| File: | build/source/llvm/lib/Target/AMDGPU/SIISelLowering.cpp |
| Warning: | line 11998, column 52 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | /// \file | |||
| 10 | /// Custom DAG lowering for SI | |||
| 11 | // | |||
| 12 | //===----------------------------------------------------------------------===// | |||
| 13 | ||||
| 14 | #include "SIISelLowering.h" | |||
| 15 | #include "AMDGPU.h" | |||
| 16 | #include "AMDGPUInstrInfo.h" | |||
| 17 | #include "AMDGPUTargetMachine.h" | |||
| 18 | #include "SIMachineFunctionInfo.h" | |||
| 19 | #include "SIRegisterInfo.h" | |||
| 20 | #include "llvm/ADT/FloatingPointMode.h" | |||
| 21 | #include "llvm/ADT/Statistic.h" | |||
| 22 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | |||
| 23 | #include "llvm/Analysis/UniformityAnalysis.h" | |||
| 24 | #include "llvm/BinaryFormat/ELF.h" | |||
| 25 | #include "llvm/CodeGen/Analysis.h" | |||
| 26 | #include "llvm/CodeGen/FunctionLoweringInfo.h" | |||
| 27 | #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" | |||
| 28 | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" | |||
| 29 | #include "llvm/CodeGen/MachineFrameInfo.h" | |||
| 30 | #include "llvm/CodeGen/MachineFunction.h" | |||
| 31 | #include "llvm/CodeGen/MachineLoopInfo.h" | |||
| 32 | #include "llvm/IR/DiagnosticInfo.h" | |||
| 33 | #include "llvm/IR/IRBuilder.h" | |||
| 34 | #include "llvm/IR/IntrinsicInst.h" | |||
| 35 | #include "llvm/IR/IntrinsicsAMDGPU.h" | |||
| 36 | #include "llvm/IR/IntrinsicsR600.h" | |||
| 37 | #include "llvm/Support/CommandLine.h" | |||
| 38 | #include "llvm/Support/KnownBits.h" | |||
| 39 | #include "llvm/Support/ModRef.h" | |||
| 40 | ||||
| 41 | using namespace llvm; | |||
| 42 | ||||
| 43 | #define DEBUG_TYPE"si-lower" "si-lower" | |||
| 44 | ||||
| 45 | STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = {"si-lower", "NumTailCalls" , "Number of tail calls"}; | |||
| 46 | ||||
| 47 | static cl::opt<bool> DisableLoopAlignment( | |||
| 48 | "amdgpu-disable-loop-alignment", | |||
| 49 | cl::desc("Do not align and prefetch loops"), | |||
| 50 | cl::init(false)); | |||
| 51 | ||||
| 52 | static cl::opt<bool> UseDivergentRegisterIndexing( | |||
| 53 | "amdgpu-use-divergent-register-indexing", | |||
| 54 | cl::Hidden, | |||
| 55 | cl::desc("Use indirect register addressing for divergent indexes"), | |||
| 56 | cl::init(false)); | |||
| 57 | ||||
| 58 | static bool hasFP32Denormals(const MachineFunction &MF) { | |||
| 59 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 60 | return Info->getMode().allFP32Denormals(); | |||
| 61 | } | |||
| 62 | ||||
| 63 | static bool hasFP64FP16Denormals(const MachineFunction &MF) { | |||
| 64 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 65 | return Info->getMode().allFP64FP16Denormals(); | |||
| 66 | } | |||
| 67 | ||||
| 68 | static unsigned findFirstFreeSGPR(CCState &CCInfo) { | |||
| 69 | unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); | |||
| 70 | for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { | |||
| 71 | if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { | |||
| 72 | return AMDGPU::SGPR0 + Reg; | |||
| 73 | } | |||
| 74 | } | |||
| 75 | llvm_unreachable("Cannot allocate sgpr")::llvm::llvm_unreachable_internal("Cannot allocate sgpr", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 75); | |||
| 76 | } | |||
| 77 | ||||
| 78 | SITargetLowering::SITargetLowering(const TargetMachine &TM, | |||
| 79 | const GCNSubtarget &STI) | |||
| 80 | : AMDGPUTargetLowering(TM, STI), | |||
| 81 | Subtarget(&STI) { | |||
| 82 | addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); | |||
| 83 | addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); | |||
| 84 | ||||
| 85 | addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); | |||
| 86 | addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); | |||
| 87 | ||||
| 88 | addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); | |||
| 89 | ||||
| 90 | const SIRegisterInfo *TRI = STI.getRegisterInfo(); | |||
| 91 | const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); | |||
| 92 | ||||
| 93 | addRegisterClass(MVT::f64, V64RegClass); | |||
| 94 | addRegisterClass(MVT::v2f32, V64RegClass); | |||
| 95 | ||||
| 96 | addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); | |||
| 97 | addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); | |||
| 98 | ||||
| 99 | addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); | |||
| 100 | addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); | |||
| 101 | ||||
| 102 | addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); | |||
| 103 | addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); | |||
| 104 | ||||
| 105 | addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); | |||
| 106 | addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); | |||
| 107 | ||||
| 108 | addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); | |||
| 109 | addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); | |||
| 110 | ||||
| 111 | addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); | |||
| 112 | addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); | |||
| 113 | ||||
| 114 | addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); | |||
| 115 | addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); | |||
| 116 | ||||
| 117 | addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); | |||
| 118 | addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); | |||
| 119 | ||||
| 120 | addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); | |||
| 121 | addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); | |||
| 122 | ||||
| 123 | addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass); | |||
| 124 | addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288)); | |||
| 125 | ||||
| 126 | addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass); | |||
| 127 | addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320)); | |||
| 128 | ||||
| 129 | addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass); | |||
| 130 | addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352)); | |||
| 131 | ||||
| 132 | addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass); | |||
| 133 | addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384)); | |||
| 134 | ||||
| 135 | addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); | |||
| 136 | addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); | |||
| 137 | ||||
| 138 | addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); | |||
| 139 | addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); | |||
| 140 | ||||
| 141 | addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); | |||
| 142 | addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); | |||
| 143 | ||||
| 144 | if (Subtarget->has16BitInsts()) { | |||
| 145 | addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); | |||
| 146 | addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); | |||
| 147 | ||||
| 148 | // Unless there are also VOP3P operations, not operations are really legal. | |||
| 149 | addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); | |||
| 150 | addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); | |||
| 151 | addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); | |||
| 152 | addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); | |||
| 153 | addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); | |||
| 154 | addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); | |||
| 155 | addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); | |||
| 156 | addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); | |||
| 157 | } | |||
| 158 | ||||
| 159 | addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); | |||
| 160 | addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); | |||
| 161 | ||||
| 162 | computeRegisterProperties(Subtarget->getRegisterInfo()); | |||
| 163 | ||||
| 164 | // The boolean content concept here is too inflexible. Compares only ever | |||
| 165 | // really produce a 1-bit result. Any copy/extend from these will turn into a | |||
| 166 | // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as | |||
| 167 | // it's what most targets use. | |||
| 168 | setBooleanContents(ZeroOrOneBooleanContent); | |||
| 169 | setBooleanVectorContents(ZeroOrOneBooleanContent); | |||
| 170 | ||||
| 171 | // We need to custom lower vector stores from local memory | |||
| 172 | setOperationAction(ISD::LOAD, | |||
| 173 | {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, | |||
| 174 | MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, | |||
| 175 | MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, | |||
| 176 | MVT::i1, MVT::v32i32}, | |||
| 177 | Custom); | |||
| 178 | ||||
| 179 | setOperationAction(ISD::STORE, | |||
| 180 | {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, | |||
| 181 | MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, | |||
| 182 | MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, | |||
| 183 | MVT::i1, MVT::v32i32}, | |||
| 184 | Custom); | |||
| 185 | ||||
| 186 | setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); | |||
| 187 | setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); | |||
| 188 | setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); | |||
| 189 | setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); | |||
| 190 | setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); | |||
| 191 | setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); | |||
| 192 | setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); | |||
| 193 | setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); | |||
| 194 | setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); | |||
| 195 | setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); | |||
| 196 | setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); | |||
| 197 | setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); | |||
| 198 | setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); | |||
| 199 | setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); | |||
| 200 | setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); | |||
| 201 | setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); | |||
| 202 | ||||
| 203 | setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); | |||
| 204 | setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); | |||
| 205 | setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); | |||
| 206 | setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); | |||
| 207 | setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); | |||
| 208 | setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); | |||
| 209 | setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); | |||
| 210 | ||||
| 211 | setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); | |||
| 212 | ||||
| 213 | setOperationAction(ISD::SELECT, MVT::i1, Promote); | |||
| 214 | setOperationAction(ISD::SELECT, MVT::i64, Custom); | |||
| 215 | setOperationAction(ISD::SELECT, MVT::f64, Promote); | |||
| 216 | AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); | |||
| 217 | ||||
| 218 | setOperationAction(ISD::SELECT_CC, | |||
| 219 | {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); | |||
| 220 | ||||
| 221 | setOperationAction(ISD::SETCC, MVT::i1, Promote); | |||
| 222 | setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); | |||
| 223 | AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); | |||
| 224 | ||||
| 225 | setOperationAction(ISD::TRUNCATE, | |||
| 226 | {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, | |||
| 227 | MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, | |||
| 228 | MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32}, | |||
| 229 | Expand); | |||
| 230 | setOperationAction(ISD::FP_ROUND, | |||
| 231 | {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, | |||
| 232 | MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32, | |||
| 233 | MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32}, | |||
| 234 | Expand); | |||
| 235 | ||||
| 236 | setOperationAction(ISD::SIGN_EXTEND_INREG, | |||
| 237 | {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, | |||
| 238 | MVT::v3i16, MVT::v4i16, MVT::Other}, | |||
| 239 | Custom); | |||
| 240 | ||||
| 241 | setOperationAction(ISD::BRCOND, MVT::Other, Custom); | |||
| 242 | setOperationAction(ISD::BR_CC, | |||
| 243 | {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); | |||
| 244 | ||||
| 245 | setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); | |||
| 246 | ||||
| 247 | setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i32, Legal); | |||
| 248 | ||||
| 249 | setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, | |||
| 250 | Expand); | |||
| 251 | ||||
| 252 | #if 0 | |||
| 253 | setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i64, Legal); | |||
| 254 | #endif | |||
| 255 | ||||
| 256 | // We only support LOAD/STORE and vector manipulation ops for vectors | |||
| 257 | // with > 4 elements. | |||
| 258 | for (MVT VT : | |||
| 259 | {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, | |||
| 260 | MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32, | |||
| 261 | MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16, | |||
| 262 | MVT::v4f16, MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32, | |||
| 263 | MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, MVT::v8i16, | |||
| 264 | MVT::v8f16, MVT::v16i16, MVT::v16f16, MVT::v16i64, MVT::v16f64, | |||
| 265 | MVT::v32i32, MVT::v32f32}) { | |||
| 266 | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { | |||
| 267 | switch (Op) { | |||
| 268 | case ISD::LOAD: | |||
| 269 | case ISD::STORE: | |||
| 270 | case ISD::BUILD_VECTOR: | |||
| 271 | case ISD::BITCAST: | |||
| 272 | case ISD::UNDEF: | |||
| 273 | case ISD::EXTRACT_VECTOR_ELT: | |||
| 274 | case ISD::INSERT_VECTOR_ELT: | |||
| 275 | case ISD::EXTRACT_SUBVECTOR: | |||
| 276 | case ISD::SCALAR_TO_VECTOR: | |||
| 277 | case ISD::IS_FPCLASS: | |||
| 278 | break; | |||
| 279 | case ISD::INSERT_SUBVECTOR: | |||
| 280 | case ISD::CONCAT_VECTORS: | |||
| 281 | setOperationAction(Op, VT, Custom); | |||
| 282 | break; | |||
| 283 | default: | |||
| 284 | setOperationAction(Op, VT, Expand); | |||
| 285 | break; | |||
| 286 | } | |||
| 287 | } | |||
| 288 | } | |||
| 289 | ||||
| 290 | setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); | |||
| 291 | ||||
| 292 | // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that | |||
| 293 | // is expanded to avoid having two separate loops in case the index is a VGPR. | |||
| 294 | ||||
| 295 | // Most operations are naturally 32-bit vector operations. We only support | |||
| 296 | // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. | |||
| 297 | for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { | |||
| 298 | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); | |||
| 299 | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); | |||
| 300 | ||||
| 301 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); | |||
| 302 | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); | |||
| 303 | ||||
| 304 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); | |||
| 305 | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); | |||
| 306 | ||||
| 307 | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); | |||
| 308 | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); | |||
| 309 | } | |||
| 310 | ||||
| 311 | for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { | |||
| 312 | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); | |||
| 313 | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); | |||
| 314 | ||||
| 315 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); | |||
| 316 | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); | |||
| 317 | ||||
| 318 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); | |||
| 319 | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); | |||
| 320 | ||||
| 321 | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); | |||
| 322 | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); | |||
| 323 | } | |||
| 324 | ||||
| 325 | for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { | |||
| 326 | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); | |||
| 327 | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); | |||
| 328 | ||||
| 329 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); | |||
| 330 | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); | |||
| 331 | ||||
| 332 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); | |||
| 333 | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); | |||
| 334 | ||||
| 335 | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); | |||
| 336 | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); | |||
| 337 | } | |||
| 338 | ||||
| 339 | for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { | |||
| 340 | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); | |||
| 341 | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); | |||
| 342 | ||||
| 343 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); | |||
| 344 | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); | |||
| 345 | ||||
| 346 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); | |||
| 347 | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); | |||
| 348 | ||||
| 349 | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); | |||
| 350 | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); | |||
| 351 | } | |||
| 352 | ||||
| 353 | for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { | |||
| 354 | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); | |||
| 355 | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); | |||
| 356 | ||||
| 357 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); | |||
| 358 | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); | |||
| 359 | ||||
| 360 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); | |||
| 361 | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); | |||
| 362 | ||||
| 363 | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); | |||
| 364 | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); | |||
| 365 | } | |||
| 366 | ||||
| 367 | setOperationAction(ISD::VECTOR_SHUFFLE, | |||
| 368 | {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, | |||
| 369 | Expand); | |||
| 370 | ||||
| 371 | setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom); | |||
| 372 | ||||
| 373 | // Avoid stack access for these. | |||
| 374 | // TODO: Generalize to more vector types. | |||
| 375 | setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, | |||
| 376 | {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, | |||
| 377 | MVT::v4i16, MVT::v4f16}, | |||
| 378 | Custom); | |||
| 379 | ||||
| 380 | // Deal with vec3 vector operations when widened to vec4. | |||
| 381 | setOperationAction(ISD::INSERT_SUBVECTOR, | |||
| 382 | {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); | |||
| 383 | ||||
| 384 | // Deal with vec5/6/7 vector operations when widened to vec8. | |||
| 385 | setOperationAction(ISD::INSERT_SUBVECTOR, | |||
| 386 | {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, | |||
| 387 | MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, | |||
| 388 | MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, | |||
| 389 | MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, | |||
| 390 | Custom); | |||
| 391 | ||||
| 392 | // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, | |||
| 393 | // and output demarshalling | |||
| 394 | setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); | |||
| 395 | ||||
| 396 | // We can't return success/failure, only the old value, | |||
| 397 | // let LLVM add the comparison | |||
| 398 | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, | |||
| 399 | Expand); | |||
| 400 | ||||
| 401 | setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); | |||
| 402 | ||||
| 403 | setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); | |||
| 404 | ||||
| 405 | // FIXME: This should be narrowed to i32, but that only happens if i64 is | |||
| 406 | // illegal. | |||
| 407 | // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. | |||
| 408 | setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); | |||
| 409 | ||||
| 410 | // On SI this is s_memtime and s_memrealtime on VI. | |||
| 411 | setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); | |||
| 412 | setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); | |||
| 413 | ||||
| 414 | if (Subtarget->has16BitInsts()) { | |||
| 415 | setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); | |||
| 416 | setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); | |||
| 417 | } | |||
| 418 | ||||
| 419 | if (Subtarget->hasMadMacF32Insts()) | |||
| 420 | setOperationAction(ISD::FMAD, MVT::f32, Legal); | |||
| 421 | ||||
| 422 | if (!Subtarget->hasBFI()) | |||
| 423 | // fcopysign can be done in a single instruction with BFI. | |||
| 424 | setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); | |||
| 425 | ||||
| 426 | if (!Subtarget->hasBCNT(32)) | |||
| 427 | setOperationAction(ISD::CTPOP, MVT::i32, Expand); | |||
| 428 | ||||
| 429 | if (!Subtarget->hasBCNT(64)) | |||
| 430 | setOperationAction(ISD::CTPOP, MVT::i64, Expand); | |||
| 431 | ||||
| 432 | if (Subtarget->hasFFBH()) | |||
| 433 | setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); | |||
| 434 | ||||
| 435 | if (Subtarget->hasFFBL()) | |||
| 436 | setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); | |||
| 437 | ||||
| 438 | // We only really have 32-bit BFE instructions (and 16-bit on VI). | |||
| 439 | // | |||
| 440 | // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any | |||
| 441 | // effort to match them now. We want this to be false for i64 cases when the | |||
| 442 | // extraction isn't restricted to the upper or lower half. Ideally we would | |||
| 443 | // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that | |||
| 444 | // span the midpoint are probably relatively rare, so don't worry about them | |||
| 445 | // for now. | |||
| 446 | if (Subtarget->hasBFE()) | |||
| 447 | setHasExtractBitsInsn(true); | |||
| 448 | ||||
| 449 | // Clamp modifier on add/sub | |||
| 450 | if (Subtarget->hasIntClamp()) | |||
| 451 | setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); | |||
| 452 | ||||
| 453 | if (Subtarget->hasAddNoCarry()) | |||
| 454 | setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, | |||
| 455 | Legal); | |||
| 456 | ||||
| 457 | setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, | |||
| 458 | Custom); | |||
| 459 | ||||
| 460 | // These are really only legal for ieee_mode functions. We should be avoiding | |||
| 461 | // them for functions that don't have ieee_mode enabled, so just say they are | |||
| 462 | // legal. | |||
| 463 | setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, | |||
| 464 | {MVT::f32, MVT::f64}, Legal); | |||
| 465 | ||||
| 466 | if (Subtarget->haveRoundOpsF64()) | |||
| 467 | setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal); | |||
| 468 | else | |||
| 469 | setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR}, | |||
| 470 | MVT::f64, Custom); | |||
| 471 | ||||
| 472 | setOperationAction(ISD::FFLOOR, MVT::f64, Legal); | |||
| 473 | ||||
| 474 | setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); | |||
| 475 | setOperationAction(ISD::FDIV, MVT::f64, Custom); | |||
| 476 | ||||
| 477 | setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand); | |||
| 478 | setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand); | |||
| 479 | ||||
| 480 | if (Subtarget->has16BitInsts()) { | |||
| 481 | setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, | |||
| 482 | ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, | |||
| 483 | MVT::i16, Legal); | |||
| 484 | ||||
| 485 | AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); | |||
| 486 | ||||
| 487 | setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, | |||
| 488 | MVT::i16, Expand); | |||
| 489 | ||||
| 490 | setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, | |||
| 491 | ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, | |||
| 492 | ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, | |||
| 493 | ISD::CTPOP}, | |||
| 494 | MVT::i16, Promote); | |||
| 495 | ||||
| 496 | setOperationAction(ISD::LOAD, MVT::i16, Custom); | |||
| 497 | ||||
| 498 | setTruncStoreAction(MVT::i64, MVT::i16, Expand); | |||
| 499 | ||||
| 500 | setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); | |||
| 501 | AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); | |||
| 502 | setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); | |||
| 503 | AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); | |||
| 504 | ||||
| 505 | setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); | |||
| 506 | ||||
| 507 | // F16 - Constant Actions. | |||
| 508 | setOperationAction(ISD::ConstantFP, MVT::f16, Legal); | |||
| 509 | ||||
| 510 | // F16 - Load/Store Actions. | |||
| 511 | setOperationAction(ISD::LOAD, MVT::f16, Promote); | |||
| 512 | AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); | |||
| 513 | setOperationAction(ISD::STORE, MVT::f16, Promote); | |||
| 514 | AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); | |||
| 515 | ||||
| 516 | // F16 - VOP1 Actions. | |||
| 517 | setOperationAction( | |||
| 518 | {ISD::FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND}, | |||
| 519 | MVT::f16, Custom); | |||
| 520 | ||||
| 521 | setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); | |||
| 522 | ||||
| 523 | setOperationAction( | |||
| 524 | {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP}, | |||
| 525 | MVT::f16, Promote); | |||
| 526 | ||||
| 527 | // F16 - VOP2 Actions. | |||
| 528 | setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand); | |||
| 529 | ||||
| 530 | setOperationAction(ISD::FDIV, MVT::f16, Custom); | |||
| 531 | ||||
| 532 | // F16 - VOP3 Actions. | |||
| 533 | setOperationAction(ISD::FMA, MVT::f16, Legal); | |||
| 534 | if (STI.hasMadF16()) | |||
| 535 | setOperationAction(ISD::FMAD, MVT::f16, Legal); | |||
| 536 | ||||
| 537 | for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16, | |||
| 538 | MVT::v8f16, MVT::v16i16, MVT::v16f16}) { | |||
| 539 | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { | |||
| 540 | switch (Op) { | |||
| 541 | case ISD::LOAD: | |||
| 542 | case ISD::STORE: | |||
| 543 | case ISD::BUILD_VECTOR: | |||
| 544 | case ISD::BITCAST: | |||
| 545 | case ISD::UNDEF: | |||
| 546 | case ISD::EXTRACT_VECTOR_ELT: | |||
| 547 | case ISD::INSERT_VECTOR_ELT: | |||
| 548 | case ISD::INSERT_SUBVECTOR: | |||
| 549 | case ISD::EXTRACT_SUBVECTOR: | |||
| 550 | case ISD::SCALAR_TO_VECTOR: | |||
| 551 | case ISD::IS_FPCLASS: | |||
| 552 | break; | |||
| 553 | case ISD::CONCAT_VECTORS: | |||
| 554 | setOperationAction(Op, VT, Custom); | |||
| 555 | break; | |||
| 556 | default: | |||
| 557 | setOperationAction(Op, VT, Expand); | |||
| 558 | break; | |||
| 559 | } | |||
| 560 | } | |||
| 561 | } | |||
| 562 | ||||
| 563 | // v_perm_b32 can handle either of these. | |||
| 564 | setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); | |||
| 565 | setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); | |||
| 566 | ||||
| 567 | // XXX - Do these do anything? Vector constants turn into build_vector. | |||
| 568 | setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); | |||
| 569 | ||||
| 570 | setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal); | |||
| 571 | ||||
| 572 | setOperationAction(ISD::STORE, MVT::v2i16, Promote); | |||
| 573 | AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); | |||
| 574 | setOperationAction(ISD::STORE, MVT::v2f16, Promote); | |||
| 575 | AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); | |||
| 576 | ||||
| 577 | setOperationAction(ISD::LOAD, MVT::v2i16, Promote); | |||
| 578 | AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); | |||
| 579 | setOperationAction(ISD::LOAD, MVT::v2f16, Promote); | |||
| 580 | AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); | |||
| 581 | ||||
| 582 | setOperationAction(ISD::AND, MVT::v2i16, Promote); | |||
| 583 | AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); | |||
| 584 | setOperationAction(ISD::OR, MVT::v2i16, Promote); | |||
| 585 | AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); | |||
| 586 | setOperationAction(ISD::XOR, MVT::v2i16, Promote); | |||
| 587 | AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); | |||
| 588 | ||||
| 589 | setOperationAction(ISD::LOAD, MVT::v4i16, Promote); | |||
| 590 | AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); | |||
| 591 | setOperationAction(ISD::LOAD, MVT::v4f16, Promote); | |||
| 592 | AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); | |||
| 593 | ||||
| 594 | setOperationAction(ISD::STORE, MVT::v4i16, Promote); | |||
| 595 | AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); | |||
| 596 | setOperationAction(ISD::STORE, MVT::v4f16, Promote); | |||
| 597 | AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); | |||
| 598 | ||||
| 599 | setOperationAction(ISD::LOAD, MVT::v8i16, Promote); | |||
| 600 | AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); | |||
| 601 | setOperationAction(ISD::LOAD, MVT::v8f16, Promote); | |||
| 602 | AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); | |||
| 603 | ||||
| 604 | setOperationAction(ISD::STORE, MVT::v4i16, Promote); | |||
| 605 | AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); | |||
| 606 | setOperationAction(ISD::STORE, MVT::v4f16, Promote); | |||
| 607 | AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); | |||
| 608 | ||||
| 609 | setOperationAction(ISD::STORE, MVT::v8i16, Promote); | |||
| 610 | AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); | |||
| 611 | setOperationAction(ISD::STORE, MVT::v8f16, Promote); | |||
| 612 | AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); | |||
| 613 | ||||
| 614 | setOperationAction(ISD::LOAD, MVT::v16i16, Promote); | |||
| 615 | AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); | |||
| 616 | setOperationAction(ISD::LOAD, MVT::v16f16, Promote); | |||
| 617 | AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); | |||
| 618 | ||||
| 619 | setOperationAction(ISD::STORE, MVT::v16i16, Promote); | |||
| 620 | AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); | |||
| 621 | setOperationAction(ISD::STORE, MVT::v16f16, Promote); | |||
| 622 | AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); | |||
| 623 | ||||
| 624 | setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, | |||
| 625 | MVT::v2i32, Expand); | |||
| 626 | setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); | |||
| 627 | ||||
| 628 | setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, | |||
| 629 | MVT::v4i32, Expand); | |||
| 630 | ||||
| 631 | setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, | |||
| 632 | MVT::v8i32, Expand); | |||
| 633 | ||||
| 634 | if (!Subtarget->hasVOP3PInsts()) | |||
| 635 | setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom); | |||
| 636 | ||||
| 637 | setOperationAction(ISD::FNEG, MVT::v2f16, Legal); | |||
| 638 | // This isn't really legal, but this avoids the legalizer unrolling it (and | |||
| 639 | // allows matching fneg (fabs x) patterns) | |||
| 640 | setOperationAction(ISD::FABS, MVT::v2f16, Legal); | |||
| 641 | ||||
| 642 | setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); | |||
| 643 | setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); | |||
| 644 | ||||
| 645 | setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, | |||
| 646 | {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom); | |||
| 647 | ||||
| 648 | setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, | |||
| 649 | {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand); | |||
| 650 | ||||
| 651 | for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) { | |||
| 652 | setOperationAction( | |||
| 653 | {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, | |||
| 654 | Vec16, Custom); | |||
| 655 | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); | |||
| 656 | } | |||
| 657 | } | |||
| 658 | ||||
| 659 | if (Subtarget->hasVOP3PInsts()) { | |||
| 660 | setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, | |||
| 661 | ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, | |||
| 662 | ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, | |||
| 663 | MVT::v2i16, Legal); | |||
| 664 | ||||
| 665 | setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, | |||
| 666 | ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, | |||
| 667 | MVT::v2f16, Legal); | |||
| 668 | ||||
| 669 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16}, | |||
| 670 | Custom); | |||
| 671 | ||||
| 672 | setOperationAction(ISD::VECTOR_SHUFFLE, | |||
| 673 | {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, | |||
| 674 | MVT::v16f16, MVT::v16i16}, | |||
| 675 | Custom); | |||
| 676 | ||||
| 677 | for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16}) | |||
| 678 | // Split vector operations. | |||
| 679 | setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, | |||
| 680 | ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, | |||
| 681 | ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, | |||
| 682 | ISD::SSUBSAT}, | |||
| 683 | VT, Custom); | |||
| 684 | ||||
| 685 | for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16}) | |||
| 686 | // Split vector operations. | |||
| 687 | setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, | |||
| 688 | VT, Custom); | |||
| 689 | ||||
| 690 | setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, | |||
| 691 | Custom); | |||
| 692 | ||||
| 693 | setOperationAction(ISD::FEXP, MVT::v2f16, Custom); | |||
| 694 | setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom); | |||
| 695 | ||||
| 696 | if (Subtarget->hasPackedFP32Ops()) { | |||
| 697 | setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, | |||
| 698 | MVT::v2f32, Legal); | |||
| 699 | setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, | |||
| 700 | {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, | |||
| 701 | Custom); | |||
| 702 | } | |||
| 703 | } | |||
| 704 | ||||
| 705 | setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); | |||
| 706 | ||||
| 707 | if (Subtarget->has16BitInsts()) { | |||
| 708 | setOperationAction(ISD::SELECT, MVT::v2i16, Promote); | |||
| 709 | AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); | |||
| 710 | setOperationAction(ISD::SELECT, MVT::v2f16, Promote); | |||
| 711 | AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); | |||
| 712 | } else { | |||
| 713 | // Legalization hack. | |||
| 714 | setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); | |||
| 715 | ||||
| 716 | setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); | |||
| 717 | } | |||
| 718 | ||||
| 719 | setOperationAction(ISD::SELECT, | |||
| 720 | {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, | |||
| 721 | MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}, | |||
| 722 | Custom); | |||
| 723 | ||||
| 724 | setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); | |||
| 725 | ||||
| 726 | if (Subtarget->hasMad64_32()) | |||
| 727 | setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); | |||
| 728 | ||||
| 729 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, | |||
| 730 | {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, | |||
| 731 | MVT::v2i16, MVT::v2f16}, | |||
| 732 | Custom); | |||
| 733 | ||||
| 734 | setOperationAction(ISD::INTRINSIC_W_CHAIN, | |||
| 735 | {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16, | |||
| 736 | MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16, | |||
| 737 | MVT::i16, MVT::i8}, | |||
| 738 | Custom); | |||
| 739 | ||||
| 740 | setOperationAction(ISD::INTRINSIC_VOID, | |||
| 741 | {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16, | |||
| 742 | MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16, | |||
| 743 | MVT::i8}, | |||
| 744 | Custom); | |||
| 745 | ||||
| 746 | setTargetDAGCombine({ISD::ADD, | |||
| 747 | ISD::UADDO_CARRY, | |||
| 748 | ISD::SUB, | |||
| 749 | ISD::USUBO_CARRY, | |||
| 750 | ISD::FADD, | |||
| 751 | ISD::FSUB, | |||
| 752 | ISD::FMINNUM, | |||
| 753 | ISD::FMAXNUM, | |||
| 754 | ISD::FMINNUM_IEEE, | |||
| 755 | ISD::FMAXNUM_IEEE, | |||
| 756 | ISD::FMA, | |||
| 757 | ISD::SMIN, | |||
| 758 | ISD::SMAX, | |||
| 759 | ISD::UMIN, | |||
| 760 | ISD::UMAX, | |||
| 761 | ISD::SETCC, | |||
| 762 | ISD::AND, | |||
| 763 | ISD::OR, | |||
| 764 | ISD::XOR, | |||
| 765 | ISD::SINT_TO_FP, | |||
| 766 | ISD::UINT_TO_FP, | |||
| 767 | ISD::FCANONICALIZE, | |||
| 768 | ISD::SCALAR_TO_VECTOR, | |||
| 769 | ISD::ZERO_EXTEND, | |||
| 770 | ISD::SIGN_EXTEND_INREG, | |||
| 771 | ISD::EXTRACT_VECTOR_ELT, | |||
| 772 | ISD::INSERT_VECTOR_ELT, | |||
| 773 | ISD::FCOPYSIGN}); | |||
| 774 | ||||
| 775 | // All memory operations. Some folding on the pointer operand is done to help | |||
| 776 | // matching the constant offsets in the addressing modes. | |||
| 777 | setTargetDAGCombine({ISD::LOAD, | |||
| 778 | ISD::STORE, | |||
| 779 | ISD::ATOMIC_LOAD, | |||
| 780 | ISD::ATOMIC_STORE, | |||
| 781 | ISD::ATOMIC_CMP_SWAP, | |||
| 782 | ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, | |||
| 783 | ISD::ATOMIC_SWAP, | |||
| 784 | ISD::ATOMIC_LOAD_ADD, | |||
| 785 | ISD::ATOMIC_LOAD_SUB, | |||
| 786 | ISD::ATOMIC_LOAD_AND, | |||
| 787 | ISD::ATOMIC_LOAD_OR, | |||
| 788 | ISD::ATOMIC_LOAD_XOR, | |||
| 789 | ISD::ATOMIC_LOAD_NAND, | |||
| 790 | ISD::ATOMIC_LOAD_MIN, | |||
| 791 | ISD::ATOMIC_LOAD_MAX, | |||
| 792 | ISD::ATOMIC_LOAD_UMIN, | |||
| 793 | ISD::ATOMIC_LOAD_UMAX, | |||
| 794 | ISD::ATOMIC_LOAD_FADD, | |||
| 795 | ISD::ATOMIC_LOAD_UINC_WRAP, | |||
| 796 | ISD::ATOMIC_LOAD_UDEC_WRAP, | |||
| 797 | ISD::INTRINSIC_VOID, | |||
| 798 | ISD::INTRINSIC_W_CHAIN}); | |||
| 799 | ||||
| 800 | // FIXME: In other contexts we pretend this is a per-function property. | |||
| 801 | setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); | |||
| 802 | ||||
| 803 | setSchedulingPreference(Sched::RegPressure); | |||
| 804 | } | |||
| 805 | ||||
| 806 | const GCNSubtarget *SITargetLowering::getSubtarget() const { | |||
| 807 | return Subtarget; | |||
| 808 | } | |||
| 809 | ||||
| 810 | //===----------------------------------------------------------------------===// | |||
| 811 | // TargetLowering queries | |||
| 812 | //===----------------------------------------------------------------------===// | |||
| 813 | ||||
| 814 | // v_mad_mix* support a conversion from f16 to f32. | |||
| 815 | // | |||
| 816 | // There is only one special case when denormals are enabled we don't currently, | |||
| 817 | // where this is OK to use. | |||
| 818 | bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, | |||
| 819 | EVT DestVT, EVT SrcVT) const { | |||
| 820 | return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || | |||
| 821 | (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && | |||
| 822 | DestVT.getScalarType() == MVT::f32 && | |||
| 823 | SrcVT.getScalarType() == MVT::f16 && | |||
| 824 | // TODO: This probably only requires no input flushing? | |||
| 825 | !hasFP32Denormals(DAG.getMachineFunction()); | |||
| 826 | } | |||
| 827 | ||||
| 828 | bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, | |||
| 829 | LLT DestTy, LLT SrcTy) const { | |||
| 830 | return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || | |||
| 831 | (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && | |||
| 832 | DestTy.getScalarSizeInBits() == 32 && | |||
| 833 | SrcTy.getScalarSizeInBits() == 16 && | |||
| 834 | // TODO: This probably only requires no input flushing? | |||
| 835 | !hasFP32Denormals(*MI.getMF()); | |||
| 836 | } | |||
| 837 | ||||
| 838 | bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { | |||
| 839 | // SI has some legal vector types, but no legal vector operations. Say no | |||
| 840 | // shuffles are legal in order to prefer scalarizing some vector operations. | |||
| 841 | return false; | |||
| 842 | } | |||
| 843 | ||||
| 844 | MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, | |||
| 845 | CallingConv::ID CC, | |||
| 846 | EVT VT) const { | |||
| 847 | if (CC == CallingConv::AMDGPU_KERNEL) | |||
| 848 | return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); | |||
| 849 | ||||
| 850 | if (VT.isVector()) { | |||
| 851 | EVT ScalarVT = VT.getScalarType(); | |||
| 852 | unsigned Size = ScalarVT.getSizeInBits(); | |||
| 853 | if (Size == 16) { | |||
| 854 | if (Subtarget->has16BitInsts()) { | |||
| 855 | if (VT.isInteger()) | |||
| 856 | return MVT::v2i16; | |||
| 857 | return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16); | |||
| 858 | } | |||
| 859 | return VT.isInteger() ? MVT::i32 : MVT::f32; | |||
| 860 | } | |||
| 861 | ||||
| 862 | if (Size < 16) | |||
| 863 | return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; | |||
| 864 | return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; | |||
| 865 | } | |||
| 866 | ||||
| 867 | if (VT.getSizeInBits() > 32) | |||
| 868 | return MVT::i32; | |||
| 869 | ||||
| 870 | return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); | |||
| 871 | } | |||
| 872 | ||||
| 873 | unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, | |||
| 874 | CallingConv::ID CC, | |||
| 875 | EVT VT) const { | |||
| 876 | if (CC == CallingConv::AMDGPU_KERNEL) | |||
| 877 | return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); | |||
| 878 | ||||
| 879 | if (VT.isVector()) { | |||
| 880 | unsigned NumElts = VT.getVectorNumElements(); | |||
| 881 | EVT ScalarVT = VT.getScalarType(); | |||
| 882 | unsigned Size = ScalarVT.getSizeInBits(); | |||
| 883 | ||||
| 884 | // FIXME: Should probably promote 8-bit vectors to i16. | |||
| 885 | if (Size == 16 && Subtarget->has16BitInsts()) | |||
| 886 | return (NumElts + 1) / 2; | |||
| 887 | ||||
| 888 | if (Size <= 32) | |||
| 889 | return NumElts; | |||
| 890 | ||||
| 891 | if (Size > 32) | |||
| 892 | return NumElts * ((Size + 31) / 32); | |||
| 893 | } else if (VT.getSizeInBits() > 32) | |||
| 894 | return (VT.getSizeInBits() + 31) / 32; | |||
| 895 | ||||
| 896 | return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); | |||
| 897 | } | |||
| 898 | ||||
| 899 | unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( | |||
| 900 | LLVMContext &Context, CallingConv::ID CC, | |||
| 901 | EVT VT, EVT &IntermediateVT, | |||
| 902 | unsigned &NumIntermediates, MVT &RegisterVT) const { | |||
| 903 | if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { | |||
| 904 | unsigned NumElts = VT.getVectorNumElements(); | |||
| 905 | EVT ScalarVT = VT.getScalarType(); | |||
| 906 | unsigned Size = ScalarVT.getSizeInBits(); | |||
| 907 | // FIXME: We should fix the ABI to be the same on targets without 16-bit | |||
| 908 | // support, but unless we can properly handle 3-vectors, it will be still be | |||
| 909 | // inconsistent. | |||
| 910 | if (Size == 16 && Subtarget->has16BitInsts()) { | |||
| 911 | if (ScalarVT == MVT::bf16) { | |||
| 912 | RegisterVT = MVT::i32; | |||
| 913 | IntermediateVT = MVT::v2bf16; | |||
| 914 | } else { | |||
| 915 | RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; | |||
| 916 | IntermediateVT = RegisterVT; | |||
| 917 | } | |||
| 918 | NumIntermediates = (NumElts + 1) / 2; | |||
| 919 | return NumIntermediates; | |||
| 920 | } | |||
| 921 | ||||
| 922 | if (Size == 32) { | |||
| 923 | RegisterVT = ScalarVT.getSimpleVT(); | |||
| 924 | IntermediateVT = RegisterVT; | |||
| 925 | NumIntermediates = NumElts; | |||
| 926 | return NumIntermediates; | |||
| 927 | } | |||
| 928 | ||||
| 929 | if (Size < 16 && Subtarget->has16BitInsts()) { | |||
| 930 | // FIXME: Should probably form v2i16 pieces | |||
| 931 | RegisterVT = MVT::i16; | |||
| 932 | IntermediateVT = ScalarVT; | |||
| 933 | NumIntermediates = NumElts; | |||
| 934 | return NumIntermediates; | |||
| 935 | } | |||
| 936 | ||||
| 937 | ||||
| 938 | if (Size != 16 && Size <= 32) { | |||
| 939 | RegisterVT = MVT::i32; | |||
| 940 | IntermediateVT = ScalarVT; | |||
| 941 | NumIntermediates = NumElts; | |||
| 942 | return NumIntermediates; | |||
| 943 | } | |||
| 944 | ||||
| 945 | if (Size > 32) { | |||
| 946 | RegisterVT = MVT::i32; | |||
| 947 | IntermediateVT = RegisterVT; | |||
| 948 | NumIntermediates = NumElts * ((Size + 31) / 32); | |||
| 949 | return NumIntermediates; | |||
| 950 | } | |||
| 951 | } | |||
| 952 | ||||
| 953 | return TargetLowering::getVectorTypeBreakdownForCallingConv( | |||
| 954 | Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); | |||
| 955 | } | |||
| 956 | ||||
| 957 | static EVT memVTFromLoadIntrData(Type *Ty, unsigned MaxNumLanes) { | |||
| 958 | assert(MaxNumLanes != 0)(static_cast <bool> (MaxNumLanes != 0) ? void (0) : __assert_fail ("MaxNumLanes != 0", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 958, __extension__ __PRETTY_FUNCTION__)); | |||
| 959 | ||||
| 960 | if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { | |||
| 961 | unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements()); | |||
| 962 | return EVT::getVectorVT(Ty->getContext(), | |||
| 963 | EVT::getEVT(VT->getElementType()), | |||
| 964 | NumElts); | |||
| 965 | } | |||
| 966 | ||||
| 967 | return EVT::getEVT(Ty); | |||
| 968 | } | |||
| 969 | ||||
| 970 | // Peek through TFE struct returns to only use the data size. | |||
| 971 | static EVT memVTFromLoadIntrReturn(Type *Ty, unsigned MaxNumLanes) { | |||
| 972 | auto *ST = dyn_cast<StructType>(Ty); | |||
| 973 | if (!ST) | |||
| 974 | return memVTFromLoadIntrData(Ty, MaxNumLanes); | |||
| 975 | ||||
| 976 | // TFE intrinsics return an aggregate type. | |||
| 977 | assert(ST->getNumContainedTypes() == 2 &&(static_cast <bool> (ST->getNumContainedTypes() == 2 && ST->getContainedType(1)->isIntegerTy(32)) ? void (0) : __assert_fail ("ST->getNumContainedTypes() == 2 && ST->getContainedType(1)->isIntegerTy(32)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 978, __extension__ __PRETTY_FUNCTION__)) | |||
| 978 | ST->getContainedType(1)->isIntegerTy(32))(static_cast <bool> (ST->getNumContainedTypes() == 2 && ST->getContainedType(1)->isIntegerTy(32)) ? void (0) : __assert_fail ("ST->getNumContainedTypes() == 2 && ST->getContainedType(1)->isIntegerTy(32)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 978, __extension__ __PRETTY_FUNCTION__)); | |||
| 979 | return memVTFromLoadIntrData(ST->getContainedType(0), MaxNumLanes); | |||
| 980 | } | |||
| 981 | ||||
| 982 | bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, | |||
| 983 | const CallInst &CI, | |||
| 984 | MachineFunction &MF, | |||
| 985 | unsigned IntrID) const { | |||
| 986 | Info.flags = MachineMemOperand::MONone; | |||
| 987 | if (CI.hasMetadata(LLVMContext::MD_invariant_load)) | |||
| 988 | Info.flags |= MachineMemOperand::MOInvariant; | |||
| 989 | ||||
| 990 | if (const AMDGPU::RsrcIntrinsic *RsrcIntr = | |||
| 991 | AMDGPU::lookupRsrcIntrinsic(IntrID)) { | |||
| 992 | AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), | |||
| 993 | (Intrinsic::ID)IntrID); | |||
| 994 | MemoryEffects ME = Attr.getMemoryEffects(); | |||
| 995 | if (ME.doesNotAccessMemory()) | |||
| 996 | return false; | |||
| 997 | ||||
| 998 | // TODO: Should images get their own address space? | |||
| 999 | Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; | |||
| 1000 | ||||
| 1001 | if (RsrcIntr->IsImage) | |||
| 1002 | Info.align.reset(); | |||
| 1003 | ||||
| 1004 | Info.flags |= MachineMemOperand::MODereferenceable; | |||
| 1005 | if (ME.onlyReadsMemory()) { | |||
| 1006 | unsigned MaxNumLanes = 4; | |||
| 1007 | ||||
| 1008 | if (RsrcIntr->IsImage) { | |||
| 1009 | const AMDGPU::ImageDimIntrinsicInfo *Intr | |||
| 1010 | = AMDGPU::getImageDimIntrinsicInfo(IntrID); | |||
| 1011 | const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = | |||
| 1012 | AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); | |||
| 1013 | ||||
| 1014 | if (!BaseOpcode->Gather4) { | |||
| 1015 | // If this isn't a gather, we may have excess loaded elements in the | |||
| 1016 | // IR type. Check the dmask for the real number of elements loaded. | |||
| 1017 | unsigned DMask | |||
| 1018 | = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); | |||
| 1019 | MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask); | |||
| 1020 | } | |||
| 1021 | } | |||
| 1022 | ||||
| 1023 | Info.memVT = memVTFromLoadIntrReturn(CI.getType(), MaxNumLanes); | |||
| 1024 | ||||
| 1025 | // FIXME: What does alignment mean for an image? | |||
| 1026 | Info.opc = ISD::INTRINSIC_W_CHAIN; | |||
| 1027 | Info.flags |= MachineMemOperand::MOLoad; | |||
| 1028 | } else if (ME.onlyWritesMemory()) { | |||
| 1029 | Info.opc = ISD::INTRINSIC_VOID; | |||
| 1030 | ||||
| 1031 | Type *DataTy = CI.getArgOperand(0)->getType(); | |||
| 1032 | if (RsrcIntr->IsImage) { | |||
| 1033 | unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); | |||
| 1034 | unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask); | |||
| 1035 | Info.memVT = memVTFromLoadIntrData(DataTy, DMaskLanes); | |||
| 1036 | } else | |||
| 1037 | Info.memVT = EVT::getEVT(DataTy); | |||
| 1038 | ||||
| 1039 | Info.flags |= MachineMemOperand::MOStore; | |||
| 1040 | } else { | |||
| 1041 | // Atomic | |||
| 1042 | Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : | |||
| 1043 | ISD::INTRINSIC_W_CHAIN; | |||
| 1044 | Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); | |||
| 1045 | Info.flags |= MachineMemOperand::MOLoad | | |||
| 1046 | MachineMemOperand::MOStore | | |||
| 1047 | MachineMemOperand::MODereferenceable; | |||
| 1048 | ||||
| 1049 | // XXX - Should this be volatile without known ordering? | |||
| 1050 | Info.flags |= MachineMemOperand::MOVolatile; | |||
| 1051 | ||||
| 1052 | switch (IntrID) { | |||
| 1053 | default: | |||
| 1054 | break; | |||
| 1055 | case Intrinsic::amdgcn_raw_buffer_load_lds: | |||
| 1056 | case Intrinsic::amdgcn_struct_buffer_load_lds: { | |||
| 1057 | unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); | |||
