File: | build/source/llvm/lib/Target/AMDGPU/SIISelLowering.cpp |
Warning: | line 11962, column 52 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// Custom DAG lowering for SI |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "SIISelLowering.h" |
15 | #include "AMDGPU.h" |
16 | #include "AMDGPUInstrInfo.h" |
17 | #include "AMDGPUTargetMachine.h" |
18 | #include "SIMachineFunctionInfo.h" |
19 | #include "SIRegisterInfo.h" |
20 | #include "llvm/ADT/FloatingPointMode.h" |
21 | #include "llvm/ADT/Statistic.h" |
22 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
23 | #include "llvm/Analysis/UniformityAnalysis.h" |
24 | #include "llvm/BinaryFormat/ELF.h" |
25 | #include "llvm/CodeGen/Analysis.h" |
26 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
27 | #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" |
28 | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
29 | #include "llvm/CodeGen/MachineFrameInfo.h" |
30 | #include "llvm/CodeGen/MachineFunction.h" |
31 | #include "llvm/CodeGen/MachineLoopInfo.h" |
32 | #include "llvm/IR/DiagnosticInfo.h" |
33 | #include "llvm/IR/IRBuilder.h" |
34 | #include "llvm/IR/IntrinsicInst.h" |
35 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
36 | #include "llvm/IR/IntrinsicsR600.h" |
37 | #include "llvm/Support/CommandLine.h" |
38 | #include "llvm/Support/KnownBits.h" |
39 | #include "llvm/Support/ModRef.h" |
40 | |
41 | using namespace llvm; |
42 | |
43 | #define DEBUG_TYPE"si-lower" "si-lower" |
44 | |
45 | STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = {"si-lower", "NumTailCalls" , "Number of tail calls"}; |
46 | |
47 | static cl::opt<bool> DisableLoopAlignment( |
48 | "amdgpu-disable-loop-alignment", |
49 | cl::desc("Do not align and prefetch loops"), |
50 | cl::init(false)); |
51 | |
52 | static cl::opt<bool> UseDivergentRegisterIndexing( |
53 | "amdgpu-use-divergent-register-indexing", |
54 | cl::Hidden, |
55 | cl::desc("Use indirect register addressing for divergent indexes"), |
56 | cl::init(false)); |
57 | |
58 | static bool hasFP32Denormals(const MachineFunction &MF) { |
59 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
60 | return Info->getMode().allFP32Denormals(); |
61 | } |
62 | |
63 | static bool hasFP64FP16Denormals(const MachineFunction &MF) { |
64 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
65 | return Info->getMode().allFP64FP16Denormals(); |
66 | } |
67 | |
68 | static unsigned findFirstFreeSGPR(CCState &CCInfo) { |
69 | unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); |
70 | for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { |
71 | if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { |
72 | return AMDGPU::SGPR0 + Reg; |
73 | } |
74 | } |
75 | llvm_unreachable("Cannot allocate sgpr")::llvm::llvm_unreachable_internal("Cannot allocate sgpr", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 75); |
76 | } |
77 | |
78 | SITargetLowering::SITargetLowering(const TargetMachine &TM, |
79 | const GCNSubtarget &STI) |
80 | : AMDGPUTargetLowering(TM, STI), |
81 | Subtarget(&STI) { |
82 | addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); |
83 | addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); |
84 | |
85 | addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); |
86 | addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); |
87 | |
88 | addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); |
89 | |
90 | const SIRegisterInfo *TRI = STI.getRegisterInfo(); |
91 | const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); |
92 | |
93 | addRegisterClass(MVT::f64, V64RegClass); |
94 | addRegisterClass(MVT::v2f32, V64RegClass); |
95 | |
96 | addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); |
97 | addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); |
98 | |
99 | addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); |
100 | addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); |
101 | |
102 | addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); |
103 | addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); |
104 | |
105 | addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); |
106 | addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); |
107 | |
108 | addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); |
109 | addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); |
110 | |
111 | addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); |
112 | addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); |
113 | |
114 | addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); |
115 | addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); |
116 | |
117 | addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); |
118 | addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); |
119 | |
120 | addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); |
121 | addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); |
122 | |
123 | addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass); |
124 | addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288)); |
125 | |
126 | addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass); |
127 | addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320)); |
128 | |
129 | addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass); |
130 | addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352)); |
131 | |
132 | addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass); |
133 | addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384)); |
134 | |
135 | addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); |
136 | addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); |
137 | |
138 | addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); |
139 | addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); |
140 | |
141 | addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); |
142 | addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); |
143 | |
144 | if (Subtarget->has16BitInsts()) { |
145 | addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); |
146 | addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); |
147 | |
148 | // Unless there are also VOP3P operations, not operations are really legal. |
149 | addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); |
150 | addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); |
151 | addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); |
152 | addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); |
153 | addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); |
154 | addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); |
155 | addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); |
156 | addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); |
157 | } |
158 | |
159 | addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); |
160 | addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); |
161 | |
162 | computeRegisterProperties(Subtarget->getRegisterInfo()); |
163 | |
164 | // The boolean content concept here is too inflexible. Compares only ever |
165 | // really produce a 1-bit result. Any copy/extend from these will turn into a |
166 | // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as |
167 | // it's what most targets use. |
168 | setBooleanContents(ZeroOrOneBooleanContent); |
169 | setBooleanVectorContents(ZeroOrOneBooleanContent); |
170 | |
171 | // We need to custom lower vector stores from local memory |
172 | setOperationAction(ISD::LOAD, |
173 | {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, |
174 | MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, |
175 | MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, |
176 | MVT::i1, MVT::v32i32}, |
177 | Custom); |
178 | |
179 | setOperationAction(ISD::STORE, |
180 | {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, |
181 | MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, |
182 | MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, |
183 | MVT::i1, MVT::v32i32}, |
184 | Custom); |
185 | |
186 | setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); |
187 | setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); |
188 | setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); |
189 | setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); |
190 | setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); |
191 | setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); |
192 | setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); |
193 | setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); |
194 | setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); |
195 | setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); |
196 | setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); |
197 | setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); |
198 | setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); |
199 | setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); |
200 | setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); |
201 | setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); |
202 | |
203 | setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); |
204 | setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); |
205 | setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); |
206 | setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); |
207 | setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); |
208 | setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); |
209 | setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); |
210 | |
211 | setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); |
212 | |
213 | setOperationAction(ISD::SELECT, MVT::i1, Promote); |
214 | setOperationAction(ISD::SELECT, MVT::i64, Custom); |
215 | setOperationAction(ISD::SELECT, MVT::f64, Promote); |
216 | AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); |
217 | |
218 | setOperationAction(ISD::SELECT_CC, |
219 | {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); |
220 | |
221 | setOperationAction(ISD::SETCC, MVT::i1, Promote); |
222 | setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); |
223 | AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); |
224 | |
225 | setOperationAction(ISD::TRUNCATE, |
226 | {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, |
227 | MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, |
228 | MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32}, |
229 | Expand); |
230 | setOperationAction(ISD::FP_ROUND, |
231 | {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, |
232 | MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32, |
233 | MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32}, |
234 | Expand); |
235 | |
236 | setOperationAction(ISD::SIGN_EXTEND_INREG, |
237 | {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, |
238 | MVT::v3i16, MVT::v4i16, MVT::Other}, |
239 | Custom); |
240 | |
241 | setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
242 | setOperationAction(ISD::BR_CC, |
243 | {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); |
244 | |
245 | setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); |
246 | |
247 | setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i32, Legal); |
248 | |
249 | setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, |
250 | Expand); |
251 | |
252 | #if 0 |
253 | setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i64, Legal); |
254 | #endif |
255 | |
256 | // We only support LOAD/STORE and vector manipulation ops for vectors |
257 | // with > 4 elements. |
258 | for (MVT VT : |
259 | {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, |
260 | MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32, |
261 | MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16, |
262 | MVT::v4f16, MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32, |
263 | MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, MVT::v8i16, |
264 | MVT::v8f16, MVT::v16i16, MVT::v16f16, MVT::v16i64, MVT::v16f64, |
265 | MVT::v32i32, MVT::v32f32}) { |
266 | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { |
267 | switch (Op) { |
268 | case ISD::LOAD: |
269 | case ISD::STORE: |
270 | case ISD::BUILD_VECTOR: |
271 | case ISD::BITCAST: |
272 | case ISD::UNDEF: |
273 | case ISD::EXTRACT_VECTOR_ELT: |
274 | case ISD::INSERT_VECTOR_ELT: |
275 | case ISD::EXTRACT_SUBVECTOR: |
276 | case ISD::SCALAR_TO_VECTOR: |
277 | case ISD::IS_FPCLASS: |
278 | break; |
279 | case ISD::INSERT_SUBVECTOR: |
280 | case ISD::CONCAT_VECTORS: |
281 | setOperationAction(Op, VT, Custom); |
282 | break; |
283 | default: |
284 | setOperationAction(Op, VT, Expand); |
285 | break; |
286 | } |
287 | } |
288 | } |
289 | |
290 | setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); |
291 | |
292 | // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that |
293 | // is expanded to avoid having two separate loops in case the index is a VGPR. |
294 | |
295 | // Most operations are naturally 32-bit vector operations. We only support |
296 | // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. |
297 | for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { |
298 | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
299 | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); |
300 | |
301 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
302 | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); |
303 | |
304 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
305 | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); |
306 | |
307 | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
308 | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); |
309 | } |
310 | |
311 | for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { |
312 | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
313 | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); |
314 | |
315 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
316 | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); |
317 | |
318 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
319 | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); |
320 | |
321 | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
322 | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); |
323 | } |
324 | |
325 | for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { |
326 | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
327 | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); |
328 | |
329 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
330 | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); |
331 | |
332 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
333 | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); |
334 | |
335 | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
336 | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); |
337 | } |
338 | |
339 | for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { |
340 | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
341 | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); |
342 | |
343 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
344 | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); |
345 | |
346 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
347 | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); |
348 | |
349 | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
350 | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); |
351 | } |
352 | |
353 | for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { |
354 | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
355 | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); |
356 | |
357 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
358 | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); |
359 | |
360 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
361 | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); |
362 | |
363 | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
364 | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); |
365 | } |
366 | |
367 | setOperationAction(ISD::VECTOR_SHUFFLE, |
368 | {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, |
369 | Expand); |
370 | |
371 | setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom); |
372 | |
373 | // Avoid stack access for these. |
374 | // TODO: Generalize to more vector types. |
375 | setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, |
376 | {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, |
377 | MVT::v4i16, MVT::v4f16}, |
378 | Custom); |
379 | |
380 | // Deal with vec3 vector operations when widened to vec4. |
381 | setOperationAction(ISD::INSERT_SUBVECTOR, |
382 | {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); |
383 | |
384 | // Deal with vec5/6/7 vector operations when widened to vec8. |
385 | setOperationAction(ISD::INSERT_SUBVECTOR, |
386 | {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, |
387 | MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, |
388 | MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, |
389 | MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, |
390 | Custom); |
391 | |
392 | // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, |
393 | // and output demarshalling |
394 | setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); |
395 | |
396 | // We can't return success/failure, only the old value, |
397 | // let LLVM add the comparison |
398 | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, |
399 | Expand); |
400 | |
401 | setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); |
402 | |
403 | setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); |
404 | |
405 | // FIXME: This should be narrowed to i32, but that only happens if i64 is |
406 | // illegal. |
407 | // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. |
408 | setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); |
409 | |
410 | // On SI this is s_memtime and s_memrealtime on VI. |
411 | setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); |
412 | setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); |
413 | |
414 | if (Subtarget->has16BitInsts()) { |
415 | setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); |
416 | setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); |
417 | } |
418 | |
419 | if (Subtarget->hasMadMacF32Insts()) |
420 | setOperationAction(ISD::FMAD, MVT::f32, Legal); |
421 | |
422 | if (!Subtarget->hasBFI()) |
423 | // fcopysign can be done in a single instruction with BFI. |
424 | setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); |
425 | |
426 | if (!Subtarget->hasBCNT(32)) |
427 | setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
428 | |
429 | if (!Subtarget->hasBCNT(64)) |
430 | setOperationAction(ISD::CTPOP, MVT::i64, Expand); |
431 | |
432 | if (Subtarget->hasFFBH()) |
433 | setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); |
434 | |
435 | if (Subtarget->hasFFBL()) |
436 | setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); |
437 | |
438 | // We only really have 32-bit BFE instructions (and 16-bit on VI). |
439 | // |
440 | // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any |
441 | // effort to match them now. We want this to be false for i64 cases when the |
442 | // extraction isn't restricted to the upper or lower half. Ideally we would |
443 | // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that |
444 | // span the midpoint are probably relatively rare, so don't worry about them |
445 | // for now. |
446 | if (Subtarget->hasBFE()) |
447 | setHasExtractBitsInsn(true); |
448 | |
449 | // Clamp modifier on add/sub |
450 | if (Subtarget->hasIntClamp()) |
451 | setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); |
452 | |
453 | if (Subtarget->hasAddNoCarry()) |
454 | setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, |
455 | Legal); |
456 | |
457 | setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, |
458 | Custom); |
459 | |
460 | // These are really only legal for ieee_mode functions. We should be avoiding |
461 | // them for functions that don't have ieee_mode enabled, so just say they are |
462 | // legal. |
463 | setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, |
464 | {MVT::f32, MVT::f64}, Legal); |
465 | |
466 | if (Subtarget->haveRoundOpsF64()) |
467 | setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal); |
468 | else |
469 | setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR}, |
470 | MVT::f64, Custom); |
471 | |
472 | setOperationAction(ISD::FFLOOR, MVT::f64, Legal); |
473 | |
474 | setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); |
475 | setOperationAction(ISD::FDIV, MVT::f64, Custom); |
476 | |
477 | setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand); |
478 | setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand); |
479 | |
480 | if (Subtarget->has16BitInsts()) { |
481 | setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, |
482 | ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, |
483 | MVT::i16, Legal); |
484 | |
485 | AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); |
486 | |
487 | setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, |
488 | MVT::i16, Expand); |
489 | |
490 | setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, |
491 | ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, |
492 | ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, |
493 | ISD::CTPOP}, |
494 | MVT::i16, Promote); |
495 | |
496 | setOperationAction(ISD::LOAD, MVT::i16, Custom); |
497 | |
498 | setTruncStoreAction(MVT::i64, MVT::i16, Expand); |
499 | |
500 | setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); |
501 | AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); |
502 | setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); |
503 | AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); |
504 | |
505 | setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); |
506 | |
507 | // F16 - Constant Actions. |
508 | setOperationAction(ISD::ConstantFP, MVT::f16, Legal); |
509 | |
510 | // F16 - Load/Store Actions. |
511 | setOperationAction(ISD::LOAD, MVT::f16, Promote); |
512 | AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); |
513 | setOperationAction(ISD::STORE, MVT::f16, Promote); |
514 | AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); |
515 | |
516 | // F16 - VOP1 Actions. |
517 | setOperationAction( |
518 | {ISD::FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND}, |
519 | MVT::f16, Custom); |
520 | |
521 | setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); |
522 | |
523 | setOperationAction( |
524 | {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP}, |
525 | MVT::f16, Promote); |
526 | |
527 | // F16 - VOP2 Actions. |
528 | setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand); |
529 | |
530 | setOperationAction(ISD::FDIV, MVT::f16, Custom); |
531 | |
532 | // F16 - VOP3 Actions. |
533 | setOperationAction(ISD::FMA, MVT::f16, Legal); |
534 | if (STI.hasMadF16()) |
535 | setOperationAction(ISD::FMAD, MVT::f16, Legal); |
536 | |
537 | for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16, |
538 | MVT::v8f16, MVT::v16i16, MVT::v16f16}) { |
539 | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { |
540 | switch (Op) { |
541 | case ISD::LOAD: |
542 | case ISD::STORE: |
543 | case ISD::BUILD_VECTOR: |
544 | case ISD::BITCAST: |
545 | case ISD::UNDEF: |
546 | case ISD::EXTRACT_VECTOR_ELT: |
547 | case ISD::INSERT_VECTOR_ELT: |
548 | case ISD::INSERT_SUBVECTOR: |
549 | case ISD::EXTRACT_SUBVECTOR: |
550 | case ISD::SCALAR_TO_VECTOR: |
551 | case ISD::IS_FPCLASS: |
552 | break; |
553 | case ISD::CONCAT_VECTORS: |
554 | setOperationAction(Op, VT, Custom); |
555 | break; |
556 | default: |
557 | setOperationAction(Op, VT, Expand); |
558 | break; |
559 | } |
560 | } |
561 | } |
562 | |
563 | // v_perm_b32 can handle either of these. |
564 | setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); |
565 | setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); |
566 | |
567 | // XXX - Do these do anything? Vector constants turn into build_vector. |
568 | setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); |
569 | |
570 | setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal); |
571 | |
572 | setOperationAction(ISD::STORE, MVT::v2i16, Promote); |
573 | AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); |
574 | setOperationAction(ISD::STORE, MVT::v2f16, Promote); |
575 | AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); |
576 | |
577 | setOperationAction(ISD::LOAD, MVT::v2i16, Promote); |
578 | AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); |
579 | setOperationAction(ISD::LOAD, MVT::v2f16, Promote); |
580 | AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); |
581 | |
582 | setOperationAction(ISD::AND, MVT::v2i16, Promote); |
583 | AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); |
584 | setOperationAction(ISD::OR, MVT::v2i16, Promote); |
585 | AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); |
586 | setOperationAction(ISD::XOR, MVT::v2i16, Promote); |
587 | AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); |
588 | |
589 | setOperationAction(ISD::LOAD, MVT::v4i16, Promote); |
590 | AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); |
591 | setOperationAction(ISD::LOAD, MVT::v4f16, Promote); |
592 | AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); |
593 | |
594 | setOperationAction(ISD::STORE, MVT::v4i16, Promote); |
595 | AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); |
596 | setOperationAction(ISD::STORE, MVT::v4f16, Promote); |
597 | AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); |
598 | |
599 | setOperationAction(ISD::LOAD, MVT::v8i16, Promote); |
600 | AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); |
601 | setOperationAction(ISD::LOAD, MVT::v8f16, Promote); |
602 | AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); |
603 | |
604 | setOperationAction(ISD::STORE, MVT::v4i16, Promote); |
605 | AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); |
606 | setOperationAction(ISD::STORE, MVT::v4f16, Promote); |
607 | AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); |
608 | |
609 | setOperationAction(ISD::STORE, MVT::v8i16, Promote); |
610 | AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); |
611 | setOperationAction(ISD::STORE, MVT::v8f16, Promote); |
612 | AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); |
613 | |
614 | setOperationAction(ISD::LOAD, MVT::v16i16, Promote); |
615 | AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); |
616 | setOperationAction(ISD::LOAD, MVT::v16f16, Promote); |
617 | AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); |
618 | |
619 | setOperationAction(ISD::STORE, MVT::v16i16, Promote); |
620 | AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); |
621 | setOperationAction(ISD::STORE, MVT::v16f16, Promote); |
622 | AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); |
623 | |
624 | setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, |
625 | MVT::v2i32, Expand); |
626 | setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); |
627 | |
628 | setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, |
629 | MVT::v4i32, Expand); |
630 | |
631 | setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, |
632 | MVT::v8i32, Expand); |
633 | |
634 | if (!Subtarget->hasVOP3PInsts()) |
635 | setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom); |
636 | |
637 | setOperationAction(ISD::FNEG, MVT::v2f16, Legal); |
638 | // This isn't really legal, but this avoids the legalizer unrolling it (and |
639 | // allows matching fneg (fabs x) patterns) |
640 | setOperationAction(ISD::FABS, MVT::v2f16, Legal); |
641 | |
642 | setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); |
643 | setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); |
644 | |
645 | setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, |
646 | {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom); |
647 | |
648 | setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, |
649 | {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand); |
650 | |
651 | for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) { |
652 | setOperationAction( |
653 | {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, |
654 | Vec16, Custom); |
655 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); |
656 | } |
657 | } |
658 | |
659 | if (Subtarget->hasVOP3PInsts()) { |
660 | setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, |
661 | ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, |
662 | ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, |
663 | MVT::v2i16, Legal); |
664 | |
665 | setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, |
666 | ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, |
667 | MVT::v2f16, Legal); |
668 | |
669 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16}, |
670 | Custom); |
671 | |
672 | setOperationAction(ISD::VECTOR_SHUFFLE, |
673 | {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, |
674 | MVT::v16f16, MVT::v16i16}, |
675 | Custom); |
676 | |
677 | for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16}) |
678 | // Split vector operations. |
679 | setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, |
680 | ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, |
681 | ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, |
682 | ISD::SSUBSAT}, |
683 | VT, Custom); |
684 | |
685 | for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16}) |
686 | // Split vector operations. |
687 | setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, |
688 | VT, Custom); |
689 | |
690 | setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, |
691 | Custom); |
692 | |
693 | setOperationAction(ISD::FEXP, MVT::v2f16, Custom); |
694 | setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom); |
695 | |
696 | if (Subtarget->hasPackedFP32Ops()) { |
697 | setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, |
698 | MVT::v2f32, Legal); |
699 | setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, |
700 | {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, |
701 | Custom); |
702 | } |
703 | } |
704 | |
705 | setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); |
706 | |
707 | if (Subtarget->has16BitInsts()) { |
708 | setOperationAction(ISD::SELECT, MVT::v2i16, Promote); |
709 | AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); |
710 | setOperationAction(ISD::SELECT, MVT::v2f16, Promote); |
711 | AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); |
712 | } else { |
713 | // Legalization hack. |
714 | setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); |
715 | |
716 | setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); |
717 | } |
718 | |
719 | setOperationAction(ISD::SELECT, |
720 | {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, |
721 | MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}, |
722 | Custom); |
723 | |
724 | setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); |
725 | |
726 | if (Subtarget->hasMad64_32()) |
727 | setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); |
728 | |
729 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, |
730 | {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, |
731 | MVT::v2i16, MVT::v2f16}, |
732 | Custom); |
733 | |
734 | setOperationAction(ISD::INTRINSIC_W_CHAIN, |
735 | {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16, |
736 | MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16, |
737 | MVT::i16, MVT::i8}, |
738 | Custom); |
739 | |
740 | setOperationAction(ISD::INTRINSIC_VOID, |
741 | {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16, |
742 | MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16, |
743 | MVT::i8}, |
744 | Custom); |
745 | |
746 | setTargetDAGCombine({ISD::ADD, |
747 | ISD::ADDCARRY, |
748 | ISD::SUB, |
749 | ISD::SUBCARRY, |
750 | ISD::FADD, |
751 | ISD::FSUB, |
752 | ISD::FMINNUM, |
753 | ISD::FMAXNUM, |
754 | ISD::FMINNUM_IEEE, |
755 | ISD::FMAXNUM_IEEE, |
756 | ISD::FMA, |
757 | ISD::SMIN, |
758 | ISD::SMAX, |
759 | ISD::UMIN, |
760 | ISD::UMAX, |
761 | ISD::SETCC, |
762 | ISD::AND, |
763 | ISD::OR, |
764 | ISD::XOR, |
765 | ISD::SINT_TO_FP, |
766 | ISD::UINT_TO_FP, |
767 | ISD::FCANONICALIZE, |
768 | ISD::SCALAR_TO_VECTOR, |
769 | ISD::ZERO_EXTEND, |
770 | ISD::SIGN_EXTEND_INREG, |
771 | ISD::EXTRACT_VECTOR_ELT, |
772 | ISD::INSERT_VECTOR_ELT, |
773 | ISD::FCOPYSIGN}); |
774 | |
775 | // All memory operations. Some folding on the pointer operand is done to help |
776 | // matching the constant offsets in the addressing modes. |
777 | setTargetDAGCombine({ISD::LOAD, |
778 | ISD::STORE, |
779 | ISD::ATOMIC_LOAD, |
780 | ISD::ATOMIC_STORE, |
781 | ISD::ATOMIC_CMP_SWAP, |
782 | ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, |
783 | ISD::ATOMIC_SWAP, |
784 | ISD::ATOMIC_LOAD_ADD, |
785 | ISD::ATOMIC_LOAD_SUB, |
