZeroByteMask & C) != NonZeroByteMask)
8921 return 0; // Partial bytes selected.
8922 return C;
8923}
8924
8925// Check if a node selects whole bytes from its operand 0 starting at a byte
8926// boundary while masking the rest. Returns select mask as in the v_perm_b32
8927// or -1 if not succeeded.
8928// Note byte select encoding:
8929// value 0-3 selects corresponding source byte;
8930// value 0xc selects zero;
8931// value 0xff selects 0xff.
8932static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8933 assert(V.getValueSizeInBits() == 32)((V.getValueSizeInBits() == 32) ? static_cast<void> (0)
: __assert_fail ("V.getValueSizeInBits() == 32", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8933, __PRETTY_FUNCTION__))
;
8934
8935 if (V.getNumOperands() != 2)
8936 return ~0;
8937
8938 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8939 if (!N1)
8940 return ~0;
8941
8942 uint32_t C = N1->getZExtValue();
8943
8944 switch (V.getOpcode()) {
8945 default:
8946 break;
8947 case ISD::AND:
8948 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8949 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8950 }
8951 break;
8952
8953 case ISD::OR:
8954 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8955 return (0x03020100 & ~ConstMask) | ConstMask;
8956 }
8957 break;
8958
8959 case ISD::SHL:
8960 if (C % 8)
8961 return ~0;
8962
8963 return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8964
8965 case ISD::SRL:
8966 if (C % 8)
8967 return ~0;
8968
8969 return uint32_t(0x0c0c0c0c03020100ull >> C);
8970 }
8971
8972 return ~0;
8973}
8974
8975SDValue SITargetLowering::performAndCombine(SDNode *N,
8976 DAGCombinerInfo &DCI) const {
8977 if (DCI.isBeforeLegalize())
8978 return SDValue();
8979
8980 SelectionDAG &DAG = DCI.DAG;
8981 EVT VT = N->getValueType(0);
8982 SDValue LHS = N->getOperand(0);
8983 SDValue RHS = N->getOperand(1);
8984
8985
8986 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8987 if (VT == MVT::i64 && CRHS) {
8988 if (SDValue Split
8989 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8990 return Split;
8991 }
8992
8993 if (CRHS && VT == MVT::i32) {
8994 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8995 // nb = number of trailing zeroes in mask
8996 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8997 // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8998 uint64_t Mask = CRHS->getZExtValue();
8999 unsigned Bits = countPopulation(Mask);
9000 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9001 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9002 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9003 unsigned Shift = CShift->getZExtValue();
9004 unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9005 unsigned Offset = NB + Shift;
9006 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9007 SDLoc SL(N);
9008 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9009 LHS->getOperand(0),
9010 DAG.getConstant(Offset, SL, MVT::i32),
9011 DAG.getConstant(Bits, SL, MVT::i32));
9012 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9013 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9014 DAG.getValueType(NarrowVT));
9015 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9016 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9017 return Shl;
9018 }
9019 }
9020 }
9021
9022 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9023 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9024 isa<ConstantSDNode>(LHS.getOperand(2))) {
9025 uint32_t Sel = getConstantPermuteMask(Mask);
9026 if (!Sel)
9027 return SDValue();
9028
9029 // Select 0xc for all zero bytes
9030 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9031 SDLoc DL(N);
9032 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9033 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9034 }
9035 }
9036
9037 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9038 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9039 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9040 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9041 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9042
9043 SDValue X = LHS.getOperand(0);
9044 SDValue Y = RHS.getOperand(0);
9045 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9046 return SDValue();
9047
9048 if (LCC == ISD::SETO) {
9049 if (X != LHS.getOperand(1))
9050 return SDValue();
9051
9052 if (RCC == ISD::SETUNE) {
9053 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9054 if (!C1 || !C1->isInfinity() || C1->isNegative())
9055 return SDValue();
9056
9057 const uint32_t Mask = SIInstrFlags::N_NORMAL |
9058 SIInstrFlags::N_SUBNORMAL |
9059 SIInstrFlags::N_ZERO |
9060 SIInstrFlags::P_ZERO |
9061 SIInstrFlags::P_SUBNORMAL |
9062 SIInstrFlags::P_NORMAL;
9063
9064 static_assert(((~(SIInstrFlags::S_NAN |
9065 SIInstrFlags::Q_NAN |
9066 SIInstrFlags::N_INFINITY |
9067 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9068 "mask not equal");
9069
9070 SDLoc DL(N);
9071 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9072 X, DAG.getConstant(Mask, DL, MVT::i32));
9073 }
9074 }
9075 }
9076
9077 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9078 std::swap(LHS, RHS);
9079
9080 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9081 RHS.hasOneUse()) {
9082 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9083 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9084 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9085 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9086 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9087 (RHS.getOperand(0) == LHS.getOperand(0) &&
9088 LHS.getOperand(0) == LHS.getOperand(1))) {
9089 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9090 unsigned NewMask = LCC == ISD::SETO ?
9091 Mask->getZExtValue() & ~OrdMask :
9092 Mask->getZExtValue() & OrdMask;
9093
9094 SDLoc DL(N);
9095 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9096 DAG.getConstant(NewMask, DL, MVT::i32));
9097 }
9098 }
9099
9100 if (VT == MVT::i32 &&
9101 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9102 // and x, (sext cc from i1) => select cc, x, 0
9103 if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9104 std::swap(LHS, RHS);
9105 if (isBoolSGPR(RHS.getOperand(0)))
9106 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9107 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9108 }
9109
9110 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9111 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9112 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9113 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
9114 uint32_t LHSMask = getPermuteMask(DAG, LHS);
9115 uint32_t RHSMask = getPermuteMask(DAG, RHS);
9116 if (LHSMask != ~0u && RHSMask != ~0u) {
9117 // Canonicalize the expression in an attempt to have fewer unique masks
9118 // and therefore fewer registers used to hold the masks.
9119 if (LHSMask > RHSMask) {
9120 std::swap(LHSMask, RHSMask);
9121 std::swap(LHS, RHS);
9122 }
9123
9124 // Select 0xc for each lane used from source operand. Zero has 0xc mask
9125 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9126 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9127 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9128
9129 // Check of we need to combine values from two sources within a byte.
9130 if (!(LHSUsedLanes & RHSUsedLanes) &&
9131 // If we select high and lower word keep it for SDWA.
9132 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9133 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9134 // Each byte in each mask is either selector mask 0-3, or has higher
9135 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9136 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9137 // mask which is not 0xff wins. By anding both masks we have a correct
9138 // result except that 0x0c shall be corrected to give 0x0c only.
9139 uint32_t Mask = LHSMask & RHSMask;
9140 for (unsigned I = 0; I < 32; I += 8) {
9141 uint32_t ByteSel = 0xff << I;
9142 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9143 Mask &= (0x0c << I) & 0xffffffff;
9144 }
9145
9146 // Add 4 to each active LHS lane. It will not affect any existing 0xff
9147 // or 0x0c.
9148 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9149 SDLoc DL(N);
9150
9151 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9152 LHS.getOperand(0), RHS.getOperand(0),
9153 DAG.getConstant(Sel, DL, MVT::i32));
9154 }
9155 }
9156 }
9157
9158 return SDValue();
9159}
9160
9161SDValue SITargetLowering::performOrCombine(SDNode *N,
9162 DAGCombinerInfo &DCI) const {
9163 SelectionDAG &DAG = DCI.DAG;
9164 SDValue LHS = N->getOperand(0);
9165 SDValue RHS = N->getOperand(1);
9166
9167 EVT VT = N->getValueType(0);
9168 if (VT == MVT::i1) {
9169 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9170 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9171 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9172 SDValue Src = LHS.getOperand(0);
9173 if (Src != RHS.getOperand(0))
9174 return SDValue();
9175
9176 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9177 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9178 if (!CLHS || !CRHS)
9179 return SDValue();
9180
9181 // Only 10 bits are used.
9182 static const uint32_t MaxMask = 0x3ff;
9183
9184 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9185 SDLoc DL(N);
9186 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9187 Src, DAG.getConstant(NewMask, DL, MVT::i32));
9188 }
9189
9190 return SDValue();
9191 }
9192
9193 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9194 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9195 LHS.getOpcode() == AMDGPUISD::PERM &&
9196 isa<ConstantSDNode>(LHS.getOperand(2))) {
9197 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9198 if (!Sel)
9199 return SDValue();
9200
9201 Sel |= LHS.getConstantOperandVal(2);
9202 SDLoc DL(N);
9203 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9204 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9205 }
9206
9207 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9208 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9209 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9210 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
9211 uint32_t LHSMask = getPermuteMask(DAG, LHS);
9212 uint32_t RHSMask = getPermuteMask(DAG, RHS);
9213 if (LHSMask != ~0u && RHSMask != ~0u) {
9214 // Canonicalize the expression in an attempt to have fewer unique masks
9215 // and therefore fewer registers used to hold the masks.
9216 if (LHSMask > RHSMask) {
9217 std::swap(LHSMask, RHSMask);
9218 std::swap(LHS, RHS);
9219 }
9220
9221 // Select 0xc for each lane used from source operand. Zero has 0xc mask
9222 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9223 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9224 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9225
9226 // Check of we need to combine values from two sources within a byte.
9227 if (!(LHSUsedLanes & RHSUsedLanes) &&
9228 // If we select high and lower word keep it for SDWA.
9229 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9230 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9231 // Kill zero bytes selected by other mask. Zero value is 0xc.
9232 LHSMask &= ~RHSUsedLanes;
9233 RHSMask &= ~LHSUsedLanes;
9234 // Add 4 to each active LHS lane
9235 LHSMask |= LHSUsedLanes & 0x04040404;
9236 // Combine masks
9237 uint32_t Sel = LHSMask | RHSMask;
9238 SDLoc DL(N);
9239
9240 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9241 LHS.getOperand(0), RHS.getOperand(0),
9242 DAG.getConstant(Sel, DL, MVT::i32));
9243 }
9244 }
9245 }
9246
9247 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9248 return SDValue();
9249
9250 // TODO: This could be a generic combine with a predicate for extracting the
9251 // high half of an integer being free.
9252
9253 // (or i64:x, (zero_extend i32:y)) ->
9254 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9255 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9256 RHS.getOpcode() != ISD::ZERO_EXTEND)
9257 std::swap(LHS, RHS);
9258
9259 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9260 SDValue ExtSrc = RHS.getOperand(0);
9261 EVT SrcVT = ExtSrc.getValueType();
9262 if (SrcVT == MVT::i32) {
9263 SDLoc SL(N);
9264 SDValue LowLHS, HiBits;
9265 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9266 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9267
9268 DCI.AddToWorklist(LowOr.getNode());
9269 DCI.AddToWorklist(HiBits.getNode());
9270
9271 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9272 LowOr, HiBits);
9273 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9274 }
9275 }
9276
9277 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9278 if (CRHS) {
9279 if (SDValue Split
9280 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
9281 return Split;
9282 }
9283
9284 return SDValue();
9285}
9286
9287SDValue SITargetLowering::performXorCombine(SDNode *N,
9288 DAGCombinerInfo &DCI) const {
9289 EVT VT = N->getValueType(0);
9290 if (VT != MVT::i64)
9291 return SDValue();
9292
9293 SDValue LHS = N->getOperand(0);
9294 SDValue RHS = N->getOperand(1);
9295
9296 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9297 if (CRHS) {
9298 if (SDValue Split
9299 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9300 return Split;
9301 }
9302
9303 return SDValue();
9304}
9305
9306// Instructions that will be lowered with a final instruction that zeros the
9307// high result bits.
9308// XXX - probably only need to list legal operations.
9309static bool fp16SrcZerosHighBits(unsigned Opc) {
9310 switch (Opc) {
9311 case ISD::FADD:
9312 case ISD::FSUB:
9313 case ISD::FMUL:
9314 case ISD::FDIV:
9315 case ISD::FREM:
9316 case ISD::FMA:
9317 case ISD::FMAD:
9318 case ISD::FCANONICALIZE:
9319 case ISD::FP_ROUND:
9320 case ISD::UINT_TO_FP:
9321 case ISD::SINT_TO_FP:
9322 case ISD::FABS:
9323 // Fabs is lowered to a bit operation, but it's an and which will clear the
9324 // high bits anyway.