| 1058 | Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); | |||
| 1059 | return true; | |||
| 1060 | } | |||
| 1061 | } | |||
| 1062 | } | |||
| 1063 | return true; | |||
| 1064 | } | |||
| 1065 | ||||
| 1066 | switch (IntrID) { | |||
| 1067 | case Intrinsic::amdgcn_atomic_inc: | |||
| 1068 | case Intrinsic::amdgcn_atomic_dec: | |||
| 1069 | case Intrinsic::amdgcn_ds_ordered_add: | |||
| 1070 | case Intrinsic::amdgcn_ds_ordered_swap: | |||
| 1071 | case Intrinsic::amdgcn_ds_fadd: | |||
| 1072 | case Intrinsic::amdgcn_ds_fmin: | |||
| 1073 | case Intrinsic::amdgcn_ds_fmax: { | |||
| 1074 | Info.opc = ISD::INTRINSIC_W_CHAIN; | |||
| 1075 | Info.memVT = MVT::getVT(CI.getType()); | |||
| 1076 | Info.ptrVal = CI.getOperand(0); | |||
| 1077 | Info.align.reset(); | |||
| 1078 | Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | |||
| 1079 | ||||
| 1080 | const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); | |||
| 1081 | if (!Vol->isZero()) | |||
| 1082 | Info.flags |= MachineMemOperand::MOVolatile; | |||
| 1083 | ||||
| 1084 | return true; | |||
| 1085 | } | |||
| 1086 | case Intrinsic::amdgcn_buffer_atomic_fadd: { | |||
| 1087 | Info.opc = ISD::INTRINSIC_W_CHAIN; | |||
| 1088 | Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); | |||
| 1089 | Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; | |||
| 1090 | Info.align.reset(); | |||
| 1091 | Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | |||
| 1092 | ||||
| 1093 | const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); | |||
| 1094 | if (!Vol || !Vol->isZero()) | |||
| 1095 | Info.flags |= MachineMemOperand::MOVolatile; | |||
| 1096 | ||||
| 1097 | return true; | |||
| 1098 | } | |||
| 1099 | case Intrinsic::amdgcn_ds_add_gs_reg_rtn: | |||
| 1100 | case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: { | |||
| 1101 | Info.opc = ISD::INTRINSIC_W_CHAIN; | |||
| 1102 | Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); | |||
| 1103 | Info.ptrVal = nullptr; | |||
| 1104 | Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER; | |||
| 1105 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | |||
| 1106 | return true; | |||
| 1107 | } | |||
| 1108 | case Intrinsic::amdgcn_ds_append: | |||
| 1109 | case Intrinsic::amdgcn_ds_consume: { | |||
| 1110 | Info.opc = ISD::INTRINSIC_W_CHAIN; | |||
| 1111 | Info.memVT = MVT::getVT(CI.getType()); | |||
| 1112 | Info.ptrVal = CI.getOperand(0); | |||
| 1113 | Info.align.reset(); | |||
| 1114 | Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | |||
| 1115 | ||||
| 1116 | const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); | |||
| 1117 | if (!Vol->isZero()) | |||
| 1118 | Info.flags |= MachineMemOperand::MOVolatile; | |||
| 1119 | ||||
| 1120 | return true; | |||
| 1121 | } | |||
| 1122 | case Intrinsic::amdgcn_global_atomic_csub: { | |||
| 1123 | Info.opc = ISD::INTRINSIC_W_CHAIN; | |||
| 1124 | Info.memVT = MVT::getVT(CI.getType()); | |||
| 1125 | Info.ptrVal = CI.getOperand(0); | |||
| 1126 | Info.align.reset(); | |||
| 1127 | Info.flags |= MachineMemOperand::MOLoad | | |||
| 1128 | MachineMemOperand::MOStore | | |||
| 1129 | MachineMemOperand::MOVolatile; | |||
| 1130 | return true; | |||
| 1131 | } | |||
| 1132 | case Intrinsic::amdgcn_image_bvh_intersect_ray: { | |||
| 1133 | Info.opc = ISD::INTRINSIC_W_CHAIN; | |||
| 1134 | Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? | |||
| 1135 | ||||
| 1136 | Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; | |||
| 1137 | Info.align.reset(); | |||
| 1138 | Info.flags |= MachineMemOperand::MOLoad | | |||
| 1139 | MachineMemOperand::MODereferenceable; | |||
| 1140 | return true; | |||
| 1141 | } | |||
| 1142 | case Intrinsic::amdgcn_global_atomic_fadd: | |||
| 1143 | case Intrinsic::amdgcn_global_atomic_fmin: | |||
| 1144 | case Intrinsic::amdgcn_global_atomic_fmax: | |||
| 1145 | case Intrinsic::amdgcn_flat_atomic_fadd: | |||
| 1146 | case Intrinsic::amdgcn_flat_atomic_fmin: | |||
| 1147 | case Intrinsic::amdgcn_flat_atomic_fmax: | |||
| 1148 | case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: | |||
| 1149 | case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: { | |||
| 1150 | Info.opc = ISD::INTRINSIC_W_CHAIN; | |||
| 1151 | Info.memVT = MVT::getVT(CI.getType()); | |||
| 1152 | Info.ptrVal = CI.getOperand(0); | |||
| 1153 | Info.align.reset(); | |||
| 1154 | Info.flags |= MachineMemOperand::MOLoad | | |||
| 1155 | MachineMemOperand::MOStore | | |||
| 1156 | MachineMemOperand::MODereferenceable | | |||
| 1157 | MachineMemOperand::MOVolatile; | |||
| 1158 | return true; | |||
| 1159 | } | |||
| 1160 | case Intrinsic::amdgcn_ds_gws_init: | |||
| 1161 | case Intrinsic::amdgcn_ds_gws_barrier: | |||
| 1162 | case Intrinsic::amdgcn_ds_gws_sema_v: | |||
| 1163 | case Intrinsic::amdgcn_ds_gws_sema_br: | |||
| 1164 | case Intrinsic::amdgcn_ds_gws_sema_p: | |||
| 1165 | case Intrinsic::amdgcn_ds_gws_sema_release_all: { | |||
| 1166 | Info.opc = ISD::INTRINSIC_VOID; | |||
| 1167 | ||||
| 1168 | const GCNTargetMachine &TM = | |||
| 1169 | static_cast<const GCNTargetMachine &>(getTargetMachine()); | |||
| 1170 | ||||
| 1171 | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 1172 | Info.ptrVal = MFI->getGWSPSV(TM); | |||
| 1173 | ||||
| 1174 | // This is an abstract access, but we need to specify a type and size. | |||
| 1175 | Info.memVT = MVT::i32; | |||
| 1176 | Info.size = 4; | |||
| 1177 | Info.align = Align(4); | |||
| 1178 | ||||
| 1179 | if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) | |||
| 1180 | Info.flags |= MachineMemOperand::MOLoad; | |||
| 1181 | else | |||
| 1182 | Info.flags |= MachineMemOperand::MOStore; | |||
| 1183 | return true; | |||
| 1184 | } | |||
| 1185 | case Intrinsic::amdgcn_global_load_lds: { | |||
| 1186 | Info.opc = ISD::INTRINSIC_VOID; | |||
| 1187 | unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); | |||
| 1188 | Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); | |||
| 1189 | Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | | |||
| 1190 | MachineMemOperand::MOVolatile; | |||
| 1191 | return true; | |||
| 1192 | } | |||
| 1193 | case Intrinsic::amdgcn_ds_bvh_stack_rtn: { | |||
| 1194 | Info.opc = ISD::INTRINSIC_W_CHAIN; | |||
| 1195 | ||||
| 1196 | const GCNTargetMachine &TM = | |||
| 1197 | static_cast<const GCNTargetMachine &>(getTargetMachine()); | |||
| 1198 | ||||
| 1199 | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 1200 | Info.ptrVal = MFI->getGWSPSV(TM); | |||
| 1201 | ||||
| 1202 | // This is an abstract access, but we need to specify a type and size. | |||
| 1203 | Info.memVT = MVT::i32; | |||
| 1204 | Info.size = 4; | |||
| 1205 | Info.align = Align(4); | |||
| 1206 | ||||
| 1207 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | |||
| 1208 | return true; | |||
| 1209 | } | |||
| 1210 | default: | |||
| 1211 | return false; | |||
| 1212 | } | |||
| 1213 | } | |||
| 1214 | ||||
| 1215 | bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, | |||
| 1216 | SmallVectorImpl<Value*> &Ops, | |||
| 1217 | Type *&AccessTy) const { | |||
| 1218 | switch (II->getIntrinsicID()) { | |||
| 1219 | case Intrinsic::amdgcn_atomic_inc: | |||
| 1220 | case Intrinsic::amdgcn_atomic_dec: | |||
| 1221 | case Intrinsic::amdgcn_ds_ordered_add: | |||
| 1222 | case Intrinsic::amdgcn_ds_ordered_swap: | |||
| 1223 | case Intrinsic::amdgcn_ds_append: | |||
| 1224 | case Intrinsic::amdgcn_ds_consume: | |||
| 1225 | case Intrinsic::amdgcn_ds_fadd: | |||
| 1226 | case Intrinsic::amdgcn_ds_fmin: | |||
| 1227 | case Intrinsic::amdgcn_ds_fmax: | |||
| 1228 | case Intrinsic::amdgcn_global_atomic_fadd: | |||
| 1229 | case Intrinsic::amdgcn_flat_atomic_fadd: | |||
| 1230 | case Intrinsic::amdgcn_flat_atomic_fmin: | |||
| 1231 | case Intrinsic::amdgcn_flat_atomic_fmax: | |||
| 1232 | case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: | |||
| 1233 | case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: | |||
| 1234 | case Intrinsic::amdgcn_global_atomic_csub: { | |||
| 1235 | Value *Ptr = II->getArgOperand(0); | |||
| 1236 | AccessTy = II->getType(); | |||
| 1237 | Ops.push_back(Ptr); | |||
| 1238 | return true; | |||
| 1239 | } | |||
| 1240 | default: | |||
| 1241 | return false; | |||
| 1242 | } | |||
| 1243 | } | |||
| 1244 | ||||
| 1245 | bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { | |||
| 1246 | if (!Subtarget->hasFlatInstOffsets()) { | |||
| 1247 | // Flat instructions do not have offsets, and only have the register | |||
| 1248 | // address. | |||
| 1249 | return AM.BaseOffs == 0 && AM.Scale == 0; | |||
| 1250 | } | |||
| 1251 | ||||
| 1252 | return AM.Scale == 0 && | |||
| 1253 | (AM.BaseOffs == 0 || | |||
| 1254 | Subtarget->getInstrInfo()->isLegalFLATOffset( | |||
| 1255 | AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT)); | |||
| 1256 | } | |||
| 1257 | ||||
| 1258 | bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { | |||
| 1259 | if (Subtarget->hasFlatGlobalInsts()) | |||
| 1260 | return AM.Scale == 0 && | |||
| 1261 | (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( | |||
| 1262 | AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, | |||
| 1263 | SIInstrFlags::FlatGlobal)); | |||
| 1264 | ||||
| 1265 | if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { | |||
| 1266 | // Assume the we will use FLAT for all global memory accesses | |||
| 1267 | // on VI. | |||
| 1268 | // FIXME: This assumption is currently wrong. On VI we still use | |||
| 1269 | // MUBUF instructions for the r + i addressing mode. As currently | |||
| 1270 | // implemented, the MUBUF instructions only work on buffer < 4GB. | |||
| 1271 | // It may be possible to support > 4GB buffers with MUBUF instructions, | |||
| 1272 | // by setting the stride value in the resource descriptor which would | |||
| 1273 | // increase the size limit to (stride * 4GB). However, this is risky, | |||
| 1274 | // because it has never been validated. | |||
| 1275 | return isLegalFlatAddressingMode(AM); | |||
| 1276 | } | |||
| 1277 | ||||
| 1278 | return isLegalMUBUFAddressingMode(AM); | |||
| 1279 | } | |||
| 1280 | ||||
| 1281 | bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { | |||
| 1282 | // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and | |||
| 1283 | // additionally can do r + r + i with addr64. 32-bit has more addressing | |||
| 1284 | // mode options. Depending on the resource constant, it can also do | |||
| 1285 | // (i64 r0) + (i32 r1) * (i14 i). | |||
| 1286 | // | |||
| 1287 | // Private arrays end up using a scratch buffer most of the time, so also | |||
| 1288 | // assume those use MUBUF instructions. Scratch loads / stores are currently | |||
| 1289 | // implemented as mubuf instructions with offen bit set, so slightly | |||
| 1290 | // different than the normal addr64. | |||
| 1291 | if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) | |||
| 1292 | return false; | |||
| 1293 | ||||
| 1294 | // FIXME: Since we can split immediate into soffset and immediate offset, | |||
| 1295 | // would it make sense to allow any immediate? | |||
| 1296 | ||||
| 1297 | switch (AM.Scale) { | |||
| 1298 | case 0: // r + i or just i, depending on HasBaseReg. | |||
| 1299 | return true; | |||
| 1300 | case 1: | |||
| 1301 | return true; // We have r + r or r + i. | |||
| 1302 | case 2: | |||
| 1303 | if (AM.HasBaseReg) { | |||
| 1304 | // Reject 2 * r + r. | |||
| 1305 | return false; | |||
| 1306 | } | |||
| 1307 | ||||
| 1308 | // Allow 2 * r as r + r | |||
| 1309 | // Or 2 * r + i is allowed as r + r + i. | |||
| 1310 | return true; | |||
| 1311 | default: // Don't allow n * r | |||
| 1312 | return false; | |||
| 1313 | } | |||
| 1314 | } | |||
| 1315 | ||||
| 1316 | bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, | |||
| 1317 | const AddrMode &AM, Type *Ty, | |||
| 1318 | unsigned AS, Instruction *I) const { | |||
| 1319 | // No global is ever allowed as a base. | |||
| 1320 | if (AM.BaseGV) | |||
| 1321 | return false; | |||
| 1322 | ||||
| 1323 | if (AS == AMDGPUAS::GLOBAL_ADDRESS) | |||
| 1324 | return isLegalGlobalAddressingMode(AM); | |||
| 1325 | ||||
| 1326 | if (AS == AMDGPUAS::CONSTANT_ADDRESS || | |||
| 1327 | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || | |||
| 1328 | AS == AMDGPUAS::BUFFER_FAT_POINTER || AS == AMDGPUAS::BUFFER_RESOURCE) { | |||
| 1329 | // If the offset isn't a multiple of 4, it probably isn't going to be | |||
| 1330 | // correctly aligned. | |||
| 1331 | // FIXME: Can we get the real alignment here? | |||
| 1332 | if (AM.BaseOffs % 4 != 0) | |||
| 1333 | return isLegalMUBUFAddressingMode(AM); | |||
| 1334 | ||||
| 1335 | // There are no SMRD extloads, so if we have to do a small type access we | |||
| 1336 | // will use a MUBUF load. | |||
| 1337 | // FIXME?: We also need to do this if unaligned, but we don't know the | |||
| 1338 | // alignment here. | |||
| 1339 | if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) | |||
| 1340 | return isLegalGlobalAddressingMode(AM); | |||
| 1341 | ||||
| 1342 | if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { | |||
| 1343 | // SMRD instructions have an 8-bit, dword offset on SI. | |||
| 1344 | if (!isUInt<8>(AM.BaseOffs / 4)) | |||
| 1345 | return false; | |||
| 1346 | } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { | |||
| 1347 | // On CI+, this can also be a 32-bit literal constant offset. If it fits | |||
| 1348 | // in 8-bits, it can use a smaller encoding. | |||
| 1349 | if (!isUInt<32>(AM.BaseOffs / 4)) | |||
| 1350 | return false; | |||
| 1351 | } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { | |||
| 1352 | // On VI, these use the SMEM format and the offset is 20-bit in bytes. | |||
| 1353 | if (!isUInt<20>(AM.BaseOffs)) | |||
| 1354 | return false; | |||
| 1355 | } else | |||
| 1356 | llvm_unreachable("unhandled generation")::llvm::llvm_unreachable_internal("unhandled generation", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 1356); | |||
| 1357 | ||||
| 1358 | if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. | |||
| 1359 | return true; | |||
| 1360 | ||||
| 1361 | if (AM.Scale == 1 && AM.HasBaseReg) | |||
| 1362 | return true; | |||
| 1363 | ||||
| 1364 | return false; | |||
| 1365 | } | |||
| 1366 | ||||
| 1367 | if (AS == AMDGPUAS::PRIVATE_ADDRESS) | |||
| 1368 | return isLegalMUBUFAddressingMode(AM); | |||
| 1369 | ||||
| 1370 | if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { | |||
| 1371 | // Basic, single offset DS instructions allow a 16-bit unsigned immediate | |||
| 1372 | // field. | |||
| 1373 | // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have | |||
| 1374 | // an 8-bit dword offset but we don't know the alignment here. | |||
| 1375 | if (!isUInt<16>(AM.BaseOffs)) | |||
| 1376 | return false; | |||
| 1377 | ||||
| 1378 | if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. | |||
| 1379 | return true; | |||
| 1380 | ||||
| 1381 | if (AM.Scale == 1 && AM.HasBaseReg) | |||
| 1382 | return true; | |||
| 1383 | ||||
| 1384 | return false; | |||
| 1385 | } | |||
| 1386 | ||||
| 1387 | if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { | |||
| 1388 | // For an unknown address space, this usually means that this is for some | |||
| 1389 | // reason being used for pure arithmetic, and not based on some addressing | |||
| 1390 | // computation. We don't have instructions that compute pointers with any | |||
| 1391 | // addressing modes, so treat them as having no offset like flat | |||
| 1392 | // instructions. | |||
| 1393 | return isLegalFlatAddressingMode(AM); | |||
| 1394 | } | |||
| 1395 | ||||
| 1396 | // Assume a user alias of global for unknown address spaces. | |||
| 1397 | return isLegalGlobalAddressingMode(AM); | |||
| 1398 | } | |||
| 1399 | ||||
| 1400 | bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, | |||
| 1401 | const MachineFunction &MF) const { | |||
| 1402 | if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { | |||
| 1403 | return (MemVT.getSizeInBits() <= 4 * 32); | |||
| 1404 | } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { | |||
| 1405 | unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); | |||
| 1406 | return (MemVT.getSizeInBits() <= MaxPrivateBits); | |||
| 1407 | } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { | |||
| 1408 | return (MemVT.getSizeInBits() <= 2 * 32); | |||
| 1409 | } | |||
| 1410 | return true; | |||
| 1411 | } | |||
| 1412 | ||||
| 1413 | bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( | |||
| 1414 | unsigned Size, unsigned AddrSpace, Align Alignment, | |||
| 1415 | MachineMemOperand::Flags Flags, unsigned *IsFast) const { | |||
| 1416 | if (IsFast) | |||
| 1417 | *IsFast = 0; | |||
| 1418 | ||||
| 1419 | if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || | |||
| 1420 | AddrSpace == AMDGPUAS::REGION_ADDRESS) { | |||
| 1421 | // Check if alignment requirements for ds_read/write instructions are | |||
| 1422 | // disabled. | |||
| 1423 | if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) | |||
| 1424 | return false; | |||
| 1425 | ||||
| 1426 | Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment. | |||
| 1427 | if (Subtarget->hasLDSMisalignedBug() && Size > 32 && | |||
| 1428 | Alignment < RequiredAlignment) | |||
| 1429 | return false; | |||
| 1430 | ||||
| 1431 | // Either, the alignment requirements are "enabled", or there is an | |||
| 1432 | // unaligned LDS access related hardware bug though alignment requirements | |||
| 1433 | // are "disabled". In either case, we need to check for proper alignment | |||
| 1434 | // requirements. | |||
| 1435 | // | |||
| 1436 | switch (Size) { | |||
| 1437 | case 64: | |||
| 1438 | // SI has a hardware bug in the LDS / GDS bounds checking: if the base | |||
| 1439 | // address is negative, then the instruction is incorrectly treated as | |||
| 1440 | // out-of-bounds even if base + offsets is in bounds. Split vectorized | |||
| 1441 | // loads here to avoid emitting ds_read2_b32. We may re-combine the | |||
| 1442 | // load later in the SILoadStoreOptimizer. | |||
| 1443 | if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) | |||
| 1444 | return false; | |||
| 1445 | ||||
| 1446 | // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we | |||
| 1447 | // can do a 4 byte aligned, 8 byte access in a single operation using | |||
| 1448 | // ds_read2/write2_b32 with adjacent offsets. | |||
| 1449 | RequiredAlignment = Align(4); | |||
| 1450 | ||||
| 1451 | if (Subtarget->hasUnalignedDSAccessEnabled()) { | |||
| 1452 | // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ | |||
| 1453 | // ds_write2_b32 depending on the alignment. In either case with either | |||
| 1454 | // alignment there is no faster way of doing this. | |||
| 1455 | ||||
| 1456 | // The numbers returned here and below are not additive, it is a 'speed | |||
| 1457 | // rank'. They are just meant to be compared to decide if a certain way | |||
| 1458 | // of lowering an operation is faster than another. For that purpose | |||
| 1459 | // naturally aligned operation gets it bitsize to indicate that "it | |||
| 1460 | // operates with a speed comparable to N-bit wide load". With the full | |||
| 1461 | // alignment ds128 is slower than ds96 for example. If underaligned it | |||
| 1462 | // is comparable to a speed of a single dword access, which would then | |||
| 1463 | // mean 32 < 128 and it is faster to issue a wide load regardless. | |||
| 1464 | // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a | |||
| 1465 | // wider load which will not be aligned anymore the latter is slower. | |||
| 1466 | if (IsFast) | |||
| 1467 | *IsFast = (Alignment >= RequiredAlignment) ? 64 | |||
| 1468 | : (Alignment < Align(4)) ? 32 | |||
| 1469 | : 1; | |||
| 1470 | return true; | |||
| 1471 | } | |||
| 1472 | ||||
| 1473 | break; | |||
| 1474 | case 96: | |||
| 1475 | if (!Subtarget->hasDS96AndDS128()) | |||
| 1476 | return false; | |||
| 1477 | ||||
| 1478 | // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on | |||
| 1479 | // gfx8 and older. | |||
| 1480 | ||||
| 1481 | if (Subtarget->hasUnalignedDSAccessEnabled()) { | |||
| 1482 | // Naturally aligned access is fastest. However, also report it is Fast | |||
| 1483 | // if memory is aligned less than DWORD. A narrow load or store will be | |||
| 1484 | // be equally slow as a single ds_read_b96/ds_write_b96, but there will | |||
| 1485 | // be more of them, so overall we will pay less penalty issuing a single | |||
| 1486 | // instruction. | |||
| 1487 | ||||
| 1488 | // See comment on the values above. | |||
| 1489 | if (IsFast) | |||
| 1490 | *IsFast = (Alignment >= RequiredAlignment) ? 96 | |||
| 1491 | : (Alignment < Align(4)) ? 32 | |||
| 1492 | : 1; | |||
| 1493 | return true; | |||
| 1494 | } | |||
| 1495 | ||||
| 1496 | break; | |||
| 1497 | case 128: | |||
| 1498 | if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) | |||
| 1499 | return false; | |||
| 1500 | ||||
| 1501 | // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on | |||
| 1502 | // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a | |||
| 1503 | // single operation using ds_read2/write2_b64. | |||
| 1504 | RequiredAlignment = Align(8); | |||
| 1505 | ||||
| 1506 | if (Subtarget->hasUnalignedDSAccessEnabled()) { | |||
| 1507 | // Naturally aligned access is fastest. However, also report it is Fast | |||
| 1508 | // if memory is aligned less than DWORD. A narrow load or store will be | |||
| 1509 | // be equally slow as a single ds_read_b128/ds_write_b128, but there | |||
| 1510 | // will be more of them, so overall we will pay less penalty issuing a | |||
| 1511 | // single instruction. | |||
| 1512 | ||||
| 1513 | // See comment on the values above. | |||
| 1514 | if (IsFast) | |||
| 1515 | *IsFast = (Alignment >= RequiredAlignment) ? 128 | |||
| 1516 | : (Alignment < Align(4)) ? 32 | |||
| 1517 | : 1; | |||
| 1518 | return true; | |||
| 1519 | } | |||
| 1520 | ||||
| 1521 | break; | |||
| 1522 | default: | |||
| 1523 | if (Size > 32) | |||
| 1524 | return false; | |||
| 1525 | ||||
| 1526 | break; | |||
| 1527 | } | |||
| 1528 | ||||
| 1529 | // See comment on the values above. | |||
| 1530 | // Note that we have a single-dword or sub-dword here, so if underaligned | |||
| 1531 | // it is a slowest possible access, hence returned value is 0. | |||
| 1532 | if (IsFast) | |||
| 1533 | *IsFast = (Alignment >= RequiredAlignment) ? Size : 0; | |||
| 1534 | ||||
| 1535 | return Alignment >= RequiredAlignment || | |||
| 1536 | Subtarget->hasUnalignedDSAccessEnabled(); | |||
| 1537 | } | |||
| 1538 | ||||
| 1539 | if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { | |||
| 1540 | bool AlignedBy4 = Alignment >= Align(4); | |||
| 1541 | if (IsFast) | |||
| 1542 | *IsFast = AlignedBy4; | |||
| 1543 | ||||
| 1544 | return AlignedBy4 || | |||
| 1545 | Subtarget->enableFlatScratch() || | |||
| 1546 | Subtarget->hasUnalignedScratchAccess(); | |||
| 1547 | } | |||
| 1548 | ||||
| 1549 | // FIXME: We have to be conservative here and assume that flat operations | |||
| 1550 | // will access scratch. If we had access to the IR function, then we | |||
| 1551 | // could determine if any private memory was used in the function. | |||
| 1552 | if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && | |||
| 1553 | !Subtarget->hasUnalignedScratchAccess()) { | |||
| 1554 | bool AlignedBy4 = Alignment >= Align(4); | |||
| 1555 | if (IsFast) | |||
| 1556 | *IsFast = AlignedBy4; | |||
| 1557 | ||||
| 1558 | return AlignedBy4; | |||
| 1559 | } | |||
| 1560 | ||||
| 1561 | // So long as they are correct, wide global memory operations perform better | |||
| 1562 | // than multiple smaller memory ops -- even when misaligned | |||
| 1563 | if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) { | |||
| 1564 | if (IsFast) | |||
| 1565 | *IsFast = Size; | |||
| 1566 | ||||
| 1567 | return Alignment >= Align(4) || | |||
| 1568 | Subtarget->hasUnalignedBufferAccessEnabled(); | |||
| 1569 | } | |||
| 1570 | ||||
| 1571 | // Smaller than dword value must be aligned. | |||
| 1572 | if (Size < 32) | |||
| 1573 | return false; | |||
| 1574 | ||||
| 1575 | // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the | |||
| 1576 | // byte-address are ignored, thus forcing Dword alignment. | |||
| 1577 | // This applies to private, global, and constant memory. | |||
| 1578 | if (IsFast) | |||
| 1579 | *IsFast = 1; | |||
| 1580 | ||||
| 1581 | return Size >= 32 && Alignment >= Align(4); | |||
| 1582 | } | |||
| 1583 | ||||
| 1584 | bool SITargetLowering::allowsMisalignedMemoryAccesses( | |||
| 1585 | EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, | |||
| 1586 | unsigned *IsFast) const { | |||
| 1587 | return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, | |||
| 1588 | Alignment, Flags, IsFast); | |||
| 1589 | } | |||
| 1590 | ||||
| 1591 | EVT SITargetLowering::getOptimalMemOpType( | |||
| 1592 | const MemOp &Op, const AttributeList &FuncAttributes) const { | |||
| 1593 | // FIXME: Should account for address space here. | |||
| 1594 | ||||
| 1595 | // The default fallback uses the private pointer size as a guess for a type to | |||
| 1596 | // use. Make sure we switch these to 64-bit accesses. | |||
| 1597 | ||||
| 1598 | if (Op.size() >= 16 && | |||
| 1599 | Op.isDstAligned(Align(4))) // XXX: Should only do for global | |||
| 1600 | return MVT::v4i32; | |||
| 1601 | ||||
| 1602 | if (Op.size() >= 8 && Op.isDstAligned(Align(4))) | |||
| 1603 | return MVT::v2i32; | |||
| 1604 | ||||
| 1605 | // Use the default. | |||
| 1606 | return MVT::Other; | |||
| 1607 | } | |||
| 1608 | ||||
| 1609 | bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { | |||
| 1610 | const MemSDNode *MemNode = cast<MemSDNode>(N); | |||
| 1611 | return MemNode->getMemOperand()->getFlags() & MONoClobber; | |||
| 1612 | } | |||
| 1613 | ||||
| 1614 | bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { | |||
| 1615 | return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || | |||
| 1616 | AS == AMDGPUAS::PRIVATE_ADDRESS; | |||
| 1617 | } | |||
| 1618 | ||||
| 1619 | bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, | |||
| 1620 | unsigned DestAS) const { | |||
| 1621 | // Flat -> private/local is a simple truncate. | |||
| 1622 | // Flat -> global is no-op | |||
| 1623 | if (SrcAS == AMDGPUAS::FLAT_ADDRESS) | |||
| 1624 | return true; | |||
| 1625 | ||||
| 1626 | const GCNTargetMachine &TM = | |||
| 1627 | static_cast<const GCNTargetMachine &>(getTargetMachine()); | |||
| 1628 | return TM.isNoopAddrSpaceCast(SrcAS, DestAS); | |||
| 1629 | } | |||
| 1630 | ||||
| 1631 | bool SITargetLowering::isMemOpUniform(const SDNode *N) const { | |||
| 1632 | const MemSDNode *MemNode = cast<MemSDNode>(N); | |||
| 1633 | ||||
| 1634 | return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); | |||
| 1635 | } | |||
| 1636 | ||||
| 1637 | TargetLoweringBase::LegalizeTypeAction | |||
| 1638 | SITargetLowering::getPreferredVectorAction(MVT VT) const { | |||
| 1639 | if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && | |||
| 1640 | VT.getScalarType().bitsLE(MVT::i16)) | |||
| 1641 | return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; | |||
| 1642 | return TargetLoweringBase::getPreferredVectorAction(VT); | |||
| 1643 | } | |||
| 1644 | ||||
| 1645 | bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, | |||
| 1646 | Type *Ty) const { | |||
| 1647 | // FIXME: Could be smarter if called for vector constants. | |||
| 1648 | return true; | |||
| 1649 | } | |||
| 1650 | ||||
| 1651 | bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, | |||
| 1652 | unsigned Index) const { | |||
| 1653 | if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) | |||
| 1654 | return false; | |||
| 1655 | ||||
| 1656 | // TODO: Add more cases that are cheap. | |||
| 1657 | return Index == 0; | |||
| 1658 | } | |||
| 1659 | ||||
| 1660 | bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { | |||
| 1661 | if (Subtarget->has16BitInsts() && VT == MVT::i16) { | |||
| 1662 | switch (Op) { | |||
| 1663 | case ISD::LOAD: | |||
| 1664 | case ISD::STORE: | |||
| 1665 | ||||
| 1666 | // These operations are done with 32-bit instructions anyway. | |||
| 1667 | case ISD::AND: | |||
| 1668 | case ISD::OR: | |||
| 1669 | case ISD::XOR: | |||
| 1670 | case ISD::SELECT: | |||
| 1671 | // TODO: Extensions? | |||
| 1672 | return true; | |||
| 1673 | default: | |||
| 1674 | return false; | |||
| 1675 | } | |||
| 1676 | } | |||
| 1677 | ||||
| 1678 | // SimplifySetCC uses this function to determine whether or not it should | |||
| 1679 | // create setcc with i1 operands. We don't have instructions for i1 setcc. | |||
| 1680 | if (VT == MVT::i1 && Op == ISD::SETCC) | |||
| 1681 | return false; | |||
| 1682 | ||||
| 1683 | return TargetLowering::isTypeDesirableForOp(Op, VT); | |||
| 1684 | } | |||
| 1685 | ||||
| 1686 | SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, | |||
| 1687 | const SDLoc &SL, | |||
| 1688 | SDValue Chain, | |||
| 1689 | uint64_t Offset) const { | |||
| 1690 | const DataLayout &DL = DAG.getDataLayout(); | |||
| 1691 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 1692 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 1693 | ||||
| 1694 | const ArgDescriptor *InputPtrReg; | |||
| 1695 | const TargetRegisterClass *RC; | |||
| 1696 | LLT ArgTy; | |||
| 1697 | MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); | |||
| 1698 | ||||
| 1699 | std::tie(InputPtrReg, RC, ArgTy) = | |||
| 1700 | Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); | |||
| 1701 | ||||
| 1702 | // We may not have the kernarg segment argument if we have no kernel | |||
| 1703 | // arguments. | |||
| 1704 | if (!InputPtrReg) | |||
| 1705 | return DAG.getConstant(0, SL, PtrVT); | |||
| 1706 | ||||
| 1707 | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | |||
| 1708 | SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, | |||
| 1709 | MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); | |||
| 1710 | ||||
| 1711 | return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); | |||
| 1712 | } | |||
| 1713 | ||||
| 1714 | SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, | |||
| 1715 | const SDLoc &SL) const { | |||
| 1716 | uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), | |||
| 1717 | FIRST_IMPLICIT); | |||
| 1718 | return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); | |||
| 1719 | } | |||
| 1720 | ||||
| 1721 | SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, | |||
| 1722 | const SDLoc &SL) const { | |||
| 1723 | ||||
| 1724 | Function &F = DAG.getMachineFunction().getFunction(); | |||
| 1725 | std::optional<uint32_t> KnownSize = | |||
| 1726 | AMDGPUMachineFunction::getLDSKernelIdMetadata(F); | |||
| 1727 | if (KnownSize.has_value()) | |||
| 1728 | return DAG.getConstant(*KnownSize, SL, MVT::i32); | |||
| 1729 | return SDValue(); | |||
| 1730 | } | |||
| 1731 | ||||
| 1732 | SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, | |||
| 1733 | const SDLoc &SL, SDValue Val, | |||
| 1734 | bool Signed, | |||
| 1735 | const ISD::InputArg *Arg) const { | |||
| 1736 | // First, if it is a widened vector, narrow it. | |||
| 1737 | if (VT.isVector() && | |||
| 1738 | VT.getVectorNumElements() != MemVT.getVectorNumElements()) { | |||
| 1739 | EVT NarrowedVT = | |||
| 1740 | EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), | |||
| 1741 | VT.getVectorNumElements()); | |||
| 1742 | Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, | |||
| 1743 | DAG.getConstant(0, SL, MVT::i32)); | |||
| 1744 | } | |||
| 1745 | ||||
| 1746 | // Then convert the vector elements or scalar value. | |||
| 1747 | if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && | |||
| 1748 | VT.bitsLT(MemVT)) { | |||
| 1749 | unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; | |||
| 1750 | Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); | |||
| 1751 | } | |||
| 1752 | ||||
| 1753 | if (MemVT.isFloatingPoint()) | |||
| 1754 | Val = getFPExtOrFPRound(DAG, Val, SL, VT); | |||
| 1755 | else if (Signed) | |||
| 1756 | Val = DAG.getSExtOrTrunc(Val, SL, VT); | |||
| 1757 | else | |||
| 1758 | Val = DAG.getZExtOrTrunc(Val, SL, VT); | |||
| 1759 | ||||
| 1760 | return Val; | |||
| 1761 | } | |||
| 1762 | ||||
| 1763 | SDValue SITargetLowering::lowerKernargMemParameter( | |||
| 1764 | SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, | |||
| 1765 | uint64_t Offset, Align Alignment, bool Signed, | |||
| 1766 | const ISD::InputArg *Arg) const { | |||
| 1767 | MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); | |||
| 1768 | ||||
| 1769 | // Try to avoid using an extload by loading earlier than the argument address, | |||
| 1770 | // and extracting the relevant bits. The load should hopefully be merged with | |||
| 1771 | // the previous argument. | |||
| 1772 | if (MemVT.getStoreSize() < 4 && Alignment < 4) { | |||
| 1773 | // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). | |||
| 1774 | int64_t AlignDownOffset = alignDown(Offset, 4); | |||
| 1775 | int64_t OffsetDiff = Offset - AlignDownOffset; | |||
| 1776 | ||||
| 1777 | EVT IntVT = MemVT.changeTypeToInteger(); | |||
| 1778 | ||||
| 1779 | // TODO: If we passed in the base kernel offset we could have a better | |||
| 1780 | // alignment than 4, but we don't really need it. | |||
| 1781 | SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); | |||
| 1782 | SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), | |||
| 1783 | MachineMemOperand::MODereferenceable | | |||
| 1784 | MachineMemOperand::MOInvariant); | |||
| 1785 | ||||
| 1786 | SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); | |||
| 1787 | SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); | |||
| 1788 | ||||
| 1789 | SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); | |||
| 1790 | ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); | |||
| 1791 | ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); | |||
| 1792 | ||||
| 1793 | ||||
| 1794 | return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); | |||
| 1795 | } | |||
| 1796 | ||||
| 1797 | SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); | |||
| 1798 | SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, | |||
| 1799 | MachineMemOperand::MODereferenceable | | |||
| 1800 | MachineMemOperand::MOInvariant); | |||
| 1801 | ||||
| 1802 | SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); | |||
| 1803 | return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); | |||
| 1804 | } | |||
| 1805 | ||||
| 1806 | SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, | |||
| 1807 | const SDLoc &SL, SDValue Chain, | |||
| 1808 | const ISD::InputArg &Arg) const { | |||
| 1809 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 1810 | MachineFrameInfo &MFI = MF.getFrameInfo(); | |||
| 1811 | ||||
| 1812 | if (Arg.Flags.isByVal()) { | |||
| 1813 | unsigned Size = Arg.Flags.getByValSize(); | |||
| 1814 | int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); | |||
| 1815 | return DAG.getFrameIndex(FrameIdx, MVT::i32); | |||
| 1816 | } | |||
| 1817 | ||||
| 1818 | unsigned ArgOffset = VA.getLocMemOffset(); | |||
| 1819 | unsigned ArgSize = VA.getValVT().getStoreSize(); | |||
| 1820 | ||||
| 1821 | int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); | |||
| 1822 | ||||
| 1823 | // Create load nodes to retrieve arguments from the stack. | |||
| 1824 | SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); | |||
| 1825 | SDValue ArgValue; | |||
| 1826 | ||||
| 1827 | // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) | |||
| 1828 | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | |||
| 1829 | MVT MemVT = VA.getValVT(); | |||
| 1830 | ||||
| 1831 | switch (VA.getLocInfo()) { | |||
| 1832 | default: | |||
| 1833 | break; | |||
| 1834 | case CCValAssign::BCvt: | |||
| 1835 | MemVT = VA.getLocVT(); | |||
| 1836 | break; | |||
| 1837 | case CCValAssign::SExt: | |||
| 1838 | ExtType = ISD::SEXTLOAD; | |||
| 1839 | break; | |||
| 1840 | case CCValAssign::ZExt: | |||
| 1841 | ExtType = ISD::ZEXTLOAD; | |||
| 1842 | break; | |||
| 1843 | case CCValAssign::AExt: | |||
| 1844 | ExtType = ISD::EXTLOAD; | |||
| 1845 | break; | |||
| 1846 | } | |||
| 1847 | ||||
| 1848 | ArgValue = DAG.getExtLoad( | |||
| 1849 | ExtType, SL, VA.getLocVT(), Chain, FIN, | |||
| 1850 | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), | |||
| 1851 | MemVT); | |||
| 1852 | return ArgValue; | |||
| 1853 | } | |||
| 1854 | ||||
| 1855 | SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, | |||
| 1856 | const SIMachineFunctionInfo &MFI, | |||
| 1857 | EVT VT, | |||
| 1858 | AMDGPUFunctionArgInfo::PreloadedValue PVID) const { | |||
| 1859 | const ArgDescriptor *Reg; | |||
| 1860 | const TargetRegisterClass *RC; | |||
| 1861 | LLT Ty; | |||
| 1862 | ||||
| 1863 | std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); | |||
| 1864 | if (!Reg) { | |||
| 1865 | if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { | |||
| 1866 | // It's possible for a kernarg intrinsic call to appear in a kernel with | |||
| 1867 | // no allocated segment, in which case we do not add the user sgpr | |||
| 1868 | // argument, so just return null. | |||
| 1869 | return DAG.getConstant(0, SDLoc(), VT); | |||
| 1870 | } | |||
| 1871 | ||||
| 1872 | // It's undefined behavior if a function marked with the amdgpu-no-* | |||
| 1873 | // attributes uses the corresponding intrinsic. | |||
| 1874 | return DAG.getUNDEF(VT); | |||
| 1875 | } | |||
| 1876 | ||||
| 1877 | return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg); | |||
| 1878 | } | |||
| 1879 | ||||
| 1880 | static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, | |||
| 1881 | CallingConv::ID CallConv, | |||
| 1882 | ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, | |||
| 1883 | FunctionType *FType, | |||
| 1884 | SIMachineFunctionInfo *Info) { | |||
| 1885 | for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { | |||
| 1886 | const ISD::InputArg *Arg = &Ins[I]; | |||
| 1887 | ||||
| 1888 | assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&(static_cast <bool> ((!Arg->VT.isVector() || Arg-> VT.getScalarSizeInBits() == 16) && "vector type argument should have been split" ) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"vector type argument should have been split\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1889, __extension__ __PRETTY_FUNCTION__)) | |||
| 1889 | "vector type argument should have been split")(static_cast <bool> ((!Arg->VT.isVector() || Arg-> VT.getScalarSizeInBits() == 16) && "vector type argument should have been split" ) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"vector type argument should have been split\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1889, __extension__ __PRETTY_FUNCTION__)); | |||
| 1890 | ||||
| 1891 | // First check if it's a PS input addr. | |||
| 1892 | if (CallConv == CallingConv::AMDGPU_PS && | |||
| 1893 | !Arg->Flags.isInReg() && PSInputNum <= 15) { | |||
| 1894 | bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); | |||
| 1895 | ||||
| 1896 | // Inconveniently only the first part of the split is marked as isSplit, | |||
| 1897 | // so skip to the end. We only want to increment PSInputNum once for the | |||
| 1898 | // entire split argument. | |||
| 1899 | if (Arg->Flags.isSplit()) { | |||
| 1900 | while (!Arg->Flags.isSplitEnd()) { | |||
| 1901 | assert((!Arg->VT.isVector() ||(static_cast <bool> ((!Arg->VT.isVector() || Arg-> VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type" ) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1903, __extension__ __PRETTY_FUNCTION__)) | |||
| 1902 | Arg->VT.getScalarSizeInBits() == 16) &&(static_cast <bool> ((!Arg->VT.isVector() || Arg-> VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type" ) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1903, __extension__ __PRETTY_FUNCTION__)) | |||
| 1903 | "unexpected vector split in ps argument type")(static_cast <bool> ((!Arg->VT.isVector() || Arg-> VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type" ) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1903, __extension__ __PRETTY_FUNCTION__)); | |||
| 1904 | if (!SkipArg) | |||
| 1905 | Splits.push_back(*Arg); | |||
| 1906 | Arg = &Ins[++I]; | |||
| 1907 | } | |||
| 1908 | } | |||
| 1909 | ||||
| 1910 | if (SkipArg) { | |||
| 1911 | // We can safely skip PS inputs. | |||
| 1912 | Skipped.set(Arg->getOrigArgIndex()); | |||
| 1913 | ++PSInputNum; | |||
| 1914 | continue; | |||
| 1915 | } | |||
| 1916 | ||||
| 1917 | Info->markPSInputAllocated(PSInputNum); | |||
| 1918 | if (Arg->Used) | |||
| 1919 | Info->markPSInputEnabled(PSInputNum); | |||
| 1920 | ||||
| 1921 | ++PSInputNum; | |||
| 1922 | } | |||
| 1923 | ||||
| 1924 | Splits.push_back(*Arg); | |||
| 1925 | } | |||
| 1926 | } | |||
| 1927 | ||||
| 1928 | // Allocate special inputs passed in VGPRs. | |||
| 1929 | void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, | |||
| 1930 | MachineFunction &MF, | |||
| 1931 | const SIRegisterInfo &TRI, | |||
| 1932 | SIMachineFunctionInfo &Info) const { | |||
| 1933 | const LLT S32 = LLT::scalar(32); | |||
| 1934 | MachineRegisterInfo &MRI = MF.getRegInfo(); | |||
| 1935 | ||||
| 1936 | if (Info.hasWorkItemIDX()) { | |||
| 1937 | Register Reg = AMDGPU::VGPR0; | |||
| 1938 | MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); | |||
| 1939 | ||||
| 1940 | CCInfo.AllocateReg(Reg); | |||
| 1941 | unsigned Mask = (Subtarget->hasPackedTID() && | |||
| 1942 | Info.hasWorkItemIDY()) ? 0x3ff : ~0u; | |||
| 1943 | Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); | |||
| 1944 | } | |||
| 1945 | ||||
| 1946 | if (Info.hasWorkItemIDY()) { | |||
| 1947 | assert(Info.hasWorkItemIDX())(static_cast <bool> (Info.hasWorkItemIDX()) ? void (0) : __assert_fail ("Info.hasWorkItemIDX()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 1947, __extension__ __PRETTY_FUNCTION__)); | |||
| 1948 | if (Subtarget->hasPackedTID()) { | |||
| 1949 | Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, | |||
| 1950 | 0x3ff << 10)); | |||
| 1951 | } else { | |||
| 1952 | unsigned Reg = AMDGPU::VGPR1; | |||
| 1953 | MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); | |||
| 1954 | ||||
| 1955 | CCInfo.AllocateReg(Reg); | |||
| 1956 | Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); | |||
| 1957 | } | |||
| 1958 | } | |||
| 1959 | ||||
| 1960 | if (Info.hasWorkItemIDZ()) { | |||
| 1961 | assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY())(static_cast <bool> (Info.hasWorkItemIDX() && Info .hasWorkItemIDY()) ? void (0) : __assert_fail ("Info.hasWorkItemIDX() && Info.hasWorkItemIDY()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 1961, __extension__ __PRETTY_FUNCTION__)); | |||
| 1962 | if (Subtarget->hasPackedTID()) { | |||
| 1963 | Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, | |||
| 1964 | 0x3ff << 20)); | |||
| 1965 | } else { | |||
| 1966 | unsigned Reg = AMDGPU::VGPR2; | |||
| 1967 | MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); | |||
| 1968 | ||||
| 1969 | CCInfo.AllocateReg(Reg); | |||
| 1970 | Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); | |||
| 1971 | } | |||
| 1972 | } | |||
| 1973 | } | |||
| 1974 | ||||
| 1975 | // Try to allocate a VGPR at the end of the argument list, or if no argument | |||
| 1976 | // VGPRs are left allocating a stack slot. | |||
| 1977 | // If \p Mask is is given it indicates bitfield position in the register. | |||
| 1978 | // If \p Arg is given use it with new ]p Mask instead of allocating new. | |||
| 1979 | static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, | |||
| 1980 | ArgDescriptor Arg = ArgDescriptor()) { | |||
| 1981 | if (Arg.isSet()) | |||
| 1982 | return ArgDescriptor::createArg(Arg, Mask); | |||
| 1983 | ||||
| 1984 | ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); | |||
| 1985 | unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); | |||
| 1986 | if (RegIdx == ArgVGPRs.size()) { | |||
| 1987 | // Spill to stack required. | |||
| 1988 | int64_t Offset = CCInfo.AllocateStack(4, Align(4)); | |||
| 1989 | ||||
| 1990 | return ArgDescriptor::createStack(Offset, Mask); | |||
| 1991 | } | |||
| 1992 | ||||
| 1993 | unsigned Reg = ArgVGPRs[RegIdx]; | |||
| 1994 | Reg = CCInfo.AllocateReg(Reg); | |||
| 1995 | assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void ( 0) : __assert_fail ("Reg != AMDGPU::NoRegister", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 1995, __extension__ __PRETTY_FUNCTION__)); | |||
| 1996 | ||||
| 1997 | MachineFunction &MF = CCInfo.getMachineFunction(); | |||
| 1998 | Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); | |||
| 1999 | MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); | |||
| 2000 | return ArgDescriptor::createRegister(Reg, Mask); | |||
| 2001 | } | |||
| 2002 | ||||
| 2003 | static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, | |||
| 2004 | const TargetRegisterClass *RC, | |||
| 2005 | unsigned NumArgRegs) { | |||
| 2006 | ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32); | |||
| 2007 | unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); | |||
| 2008 | if (RegIdx == ArgSGPRs.size()) | |||
| 2009 | report_fatal_error("ran out of SGPRs for arguments"); | |||
| 2010 | ||||
| 2011 | unsigned Reg = ArgSGPRs[RegIdx]; | |||
| 2012 | Reg = CCInfo.AllocateReg(Reg); | |||
| 2013 | assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void ( 0) : __assert_fail ("Reg != AMDGPU::NoRegister", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2013, __extension__ __PRETTY_FUNCTION__)); | |||
| 2014 | ||||
| 2015 | MachineFunction &MF = CCInfo.getMachineFunction(); | |||
| 2016 | MF.addLiveIn(Reg, RC); | |||
| 2017 | return ArgDescriptor::createRegister(Reg); | |||
| 2018 | } | |||
| 2019 | ||||
| 2020 | // If this has a fixed position, we still should allocate the register in the | |||
| 2021 | // CCInfo state. Technically we could get away with this for values passed | |||
| 2022 | // outside of the normal argument range. | |||
| 2023 | static void allocateFixedSGPRInputImpl(CCState &CCInfo, | |||
| 2024 | const TargetRegisterClass *RC, | |||
| 2025 | MCRegister Reg) { | |||
| 2026 | Reg = CCInfo.AllocateReg(Reg); | |||
| 2027 | assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void ( 0) : __assert_fail ("Reg != AMDGPU::NoRegister", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2027, __extension__ __PRETTY_FUNCTION__)); | |||
| 2028 | MachineFunction &MF = CCInfo.getMachineFunction(); | |||
| 2029 | MF.addLiveIn(Reg, RC); | |||
| 2030 | } | |||
| 2031 | ||||
| 2032 | static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { | |||
| 2033 | if (Arg) { | |||
| 2034 | allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, | |||
| 2035 | Arg.getRegister()); | |||
| 2036 | } else | |||
| 2037 | Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); | |||
| 2038 | } | |||
| 2039 | ||||
| 2040 | static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { | |||
| 2041 | if (Arg) { | |||
| 2042 | allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, | |||
| 2043 | Arg.getRegister()); | |||
| 2044 | } else | |||
| 2045 | Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); | |||
| 2046 | } | |||
| 2047 | ||||
| 2048 | /// Allocate implicit function VGPR arguments at the end of allocated user | |||
| 2049 | /// arguments. | |||
| 2050 | void SITargetLowering::allocateSpecialInputVGPRs( | |||
| 2051 | CCState &CCInfo, MachineFunction &MF, | |||
| 2052 | const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { | |||
| 2053 | const unsigned Mask = 0x3ff; | |||
| 2054 | ArgDescriptor Arg; | |||
| 2055 | ||||
| 2056 | if (Info.hasWorkItemIDX()) { | |||
| 2057 | Arg = allocateVGPR32Input(CCInfo, Mask); | |||
| 2058 | Info.setWorkItemIDX(Arg); | |||
| 2059 | } | |||
| 2060 | ||||
| 2061 | if (Info.hasWorkItemIDY()) { | |||
| 2062 | Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); | |||
| 2063 | Info.setWorkItemIDY(Arg); | |||
| 2064 | } | |||
| 2065 | ||||
| 2066 | if (Info.hasWorkItemIDZ()) | |||
| 2067 | Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); | |||
| 2068 | } | |||
| 2069 | ||||
| 2070 | /// Allocate implicit function VGPR arguments in fixed registers. | |||
| 2071 | void SITargetLowering::allocateSpecialInputVGPRsFixed( | |||
| 2072 | CCState &CCInfo, MachineFunction &MF, | |||
| 2073 | const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { | |||
| 2074 | Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); | |||
| 2075 | if (!Reg) | |||
| 2076 | report_fatal_error("failed to allocated VGPR for implicit arguments"); | |||
| 2077 | ||||
| 2078 | const unsigned Mask = 0x3ff; | |||
| 2079 | Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); | |||
| 2080 | Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); | |||
| 2081 | Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); | |||
| 2082 | } | |||
| 2083 | ||||
| 2084 | void SITargetLowering::allocateSpecialInputSGPRs( | |||
| 2085 | CCState &CCInfo, | |||
| 2086 | MachineFunction &MF, | |||
| 2087 | const SIRegisterInfo &TRI, | |||
| 2088 | SIMachineFunctionInfo &Info) const { | |||
| 2089 | auto &ArgInfo = Info.getArgInfo(); | |||
| 2090 | ||||
| 2091 | // TODO: Unify handling with private memory pointers. | |||
| 2092 | if (Info.hasDispatchPtr()) | |||
| 2093 | allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); | |||
| 2094 | ||||
| 2095 | const Module *M = MF.getFunction().getParent(); | |||
| 2096 | if (Info.hasQueuePtr() && | |||
| 2097 | AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) | |||
| 2098 | allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); | |||
| 2099 | ||||
| 2100 | // Implicit arg ptr takes the place of the kernarg segment pointer. This is a | |||
| 2101 | // constant offset from the kernarg segment. | |||
| 2102 | if (Info.hasImplicitArgPtr()) | |||
| 2103 | allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); | |||
| 2104 | ||||
| 2105 | if (Info.hasDispatchID()) | |||
| 2106 | allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); | |||
| 2107 | ||||
| 2108 | // flat_scratch_init is not applicable for non-kernel functions. | |||
| 2109 | ||||
| 2110 | if (Info.hasWorkGroupIDX()) | |||
| 2111 | allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); | |||