786 | ISD::ATOMIC_LOAD_AND, |
787 | ISD::ATOMIC_LOAD_OR, |
788 | ISD::ATOMIC_LOAD_XOR, |
789 | ISD::ATOMIC_LOAD_NAND, |
790 | ISD::ATOMIC_LOAD_MIN, |
791 | ISD::ATOMIC_LOAD_MAX, |
792 | ISD::ATOMIC_LOAD_UMIN, |
793 | ISD::ATOMIC_LOAD_UMAX, |
794 | ISD::ATOMIC_LOAD_FADD, |
795 | ISD::ATOMIC_LOAD_UINC_WRAP, |
796 | ISD::ATOMIC_LOAD_UDEC_WRAP, |
797 | ISD::INTRINSIC_VOID, |
798 | ISD::INTRINSIC_W_CHAIN}); |
799 | |
800 | // FIXME: In other contexts we pretend this is a per-function property. |
801 | setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); |
802 | |
803 | setSchedulingPreference(Sched::RegPressure); |
804 | } |
805 | |
806 | const GCNSubtarget *SITargetLowering::getSubtarget() const { |
807 | return Subtarget; |
808 | } |
809 | |
810 | //===----------------------------------------------------------------------===// |
811 | // TargetLowering queries |
812 | //===----------------------------------------------------------------------===// |
813 | |
814 | // v_mad_mix* support a conversion from f16 to f32. |
815 | // |
816 | // There is only one special case when denormals are enabled we don't currently, |
817 | // where this is OK to use. |
818 | bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, |
819 | EVT DestVT, EVT SrcVT) const { |
820 | return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || |
821 | (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && |
822 | DestVT.getScalarType() == MVT::f32 && |
823 | SrcVT.getScalarType() == MVT::f16 && |
824 | // TODO: This probably only requires no input flushing? |
825 | !hasFP32Denormals(DAG.getMachineFunction()); |
826 | } |
827 | |
828 | bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, |
829 | LLT DestTy, LLT SrcTy) const { |
830 | return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || |
831 | (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && |
832 | DestTy.getScalarSizeInBits() == 32 && |
833 | SrcTy.getScalarSizeInBits() == 16 && |
834 | // TODO: This probably only requires no input flushing? |
835 | !hasFP32Denormals(*MI.getMF()); |
836 | } |
837 | |
838 | bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { |
839 | // SI has some legal vector types, but no legal vector operations. Say no |
840 | // shuffles are legal in order to prefer scalarizing some vector operations. |
841 | return false; |
842 | } |
843 | |
844 | MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, |
845 | CallingConv::ID CC, |
846 | EVT VT) const { |
847 | if (CC == CallingConv::AMDGPU_KERNEL) |
848 | return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
849 | |
850 | if (VT.isVector()) { |
851 | EVT ScalarVT = VT.getScalarType(); |
852 | unsigned Size = ScalarVT.getSizeInBits(); |
853 | if (Size == 16) { |
854 | if (Subtarget->has16BitInsts()) { |
855 | if (VT.isInteger()) |
856 | return MVT::v2i16; |
857 | return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16); |
858 | } |
859 | return VT.isInteger() ? MVT::i32 : MVT::f32; |
860 | } |
861 | |
862 | if (Size < 16) |
863 | return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; |
864 | return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; |
865 | } |
866 | |
867 | if (VT.getSizeInBits() > 32) |
868 | return MVT::i32; |
869 | |
870 | return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
871 | } |
872 | |
873 | unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, |
874 | CallingConv::ID CC, |
875 | EVT VT) const { |
876 | if (CC == CallingConv::AMDGPU_KERNEL) |
877 | return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
878 | |
879 | if (VT.isVector()) { |
880 | unsigned NumElts = VT.getVectorNumElements(); |
881 | EVT ScalarVT = VT.getScalarType(); |
882 | unsigned Size = ScalarVT.getSizeInBits(); |
883 | |
884 | // FIXME: Should probably promote 8-bit vectors to i16. |
885 | if (Size == 16 && Subtarget->has16BitInsts()) |
886 | return (NumElts + 1) / 2; |
887 | |
888 | if (Size <= 32) |
889 | return NumElts; |
890 | |
891 | if (Size > 32) |
892 | return NumElts * ((Size + 31) / 32); |
893 | } else if (VT.getSizeInBits() > 32) |
894 | return (VT.getSizeInBits() + 31) / 32; |
895 | |
896 | return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
897 | } |
898 | |
899 | unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( |
900 | LLVMContext &Context, CallingConv::ID CC, |
901 | EVT VT, EVT &IntermediateVT, |
902 | unsigned &NumIntermediates, MVT &RegisterVT) const { |
903 | if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { |
904 | unsigned NumElts = VT.getVectorNumElements(); |
905 | EVT ScalarVT = VT.getScalarType(); |
906 | unsigned Size = ScalarVT.getSizeInBits(); |
907 | // FIXME: We should fix the ABI to be the same on targets without 16-bit |
908 | // support, but unless we can properly handle 3-vectors, it will be still be |
909 | // inconsistent. |
910 | if (Size == 16 && Subtarget->has16BitInsts()) { |
911 | if (ScalarVT == MVT::bf16) { |
912 | RegisterVT = MVT::i32; |
913 | IntermediateVT = MVT::v2bf16; |
914 | } else { |
915 | RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; |
916 | IntermediateVT = RegisterVT; |
917 | } |
918 | NumIntermediates = (NumElts + 1) / 2; |
919 | return NumIntermediates; |
920 | } |
921 | |
922 | if (Size == 32) { |
923 | RegisterVT = ScalarVT.getSimpleVT(); |
924 | IntermediateVT = RegisterVT; |
925 | NumIntermediates = NumElts; |
926 | return NumIntermediates; |
927 | } |
928 | |
929 | if (Size < 16 && Subtarget->has16BitInsts()) { |
930 | // FIXME: Should probably form v2i16 pieces |
931 | RegisterVT = MVT::i16; |
932 | IntermediateVT = ScalarVT; |
933 | NumIntermediates = NumElts; |
934 | return NumIntermediates; |
935 | } |
936 | |
937 | |
938 | if (Size != 16 && Size <= 32) { |
939 | RegisterVT = MVT::i32; |
940 | IntermediateVT = ScalarVT; |
941 | NumIntermediates = NumElts; |
942 | return NumIntermediates; |
943 | } |
944 | |
945 | if (Size > 32) { |
946 | RegisterVT = MVT::i32; |
947 | IntermediateVT = RegisterVT; |
948 | NumIntermediates = NumElts * ((Size + 31) / 32); |
949 | return NumIntermediates; |
950 | } |
951 | } |
952 | |
953 | return TargetLowering::getVectorTypeBreakdownForCallingConv( |
954 | Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); |
955 | } |
956 | |
957 | static EVT memVTFromLoadIntrData(Type *Ty, unsigned MaxNumLanes) { |
958 | assert(MaxNumLanes != 0)(static_cast <bool> (MaxNumLanes != 0) ? void (0) : __assert_fail ("MaxNumLanes != 0", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 958, __extension__ __PRETTY_FUNCTION__)); |
959 | |
960 | if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { |
961 | unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements()); |
962 | return EVT::getVectorVT(Ty->getContext(), |
963 | EVT::getEVT(VT->getElementType()), |
964 | NumElts); |
965 | } |
966 | |
967 | return EVT::getEVT(Ty); |
968 | } |
969 | |
970 | // Peek through TFE struct returns to only use the data size. |
971 | static EVT memVTFromLoadIntrReturn(Type *Ty, unsigned MaxNumLanes) { |
972 | auto *ST = dyn_cast<StructType>(Ty); |
973 | if (!ST) |
974 | return memVTFromLoadIntrData(Ty, MaxNumLanes); |
975 | |
976 | // TFE intrinsics return an aggregate type. |
977 | assert(ST->getNumContainedTypes() == 2 &&(static_cast <bool> (ST->getNumContainedTypes() == 2 && ST->getContainedType(1)->isIntegerTy(32)) ? void (0) : __assert_fail ("ST->getNumContainedTypes() == 2 && ST->getContainedType(1)->isIntegerTy(32)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 978, __extension__ __PRETTY_FUNCTION__)) |
978 | ST->getContainedType(1)->isIntegerTy(32))(static_cast <bool> (ST->getNumContainedTypes() == 2 && ST->getContainedType(1)->isIntegerTy(32)) ? void (0) : __assert_fail ("ST->getNumContainedTypes() == 2 && ST->getContainedType(1)->isIntegerTy(32)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 978, __extension__ __PRETTY_FUNCTION__)); |
979 | return memVTFromLoadIntrData(ST->getContainedType(0), MaxNumLanes); |
980 | } |
981 | |
982 | bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
983 | const CallInst &CI, |
984 | MachineFunction &MF, |
985 | unsigned IntrID) const { |
986 | Info.flags = MachineMemOperand::MONone; |
987 | if (CI.hasMetadata(LLVMContext::MD_invariant_load)) |
988 | Info.flags |= MachineMemOperand::MOInvariant; |
989 | |
990 | if (const AMDGPU::RsrcIntrinsic *RsrcIntr = |
991 | AMDGPU::lookupRsrcIntrinsic(IntrID)) { |
992 | AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), |
993 | (Intrinsic::ID)IntrID); |
994 | MemoryEffects ME = Attr.getMemoryEffects(); |
995 | if (ME.doesNotAccessMemory()) |
996 | return false; |
997 | |
998 | // TODO: Should images get their own address space? |
999 | Info.fallbackAddressSpace = AMDGPUAS::BUFFER_FAT_POINTER; |
1000 | |
1001 | if (RsrcIntr->IsImage) |
1002 | Info.align.reset(); |
1003 | |
1004 | Info.flags |= MachineMemOperand::MODereferenceable; |
1005 | if (ME.onlyReadsMemory()) { |
1006 | unsigned MaxNumLanes = 4; |
1007 | |
1008 | if (RsrcIntr->IsImage) { |
1009 | const AMDGPU::ImageDimIntrinsicInfo *Intr |
1010 | = AMDGPU::getImageDimIntrinsicInfo(IntrID); |
1011 | const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = |
1012 | AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); |
1013 | |
1014 | if (!BaseOpcode->Gather4) { |
1015 | // If this isn't a gather, we may have excess loaded elements in the |
1016 | // IR type. Check the dmask for the real number of elements loaded. |
1017 | unsigned DMask |
1018 | = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); |
1019 | MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask); |
1020 | } |
1021 | } |
1022 | |
1023 | Info.memVT = memVTFromLoadIntrReturn(CI.getType(), MaxNumLanes); |
1024 | |
1025 | // FIXME: What does alignment mean for an image? |
1026 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
1027 | Info.flags |= MachineMemOperand::MOLoad; |
1028 | } else if (ME.onlyWritesMemory()) { |
1029 | Info.opc = ISD::INTRINSIC_VOID; |
1030 | |
1031 | Type *DataTy = CI.getArgOperand(0)->getType(); |
1032 | if (RsrcIntr->IsImage) { |
1033 | unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); |
1034 | unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask); |
1035 | Info.memVT = memVTFromLoadIntrData(DataTy, DMaskLanes); |
1036 | } else |
1037 | Info.memVT = EVT::getEVT(DataTy); |
1038 | |
1039 | Info.flags |= MachineMemOperand::MOStore; |
1040 | } else { |
1041 | // Atomic |
1042 | Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : |
1043 | ISD::INTRINSIC_W_CHAIN; |
1044 | Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); |
1045 | Info.flags |= MachineMemOperand::MOLoad | |
1046 | MachineMemOperand::MOStore | |
1047 | MachineMemOperand::MODereferenceable; |
1048 | |
1049 | // XXX - Should this be volatile without known ordering? |
1050 | Info.flags |= MachineMemOperand::MOVolatile; |
1051 | |
1052 | switch (IntrID) { |
1053 | default: |
1054 | break; |
1055 | case Intrinsic::amdgcn_raw_buffer_load_lds: |
1056 | case Intrinsic::amdgcn_struct_buffer_load_lds: { |
1057 | unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); |
1058 | Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); |
1059 | return true; |
1060 | } |
1061 | } |
1062 | } |
1063 | return true; |
1064 | } |
1065 | |
1066 | switch (IntrID) { |
1067 | case Intrinsic::amdgcn_atomic_inc: |
1068 | case Intrinsic::amdgcn_atomic_dec: |
1069 | case Intrinsic::amdgcn_ds_ordered_add: |
1070 | case Intrinsic::amdgcn_ds_ordered_swap: |
1071 | case Intrinsic::amdgcn_ds_fadd: |
1072 | case Intrinsic::amdgcn_ds_fmin: |
1073 | case Intrinsic::amdgcn_ds_fmax: { |
1074 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
1075 | Info.memVT = MVT::getVT(CI.getType()); |
1076 | Info.ptrVal = CI.getOperand(0); |
1077 | Info.align.reset(); |
1078 | Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
1079 | |
1080 | const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); |
1081 | if (!Vol->isZero()) |
1082 | Info.flags |= MachineMemOperand::MOVolatile; |
1083 | |
1084 | return true; |
1085 | } |
1086 | case Intrinsic::amdgcn_buffer_atomic_fadd: { |
1087 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
1088 | Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); |
1089 | Info.fallbackAddressSpace = AMDGPUAS::BUFFER_FAT_POINTER; |
1090 | Info.align.reset(); |
1091 | Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
1092 | |
1093 | const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); |
1094 | if (!Vol || !Vol->isZero()) |
1095 | Info.flags |= MachineMemOperand::MOVolatile; |
1096 | |
1097 | return true; |
1098 | } |
1099 | case Intrinsic::amdgcn_ds_append: |
1100 | case Intrinsic::amdgcn_ds_consume: { |
1101 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
1102 | Info.memVT = MVT::getVT(CI.getType()); |
1103 | Info.ptrVal = CI.getOperand(0); |
1104 | Info.align.reset(); |
1105 | Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
1106 | |
1107 | const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); |
1108 | if (!Vol->isZero()) |
1109 | Info.flags |= MachineMemOperand::MOVolatile; |
1110 | |
1111 | return true; |
1112 | } |
1113 | case Intrinsic::amdgcn_global_atomic_csub: { |
1114 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
1115 | Info.memVT = MVT::getVT(CI.getType()); |
1116 | Info.ptrVal = CI.getOperand(0); |
1117 | Info.align.reset(); |
1118 | Info.flags |= MachineMemOperand::MOLoad | |
1119 | MachineMemOperand::MOStore | |
1120 | MachineMemOperand::MOVolatile; |
1121 | return true; |
1122 | } |
1123 | case Intrinsic::amdgcn_image_bvh_intersect_ray: { |
1124 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
1125 | Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? |
1126 | |
1127 | Info.fallbackAddressSpace = AMDGPUAS::BUFFER_FAT_POINTER; |
1128 | Info.align.reset(); |
1129 | Info.flags |= MachineMemOperand::MOLoad | |
1130 | MachineMemOperand::MODereferenceable; |
1131 | return true; |
1132 | } |
1133 | case Intrinsic::amdgcn_global_atomic_fadd: |
1134 | case Intrinsic::amdgcn_global_atomic_fmin: |
1135 | case Intrinsic::amdgcn_global_atomic_fmax: |
1136 | case Intrinsic::amdgcn_flat_atomic_fadd: |
1137 | case Intrinsic::amdgcn_flat_atomic_fmin: |
1138 | case Intrinsic::amdgcn_flat_atomic_fmax: |
1139 | case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: |
1140 | case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: { |
1141 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
1142 | Info.memVT = MVT::getVT(CI.getType()); |
1143 | Info.ptrVal = CI.getOperand(0); |
1144 | Info.align.reset(); |
1145 | Info.flags |= MachineMemOperand::MOLoad | |
1146 | MachineMemOperand::MOStore | |
1147 | MachineMemOperand::MODereferenceable | |
1148 | MachineMemOperand::MOVolatile; |
1149 | return true; |
1150 | } |
1151 | case Intrinsic::amdgcn_ds_gws_init: |
1152 | case Intrinsic::amdgcn_ds_gws_barrier: |
1153 | case Intrinsic::amdgcn_ds_gws_sema_v: |
1154 | case Intrinsic::amdgcn_ds_gws_sema_br: |
1155 | case Intrinsic::amdgcn_ds_gws_sema_p: |
1156 | case Intrinsic::amdgcn_ds_gws_sema_release_all: { |
1157 | Info.opc = ISD::INTRINSIC_VOID; |
1158 | |
1159 | const GCNTargetMachine &TM = |
1160 | static_cast<const GCNTargetMachine &>(getTargetMachine()); |
1161 | |
1162 | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
1163 | Info.ptrVal = MFI->getGWSPSV(TM); |
1164 | |
1165 | // This is an abstract access, but we need to specify a type and size. |
1166 | Info.memVT = MVT::i32; |
1167 | Info.size = 4; |
1168 | Info.align = Align(4); |
1169 | |
1170 | if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) |
1171 | Info.flags |= MachineMemOperand::MOLoad; |
1172 | else |
1173 | Info.flags |= MachineMemOperand::MOStore; |
1174 | return true; |
1175 | } |
1176 | case Intrinsic::amdgcn_global_load_lds: { |
1177 | Info.opc = ISD::INTRINSIC_VOID; |
1178 | unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); |
1179 | Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); |
1180 | Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | |
1181 | MachineMemOperand::MOVolatile; |
1182 | return true; |
1183 | } |
1184 | case Intrinsic::amdgcn_ds_bvh_stack_rtn: { |
1185 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
1186 | |
1187 | const GCNTargetMachine &TM = |
1188 | static_cast<const GCNTargetMachine &>(getTargetMachine()); |
1189 | |
1190 | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
1191 | Info.ptrVal = MFI->getGWSPSV(TM); |
1192 | |
1193 | // This is an abstract access, but we need to specify a type and size. |
1194 | Info.memVT = MVT::i32; |
1195 | Info.size = 4; |
1196 | Info.align = Align(4); |
1197 | |
1198 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
1199 | return true; |
1200 | } |
1201 | default: |
1202 | return false; |
1203 | } |
1204 | } |
1205 | |
1206 | bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, |
1207 | SmallVectorImpl<Value*> &Ops, |
1208 | Type *&AccessTy) const { |
1209 | switch (II->getIntrinsicID()) { |
1210 | case Intrinsic::amdgcn_atomic_inc: |
1211 | case Intrinsic::amdgcn_atomic_dec: |
1212 | case Intrinsic::amdgcn_ds_ordered_add: |
1213 | case Intrinsic::amdgcn_ds_ordered_swap: |
1214 | case Intrinsic::amdgcn_ds_append: |
1215 | case Intrinsic::amdgcn_ds_consume: |
1216 | case Intrinsic::amdgcn_ds_fadd: |
1217 | case Intrinsic::amdgcn_ds_fmin: |
1218 | case Intrinsic::amdgcn_ds_fmax: |
1219 | case Intrinsic::amdgcn_global_atomic_fadd: |
1220 | case Intrinsic::amdgcn_flat_atomic_fadd: |
1221 | case Intrinsic::amdgcn_flat_atomic_fmin: |
1222 | case Intrinsic::amdgcn_flat_atomic_fmax: |
1223 | case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: |
1224 | case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: |
1225 | case Intrinsic::amdgcn_global_atomic_csub: { |
1226 | Value *Ptr = II->getArgOperand(0); |
1227 | AccessTy = II->getType(); |
1228 | Ops.push_back(Ptr); |
1229 | return true; |
1230 | } |
1231 | default: |
1232 | return false; |
1233 | } |
1234 | } |
1235 | |
1236 | bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { |
1237 | if (!Subtarget->hasFlatInstOffsets()) { |
1238 | // Flat instructions do not have offsets, and only have the register |
1239 | // address. |
1240 | return AM.BaseOffs == 0 && AM.Scale == 0; |
1241 | } |
1242 | |
1243 | return AM.Scale == 0 && |
1244 | (AM.BaseOffs == 0 || |
1245 | Subtarget->getInstrInfo()->isLegalFLATOffset( |
1246 | AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT)); |
1247 | } |
1248 | |
1249 | bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { |
1250 | if (Subtarget->hasFlatGlobalInsts()) |
1251 | return AM.Scale == 0 && |
1252 | (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( |
1253 | AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, |
1254 | SIInstrFlags::FlatGlobal)); |
1255 | |
1256 | if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { |
1257 | // Assume the we will use FLAT for all global memory accesses |
1258 | // on VI. |
1259 | // FIXME: This assumption is currently wrong. On VI we still use |
1260 | // MUBUF instructions for the r + i addressing mode. As currently |
1261 | // implemented, the MUBUF instructions only work on buffer < 4GB. |
1262 | // It may be possible to support > 4GB buffers with MUBUF instructions, |
1263 | // by setting the stride value in the resource descriptor which would |
1264 | // increase the size limit to (stride * 4GB). However, this is risky, |
1265 | // because it has never been validated. |
1266 | return isLegalFlatAddressingMode(AM); |
1267 | } |
1268 | |
1269 | return isLegalMUBUFAddressingMode(AM); |
1270 | } |
1271 | |
1272 | bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { |
1273 | // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and |
1274 | // additionally can do r + r + i with addr64. 32-bit has more addressing |
1275 | // mode options. Depending on the resource constant, it can also do |
1276 | // (i64 r0) + (i32 r1) * (i14 i). |
1277 | // |
1278 | // Private arrays end up using a scratch buffer most of the time, so also |
1279 | // assume those use MUBUF instructions. Scratch loads / stores are currently |
1280 | // implemented as mubuf instructions with offen bit set, so slightly |
1281 | // different than the normal addr64. |
1282 | if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) |
1283 | return false; |
1284 | |
1285 | // FIXME: Since we can split immediate into soffset and immediate offset, |
1286 | // would it make sense to allow any immediate? |
1287 | |
1288 | switch (AM.Scale) { |
1289 | case 0: // r + i or just i, depending on HasBaseReg. |
1290 | return true; |
1291 | case 1: |
1292 | return true; // We have r + r or r + i. |
1293 | case 2: |
1294 | if (AM.HasBaseReg) { |
1295 | // Reject 2 * r + r. |
1296 | return false; |
1297 | } |
1298 | |
1299 | // Allow 2 * r as r + r |
1300 | // Or 2 * r + i is allowed as r + r + i. |
1301 | return true; |
1302 | default: // Don't allow n * r |
1303 | return false; |
1304 | } |
1305 | } |
1306 | |
1307 | bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, |
1308 | const AddrMode &AM, Type *Ty, |
1309 | unsigned AS, Instruction *I) const { |
1310 | // No global is ever allowed as a base. |
1311 | if (AM.BaseGV) |
1312 | return false; |
1313 | |
1314 | if (AS == AMDGPUAS::GLOBAL_ADDRESS) |
1315 | return isLegalGlobalAddressingMode(AM); |
1316 | |
1317 | if (AS == AMDGPUAS::CONSTANT_ADDRESS || |
1318 | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
1319 | AS == AMDGPUAS::BUFFER_FAT_POINTER) { |
1320 | // If the offset isn't a multiple of 4, it probably isn't going to be |
1321 | // correctly aligned. |
1322 | // FIXME: Can we get the real alignment here? |
1323 | if (AM.BaseOffs % 4 != 0) |
1324 | return isLegalMUBUFAddressingMode(AM); |
1325 | |
1326 | // There are no SMRD extloads, so if we have to do a small type access we |
1327 | // will use a MUBUF load. |
1328 | // FIXME?: We also need to do this if unaligned, but we don't know the |
1329 | // alignment here. |
1330 | if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) |
1331 | return isLegalGlobalAddressingMode(AM); |
1332 | |
1333 | if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { |
1334 | // SMRD instructions have an 8-bit, dword offset on SI. |
1335 | if (!isUInt<8>(AM.BaseOffs / 4)) |
1336 | return false; |
1337 | } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { |
1338 | // On CI+, this can also be a 32-bit literal constant offset. If it fits |
1339 | // in 8-bits, it can use a smaller encoding. |
1340 | if (!isUInt<32>(AM.BaseOffs / 4)) |
1341 | return false; |
1342 | } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { |
1343 | // On VI, these use the SMEM format and the offset is 20-bit in bytes. |
1344 | if (!isUInt<20>(AM.BaseOffs)) |
1345 | return false; |
1346 | } else |
1347 | llvm_unreachable("unhandled generation")::llvm::llvm_unreachable_internal("unhandled generation", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 1347); |
1348 | |
1349 | if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. |
1350 | return true; |
1351 | |
1352 | if (AM.Scale == 1 && AM.HasBaseReg) |
1353 | return true; |
1354 | |
1355 | return false; |
1356 | |
1357 | } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { |
1358 | return isLegalMUBUFAddressingMode(AM); |
1359 | } else if (AS == AMDGPUAS::LOCAL_ADDRESS || |
1360 | AS == AMDGPUAS::REGION_ADDRESS) { |
1361 | // Basic, single offset DS instructions allow a 16-bit unsigned immediate |
1362 | // field. |
1363 | // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have |
1364 | // an 8-bit dword offset but we don't know the alignment here. |
1365 | if (!isUInt<16>(AM.BaseOffs)) |
1366 | return false; |
1367 | |
1368 | if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. |
1369 | return true; |
1370 | |
1371 | if (AM.Scale == 1 && AM.HasBaseReg) |
1372 | return true; |
1373 | |
1374 | return false; |
1375 | } else if (AS == AMDGPUAS::FLAT_ADDRESS || |
1376 | AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { |
1377 | // For an unknown address space, this usually means that this is for some |
1378 | // reason being used for pure arithmetic, and not based on some addressing |
1379 | // computation. We don't have instructions that compute pointers with any |
1380 | // addressing modes, so treat them as having no offset like flat |
1381 | // instructions. |
1382 | return isLegalFlatAddressingMode(AM); |
1383 | } |
1384 | |
1385 | // Assume a user alias of global for unknown address spaces. |
1386 | return isLegalGlobalAddressingMode(AM); |
1387 | } |
1388 | |
1389 | bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, |
1390 | const MachineFunction &MF) const { |
1391 | if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { |
1392 | return (MemVT.getSizeInBits() <= 4 * 32); |
1393 | } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { |
1394 | unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); |
1395 | return (MemVT.getSizeInBits() <= MaxPrivateBits); |
1396 | } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { |
1397 | return (MemVT.getSizeInBits() <= 2 * 32); |
1398 | } |
1399 | return true; |
1400 | } |
1401 | |
1402 | bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( |
1403 | unsigned Size, unsigned AddrSpace, Align Alignment, |
1404 | MachineMemOperand::Flags Flags, unsigned *IsFast) const { |
1405 | if (IsFast) |
1406 | *IsFast = 0; |
1407 | |
1408 | if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || |
1409 | AddrSpace == AMDGPUAS::REGION_ADDRESS) { |
1410 | // Check if alignment requirements for ds_read/write instructions are |
1411 | // disabled. |
1412 | if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) |
1413 | return false; |
1414 | |
1415 | Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment. |
1416 | if (Subtarget->hasLDSMisalignedBug() && Size > 32 && |
1417 | Alignment < RequiredAlignment) |
1418 | return false; |
1419 | |
1420 | // Either, the alignment requirements are "enabled", or there is an |
1421 | // unaligned LDS access related hardware bug though alignment requirements |
1422 | // are "disabled". In either case, we need to check for proper alignment |
1423 | // requirements. |
1424 | // |
1425 | switch (Size) { |
1426 | case 64: |
1427 | // SI has a hardware bug in the LDS / GDS bounds checking: if the base |
1428 | // address is negative, then the instruction is incorrectly treated as |
1429 | // out-of-bounds even if base + offsets is in bounds. Split vectorized |
1430 | // loads here to avoid emitting ds_read2_b32. We may re-combine the |
1431 | // load later in the SILoadStoreOptimizer. |
1432 | if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) |
1433 | return false; |
1434 | |
1435 | // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we |
1436 | // can do a 4 byte aligned, 8 byte access in a single operation using |
1437 | // ds_read2/write2_b32 with adjacent offsets. |
1438 | RequiredAlignment = Align(4); |
1439 | |
1440 | if (Subtarget->hasUnalignedDSAccessEnabled()) { |
1441 | // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ |
1442 | // ds_write2_b32 depending on the alignment. In either case with either |
1443 | // alignment there is no faster way of doing this. |
1444 | |
1445 | // The numbers returned here and below are not additive, it is a 'speed |
1446 | // rank'. They are just meant to be compared to decide if a certain way |
1447 | // of lowering an operation is faster than another. For that purpose |
1448 | // naturally aligned operation gets it bitsize to indicate that "it |
1449 | // operates with a speed comparable to N-bit wide load". With the full |
1450 | // alignment ds128 is slower than ds96 for example. If underaligned it |
1451 | // is comparable to a speed of a single dword access, which would then |
1452 | // mean 32 < 128 and it is faster to issue a wide load regardless. |
1453 | // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a |
1454 | // wider load which will not be aligned anymore the latter is slower. |
1455 | if (IsFast) |
1456 | *IsFast = (Alignment >= RequiredAlignment) ? 64 |
1457 | : (Alignment < Align(4)) ? 32 |
1458 | : 1; |
1459 | return true; |
1460 | } |
1461 | |
1462 | break; |
1463 | case 96: |
1464 | if (!Subtarget->hasDS96AndDS128()) |
1465 | return false; |
1466 | |
1467 | // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on |
1468 | // gfx8 and older. |
1469 | |
1470 | if (Subtarget->hasUnalignedDSAccessEnabled()) { |
1471 | // Naturally aligned access is fastest. However, also report it is Fast |
1472 | // if memory is aligned less than DWORD. A narrow load or store will be |
1473 | // be equally slow as a single ds_read_b96/ds_write_b96, but there will |
1474 | // be more of them, so overall we will pay less penalty issuing a single |
1475 | // instruction. |
1476 | |
1477 | // See comment on the values above. |
1478 | if (IsFast) |
1479 | *IsFast = (Alignment >= RequiredAlignment) ? 96 |
1480 | : (Alignment < Align(4)) ? 32 |
1481 | : 1; |
1482 | return true; |
1483 | } |
1484 | |
1485 | break; |
1486 | case 128: |
1487 | if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) |
1488 | return false; |
1489 | |
1490 | // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on |
1491 | // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a |
1492 | // single operation using ds_read2/write2_b64. |
1493 | RequiredAlignment = Align(8); |
1494 | |
1495 | if (Subtarget->hasUnalignedDSAccessEnabled()) { |
1496 | // Naturally aligned access is fastest. However, also report it is Fast |
1497 | // if memory is aligned less than DWORD. A narrow load or store will be |
1498 | // be equally slow as a single ds_read_b128/ds_write_b128, but there |
1499 | // will be more of them, so overall we will pay less penalty issuing a |
1500 | // single instruction. |
1501 | |
1502 | // See comment on the values above. |
1503 | if (IsFast) |
1504 | *IsFast = (Alignment >= RequiredAlignment) ? 128 |
1505 | : (Alignment < Align(4)) ? 32 |
1506 | : 1; |
1507 | return true; |
1508 | } |
1509 | |
1510 | break; |
1511 | default: |
1512 | if (Size > 32) |
1513 | return false; |
1514 | |
1515 | break; |
1516 | } |
1517 | |
1518 | // See comment on the values above. |
1519 | // Note that we have a single-dword or sub-dword here, so if underaligned |
1520 | // it is a slowest possible access, hence returned value is 0. |
1521 | if (IsFast) |
1522 | *IsFast = (Alignment >= RequiredAlignment) ? Size : 0; |
1523 | |
1524 | return Alignment >= RequiredAlignment || |
1525 | Subtarget->hasUnalignedDSAccessEnabled(); |
1526 | } |
1527 | |
1528 | if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { |
1529 | bool AlignedBy4 = Alignment >= Align(4); |
1530 | if (IsFast) |
1531 | *IsFast = AlignedBy4; |
1532 | |
1533 | return AlignedBy4 || |
1534 | Subtarget->enableFlatScratch() || |
1535 | Subtarget->hasUnalignedScratchAccess(); |
1536 | } |
1537 | |
1538 | // FIXME: We have to be conservative here and assume that flat operations |
1539 | // will access scratch. If we had access to the IR function, then we |
1540 | // could determine if any private memory was used in the function. |
1541 | if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && |
1542 | !Subtarget->hasUnalignedScratchAccess()) { |
1543 | bool AlignedBy4 = Alignment >= Align(4); |
1544 | if (IsFast) |
1545 | *IsFast = AlignedBy4; |
1546 | |
1547 | return AlignedBy4; |
1548 | } |
1549 | |
1550 | // So long as they are correct, wide global memory operations perform better |
1551 | // than multiple smaller memory ops -- even when misaligned |
1552 | if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) { |
1553 | if (IsFast) |
1554 | *IsFast = Size; |
1555 | |
1556 | return Alignment >= Align(4) || |
1557 | Subtarget->hasUnalignedBufferAccessEnabled(); |
1558 | } |
1559 | |
1560 | // Smaller than dword value must be aligned. |
1561 | if (Size < 32) |
1562 | return false; |
1563 | |
1564 | // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the |
1565 | // byte-address are ignored, thus forcing Dword alignment. |
1566 | // This applies to private, global, and constant memory. |
1567 | if (IsFast) |
1568 | *IsFast = 1; |
1569 | |
1570 | return Size >= 32 && Alignment >= Align(4); |
1571 | } |
1572 | |
1573 | bool SITargetLowering::allowsMisalignedMemoryAccesses( |
1574 | EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, |
1575 | unsigned *IsFast) const { |
1576 | return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, |
1577 | Alignment, Flags, IsFast); |
1578 | } |
1579 | |
1580 | EVT SITargetLowering::getOptimalMemOpType( |
1581 | const MemOp &Op, const AttributeList &FuncAttributes) const { |
1582 | // FIXME: Should account for address space here. |
1583 | |
1584 | // The default fallback uses the private pointer size as a guess for a type to |
1585 | // use. Make sure we switch these to 64-bit accesses. |
1586 | |
1587 | if (Op.size() >= 16 && |
1588 | Op.isDstAligned(Align(4))) // XXX: Should only do for global |
1589 | return MVT::v4i32; |