9325 case ISD::FSQRT:
9326 case ISD::FSIN:
9327 case ISD::FCOS:
9328 case ISD::FPOWI:
9329 case ISD::FPOW:
9330 case ISD::FLOG:
9331 case ISD::FLOG2:
9332 case ISD::FLOG10:
9333 case ISD::FEXP:
9334 case ISD::FEXP2:
9335 case ISD::FCEIL:
9336 case ISD::FTRUNC:
9337 case ISD::FRINT:
9338 case ISD::FNEARBYINT:
9339 case ISD::FROUND:
9340 case ISD::FFLOOR:
9341 case ISD::FMINNUM:
9342 case ISD::FMAXNUM:
9343 case AMDGPUISD::FRACT:
9344 case AMDGPUISD::CLAMP:
9345 case AMDGPUISD::COS_HW:
9346 case AMDGPUISD::SIN_HW:
9347 case AMDGPUISD::FMIN3:
9348 case AMDGPUISD::FMAX3:
9349 case AMDGPUISD::FMED3:
9350 case AMDGPUISD::FMAD_FTZ:
9351 case AMDGPUISD::RCP:
9352 case AMDGPUISD::RSQ:
9353 case AMDGPUISD::RCP_IFLAG:
9354 case AMDGPUISD::LDEXP:
9355 return true;
9356 default:
9357 // fcopysign, select and others may be lowered to 32-bit bit operations
9358 // which don't zero the high bits.
9359 return false;
9360 }
9361}
9362
9363SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9364 DAGCombinerInfo &DCI) const {
9365 if (!Subtarget->has16BitInsts() ||
9366 DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9367 return SDValue();
9368
9369 EVT VT = N->getValueType(0);
9370 if (VT != MVT::i32)
9371 return SDValue();
9372
9373 SDValue Src = N->getOperand(0);
9374 if (Src.getValueType() != MVT::i16)
9375 return SDValue();
9376
9377 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
9378 // FIXME: It is not universally true that the high bits are zeroed on gfx9.
9379 if (Src.getOpcode() == ISD::BITCAST) {
9380 SDValue BCSrc = Src.getOperand(0);
9381 if (BCSrc.getValueType() == MVT::f16 &&
9382 fp16SrcZerosHighBits(BCSrc.getOpcode()))
9383 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
9384 }
9385
9386 return SDValue();
9387}
9388
9389SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9390 DAGCombinerInfo &DCI)
9391 const {
9392 SDValue Src = N->getOperand(0);
9393 auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9394
9395 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9396 VTSign->getVT() == MVT::i8) ||
9397 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9398 VTSign->getVT() == MVT::i16)) &&
9399 Src.hasOneUse()) {
9400 auto *M = cast<MemSDNode>(Src);
9401 SDValue Ops[] = {
9402 Src.getOperand(0), // Chain
9403 Src.getOperand(1), // rsrc
9404 Src.getOperand(2), // vindex
9405 Src.getOperand(3), // voffset
9406 Src.getOperand(4), // soffset
9407 Src.getOperand(5), // offset
9408 Src.getOperand(6),
9409 Src.getOperand(7)
9410 };
9411 // replace with BUFFER_LOAD_BYTE/SHORT
9412 SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9413 Src.getOperand(0).getValueType());
9414 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9415 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9416 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9417 ResList,
9418 Ops, M->getMemoryVT(),
9419 M->getMemOperand());
9420 return DCI.DAG.getMergeValues({BufferLoadSignExt,
9421 BufferLoadSignExt.getValue(1)}, SDLoc(N));
9422 }
9423 return SDValue();
9424}
9425
9426SDValue SITargetLowering::performClassCombine(SDNode *N,
9427 DAGCombinerInfo &DCI) const {
9428 SelectionDAG &DAG = DCI.DAG;
9429 SDValue Mask = N->getOperand(1);
9430
9431 // fp_class x, 0 -> false
9432 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9433 if (CMask->isNullValue())
9434 return DAG.getConstant(0, SDLoc(N), MVT::i1);
9435 }
9436
9437 if (N->getOperand(0).isUndef())
9438 return DAG.getUNDEF(MVT::i1);
9439
9440 return SDValue();
9441}
9442
9443SDValue SITargetLowering::performRcpCombine(SDNode *N,
9444 DAGCombinerInfo &DCI) const {
9445 EVT VT = N->getValueType(0);
9446 SDValue N0 = N->getOperand(0);
9447
9448 if (N0.isUndef())
9449 return N0;
9450
9451 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9452 N0.getOpcode() == ISD::SINT_TO_FP)) {
9453 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9454 N->getFlags());
9455 }
9456
9457 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9458 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9459 N0.getOperand(0), N->getFlags());
9460 }
9461
9462 return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9463}
9464
9465bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9466 unsigned MaxDepth) const {
9467 unsigned Opcode = Op.getOpcode();
9468 if (Opcode == ISD::FCANONICALIZE)
9469 return true;
9470
9471 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9472 auto F = CFP->getValueAPF();
9473 if (F.isNaN() && F.isSignaling())
9474 return false;
9475 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9476 }
9477
9478 // If source is a result of another standard FP operation it is already in
9479 // canonical form.
9480 if (MaxDepth == 0)
9481 return false;
9482
9483 switch (Opcode) {
9484 // These will flush denorms if required.
9485 case ISD::FADD:
9486 case ISD::FSUB:
9487 case ISD::FMUL:
9488 case ISD::FCEIL:
9489 case ISD::FFLOOR:
9490 case ISD::FMA:
9491 case ISD::FMAD:
9492 case ISD::FSQRT:
9493 case ISD::FDIV:
9494 case ISD::FREM:
9495 case ISD::FP_ROUND:
9496 case ISD::FP_EXTEND:
9497 case AMDGPUISD::FMUL_LEGACY:
9498 case AMDGPUISD::FMAD_FTZ:
9499 case AMDGPUISD::RCP:
9500 case AMDGPUISD::RSQ:
9501 case AMDGPUISD::RSQ_CLAMP:
9502 case AMDGPUISD::RCP_LEGACY:
9503 case AMDGPUISD::RCP_IFLAG:
9504 case AMDGPUISD::DIV_SCALE:
9505 case AMDGPUISD::DIV_FMAS:
9506 case AMDGPUISD::DIV_FIXUP:
9507 case AMDGPUISD::FRACT:
9508 case AMDGPUISD::LDEXP:
9509 case AMDGPUISD::CVT_PKRTZ_F16_F32:
9510 case AMDGPUISD::CVT_F32_UBYTE0:
9511 case AMDGPUISD::CVT_F32_UBYTE1:
9512 case AMDGPUISD::CVT_F32_UBYTE2:
9513 case AMDGPUISD::CVT_F32_UBYTE3:
9514 return true;
9515
9516 // It can/will be lowered or combined as a bit operation.
9517 // Need to check their input recursively to handle.
9518 case ISD::FNEG:
9519 case ISD::FABS:
9520 case ISD::FCOPYSIGN:
9521 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9522
9523 case ISD::FSIN:
9524 case ISD::FCOS:
9525 case ISD::FSINCOS:
9526 return Op.getValueType().getScalarType() != MVT::f16;
9527
9528 case ISD::FMINNUM:
9529 case ISD::FMAXNUM:
9530 case ISD::FMINNUM_IEEE:
9531 case ISD::FMAXNUM_IEEE:
9532 case AMDGPUISD::CLAMP:
9533 case AMDGPUISD::FMED3:
9534 case AMDGPUISD::FMAX3:
9535 case AMDGPUISD::FMIN3: {
9536 // FIXME: Shouldn't treat the generic operations different based these.
9537 // However, we aren't really required to flush the result from
9538 // minnum/maxnum..
9539
9540 // snans will be quieted, so we only need to worry about denormals.
9541 if (Subtarget->supportsMinMaxDenormModes() ||
9542 denormalsEnabledForType(DAG, Op.getValueType()))
9543 return true;
9544
9545 // Flushing may be required.
9546 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9547 // targets need to check their input recursively.
9548
9549 // FIXME: Does this apply with clamp? It's implemented with max.
9550 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9551 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9552 return false;
9553 }
9554
9555 return true;
9556 }
9557 case ISD::SELECT: {
9558 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9559 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9560 }
9561 case ISD::BUILD_VECTOR: {
9562 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9563 SDValue SrcOp = Op.getOperand(i);
9564 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9565 return false;
9566 }
9567
9568 return true;
9569 }
9570 case ISD::EXTRACT_VECTOR_ELT:
9571 case ISD::EXTRACT_SUBVECTOR: {
9572 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9573 }
9574 case ISD::INSERT_VECTOR_ELT: {
9575 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9576 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9577 }
9578 case ISD::UNDEF:
9579 // Could be anything.
9580 return false;
9581
9582 case ISD::BITCAST: {
9583 // Hack round the mess we make when legalizing extract_vector_elt
9584 SDValue Src = Op.getOperand(0);
9585 if (Src.getValueType() == MVT::i16 &&
9586 Src.getOpcode() == ISD::TRUNCATE) {
9587 SDValue TruncSrc = Src.getOperand(0);
9588 if (TruncSrc.getValueType() == MVT::i32 &&
9589 TruncSrc.getOpcode() == ISD::BITCAST &&
9590 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9591 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9592 }
9593 }
9594
9595 return false;
9596 }
9597 case ISD::INTRINSIC_WO_CHAIN: {
9598 unsigned IntrinsicID
9599 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9600 // TODO: Handle more intrinsics
9601 switch (IntrinsicID) {
9602 case Intrinsic::amdgcn_cvt_pkrtz:
9603 case Intrinsic::amdgcn_cubeid:
9604 case Intrinsic::amdgcn_frexp_mant:
9605 case Intrinsic::amdgcn_fdot2:
9606 case Intrinsic::amdgcn_rcp:
9607 case Intrinsic::amdgcn_rsq:
9608 case Intrinsic::amdgcn_rsq_clamp:
9609 case Intrinsic::amdgcn_rcp_legacy:
9610 case Intrinsic::amdgcn_rsq_legacy:
9611 case Intrinsic::amdgcn_trig_preop:
9612 return true;
9613 default:
9614 break;
9615 }
9616
9617 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9618 }
9619 default:
9620 return denormalsEnabledForType(DAG, Op.getValueType()) &&
9621 DAG.isKnownNeverSNaN(Op);
9622 }
9623
9624 llvm_unreachable("invalid operation")::llvm::llvm_unreachable_internal("invalid operation", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 9624)
;
9625}
9626
9627// Constant fold canonicalize.
9628SDValue SITargetLowering::getCanonicalConstantFP(
9629 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9630 // Flush denormals to 0 if not enabled.
9631 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9632 return DAG.getConstantFP(0.0, SL, VT);
9633
9634 if (C.isNaN()) {
9635 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9636 if (C.isSignaling()) {
9637 // Quiet a signaling NaN.
9638 // FIXME: Is this supposed to preserve payload bits?
9639 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9640 }
9641
9642 // Make sure it is the canonical NaN bitpattern.
9643 //
9644 // TODO: Can we use -1 as the canonical NaN value since it's an inline
9645 // immediate?
9646 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9647 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9648 }
9649
9650 // Already canonical.
9651 return DAG.getConstantFP(C, SL, VT);
9652}
9653
9654static bool vectorEltWillFoldAway(SDValue Op) {
9655 return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9656}
9657
9658SDValue SITargetLowering::performFCanonicalizeCombine(
9659 SDNode *N,
9660 DAGCombinerInfo &DCI) const {
9661 SelectionDAG &DAG = DCI.DAG;
9662 SDValue N0 = N->getOperand(0);
9663 EVT VT = N->getValueType(0);
9664
9665 // fcanonicalize undef -> qnan
9666 if (N0.isUndef()) {
9667 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9668 return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9669 }
9670
9671 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9672 EVT VT = N->getValueType(0);
9673 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9674 }
9675
9676 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9677 // (fcanonicalize k)
9678 //
9679 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9680
9681 // TODO: This could be better with wider vectors that will be split to v2f16,
9682 // and to consider uses since there aren't that many packed operations.