| 2112 | ||||
| 2113 | if (Info.hasWorkGroupIDY()) | |||
| 2114 | allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); | |||
| 2115 | ||||
| 2116 | if (Info.hasWorkGroupIDZ()) | |||
| 2117 | allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); | |||
| 2118 | ||||
| 2119 | if (Info.hasLDSKernelId()) | |||
| 2120 | allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); | |||
| 2121 | } | |||
| 2122 | ||||
| 2123 | // Allocate special inputs passed in user SGPRs. | |||
| 2124 | void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, | |||
| 2125 | MachineFunction &MF, | |||
| 2126 | const SIRegisterInfo &TRI, | |||
| 2127 | SIMachineFunctionInfo &Info) const { | |||
| 2128 | if (Info.hasImplicitBufferPtr()) { | |||
| 2129 | Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); | |||
| 2130 | MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); | |||
| 2131 | CCInfo.AllocateReg(ImplicitBufferPtrReg); | |||
| 2132 | } | |||
| 2133 | ||||
| 2134 | // FIXME: How should these inputs interact with inreg / custom SGPR inputs? | |||
| 2135 | if (Info.hasPrivateSegmentBuffer()) { | |||
| 2136 | Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); | |||
| 2137 | MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); | |||
| 2138 | CCInfo.AllocateReg(PrivateSegmentBufferReg); | |||
| 2139 | } | |||
| 2140 | ||||
| 2141 | if (Info.hasDispatchPtr()) { | |||
| 2142 | Register DispatchPtrReg = Info.addDispatchPtr(TRI); | |||
| 2143 | MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); | |||
| 2144 | CCInfo.AllocateReg(DispatchPtrReg); | |||
| 2145 | } | |||
| 2146 | ||||
| 2147 | const Module *M = MF.getFunction().getParent(); | |||
| 2148 | if (Info.hasQueuePtr() && | |||
| 2149 | AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) { | |||
| 2150 | Register QueuePtrReg = Info.addQueuePtr(TRI); | |||
| 2151 | MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); | |||
| 2152 | CCInfo.AllocateReg(QueuePtrReg); | |||
| 2153 | } | |||
| 2154 | ||||
| 2155 | if (Info.hasKernargSegmentPtr()) { | |||
| 2156 | MachineRegisterInfo &MRI = MF.getRegInfo(); | |||
| 2157 | Register InputPtrReg = Info.addKernargSegmentPtr(TRI); | |||
| 2158 | CCInfo.AllocateReg(InputPtrReg); | |||
| 2159 | ||||
| 2160 | Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); | |||
| 2161 | MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); | |||
| 2162 | } | |||
| 2163 | ||||
| 2164 | if (Info.hasDispatchID()) { | |||
| 2165 | Register DispatchIDReg = Info.addDispatchID(TRI); | |||
| 2166 | MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); | |||
| 2167 | CCInfo.AllocateReg(DispatchIDReg); | |||
| 2168 | } | |||
| 2169 | ||||
| 2170 | if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { | |||
| 2171 | Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); | |||
| 2172 | MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); | |||
| 2173 | CCInfo.AllocateReg(FlatScratchInitReg); | |||
| 2174 | } | |||
| 2175 | ||||
| 2176 | if (Info.hasLDSKernelId()) { | |||
| 2177 | Register Reg = Info.addLDSKernelId(); | |||
| 2178 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); | |||
| 2179 | CCInfo.AllocateReg(Reg); | |||
| 2180 | } | |||
| 2181 | ||||
| 2182 | // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read | |||
| 2183 | // these from the dispatch pointer. | |||
| 2184 | } | |||
| 2185 | ||||
| 2186 | // Allocate special input registers that are initialized per-wave. | |||
| 2187 | void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, | |||
| 2188 | MachineFunction &MF, | |||
| 2189 | SIMachineFunctionInfo &Info, | |||
| 2190 | CallingConv::ID CallConv, | |||
| 2191 | bool IsShader) const { | |||
| 2192 | bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs(); | |||
| 2193 | if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) { | |||
| 2194 | // Note: user SGPRs are handled by the front-end for graphics shaders | |||
| 2195 | // Pad up the used user SGPRs with dead inputs. | |||
| 2196 | ||||
| 2197 | // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately | |||
| 2198 | // before enabling architected SGPRs for workgroup IDs. | |||
| 2199 | assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget")(static_cast <bool> (!HasArchitectedSGPRs && "Unhandled feature for the subtarget" ) ? void (0) : __assert_fail ("!HasArchitectedSGPRs && \"Unhandled feature for the subtarget\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2199, __extension__ __PRETTY_FUNCTION__)); | |||
| 2200 | ||||
| 2201 | unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); | |||
| 2202 | // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to | |||
| 2203 | // rely on it to reach 16 since if we end up having no stack usage, it will | |||
| 2204 | // not really be added. | |||
| 2205 | unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + | |||
| 2206 | Info.hasWorkGroupIDY() + | |||
| 2207 | Info.hasWorkGroupIDZ() + | |||
| 2208 | Info.hasWorkGroupInfo(); | |||
| 2209 | for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { | |||
| 2210 | Register Reg = Info.addReservedUserSGPR(); | |||
| 2211 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); | |||
| 2212 | CCInfo.AllocateReg(Reg); | |||
| 2213 | } | |||
| 2214 | } | |||
| 2215 | ||||
| 2216 | if (Info.hasWorkGroupIDX()) { | |||
| 2217 | Register Reg = Info.addWorkGroupIDX(HasArchitectedSGPRs); | |||
| 2218 | if (!HasArchitectedSGPRs) | |||
| 2219 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); | |||
| 2220 | ||||
| 2221 | CCInfo.AllocateReg(Reg); | |||
| 2222 | } | |||
| 2223 | ||||
| 2224 | if (Info.hasWorkGroupIDY()) { | |||
| 2225 | Register Reg = Info.addWorkGroupIDY(HasArchitectedSGPRs); | |||
| 2226 | if (!HasArchitectedSGPRs) | |||
| 2227 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); | |||
| 2228 | ||||
| 2229 | CCInfo.AllocateReg(Reg); | |||
| 2230 | } | |||
| 2231 | ||||
| 2232 | if (Info.hasWorkGroupIDZ()) { | |||
| 2233 | Register Reg = Info.addWorkGroupIDZ(HasArchitectedSGPRs); | |||
| 2234 | if (!HasArchitectedSGPRs) | |||
| 2235 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); | |||
| 2236 | ||||
| 2237 | CCInfo.AllocateReg(Reg); | |||
| 2238 | } | |||
| 2239 | ||||
| 2240 | if (Info.hasWorkGroupInfo()) { | |||
| 2241 | Register Reg = Info.addWorkGroupInfo(); | |||
| 2242 | MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); | |||
| 2243 | CCInfo.AllocateReg(Reg); | |||
| 2244 | } | |||
| 2245 | ||||
| 2246 | if (Info.hasPrivateSegmentWaveByteOffset()) { | |||
| 2247 | // Scratch wave offset passed in system SGPR. | |||
| 2248 | unsigned PrivateSegmentWaveByteOffsetReg; | |||
| 2249 | ||||
| 2250 | if (IsShader) { | |||
| 2251 | PrivateSegmentWaveByteOffsetReg = | |||
| 2252 | Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); | |||
| 2253 | ||||
| 2254 | // This is true if the scratch wave byte offset doesn't have a fixed | |||
| 2255 | // location. | |||
| 2256 | if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { | |||
| 2257 | PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); | |||
| 2258 | Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); | |||
| 2259 | } | |||
| 2260 | } else | |||
| 2261 | PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); | |||
| 2262 | ||||
| 2263 | MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); | |||
| 2264 | CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); | |||
| 2265 | } | |||
| 2266 | ||||
| 2267 | assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||(static_cast <bool> (!Subtarget->hasUserSGPRInit16Bug () || IsShader || Info.getNumPreloadedSGPRs() >= 16) ? void (0) : __assert_fail ("!Subtarget->hasUserSGPRInit16Bug() || IsShader || Info.getNumPreloadedSGPRs() >= 16" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2268, __extension__ __PRETTY_FUNCTION__)) | |||
| 2268 | Info.getNumPreloadedSGPRs() >= 16)(static_cast <bool> (!Subtarget->hasUserSGPRInit16Bug () || IsShader || Info.getNumPreloadedSGPRs() >= 16) ? void (0) : __assert_fail ("!Subtarget->hasUserSGPRInit16Bug() || IsShader || Info.getNumPreloadedSGPRs() >= 16" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2268, __extension__ __PRETTY_FUNCTION__)); | |||
| 2269 | } | |||
| 2270 | ||||
| 2271 | static void reservePrivateMemoryRegs(const TargetMachine &TM, | |||
| 2272 | MachineFunction &MF, | |||
| 2273 | const SIRegisterInfo &TRI, | |||
| 2274 | SIMachineFunctionInfo &Info) { | |||
| 2275 | // Now that we've figured out where the scratch register inputs are, see if | |||
| 2276 | // should reserve the arguments and use them directly. | |||
| 2277 | MachineFrameInfo &MFI = MF.getFrameInfo(); | |||
| 2278 | bool HasStackObjects = MFI.hasStackObjects(); | |||
| 2279 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | |||
| 2280 | ||||
| 2281 | // Record that we know we have non-spill stack objects so we don't need to | |||
| 2282 | // check all stack objects later. | |||
| 2283 | if (HasStackObjects) | |||
| 2284 | Info.setHasNonSpillStackObjects(true); | |||
| 2285 | ||||
| 2286 | // Everything live out of a block is spilled with fast regalloc, so it's | |||
| 2287 | // almost certain that spilling will be required. | |||
| 2288 | if (TM.getOptLevel() == CodeGenOpt::None) | |||
| 2289 | HasStackObjects = true; | |||
| 2290 | ||||
| 2291 | // For now assume stack access is needed in any callee functions, so we need | |||
| 2292 | // the scratch registers to pass in. | |||
| 2293 | bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); | |||
| 2294 | ||||
| 2295 | if (!ST.enableFlatScratch()) { | |||
| 2296 | if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { | |||
| 2297 | // If we have stack objects, we unquestionably need the private buffer | |||
| 2298 | // resource. For the Code Object V2 ABI, this will be the first 4 user | |||
| 2299 | // SGPR inputs. We can reserve those and use them directly. | |||
| 2300 | ||||
| 2301 | Register PrivateSegmentBufferReg = | |||
| 2302 | Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); | |||
| 2303 | Info.setScratchRSrcReg(PrivateSegmentBufferReg); | |||
| 2304 | } else { | |||
| 2305 | unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); | |||
| 2306 | // We tentatively reserve the last registers (skipping the last registers | |||
| 2307 | // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, | |||
| 2308 | // we'll replace these with the ones immediately after those which were | |||
| 2309 | // really allocated. In the prologue copies will be inserted from the | |||
| 2310 | // argument to these reserved registers. | |||
| 2311 | ||||
| 2312 | // Without HSA, relocations are used for the scratch pointer and the | |||
| 2313 | // buffer resource setup is always inserted in the prologue. Scratch wave | |||
| 2314 | // offset is still in an input SGPR. | |||
| 2315 | Info.setScratchRSrcReg(ReservedBufferReg); | |||
| 2316 | } | |||
| 2317 | } | |||
| 2318 | ||||
| 2319 | MachineRegisterInfo &MRI = MF.getRegInfo(); | |||
| 2320 | ||||
| 2321 | // For entry functions we have to set up the stack pointer if we use it, | |||
| 2322 | // whereas non-entry functions get this "for free". This means there is no | |||
| 2323 | // intrinsic advantage to using S32 over S34 in cases where we do not have | |||
| 2324 | // calls but do need a frame pointer (i.e. if we are requested to have one | |||
| 2325 | // because frame pointer elimination is disabled). To keep things simple we | |||
| 2326 | // only ever use S32 as the call ABI stack pointer, and so using it does not | |||
| 2327 | // imply we need a separate frame pointer. | |||
| 2328 | // | |||
| 2329 | // Try to use s32 as the SP, but move it if it would interfere with input | |||
| 2330 | // arguments. This won't work with calls though. | |||
| 2331 | // | |||
| 2332 | // FIXME: Move SP to avoid any possible inputs, or find a way to spill input | |||
| 2333 | // registers. | |||
| 2334 | if (!MRI.isLiveIn(AMDGPU::SGPR32)) { | |||
| 2335 | Info.setStackPtrOffsetReg(AMDGPU::SGPR32); | |||
| 2336 | } else { | |||
| 2337 | assert(AMDGPU::isShader(MF.getFunction().getCallingConv()))(static_cast <bool> (AMDGPU::isShader(MF.getFunction(). getCallingConv())) ? void (0) : __assert_fail ("AMDGPU::isShader(MF.getFunction().getCallingConv())" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2337, __extension__ __PRETTY_FUNCTION__)); | |||
| 2338 | ||||
| 2339 | if (MFI.hasCalls()) | |||
| 2340 | report_fatal_error("call in graphics shader with too many input SGPRs"); | |||
| 2341 | ||||
| 2342 | for (unsigned Reg : AMDGPU::SGPR_32RegClass) { | |||
| 2343 | if (!MRI.isLiveIn(Reg)) { | |||
| 2344 | Info.setStackPtrOffsetReg(Reg); | |||
| 2345 | break; | |||
| 2346 | } | |||
| 2347 | } | |||
| 2348 | ||||
| 2349 | if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) | |||
| 2350 | report_fatal_error("failed to find register for SP"); | |||
| 2351 | } | |||
| 2352 | ||||
| 2353 | // hasFP should be accurate for entry functions even before the frame is | |||
| 2354 | // finalized, because it does not rely on the known stack size, only | |||
| 2355 | // properties like whether variable sized objects are present. | |||
| 2356 | if (ST.getFrameLowering()->hasFP(MF)) { | |||
| 2357 | Info.setFrameOffsetReg(AMDGPU::SGPR33); | |||
| 2358 | } | |||
| 2359 | } | |||
| 2360 | ||||
| 2361 | bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { | |||
| 2362 | const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); | |||
| 2363 | return !Info->isEntryFunction(); | |||
| 2364 | } | |||
| 2365 | ||||
| 2366 | void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { | |||
| 2367 | ||||
| 2368 | } | |||
| 2369 | ||||
| 2370 | void SITargetLowering::insertCopiesSplitCSR( | |||
| 2371 | MachineBasicBlock *Entry, | |||
| 2372 | const SmallVectorImpl<MachineBasicBlock *> &Exits) const { | |||
| 2373 | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | |||
| 2374 | ||||
| 2375 | const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); | |||
| 2376 | if (!IStart) | |||
| 2377 | return; | |||
| 2378 | ||||
| 2379 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | |||
| 2380 | MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); | |||
| 2381 | MachineBasicBlock::iterator MBBI = Entry->begin(); | |||
| 2382 | for (const MCPhysReg *I = IStart; *I; ++I) { | |||
| 2383 | const TargetRegisterClass *RC = nullptr; | |||
| 2384 | if (AMDGPU::SReg_64RegClass.contains(*I)) | |||
| 2385 | RC = &AMDGPU::SGPR_64RegClass; | |||
| 2386 | else if (AMDGPU::SReg_32RegClass.contains(*I)) | |||
| 2387 | RC = &AMDGPU::SGPR_32RegClass; | |||
| 2388 | else | |||
| 2389 | llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2389); | |||
| 2390 | ||||
| 2391 | Register NewVR = MRI->createVirtualRegister(RC); | |||
| 2392 | // Create copy from CSR to a virtual register. | |||
| 2393 | Entry->addLiveIn(*I); | |||
| 2394 | BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) | |||
| 2395 | .addReg(*I); | |||
| 2396 | ||||
| 2397 | // Insert the copy-back instructions right before the terminator. | |||
| 2398 | for (auto *Exit : Exits) | |||
| 2399 | BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), | |||
| 2400 | TII->get(TargetOpcode::COPY), *I) | |||
| 2401 | .addReg(NewVR); | |||
| 2402 | } | |||
| 2403 | } | |||
| 2404 | ||||
| 2405 | SDValue SITargetLowering::LowerFormalArguments( | |||
| 2406 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | |||
| 2407 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | |||
| 2408 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | |||
| 2409 | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | |||
| 2410 | ||||
| 2411 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 2412 | const Function &Fn = MF.getFunction(); | |||
| 2413 | FunctionType *FType = MF.getFunction().getFunctionType(); | |||
| 2414 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 2415 | ||||
| 2416 | if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { | |||
| 2417 | DiagnosticInfoUnsupported NoGraphicsHSA( | |||
| 2418 | Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); | |||
| 2419 | DAG.getContext()->diagnose(NoGraphicsHSA); | |||
| 2420 | return DAG.getEntryNode(); | |||
| 2421 | } | |||
| 2422 | ||||
| 2423 | Info->allocateKnownAddressLDSGlobal(Fn); | |||
| 2424 | ||||
| 2425 | SmallVector<ISD::InputArg, 16> Splits; | |||
| 2426 | SmallVector<CCValAssign, 16> ArgLocs; | |||
| 2427 | BitVector Skipped(Ins.size()); | |||
| 2428 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, | |||
| 2429 | *DAG.getContext()); | |||
| 2430 | ||||
| 2431 | bool IsGraphics = AMDGPU::isGraphics(CallConv); | |||
| 2432 | bool IsKernel = AMDGPU::isKernel(CallConv); | |||
| 2433 | bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); | |||
| 2434 | ||||
| 2435 | if (IsGraphics) { | |||
| 2436 | assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&(static_cast <bool> (!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo () && !Info->hasLDSKernelId() && !Info-> hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2439, __extension__ __PRETTY_FUNCTION__)) | |||
| 2437 | !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() &&(static_cast <bool> (!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo () && !Info->hasLDSKernelId() && !Info-> hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2439, __extension__ __PRETTY_FUNCTION__)) | |||
| 2438 | !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&(static_cast <bool> (!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo () && !Info->hasLDSKernelId() && !Info-> hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2439, __extension__ __PRETTY_FUNCTION__)) | |||
| 2439 | !Info->hasWorkItemIDZ())(static_cast <bool> (!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo () && !Info->hasLDSKernelId() && !Info-> hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2439, __extension__ __PRETTY_FUNCTION__)); | |||
| 2440 | if (!Subtarget->enableFlatScratch()) | |||
| 2441 | assert(!Info->hasFlatScratchInit())(static_cast <bool> (!Info->hasFlatScratchInit()) ? void (0) : __assert_fail ("!Info->hasFlatScratchInit()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2441, __extension__ __PRETTY_FUNCTION__)); | |||
| 2442 | if (CallConv != CallingConv::AMDGPU_CS || !Subtarget->hasArchitectedSGPRs()) | |||
| 2443 | assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&(static_cast <bool> (!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ ()) ? void (0) : __assert_fail ("!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2444, __extension__ __PRETTY_FUNCTION__)) | |||
| 2444 | !Info->hasWorkGroupIDZ())(static_cast <bool> (!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ ()) ? void (0) : __assert_fail ("!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2444, __extension__ __PRETTY_FUNCTION__)); | |||
| 2445 | } | |||
| 2446 | ||||
| 2447 | if (CallConv == CallingConv::AMDGPU_PS) { | |||
| 2448 | processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); | |||
| 2449 | ||||
| 2450 | // At least one interpolation mode must be enabled or else the GPU will | |||
| 2451 | // hang. | |||
| 2452 | // | |||
| 2453 | // Check PSInputAddr instead of PSInputEnable. The idea is that if the user | |||
| 2454 | // set PSInputAddr, the user wants to enable some bits after the compilation | |||
| 2455 | // based on run-time states. Since we can't know what the final PSInputEna | |||
| 2456 | // will look like, so we shouldn't do anything here and the user should take | |||
| 2457 | // responsibility for the correct programming. | |||
| 2458 | // | |||
| 2459 | // Otherwise, the following restrictions apply: | |||
| 2460 | // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. | |||
| 2461 | // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be | |||
| 2462 | // enabled too. | |||
| 2463 | if ((Info->getPSInputAddr() & 0x7F) == 0 || | |||
| 2464 | ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { | |||
| 2465 | CCInfo.AllocateReg(AMDGPU::VGPR0); | |||
| 2466 | CCInfo.AllocateReg(AMDGPU::VGPR1); | |||
| 2467 | Info->markPSInputAllocated(0); | |||
| 2468 | Info->markPSInputEnabled(0); | |||
| 2469 | } | |||
| 2470 | if (Subtarget->isAmdPalOS()) { | |||
| 2471 | // For isAmdPalOS, the user does not enable some bits after compilation | |||
| 2472 | // based on run-time states; the register values being generated here are | |||
| 2473 | // the final ones set in hardware. Therefore we need to apply the | |||
| 2474 | // workaround to PSInputAddr and PSInputEnable together. (The case where | |||
| 2475 | // a bit is set in PSInputAddr but not PSInputEnable is where the | |||
| 2476 | // frontend set up an input arg for a particular interpolation mode, but | |||
| 2477 | // nothing uses that input arg. Really we should have an earlier pass | |||
| 2478 | // that removes such an arg.) | |||
| 2479 | unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); | |||
| 2480 | if ((PsInputBits & 0x7F) == 0 || | |||
| 2481 | ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) | |||
| 2482 | Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr())); | |||
| 2483 | } | |||
| 2484 | } else if (IsKernel) { | |||
| 2485 | assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX())(static_cast <bool> (Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()) ? void (0) : __assert_fail ("Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2485, __extension__ __PRETTY_FUNCTION__)); | |||
| 2486 | } else { | |||
| 2487 | Splits.append(Ins.begin(), Ins.end()); | |||
| 2488 | } | |||
| 2489 | ||||
| 2490 | if (IsEntryFunc) { | |||
| 2491 | allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); | |||
| 2492 | allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); | |||
| 2493 | } else if (!IsGraphics) { | |||
| 2494 | // For the fixed ABI, pass workitem IDs in the last argument register. | |||
| 2495 | allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); | |||
| 2496 | } | |||
| 2497 | ||||
| 2498 | if (IsKernel) { | |||
| 2499 | analyzeFormalArgumentsCompute(CCInfo, Ins); | |||
| 2500 | } else { | |||
| 2501 | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); | |||
| 2502 | CCInfo.AnalyzeFormalArguments(Splits, AssignFn); | |||
| 2503 | } | |||
| 2504 | ||||
| 2505 | SmallVector<SDValue, 16> Chains; | |||
| 2506 | ||||
| 2507 | // FIXME: This is the minimum kernel argument alignment. We should improve | |||
| 2508 | // this to the maximum alignment of the arguments. | |||
| 2509 | // | |||
| 2510 | // FIXME: Alignment of explicit arguments totally broken with non-0 explicit | |||
| 2511 | // kern arg offset. | |||
| 2512 | const Align KernelArgBaseAlign = Align(16); | |||
| 2513 | ||||
| 2514 | for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { | |||
| 2515 | const ISD::InputArg &Arg = Ins[i]; | |||
| 2516 | if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { | |||
| 2517 | InVals.push_back(DAG.getUNDEF(Arg.VT)); | |||
| 2518 | continue; | |||
| 2519 | } | |||
| 2520 | ||||
| 2521 | CCValAssign &VA = ArgLocs[ArgIdx++]; | |||
| 2522 | MVT VT = VA.getLocVT(); | |||
| 2523 | ||||
| 2524 | if (IsEntryFunc && VA.isMemLoc()) { | |||
| 2525 | VT = Ins[i].VT; | |||
| 2526 | EVT MemVT = VA.getLocVT(); | |||
| 2527 | ||||
| 2528 | const uint64_t Offset = VA.getLocMemOffset(); | |||
| 2529 | Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); | |||
| 2530 | ||||
| 2531 | if (Arg.Flags.isByRef()) { | |||
| 2532 | SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); | |||
| 2533 | ||||
| 2534 | const GCNTargetMachine &TM = | |||
| 2535 | static_cast<const GCNTargetMachine &>(getTargetMachine()); | |||
| 2536 | if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, | |||
| 2537 | Arg.Flags.getPointerAddrSpace())) { | |||
| 2538 | Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, | |||
| 2539 | Arg.Flags.getPointerAddrSpace()); | |||
| 2540 | } | |||
| 2541 | ||||
| 2542 | InVals.push_back(Ptr); | |||
| 2543 | continue; | |||
| 2544 | } | |||
| 2545 | ||||
| 2546 | SDValue Arg = lowerKernargMemParameter( | |||
| 2547 | DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); | |||
| 2548 | Chains.push_back(Arg.getValue(1)); | |||
| 2549 | ||||
| 2550 | auto *ParamTy = | |||
| 2551 | dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); | |||
| 2552 | if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && | |||
| 2553 | ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || | |||
| 2554 | ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { | |||
| 2555 | // On SI local pointers are just offsets into LDS, so they are always | |||
| 2556 | // less than 16-bits. On CI and newer they could potentially be | |||
| 2557 | // real pointers, so we can't guarantee their size. | |||
| 2558 | Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, | |||
| 2559 | DAG.getValueType(MVT::i16)); | |||
| 2560 | } | |||
| 2561 | ||||
| 2562 | InVals.push_back(Arg); | |||
| 2563 | continue; | |||
| 2564 | } else if (!IsEntryFunc && VA.isMemLoc()) { | |||
| 2565 | SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); | |||
| 2566 | InVals.push_back(Val); | |||
| 2567 | if (!Arg.Flags.isByVal()) | |||
| 2568 | Chains.push_back(Val.getValue(1)); | |||
| 2569 | continue; | |||
| 2570 | } | |||
| 2571 | ||||
| 2572 | assert(VA.isRegLoc() && "Parameter must be in a register!")(static_cast <bool> (VA.isRegLoc() && "Parameter must be in a register!" ) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Parameter must be in a register!\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2572, __extension__ __PRETTY_FUNCTION__)); | |||
| 2573 | ||||
| 2574 | Register Reg = VA.getLocReg(); | |||
| 2575 | const TargetRegisterClass *RC = nullptr; | |||
| 2576 | if (AMDGPU::VGPR_32RegClass.contains(Reg)) | |||
| 2577 | RC = &AMDGPU::VGPR_32RegClass; | |||
| 2578 | else if (AMDGPU::SGPR_32RegClass.contains(Reg)) | |||
| 2579 | RC = &AMDGPU::SGPR_32RegClass; | |||
| 2580 | else | |||
| 2581 | llvm_unreachable("Unexpected register class in LowerFormalArguments!")::llvm::llvm_unreachable_internal("Unexpected register class in LowerFormalArguments!" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2581); | |||
| 2582 | EVT ValVT = VA.getValVT(); | |||
| 2583 | ||||
| 2584 | Reg = MF.addLiveIn(Reg, RC); | |||
| 2585 | SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); | |||
| 2586 | ||||
| 2587 | if (Arg.Flags.isSRet()) { | |||
| 2588 | // The return object should be reasonably addressable. | |||
| 2589 | ||||
| 2590 | // FIXME: This helps when the return is a real sret. If it is a | |||
| 2591 | // automatically inserted sret (i.e. CanLowerReturn returns false), an | |||
| 2592 | // extra copy is inserted in SelectionDAGBuilder which obscures this. | |||
| 2593 | unsigned NumBits | |||
| 2594 | = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); | |||
| 2595 | Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, | |||
| 2596 | DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); | |||
| 2597 | } | |||
| 2598 | ||||
| 2599 | // If this is an 8 or 16-bit value, it is really passed promoted | |||
| 2600 | // to 32 bits. Insert an assert[sz]ext to capture this, then | |||
| 2601 | // truncate to the right size. | |||
| 2602 | switch (VA.getLocInfo()) { | |||
| 2603 | case CCValAssign::Full: | |||
| 2604 | break; | |||
| 2605 | case CCValAssign::BCvt: | |||
| 2606 | Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); | |||
| 2607 | break; | |||
| 2608 | case CCValAssign::SExt: | |||
| 2609 | Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, | |||
| 2610 | DAG.getValueType(ValVT)); | |||
| 2611 | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | |||
| 2612 | break; | |||
| 2613 | case CCValAssign::ZExt: | |||
| 2614 | Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, | |||
| 2615 | DAG.getValueType(ValVT)); | |||
| 2616 | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | |||
| 2617 | break; | |||
| 2618 | case CCValAssign::AExt: | |||
| 2619 | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | |||
| 2620 | break; | |||
| 2621 | default: | |||
| 2622 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2622); | |||
| 2623 | } | |||
| 2624 | ||||
| 2625 | InVals.push_back(Val); | |||
| 2626 | } | |||
| 2627 | ||||
| 2628 | // Start adding system SGPRs. | |||
| 2629 | if (IsEntryFunc) { | |||
| 2630 | allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); | |||
| 2631 | } else { | |||
| 2632 | CCInfo.AllocateReg(Info->getScratchRSrcReg()); | |||
| 2633 | if (!IsGraphics) | |||
| 2634 | allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); | |||
| 2635 | } | |||
| 2636 | ||||
| 2637 | auto &ArgUsageInfo = | |||
| 2638 | DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); | |||
| 2639 | ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); | |||
| 2640 | ||||
| 2641 | unsigned StackArgSize = CCInfo.getNextStackOffset(); | |||
| 2642 | Info->setBytesInStackArgArea(StackArgSize); | |||
| 2643 | ||||
| 2644 | return Chains.empty() ? Chain : | |||
| 2645 | DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | |||
| 2646 | } | |||
| 2647 | ||||
| 2648 | // TODO: If return values can't fit in registers, we should return as many as | |||
| 2649 | // possible in registers before passing on stack. | |||
| 2650 | bool SITargetLowering::CanLowerReturn( | |||
| 2651 | CallingConv::ID CallConv, | |||
| 2652 | MachineFunction &MF, bool IsVarArg, | |||
| 2653 | const SmallVectorImpl<ISD::OutputArg> &Outs, | |||
| 2654 | LLVMContext &Context) const { | |||
| 2655 | // Replacing returns with sret/stack usage doesn't make sense for shaders. | |||
| 2656 | // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn | |||
| 2657 | // for shaders. Vector types should be explicitly handled by CC. | |||
| 2658 | if (AMDGPU::isEntryFunctionCC(CallConv)) | |||
| 2659 | return true; | |||
| 2660 | ||||
| 2661 | SmallVector<CCValAssign, 16> RVLocs; | |||
| 2662 | CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); | |||
| 2663 | return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); | |||
| 2664 | } | |||
| 2665 | ||||
| 2666 | SDValue | |||
| 2667 | SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | |||
| 2668 | bool isVarArg, | |||
| 2669 | const SmallVectorImpl<ISD::OutputArg> &Outs, | |||
| 2670 | const SmallVectorImpl<SDValue> &OutVals, | |||
| 2671 | const SDLoc &DL, SelectionDAG &DAG) const { | |||
| 2672 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 2673 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 2674 | ||||
| 2675 | if (AMDGPU::isKernel(CallConv)) { | |||
| 2676 | return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, | |||
| 2677 | OutVals, DL, DAG); | |||
| 2678 | } | |||
| 2679 | ||||
| 2680 | bool IsShader = AMDGPU::isShader(CallConv); | |||
| 2681 | ||||
| 2682 | Info->setIfReturnsVoid(Outs.empty()); | |||
| 2683 | bool IsWaveEnd = Info->returnsVoid() && IsShader; | |||
| 2684 | ||||
| 2685 | // CCValAssign - represent the assignment of the return value to a location. | |||
| 2686 | SmallVector<CCValAssign, 48> RVLocs; | |||
| 2687 | SmallVector<ISD::OutputArg, 48> Splits; | |||
| 2688 | ||||
| 2689 | // CCState - Info about the registers and stack slots. | |||
| 2690 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | |||
| 2691 | *DAG.getContext()); | |||
| 2692 | ||||
| 2693 | // Analyze outgoing return values. | |||
| 2694 | CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); | |||
| 2695 | ||||
| 2696 | SDValue Glue; | |||
| 2697 | SmallVector<SDValue, 48> RetOps; | |||
| 2698 | RetOps.push_back(Chain); // Operand #0 = Chain (updated below) | |||
| 2699 | ||||
| 2700 | // Copy the result values into the output registers. | |||
| 2701 | for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; | |||
| 2702 | ++I, ++RealRVLocIdx) { | |||
| 2703 | CCValAssign &VA = RVLocs[I]; | |||
| 2704 | assert(VA.isRegLoc() && "Can only return in registers!")(static_cast <bool> (VA.isRegLoc() && "Can only return in registers!" ) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2704, __extension__ __PRETTY_FUNCTION__)); | |||
| 2705 | // TODO: Partially return in registers if return values don't fit. | |||
| 2706 | SDValue Arg = OutVals[RealRVLocIdx]; | |||
| 2707 | ||||
| 2708 | // Copied from other backends. | |||
| 2709 | switch (VA.getLocInfo()) { | |||
| 2710 | case CCValAssign::Full: | |||
| 2711 | break; | |||
| 2712 | case CCValAssign::BCvt: | |||
| 2713 | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); | |||
| 2714 | break; | |||
| 2715 | case CCValAssign::SExt: | |||
| 2716 | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); | |||
| 2717 | break; | |||
| 2718 | case CCValAssign::ZExt: | |||
| 2719 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | |||
| 2720 | break; | |||
| 2721 | case CCValAssign::AExt: | |||
| 2722 | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); | |||
| 2723 | break; | |||
| 2724 | default: | |||
| 2725 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2725); | |||
| 2726 | } | |||
| 2727 | ||||
| 2728 | Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue); | |||
| 2729 | Glue = Chain.getValue(1); | |||
| 2730 | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | |||
| 2731 | } | |||
| 2732 | ||||
| 2733 | // FIXME: Does sret work properly? | |||
| 2734 | if (!Info->isEntryFunction()) { | |||
| 2735 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); | |||
| 2736 | const MCPhysReg *I = | |||
| 2737 | TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); | |||
| 2738 | if (I) { | |||
| 2739 | for (; *I; ++I) { | |||
| 2740 | if (AMDGPU::SReg_64RegClass.contains(*I)) | |||
| 2741 | RetOps.push_back(DAG.getRegister(*I, MVT::i64)); | |||
| 2742 | else if (AMDGPU::SReg_32RegClass.contains(*I)) | |||
| 2743 | RetOps.push_back(DAG.getRegister(*I, MVT::i32)); | |||
| 2744 | else | |||
| 2745 | llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2745); | |||
| 2746 | } | |||
| 2747 | } | |||
| 2748 | } | |||
| 2749 | ||||
| 2750 | // Update chain and glue. | |||
| 2751 | RetOps[0] = Chain; | |||
| 2752 | if (Glue.getNode()) | |||
| 2753 | RetOps.push_back(Glue); | |||
| 2754 | ||||
| 2755 | unsigned Opc = AMDGPUISD::ENDPGM; | |||
| 2756 | if (!IsWaveEnd) | |||
| 2757 | Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_GLUE; | |||
| 2758 | return DAG.getNode(Opc, DL, MVT::Other, RetOps); | |||
| 2759 | } | |||
| 2760 | ||||
| 2761 | SDValue SITargetLowering::LowerCallResult( | |||
| 2762 | SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg, | |||
| 2763 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | |||
| 2764 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, | |||
| 2765 | SDValue ThisVal) const { | |||
| 2766 | CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); | |||
| 2767 | ||||
| 2768 | // Assign locations to each value returned by this call. | |||
| 2769 | SmallVector<CCValAssign, 16> RVLocs; | |||
| 2770 | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, | |||
| 2771 | *DAG.getContext()); | |||
| 2772 | CCInfo.AnalyzeCallResult(Ins, RetCC); | |||
| 2773 | ||||
| 2774 | // Copy all of the result registers out of their specified physreg. | |||
| 2775 | for (unsigned i = 0; i != RVLocs.size(); ++i) { | |||
| 2776 | CCValAssign VA = RVLocs[i]; | |||
| 2777 | SDValue Val; | |||
| 2778 | ||||
| 2779 | if (VA.isRegLoc()) { | |||
| 2780 | Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue); | |||
| 2781 | Chain = Val.getValue(1); | |||
| 2782 | InGlue = Val.getValue(2); | |||
| 2783 | } else if (VA.isMemLoc()) { | |||
| 2784 | report_fatal_error("TODO: return values in memory"); | |||
| 2785 | } else | |||
| 2786 | llvm_unreachable("unknown argument location type")::llvm::llvm_unreachable_internal("unknown argument location type" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 2786); | |||
| 2787 | ||||
| 2788 | switch (VA.getLocInfo()) { | |||
| 2789 | case CCValAssign::Full: | |||
| 2790 | break; | |||
| 2791 | case CCValAssign::BCvt: | |||
| 2792 | Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); | |||
| 2793 | break; | |||
| 2794 | case CCValAssign::ZExt: | |||
| 2795 | Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, | |||
| 2796 | DAG.getValueType(VA.getValVT())); | |||
| 2797 | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | |||
| 2798 | break; | |||
| 2799 | case CCValAssign::SExt: | |||
| 2800 | Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, | |||
| 2801 | DAG.getValueType(VA.getValVT())); | |||
| 2802 | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | |||
| 2803 | break; | |||
| 2804 | case CCValAssign::AExt: | |||
| 2805 | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | |||
| 2806 | break; | |||
| 2807 | default: | |||
| 2808 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2808); | |||
| 2809 | } | |||
| 2810 | ||||
| 2811 | InVals.push_back(Val); | |||
| 2812 | } | |||
| 2813 | ||||
| 2814 | return Chain; | |||
| 2815 | } | |||
| 2816 | ||||
| 2817 | // Add code to pass special inputs required depending on used features separate | |||
| 2818 | // from the explicit user arguments present in the IR. | |||
| 2819 | void SITargetLowering::passSpecialInputs( | |||
| 2820 | CallLoweringInfo &CLI, | |||
| 2821 | CCState &CCInfo, | |||
| 2822 | const SIMachineFunctionInfo &Info, | |||
| 2823 | SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, | |||
| 2824 | SmallVectorImpl<SDValue> &MemOpChains, | |||
| 2825 | SDValue Chain) const { | |||
| 2826 | // If we don't have a call site, this was a call inserted by | |||
| 2827 | // legalization. These can never use special inputs. | |||
| 2828 | if (!CLI.CB) | |||
| 2829 | return; | |||
| 2830 | ||||
| 2831 | SelectionDAG &DAG = CLI.DAG; | |||
| 2832 | const SDLoc &DL = CLI.DL; | |||
| 2833 | const Function &F = DAG.getMachineFunction().getFunction(); | |||
| 2834 | ||||
| 2835 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); | |||
| 2836 | const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); | |||
| 2837 | ||||
| 2838 | const AMDGPUFunctionArgInfo *CalleeArgInfo | |||
| 2839 | = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; | |||
| 2840 | if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { | |||
| 2841 | auto &ArgUsageInfo = | |||
| 2842 | DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); | |||
| 2843 | CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); | |||
| 2844 | } | |||
| 2845 | ||||
| 2846 | // TODO: Unify with private memory register handling. This is complicated by | |||
| 2847 | // the fact that at least in kernels, the input argument is not necessarily | |||
| 2848 | // in the same location as the input. | |||
| 2849 | static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue, | |||
| 2850 | StringLiteral> ImplicitAttrs[] = { | |||
| 2851 | {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, | |||
| 2852 | {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, | |||
| 2853 | {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, | |||
| 2854 | {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, | |||
| 2855 | {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, | |||
| 2856 | {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, | |||
| 2857 | {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, | |||
| 2858 | {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, | |||
| 2859 | }; | |||
| 2860 | ||||
| 2861 | for (auto Attr : ImplicitAttrs) { | |||
| 2862 | const ArgDescriptor *OutgoingArg; | |||
| 2863 | const TargetRegisterClass *ArgRC; | |||
| 2864 | LLT ArgTy; | |||
| 2865 | ||||
| 2866 | AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; | |||
| 2867 | ||||
| 2868 | // If the callee does not use the attribute value, skip copying the value. | |||
| 2869 | if (CLI.CB->hasFnAttr(Attr.second)) | |||
| 2870 | continue; | |||
| 2871 | ||||
| 2872 | std::tie(OutgoingArg, ArgRC, ArgTy) = | |||
| 2873 | CalleeArgInfo->getPreloadedValue(InputID); | |||
| 2874 | if (!OutgoingArg) | |||
| 2875 | continue; | |||
| 2876 | ||||
| 2877 | const ArgDescriptor *IncomingArg; | |||
| 2878 | const TargetRegisterClass *IncomingArgRC; | |||
| 2879 | LLT Ty; | |||
| 2880 | std::tie(IncomingArg, IncomingArgRC, Ty) = | |||
| 2881 | CallerArgInfo.getPreloadedValue(InputID); | |||
| 2882 | assert(IncomingArgRC == ArgRC)(static_cast <bool> (IncomingArgRC == ArgRC) ? void (0) : __assert_fail ("IncomingArgRC == ArgRC", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 2882, __extension__ __PRETTY_FUNCTION__)); | |||
| 2883 | ||||
| 2884 | // All special arguments are ints for now. | |||
| 2885 | EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; | |||
| 2886 | SDValue InputReg; | |||
| 2887 | ||||
| 2888 | if (IncomingArg) { | |||
| 2889 | InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); | |||
| 2890 | } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { | |||
| 2891 | // The implicit arg ptr is special because it doesn't have a corresponding | |||
| 2892 | // input for kernels, and is computed from the kernarg segment pointer. | |||
| 2893 | InputReg = getImplicitArgPtr(DAG, DL); | |||
| 2894 | } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { | |||
| 2895 | std::optional<uint32_t> Id = | |||
| 2896 | AMDGPUMachineFunction::getLDSKernelIdMetadata(F); | |||
| 2897 | if (Id.has_value()) { | |||
| 2898 | InputReg = DAG.getConstant(*Id, DL, ArgVT); | |||
| 2899 | } else { | |||
| 2900 | InputReg = DAG.getUNDEF(ArgVT); | |||
| 2901 | } | |||
| 2902 | } else { | |||
| 2903 | // We may have proven the input wasn't needed, although the ABI is | |||
| 2904 | // requiring it. We just need to allocate the register appropriately. | |||
| 2905 | InputReg = DAG.getUNDEF(ArgVT); | |||
| 2906 | } | |||
| 2907 | ||||
| 2908 | if (OutgoingArg->isRegister()) { | |||
| 2909 | RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); | |||
| 2910 | if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) | |||
| 2911 | report_fatal_error("failed to allocate implicit input argument"); | |||
| 2912 | } else { | |||
| 2913 | unsigned SpecialArgOffset = | |||
| 2914 | CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); | |||
| 2915 | SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, | |||
| 2916 | SpecialArgOffset); | |||
| 2917 | MemOpChains.push_back(ArgStore); | |||
| 2918 | } | |||
| 2919 | } | |||
| 2920 | ||||
| 2921 | // Pack workitem IDs into a single register or pass it as is if already | |||
| 2922 | // packed. | |||
| 2923 | const ArgDescriptor *OutgoingArg; | |||
| 2924 | const TargetRegisterClass *ArgRC; | |||
| 2925 | LLT Ty; | |||
| 2926 | ||||
| 2927 | std::tie(OutgoingArg, ArgRC, Ty) = | |||
| 2928 | CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); | |||
| 2929 | if (!OutgoingArg) | |||
| 2930 | std::tie(OutgoingArg, ArgRC, Ty) = | |||
| 2931 | CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); | |||
| 2932 | if (!OutgoingArg) | |||
| 2933 | std::tie(OutgoingArg, ArgRC, Ty) = | |||
| 2934 | CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); | |||
| 2935 | if (!OutgoingArg) | |||
| 2936 | return; | |||
| 2937 | ||||
| 2938 | const ArgDescriptor *IncomingArgX = std::get<0>( | |||
| 2939 | CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); | |||
| 2940 | const ArgDescriptor *IncomingArgY = std::get<0>( | |||
| 2941 | CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); | |||
| 2942 | const ArgDescriptor *IncomingArgZ = std::get<0>( | |||
| 2943 | CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); | |||
| 2944 | ||||
| 2945 | SDValue InputReg; | |||
| 2946 | SDLoc SL; | |||
| 2947 | ||||
| 2948 | const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); | |||
| 2949 | const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); | |||
| 2950 | const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); | |||
| 2951 | ||||
| 2952 | // If incoming ids are not packed we need to pack them. | |||
| 2953 | if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && | |||
| 2954 | NeedWorkItemIDX) { | |||
| 2955 | if (Subtarget->getMaxWorkitemID(F, 0) != 0) { | |||
| 2956 | InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); | |||
| 2957 | } else { | |||
| 2958 | InputReg = DAG.getConstant(0, DL, MVT::i32); | |||
| 2959 | } | |||
| 2960 | } | |||
| 2961 | ||||
| 2962 | if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && | |||
| 2963 | NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { | |||
| 2964 | SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); | |||
| 2965 | Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, | |||
| 2966 | DAG.getShiftAmountConstant(10, MVT::i32, SL)); | |||
| 2967 | InputReg = InputReg.getNode() ? | |||
| 2968 | DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; | |||
| 2969 | } | |||
| 2970 | ||||
| 2971 | if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && | |||
| 2972 | NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { | |||
| 2973 | SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); | |||
| 2974 | Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, | |||
| 2975 | DAG.getShiftAmountConstant(20, MVT::i32, SL)); | |||
| 2976 | InputReg = InputReg.getNode() ? | |||
| 2977 | DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; | |||
| 2978 | } | |||
| 2979 | ||||
| 2980 | if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { | |||
| 2981 | if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { | |||
| 2982 | // We're in a situation where the outgoing function requires the workitem | |||
| 2983 | // ID, but the calling function does not have it (e.g a graphics function | |||
| 2984 | // calling a C calling convention function). This is illegal, but we need | |||
| 2985 | // to produce something. | |||
| 2986 | InputReg = DAG.getUNDEF(MVT::i32); | |||
| 2987 | } else { | |||
| 2988 | // Workitem ids are already packed, any of present incoming arguments | |||
| 2989 | // will carry all required fields. | |||
| 2990 | ArgDescriptor IncomingArg = ArgDescriptor::createArg( | |||
| 2991 | IncomingArgX ? *IncomingArgX : | |||
| 2992 | IncomingArgY ? *IncomingArgY : | |||
| 2993 | *IncomingArgZ, ~0u); | |||
| 2994 | InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); | |||
| 2995 | } | |||
| 2996 | } | |||
| 2997 | ||||
| 2998 | if (OutgoingArg->isRegister()) { | |||
| 2999 | if (InputReg) | |||
| 3000 | RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); | |||
| 3001 | ||||
| 3002 | CCInfo.AllocateReg(OutgoingArg->getRegister()); | |||
| 3003 | } else { | |||
| 3004 | unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); | |||
| 3005 | if (InputReg) { | |||
| 3006 | SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, | |||
| 3007 | SpecialArgOffset); | |||
| 3008 | MemOpChains.push_back(ArgStore); | |||
| 3009 | } | |||
| 3010 | } | |||
| 3011 | } | |||
| 3012 | ||||
| 3013 | static bool canGuaranteeTCO(CallingConv::ID CC) { | |||
| 3014 | return CC == CallingConv::Fast; | |||
| 3015 | } | |||
| 3016 | ||||
| 3017 | /// Return true if we might ever do TCO for calls with this calling convention. | |||
| 3018 | static bool mayTailCallThisCC(CallingConv::ID CC) { | |||
| 3019 | switch (CC) { | |||
| 3020 | case CallingConv::C: | |||
| 3021 | case CallingConv::AMDGPU_Gfx: | |||
| 3022 | return true; | |||
| 3023 | default: | |||
| 3024 | return canGuaranteeTCO(CC); | |||
| 3025 | } | |||
| 3026 | } | |||
| 3027 | ||||
| 3028 | bool SITargetLowering::isEligibleForTailCallOptimization( | |||
| 3029 | SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, | |||
| 3030 | const SmallVectorImpl<ISD::OutputArg> &Outs, | |||
| 3031 | const SmallVectorImpl<SDValue> &OutVals, | |||
| 3032 | const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { | |||
| 3033 | if (!mayTailCallThisCC(CalleeCC)) | |||
| 3034 | return false; | |||
| 3035 | ||||
| 3036 | // For a divergent call target, we need to do a waterfall loop over the | |||
| 3037 | // possible callees which precludes us from using a simple jump. | |||
| 3038 | if (Callee->isDivergent()) | |||
| 3039 | return false; | |||
| 3040 | ||||
| 3041 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 3042 | const Function &CallerF = MF.getFunction(); | |||
| 3043 | CallingConv::ID CallerCC = CallerF.getCallingConv(); | |||
| 3044 | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | |||
| 3045 | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); | |||
| 3046 | ||||
| 3047 | // Kernels aren't callable, and don't have a live in return address so it | |||
| 3048 | // doesn't make sense to do a tail call with entry functions. | |||
| 3049 | if (!CallerPreserved) | |||
| 3050 | return false; | |||
| 3051 | ||||
| 3052 | bool CCMatch = CallerCC == CalleeCC; | |||
| 3053 | ||||
| 3054 | if (DAG.getTarget().Options.GuaranteedTailCallOpt) { | |||
| 3055 | if (canGuaranteeTCO(CalleeCC) && CCMatch) | |||
| 3056 | return true; | |||
| 3057 | return false; | |||
| 3058 | } | |||
| 3059 | ||||
| 3060 | // TODO: Can we handle var args? | |||
| 3061 | if (IsVarArg) | |||
| 3062 | return false; | |||
| 3063 | ||||
| 3064 | for (const Argument &Arg : CallerF.args()) { | |||
| 3065 | if (Arg.hasByValAttr()) | |||
| 3066 | return false; | |||
| 3067 | } | |||
| 3068 | ||||
| 3069 | LLVMContext &Ctx = *DAG.getContext(); | |||
| 3070 | ||||
| 3071 | // Check that the call results are passed in the same way. | |||
| 3072 | if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, | |||
| 3073 | CCAssignFnForCall(CalleeCC, IsVarArg), | |||
| 3074 | CCAssignFnForCall(CallerCC, IsVarArg))) | |||
| 3075 | return false; | |||
| 3076 | ||||
| 3077 | // The callee has to preserve all registers the caller needs to preserve. | |||
| 3078 | if (!CCMatch) { | |||
| 3079 | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); | |||
| 3080 | if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) | |||
| 3081 | return false; | |||
| 3082 | } | |||
| 3083 | ||||
| 3084 | // Nothing more to check if the callee is taking no arguments. | |||
| 3085 | if (Outs.empty()) | |||
| 3086 | return true; | |||
| 3087 | ||||
| 3088 | SmallVector<CCValAssign, 16> ArgLocs; | |||
| 3089 | CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); | |||
| 3090 | ||||
| 3091 | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); | |||