1590 | |
1591 | if (Op.size() >= 8 && Op.isDstAligned(Align(4))) |
1592 | return MVT::v2i32; |
1593 | |
1594 | // Use the default. |
1595 | return MVT::Other; |
1596 | } |
1597 | |
1598 | bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { |
1599 | const MemSDNode *MemNode = cast<MemSDNode>(N); |
1600 | return MemNode->getMemOperand()->getFlags() & MONoClobber; |
1601 | } |
1602 | |
1603 | bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { |
1604 | return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || |
1605 | AS == AMDGPUAS::PRIVATE_ADDRESS; |
1606 | } |
1607 | |
1608 | bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, |
1609 | unsigned DestAS) const { |
1610 | // Flat -> private/local is a simple truncate. |
1611 | // Flat -> global is no-op |
1612 | if (SrcAS == AMDGPUAS::FLAT_ADDRESS) |
1613 | return true; |
1614 | |
1615 | const GCNTargetMachine &TM = |
1616 | static_cast<const GCNTargetMachine &>(getTargetMachine()); |
1617 | return TM.isNoopAddrSpaceCast(SrcAS, DestAS); |
1618 | } |
1619 | |
1620 | bool SITargetLowering::isMemOpUniform(const SDNode *N) const { |
1621 | const MemSDNode *MemNode = cast<MemSDNode>(N); |
1622 | |
1623 | return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); |
1624 | } |
1625 | |
1626 | TargetLoweringBase::LegalizeTypeAction |
1627 | SITargetLowering::getPreferredVectorAction(MVT VT) const { |
1628 | if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && |
1629 | VT.getScalarType().bitsLE(MVT::i16)) |
1630 | return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; |
1631 | return TargetLoweringBase::getPreferredVectorAction(VT); |
1632 | } |
1633 | |
1634 | bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, |
1635 | Type *Ty) const { |
1636 | // FIXME: Could be smarter if called for vector constants. |
1637 | return true; |
1638 | } |
1639 | |
1640 | bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, |
1641 | unsigned Index) const { |
1642 | if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) |
1643 | return false; |
1644 | |
1645 | // TODO: Add more cases that are cheap. |
1646 | return Index == 0; |
1647 | } |
1648 | |
1649 | bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { |
1650 | if (Subtarget->has16BitInsts() && VT == MVT::i16) { |
1651 | switch (Op) { |
1652 | case ISD::LOAD: |
1653 | case ISD::STORE: |
1654 | |
1655 | // These operations are done with 32-bit instructions anyway. |
1656 | case ISD::AND: |
1657 | case ISD::OR: |
1658 | case ISD::XOR: |
1659 | case ISD::SELECT: |
1660 | // TODO: Extensions? |
1661 | return true; |
1662 | default: |
1663 | return false; |
1664 | } |
1665 | } |
1666 | |
1667 | // SimplifySetCC uses this function to determine whether or not it should |
1668 | // create setcc with i1 operands. We don't have instructions for i1 setcc. |
1669 | if (VT == MVT::i1 && Op == ISD::SETCC) |
1670 | return false; |
1671 | |
1672 | return TargetLowering::isTypeDesirableForOp(Op, VT); |
1673 | } |
1674 | |
1675 | SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, |
1676 | const SDLoc &SL, |
1677 | SDValue Chain, |
1678 | uint64_t Offset) const { |
1679 | const DataLayout &DL = DAG.getDataLayout(); |
1680 | MachineFunction &MF = DAG.getMachineFunction(); |
1681 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
1682 | |
1683 | const ArgDescriptor *InputPtrReg; |
1684 | const TargetRegisterClass *RC; |
1685 | LLT ArgTy; |
1686 | MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); |
1687 | |
1688 | std::tie(InputPtrReg, RC, ArgTy) = |
1689 | Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); |
1690 | |
1691 | // We may not have the kernarg segment argument if we have no kernel |
1692 | // arguments. |
1693 | if (!InputPtrReg) |
1694 | return DAG.getConstant(0, SL, PtrVT); |
1695 | |
1696 | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
1697 | SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, |
1698 | MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); |
1699 | |
1700 | return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); |
1701 | } |
1702 | |
1703 | SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, |
1704 | const SDLoc &SL) const { |
1705 | uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), |
1706 | FIRST_IMPLICIT); |
1707 | return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); |
1708 | } |
1709 | |
1710 | SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, |
1711 | const SDLoc &SL) const { |
1712 | |
1713 | Function &F = DAG.getMachineFunction().getFunction(); |
1714 | std::optional<uint32_t> KnownSize = |
1715 | AMDGPUMachineFunction::getLDSKernelIdMetadata(F); |
1716 | if (KnownSize.has_value()) |
1717 | return DAG.getConstant(*KnownSize, SL, MVT::i32); |
1718 | return SDValue(); |
1719 | } |
1720 | |
1721 | SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, |
1722 | const SDLoc &SL, SDValue Val, |
1723 | bool Signed, |
1724 | const ISD::InputArg *Arg) const { |
1725 | // First, if it is a widened vector, narrow it. |
1726 | if (VT.isVector() && |
1727 | VT.getVectorNumElements() != MemVT.getVectorNumElements()) { |
1728 | EVT NarrowedVT = |
1729 | EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), |
1730 | VT.getVectorNumElements()); |
1731 | Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, |
1732 | DAG.getConstant(0, SL, MVT::i32)); |
1733 | } |
1734 | |
1735 | // Then convert the vector elements or scalar value. |
1736 | if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && |
1737 | VT.bitsLT(MemVT)) { |
1738 | unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; |
1739 | Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); |
1740 | } |
1741 | |
1742 | if (MemVT.isFloatingPoint()) |
1743 | Val = getFPExtOrFPRound(DAG, Val, SL, VT); |
1744 | else if (Signed) |
1745 | Val = DAG.getSExtOrTrunc(Val, SL, VT); |
1746 | else |
1747 | Val = DAG.getZExtOrTrunc(Val, SL, VT); |
1748 | |
1749 | return Val; |
1750 | } |
1751 | |
1752 | SDValue SITargetLowering::lowerKernargMemParameter( |
1753 | SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, |
1754 | uint64_t Offset, Align Alignment, bool Signed, |
1755 | const ISD::InputArg *Arg) const { |
1756 | MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); |
1757 | |
1758 | // Try to avoid using an extload by loading earlier than the argument address, |
1759 | // and extracting the relevant bits. The load should hopefully be merged with |
1760 | // the previous argument. |
1761 | if (MemVT.getStoreSize() < 4 && Alignment < 4) { |
1762 | // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). |
1763 | int64_t AlignDownOffset = alignDown(Offset, 4); |
1764 | int64_t OffsetDiff = Offset - AlignDownOffset; |
1765 | |
1766 | EVT IntVT = MemVT.changeTypeToInteger(); |
1767 | |
1768 | // TODO: If we passed in the base kernel offset we could have a better |
1769 | // alignment than 4, but we don't really need it. |
1770 | SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); |
1771 | SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), |
1772 | MachineMemOperand::MODereferenceable | |
1773 | MachineMemOperand::MOInvariant); |
1774 | |
1775 | SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); |
1776 | SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); |
1777 | |
1778 | SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); |
1779 | ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); |
1780 | ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); |
1781 | |
1782 | |
1783 | return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); |
1784 | } |
1785 | |
1786 | SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); |
1787 | SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, |
1788 | MachineMemOperand::MODereferenceable | |
1789 | MachineMemOperand::MOInvariant); |
1790 | |
1791 | SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); |
1792 | return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); |
1793 | } |
1794 | |
1795 | SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, |
1796 | const SDLoc &SL, SDValue Chain, |
1797 | const ISD::InputArg &Arg) const { |
1798 | MachineFunction &MF = DAG.getMachineFunction(); |
1799 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
1800 | |
1801 | if (Arg.Flags.isByVal()) { |
1802 | unsigned Size = Arg.Flags.getByValSize(); |
1803 | int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); |
1804 | return DAG.getFrameIndex(FrameIdx, MVT::i32); |
1805 | } |
1806 | |
1807 | unsigned ArgOffset = VA.getLocMemOffset(); |
1808 | unsigned ArgSize = VA.getValVT().getStoreSize(); |
1809 | |
1810 | int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); |
1811 | |
1812 | // Create load nodes to retrieve arguments from the stack. |
1813 | SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); |
1814 | SDValue ArgValue; |
1815 | |
1816 | // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) |
1817 | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; |
1818 | MVT MemVT = VA.getValVT(); |
1819 | |
1820 | switch (VA.getLocInfo()) { |
1821 | default: |
1822 | break; |
1823 | case CCValAssign::BCvt: |
1824 | MemVT = VA.getLocVT(); |
1825 | break; |
1826 | case CCValAssign::SExt: |
1827 | ExtType = ISD::SEXTLOAD; |
1828 | break; |
1829 | case CCValAssign::ZExt: |
1830 | ExtType = ISD::ZEXTLOAD; |
1831 | break; |
1832 | case CCValAssign::AExt: |
1833 | ExtType = ISD::EXTLOAD; |
1834 | break; |
1835 | } |
1836 | |
1837 | ArgValue = DAG.getExtLoad( |
1838 | ExtType, SL, VA.getLocVT(), Chain, FIN, |
1839 | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), |
1840 | MemVT); |
1841 | return ArgValue; |
1842 | } |
1843 | |
1844 | SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, |
1845 | const SIMachineFunctionInfo &MFI, |
1846 | EVT VT, |
1847 | AMDGPUFunctionArgInfo::PreloadedValue PVID) const { |
1848 | const ArgDescriptor *Reg; |
1849 | const TargetRegisterClass *RC; |
1850 | LLT Ty; |
1851 | |
1852 | std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); |
1853 | if (!Reg) { |
1854 | if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { |
1855 | // It's possible for a kernarg intrinsic call to appear in a kernel with |
1856 | // no allocated segment, in which case we do not add the user sgpr |
1857 | // argument, so just return null. |
1858 | return DAG.getConstant(0, SDLoc(), VT); |
1859 | } |
1860 | |
1861 | // It's undefined behavior if a function marked with the amdgpu-no-* |
1862 | // attributes uses the corresponding intrinsic. |
1863 | return DAG.getUNDEF(VT); |
1864 | } |
1865 | |
1866 | return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg); |
1867 | } |
1868 | |
1869 | static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, |
1870 | CallingConv::ID CallConv, |
1871 | ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, |
1872 | FunctionType *FType, |
1873 | SIMachineFunctionInfo *Info) { |
1874 | for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { |
1875 | const ISD::InputArg *Arg = &Ins[I]; |
1876 | |
1877 | assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&(static_cast <bool> ((!Arg->VT.isVector() || Arg-> VT.getScalarSizeInBits() == 16) && "vector type argument should have been split" ) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"vector type argument should have been split\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1878, __extension__ __PRETTY_FUNCTION__)) |
1878 | "vector type argument should have been split")(static_cast <bool> ((!Arg->VT.isVector() || Arg-> VT.getScalarSizeInBits() == 16) && "vector type argument should have been split" ) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"vector type argument should have been split\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1878, __extension__ __PRETTY_FUNCTION__)); |
1879 | |
1880 | // First check if it's a PS input addr. |
1881 | if (CallConv == CallingConv::AMDGPU_PS && |
1882 | !Arg->Flags.isInReg() && PSInputNum <= 15) { |
1883 | bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); |
1884 | |
1885 | // Inconveniently only the first part of the split is marked as isSplit, |
1886 | // so skip to the end. We only want to increment PSInputNum once for the |
1887 | // entire split argument. |
1888 | if (Arg->Flags.isSplit()) { |
1889 | while (!Arg->Flags.isSplitEnd()) { |
1890 | assert((!Arg->VT.isVector() ||(static_cast <bool> ((!Arg->VT.isVector() || Arg-> VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type" ) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1892, __extension__ __PRETTY_FUNCTION__)) |
1891 | Arg->VT.getScalarSizeInBits() == 16) &&(static_cast <bool> ((!Arg->VT.isVector() || Arg-> VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type" ) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1892, __extension__ __PRETTY_FUNCTION__)) |
1892 | "unexpected vector split in ps argument type")(static_cast <bool> ((!Arg->VT.isVector() || Arg-> VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type" ) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1892, __extension__ __PRETTY_FUNCTION__)); |
1893 | if (!SkipArg) |
1894 | Splits.push_back(*Arg); |
1895 | Arg = &Ins[++I]; |
1896 | } |
1897 | } |
1898 | |
1899 | if (SkipArg) { |
1900 | // We can safely skip PS inputs. |
1901 | Skipped.set(Arg->getOrigArgIndex()); |
1902 | ++PSInputNum; |
1903 | continue; |
1904 | } |
1905 | |
1906 | Info->markPSInputAllocated(PSInputNum); |
1907 | if (Arg->Used) |
1908 | Info->markPSInputEnabled(PSInputNum); |
1909 | |
1910 | ++PSInputNum; |
1911 | } |
1912 | |
1913 | Splits.push_back(*Arg); |
1914 | } |
1915 | } |
1916 | |
1917 | // Allocate special inputs passed in VGPRs. |
1918 | void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, |
1919 | MachineFunction &MF, |
1920 | const SIRegisterInfo &TRI, |
1921 | SIMachineFunctionInfo &Info) const { |
1922 | const LLT S32 = LLT::scalar(32); |
1923 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
1924 | |
1925 | if (Info.hasWorkItemIDX()) { |
1926 | Register Reg = AMDGPU::VGPR0; |
1927 | MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); |
1928 | |
1929 | CCInfo.AllocateReg(Reg); |
1930 | unsigned Mask = (Subtarget->hasPackedTID() && |
1931 | Info.hasWorkItemIDY()) ? 0x3ff : ~0u; |
1932 | Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); |
1933 | } |
1934 | |
1935 | if (Info.hasWorkItemIDY()) { |
1936 | assert(Info.hasWorkItemIDX())(static_cast <bool> (Info.hasWorkItemIDX()) ? void (0) : __assert_fail ("Info.hasWorkItemIDX()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 1936, __extension__ __PRETTY_FUNCTION__)); |
1937 | if (Subtarget->hasPackedTID()) { |
1938 | Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, |
1939 | 0x3ff << 10)); |
1940 | } else { |
1941 | unsigned Reg = AMDGPU::VGPR1; |
1942 | MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); |
1943 | |
1944 | CCInfo.AllocateReg(Reg); |
1945 | Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); |
1946 | } |
1947 | } |
1948 | |
1949 | if (Info.hasWorkItemIDZ()) { |
1950 | assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY())(static_cast <bool> (Info.hasWorkItemIDX() && Info .hasWorkItemIDY()) ? void (0) : __assert_fail ("Info.hasWorkItemIDX() && Info.hasWorkItemIDY()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1950, __extension__ __PRETTY_FUNCTION__)); |
1951 | if (Subtarget->hasPackedTID()) { |
1952 | Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, |
1953 | 0x3ff << 20)); |
1954 | } else { |
1955 | unsigned Reg = AMDGPU::VGPR2; |
1956 | MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); |
1957 | |
1958 | CCInfo.AllocateReg(Reg); |
1959 | Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); |
1960 | } |
1961 | } |
1962 | } |
1963 | |
1964 | // Try to allocate a VGPR at the end of the argument list, or if no argument |
1965 | // VGPRs are left allocating a stack slot. |
1966 | // If \p Mask is is given it indicates bitfield position in the register. |
1967 | // If \p Arg is given use it with new ]p Mask instead of allocating new. |
1968 | static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, |
1969 | ArgDescriptor Arg = ArgDescriptor()) { |
1970 | if (Arg.isSet()) |
1971 | return ArgDescriptor::createArg(Arg, Mask); |
1972 | |
1973 | ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); |
1974 | unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); |
1975 | if (RegIdx == ArgVGPRs.size()) { |
1976 | // Spill to stack required. |
1977 | int64_t Offset = CCInfo.AllocateStack(4, Align(4)); |
1978 | |
1979 | return ArgDescriptor::createStack(Offset, Mask); |
1980 | } |
1981 | |
1982 | unsigned Reg = ArgVGPRs[RegIdx]; |
1983 | Reg = CCInfo.AllocateReg(Reg); |
1984 | assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void ( 0) : __assert_fail ("Reg != AMDGPU::NoRegister", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 1984, __extension__ __PRETTY_FUNCTION__)); |
1985 | |
1986 | MachineFunction &MF = CCInfo.getMachineFunction(); |
1987 | Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); |
1988 | MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); |
1989 | return ArgDescriptor::createRegister(Reg, Mask); |
1990 | } |
1991 | |
1992 | static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, |
1993 | const TargetRegisterClass *RC, |
1994 | unsigned NumArgRegs) { |
1995 | ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32); |
1996 | unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); |
1997 | if (RegIdx == ArgSGPRs.size()) |
1998 | report_fatal_error("ran out of SGPRs for arguments"); |
1999 | |
2000 | unsigned Reg = ArgSGPRs[RegIdx]; |
2001 | Reg = CCInfo.AllocateReg(Reg); |
2002 | assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void ( 0) : __assert_fail ("Reg != AMDGPU::NoRegister", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2002, __extension__ __PRETTY_FUNCTION__)); |
2003 | |
2004 | MachineFunction &MF = CCInfo.getMachineFunction(); |
2005 | MF.addLiveIn(Reg, RC); |
2006 | return ArgDescriptor::createRegister(Reg); |
2007 | } |
2008 | |
2009 | // If this has a fixed position, we still should allocate the register in the |
2010 | // CCInfo state. Technically we could get away with this for values passed |
2011 | // outside of the normal argument range. |
2012 | static void allocateFixedSGPRInputImpl(CCState &CCInfo, |
2013 | const TargetRegisterClass *RC, |
2014 | MCRegister Reg) { |
2015 | Reg = CCInfo.AllocateReg(Reg); |
2016 | assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void ( 0) : __assert_fail ("Reg != AMDGPU::NoRegister", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2016, __extension__ __PRETTY_FUNCTION__)); |
2017 | MachineFunction &MF = CCInfo.getMachineFunction(); |
2018 | MF.addLiveIn(Reg, RC); |
2019 | } |
2020 | |
2021 | static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { |
2022 | if (Arg) { |
2023 | allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, |
2024 | Arg.getRegister()); |
2025 | } else |
2026 | Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); |
2027 | } |
2028 | |
2029 | static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { |
2030 | if (Arg) { |
2031 | allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, |
2032 | Arg.getRegister()); |
2033 | } else |
2034 | Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); |
2035 | } |
2036 | |
2037 | /// Allocate implicit function VGPR arguments at the end of allocated user |
2038 | /// arguments. |
2039 | void SITargetLowering::allocateSpecialInputVGPRs( |
2040 | CCState &CCInfo, MachineFunction &MF, |
2041 | const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { |
2042 | const unsigned Mask = 0x3ff; |
2043 | ArgDescriptor Arg; |
2044 | |
2045 | if (Info.hasWorkItemIDX()) { |
2046 | Arg = allocateVGPR32Input(CCInfo, Mask); |
2047 | Info.setWorkItemIDX(Arg); |
2048 | } |
2049 | |
2050 | if (Info.hasWorkItemIDY()) { |
2051 | Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); |
2052 | Info.setWorkItemIDY(Arg); |
2053 | } |
2054 | |
2055 | if (Info.hasWorkItemIDZ()) |
2056 | Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); |
2057 | } |
2058 | |
2059 | /// Allocate implicit function VGPR arguments in fixed registers. |
2060 | void SITargetLowering::allocateSpecialInputVGPRsFixed( |
2061 | CCState &CCInfo, MachineFunction &MF, |
2062 | const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { |
2063 | Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); |
2064 | if (!Reg) |
2065 | report_fatal_error("failed to allocated VGPR for implicit arguments"); |
2066 | |
2067 | const unsigned Mask = 0x3ff; |
2068 | Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); |
2069 | Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); |
2070 | Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); |
2071 | } |
2072 | |
2073 | void SITargetLowering::allocateSpecialInputSGPRs( |
2074 | CCState &CCInfo, |
2075 | MachineFunction &MF, |
2076 | const SIRegisterInfo &TRI, |
2077 | SIMachineFunctionInfo &Info) const { |
2078 | auto &ArgInfo = Info.getArgInfo(); |
2079 | |
2080 | // TODO: Unify handling with private memory pointers. |
2081 | if (Info.hasDispatchPtr()) |
2082 | allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); |
2083 | |
2084 | const Module *M = MF.getFunction().getParent(); |
2085 | if (Info.hasQueuePtr() && |
2086 | AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) |
2087 | allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); |
2088 | |
2089 | // Implicit arg ptr takes the place of the kernarg segment pointer. This is a |
2090 | // constant offset from the kernarg segment. |
2091 | if (Info.hasImplicitArgPtr()) |
2092 | allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); |
2093 | |
2094 | if (Info.hasDispatchID()) |
2095 | allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); |
2096 | |
2097 | // flat_scratch_init is not applicable for non-kernel functions. |
2098 | |
2099 | if (Info.hasWorkGroupIDX()) |
2100 | allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); |
2101 | |
2102 | if (Info.hasWorkGroupIDY()) |
2103 | allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); |
2104 | |
2105 | if (Info.hasWorkGroupIDZ()) |
2106 | allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); |
2107 | |
2108 | if (Info.hasLDSKernelId()) |
2109 | allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); |
2110 | } |
2111 | |
2112 | // Allocate special inputs passed in user SGPRs. |
2113 | void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, |
2114 | MachineFunction &MF, |
2115 | const SIRegisterInfo &TRI, |
2116 | SIMachineFunctionInfo &Info) const { |
2117 | if (Info.hasImplicitBufferPtr()) { |
2118 | Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); |
2119 | MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); |
2120 | CCInfo.AllocateReg(ImplicitBufferPtrReg); |
2121 | } |
2122 | |
2123 | // FIXME: How should these inputs interact with inreg / custom SGPR inputs? |
2124 | if (Info.hasPrivateSegmentBuffer()) { |
2125 | Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); |
2126 | MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); |
2127 | CCInfo.AllocateReg(PrivateSegmentBufferReg); |
2128 | } |
2129 | |
2130 | if (Info.hasDispatchPtr()) { |
2131 | Register DispatchPtrReg = Info.addDispatchPtr(TRI); |
2132 | MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); |
2133 | CCInfo.AllocateReg(DispatchPtrReg); |
2134 | } |
2135 | |
2136 | const Module *M = MF.getFunction().getParent(); |
2137 | if (Info.hasQueuePtr() && |
2138 | AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) { |
2139 | Register QueuePtrReg = Info.addQueuePtr(TRI); |
2140 | MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); |
2141 | CCInfo.AllocateReg(QueuePtrReg); |
2142 | } |
2143 | |
2144 | if (Info.hasKernargSegmentPtr()) { |
2145 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
2146 | Register InputPtrReg = Info.addKernargSegmentPtr(TRI); |
2147 | CCInfo.AllocateReg(InputPtrReg); |
2148 | |
2149 | Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); |
2150 | MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); |
2151 | } |
2152 | |
2153 | if (Info.hasDispatchID()) { |
2154 | Register DispatchIDReg = Info.addDispatchID(TRI); |
2155 | MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); |
2156 | CCInfo.AllocateReg(DispatchIDReg); |
2157 | } |
2158 | |
2159 | if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { |
2160 | Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); |
2161 | MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); |
2162 | CCInfo.AllocateReg(FlatScratchInitReg); |
2163 | } |
2164 | |
2165 | if (Info.hasLDSKernelId()) { |
2166 | Register Reg = Info.addLDSKernelId(); |
2167 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
2168 | CCInfo.AllocateReg(Reg); |
2169 | } |
2170 | |
2171 | // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read |
2172 | // these from the dispatch pointer. |
2173 | } |
2174 | |
2175 | // Allocate special input registers that are initialized per-wave. |
2176 | void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, |
2177 | MachineFunction &MF, |
2178 | SIMachineFunctionInfo &Info, |
2179 | CallingConv::ID CallConv, |
2180 | bool IsShader) const { |
2181 | bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs(); |
2182 | if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) { |
2183 | // Note: user SGPRs are handled by the front-end for graphics shaders |
2184 | // Pad up the used user SGPRs with dead inputs. |
2185 | |
2186 | // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately |
2187 | // before enabling architected SGPRs for workgroup IDs. |
2188 | assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget")(static_cast <bool> (!HasArchitectedSGPRs && "Unhandled feature for the subtarget" ) ? void (0) : __assert_fail ("!HasArchitectedSGPRs && \"Unhandled feature for the subtarget\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2188, __extension__ __PRETTY_FUNCTION__)); |
2189 | |
2190 | unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); |
2191 | // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to |
2192 | // rely on it to reach 16 since if we end up having no stack usage, it will |
2193 | // not really be added. |
2194 | unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + |
2195 | Info.hasWorkGroupIDY() + |
2196 | Info.hasWorkGroupIDZ() + |
2197 | Info.hasWorkGroupInfo(); |
2198 | for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { |
2199 | Register Reg = Info.addReservedUserSGPR(); |
2200 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
2201 | CCInfo.AllocateReg(Reg); |
2202 | } |
2203 | } |
2204 | |
2205 | if (Info.hasWorkGroupIDX()) { |
2206 | Register Reg = Info.addWorkGroupIDX(HasArchitectedSGPRs); |
2207 | if (!HasArchitectedSGPRs) |
2208 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
2209 | |
2210 | CCInfo.AllocateReg(Reg); |
2211 | } |
2212 | |
2213 | if (Info.hasWorkGroupIDY()) { |
2214 | Register Reg = Info.addWorkGroupIDY(HasArchitectedSGPRs); |
2215 | if (!HasArchitectedSGPRs) |
2216 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
2217 | |
2218 | CCInfo.AllocateReg(Reg); |
2219 | } |
2220 | |
2221 | if (Info.hasWorkGroupIDZ()) { |
2222 | Register Reg = Info.addWorkGroupIDZ(HasArchitectedSGPRs); |
2223 | if (!HasArchitectedSGPRs) |
2224 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
2225 | |
2226 | CCInfo.AllocateReg(Reg); |
2227 | } |
2228 | |
2229 | if (Info.hasWorkGroupInfo()) { |
2230 | Register Reg = Info.addWorkGroupInfo(); |
2231 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
2232 | CCInfo.AllocateReg(Reg); |
2233 | } |
2234 | |
2235 | if (Info.hasPrivateSegmentWaveByteOffset()) { |
2236 | // Scratch wave offset passed in system SGPR. |
2237 | unsigned PrivateSegmentWaveByteOffsetReg; |
2238 | |
2239 | if (IsShader) { |
2240 | PrivateSegmentWaveByteOffsetReg = |
2241 | Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); |
2242 | |
2243 | // This is true if the scratch wave byte offset doesn't have a fixed |
2244 | // location. |
2245 | if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { |
2246 | PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); |
2247 | Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); |
2248 | } |
2249 | } else |
2250 | PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); |
2251 | |
2252 | MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); |
2253 | CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); |
2254 | } |
2255 | |
2256 | assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||(static_cast <bool> (!Subtarget->hasUserSGPRInit16Bug () || IsShader || Info.getNumPreloadedSGPRs() >= 16) ? void (0) : __assert_fail ("!Subtarget->hasUserSGPRInit16Bug() || IsShader || Info.getNumPreloadedSGPRs() >= 16" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2257, __extension__ __PRETTY_FUNCTION__)) |
2257 | Info.getNumPreloadedSGPRs() >= 16)(static_cast <bool> (!Subtarget->hasUserSGPRInit16Bug () || IsShader || Info.getNumPreloadedSGPRs() >= 16) ? void (0) : __assert_fail ("!Subtarget->hasUserSGPRInit16Bug() || IsShader || Info.getNumPreloadedSGPRs() >= 16" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2257, __extension__ __PRETTY_FUNCTION__)); |
2258 | } |
2259 | |
2260 | static void reservePrivateMemoryRegs(const TargetMachine &TM, |
2261 | MachineFunction &MF, |
2262 | const SIRegisterInfo &TRI, |
2263 | SIMachineFunctionInfo &Info) { |
2264 | // Now that we've figured out where the scratch register inputs are, see if |
2265 | // should reserve the arguments and use them directly. |
2266 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
2267 | bool HasStackObjects = MFI.hasStackObjects(); |
2268 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
2269 | |
2270 | // Record that we know we have non-spill stack objects so we don't need to |
2271 | // check all stack objects later. |
2272 | if (HasStackObjects) |
2273 | Info.setHasNonSpillStackObjects(true); |
2274 | |
2275 | // Everything live out of a block is spilled with fast regalloc, so it's |
2276 | // almost certain that spilling will be required. |
2277 | if (TM.getOptLevel() == CodeGenOpt::None) |
2278 | HasStackObjects = true; |
2279 | |
2280 | // For now assume stack access is needed in any callee functions, so we need |
2281 | // the scratch registers to pass in. |
2282 | bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); |
2283 | |
2284 | if (!ST.enableFlatScratch()) { |
2285 | if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { |
2286 | // If we have stack objects, we unquestionably need the private buffer |
2287 | // resource. For the Code Object V2 ABI, this will be the first 4 user |
2288 | // SGPR inputs. We can reserve those and use them directly. |
2289 | |
2290 | Register PrivateSegmentBufferReg = |
2291 | Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); |
2292 | Info.setScratchRSrcReg(PrivateSegmentBufferReg); |
2293 | } else { |
2294 | unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); |
2295 | // We tentatively reserve the last registers (skipping the last registers |
2296 | // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, |
2297 | // we'll replace these with the ones immediately after those which were |
2298 | // really allocated. In the prologue copies will be inserted from the |
2299 | // argument to these reserved registers. |
2300 | |
2301 | // Without HSA, relocations are used for the scratch pointer and the |
2302 | // buffer resource setup is always inserted in the prologue. Scratch wave |
2303 | // offset is still in an input SGPR. |
2304 | Info.setScratchRSrcReg(ReservedBufferReg); |
2305 | } |
2306 | } |
2307 | |
2308 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
2309 | |
2310 | // For entry functions we have to set up the stack pointer if we use it, |
2311 | // whereas non-entry functions get this "for free". This means there is no |
2312 | // intrinsic advantage to using S32 over S34 in cases where we do not have |
2313 | // calls but do need a frame pointer (i.e. if we are requested to have one |
2314 | // because frame pointer elimination is disabled). To keep things simple we |
2315 | // only ever use S32 as the call ABI stack pointer, and so using it does not |
2316 | // imply we need a separate frame pointer. |
2317 | // |
2318 | // Try to use s32 as the SP, but move it if it would interfere with input |
2319 | // arguments. This won't work with calls though. |
2320 | // |
2321 | // FIXME: Move SP to avoid any possible inputs, or find a way to spill input |
2322 | // registers. |
2323 | if (!MRI.isLiveIn(AMDGPU::SGPR32)) { |
2324 | Info.setStackPtrOffsetReg(AMDGPU::SGPR32); |
2325 | } else { |
2326 | assert(AMDGPU::isShader(MF.getFunction().getCallingConv()))(static_cast <bool> (AMDGPU::isShader(MF.getFunction(). getCallingConv())) ? void (0) : __assert_fail ("AMDGPU::isShader(MF.getFunction().getCallingConv())" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2326, __extension__ __PRETTY_FUNCTION__)); |