9683 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9684 isTypeLegal(MVT::v2f16)) {
9685 SDLoc SL(N);
9686 SDValue NewElts[2];
9687 SDValue Lo = N0.getOperand(0);
9688 SDValue Hi = N0.getOperand(1);
9689 EVT EltVT = Lo.getValueType();
9690
9691 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9692 for (unsigned I = 0; I != 2; ++I) {
9693 SDValue Op = N0.getOperand(I);
9694 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9695 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9696 CFP->getValueAPF());
9697 } else if (Op.isUndef()) {
9698 // Handled below based on what the other operand is.
9699 NewElts[I] = Op;
9700 } else {
9701 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9702 }
9703 }
9704
9705 // If one half is undef, and one is constant, perfer a splat vector rather
9706 // than the normal qNaN. If it's a register, prefer 0.0 since that's
9707 // cheaper to use and may be free with a packed operation.
9708 if (NewElts[0].isUndef()) {
9709 if (isa<ConstantFPSDNode>(NewElts[1]))
9710 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9711 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9712 }
9713
9714 if (NewElts[1].isUndef()) {
9715 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9716 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9717 }
9718
9719 return DAG.getBuildVector(VT, SL, NewElts);
9720 }
9721 }
9722
9723 unsigned SrcOpc = N0.getOpcode();
9724
9725 // If it's free to do so, push canonicalizes further up the source, which may
9726 // find a canonical source.
9727 //
9728 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9729 // sNaNs.
9730 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9731 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9732 if (CRHS && N0.hasOneUse()) {
9733 SDLoc SL(N);
9734 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9735 N0.getOperand(0));
9736 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9737 DCI.AddToWorklist(Canon0.getNode());
9738
9739 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9740 }
9741 }
9742
9743 return isCanonicalized(DAG, N0) ? N0 : SDValue();
9744}
9745
9746static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9747 switch (Opc) {
9748 case ISD::FMAXNUM:
9749 case ISD::FMAXNUM_IEEE:
9750 return AMDGPUISD::FMAX3;
9751 case ISD::SMAX:
9752 return AMDGPUISD::SMAX3;
9753 case ISD::UMAX:
9754 return AMDGPUISD::UMAX3;
9755 case ISD::FMINNUM:
9756 case ISD::FMINNUM_IEEE:
9757 return AMDGPUISD::FMIN3;
9758 case ISD::SMIN:
9759 return AMDGPUISD::SMIN3;
9760 case ISD::UMIN:
9761 return AMDGPUISD::UMIN3;
9762 default:
9763 llvm_unreachable("Not a min/max opcode")::llvm::llvm_unreachable_internal("Not a min/max opcode", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 9763)
;
9764 }
9765}
9766
9767SDValue SITargetLowering::performIntMed3ImmCombine(
9768 SelectionDAG &DAG, const SDLoc &SL,
9769 SDValue Op0, SDValue Op1, bool Signed) const {
9770 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9771 if (!K1)
9772 return SDValue();
9773
9774 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9775 if (!K0)
9776 return SDValue();
9777
9778 if (Signed) {
9779 if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9780 return SDValue();
9781 } else {
9782 if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9783 return SDValue();
9784 }
9785
9786 EVT VT = K0->getValueType(0);
9787 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9788 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9789 return DAG.getNode(Med3Opc, SL, VT,
9790 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9791 }
9792
9793 // If there isn't a 16-bit med3 operation, convert to 32-bit.
9794 MVT NVT = MVT::i32;
9795 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9796
9797 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9798 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9799 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9800
9801 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9802 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9803}
9804
9805static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9806 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9807 return C;
9808
9809 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9810 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9811 return C;
9812 }
9813
9814 return nullptr;
9815}
9816
9817SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9818 const SDLoc &SL,
9819 SDValue Op0,
9820 SDValue Op1) const {
9821 ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9822 if (!K1)
9823 return SDValue();
9824
9825 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9826 if (!K0)
9827 return SDValue();
9828
9829 // Ordered >= (although NaN inputs should have folded away by now).
9830 if (K0->getValueAPF() > K1->getValueAPF())
9831 return SDValue();
9832
9833 const MachineFunction &MF = DAG.getMachineFunction();
9834 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9835
9836 // TODO: Check IEEE bit enabled?
9837 EVT VT = Op0.getValueType();
9838 if (Info->getMode().DX10Clamp) {
9839 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9840 // hardware fmed3 behavior converting to a min.
9841 // FIXME: Should this be allowing -0.0?
9842 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9843 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9844 }
9845
9846 // med3 for f16 is only available on gfx9+, and not available for v2f16.
9847 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9848 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9849 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9850 // then give the other result, which is different from med3 with a NaN
9851 // input.
9852 SDValue Var = Op0.getOperand(0);
9853 if (!DAG.isKnownNeverSNaN(Var))
9854 return SDValue();
9855
9856 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9857
9858 if ((!K0->hasOneUse() ||
9859 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9860 (!K1->hasOneUse() ||
9861 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9862 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9863 Var, SDValue(K0, 0), SDValue(K1, 0));
9864 }
9865 }
9866
9867 return SDValue();
9868}
9869
9870SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9871 DAGCombinerInfo &DCI) const {
9872 SelectionDAG &DAG = DCI.DAG;
9873
9874 EVT VT = N->getValueType(0);
9875 unsigned Opc = N->getOpcode();
9876 SDValue Op0 = N->getOperand(0);
9877 SDValue Op1 = N->getOperand(1);
9878
9879 // Only do this if the inner op has one use since this will just increases
9880 // register pressure for no benefit.
9881
9882 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9883 !VT.isVector() &&
9884 (VT == MVT::i32 || VT == MVT::f32 ||
9885 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9886 // max(max(a, b), c) -> max3(a, b, c)
9887 // min(min(a, b), c) -> min3(a, b, c)
9888 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9889 SDLoc DL(N);
9890 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9891 DL,
9892 N->getValueType(0),
9893 Op0.getOperand(0),
9894 Op0.getOperand(1),
9895 Op1);
9896 }
9897
9898 // Try commuted.
9899 // max(a, max(b, c)) -> max3(a, b, c)
9900 // min(a, min(b, c)) -> min3(a, b, c)
9901 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9902 SDLoc DL(N);
9903 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9904 DL,
9905 N->getValueType(0),
9906 Op0,
9907 Op1.getOperand(0),
9908 Op1.getOperand(1));
9909 }
9910 }
9911
9912 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9913 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9914 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9915 return Med3;
9916 }
9917
9918 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9919 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9920 return Med3;
9921 }
9922
9923 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9924 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9925 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9926 (Opc == AMDGPUISD::FMIN_LEGACY &&
9927 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9928 (VT == MVT::f32 || VT == MVT::f64 ||
9929 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9930 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9931 Op0.hasOneUse()) {
9932 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9933 return Res;
9934 }
9935
9936 return SDValue();
9937}
9938
9939static bool isClampZeroToOne(SDValue A, SDValue B) {
9940 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9941 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9942 // FIXME: Should this be allowing -0.0?
9943 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9944 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9945 }
9946 }
9947
9948 return false;
9949}
9950
9951// FIXME: Should only worry about snans for version with chain.
9952SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9953 DAGCombinerInfo &DCI) const {
9954 EVT VT = N->getValueType(0);
9955 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9956 // NaNs. With a NaN input, the order of the operands may change the result.
9957
9958 SelectionDAG &DAG = DCI.DAG;
9959 SDLoc SL(N);
9960
9961 SDValue Src0 = N->getOperand(0);
9962 SDValue Src1 = N->getOperand(1);
9963 SDValue Src2 = N->getOperand(2);
9964
9965 if (isClampZeroToOne(Src0, Src1)) {
9966 // const_a, const_b, x -> clamp is safe in all cases including signaling
9967 // nans.
9968 // FIXME: Should this be allowing -0.0?
9969 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9970 }
9971
9972 const MachineFunction &MF = DAG.getMachineFunction();
9973 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9974
9975 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9976 // handling no dx10-clamp?
9977 if (Info->getMode().DX10Clamp) {
9978 // If NaNs is clamped to 0, we are free to reorder the inputs.
9979
9980 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9981 std::swap(Src0, Src1);
9982
9983 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9984 std::swap(Src1, Src2);
9985
9986 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9987 std::swap(Src0, Src1);
9988
9989 if (isClampZeroToOne(Src1, Src2))
9990 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9991 }
9992
9993 return SDValue();
9994}
9995
9996SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9997 DAGCombinerInfo &DCI) const {
9998 SDValue Src0 = N->getOperand(0);
9999 SDValue Src1 = N->getOperand(1);
10000 if (Src0.isUndef() && Src1.isUndef())
10001 return DCI.DAG.getUNDEF(N->getValueType(0));
10002 return SDValue();
10003}
10004
10005// Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10006// expanded into a set of cmp/select instructions.
10007bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10008 unsigned NumElem,
10009 bool IsDivergentIdx) {
10010 if (UseDivergentRegisterIndexing)
10011 return false;
10012
10013 unsigned VecSize = EltSize * NumElem;
10014
10015 // Sub-dword vectors of size 2 dword or less have better implementation.
10016 if (VecSize <= 64 && EltSize < 32)
10017 return false;
10018
10019 // Always expand the rest of sub-dword instructions, otherwise it will be
10020 // lowered via memory.
10021 if (EltSize < 32)
10022 return true;
10023
10024 // Always do this if var-idx is divergent, otherwise it will become a loop.
10025 if (IsDivergentIdx)
10026 return true;
10027
10028 // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10029 unsigned NumInsts = NumElem /* Number of compares */ +
10030 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10031 return NumInsts <= 16;
10032}
10033
10034static bool shouldExpandVectorDynExt(SDNode *N) {
10035 SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10036 if (isa<ConstantSDNode>(Idx))
10037 return false;
10038
10039 SDValue Vec = N->getOperand(0);
10040 EVT VecVT = Vec.getValueType();
10041 EVT EltVT = VecVT.getVectorElementType();
10042 unsigned EltSize = EltVT.getSizeInBits();
10043 unsigned NumElem = VecVT.getVectorNumElements();
10044
10045 return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10046 Idx->isDivergent());
10047}
10048
10049SDValue SITargetLowering::performExtractVectorEltCombine(
10050 SDNode *N, DAGCombinerInfo &DCI) const {
10051 SDValue Vec = N->getOperand(0);
10052 SelectionDAG &DAG = DCI.DAG;
10053
10054 EVT VecVT = Vec.getValueType();
10055 EVT EltVT = VecVT.getVectorElementType();
10056
10057 if ((Vec.getOpcode() == ISD::FNEG ||
10058 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10059 SDLoc SL(N);
10060 EVT EltVT = N->getValueType(0);
10061 SDValue Idx = N->getOperand(1);
10062 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10063 Vec.getOperand(0), Idx);
10064 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10065 }
10066
10067 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10068 // =>
10069 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10070 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10071 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10072 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10073 SDLoc SL(N);
10074 EVT EltVT = N->getValueType(0);
10075 SDValue Idx = N->getOperand(1);
10076 unsigned Opc = Vec.getOpcode();
10077
10078 switch(Opc) {
10079 default:
10080 break;
10081 // TODO: Support other binary operations.
10082 case ISD::FADD:
10083 case ISD::FSUB:
10084 case ISD::FMUL:
10085 case ISD::ADD:
10086 case ISD::UMIN:
10087 case ISD::UMAX:
10088 case ISD::SMIN:
10089 case ISD::SMAX:
10090 case ISD::FMAXNUM:
10091 case ISD::FMINNUM:
10092 case ISD::FMAXNUM_IEEE:
10093 case ISD::FMINNUM_IEEE: {
10094 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10095 Vec.getOperand(0), Idx);
10096 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10097 Vec.getOperand(1), Idx);
10098
10099 DCI.AddToWorklist(Elt0.getNode());
10100 DCI.AddToWorklist(Elt1.getNode());
10101 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10102 }
10103 }
10104 }
10105
10106 unsigned VecSize = VecVT.getSizeInBits();
10107 unsigned EltSize = EltVT.getSizeInBits();
10108
10109 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10110 if (::shouldExpandVectorDynExt(N)) {
10111 SDLoc SL(N);
10112 SDValue Idx = N->getOperand(1);
10113 SDValue V;
10114 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10115 SDValue IC = DAG.getVectorIdxConstant(I, SL);
10116 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10117 if (I == 0)
10118 V = Elt;
10119 else
10120 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10121 }
10122 return V;
10123 }
10124
10125 if (!DCI.isBeforeLegalize())
10126 return SDValue();
10127
10128 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10129 // elements. This exposes more load reduction opportunities by replacing
10130 // multiple small extract_vector_elements with a single 32-bit extract.