| 3092 | ||||
| 3093 | const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 3094 | // If the stack arguments for this call do not fit into our own save area then | |||
| 3095 | // the call cannot be made tail. | |||
| 3096 | // TODO: Is this really necessary? | |||
| 3097 | if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) | |||
| 3098 | return false; | |||
| 3099 | ||||
| 3100 | const MachineRegisterInfo &MRI = MF.getRegInfo(); | |||
| 3101 | return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); | |||
| 3102 | } | |||
| 3103 | ||||
| 3104 | bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { | |||
| 3105 | if (!CI->isTailCall()) | |||
| 3106 | return false; | |||
| 3107 | ||||
| 3108 | const Function *ParentFn = CI->getParent()->getParent(); | |||
| 3109 | if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) | |||
| 3110 | return false; | |||
| 3111 | return true; | |||
| 3112 | } | |||
| 3113 | ||||
| 3114 | // The wave scratch offset register is used as the global base pointer. | |||
| 3115 | SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, | |||
| 3116 | SmallVectorImpl<SDValue> &InVals) const { | |||
| 3117 | SelectionDAG &DAG = CLI.DAG; | |||
| 3118 | const SDLoc &DL = CLI.DL; | |||
| 3119 | SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; | |||
| 3120 | SmallVector<SDValue, 32> &OutVals = CLI.OutVals; | |||
| 3121 | SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; | |||
| 3122 | SDValue Chain = CLI.Chain; | |||
| 3123 | SDValue Callee = CLI.Callee; | |||
| 3124 | bool &IsTailCall = CLI.IsTailCall; | |||
| 3125 | CallingConv::ID CallConv = CLI.CallConv; | |||
| 3126 | bool IsVarArg = CLI.IsVarArg; | |||
| 3127 | bool IsSibCall = false; | |||
| 3128 | bool IsThisReturn = false; | |||
| 3129 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 3130 | ||||
| 3131 | if (Callee.isUndef() || isNullConstant(Callee)) { | |||
| 3132 | if (!CLI.IsTailCall) { | |||
| 3133 | for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) | |||
| 3134 | InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); | |||
| 3135 | } | |||
| 3136 | ||||
| 3137 | return Chain; | |||
| 3138 | } | |||
| 3139 | ||||
| 3140 | if (IsVarArg) { | |||
| 3141 | return lowerUnhandledCall(CLI, InVals, | |||
| 3142 | "unsupported call to variadic function "); | |||
| 3143 | } | |||
| 3144 | ||||
| 3145 | if (!CLI.CB) | |||
| 3146 | report_fatal_error("unsupported libcall legalization"); | |||
| 3147 | ||||
| 3148 | if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { | |||
| 3149 | return lowerUnhandledCall(CLI, InVals, | |||
| 3150 | "unsupported required tail call to function "); | |||
| 3151 | } | |||
| 3152 | ||||
| 3153 | if (AMDGPU::isShader(CallConv)) { | |||
| 3154 | // Note the issue is with the CC of the called function, not of the call | |||
| 3155 | // itself. | |||
| 3156 | return lowerUnhandledCall(CLI, InVals, | |||
| 3157 | "unsupported call to a shader function "); | |||
| 3158 | } | |||
| 3159 | ||||
| 3160 | if (AMDGPU::isShader(MF.getFunction().getCallingConv()) && | |||
| 3161 | CallConv != CallingConv::AMDGPU_Gfx) { | |||
| 3162 | // Only allow calls with specific calling conventions. | |||
| 3163 | return lowerUnhandledCall(CLI, InVals, | |||
| 3164 | "unsupported calling convention for call from " | |||
| 3165 | "graphics shader of function "); | |||
| 3166 | } | |||
| 3167 | ||||
| 3168 | if (IsTailCall) { | |||
| 3169 | IsTailCall = isEligibleForTailCallOptimization( | |||
| 3170 | Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); | |||
| 3171 | if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { | |||
| 3172 | report_fatal_error("failed to perform tail call elimination on a call " | |||
| 3173 | "site marked musttail"); | |||
| 3174 | } | |||
| 3175 | ||||
| 3176 | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; | |||
| 3177 | ||||
| 3178 | // A sibling call is one where we're under the usual C ABI and not planning | |||
| 3179 | // to change that but can still do a tail call: | |||
| 3180 | if (!TailCallOpt && IsTailCall) | |||
| 3181 | IsSibCall = true; | |||
| 3182 | ||||
| 3183 | if (IsTailCall) | |||
| 3184 | ++NumTailCalls; | |||
| 3185 | } | |||
| 3186 | ||||
| 3187 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 3188 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | |||
| 3189 | SmallVector<SDValue, 8> MemOpChains; | |||
| 3190 | ||||
| 3191 | // Analyze operands of the call, assigning locations to each operand. | |||
| 3192 | SmallVector<CCValAssign, 16> ArgLocs; | |||
| 3193 | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); | |||
| 3194 | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); | |||
| 3195 | ||||
| 3196 | if (CallConv != CallingConv::AMDGPU_Gfx) { | |||
| 3197 | // With a fixed ABI, allocate fixed registers before user arguments. | |||
| 3198 | passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); | |||
| 3199 | } | |||
| 3200 | ||||
| 3201 | CCInfo.AnalyzeCallOperands(Outs, AssignFn); | |||
| 3202 | ||||
| 3203 | // Get a count of how many bytes are to be pushed on the stack. | |||
| 3204 | unsigned NumBytes = CCInfo.getNextStackOffset(); | |||
| 3205 | ||||
| 3206 | if (IsSibCall) { | |||
| 3207 | // Since we're not changing the ABI to make this a tail call, the memory | |||
| 3208 | // operands are already available in the caller's incoming argument space. | |||
| 3209 | NumBytes = 0; | |||
| 3210 | } | |||
| 3211 | ||||
| 3212 | // FPDiff is the byte offset of the call's argument area from the callee's. | |||
| 3213 | // Stores to callee stack arguments will be placed in FixedStackSlots offset | |||
| 3214 | // by this amount for a tail call. In a sibling call it must be 0 because the | |||
| 3215 | // caller will deallocate the entire stack and the callee still expects its | |||
| 3216 | // arguments to begin at SP+0. Completely unused for non-tail calls. | |||
| 3217 | int32_t FPDiff = 0; | |||
| 3218 | MachineFrameInfo &MFI = MF.getFrameInfo(); | |||
| 3219 | ||||
| 3220 | // Adjust the stack pointer for the new arguments... | |||
| 3221 | // These operations are automatically eliminated by the prolog/epilog pass | |||
| 3222 | if (!IsSibCall) { | |||
| 3223 | Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); | |||
| 3224 | ||||
| 3225 | if (!Subtarget->enableFlatScratch()) { | |||
| 3226 | SmallVector<SDValue, 4> CopyFromChains; | |||
| 3227 | ||||
| 3228 | // In the HSA case, this should be an identity copy. | |||
| 3229 | SDValue ScratchRSrcReg | |||
| 3230 | = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); | |||
| 3231 | RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); | |||
| 3232 | CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); | |||
| 3233 | Chain = DAG.getTokenFactor(DL, CopyFromChains); | |||
| 3234 | } | |||
| 3235 | } | |||
| 3236 | ||||
| 3237 | MVT PtrVT = MVT::i32; | |||
| 3238 | ||||
| 3239 | // Walk the register/memloc assignments, inserting copies/loads. | |||
| 3240 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | |||
| 3241 | CCValAssign &VA = ArgLocs[i]; | |||
| 3242 | SDValue Arg = OutVals[i]; | |||
| 3243 | ||||
| 3244 | // Promote the value if needed. | |||
| 3245 | switch (VA.getLocInfo()) { | |||
| 3246 | case CCValAssign::Full: | |||
| 3247 | break; | |||
| 3248 | case CCValAssign::BCvt: | |||
| 3249 | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); | |||
| 3250 | break; | |||
| 3251 | case CCValAssign::ZExt: | |||
| 3252 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | |||
| 3253 | break; | |||
| 3254 | case CCValAssign::SExt: | |||
| 3255 | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); | |||
| 3256 | break; | |||
| 3257 | case CCValAssign::AExt: | |||
| 3258 | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); | |||
| 3259 | break; | |||
| 3260 | case CCValAssign::FPExt: | |||
| 3261 | Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); | |||
| 3262 | break; | |||
| 3263 | default: | |||
| 3264 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 3264); | |||
| 3265 | } | |||
| 3266 | ||||
| 3267 | if (VA.isRegLoc()) { | |||
| 3268 | RegsToPass.push_back(std::pair(VA.getLocReg(), Arg)); | |||
| 3269 | } else { | |||
| 3270 | assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail ("VA.isMemLoc()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 3270, __extension__ __PRETTY_FUNCTION__)); | |||
| 3271 | ||||
| 3272 | SDValue DstAddr; | |||
| 3273 | MachinePointerInfo DstInfo; | |||
| 3274 | ||||
| 3275 | unsigned LocMemOffset = VA.getLocMemOffset(); | |||
| 3276 | int32_t Offset = LocMemOffset; | |||
| 3277 | ||||
| 3278 | SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); | |||
| 3279 | MaybeAlign Alignment; | |||
| 3280 | ||||
| 3281 | if (IsTailCall) { | |||
| 3282 | ISD::ArgFlagsTy Flags = Outs[i].Flags; | |||
| 3283 | unsigned OpSize = Flags.isByVal() ? | |||
| 3284 | Flags.getByValSize() : VA.getValVT().getStoreSize(); | |||
| 3285 | ||||
| 3286 | // FIXME: We can have better than the minimum byval required alignment. | |||
| 3287 | Alignment = | |||
| 3288 | Flags.isByVal() | |||
| 3289 | ? Flags.getNonZeroByValAlign() | |||
| 3290 | : commonAlignment(Subtarget->getStackAlignment(), Offset); | |||
| 3291 | ||||
| 3292 | Offset = Offset + FPDiff; | |||
| 3293 | int FI = MFI.CreateFixedObject(OpSize, Offset, true); | |||
| 3294 | ||||
| 3295 | DstAddr = DAG.getFrameIndex(FI, PtrVT); | |||
| 3296 | DstInfo = MachinePointerInfo::getFixedStack(MF, FI); | |||
| 3297 | ||||
| 3298 | // Make sure any stack arguments overlapping with where we're storing | |||
| 3299 | // are loaded before this eventual operation. Otherwise they'll be | |||
| 3300 | // clobbered. | |||
| 3301 | ||||
| 3302 | // FIXME: Why is this really necessary? This seems to just result in a | |||
| 3303 | // lot of code to copy the stack and write them back to the same | |||
| 3304 | // locations, which are supposed to be immutable? | |||
| 3305 | Chain = addTokenForArgument(Chain, DAG, MFI, FI); | |||
| 3306 | } else { | |||
| 3307 | // Stores to the argument stack area are relative to the stack pointer. | |||
| 3308 | SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), | |||
| 3309 | MVT::i32); | |||
| 3310 | DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); | |||
| 3311 | DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); | |||
| 3312 | Alignment = | |||
| 3313 | commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); | |||
| 3314 | } | |||
| 3315 | ||||
| 3316 | if (Outs[i].Flags.isByVal()) { | |||
| 3317 | SDValue SizeNode = | |||
| 3318 | DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); | |||
| 3319 | SDValue Cpy = | |||
| 3320 | DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, | |||
| 3321 | Outs[i].Flags.getNonZeroByValAlign(), | |||
| 3322 | /*isVol = */ false, /*AlwaysInline = */ true, | |||
| 3323 | /*isTailCall = */ false, DstInfo, | |||
| 3324 | MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); | |||
| 3325 | ||||
| 3326 | MemOpChains.push_back(Cpy); | |||
| 3327 | } else { | |||
| 3328 | SDValue Store = | |||
| 3329 | DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); | |||
| 3330 | MemOpChains.push_back(Store); | |||
| 3331 | } | |||
| 3332 | } | |||
| 3333 | } | |||
| 3334 | ||||
| 3335 | if (!MemOpChains.empty()) | |||
| 3336 | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); | |||
| 3337 | ||||
| 3338 | // Build a sequence of copy-to-reg nodes chained together with token chain | |||
| 3339 | // and flag operands which copy the outgoing args into the appropriate regs. | |||
| 3340 | SDValue InGlue; | |||
| 3341 | for (auto &RegToPass : RegsToPass) { | |||
| 3342 | Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, | |||
| 3343 | RegToPass.second, InGlue); | |||
| 3344 | InGlue = Chain.getValue(1); | |||
| 3345 | } | |||
| 3346 | ||||
| 3347 | ||||
| 3348 | // We don't usually want to end the call-sequence here because we would tidy | |||
| 3349 | // the frame up *after* the call, however in the ABI-changing tail-call case | |||
| 3350 | // we've carefully laid out the parameters so that when sp is reset they'll be | |||
| 3351 | // in the correct location. | |||
| 3352 | if (IsTailCall && !IsSibCall) { | |||
| 3353 | Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL); | |||
| 3354 | InGlue = Chain.getValue(1); | |||
| 3355 | } | |||
| 3356 | ||||
| 3357 | std::vector<SDValue> Ops; | |||
| 3358 | Ops.push_back(Chain); | |||
| 3359 | Ops.push_back(Callee); | |||
| 3360 | // Add a redundant copy of the callee global which will not be legalized, as | |||
| 3361 | // we need direct access to the callee later. | |||
| 3362 | if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { | |||
| 3363 | const GlobalValue *GV = GSD->getGlobal(); | |||
| 3364 | Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); | |||
| 3365 | } else { | |||
| 3366 | Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); | |||
| 3367 | } | |||
| 3368 | ||||
| 3369 | if (IsTailCall) { | |||
| 3370 | // Each tail call may have to adjust the stack by a different amount, so | |||
| 3371 | // this information must travel along with the operation for eventual | |||
| 3372 | // consumption by emitEpilogue. | |||
| 3373 | Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); | |||
| 3374 | } | |||
| 3375 | ||||
| 3376 | // Add argument registers to the end of the list so that they are known live | |||
| 3377 | // into the call. | |||
| 3378 | for (auto &RegToPass : RegsToPass) { | |||
| 3379 | Ops.push_back(DAG.getRegister(RegToPass.first, | |||
| 3380 | RegToPass.second.getValueType())); | |||
| 3381 | } | |||
| 3382 | ||||
| 3383 | // Add a register mask operand representing the call-preserved registers. | |||
| 3384 | ||||
| 3385 | auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); | |||
| 3386 | const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); | |||
| 3387 | assert(Mask && "Missing call preserved mask for calling convention")(static_cast <bool> (Mask && "Missing call preserved mask for calling convention" ) ? void (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 3387, __extension__ __PRETTY_FUNCTION__)); | |||
| 3388 | Ops.push_back(DAG.getRegisterMask(Mask)); | |||
| 3389 | ||||
| 3390 | if (InGlue.getNode()) | |||
| 3391 | Ops.push_back(InGlue); | |||
| 3392 | ||||
| 3393 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | |||
| 3394 | ||||
| 3395 | // If we're doing a tall call, use a TC_RETURN here rather than an | |||
| 3396 | // actual call instruction. | |||
| 3397 | if (IsTailCall) { | |||
| 3398 | MFI.setHasTailCall(); | |||
| 3399 | unsigned OPC = CallConv == CallingConv::AMDGPU_Gfx ? | |||
| 3400 | AMDGPUISD::TC_RETURN_GFX : AMDGPUISD::TC_RETURN; | |||
| 3401 | return DAG.getNode(OPC, DL, NodeTys, Ops); | |||
| 3402 | } | |||
| 3403 | ||||
| 3404 | // Returns a chain and a flag for retval copy to use. | |||
| 3405 | SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); | |||
| 3406 | Chain = Call.getValue(0); | |||
| 3407 | InGlue = Call.getValue(1); | |||
| 3408 | ||||
| 3409 | uint64_t CalleePopBytes = NumBytes; | |||
| 3410 | Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL); | |||
| 3411 | if (!Ins.empty()) | |||
| 3412 | InGlue = Chain.getValue(1); | |||
| 3413 | ||||
| 3414 | // Handle result values, copying them out of physregs into vregs that we | |||
| 3415 | // return. | |||
| 3416 | return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG, | |||
| 3417 | InVals, IsThisReturn, | |||
| 3418 | IsThisReturn ? OutVals[0] : SDValue()); | |||
| 3419 | } | |||
| 3420 | ||||
| 3421 | // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, | |||
| 3422 | // except for applying the wave size scale to the increment amount. | |||
| 3423 | SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( | |||
| 3424 | SDValue Op, SelectionDAG &DAG) const { | |||
| 3425 | const MachineFunction &MF = DAG.getMachineFunction(); | |||
| 3426 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 3427 | ||||
| 3428 | SDLoc dl(Op); | |||
| 3429 | EVT VT = Op.getValueType(); | |||
| 3430 | SDValue Tmp1 = Op; | |||
| 3431 | SDValue Tmp2 = Op.getValue(1); | |||
| 3432 | SDValue Tmp3 = Op.getOperand(2); | |||
| 3433 | SDValue Chain = Tmp1.getOperand(0); | |||
| 3434 | ||||
| 3435 | Register SPReg = Info->getStackPtrOffsetReg(); | |||
| 3436 | ||||
| 3437 | // Chain the dynamic stack allocation so that it doesn't modify the stack | |||
| 3438 | // pointer when other instructions are using the stack. | |||
| 3439 | Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); | |||
| 3440 | ||||
| 3441 | SDValue Size = Tmp2.getOperand(1); | |||
| 3442 | SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); | |||
| 3443 | Chain = SP.getValue(1); | |||
| 3444 | MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); | |||
| 3445 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | |||
| 3446 | const TargetFrameLowering *TFL = ST.getFrameLowering(); | |||
| 3447 | unsigned Opc = | |||
| 3448 | TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? | |||
| 3449 | ISD::ADD : ISD::SUB; | |||
| 3450 | ||||
| 3451 | SDValue ScaledSize = DAG.getNode( | |||
| 3452 | ISD::SHL, dl, VT, Size, | |||
| 3453 | DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); | |||
| 3454 | ||||
| 3455 | Align StackAlign = TFL->getStackAlign(); | |||
| 3456 | Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value | |||
| 3457 | if (Alignment && *Alignment > StackAlign) { | |||
| 3458 | Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, | |||
| 3459 | DAG.getConstant(-(uint64_t)Alignment->value() | |||
| 3460 | << ST.getWavefrontSizeLog2(), | |||
| 3461 | dl, VT)); | |||
| 3462 | } | |||
| 3463 | ||||
| 3464 | Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain | |||
| 3465 | Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); | |||
| 3466 | ||||
| 3467 | return DAG.getMergeValues({Tmp1, Tmp2}, dl); | |||
| 3468 | } | |||
| 3469 | ||||
| 3470 | SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | |||
| 3471 | SelectionDAG &DAG) const { | |||
| 3472 | // We only handle constant sizes here to allow non-entry block, static sized | |||
| 3473 | // allocas. A truly dynamic value is more difficult to support because we | |||
| 3474 | // don't know if the size value is uniform or not. If the size isn't uniform, | |||
| 3475 | // we would need to do a wave reduction to get the maximum size to know how | |||
| 3476 | // much to increment the uniform stack pointer. | |||
| 3477 | SDValue Size = Op.getOperand(1); | |||
| 3478 | if (isa<ConstantSDNode>(Size)) | |||
| 3479 | return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. | |||
| 3480 | ||||
| 3481 | return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); | |||
| 3482 | } | |||
| 3483 | ||||
| 3484 | Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, | |||
| 3485 | const MachineFunction &MF) const { | |||
| 3486 | Register Reg = StringSwitch<Register>(RegName) | |||
| 3487 | .Case("m0", AMDGPU::M0) | |||
| 3488 | .Case("exec", AMDGPU::EXEC) | |||
| 3489 | .Case("exec_lo", AMDGPU::EXEC_LO) | |||
| 3490 | .Case("exec_hi", AMDGPU::EXEC_HI) | |||
| 3491 | .Case("flat_scratch", AMDGPU::FLAT_SCR) | |||
| 3492 | .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) | |||
| 3493 | .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) | |||
| 3494 | .Default(Register()); | |||
| 3495 | ||||
| 3496 | if (Reg == AMDGPU::NoRegister) { | |||
| 3497 | report_fatal_error(Twine("invalid register name \"" | |||
| 3498 | + StringRef(RegName) + "\".")); | |||
| 3499 | ||||
| 3500 | } | |||
| 3501 | ||||
| 3502 | if (!Subtarget->hasFlatScrRegister() && | |||
| 3503 | Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { | |||
| 3504 | report_fatal_error(Twine("invalid register \"" | |||
| 3505 | + StringRef(RegName) + "\" for subtarget.")); | |||
| 3506 | } | |||
| 3507 | ||||
| 3508 | switch (Reg) { | |||
| 3509 | case AMDGPU::M0: | |||
| 3510 | case AMDGPU::EXEC_LO: | |||
| 3511 | case AMDGPU::EXEC_HI: | |||
| 3512 | case AMDGPU::FLAT_SCR_LO: | |||
| 3513 | case AMDGPU::FLAT_SCR_HI: | |||
| 3514 | if (VT.getSizeInBits() == 32) | |||
| 3515 | return Reg; | |||
| 3516 | break; | |||
| 3517 | case AMDGPU::EXEC: | |||
| 3518 | case AMDGPU::FLAT_SCR: | |||
| 3519 | if (VT.getSizeInBits() == 64) | |||
| 3520 | return Reg; | |||
| 3521 | break; | |||
| 3522 | default: | |||
| 3523 | llvm_unreachable("missing register type checking")::llvm::llvm_unreachable_internal("missing register type checking" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 3523); | |||
| 3524 | } | |||
| 3525 | ||||
| 3526 | report_fatal_error(Twine("invalid type for register \"" | |||
| 3527 | + StringRef(RegName) + "\".")); | |||
| 3528 | } | |||
| 3529 | ||||
| 3530 | // If kill is not the last instruction, split the block so kill is always a | |||
| 3531 | // proper terminator. | |||
| 3532 | MachineBasicBlock * | |||
| 3533 | SITargetLowering::splitKillBlock(MachineInstr &MI, | |||
| 3534 | MachineBasicBlock *BB) const { | |||
| 3535 | MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); | |||
| 3536 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 3537 | MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); | |||
| 3538 | return SplitBB; | |||
| 3539 | } | |||
| 3540 | ||||
| 3541 | // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, | |||
| 3542 | // \p MI will be the only instruction in the loop body block. Otherwise, it will | |||
| 3543 | // be the first instruction in the remainder block. | |||
| 3544 | // | |||
| 3545 | /// \returns { LoopBody, Remainder } | |||
| 3546 | static std::pair<MachineBasicBlock *, MachineBasicBlock *> | |||
| 3547 | splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { | |||
| 3548 | MachineFunction *MF = MBB.getParent(); | |||
| 3549 | MachineBasicBlock::iterator I(&MI); | |||
| 3550 | ||||
| 3551 | // To insert the loop we need to split the block. Move everything after this | |||
| 3552 | // point to a new block, and insert a new empty block between the two. | |||
| 3553 | MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); | |||
| 3554 | MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); | |||
| 3555 | MachineFunction::iterator MBBI(MBB); | |||
| 3556 | ++MBBI; | |||
| 3557 | ||||
| 3558 | MF->insert(MBBI, LoopBB); | |||
| 3559 | MF->insert(MBBI, RemainderBB); | |||
| 3560 | ||||
| 3561 | LoopBB->addSuccessor(LoopBB); | |||
| 3562 | LoopBB->addSuccessor(RemainderBB); | |||
| 3563 | ||||
| 3564 | // Move the rest of the block into a new block. | |||
| 3565 | RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); | |||
| 3566 | ||||
| 3567 | if (InstInLoop) { | |||
| 3568 | auto Next = std::next(I); | |||
| 3569 | ||||
| 3570 | // Move instruction to loop body. | |||
| 3571 | LoopBB->splice(LoopBB->begin(), &MBB, I, Next); | |||
| 3572 | ||||
| 3573 | // Move the rest of the block. | |||
| 3574 | RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); | |||
| 3575 | } else { | |||
| 3576 | RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); | |||
| 3577 | } | |||
| 3578 | ||||
| 3579 | MBB.addSuccessor(LoopBB); | |||
| 3580 | ||||
| 3581 | return std::pair(LoopBB, RemainderBB); | |||
| 3582 | } | |||
| 3583 | ||||
| 3584 | /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. | |||
| 3585 | void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { | |||
| 3586 | MachineBasicBlock *MBB = MI.getParent(); | |||
| 3587 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 3588 | auto I = MI.getIterator(); | |||
| 3589 | auto E = std::next(I); | |||
| 3590 | ||||
| 3591 | BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) | |||
| 3592 | .addImm(0); | |||
| 3593 | ||||
| 3594 | MIBundleBuilder Bundler(*MBB, I, E); | |||
| 3595 | finalizeBundle(*MBB, Bundler.begin()); | |||
| 3596 | } | |||
| 3597 | ||||
| 3598 | MachineBasicBlock * | |||
| 3599 | SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, | |||
| 3600 | MachineBasicBlock *BB) const { | |||
| 3601 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 3602 | ||||
| 3603 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | |||
| 3604 | ||||
| 3605 | MachineBasicBlock *LoopBB; | |||
| 3606 | MachineBasicBlock *RemainderBB; | |||
| 3607 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 3608 | ||||
| 3609 | // Apparently kill flags are only valid if the def is in the same block? | |||
| 3610 | if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) | |||
| 3611 | Src->setIsKill(false); | |||
| 3612 | ||||
| 3613 | std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); | |||
| 3614 | ||||
| 3615 | MachineBasicBlock::iterator I = LoopBB->end(); | |||
| 3616 | ||||
| 3617 | const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( | |||
| 3618 | AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); | |||
| 3619 | ||||
| 3620 | // Clear TRAP_STS.MEM_VIOL | |||
| 3621 | BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) | |||
| 3622 | .addImm(0) | |||
| 3623 | .addImm(EncodedReg); | |||
| 3624 | ||||
| 3625 | bundleInstWithWaitcnt(MI); | |||
| 3626 | ||||
| 3627 | Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); | |||
| 3628 | ||||
| 3629 | // Load and check TRAP_STS.MEM_VIOL | |||
| 3630 | BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) | |||
| 3631 | .addImm(EncodedReg); | |||
| 3632 | ||||
| 3633 | // FIXME: Do we need to use an isel pseudo that may clobber scc? | |||
| 3634 | BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) | |||
| 3635 | .addReg(Reg, RegState::Kill) | |||
| 3636 | .addImm(0); | |||
| 3637 | BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) | |||
| 3638 | .addMBB(LoopBB); | |||
| 3639 | ||||
| 3640 | return RemainderBB; | |||
| 3641 | } | |||
| 3642 | ||||
| 3643 | // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the | |||
| 3644 | // wavefront. If the value is uniform and just happens to be in a VGPR, this | |||
| 3645 | // will only do one iteration. In the worst case, this will loop 64 times. | |||
| 3646 | // | |||
| 3647 | // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. | |||
| 3648 | static MachineBasicBlock::iterator | |||
| 3649 | emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, | |||
| 3650 | MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, | |||
| 3651 | const DebugLoc &DL, const MachineOperand &Idx, | |||
| 3652 | unsigned InitReg, unsigned ResultReg, unsigned PhiReg, | |||
| 3653 | unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, | |||
| 3654 | Register &SGPRIdxReg) { | |||
| 3655 | ||||
| 3656 | MachineFunction *MF = OrigBB.getParent(); | |||
| 3657 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | |||
| 3658 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | |||
| 3659 | MachineBasicBlock::iterator I = LoopBB.begin(); | |||
| 3660 | ||||
| 3661 | const TargetRegisterClass *BoolRC = TRI->getBoolRC(); | |||
| 3662 | Register PhiExec = MRI.createVirtualRegister(BoolRC); | |||
| 3663 | Register NewExec = MRI.createVirtualRegister(BoolRC); | |||
| 3664 | Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | |||
| 3665 | Register CondReg = MRI.createVirtualRegister(BoolRC); | |||
| 3666 | ||||
| 3667 | BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) | |||
| 3668 | .addReg(InitReg) | |||
| 3669 | .addMBB(&OrigBB) | |||
| 3670 | .addReg(ResultReg) | |||
| 3671 | .addMBB(&LoopBB); | |||
| 3672 | ||||
| 3673 | BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) | |||
| 3674 | .addReg(InitSaveExecReg) | |||
| 3675 | .addMBB(&OrigBB) | |||
| 3676 | .addReg(NewExec) | |||
| 3677 | .addMBB(&LoopBB); | |||
| 3678 | ||||
| 3679 | // Read the next variant <- also loop target. | |||
| 3680 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) | |||
| 3681 | .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); | |||
| 3682 | ||||
| 3683 | // Compare the just read M0 value to all possible Idx values. | |||
| 3684 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) | |||
| 3685 | .addReg(CurrentIdxReg) | |||
| 3686 | .addReg(Idx.getReg(), 0, Idx.getSubReg()); | |||
| 3687 | ||||
| 3688 | // Update EXEC, save the original EXEC value to VCC. | |||
| 3689 | BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 | |||
| 3690 | : AMDGPU::S_AND_SAVEEXEC_B64), | |||
| 3691 | NewExec) | |||
| 3692 | .addReg(CondReg, RegState::Kill); | |||
| 3693 | ||||
| 3694 | MRI.setSimpleHint(NewExec, CondReg); | |||
| 3695 | ||||
| 3696 | if (UseGPRIdxMode) { | |||
| 3697 | if (Offset == 0) { | |||
| 3698 | SGPRIdxReg = CurrentIdxReg; | |||
| 3699 | } else { | |||
| 3700 | SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | |||
| 3701 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) | |||
| 3702 | .addReg(CurrentIdxReg, RegState::Kill) | |||
| 3703 | .addImm(Offset); | |||
| 3704 | } | |||
| 3705 | } else { | |||
| 3706 | // Move index from VCC into M0 | |||
| 3707 | if (Offset == 0) { | |||
| 3708 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) | |||
| 3709 | .addReg(CurrentIdxReg, RegState::Kill); | |||
| 3710 | } else { | |||
| 3711 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) | |||
| 3712 | .addReg(CurrentIdxReg, RegState::Kill) | |||
| 3713 | .addImm(Offset); | |||
| 3714 | } | |||
| 3715 | } | |||
| 3716 | ||||
| 3717 | // Update EXEC, switch all done bits to 0 and all todo bits to 1. | |||
| 3718 | unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; | |||
| 3719 | MachineInstr *InsertPt = | |||
| 3720 | BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term | |||
| 3721 | : AMDGPU::S_XOR_B64_term), Exec) | |||
| 3722 | .addReg(Exec) | |||
| 3723 | .addReg(NewExec); | |||
| 3724 | ||||
| 3725 | // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use | |||
| 3726 | // s_cbranch_scc0? | |||
| 3727 | ||||
| 3728 | // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. | |||
| 3729 | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) | |||
| 3730 | .addMBB(&LoopBB); | |||
| 3731 | ||||
| 3732 | return InsertPt->getIterator(); | |||
| 3733 | } | |||
| 3734 | ||||
| 3735 | // This has slightly sub-optimal regalloc when the source vector is killed by | |||
| 3736 | // the read. The register allocator does not understand that the kill is | |||
| 3737 | // per-workitem, so is kept alive for the whole loop so we end up not re-using a | |||
| 3738 | // subregister from it, using 1 more VGPR than necessary. This was saved when | |||
| 3739 | // this was expanded after register allocation. | |||
| 3740 | static MachineBasicBlock::iterator | |||
| 3741 | loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, | |||
| 3742 | unsigned InitResultReg, unsigned PhiReg, int Offset, | |||
| 3743 | bool UseGPRIdxMode, Register &SGPRIdxReg) { | |||
| 3744 | MachineFunction *MF = MBB.getParent(); | |||
| 3745 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | |||
| 3746 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | |||
| 3747 | MachineRegisterInfo &MRI = MF->getRegInfo(); | |||
| 3748 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 3749 | MachineBasicBlock::iterator I(&MI); | |||
| 3750 | ||||
| 3751 | const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); | |||
| 3752 | Register DstReg = MI.getOperand(0).getReg(); | |||
| 3753 | Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); | |||
| 3754 | Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); | |||
| 3755 | unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; | |||
| 3756 | unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; | |||
| 3757 | ||||
| 3758 | BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); | |||
| 3759 | ||||
| 3760 | // Save the EXEC mask | |||
| 3761 | BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) | |||
| 3762 | .addReg(Exec); | |||
| 3763 | ||||
| 3764 | MachineBasicBlock *LoopBB; | |||
| 3765 | MachineBasicBlock *RemainderBB; | |||
| 3766 | std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); | |||
| 3767 | ||||
| 3768 | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | |||
| 3769 | ||||
| 3770 | auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, | |||
| 3771 | InitResultReg, DstReg, PhiReg, TmpExec, | |||
| 3772 | Offset, UseGPRIdxMode, SGPRIdxReg); | |||
| 3773 | ||||
| 3774 | MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); | |||
| 3775 | MachineFunction::iterator MBBI(LoopBB); | |||
| 3776 | ++MBBI; | |||
| 3777 | MF->insert(MBBI, LandingPad); | |||
| 3778 | LoopBB->removeSuccessor(RemainderBB); | |||
| 3779 | LandingPad->addSuccessor(RemainderBB); | |||
| 3780 | LoopBB->addSuccessor(LandingPad); | |||
| 3781 | MachineBasicBlock::iterator First = LandingPad->begin(); | |||
| 3782 | BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) | |||
| 3783 | .addReg(SaveExec); | |||
| 3784 | ||||
| 3785 | return InsPt; | |||
| 3786 | } | |||
| 3787 | ||||
| 3788 | // Returns subreg index, offset | |||
| 3789 | static std::pair<unsigned, int> | |||
| 3790 | computeIndirectRegAndOffset(const SIRegisterInfo &TRI, | |||
| 3791 | const TargetRegisterClass *SuperRC, | |||
| 3792 | unsigned VecReg, | |||
| 3793 | int Offset) { | |||
| 3794 | int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; | |||
| 3795 | ||||
| 3796 | // Skip out of bounds offsets, or else we would end up using an undefined | |||
| 3797 | // register. | |||
| 3798 | if (Offset >= NumElts || Offset < 0) | |||
| 3799 | return std::pair(AMDGPU::sub0, Offset); | |||
| 3800 | ||||
| 3801 | return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); | |||
| 3802 | } | |||
| 3803 | ||||
| 3804 | static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, | |||
| 3805 | MachineRegisterInfo &MRI, MachineInstr &MI, | |||
| 3806 | int Offset) { | |||
| 3807 | MachineBasicBlock *MBB = MI.getParent(); | |||
| 3808 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 3809 | MachineBasicBlock::iterator I(&MI); | |||
| 3810 | ||||
| 3811 | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | |||
| 3812 | ||||
| 3813 | assert(Idx->getReg() != AMDGPU::NoRegister)(static_cast <bool> (Idx->getReg() != AMDGPU::NoRegister ) ? void (0) : __assert_fail ("Idx->getReg() != AMDGPU::NoRegister" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 3813, __extension__ __PRETTY_FUNCTION__)); | |||
| 3814 | ||||
| 3815 | if (Offset == 0) { | |||
| 3816 | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); | |||
| 3817 | } else { | |||
| 3818 | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) | |||
| 3819 | .add(*Idx) | |||
| 3820 | .addImm(Offset); | |||
| 3821 | } | |||
| 3822 | } | |||
| 3823 | ||||
| 3824 | static Register getIndirectSGPRIdx(const SIInstrInfo *TII, | |||
| 3825 | MachineRegisterInfo &MRI, MachineInstr &MI, | |||
| 3826 | int Offset) { | |||
| 3827 | MachineBasicBlock *MBB = MI.getParent(); | |||
| 3828 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 3829 | MachineBasicBlock::iterator I(&MI); | |||
| 3830 | ||||
| 3831 | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | |||
| 3832 | ||||
| 3833 | if (Offset == 0) | |||
| 3834 | return Idx->getReg(); | |||
| 3835 | ||||
| 3836 | Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); | |||
| 3837 | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) | |||
| 3838 | .add(*Idx) | |||
| 3839 | .addImm(Offset); | |||
| 3840 | return Tmp; | |||
| 3841 | } | |||
| 3842 | ||||
| 3843 | static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, | |||
| 3844 | MachineBasicBlock &MBB, | |||
| 3845 | const GCNSubtarget &ST) { | |||
| 3846 | const SIInstrInfo *TII = ST.getInstrInfo(); | |||
| 3847 | const SIRegisterInfo &TRI = TII->getRegisterInfo(); | |||
| 3848 | MachineFunction *MF = MBB.getParent(); | |||
| 3849 | MachineRegisterInfo &MRI = MF->getRegInfo(); | |||
| 3850 | ||||
| 3851 | Register Dst = MI.getOperand(0).getReg(); | |||
| 3852 | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | |||
| 3853 | Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); | |||
| 3854 | int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); | |||
| 3855 | ||||
| 3856 | const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); | |||
| 3857 | const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); | |||
| 3858 | ||||
| 3859 | unsigned SubReg; | |||
| 3860 | std::tie(SubReg, Offset) | |||
| 3861 | = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); | |||
| 3862 | ||||
| 3863 | const bool UseGPRIdxMode = ST.useVGPRIndexMode(); | |||
| 3864 | ||||
| 3865 | // Check for a SGPR index. | |||
| 3866 | if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { | |||
| 3867 | MachineBasicBlock::iterator I(&MI); | |||
| 3868 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 3869 | ||||
| 3870 | if (UseGPRIdxMode) { | |||
| 3871 | // TODO: Look at the uses to avoid the copy. This may require rescheduling | |||
| 3872 | // to avoid interfering with other uses, so probably requires a new | |||
| 3873 | // optimization pass. | |||
| 3874 | Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); | |||
| 3875 | ||||
| 3876 | const MCInstrDesc &GPRIDXDesc = | |||
| 3877 | TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); | |||
| 3878 | BuildMI(MBB, I, DL, GPRIDXDesc, Dst) | |||
| 3879 | .addReg(SrcReg) | |||
| 3880 | .addReg(Idx) | |||
| 3881 | .addImm(SubReg); | |||
| 3882 | } else { | |||
| 3883 | setM0ToIndexFromSGPR(TII, MRI, MI, Offset); | |||
| 3884 | ||||
| 3885 | BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) | |||
| 3886 | .addReg(SrcReg, 0, SubReg) | |||
| 3887 | .addReg(SrcReg, RegState::Implicit); | |||
| 3888 | } | |||
| 3889 | ||||
| 3890 | MI.eraseFromParent(); | |||
| 3891 | ||||
| 3892 | return &MBB; | |||
| 3893 | } | |||
| 3894 | ||||
| 3895 | // Control flow needs to be inserted if indexing with a VGPR. | |||
| 3896 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 3897 | MachineBasicBlock::iterator I(&MI); | |||
| 3898 | ||||
| 3899 | Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | |||
| 3900 | Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | |||
| 3901 | ||||
| 3902 | BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); | |||
| 3903 | ||||
| 3904 | Register SGPRIdxReg; | |||
| 3905 | auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, | |||
| 3906 | UseGPRIdxMode, SGPRIdxReg); | |||
| 3907 | ||||
| 3908 | MachineBasicBlock *LoopBB = InsPt->getParent(); | |||
| 3909 | ||||
| 3910 | if (UseGPRIdxMode) { | |||
| 3911 | const MCInstrDesc &GPRIDXDesc = | |||
| 3912 | TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); | |||
| 3913 | ||||
| 3914 | BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) | |||
| 3915 | .addReg(SrcReg) | |||
| 3916 | .addReg(SGPRIdxReg) | |||
| 3917 | .addImm(SubReg); | |||
| 3918 | } else { | |||
| 3919 | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) | |||
| 3920 | .addReg(SrcReg, 0, SubReg) | |||
| 3921 | .addReg(SrcReg, RegState::Implicit); | |||
| 3922 | } | |||
| 3923 | ||||
| 3924 | MI.eraseFromParent(); | |||
| 3925 | ||||
| 3926 | return LoopBB; | |||
| 3927 | } | |||
| 3928 | ||||
| 3929 | static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, | |||
| 3930 | MachineBasicBlock &MBB, | |||
| 3931 | const GCNSubtarget &ST) { | |||
| 3932 | const SIInstrInfo *TII = ST.getInstrInfo(); | |||
| 3933 | const SIRegisterInfo &TRI = TII->getRegisterInfo(); | |||
| 3934 | MachineFunction *MF = MBB.getParent(); | |||
| 3935 | MachineRegisterInfo &MRI = MF->getRegInfo(); | |||
| 3936 | ||||
| 3937 | Register Dst = MI.getOperand(0).getReg(); | |||
| 3938 | const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); | |||
| 3939 | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | |||
| 3940 | const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); | |||
| 3941 | int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); | |||
| 3942 | const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); | |||
| 3943 | const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); | |||
| 3944 | ||||
| 3945 | // This can be an immediate, but will be folded later. | |||
| 3946 | assert(Val->getReg())(static_cast <bool> (Val->getReg()) ? void (0) : __assert_fail ("Val->getReg()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 3946, __extension__ __PRETTY_FUNCTION__)); | |||
| 3947 | ||||
| 3948 | unsigned SubReg; | |||
| 3949 | std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, | |||
| 3950 | SrcVec->getReg(), | |||
| 3951 | Offset); | |||
| 3952 | const bool UseGPRIdxMode = ST.useVGPRIndexMode(); | |||
| 3953 | ||||
| 3954 | if (Idx->getReg() == AMDGPU::NoRegister) { | |||
| 3955 | MachineBasicBlock::iterator I(&MI); | |||
| 3956 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 3957 | ||||
| 3958 | assert(Offset == 0)(static_cast <bool> (Offset == 0) ? void (0) : __assert_fail ("Offset == 0", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 3958, __extension__ __PRETTY_FUNCTION__)); | |||
| 3959 | ||||
| 3960 | BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) | |||
| 3961 | .add(*SrcVec) | |||
| 3962 | .add(*Val) | |||
| 3963 | .addImm(SubReg); | |||
| 3964 | ||||
| 3965 | MI.eraseFromParent(); | |||
| 3966 | return &MBB; | |||
| 3967 | } | |||
| 3968 | ||||
| 3969 | // Check for a SGPR index. | |||
| 3970 | if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { | |||
| 3971 | MachineBasicBlock::iterator I(&MI); | |||
| 3972 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 3973 | ||||
| 3974 | if (UseGPRIdxMode) { | |||
| 3975 | Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); | |||
| 3976 | ||||
| 3977 | const MCInstrDesc &GPRIDXDesc = | |||
| 3978 | TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); | |||
| 3979 | BuildMI(MBB, I, DL, GPRIDXDesc, Dst) | |||
| 3980 | .addReg(SrcVec->getReg()) | |||
| 3981 | .add(*Val) | |||
| 3982 | .addReg(Idx) | |||
| 3983 | .addImm(SubReg); | |||
| 3984 | } else { | |||
| 3985 | setM0ToIndexFromSGPR(TII, MRI, MI, Offset); | |||
| 3986 | ||||
| 3987 | const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( | |||
| 3988 | TRI.getRegSizeInBits(*VecRC), 32, false); | |||
| 3989 | BuildMI(MBB, I, DL, MovRelDesc, Dst) | |||
| 3990 | .addReg(SrcVec->getReg()) | |||
| 3991 | .add(*Val) | |||
| 3992 | .addImm(SubReg); | |||
| 3993 | } | |||
| 3994 | MI.eraseFromParent(); | |||
| 3995 | return &MBB; | |||
| 3996 | } | |||
| 3997 | ||||
| 3998 | // Control flow needs to be inserted if indexing with a VGPR. | |||
| 3999 | if (Val->isReg()) | |||
| 4000 | MRI.clearKillFlags(Val->getReg()); | |||
| 4001 | ||||
| 4002 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 4003 | ||||
| 4004 | Register PhiReg = MRI.createVirtualRegister(VecRC); | |||
| 4005 | ||||
| 4006 | Register SGPRIdxReg; | |||
| 4007 | auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, | |||
| 4008 | UseGPRIdxMode, SGPRIdxReg); | |||
| 4009 | MachineBasicBlock *LoopBB = InsPt->getParent(); | |||
| 4010 | ||||
| 4011 | if (UseGPRIdxMode) { | |||
| 4012 | const MCInstrDesc &GPRIDXDesc = | |||
| 4013 | TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); | |||
| 4014 | ||||
| 4015 | BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) | |||
| 4016 | .addReg(PhiReg) | |||
| 4017 | .add(*Val) | |||
| 4018 | .addReg(SGPRIdxReg) | |||
| 4019 | .addImm(AMDGPU::sub0); | |||
| 4020 | } else { | |||
| 4021 | const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( | |||
| 4022 | TRI.getRegSizeInBits(*VecRC), 32, false); | |||
| 4023 | BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) | |||
| 4024 | .addReg(PhiReg) | |||
| 4025 | .add(*Val) | |||
| 4026 | .addImm(AMDGPU::sub0); | |||
| 4027 | } | |||
| 4028 | ||||
| 4029 | MI.eraseFromParent(); | |||
| 4030 | return LoopBB; | |||
| 4031 | } | |||
| 4032 | ||||
| 4033 | MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( | |||
| 4034 | MachineInstr &MI, MachineBasicBlock *BB) const { | |||
| 4035 | ||||
| 4036 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 4037 | MachineFunction *MF = BB->getParent(); | |||
| 4038 | SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); | |||
| 4039 | ||||
| 4040 | switch (MI.getOpcode()) { | |||
| 4041 | case AMDGPU::S_UADDO_PSEUDO: | |||
| 4042 | case AMDGPU::S_USUBO_PSEUDO: { | |||
| 4043 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 4044 | MachineOperand &Dest0 = MI.getOperand(0); | |||
| 4045 | MachineOperand &Dest1 = MI.getOperand(1); | |||
| 4046 | MachineOperand &Src0 = MI.getOperand(2); | |||
| 4047 | MachineOperand &Src1 = MI.getOperand(3); | |||
| 4048 | ||||
| 4049 | unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) | |||
| 4050 | ? AMDGPU::S_ADD_I32 | |||
| 4051 | : AMDGPU::S_SUB_I32; | |||
| 4052 | BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); | |||
| 4053 | ||||
| 4054 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) | |||
| 4055 | .addImm(1) | |||
| 4056 | .addImm(0); | |||
| 4057 | ||||
| 4058 | MI.eraseFromParent(); | |||
| 4059 | return BB; | |||
| 4060 | } | |||
| 4061 | case AMDGPU::S_ADD_U64_PSEUDO: | |||
| 4062 | case AMDGPU::S_SUB_U64_PSEUDO: { | |||
| 4063 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | |||
| 4064 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | |||
| 4065 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | |||
| 4066 | const TargetRegisterClass *BoolRC = TRI->getBoolRC(); | |||
| 4067 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 4068 | ||||
| 4069 | MachineOperand &Dest = MI.getOperand(0); | |||
| 4070 | MachineOperand &Src0 = MI.getOperand(1); | |||
| 4071 | MachineOperand &Src1 = MI.getOperand(2); | |||
| 4072 | ||||
| 4073 | Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); | |||
| 4074 | Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); | |||
| 4075 | ||||
| 4076 | MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( | |||
| 4077 | MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); | |||
| 4078 | MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( | |||
| 4079 | MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); | |||
| 4080 | ||||
| 4081 | MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( | |||
| 4082 | MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); | |||
| 4083 | MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( | |||
| 4084 | MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); | |||
| 4085 | ||||
| 4086 | bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); | |||
| 4087 | ||||
| 4088 | unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; | |||
| 4089 | unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; | |||
| 4090 | BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); | |||
| 4091 | BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); | |||
| 4092 | BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) | |||
| 4093 | .addReg(DestSub0) | |||
| 4094 | .addImm(AMDGPU::sub0) | |||
| 4095 | .addReg(DestSub1) | |||
| 4096 | .addImm(AMDGPU::sub1); | |||
| 4097 | MI.eraseFromParent(); | |||
| 4098 | return BB; | |||
| 4099 | } | |||
| 4100 | case AMDGPU::V_ADD_U64_PSEUDO: | |||
| 4101 | case AMDGPU::V_SUB_U64_PSEUDO: { | |||
| 4102 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | |||
| 4103 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | |||
| 4104 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | |||
| 4105 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 4106 | ||||
| 4107 | bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); | |||
| 4108 | ||||
| 4109 | MachineOperand &Dest = MI.getOperand(0); | |||
| 4110 | MachineOperand &Src0 = MI.getOperand(1); | |||
| 4111 | MachineOperand &Src1 = MI.getOperand(2); | |||
| 4112 | ||||
| 4113 | if (IsAdd && ST.hasLshlAddB64()) { | |||
| 4114 | auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), | |||
| 4115 | Dest.getReg()) | |||
| 4116 | .add(Src0) | |||
| 4117 | .addImm(0) | |||
| 4118 | .add(Src1); | |||
| 4119 | TII->legalizeOperands(*Add); | |||
| 4120 | MI.eraseFromParent(); | |||
| 4121 | return BB; | |||
| 4122 | } | |||
| 4123 | ||||
| 4124 | const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); | |||
| 4125 | ||||
| 4126 | Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | |||
| 4127 | Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | |||
| 4128 | ||||
| 4129 | Register CarryReg = MRI.createVirtualRegister(CarryRC); | |||
| 4130 | Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); | |||
| 4131 | ||||
| 4132 | const TargetRegisterClass *Src0RC = Src0.isReg() | |||
| 4133 | ? MRI.getRegClass(Src0.getReg()) | |||
| 4134 | : &AMDGPU::VReg_64RegClass; | |||
| 4135 | const TargetRegisterClass *Src1RC = Src1.isReg() | |||
| 4136 | ? MRI.getRegClass(Src1.getReg()) | |||
| 4137 | : &AMDGPU::VReg_64RegClass; | |||
| 4138 | ||||
| 4139 | const TargetRegisterClass *Src0SubRC = | |||
| 4140 | TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); | |||
| 4141 | const TargetRegisterClass *Src1SubRC = | |||
| 4142 | TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); | |||
| 4143 | ||||
| 4144 | MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( | |||
| 4145 | MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); | |||
| 4146 | MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( | |||
| 4147 | MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); | |||
| 4148 | ||||
| 4149 | MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( | |||
| 4150 | MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); | |||
| 4151 | MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( | |||
| 4152 | MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); | |||
| 4153 | ||||
| 4154 | unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; | |||
| 4155 | MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) | |||
| 4156 | .addReg(CarryReg, RegState::Define) | |||
| 4157 | .add(SrcReg0Sub0) | |||
| 4158 | .add(SrcReg1Sub0) | |||
| 4159 | .addImm(0); // clamp bit | |||
| 4160 | ||||
| 4161 | unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; | |||
| 4162 | MachineInstr *HiHalf = | |||
| 4163 | BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) | |||
| 4164 | .addReg(DeadCarryReg, RegState::Define | RegState::Dead) | |||
| 4165 | .add(SrcReg0Sub1) | |||
| 4166 | .add(SrcReg1Sub1) | |||
| 4167 | .addReg(CarryReg, RegState::Kill) | |||
| 4168 | .addImm(0); // clamp bit | |||
| 4169 | ||||