2327 | |
2328 | if (MFI.hasCalls()) |
2329 | report_fatal_error("call in graphics shader with too many input SGPRs"); |
2330 | |
2331 | for (unsigned Reg : AMDGPU::SGPR_32RegClass) { |
2332 | if (!MRI.isLiveIn(Reg)) { |
2333 | Info.setStackPtrOffsetReg(Reg); |
2334 | break; |
2335 | } |
2336 | } |
2337 | |
2338 | if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) |
2339 | report_fatal_error("failed to find register for SP"); |
2340 | } |
2341 | |
2342 | // hasFP should be accurate for entry functions even before the frame is |
2343 | // finalized, because it does not rely on the known stack size, only |
2344 | // properties like whether variable sized objects are present. |
2345 | if (ST.getFrameLowering()->hasFP(MF)) { |
2346 | Info.setFrameOffsetReg(AMDGPU::SGPR33); |
2347 | } |
2348 | } |
2349 | |
2350 | bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { |
2351 | const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); |
2352 | return !Info->isEntryFunction(); |
2353 | } |
2354 | |
2355 | void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { |
2356 | |
2357 | } |
2358 | |
2359 | void SITargetLowering::insertCopiesSplitCSR( |
2360 | MachineBasicBlock *Entry, |
2361 | const SmallVectorImpl<MachineBasicBlock *> &Exits) const { |
2362 | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
2363 | |
2364 | const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); |
2365 | if (!IStart) |
2366 | return; |
2367 | |
2368 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
2369 | MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); |
2370 | MachineBasicBlock::iterator MBBI = Entry->begin(); |
2371 | for (const MCPhysReg *I = IStart; *I; ++I) { |
2372 | const TargetRegisterClass *RC = nullptr; |
2373 | if (AMDGPU::SReg_64RegClass.contains(*I)) |
2374 | RC = &AMDGPU::SGPR_64RegClass; |
2375 | else if (AMDGPU::SReg_32RegClass.contains(*I)) |
2376 | RC = &AMDGPU::SGPR_32RegClass; |
2377 | else |
2378 | llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2378); |
2379 | |
2380 | Register NewVR = MRI->createVirtualRegister(RC); |
2381 | // Create copy from CSR to a virtual register. |
2382 | Entry->addLiveIn(*I); |
2383 | BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) |
2384 | .addReg(*I); |
2385 | |
2386 | // Insert the copy-back instructions right before the terminator. |
2387 | for (auto *Exit : Exits) |
2388 | BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), |
2389 | TII->get(TargetOpcode::COPY), *I) |
2390 | .addReg(NewVR); |
2391 | } |
2392 | } |
2393 | |
2394 | SDValue SITargetLowering::LowerFormalArguments( |
2395 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
2396 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
2397 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
2398 | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
2399 | |
2400 | MachineFunction &MF = DAG.getMachineFunction(); |
2401 | const Function &Fn = MF.getFunction(); |
2402 | FunctionType *FType = MF.getFunction().getFunctionType(); |
2403 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
2404 | |
2405 | if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { |
2406 | DiagnosticInfoUnsupported NoGraphicsHSA( |
2407 | Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); |
2408 | DAG.getContext()->diagnose(NoGraphicsHSA); |
2409 | return DAG.getEntryNode(); |
2410 | } |
2411 | |
2412 | Info->allocateKnownAddressLDSGlobal(Fn); |
2413 | |
2414 | SmallVector<ISD::InputArg, 16> Splits; |
2415 | SmallVector<CCValAssign, 16> ArgLocs; |
2416 | BitVector Skipped(Ins.size()); |
2417 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
2418 | *DAG.getContext()); |
2419 | |
2420 | bool IsGraphics = AMDGPU::isGraphics(CallConv); |
2421 | bool IsKernel = AMDGPU::isKernel(CallConv); |
2422 | bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); |
2423 | |
2424 | if (IsGraphics) { |
2425 | assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&(static_cast <bool> (!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo () && !Info->hasLDSKernelId() && !Info-> hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2428, __extension__ __PRETTY_FUNCTION__)) |
2426 | !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() &&(static_cast <bool> (!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo () && !Info->hasLDSKernelId() && !Info-> hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2428, __extension__ __PRETTY_FUNCTION__)) |
2427 | !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&(static_cast <bool> (!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo () && !Info->hasLDSKernelId() && !Info-> hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2428, __extension__ __PRETTY_FUNCTION__)) |
2428 | !Info->hasWorkItemIDZ())(static_cast <bool> (!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo () && !Info->hasLDSKernelId() && !Info-> hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2428, __extension__ __PRETTY_FUNCTION__)); |
2429 | if (!Subtarget->enableFlatScratch()) |
2430 | assert(!Info->hasFlatScratchInit())(static_cast <bool> (!Info->hasFlatScratchInit()) ? void (0) : __assert_fail ("!Info->hasFlatScratchInit()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2430, __extension__ __PRETTY_FUNCTION__)); |
2431 | if (CallConv != CallingConv::AMDGPU_CS || !Subtarget->hasArchitectedSGPRs()) |
2432 | assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&(static_cast <bool> (!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ ()) ? void (0) : __assert_fail ("!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2433, __extension__ __PRETTY_FUNCTION__)) |
2433 | !Info->hasWorkGroupIDZ())(static_cast <bool> (!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ ()) ? void (0) : __assert_fail ("!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2433, __extension__ __PRETTY_FUNCTION__)); |
2434 | } |
2435 | |
2436 | if (CallConv == CallingConv::AMDGPU_PS) { |
2437 | processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); |
2438 | |
2439 | // At least one interpolation mode must be enabled or else the GPU will |
2440 | // hang. |
2441 | // |
2442 | // Check PSInputAddr instead of PSInputEnable. The idea is that if the user |
2443 | // set PSInputAddr, the user wants to enable some bits after the compilation |
2444 | // based on run-time states. Since we can't know what the final PSInputEna |
2445 | // will look like, so we shouldn't do anything here and the user should take |
2446 | // responsibility for the correct programming. |
2447 | // |
2448 | // Otherwise, the following restrictions apply: |
2449 | // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. |
2450 | // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be |
2451 | // enabled too. |
2452 | if ((Info->getPSInputAddr() & 0x7F) == 0 || |
2453 | ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { |
2454 | CCInfo.AllocateReg(AMDGPU::VGPR0); |
2455 | CCInfo.AllocateReg(AMDGPU::VGPR1); |
2456 | Info->markPSInputAllocated(0); |
2457 | Info->markPSInputEnabled(0); |
2458 | } |
2459 | if (Subtarget->isAmdPalOS()) { |
2460 | // For isAmdPalOS, the user does not enable some bits after compilation |
2461 | // based on run-time states; the register values being generated here are |
2462 | // the final ones set in hardware. Therefore we need to apply the |
2463 | // workaround to PSInputAddr and PSInputEnable together. (The case where |
2464 | // a bit is set in PSInputAddr but not PSInputEnable is where the |
2465 | // frontend set up an input arg for a particular interpolation mode, but |
2466 | // nothing uses that input arg. Really we should have an earlier pass |
2467 | // that removes such an arg.) |
2468 | unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); |
2469 | if ((PsInputBits & 0x7F) == 0 || |
2470 | ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) |
2471 | Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr())); |
2472 | } |
2473 | } else if (IsKernel) { |
2474 | assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX())(static_cast <bool> (Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()) ? void (0) : __assert_fail ("Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2474, __extension__ __PRETTY_FUNCTION__)); |
2475 | } else { |
2476 | Splits.append(Ins.begin(), Ins.end()); |
2477 | } |
2478 | |
2479 | if (IsEntryFunc) { |
2480 | allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); |
2481 | allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); |
2482 | } else if (!IsGraphics) { |
2483 | // For the fixed ABI, pass workitem IDs in the last argument register. |
2484 | allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); |
2485 | } |
2486 | |
2487 | if (IsKernel) { |
2488 | analyzeFormalArgumentsCompute(CCInfo, Ins); |
2489 | } else { |
2490 | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); |
2491 | CCInfo.AnalyzeFormalArguments(Splits, AssignFn); |
2492 | } |
2493 | |
2494 | SmallVector<SDValue, 16> Chains; |
2495 | |
2496 | // FIXME: This is the minimum kernel argument alignment. We should improve |
2497 | // this to the maximum alignment of the arguments. |
2498 | // |
2499 | // FIXME: Alignment of explicit arguments totally broken with non-0 explicit |
2500 | // kern arg offset. |
2501 | const Align KernelArgBaseAlign = Align(16); |
2502 | |
2503 | for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { |
2504 | const ISD::InputArg &Arg = Ins[i]; |
2505 | if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { |
2506 | InVals.push_back(DAG.getUNDEF(Arg.VT)); |
2507 | continue; |
2508 | } |
2509 | |
2510 | CCValAssign &VA = ArgLocs[ArgIdx++]; |
2511 | MVT VT = VA.getLocVT(); |
2512 | |
2513 | if (IsEntryFunc && VA.isMemLoc()) { |
2514 | VT = Ins[i].VT; |
2515 | EVT MemVT = VA.getLocVT(); |
2516 | |
2517 | const uint64_t Offset = VA.getLocMemOffset(); |
2518 | Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); |
2519 | |
2520 | if (Arg.Flags.isByRef()) { |
2521 | SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); |
2522 | |
2523 | const GCNTargetMachine &TM = |
2524 | static_cast<const GCNTargetMachine &>(getTargetMachine()); |
2525 | if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, |
2526 | Arg.Flags.getPointerAddrSpace())) { |
2527 | Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, |
2528 | Arg.Flags.getPointerAddrSpace()); |
2529 | } |
2530 | |
2531 | InVals.push_back(Ptr); |
2532 | continue; |
2533 | } |
2534 | |
2535 | SDValue Arg = lowerKernargMemParameter( |
2536 | DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); |
2537 | Chains.push_back(Arg.getValue(1)); |
2538 | |
2539 | auto *ParamTy = |
2540 | dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); |
2541 | if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && |
2542 | ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || |
2543 | ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { |
2544 | // On SI local pointers are just offsets into LDS, so they are always |
2545 | // less than 16-bits. On CI and newer they could potentially be |
2546 | // real pointers, so we can't guarantee their size. |
2547 | Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, |
2548 | DAG.getValueType(MVT::i16)); |
2549 | } |
2550 | |
2551 | InVals.push_back(Arg); |
2552 | continue; |
2553 | } else if (!IsEntryFunc && VA.isMemLoc()) { |
2554 | SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); |
2555 | InVals.push_back(Val); |
2556 | if (!Arg.Flags.isByVal()) |
2557 | Chains.push_back(Val.getValue(1)); |
2558 | continue; |
2559 | } |
2560 | |
2561 | assert(VA.isRegLoc() && "Parameter must be in a register!")(static_cast <bool> (VA.isRegLoc() && "Parameter must be in a register!" ) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Parameter must be in a register!\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2561, __extension__ __PRETTY_FUNCTION__)); |
2562 | |
2563 | Register Reg = VA.getLocReg(); |
2564 | const TargetRegisterClass *RC = nullptr; |
2565 | if (AMDGPU::VGPR_32RegClass.contains(Reg)) |
2566 | RC = &AMDGPU::VGPR_32RegClass; |
2567 | else if (AMDGPU::SGPR_32RegClass.contains(Reg)) |
2568 | RC = &AMDGPU::SGPR_32RegClass; |
2569 | else |
2570 | llvm_unreachable("Unexpected register class in LowerFormalArguments!")::llvm::llvm_unreachable_internal("Unexpected register class in LowerFormalArguments!" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2570); |
2571 | EVT ValVT = VA.getValVT(); |
2572 | |
2573 | Reg = MF.addLiveIn(Reg, RC); |
2574 | SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); |
2575 | |
2576 | if (Arg.Flags.isSRet()) { |
2577 | // The return object should be reasonably addressable. |
2578 | |
2579 | // FIXME: This helps when the return is a real sret. If it is a |
2580 | // automatically inserted sret (i.e. CanLowerReturn returns false), an |
2581 | // extra copy is inserted in SelectionDAGBuilder which obscures this. |
2582 | unsigned NumBits |
2583 | = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); |
2584 | Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, |
2585 | DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); |
2586 | } |
2587 | |
2588 | // If this is an 8 or 16-bit value, it is really passed promoted |
2589 | // to 32 bits. Insert an assert[sz]ext to capture this, then |
2590 | // truncate to the right size. |
2591 | switch (VA.getLocInfo()) { |
2592 | case CCValAssign::Full: |
2593 | break; |
2594 | case CCValAssign::BCvt: |
2595 | Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); |
2596 | break; |
2597 | case CCValAssign::SExt: |
2598 | Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, |
2599 | DAG.getValueType(ValVT)); |
2600 | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
2601 | break; |
2602 | case CCValAssign::ZExt: |
2603 | Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, |
2604 | DAG.getValueType(ValVT)); |
2605 | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
2606 | break; |
2607 | case CCValAssign::AExt: |
2608 | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
2609 | break; |
2610 | default: |
2611 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2611); |
2612 | } |
2613 | |
2614 | InVals.push_back(Val); |
2615 | } |
2616 | |
2617 | // Start adding system SGPRs. |
2618 | if (IsEntryFunc) { |
2619 | allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); |
2620 | } else { |
2621 | CCInfo.AllocateReg(Info->getScratchRSrcReg()); |
2622 | if (!IsGraphics) |
2623 | allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); |
2624 | } |
2625 | |
2626 | auto &ArgUsageInfo = |
2627 | DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); |
2628 | ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); |
2629 | |
2630 | unsigned StackArgSize = CCInfo.getNextStackOffset(); |
2631 | Info->setBytesInStackArgArea(StackArgSize); |
2632 | |
2633 | return Chains.empty() ? Chain : |
2634 | DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); |
2635 | } |
2636 | |
2637 | // TODO: If return values can't fit in registers, we should return as many as |
2638 | // possible in registers before passing on stack. |
2639 | bool SITargetLowering::CanLowerReturn( |
2640 | CallingConv::ID CallConv, |
2641 | MachineFunction &MF, bool IsVarArg, |
2642 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
2643 | LLVMContext &Context) const { |
2644 | // Replacing returns with sret/stack usage doesn't make sense for shaders. |
2645 | // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn |
2646 | // for shaders. Vector types should be explicitly handled by CC. |
2647 | if (AMDGPU::isEntryFunctionCC(CallConv)) |
2648 | return true; |
2649 | |
2650 | SmallVector<CCValAssign, 16> RVLocs; |
2651 | CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); |
2652 | return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); |
2653 | } |
2654 | |
2655 | SDValue |
2656 | SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
2657 | bool isVarArg, |
2658 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
2659 | const SmallVectorImpl<SDValue> &OutVals, |
2660 | const SDLoc &DL, SelectionDAG &DAG) const { |
2661 | MachineFunction &MF = DAG.getMachineFunction(); |
2662 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
2663 | |
2664 | if (AMDGPU::isKernel(CallConv)) { |
2665 | return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, |
2666 | OutVals, DL, DAG); |
2667 | } |
2668 | |
2669 | bool IsShader = AMDGPU::isShader(CallConv); |
2670 | |
2671 | Info->setIfReturnsVoid(Outs.empty()); |
2672 | bool IsWaveEnd = Info->returnsVoid() && IsShader; |
2673 | |
2674 | // CCValAssign - represent the assignment of the return value to a location. |
2675 | SmallVector<CCValAssign, 48> RVLocs; |
2676 | SmallVector<ISD::OutputArg, 48> Splits; |
2677 | |
2678 | // CCState - Info about the registers and stack slots. |
2679 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
2680 | *DAG.getContext()); |
2681 | |
2682 | // Analyze outgoing return values. |
2683 | CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); |
2684 | |
2685 | SDValue Flag; |
2686 | SmallVector<SDValue, 48> RetOps; |
2687 | RetOps.push_back(Chain); // Operand #0 = Chain (updated below) |
2688 | |
2689 | // Copy the result values into the output registers. |
2690 | for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; |
2691 | ++I, ++RealRVLocIdx) { |
2692 | CCValAssign &VA = RVLocs[I]; |
2693 | assert(VA.isRegLoc() && "Can only return in registers!")(static_cast <bool> (VA.isRegLoc() && "Can only return in registers!" ) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2693, __extension__ __PRETTY_FUNCTION__)); |
2694 | // TODO: Partially return in registers if return values don't fit. |
2695 | SDValue Arg = OutVals[RealRVLocIdx]; |
2696 | |
2697 | // Copied from other backends. |
2698 | switch (VA.getLocInfo()) { |
2699 | case CCValAssign::Full: |
2700 | break; |
2701 | case CCValAssign::BCvt: |
2702 | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
2703 | break; |
2704 | case CCValAssign::SExt: |
2705 | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); |
2706 | break; |
2707 | case CCValAssign::ZExt: |
2708 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
2709 | break; |
2710 | case CCValAssign::AExt: |
2711 | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); |
2712 | break; |
2713 | default: |
2714 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2714); |
2715 | } |
2716 | |
2717 | Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); |
2718 | Flag = Chain.getValue(1); |
2719 | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
2720 | } |
2721 | |
2722 | // FIXME: Does sret work properly? |
2723 | if (!Info->isEntryFunction()) { |
2724 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
2725 | const MCPhysReg *I = |
2726 | TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); |
2727 | if (I) { |
2728 | for (; *I; ++I) { |
2729 | if (AMDGPU::SReg_64RegClass.contains(*I)) |
2730 | RetOps.push_back(DAG.getRegister(*I, MVT::i64)); |
2731 | else if (AMDGPU::SReg_32RegClass.contains(*I)) |
2732 | RetOps.push_back(DAG.getRegister(*I, MVT::i32)); |
2733 | else |
2734 | llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2734); |
2735 | } |
2736 | } |
2737 | } |
2738 | |
2739 | // Update chain and glue. |
2740 | RetOps[0] = Chain; |
2741 | if (Flag.getNode()) |
2742 | RetOps.push_back(Flag); |
2743 | |
2744 | unsigned Opc = AMDGPUISD::ENDPGM; |
2745 | if (!IsWaveEnd) |
2746 | Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; |
2747 | return DAG.getNode(Opc, DL, MVT::Other, RetOps); |
2748 | } |
2749 | |
2750 | SDValue SITargetLowering::LowerCallResult( |
2751 | SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, |
2752 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
2753 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, |
2754 | SDValue ThisVal) const { |
2755 | CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); |
2756 | |
2757 | // Assign locations to each value returned by this call. |
2758 | SmallVector<CCValAssign, 16> RVLocs; |
2759 | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
2760 | *DAG.getContext()); |
2761 | CCInfo.AnalyzeCallResult(Ins, RetCC); |
2762 | |
2763 | // Copy all of the result registers out of their specified physreg. |
2764 | for (unsigned i = 0; i != RVLocs.size(); ++i) { |
2765 | CCValAssign VA = RVLocs[i]; |
2766 | SDValue Val; |
2767 | |
2768 | if (VA.isRegLoc()) { |
2769 | Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); |
2770 | Chain = Val.getValue(1); |
2771 | InFlag = Val.getValue(2); |
2772 | } else if (VA.isMemLoc()) { |
2773 | report_fatal_error("TODO: return values in memory"); |
2774 | } else |
2775 | llvm_unreachable("unknown argument location type")::llvm::llvm_unreachable_internal("unknown argument location type" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2775); |
2776 | |
2777 | switch (VA.getLocInfo()) { |
2778 | case CCValAssign::Full: |
2779 | break; |
2780 | case CCValAssign::BCvt: |
2781 | Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); |
2782 | break; |
2783 | case CCValAssign::ZExt: |
2784 | Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, |
2785 | DAG.getValueType(VA.getValVT())); |
2786 | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
2787 | break; |
2788 | case CCValAssign::SExt: |
2789 | Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, |
2790 | DAG.getValueType(VA.getValVT())); |
2791 | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
2792 | break; |
2793 | case CCValAssign::AExt: |
2794 | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
2795 | break; |
2796 | default: |
2797 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2797); |
2798 | } |
2799 | |
2800 | InVals.push_back(Val); |
2801 | } |
2802 | |
2803 | return Chain; |
2804 | } |
2805 | |
2806 | // Add code to pass special inputs required depending on used features separate |
2807 | // from the explicit user arguments present in the IR. |
2808 | void SITargetLowering::passSpecialInputs( |
2809 | CallLoweringInfo &CLI, |
2810 | CCState &CCInfo, |
2811 | const SIMachineFunctionInfo &Info, |
2812 | SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, |
2813 | SmallVectorImpl<SDValue> &MemOpChains, |
2814 | SDValue Chain) const { |
2815 | // If we don't have a call site, this was a call inserted by |
2816 | // legalization. These can never use special inputs. |
2817 | if (!CLI.CB) |
2818 | return; |
2819 | |
2820 | SelectionDAG &DAG = CLI.DAG; |
2821 | const SDLoc &DL = CLI.DL; |
2822 | const Function &F = DAG.getMachineFunction().getFunction(); |
2823 | |
2824 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
2825 | const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); |
2826 | |
2827 | const AMDGPUFunctionArgInfo *CalleeArgInfo |
2828 | = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; |
2829 | if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { |
2830 | auto &ArgUsageInfo = |
2831 | DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); |
2832 | CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); |
2833 | } |
2834 | |
2835 | // TODO: Unify with private memory register handling. This is complicated by |
2836 | // the fact that at least in kernels, the input argument is not necessarily |
2837 | // in the same location as the input. |
2838 | static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue, |
2839 | StringLiteral> ImplicitAttrs[] = { |
2840 | {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, |
2841 | {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, |
2842 | {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, |
2843 | {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, |
2844 | {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, |
2845 | {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, |
2846 | {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, |
2847 | {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, |
2848 | }; |
2849 | |
2850 | for (auto Attr : ImplicitAttrs) { |
2851 | const ArgDescriptor *OutgoingArg; |
2852 | const TargetRegisterClass *ArgRC; |
2853 | LLT ArgTy; |
2854 | |
2855 | AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; |
2856 | |
2857 | // If the callee does not use the attribute value, skip copying the value. |
2858 | if (CLI.CB->hasFnAttr(Attr.second)) |
2859 | continue; |
2860 | |
2861 | std::tie(OutgoingArg, ArgRC, ArgTy) = |
2862 | CalleeArgInfo->getPreloadedValue(InputID); |
2863 | if (!OutgoingArg) |
2864 | continue; |
2865 | |
2866 | const ArgDescriptor *IncomingArg; |
2867 | const TargetRegisterClass *IncomingArgRC; |
2868 | LLT Ty; |
2869 | std::tie(IncomingArg, IncomingArgRC, Ty) = |
2870 | CallerArgInfo.getPreloadedValue(InputID); |
2871 | assert(IncomingArgRC == ArgRC)(static_cast <bool> (IncomingArgRC == ArgRC) ? void (0) : __assert_fail ("IncomingArgRC == ArgRC", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2871, __extension__ __PRETTY_FUNCTION__)); |
2872 | |
2873 | // All special arguments are ints for now. |
2874 | EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; |
2875 | SDValue InputReg; |
2876 | |
2877 | if (IncomingArg) { |
2878 | InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); |
2879 | } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { |
2880 | // The implicit arg ptr is special because it doesn't have a corresponding |
2881 | // input for kernels, and is computed from the kernarg segment pointer. |
2882 | InputReg = getImplicitArgPtr(DAG, DL); |
2883 | } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { |
2884 | std::optional<uint32_t> Id = |
2885 | AMDGPUMachineFunction::getLDSKernelIdMetadata(F); |
2886 | if (Id.has_value()) { |
2887 | InputReg = DAG.getConstant(*Id, DL, ArgVT); |
2888 | } else { |
2889 | InputReg = DAG.getUNDEF(ArgVT); |
2890 | } |
2891 | } else { |
2892 | // We may have proven the input wasn't needed, although the ABI is |
2893 | // requiring it. We just need to allocate the register appropriately. |
2894 | InputReg = DAG.getUNDEF(ArgVT); |
2895 | } |
2896 | |
2897 | if (OutgoingArg->isRegister()) { |
2898 | RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); |
2899 | if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) |
2900 | report_fatal_error("failed to allocate implicit input argument"); |
2901 | } else { |
2902 | unsigned SpecialArgOffset = |
2903 | CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); |
2904 | SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, |
2905 | SpecialArgOffset); |
2906 | MemOpChains.push_back(ArgStore); |
2907 | } |
2908 | } |
2909 | |
2910 | // Pack workitem IDs into a single register or pass it as is if already |
2911 | // packed. |
2912 | const ArgDescriptor *OutgoingArg; |
2913 | const TargetRegisterClass *ArgRC; |
2914 | LLT Ty; |
2915 | |
2916 | std::tie(OutgoingArg, ArgRC, Ty) = |
2917 | CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); |
2918 | if (!OutgoingArg) |
2919 | std::tie(OutgoingArg, ArgRC, Ty) = |
2920 | CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); |
2921 | if (!OutgoingArg) |
2922 | std::tie(OutgoingArg, ArgRC, Ty) = |
2923 | CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); |
2924 | if (!OutgoingArg) |
2925 | return; |
2926 | |
2927 | const ArgDescriptor *IncomingArgX = std::get<0>( |
2928 | CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); |
2929 | const ArgDescriptor *IncomingArgY = std::get<0>( |
2930 | CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); |
2931 | const ArgDescriptor *IncomingArgZ = std::get<0>( |
2932 | CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); |
2933 | |
2934 | SDValue InputReg; |
2935 | SDLoc SL; |
2936 | |
2937 | const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); |
2938 | const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); |
2939 | const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); |
2940 | |
2941 | // If incoming ids are not packed we need to pack them. |
2942 | if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && |
2943 | NeedWorkItemIDX) { |
2944 | if (Subtarget->getMaxWorkitemID(F, 0) != 0) { |
2945 | InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); |
2946 | } else { |
2947 | InputReg = DAG.getConstant(0, DL, MVT::i32); |
2948 | } |
2949 | } |
2950 | |
2951 | if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && |
2952 | NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { |
2953 | SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); |
2954 | Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, |
2955 | DAG.getShiftAmountConstant(10, MVT::i32, SL)); |
2956 | InputReg = InputReg.getNode() ? |
2957 | DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; |
2958 | } |
2959 | |
2960 | if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && |
2961 | NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { |
2962 | SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); |
2963 | Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, |
2964 | DAG.getShiftAmountConstant(20, MVT::i32, SL)); |
2965 | InputReg = InputReg.getNode() ? |
2966 | DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; |
2967 | } |
2968 | |
2969 | if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { |
2970 | if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { |
2971 | // We're in a situation where the outgoing function requires the workitem |
2972 | // ID, but the calling function does not have it (e.g a graphics function |
2973 | // calling a C calling convention function). This is illegal, but we need |
2974 | // to produce something. |
2975 | InputReg = DAG.getUNDEF(MVT::i32); |
2976 | } else { |
2977 | // Workitem ids are already packed, any of present incoming arguments |
2978 | // will carry all required fields. |
2979 | ArgDescriptor IncomingArg = ArgDescriptor::createArg( |
2980 | IncomingArgX ? *IncomingArgX : |
2981 | IncomingArgY ? *IncomingArgY : |
2982 | *IncomingArgZ, ~0u); |
2983 | InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); |
2984 | } |
2985 | } |
2986 | |
2987 | if (OutgoingArg->isRegister()) { |
2988 | if (InputReg) |
2989 | RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); |
2990 | |
2991 | CCInfo.AllocateReg(OutgoingArg->getRegister()); |
2992 | } else { |
2993 | unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); |
2994 | if (InputReg) { |
2995 | SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, |
2996 | SpecialArgOffset); |
2997 | MemOpChains.push_back(ArgStore); |
2998 | } |
2999 | } |
3000 | } |
3001 | |
3002 | static bool canGuaranteeTCO(CallingConv::ID CC) { |
3003 | return CC == CallingConv::Fast; |
3004 | } |
3005 | |
3006 | /// Return true if we might ever do TCO for calls with this calling convention. |
3007 | static bool mayTailCallThisCC(CallingConv::ID CC) { |
3008 | switch (CC) { |
3009 | case CallingConv::C: |
3010 | case CallingConv::AMDGPU_Gfx: |
3011 | return true; |
3012 | default: |
3013 | return canGuaranteeTCO(CC); |
3014 | } |
3015 | } |
3016 | |
3017 | bool SITargetLowering::isEligibleForTailCallOptimization( |
3018 | SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, |
3019 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
3020 | const SmallVectorImpl<SDValue> &OutVals, |
3021 | const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { |
3022 | if (!mayTailCallThisCC(CalleeCC)) |
3023 | return false; |
3024 | |
3025 | // For a divergent call target, we need to do a waterfall loop over the |
3026 | // possible callees which precludes us from using a simple jump. |
3027 | if (Callee->isDivergent()) |
3028 | return false; |
3029 | |
3030 | MachineFunction &MF = DAG.getMachineFunction(); |
3031 | const Function &CallerF = MF.getFunction(); |
3032 | CallingConv::ID CallerCC = CallerF.getCallingConv(); |
3033 | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
3034 | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
3035 | |
3036 | // Kernels aren't callable, and don't have a live in return address so it |
3037 | // doesn't make sense to do a tail call with entry functions. |
3038 | if (!CallerPreserved) |
3039 | return false; |
3040 | |
3041 | bool CCMatch = CallerCC == CalleeCC; |
3042 | |
3043 | if (DAG.getTarget().Options.GuaranteedTailCallOpt) { |
3044 | if (canGuaranteeTCO(CalleeCC) && CCMatch) |
3045 | return true; |
3046 | return false; |
3047 | } |
3048 | |
3049 | // TODO: Can we handle var args? |
3050 | if (IsVarArg) |
3051 | return false; |
3052 | |
3053 | for (const Argument &Arg : CallerF.args()) { |
3054 | if (Arg.hasByValAttr()) |
3055 | return false; |
3056 | } |
3057 | |
3058 | LLVMContext &Ctx = *DAG.getContext(); |
3059 | |
3060 | // Check that the call results are passed in the same way. |
3061 | if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, |
3062 | CCAssignFnForCall(CalleeCC, IsVarArg), |
3063 | CCAssignFnForCall(CallerCC, IsVarArg))) |
3064 | return false; |
3065 | |