10131 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10132 if (isa<MemSDNode>(Vec) &&
10133 EltSize <= 16 &&
10134 EltVT.isByteSized() &&
10135 VecSize > 32 &&
10136 VecSize % 32 == 0 &&
10137 Idx) {
10138 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10139
10140 unsigned BitIndex = Idx->getZExtValue() * EltSize;
10141 unsigned EltIdx = BitIndex / 32;
10142 unsigned LeftoverBitIdx = BitIndex % 32;
10143 SDLoc SL(N);
10144
10145 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10146 DCI.AddToWorklist(Cast.getNode());
10147
10148 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10149 DAG.getConstant(EltIdx, SL, MVT::i32));
10150 DCI.AddToWorklist(Elt.getNode());
10151 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10152 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10153 DCI.AddToWorklist(Srl.getNode());
10154
10155 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10156 DCI.AddToWorklist(Trunc.getNode());
10157 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10158 }
10159
10160 return SDValue();
10161}
10162
10163SDValue
10164SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10165 DAGCombinerInfo &DCI) const {
10166 SDValue Vec = N->getOperand(0);
10167 SDValue Idx = N->getOperand(2);
10168 EVT VecVT = Vec.getValueType();
10169 EVT EltVT = VecVT.getVectorElementType();
10170
10171 // INSERT_VECTOR_ELT (<n x e>, var-idx)
10172 // => BUILD_VECTOR n x select (e, const-idx)
10173 if (!::shouldExpandVectorDynExt(N))
10174 return SDValue();
10175
10176 SelectionDAG &DAG = DCI.DAG;
10177 SDLoc SL(N);
10178 SDValue Ins = N->getOperand(1);
10179 EVT IdxVT = Idx.getValueType();
10180
10181 SmallVector<SDValue, 16> Ops;
10182 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10183 SDValue IC = DAG.getConstant(I, SL, IdxVT);
10184 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10185 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10186 Ops.push_back(V);
10187 }
10188
10189 return DAG.getBuildVector(VecVT, SL, Ops);
10190}
10191
10192unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10193 const SDNode *N0,
10194 const SDNode *N1) const {
10195 EVT VT = N0->getValueType(0);
10196
10197 // Only do this if we are not trying to support denormals. v_mad_f32 does not
10198 // support denormals ever.
10199 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10200 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10201 getSubtarget()->hasMadF16())) &&
10202 isOperationLegal(ISD::FMAD, VT))
10203 return ISD::FMAD;
10204
10205 const TargetOptions &Options = DAG.getTarget().Options;
10206 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10207 (N0->getFlags().hasAllowContract() &&
10208 N1->getFlags().hasAllowContract())) &&
10209 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10210 return ISD::FMA;
10211 }
10212
10213 return 0;
10214}
10215
10216// For a reassociatable opcode perform:
10217// op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10218SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10219 SelectionDAG &DAG) const {
10220 EVT VT = N->getValueType(0);
10221 if (VT != MVT::i32 && VT != MVT::i64)
10222 return SDValue();
10223
10224 unsigned Opc = N->getOpcode();
10225 SDValue Op0 = N->getOperand(0);
10226 SDValue Op1 = N->getOperand(1);
10227
10228 if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10229 return SDValue();
10230
10231 if (Op0->isDivergent())
10232 std::swap(Op0, Op1);
10233
10234 if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10235 return SDValue();
10236
10237 SDValue Op2 = Op1.getOperand(1);
10238 Op1 = Op1.getOperand(0);
10239 if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10240 return SDValue();
10241
10242 if (Op1->isDivergent())
10243 std::swap(Op1, Op2);
10244
10245 // If either operand is constant this will conflict with
10246 // DAGCombiner::ReassociateOps().
10247 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10248 DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10249 return SDValue();
10250
10251 SDLoc SL(N);
10252 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10253 return DAG.getNode(Opc, SL, VT, Add1, Op2);
10254}
10255
10256static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10257 EVT VT,
10258 SDValue N0, SDValue N1, SDValue N2,
10259 bool Signed) {
10260 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10261 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10262 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10263 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10264}
10265
10266SDValue SITargetLowering::performAddCombine(SDNode *N,
10267 DAGCombinerInfo &DCI) const {
10268 SelectionDAG &DAG = DCI.DAG;
10269 EVT VT = N->getValueType(0);
10270 SDLoc SL(N);
10271 SDValue LHS = N->getOperand(0);
10272 SDValue RHS = N->getOperand(1);
10273
10274 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10275 && Subtarget->hasMad64_32() &&
10276 !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10277 VT.getScalarSizeInBits() <= 64) {
10278 if (LHS.getOpcode() != ISD::MUL)
10279 std::swap(LHS, RHS);
10280
10281 SDValue MulLHS = LHS.getOperand(0);
10282 SDValue MulRHS = LHS.getOperand(1);
10283 SDValue AddRHS = RHS;
10284
10285 // TODO: Maybe restrict if SGPR inputs.
10286 if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10287 numBitsUnsigned(MulRHS, DAG) <= 32) {
10288 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10289 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10290 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10291 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10292 }
10293
10294 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
10295 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10296 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10297 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10298 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10299 }
10300
10301 return SDValue();
10302 }
10303
10304 if (SDValue V = reassociateScalarOps(N, DAG)) {
10305 return V;
10306 }
10307
10308 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10309 return SDValue();
10310
10311 // add x, zext (setcc) => addcarry x, 0, setcc
10312 // add x, sext (setcc) => subcarry x, 0, setcc
10313 unsigned Opc = LHS.getOpcode();
10314 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10315 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10316 std::swap(RHS, LHS);
10317
10318 Opc = RHS.getOpcode();
10319 switch (Opc) {
10320 default: break;
10321 case ISD::ZERO_EXTEND:
10322 case ISD::SIGN_EXTEND:
10323 case ISD::ANY_EXTEND: {
10324 auto Cond = RHS.getOperand(0);
10325 // If this won't be a real VOPC output, we would still need to insert an
10326 // extra instruction anyway.
10327 if (!isBoolSGPR(Cond))
10328 break;
10329 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10330 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10331 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10332 return DAG.getNode(Opc, SL, VTList, Args);
10333 }
10334 case ISD::ADDCARRY: {
10335 // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10336 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10337 if (!C || C->getZExtValue() != 0) break;
10338 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10339 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10340 }
10341 }
10342 return SDValue();
10343}
10344
10345SDValue SITargetLowering::performSubCombine(SDNode *N,
10346 DAGCombinerInfo &DCI) const {
10347 SelectionDAG &DAG = DCI.DAG;
10348 EVT VT = N->getValueType(0);
10349
10350 if (VT != MVT::i32)
10351 return SDValue();
10352
10353 SDLoc SL(N);
10354 SDValue LHS = N->getOperand(0);
10355 SDValue RHS = N->getOperand(1);
10356
10357 // sub x, zext (setcc) => subcarry x, 0, setcc
10358 // sub x, sext (setcc) => addcarry x, 0, setcc
10359 unsigned Opc = RHS.getOpcode();
10360 switch (Opc) {
10361 default: break;
10362 case ISD::ZERO_EXTEND:
10363 case ISD::SIGN_EXTEND:
10364 case ISD::ANY_EXTEND: {
10365 auto Cond = RHS.getOperand(0);
10366 // If this won't be a real VOPC output, we would still need to insert an
10367 // extra instruction anyway.
10368 if (!isBoolSGPR(Cond))
10369 break;
10370 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10371 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10372 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10373 return DAG.getNode(Opc, SL, VTList, Args);
10374 }
10375 }
10376
10377 if (LHS.getOpcode() == ISD::SUBCARRY) {
10378 // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10379 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10380 if (!C || !C->isNullValue())
10381 return SDValue();
10382 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10383 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10384 }
10385 return SDValue();
10386}
10387
10388SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10389 DAGCombinerInfo &DCI) const {
10390
10391 if (N->getValueType(0) != MVT::i32)
10392 return SDValue();
10393
10394 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10395 if (!C || C->getZExtValue() != 0)
10396 return SDValue();
10397
10398 SelectionDAG &DAG = DCI.DAG;
10399 SDValue LHS = N->getOperand(0);
10400
10401 // addcarry (add x, y), 0, cc => addcarry x, y, cc
10402 // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10403 unsigned LHSOpc = LHS.getOpcode();
10404 unsigned Opc = N->getOpcode();
10405 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10406 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10407 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10408 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10409 }
10410 return SDValue();
10411}
10412
10413SDValue SITargetLowering::performFAddCombine(SDNode *N,
10414 DAGCombinerInfo &DCI) const {
10415 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10416 return SDValue();
10417
10418 SelectionDAG &DAG = DCI.DAG;
10419 EVT VT = N->getValueType(0);
10420
10421 SDLoc SL(N);
10422 SDValue LHS = N->getOperand(0);
10423 SDValue RHS = N->getOperand(1);
10424
10425 // These should really be instruction patterns, but writing patterns with
10426 // source modiifiers is a pain.
10427
10428 // fadd (fadd (a, a), b) -> mad 2.0, a, b
10429 if (LHS.getOpcode() == ISD::FADD) {
10430 SDValue A = LHS.getOperand(0);
10431 if (A == LHS.getOperand(1)) {
10432 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10433 if (FusedOp != 0) {
10434 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10435 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10436 }
10437 }
10438 }
10439
10440 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10441 if (RHS.getOpcode() == ISD::FADD) {
10442 SDValue A = RHS.getOperand(0);
10443 if (A == RHS.getOperand(1)) {
10444 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10445 if (FusedOp != 0) {
10446 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10447 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10448 }
10449 }
10450 }
10451
10452 return SDValue();
10453}
10454
10455SDValue SITargetLowering::performFSubCombine(SDNode *N,
10456 DAGCombinerInfo &DCI) const {
10457 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10458 return SDValue();
10459
10460 SelectionDAG &DAG = DCI.DAG;
10461 SDLoc SL(N);
10462 EVT VT = N->getValueType(0);
10463 assert(!VT.isVector())((!VT.isVector()) ? static_cast<void> (0) : __assert_fail
("!VT.isVector()", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 10463, __PRETTY_FUNCTION__))
;
10464
10465 // Try to get the fneg to fold into the source modifier. This undoes generic
10466 // DAG combines and folds them into the mad.
10467 //
10468 // Only do this if we are not trying to support denormals. v_mad_f32 does
10469 // not support denormals ever.
10470 SDValue LHS = N->getOperand(0);
10471 SDValue RHS = N->getOperand(1);
10472 if (LHS.getOpcode() == ISD::FADD) {
10473 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10474 SDValue A = LHS.getOperand(0);
10475 if (A == LHS.getOperand(1)) {
10476 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10477 if (FusedOp != 0){
10478 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10479 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10480
10481 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10482 }
10483 }
10484 }
10485
10486 if (RHS.getOpcode() == ISD::FADD) {
10487 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10488
10489 SDValue A = RHS.getOperand(0);
10490 if (A == RHS.getOperand(1)) {
10491 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10492 if (FusedOp != 0){
10493 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10494 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10495 }
10496 }
10497 }
10498
10499 return SDValue();
10500}
10501
10502SDValue SITargetLowering::performFMACombine(SDNode *N,
10503 DAGCombinerInfo &DCI) const {
10504 SelectionDAG &DAG = DCI.DAG;
10505 EVT VT = N->getValueType(0);
10506 SDLoc SL(N);
10507
10508 if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
10509 return SDValue();
10510
10511 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10512 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10513 SDValue Op1 = N->getOperand(0);
10514 SDValue Op2 = N->getOperand(1);
10515 SDValue FMA = N->getOperand(2);
10516
10517 if (FMA.getOpcode() != ISD::FMA ||
10518 Op1.getOpcode() != ISD::FP_EXTEND ||
10519 Op2.getOpcode() != ISD::FP_EXTEND)
10520 return SDValue();
10521
10522 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10523 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10524 // is sufficient to allow generaing fdot2.