| 4170 | BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) | |||
| 4171 | .addReg(DestSub0) | |||
| 4172 | .addImm(AMDGPU::sub0) | |||
| 4173 | .addReg(DestSub1) | |||
| 4174 | .addImm(AMDGPU::sub1); | |||
| 4175 | TII->legalizeOperands(*LoHalf); | |||
| 4176 | TII->legalizeOperands(*HiHalf); | |||
| 4177 | MI.eraseFromParent(); | |||
| 4178 | return BB; | |||
| 4179 | } | |||
| 4180 | case AMDGPU::S_ADD_CO_PSEUDO: | |||
| 4181 | case AMDGPU::S_SUB_CO_PSEUDO: { | |||
| 4182 | // This pseudo has a chance to be selected | |||
| 4183 | // only from uniform add/subcarry node. All the VGPR operands | |||
| 4184 | // therefore assumed to be splat vectors. | |||
| 4185 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | |||
| 4186 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | |||
| 4187 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | |||
| 4188 | MachineBasicBlock::iterator MII = MI; | |||
| 4189 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 4190 | MachineOperand &Dest = MI.getOperand(0); | |||
| 4191 | MachineOperand &CarryDest = MI.getOperand(1); | |||
| 4192 | MachineOperand &Src0 = MI.getOperand(2); | |||
| 4193 | MachineOperand &Src1 = MI.getOperand(3); | |||
| 4194 | MachineOperand &Src2 = MI.getOperand(4); | |||
| 4195 | unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) | |||
| 4196 | ? AMDGPU::S_ADDC_U32 | |||
| 4197 | : AMDGPU::S_SUBB_U32; | |||
| 4198 | if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { | |||
| 4199 | Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); | |||
| 4200 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) | |||
| 4201 | .addReg(Src0.getReg()); | |||
| 4202 | Src0.setReg(RegOp0); | |||
| 4203 | } | |||
| 4204 | if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { | |||
| 4205 | Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); | |||
| 4206 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) | |||
| 4207 | .addReg(Src1.getReg()); | |||
| 4208 | Src1.setReg(RegOp1); | |||
| 4209 | } | |||
| 4210 | Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); | |||
| 4211 | if (TRI->isVectorRegister(MRI, Src2.getReg())) { | |||
| 4212 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) | |||
| 4213 | .addReg(Src2.getReg()); | |||
| 4214 | Src2.setReg(RegOp2); | |||
| 4215 | } | |||
| 4216 | ||||
| 4217 | const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); | |||
| 4218 | unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); | |||
| 4219 | assert(WaveSize == 64 || WaveSize == 32)(static_cast <bool> (WaveSize == 64 || WaveSize == 32) ? void (0) : __assert_fail ("WaveSize == 64 || WaveSize == 32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4219, __extension__ __PRETTY_FUNCTION__)); | |||
| 4220 | ||||
| 4221 | if (WaveSize == 64) { | |||
| 4222 | if (ST.hasScalarCompareEq64()) { | |||
| 4223 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) | |||
| 4224 | .addReg(Src2.getReg()) | |||
| 4225 | .addImm(0); | |||
| 4226 | } else { | |||
| 4227 | const TargetRegisterClass *SubRC = | |||
| 4228 | TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0); | |||
| 4229 | MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( | |||
| 4230 | MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); | |||
| 4231 | MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( | |||
| 4232 | MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); | |||
| 4233 | Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); | |||
| 4234 | ||||
| 4235 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) | |||
| 4236 | .add(Src2Sub0) | |||
| 4237 | .add(Src2Sub1); | |||
| 4238 | ||||
| 4239 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) | |||
| 4240 | .addReg(Src2_32, RegState::Kill) | |||
| 4241 | .addImm(0); | |||
| 4242 | } | |||
| 4243 | } else { | |||
| 4244 | BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) | |||
| 4245 | .addReg(Src2.getReg()) | |||
| 4246 | .addImm(0); | |||
| 4247 | } | |||
| 4248 | ||||
| 4249 | BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); | |||
| 4250 | ||||
| 4251 | unsigned SelOpc = | |||
| 4252 | (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; | |||
| 4253 | ||||
| 4254 | BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) | |||
| 4255 | .addImm(-1) | |||
| 4256 | .addImm(0); | |||
| 4257 | ||||
| 4258 | MI.eraseFromParent(); | |||
| 4259 | return BB; | |||
| 4260 | } | |||
| 4261 | case AMDGPU::SI_INIT_M0: { | |||
| 4262 | BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), | |||
| 4263 | TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) | |||
| 4264 | .add(MI.getOperand(0)); | |||
| 4265 | MI.eraseFromParent(); | |||
| 4266 | return BB; | |||
| 4267 | } | |||
| 4268 | case AMDGPU::GET_GROUPSTATICSIZE: { | |||
| 4269 | assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||(static_cast <bool> (getTargetMachine().getTargetTriple ().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple ().getOS() == Triple::AMDPAL) ? void (0) : __assert_fail ("getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4270, __extension__ __PRETTY_FUNCTION__)) | |||
| 4270 | getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)(static_cast <bool> (getTargetMachine().getTargetTriple ().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple ().getOS() == Triple::AMDPAL) ? void (0) : __assert_fail ("getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4270, __extension__ __PRETTY_FUNCTION__)); | |||
| 4271 | DebugLoc DL = MI.getDebugLoc(); | |||
| 4272 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) | |||
| 4273 | .add(MI.getOperand(0)) | |||
| 4274 | .addImm(MFI->getLDSSize()); | |||
| 4275 | MI.eraseFromParent(); | |||
| 4276 | return BB; | |||
| 4277 | } | |||
| 4278 | case AMDGPU::SI_INDIRECT_SRC_V1: | |||
| 4279 | case AMDGPU::SI_INDIRECT_SRC_V2: | |||
| 4280 | case AMDGPU::SI_INDIRECT_SRC_V4: | |||
| 4281 | case AMDGPU::SI_INDIRECT_SRC_V8: | |||
| 4282 | case AMDGPU::SI_INDIRECT_SRC_V9: | |||
| 4283 | case AMDGPU::SI_INDIRECT_SRC_V10: | |||
| 4284 | case AMDGPU::SI_INDIRECT_SRC_V11: | |||
| 4285 | case AMDGPU::SI_INDIRECT_SRC_V12: | |||
| 4286 | case AMDGPU::SI_INDIRECT_SRC_V16: | |||
| 4287 | case AMDGPU::SI_INDIRECT_SRC_V32: | |||
| 4288 | return emitIndirectSrc(MI, *BB, *getSubtarget()); | |||
| 4289 | case AMDGPU::SI_INDIRECT_DST_V1: | |||
| 4290 | case AMDGPU::SI_INDIRECT_DST_V2: | |||
| 4291 | case AMDGPU::SI_INDIRECT_DST_V4: | |||
| 4292 | case AMDGPU::SI_INDIRECT_DST_V8: | |||
| 4293 | case AMDGPU::SI_INDIRECT_DST_V9: | |||
| 4294 | case AMDGPU::SI_INDIRECT_DST_V10: | |||
| 4295 | case AMDGPU::SI_INDIRECT_DST_V11: | |||
| 4296 | case AMDGPU::SI_INDIRECT_DST_V12: | |||
| 4297 | case AMDGPU::SI_INDIRECT_DST_V16: | |||
| 4298 | case AMDGPU::SI_INDIRECT_DST_V32: | |||
| 4299 | return emitIndirectDst(MI, *BB, *getSubtarget()); | |||
| 4300 | case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: | |||
| 4301 | case AMDGPU::SI_KILL_I1_PSEUDO: | |||
| 4302 | return splitKillBlock(MI, BB); | |||
| 4303 | case AMDGPU::V_CNDMASK_B64_PSEUDO: { | |||
| 4304 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | |||
| 4305 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | |||
| 4306 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | |||
| 4307 | ||||
| 4308 | Register Dst = MI.getOperand(0).getReg(); | |||
| 4309 | Register Src0 = MI.getOperand(1).getReg(); | |||
| 4310 | Register Src1 = MI.getOperand(2).getReg(); | |||
| 4311 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 4312 | Register SrcCond = MI.getOperand(3).getReg(); | |||
| 4313 | ||||
| 4314 | Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | |||
| 4315 | Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | |||
| 4316 | const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); | |||
| 4317 | Register SrcCondCopy = MRI.createVirtualRegister(CondRC); | |||
| 4318 | ||||
| 4319 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) | |||
| 4320 | .addReg(SrcCond); | |||
| 4321 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) | |||
| 4322 | .addImm(0) | |||
| 4323 | .addReg(Src0, 0, AMDGPU::sub0) | |||
| 4324 | .addImm(0) | |||
| 4325 | .addReg(Src1, 0, AMDGPU::sub0) | |||
| 4326 | .addReg(SrcCondCopy); | |||
| 4327 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) | |||
| 4328 | .addImm(0) | |||
| 4329 | .addReg(Src0, 0, AMDGPU::sub1) | |||
| 4330 | .addImm(0) | |||
| 4331 | .addReg(Src1, 0, AMDGPU::sub1) | |||
| 4332 | .addReg(SrcCondCopy); | |||
| 4333 | ||||
| 4334 | BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) | |||
| 4335 | .addReg(DstLo) | |||
| 4336 | .addImm(AMDGPU::sub0) | |||
| 4337 | .addReg(DstHi) | |||
| 4338 | .addImm(AMDGPU::sub1); | |||
| 4339 | MI.eraseFromParent(); | |||
| 4340 | return BB; | |||
| 4341 | } | |||
| 4342 | case AMDGPU::SI_BR_UNDEF: { | |||
| 4343 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 4344 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 4345 | MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) | |||
| 4346 | .add(MI.getOperand(0)); | |||
| 4347 | Br->getOperand(1).setIsUndef(); // read undef SCC | |||
| 4348 | MI.eraseFromParent(); | |||
| 4349 | return BB; | |||
| 4350 | } | |||
| 4351 | case AMDGPU::ADJCALLSTACKUP: | |||
| 4352 | case AMDGPU::ADJCALLSTACKDOWN: { | |||
| 4353 | const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); | |||
| 4354 | MachineInstrBuilder MIB(*MF, &MI); | |||
| 4355 | MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) | |||
| 4356 | .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); | |||
| 4357 | return BB; | |||
| 4358 | } | |||
| 4359 | case AMDGPU::SI_CALL_ISEL: { | |||
| 4360 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 4361 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 4362 | ||||
| 4363 | unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); | |||
| 4364 | ||||
| 4365 | MachineInstrBuilder MIB; | |||
| 4366 | MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); | |||
| 4367 | ||||
| 4368 | for (const MachineOperand &MO : MI.operands()) | |||
| 4369 | MIB.add(MO); | |||
| 4370 | ||||
| 4371 | MIB.cloneMemRefs(MI); | |||
| 4372 | MI.eraseFromParent(); | |||
| 4373 | return BB; | |||
| 4374 | } | |||
| 4375 | case AMDGPU::V_ADD_CO_U32_e32: | |||
| 4376 | case AMDGPU::V_SUB_CO_U32_e32: | |||
| 4377 | case AMDGPU::V_SUBREV_CO_U32_e32: { | |||
| 4378 | // TODO: Define distinct V_*_I32_Pseudo instructions instead. | |||
| 4379 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 4380 | unsigned Opc = MI.getOpcode(); | |||
| 4381 | ||||
| 4382 | bool NeedClampOperand = false; | |||
| 4383 | if (TII->pseudoToMCOpcode(Opc) == -1) { | |||
| 4384 | Opc = AMDGPU::getVOPe64(Opc); | |||
| 4385 | NeedClampOperand = true; | |||
| 4386 | } | |||
| 4387 | ||||
| 4388 | auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); | |||
| 4389 | if (TII->isVOP3(*I)) { | |||
| 4390 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | |||
| 4391 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | |||
| 4392 | I.addReg(TRI->getVCC(), RegState::Define); | |||
| 4393 | } | |||
| 4394 | I.add(MI.getOperand(1)) | |||
| 4395 | .add(MI.getOperand(2)); | |||
| 4396 | if (NeedClampOperand) | |||
| 4397 | I.addImm(0); // clamp bit for e64 encoding | |||
| 4398 | ||||
| 4399 | TII->legalizeOperands(*I); | |||
| 4400 | ||||
| 4401 | MI.eraseFromParent(); | |||
| 4402 | return BB; | |||
| 4403 | } | |||
| 4404 | case AMDGPU::V_ADDC_U32_e32: | |||
| 4405 | case AMDGPU::V_SUBB_U32_e32: | |||
| 4406 | case AMDGPU::V_SUBBREV_U32_e32: | |||
| 4407 | // These instructions have an implicit use of vcc which counts towards the | |||
| 4408 | // constant bus limit. | |||
| 4409 | TII->legalizeOperands(MI); | |||
| 4410 | return BB; | |||
| 4411 | case AMDGPU::DS_GWS_INIT: | |||
| 4412 | case AMDGPU::DS_GWS_SEMA_BR: | |||
| 4413 | case AMDGPU::DS_GWS_BARRIER: | |||
| 4414 | TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); | |||
| 4415 | [[fallthrough]]; | |||
| 4416 | case AMDGPU::DS_GWS_SEMA_V: | |||
| 4417 | case AMDGPU::DS_GWS_SEMA_P: | |||
| 4418 | case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: | |||
| 4419 | // A s_waitcnt 0 is required to be the instruction immediately following. | |||
| 4420 | if (getSubtarget()->hasGWSAutoReplay()) { | |||
| 4421 | bundleInstWithWaitcnt(MI); | |||
| 4422 | return BB; | |||
| 4423 | } | |||
| 4424 | ||||
| 4425 | return emitGWSMemViolTestLoop(MI, BB); | |||
| 4426 | case AMDGPU::S_SETREG_B32: { | |||
| 4427 | // Try to optimize cases that only set the denormal mode or rounding mode. | |||
| 4428 | // | |||
| 4429 | // If the s_setreg_b32 fully sets all of the bits in the rounding mode or | |||
| 4430 | // denormal mode to a constant, we can use s_round_mode or s_denorm_mode | |||
| 4431 | // instead. | |||
| 4432 | // | |||
| 4433 | // FIXME: This could be predicates on the immediate, but tablegen doesn't | |||
| 4434 | // allow you to have a no side effect instruction in the output of a | |||
| 4435 | // sideeffecting pattern. | |||
| 4436 | unsigned ID, Offset, Width; | |||
| 4437 | AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); | |||
| 4438 | if (ID != AMDGPU::Hwreg::ID_MODE) | |||
| 4439 | return BB; | |||
| 4440 | ||||
| 4441 | const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); | |||
| 4442 | const unsigned SetMask = WidthMask << Offset; | |||
| 4443 | ||||
| 4444 | if (getSubtarget()->hasDenormModeInst()) { | |||
| 4445 | unsigned SetDenormOp = 0; | |||
| 4446 | unsigned SetRoundOp = 0; | |||
| 4447 | ||||
| 4448 | // The dedicated instructions can only set the whole denorm or round mode | |||
| 4449 | // at once, not a subset of bits in either. | |||
| 4450 | if (SetMask == | |||
| 4451 | (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { | |||
| 4452 | // If this fully sets both the round and denorm mode, emit the two | |||
| 4453 | // dedicated instructions for these. | |||
| 4454 | SetRoundOp = AMDGPU::S_ROUND_MODE; | |||
| 4455 | SetDenormOp = AMDGPU::S_DENORM_MODE; | |||
| 4456 | } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { | |||
| 4457 | SetRoundOp = AMDGPU::S_ROUND_MODE; | |||
| 4458 | } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { | |||
| 4459 | SetDenormOp = AMDGPU::S_DENORM_MODE; | |||
| 4460 | } | |||
| 4461 | ||||
| 4462 | if (SetRoundOp || SetDenormOp) { | |||
| 4463 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | |||
| 4464 | MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); | |||
| 4465 | if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { | |||
| 4466 | unsigned ImmVal = Def->getOperand(1).getImm(); | |||
| 4467 | if (SetRoundOp) { | |||
| 4468 | BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) | |||
| 4469 | .addImm(ImmVal & 0xf); | |||
| 4470 | ||||
| 4471 | // If we also have the denorm mode, get just the denorm mode bits. | |||
| 4472 | ImmVal >>= 4; | |||
| 4473 | } | |||
| 4474 | ||||
| 4475 | if (SetDenormOp) { | |||
| 4476 | BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) | |||
| 4477 | .addImm(ImmVal & 0xf); | |||
| 4478 | } | |||
| 4479 | ||||
| 4480 | MI.eraseFromParent(); | |||
| 4481 | return BB; | |||
| 4482 | } | |||
| 4483 | } | |||
| 4484 | } | |||
| 4485 | ||||
| 4486 | // If only FP bits are touched, used the no side effects pseudo. | |||
| 4487 | if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | | |||
| 4488 | AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) | |||
| 4489 | MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); | |||
| 4490 | ||||
| 4491 | return BB; | |||
| 4492 | } | |||
| 4493 | case AMDGPU::S_INVERSE_BALLOT_U32: | |||
| 4494 | case AMDGPU::S_INVERSE_BALLOT_U64: { | |||
| 4495 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | |||
| 4496 | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | |||
| 4497 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | |||
| 4498 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 4499 | const Register DstReg = MI.getOperand(0).getReg(); | |||
| 4500 | Register MaskReg = MI.getOperand(1).getReg(); | |||
| 4501 | ||||
| 4502 | const bool IsVALU = TRI->isVectorRegister(MRI, MaskReg); | |||
| 4503 | ||||
| 4504 | if (IsVALU) { | |||
| 4505 | MaskReg = TII->readlaneVGPRToSGPR(MaskReg, MI, MRI); | |||
| 4506 | } | |||
| 4507 | ||||
| 4508 | BuildMI(*BB, &MI, DL, TII->get(AMDGPU::COPY), DstReg).addReg(MaskReg); | |||
| 4509 | MI.eraseFromParent(); | |||
| 4510 | return BB; | |||
| 4511 | } | |||
| 4512 | default: | |||
| 4513 | return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); | |||
| 4514 | } | |||
| 4515 | } | |||
| 4516 | ||||
| 4517 | bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const { | |||
| 4518 | switch (Op.getValue(0).getSimpleValueType().SimpleTy) { | |||
| 4519 | case MVT::f32: | |||
| 4520 | return Subtarget->hasAtomicFaddRtnInsts(); | |||
| 4521 | case MVT::v2f16: | |||
| 4522 | case MVT::f64: | |||
| 4523 | return Subtarget->hasGFX90AInsts(); | |||
| 4524 | default: | |||
| 4525 | return false; | |||
| 4526 | } | |||
| 4527 | } | |||
| 4528 | ||||
| 4529 | bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { | |||
| 4530 | // This currently forces unfolding various combinations of fsub into fma with | |||
| 4531 | // free fneg'd operands. As long as we have fast FMA (controlled by | |||
| 4532 | // isFMAFasterThanFMulAndFAdd), we should perform these. | |||
| 4533 | ||||
| 4534 | // When fma is quarter rate, for f64 where add / sub are at best half rate, | |||
| 4535 | // most of these combines appear to be cycle neutral but save on instruction | |||
| 4536 | // count / code size. | |||
| 4537 | return true; | |||
| 4538 | } | |||
| 4539 | ||||
| 4540 | bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } | |||
| 4541 | ||||
| 4542 | EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, | |||
| 4543 | EVT VT) const { | |||
| 4544 | if (!VT.isVector()) { | |||
| 4545 | return MVT::i1; | |||
| 4546 | } | |||
| 4547 | return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); | |||
| 4548 | } | |||
| 4549 | ||||
| 4550 | MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { | |||
| 4551 | // TODO: Should i16 be used always if legal? For now it would force VALU | |||
| 4552 | // shifts. | |||
| 4553 | return (VT == MVT::i16) ? MVT::i16 : MVT::i32; | |||
| 4554 | } | |||
| 4555 | ||||
| 4556 | LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { | |||
| 4557 | return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) | |||
| 4558 | ? Ty.changeElementSize(16) | |||
| 4559 | : Ty.changeElementSize(32); | |||
| 4560 | } | |||
| 4561 | ||||
| 4562 | // Answering this is somewhat tricky and depends on the specific device which | |||
| 4563 | // have different rates for fma or all f64 operations. | |||
| 4564 | // | |||
| 4565 | // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other | |||
| 4566 | // regardless of which device (although the number of cycles differs between | |||
| 4567 | // devices), so it is always profitable for f64. | |||
| 4568 | // | |||
| 4569 | // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable | |||
| 4570 | // only on full rate devices. Normally, we should prefer selecting v_mad_f32 | |||
| 4571 | // which we can always do even without fused FP ops since it returns the same | |||
| 4572 | // result as the separate operations and since it is always full | |||
| 4573 | // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 | |||
| 4574 | // however does not support denormals, so we do report fma as faster if we have | |||
| 4575 | // a fast fma device and require denormals. | |||
| 4576 | // | |||
| 4577 | bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, | |||
| 4578 | EVT VT) const { | |||
| 4579 | VT = VT.getScalarType(); | |||
| 4580 | ||||
| 4581 | switch (VT.getSimpleVT().SimpleTy) { | |||
| 4582 | case MVT::f32: { | |||
| 4583 | // If mad is not available this depends only on if f32 fma is full rate. | |||
| 4584 | if (!Subtarget->hasMadMacF32Insts()) | |||
| 4585 | return Subtarget->hasFastFMAF32(); | |||
| 4586 | ||||
| 4587 | // Otherwise f32 mad is always full rate and returns the same result as | |||
| 4588 | // the separate operations so should be preferred over fma. | |||
| 4589 | // However does not support denormals. | |||
| 4590 | if (hasFP32Denormals(MF)) | |||
| 4591 | return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); | |||
| 4592 | ||||
| 4593 | // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. | |||
| 4594 | return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); | |||
| 4595 | } | |||
| 4596 | case MVT::f64: | |||
| 4597 | return true; | |||
| 4598 | case MVT::f16: | |||
| 4599 | return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); | |||
| 4600 | default: | |||
| 4601 | break; | |||
| 4602 | } | |||
| 4603 | ||||
| 4604 | return false; | |||
| 4605 | } | |||
| 4606 | ||||
| 4607 | bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, | |||
| 4608 | LLT Ty) const { | |||
| 4609 | switch (Ty.getScalarSizeInBits()) { | |||
| 4610 | case 16: | |||
| 4611 | return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); | |||
| 4612 | case 32: | |||
| 4613 | return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); | |||
| 4614 | case 64: | |||
| 4615 | return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); | |||
| 4616 | default: | |||
| 4617 | break; | |||
| 4618 | } | |||
| 4619 | ||||
| 4620 | return false; | |||
| 4621 | } | |||
| 4622 | ||||
| 4623 | bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { | |||
| 4624 | if (!Ty.isScalar()) | |||
| 4625 | return false; | |||
| 4626 | ||||
| 4627 | if (Ty.getScalarSizeInBits() == 16) | |||
| 4628 | return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF()); | |||
| 4629 | if (Ty.getScalarSizeInBits() == 32) | |||
| 4630 | return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF()); | |||
| 4631 | ||||
| 4632 | return false; | |||
| 4633 | } | |||
| 4634 | ||||
| 4635 | bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, | |||
| 4636 | const SDNode *N) const { | |||
| 4637 | // TODO: Check future ftz flag | |||
| 4638 | // v_mad_f32/v_mac_f32 do not support denormals. | |||
| 4639 | EVT VT = N->getValueType(0); | |||
| 4640 | if (VT == MVT::f32) | |||
| 4641 | return Subtarget->hasMadMacF32Insts() && | |||
| 4642 | !hasFP32Denormals(DAG.getMachineFunction()); | |||
| 4643 | if (VT == MVT::f16) { | |||
| 4644 | return Subtarget->hasMadF16() && | |||
| 4645 | !hasFP64FP16Denormals(DAG.getMachineFunction()); | |||
| 4646 | } | |||
| 4647 | ||||
| 4648 | return false; | |||
| 4649 | } | |||
| 4650 | ||||
| 4651 | //===----------------------------------------------------------------------===// | |||
| 4652 | // Custom DAG Lowering Operations | |||
| 4653 | //===----------------------------------------------------------------------===// | |||
| 4654 | ||||
| 4655 | // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the | |||
| 4656 | // wider vector type is legal. | |||
| 4657 | SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, | |||
| 4658 | SelectionDAG &DAG) const { | |||
| 4659 | unsigned Opc = Op.getOpcode(); | |||
| 4660 | EVT VT = Op.getValueType(); | |||
| 4661 | assert(VT == MVT::v4f16 || VT == MVT::v4i16)(static_cast <bool> (VT == MVT::v4f16 || VT == MVT::v4i16 ) ? void (0) : __assert_fail ("VT == MVT::v4f16 || VT == MVT::v4i16" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4661, __extension__ __PRETTY_FUNCTION__)); | |||
| 4662 | ||||
| 4663 | SDValue Lo, Hi; | |||
| 4664 | std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); | |||
| 4665 | ||||
| 4666 | SDLoc SL(Op); | |||
| 4667 | SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, | |||
| 4668 | Op->getFlags()); | |||
| 4669 | SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, | |||
| 4670 | Op->getFlags()); | |||
| 4671 | ||||
| 4672 | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); | |||
| 4673 | } | |||
| 4674 | ||||
| 4675 | // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the | |||
| 4676 | // wider vector type is legal. | |||
| 4677 | SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, | |||
| 4678 | SelectionDAG &DAG) const { | |||
| 4679 | unsigned Opc = Op.getOpcode(); | |||
| 4680 | EVT VT = Op.getValueType(); | |||
| 4681 | assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4684, __extension__ __PRETTY_FUNCTION__)) | |||
| 4682 | VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4684, __extension__ __PRETTY_FUNCTION__)) | |||
| 4683 | VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4684, __extension__ __PRETTY_FUNCTION__)) | |||
| 4684 | VT == MVT::v32f32)(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4684, __extension__ __PRETTY_FUNCTION__)); | |||
| 4685 | ||||
| 4686 | SDValue Lo0, Hi0; | |||
| 4687 | std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); | |||
| 4688 | SDValue Lo1, Hi1; | |||
| 4689 | std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); | |||
| 4690 | ||||
| 4691 | SDLoc SL(Op); | |||
| 4692 | ||||
| 4693 | SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, | |||
| 4694 | Op->getFlags()); | |||
| 4695 | SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, | |||
| 4696 | Op->getFlags()); | |||
| 4697 | ||||
| 4698 | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); | |||
| 4699 | } | |||
| 4700 | ||||
| 4701 | SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, | |||
| 4702 | SelectionDAG &DAG) const { | |||
| 4703 | unsigned Opc = Op.getOpcode(); | |||
| 4704 | EVT VT = Op.getValueType(); | |||
| 4705 | assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4708, __extension__ __PRETTY_FUNCTION__)) | |||
| 4706 | VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4708, __extension__ __PRETTY_FUNCTION__)) | |||
| 4707 | VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4708, __extension__ __PRETTY_FUNCTION__)) | |||
| 4708 | VT == MVT::v32f32)(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4708, __extension__ __PRETTY_FUNCTION__)); | |||
| 4709 | ||||
| 4710 | SDValue Lo0, Hi0; | |||
| 4711 | SDValue Op0 = Op.getOperand(0); | |||
| 4712 | std::tie(Lo0, Hi0) = Op0.getValueType().isVector() | |||
| 4713 | ? DAG.SplitVectorOperand(Op.getNode(), 0) | |||
| 4714 | : std::pair(Op0, Op0); | |||
| 4715 | SDValue Lo1, Hi1; | |||
| 4716 | std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); | |||
| 4717 | SDValue Lo2, Hi2; | |||
| 4718 | std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); | |||
| 4719 | ||||
| 4720 | SDLoc SL(Op); | |||
| 4721 | auto ResVT = DAG.GetSplitDestVTs(VT); | |||
| 4722 | ||||
| 4723 | SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, | |||
| 4724 | Op->getFlags()); | |||
| 4725 | SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, | |||
| 4726 | Op->getFlags()); | |||
| 4727 | ||||
| 4728 | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); | |||
| 4729 | } | |||
| 4730 | ||||
| 4731 | ||||
| 4732 | SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | |||
| 4733 | switch (Op.getOpcode()) { | |||
| 4734 | default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); | |||
| 4735 | case ISD::BRCOND: return LowerBRCOND(Op, DAG); | |||
| 4736 | case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); | |||
| 4737 | case ISD::LOAD: { | |||
| 4738 | SDValue Result = LowerLOAD(Op, DAG); | |||
| 4739 | assert((!Result.getNode() ||(static_cast <bool> ((!Result.getNode() || Result.getNode ()->getNumValues() == 2) && "Load should return a value and a chain" ) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4741, __extension__ __PRETTY_FUNCTION__)) | |||
| 4740 | Result.getNode()->getNumValues() == 2) &&(static_cast <bool> ((!Result.getNode() || Result.getNode ()->getNumValues() == 2) && "Load should return a value and a chain" ) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4741, __extension__ __PRETTY_FUNCTION__)) | |||
| 4741 | "Load should return a value and a chain")(static_cast <bool> ((!Result.getNode() || Result.getNode ()->getNumValues() == 2) && "Load should return a value and a chain" ) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4741, __extension__ __PRETTY_FUNCTION__)); | |||
| 4742 | return Result; | |||
| 4743 | } | |||
| 4744 | ||||
| 4745 | case ISD::FSIN: | |||
| 4746 | case ISD::FCOS: | |||
| 4747 | return LowerTrig(Op, DAG); | |||
| 4748 | case ISD::SELECT: return LowerSELECT(Op, DAG); | |||
| 4749 | case ISD::FDIV: return LowerFDIV(Op, DAG); | |||
| 4750 | case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); | |||
| 4751 | case ISD::STORE: return LowerSTORE(Op, DAG); | |||
| 4752 | case ISD::GlobalAddress: { | |||
| 4753 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 4754 | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 4755 | return LowerGlobalAddress(MFI, Op, DAG); | |||
| 4756 | } | |||
| 4757 | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | |||
| 4758 | case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); | |||
| 4759 | case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); | |||
| 4760 | case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); | |||
| 4761 | case ISD::INSERT_SUBVECTOR: | |||
| 4762 | return lowerINSERT_SUBVECTOR(Op, DAG); | |||
| 4763 | case ISD::INSERT_VECTOR_ELT: | |||
| 4764 | return lowerINSERT_VECTOR_ELT(Op, DAG); | |||
| 4765 | case ISD::EXTRACT_VECTOR_ELT: | |||
| 4766 | return lowerEXTRACT_VECTOR_ELT(Op, DAG); | |||
| 4767 | case ISD::VECTOR_SHUFFLE: | |||
| 4768 | return lowerVECTOR_SHUFFLE(Op, DAG); | |||
| 4769 | case ISD::SCALAR_TO_VECTOR: | |||
| 4770 | return lowerSCALAR_TO_VECTOR(Op, DAG); | |||
| 4771 | case ISD::BUILD_VECTOR: | |||
| 4772 | return lowerBUILD_VECTOR(Op, DAG); | |||
| 4773 | case ISD::FP_ROUND: | |||
| 4774 | return lowerFP_ROUND(Op, DAG); | |||
| 4775 | case ISD::FPTRUNC_ROUND: { | |||
| 4776 | unsigned Opc; | |||
| 4777 | SDLoc DL(Op); | |||
| 4778 | ||||
| 4779 | if (Op.getOperand(0)->getValueType(0) != MVT::f32) | |||
| 4780 | return SDValue(); | |||
| 4781 | ||||
| 4782 | // Get the rounding mode from the last operand | |||
| 4783 | int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | |||
| 4784 | if (RoundMode == (int)RoundingMode::TowardPositive) | |||
| 4785 | Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD; | |||
| 4786 | else if (RoundMode == (int)RoundingMode::TowardNegative) | |||
| 4787 | Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD; | |||
| 4788 | else | |||
| 4789 | return SDValue(); | |||
| 4790 | ||||
| 4791 | return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0)); | |||
| 4792 | } | |||
| 4793 | case ISD::TRAP: | |||
| 4794 | return lowerTRAP(Op, DAG); | |||
| 4795 | case ISD::DEBUGTRAP: | |||
| 4796 | return lowerDEBUGTRAP(Op, DAG); | |||
| 4797 | case ISD::FABS: | |||
| 4798 | case ISD::FNEG: | |||
| 4799 | case ISD::FCANONICALIZE: | |||
| 4800 | case ISD::BSWAP: | |||
| 4801 | return splitUnaryVectorOp(Op, DAG); | |||
| 4802 | case ISD::FMINNUM: | |||
| 4803 | case ISD::FMAXNUM: | |||
| 4804 | return lowerFMINNUM_FMAXNUM(Op, DAG); | |||
| 4805 | case ISD::FMA: | |||
| 4806 | return splitTernaryVectorOp(Op, DAG); | |||
| 4807 | case ISD::FP_TO_SINT: | |||
| 4808 | case ISD::FP_TO_UINT: | |||
| 4809 | return LowerFP_TO_INT(Op, DAG); | |||
| 4810 | case ISD::SHL: | |||
| 4811 | case ISD::SRA: | |||
| 4812 | case ISD::SRL: | |||
| 4813 | case ISD::ADD: | |||
| 4814 | case ISD::SUB: | |||
| 4815 | case ISD::MUL: | |||
| 4816 | case ISD::SMIN: | |||
| 4817 | case ISD::SMAX: | |||
| 4818 | case ISD::UMIN: | |||
| 4819 | case ISD::UMAX: | |||
| 4820 | case ISD::FADD: | |||
| 4821 | case ISD::FMUL: | |||
| 4822 | case ISD::FMINNUM_IEEE: | |||
| 4823 | case ISD::FMAXNUM_IEEE: | |||
| 4824 | case ISD::UADDSAT: | |||
| 4825 | case ISD::USUBSAT: | |||
| 4826 | case ISD::SADDSAT: | |||
| 4827 | case ISD::SSUBSAT: | |||
| 4828 | return splitBinaryVectorOp(Op, DAG); | |||
| 4829 | case ISD::SMULO: | |||
| 4830 | case ISD::UMULO: | |||
| 4831 | return lowerXMULO(Op, DAG); | |||
| 4832 | case ISD::SMUL_LOHI: | |||
| 4833 | case ISD::UMUL_LOHI: | |||
| 4834 | return lowerXMUL_LOHI(Op, DAG); | |||
| 4835 | case ISD::DYNAMIC_STACKALLOC: | |||
| 4836 | return LowerDYNAMIC_STACKALLOC(Op, DAG); | |||
| 4837 | } | |||
| 4838 | return SDValue(); | |||
| 4839 | } | |||
| 4840 | ||||
| 4841 | // Used for D16: Casts the result of an instruction into the right vector, | |||
| 4842 | // packs values if loads return unpacked values. | |||
| 4843 | static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, | |||
| 4844 | const SDLoc &DL, | |||
| 4845 | SelectionDAG &DAG, bool Unpacked) { | |||
| 4846 | if (!LoadVT.isVector()) | |||
| 4847 | return Result; | |||
| 4848 | ||||
| 4849 | // Cast back to the original packed type or to a larger type that is a | |||
| 4850 | // multiple of 32 bit for D16. Widening the return type is a required for | |||
| 4851 | // legalization. | |||
| 4852 | EVT FittingLoadVT = LoadVT; | |||
| 4853 | if ((LoadVT.getVectorNumElements() % 2) == 1) { | |||
| 4854 | FittingLoadVT = | |||
| 4855 | EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), | |||
| 4856 | LoadVT.getVectorNumElements() + 1); | |||
| 4857 | } | |||
| 4858 | ||||
| 4859 | if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. | |||
| 4860 | // Truncate to v2i16/v4i16. | |||
| 4861 | EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); | |||
| 4862 | ||||
| 4863 | // Workaround legalizer not scalarizing truncate after vector op | |||
| 4864 | // legalization but not creating intermediate vector trunc. | |||
| 4865 | SmallVector<SDValue, 4> Elts; | |||
| 4866 | DAG.ExtractVectorElements(Result, Elts); | |||
| 4867 | for (SDValue &Elt : Elts) | |||
| 4868 | Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); | |||
| 4869 | ||||
| 4870 | // Pad illegal v1i16/v3fi6 to v4i16 | |||
| 4871 | if ((LoadVT.getVectorNumElements() % 2) == 1) | |||
| 4872 | Elts.push_back(DAG.getUNDEF(MVT::i16)); | |||
| 4873 | ||||
| 4874 | Result = DAG.getBuildVector(IntLoadVT, DL, Elts); | |||
| 4875 | ||||
| 4876 | // Bitcast to original type (v2f16/v4f16). | |||
| 4877 | return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); | |||
| 4878 | } | |||
| 4879 | ||||
| 4880 | // Cast back to the original packed type. | |||
| 4881 | return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); | |||
| 4882 | } | |||
| 4883 | ||||
| 4884 | SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, | |||
| 4885 | MemSDNode *M, | |||
| 4886 | SelectionDAG &DAG, | |||
| 4887 | ArrayRef<SDValue> Ops, | |||
| 4888 | bool IsIntrinsic) const { | |||
| 4889 | SDLoc DL(M); | |||
| 4890 | ||||
| 4891 | bool Unpacked = Subtarget->hasUnpackedD16VMem(); | |||
| 4892 | EVT LoadVT = M->getValueType(0); | |||
| 4893 | ||||
| 4894 | EVT EquivLoadVT = LoadVT; | |||
| 4895 | if (LoadVT.isVector()) { | |||
| 4896 | if (Unpacked) { | |||
| 4897 | EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, | |||
| 4898 | LoadVT.getVectorNumElements()); | |||
| 4899 | } else if ((LoadVT.getVectorNumElements() % 2) == 1) { | |||
| 4900 | // Widen v3f16 to legal type | |||
| 4901 | EquivLoadVT = | |||
| 4902 | EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), | |||
| 4903 | LoadVT.getVectorNumElements() + 1); | |||
| 4904 | } | |||
| 4905 | } | |||
| 4906 | ||||
| 4907 | // Change from v4f16/v2f16 to EquivLoadVT. | |||
| 4908 | SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); | |||
| 4909 | ||||
| 4910 | SDValue Load | |||
| 4911 | = DAG.getMemIntrinsicNode( | |||
| 4912 | IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, | |||
| 4913 | VTList, Ops, M->getMemoryVT(), | |||
| 4914 | M->getMemOperand()); | |||
| 4915 | ||||
| 4916 | SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); | |||
| 4917 | ||||
| 4918 | return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); | |||
| 4919 | } | |||
| 4920 | ||||
| 4921 | SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, | |||
| 4922 | SelectionDAG &DAG, | |||
| 4923 | ArrayRef<SDValue> Ops) const { | |||
| 4924 | SDLoc DL(M); | |||
| 4925 | EVT LoadVT = M->getValueType(0); | |||
| 4926 | EVT EltType = LoadVT.getScalarType(); | |||
| 4927 | EVT IntVT = LoadVT.changeTypeToInteger(); | |||
| 4928 | ||||
| 4929 | bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); | |||
| 4930 | ||||
| 4931 | assert(M->getNumValues() == 2 || M->getNumValues() == 3)(static_cast <bool> (M->getNumValues() == 2 || M-> getNumValues() == 3) ? void (0) : __assert_fail ("M->getNumValues() == 2 || M->getNumValues() == 3" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 4931, __extension__ __PRETTY_FUNCTION__)); | |||
| 4932 | bool IsTFE = M->getNumValues() == 3; | |||
| 4933 | ||||
| 4934 | unsigned Opc; | |||
| 4935 | if (IsFormat) { | |||
| 4936 | Opc = IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE | |||
| 4937 | : AMDGPUISD::BUFFER_LOAD_FORMAT; | |||
| 4938 | } else { | |||
| 4939 | // TODO: Support non-format TFE loads. | |||
| 4940 | if (IsTFE) | |||
| 4941 | return SDValue(); | |||
| 4942 | Opc = AMDGPUISD::BUFFER_LOAD; | |||
| 4943 | } | |||
| 4944 | ||||
| 4945 | if (IsD16) { | |||
| 4946 | return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); | |||
| 4947 | } | |||
| 4948 | ||||
| 4949 | // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics | |||
| 4950 | if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) | |||
| 4951 | return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); | |||
| 4952 | ||||
| 4953 | if (isTypeLegal(LoadVT)) { | |||
| 4954 | return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, | |||
| 4955 | M->getMemOperand(), DAG); | |||
| 4956 | } | |||
| 4957 | ||||
| 4958 | EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); | |||
| 4959 | SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); | |||
| 4960 | SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, | |||
| 4961 | M->getMemOperand(), DAG); | |||
| 4962 | return DAG.getMergeValues( | |||
| 4963 | {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, | |||
| 4964 | DL); | |||
| 4965 | } | |||
| 4966 | ||||
| 4967 | static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, | |||
| 4968 | SDNode *N, SelectionDAG &DAG) { | |||
| 4969 | EVT VT = N->getValueType(0); | |||
| 4970 | const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); | |||
| 4971 | unsigned CondCode = CD->getZExtValue(); | |||
| 4972 | if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) | |||
| 4973 | return DAG.getUNDEF(VT); | |||
| 4974 | ||||
| 4975 | ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); | |||
| 4976 | ||||
| 4977 | SDValue LHS = N->getOperand(1); | |||
| 4978 | SDValue RHS = N->getOperand(2); | |||
| 4979 | ||||
| 4980 | SDLoc DL(N); | |||
| 4981 | ||||
| 4982 | EVT CmpVT = LHS.getValueType(); | |||
| 4983 | if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { | |||
| 4984 | unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? | |||
| 4985 | ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | |||
| 4986 | LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); | |||
| 4987 | RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); | |||
| 4988 | } | |||
| 4989 | ||||
| 4990 | ISD::CondCode CCOpcode = getICmpCondCode(IcInput); | |||
| 4991 | ||||
| 4992 | unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); | |||
| 4993 | EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); | |||
| 4994 | ||||
| 4995 | SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, | |||
| 4996 | DAG.getCondCode(CCOpcode)); | |||
| 4997 | if (VT.bitsEq(CCVT)) | |||
| 4998 | return SetCC; | |||
| 4999 | return DAG.getZExtOrTrunc(SetCC, DL, VT); | |||
| 5000 | } | |||
| 5001 | ||||
| 5002 | static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, | |||
| 5003 | SDNode *N, SelectionDAG &DAG) { | |||
| 5004 | EVT VT = N->getValueType(0); | |||
| 5005 | const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); | |||
| 5006 | ||||
| 5007 | unsigned CondCode = CD->getZExtValue(); | |||
| 5008 | if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) | |||
| 5009 | return DAG.getUNDEF(VT); | |||
| 5010 | ||||
| 5011 | SDValue Src0 = N->getOperand(1); | |||
| 5012 | SDValue Src1 = N->getOperand(2); | |||
| 5013 | EVT CmpVT = Src0.getValueType(); | |||
| 5014 | SDLoc SL(N); | |||
| 5015 | ||||
| 5016 | if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { | |||
| 5017 | Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); | |||
| 5018 | Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); | |||
| 5019 | } | |||
| 5020 | ||||
| 5021 | FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); | |||
| 5022 | ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); | |||
| 5023 | unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); | |||
| 5024 | EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); | |||
| 5025 | SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, | |||
| 5026 | Src1, DAG.getCondCode(CCOpcode)); | |||
| 5027 | if (VT.bitsEq(CCVT)) | |||
| 5028 | return SetCC; | |||
| 5029 | return DAG.getZExtOrTrunc(SetCC, SL, VT); | |||
| 5030 | } | |||
| 5031 | ||||
| 5032 | static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, | |||
| 5033 | SelectionDAG &DAG) { | |||
| 5034 | EVT VT = N->getValueType(0); | |||
| 5035 | SDValue Src = N->getOperand(1); | |||
| 5036 | SDLoc SL(N); | |||
| 5037 | ||||
| 5038 | if (Src.getOpcode() == ISD::SETCC) { | |||
| 5039 | // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) | |||
| 5040 | return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), | |||
| 5041 | Src.getOperand(1), Src.getOperand(2)); | |||
| 5042 | } | |||
| 5043 | if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { | |||
| 5044 | // (ballot 0) -> 0 | |||
| 5045 | if (Arg->isZero()) | |||
| 5046 | return DAG.getConstant(0, SL, VT); | |||
| 5047 | ||||
| 5048 | // (ballot 1) -> EXEC/EXEC_LO | |||
| 5049 | if (Arg->isOne()) { | |||
| 5050 | Register Exec; | |||
| 5051 | if (VT.getScalarSizeInBits() == 32) | |||
| 5052 | Exec = AMDGPU::EXEC_LO; | |||
| 5053 | else if (VT.getScalarSizeInBits() == 64) | |||
| 5054 | Exec = AMDGPU::EXEC; | |||
| 5055 | else | |||
| 5056 | return SDValue(); | |||
| 5057 | ||||
| 5058 | return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); | |||
| 5059 | } | |||
| 5060 | } | |||
| 5061 | ||||
| 5062 | // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) | |||
| 5063 | // ISD::SETNE) | |||
| 5064 | return DAG.getNode( | |||
| 5065 | AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), | |||
| 5066 | DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); | |||
| 5067 | } | |||
| 5068 | ||||
| 5069 | void SITargetLowering::ReplaceNodeResults(SDNode *N, | |||
| 5070 | SmallVectorImpl<SDValue> &Results, | |||
| 5071 | SelectionDAG &DAG) const { | |||
| 5072 | switch (N->getOpcode()) { | |||
| 5073 | case ISD::INSERT_VECTOR_ELT: { | |||
| 5074 | if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) | |||
| 5075 | Results.push_back(Res); | |||
| 5076 | return; | |||
| 5077 | } | |||
| 5078 | case ISD::EXTRACT_VECTOR_ELT: { | |||
| 5079 | if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) | |||
| 5080 | Results.push_back(Res); | |||
| 5081 | return; | |||
| 5082 | } | |||
| 5083 | case ISD::INTRINSIC_WO_CHAIN: { | |||
| 5084 | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | |||
| 5085 | switch (IID) { | |||
| 5086 | case Intrinsic::amdgcn_cvt_pkrtz: { | |||
| 5087 | SDValue Src0 = N->getOperand(1); | |||
| 5088 | SDValue Src1 = N->getOperand(2); | |||
| 5089 | SDLoc SL(N); | |||
| 5090 | SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, | |||
| 5091 | Src0, Src1); | |||
| 5092 | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); | |||
| 5093 | return; | |||
| 5094 | } | |||
| 5095 | case Intrinsic::amdgcn_cvt_pknorm_i16: | |||
| 5096 | case Intrinsic::amdgcn_cvt_pknorm_u16: | |||
| 5097 | case Intrinsic::amdgcn_cvt_pk_i16: | |||
| 5098 | case Intrinsic::amdgcn_cvt_pk_u16: { | |||
| 5099 | SDValue Src0 = N->getOperand(1); | |||
| 5100 | SDValue Src1 = N->getOperand(2); | |||
| 5101 | SDLoc SL(N); | |||
| 5102 | unsigned Opcode; | |||
| 5103 | ||||
| 5104 | if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) | |||
| 5105 | Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; | |||
| 5106 | else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) | |||
| 5107 | Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; | |||
| 5108 | else if (IID == Intrinsic::amdgcn_cvt_pk_i16) | |||
| 5109 | Opcode = AMDGPUISD::CVT_PK_I16_I32; | |||
| 5110 | else | |||
| 5111 | Opcode = AMDGPUISD::CVT_PK_U16_U32; | |||
| 5112 | ||||
| 5113 | EVT VT = N->getValueType(0); | |||
| 5114 | if (isTypeLegal(VT)) | |||
| 5115 | Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); | |||
| 5116 | else { | |||
| 5117 | SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); | |||
| 5118 | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); | |||
| 5119 | } | |||
| 5120 | return; | |||
| 5121 | } | |||
| 5122 | } | |||
| 5123 | break; | |||
| 5124 | } | |||
| 5125 | case ISD::INTRINSIC_W_CHAIN: { | |||
| 5126 | if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { | |||
| 5127 | if (Res.getOpcode() == ISD::MERGE_VALUES) { | |||
| 5128 | // FIXME: Hacky | |||
| 5129 | for (unsigned I = 0; I < Res.getNumOperands(); I++) { | |||
| 5130 | Results.push_back(Res.getOperand(I)); | |||
| 5131 | } | |||
| 5132 | } else { | |||
| 5133 | Results.push_back(Res); | |||
| 5134 | Results.push_back(Res.getValue(1)); | |||
| 5135 | } | |||
| 5136 | return; | |||
| 5137 | } | |||
| 5138 | ||||
| 5139 | break; | |||
| 5140 | } | |||
| 5141 | case ISD::SELECT: { | |||
| 5142 | SDLoc SL(N); | |||
| 5143 | EVT VT = N->getValueType(0); | |||
| 5144 | EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); | |||
| 5145 | SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); | |||
| 5146 | SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); | |||
| 5147 | ||||
| 5148 | EVT SelectVT = NewVT; | |||
| 5149 | if (NewVT.bitsLT(MVT::i32)) { | |||
| 5150 | LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); | |||
| 5151 | RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); | |||
| 5152 | SelectVT = MVT::i32; | |||
| 5153 | } | |||
| 5154 | ||||
| 5155 | SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, | |||
| 5156 | N->getOperand(0), LHS, RHS); | |||
| 5157 | ||||
| 5158 | if (NewVT != SelectVT) | |||
| 5159 | NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); | |||
| 5160 | Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); | |||
| 5161 | return; | |||
| 5162 | } | |||
| 5163 | case ISD::FNEG: { | |||
| 5164 | if (N->getValueType(0) != MVT::v2f16) | |||
| 5165 | break; | |||
| 5166 | ||||
| 5167 | SDLoc SL(N); | |||
| 5168 | SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); | |||
| 5169 | ||||
| 5170 | SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, | |||
| 5171 | BC, | |||
| 5172 | DAG.getConstant(0x80008000, SL, MVT::i32)); | |||
| 5173 | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); | |||
| 5174 | return; | |||
| 5175 | } | |||
| 5176 | case ISD::FABS: { | |||
| 5177 | if (N->getValueType(0) != MVT::v2f16) | |||
| 5178 | break; | |||
| 5179 | ||||
| 5180 | SDLoc SL(N); | |||
| 5181 | SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); | |||
| 5182 | ||||
| 5183 | SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, | |||
| 5184 | BC, | |||
| 5185 | DAG.getConstant(0x7fff7fff, SL, MVT::i32)); | |||
| 5186 | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); | |||
| 5187 | return; | |||
| 5188 | } | |||
| 5189 | default: | |||
| 5190 | break; | |||
| 5191 | } | |||
| 5192 | } | |||
| 5193 | ||||
| 5194 | /// Helper function for LowerBRCOND | |||
| 5195 | static SDNode *findUser(SDValue Value, unsigned Opcode) { | |||
| 5196 | ||||
| 5197 | SDNode *Parent = Value.getNode(); | |||
| 5198 | for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); | |||
| 5199 | I != E; ++I) { | |||
| 5200 | ||||
| 5201 | if (I.getUse().get() != Value) | |||
| 5202 | continue; | |||
| 5203 | ||||
| 5204 | if (I->getOpcode() == Opcode) | |||
| 5205 | return *I; | |||
| 5206 | } | |||
| 5207 | return nullptr; | |||
| 5208 | } | |||
| 5209 | ||||
| 5210 | unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { | |||
| 5211 | if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { | |||
| 5212 | switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { | |||
| 5213 | case Intrinsic::amdgcn_if: | |||
| 5214 | return AMDGPUISD::IF; | |||
| 5215 | case Intrinsic::amdgcn_else: | |||
| 5216 | return AMDGPUISD::ELSE; | |||
| 5217 | case Intrinsic::amdgcn_loop: | |||
| 5218 | return AMDGPUISD::LOOP; | |||
| 5219 | case Intrinsic::amdgcn_end_cf: | |||
| 5220 | llvm_unreachable("should not occur")::llvm::llvm_unreachable_internal("should not occur", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5220); | |||
| 5221 | default: | |||
| 5222 | return 0; | |||
| 5223 | } | |||
| 5224 | } | |||
| 5225 | ||||
| 5226 | // break, if_break, else_break are all only used as inputs to loop, not | |||
| 5227 | // directly as branch conditions. | |||
| 5228 | return 0; | |||
| 5229 | } | |||
| 5230 | ||||
| 5231 | bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { | |||
| 5232 | const Triple &TT = getTargetMachine().getTargetTriple(); | |||
| 5233 | return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || | |||
| 5234 | GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && | |||
| 5235 | AMDGPU::shouldEmitConstantsToTextSection(TT); | |||
| 5236 | } | |||
| 5237 | ||||
| 5238 | bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { | |||
| 5239 | // FIXME: Either avoid relying on address space here or change the default | |||
| 5240 | // address space for functions to avoid the explicit check. | |||
| 5241 | return (GV->getValueType()->isFunctionTy() || | |||
| 5242 | !isNonGlobalAddrSpace(GV->getAddressSpace())) && | |||
| 5243 | !shouldEmitFixup(GV) && | |||
| 5244 | !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); | |||
| 5245 | } | |||
| 5246 | ||||
| 5247 | bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { | |||
| 5248 | return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); | |||
| 5249 | } | |||
| 5250 | ||||
| 5251 | bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { | |||