3066 | // The callee has to preserve all registers the caller needs to preserve. |
3067 | if (!CCMatch) { |
3068 | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
3069 | if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) |
3070 | return false; |
3071 | } |
3072 | |
3073 | // Nothing more to check if the callee is taking no arguments. |
3074 | if (Outs.empty()) |
3075 | return true; |
3076 | |
3077 | SmallVector<CCValAssign, 16> ArgLocs; |
3078 | CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); |
3079 | |
3080 | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); |
3081 | |
3082 | const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); |
3083 | // If the stack arguments for this call do not fit into our own save area then |
3084 | // the call cannot be made tail. |
3085 | // TODO: Is this really necessary? |
3086 | if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) |
3087 | return false; |
3088 | |
3089 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
3090 | return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); |
3091 | } |
3092 | |
3093 | bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
3094 | if (!CI->isTailCall()) |
3095 | return false; |
3096 | |
3097 | const Function *ParentFn = CI->getParent()->getParent(); |
3098 | if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) |
3099 | return false; |
3100 | return true; |
3101 | } |
3102 | |
3103 | // The wave scratch offset register is used as the global base pointer. |
3104 | SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, |
3105 | SmallVectorImpl<SDValue> &InVals) const { |
3106 | SelectionDAG &DAG = CLI.DAG; |
3107 | const SDLoc &DL = CLI.DL; |
3108 | SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
3109 | SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
3110 | SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
3111 | SDValue Chain = CLI.Chain; |
3112 | SDValue Callee = CLI.Callee; |
3113 | bool &IsTailCall = CLI.IsTailCall; |
3114 | CallingConv::ID CallConv = CLI.CallConv; |
3115 | bool IsVarArg = CLI.IsVarArg; |
3116 | bool IsSibCall = false; |
3117 | bool IsThisReturn = false; |
3118 | MachineFunction &MF = DAG.getMachineFunction(); |
3119 | |
3120 | if (Callee.isUndef() || isNullConstant(Callee)) { |
3121 | if (!CLI.IsTailCall) { |
3122 | for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) |
3123 | InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); |
3124 | } |
3125 | |
3126 | return Chain; |
3127 | } |
3128 | |
3129 | if (IsVarArg) { |
3130 | return lowerUnhandledCall(CLI, InVals, |
3131 | "unsupported call to variadic function "); |
3132 | } |
3133 | |
3134 | if (!CLI.CB) |
3135 | report_fatal_error("unsupported libcall legalization"); |
3136 | |
3137 | if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { |
3138 | return lowerUnhandledCall(CLI, InVals, |
3139 | "unsupported required tail call to function "); |
3140 | } |
3141 | |
3142 | if (AMDGPU::isShader(CallConv)) { |
3143 | // Note the issue is with the CC of the called function, not of the call |
3144 | // itself. |
3145 | return lowerUnhandledCall(CLI, InVals, |
3146 | "unsupported call to a shader function "); |
3147 | } |
3148 | |
3149 | if (AMDGPU::isShader(MF.getFunction().getCallingConv()) && |
3150 | CallConv != CallingConv::AMDGPU_Gfx) { |
3151 | // Only allow calls with specific calling conventions. |
3152 | return lowerUnhandledCall(CLI, InVals, |
3153 | "unsupported calling convention for call from " |
3154 | "graphics shader of function "); |
3155 | } |
3156 | |
3157 | if (IsTailCall) { |
3158 | IsTailCall = isEligibleForTailCallOptimization( |
3159 | Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); |
3160 | if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { |
3161 | report_fatal_error("failed to perform tail call elimination on a call " |
3162 | "site marked musttail"); |
3163 | } |
3164 | |
3165 | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
3166 | |
3167 | // A sibling call is one where we're under the usual C ABI and not planning |
3168 | // to change that but can still do a tail call: |
3169 | if (!TailCallOpt && IsTailCall) |
3170 | IsSibCall = true; |
3171 | |
3172 | if (IsTailCall) |
3173 | ++NumTailCalls; |
3174 | } |
3175 | |
3176 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
3177 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
3178 | SmallVector<SDValue, 8> MemOpChains; |
3179 | |
3180 | // Analyze operands of the call, assigning locations to each operand. |
3181 | SmallVector<CCValAssign, 16> ArgLocs; |
3182 | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
3183 | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); |
3184 | |
3185 | if (CallConv != CallingConv::AMDGPU_Gfx) { |
3186 | // With a fixed ABI, allocate fixed registers before user arguments. |
3187 | passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); |
3188 | } |
3189 | |
3190 | CCInfo.AnalyzeCallOperands(Outs, AssignFn); |
3191 | |
3192 | // Get a count of how many bytes are to be pushed on the stack. |
3193 | unsigned NumBytes = CCInfo.getNextStackOffset(); |
3194 | |
3195 | if (IsSibCall) { |
3196 | // Since we're not changing the ABI to make this a tail call, the memory |
3197 | // operands are already available in the caller's incoming argument space. |
3198 | NumBytes = 0; |
3199 | } |
3200 | |
3201 | // FPDiff is the byte offset of the call's argument area from the callee's. |
3202 | // Stores to callee stack arguments will be placed in FixedStackSlots offset |
3203 | // by this amount for a tail call. In a sibling call it must be 0 because the |
3204 | // caller will deallocate the entire stack and the callee still expects its |
3205 | // arguments to begin at SP+0. Completely unused for non-tail calls. |
3206 | int32_t FPDiff = 0; |
3207 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
3208 | |
3209 | // Adjust the stack pointer for the new arguments... |
3210 | // These operations are automatically eliminated by the prolog/epilog pass |
3211 | if (!IsSibCall) { |
3212 | Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); |
3213 | |
3214 | if (!Subtarget->enableFlatScratch()) { |
3215 | SmallVector<SDValue, 4> CopyFromChains; |
3216 | |
3217 | // In the HSA case, this should be an identity copy. |
3218 | SDValue ScratchRSrcReg |
3219 | = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); |
3220 | RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); |
3221 | CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); |
3222 | Chain = DAG.getTokenFactor(DL, CopyFromChains); |
3223 | } |
3224 | } |
3225 | |
3226 | MVT PtrVT = MVT::i32; |
3227 | |
3228 | // Walk the register/memloc assignments, inserting copies/loads. |
3229 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
3230 | CCValAssign &VA = ArgLocs[i]; |
3231 | SDValue Arg = OutVals[i]; |
3232 | |
3233 | // Promote the value if needed. |
3234 | switch (VA.getLocInfo()) { |
3235 | case CCValAssign::Full: |
3236 | break; |
3237 | case CCValAssign::BCvt: |
3238 | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
3239 | break; |
3240 | case CCValAssign::ZExt: |
3241 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
3242 | break; |
3243 | case CCValAssign::SExt: |
3244 | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); |
3245 | break; |
3246 | case CCValAssign::AExt: |
3247 | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); |
3248 | break; |
3249 | case CCValAssign::FPExt: |
3250 | Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); |
3251 | break; |
3252 | default: |
3253 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 3253); |
3254 | } |
3255 | |
3256 | if (VA.isRegLoc()) { |
3257 | RegsToPass.push_back(std::pair(VA.getLocReg(), Arg)); |
3258 | } else { |
3259 | assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail ("VA.isMemLoc()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 3259, __extension__ __PRETTY_FUNCTION__)); |
3260 | |
3261 | SDValue DstAddr; |
3262 | MachinePointerInfo DstInfo; |
3263 | |
3264 | unsigned LocMemOffset = VA.getLocMemOffset(); |
3265 | int32_t Offset = LocMemOffset; |
3266 | |
3267 | SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); |
3268 | MaybeAlign Alignment; |
3269 | |
3270 | if (IsTailCall) { |
3271 | ISD::ArgFlagsTy Flags = Outs[i].Flags; |
3272 | unsigned OpSize = Flags.isByVal() ? |
3273 | Flags.getByValSize() : VA.getValVT().getStoreSize(); |
3274 | |
3275 | // FIXME: We can have better than the minimum byval required alignment. |
3276 | Alignment = |
3277 | Flags.isByVal() |
3278 | ? Flags.getNonZeroByValAlign() |
3279 | : commonAlignment(Subtarget->getStackAlignment(), Offset); |
3280 | |
3281 | Offset = Offset + FPDiff; |
3282 | int FI = MFI.CreateFixedObject(OpSize, Offset, true); |
3283 | |
3284 | DstAddr = DAG.getFrameIndex(FI, PtrVT); |
3285 | DstInfo = MachinePointerInfo::getFixedStack(MF, FI); |
3286 | |
3287 | // Make sure any stack arguments overlapping with where we're storing |
3288 | // are loaded before this eventual operation. Otherwise they'll be |
3289 | // clobbered. |
3290 | |
3291 | // FIXME: Why is this really necessary? This seems to just result in a |
3292 | // lot of code to copy the stack and write them back to the same |
3293 | // locations, which are supposed to be immutable? |
3294 | Chain = addTokenForArgument(Chain, DAG, MFI, FI); |
3295 | } else { |
3296 | // Stores to the argument stack area are relative to the stack pointer. |
3297 | SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), |
3298 | MVT::i32); |
3299 | DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); |
3300 | DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); |
3301 | Alignment = |
3302 | commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); |
3303 | } |
3304 | |
3305 | if (Outs[i].Flags.isByVal()) { |
3306 | SDValue SizeNode = |
3307 | DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); |
3308 | SDValue Cpy = |
3309 | DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, |
3310 | Outs[i].Flags.getNonZeroByValAlign(), |
3311 | /*isVol = */ false, /*AlwaysInline = */ true, |
3312 | /*isTailCall = */ false, DstInfo, |
3313 | MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); |
3314 | |
3315 | MemOpChains.push_back(Cpy); |
3316 | } else { |
3317 | SDValue Store = |
3318 | DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); |
3319 | MemOpChains.push_back(Store); |
3320 | } |
3321 | } |
3322 | } |
3323 | |
3324 | if (!MemOpChains.empty()) |
3325 | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
3326 | |
3327 | // Build a sequence of copy-to-reg nodes chained together with token chain |
3328 | // and flag operands which copy the outgoing args into the appropriate regs. |
3329 | SDValue InFlag; |
3330 | for (auto &RegToPass : RegsToPass) { |
3331 | Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, |
3332 | RegToPass.second, InFlag); |
3333 | InFlag = Chain.getValue(1); |
3334 | } |
3335 | |
3336 | |
3337 | // We don't usually want to end the call-sequence here because we would tidy |
3338 | // the frame up *after* the call, however in the ABI-changing tail-call case |
3339 | // we've carefully laid out the parameters so that when sp is reset they'll be |
3340 | // in the correct location. |
3341 | if (IsTailCall && !IsSibCall) { |
3342 | Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, DL); |
3343 | InFlag = Chain.getValue(1); |
3344 | } |
3345 | |
3346 | std::vector<SDValue> Ops; |
3347 | Ops.push_back(Chain); |
3348 | Ops.push_back(Callee); |
3349 | // Add a redundant copy of the callee global which will not be legalized, as |
3350 | // we need direct access to the callee later. |
3351 | if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { |
3352 | const GlobalValue *GV = GSD->getGlobal(); |
3353 | Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); |
3354 | } else { |
3355 | Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); |
3356 | } |
3357 | |
3358 | if (IsTailCall) { |
3359 | // Each tail call may have to adjust the stack by a different amount, so |
3360 | // this information must travel along with the operation for eventual |
3361 | // consumption by emitEpilogue. |
3362 | Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); |
3363 | } |
3364 | |
3365 | // Add argument registers to the end of the list so that they are known live |
3366 | // into the call. |
3367 | for (auto &RegToPass : RegsToPass) { |
3368 | Ops.push_back(DAG.getRegister(RegToPass.first, |
3369 | RegToPass.second.getValueType())); |
3370 | } |
3371 | |
3372 | // Add a register mask operand representing the call-preserved registers. |
3373 | |
3374 | auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); |
3375 | const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); |
3376 | assert(Mask && "Missing call preserved mask for calling convention")(static_cast <bool> (Mask && "Missing call preserved mask for calling convention" ) ? void (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 3376, __extension__ __PRETTY_FUNCTION__)); |
3377 | Ops.push_back(DAG.getRegisterMask(Mask)); |
3378 | |
3379 | if (InFlag.getNode()) |
3380 | Ops.push_back(InFlag); |
3381 | |
3382 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
3383 | |
3384 | // If we're doing a tall call, use a TC_RETURN here rather than an |
3385 | // actual call instruction. |
3386 | if (IsTailCall) { |
3387 | MFI.setHasTailCall(); |
3388 | return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); |
3389 | } |
3390 | |
3391 | // Returns a chain and a flag for retval copy to use. |
3392 | SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); |
3393 | Chain = Call.getValue(0); |
3394 | InFlag = Call.getValue(1); |
3395 | |
3396 | uint64_t CalleePopBytes = NumBytes; |
3397 | Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InFlag, DL); |
3398 | if (!Ins.empty()) |
3399 | InFlag = Chain.getValue(1); |
3400 | |
3401 | // Handle result values, copying them out of physregs into vregs that we |
3402 | // return. |
3403 | return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, |
3404 | InVals, IsThisReturn, |
3405 | IsThisReturn ? OutVals[0] : SDValue()); |
3406 | } |
3407 | |
3408 | // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, |
3409 | // except for applying the wave size scale to the increment amount. |
3410 | SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( |
3411 | SDValue Op, SelectionDAG &DAG) const { |
3412 | const MachineFunction &MF = DAG.getMachineFunction(); |
3413 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
3414 | |
3415 | SDLoc dl(Op); |
3416 | EVT VT = Op.getValueType(); |
3417 | SDValue Tmp1 = Op; |
3418 | SDValue Tmp2 = Op.getValue(1); |
3419 | SDValue Tmp3 = Op.getOperand(2); |
3420 | SDValue Chain = Tmp1.getOperand(0); |
3421 | |
3422 | Register SPReg = Info->getStackPtrOffsetReg(); |
3423 | |
3424 | // Chain the dynamic stack allocation so that it doesn't modify the stack |
3425 | // pointer when other instructions are using the stack. |
3426 | Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); |
3427 | |
3428 | SDValue Size = Tmp2.getOperand(1); |
3429 | SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); |
3430 | Chain = SP.getValue(1); |
3431 | MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); |
3432 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
3433 | const TargetFrameLowering *TFL = ST.getFrameLowering(); |
3434 | unsigned Opc = |
3435 | TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? |
3436 | ISD::ADD : ISD::SUB; |
3437 | |
3438 | SDValue ScaledSize = DAG.getNode( |
3439 | ISD::SHL, dl, VT, Size, |
3440 | DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); |
3441 | |
3442 | Align StackAlign = TFL->getStackAlign(); |
3443 | Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value |
3444 | if (Alignment && *Alignment > StackAlign) { |
3445 | Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, |
3446 | DAG.getConstant(-(uint64_t)Alignment->value() |
3447 | << ST.getWavefrontSizeLog2(), |
3448 | dl, VT)); |
3449 | } |
3450 | |
3451 | Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain |
3452 | Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); |
3453 | |
3454 | return DAG.getMergeValues({Tmp1, Tmp2}, dl); |
3455 | } |
3456 | |
3457 | SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
3458 | SelectionDAG &DAG) const { |
3459 | // We only handle constant sizes here to allow non-entry block, static sized |
3460 | // allocas. A truly dynamic value is more difficult to support because we |
3461 | // don't know if the size value is uniform or not. If the size isn't uniform, |
3462 | // we would need to do a wave reduction to get the maximum size to know how |
3463 | // much to increment the uniform stack pointer. |
3464 | SDValue Size = Op.getOperand(1); |
3465 | if (isa<ConstantSDNode>(Size)) |
3466 | return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. |
3467 | |
3468 | return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); |
3469 | } |
3470 | |
3471 | Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, |
3472 | const MachineFunction &MF) const { |
3473 | Register Reg = StringSwitch<Register>(RegName) |
3474 | .Case("m0", AMDGPU::M0) |
3475 | .Case("exec", AMDGPU::EXEC) |
3476 | .Case("exec_lo", AMDGPU::EXEC_LO) |
3477 | .Case("exec_hi", AMDGPU::EXEC_HI) |
3478 | .Case("flat_scratch", AMDGPU::FLAT_SCR) |
3479 | .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) |
3480 | .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) |
3481 | .Default(Register()); |
3482 | |
3483 | if (Reg == AMDGPU::NoRegister) { |
3484 | report_fatal_error(Twine("invalid register name \"" |
3485 | + StringRef(RegName) + "\".")); |
3486 | |
3487 | } |
3488 | |
3489 | if (!Subtarget->hasFlatScrRegister() && |
3490 | Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { |
3491 | report_fatal_error(Twine("invalid register \"" |
3492 | + StringRef(RegName) + "\" for subtarget.")); |
3493 | } |
3494 | |
3495 | switch (Reg) { |
3496 | case AMDGPU::M0: |
3497 | case AMDGPU::EXEC_LO: |
3498 | case AMDGPU::EXEC_HI: |
3499 | case AMDGPU::FLAT_SCR_LO: |
3500 | case AMDGPU::FLAT_SCR_HI: |
3501 | if (VT.getSizeInBits() == 32) |
3502 | return Reg; |
3503 | break; |
3504 | case AMDGPU::EXEC: |
3505 | case AMDGPU::FLAT_SCR: |
3506 | if (VT.getSizeInBits() == 64) |
3507 | return Reg; |
3508 | break; |
3509 | default: |
3510 | llvm_unreachable("missing register type checking")::llvm::llvm_unreachable_internal("missing register type checking" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 3510); |
3511 | } |
3512 | |
3513 | report_fatal_error(Twine("invalid type for register \"" |
3514 | + StringRef(RegName) + "\".")); |
3515 | } |
3516 | |
3517 | // If kill is not the last instruction, split the block so kill is always a |
3518 | // proper terminator. |
3519 | MachineBasicBlock * |
3520 | SITargetLowering::splitKillBlock(MachineInstr &MI, |
3521 | MachineBasicBlock *BB) const { |
3522 | MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); |
3523 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
3524 | MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); |
3525 | return SplitBB; |
3526 | } |
3527 | |
3528 | // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, |
3529 | // \p MI will be the only instruction in the loop body block. Otherwise, it will |
3530 | // be the first instruction in the remainder block. |
3531 | // |
3532 | /// \returns { LoopBody, Remainder } |
3533 | static std::pair<MachineBasicBlock *, MachineBasicBlock *> |
3534 | splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { |
3535 | MachineFunction *MF = MBB.getParent(); |
3536 | MachineBasicBlock::iterator I(&MI); |
3537 | |
3538 | // To insert the loop we need to split the block. Move everything after this |
3539 | // point to a new block, and insert a new empty block between the two. |
3540 | MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); |
3541 | MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); |
3542 | MachineFunction::iterator MBBI(MBB); |
3543 | ++MBBI; |
3544 | |
3545 | MF->insert(MBBI, LoopBB); |
3546 | MF->insert(MBBI, RemainderBB); |
3547 | |
3548 | LoopBB->addSuccessor(LoopBB); |
3549 | LoopBB->addSuccessor(RemainderBB); |
3550 | |
3551 | // Move the rest of the block into a new block. |
3552 | RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); |
3553 | |
3554 | if (InstInLoop) { |
3555 | auto Next = std::next(I); |
3556 | |
3557 | // Move instruction to loop body. |
3558 | LoopBB->splice(LoopBB->begin(), &MBB, I, Next); |
3559 | |
3560 | // Move the rest of the block. |
3561 | RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); |
3562 | } else { |
3563 | RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); |
3564 | } |
3565 | |
3566 | MBB.addSuccessor(LoopBB); |
3567 | |
3568 | return std::pair(LoopBB, RemainderBB); |
3569 | } |
3570 | |
3571 | /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. |
3572 | void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { |
3573 | MachineBasicBlock *MBB = MI.getParent(); |
3574 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
3575 | auto I = MI.getIterator(); |
3576 | auto E = std::next(I); |
3577 | |
3578 | BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) |
3579 | .addImm(0); |
3580 | |
3581 | MIBundleBuilder Bundler(*MBB, I, E); |
3582 | finalizeBundle(*MBB, Bundler.begin()); |
3583 | } |
3584 | |
3585 | MachineBasicBlock * |
3586 | SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, |
3587 | MachineBasicBlock *BB) const { |
3588 | const DebugLoc &DL = MI.getDebugLoc(); |
3589 | |
3590 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
3591 | |
3592 | MachineBasicBlock *LoopBB; |
3593 | MachineBasicBlock *RemainderBB; |
3594 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
3595 | |
3596 | // Apparently kill flags are only valid if the def is in the same block? |
3597 | if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) |
3598 | Src->setIsKill(false); |
3599 | |
3600 | std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); |
3601 | |
3602 | MachineBasicBlock::iterator I = LoopBB->end(); |
3603 | |
3604 | const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( |
3605 | AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); |
3606 | |
3607 | // Clear TRAP_STS.MEM_VIOL |
3608 | BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) |
3609 | .addImm(0) |
3610 | .addImm(EncodedReg); |
3611 | |
3612 | bundleInstWithWaitcnt(MI); |
3613 | |
3614 | Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); |
3615 | |
3616 | // Load and check TRAP_STS.MEM_VIOL |
3617 | BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) |
3618 | .addImm(EncodedReg); |
3619 | |
3620 | // FIXME: Do we need to use an isel pseudo that may clobber scc? |
3621 | BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) |
3622 | .addReg(Reg, RegState::Kill) |
3623 | .addImm(0); |
3624 | BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) |
3625 | .addMBB(LoopBB); |
3626 | |
3627 | return RemainderBB; |
3628 | } |
3629 | |
3630 | // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the |
3631 | // wavefront. If the value is uniform and just happens to be in a VGPR, this |
3632 | // will only do one iteration. In the worst case, this will loop 64 times. |
3633 | // |
3634 | // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. |
3635 | static MachineBasicBlock::iterator |
3636 | emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, |
3637 | MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, |
3638 | const DebugLoc &DL, const MachineOperand &Idx, |
3639 | unsigned InitReg, unsigned ResultReg, unsigned PhiReg, |
3640 | unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, |
3641 | Register &SGPRIdxReg) { |
3642 | |
3643 | MachineFunction *MF = OrigBB.getParent(); |
3644 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
3645 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
3646 | MachineBasicBlock::iterator I = LoopBB.begin(); |
3647 | |
3648 | const TargetRegisterClass *BoolRC = TRI->getBoolRC(); |
3649 | Register PhiExec = MRI.createVirtualRegister(BoolRC); |
3650 | Register NewExec = MRI.createVirtualRegister(BoolRC); |
3651 | Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); |
3652 | Register CondReg = MRI.createVirtualRegister(BoolRC); |
3653 | |
3654 | BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) |
3655 | .addReg(InitReg) |
3656 | .addMBB(&OrigBB) |
3657 | .addReg(ResultReg) |
3658 | .addMBB(&LoopBB); |
3659 | |
3660 | BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) |
3661 | .addReg(InitSaveExecReg) |
3662 | .addMBB(&OrigBB) |
3663 | .addReg(NewExec) |
3664 | .addMBB(&LoopBB); |
3665 | |
3666 | // Read the next variant <- also loop target. |
3667 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) |
3668 | .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); |
3669 | |
3670 | // Compare the just read M0 value to all possible Idx values. |
3671 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) |
3672 | .addReg(CurrentIdxReg) |
3673 | .addReg(Idx.getReg(), 0, Idx.getSubReg()); |
3674 | |
3675 | // Update EXEC, save the original EXEC value to VCC. |
3676 | BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 |
3677 | : AMDGPU::S_AND_SAVEEXEC_B64), |
3678 | NewExec) |
3679 | .addReg(CondReg, RegState::Kill); |
3680 | |
3681 | MRI.setSimpleHint(NewExec, CondReg); |
3682 | |
3683 | if (UseGPRIdxMode) { |
3684 | if (Offset == 0) { |
3685 | SGPRIdxReg = CurrentIdxReg; |
3686 | } else { |
3687 | SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); |
3688 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) |
3689 | .addReg(CurrentIdxReg, RegState::Kill) |
3690 | .addImm(Offset); |
3691 | } |
3692 | } else { |
3693 | // Move index from VCC into M0 |
3694 | if (Offset == 0) { |
3695 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) |
3696 | .addReg(CurrentIdxReg, RegState::Kill); |
3697 | } else { |
3698 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) |
3699 | .addReg(CurrentIdxReg, RegState::Kill) |
3700 | .addImm(Offset); |
3701 | } |
3702 | } |
3703 | |
3704 | // Update EXEC, switch all done bits to 0 and all todo bits to 1. |
3705 | unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; |
3706 | MachineInstr *InsertPt = |
3707 | BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term |
3708 | : AMDGPU::S_XOR_B64_term), Exec) |
3709 | .addReg(Exec) |
3710 | .addReg(NewExec); |
3711 | |
3712 | // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use |
3713 | // s_cbranch_scc0? |
3714 | |
3715 | // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. |
3716 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) |
3717 | .addMBB(&LoopBB); |
3718 | |
3719 | return InsertPt->getIterator(); |
3720 | } |
3721 | |
3722 | // This has slightly sub-optimal regalloc when the source vector is killed by |
3723 | // the read. The register allocator does not understand that the kill is |
3724 | // per-workitem, so is kept alive for the whole loop so we end up not re-using a |
3725 | // subregister from it, using 1 more VGPR than necessary. This was saved when |
3726 | // this was expanded after register allocation. |
3727 | static MachineBasicBlock::iterator |
3728 | loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, |
3729 | unsigned InitResultReg, unsigned PhiReg, int Offset, |
3730 | bool UseGPRIdxMode, Register &SGPRIdxReg) { |
3731 | MachineFunction *MF = MBB.getParent(); |
3732 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
3733 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
3734 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
3735 | const DebugLoc &DL = MI.getDebugLoc(); |
3736 | MachineBasicBlock::iterator I(&MI); |
3737 | |
3738 | const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); |
3739 | Register DstReg = MI.getOperand(0).getReg(); |
3740 | Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); |
3741 | Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); |
3742 | unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; |
3743 | unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; |
3744 | |
3745 | BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); |
3746 | |
3747 | // Save the EXEC mask |
3748 | BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) |
3749 | .addReg(Exec); |
3750 | |
3751 | MachineBasicBlock *LoopBB; |
3752 | MachineBasicBlock *RemainderBB; |
3753 | std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); |
3754 | |
3755 | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
3756 | |
3757 | auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, |
3758 | InitResultReg, DstReg, PhiReg, TmpExec, |
3759 | Offset, UseGPRIdxMode, SGPRIdxReg); |
3760 | |
3761 | MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); |
3762 | MachineFunction::iterator MBBI(LoopBB); |
3763 | ++MBBI; |
3764 | MF->insert(MBBI, LandingPad); |
3765 | LoopBB->removeSuccessor(RemainderBB); |
3766 | LandingPad->addSuccessor(RemainderBB); |
3767 | LoopBB->addSuccessor(LandingPad); |
3768 | MachineBasicBlock::iterator First = LandingPad->begin(); |
3769 | BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) |
3770 | .addReg(SaveExec); |
3771 | |
3772 | return InsPt; |
3773 | } |
3774 | |
3775 | // Returns subreg index, offset |
3776 | static std::pair<unsigned, int> |
3777 | computeIndirectRegAndOffset(const SIRegisterInfo &TRI, |
3778 | const TargetRegisterClass *SuperRC, |
3779 | unsigned VecReg, |
3780 | int Offset) { |
3781 | int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; |
3782 | |
3783 | // Skip out of bounds offsets, or else we would end up using an undefined |
3784 | // register. |
3785 | if (Offset >= NumElts || Offset < 0) |
3786 | return std::pair(AMDGPU::sub0, Offset); |
3787 | |
3788 | return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); |
3789 | } |
3790 | |
3791 | static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, |
3792 | MachineRegisterInfo &MRI, MachineInstr &MI, |
3793 | int Offset) { |
3794 | MachineBasicBlock *MBB = MI.getParent(); |
3795 | const DebugLoc &DL = MI.getDebugLoc(); |
3796 | MachineBasicBlock::iterator I(&MI); |
3797 | |
3798 | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
3799 | |
3800 | assert(Idx->getReg() != AMDGPU::NoRegister)(static_cast <bool> (Idx->getReg() != AMDGPU::NoRegister ) ? void (0) : __assert_fail ("Idx->getReg() != AMDGPU::NoRegister" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 3800, __extension__ __PRETTY_FUNCTION__)); |
3801 | |
3802 | if (Offset == 0) { |
3803 | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); |
3804 | } else { |
3805 | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) |
3806 | .add(*Idx) |
3807 | .addImm(Offset); |
3808 | } |
3809 | } |
3810 | |
3811 | static Register getIndirectSGPRIdx(const SIInstrInfo *TII, |
3812 | MachineRegisterInfo &MRI, MachineInstr &MI, |
3813 | int Offset) { |
3814 | MachineBasicBlock *MBB = MI.getParent(); |
3815 | const DebugLoc &DL = MI.getDebugLoc(); |
3816 | MachineBasicBlock::iterator I(&MI); |
3817 | |
3818 | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
3819 | |
3820 | if (Offset == 0) |
3821 | return Idx->getReg(); |
3822 | |
3823 | Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); |
3824 | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) |
3825 | .add(*Idx) |
3826 | .addImm(Offset); |
3827 | return Tmp; |
3828 | } |
3829 | |
3830 | static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, |
3831 | MachineBasicBlock &MBB, |
3832 | const GCNSubtarget &ST) { |
3833 | const SIInstrInfo *TII = ST.getInstrInfo(); |
3834 | const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
3835 | MachineFunction *MF = MBB.getParent(); |
3836 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
3837 | |
3838 | Register Dst = MI.getOperand(0).getReg(); |
3839 | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
3840 | Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); |
3841 | int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); |
3842 | |
3843 | const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); |
3844 | const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); |
3845 | |
3846 | unsigned SubReg; |
3847 | std::tie(SubReg, Offset) |
3848 | = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); |
3849 | |
3850 | const bool UseGPRIdxMode = ST.useVGPRIndexMode(); |
3851 | |
3852 | // Check for a SGPR index. |
3853 | if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { |
3854 | MachineBasicBlock::iterator I(&MI); |
3855 | const DebugLoc &DL = MI.getDebugLoc(); |
3856 | |
3857 | if (UseGPRIdxMode) { |
3858 | // TODO: Look at the uses to avoid the copy. This may require rescheduling |
3859 | // to avoid interfering with other uses, so probably requires a new |
3860 | // optimization pass. |
3861 | Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); |
3862 | |
3863 | const MCInstrDesc &GPRIDXDesc = |
3864 | TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); |