10525 const TargetOptions &Options = DAG.getTarget().Options;
10526 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10527 (N->getFlags().hasAllowContract() &&
10528 FMA->getFlags().hasAllowContract())) {
10529 Op1 = Op1.getOperand(0);
10530 Op2 = Op2.getOperand(0);
10531 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10532 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10533 return SDValue();
10534
10535 SDValue Vec1 = Op1.getOperand(0);
10536 SDValue Idx1 = Op1.getOperand(1);
10537 SDValue Vec2 = Op2.getOperand(0);
10538
10539 SDValue FMAOp1 = FMA.getOperand(0);
10540 SDValue FMAOp2 = FMA.getOperand(1);
10541 SDValue FMAAcc = FMA.getOperand(2);
10542
10543 if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10544 FMAOp2.getOpcode() != ISD::FP_EXTEND)
10545 return SDValue();
10546
10547 FMAOp1 = FMAOp1.getOperand(0);
10548 FMAOp2 = FMAOp2.getOperand(0);
10549 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10550 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10551 return SDValue();
10552
10553 SDValue Vec3 = FMAOp1.getOperand(0);
10554 SDValue Vec4 = FMAOp2.getOperand(0);
10555 SDValue Idx2 = FMAOp1.getOperand(1);
10556
10557 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10558 // Idx1 and Idx2 cannot be the same.
10559 Idx1 == Idx2)
10560 return SDValue();
10561
10562 if (Vec1 == Vec2 || Vec3 == Vec4)
10563 return SDValue();
10564
10565 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10566 return SDValue();
10567
10568 if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10569 (Vec1 == Vec4 && Vec2 == Vec3)) {
10570 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10571 DAG.getTargetConstant(0, SL, MVT::i1));
10572 }
10573 }
10574 return SDValue();
10575}
10576
10577SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10578 DAGCombinerInfo &DCI) const {
10579 SelectionDAG &DAG = DCI.DAG;
10580 SDLoc SL(N);
10581
10582 SDValue LHS = N->getOperand(0);
10583 SDValue RHS = N->getOperand(1);
10584 EVT VT = LHS.getValueType();
10585 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10586
10587 auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10588 if (!CRHS) {
10589 CRHS = dyn_cast<ConstantSDNode>(LHS);
10590 if (CRHS) {
10591 std::swap(LHS, RHS);
10592 CC = getSetCCSwappedOperands(CC);
10593 }
10594 }
10595
10596 if (CRHS) {
10597 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10598 isBoolSGPR(LHS.getOperand(0))) {
10599 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10600 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10601 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
10602 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
10603 if ((CRHS->isAllOnesValue() &&
10604 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10605 (CRHS->isNullValue() &&
10606 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10607 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10608 DAG.getConstant(-1, SL, MVT::i1));
10609 if ((CRHS->isAllOnesValue() &&
10610 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10611 (CRHS->isNullValue() &&
10612 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10613 return LHS.getOperand(0);
10614 }
10615
10616 uint64_t CRHSVal = CRHS->getZExtValue();
10617 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10618 LHS.getOpcode() == ISD::SELECT &&
10619 isa<ConstantSDNode>(LHS.getOperand(1)) &&
10620 isa<ConstantSDNode>(LHS.getOperand(2)) &&
10621 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10622 isBoolSGPR(LHS.getOperand(0))) {
10623 // Given CT != FT:
10624 // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10625 // setcc (select cc, CT, CF), CF, ne => cc
10626 // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10627 // setcc (select cc, CT, CF), CT, eq => cc
10628 uint64_t CT = LHS.getConstantOperandVal(1);
10629 uint64_t CF = LHS.getConstantOperandVal(2);
10630
10631 if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10632 (CT == CRHSVal && CC == ISD::SETNE))
10633 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10634 DAG.getConstant(-1, SL, MVT::i1));
10635 if ((CF == CRHSVal && CC == ISD::SETNE) ||
10636 (CT == CRHSVal && CC == ISD::SETEQ))
10637 return LHS.getOperand(0);
10638 }
10639 }
10640
10641 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10642 VT != MVT::f16))
10643 return SDValue();
10644
10645 // Match isinf/isfinite pattern
10646 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10647 // (fcmp one (fabs x), inf) -> (fp_class x,
10648 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10649 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10650 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10651 if (!CRHS)
10652 return SDValue();
10653
10654 const APFloat &APF = CRHS->getValueAPF();
10655 if (APF.isInfinity() && !APF.isNegative()) {
10656 const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10657 SIInstrFlags::N_INFINITY;
10658 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10659 SIInstrFlags::P_ZERO |
10660 SIInstrFlags::N_NORMAL |
10661 SIInstrFlags::P_NORMAL |
10662 SIInstrFlags::N_SUBNORMAL |
10663 SIInstrFlags::P_SUBNORMAL;
10664 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10665 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10666 DAG.getConstant(Mask, SL, MVT::i32));
10667 }
10668 }
10669
10670 return SDValue();
10671}
10672
10673SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10674 DAGCombinerInfo &DCI) const {
10675 SelectionDAG &DAG = DCI.DAG;
10676 SDLoc SL(N);
10677 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10678
10679 SDValue Src = N->getOperand(0);
10680 SDValue Shift = N->getOperand(0);
10681
10682 // TODO: Extend type shouldn't matter (assuming legal types).
10683 if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10684 Shift = Shift.getOperand(0);
10685
10686 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10687 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x
10688 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10689 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10690 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10691 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
10692 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10693 Shift = DAG.getZExtOrTrunc(Shift.getOperand(0),
10694 SDLoc(Shift.getOperand(0)), MVT::i32);
10695
10696 unsigned ShiftOffset = 8 * Offset;
10697 if (Shift.getOpcode() == ISD::SHL)
10698 ShiftOffset -= C->getZExtValue();
10699 else
10700 ShiftOffset += C->getZExtValue();
10701
10702 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10703 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10704 MVT::f32, Shift);
10705 }
10706 }
10707 }
10708
10709 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10710 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10711 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10712 // We simplified Src. If this node is not dead, visit it again so it is
10713 // folded properly.
10714 if (N->getOpcode() != ISD::DELETED_NODE)
10715 DCI.AddToWorklist(N);
10716 return SDValue(N, 0);
10717 }
10718
10719 // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10720 if (SDValue DemandedSrc =
10721 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10722 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10723
10724 return SDValue();
10725}
10726
10727SDValue SITargetLowering::performClampCombine(SDNode *N,
10728 DAGCombinerInfo &DCI) const {
10729 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10730 if (!CSrc)
10731 return SDValue();
10732
10733 const MachineFunction &MF = DCI.DAG.getMachineFunction();
10734 const APFloat &F = CSrc->getValueAPF();
10735 APFloat Zero = APFloat::getZero(F.getSemantics());
10736 if (F < Zero ||
10737 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10738 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10739 }
10740
10741 APFloat One(F.getSemantics(), "1.0");
10742 if (F > One)
10743 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10744
10745 return SDValue(CSrc, 0);
10746}
10747
10748
10749SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10750 DAGCombinerInfo &DCI) const {
10751 if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
10752 return SDValue();
10753 switch (N->getOpcode()) {
10754 case ISD::ADD:
10755 return performAddCombine(N, DCI);
10756 case ISD::SUB:
10757 return performSubCombine(N, DCI);
10758 case ISD::ADDCARRY:
10759 case ISD::SUBCARRY:
10760 return performAddCarrySubCarryCombine(N, DCI);
10761 case ISD::FADD:
10762 return performFAddCombine(N, DCI);
10763 case ISD::FSUB:
10764 return performFSubCombine(N, DCI);
10765 case ISD::SETCC:
10766 return performSetCCCombine(N, DCI);
10767 case ISD::FMAXNUM:
10768 case ISD::FMINNUM:
10769 case ISD::FMAXNUM_IEEE:
10770 case ISD::FMINNUM_IEEE:
10771 case ISD::SMAX:
10772 case ISD::SMIN:
10773 case ISD::UMAX:
10774 case ISD::UMIN:
10775 case AMDGPUISD::FMIN_LEGACY:
10776 case AMDGPUISD::FMAX_LEGACY:
10777 return performMinMaxCombine(N, DCI);
10778 case ISD::FMA:
10779 return performFMACombine(N, DCI);
10780 case ISD::AND:
10781 return performAndCombine(N, DCI);
10782 case ISD::OR:
10783 return performOrCombine(N, DCI);
10784 case ISD::XOR:
10785 return performXorCombine(N, DCI);
10786 case ISD::ZERO_EXTEND:
10787 return performZeroExtendCombine(N, DCI);
10788 case ISD::SIGN_EXTEND_INREG:
10789 return performSignExtendInRegCombine(N , DCI);
10790 case AMDGPUISD::FP_CLASS:
10791 return performClassCombine(N, DCI);
10792 case ISD::FCANONICALIZE:
10793 return performFCanonicalizeCombine(N, DCI);
10794 case AMDGPUISD::RCP:
10795 return performRcpCombine(N, DCI);
10796 case AMDGPUISD::FRACT:
10797 case AMDGPUISD::RSQ:
10798 case AMDGPUISD::RCP_LEGACY:
10799 case AMDGPUISD::RCP_IFLAG:
10800 case AMDGPUISD::RSQ_CLAMP:
10801 case AMDGPUISD::LDEXP: {
10802 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
10803 SDValue Src = N->getOperand(0);
10804 if (Src.isUndef())
10805 return Src;
10806 break;
10807 }
10808 case ISD::SINT_TO_FP:
10809 case ISD::UINT_TO_FP:
10810 return performUCharToFloatCombine(N, DCI);
10811 case AMDGPUISD::CVT_F32_UBYTE0:
10812 case AMDGPUISD::CVT_F32_UBYTE1:
10813 case AMDGPUISD::CVT_F32_UBYTE2:
10814 case AMDGPUISD::CVT_F32_UBYTE3:
10815 return performCvtF32UByteNCombine(N, DCI);
10816 case AMDGPUISD::FMED3:
10817 return performFMed3Combine(N, DCI);
10818 case AMDGPUISD::CVT_PKRTZ_F16_F32:
10819 return performCvtPkRTZCombine(N, DCI);
10820 case AMDGPUISD::CLAMP:
10821 return performClampCombine(N, DCI);
10822 case ISD::SCALAR_TO_VECTOR: {
10823 SelectionDAG &DAG = DCI.DAG;
10824 EVT VT = N->getValueType(0);
10825
10826 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10827 if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10828 SDLoc SL(N);
10829 SDValue Src = N->getOperand(0);
10830 EVT EltVT = Src.getValueType();
10831 if (EltVT == MVT::f16)
10832 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10833
10834 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10835 return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10836 }
10837
10838 break;
10839 }
10840 case ISD::EXTRACT_VECTOR_ELT:
10841 return performExtractVectorEltCombine(N, DCI);
10842 case ISD::INSERT_VECTOR_ELT:
10843 return performInsertVectorEltCombine(N, DCI);
10844 case ISD::LOAD: {
10845 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10846 return Widended;
10847 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10848 }
10849 default: {
10850 if (!DCI.isBeforeLegalize()) {
10851 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
10852 return performMemSDNodeCombine(MemNode, DCI);
10853 }
10854
10855 break;
10856 }
10857 }
10858
10859 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10860}
10861
10862/// Helper function for adjustWritemask
10863static unsigned SubIdx2Lane(unsigned Idx) {
10864 switch (Idx) {
10865 default: return 0;
10866 case AMDGPU::sub0: return 0;
10867 case AMDGPU::sub1: return 1;
10868 case AMDGPU::sub2: return 2;
10869 case AMDGPU::sub3: return 3;
10870 case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10871 }
10872}
10873
10874/// Adjust the writemask of MIMG instructions
10875SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10876 SelectionDAG &DAG) const {
10877 unsigned Opcode = Node->getMachineOpcode();
10878
10879 // Subtract 1 because the vdata output is not a MachineSDNode operand.