| 5252 | if (!GV->hasExternalLinkage()) | |||
| 5253 | return true; | |||
| 5254 | ||||
| 5255 | const auto OS = getTargetMachine().getTargetTriple().getOS(); | |||
| 5256 | return OS == Triple::AMDHSA || OS == Triple::AMDPAL; | |||
| 5257 | } | |||
| 5258 | ||||
| 5259 | /// This transforms the control flow intrinsics to get the branch destination as | |||
| 5260 | /// last parameter, also switches branch target with BR if the need arise | |||
| 5261 | SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, | |||
| 5262 | SelectionDAG &DAG) const { | |||
| 5263 | SDLoc DL(BRCOND); | |||
| 5264 | ||||
| 5265 | SDNode *Intr = BRCOND.getOperand(1).getNode(); | |||
| 5266 | SDValue Target = BRCOND.getOperand(2); | |||
| 5267 | SDNode *BR = nullptr; | |||
| 5268 | SDNode *SetCC = nullptr; | |||
| 5269 | ||||
| 5270 | if (Intr->getOpcode() == ISD::SETCC) { | |||
| 5271 | // As long as we negate the condition everything is fine | |||
| 5272 | SetCC = Intr; | |||
| 5273 | Intr = SetCC->getOperand(0).getNode(); | |||
| 5274 | ||||
| 5275 | } else { | |||
| 5276 | // Get the target from BR if we don't negate the condition | |||
| 5277 | BR = findUser(BRCOND, ISD::BR); | |||
| 5278 | assert(BR && "brcond missing unconditional branch user")(static_cast <bool> (BR && "brcond missing unconditional branch user" ) ? void (0) : __assert_fail ("BR && \"brcond missing unconditional branch user\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5278, __extension__ __PRETTY_FUNCTION__)); | |||
| 5279 | Target = BR->getOperand(1); | |||
| 5280 | } | |||
| 5281 | ||||
| 5282 | unsigned CFNode = isCFIntrinsic(Intr); | |||
| 5283 | if (CFNode == 0) { | |||
| 5284 | // This is a uniform branch so we don't need to legalize. | |||
| 5285 | return BRCOND; | |||
| 5286 | } | |||
| 5287 | ||||
| 5288 | bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || | |||
| 5289 | Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; | |||
| 5290 | ||||
| 5291 | assert(!SetCC ||(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal (1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand (2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5294, __extension__ __PRETTY_FUNCTION__)) | |||
| 5292 | (SetCC->getConstantOperandVal(1) == 1 &&(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal (1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand (2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5294, __extension__ __PRETTY_FUNCTION__)) | |||
| 5293 | cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal (1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand (2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5294, __extension__ __PRETTY_FUNCTION__)) | |||
| 5294 | ISD::SETNE))(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal (1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand (2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5294, __extension__ __PRETTY_FUNCTION__)); | |||
| 5295 | ||||
| 5296 | // operands of the new intrinsic call | |||
| 5297 | SmallVector<SDValue, 4> Ops; | |||
| 5298 | if (HaveChain) | |||
| 5299 | Ops.push_back(BRCOND.getOperand(0)); | |||
| 5300 | ||||
| 5301 | Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); | |||
| 5302 | Ops.push_back(Target); | |||
| 5303 | ||||
| 5304 | ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); | |||
| 5305 | ||||
| 5306 | // build the new intrinsic call | |||
| 5307 | SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); | |||
| 5308 | ||||
| 5309 | if (!HaveChain) { | |||
| 5310 | SDValue Ops[] = { | |||
| 5311 | SDValue(Result, 0), | |||
| 5312 | BRCOND.getOperand(0) | |||
| 5313 | }; | |||
| 5314 | ||||
| 5315 | Result = DAG.getMergeValues(Ops, DL).getNode(); | |||
| 5316 | } | |||
| 5317 | ||||
| 5318 | if (BR) { | |||
| 5319 | // Give the branch instruction our target | |||
| 5320 | SDValue Ops[] = { | |||
| 5321 | BR->getOperand(0), | |||
| 5322 | BRCOND.getOperand(2) | |||
| 5323 | }; | |||
| 5324 | SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); | |||
| 5325 | DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); | |||
| 5326 | } | |||
| 5327 | ||||
| 5328 | SDValue Chain = SDValue(Result, Result->getNumValues() - 1); | |||
| 5329 | ||||
| 5330 | // Copy the intrinsic results to registers | |||
| 5331 | for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { | |||
| 5332 | SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); | |||
| 5333 | if (!CopyToReg) | |||
| 5334 | continue; | |||
| 5335 | ||||
| 5336 | Chain = DAG.getCopyToReg( | |||
| 5337 | Chain, DL, | |||
| 5338 | CopyToReg->getOperand(1), | |||
| 5339 | SDValue(Result, i - 1), | |||
| 5340 | SDValue()); | |||
| 5341 | ||||
| 5342 | DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); | |||
| 5343 | } | |||
| 5344 | ||||
| 5345 | // Remove the old intrinsic from the chain | |||
| 5346 | DAG.ReplaceAllUsesOfValueWith( | |||
| 5347 | SDValue(Intr, Intr->getNumValues() - 1), | |||
| 5348 | Intr->getOperand(0)); | |||
| 5349 | ||||
| 5350 | return Chain; | |||
| 5351 | } | |||
| 5352 | ||||
| 5353 | SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, | |||
| 5354 | SelectionDAG &DAG) const { | |||
| 5355 | MVT VT = Op.getSimpleValueType(); | |||
| 5356 | SDLoc DL(Op); | |||
| 5357 | // Checking the depth | |||
| 5358 | if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) | |||
| 5359 | return DAG.getConstant(0, DL, VT); | |||
| 5360 | ||||
| 5361 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 5362 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 5363 | // Check for kernel and shader functions | |||
| 5364 | if (Info->isEntryFunction()) | |||
| 5365 | return DAG.getConstant(0, DL, VT); | |||
| 5366 | ||||
| 5367 | MachineFrameInfo &MFI = MF.getFrameInfo(); | |||
| 5368 | // There is a call to @llvm.returnaddress in this function | |||
| 5369 | MFI.setReturnAddressIsTaken(true); | |||
| 5370 | ||||
| 5371 | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | |||
| 5372 | // Get the return address reg and mark it as an implicit live-in | |||
| 5373 | Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); | |||
| 5374 | ||||
| 5375 | return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); | |||
| 5376 | } | |||
| 5377 | ||||
| 5378 | SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, | |||
| 5379 | SDValue Op, | |||
| 5380 | const SDLoc &DL, | |||
| 5381 | EVT VT) const { | |||
| 5382 | return Op.getValueType().bitsLE(VT) ? | |||
| 5383 | DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : | |||
| 5384 | DAG.getNode(ISD::FP_ROUND, DL, VT, Op, | |||
| 5385 | DAG.getTargetConstant(0, DL, MVT::i32)); | |||
| 5386 | } | |||
| 5387 | ||||
| 5388 | SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { | |||
| 5389 | assert(Op.getValueType() == MVT::f16 &&(static_cast <bool> (Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type") ? void (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5390, __extension__ __PRETTY_FUNCTION__)) | |||
| 5390 | "Do not know how to custom lower FP_ROUND for non-f16 type")(static_cast <bool> (Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type") ? void (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5390, __extension__ __PRETTY_FUNCTION__)); | |||
| 5391 | ||||
| 5392 | SDValue Src = Op.getOperand(0); | |||
| 5393 | EVT SrcVT = Src.getValueType(); | |||
| 5394 | if (SrcVT != MVT::f64) | |||
| 5395 | return Op; | |||
| 5396 | ||||
| 5397 | SDLoc DL(Op); | |||
| 5398 | ||||
| 5399 | SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); | |||
| 5400 | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); | |||
| 5401 | return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); | |||
| 5402 | } | |||
| 5403 | ||||
| 5404 | SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, | |||
| 5405 | SelectionDAG &DAG) const { | |||
| 5406 | EVT VT = Op.getValueType(); | |||
| 5407 | const MachineFunction &MF = DAG.getMachineFunction(); | |||
| 5408 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 5409 | bool IsIEEEMode = Info->getMode().IEEE; | |||
| 5410 | ||||
| 5411 | // FIXME: Assert during selection that this is only selected for | |||
| 5412 | // ieee_mode. Currently a combine can produce the ieee version for non-ieee | |||
| 5413 | // mode functions, but this happens to be OK since it's only done in cases | |||
| 5414 | // where there is known no sNaN. | |||
| 5415 | if (IsIEEEMode) | |||
| 5416 | return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); | |||
| 5417 | ||||
| 5418 | if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16) | |||
| 5419 | return splitBinaryVectorOp(Op, DAG); | |||
| 5420 | return Op; | |||
| 5421 | } | |||
| 5422 | ||||
| 5423 | SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { | |||
| 5424 | EVT VT = Op.getValueType(); | |||
| 5425 | SDLoc SL(Op); | |||
| 5426 | SDValue LHS = Op.getOperand(0); | |||
| 5427 | SDValue RHS = Op.getOperand(1); | |||
| 5428 | bool isSigned = Op.getOpcode() == ISD::SMULO; | |||
| 5429 | ||||
| 5430 | if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { | |||
| 5431 | const APInt &C = RHSC->getAPIntValue(); | |||
| 5432 | // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } | |||
| 5433 | if (C.isPowerOf2()) { | |||
| 5434 | // smulo(x, signed_min) is same as umulo(x, signed_min). | |||
| 5435 | bool UseArithShift = isSigned && !C.isMinSignedValue(); | |||
| 5436 | SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); | |||
| 5437 | SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); | |||
| 5438 | SDValue Overflow = DAG.getSetCC(SL, MVT::i1, | |||
| 5439 | DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, | |||
| 5440 | SL, VT, Result, ShiftAmt), | |||
| 5441 | LHS, ISD::SETNE); | |||
| 5442 | return DAG.getMergeValues({ Result, Overflow }, SL); | |||
| 5443 | } | |||
| 5444 | } | |||
| 5445 | ||||
| 5446 | SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); | |||
| 5447 | SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, | |||
| 5448 | SL, VT, LHS, RHS); | |||
| 5449 | ||||
| 5450 | SDValue Sign = isSigned | |||
| 5451 | ? DAG.getNode(ISD::SRA, SL, VT, Result, | |||
| 5452 | DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) | |||
| 5453 | : DAG.getConstant(0, SL, VT); | |||
| 5454 | SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); | |||
| 5455 | ||||
| 5456 | return DAG.getMergeValues({ Result, Overflow }, SL); | |||
| 5457 | } | |||
| 5458 | ||||
| 5459 | SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { | |||
| 5460 | if (Op->isDivergent()) { | |||
| 5461 | // Select to V_MAD_[IU]64_[IU]32. | |||
| 5462 | return Op; | |||
| 5463 | } | |||
| 5464 | if (Subtarget->hasSMulHi()) { | |||
| 5465 | // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. | |||
| 5466 | return SDValue(); | |||
| 5467 | } | |||
| 5468 | // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to | |||
| 5469 | // calculate the high part, so we might as well do the whole thing with | |||
| 5470 | // V_MAD_[IU]64_[IU]32. | |||
| 5471 | return Op; | |||
| 5472 | } | |||
| 5473 | ||||
| 5474 | SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { | |||
| 5475 | if (!Subtarget->isTrapHandlerEnabled() || | |||
| 5476 | Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) | |||
| 5477 | return lowerTrapEndpgm(Op, DAG); | |||
| 5478 | ||||
| 5479 | const Module *M = DAG.getMachineFunction().getFunction().getParent(); | |||
| 5480 | unsigned CodeObjectVersion = AMDGPU::getCodeObjectVersion(*M); | |||
| 5481 | if (CodeObjectVersion <= AMDGPU::AMDHSA_COV3) | |||
| 5482 | return lowerTrapHsaQueuePtr(Op, DAG); | |||
| 5483 | ||||
| 5484 | return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) : | |||
| 5485 | lowerTrapHsaQueuePtr(Op, DAG); | |||
| 5486 | } | |||
| 5487 | ||||
| 5488 | SDValue SITargetLowering::lowerTrapEndpgm( | |||
| 5489 | SDValue Op, SelectionDAG &DAG) const { | |||
| 5490 | SDLoc SL(Op); | |||
| 5491 | SDValue Chain = Op.getOperand(0); | |||
| 5492 | return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); | |||
| 5493 | } | |||
| 5494 | ||||
| 5495 | SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, | |||
| 5496 | const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { | |||
| 5497 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 5498 | uint64_t Offset = getImplicitParameterOffset(MF, Param); | |||
| 5499 | SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); | |||
| 5500 | MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); | |||
| 5501 | return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, | |||
| 5502 | MachineMemOperand::MODereferenceable | | |||
| 5503 | MachineMemOperand::MOInvariant); | |||
| 5504 | } | |||
| 5505 | ||||
| 5506 | SDValue SITargetLowering::lowerTrapHsaQueuePtr( | |||
| 5507 | SDValue Op, SelectionDAG &DAG) const { | |||
| 5508 | SDLoc SL(Op); | |||
| 5509 | SDValue Chain = Op.getOperand(0); | |||
| 5510 | ||||
| 5511 | SDValue QueuePtr; | |||
| 5512 | // For code object version 5, QueuePtr is passed through implicit kernarg. | |||
| 5513 | const Module *M = DAG.getMachineFunction().getFunction().getParent(); | |||
| 5514 | if (AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { | |||
| 5515 | QueuePtr = | |||
| 5516 | loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); | |||
| 5517 | } else { | |||
| 5518 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 5519 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 5520 | Register UserSGPR = Info->getQueuePtrUserSGPR(); | |||
| 5521 | ||||
| 5522 | if (UserSGPR == AMDGPU::NoRegister) { | |||
| 5523 | // We probably are in a function incorrectly marked with | |||
| 5524 | // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the | |||
| 5525 | // trap, so just use a null pointer. | |||
| 5526 | QueuePtr = DAG.getConstant(0, SL, MVT::i64); | |||
| 5527 | } else { | |||
| 5528 | QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, | |||
| 5529 | MVT::i64); | |||
| 5530 | } | |||
| 5531 | } | |||
| 5532 | ||||
| 5533 | SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); | |||
| 5534 | SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, | |||
| 5535 | QueuePtr, SDValue()); | |||
| 5536 | ||||
| 5537 | uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); | |||
| 5538 | SDValue Ops[] = { | |||
| 5539 | ToReg, | |||
| 5540 | DAG.getTargetConstant(TrapID, SL, MVT::i16), | |||
| 5541 | SGPR01, | |||
| 5542 | ToReg.getValue(1) | |||
| 5543 | }; | |||
| 5544 | return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); | |||
| 5545 | } | |||
| 5546 | ||||
| 5547 | SDValue SITargetLowering::lowerTrapHsa( | |||
| 5548 | SDValue Op, SelectionDAG &DAG) const { | |||
| 5549 | SDLoc SL(Op); | |||
| 5550 | SDValue Chain = Op.getOperand(0); | |||
| 5551 | ||||
| 5552 | uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); | |||
| 5553 | SDValue Ops[] = { | |||
| 5554 | Chain, | |||
| 5555 | DAG.getTargetConstant(TrapID, SL, MVT::i16) | |||
| 5556 | }; | |||
| 5557 | return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); | |||
| 5558 | } | |||
| 5559 | ||||
| 5560 | SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { | |||
| 5561 | SDLoc SL(Op); | |||
| 5562 | SDValue Chain = Op.getOperand(0); | |||
| 5563 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 5564 | ||||
| 5565 | if (!Subtarget->isTrapHandlerEnabled() || | |||
| 5566 | Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { | |||
| 5567 | DiagnosticInfoUnsupported NoTrap(MF.getFunction(), | |||
| 5568 | "debugtrap handler not supported", | |||
| 5569 | Op.getDebugLoc(), | |||
| 5570 | DS_Warning); | |||
| 5571 | LLVMContext &Ctx = MF.getFunction().getContext(); | |||
| 5572 | Ctx.diagnose(NoTrap); | |||
| 5573 | return Chain; | |||
| 5574 | } | |||
| 5575 | ||||
| 5576 | uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); | |||
| 5577 | SDValue Ops[] = { | |||
| 5578 | Chain, | |||
| 5579 | DAG.getTargetConstant(TrapID, SL, MVT::i16) | |||
| 5580 | }; | |||
| 5581 | return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); | |||
| 5582 | } | |||
| 5583 | ||||
| 5584 | SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, | |||
| 5585 | SelectionDAG &DAG) const { | |||
| 5586 | if (Subtarget->hasApertureRegs()) { | |||
| 5587 | const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS) | |||
| 5588 | ? AMDGPU::SRC_SHARED_BASE | |||
| 5589 | : AMDGPU::SRC_PRIVATE_BASE; | |||
| 5590 | // Note: this feature (register) is broken. When used as a 32-bit operand, | |||
| 5591 | // it returns a wrong value (all zeroes?). The real value is in the upper 32 | |||
| 5592 | // bits. | |||
| 5593 | // | |||
| 5594 | // To work around the issue, directly emit a 64 bit mov from this register | |||
| 5595 | // then extract the high bits. Note that this shouldn't even result in a | |||
| 5596 | // shift being emitted and simply become a pair of registers (e.g.): | |||
| 5597 | // s_mov_b64 s[6:7], src_shared_base | |||
| 5598 | // v_mov_b32_e32 v1, s7 | |||
| 5599 | // | |||
| 5600 | // FIXME: It would be more natural to emit a CopyFromReg here, but then copy | |||
| 5601 | // coalescing would kick in and it would think it's okay to use the "HI" | |||
| 5602 | // subregister directly (instead of extracting the HI 32 bits) which is an | |||
| 5603 | // artificial (unusable) register. | |||
| 5604 | // Register TableGen definitions would need an overhaul to get rid of the | |||
| 5605 | // artificial "HI" aperture registers and prevent this kind of issue from | |||
| 5606 | // happening. | |||
| 5607 | SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, | |||
| 5608 | DAG.getRegister(ApertureRegNo, MVT::i64)); | |||
| 5609 | return DAG.getNode( | |||
| 5610 | ISD::TRUNCATE, DL, MVT::i32, | |||
| 5611 | DAG.getNode(ISD::SRL, DL, MVT::i64, | |||
| 5612 | {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)})); | |||
| 5613 | } | |||
| 5614 | ||||
| 5615 | // For code object version 5, private_base and shared_base are passed through | |||
| 5616 | // implicit kernargs. | |||
| 5617 | const Module *M = DAG.getMachineFunction().getFunction().getParent(); | |||
| 5618 | if (AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { | |||
| 5619 | ImplicitParameter Param = | |||
| 5620 | (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; | |||
| 5621 | return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); | |||
| 5622 | } | |||
| 5623 | ||||
| 5624 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 5625 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 5626 | Register UserSGPR = Info->getQueuePtrUserSGPR(); | |||
| 5627 | if (UserSGPR == AMDGPU::NoRegister) { | |||
| 5628 | // We probably are in a function incorrectly marked with | |||
| 5629 | // amdgpu-no-queue-ptr. This is undefined. | |||
| 5630 | return DAG.getUNDEF(MVT::i32); | |||
| 5631 | } | |||
| 5632 | ||||
| 5633 | SDValue QueuePtr = CreateLiveInRegister( | |||
| 5634 | DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); | |||
| 5635 | ||||
| 5636 | // Offset into amd_queue_t for group_segment_aperture_base_hi / | |||
| 5637 | // private_segment_aperture_base_hi. | |||
| 5638 | uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; | |||
| 5639 | ||||
| 5640 | SDValue Ptr = | |||
| 5641 | DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); | |||
| 5642 | ||||
| 5643 | // TODO: Use custom target PseudoSourceValue. | |||
| 5644 | // TODO: We should use the value from the IR intrinsic call, but it might not | |||
| 5645 | // be available and how do we get it? | |||
| 5646 | MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); | |||
| 5647 | return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, | |||
| 5648 | commonAlignment(Align(64), StructOffset), | |||
| 5649 | MachineMemOperand::MODereferenceable | | |||
| 5650 | MachineMemOperand::MOInvariant); | |||
| 5651 | } | |||
| 5652 | ||||
| 5653 | /// Return true if the value is a known valid address, such that a null check is | |||
| 5654 | /// not necessary. | |||
| 5655 | static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, | |||
| 5656 | const AMDGPUTargetMachine &TM, unsigned AddrSpace) { | |||
| 5657 | if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) || | |||
| 5658 | isa<BasicBlockSDNode>(Val)) | |||
| 5659 | return true; | |||
| 5660 | ||||
| 5661 | if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val)) | |||
| 5662 | return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); | |||
| 5663 | ||||
| 5664 | // TODO: Search through arithmetic, handle arguments and loads | |||
| 5665 | // marked nonnull. | |||
| 5666 | return false; | |||
| 5667 | } | |||
| 5668 | ||||
| 5669 | SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, | |||
| 5670 | SelectionDAG &DAG) const { | |||
| 5671 | SDLoc SL(Op); | |||
| 5672 | const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); | |||
| 5673 | ||||
| 5674 | SDValue Src = ASC->getOperand(0); | |||
| 5675 | SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); | |||
| 5676 | unsigned SrcAS = ASC->getSrcAddressSpace(); | |||
| 5677 | ||||
| 5678 | const AMDGPUTargetMachine &TM = | |||
| 5679 | static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); | |||
| 5680 | ||||
| 5681 | // flat -> local/private | |||
| 5682 | if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { | |||
| 5683 | unsigned DestAS = ASC->getDestAddressSpace(); | |||
| 5684 | ||||
| 5685 | if (DestAS == AMDGPUAS::LOCAL_ADDRESS || | |||
| 5686 | DestAS == AMDGPUAS::PRIVATE_ADDRESS) { | |||
| 5687 | SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); | |||
| 5688 | ||||
| 5689 | if (isKnownNonNull(Src, DAG, TM, SrcAS)) | |||
| 5690 | return Ptr; | |||
| 5691 | ||||
| 5692 | unsigned NullVal = TM.getNullPointerValue(DestAS); | |||
| 5693 | SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); | |||
| 5694 | SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); | |||
| 5695 | ||||
| 5696 | return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, | |||
| 5697 | SegmentNullPtr); | |||
| 5698 | } | |||
| 5699 | } | |||
| 5700 | ||||
| 5701 | // local/private -> flat | |||
| 5702 | if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { | |||
| 5703 | if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || | |||
| 5704 | SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { | |||
| 5705 | ||||
| 5706 | SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); | |||
| 5707 | SDValue CvtPtr = | |||
| 5708 | DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); | |||
| 5709 | CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); | |||
| 5710 | ||||
| 5711 | if (isKnownNonNull(Src, DAG, TM, SrcAS)) | |||
| 5712 | return CvtPtr; | |||
| 5713 | ||||
| 5714 | unsigned NullVal = TM.getNullPointerValue(SrcAS); | |||
| 5715 | SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); | |||
| 5716 | ||||
| 5717 | SDValue NonNull | |||
| 5718 | = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); | |||
| 5719 | ||||
| 5720 | return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, | |||
| 5721 | FlatNullPtr); | |||
| 5722 | } | |||
| 5723 | } | |||
| 5724 | ||||
| 5725 | if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && | |||
| 5726 | Op.getValueType() == MVT::i64) { | |||
| 5727 | const SIMachineFunctionInfo *Info = | |||
| 5728 | DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>(); | |||
| 5729 | SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); | |||
| 5730 | SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); | |||
| 5731 | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); | |||
| 5732 | } | |||
| 5733 | ||||
| 5734 | if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && | |||
| 5735 | Src.getValueType() == MVT::i64) | |||
| 5736 | return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); | |||
| 5737 | ||||
| 5738 | // global <-> flat are no-ops and never emitted. | |||
| 5739 | ||||
| 5740 | const MachineFunction &MF = DAG.getMachineFunction(); | |||
| 5741 | DiagnosticInfoUnsupported InvalidAddrSpaceCast( | |||
| 5742 | MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); | |||
| 5743 | DAG.getContext()->diagnose(InvalidAddrSpaceCast); | |||
| 5744 | ||||
| 5745 | return DAG.getUNDEF(ASC->getValueType(0)); | |||
| 5746 | } | |||
| 5747 | ||||
| 5748 | // This lowers an INSERT_SUBVECTOR by extracting the individual elements from | |||
| 5749 | // the small vector and inserting them into the big vector. That is better than | |||
| 5750 | // the default expansion of doing it via a stack slot. Even though the use of | |||
| 5751 | // the stack slot would be optimized away afterwards, the stack slot itself | |||
| 5752 | // remains. | |||
| 5753 | SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, | |||
| 5754 | SelectionDAG &DAG) const { | |||
| 5755 | SDValue Vec = Op.getOperand(0); | |||
| 5756 | SDValue Ins = Op.getOperand(1); | |||
| 5757 | SDValue Idx = Op.getOperand(2); | |||
| 5758 | EVT VecVT = Vec.getValueType(); | |||
| 5759 | EVT InsVT = Ins.getValueType(); | |||
| 5760 | EVT EltVT = VecVT.getVectorElementType(); | |||
| 5761 | unsigned InsNumElts = InsVT.getVectorNumElements(); | |||
| 5762 | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | |||
| 5763 | SDLoc SL(Op); | |||
| 5764 | ||||
| 5765 | if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) { | |||
| 5766 | // Insert 32-bit registers at a time. | |||
| 5767 | assert(InsNumElts % 2 == 0 && "expect legal vector types")(static_cast <bool> (InsNumElts % 2 == 0 && "expect legal vector types" ) ? void (0) : __assert_fail ("InsNumElts % 2 == 0 && \"expect legal vector types\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5767, __extension__ __PRETTY_FUNCTION__)); | |||
| 5768 | ||||
| 5769 | unsigned VecNumElts = VecVT.getVectorNumElements(); | |||
| 5770 | EVT NewVecVT = | |||
| 5771 | EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2); | |||
| 5772 | EVT NewInsVT = InsNumElts == 2 ? MVT::i32 | |||
| 5773 | : EVT::getVectorVT(*DAG.getContext(), | |||
| 5774 | MVT::i32, InsNumElts / 2); | |||
| 5775 | ||||
| 5776 | Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec); | |||
| 5777 | Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins); | |||
| 5778 | ||||
| 5779 | for (unsigned I = 0; I != InsNumElts / 2; ++I) { | |||
| 5780 | SDValue Elt; | |||
| 5781 | if (InsNumElts == 2) { | |||
| 5782 | Elt = Ins; | |||
| 5783 | } else { | |||
| 5784 | Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins, | |||
| 5785 | DAG.getConstant(I, SL, MVT::i32)); | |||
| 5786 | } | |||
| 5787 | Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt, | |||
| 5788 | DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32)); | |||
| 5789 | } | |||
| 5790 | ||||
| 5791 | return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec); | |||
| 5792 | } | |||
| 5793 | ||||
| 5794 | for (unsigned I = 0; I != InsNumElts; ++I) { | |||
| 5795 | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, | |||
| 5796 | DAG.getConstant(I, SL, MVT::i32)); | |||
| 5797 | Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, | |||
| 5798 | DAG.getConstant(IdxVal + I, SL, MVT::i32)); | |||
| 5799 | } | |||
| 5800 | return Vec; | |||
| 5801 | } | |||
| 5802 | ||||
| 5803 | SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, | |||
| 5804 | SelectionDAG &DAG) const { | |||
| 5805 | SDValue Vec = Op.getOperand(0); | |||
| 5806 | SDValue InsVal = Op.getOperand(1); | |||
| 5807 | SDValue Idx = Op.getOperand(2); | |||
| 5808 | EVT VecVT = Vec.getValueType(); | |||
| 5809 | EVT EltVT = VecVT.getVectorElementType(); | |||
| 5810 | unsigned VecSize = VecVT.getSizeInBits(); | |||
| 5811 | unsigned EltSize = EltVT.getSizeInBits(); | |||
| 5812 | SDLoc SL(Op); | |||
| 5813 | ||||
| 5814 | // Specially handle the case of v4i16 with static indexing. | |||
| 5815 | unsigned NumElts = VecVT.getVectorNumElements(); | |||
| 5816 | auto KIdx = dyn_cast<ConstantSDNode>(Idx); | |||
| 5817 | if (NumElts == 4 && EltSize == 16 && KIdx) { | |||
| 5818 | SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); | |||
| 5819 | ||||
| 5820 | SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, | |||
| 5821 | DAG.getConstant(0, SL, MVT::i32)); | |||
| 5822 | SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, | |||
| 5823 | DAG.getConstant(1, SL, MVT::i32)); | |||
| 5824 | ||||
| 5825 | SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); | |||
| 5826 | SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); | |||
| 5827 | ||||
| 5828 | unsigned Idx = KIdx->getZExtValue(); | |||
| 5829 | bool InsertLo = Idx < 2; | |||
| 5830 | SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, | |||
| 5831 | InsertLo ? LoVec : HiVec, | |||
| 5832 | DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), | |||
| 5833 | DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); | |||
| 5834 | ||||
| 5835 | InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); | |||
| 5836 | ||||
| 5837 | SDValue Concat = InsertLo ? | |||
| 5838 | DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : | |||
| 5839 | DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); | |||
| 5840 | ||||
| 5841 | return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); | |||
| 5842 | } | |||
| 5843 | ||||
| 5844 | // Static indexing does not lower to stack access, and hence there is no need | |||
| 5845 | // for special custom lowering to avoid stack access. | |||
| 5846 | if (isa<ConstantSDNode>(Idx)) | |||
| 5847 | return SDValue(); | |||
| 5848 | ||||
| 5849 | // Avoid stack access for dynamic indexing by custom lowering to | |||
| 5850 | // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec | |||
| 5851 | ||||
| 5852 | assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits")(static_cast <bool> (VecSize <= 64 && "Expected target vector size to be <= 64 bits" ) ? void (0) : __assert_fail ("VecSize <= 64 && \"Expected target vector size to be <= 64 bits\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 5852, __extension__ __PRETTY_FUNCTION__)); | |||
| 5853 | ||||
| 5854 | MVT IntVT = MVT::getIntegerVT(VecSize); | |||
| 5855 | ||||
| 5856 | // Convert vector index to bit-index and get the required bit mask. | |||
| 5857 | assert(isPowerOf2_32(EltSize))(static_cast <bool> (isPowerOf2_32(EltSize)) ? void (0) : __assert_fail ("isPowerOf2_32(EltSize)", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5857, __extension__ __PRETTY_FUNCTION__)); | |||
| 5858 | const auto EltMask = maskTrailingOnes<uint64_t>(EltSize); | |||
| 5859 | SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); | |||
| 5860 | SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); | |||
| 5861 | SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, | |||
| 5862 | DAG.getConstant(EltMask, SL, IntVT), ScaledIdx); | |||
| 5863 | ||||
| 5864 | // 1. Create a congruent vector with the target value in each element. | |||
| 5865 | SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, | |||
| 5866 | DAG.getSplatBuildVector(VecVT, SL, InsVal)); | |||
| 5867 | ||||
| 5868 | // 2. Mask off all other indicies except the required index within (1). | |||
| 5869 | SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); | |||
| 5870 | ||||
| 5871 | // 3. Mask off the required index within the target vector. | |||
| 5872 | SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); | |||
| 5873 | SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, | |||
| 5874 | DAG.getNOT(SL, BFM, IntVT), BCVec); | |||
| 5875 | ||||
| 5876 | // 4. Get (2) and (3) ORed into the target vector. | |||
| 5877 | SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); | |||
| 5878 | ||||
| 5879 | return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); | |||
| 5880 | } | |||
| 5881 | ||||
| 5882 | SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, | |||
| 5883 | SelectionDAG &DAG) const { | |||
| 5884 | SDLoc SL(Op); | |||
| 5885 | ||||
| 5886 | EVT ResultVT = Op.getValueType(); | |||
| 5887 | SDValue Vec = Op.getOperand(0); | |||
| 5888 | SDValue Idx = Op.getOperand(1); | |||
| 5889 | EVT VecVT = Vec.getValueType(); | |||
| 5890 | unsigned VecSize = VecVT.getSizeInBits(); | |||
| 5891 | EVT EltVT = VecVT.getVectorElementType(); | |||
| 5892 | ||||
| 5893 | DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); | |||
| 5894 | ||||
| 5895 | // Make sure we do any optimizations that will make it easier to fold | |||
| 5896 | // source modifiers before obscuring it with bit operations. | |||
| 5897 | ||||
| 5898 | // XXX - Why doesn't this get called when vector_shuffle is expanded? | |||
| 5899 | if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) | |||
| 5900 | return Combined; | |||
| 5901 | ||||
| 5902 | if (VecSize == 128 || VecSize == 256) { | |||
| 5903 | SDValue Lo, Hi; | |||
| 5904 | EVT LoVT, HiVT; | |||
| 5905 | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); | |||
| 5906 | ||||
| 5907 | if (VecSize == 128) { | |||
| 5908 | SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); | |||
| 5909 | Lo = DAG.getBitcast(LoVT, | |||
| 5910 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, | |||
| 5911 | DAG.getConstant(0, SL, MVT::i32))); | |||
| 5912 | Hi = DAG.getBitcast(HiVT, | |||
| 5913 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, | |||
| 5914 | DAG.getConstant(1, SL, MVT::i32))); | |||
| 5915 | } else { | |||
| 5916 | assert(VecSize == 256)(static_cast <bool> (VecSize == 256) ? void (0) : __assert_fail ("VecSize == 256", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5916, __extension__ __PRETTY_FUNCTION__)); | |||
| 5917 | ||||
| 5918 | SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); | |||
| 5919 | SDValue Parts[4]; | |||
| 5920 | for (unsigned P = 0; P < 4; ++P) { | |||
| 5921 | Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, | |||
| 5922 | DAG.getConstant(P, SL, MVT::i32)); | |||
| 5923 | } | |||
| 5924 | ||||
| 5925 | Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, | |||
| 5926 | Parts[0], Parts[1])); | |||
| 5927 | Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, | |||
| 5928 | Parts[2], Parts[3])); | |||
| 5929 | } | |||
| 5930 | ||||
| 5931 | EVT IdxVT = Idx.getValueType(); | |||
| 5932 | unsigned NElem = VecVT.getVectorNumElements(); | |||
| 5933 | assert(isPowerOf2_32(NElem))(static_cast <bool> (isPowerOf2_32(NElem)) ? void (0) : __assert_fail ("isPowerOf2_32(NElem)", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5933, __extension__ __PRETTY_FUNCTION__)); | |||
| 5934 | SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); | |||
| 5935 | SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); | |||
| 5936 | SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); | |||
| 5937 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); | |||
| 5938 | } | |||
| 5939 | ||||
| 5940 | assert(VecSize <= 64)(static_cast <bool> (VecSize <= 64) ? void (0) : __assert_fail ("VecSize <= 64", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5940, __extension__ __PRETTY_FUNCTION__)); | |||
| 5941 | ||||
| 5942 | MVT IntVT = MVT::getIntegerVT(VecSize); | |||
| 5943 | ||||
| 5944 | // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. | |||
| 5945 | SDValue VecBC = peekThroughBitcasts(Vec); | |||
| 5946 | if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { | |||
| 5947 | SDValue Src = VecBC.getOperand(0); | |||
| 5948 | Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); | |||
| 5949 | Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); | |||
| 5950 | } | |||
| 5951 | ||||
| 5952 | unsigned EltSize = EltVT.getSizeInBits(); | |||
| 5953 | assert(isPowerOf2_32(EltSize))(static_cast <bool> (isPowerOf2_32(EltSize)) ? void (0) : __assert_fail ("isPowerOf2_32(EltSize)", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5953, __extension__ __PRETTY_FUNCTION__)); | |||
| 5954 | ||||
| 5955 | SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); | |||
| 5956 | ||||
| 5957 | // Convert vector index to bit-index (* EltSize) | |||
| 5958 | SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); | |||
| 5959 | ||||
| 5960 | SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); | |||
| 5961 | SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); | |||
| 5962 | ||||
| 5963 | if (ResultVT == MVT::f16) { | |||
| 5964 | SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); | |||
| 5965 | return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); | |||
| 5966 | } | |||
| 5967 | ||||
| 5968 | return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); | |||
| 5969 | } | |||
| 5970 | ||||
| 5971 | static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { | |||
| 5972 | assert(Elt % 2 == 0)(static_cast <bool> (Elt % 2 == 0) ? void (0) : __assert_fail ("Elt % 2 == 0", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 5972, __extension__ __PRETTY_FUNCTION__)); | |||
| 5973 | return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); | |||
| 5974 | } | |||
| 5975 | ||||
| 5976 | SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, | |||
| 5977 | SelectionDAG &DAG) const { | |||
| 5978 | SDLoc SL(Op); | |||
| 5979 | EVT ResultVT = Op.getValueType(); | |||
| 5980 | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); | |||
| 5981 | ||||
| 5982 | EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; | |||
| 5983 | EVT EltVT = PackVT.getVectorElementType(); | |||
| 5984 | int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); | |||
| 5985 | ||||
| 5986 | // vector_shuffle <0,1,6,7> lhs, rhs | |||
| 5987 | // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) | |||
| 5988 | // | |||
| 5989 | // vector_shuffle <6,7,2,3> lhs, rhs | |||
| 5990 | // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) | |||
| 5991 | // | |||
| 5992 | // vector_shuffle <6,7,0,1> lhs, rhs | |||
| 5993 | // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) | |||
| 5994 | ||||
| 5995 | // Avoid scalarizing when both halves are reading from consecutive elements. | |||
| 5996 | SmallVector<SDValue, 4> Pieces; | |||
| 5997 | for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { | |||
| 5998 | if (elementPairIsContiguous(SVN->getMask(), I)) { | |||
| 5999 | const int Idx = SVN->getMaskElt(I); | |||
| 6000 | int VecIdx = Idx < SrcNumElts ? 0 : 1; | |||
| 6001 | int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; | |||
| 6002 | SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, | |||
| 6003 | PackVT, SVN->getOperand(VecIdx), | |||
| 6004 | DAG.getConstant(EltIdx, SL, MVT::i32)); | |||
| 6005 | Pieces.push_back(SubVec); | |||
| 6006 | } else { | |||
| 6007 | const int Idx0 = SVN->getMaskElt(I); | |||
| 6008 | const int Idx1 = SVN->getMaskElt(I + 1); | |||
| 6009 | int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; | |||
| 6010 | int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; | |||
| 6011 | int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; | |||
| 6012 | int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; | |||
| 6013 | ||||
| 6014 | SDValue Vec0 = SVN->getOperand(VecIdx0); | |||
| 6015 | SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, | |||
| 6016 | Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); | |||
| 6017 | ||||
| 6018 | SDValue Vec1 = SVN->getOperand(VecIdx1); | |||
| 6019 | SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, | |||
| 6020 | Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); | |||
| 6021 | Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); | |||
| 6022 | } | |||
| 6023 | } | |||
| 6024 | ||||
| 6025 | return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); | |||
| 6026 | } | |||
| 6027 | ||||
| 6028 | SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, | |||
| 6029 | SelectionDAG &DAG) const { | |||
| 6030 | SDValue SVal = Op.getOperand(0); | |||
| 6031 | EVT ResultVT = Op.getValueType(); | |||
| 6032 | EVT SValVT = SVal.getValueType(); | |||
| 6033 | SDValue UndefVal = DAG.getUNDEF(SValVT); | |||
| 6034 | SDLoc SL(Op); | |||
| 6035 | ||||
| 6036 | SmallVector<SDValue, 8> VElts; | |||
| 6037 | VElts.push_back(SVal); | |||
| 6038 | for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) | |||
| 6039 | VElts.push_back(UndefVal); | |||
| 6040 | ||||
| 6041 | return DAG.getBuildVector(ResultVT, SL, VElts); | |||
| 6042 | } | |||
| 6043 | ||||
| 6044 | SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, | |||
| 6045 | SelectionDAG &DAG) const { | |||
| 6046 | SDLoc SL(Op); | |||
| 6047 | EVT VT = Op.getValueType(); | |||
| 6048 | ||||
| 6049 | if (VT == MVT::v4i16 || VT == MVT::v4f16 || | |||
| 6050 | VT == MVT::v8i16 || VT == MVT::v8f16) { | |||
| 6051 | EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), | |||
| 6052 | VT.getVectorNumElements() / 2); | |||
| 6053 | MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); | |||
| 6054 | ||||
| 6055 | // Turn into pair of packed build_vectors. | |||
| 6056 | // TODO: Special case for constants that can be materialized with s_mov_b64. | |||
| 6057 | SmallVector<SDValue, 4> LoOps, HiOps; | |||
| 6058 | for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { | |||
| 6059 | LoOps.push_back(Op.getOperand(I)); | |||
| 6060 | HiOps.push_back(Op.getOperand(I + E)); | |||
| 6061 | } | |||
| 6062 | SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); | |||
| 6063 | SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); | |||
| 6064 | ||||
| 6065 | SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); | |||
| 6066 | SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); | |||
| 6067 | ||||
| 6068 | SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, | |||
| 6069 | { CastLo, CastHi }); | |||
| 6070 | return DAG.getNode(ISD::BITCAST, SL, VT, Blend); | |||
| 6071 | } | |||
| 6072 | ||||
| 6073 | if (VT == MVT::v16i16 || VT == MVT::v16f16) { | |||
| 6074 | EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), | |||
| 6075 | VT.getVectorNumElements() / 4); | |||
| 6076 | MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); | |||
| 6077 | ||||
| 6078 | SmallVector<SDValue, 4> Parts[4]; | |||
| 6079 | for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { | |||
| 6080 | for (unsigned P = 0; P < 4; ++P) | |||
| 6081 | Parts[P].push_back(Op.getOperand(I + P * E)); | |||
| 6082 | } | |||
| 6083 | SDValue Casts[4]; | |||
| 6084 | for (unsigned P = 0; P < 4; ++P) { | |||
| 6085 | SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); | |||
| 6086 | Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); | |||
| 6087 | } | |||
| 6088 | ||||
| 6089 | SDValue Blend = | |||
| 6090 | DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); | |||
| 6091 | return DAG.getNode(ISD::BITCAST, SL, VT, Blend); | |||
| 6092 | } | |||
| 6093 | ||||
| 6094 | assert(VT == MVT::v2f16 || VT == MVT::v2i16)(static_cast <bool> (VT == MVT::v2f16 || VT == MVT::v2i16 ) ? void (0) : __assert_fail ("VT == MVT::v2f16 || VT == MVT::v2i16" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6094, __extension__ __PRETTY_FUNCTION__)); | |||
| 6095 | assert(!Subtarget->hasVOP3PInsts() && "this should be legal")(static_cast <bool> (!Subtarget->hasVOP3PInsts() && "this should be legal") ? void (0) : __assert_fail ("!Subtarget->hasVOP3PInsts() && \"this should be legal\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6095, __extension__ __PRETTY_FUNCTION__)); | |||
| 6096 | ||||
| 6097 | SDValue Lo = Op.getOperand(0); | |||
| 6098 | SDValue Hi = Op.getOperand(1); | |||
| 6099 | ||||
| 6100 | // Avoid adding defined bits with the zero_extend. | |||
| 6101 | if (Hi.isUndef()) { | |||
| 6102 | Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); | |||
| 6103 | SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); | |||
| 6104 | return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); | |||
| 6105 | } | |||
| 6106 | ||||
| 6107 | Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); | |||
| 6108 | Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); | |||
| 6109 | ||||
| 6110 | SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, | |||
| 6111 | DAG.getConstant(16, SL, MVT::i32)); | |||
| 6112 | if (Lo.isUndef()) | |||
| 6113 | return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); | |||
| 6114 | ||||
| 6115 | Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); | |||
| 6116 | Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); | |||
| 6117 | ||||
| 6118 | SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); | |||
| 6119 | return DAG.getNode(ISD::BITCAST, SL, VT, Or); | |||
| 6120 | } | |||
| 6121 | ||||
| 6122 | bool | |||
| 6123 | SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | |||
| 6124 | // We can fold offsets for anything that doesn't require a GOT relocation. | |||
| 6125 | return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || | |||
| 6126 | GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || | |||
| 6127 | GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && | |||
| 6128 | !shouldEmitGOTReloc(GA->getGlobal()); | |||
| 6129 | } | |||
| 6130 | ||||
| 6131 | static SDValue | |||
| 6132 | buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, | |||
| 6133 | const SDLoc &DL, int64_t Offset, EVT PtrVT, | |||
| 6134 | unsigned GAFlags = SIInstrInfo::MO_NONE) { | |||
| 6135 | assert(isInt<32>(Offset + 4) && "32-bit offset is expected!")(static_cast <bool> (isInt<32>(Offset + 4) && "32-bit offset is expected!") ? void (0) : __assert_fail ("isInt<32>(Offset + 4) && \"32-bit offset is expected!\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6135, __extension__ __PRETTY_FUNCTION__)); | |||
| 6136 | // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is | |||
| 6137 | // lowered to the following code sequence: | |||
| 6138 | // | |||
| 6139 | // For constant address space: | |||
| 6140 | // s_getpc_b64 s[0:1] | |||
| 6141 | // s_add_u32 s0, s0, $symbol | |||
| 6142 | // s_addc_u32 s1, s1, 0 | |||
| 6143 | // | |||
| 6144 | // s_getpc_b64 returns the address of the s_add_u32 instruction and then | |||
| 6145 | // a fixup or relocation is emitted to replace $symbol with a literal | |||
| 6146 | // constant, which is a pc-relative offset from the encoding of the $symbol | |||
| 6147 | // operand to the global variable. | |||
| 6148 | // | |||
| 6149 | // For global address space: | |||
| 6150 | // s_getpc_b64 s[0:1] | |||
| 6151 | // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo | |||
| 6152 | // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi | |||
| 6153 | // | |||
| 6154 | // s_getpc_b64 returns the address of the s_add_u32 instruction and then | |||
| 6155 | // fixups or relocations are emitted to replace $symbol@*@lo and | |||
| 6156 | // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, | |||
| 6157 | // which is a 64-bit pc-relative offset from the encoding of the $symbol | |||
| 6158 | // operand to the global variable. | |||
| 6159 | // | |||
| 6160 | // What we want here is an offset from the value returned by s_getpc | |||
| 6161 | // (which is the address of the s_add_u32 instruction) to the global | |||
| 6162 | // variable, but since the encoding of $symbol starts 4 bytes after the start | |||
| 6163 | // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too | |||
| 6164 | // small. This requires us to add 4 to the global variable offset in order to | |||
| 6165 | // compute the correct address. Similarly for the s_addc_u32 instruction, the | |||
| 6166 | // encoding of $symbol starts 12 bytes after the start of the s_add_u32 | |||
| 6167 | // instruction. | |||
| 6168 | SDValue PtrLo = | |||
| 6169 | DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); | |||
| 6170 | SDValue PtrHi; | |||
| 6171 | if (GAFlags == SIInstrInfo::MO_NONE) { | |||
| 6172 | PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); | |||
| 6173 | } else { | |||
| 6174 | PtrHi = | |||
| 6175 | DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); | |||
| 6176 | } | |||
| 6177 | return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); | |||
| 6178 | } | |||
| 6179 | ||||
| 6180 | SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, | |||
| 6181 | SDValue Op, | |||
| 6182 | SelectionDAG &DAG) const { | |||
| 6183 | GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); | |||
| 6184 | SDLoc DL(GSD); | |||
| 6185 | EVT PtrVT = Op.getValueType(); | |||
| 6186 | ||||
| 6187 | const GlobalValue *GV = GSD->getGlobal(); | |||
| 6188 | if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && | |||
| 6189 | shouldUseLDSConstAddress(GV)) || | |||
| 6190 | GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || | |||
| 6191 | GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { | |||
| 6192 | if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && | |||
| 6193 | GV->hasExternalLinkage()) { | |||
| 6194 | Type *Ty = GV->getValueType(); | |||
| 6195 | // HIP uses an unsized array `extern __shared__ T s[]` or similar | |||
| 6196 | // zero-sized type in other languages to declare the dynamic shared | |||
| 6197 | // memory which size is not known at the compile time. They will be | |||
| 6198 | // allocated by the runtime and placed directly after the static | |||
| 6199 | // allocated ones. They all share the same offset. | |||
| 6200 | if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { | |||
| 6201 | assert(PtrVT == MVT::i32 && "32-bit pointer is expected.")(static_cast <bool> (PtrVT == MVT::i32 && "32-bit pointer is expected." ) ? void (0) : __assert_fail ("PtrVT == MVT::i32 && \"32-bit pointer is expected.\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6201, __extension__ __PRETTY_FUNCTION__)); | |||
| 6202 | // Adjust alignment for that dynamic shared memory array. | |||
| 6203 | Function &F = DAG.getMachineFunction().getFunction(); | |||
| 6204 | MFI->setDynLDSAlign(F, *cast<GlobalVariable>(GV)); | |||
| 6205 | return SDValue( | |||
| 6206 | DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); | |||
| 6207 | } | |||
| 6208 | } | |||
| 6209 | return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); | |||
| 6210 | } | |||
| 6211 | ||||
| 6212 | if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { | |||
| 6213 | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), | |||
| 6214 | SIInstrInfo::MO_ABS32_LO); | |||
| 6215 | return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); | |||
| 6216 | } | |||
| 6217 | ||||
| 6218 | if (shouldEmitFixup(GV)) | |||