3865 | BuildMI(MBB, I, DL, GPRIDXDesc, Dst) |
3866 | .addReg(SrcReg) |
3867 | .addReg(Idx) |
3868 | .addImm(SubReg); |
3869 | } else { |
3870 | setM0ToIndexFromSGPR(TII, MRI, MI, Offset); |
3871 | |
3872 | BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) |
3873 | .addReg(SrcReg, 0, SubReg) |
3874 | .addReg(SrcReg, RegState::Implicit); |
3875 | } |
3876 | |
3877 | MI.eraseFromParent(); |
3878 | |
3879 | return &MBB; |
3880 | } |
3881 | |
3882 | // Control flow needs to be inserted if indexing with a VGPR. |
3883 | const DebugLoc &DL = MI.getDebugLoc(); |
3884 | MachineBasicBlock::iterator I(&MI); |
3885 | |
3886 | Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
3887 | Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
3888 | |
3889 | BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); |
3890 | |
3891 | Register SGPRIdxReg; |
3892 | auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, |
3893 | UseGPRIdxMode, SGPRIdxReg); |
3894 | |
3895 | MachineBasicBlock *LoopBB = InsPt->getParent(); |
3896 | |
3897 | if (UseGPRIdxMode) { |
3898 | const MCInstrDesc &GPRIDXDesc = |
3899 | TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); |
3900 | |
3901 | BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) |
3902 | .addReg(SrcReg) |
3903 | .addReg(SGPRIdxReg) |
3904 | .addImm(SubReg); |
3905 | } else { |
3906 | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) |
3907 | .addReg(SrcReg, 0, SubReg) |
3908 | .addReg(SrcReg, RegState::Implicit); |
3909 | } |
3910 | |
3911 | MI.eraseFromParent(); |
3912 | |
3913 | return LoopBB; |
3914 | } |
3915 | |
3916 | static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, |
3917 | MachineBasicBlock &MBB, |
3918 | const GCNSubtarget &ST) { |
3919 | const SIInstrInfo *TII = ST.getInstrInfo(); |
3920 | const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
3921 | MachineFunction *MF = MBB.getParent(); |
3922 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
3923 | |
3924 | Register Dst = MI.getOperand(0).getReg(); |
3925 | const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); |
3926 | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
3927 | const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); |
3928 | int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); |
3929 | const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); |
3930 | const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); |
3931 | |
3932 | // This can be an immediate, but will be folded later. |
3933 | assert(Val->getReg())(static_cast <bool> (Val->getReg()) ? void (0) : __assert_fail ("Val->getReg()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 3933, __extension__ __PRETTY_FUNCTION__)); |
3934 | |
3935 | unsigned SubReg; |
3936 | std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, |
3937 | SrcVec->getReg(), |
3938 | Offset); |
3939 | const bool UseGPRIdxMode = ST.useVGPRIndexMode(); |
3940 | |
3941 | if (Idx->getReg() == AMDGPU::NoRegister) { |
3942 | MachineBasicBlock::iterator I(&MI); |
3943 | const DebugLoc &DL = MI.getDebugLoc(); |
3944 | |
3945 | assert(Offset == 0)(static_cast <bool> (Offset == 0) ? void (0) : __assert_fail ("Offset == 0", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 3945, __extension__ __PRETTY_FUNCTION__)); |
3946 | |
3947 | BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) |
3948 | .add(*SrcVec) |
3949 | .add(*Val) |
3950 | .addImm(SubReg); |
3951 | |
3952 | MI.eraseFromParent(); |
3953 | return &MBB; |
3954 | } |
3955 | |
3956 | // Check for a SGPR index. |
3957 | if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { |
3958 | MachineBasicBlock::iterator I(&MI); |
3959 | const DebugLoc &DL = MI.getDebugLoc(); |
3960 | |
3961 | if (UseGPRIdxMode) { |
3962 | Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); |
3963 | |
3964 | const MCInstrDesc &GPRIDXDesc = |
3965 | TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); |
3966 | BuildMI(MBB, I, DL, GPRIDXDesc, Dst) |
3967 | .addReg(SrcVec->getReg()) |
3968 | .add(*Val) |
3969 | .addReg(Idx) |
3970 | .addImm(SubReg); |
3971 | } else { |
3972 | setM0ToIndexFromSGPR(TII, MRI, MI, Offset); |
3973 | |
3974 | const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( |
3975 | TRI.getRegSizeInBits(*VecRC), 32, false); |
3976 | BuildMI(MBB, I, DL, MovRelDesc, Dst) |
3977 | .addReg(SrcVec->getReg()) |
3978 | .add(*Val) |
3979 | .addImm(SubReg); |
3980 | } |
3981 | MI.eraseFromParent(); |
3982 | return &MBB; |
3983 | } |
3984 | |
3985 | // Control flow needs to be inserted if indexing with a VGPR. |
3986 | if (Val->isReg()) |
3987 | MRI.clearKillFlags(Val->getReg()); |
3988 | |
3989 | const DebugLoc &DL = MI.getDebugLoc(); |
3990 | |
3991 | Register PhiReg = MRI.createVirtualRegister(VecRC); |
3992 | |
3993 | Register SGPRIdxReg; |
3994 | auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, |
3995 | UseGPRIdxMode, SGPRIdxReg); |
3996 | MachineBasicBlock *LoopBB = InsPt->getParent(); |
3997 | |
3998 | if (UseGPRIdxMode) { |
3999 | const MCInstrDesc &GPRIDXDesc = |
4000 | TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); |
4001 | |
4002 | BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) |
4003 | .addReg(PhiReg) |
4004 | .add(*Val) |
4005 | .addReg(SGPRIdxReg) |
4006 | .addImm(AMDGPU::sub0); |
4007 | } else { |
4008 | const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( |
4009 | TRI.getRegSizeInBits(*VecRC), 32, false); |
4010 | BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) |
4011 | .addReg(PhiReg) |
4012 | .add(*Val) |
4013 | .addImm(AMDGPU::sub0); |
4014 | } |
4015 | |
4016 | MI.eraseFromParent(); |
4017 | return LoopBB; |
4018 | } |
4019 | |
4020 | MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( |
4021 | MachineInstr &MI, MachineBasicBlock *BB) const { |
4022 | |
4023 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
4024 | MachineFunction *MF = BB->getParent(); |
4025 | SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); |
4026 | |
4027 | switch (MI.getOpcode()) { |
4028 | case AMDGPU::S_UADDO_PSEUDO: |
4029 | case AMDGPU::S_USUBO_PSEUDO: { |
4030 | const DebugLoc &DL = MI.getDebugLoc(); |
4031 | MachineOperand &Dest0 = MI.getOperand(0); |
4032 | MachineOperand &Dest1 = MI.getOperand(1); |
4033 | MachineOperand &Src0 = MI.getOperand(2); |
4034 | MachineOperand &Src1 = MI.getOperand(3); |
4035 | |
4036 | unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) |
4037 | ? AMDGPU::S_ADD_I32 |
4038 | : AMDGPU::S_SUB_I32; |
4039 | BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); |
4040 | |
4041 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) |
4042 | .addImm(1) |
4043 | .addImm(0); |
4044 | |
4045 | MI.eraseFromParent(); |
4046 | return BB; |
4047 | } |
4048 | case AMDGPU::S_ADD_U64_PSEUDO: |
4049 | case AMDGPU::S_SUB_U64_PSEUDO: { |
4050 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
4051 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
4052 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
4053 | const TargetRegisterClass *BoolRC = TRI->getBoolRC(); |
4054 | const DebugLoc &DL = MI.getDebugLoc(); |
4055 | |
4056 | MachineOperand &Dest = MI.getOperand(0); |
4057 | MachineOperand &Src0 = MI.getOperand(1); |
4058 | MachineOperand &Src1 = MI.getOperand(2); |
4059 | |
4060 | Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
4061 | Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
4062 | |
4063 | MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( |
4064 | MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); |
4065 | MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( |
4066 | MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); |
4067 | |
4068 | MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( |
4069 | MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); |
4070 | MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( |
4071 | MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); |
4072 | |
4073 | bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); |
4074 | |
4075 | unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; |
4076 | unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; |
4077 | BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); |
4078 | BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); |
4079 | BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) |
4080 | .addReg(DestSub0) |
4081 | .addImm(AMDGPU::sub0) |
4082 | .addReg(DestSub1) |
4083 | .addImm(AMDGPU::sub1); |
4084 | MI.eraseFromParent(); |
4085 | return BB; |
4086 | } |
4087 | case AMDGPU::V_ADD_U64_PSEUDO: |
4088 | case AMDGPU::V_SUB_U64_PSEUDO: { |
4089 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
4090 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
4091 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
4092 | const DebugLoc &DL = MI.getDebugLoc(); |
4093 | |
4094 | bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); |
4095 | |
4096 | MachineOperand &Dest = MI.getOperand(0); |
4097 | MachineOperand &Src0 = MI.getOperand(1); |
4098 | MachineOperand &Src1 = MI.getOperand(2); |
4099 | |
4100 | if (IsAdd && ST.hasLshlAddB64()) { |
4101 | auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), |
4102 | Dest.getReg()) |
4103 | .add(Src0) |
4104 | .addImm(0) |
4105 | .add(Src1); |
4106 | TII->legalizeOperands(*Add); |
4107 | MI.eraseFromParent(); |
4108 | return BB; |
4109 | } |
4110 | |
4111 | const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); |
4112 | |
4113 | Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
4114 | Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
4115 | |
4116 | Register CarryReg = MRI.createVirtualRegister(CarryRC); |
4117 | Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); |
4118 | |
4119 | const TargetRegisterClass *Src0RC = Src0.isReg() |
4120 | ? MRI.getRegClass(Src0.getReg()) |
4121 | : &AMDGPU::VReg_64RegClass; |
4122 | const TargetRegisterClass *Src1RC = Src1.isReg() |
4123 | ? MRI.getRegClass(Src1.getReg()) |
4124 | : &AMDGPU::VReg_64RegClass; |
4125 | |
4126 | const TargetRegisterClass *Src0SubRC = |
4127 | TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); |
4128 | const TargetRegisterClass *Src1SubRC = |
4129 | TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); |
4130 | |
4131 | MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( |
4132 | MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); |
4133 | MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( |
4134 | MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); |
4135 | |
4136 | MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( |
4137 | MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); |
4138 | MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( |
4139 | MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); |
4140 | |
4141 | unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; |
4142 | MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) |
4143 | .addReg(CarryReg, RegState::Define) |
4144 | .add(SrcReg0Sub0) |
4145 | .add(SrcReg1Sub0) |
4146 | .addImm(0); // clamp bit |
4147 | |
4148 | unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; |
4149 | MachineInstr *HiHalf = |
4150 | BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) |
4151 | .addReg(DeadCarryReg, RegState::Define | RegState::Dead) |
4152 | .add(SrcReg0Sub1) |
4153 | .add(SrcReg1Sub1) |
4154 | .addReg(CarryReg, RegState::Kill) |
4155 | .addImm(0); // clamp bit |
4156 | |
4157 | BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) |
4158 | .addReg(DestSub0) |
4159 | .addImm(AMDGPU::sub0) |
4160 | .addReg(DestSub1) |
4161 | .addImm(AMDGPU::sub1); |
4162 | TII->legalizeOperands(*LoHalf); |
4163 | TII->legalizeOperands(*HiHalf); |
4164 | MI.eraseFromParent(); |
4165 | return BB; |
4166 | } |
4167 | case AMDGPU::S_ADD_CO_PSEUDO: |
4168 | case AMDGPU::S_SUB_CO_PSEUDO: { |
4169 | // This pseudo has a chance to be selected |
4170 | // only from uniform add/subcarry node. All the VGPR operands |
4171 | // therefore assumed to be splat vectors. |
4172 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
4173 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
4174 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
4175 | MachineBasicBlock::iterator MII = MI; |
4176 | const DebugLoc &DL = MI.getDebugLoc(); |
4177 | MachineOperand &Dest = MI.getOperand(0); |
4178 | MachineOperand &CarryDest = MI.getOperand(1); |
4179 | MachineOperand &Src0 = MI.getOperand(2); |
4180 | MachineOperand &Src1 = MI.getOperand(3); |
4181 | MachineOperand &Src2 = MI.getOperand(4); |
4182 | unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) |
4183 | ? AMDGPU::S_ADDC_U32 |
4184 | : AMDGPU::S_SUBB_U32; |
4185 | if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { |
4186 | Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
4187 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) |
4188 | .addReg(Src0.getReg()); |
4189 | Src0.setReg(RegOp0); |
4190 | } |
4191 | if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { |
4192 | Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
4193 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) |
4194 | .addReg(Src1.getReg()); |
4195 | Src1.setReg(RegOp1); |
4196 | } |
4197 | Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
4198 | if (TRI->isVectorRegister(MRI, Src2.getReg())) { |
4199 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) |
4200 | .addReg(Src2.getReg()); |
4201 | Src2.setReg(RegOp2); |
4202 | } |
4203 | |
4204 | const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); |
4205 | unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); |
4206 | assert(WaveSize == 64 || WaveSize == 32)(static_cast <bool> (WaveSize == 64 || WaveSize == 32) ? void (0) : __assert_fail ("WaveSize == 64 || WaveSize == 32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4206, __extension__ __PRETTY_FUNCTION__)); |
4207 | |
4208 | if (WaveSize == 64) { |
4209 | if (ST.hasScalarCompareEq64()) { |
4210 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) |
4211 | .addReg(Src2.getReg()) |
4212 | .addImm(0); |
4213 | } else { |
4214 | const TargetRegisterClass *SubRC = |
4215 | TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0); |
4216 | MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( |
4217 | MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); |
4218 | MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( |
4219 | MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); |
4220 | Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
4221 | |
4222 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) |
4223 | .add(Src2Sub0) |
4224 | .add(Src2Sub1); |
4225 | |
4226 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) |
4227 | .addReg(Src2_32, RegState::Kill) |
4228 | .addImm(0); |
4229 | } |
4230 | } else { |
4231 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) |
4232 | .addReg(Src2.getReg()) |
4233 | .addImm(0); |
4234 | } |
4235 | |
4236 | BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); |
4237 | |
4238 | unsigned SelOpc = |
4239 | (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; |
4240 | |
4241 | BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) |
4242 | .addImm(-1) |
4243 | .addImm(0); |
4244 | |
4245 | MI.eraseFromParent(); |
4246 | return BB; |
4247 | } |
4248 | case AMDGPU::SI_INIT_M0: { |
4249 | BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), |
4250 | TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) |
4251 | .add(MI.getOperand(0)); |
4252 | MI.eraseFromParent(); |
4253 | return BB; |
4254 | } |
4255 | case AMDGPU::GET_GROUPSTATICSIZE: { |
4256 | assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||(static_cast <bool> (getTargetMachine().getTargetTriple ().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple ().getOS() == Triple::AMDPAL) ? void (0) : __assert_fail ("getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4257, __extension__ __PRETTY_FUNCTION__)) |
4257 | getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)(static_cast <bool> (getTargetMachine().getTargetTriple ().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple ().getOS() == Triple::AMDPAL) ? void (0) : __assert_fail ("getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4257, __extension__ __PRETTY_FUNCTION__)); |
4258 | DebugLoc DL = MI.getDebugLoc(); |
4259 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) |
4260 | .add(MI.getOperand(0)) |
4261 | .addImm(MFI->getLDSSize()); |
4262 | MI.eraseFromParent(); |
4263 | return BB; |
4264 | } |
4265 | case AMDGPU::SI_INDIRECT_SRC_V1: |
4266 | case AMDGPU::SI_INDIRECT_SRC_V2: |
4267 | case AMDGPU::SI_INDIRECT_SRC_V4: |
4268 | case AMDGPU::SI_INDIRECT_SRC_V8: |
4269 | case AMDGPU::SI_INDIRECT_SRC_V9: |
4270 | case AMDGPU::SI_INDIRECT_SRC_V10: |
4271 | case AMDGPU::SI_INDIRECT_SRC_V11: |
4272 | case AMDGPU::SI_INDIRECT_SRC_V12: |
4273 | case AMDGPU::SI_INDIRECT_SRC_V16: |
4274 | case AMDGPU::SI_INDIRECT_SRC_V32: |
4275 | return emitIndirectSrc(MI, *BB, *getSubtarget()); |
4276 | case AMDGPU::SI_INDIRECT_DST_V1: |
4277 | case AMDGPU::SI_INDIRECT_DST_V2: |
4278 | case AMDGPU::SI_INDIRECT_DST_V4: |
4279 | case AMDGPU::SI_INDIRECT_DST_V8: |
4280 | case AMDGPU::SI_INDIRECT_DST_V9: |
4281 | case AMDGPU::SI_INDIRECT_DST_V10: |
4282 | case AMDGPU::SI_INDIRECT_DST_V11: |
4283 | case AMDGPU::SI_INDIRECT_DST_V12: |
4284 | case AMDGPU::SI_INDIRECT_DST_V16: |
4285 | case AMDGPU::SI_INDIRECT_DST_V32: |
4286 | return emitIndirectDst(MI, *BB, *getSubtarget()); |
4287 | case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: |
4288 | case AMDGPU::SI_KILL_I1_PSEUDO: |
4289 | return splitKillBlock(MI, BB); |
4290 | case AMDGPU::V_CNDMASK_B64_PSEUDO: { |
4291 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
4292 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
4293 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
4294 | |
4295 | Register Dst = MI.getOperand(0).getReg(); |
4296 | Register Src0 = MI.getOperand(1).getReg(); |
4297 | Register Src1 = MI.getOperand(2).getReg(); |
4298 | const DebugLoc &DL = MI.getDebugLoc(); |
4299 | Register SrcCond = MI.getOperand(3).getReg(); |
4300 | |
4301 | Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
4302 | Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
4303 | const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); |
4304 | Register SrcCondCopy = MRI.createVirtualRegister(CondRC); |
4305 | |
4306 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) |
4307 | .addReg(SrcCond); |
4308 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) |
4309 | .addImm(0) |
4310 | .addReg(Src0, 0, AMDGPU::sub0) |
4311 | .addImm(0) |
4312 | .addReg(Src1, 0, AMDGPU::sub0) |
4313 | .addReg(SrcCondCopy); |
4314 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) |
4315 | .addImm(0) |
4316 | .addReg(Src0, 0, AMDGPU::sub1) |
4317 | .addImm(0) |
4318 | .addReg(Src1, 0, AMDGPU::sub1) |
4319 | .addReg(SrcCondCopy); |
4320 | |
4321 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) |
4322 | .addReg(DstLo) |
4323 | .addImm(AMDGPU::sub0) |
4324 | .addReg(DstHi) |
4325 | .addImm(AMDGPU::sub1); |
4326 | MI.eraseFromParent(); |
4327 | return BB; |
4328 | } |
4329 | case AMDGPU::SI_BR_UNDEF: { |
4330 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
4331 | const DebugLoc &DL = MI.getDebugLoc(); |
4332 | MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) |
4333 | .add(MI.getOperand(0)); |
4334 | Br->getOperand(1).setIsUndef(); // read undef SCC |
4335 | MI.eraseFromParent(); |
4336 | return BB; |
4337 | } |
4338 | case AMDGPU::ADJCALLSTACKUP: |
4339 | case AMDGPU::ADJCALLSTACKDOWN: { |
4340 | const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); |
4341 | MachineInstrBuilder MIB(*MF, &MI); |
4342 | MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) |
4343 | .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); |
4344 | return BB; |
4345 | } |
4346 | case AMDGPU::SI_CALL_ISEL: { |
4347 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
4348 | const DebugLoc &DL = MI.getDebugLoc(); |
4349 | |
4350 | unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); |
4351 | |
4352 | MachineInstrBuilder MIB; |
4353 | MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); |
4354 | |
4355 | for (const MachineOperand &MO : MI.operands()) |
4356 | MIB.add(MO); |
4357 | |
4358 | MIB.cloneMemRefs(MI); |
4359 | MI.eraseFromParent(); |
4360 | return BB; |
4361 | } |
4362 | case AMDGPU::V_ADD_CO_U32_e32: |
4363 | case AMDGPU::V_SUB_CO_U32_e32: |
4364 | case AMDGPU::V_SUBREV_CO_U32_e32: { |
4365 | // TODO: Define distinct V_*_I32_Pseudo instructions instead. |
4366 | const DebugLoc &DL = MI.getDebugLoc(); |
4367 | unsigned Opc = MI.getOpcode(); |
4368 | |
4369 | bool NeedClampOperand = false; |
4370 | if (TII->pseudoToMCOpcode(Opc) == -1) { |
4371 | Opc = AMDGPU::getVOPe64(Opc); |
4372 | NeedClampOperand = true; |
4373 | } |
4374 | |
4375 | auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); |
4376 | if (TII->isVOP3(*I)) { |
4377 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
4378 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
4379 | I.addReg(TRI->getVCC(), RegState::Define); |
4380 | } |
4381 | I.add(MI.getOperand(1)) |
4382 | .add(MI.getOperand(2)); |
4383 | if (NeedClampOperand) |
4384 | I.addImm(0); // clamp bit for e64 encoding |
4385 | |
4386 | TII->legalizeOperands(*I); |
4387 | |
4388 | MI.eraseFromParent(); |
4389 | return BB; |
4390 | } |
4391 | case AMDGPU::V_ADDC_U32_e32: |
4392 | case AMDGPU::V_SUBB_U32_e32: |
4393 | case AMDGPU::V_SUBBREV_U32_e32: |
4394 | // These instructions have an implicit use of vcc which counts towards the |
4395 | // constant bus limit. |
4396 | TII->legalizeOperands(MI); |
4397 | return BB; |
4398 | case AMDGPU::DS_GWS_INIT: |
4399 | case AMDGPU::DS_GWS_SEMA_BR: |
4400 | case AMDGPU::DS_GWS_BARRIER: |
4401 | TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); |
4402 | [[fallthrough]]; |
4403 | case AMDGPU::DS_GWS_SEMA_V: |
4404 | case AMDGPU::DS_GWS_SEMA_P: |
4405 | case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: |
4406 | // A s_waitcnt 0 is required to be the instruction immediately following. |
4407 | if (getSubtarget()->hasGWSAutoReplay()) { |
4408 | bundleInstWithWaitcnt(MI); |
4409 | return BB; |
4410 | } |
4411 | |
4412 | return emitGWSMemViolTestLoop(MI, BB); |
4413 | case AMDGPU::S_SETREG_B32: { |
4414 | // Try to optimize cases that only set the denormal mode or rounding mode. |
4415 | // |
4416 | // If the s_setreg_b32 fully sets all of the bits in the rounding mode or |
4417 | // denormal mode to a constant, we can use s_round_mode or s_denorm_mode |
4418 | // instead. |
4419 | // |
4420 | // FIXME: This could be predicates on the immediate, but tablegen doesn't |
4421 | // allow you to have a no side effect instruction in the output of a |
4422 | // sideeffecting pattern. |
4423 | unsigned ID, Offset, Width; |
4424 | AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); |
4425 | if (ID != AMDGPU::Hwreg::ID_MODE) |
4426 | return BB; |
4427 | |
4428 | const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); |
4429 | const unsigned SetMask = WidthMask << Offset; |
4430 | |
4431 | if (getSubtarget()->hasDenormModeInst()) { |
4432 | unsigned SetDenormOp = 0; |
4433 | unsigned SetRoundOp = 0; |
4434 | |
4435 | // The dedicated instructions can only set the whole denorm or round mode |
4436 | // at once, not a subset of bits in either. |
4437 | if (SetMask == |
4438 | (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { |
4439 | // If this fully sets both the round and denorm mode, emit the two |
4440 | // dedicated instructions for these. |
4441 | SetRoundOp = AMDGPU::S_ROUND_MODE; |
4442 | SetDenormOp = AMDGPU::S_DENORM_MODE; |
4443 | } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { |
4444 | SetRoundOp = AMDGPU::S_ROUND_MODE; |
4445 | } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { |
4446 | SetDenormOp = AMDGPU::S_DENORM_MODE; |
4447 | } |
4448 | |
4449 | if (SetRoundOp || SetDenormOp) { |
4450 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
4451 | MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); |
4452 | if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { |
4453 | unsigned ImmVal = Def->getOperand(1).getImm(); |
4454 | if (SetRoundOp) { |
4455 | BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) |
4456 | .addImm(ImmVal & 0xf); |
4457 | |
4458 | // If we also have the denorm mode, get just the denorm mode bits. |
4459 | ImmVal >>= 4; |
4460 | } |
4461 | |
4462 | if (SetDenormOp) { |
4463 | BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) |
4464 | .addImm(ImmVal & 0xf); |
4465 | } |
4466 | |
4467 | MI.eraseFromParent(); |
4468 | return BB; |
4469 | } |
4470 | } |
4471 | } |
4472 | |
4473 | // If only FP bits are touched, used the no side effects pseudo. |
4474 | if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | |
4475 | AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) |
4476 | MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); |
4477 | |
4478 | return BB; |
4479 | } |
4480 | default: |
4481 | return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); |
4482 | } |
4483 | } |
4484 | |
4485 | bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const { |
4486 | switch (Op.getValue(0).getSimpleValueType().SimpleTy) { |
4487 | case MVT::f32: |
4488 | return Subtarget->hasAtomicFaddRtnInsts(); |
4489 | case MVT::v2f16: |
4490 | case MVT::f64: |
4491 | return Subtarget->hasGFX90AInsts(); |
4492 | default: |
4493 | return false; |
4494 | } |
4495 | } |
4496 | |
4497 | bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { |
4498 | // This currently forces unfolding various combinations of fsub into fma with |
4499 | // free fneg'd operands. As long as we have fast FMA (controlled by |
4500 | // isFMAFasterThanFMulAndFAdd), we should perform these. |
4501 | |
4502 | // When fma is quarter rate, for f64 where add / sub are at best half rate, |
4503 | // most of these combines appear to be cycle neutral but save on instruction |
4504 | // count / code size. |
4505 | return true; |
4506 | } |
4507 | |
4508 | bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } |
4509 | |
4510 | EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, |
4511 | EVT VT) const { |
4512 | if (!VT.isVector()) { |
4513 | return MVT::i1; |
4514 | } |
4515 | return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); |
4516 | } |
4517 | |
4518 | MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { |
4519 | // TODO: Should i16 be used always if legal? For now it would force VALU |
4520 | // shifts. |
4521 | return (VT == MVT::i16) ? MVT::i16 : MVT::i32; |
4522 | } |
4523 | |
4524 | LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { |
4525 | return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) |
4526 | ? Ty.changeElementSize(16) |
4527 | : Ty.changeElementSize(32); |
4528 | } |
4529 | |
4530 | // Answering this is somewhat tricky and depends on the specific device which |
4531 | // have different rates for fma or all f64 operations. |
4532 | // |
4533 | // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other |
4534 | // regardless of which device (although the number of cycles differs between |
4535 | // devices), so it is always profitable for f64. |
4536 | // |
4537 | // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable |
4538 | // only on full rate devices. Normally, we should prefer selecting v_mad_f32 |
4539 | // which we can always do even without fused FP ops since it returns the same |
4540 | // result as the separate operations and since it is always full |
4541 | // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 |
4542 | // however does not support denormals, so we do report fma as faster if we have |
4543 | // a fast fma device and require denormals. |
4544 | // |
4545 | bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, |
4546 | EVT VT) const { |
4547 | VT = VT.getScalarType(); |
4548 | |
4549 | switch (VT.getSimpleVT().SimpleTy) { |
4550 | case MVT::f32: { |
4551 | // If mad is not available this depends only on if f32 fma is full rate. |
4552 | if (!Subtarget->hasMadMacF32Insts()) |
4553 | return Subtarget->hasFastFMAF32(); |
4554 | |
4555 | // Otherwise f32 mad is always full rate and returns the same result as |
4556 | // the separate operations so should be preferred over fma. |
4557 | // However does not support denormals. |
4558 | if (hasFP32Denormals(MF)) |
4559 | return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); |
4560 | |
4561 | // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. |
4562 | return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); |
4563 | } |
4564 | case MVT::f64: |
4565 | return true; |
4566 | case MVT::f16: |
4567 | return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); |
4568 | default: |
4569 | break; |
4570 | } |
4571 | |
4572 | return false; |
4573 | } |
4574 | |
4575 | bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, |
4576 | LLT Ty) const { |
4577 | switch (Ty.getScalarSizeInBits()) { |
4578 | case 16: |
4579 | return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); |
4580 | case 32: |
4581 | return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); |
4582 | case 64: |
4583 | return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); |
4584 | default: |
4585 | break; |
4586 | } |
4587 | |
4588 | return false; |
4589 | } |
4590 | |
4591 | bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { |
4592 | if (!Ty.isScalar()) |
4593 | return false; |
4594 | |
4595 | if (Ty.getScalarSizeInBits() == 16) |
4596 | return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF()); |
4597 | if (Ty.getScalarSizeInBits() == 32) |
4598 | return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF()); |
4599 | |
4600 | return false; |
4601 | } |
4602 | |
4603 | bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, |
4604 | const SDNode *N) const { |
4605 | // TODO: Check future ftz flag |
4606 | // v_mad_f32/v_mac_f32 do not support denormals. |
4607 | EVT VT = N->getValueType(0); |
4608 | if (VT == MVT::f32) |
4609 | return Subtarget->hasMadMacF32Insts() && |
4610 | !hasFP32Denormals(DAG.getMachineFunction()); |
4611 | if (VT == MVT::f16) { |
4612 | return Subtarget->hasMadF16() && |
4613 | !hasFP64FP16Denormals(DAG.getMachineFunction()); |
4614 | } |
4615 | |
4616 | return false; |
4617 | } |
4618 | |
4619 | //===----------------------------------------------------------------------===// |
4620 | // Custom DAG Lowering Operations |
4621 | //===----------------------------------------------------------------------===// |
4622 | |
4623 | // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the |
4624 | // wider vector type is legal. |
4625 | SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, |
4626 | SelectionDAG &DAG) const { |
4627 | unsigned Opc = Op.getOpcode(); |
4628 | EVT VT = Op.getValueType(); |
4629 | assert(VT == MVT::v4f16 || VT == MVT::v4i16)(static_cast <bool> (VT == MVT::v4f16 || VT == MVT::v4i16 ) ? void (0) : __assert_fail ("VT == MVT::v4f16 || VT == MVT::v4i16" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4629, __extension__ __PRETTY_FUNCTION__)); |
4630 | |
4631 | SDValue Lo, Hi; |
4632 | std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); |
4633 | |
4634 | SDLoc SL(Op); |
4635 | SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, |
4636 | Op->getFlags()); |
4637 | SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, |
4638 | Op->getFlags()); |
4639 | |
4640 | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); |
4641 | } |
4642 | |
4643 | // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the |
4644 | // wider vector type is legal. |
4645 | SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, |
4646 | SelectionDAG &DAG) const { |
4647 | unsigned Opc = Op.getOpcode(); |
4648 | EVT VT = Op.getValueType(); |
4649 | assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4652, __extension__ __PRETTY_FUNCTION__)) |
4650 | VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4652, __extension__ __PRETTY_FUNCTION__)) |
4651 | VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4652, __extension__ __PRETTY_FUNCTION__)) |
4652 | VT == MVT::v32f32)(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4652, __extension__ __PRETTY_FUNCTION__)); |
4653 | |
4654 | SDValue Lo0, Hi0; |
4655 | std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); |
4656 | SDValue Lo1, Hi1; |
4657 | std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); |
4658 | |
4659 | SDLoc SL(Op); |
4660 | |
4661 | SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, |
4662 | Op->getFlags()); |
4663 | SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, |
4664 | Op->getFlags()); |
4665 | |
4666 | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); |
4667 | } |
4668 | |
4669 | SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, |
4670 | SelectionDAG &DAG) const { |
4671 | unsigned Opc = Op.getOpcode(); |