10880 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10881 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
7
Assuming 'D16Idx' is < 0
10882 return Node; // not implemented for D16
10883
10884 SDNode *Users[5] = { nullptr };
8
Initializing to a null pointer value
10885 unsigned Lane = 0;
9
'Lane' initialized to 0
10886 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10887 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10888 unsigned NewDmask = 0;
10889 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10890 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10891 bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10
Assuming the condition is false
12
'?' condition is true
10892 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
11
Assuming the condition is true
10893 unsigned TFCLane = 0;
10894 bool HasChain = Node->getNumValues() > 1;
13
Assuming the condition is false
10895
10896 if (OldDmask == 0) {
14
Assuming 'OldDmask' is not equal to 0
15
Taking false branch
10897 // These are folded out, but on the chance it happens don't assert.
10898 return Node;
10899 }
10900
10901 unsigned OldBitsSet = countPopulation(OldDmask);
10902 // Work out which is the TFE/LWE lane if that is enabled.
10903 if (UsesTFC
15.1
'UsesTFC' is true
) {
16
Taking true branch
10904 TFCLane = OldBitsSet;
10905 }
10906
10907 // Try to figure out the used register components
10908 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
17
Loop condition is false. Execution continues on line 10947
10909 I != E; ++I) {
10910
10911 // Don't look at users of the chain.
10912 if (I.getUse().getResNo() != 0)
10913 continue;
10914
10915 // Abort if we can't understand the usage
10916 if (!I->isMachineOpcode() ||
10917 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10918 return Node;
10919
10920 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10921 // Note that subregs are packed, i.e. Lane==0 is the first bit set
10922 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10923 // set, etc.
10924 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10925
10926 // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10927 if (UsesTFC && Lane == TFCLane) {
10928 Users[Lane] = *I;
10929 } else {
10930 // Set which texture component corresponds to the lane.
10931 unsigned Comp;
10932 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10933 Comp = countTrailingZeros(Dmask);
10934 Dmask &= ~(1 << Comp);
10935 }
10936
10937 // Abort if we have more than one user per component.
10938 if (Users[Lane])
10939 return Node;
10940
10941 Users[Lane] = *I;
10942 NewDmask |= 1 << Comp;
10943 }
10944 }
10945
10946 // Don't allow 0 dmask, as hardware assumes one channel enabled.
10947 bool NoChannels = !NewDmask;
10948 if (NoChannels
17.1
'NoChannels' is true
) {
18
Taking true branch
10949 if (!UsesTFC
18.1
'UsesTFC' is true
) {
19
Taking false branch
10950 // No uses of the result and not using TFC. Then do nothing.
10951 return Node;
10952 }
10953 // If the original dmask has one channel - then nothing to do
10954 if (OldBitsSet == 1)
20
Assuming 'OldBitsSet' is not equal to 1
21
Taking false branch
10955 return Node;
10956 // Use an arbitrary dmask - required for the instruction to work
10957 NewDmask = 1;
10958 }
10959 // Abort if there's no change
10960 if (NewDmask == OldDmask)
22
Assuming 'NewDmask' is not equal to 'OldDmask'
23
Taking false branch
10961 return Node;
10962
10963 unsigned BitsSet = countPopulation(NewDmask);
10964
10965 // Check for TFE or LWE - increase the number of channels by one to account
10966 // for the extra return value
10967 // This will need adjustment for D16 if this is also included in
10968 // adjustWriteMask (this function) but at present D16 are excluded.
10969 unsigned NewChannels = BitsSet + UsesTFC;
10970
10971 int NewOpcode =
10972 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10973 assert(NewOpcode != -1 &&((NewOpcode != -1 && NewOpcode != static_cast<int>
(Node->getMachineOpcode()) && "failed to find equivalent MIMG op"
) ? static_cast<void> (0) : __assert_fail ("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 10975, __PRETTY_FUNCTION__))
24
Assuming the condition is true
25
Assuming the condition is true
26
'?' condition is true
10974 NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&((NewOpcode != -1 && NewOpcode != static_cast<int>
(Node->getMachineOpcode()) && "failed to find equivalent MIMG op"
) ? static_cast<void> (0) : __assert_fail ("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 10975, __PRETTY_FUNCTION__))
10975 "failed to find equivalent MIMG op")((NewOpcode != -1 && NewOpcode != static_cast<int>
(Node->getMachineOpcode()) && "failed to find equivalent MIMG op"
) ? static_cast<void> (0) : __assert_fail ("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\""
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 10975, __PRETTY_FUNCTION__))
;
10976
10977 // Adjust the writemask in the node
10978 SmallVector<SDValue, 12> Ops;
10979 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10980 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10981 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10982
10983 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10984
10985 MVT ResultVT = NewChannels == 1 ?
27
Assuming 'NewChannels' is equal to 1
28
'?' condition is true
10986 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10987 NewChannels == 5 ? 8 : NewChannels);
10988 SDVTList NewVTList = HasChain
28.1
'HasChain' is false
?
29
'?' condition is false
10989 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10990
10991
10992 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10993 NewVTList, Ops);
10994
10995 if (HasChain
29.1
'HasChain' is false
) {
30
Taking false branch
10996 // Update chain.
10997 DAG.setNodeMemRefs(NewNode, Node->memoperands());
10998 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
10999 }
11000
11001 if (NewChannels
30.1
'NewChannels' is equal to 1
== 1) {
31
Taking true branch
11002 assert(Node->hasNUsesOfValue(1, 0))((Node->hasNUsesOfValue(1, 0)) ? static_cast<void> (
0) : __assert_fail ("Node->hasNUsesOfValue(1, 0)", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11002, __PRETTY_FUNCTION__))
;
32
Assuming the condition is true
33
'?' condition is true
11003 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11004 SDLoc(Node), Users[Lane]->getValueType(0),
34
Called C++ object pointer is null
11005 SDValue(NewNode, 0));
11006 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11007 return nullptr;
11008 }
11009
11010 // Update the users of the node with the new indices
11011 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11012 SDNode *User = Users[i];
11013 if (!User) {
11014 // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11015 // Users[0] is still nullptr because channel 0 doesn't really have a use.
11016 if (i || !NoChannels)
11017 continue;
11018 } else {
11019 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11020 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11021 }
11022
11023 switch (Idx) {
11024 default: break;
11025 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11026 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11027 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11028 case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11029 }
11030 }
11031
11032 DAG.RemoveDeadNode(Node);
11033 return nullptr;
11034}
11035
11036static bool isFrameIndexOp(SDValue Op) {
11037 if (Op.getOpcode() == ISD::AssertZext)
11038 Op = Op.getOperand(0);
11039
11040 return isa<FrameIndexSDNode>(Op);
11041}
11042
11043/// Legalize target independent instructions (e.g. INSERT_SUBREG)
11044/// with frame index operands.
11045/// LLVM assumes that inputs are to these instructions are registers.
11046SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11047 SelectionDAG &DAG) const {
11048 if (Node->getOpcode() == ISD::CopyToReg) {
11049 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11050 SDValue SrcVal = Node->getOperand(2);
11051
11052 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11053 // to try understanding copies to physical registers.
11054 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11055 SDLoc SL(Node);
11056 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11057 SDValue VReg = DAG.getRegister(
11058 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11059
11060 SDNode *Glued = Node->getGluedNode();
11061 SDValue ToVReg
11062 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11063 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11064 SDValue ToResultReg
11065 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11066 VReg, ToVReg.getValue(1));
11067 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11068 DAG.RemoveDeadNode(Node);
11069 return ToResultReg.getNode();
11070 }
11071 }
11072
11073 SmallVector<SDValue, 8> Ops;
11074 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11075 if (!isFrameIndexOp(Node->getOperand(i))) {
11076 Ops.push_back(Node->getOperand(i));
11077 continue;
11078 }
11079
11080 SDLoc DL(Node);
11081 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11082 Node->getOperand(i).getValueType(),
11083 Node->getOperand(i)), 0));
11084 }
11085
11086 return DAG.UpdateNodeOperands(Node, Ops);
11087}
11088
11089/// Fold the instructions after selecting them.
11090/// Returns null if users were already updated.
11091SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11092 SelectionDAG &DAG) const {
11093 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11094 unsigned Opcode = Node->getMachineOpcode();
11095
11096 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
1
Assuming the condition is true
2
Assuming the condition is true
5
Taking true branch
11097 !TII->isGather4(Opcode) &&
3
Assuming the condition is true
11098 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
4
Assuming the condition is true
11099 return adjustWritemask(Node, DAG);
6
Calling 'SITargetLowering::adjustWritemask'
11100 }
11101
11102 if (Opcode == AMDGPU::INSERT_SUBREG ||
11103 Opcode == AMDGPU::REG_SEQUENCE) {
11104 legalizeTargetIndependentNode(Node, DAG);
11105 return Node;
11106 }
11107
11108 switch (Opcode) {
11109 case AMDGPU::V_DIV_SCALE_F32:
11110 case AMDGPU::V_DIV_SCALE_F64: {
11111 // Satisfy the operand register constraint when one of the inputs is
11112 // undefined. Ordinarily each undef value will have its own implicit_def of
11113 // a vreg, so force these to use a single register.
11114 SDValue Src0 = Node->getOperand(1);
11115 SDValue Src1 = Node->getOperand(3);
11116 SDValue Src2 = Node->getOperand(5);
11117
11118 if ((Src0.isMachineOpcode() &&
11119 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11120 (Src0 == Src1 || Src0 == Src2))
11121 break;
11122
11123 MVT VT = Src0.getValueType().getSimpleVT();
11124 const TargetRegisterClass *RC =
11125 getRegClassFor(VT, Src0.getNode()->isDivergent());
11126
11127 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11128 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11129
11130 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11131 UndefReg, Src0, SDValue());
11132
11133 // src0 must be the same register as src1 or src2, even if the value is
11134 // undefined, so make sure we don't violate this constraint.
11135 if (Src0.isMachineOpcode() &&
11136 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11137 if (Src1.isMachineOpcode() &&
11138 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11139 Src0 = Src1;
11140 else if (Src2.isMachineOpcode() &&
11141 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11142 Src0 = Src2;
11143 else {
11144 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)((Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) ? static_cast
<void> (0) : __assert_fail ("Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11144, __PRETTY_FUNCTION__))
;
11145 Src0 = UndefReg;
11146 Src1 = UndefReg;
11147 }
11148 } else
11149 break;
11150
11151 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11152 Ops[1] = Src0;
11153 Ops[3] = Src1;
11154 Ops[5] = Src2;
11155 Ops.push_back(ImpDef.getValue(1));
11156 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11157 }
11158 default:
11159 break;
11160 }
11161
11162 return Node;
11163}
11164
11165/// Assign the register class depending on the number of
11166/// bits set in the writemask
11167void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11168 SDNode *Node) const {
11169 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11170
11171 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11172
11173 if (TII->isVOP3(MI.getOpcode())) {
11174 // Make sure constant bus requirements are respected.
11175 TII->legalizeOperandsVOP3(MRI, MI);
11176
11177 // Prefer VGPRs over AGPRs in mAI instructions where possible.
11178 // This saves a chain-copy of registers and better ballance register
11179 // use between vgpr and agpr as agpr tuples tend to be big.
11180 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
11181 unsigned Opc = MI.getOpcode();
11182 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11183 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11184 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11185 if (I == -1)
11186 break;
11187 MachineOperand &Op = MI.getOperand(I);
11188 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
11189 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
11190 !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg()))
11191 continue;
11192 auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11193 if (!Src || !Src->isCopy() ||
11194 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11195 continue;
11196 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11197 auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11198 // All uses of agpr64 and agpr32 can also accept vgpr except for
11199 // v_accvgpr_read, but we do not produce agpr reads during selection,
11200 // so no use checks are needed.
11201 MRI.setRegClass(Op.getReg(), NewRC);
11202 }
11203 }
11204
11205 return;
11206 }
11207
11208 // Replace unused atomics with the no return version.
11209 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11210 if (NoRetAtomicOp != -1) {
11211 if (!Node->hasAnyUseOfValue(0)) {
11212 int Glc1Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11213 AMDGPU::OpName::glc1);
11214 if (Glc1Idx != -1)
11215 MI.RemoveOperand(Glc1Idx);
11216 MI.RemoveOperand(0);
11217 MI.setDesc(TII->get(NoRetAtomicOp));
11218 return;
11219 }
11220
11221 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11222 // instruction, because the return type of these instructions is a vec2 of
11223 // the memory type, so it can be tied to the input operand.