| 6219 | return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); | |||
| 6220 | else if (shouldEmitPCReloc(GV)) | |||
| 6221 | return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, | |||
| 6222 | SIInstrInfo::MO_REL32); | |||
| 6223 | ||||
| 6224 | SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, | |||
| 6225 | SIInstrInfo::MO_GOTPCREL32); | |||
| 6226 | ||||
| 6227 | Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); | |||
| 6228 | PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); | |||
| 6229 | const DataLayout &DataLayout = DAG.getDataLayout(); | |||
| 6230 | Align Alignment = DataLayout.getABITypeAlign(PtrTy); | |||
| 6231 | MachinePointerInfo PtrInfo | |||
| 6232 | = MachinePointerInfo::getGOT(DAG.getMachineFunction()); | |||
| 6233 | ||||
| 6234 | return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, | |||
| 6235 | MachineMemOperand::MODereferenceable | | |||
| 6236 | MachineMemOperand::MOInvariant); | |||
| 6237 | } | |||
| 6238 | ||||
| 6239 | SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, | |||
| 6240 | const SDLoc &DL, SDValue V) const { | |||
| 6241 | // We can't use S_MOV_B32 directly, because there is no way to specify m0 as | |||
| 6242 | // the destination register. | |||
| 6243 | // | |||
| 6244 | // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, | |||
| 6245 | // so we will end up with redundant moves to m0. | |||
| 6246 | // | |||
| 6247 | // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. | |||
| 6248 | ||||
| 6249 | // A Null SDValue creates a glue result. | |||
| 6250 | SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, | |||
| 6251 | V, Chain); | |||
| 6252 | return SDValue(M0, 0); | |||
| 6253 | } | |||
| 6254 | ||||
| 6255 | SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, | |||
| 6256 | SDValue Op, | |||
| 6257 | MVT VT, | |||
| 6258 | unsigned Offset) const { | |||
| 6259 | SDLoc SL(Op); | |||
| 6260 | SDValue Param = lowerKernargMemParameter( | |||
| 6261 | DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); | |||
| 6262 | // The local size values will have the hi 16-bits as zero. | |||
| 6263 | return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, | |||
| 6264 | DAG.getValueType(VT)); | |||
| 6265 | } | |||
| 6266 | ||||
| 6267 | static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, | |||
| 6268 | EVT VT) { | |||
| 6269 | DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), | |||
| 6270 | "non-hsa intrinsic with hsa target", | |||
| 6271 | DL.getDebugLoc()); | |||
| 6272 | DAG.getContext()->diagnose(BadIntrin); | |||
| 6273 | return DAG.getUNDEF(VT); | |||
| 6274 | } | |||
| 6275 | ||||
| 6276 | static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, | |||
| 6277 | EVT VT) { | |||
| 6278 | DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), | |||
| 6279 | "intrinsic not supported on subtarget", | |||
| 6280 | DL.getDebugLoc()); | |||
| 6281 | DAG.getContext()->diagnose(BadIntrin); | |||
| 6282 | return DAG.getUNDEF(VT); | |||
| 6283 | } | |||
| 6284 | ||||
| 6285 | static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, | |||
| 6286 | ArrayRef<SDValue> Elts) { | |||
| 6287 | assert(!Elts.empty())(static_cast <bool> (!Elts.empty()) ? void (0) : __assert_fail ("!Elts.empty()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 6287, __extension__ __PRETTY_FUNCTION__)); | |||
| 6288 | MVT Type; | |||
| 6289 | unsigned NumElts = Elts.size(); | |||
| 6290 | ||||
| 6291 | if (NumElts <= 12) { | |||
| 6292 | Type = MVT::getVectorVT(MVT::f32, NumElts); | |||
| 6293 | } else { | |||
| 6294 | assert(Elts.size() <= 16)(static_cast <bool> (Elts.size() <= 16) ? void (0) : __assert_fail ("Elts.size() <= 16", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 6294, __extension__ __PRETTY_FUNCTION__)); | |||
| 6295 | Type = MVT::v16f32; | |||
| 6296 | NumElts = 16; | |||
| 6297 | } | |||
| 6298 | ||||
| 6299 | SmallVector<SDValue, 16> VecElts(NumElts); | |||
| 6300 | for (unsigned i = 0; i < Elts.size(); ++i) { | |||
| 6301 | SDValue Elt = Elts[i]; | |||
| 6302 | if (Elt.getValueType() != MVT::f32) | |||
| 6303 | Elt = DAG.getBitcast(MVT::f32, Elt); | |||
| 6304 | VecElts[i] = Elt; | |||
| 6305 | } | |||
| 6306 | for (unsigned i = Elts.size(); i < NumElts; ++i) | |||
| 6307 | VecElts[i] = DAG.getUNDEF(MVT::f32); | |||
| 6308 | ||||
| 6309 | if (NumElts == 1) | |||
| 6310 | return VecElts[0]; | |||
| 6311 | return DAG.getBuildVector(Type, DL, VecElts); | |||
| 6312 | } | |||
| 6313 | ||||
| 6314 | static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, | |||
| 6315 | SDValue Src, int ExtraElts) { | |||
| 6316 | EVT SrcVT = Src.getValueType(); | |||
| 6317 | ||||
| 6318 | SmallVector<SDValue, 8> Elts; | |||
| 6319 | ||||
| 6320 | if (SrcVT.isVector()) | |||
| 6321 | DAG.ExtractVectorElements(Src, Elts); | |||
| 6322 | else | |||
| 6323 | Elts.push_back(Src); | |||
| 6324 | ||||
| 6325 | SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); | |||
| 6326 | while (ExtraElts--) | |||
| 6327 | Elts.push_back(Undef); | |||
| 6328 | ||||
| 6329 | return DAG.getBuildVector(CastVT, DL, Elts); | |||
| 6330 | } | |||
| 6331 | ||||
| 6332 | // Re-construct the required return value for a image load intrinsic. | |||
| 6333 | // This is more complicated due to the optional use TexFailCtrl which means the required | |||
| 6334 | // return type is an aggregate | |||
| 6335 | static SDValue constructRetValue(SelectionDAG &DAG, | |||
| 6336 | MachineSDNode *Result, | |||
| 6337 | ArrayRef<EVT> ResultTypes, | |||
| 6338 | bool IsTexFail, bool Unpacked, bool IsD16, | |||
| 6339 | int DMaskPop, int NumVDataDwords, | |||
| 6340 | const SDLoc &DL) { | |||
| 6341 | // Determine the required return type. This is the same regardless of IsTexFail flag | |||
| 6342 | EVT ReqRetVT = ResultTypes[0]; | |||
| 6343 | int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; | |||
| 6344 | int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? | |||
| 6345 | ReqRetNumElts : (ReqRetNumElts + 1) / 2; | |||
| 6346 | ||||
| 6347 | int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? | |||
| 6348 | DMaskPop : (DMaskPop + 1) / 2; | |||
| 6349 | ||||
| 6350 | MVT DataDwordVT = NumDataDwords == 1 ? | |||
| 6351 | MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); | |||
| 6352 | ||||
| 6353 | MVT MaskPopVT = MaskPopDwords == 1 ? | |||
| 6354 | MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); | |||
| 6355 | ||||
| 6356 | SDValue Data(Result, 0); | |||
| 6357 | SDValue TexFail; | |||
| 6358 | ||||
| 6359 | if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { | |||
| 6360 | SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); | |||
| 6361 | if (MaskPopVT.isVector()) { | |||
| 6362 | Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, | |||
| 6363 | SDValue(Result, 0), ZeroIdx); | |||
| 6364 | } else { | |||
| 6365 | Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, | |||
| 6366 | SDValue(Result, 0), ZeroIdx); | |||
| 6367 | } | |||
| 6368 | } | |||
| 6369 | ||||
| 6370 | if (DataDwordVT.isVector()) | |||
| 6371 | Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, | |||
| 6372 | NumDataDwords - MaskPopDwords); | |||
| 6373 | ||||
| 6374 | if (IsD16) | |||
| 6375 | Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); | |||
| 6376 | ||||
| 6377 | EVT LegalReqRetVT = ReqRetVT; | |||
| 6378 | if (!ReqRetVT.isVector()) { | |||
| 6379 | if (!Data.getValueType().isInteger()) | |||
| 6380 | Data = DAG.getNode(ISD::BITCAST, DL, | |||
| 6381 | Data.getValueType().changeTypeToInteger(), Data); | |||
| 6382 | Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); | |||
| 6383 | } else { | |||
| 6384 | // We need to widen the return vector to a legal type | |||
| 6385 | if ((ReqRetVT.getVectorNumElements() % 2) == 1 && | |||
| 6386 | ReqRetVT.getVectorElementType().getSizeInBits() == 16) { | |||
| 6387 | LegalReqRetVT = | |||
| 6388 | EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), | |||
| 6389 | ReqRetVT.getVectorNumElements() + 1); | |||
| 6390 | } | |||
| 6391 | } | |||
| 6392 | Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); | |||
| 6393 | ||||
| 6394 | if (IsTexFail) { | |||
| 6395 | TexFail = | |||
| 6396 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), | |||
| 6397 | DAG.getConstant(MaskPopDwords, DL, MVT::i32)); | |||
| 6398 | ||||
| 6399 | return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); | |||
| 6400 | } | |||
| 6401 | ||||
| 6402 | if (Result->getNumValues() == 1) | |||
| 6403 | return Data; | |||
| 6404 | ||||
| 6405 | return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); | |||
| 6406 | } | |||
| 6407 | ||||
| 6408 | static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, | |||
| 6409 | SDValue *LWE, bool &IsTexFail) { | |||
| 6410 | auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); | |||
| 6411 | ||||
| 6412 | uint64_t Value = TexFailCtrlConst->getZExtValue(); | |||
| 6413 | if (Value) { | |||
| 6414 | IsTexFail = true; | |||
| 6415 | } | |||
| 6416 | ||||
| 6417 | SDLoc DL(TexFailCtrlConst); | |||
| 6418 | *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); | |||
| 6419 | Value &= ~(uint64_t)0x1; | |||
| 6420 | *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); | |||
| 6421 | Value &= ~(uint64_t)0x2; | |||
| 6422 | ||||
| 6423 | return Value == 0; | |||
| 6424 | } | |||
| 6425 | ||||
| 6426 | static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, | |||
| 6427 | MVT PackVectorVT, | |||
| 6428 | SmallVectorImpl<SDValue> &PackedAddrs, | |||
| 6429 | unsigned DimIdx, unsigned EndIdx, | |||
| 6430 | unsigned NumGradients) { | |||
| 6431 | SDLoc DL(Op); | |||
| 6432 | for (unsigned I = DimIdx; I < EndIdx; I++) { | |||
| 6433 | SDValue Addr = Op.getOperand(I); | |||
| 6434 | ||||
| 6435 | // Gradients are packed with undef for each coordinate. | |||
| 6436 | // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: | |||
| 6437 | // 1D: undef,dx/dh; undef,dx/dv | |||
| 6438 | // 2D: dy/dh,dx/dh; dy/dv,dx/dv | |||
| 6439 | // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv | |||
| 6440 | if (((I + 1) >= EndIdx) || | |||
| 6441 | ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || | |||
| 6442 | I == DimIdx + NumGradients - 1))) { | |||
| 6443 | if (Addr.getValueType() != MVT::i16) | |||
| 6444 | Addr = DAG.getBitcast(MVT::i16, Addr); | |||
| 6445 | Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); | |||
| 6446 | } else { | |||
| 6447 | Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); | |||
| 6448 | I++; | |||
| 6449 | } | |||
| 6450 | Addr = DAG.getBitcast(MVT::f32, Addr); | |||
| 6451 | PackedAddrs.push_back(Addr); | |||
| 6452 | } | |||
| 6453 | } | |||
| 6454 | ||||
| 6455 | SDValue SITargetLowering::lowerImage(SDValue Op, | |||
| 6456 | const AMDGPU::ImageDimIntrinsicInfo *Intr, | |||
| 6457 | SelectionDAG &DAG, bool WithChain) const { | |||
| 6458 | SDLoc DL(Op); | |||
| 6459 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 6460 | const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); | |||
| 6461 | const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = | |||
| 6462 | AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); | |||
| 6463 | const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); | |||
| 6464 | unsigned IntrOpcode = Intr->BaseOpcode; | |||
| 6465 | bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); | |||
| 6466 | bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); | |||
| 6467 | ||||
| 6468 | SmallVector<EVT, 3> ResultTypes(Op->values()); | |||
| 6469 | SmallVector<EVT, 3> OrigResultTypes(Op->values()); | |||
| 6470 | bool IsD16 = false; | |||
| 6471 | bool IsG16 = false; | |||
| 6472 | bool IsA16 = false; | |||
| 6473 | SDValue VData; | |||
| 6474 | int NumVDataDwords; | |||
| 6475 | bool AdjustRetType = false; | |||
| 6476 | ||||
| 6477 | // Offset of intrinsic arguments | |||
| 6478 | const unsigned ArgOffset = WithChain ? 2 : 1; | |||
| 6479 | ||||
| 6480 | unsigned DMask; | |||
| 6481 | unsigned DMaskLanes = 0; | |||
| 6482 | ||||
| 6483 | if (BaseOpcode->Atomic) { | |||
| 6484 | VData = Op.getOperand(2); | |||
| 6485 | ||||
| 6486 | bool Is64Bit = VData.getValueType() == MVT::i64; | |||
| 6487 | if (BaseOpcode->AtomicX2) { | |||
| 6488 | SDValue VData2 = Op.getOperand(3); | |||
| 6489 | VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, | |||
| 6490 | {VData, VData2}); | |||
| 6491 | if (Is64Bit) | |||
| 6492 | VData = DAG.getBitcast(MVT::v4i32, VData); | |||
| 6493 | ||||
| 6494 | ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; | |||
| 6495 | DMask = Is64Bit ? 0xf : 0x3; | |||
| 6496 | NumVDataDwords = Is64Bit ? 4 : 2; | |||
| 6497 | } else { | |||
| 6498 | DMask = Is64Bit ? 0x3 : 0x1; | |||
| 6499 | NumVDataDwords = Is64Bit ? 2 : 1; | |||
| 6500 | } | |||
| 6501 | } else { | |||
| 6502 | auto *DMaskConst = | |||
| 6503 | cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex)); | |||
| 6504 | DMask = DMaskConst->getZExtValue(); | |||
| 6505 | DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask); | |||
| 6506 | ||||
| 6507 | if (BaseOpcode->Store) { | |||
| 6508 | VData = Op.getOperand(2); | |||
| 6509 | ||||
| 6510 | MVT StoreVT = VData.getSimpleValueType(); | |||
| 6511 | if (StoreVT.getScalarType() == MVT::f16) { | |||
| 6512 | if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) | |||
| 6513 | return Op; // D16 is unsupported for this instruction | |||
| 6514 | ||||
| 6515 | IsD16 = true; | |||
| 6516 | VData = handleD16VData(VData, DAG, true); | |||
| 6517 | } | |||
| 6518 | ||||
| 6519 | NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; | |||
| 6520 | } else { | |||
| 6521 | // Work out the num dwords based on the dmask popcount and underlying type | |||
| 6522 | // and whether packing is supported. | |||
| 6523 | MVT LoadVT = ResultTypes[0].getSimpleVT(); | |||
| 6524 | if (LoadVT.getScalarType() == MVT::f16) { | |||
| 6525 | if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) | |||
| 6526 | return Op; // D16 is unsupported for this instruction | |||
| 6527 | ||||
| 6528 | IsD16 = true; | |||
| 6529 | } | |||
| 6530 | ||||
| 6531 | // Confirm that the return type is large enough for the dmask specified | |||
| 6532 | if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || | |||
| 6533 | (!LoadVT.isVector() && DMaskLanes > 1)) | |||
| 6534 | return Op; | |||
| 6535 | ||||
| 6536 | // The sq block of gfx8 and gfx9 do not estimate register use correctly | |||
| 6537 | // for d16 image_gather4, image_gather4_l, and image_gather4_lz | |||
| 6538 | // instructions. | |||
| 6539 | if (IsD16 && !Subtarget->hasUnpackedD16VMem() && | |||
| 6540 | !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) | |||
| 6541 | NumVDataDwords = (DMaskLanes + 1) / 2; | |||
| 6542 | else | |||
| 6543 | NumVDataDwords = DMaskLanes; | |||
| 6544 | ||||
| 6545 | AdjustRetType = true; | |||
| 6546 | } | |||
| 6547 | } | |||
| 6548 | ||||
| 6549 | unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; | |||
| 6550 | SmallVector<SDValue, 4> VAddrs; | |||
| 6551 | ||||
| 6552 | // Check for 16 bit addresses or derivatives and pack if true. | |||
| 6553 | MVT VAddrVT = | |||
| 6554 | Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); | |||
| 6555 | MVT VAddrScalarVT = VAddrVT.getScalarType(); | |||
| 6556 | MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; | |||
| 6557 | IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; | |||
| 6558 | ||||
| 6559 | VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); | |||
| 6560 | VAddrScalarVT = VAddrVT.getScalarType(); | |||
| 6561 | MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; | |||
| 6562 | IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; | |||
| 6563 | ||||
| 6564 | // Push back extra arguments. | |||
| 6565 | for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { | |||
| 6566 | if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { | |||
| 6567 | assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument")(static_cast <bool> (I == Intr->BiasIndex && "Got unexpected 16-bit extra argument") ? void (0) : __assert_fail ("I == Intr->BiasIndex && \"Got unexpected 16-bit extra argument\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6567, __extension__ __PRETTY_FUNCTION__)); | |||
| 6568 | // Special handling of bias when A16 is on. Bias is of type half but | |||
| 6569 | // occupies full 32-bit. | |||
| 6570 | SDValue Bias = DAG.getBuildVector( | |||
| 6571 | MVT::v2f16, DL, | |||
| 6572 | {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); | |||
| 6573 | VAddrs.push_back(Bias); | |||
| 6574 | } else { | |||
| 6575 | assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&(static_cast <bool> ((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && "Bias needs to be converted to 16 bit in A16 mode" ) ? void (0) : __assert_fail ("(!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && \"Bias needs to be converted to 16 bit in A16 mode\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6576, __extension__ __PRETTY_FUNCTION__)) | |||
| 6576 | "Bias needs to be converted to 16 bit in A16 mode")(static_cast <bool> ((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && "Bias needs to be converted to 16 bit in A16 mode" ) ? void (0) : __assert_fail ("(!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && \"Bias needs to be converted to 16 bit in A16 mode\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6576, __extension__ __PRETTY_FUNCTION__)); | |||
| 6577 | VAddrs.push_back(Op.getOperand(ArgOffset + I)); | |||
| 6578 | } | |||
| 6579 | } | |||
| 6580 | ||||
| 6581 | if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { | |||
| 6582 | // 16 bit gradients are supported, but are tied to the A16 control | |||
| 6583 | // so both gradients and addresses must be 16 bit | |||
| 6584 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("si-lower")) { dbgs() << "Failed to lower image intrinsic: 16 bit addresses " "require 16 bit args for both gradients and addresses"; } } while (false) | |||
| 6585 | dbgs() << "Failed to lower image intrinsic: 16 bit addresses "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("si-lower")) { dbgs() << "Failed to lower image intrinsic: 16 bit addresses " "require 16 bit args for both gradients and addresses"; } } while (false) | |||
| 6586 | "require 16 bit args for both gradients and addresses")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("si-lower")) { dbgs() << "Failed to lower image intrinsic: 16 bit addresses " "require 16 bit args for both gradients and addresses"; } } while (false); | |||
| 6587 | return Op; | |||
| 6588 | } | |||
| 6589 | ||||
| 6590 | if (IsA16) { | |||
| 6591 | if (!ST->hasA16()) { | |||
| 6592 | LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("si-lower")) { dbgs() << "Failed to lower image intrinsic: Target does not " "support 16 bit addresses\n"; } } while (false) | |||
| 6593 | "support 16 bit addresses\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("si-lower")) { dbgs() << "Failed to lower image intrinsic: Target does not " "support 16 bit addresses\n"; } } while (false); | |||
| 6594 | return Op; | |||
| 6595 | } | |||
| 6596 | } | |||
| 6597 | ||||
| 6598 | // We've dealt with incorrect input so we know that if IsA16, IsG16 | |||
| 6599 | // are set then we have to compress/pack operands (either address, | |||
| 6600 | // gradient or both) | |||
| 6601 | // In the case where a16 and gradients are tied (no G16 support) then we | |||
| 6602 | // have already verified that both IsA16 and IsG16 are true | |||
| 6603 | if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { | |||
| 6604 | // Activate g16 | |||
| 6605 | const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = | |||
| 6606 | AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); | |||
| 6607 | IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 | |||
| 6608 | } | |||
| 6609 | ||||
| 6610 | // Add gradients (packed or unpacked) | |||
| 6611 | if (IsG16) { | |||
| 6612 | // Pack the gradients | |||
| 6613 | // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); | |||
| 6614 | packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, | |||
| 6615 | ArgOffset + Intr->GradientStart, | |||
| 6616 | ArgOffset + Intr->CoordStart, Intr->NumGradients); | |||
| 6617 | } else { | |||
| 6618 | for (unsigned I = ArgOffset + Intr->GradientStart; | |||
| 6619 | I < ArgOffset + Intr->CoordStart; I++) | |||
| 6620 | VAddrs.push_back(Op.getOperand(I)); | |||
| 6621 | } | |||
| 6622 | ||||
| 6623 | // Add addresses (packed or unpacked) | |||
| 6624 | if (IsA16) { | |||
| 6625 | packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, | |||
| 6626 | ArgOffset + Intr->CoordStart, VAddrEnd, | |||
| 6627 | 0 /* No gradients */); | |||
| 6628 | } else { | |||
| 6629 | // Add uncompressed address | |||
| 6630 | for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) | |||
| 6631 | VAddrs.push_back(Op.getOperand(I)); | |||
| 6632 | } | |||
| 6633 | ||||
| 6634 | // If the register allocator cannot place the address registers contiguously | |||
| 6635 | // without introducing moves, then using the non-sequential address encoding | |||
| 6636 | // is always preferable, since it saves VALU instructions and is usually a | |||
| 6637 | // wash in terms of code size or even better. | |||
| 6638 | // | |||
| 6639 | // However, we currently have no way of hinting to the register allocator that | |||
| 6640 | // MIMG addresses should be placed contiguously when it is possible to do so, | |||
| 6641 | // so force non-NSA for the common 2-address case as a heuristic. | |||
| 6642 | // | |||
| 6643 | // SIShrinkInstructions will convert NSA encodings to non-NSA after register | |||
| 6644 | // allocation when possible. | |||
| 6645 | // | |||
| 6646 | // Partial NSA is allowed on GFX11 where the final register is a contiguous | |||
| 6647 | // set of the remaining addresses. | |||
| 6648 | const unsigned NSAMaxSize = ST->getNSAMaxSize(); | |||
| 6649 | const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding(); | |||
| 6650 | const bool UseNSA = ST->hasNSAEncoding() && | |||
| 6651 | VAddrs.size() >= ST->getNSAThreshold(MF) && | |||
| 6652 | (VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding); | |||
| 6653 | const bool UsePartialNSA = | |||
| 6654 | UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize; | |||
| 6655 | ||||
| 6656 | SDValue VAddr; | |||
| 6657 | if (UsePartialNSA) { | |||
| 6658 | VAddr = getBuildDwordsVector(DAG, DL, | |||
| 6659 | ArrayRef(VAddrs).drop_front(NSAMaxSize - 1)); | |||
| 6660 | } | |||
| 6661 | else if (!UseNSA) { | |||
| 6662 | VAddr = getBuildDwordsVector(DAG, DL, VAddrs); | |||
| 6663 | } | |||
| 6664 | ||||
| 6665 | SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); | |||
| 6666 | SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); | |||
| 6667 | SDValue Unorm; | |||
| 6668 | if (!BaseOpcode->Sampler) { | |||
| 6669 | Unorm = True; | |||
| 6670 | } else { | |||
| 6671 | auto UnormConst = | |||
| 6672 | cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); | |||
| 6673 | ||||
| 6674 | Unorm = UnormConst->getZExtValue() ? True : False; | |||
| 6675 | } | |||
| 6676 | ||||
| 6677 | SDValue TFE; | |||
| 6678 | SDValue LWE; | |||
| 6679 | SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); | |||
| 6680 | bool IsTexFail = false; | |||
| 6681 | if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) | |||
| 6682 | return Op; | |||
| 6683 | ||||
| 6684 | if (IsTexFail) { | |||
| 6685 | if (!DMaskLanes) { | |||
| 6686 | // Expecting to get an error flag since TFC is on - and dmask is 0 | |||
| 6687 | // Force dmask to be at least 1 otherwise the instruction will fail | |||
| 6688 | DMask = 0x1; | |||
| 6689 | DMaskLanes = 1; | |||
| 6690 | NumVDataDwords = 1; | |||
| 6691 | } | |||
| 6692 | NumVDataDwords += 1; | |||
| 6693 | AdjustRetType = true; | |||
| 6694 | } | |||
| 6695 | ||||
| 6696 | // Has something earlier tagged that the return type needs adjusting | |||
| 6697 | // This happens if the instruction is a load or has set TexFailCtrl flags | |||
| 6698 | if (AdjustRetType) { | |||
| 6699 | // NumVDataDwords reflects the true number of dwords required in the return type | |||
| 6700 | if (DMaskLanes == 0 && !BaseOpcode->Store) { | |||
| 6701 | // This is a no-op load. This can be eliminated | |||
| 6702 | SDValue Undef = DAG.getUNDEF(Op.getValueType()); | |||
| 6703 | if (isa<MemSDNode>(Op)) | |||
| 6704 | return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); | |||
| 6705 | return Undef; | |||
| 6706 | } | |||
| 6707 | ||||
| 6708 | EVT NewVT = NumVDataDwords > 1 ? | |||
| 6709 | EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) | |||
| 6710 | : MVT::i32; | |||
| 6711 | ||||
| 6712 | ResultTypes[0] = NewVT; | |||
| 6713 | if (ResultTypes.size() == 3) { | |||
| 6714 | // Original result was aggregate type used for TexFailCtrl results | |||
| 6715 | // The actual instruction returns as a vector type which has now been | |||
| 6716 | // created. Remove the aggregate result. | |||
| 6717 | ResultTypes.erase(&ResultTypes[1]); | |||
| 6718 | } | |||
| 6719 | } | |||
| 6720 | ||||
| 6721 | unsigned CPol = cast<ConstantSDNode>( | |||
| 6722 | Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); | |||
| 6723 | if (BaseOpcode->Atomic) | |||
| 6724 | CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization | |||
| 6725 | if (CPol & ~AMDGPU::CPol::ALL) | |||
| 6726 | return Op; | |||
| 6727 | ||||
| 6728 | SmallVector<SDValue, 26> Ops; | |||
| 6729 | if (BaseOpcode->Store || BaseOpcode->Atomic) | |||
| 6730 | Ops.push_back(VData); // vdata | |||
| 6731 | if (UsePartialNSA) { | |||
| 6732 | append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1)); | |||
| 6733 | Ops.push_back(VAddr); | |||
| 6734 | } | |||
| 6735 | else if (UseNSA) | |||
| 6736 | append_range(Ops, VAddrs); | |||
| 6737 | else | |||
| 6738 | Ops.push_back(VAddr); | |||
| 6739 | Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); | |||
| 6740 | if (BaseOpcode->Sampler) | |||
| 6741 | Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); | |||
| 6742 | Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); | |||
| 6743 | if (IsGFX10Plus) | |||
| 6744 | Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); | |||
| 6745 | Ops.push_back(Unorm); | |||
| 6746 | Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); | |||
| 6747 | Ops.push_back(IsA16 && // r128, a16 for gfx9 | |||
| 6748 | ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); | |||
| 6749 | if (IsGFX10Plus) | |||
| 6750 | Ops.push_back(IsA16 ? True : False); | |||
| 6751 | if (!Subtarget->hasGFX90AInsts()) { | |||
| 6752 | Ops.push_back(TFE); //tfe | |||
| 6753 | } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) { | |||
| 6754 | report_fatal_error("TFE is not supported on this GPU"); | |||
| 6755 | } | |||
| 6756 | Ops.push_back(LWE); // lwe | |||
| 6757 | if (!IsGFX10Plus) | |||
| 6758 | Ops.push_back(DimInfo->DA ? True : False); | |||
| 6759 | if (BaseOpcode->HasD16) | |||
| 6760 | Ops.push_back(IsD16 ? True : False); | |||
| 6761 | if (isa<MemSDNode>(Op)) | |||
| 6762 | Ops.push_back(Op.getOperand(0)); // chain | |||
| 6763 | ||||
| 6764 | int NumVAddrDwords = | |||
| 6765 | UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; | |||
| 6766 | int Opcode = -1; | |||
| 6767 | ||||
| 6768 | if (IsGFX11Plus) { | |||
| 6769 | Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, | |||
| 6770 | UseNSA ? AMDGPU::MIMGEncGfx11NSA | |||
| 6771 | : AMDGPU::MIMGEncGfx11Default, | |||
| 6772 | NumVDataDwords, NumVAddrDwords); | |||
| 6773 | } else if (IsGFX10Plus) { | |||
| 6774 | Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, | |||
| 6775 | UseNSA ? AMDGPU::MIMGEncGfx10NSA | |||
| 6776 | : AMDGPU::MIMGEncGfx10Default, | |||
| 6777 | NumVDataDwords, NumVAddrDwords); | |||
| 6778 | } else { | |||
| 6779 | if (Subtarget->hasGFX90AInsts()) { | |||
| 6780 | Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, | |||
| 6781 | NumVDataDwords, NumVAddrDwords); | |||
| 6782 | if (Opcode == -1) | |||
| 6783 | report_fatal_error( | |||
| 6784 | "requested image instruction is not supported on this GPU"); | |||
| 6785 | } | |||
| 6786 | if (Opcode == -1 && | |||
| 6787 | Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) | |||
| 6788 | Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, | |||
| 6789 | NumVDataDwords, NumVAddrDwords); | |||
| 6790 | if (Opcode == -1) | |||
| 6791 | Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, | |||
| 6792 | NumVDataDwords, NumVAddrDwords); | |||
| 6793 | } | |||
| 6794 | if (Opcode == -1) | |||
| 6795 | return Op; | |||
| 6796 | ||||
| 6797 | MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); | |||
| 6798 | if (auto MemOp = dyn_cast<MemSDNode>(Op)) { | |||
| 6799 | MachineMemOperand *MemRef = MemOp->getMemOperand(); | |||
| 6800 | DAG.setNodeMemRefs(NewNode, {MemRef}); | |||
| 6801 | } | |||
| 6802 | ||||
| 6803 | if (BaseOpcode->AtomicX2) { | |||
| 6804 | SmallVector<SDValue, 1> Elt; | |||
| 6805 | DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); | |||
| 6806 | return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); | |||
| 6807 | } | |||
| 6808 | if (BaseOpcode->Store) | |||
| 6809 | return SDValue(NewNode, 0); | |||
| 6810 | return constructRetValue(DAG, NewNode, | |||
| 6811 | OrigResultTypes, IsTexFail, | |||
| 6812 | Subtarget->hasUnpackedD16VMem(), IsD16, | |||
| 6813 | DMaskLanes, NumVDataDwords, DL); | |||
| 6814 | } | |||
| 6815 | ||||
| 6816 | SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, | |||
| 6817 | SDValue Offset, SDValue CachePolicy, | |||
| 6818 | SelectionDAG &DAG) const { | |||
| 6819 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 6820 | ||||
| 6821 | const DataLayout &DataLayout = DAG.getDataLayout(); | |||
| 6822 | Align Alignment = | |||
| 6823 | DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); | |||
| 6824 | ||||
| 6825 | MachineMemOperand *MMO = MF.getMachineMemOperand( | |||
| 6826 | MachinePointerInfo(), | |||
| 6827 | MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | | |||
| 6828 | MachineMemOperand::MOInvariant, | |||
| 6829 | VT.getStoreSize(), Alignment); | |||
| 6830 | ||||
| 6831 | if (!Offset->isDivergent()) { | |||
| 6832 | SDValue Ops[] = { | |||
| 6833 | Rsrc, | |||
| 6834 | Offset, // Offset | |||
| 6835 | CachePolicy | |||
| 6836 | }; | |||
| 6837 | ||||
| 6838 | // Widen vec3 load to vec4. | |||
| 6839 | if (VT.isVector() && VT.getVectorNumElements() == 3) { | |||
| 6840 | EVT WidenedVT = | |||
| 6841 | EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); | |||
| 6842 | auto WidenedOp = DAG.getMemIntrinsicNode( | |||
| 6843 | AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, | |||
| 6844 | MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); | |||
| 6845 | auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, | |||
| 6846 | DAG.getVectorIdxConstant(0, DL)); | |||
| 6847 | return Subvector; | |||
| 6848 | } | |||
| 6849 | ||||
| 6850 | return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, | |||
| 6851 | DAG.getVTList(VT), Ops, VT, MMO); | |||
| 6852 | } | |||
| 6853 | ||||
| 6854 | // We have a divergent offset. Emit a MUBUF buffer load instead. We can | |||
| 6855 | // assume that the buffer is unswizzled. | |||
| 6856 | SmallVector<SDValue, 4> Loads; | |||
| 6857 | unsigned NumLoads = 1; | |||
| 6858 | MVT LoadVT = VT.getSimpleVT(); | |||
| 6859 | unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; | |||
| 6860 | assert((LoadVT.getScalarType() == MVT::i32 ||(static_cast <bool> ((LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32)) ? void (0) : __assert_fail ("(LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6861, __extension__ __PRETTY_FUNCTION__)) | |||
| 6861 | LoadVT.getScalarType() == MVT::f32))(static_cast <bool> ((LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32)) ? void (0) : __assert_fail ("(LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 6861, __extension__ __PRETTY_FUNCTION__)); | |||
| 6862 | ||||
| 6863 | if (NumElts == 8 || NumElts == 16) { | |||
| 6864 | NumLoads = NumElts / 4; | |||
| 6865 | LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); | |||
| 6866 | } | |||
| 6867 | ||||
| 6868 | SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); | |||
| 6869 | SDValue Ops[] = { | |||
| 6870 | DAG.getEntryNode(), // Chain | |||
| 6871 | Rsrc, // rsrc | |||
| 6872 | DAG.getConstant(0, DL, MVT::i32), // vindex | |||
| 6873 | {}, // voffset | |||
| 6874 | {}, // soffset | |||
| 6875 | {}, // offset | |||
| 6876 | CachePolicy, // cachepolicy | |||
| 6877 | DAG.getTargetConstant(0, DL, MVT::i1), // idxen | |||
| 6878 | }; | |||
| 6879 | ||||
| 6880 | // Use the alignment to ensure that the required offsets will fit into the | |||
| 6881 | // immediate offsets. | |||
| 6882 | setBufferOffsets(Offset, DAG, &Ops[3], | |||
| 6883 | NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); | |||
| 6884 | ||||
| 6885 | uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); | |||
| 6886 | for (unsigned i = 0; i < NumLoads; ++i) { | |||
| 6887 | Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); | |||
| 6888 | Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, | |||
| 6889 | LoadVT, MMO, DAG)); | |||
| 6890 | } | |||
| 6891 | ||||
| 6892 | if (NumElts == 8 || NumElts == 16) | |||
| 6893 | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); | |||
| 6894 | ||||
| 6895 | return Loads[0]; | |||
| 6896 | } | |||
| 6897 | ||||
| 6898 | SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op, | |||
| 6899 | unsigned Dim, | |||
| 6900 | const ArgDescriptor &Arg) const { | |||
| 6901 | SDLoc SL(Op); | |||
| 6902 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 6903 | unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim); | |||
| 6904 | if (MaxID == 0) | |||
| 6905 | return DAG.getConstant(0, SL, MVT::i32); | |||
| 6906 | ||||
| 6907 | SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, | |||
| 6908 | SDLoc(DAG.getEntryNode()), Arg); | |||
| 6909 | ||||
| 6910 | // Don't bother inserting AssertZext for packed IDs since we're emitting the | |||
| 6911 | // masking operations anyway. | |||
| 6912 | // | |||
| 6913 | // TODO: We could assert the top bit is 0 for the source copy. | |||
| 6914 | if (Arg.isMasked()) | |||
| 6915 | return Val; | |||
| 6916 | ||||
| 6917 | // Preserve the known bits after expansion to a copy. | |||
| 6918 | EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID)); | |||
| 6919 | return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val, | |||
| 6920 | DAG.getValueType(SmallVT)); | |||
| 6921 | } | |||
| 6922 | ||||
| 6923 | SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, | |||
| 6924 | SelectionDAG &DAG) const { | |||
| 6925 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 6926 | auto MFI = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 6927 | ||||
| 6928 | EVT VT = Op.getValueType(); | |||
| 6929 | SDLoc DL(Op); | |||
| 6930 | unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | |||
| 6931 | ||||
| 6932 | // TODO: Should this propagate fast-math-flags? | |||
| 6933 | ||||
| 6934 | switch (IntrinsicID) { | |||
| 6935 | case Intrinsic::amdgcn_implicit_buffer_ptr: { | |||
| 6936 | if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) | |||
| 6937 | return emitNonHSAIntrinsicError(DAG, DL, VT); | |||
| 6938 | return getPreloadedValue(DAG, *MFI, VT, | |||
| 6939 | AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); | |||
| 6940 | } | |||
| 6941 | case Intrinsic::amdgcn_dispatch_ptr: | |||
| 6942 | case Intrinsic::amdgcn_queue_ptr: { | |||
| 6943 | if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { | |||
| 6944 | DiagnosticInfoUnsupported BadIntrin( | |||
| 6945 | MF.getFunction(), "unsupported hsa intrinsic without hsa target", | |||
| 6946 | DL.getDebugLoc()); | |||
| 6947 | DAG.getContext()->diagnose(BadIntrin); | |||
| 6948 | return DAG.getUNDEF(VT); | |||
| 6949 | } | |||
| 6950 | ||||
| 6951 | auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? | |||
| 6952 | AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; | |||
| 6953 | return getPreloadedValue(DAG, *MFI, VT, RegID); | |||
| 6954 | } | |||
| 6955 | case Intrinsic::amdgcn_implicitarg_ptr: { | |||
| 6956 | if (MFI->isEntryFunction()) | |||
| 6957 | return getImplicitArgPtr(DAG, DL); | |||
| 6958 | return getPreloadedValue(DAG, *MFI, VT, | |||
| 6959 | AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); | |||
| 6960 | } | |||
| 6961 | case Intrinsic::amdgcn_kernarg_segment_ptr: { | |||
| 6962 | if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { | |||
| 6963 | // This only makes sense to call in a kernel, so just lower to null. | |||
| 6964 | return DAG.getConstant(0, DL, VT); | |||
| 6965 | } | |||
| 6966 | ||||
| 6967 | return getPreloadedValue(DAG, *MFI, VT, | |||
| 6968 | AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); | |||
| 6969 | } | |||
| 6970 | case Intrinsic::amdgcn_dispatch_id: { | |||
| 6971 | return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); | |||
| 6972 | } | |||
| 6973 | case Intrinsic::amdgcn_rcp: | |||
| 6974 | return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); | |||
| 6975 | case Intrinsic::amdgcn_rsq: | |||
| 6976 | return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); | |||
| 6977 | case Intrinsic::amdgcn_rsq_legacy: | |||
| 6978 | if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) | |||
| 6979 | return emitRemovedIntrinsicError(DAG, DL, VT); | |||
| 6980 | return SDValue(); | |||
| 6981 | case Intrinsic::amdgcn_rcp_legacy: | |||
| 6982 | if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) | |||
| 6983 | return emitRemovedIntrinsicError(DAG, DL, VT); | |||
| 6984 | return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); | |||
| 6985 | case Intrinsic::amdgcn_rsq_clamp: { | |||
| 6986 | if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) | |||
| 6987 | return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); | |||
| 6988 | ||||
| 6989 | Type *Type = VT.getTypeForEVT(*DAG.getContext()); | |||
| 6990 | APFloat Max = APFloat::getLargest(Type->getFltSemantics()); | |||
| 6991 | APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); | |||
| 6992 | ||||
| 6993 | SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); | |||
| 6994 | SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, | |||
| 6995 | DAG.getConstantFP(Max, DL, VT)); | |||
| 6996 | return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, | |||
| 6997 | DAG.getConstantFP(Min, DL, VT)); | |||
| 6998 | } | |||
| 6999 | case Intrinsic::r600_read_ngroups_x: | |||
| 7000 | if (Subtarget->isAmdHsaOS()) | |||
| 7001 | return emitNonHSAIntrinsicError(DAG, DL, VT); | |||
| 7002 | ||||
| 7003 | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | |||
| 7004 | SI::KernelInputOffsets::NGROUPS_X, Align(4), | |||
| 7005 | false); | |||
| 7006 | case Intrinsic::r600_read_ngroups_y: | |||
| 7007 | if (Subtarget->isAmdHsaOS()) | |||
| 7008 | return emitNonHSAIntrinsicError(DAG, DL, VT); | |||
| 7009 | ||||
| 7010 | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | |||
| 7011 | SI::KernelInputOffsets::NGROUPS_Y, Align(4), | |||
| 7012 | false); | |||
| 7013 | case Intrinsic::r600_read_ngroups_z: | |||
| 7014 | if (Subtarget->isAmdHsaOS()) | |||
| 7015 | return emitNonHSAIntrinsicError(DAG, DL, VT); | |||
| 7016 | ||||
| 7017 | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | |||
| 7018 | SI::KernelInputOffsets::NGROUPS_Z, Align(4), | |||
| 7019 | false); | |||
| 7020 | case Intrinsic::r600_read_global_size_x: | |||
| 7021 | if (Subtarget->isAmdHsaOS()) | |||
| 7022 | return emitNonHSAIntrinsicError(DAG, DL, VT); | |||
| 7023 | ||||
| 7024 | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | |||
| 7025 | SI::KernelInputOffsets::GLOBAL_SIZE_X, | |||
| 7026 | Align(4), false); | |||
| 7027 | case Intrinsic::r600_read_global_size_y: | |||
| 7028 | if (Subtarget->isAmdHsaOS()) | |||
| 7029 | return emitNonHSAIntrinsicError(DAG, DL, VT); | |||
| 7030 | ||||
| 7031 | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | |||
| 7032 | SI::KernelInputOffsets::GLOBAL_SIZE_Y, | |||
| 7033 | Align(4), false); | |||
| 7034 | case Intrinsic::r600_read_global_size_z: | |||
| 7035 | if (Subtarget->isAmdHsaOS()) | |||
| 7036 | return emitNonHSAIntrinsicError(DAG, DL, VT); | |||
| 7037 | ||||
| 7038 | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | |||
| 7039 | SI::KernelInputOffsets::GLOBAL_SIZE_Z, | |||
| 7040 | Align(4), false); | |||
| 7041 | case Intrinsic::r600_read_local_size_x: | |||
| 7042 | if (Subtarget->isAmdHsaOS()) | |||
| 7043 | return emitNonHSAIntrinsicError(DAG, DL, VT); | |||
| 7044 | ||||
| 7045 | return lowerImplicitZextParam(DAG, Op, MVT::i16, | |||
| 7046 | SI::KernelInputOffsets::LOCAL_SIZE_X); | |||
| 7047 | case Intrinsic::r600_read_local_size_y: | |||
| 7048 | if (Subtarget->isAmdHsaOS()) | |||
| 7049 | return emitNonHSAIntrinsicError(DAG, DL, VT); | |||
| 7050 | ||||
| 7051 | return lowerImplicitZextParam(DAG, Op, MVT::i16, | |||
| 7052 | SI::KernelInputOffsets::LOCAL_SIZE_Y); | |||
| 7053 | case Intrinsic::r600_read_local_size_z: | |||
| 7054 | if (Subtarget->isAmdHsaOS()) | |||
| 7055 | return emitNonHSAIntrinsicError(DAG, DL, VT); | |||
| 7056 | ||||
| 7057 | return lowerImplicitZextParam(DAG, Op, MVT::i16, | |||
| 7058 | SI::KernelInputOffsets::LOCAL_SIZE_Z); | |||
| 7059 | case Intrinsic::amdgcn_workgroup_id_x: | |||
| 7060 | return getPreloadedValue(DAG, *MFI, VT, | |||
| 7061 | AMDGPUFunctionArgInfo::WORKGROUP_ID_X); | |||
| 7062 | case Intrinsic::amdgcn_workgroup_id_y: | |||
| 7063 | return getPreloadedValue(DAG, *MFI, VT, | |||
| 7064 | AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); | |||
| 7065 | case Intrinsic::amdgcn_workgroup_id_z: | |||
| 7066 | return getPreloadedValue(DAG, *MFI, VT, | |||
| 7067 | AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); | |||
| 7068 | case Intrinsic::amdgcn_lds_kernel_id: { | |||
| 7069 | if (MFI->isEntryFunction()) | |||
| 7070 | return getLDSKernelId(DAG, DL); | |||
| 7071 | return getPreloadedValue(DAG, *MFI, VT, | |||
| 7072 | AMDGPUFunctionArgInfo::LDS_KERNEL_ID); | |||
| 7073 | } | |||
| 7074 | case Intrinsic::amdgcn_workitem_id_x: | |||
| 7075 | return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX); | |||
| 7076 | case Intrinsic::amdgcn_workitem_id_y: | |||
| 7077 | return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY); | |||
| 7078 | case Intrinsic::amdgcn_workitem_id_z: | |||
| 7079 | return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ); | |||
| 7080 | case Intrinsic::amdgcn_wavefrontsize: | |||
| 7081 | return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), | |||
| 7082 | SDLoc(Op), MVT::i32); | |||
| 7083 | case Intrinsic::amdgcn_s_buffer_load: { | |||
| 7084 | unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); | |||
| 7085 | if (CPol & ~AMDGPU::CPol::ALL) | |||
| 7086 | return Op; | |||
| 7087 | return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), | |||
| 7088 | DAG); | |||
| 7089 | } | |||
| 7090 | case Intrinsic::amdgcn_fdiv_fast: | |||
| 7091 | return lowerFDIV_FAST(Op, DAG); | |||
| 7092 | case Intrinsic::amdgcn_sin: | |||
| 7093 | return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); | |||
| 7094 | ||||
| 7095 | case Intrinsic::amdgcn_cos: | |||
| 7096 | return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); | |||
| 7097 | ||||
| 7098 | case Intrinsic::amdgcn_mul_u24: | |||
| 7099 | return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); | |||
| 7100 | case Intrinsic::amdgcn_mul_i24: | |||
| 7101 | return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); | |||
| 7102 | ||||
| 7103 | case Intrinsic::amdgcn_log_clamp: { | |||
| 7104 | if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) | |||
| 7105 | return SDValue(); | |||
| 7106 | ||||
| 7107 | return emitRemovedIntrinsicError(DAG, DL, VT); | |||
| 7108 | } | |||
| 7109 | case Intrinsic::amdgcn_ldexp: | |||
| 7110 | return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, | |||
| 7111 | Op.getOperand(1), Op.getOperand(2)); | |||
| 7112 | ||||
| 7113 | case Intrinsic::amdgcn_fract: | |||
| 7114 | return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); | |||
| 7115 | ||||
| 7116 | case Intrinsic::amdgcn_class: | |||
| 7117 | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, | |||
| 7118 | Op.getOperand(1), Op.getOperand(2)); | |||
| 7119 | case Intrinsic::amdgcn_div_fmas: | |||
| 7120 | return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, | |||
| 7121 | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), | |||
| 7122 | Op.getOperand(4)); | |||
| 7123 | ||||
| 7124 | case Intrinsic::amdgcn_div_fixup: | |||
| 7125 | return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, | |||
| 7126 | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | |||
| 7127 | ||||
| 7128 | case Intrinsic::amdgcn_div_scale: { | |||
| 7129 | const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); | |||
| 7130 | ||||
| 7131 | // Translate to the operands expected by the machine instruction. The | |||
| 7132 | // first parameter must be the same as the first instruction. | |||
| 7133 | SDValue Numerator = Op.getOperand(1); | |||
| 7134 | SDValue Denominator = Op.getOperand(2); | |||
| 7135 | ||||
| 7136 | // Note this order is opposite of the machine instruction's operations, | |||
| 7137 | // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The | |||
| 7138 | // intrinsic has the numerator as the first operand to match a normal | |||
| 7139 | // division operation. | |||
| 7140 | ||||
| 7141 | SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; | |||
| 7142 | ||||
| 7143 | return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, | |||
| 7144 | Denominator, Numerator); | |||
| 7145 | } | |||
| 7146 | case Intrinsic::amdgcn_icmp: { | |||
| 7147 | // There is a Pat that handles this variant, so return it as-is. | |||
| 7148 | if (Op.getOperand(1).getValueType() == MVT::i1 && | |||
| 7149 | Op.getConstantOperandVal(2) == 0 && | |||
| 7150 | Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) | |||
| 7151 | return Op; | |||
| 7152 | return lowerICMPIntrinsic(*this, Op.getNode(), DAG); | |||
| 7153 | } | |||
| 7154 | case Intrinsic::amdgcn_fcmp: { | |||
| 7155 | return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); | |||
| 7156 | } | |||
| 7157 | case Intrinsic::amdgcn_ballot: | |||
| 7158 | return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); | |||
| 7159 | case Intrinsic::amdgcn_fmed3: | |||
| 7160 | return DAG.getNode(AMDGPUISD::FMED3, DL, VT, | |||
| 7161 | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | |||
| 7162 | case Intrinsic::amdgcn_fdot2: | |||
| 7163 | return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, | |||
| 7164 | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), | |||
| 7165 | Op.getOperand(4)); | |||
| 7166 | case Intrinsic::amdgcn_fmul_legacy: | |||
| 7167 | return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, | |||
| 7168 | Op.getOperand(1), Op.getOperand(2)); | |||
| 7169 | case Intrinsic::amdgcn_sffbh: | |||
| 7170 | return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); | |||
| 7171 | case Intrinsic::amdgcn_sbfe: | |||
| 7172 | return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, | |||
| 7173 | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | |||
| 7174 | case Intrinsic::amdgcn_ubfe: | |||
| 7175 | return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, | |||
| 7176 | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | |||
| 7177 | case Intrinsic::amdgcn_cvt_pkrtz: | |||
| 7178 | case Intrinsic::amdgcn_cvt_pknorm_i16: | |||
| 7179 | case Intrinsic::amdgcn_cvt_pknorm_u16: | |||
| 7180 | case Intrinsic::amdgcn_cvt_pk_i16: | |||
| 7181 | case Intrinsic::amdgcn_cvt_pk_u16: { | |||
| 7182 | // FIXME: Stop adding cast if v2f16/v2i16 are legal. | |||
| 7183 | EVT VT = Op.getValueType(); | |||
| 7184 | unsigned Opcode; | |||
| 7185 | ||||
| 7186 | if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) | |||
| 7187 | Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; | |||
| 7188 | else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) | |||
| 7189 | Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; | |||
| 7190 | else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) | |||
| 7191 | Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; | |||
| 7192 | else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) | |||
| 7193 | Opcode = AMDGPUISD::CVT_PK_I16_I32; | |||
| 7194 | else | |||
| 7195 | Opcode = AMDGPUISD::CVT_PK_U16_U32; | |||
| 7196 | ||||
| 7197 | if (isTypeLegal(VT)) | |||
| 7198 | return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); | |||
| 7199 | ||||
| 7200 | SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, | |||
| 7201 | Op.getOperand(1), Op.getOperand(2)); | |||
| 7202 | return DAG.getNode(ISD::BITCAST, DL, VT, Node); | |||
| 7203 | } | |||
| 7204 | case Intrinsic::amdgcn_fmad_ftz: | |||
| 7205 | return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), | |||
| 7206 | Op.getOperand(2), Op.getOperand(3)); | |||
| 7207 | ||||
| 7208 | case Intrinsic::amdgcn_if_break: | |||
| 7209 | return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, | |||
| 7210 | Op->getOperand(1), Op->getOperand(2)), 0); | |||
| 7211 | ||||
| 7212 | case Intrinsic::amdgcn_groupstaticsize: { | |||
| 7213 | Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); | |||
| 7214 | if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) | |||
| 7215 | return Op; | |||
| 7216 | ||||
| 7217 | const Module *M = MF.getFunction().getParent(); | |||
| 7218 | const GlobalValue *GV = | |||
| 7219 | M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); | |||
| 7220 | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, | |||
| 7221 | SIInstrInfo::MO_ABS32_LO); | |||
| 7222 | return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; | |||
| 7223 | } | |||
| 7224 | case Intrinsic::amdgcn_is_shared: | |||
| 7225 | case Intrinsic::amdgcn_is_private: { | |||
| 7226 | SDLoc SL(Op); | |||
| 7227 | unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? | |||
| 7228 | AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; | |||