4672 | EVT VT = Op.getValueType(); |
4673 | assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4676, __extension__ __PRETTY_FUNCTION__)) |
4674 | VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4676, __extension__ __PRETTY_FUNCTION__)) |
4675 | VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4676, __extension__ __PRETTY_FUNCTION__)) |
4676 | VT == MVT::v32f32)(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4676, __extension__ __PRETTY_FUNCTION__)); |
4677 | |
4678 | SDValue Lo0, Hi0; |
4679 | SDValue Op0 = Op.getOperand(0); |
4680 | std::tie(Lo0, Hi0) = Op0.getValueType().isVector() |
4681 | ? DAG.SplitVectorOperand(Op.getNode(), 0) |
4682 | : std::pair(Op0, Op0); |
4683 | SDValue Lo1, Hi1; |
4684 | std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); |
4685 | SDValue Lo2, Hi2; |
4686 | std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); |
4687 | |
4688 | SDLoc SL(Op); |
4689 | auto ResVT = DAG.GetSplitDestVTs(VT); |
4690 | |
4691 | SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, |
4692 | Op->getFlags()); |
4693 | SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, |
4694 | Op->getFlags()); |
4695 | |
4696 | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); |
4697 | } |
4698 | |
4699 | |
4700 | SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
4701 | switch (Op.getOpcode()) { |
4702 | default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); |
4703 | case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
4704 | case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
4705 | case ISD::LOAD: { |
4706 | SDValue Result = LowerLOAD(Op, DAG); |
4707 | assert((!Result.getNode() ||(static_cast <bool> ((!Result.getNode() || Result.getNode ()->getNumValues() == 2) && "Load should return a value and a chain" ) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4709, __extension__ __PRETTY_FUNCTION__)) |
4708 | Result.getNode()->getNumValues() == 2) &&(static_cast <bool> ((!Result.getNode() || Result.getNode ()->getNumValues() == 2) && "Load should return a value and a chain" ) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4709, __extension__ __PRETTY_FUNCTION__)) |
4709 | "Load should return a value and a chain")(static_cast <bool> ((!Result.getNode() || Result.getNode ()->getNumValues() == 2) && "Load should return a value and a chain" ) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4709, __extension__ __PRETTY_FUNCTION__)); |
4710 | return Result; |
4711 | } |
4712 | |
4713 | case ISD::FSIN: |
4714 | case ISD::FCOS: |
4715 | return LowerTrig(Op, DAG); |
4716 | case ISD::SELECT: return LowerSELECT(Op, DAG); |
4717 | case ISD::FDIV: return LowerFDIV(Op, DAG); |
4718 | case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); |
4719 | case ISD::STORE: return LowerSTORE(Op, DAG); |
4720 | case ISD::GlobalAddress: { |
4721 | MachineFunction &MF = DAG.getMachineFunction(); |
4722 | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
4723 | return LowerGlobalAddress(MFI, Op, DAG); |
4724 | } |
4725 | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
4726 | case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); |
4727 | case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); |
4728 | case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); |
4729 | case ISD::INSERT_SUBVECTOR: |
4730 | return lowerINSERT_SUBVECTOR(Op, DAG); |
4731 | case ISD::INSERT_VECTOR_ELT: |
4732 | return lowerINSERT_VECTOR_ELT(Op, DAG); |
4733 | case ISD::EXTRACT_VECTOR_ELT: |
4734 | return lowerEXTRACT_VECTOR_ELT(Op, DAG); |
4735 | case ISD::VECTOR_SHUFFLE: |
4736 | return lowerVECTOR_SHUFFLE(Op, DAG); |
4737 | case ISD::SCALAR_TO_VECTOR: |
4738 | return lowerSCALAR_TO_VECTOR(Op, DAG); |
4739 | case ISD::BUILD_VECTOR: |
4740 | return lowerBUILD_VECTOR(Op, DAG); |
4741 | case ISD::FP_ROUND: |
4742 | return lowerFP_ROUND(Op, DAG); |
4743 | case ISD::FPTRUNC_ROUND: { |
4744 | unsigned Opc; |
4745 | SDLoc DL(Op); |
4746 | |
4747 | if (Op.getOperand(0)->getValueType(0) != MVT::f32) |
4748 | return SDValue(); |
4749 | |
4750 | // Get the rounding mode from the last operand |
4751 | int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
4752 | if (RoundMode == (int)RoundingMode::TowardPositive) |
4753 | Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD; |
4754 | else if (RoundMode == (int)RoundingMode::TowardNegative) |
4755 | Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD; |
4756 | else |
4757 | return SDValue(); |
4758 | |
4759 | return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0)); |
4760 | } |
4761 | case ISD::TRAP: |
4762 | return lowerTRAP(Op, DAG); |
4763 | case ISD::DEBUGTRAP: |
4764 | return lowerDEBUGTRAP(Op, DAG); |
4765 | case ISD::FABS: |
4766 | case ISD::FNEG: |
4767 | case ISD::FCANONICALIZE: |
4768 | case ISD::BSWAP: |
4769 | return splitUnaryVectorOp(Op, DAG); |
4770 | case ISD::FMINNUM: |
4771 | case ISD::FMAXNUM: |
4772 | return lowerFMINNUM_FMAXNUM(Op, DAG); |
4773 | case ISD::FMA: |
4774 | return splitTernaryVectorOp(Op, DAG); |
4775 | case ISD::FP_TO_SINT: |
4776 | case ISD::FP_TO_UINT: |
4777 | return LowerFP_TO_INT(Op, DAG); |
4778 | case ISD::SHL: |
4779 | case ISD::SRA: |
4780 | case ISD::SRL: |
4781 | case ISD::ADD: |
4782 | case ISD::SUB: |
4783 | case ISD::MUL: |
4784 | case ISD::SMIN: |
4785 | case ISD::SMAX: |
4786 | case ISD::UMIN: |
4787 | case ISD::UMAX: |
4788 | case ISD::FADD: |
4789 | case ISD::FMUL: |
4790 | case ISD::FMINNUM_IEEE: |
4791 | case ISD::FMAXNUM_IEEE: |
4792 | case ISD::UADDSAT: |
4793 | case ISD::USUBSAT: |
4794 | case ISD::SADDSAT: |
4795 | case ISD::SSUBSAT: |
4796 | return splitBinaryVectorOp(Op, DAG); |
4797 | case ISD::SMULO: |
4798 | case ISD::UMULO: |
4799 | return lowerXMULO(Op, DAG); |
4800 | case ISD::SMUL_LOHI: |
4801 | case ISD::UMUL_LOHI: |
4802 | return lowerXMUL_LOHI(Op, DAG); |
4803 | case ISD::DYNAMIC_STACKALLOC: |
4804 | return LowerDYNAMIC_STACKALLOC(Op, DAG); |
4805 | } |
4806 | return SDValue(); |
4807 | } |
4808 | |
4809 | // Used for D16: Casts the result of an instruction into the right vector, |
4810 | // packs values if loads return unpacked values. |
4811 | static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, |
4812 | const SDLoc &DL, |
4813 | SelectionDAG &DAG, bool Unpacked) { |
4814 | if (!LoadVT.isVector()) |
4815 | return Result; |
4816 | |
4817 | // Cast back to the original packed type or to a larger type that is a |
4818 | // multiple of 32 bit for D16. Widening the return type is a required for |
4819 | // legalization. |
4820 | EVT FittingLoadVT = LoadVT; |
4821 | if ((LoadVT.getVectorNumElements() % 2) == 1) { |
4822 | FittingLoadVT = |
4823 | EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), |
4824 | LoadVT.getVectorNumElements() + 1); |
4825 | } |
4826 | |
4827 | if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. |
4828 | // Truncate to v2i16/v4i16. |
4829 | EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); |
4830 | |
4831 | // Workaround legalizer not scalarizing truncate after vector op |
4832 | // legalization but not creating intermediate vector trunc. |
4833 | SmallVector<SDValue, 4> Elts; |
4834 | DAG.ExtractVectorElements(Result, Elts); |
4835 | for (SDValue &Elt : Elts) |
4836 | Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); |
4837 | |
4838 | // Pad illegal v1i16/v3fi6 to v4i16 |
4839 | if ((LoadVT.getVectorNumElements() % 2) == 1) |
4840 | Elts.push_back(DAG.getUNDEF(MVT::i16)); |
4841 | |
4842 | Result = DAG.getBuildVector(IntLoadVT, DL, Elts); |
4843 | |
4844 | // Bitcast to original type (v2f16/v4f16). |
4845 | return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); |
4846 | } |
4847 | |
4848 | // Cast back to the original packed type. |
4849 | return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); |
4850 | } |
4851 | |
4852 | SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, |
4853 | MemSDNode *M, |
4854 | SelectionDAG &DAG, |
4855 | ArrayRef<SDValue> Ops, |
4856 | bool IsIntrinsic) const { |
4857 | SDLoc DL(M); |
4858 | |
4859 | bool Unpacked = Subtarget->hasUnpackedD16VMem(); |
4860 | EVT LoadVT = M->getValueType(0); |
4861 | |
4862 | EVT EquivLoadVT = LoadVT; |
4863 | if (LoadVT.isVector()) { |
4864 | if (Unpacked) { |
4865 | EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
4866 | LoadVT.getVectorNumElements()); |
4867 | } else if ((LoadVT.getVectorNumElements() % 2) == 1) { |
4868 | // Widen v3f16 to legal type |
4869 | EquivLoadVT = |
4870 | EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), |
4871 | LoadVT.getVectorNumElements() + 1); |
4872 | } |
4873 | } |
4874 | |
4875 | // Change from v4f16/v2f16 to EquivLoadVT. |
4876 | SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); |
4877 | |
4878 | SDValue Load |
4879 | = DAG.getMemIntrinsicNode( |
4880 | IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, |
4881 | VTList, Ops, M->getMemoryVT(), |
4882 | M->getMemOperand()); |
4883 | |
4884 | SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); |
4885 | |
4886 | return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); |
4887 | } |
4888 | |
4889 | SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, |
4890 | SelectionDAG &DAG, |
4891 | ArrayRef<SDValue> Ops) const { |
4892 | SDLoc DL(M); |
4893 | EVT LoadVT = M->getValueType(0); |
4894 | EVT EltType = LoadVT.getScalarType(); |
4895 | EVT IntVT = LoadVT.changeTypeToInteger(); |
4896 | |
4897 | bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); |
4898 | |
4899 | assert(M->getNumValues() == 2 || M->getNumValues() == 3)(static_cast <bool> (M->getNumValues() == 2 || M-> getNumValues() == 3) ? void (0) : __assert_fail ("M->getNumValues() == 2 || M->getNumValues() == 3" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4899, __extension__ __PRETTY_FUNCTION__)); |
4900 | bool IsTFE = M->getNumValues() == 3; |
4901 | |
4902 | unsigned Opc; |
4903 | if (IsFormat) { |
4904 | Opc = IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE |
4905 | : AMDGPUISD::BUFFER_LOAD_FORMAT; |
4906 | } else { |
4907 | // TODO: Support non-format TFE loads. |
4908 | if (IsTFE) |
4909 | return SDValue(); |
4910 | Opc = AMDGPUISD::BUFFER_LOAD; |
4911 | } |
4912 | |
4913 | if (IsD16) { |
4914 | return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); |
4915 | } |
4916 | |
4917 | // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics |
4918 | if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) |
4919 | return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); |
4920 | |
4921 | if (isTypeLegal(LoadVT)) { |
4922 | return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, |
4923 | M->getMemOperand(), DAG); |
4924 | } |
4925 | |
4926 | EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); |
4927 | SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); |
4928 | SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, |
4929 | M->getMemOperand(), DAG); |
4930 | return DAG.getMergeValues( |
4931 | {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, |
4932 | DL); |
4933 | } |
4934 | |
4935 | static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, |
4936 | SDNode *N, SelectionDAG &DAG) { |
4937 | EVT VT = N->getValueType(0); |
4938 | const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); |
4939 | unsigned CondCode = CD->getZExtValue(); |
4940 | if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) |
4941 | return DAG.getUNDEF(VT); |
4942 | |
4943 | ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); |
4944 | |
4945 | SDValue LHS = N->getOperand(1); |
4946 | SDValue RHS = N->getOperand(2); |
4947 | |
4948 | SDLoc DL(N); |
4949 | |
4950 | EVT CmpVT = LHS.getValueType(); |
4951 | if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { |
4952 | unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? |
4953 | ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
4954 | LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); |
4955 | RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); |
4956 | } |
4957 | |
4958 | ISD::CondCode CCOpcode = getICmpCondCode(IcInput); |
4959 | |
4960 | unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); |
4961 | EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); |
4962 | |
4963 | SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, |
4964 | DAG.getCondCode(CCOpcode)); |
4965 | if (VT.bitsEq(CCVT)) |
4966 | return SetCC; |
4967 | return DAG.getZExtOrTrunc(SetCC, DL, VT); |
4968 | } |
4969 | |
4970 | static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, |
4971 | SDNode *N, SelectionDAG &DAG) { |
4972 | EVT VT = N->getValueType(0); |
4973 | const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); |
4974 | |
4975 | unsigned CondCode = CD->getZExtValue(); |
4976 | if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) |
4977 | return DAG.getUNDEF(VT); |
4978 | |
4979 | SDValue Src0 = N->getOperand(1); |
4980 | SDValue Src1 = N->getOperand(2); |
4981 | EVT CmpVT = Src0.getValueType(); |
4982 | SDLoc SL(N); |
4983 | |
4984 | if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { |
4985 | Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); |
4986 | Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); |
4987 | } |
4988 | |
4989 | FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); |
4990 | ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); |
4991 | unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); |
4992 | EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); |
4993 | SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, |
4994 | Src1, DAG.getCondCode(CCOpcode)); |
4995 | if (VT.bitsEq(CCVT)) |
4996 | return SetCC; |
4997 | return DAG.getZExtOrTrunc(SetCC, SL, VT); |
4998 | } |
4999 | |
5000 | static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, |
5001 | SelectionDAG &DAG) { |
5002 | EVT VT = N->getValueType(0); |
5003 | SDValue Src = N->getOperand(1); |
5004 | SDLoc SL(N); |
5005 | |
5006 | if (Src.getOpcode() == ISD::SETCC) { |
5007 | // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) |
5008 | return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), |
5009 | Src.getOperand(1), Src.getOperand(2)); |
5010 | } |
5011 | if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { |
5012 | // (ballot 0) -> 0 |
5013 | if (Arg->isZero()) |
5014 | return DAG.getConstant(0, SL, VT); |
5015 | |
5016 | // (ballot 1) -> EXEC/EXEC_LO |
5017 | if (Arg->isOne()) { |
5018 | Register Exec; |
5019 | if (VT.getScalarSizeInBits() == 32) |
5020 | Exec = AMDGPU::EXEC_LO; |
5021 | else if (VT.getScalarSizeInBits() == 64) |
5022 | Exec = AMDGPU::EXEC; |
5023 | else |
5024 | return SDValue(); |
5025 | |
5026 | return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); |
5027 | } |
5028 | } |
5029 | |
5030 | // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) |
5031 | // ISD::SETNE) |
5032 | return DAG.getNode( |
5033 | AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), |
5034 | DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); |
5035 | } |
5036 | |
5037 | void SITargetLowering::ReplaceNodeResults(SDNode *N, |
5038 | SmallVectorImpl<SDValue> &Results, |
5039 | SelectionDAG &DAG) const { |
5040 | switch (N->getOpcode()) { |
5041 | case ISD::INSERT_VECTOR_ELT: { |
5042 | if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) |
5043 | Results.push_back(Res); |
5044 | return; |
5045 | } |
5046 | case ISD::EXTRACT_VECTOR_ELT: { |
5047 | if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) |
5048 | Results.push_back(Res); |
5049 | return; |
5050 | } |
5051 | case ISD::INTRINSIC_WO_CHAIN: { |
5052 | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
5053 | switch (IID) { |
5054 | case Intrinsic::amdgcn_cvt_pkrtz: { |
5055 | SDValue Src0 = N->getOperand(1); |
5056 | SDValue Src1 = N->getOperand(2); |
5057 | SDLoc SL(N); |
5058 | SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, |
5059 | Src0, Src1); |
5060 | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); |
5061 | return; |
5062 | } |
5063 | case Intrinsic::amdgcn_cvt_pknorm_i16: |
5064 | case Intrinsic::amdgcn_cvt_pknorm_u16: |
5065 | case Intrinsic::amdgcn_cvt_pk_i16: |
5066 | case Intrinsic::amdgcn_cvt_pk_u16: { |
5067 | SDValue Src0 = N->getOperand(1); |
5068 | SDValue Src1 = N->getOperand(2); |
5069 | SDLoc SL(N); |
5070 | unsigned Opcode; |
5071 | |
5072 | if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) |
5073 | Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; |
5074 | else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) |
5075 | Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; |
5076 | else if (IID == Intrinsic::amdgcn_cvt_pk_i16) |
5077 | Opcode = AMDGPUISD::CVT_PK_I16_I32; |
5078 | else |
5079 | Opcode = AMDGPUISD::CVT_PK_U16_U32; |
5080 | |
5081 | EVT VT = N->getValueType(0); |
5082 | if (isTypeLegal(VT)) |
5083 | Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); |
5084 | else { |
5085 | SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); |
5086 | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); |
5087 | } |
5088 | return; |
5089 | } |
5090 | } |
5091 | break; |
5092 | } |
5093 | case ISD::INTRINSIC_W_CHAIN: { |
5094 | if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { |
5095 | if (Res.getOpcode() == ISD::MERGE_VALUES) { |
5096 | // FIXME: Hacky |
5097 | for (unsigned I = 0; I < Res.getNumOperands(); I++) { |
5098 | Results.push_back(Res.getOperand(I)); |
5099 | } |
5100 | } else { |
5101 | Results.push_back(Res); |
5102 | Results.push_back(Res.getValue(1)); |
5103 | } |
5104 | return; |
5105 | } |
5106 | |
5107 | break; |
5108 | } |
5109 | case ISD::SELECT: { |
5110 | SDLoc SL(N); |
5111 | EVT VT = N->getValueType(0); |
5112 | EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); |
5113 | SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); |
5114 | SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); |
5115 | |
5116 | EVT SelectVT = NewVT; |
5117 | if (NewVT.bitsLT(MVT::i32)) { |
5118 | LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); |
5119 | RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); |
5120 | SelectVT = MVT::i32; |
5121 | } |
5122 | |
5123 | SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, |
5124 | N->getOperand(0), LHS, RHS); |
5125 | |
5126 | if (NewVT != SelectVT) |
5127 | NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); |
5128 | Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); |
5129 | return; |
5130 | } |
5131 | case ISD::FNEG: { |
5132 | if (N->getValueType(0) != MVT::v2f16) |
5133 | break; |
5134 | |
5135 | SDLoc SL(N); |
5136 | SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); |
5137 | |
5138 | SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, |
5139 | BC, |
5140 | DAG.getConstant(0x80008000, SL, MVT::i32)); |
5141 | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); |
5142 | return; |
5143 | } |
5144 | case ISD::FABS: { |
5145 | if (N->getValueType(0) != MVT::v2f16) |
5146 | break; |
5147 | |
5148 | SDLoc SL(N); |
5149 | SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); |
5150 | |
5151 | SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, |
5152 | BC, |
5153 | DAG.getConstant(0x7fff7fff, SL, MVT::i32)); |
5154 | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); |
5155 | return; |
5156 | } |
5157 | default: |
5158 | break; |
5159 | } |
5160 | } |
5161 | |
5162 | /// Helper function for LowerBRCOND |
5163 | static SDNode *findUser(SDValue Value, unsigned Opcode) { |
5164 | |
5165 | SDNode *Parent = Value.getNode(); |
5166 | for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); |
5167 | I != E; ++I) { |
5168 | |
5169 | if (I.getUse().get() != Value) |
5170 | continue; |
5171 | |
5172 | if (I->getOpcode() == Opcode) |
5173 | return *I; |
5174 | } |
5175 | return nullptr; |
5176 | } |
5177 | |
5178 | unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { |
5179 | if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { |
5180 | switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { |
5181 | case Intrinsic::amdgcn_if: |
5182 | return AMDGPUISD::IF; |
5183 | case Intrinsic::amdgcn_else: |
5184 | return AMDGPUISD::ELSE; |
5185 | case Intrinsic::amdgcn_loop: |
5186 | return AMDGPUISD::LOOP; |
5187 | case Intrinsic::amdgcn_end_cf: |
5188 | llvm_unreachable("should not occur")::llvm::llvm_unreachable_internal("should not occur", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5188); |
5189 | default: |
5190 | return 0; |
5191 | } |
5192 | } |
5193 | |
5194 | // break, if_break, else_break are all only used as inputs to loop, not |
5195 | // directly as branch conditions. |
5196 | return 0; |
5197 | } |
5198 | |
5199 | bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { |
5200 | const Triple &TT = getTargetMachine().getTargetTriple(); |
5201 | return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
5202 | GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && |
5203 | AMDGPU::shouldEmitConstantsToTextSection(TT); |
5204 | } |
5205 | |
5206 | bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { |
5207 | // FIXME: Either avoid relying on address space here or change the default |
5208 | // address space for functions to avoid the explicit check. |
5209 | return (GV->getValueType()->isFunctionTy() || |
5210 | !isNonGlobalAddrSpace(GV->getAddressSpace())) && |
5211 | !shouldEmitFixup(GV) && |
5212 | !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); |
5213 | } |
5214 | |
5215 | bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { |
5216 | return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); |
5217 | } |
5218 | |
5219 | bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { |
5220 | if (!GV->hasExternalLinkage()) |
5221 | return true; |
5222 | |
5223 | const auto OS = getTargetMachine().getTargetTriple().getOS(); |
5224 | return OS == Triple::AMDHSA || OS == Triple::AMDPAL; |
5225 | } |
5226 | |
5227 | /// This transforms the control flow intrinsics to get the branch destination as |
5228 | /// last parameter, also switches branch target with BR if the need arise |
5229 | SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, |
5230 | SelectionDAG &DAG) const { |
5231 | SDLoc DL(BRCOND); |
5232 | |
5233 | SDNode *Intr = BRCOND.getOperand(1).getNode(); |
5234 | SDValue Target = BRCOND.getOperand(2); |
5235 | SDNode *BR = nullptr; |
5236 | SDNode *SetCC = nullptr; |
5237 | |
5238 | if (Intr->getOpcode() == ISD::SETCC) { |
5239 | // As long as we negate the condition everything is fine |
5240 | SetCC = Intr; |
5241 | Intr = SetCC->getOperand(0).getNode(); |
5242 | |
5243 | } else { |
5244 | // Get the target from BR if we don't negate the condition |
5245 | BR = findUser(BRCOND, ISD::BR); |
5246 | assert(BR && "brcond missing unconditional branch user")(static_cast <bool> (BR && "brcond missing unconditional branch user" ) ? void (0) : __assert_fail ("BR && \"brcond missing unconditional branch user\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5246, __extension__ __PRETTY_FUNCTION__)); |
5247 | Target = BR->getOperand(1); |
5248 | } |
5249 | |
5250 | unsigned CFNode = isCFIntrinsic(Intr); |
5251 | if (CFNode == 0) { |
5252 | // This is a uniform branch so we don't need to legalize. |
5253 | return BRCOND; |
5254 | } |
5255 | |
5256 | bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || |
5257 | Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; |
5258 | |
5259 | assert(!SetCC ||(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal (1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand (2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5262, __extension__ __PRETTY_FUNCTION__)) |
5260 | (SetCC->getConstantOperandVal(1) == 1 &&(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal (1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand (2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5262, __extension__ __PRETTY_FUNCTION__)) |
5261 | cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal (1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand (2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5262, __extension__ __PRETTY_FUNCTION__)) |
5262 | ISD::SETNE))(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal (1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand (2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5262, __extension__ __PRETTY_FUNCTION__)); |
5263 | |
5264 | // operands of the new intrinsic call |
5265 | SmallVector<SDValue, 4> Ops; |
5266 | if (HaveChain) |
5267 | Ops.push_back(BRCOND.getOperand(0)); |
5268 | |
5269 | Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); |
5270 | Ops.push_back(Target); |
5271 | |
5272 | ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); |
5273 | |
5274 | // build the new intrinsic call |
5275 | SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); |
5276 | |
5277 | if (!HaveChain) { |
5278 | SDValue Ops[] = { |
5279 | SDValue(Result, 0), |
5280 | BRCOND.getOperand(0) |
5281 | }; |
5282 | |
5283 | Result = DAG.getMergeValues(Ops, DL).getNode(); |
5284 | } |
5285 | |
5286 | if (BR) { |
5287 | // Give the branch instruction our target |
5288 | SDValue Ops[] = { |
5289 | BR->getOperand(0), |
5290 | BRCOND.getOperand(2) |
5291 | }; |
5292 | SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); |
5293 | DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); |
5294 | } |
5295 | |
5296 | SDValue Chain = SDValue(Result, Result->getNumValues() - 1); |
5297 | |
5298 | // Copy the intrinsic results to registers |
5299 | for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { |
5300 | SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); |
5301 | if (!CopyToReg) |
5302 | continue; |
5303 | |
5304 | Chain = DAG.getCopyToReg( |
5305 | Chain, DL, |
5306 | CopyToReg->getOperand(1), |
5307 | SDValue(Result, i - 1), |
5308 | SDValue()); |
5309 | |
5310 | DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); |
5311 | } |
5312 | |
5313 | // Remove the old intrinsic from the chain |
5314 | DAG.ReplaceAllUsesOfValueWith( |
5315 | SDValue(Intr, Intr->getNumValues() - 1), |
5316 | Intr->getOperand(0)); |
5317 | |
5318 | return Chain; |
5319 | } |
5320 | |
5321 | SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, |
5322 | SelectionDAG &DAG) const { |
5323 | MVT VT = Op.getSimpleValueType(); |
5324 | SDLoc DL(Op); |
5325 | // Checking the depth |
5326 | if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) |
5327 | return DAG.getConstant(0, DL, VT); |
5328 | |
5329 | MachineFunction &MF = DAG.getMachineFunction(); |
5330 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
5331 | // Check for kernel and shader functions |
5332 | if (Info->isEntryFunction()) |
5333 | return DAG.getConstant(0, DL, VT); |
5334 | |
5335 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
5336 | // There is a call to @llvm.returnaddress in this function |
5337 | MFI.setReturnAddressIsTaken(true); |
5338 | |
5339 | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
5340 | // Get the return address reg and mark it as an implicit live-in |
5341 | Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); |
5342 | |
5343 | return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); |
5344 | } |
5345 | |
5346 | SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, |
5347 | SDValue Op, |
5348 | const SDLoc &DL, |
5349 | EVT VT) const { |
5350 | return Op.getValueType().bitsLE(VT) ? |
5351 | DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : |
5352 | DAG.getNode(ISD::FP_ROUND, DL, VT, Op, |
5353 | DAG.getTargetConstant(0, DL, MVT::i32)); |
5354 | } |
5355 | |
5356 | SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { |
5357 | assert(Op.getValueType() == MVT::f16 &&(static_cast <bool> (Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type") ? void (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5358, __extension__ __PRETTY_FUNCTION__)) |
5358 | "Do not know how to custom lower FP_ROUND for non-f16 type")(static_cast <bool> (Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type") ? void (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5358, __extension__ __PRETTY_FUNCTION__)); |
5359 | |
5360 | SDValue Src = Op.getOperand(0); |
5361 | EVT SrcVT = Src.getValueType(); |
5362 | if (SrcVT != MVT::f64) |
5363 | return Op; |
5364 | |
5365 | SDLoc DL(Op); |
5366 | |
5367 | SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); |
5368 | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); |
5369 | return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); |
5370 | } |
5371 | |
5372 | SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, |
5373 | SelectionDAG &DAG) const { |
5374 | EVT VT = Op.getValueType(); |
5375 | const MachineFunction &MF = DAG.getMachineFunction(); |
5376 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
5377 | bool IsIEEEMode = Info->getMode().IEEE; |
5378 | |
5379 | // FIXME: Assert during selection that this is only selected for |
5380 | // ieee_mode. Currently a combine can produce the ieee version for non-ieee |
5381 | // mode functions, but this happens to be OK since it's only done in cases |
5382 | // where there is known no sNaN. |
5383 | if (IsIEEEMode) |
5384 | return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); |
5385 | |
5386 | if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16) |
5387 | return splitBinaryVectorOp(Op, DAG); |
5388 | return Op; |
5389 | } |
5390 | |
5391 | SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { |
5392 | EVT VT = Op.getValueType(); |
5393 | SDLoc SL(Op); |
5394 | SDValue LHS = Op.getOperand(0); |
5395 | SDValue RHS = Op.getOperand(1); |
5396 | bool isSigned = Op.getOpcode() == ISD::SMULO; |
5397 | |
5398 | if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { |
5399 | const APInt &C = RHSC->getAPIntValue(); |
5400 | // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } |
5401 | if (C.isPowerOf2()) { |
5402 | // smulo(x, signed_min) is same as umulo(x, signed_min). |
5403 | bool UseArithShift = isSigned && !C.isMinSignedValue(); |
5404 | SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); |
5405 | SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); |
5406 | SDValue Overflow = DAG.getSetCC(SL, MVT::i1, |
5407 | DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, |
5408 | SL, VT, Result, ShiftAmt), |
5409 | LHS, ISD::SETNE); |
5410 | return DAG.getMergeValues({ Result, Overflow }, SL); |
5411 | } |
5412 | } |
5413 | |
5414 | SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); |
5415 | SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, |
5416 | SL, VT, LHS, RHS); |
5417 | |
5418 | SDValue Sign = isSigned |
5419 | ? DAG.getNode(ISD::SRA, SL, VT, Result, |
5420 | DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) |
5421 | : DAG.getConstant(0, SL, VT); |
5422 | SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); |
5423 | |
5424 | return DAG.getMergeValues({ Result, Overflow }, SL); |
5425 | } |
5426 | |
5427 | SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { |
5428 | if (Op->isDivergent()) { |
5429 | // Select to V_MAD_[IU]64_[IU]32. |
5430 | return Op; |
5431 | } |
5432 | if (Subtarget->hasSMulHi()) { |
5433 | // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. |
5434 | return SDValue(); |
5435 | } |
5436 | // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to |
5437 | // calculate the high part, so we might as well do the whole thing with |
5438 | // V_MAD_[IU]64_[IU]32. |
5439 | return Op; |
5440 | } |
5441 | |
5442 | SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { |
5443 | if (!Subtarget->isTrapHandlerEnabled() || |
5444 | Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) |
5445 | return lowerTrapEndpgm(Op, DAG); |
5446 | |
5447 | const Module *M = DAG.getMachineFunction().getFunction().getParent(); |
5448 | unsigned CodeObjectVersion = AMDGPU::getCodeObjectVersion(*M); |
5449 | if (CodeObjectVersion <= AMDGPU::AMDHSA_COV3) |
5450 | return lowerTrapHsaQueuePtr(Op, DAG); |
5451 | |
5452 | return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) : |
5453 | lowerTrapHsaQueuePtr(Op, DAG); |
5454 | } |
5455 | |
5456 | SDValue SITargetLowering::lowerTrapEndpgm( |
5457 | SDValue Op, SelectionDAG &DAG) const { |
5458 | SDLoc SL(Op); |
5459 | SDValue Chain = Op.getOperand(0); |
5460 | return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); |
5461 | } |
5462 | |
5463 | SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, |
5464 | const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { |
5465 | MachineFunction &MF = DAG.getMachineFunction(); |
5466 | uint64_t Offset = getImplicitParameterOffset(MF, Param); |
5467 | SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); |
5468 | MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); |
5469 | return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, |
5470 | MachineMemOperand::MODereferenceable | |
5471 | MachineMemOperand::MOInvariant); |
5472 | } |
5473 | |
5474 | SDValue SITargetLowering::lowerTrapHsaQueuePtr( |
5475 | SDValue Op, SelectionDAG &DAG) const { |
5476 | SDLoc SL(Op); |
5477 | SDValue Chain = Op.getOperand(0); |