11224 // This means these instructions always have a use, so we need to add a
11225 // special case to check if the atomic has only one extract_subreg use,
11226 // which itself has no uses.
11227 if ((Node->hasNUsesOfValue(1, 0) &&
11228 Node->use_begin()->isMachineOpcode() &&
11229 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11230 !Node->use_begin()->hasAnyUseOfValue(0))) {
11231 Register Def = MI.getOperand(0).getReg();
11232
11233 // Change this into a noret atomic.
11234 MI.setDesc(TII->get(NoRetAtomicOp));
11235 MI.RemoveOperand(0);
11236
11237 // If we only remove the def operand from the atomic instruction, the
11238 // extract_subreg will be left with a use of a vreg without a def.
11239 // So we need to insert an implicit_def to avoid machine verifier
11240 // errors.
11241 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11242 TII->get(AMDGPU::IMPLICIT_DEF), Def);
11243 }
11244 return;
11245 }
11246}
11247
11248static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11249 uint64_t Val) {
11250 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11251 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11252}
11253
11254MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11255 const SDLoc &DL,
11256 SDValue Ptr) const {
11257 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11258
11259 // Build the half of the subregister with the constants before building the
11260 // full 128-bit register. If we are building multiple resource descriptors,
11261 // this will allow CSEing of the 2-component register.
11262 const SDValue Ops0[] = {
11263 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11264 buildSMovImm32(DAG, DL, 0),
11265 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11266 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11267 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11268 };
11269
11270 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11271 MVT::v2i32, Ops0), 0);
11272
11273 // Combine the constants and the pointer.
11274 const SDValue Ops1[] = {
11275 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11276 Ptr,
11277 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11278 SubRegHi,
11279 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11280 };
11281
11282 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11283}
11284
11285/// Return a resource descriptor with the 'Add TID' bit enabled
11286/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11287/// of the resource descriptor) to create an offset, which is added to
11288/// the resource pointer.
11289MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11290 SDValue Ptr, uint32_t RsrcDword1,
11291 uint64_t RsrcDword2And3) const {
11292 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11293 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11294 if (RsrcDword1) {
11295 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11296 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11297 0);
11298 }
11299
11300 SDValue DataLo = buildSMovImm32(DAG, DL,
11301 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)0xFFFFFFFFUL);
11302 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11303
11304 const SDValue Ops[] = {
11305 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11306 PtrLo,
11307 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11308 PtrHi,
11309 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11310 DataLo,
11311 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11312 DataHi,
11313 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11314 };
11315
11316 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11317}
11318
11319//===----------------------------------------------------------------------===//
11320// SI Inline Assembly Support
11321//===----------------------------------------------------------------------===//
11322
11323std::pair<unsigned, const TargetRegisterClass *>
11324SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11325 StringRef Constraint,
11326 MVT VT) const {
11327 const TargetRegisterClass *RC = nullptr;
11328 if (Constraint.size() == 1) {
11329 const unsigned BitWidth = VT.getSizeInBits();
11330 switch (Constraint[0]) {
11331 default:
11332 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11333 case 's':
11334 case 'r':
11335 switch (BitWidth) {
11336 case 16:
11337 RC = &AMDGPU::SReg_32RegClass;
11338 break;
11339 case 64:
11340 RC = &AMDGPU::SGPR_64RegClass;
11341 break;
11342 default:
11343 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11344 if (!RC)
11345 return std::make_pair(0U, nullptr);
11346 break;
11347 }
11348 break;
11349 case 'v':
11350 switch (BitWidth) {
11351 case 16:
11352 RC = &AMDGPU::VGPR_32RegClass;
11353 break;
11354 default:
11355 RC = SIRegisterInfo::getVGPRClassForBitWidth(BitWidth);
11356 if (!RC)
11357 return std::make_pair(0U, nullptr);
11358 break;
11359 }
11360 break;
11361 case 'a':
11362 if (!Subtarget->hasMAIInsts())
11363 break;
11364 switch (BitWidth) {
11365 case 16:
11366 RC = &AMDGPU::AGPR_32RegClass;
11367 break;
11368 default:
11369 RC = SIRegisterInfo::getAGPRClassForBitWidth(BitWidth);
11370 if (!RC)
11371 return std::make_pair(0U, nullptr);
11372 break;
11373 }
11374 break;
11375 }
11376 // We actually support i128, i16 and f16 as inline parameters
11377 // even if they are not reported as legal
11378 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11379 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11380 return std::make_pair(0U, RC);
11381 }
11382
11383 if (Constraint.size() > 1) {
11384 if (Constraint[1] == 'v') {
11385 RC = &AMDGPU::VGPR_32RegClass;
11386 } else if (Constraint[1] == 's') {
11387 RC = &AMDGPU::SGPR_32RegClass;
11388 } else if (Constraint[1] == 'a') {
11389 RC = &AMDGPU::AGPR_32RegClass;
11390 }
11391
11392 if (RC) {
11393 uint32_t Idx;
11394 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11395 if (!Failed && Idx < RC->getNumRegs())
11396 return std::make_pair(RC->getRegister(Idx), RC);
11397 }
11398 }
11399
11400 // FIXME: Returns VS_32 for physical SGPR constraints
11401 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11402}
11403
11404static bool isImmConstraint(StringRef Constraint) {
11405 if (Constraint.size() == 1) {
11406 switch (Constraint[0]) {
11407 default: break;
11408 case 'I':
11409 case 'J':
11410 case 'A':
11411 case 'B':
11412 case 'C':
11413 return true;
11414 }
11415 } else if (Constraint == "DA" ||
11416 Constraint == "DB") {
11417 return true;
11418 }
11419 return false;
11420}
11421
11422SITargetLowering::ConstraintType
11423SITargetLowering::getConstraintType(StringRef Constraint) const {
11424 if (Constraint.size() == 1) {
11425 switch (Constraint[0]) {
11426 default: break;
11427 case 's':
11428 case 'v':
11429 case 'a':
11430 return C_RegisterClass;
11431 }
11432 }
11433 if (isImmConstraint(Constraint)) {
11434 return C_Other;
11435 }
11436 return TargetLowering::getConstraintType(Constraint);
11437}
11438
11439static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11440 if (!AMDGPU::isInlinableIntLiteral(Val)) {
11441 Val = Val & maskTrailingOnes<uint64_t>(Size);
11442 }
11443 return Val;
11444}
11445
11446void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11447 std::string &Constraint,
11448 std::vector<SDValue> &Ops,
11449 SelectionDAG &DAG) const {
11450 if (isImmConstraint(Constraint)) {
11451 uint64_t Val;
11452 if (getAsmOperandConstVal(Op, Val) &&
11453 checkAsmConstraintVal(Op, Constraint, Val)) {
11454 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11455 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11456 }
11457 } else {
11458 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11459 }
11460}
11461
11462bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11463 unsigned Size = Op.getScalarValueSizeInBits();
11464 if (Size > 64)
11465 return false;
11466
11467 if (Size == 16 && !Subtarget->has16BitInsts())
11468 return false;
11469
11470 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11471 Val = C->getSExtValue();
11472 return true;
11473 }
11474 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11475 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11476 return true;
11477 }
11478 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11479 if (Size != 16 || Op.getNumOperands() != 2)
11480 return false;
11481 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11482 return false;
11483 if (ConstantSDNode *C = V->getConstantSplatNode()) {
11484 Val = C->getSExtValue();
11485 return true;
11486 }
11487 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11488 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11489 return true;
11490 }
11491 }
11492
11493 return false;
11494}
11495
11496bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11497 const std::string &Constraint,
11498 uint64_t Val) const {
11499 if (Constraint.size() == 1) {
11500 switch (Constraint[0]) {
11501 case 'I':
11502 return AMDGPU::isInlinableIntLiteral(Val);
11503 case 'J':
11504 return isInt<16>(Val);
11505 case 'A':
11506 return checkAsmConstraintValA(Op, Val);
11507 case 'B':
11508 return isInt<32>(Val);
11509 case 'C':
11510 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11511 AMDGPU::isInlinableIntLiteral(Val);
11512 default:
11513 break;
11514 }
11515 } else if (Constraint.size() == 2) {
11516 if (Constraint == "DA") {
11517 int64_t HiBits = static_cast<int32_t>(Val >> 32);
11518 int64_t LoBits = static_cast<int32_t>(Val);
11519 return checkAsmConstraintValA(Op, HiBits, 32) &&
11520 checkAsmConstraintValA(Op, LoBits, 32);
11521 }
11522 if (Constraint == "DB") {
11523 return true;
11524 }
11525 }
11526 llvm_unreachable("Invalid asm constraint")::llvm::llvm_unreachable_internal("Invalid asm constraint", "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11526)
;
11527}
11528
11529bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11530 uint64_t Val,
11531 unsigned MaxSize) const {
11532 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11533 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11534 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11535 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11536 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11537 return true;
11538 }
11539 return false;
11540}
11541
11542// Figure out which registers should be reserved for stack access. Only after
11543// the function is legalized do we know all of the non-spill stack objects or if
11544// calls are present.
11545void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11546 MachineRegisterInfo &MRI = MF.getRegInfo();
11547 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11548 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11549 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11550
11551 if (Info->isEntryFunction()) {
11552 // Callable functions have fixed registers used for stack access.
11553 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11554 }
11555
11556 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),((!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->
getStackPtrOffsetReg())) ? static_cast<void> (0) : __assert_fail
("!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11557, __PRETTY_FUNCTION__))
11557 Info->getStackPtrOffsetReg()))((!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->
getStackPtrOffsetReg())) ? static_cast<void> (0) : __assert_fail
("!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11557, __PRETTY_FUNCTION__))
;
11558 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11559 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11560
11561 // We need to worry about replacing the default register with itself in case
11562 // of MIR testcases missing the MFI.
11563 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11564 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11565
11566 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11567 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11568
11569 Info->limitOccupancy(MF);
11570
11571 if (ST.isWave32() && !MF.empty()) {
11572 const SIInstrInfo *TII = ST.getInstrInfo();
11573 for (auto &MBB : MF) {
11574 for (auto &MI : MBB) {
11575 TII->fixImplicitOperands(MI);
11576 }
11577 }
11578 }
11579
11580 TargetLoweringBase::finalizeLowering(MF);
11581
11582 // Allocate a VGPR for future SGPR Spill if
11583 // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11584 // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11585 if (VGPRReserveforSGPRSpill && !Info->VGPRReservedForSGPRSpill &&
11586 !Info->isEntryFunction() && MF.getFrameInfo().hasStackObjects())
11587 Info->reserveVGPRforSGPRSpills(MF);
11588}
11589
11590void SITargetLowering::computeKnownBitsForFrameIndex(
11591 const int FI, KnownBits &Known, const MachineFunction &MF) const {
11592 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11593
11594 // Set the high bits to zero based on the maximum allowed scratch size per
11595 // wave. We can't use vaddr in MUBUF instructions if we don't know the address
11596 // calculation won't overflow, so assume the sign bit is never set.
11597 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
11598}
11599
11600static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
11601 KnownBits &Known, unsigned Dim) {
11602 unsigned MaxValue =
11603 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
11604 Known.Zero.setHighBits(countLeadingZeros(MaxValue));
11605}
11606
11607void SITargetLowering::computeKnownBitsForTargetInstr(
11608 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
11609 const MachineRegisterInfo &MRI, unsigned Depth) const {
11610 const MachineInstr *MI = MRI.getVRegDef(R);
11611 switch (MI->getOpcode()) {
11612 case AMDGPU::G_INTRINSIC: {
11613 switch (MI->getIntrinsicID()) {
11614 case Intrinsic::amdgcn_workitem_id_x:
11615 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
11616 break;
11617 case Intrinsic::amdgcn_workitem_id_y:
11618 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
11619 break;
11620 case Intrinsic::amdgcn_workitem_id_z:
11621 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
11622 break;
11623 case Intrinsic::amdgcn_mbcnt_lo:
11624 case Intrinsic::amdgcn_mbcnt_hi: {
11625 // These return at most the wavefront size - 1.
11626 unsigned Size = MRI.getType(R).getSizeInBits();
11627 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
11628 break;
11629 }
11630 case Intrinsic::amdgcn_groupstaticsize: {
11631 // We can report everything over the maximum size as 0. We can't report
11632 // based on the actual size because we don't know if it's accurate or not
11633 // at any given point.
11634 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
11635 break;
11636 }
11637 }
11638 break;
11639 }
11640 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
11641 Known.Zero.setHighBits(24);
11642 break;
11643 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
11644 Known.Zero.setHighBits(16);
11645 break;
11646 }
11647}
11648
11649Align SITargetLowering::computeKnownAlignForTargetInstr(
11650 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
11651 unsigned Depth) const {
11652 const MachineInstr *MI = MRI.getVRegDef(R);
11653 switch (MI->getOpcode()) {
11654 case AMDGPU::G_INTRINSIC:
11655 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
11656 // FIXME: Can this move to generic code? What about the case where the call
11657 // site specifies a lower alignment?
11658 Intrinsic::ID IID = MI->getIntrinsicID();
11659 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
11660 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
11661 if (MaybeAlign RetAlign = Attrs.getRetAlignment())
11662 return *RetAlign;
11663 return Align(1);
11664 }
11665 default:
11666 return Align(1);
11667 }
11668}
11669
11670Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11671 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
11672 const Align CacheLineAlign = Align(64);
11673
11674 // Pre-GFX10 target did not benefit from loop alignment
11675 if (!ML || DisableLoopAlignment ||
11676 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
11677 getSubtarget()->hasInstFwdPrefetchBug())
11678 return PrefAlign;
11679
11680 // On GFX10 I$ is 4 x 64 bytes cache lines.
11681 // By default prefetcher keeps one cache line behind and reads two ahead.
11682 // We can modify it with S_INST_PREFETCH for larger loops to have two lines
11683 // behind and one ahead.
11684 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
11685 // If loop fits 64 bytes it always spans no more than two cache lines and
11686 // does not need an alignment.
11687 // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
11688 // Else if loop is less or equal 192 bytes we need two lines behind.
11689
11690 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11691 const MachineBasicBlock *Header = ML->getHeader();
11692 if (Header->getAlignment() != PrefAlign)
11693 return Header->getAlignment(); // Already processed.
11694
11695 unsigned LoopSize = 0;
11696 for (const MachineBasicBlock *MBB : ML->blocks()) {
11697 // If inner loop block is aligned assume in average half of the alignment
11698 // size to be added as nops.
11699 if (MBB != Header)
11700 LoopSize += MBB->getAlignment().value() / 2;
11701
11702 for (const MachineInstr &MI : *MBB) {
11703 LoopSize += TII->getInstSizeInBytes(MI);
11704 if (LoopSize > 192)
11705 return PrefAlign;
11706 }
11707 }
11708
11709 if (LoopSize <= 64)
11710 return PrefAlign;
11711
11712 if (LoopSize <= 128)
11713 return CacheLineAlign;
11714
11715 // If any of parent loops is surrounded by prefetch instructions do not
11716 // insert new for inner loop, which would reset parent's settings.
11717 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
11718 if (MachineBasicBlock *Exit = P->getExitBlock()) {
11719 auto I = Exit->getFirstNonDebugInstr();
11720 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
11721 return CacheLineAlign;
11722 }
11723 }
11724
11725 MachineBasicBlock *Pre = ML->getLoopPreheader();
11726 MachineBasicBlock *Exit = ML->getExitBlock();
11727
11728 if (Pre && Exit) {
11729 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
11730 TII->get(AMDGPU::S_INST_PREFETCH))
11731 .addImm(1); // prefetch 2 lines behind PC
11732
11733 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
11734 TII->get(AMDGPU::S_INST_PREFETCH))
11735 .addImm(2); // prefetch 1 line behind PC
11736 }
11737
11738 return CacheLineAlign;
11739}
11740
11741LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
11742static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
11743 assert(N->getOpcode() == ISD::CopyFromReg)((N->getOpcode() == ISD::CopyFromReg) ? static_cast<void
> (0) : __assert_fail ("N->getOpcode() == ISD::CopyFromReg"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11743, __PRETTY_FUNCTION__))
;
11744 do {
11745 // Follow the chain until we find an INLINEASM node.
11746 N = N->getOperand(0).getNode();
11747 if (N->getOpcode() == ISD::INLINEASM ||
11748 N->getOpcode() == ISD::INLINEASM_BR)
11749 return true;
11750 } while (N->getOpcode() == ISD::CopyFromReg);
11751 return false;
11752}
11753
11754bool SITargetLowering::isSDNodeSourceOfDivergence(
11755 const SDNode *N, FunctionLoweringInfo *FLI,
11756 LegacyDivergenceAnalysis *KDA) const {
11757 switch (N->getOpcode()) {
11758 case ISD::CopyFromReg: {
11759 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
11760 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
11761 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11762 Register Reg = R->getReg();
11763
11764 // FIXME: Why does this need to consider isLiveIn?
11765 if (Reg.isPhysical() || MRI.isLiveIn(Reg))
11766 return !TRI->isSGPRReg(MRI, Reg);
11767
11768 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
11769 return KDA->isDivergent(V);
11770
11771 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N))((Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N
)) ? static_cast<void> (0) : __assert_fail ("Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)"
, "/build/llvm-toolchain-snapshot-12~++20201223111114+221fdedc6926/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11771, __PRETTY_FUNCTION__))
;
11772 return !TRI->isSGPRReg(MRI, Reg);
11773 }
11774 case ISD::LOAD: {
11775 const LoadSDNode *L = cast<LoadSDNode>(N);
11776 unsigned AS = L->getAddressSpace();
11777 // A flat load may access private memory.
11778 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
11779 }
11780 case ISD::CALLSEQ_END:
11781 return true;
11782 case ISD::INTRINSIC_WO_CHAIN:
11783 return AMDGPU::isIntrinsicSourceOfDivergence(
11784 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
11785 case ISD::INTRINSIC_W_CHAIN:
11786 return AMDGPU::isIntrinsicSourceOfDivergence(
11787 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
11788 }
11789 return false;
11790}
11791
11792bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
11793 EVT VT) const {
11794 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
11795 case MVT::f32:
11796 return hasFP32Denormals(DAG.getMachineFunction());
11797 case MVT::f64:
11798 case MVT::f16:
11799 return hasFP64FP16Denormals(DAG.getMachineFunction());
11800 default:
11801 return false;
11802 }
11803}
11804
11805bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
11806 const SelectionDAG &DAG,
11807 bool SNaN,
11808 unsigned Depth) const {
11809 if (Op.getOpcode() == AMDGPUISD::CLAMP) {
11810 const MachineFunction &MF = DAG.getMachineFunction();
11811 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11812
11813 if (Info->getMode().DX10Clamp)
11814 return true; // Clamped to 0.
11815 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
11816 }
11817
11818 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
11819 SNaN, Depth);
11820}
11821
11822// Global FP atomic instructions have a hardcoded FP mode and do not support
11823// FP32 denormals, and only support v2f16 denormals.
11824static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
11825 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
11826 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
11827 if (&Flt == &APFloat::IEEEsingle())
11828 return DenormMode == DenormalMode::getPreserveSign();
11829 return DenormMode == DenormalMode::getIEEE();
11830}
11831
11832TargetLowering::AtomicExpansionKind
11833SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
11834 switch (RMW->getOperation()) {
11835 case AtomicRMWInst::FAdd: {
11836 Type *Ty = RMW->getType();
11837
11838 // We don't have a way to support 16-bit atomics now, so just leave them
11839 // as-is.
11840 if (Ty->isHalfTy())
11841 return AtomicExpansionKind::None;
11842
11843 if (!Ty->isFloatTy())
11844 return AtomicExpansionKind::CmpXChg;
11845
11846 // TODO: Do have these for flat. Older targets also had them for buffers.
11847 unsigned AS = RMW->getPointerAddressSpace();
11848
11849 if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) {
11850 if (!fpModeMatchesGlobalFPAtomicMode(RMW))
11851 return AtomicExpansionKind::CmpXChg;
11852
11853 return RMW->use_empty() ? AtomicExpansionKind::None :
11854 AtomicExpansionKind::CmpXChg;
11855 }
11856
11857 // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
11858 // to round-to-nearest-even.
11859 return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
11860 AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
11861 }
11862 default:
11863 break;
11864 }
11865
11866 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
11867}
11868
11869const TargetRegisterClass *
11870SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
11871 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
11872 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11873 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
11874 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
11875 : &AMDGPU::SReg_32RegClass;
11876 if (!TRI->isSGPRClass(RC) && !isDivergent)
11877 return TRI->getEquivalentSGPRClass(RC);
11878 else if (TRI->isSGPRClass(RC) && isDivergent)
11879 return TRI->getEquivalentVGPRClass(RC);
11880
11881 return RC;
11882}
11883
11884// FIXME: This is a workaround for DivergenceAnalysis not understanding always
11885// uniform values (as produced by the mask results of control flow intrinsics)
11886// used outside of divergent blocks. The phi users need to also be treated as
11887// always uniform.
11888static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
11889 unsigned WaveSize) {
11890 // FIXME: We asssume we never cast the mask results of a control flow
11891 // intrinsic.
11892 // Early exit if the type won't be consistent as a compile time hack.
11893 IntegerType *IT = dyn_cast<IntegerType>(V->getType());
11894 if (!IT || IT->getBitWidth() != WaveSize)
11895 return false;
11896
11897 if (!isa<Instruction>(V))
11898 return false;
11899 if (!Visited.insert(V).second)
11900 return false;
11901 bool Result = false;
11902 for (auto U : V->users()) {
11903 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
11904 if (V == U->getOperand(1)) {
11905 switch (Intrinsic->getIntrinsicID()) {
11906 default:
11907 Result = false;
11908 break;
11909 case Intrinsic::amdgcn_if_break:
11910 case Intrinsic::amdgcn_if:
11911 case Intrinsic::amdgcn_else:
11912 Result = true;
11913 break;
11914 }
11915 }
11916 if (V == U->getOperand(0)) {
11917 switch (Intrinsic->getIntrinsicID()) {
11918 default:
11919 Result = false;
11920 break;
11921 case Intrinsic::amdgcn_end_cf:
11922 case Intrinsic::amdgcn_loop:
11923 Result = true;
11924 break;
11925 }
11926 }
11927 } else {
11928 Result = hasCFUser(U, Visited, WaveSize);
11929 }
11930 if (Result)
11931 break;
11932 }
11933 return Result;
11934}
11935
11936bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
11937 const Value *V) const {
11938 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
11939 if (CI->isInlineAsm()) {
11940 // FIXME: This cannot give a correct answer. This should only trigger in
11941 // the case where inline asm returns mixed SGPR and VGPR results, used
11942 // outside the defining block. We don't have a specific result to
11943 // consider, so this assumes if any value is SGPR, the overall register
11944 // also needs to be SGPR.
11945 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
11946 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
11947 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
11948 for (auto &TC : TargetConstraints) {
11949 if (TC.Type == InlineAsm::isOutput) {
11950 ComputeConstraintToUse(TC, SDValue());
11951 unsigned AssignedReg;
11952 const TargetRegisterClass *RC;
11953 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
11954 SIRI, TC.ConstraintCode, TC.ConstraintVT);
11955 if (RC) {
11956 MachineRegisterInfo &MRI = MF.getRegInfo();
11957 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
11958 return true;
11959 else if (SIRI->isSGPRClass(RC))
11960 return true;
11961 }
11962 }
11963 }
11964 }
11965 }
11966 SmallPtrSet<const Value *, 16> Visited;
11967 return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
11968}
11969
11970std::pair<int, MVT>
11971SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
11972 Type *Ty) const {
11973 auto Cost = TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
11974 auto Size = DL.getTypeSizeInBits(Ty);
11975 // Maximum load or store can handle 8 dwords for scalar and 4 for
11976 // vector ALU. Let's assume anything above 8 dwords is expensive
11977 // even if legal.
11978 if (Size <= 256)
11979 return Cost;
11980
11981 Cost.first = (Size + 255) / 256;
11982 return Cost;
11983}