5478 | |
5479 | SDValue QueuePtr; |
5480 | // For code object version 5, QueuePtr is passed through implicit kernarg. |
5481 | const Module *M = DAG.getMachineFunction().getFunction().getParent(); |
5482 | if (AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { |
5483 | QueuePtr = |
5484 | loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); |
5485 | } else { |
5486 | MachineFunction &MF = DAG.getMachineFunction(); |
5487 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
5488 | Register UserSGPR = Info->getQueuePtrUserSGPR(); |
5489 | |
5490 | if (UserSGPR == AMDGPU::NoRegister) { |
5491 | // We probably are in a function incorrectly marked with |
5492 | // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the |
5493 | // trap, so just use a null pointer. |
5494 | QueuePtr = DAG.getConstant(0, SL, MVT::i64); |
5495 | } else { |
5496 | QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, |
5497 | MVT::i64); |
5498 | } |
5499 | } |
5500 | |
5501 | SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); |
5502 | SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, |
5503 | QueuePtr, SDValue()); |
5504 | |
5505 | uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); |
5506 | SDValue Ops[] = { |
5507 | ToReg, |
5508 | DAG.getTargetConstant(TrapID, SL, MVT::i16), |
5509 | SGPR01, |
5510 | ToReg.getValue(1) |
5511 | }; |
5512 | return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); |
5513 | } |
5514 | |
5515 | SDValue SITargetLowering::lowerTrapHsa( |
5516 | SDValue Op, SelectionDAG &DAG) const { |
5517 | SDLoc SL(Op); |
5518 | SDValue Chain = Op.getOperand(0); |
5519 | |
5520 | uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); |
5521 | SDValue Ops[] = { |
5522 | Chain, |
5523 | DAG.getTargetConstant(TrapID, SL, MVT::i16) |
5524 | }; |
5525 | return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); |
5526 | } |
5527 | |
5528 | SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { |
5529 | SDLoc SL(Op); |
5530 | SDValue Chain = Op.getOperand(0); |
5531 | MachineFunction &MF = DAG.getMachineFunction(); |
5532 | |
5533 | if (!Subtarget->isTrapHandlerEnabled() || |
5534 | Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { |
5535 | DiagnosticInfoUnsupported NoTrap(MF.getFunction(), |
5536 | "debugtrap handler not supported", |
5537 | Op.getDebugLoc(), |
5538 | DS_Warning); |
5539 | LLVMContext &Ctx = MF.getFunction().getContext(); |
5540 | Ctx.diagnose(NoTrap); |
5541 | return Chain; |
5542 | } |
5543 | |
5544 | uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); |
5545 | SDValue Ops[] = { |
5546 | Chain, |
5547 | DAG.getTargetConstant(TrapID, SL, MVT::i16) |
5548 | }; |
5549 | return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); |
5550 | } |
5551 | |
5552 | SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, |
5553 | SelectionDAG &DAG) const { |
5554 | if (Subtarget->hasApertureRegs()) { |
5555 | const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS) |
5556 | ? AMDGPU::SRC_SHARED_BASE |
5557 | : AMDGPU::SRC_PRIVATE_BASE; |
5558 | // Note: this feature (register) is broken. When used as a 32-bit operand, |
5559 | // it returns a wrong value (all zeroes?). The real value is in the upper 32 |
5560 | // bits. |
5561 | // |
5562 | // To work around the issue, directly emit a 64 bit mov from this register |
5563 | // then extract the high bits. Note that this shouldn't even result in a |
5564 | // shift being emitted and simply become a pair of registers (e.g.): |
5565 | // s_mov_b64 s[6:7], src_shared_base |
5566 | // v_mov_b32_e32 v1, s7 |
5567 | // |
5568 | // FIXME: It would be more natural to emit a CopyFromReg here, but then copy |
5569 | // coalescing would kick in and it would think it's okay to use the "HI" |
5570 | // subregister directly (instead of extracting the HI 32 bits) which is an |
5571 | // artificial (unusable) register. |
5572 | // Register TableGen definitions would need an overhaul to get rid of the |
5573 | // artificial "HI" aperture registers and prevent this kind of issue from |
5574 | // happening. |
5575 | SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, |
5576 | DAG.getRegister(ApertureRegNo, MVT::i64)); |
5577 | return DAG.getNode( |
5578 | ISD::TRUNCATE, DL, MVT::i32, |
5579 | DAG.getNode(ISD::SRL, DL, MVT::i64, |
5580 | {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)})); |
5581 | } |
5582 | |
5583 | // For code object version 5, private_base and shared_base are passed through |
5584 | // implicit kernargs. |
5585 | const Module *M = DAG.getMachineFunction().getFunction().getParent(); |
5586 | if (AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { |
5587 | ImplicitParameter Param = |
5588 | (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; |
5589 | return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); |
5590 | } |
5591 | |
5592 | MachineFunction &MF = DAG.getMachineFunction(); |
5593 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
5594 | Register UserSGPR = Info->getQueuePtrUserSGPR(); |
5595 | if (UserSGPR == AMDGPU::NoRegister) { |
5596 | // We probably are in a function incorrectly marked with |
5597 | // amdgpu-no-queue-ptr. This is undefined. |
5598 | return DAG.getUNDEF(MVT::i32); |
5599 | } |
5600 | |
5601 | SDValue QueuePtr = CreateLiveInRegister( |
5602 | DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); |
5603 | |
5604 | // Offset into amd_queue_t for group_segment_aperture_base_hi / |
5605 | // private_segment_aperture_base_hi. |
5606 | uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; |
5607 | |
5608 | SDValue Ptr = |
5609 | DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); |
5610 | |
5611 | // TODO: Use custom target PseudoSourceValue. |
5612 | // TODO: We should use the value from the IR intrinsic call, but it might not |
5613 | // be available and how do we get it? |
5614 | MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); |
5615 | return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, |
5616 | commonAlignment(Align(64), StructOffset), |
5617 | MachineMemOperand::MODereferenceable | |
5618 | MachineMemOperand::MOInvariant); |
5619 | } |
5620 | |
5621 | /// Return true if the value is a known valid address, such that a null check is |
5622 | /// not necessary. |
5623 | static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, |
5624 | const AMDGPUTargetMachine &TM, unsigned AddrSpace) { |
5625 | if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) || |
5626 | isa<BasicBlockSDNode>(Val)) |
5627 | return true; |
5628 | |
5629 | if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val)) |
5630 | return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); |
5631 | |
5632 | // TODO: Search through arithmetic, handle arguments and loads |
5633 | // marked nonnull. |
5634 | return false; |
5635 | } |
5636 | |
5637 | SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, |
5638 | SelectionDAG &DAG) const { |
5639 | SDLoc SL(Op); |
5640 | const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); |
5641 | |
5642 | SDValue Src = ASC->getOperand(0); |
5643 | SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); |
5644 | unsigned SrcAS = ASC->getSrcAddressSpace(); |
5645 | |
5646 | const AMDGPUTargetMachine &TM = |
5647 | static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); |
5648 | |
5649 | // flat -> local/private |
5650 | if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { |
5651 | unsigned DestAS = ASC->getDestAddressSpace(); |
5652 | |
5653 | if (DestAS == AMDGPUAS::LOCAL_ADDRESS || |
5654 | DestAS == AMDGPUAS::PRIVATE_ADDRESS) { |
5655 | SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); |
5656 | |
5657 | if (isKnownNonNull(Src, DAG, TM, SrcAS)) |
5658 | return Ptr; |
5659 | |
5660 | unsigned NullVal = TM.getNullPointerValue(DestAS); |
5661 | SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); |
5662 | SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); |
5663 | |
5664 | return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, |
5665 | SegmentNullPtr); |
5666 | } |
5667 | } |
5668 | |
5669 | // local/private -> flat |
5670 | if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { |
5671 | if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || |
5672 | SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { |
5673 | |
5674 | SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); |
5675 | SDValue CvtPtr = |
5676 | DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); |
5677 | CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); |
5678 | |
5679 | if (isKnownNonNull(Src, DAG, TM, SrcAS)) |
5680 | return CvtPtr; |
5681 | |
5682 | unsigned NullVal = TM.getNullPointerValue(SrcAS); |
5683 | SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); |
5684 | |
5685 | SDValue NonNull |
5686 | = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); |
5687 | |
5688 | return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, |
5689 | FlatNullPtr); |
5690 | } |
5691 | } |
5692 | |
5693 | if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && |
5694 | Op.getValueType() == MVT::i64) { |
5695 | const SIMachineFunctionInfo *Info = |
5696 | DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>(); |
5697 | SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); |
5698 | SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); |
5699 | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); |
5700 | } |
5701 | |
5702 | if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && |
5703 | Src.getValueType() == MVT::i64) |
5704 | return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); |
5705 | |
5706 | // global <-> flat are no-ops and never emitted. |
5707 | |
5708 | const MachineFunction &MF = DAG.getMachineFunction(); |
5709 | DiagnosticInfoUnsupported InvalidAddrSpaceCast( |
5710 | MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); |
5711 | DAG.getContext()->diagnose(InvalidAddrSpaceCast); |
5712 | |
5713 | return DAG.getUNDEF(ASC->getValueType(0)); |
5714 | } |
5715 | |
5716 | // This lowers an INSERT_SUBVECTOR by extracting the individual elements from |
5717 | // the small vector and inserting them into the big vector. That is better than |
5718 | // the default expansion of doing it via a stack slot. Even though the use of |
5719 | // the stack slot would be optimized away afterwards, the stack slot itself |
5720 | // remains. |
5721 | SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, |
5722 | SelectionDAG &DAG) const { |
5723 | SDValue Vec = Op.getOperand(0); |
5724 | SDValue Ins = Op.getOperand(1); |
5725 | SDValue Idx = Op.getOperand(2); |
5726 | EVT VecVT = Vec.getValueType(); |
5727 | EVT InsVT = Ins.getValueType(); |
5728 | EVT EltVT = VecVT.getVectorElementType(); |
5729 | unsigned InsNumElts = InsVT.getVectorNumElements(); |
5730 | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); |
5731 | SDLoc SL(Op); |
5732 | |
5733 | for (unsigned I = 0; I != InsNumElts; ++I) { |
5734 | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, |
5735 | DAG.getConstant(I, SL, MVT::i32)); |
5736 | Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, |
5737 | DAG.getConstant(IdxVal + I, SL, MVT::i32)); |
5738 | } |
5739 | return Vec; |
5740 | } |
5741 | |
5742 | SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, |
5743 | SelectionDAG &DAG) const { |
5744 | SDValue Vec = Op.getOperand(0); |
5745 | SDValue InsVal = Op.getOperand(1); |
5746 | SDValue Idx = Op.getOperand(2); |
5747 | EVT VecVT = Vec.getValueType(); |
5748 | EVT EltVT = VecVT.getVectorElementType(); |
5749 | unsigned VecSize = VecVT.getSizeInBits(); |
5750 | unsigned EltSize = EltVT.getSizeInBits(); |
5751 | SDLoc SL(Op); |
5752 | |
5753 | // Specially handle the case of v4i16 with static indexing. |
5754 | unsigned NumElts = VecVT.getVectorNumElements(); |
5755 | auto KIdx = dyn_cast<ConstantSDNode>(Idx); |
5756 | if (NumElts == 4 && EltSize == 16 && KIdx) { |
5757 | SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); |
5758 | |
5759 | SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, |
5760 | DAG.getConstant(0, SL, MVT::i32)); |
5761 | SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, |
5762 | DAG.getConstant(1, SL, MVT::i32)); |
5763 | |
5764 | SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); |
5765 | SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); |
5766 | |
5767 | unsigned Idx = KIdx->getZExtValue(); |
5768 | bool InsertLo = Idx < 2; |
5769 | SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, |
5770 | InsertLo ? LoVec : HiVec, |
5771 | DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), |
5772 | DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); |
5773 | |
5774 | InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); |
5775 | |
5776 | SDValue Concat = InsertLo ? |
5777 | DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : |
5778 | DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); |
5779 | |
5780 | return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); |
5781 | } |
5782 | |
5783 | // Static indexing does not lower to stack access, and hence there is no need |
5784 | // for special custom lowering to avoid stack access. |
5785 | if (isa<ConstantSDNode>(Idx)) |
5786 | return SDValue(); |
5787 | |
5788 | // Avoid stack access for dynamic indexing by custom lowering to |
5789 | // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec |
5790 | |
5791 | assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits")(static_cast <bool> (VecSize <= 64 && "Expected target vector size to be <= 64 bits" ) ? void (0) : __assert_fail ("VecSize <= 64 && \"Expected target vector size to be <= 64 bits\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5791, __extension__ __PRETTY_FUNCTION__)); |
5792 | |
5793 | MVT IntVT = MVT::getIntegerVT(VecSize); |
5794 | |
5795 | // Convert vector index to bit-index and get the required bit mask. |
5796 | assert(isPowerOf2_32(EltSize))(static_cast <bool> (isPowerOf2_32(EltSize)) ? void (0) : __assert_fail ("isPowerOf2_32(EltSize)", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5796, __extension__ __PRETTY_FUNCTION__)); |
5797 | const auto EltMask = maskTrailingOnes<uint64_t>(EltSize); |
5798 | SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); |
5799 | SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); |
5800 | SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, |
5801 | DAG.getConstant(EltMask, SL, IntVT), ScaledIdx); |
5802 | |
5803 | // 1. Create a congruent vector with the target value in each element. |
5804 | SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, |
5805 | DAG.getSplatBuildVector(VecVT, SL, InsVal)); |
5806 | |
5807 | // 2. Mask off all other indicies except the required index within (1). |
5808 | SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); |
5809 | |
5810 | // 3. Mask off the required index within the target vector. |
5811 | SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); |
5812 | SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, |
5813 | DAG.getNOT(SL, BFM, IntVT), BCVec); |
5814 | |
5815 | // 4. Get (2) and (3) ORed into the target vector. |
5816 | SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); |
5817 | |
5818 | return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); |
5819 | } |
5820 | |
5821 | SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, |
5822 | SelectionDAG &DAG) const { |
5823 | SDLoc SL(Op); |
5824 | |
5825 | EVT ResultVT = Op.getValueType(); |
5826 | SDValue Vec = Op.getOperand(0); |
5827 | SDValue Idx = Op.getOperand(1); |
5828 | EVT VecVT = Vec.getValueType(); |
5829 | unsigned VecSize = VecVT.getSizeInBits(); |
5830 | EVT EltVT = VecVT.getVectorElementType(); |
5831 | |
5832 | DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); |
5833 | |
5834 | // Make sure we do any optimizations that will make it easier to fold |
5835 | // source modifiers before obscuring it with bit operations. |
5836 | |
5837 | // XXX - Why doesn't this get called when vector_shuffle is expanded? |
5838 | if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) |
5839 | return Combined; |
5840 | |
5841 | if (VecSize == 128 || VecSize == 256) { |
5842 | SDValue Lo, Hi; |
5843 | EVT LoVT, HiVT; |
5844 | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); |
5845 | |
5846 | if (VecSize == 128) { |
5847 | SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); |
5848 | Lo = DAG.getBitcast(LoVT, |
5849 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, |
5850 | DAG.getConstant(0, SL, MVT::i32))); |
5851 | Hi = DAG.getBitcast(HiVT, |
5852 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, |
5853 | DAG.getConstant(1, SL, MVT::i32))); |
5854 | } else { |
5855 | assert(VecSize == 256)(static_cast <bool> (VecSize == 256) ? void (0) : __assert_fail ("VecSize == 256", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5855, __extension__ __PRETTY_FUNCTION__)); |
5856 | |
5857 | SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); |
5858 | SDValue Parts[4]; |
5859 | for (unsigned P = 0; P < 4; ++P) { |
5860 | Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, |
5861 | DAG.getConstant(P, SL, MVT::i32)); |
5862 | } |
5863 | |
5864 | Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, |
5865 | Parts[0], Parts[1])); |
5866 | Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, |
5867 | Parts[2], Parts[3])); |
5868 | } |
5869 | |
5870 | EVT IdxVT = Idx.getValueType(); |
5871 | unsigned NElem = VecVT.getVectorNumElements(); |
5872 | assert(isPowerOf2_32(NElem))(static_cast <bool> (isPowerOf2_32(NElem)) ? void (0) : __assert_fail ("isPowerOf2_32(NElem)", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5872, __extension__ __PRETTY_FUNCTION__)); |
5873 | SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); |
5874 | SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); |
5875 | SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); |
5876 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); |
5877 | } |
5878 | |
5879 | assert(VecSize <= 64)(static_cast <bool> (VecSize <= 64) ? void (0) : __assert_fail ("VecSize <= 64", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5879, __extension__ __PRETTY_FUNCTION__)); |
5880 | |
5881 | MVT IntVT = MVT::getIntegerVT(VecSize); |
5882 | |
5883 | // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. |
5884 | SDValue VecBC = peekThroughBitcasts(Vec); |
5885 | if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
5886 | SDValue Src = VecBC.getOperand(0); |
5887 | Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); |
5888 | Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); |
5889 | } |
5890 | |
5891 | unsigned EltSize = EltVT.getSizeInBits(); |
5892 | assert(isPowerOf2_32(EltSize))(static_cast <bool> (isPowerOf2_32(EltSize)) ? void (0) : __assert_fail ("isPowerOf2_32(EltSize)", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5892, __extension__ __PRETTY_FUNCTION__)); |
5893 | |
5894 | SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); |
5895 | |
5896 | // Convert vector index to bit-index (* EltSize) |
5897 | SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); |
5898 | |
5899 | SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); |
5900 | SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); |
5901 | |
5902 | if (ResultVT == MVT::f16) { |
5903 | SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); |
5904 | return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); |
5905 | } |
5906 | |
5907 | return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); |
5908 | } |
5909 | |
5910 | static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { |
5911 | assert(Elt % 2 == 0)(static_cast <bool> (Elt % 2 == 0) ? void (0) : __assert_fail ("Elt % 2 == 0", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5911, __extension__ __PRETTY_FUNCTION__)); |
5912 | return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); |
5913 | } |
5914 | |
5915 | SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, |
5916 | SelectionDAG &DAG) const { |
5917 | SDLoc SL(Op); |
5918 | EVT ResultVT = Op.getValueType(); |
5919 | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); |
5920 | |
5921 | EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; |
5922 | EVT EltVT = PackVT.getVectorElementType(); |
5923 | int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); |
5924 | |
5925 | // vector_shuffle <0,1,6,7> lhs, rhs |
5926 | // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) |
5927 | // |
5928 | // vector_shuffle <6,7,2,3> lhs, rhs |
5929 | // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) |
5930 | // |
5931 | // vector_shuffle <6,7,0,1> lhs, rhs |
5932 | // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) |
5933 | |
5934 | // Avoid scalarizing when both halves are reading from consecutive elements. |
5935 | SmallVector<SDValue, 4> Pieces; |
5936 | for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { |
5937 | if (elementPairIsContiguous(SVN->getMask(), I)) { |
5938 | const int Idx = SVN->getMaskElt(I); |
5939 | int VecIdx = Idx < SrcNumElts ? 0 : 1; |
5940 | int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; |
5941 | SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, |
5942 | PackVT, SVN->getOperand(VecIdx), |
5943 | DAG.getConstant(EltIdx, SL, MVT::i32)); |
5944 | Pieces.push_back(SubVec); |
5945 | } else { |
5946 | const int Idx0 = SVN->getMaskElt(I); |
5947 | const int Idx1 = SVN->getMaskElt(I + 1); |
5948 | int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; |
5949 | int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; |
5950 | int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; |
5951 | int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; |
5952 | |
5953 | SDValue Vec0 = SVN->getOperand(VecIdx0); |
5954 | SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, |
5955 | Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); |
5956 | |
5957 | SDValue Vec1 = SVN->getOperand(VecIdx1); |
5958 | SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, |
5959 | Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); |
5960 | Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); |
5961 | } |
5962 | } |
5963 | |
5964 | return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); |
5965 | } |
5966 | |
5967 | SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, |
5968 | SelectionDAG &DAG) const { |
5969 | SDValue SVal = Op.getOperand(0); |
5970 | EVT ResultVT = Op.getValueType(); |
5971 | EVT SValVT = SVal.getValueType(); |
5972 | SDValue UndefVal = DAG.getUNDEF(SValVT); |
5973 | SDLoc SL(Op); |
5974 | |
5975 | SmallVector<SDValue, 8> VElts; |
5976 | VElts.push_back(SVal); |
5977 | for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) |
5978 | VElts.push_back(UndefVal); |
5979 | |
5980 | return DAG.getBuildVector(ResultVT, SL, VElts); |
5981 | } |
5982 | |
5983 | SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, |
5984 | SelectionDAG &DAG) const { |
5985 | SDLoc SL(Op); |
5986 | EVT VT = Op.getValueType(); |
5987 | |
5988 | if (VT == MVT::v4i16 || VT == MVT::v4f16 || |
5989 | VT == MVT::v8i16 || VT == MVT::v8f16) { |
5990 | EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), |
5991 | VT.getVectorNumElements() / 2); |
5992 | MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); |
5993 | |
5994 | // Turn into pair of packed build_vectors. |
5995 | // TODO: Special case for constants that can be materialized with s_mov_b64. |
5996 | SmallVector<SDValue, 4> LoOps, HiOps; |
5997 | for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { |
5998 | LoOps.push_back(Op.getOperand(I)); |
5999 | HiOps.push_back(Op.getOperand(I + E)); |
6000 | } |
6001 | SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); |
6002 | SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); |
6003 | |
6004 | SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); |
6005 | SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); |
6006 | |
6007 | SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, |
6008 | { CastLo, CastHi }); |
6009 | return DAG.getNode(ISD::BITCAST, SL, VT, Blend); |
6010 | } |
6011 | |
6012 | if (VT == MVT::v16i16 || VT == MVT::v16f16) { |
6013 | EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), |
6014 | VT.getVectorNumElements() / 4); |
6015 | MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); |
6016 | |
6017 | SmallVector<SDValue, 4> Parts[4]; |
6018 | for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { |
6019 | for (unsigned P = 0; P < 4; ++P) |
6020 | Parts[P].push_back(Op.getOperand(I + P * E)); |
6021 | } |
6022 | SDValue Casts[4]; |
6023 | for (unsigned P = 0; P < 4; ++P) { |
6024 | SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); |
6025 | Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); |
6026 | } |
6027 | |
6028 | SDValue Blend = |
6029 | DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); |
6030 | return DAG.getNode(ISD::BITCAST, SL, VT, Blend); |
6031 | } |
6032 | |
6033 | assert(VT == MVT::v2f16 || VT == MVT::v2i16)(static_cast <bool> (VT == MVT::v2f16 || VT == MVT::v2i16 ) ? void (0) : __assert_fail ("VT == MVT::v2f16 || VT == MVT::v2i16" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6033, __extension__ __PRETTY_FUNCTION__)); |
6034 | assert(!Subtarget->hasVOP3PInsts() && "this should be legal")(static_cast <bool> (!Subtarget->hasVOP3PInsts() && "this should be legal") ? void (0) : __assert_fail ("!Subtarget->hasVOP3PInsts() && \"this should be legal\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6034, __extension__ __PRETTY_FUNCTION__)); |
6035 | |
6036 | SDValue Lo = Op.getOperand(0); |
6037 | SDValue Hi = Op.getOperand(1); |
6038 | |
6039 | // Avoid adding defined bits with the zero_extend. |
6040 | if (Hi.isUndef()) { |
6041 | Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); |
6042 | SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); |
6043 | return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); |
6044 | } |
6045 | |
6046 | Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); |
6047 | Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); |
6048 | |
6049 | SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, |
6050 | DAG.getConstant(16, SL, MVT::i32)); |
6051 | if (Lo.isUndef()) |
6052 | return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); |
6053 | |
6054 | Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); |
6055 | Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); |
6056 | |
6057 | SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); |
6058 | return DAG.getNode(ISD::BITCAST, SL, VT, Or); |
6059 | } |
6060 | |
6061 | bool |
6062 | SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
6063 | // We can fold offsets for anything that doesn't require a GOT relocation. |
6064 | return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || |
6065 | GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
6066 | GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && |
6067 | !shouldEmitGOTReloc(GA->getGlobal()); |
6068 | } |
6069 | |
6070 | static SDValue |
6071 | buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, |
6072 | const SDLoc &DL, int64_t Offset, EVT PtrVT, |
6073 | unsigned GAFlags = SIInstrInfo::MO_NONE) { |
6074 | assert(isInt<32>(Offset + 4) && "32-bit offset is expected!")(static_cast <bool> (isInt<32>(Offset + 4) && "32-bit offset is expected!") ? void (0) : __assert_fail ("isInt<32>(Offset + 4) && \"32-bit offset is expected!\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6074, __extension__ __PRETTY_FUNCTION__)); |
6075 | // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is |
6076 | // lowered to the following code sequence: |
6077 | // |
6078 | // For constant address space: |
6079 | // s_getpc_b64 s[0:1] |
6080 | // s_add_u32 s0, s0, $symbol |
6081 | // s_addc_u32 s1, s1, 0 |
6082 | // |
6083 | // s_getpc_b64 returns the address of the s_add_u32 instruction and then |
6084 | // a fixup or relocation is emitted to replace $symbol with a literal |
6085 | // constant, which is a pc-relative offset from the encoding of the $symbol |
6086 | // operand to the global variable. |
6087 | // |
6088 | // For global address space: |
6089 | // s_getpc_b64 s[0:1] |
6090 | // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo |
6091 | // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi |
6092 | // |
6093 | // s_getpc_b64 returns the address of the s_add_u32 instruction and then |
6094 | // fixups or relocations are emitted to replace $symbol@*@lo and |
6095 | // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, |
6096 | // which is a 64-bit pc-relative offset from the encoding of the $symbol |
6097 | // operand to the global variable. |
6098 | // |
6099 | // What we want here is an offset from the value returned by s_getpc |
6100 | // (which is the address of the s_add_u32 instruction) to the global |
6101 | // variable, but since the encoding of $symbol starts 4 bytes after the start |
6102 | // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too |
6103 | // small. This requires us to add 4 to the global variable offset in order to |
6104 | // compute the correct address. Similarly for the s_addc_u32 instruction, the |
6105 | // encoding of $symbol starts 12 bytes after the start of the s_add_u32 |
6106 | // instruction. |
6107 | SDValue PtrLo = |
6108 | DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); |
6109 | SDValue PtrHi; |
6110 | if (GAFlags == SIInstrInfo::MO_NONE) { |
6111 | PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); |
6112 | } else { |
6113 | PtrHi = |
6114 | DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); |
6115 | } |
6116 | return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); |
6117 | } |
6118 | |
6119 | SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, |
6120 | SDValue Op, |
6121 | SelectionDAG &DAG) const { |
6122 | GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); |
6123 | SDLoc DL(GSD); |
6124 | EVT PtrVT = Op.getValueType(); |
6125 | |
6126 | const GlobalValue *GV = GSD->getGlobal(); |
6127 | if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && |
6128 | shouldUseLDSConstAddress(GV)) || |
6129 | GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || |
6130 | GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { |
6131 | if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && |
6132 | GV->hasExternalLinkage()) { |
6133 | Type *Ty = GV->getValueType(); |
6134 | // HIP uses an unsized array `extern __shared__ T s[]` or similar |
6135 | // zero-sized type in other languages to declare the dynamic shared |
6136 | // memory which size is not known at the compile time. They will be |
6137 | // allocated by the runtime and placed directly after the static |
6138 | // allocated ones. They all share the same offset. |
6139 | if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { |
6140 | assert(PtrVT == MVT::i32 && "32-bit pointer is expected.")(static_cast <bool> (PtrVT == MVT::i32 && "32-bit pointer is expected." ) ? void (0) : __assert_fail ("PtrVT == MVT::i32 && \"32-bit pointer is expected.\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6140, __extension__ __PRETTY_FUNCTION__)); |
6141 | // Adjust alignment for that dynamic shared memory array. |
6142 | MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV)); |
6143 | return SDValue( |
6144 | DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); |
6145 | } |
6146 | } |
6147 | return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); |
6148 | } |
6149 | |
6150 | if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { |
6151 | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), |
6152 | SIInstrInfo::MO_ABS32_LO); |
6153 | return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); |
6154 | } |
6155 | |
6156 | if (shouldEmitFixup(GV)) |
6157 | return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); |
6158 | else if (shouldEmitPCReloc(GV)) |
6159 | return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, |
6160 | SIInstrInfo::MO_REL32); |
6161 | |
6162 | SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, |
6163 | SIInstrInfo::MO_GOTPCREL32); |
6164 | |
6165 | Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); |
6166 | PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); |
6167 | const DataLayout &DataLayout = DAG.getDataLayout(); |
6168 | Align Alignment = DataLayout.getABITypeAlign(PtrTy); |
6169 | MachinePointerInfo PtrInfo |
6170 | = MachinePointerInfo::getGOT(DAG.getMachineFunction()); |
6171 | |
6172 | return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, |
6173 | MachineMemOperand::MODereferenceable | |
6174 | MachineMemOperand::MOInvariant); |
6175 | } |
6176 | |
6177 | SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, |
6178 | const SDLoc &DL, SDValue V) const { |
6179 | // We can't use S_MOV_B32 directly, because there is no way to specify m0 as |
6180 | // the destination register. |
6181 | // |
6182 | < |