| 7229 | SDValue Aperture = getSegmentAperture(AS, SL, DAG); | |||
| 7230 | SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, | |||
| 7231 | Op.getOperand(1)); | |||
| 7232 | ||||
| 7233 | SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, | |||
| 7234 | DAG.getConstant(1, SL, MVT::i32)); | |||
| 7235 | return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); | |||
| 7236 | } | |||
| 7237 | case Intrinsic::amdgcn_perm: | |||
| 7238 | return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), | |||
| 7239 | Op.getOperand(2), Op.getOperand(3)); | |||
| 7240 | case Intrinsic::amdgcn_reloc_constant: { | |||
| 7241 | Module *M = const_cast<Module *>(MF.getFunction().getParent()); | |||
| 7242 | const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); | |||
| 7243 | auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); | |||
| 7244 | auto RelocSymbol = cast<GlobalVariable>( | |||
| 7245 | M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); | |||
| 7246 | SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, | |||
| 7247 | SIInstrInfo::MO_ABS32_LO); | |||
| 7248 | return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; | |||
| 7249 | } | |||
| 7250 | default: | |||
| 7251 | if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = | |||
| 7252 | AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) | |||
| 7253 | return lowerImage(Op, ImageDimIntr, DAG, false); | |||
| 7254 | ||||
| 7255 | return Op; | |||
| 7256 | } | |||
| 7257 | } | |||
| 7258 | ||||
| 7259 | /// Update \p MMO based on the offset inputs to an intrinsic. | |||
| 7260 | static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset, | |||
| 7261 | SDValue SOffset, SDValue Offset, | |||
| 7262 | SDValue VIndex = SDValue()) { | |||
| 7263 | if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || | |||
| 7264 | !isa<ConstantSDNode>(Offset)) { | |||
| 7265 | // The combined offset is not known to be constant, so we cannot represent | |||
| 7266 | // it in the MMO. Give up. | |||
| 7267 | MMO->setValue((Value *)nullptr); | |||
| 7268 | return; | |||
| 7269 | } | |||
| 7270 | ||||
| 7271 | if (VIndex && (!isa<ConstantSDNode>(VIndex) || | |||
| 7272 | !cast<ConstantSDNode>(VIndex)->isZero())) { | |||
| 7273 | // The strided index component of the address is not known to be zero, so we | |||
| 7274 | // cannot represent it in the MMO. Give up. | |||
| 7275 | MMO->setValue((Value *)nullptr); | |||
| 7276 | return; | |||
| 7277 | } | |||
| 7278 | ||||
| 7279 | MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() + | |||
| 7280 | cast<ConstantSDNode>(SOffset)->getSExtValue() + | |||
| 7281 | cast<ConstantSDNode>(Offset)->getSExtValue()); | |||
| 7282 | } | |||
| 7283 | ||||
| 7284 | SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, | |||
| 7285 | SelectionDAG &DAG, | |||
| 7286 | unsigned NewOpcode) const { | |||
| 7287 | SDLoc DL(Op); | |||
| 7288 | ||||
| 7289 | SDValue VData = Op.getOperand(2); | |||
| 7290 | auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); | |||
| 7291 | SDValue Ops[] = { | |||
| 7292 | Op.getOperand(0), // Chain | |||
| 7293 | VData, // vdata | |||
| 7294 | Op.getOperand(3), // rsrc | |||
| 7295 | DAG.getConstant(0, DL, MVT::i32), // vindex | |||
| 7296 | Offsets.first, // voffset | |||
| 7297 | Op.getOperand(5), // soffset | |||
| 7298 | Offsets.second, // offset | |||
| 7299 | Op.getOperand(6), // cachepolicy | |||
| 7300 | DAG.getTargetConstant(0, DL, MVT::i1), // idxen | |||
| 7301 | }; | |||
| 7302 | ||||
| 7303 | auto *M = cast<MemSDNode>(Op); | |||
| 7304 | updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); | |||
| 7305 | ||||
| 7306 | EVT MemVT = VData.getValueType(); | |||
| 7307 | return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, | |||
| 7308 | M->getMemOperand()); | |||
| 7309 | } | |||
| 7310 | ||||
| 7311 | // Return a value to use for the idxen operand by examining the vindex operand. | |||
| 7312 | static unsigned getIdxEn(SDValue VIndex) { | |||
| 7313 | // No need to set idxen if vindex is known to be zero. | |||
| 7314 | return isNullConstant(VIndex) ? 0 : 1; | |||
| 7315 | } | |||
| 7316 | ||||
| 7317 | SDValue | |||
| 7318 | SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, | |||
| 7319 | unsigned NewOpcode) const { | |||
| 7320 | SDLoc DL(Op); | |||
| 7321 | ||||
| 7322 | SDValue VData = Op.getOperand(2); | |||
| 7323 | auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); | |||
| 7324 | SDValue Ops[] = { | |||
| 7325 | Op.getOperand(0), // Chain | |||
| 7326 | VData, // vdata | |||
| 7327 | Op.getOperand(3), // rsrc | |||
| 7328 | Op.getOperand(4), // vindex | |||
| 7329 | Offsets.first, // voffset | |||
| 7330 | Op.getOperand(6), // soffset | |||
| 7331 | Offsets.second, // offset | |||
| 7332 | Op.getOperand(7), // cachepolicy | |||
| 7333 | DAG.getTargetConstant(1, DL, MVT::i1), // idxen | |||
| 7334 | }; | |||
| 7335 | ||||
| 7336 | auto *M = cast<MemSDNode>(Op); | |||
| 7337 | updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); | |||
| 7338 | ||||
| 7339 | EVT MemVT = VData.getValueType(); | |||
| 7340 | return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, | |||
| 7341 | M->getMemOperand()); | |||
| 7342 | } | |||
| 7343 | ||||
| 7344 | SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, | |||
| 7345 | SelectionDAG &DAG) const { | |||
| 7346 | unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | |||
| 7347 | SDLoc DL(Op); | |||
| 7348 | ||||
| 7349 | switch (IntrID) { | |||
| 7350 | case Intrinsic::amdgcn_ds_ordered_add: | |||
| 7351 | case Intrinsic::amdgcn_ds_ordered_swap: { | |||
| 7352 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 7353 | SDValue Chain = M->getOperand(0); | |||
| 7354 | SDValue M0 = M->getOperand(2); | |||
| 7355 | SDValue Value = M->getOperand(3); | |||
| 7356 | unsigned IndexOperand = M->getConstantOperandVal(7); | |||
| 7357 | unsigned WaveRelease = M->getConstantOperandVal(8); | |||
| 7358 | unsigned WaveDone = M->getConstantOperandVal(9); | |||
| 7359 | ||||
| 7360 | unsigned OrderedCountIndex = IndexOperand & 0x3f; | |||
| 7361 | IndexOperand &= ~0x3f; | |||
| 7362 | unsigned CountDw = 0; | |||
| 7363 | ||||
| 7364 | if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { | |||
| 7365 | CountDw = (IndexOperand >> 24) & 0xf; | |||
| 7366 | IndexOperand &= ~(0xf << 24); | |||
| 7367 | ||||
| 7368 | if (CountDw < 1 || CountDw > 4) { | |||
| 7369 | report_fatal_error( | |||
| 7370 | "ds_ordered_count: dword count must be between 1 and 4"); | |||
| 7371 | } | |||
| 7372 | } | |||
| 7373 | ||||
| 7374 | if (IndexOperand) | |||
| 7375 | report_fatal_error("ds_ordered_count: bad index operand"); | |||
| 7376 | ||||
| 7377 | if (WaveDone && !WaveRelease) | |||
| 7378 | report_fatal_error("ds_ordered_count: wave_done requires wave_release"); | |||
| 7379 | ||||
| 7380 | unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; | |||
| 7381 | unsigned ShaderType = | |||
| 7382 | SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); | |||
| 7383 | unsigned Offset0 = OrderedCountIndex << 2; | |||
| 7384 | unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4); | |||
| 7385 | ||||
| 7386 | if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) | |||
| 7387 | Offset1 |= (CountDw - 1) << 6; | |||
| 7388 | ||||
| 7389 | if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11) | |||
| 7390 | Offset1 |= ShaderType << 2; | |||
| 7391 | ||||
| 7392 | unsigned Offset = Offset0 | (Offset1 << 8); | |||
| 7393 | ||||
| 7394 | SDValue Ops[] = { | |||
| 7395 | Chain, | |||
| 7396 | Value, | |||
| 7397 | DAG.getTargetConstant(Offset, DL, MVT::i16), | |||
| 7398 | copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue | |||
| 7399 | }; | |||
| 7400 | return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, | |||
| 7401 | M->getVTList(), Ops, M->getMemoryVT(), | |||
| 7402 | M->getMemOperand()); | |||
| 7403 | } | |||
| 7404 | case Intrinsic::amdgcn_atomic_inc: | |||
| 7405 | case Intrinsic::amdgcn_atomic_dec: | |||
| 7406 | case Intrinsic::amdgcn_ds_fadd: { | |||
| 7407 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 7408 | unsigned Opc; | |||
| 7409 | switch (IntrID) { | |||
| 7410 | case Intrinsic::amdgcn_ds_fadd: | |||
| 7411 | Opc = ISD::ATOMIC_LOAD_FADD; | |||
| 7412 | break; | |||
| 7413 | case Intrinsic::amdgcn_atomic_inc: | |||
| 7414 | Opc = ISD::ATOMIC_LOAD_UINC_WRAP; | |||
| 7415 | break; | |||
| 7416 | case Intrinsic::amdgcn_atomic_dec: | |||
| 7417 | Opc = ISD::ATOMIC_LOAD_UDEC_WRAP; | |||
| 7418 | break; | |||
| 7419 | } | |||
| 7420 | ||||
| 7421 | return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), | |||
| 7422 | M->getOperand(0), M->getOperand(2), M->getOperand(3), | |||
| 7423 | M->getMemOperand()); | |||
| 7424 | } | |||
| 7425 | case Intrinsic::amdgcn_ds_fmin: | |||
| 7426 | case Intrinsic::amdgcn_ds_fmax: { | |||
| 7427 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 7428 | unsigned Opc; | |||
| 7429 | switch (IntrID) { | |||
| 7430 | case Intrinsic::amdgcn_atomic_inc: | |||
| 7431 | Opc = ISD::ATOMIC_LOAD_UINC_WRAP; | |||
| 7432 | break; | |||
| 7433 | case Intrinsic::amdgcn_atomic_dec: | |||
| 7434 | Opc = ISD::ATOMIC_LOAD_UDEC_WRAP; | |||
| 7435 | break; | |||
| 7436 | case Intrinsic::amdgcn_ds_fmin: | |||
| 7437 | Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; | |||
| 7438 | break; | |||
| 7439 | case Intrinsic::amdgcn_ds_fmax: | |||
| 7440 | Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; | |||
| 7441 | break; | |||
| 7442 | default: | |||
| 7443 | llvm_unreachable("Unknown intrinsic!")::llvm::llvm_unreachable_internal("Unknown intrinsic!", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 7443); | |||
| 7444 | } | |||
| 7445 | SDValue Ops[] = { | |||
| 7446 | M->getOperand(0), // Chain | |||
| 7447 | M->getOperand(2), // Ptr | |||
| 7448 | M->getOperand(3) // Value | |||
| 7449 | }; | |||
| 7450 | ||||
| 7451 | return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, | |||
| 7452 | M->getMemoryVT(), M->getMemOperand()); | |||
| 7453 | } | |||
| 7454 | case Intrinsic::amdgcn_buffer_load: | |||
| 7455 | case Intrinsic::amdgcn_buffer_load_format: { | |||
| 7456 | unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); | |||
| 7457 | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); | |||
| 7458 | unsigned IdxEn = getIdxEn(Op.getOperand(3)); | |||
| 7459 | SDValue Ops[] = { | |||
| 7460 | Op.getOperand(0), // Chain | |||
| 7461 | Op.getOperand(2), // rsrc | |||
| 7462 | Op.getOperand(3), // vindex | |||
| 7463 | SDValue(), // voffset -- will be set by setBufferOffsets | |||
| 7464 | SDValue(), // soffset -- will be set by setBufferOffsets | |||
| 7465 | SDValue(), // offset -- will be set by setBufferOffsets | |||
| 7466 | DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy | |||
| 7467 | DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen | |||
| 7468 | }; | |||
| 7469 | setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); | |||
| 7470 | ||||
| 7471 | unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? | |||
| 7472 | AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; | |||
| 7473 | ||||
| 7474 | EVT VT = Op.getValueType(); | |||
| 7475 | EVT IntVT = VT.changeTypeToInteger(); | |||
| 7476 | auto *M = cast<MemSDNode>(Op); | |||
| 7477 | updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); | |||
| 7478 | EVT LoadVT = Op.getValueType(); | |||
| 7479 | ||||
| 7480 | if (LoadVT.getScalarType() == MVT::f16) | |||
| 7481 | return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, | |||
| 7482 | M, DAG, Ops); | |||
| 7483 | ||||
| 7484 | // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics | |||
| 7485 | if (LoadVT.getScalarType() == MVT::i8 || | |||
| 7486 | LoadVT.getScalarType() == MVT::i16) | |||
| 7487 | return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); | |||
| 7488 | ||||
| 7489 | return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, | |||
| 7490 | M->getMemOperand(), DAG); | |||
| 7491 | } | |||
| 7492 | case Intrinsic::amdgcn_raw_buffer_load: | |||
| 7493 | case Intrinsic::amdgcn_raw_buffer_load_format: { | |||
| 7494 | const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; | |||
| 7495 | ||||
| 7496 | auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); | |||
| 7497 | SDValue Ops[] = { | |||
| 7498 | Op.getOperand(0), // Chain | |||
| 7499 | Op.getOperand(2), // rsrc | |||
| 7500 | DAG.getConstant(0, DL, MVT::i32), // vindex | |||
| 7501 | Offsets.first, // voffset | |||
| 7502 | Op.getOperand(4), // soffset | |||
| 7503 | Offsets.second, // offset | |||
| 7504 | Op.getOperand(5), // cachepolicy, swizzled buffer | |||
| 7505 | DAG.getTargetConstant(0, DL, MVT::i1), // idxen | |||
| 7506 | }; | |||
| 7507 | ||||
| 7508 | auto *M = cast<MemSDNode>(Op); | |||
| 7509 | updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]); | |||
| 7510 | return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); | |||
| 7511 | } | |||
| 7512 | case Intrinsic::amdgcn_struct_buffer_load: | |||
| 7513 | case Intrinsic::amdgcn_struct_buffer_load_format: { | |||
| 7514 | const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; | |||
| 7515 | ||||
| 7516 | auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); | |||
| 7517 | SDValue Ops[] = { | |||
| 7518 | Op.getOperand(0), // Chain | |||
| 7519 | Op.getOperand(2), // rsrc | |||
| 7520 | Op.getOperand(3), // vindex | |||
| 7521 | Offsets.first, // voffset | |||
| 7522 | Op.getOperand(5), // soffset | |||
| 7523 | Offsets.second, // offset | |||
| 7524 | Op.getOperand(6), // cachepolicy, swizzled buffer | |||
| 7525 | DAG.getTargetConstant(1, DL, MVT::i1), // idxen | |||
| 7526 | }; | |||
| 7527 | ||||
| 7528 | auto *M = cast<MemSDNode>(Op); | |||
| 7529 | updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); | |||
| 7530 | return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); | |||
| 7531 | } | |||
| 7532 | case Intrinsic::amdgcn_tbuffer_load: { | |||
| 7533 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 7534 | EVT LoadVT = Op.getValueType(); | |||
| 7535 | ||||
| 7536 | unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); | |||
| 7537 | unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); | |||
| 7538 | unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); | |||
| 7539 | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); | |||
| 7540 | unsigned IdxEn = getIdxEn(Op.getOperand(3)); | |||
| 7541 | SDValue Ops[] = { | |||
| 7542 | Op.getOperand(0), // Chain | |||
| 7543 | Op.getOperand(2), // rsrc | |||
| 7544 | Op.getOperand(3), // vindex | |||
| 7545 | Op.getOperand(4), // voffset | |||
| 7546 | Op.getOperand(5), // soffset | |||
| 7547 | Op.getOperand(6), // offset | |||
| 7548 | DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format | |||
| 7549 | DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy | |||
| 7550 | DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen | |||
| 7551 | }; | |||
| 7552 | ||||
| 7553 | if (LoadVT.getScalarType() == MVT::f16) | |||
| 7554 | return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, | |||
| 7555 | M, DAG, Ops); | |||
| 7556 | return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, | |||
| 7557 | Op->getVTList(), Ops, LoadVT, M->getMemOperand(), | |||
| 7558 | DAG); | |||
| 7559 | } | |||
| 7560 | case Intrinsic::amdgcn_raw_tbuffer_load: { | |||
| 7561 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 7562 | EVT LoadVT = Op.getValueType(); | |||
| 7563 | auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); | |||
| 7564 | ||||
| 7565 | SDValue Ops[] = { | |||
| 7566 | Op.getOperand(0), // Chain | |||
| 7567 | Op.getOperand(2), // rsrc | |||
| 7568 | DAG.getConstant(0, DL, MVT::i32), // vindex | |||
| 7569 | Offsets.first, // voffset | |||
| 7570 | Op.getOperand(4), // soffset | |||
| 7571 | Offsets.second, // offset | |||
| 7572 | Op.getOperand(5), // format | |||
| 7573 | Op.getOperand(6), // cachepolicy, swizzled buffer | |||
| 7574 | DAG.getTargetConstant(0, DL, MVT::i1), // idxen | |||
| 7575 | }; | |||
| 7576 | ||||
| 7577 | if (LoadVT.getScalarType() == MVT::f16) | |||
| 7578 | return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, | |||
| 7579 | M, DAG, Ops); | |||
| 7580 | return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, | |||
| 7581 | Op->getVTList(), Ops, LoadVT, M->getMemOperand(), | |||
| 7582 | DAG); | |||
| 7583 | } | |||
| 7584 | case Intrinsic::amdgcn_struct_tbuffer_load: { | |||
| 7585 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 7586 | EVT LoadVT = Op.getValueType(); | |||
| 7587 | auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); | |||
| 7588 | ||||
| 7589 | SDValue Ops[] = { | |||
| 7590 | Op.getOperand(0), // Chain | |||
| 7591 | Op.getOperand(2), // rsrc | |||
| 7592 | Op.getOperand(3), // vindex | |||
| 7593 | Offsets.first, // voffset | |||
| 7594 | Op.getOperand(5), // soffset | |||
| 7595 | Offsets.second, // offset | |||
| 7596 | Op.getOperand(6), // format | |||
| 7597 | Op.getOperand(7), // cachepolicy, swizzled buffer | |||
| 7598 | DAG.getTargetConstant(1, DL, MVT::i1), // idxen | |||
| 7599 | }; | |||
| 7600 | ||||
| 7601 | if (LoadVT.getScalarType() == MVT::f16) | |||
| 7602 | return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, | |||
| 7603 | M, DAG, Ops); | |||
| 7604 | return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, | |||
| 7605 | Op->getVTList(), Ops, LoadVT, M->getMemOperand(), | |||
| 7606 | DAG); | |||
| 7607 | } | |||
| 7608 | case Intrinsic::amdgcn_buffer_atomic_swap: | |||
| 7609 | case Intrinsic::amdgcn_buffer_atomic_add: | |||
| 7610 | case Intrinsic::amdgcn_buffer_atomic_sub: | |||
| 7611 | case Intrinsic::amdgcn_buffer_atomic_csub: | |||
| 7612 | case Intrinsic::amdgcn_buffer_atomic_smin: | |||
| 7613 | case Intrinsic::amdgcn_buffer_atomic_umin: | |||
| 7614 | case Intrinsic::amdgcn_buffer_atomic_smax: | |||
| 7615 | case Intrinsic::amdgcn_buffer_atomic_umax: | |||
| 7616 | case Intrinsic::amdgcn_buffer_atomic_and: | |||
| 7617 | case Intrinsic::amdgcn_buffer_atomic_or: | |||
| 7618 | case Intrinsic::amdgcn_buffer_atomic_xor: | |||
| 7619 | case Intrinsic::amdgcn_buffer_atomic_fadd: { | |||
| 7620 | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); | |||
| 7621 | unsigned IdxEn = getIdxEn(Op.getOperand(4)); | |||
| 7622 | SDValue Ops[] = { | |||
| 7623 | Op.getOperand(0), // Chain | |||
| 7624 | Op.getOperand(2), // vdata | |||
| 7625 | Op.getOperand(3), // rsrc | |||
| 7626 | Op.getOperand(4), // vindex | |||
| 7627 | SDValue(), // voffset -- will be set by setBufferOffsets | |||
| 7628 | SDValue(), // soffset -- will be set by setBufferOffsets | |||
| 7629 | SDValue(), // offset -- will be set by setBufferOffsets | |||
| 7630 | DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy | |||
| 7631 | DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen | |||
| 7632 | }; | |||
| 7633 | setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); | |||
| 7634 | ||||
| 7635 | EVT VT = Op.getValueType(); | |||
| 7636 | ||||
| 7637 | auto *M = cast<MemSDNode>(Op); | |||
| 7638 | updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); | |||
| 7639 | unsigned Opcode = 0; | |||
| 7640 | ||||
| 7641 | switch (IntrID) { | |||
| 7642 | case Intrinsic::amdgcn_buffer_atomic_swap: | |||
| 7643 | Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; | |||
| 7644 | break; | |||
| 7645 | case Intrinsic::amdgcn_buffer_atomic_add: | |||
| 7646 | Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; | |||
| 7647 | break; | |||
| 7648 | case Intrinsic::amdgcn_buffer_atomic_sub: | |||
| 7649 | Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; | |||
| 7650 | break; | |||
| 7651 | case Intrinsic::amdgcn_buffer_atomic_csub: | |||
| 7652 | Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; | |||
| 7653 | break; | |||
| 7654 | case Intrinsic::amdgcn_buffer_atomic_smin: | |||
| 7655 | Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; | |||
| 7656 | break; | |||
| 7657 | case Intrinsic::amdgcn_buffer_atomic_umin: | |||
| 7658 | Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; | |||
| 7659 | break; | |||
| 7660 | case Intrinsic::amdgcn_buffer_atomic_smax: | |||
| 7661 | Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; | |||
| 7662 | break; | |||
| 7663 | case Intrinsic::amdgcn_buffer_atomic_umax: | |||
| 7664 | Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; | |||
| 7665 | break; | |||
| 7666 | case Intrinsic::amdgcn_buffer_atomic_and: | |||
| 7667 | Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; | |||
| 7668 | break; | |||
| 7669 | case Intrinsic::amdgcn_buffer_atomic_or: | |||
| 7670 | Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; | |||
| 7671 | break; | |||
| 7672 | case Intrinsic::amdgcn_buffer_atomic_xor: | |||
| 7673 | Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; | |||
| 7674 | break; | |||
| 7675 | case Intrinsic::amdgcn_buffer_atomic_fadd: | |||
| 7676 | Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; | |||
| 7677 | break; | |||
| 7678 | default: | |||
| 7679 | llvm_unreachable("unhandled atomic opcode")::llvm::llvm_unreachable_internal("unhandled atomic opcode", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 7679); | |||
| 7680 | } | |||
| 7681 | ||||
| 7682 | return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, | |||
| 7683 | M->getMemOperand()); | |||
| 7684 | } | |||
| 7685 | case Intrinsic::amdgcn_raw_buffer_atomic_fadd: | |||
| 7686 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); | |||
| 7687 | case Intrinsic::amdgcn_struct_buffer_atomic_fadd: | |||
| 7688 | return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); | |||
| 7689 | case Intrinsic::amdgcn_raw_buffer_atomic_fmin: | |||
| 7690 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); | |||
| 7691 | case Intrinsic::amdgcn_struct_buffer_atomic_fmin: | |||
| 7692 | return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); | |||
| 7693 | case Intrinsic::amdgcn_raw_buffer_atomic_fmax: | |||
| 7694 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); | |||
| 7695 | case Intrinsic::amdgcn_struct_buffer_atomic_fmax: | |||
| 7696 | return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); | |||
| 7697 | case Intrinsic::amdgcn_raw_buffer_atomic_swap: | |||
| 7698 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); | |||
| 7699 | case Intrinsic::amdgcn_raw_buffer_atomic_add: | |||
| 7700 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); | |||
| 7701 | case Intrinsic::amdgcn_raw_buffer_atomic_sub: | |||
| 7702 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); | |||
| 7703 | case Intrinsic::amdgcn_raw_buffer_atomic_smin: | |||
| 7704 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); | |||
| 7705 | case Intrinsic::amdgcn_raw_buffer_atomic_umin: | |||
| 7706 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); | |||
| 7707 | case Intrinsic::amdgcn_raw_buffer_atomic_smax: | |||
| 7708 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); | |||
| 7709 | case Intrinsic::amdgcn_raw_buffer_atomic_umax: | |||
| 7710 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); | |||
| 7711 | case Intrinsic::amdgcn_raw_buffer_atomic_and: | |||
| 7712 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); | |||
| 7713 | case Intrinsic::amdgcn_raw_buffer_atomic_or: | |||
| 7714 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); | |||
| 7715 | case Intrinsic::amdgcn_raw_buffer_atomic_xor: | |||
| 7716 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); | |||
| 7717 | case Intrinsic::amdgcn_raw_buffer_atomic_inc: | |||
| 7718 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); | |||
| 7719 | case Intrinsic::amdgcn_raw_buffer_atomic_dec: | |||
| 7720 | return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); | |||
| 7721 | case Intrinsic::amdgcn_struct_buffer_atomic_swap: | |||
| 7722 | return lowerStructBufferAtomicIntrin(Op, DAG, | |||
| 7723 | AMDGPUISD::BUFFER_ATOMIC_SWAP); | |||
| 7724 | case Intrinsic::amdgcn_struct_buffer_atomic_add: | |||
| 7725 | return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); | |||
| 7726 | case Intrinsic::amdgcn_struct_buffer_atomic_sub: | |||
| 7727 | return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); | |||
| 7728 | case Intrinsic::amdgcn_struct_buffer_atomic_smin: | |||
| 7729 | return lowerStructBufferAtomicIntrin(Op, DAG, | |||
| 7730 | AMDGPUISD::BUFFER_ATOMIC_SMIN); | |||
| 7731 | case Intrinsic::amdgcn_struct_buffer_atomic_umin: | |||
| 7732 | return lowerStructBufferAtomicIntrin(Op, DAG, | |||
| 7733 | AMDGPUISD::BUFFER_ATOMIC_UMIN); | |||
| 7734 | case Intrinsic::amdgcn_struct_buffer_atomic_smax: | |||
| 7735 | return lowerStructBufferAtomicIntrin(Op, DAG, | |||
| 7736 | AMDGPUISD::BUFFER_ATOMIC_SMAX); | |||
| 7737 | case Intrinsic::amdgcn_struct_buffer_atomic_umax: | |||
| 7738 | return lowerStructBufferAtomicIntrin(Op, DAG, | |||
| 7739 | AMDGPUISD::BUFFER_ATOMIC_UMAX); | |||
| 7740 | case Intrinsic::amdgcn_struct_buffer_atomic_and: | |||
| 7741 | return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); | |||
| 7742 | case Intrinsic::amdgcn_struct_buffer_atomic_or: | |||
| 7743 | return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); | |||
| 7744 | case Intrinsic::amdgcn_struct_buffer_atomic_xor: | |||
| 7745 | return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); | |||
| 7746 | case Intrinsic::amdgcn_struct_buffer_atomic_inc: | |||
| 7747 | return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); | |||
| 7748 | case Intrinsic::amdgcn_struct_buffer_atomic_dec: | |||
| 7749 | return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); | |||
| 7750 | ||||
| 7751 | case Intrinsic::amdgcn_buffer_atomic_cmpswap: { | |||
| 7752 | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); | |||
| 7753 | unsigned IdxEn = getIdxEn(Op.getOperand(5)); | |||
| 7754 | SDValue Ops[] = { | |||
| 7755 | Op.getOperand(0), // Chain | |||
| 7756 | Op.getOperand(2), // src | |||
| 7757 | Op.getOperand(3), // cmp | |||
| 7758 | Op.getOperand(4), // rsrc | |||
| 7759 | Op.getOperand(5), // vindex | |||
| 7760 | SDValue(), // voffset -- will be set by setBufferOffsets | |||
| 7761 | SDValue(), // soffset -- will be set by setBufferOffsets | |||
| 7762 | SDValue(), // offset -- will be set by setBufferOffsets | |||
| 7763 | DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy | |||
| 7764 | DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen | |||
| 7765 | }; | |||
| 7766 | setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); | |||
| 7767 | ||||
| 7768 | EVT VT = Op.getValueType(); | |||
| 7769 | auto *M = cast<MemSDNode>(Op); | |||
| 7770 | updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); | |||
| 7771 | ||||
| 7772 | return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, | |||
| 7773 | Op->getVTList(), Ops, VT, M->getMemOperand()); | |||
| 7774 | } | |||
| 7775 | case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { | |||
| 7776 | auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); | |||
| 7777 | SDValue Ops[] = { | |||
| 7778 | Op.getOperand(0), // Chain | |||
| 7779 | Op.getOperand(2), // src | |||
| 7780 | Op.getOperand(3), // cmp | |||
| 7781 | Op.getOperand(4), // rsrc | |||
| 7782 | DAG.getConstant(0, DL, MVT::i32), // vindex | |||
| 7783 | Offsets.first, // voffset | |||
| 7784 | Op.getOperand(6), // soffset | |||
| 7785 | Offsets.second, // offset | |||
| 7786 | Op.getOperand(7), // cachepolicy | |||
| 7787 | DAG.getTargetConstant(0, DL, MVT::i1), // idxen | |||
| 7788 | }; | |||
| 7789 | EVT VT = Op.getValueType(); | |||
| 7790 | auto *M = cast<MemSDNode>(Op); | |||
| 7791 | updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]); | |||
| 7792 | ||||
| 7793 | return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, | |||
| 7794 | Op->getVTList(), Ops, VT, M->getMemOperand()); | |||
| 7795 | } | |||
| 7796 | case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { | |||
| 7797 | auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); | |||
| 7798 | SDValue Ops[] = { | |||
| 7799 | Op.getOperand(0), // Chain | |||
| 7800 | Op.getOperand(2), // src | |||
| 7801 | Op.getOperand(3), // cmp | |||
| 7802 | Op.getOperand(4), // rsrc | |||
| 7803 | Op.getOperand(5), // vindex | |||
| 7804 | Offsets.first, // voffset | |||
| 7805 | Op.getOperand(7), // soffset | |||
| 7806 | Offsets.second, // offset | |||
| 7807 | Op.getOperand(8), // cachepolicy | |||
| 7808 | DAG.getTargetConstant(1, DL, MVT::i1), // idxen | |||
| 7809 | }; | |||
| 7810 | EVT VT = Op.getValueType(); | |||
| 7811 | auto *M = cast<MemSDNode>(Op); | |||
| 7812 | updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); | |||
| 7813 | ||||
| 7814 | return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, | |||
| 7815 | Op->getVTList(), Ops, VT, M->getMemOperand()); | |||
| 7816 | } | |||
| 7817 | case Intrinsic::amdgcn_image_bvh_intersect_ray: { | |||
| 7818 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 7819 | SDValue NodePtr = M->getOperand(2); | |||
| 7820 | SDValue RayExtent = M->getOperand(3); | |||
| 7821 | SDValue RayOrigin = M->getOperand(4); | |||
| 7822 | SDValue RayDir = M->getOperand(5); | |||
| 7823 | SDValue RayInvDir = M->getOperand(6); | |||
| 7824 | SDValue TDescr = M->getOperand(7); | |||
| 7825 | ||||
| 7826 | assert(NodePtr.getValueType() == MVT::i32 ||(static_cast <bool> (NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType() == MVT::i64) ? void (0) : __assert_fail ("NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType() == MVT::i64" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 7827, __extension__ __PRETTY_FUNCTION__)) | |||
| 7827 | NodePtr.getValueType() == MVT::i64)(static_cast <bool> (NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType() == MVT::i64) ? void (0) : __assert_fail ("NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType() == MVT::i64" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 7827, __extension__ __PRETTY_FUNCTION__)); | |||
| 7828 | assert(RayDir.getValueType() == MVT::v3f16 ||(static_cast <bool> (RayDir.getValueType() == MVT::v3f16 || RayDir.getValueType() == MVT::v3f32) ? void (0) : __assert_fail ("RayDir.getValueType() == MVT::v3f16 || RayDir.getValueType() == MVT::v3f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 7829, __extension__ __PRETTY_FUNCTION__)) | |||
| 7829 | RayDir.getValueType() == MVT::v3f32)(static_cast <bool> (RayDir.getValueType() == MVT::v3f16 || RayDir.getValueType() == MVT::v3f32) ? void (0) : __assert_fail ("RayDir.getValueType() == MVT::v3f16 || RayDir.getValueType() == MVT::v3f32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 7829, __extension__ __PRETTY_FUNCTION__)); | |||
| 7830 | ||||
| 7831 | if (!Subtarget->hasGFX10_AEncoding()) { | |||
| 7832 | emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); | |||
| 7833 | return SDValue(); | |||
| 7834 | } | |||
| 7835 | ||||
| 7836 | const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); | |||
| 7837 | const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; | |||
| 7838 | const bool Is64 = NodePtr.getValueType() == MVT::i64; | |||
| 7839 | const unsigned NumVDataDwords = 4; | |||
| 7840 | const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); | |||
| 7841 | const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords; | |||
| 7842 | const bool UseNSA = | |||
| 7843 | Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize(); | |||
| 7844 | const unsigned BaseOpcodes[2][2] = { | |||
| 7845 | {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, | |||
| 7846 | {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, | |||
| 7847 | AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; | |||
| 7848 | int Opcode; | |||
| 7849 | if (UseNSA) { | |||
| 7850 | Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], | |||
| 7851 | IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA | |||
| 7852 | : AMDGPU::MIMGEncGfx10NSA, | |||
| 7853 | NumVDataDwords, NumVAddrDwords); | |||
| 7854 | } else { | |||
| 7855 | Opcode = | |||
| 7856 | AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], | |||
| 7857 | IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default | |||
| 7858 | : AMDGPU::MIMGEncGfx10Default, | |||
| 7859 | NumVDataDwords, NumVAddrDwords); | |||
| 7860 | } | |||
| 7861 | assert(Opcode != -1)(static_cast <bool> (Opcode != -1) ? void (0) : __assert_fail ("Opcode != -1", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 7861, __extension__ __PRETTY_FUNCTION__)); | |||
| 7862 | ||||
| 7863 | SmallVector<SDValue, 16> Ops; | |||
| 7864 | ||||
| 7865 | auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { | |||
| 7866 | SmallVector<SDValue, 3> Lanes; | |||
| 7867 | DAG.ExtractVectorElements(Op, Lanes, 0, 3); | |||
| 7868 | if (Lanes[0].getValueSizeInBits() == 32) { | |||
| 7869 | for (unsigned I = 0; I < 3; ++I) | |||
| 7870 | Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); | |||
| 7871 | } else { | |||
| 7872 | if (IsAligned) { | |||
| 7873 | Ops.push_back( | |||
| 7874 | DAG.getBitcast(MVT::i32, | |||
| 7875 | DAG.getBuildVector(MVT::v2f16, DL, | |||
| 7876 | { Lanes[0], Lanes[1] }))); | |||
| 7877 | Ops.push_back(Lanes[2]); | |||
| 7878 | } else { | |||
| 7879 | SDValue Elt0 = Ops.pop_back_val(); | |||
| 7880 | Ops.push_back( | |||
| 7881 | DAG.getBitcast(MVT::i32, | |||
| 7882 | DAG.getBuildVector(MVT::v2f16, DL, | |||
| 7883 | { Elt0, Lanes[0] }))); | |||
| 7884 | Ops.push_back( | |||
| 7885 | DAG.getBitcast(MVT::i32, | |||
| 7886 | DAG.getBuildVector(MVT::v2f16, DL, | |||
| 7887 | { Lanes[1], Lanes[2] }))); | |||
| 7888 | } | |||
| 7889 | } | |||
| 7890 | }; | |||
| 7891 | ||||
| 7892 | if (UseNSA && IsGFX11Plus) { | |||
| 7893 | Ops.push_back(NodePtr); | |||
| 7894 | Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); | |||
| 7895 | Ops.push_back(RayOrigin); | |||
| 7896 | if (IsA16) { | |||
| 7897 | SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes; | |||
| 7898 | DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3); | |||
| 7899 | DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3); | |||
| 7900 | for (unsigned I = 0; I < 3; ++I) { | |||
| 7901 | MergedLanes.push_back(DAG.getBitcast( | |||
| 7902 | MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, | |||
| 7903 | {DirLanes[I], InvDirLanes[I]}))); | |||
| 7904 | } | |||
| 7905 | Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes)); | |||
| 7906 | } else { | |||
| 7907 | Ops.push_back(RayDir); | |||
| 7908 | Ops.push_back(RayInvDir); | |||
| 7909 | } | |||
| 7910 | } else { | |||
| 7911 | if (Is64) | |||
| 7912 | DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, | |||
| 7913 | 2); | |||
| 7914 | else | |||
| 7915 | Ops.push_back(NodePtr); | |||
| 7916 | ||||
| 7917 | Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); | |||
| 7918 | packLanes(RayOrigin, true); | |||
| 7919 | packLanes(RayDir, true); | |||
| 7920 | packLanes(RayInvDir, false); | |||
| 7921 | } | |||
| 7922 | ||||
| 7923 | if (!UseNSA) { | |||
| 7924 | // Build a single vector containing all the operands so far prepared. | |||
| 7925 | if (NumVAddrDwords > 12) { | |||
| 7926 | SDValue Undef = DAG.getUNDEF(MVT::i32); | |||
| 7927 | Ops.append(16 - Ops.size(), Undef); | |||
| 7928 | } | |||
| 7929 | assert(Ops.size() >= 8 && Ops.size() <= 12)(static_cast <bool> (Ops.size() >= 8 && Ops. size() <= 12) ? void (0) : __assert_fail ("Ops.size() >= 8 && Ops.size() <= 12" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 7929, __extension__ __PRETTY_FUNCTION__)); | |||
| 7930 | SDValue MergedOps = DAG.getBuildVector( | |||
| 7931 | MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops); | |||
| 7932 | Ops.clear(); | |||
| 7933 | Ops.push_back(MergedOps); | |||
| 7934 | } | |||
| 7935 | ||||
| 7936 | Ops.push_back(TDescr); | |||
| 7937 | if (IsA16) | |||
| 7938 | Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1)); | |||
| 7939 | Ops.push_back(M->getChain()); | |||
| 7940 | ||||
| 7941 | auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); | |||
| 7942 | MachineMemOperand *MemRef = M->getMemOperand(); | |||
| 7943 | DAG.setNodeMemRefs(NewNode, {MemRef}); | |||
| 7944 | return SDValue(NewNode, 0); | |||
| 7945 | } | |||
| 7946 | case Intrinsic::amdgcn_global_atomic_fmin: | |||
| 7947 | case Intrinsic::amdgcn_global_atomic_fmax: | |||
| 7948 | case Intrinsic::amdgcn_flat_atomic_fmin: | |||
| 7949 | case Intrinsic::amdgcn_flat_atomic_fmax: { | |||
| 7950 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 7951 | SDValue Ops[] = { | |||
| 7952 | M->getOperand(0), // Chain | |||
| 7953 | M->getOperand(2), // Ptr | |||
| 7954 | M->getOperand(3) // Value | |||
| 7955 | }; | |||
| 7956 | unsigned Opcode = 0; | |||
| 7957 | switch (IntrID) { | |||
| 7958 | case Intrinsic::amdgcn_global_atomic_fmin: | |||
| 7959 | case Intrinsic::amdgcn_flat_atomic_fmin: { | |||
| 7960 | Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; | |||
| 7961 | break; | |||
| 7962 | } | |||
| 7963 | case Intrinsic::amdgcn_global_atomic_fmax: | |||
| 7964 | case Intrinsic::amdgcn_flat_atomic_fmax: { | |||
| 7965 | Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; | |||
| 7966 | break; | |||
| 7967 | } | |||
| 7968 | default: | |||
| 7969 | llvm_unreachable("unhandled atomic opcode")::llvm::llvm_unreachable_internal("unhandled atomic opcode", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 7969); | |||
| 7970 | } | |||
| 7971 | return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), | |||
| 7972 | M->getVTList(), Ops, M->getMemoryVT(), | |||
| 7973 | M->getMemOperand()); | |||
| 7974 | } | |||
| 7975 | default: | |||
| 7976 | ||||
| 7977 | if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = | |||
| 7978 | AMDGPU::getImageDimIntrinsicInfo(IntrID)) | |||
| 7979 | return lowerImage(Op, ImageDimIntr, DAG, true); | |||
| 7980 | ||||
| 7981 | return SDValue(); | |||
| 7982 | } | |||
| 7983 | } | |||
| 7984 | ||||
| 7985 | // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to | |||
| 7986 | // dwordx4 if on SI and handle TFE loads. | |||
| 7987 | SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, | |||
| 7988 | SDVTList VTList, | |||
| 7989 | ArrayRef<SDValue> Ops, EVT MemVT, | |||
| 7990 | MachineMemOperand *MMO, | |||
| 7991 | SelectionDAG &DAG) const { | |||
| 7992 | LLVMContext &C = *DAG.getContext(); | |||
| 7993 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 7994 | EVT VT = VTList.VTs[0]; | |||
| 7995 | ||||
| 7996 | assert(VTList.NumVTs == 2 || VTList.NumVTs == 3)(static_cast <bool> (VTList.NumVTs == 2 || VTList.NumVTs == 3) ? void (0) : __assert_fail ("VTList.NumVTs == 2 || VTList.NumVTs == 3" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 7996, __extension__ __PRETTY_FUNCTION__)); | |||
| 7997 | bool IsTFE = VTList.NumVTs == 3; | |||
| 7998 | if (IsTFE) { | |||
| 7999 | unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32); | |||
| 8000 | unsigned NumOpDWords = NumValueDWords + 1; | |||
| 8001 | EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords); | |||
| 8002 | SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]); | |||
| 8003 | MachineMemOperand *OpDWordsMMO = | |||
| 8004 | MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4); | |||
| 8005 | SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops, | |||
| 8006 | OpDWordsVT, OpDWordsMMO, DAG); | |||
| 8007 | SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, | |||
| 8008 | DAG.getVectorIdxConstant(NumValueDWords, DL)); | |||
| 8009 | SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); | |||
| 8010 | SDValue ValueDWords = | |||
| 8011 | NumValueDWords == 1 | |||
| 8012 | ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx) | |||
| 8013 | : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, | |||
| 8014 | EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op, | |||
| 8015 | ZeroIdx); | |||
| 8016 | SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords); | |||
| 8017 | return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL); | |||
| 8018 | } | |||
| 8019 | ||||
| 8020 | if (!Subtarget->hasDwordx3LoadStores() && | |||
| 8021 | (VT == MVT::v3i32 || VT == MVT::v3f32)) { | |||
| 8022 | EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4); | |||
| 8023 | EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4); | |||
| 8024 | MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16); | |||
| 8025 | SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); | |||
| 8026 | SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, | |||
| 8027 | WidenedMemVT, WidenedMMO); | |||
| 8028 | SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op, | |||
| 8029 | DAG.getVectorIdxConstant(0, DL)); | |||
| 8030 | return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL); | |||
| 8031 | } | |||
| 8032 | ||||
| 8033 | return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO); | |||
| 8034 | } | |||
| 8035 | ||||
| 8036 | SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, | |||
| 8037 | bool ImageStore) const { | |||
| 8038 | EVT StoreVT = VData.getValueType(); | |||
| 8039 | ||||
| 8040 | // No change for f16 and legal vector D16 types. | |||
| 8041 | if (!StoreVT.isVector()) | |||
| 8042 | return VData; | |||
| 8043 | ||||
| 8044 | SDLoc DL(VData); | |||
| 8045 | unsigned NumElements = StoreVT.getVectorNumElements(); | |||
| 8046 | ||||
| 8047 | if (Subtarget->hasUnpackedD16VMem()) { | |||
| 8048 | // We need to unpack the packed data to store. | |||
| 8049 | EVT IntStoreVT = StoreVT.changeTypeToInteger(); | |||
| 8050 | SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); | |||
| 8051 | ||||
| 8052 | EVT EquivStoreVT = | |||
| 8053 | EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); | |||
| 8054 | SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); | |||
| 8055 | return DAG.UnrollVectorOp(ZExt.getNode()); | |||
| 8056 | } | |||
| 8057 | ||||
| 8058 | // The sq block of gfx8.1 does not estimate register use correctly for d16 | |||
| 8059 | // image store instructions. The data operand is computed as if it were not a | |||
| 8060 | // d16 image instruction. | |||
| 8061 | if (ImageStore && Subtarget->hasImageStoreD16Bug()) { | |||
| 8062 | // Bitcast to i16 | |||
| 8063 | EVT IntStoreVT = StoreVT.changeTypeToInteger(); | |||
| 8064 | SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); | |||
| 8065 | ||||
| 8066 | // Decompose into scalars | |||
| 8067 | SmallVector<SDValue, 4> Elts; | |||
| 8068 | DAG.ExtractVectorElements(IntVData, Elts); | |||
| 8069 | ||||
| 8070 | // Group pairs of i16 into v2i16 and bitcast to i32 | |||
| 8071 | SmallVector<SDValue, 4> PackedElts; | |||
| 8072 | for (unsigned I = 0; I < Elts.size() / 2; I += 1) { | |||
| 8073 | SDValue Pair = | |||
| 8074 | DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); | |||
| 8075 | SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); | |||
| 8076 | PackedElts.push_back(IntPair); | |||
| 8077 | } | |||
| 8078 | if ((NumElements % 2) == 1) { | |||
| 8079 | // Handle v3i16 | |||
| 8080 | unsigned I = Elts.size() / 2; | |||
| 8081 | SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, | |||
| 8082 | {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); | |||
| 8083 | SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); | |||
| 8084 | PackedElts.push_back(IntPair); | |||
| 8085 | } | |||
| 8086 | ||||
| 8087 | // Pad using UNDEF | |||
| 8088 | PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); | |||
| 8089 | ||||
| 8090 | // Build final vector | |||
| 8091 | EVT VecVT = | |||
| 8092 | EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); | |||
| 8093 | return DAG.getBuildVector(VecVT, DL, PackedElts); | |||
| 8094 | } | |||
| 8095 | ||||
| 8096 | if (NumElements == 3) { | |||
| 8097 | EVT IntStoreVT = | |||
| 8098 | EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); | |||
| 8099 | SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); | |||
| 8100 | ||||
| 8101 | EVT WidenedStoreVT = EVT::getVectorVT( | |||
| 8102 | *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); | |||
| 8103 | EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), | |||
| 8104 | WidenedStoreVT.getStoreSizeInBits()); | |||
| 8105 | SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); | |||
| 8106 | return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); | |||
| 8107 | } | |||
| 8108 | ||||
| 8109 | assert(isTypeLegal(StoreVT))(static_cast <bool> (isTypeLegal(StoreVT)) ? void (0) : __assert_fail ("isTypeLegal(StoreVT)", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 8109, __extension__ __PRETTY_FUNCTION__)); | |||
| 8110 | return VData; | |||
| 8111 | } | |||
| 8112 | ||||
| 8113 | SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, | |||
| 8114 | SelectionDAG &DAG) const { | |||
| 8115 | SDLoc DL(Op); | |||
| 8116 | SDValue Chain = Op.getOperand(0); | |||
| 8117 | unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | |||
| 8118 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 8119 | ||||
| 8120 | switch (IntrinsicID) { | |||
| 8121 | case Intrinsic::amdgcn_exp_compr: { | |||
| 8122 | if (!Subtarget->hasCompressedExport()) { | |||
| 8123 | DiagnosticInfoUnsupported BadIntrin( | |||
| 8124 | DAG.getMachineFunction().getFunction(), | |||
| 8125 | "intrinsic not supported on subtarget", DL.getDebugLoc()); | |||
| 8126 | DAG.getContext()->diagnose(BadIntrin); | |||
| 8127 | } | |||
| 8128 | SDValue Src0 = Op.getOperand(4); | |||
| 8129 | SDValue Src1 = Op.getOperand(5); | |||
| 8130 | // Hack around illegal type on SI by directly selecting it. | |||
| 8131 | if (isTypeLegal(Src0.getValueType())) | |||
| 8132 | return SDValue(); | |||
| 8133 | ||||
| 8134 | const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); | |||
| 8135 | SDValue Undef = DAG.getUNDEF(MVT::f32); | |||
| 8136 | const SDValue Ops[] = { | |||
| 8137 | Op.getOperand(2), // tgt | |||
| 8138 | DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 | |||
| 8139 | DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 | |||
| 8140 | Undef, // src2 | |||
| 8141 | Undef, // src3 | |||
| 8142 | Op.getOperand(7), // vm | |||
| 8143 | DAG.getTargetConstant(1, DL, MVT::i1), // compr | |||
| 8144 | Op.getOperand(3), // en | |||
| 8145 | Op.getOperand(0) // Chain | |||
| 8146 | }; | |||
| 8147 | ||||
| 8148 | unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; | |||
| 8149 | return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); | |||
| 8150 | } | |||
| 8151 | case Intrinsic::amdgcn_s_barrier: { | |||
| 8152 | if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { | |||
| 8153 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | |||
| 8154 | unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; | |||
| 8155 | if (WGSize <= ST.getWavefrontSize()) | |||
| 8156 | return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, | |||
| 8157 | Op.getOperand(0)), 0); | |||
| 8158 | } | |||
| 8159 | return SDValue(); | |||
| 8160 | }; | |||
| 8161 | case Intrinsic::amdgcn_tbuffer_store: { | |||
| 8162 | SDValue VData = Op.getOperand(2); | |||
| 8163 | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | |||
| 8164 | if (IsD16) | |||
| 8165 | VData = handleD16VData(VData, DAG); | |||
| 8166 | unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); | |||
| 8167 | unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); | |||
| 8168 | unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); | |||
| 8169 | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); | |||
| 8170 | unsigned IdxEn = getIdxEn(Op.getOperand(4)); | |||
| 8171 | SDValue Ops[] = { | |||
| 8172 | Chain, | |||
| 8173 | VData, // vdata | |||
| 8174 | Op.getOperand(3), // rsrc | |||
| 8175 | Op.getOperand(4), // vindex | |||
| 8176 | Op.getOperand(5), // voffset | |||
| 8177 | Op.getOperand(6), // soffset | |||
| 8178 | Op.getOperand(7), // offset | |||
| 8179 | DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format | |||
| 8180 | DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy | |||
| 8181 | DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen | |||
| 8182 | }; | |||
| 8183 | unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : | |||
| 8184 | AMDGPUISD::TBUFFER_STORE_FORMAT; | |||
| 8185 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 8186 | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | |||
| 8187 | M->getMemoryVT(), M->getMemOperand()); | |||
| 8188 | } | |||
| 8189 | ||||
| 8190 | case Intrinsic::amdgcn_struct_tbuffer_store: { | |||
| 8191 | SDValue VData = Op.getOperand(2); | |||
| 8192 | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | |||
| 8193 | if (IsD16) | |||
| 8194 | VData = handleD16VData(VData, DAG); | |||
| 8195 | auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); | |||
| 8196 | SDValue Ops[] = { | |||
| 8197 | Chain, | |||
| 8198 | VData, // vdata | |||
| 8199 | Op.getOperand(3), // rsrc | |||
| 8200 | Op.getOperand(4), // vindex | |||
| 8201 | Offsets.first, // voffset | |||
| 8202 | Op.getOperand(6), // soffset | |||
| 8203 | Offsets.second, // offset | |||
| 8204 | Op.getOperand(7), // format | |||
| 8205 | Op.getOperand(8), // cachepolicy, swizzled buffer | |||
| 8206 | DAG.getTargetConstant(1, DL, MVT::i1), // idxen | |||
| 8207 | }; | |||
| 8208 | unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : | |||
| 8209 | AMDGPUISD::TBUFFER_STORE_FORMAT; | |||
| 8210 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 8211 | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | |||
| 8212 | M->getMemoryVT(), M->getMemOperand()); | |||
| 8213 | } | |||
| 8214 | ||||
| 8215 | case Intrinsic::amdgcn_raw_tbuffer_store: { | |||
| 8216 | SDValue VData = Op.getOperand(2); | |||
| 8217 | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | |||
| 8218 | if (IsD16) | |||
| 8219 | VData = handleD16VData(VData, DAG); | |||
| 8220 | auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); | |||
| 8221 | SDValue Ops[] = { | |||
| 8222 | Chain, | |||
| 8223 | VData, // vdata | |||
| 8224 | Op.getOperand(3), // rsrc | |||
| 8225 | DAG.getConstant(0, DL, MVT::i32), // vindex | |||
| 8226 | Offsets.first, // voffset | |||
| 8227 | Op.getOperand(5), // soffset | |||
| 8228 | Offsets.second, // offset | |||
| 8229 | Op.getOperand(6), // format | |||
| 8230 | Op.getOperand(7), // cachepolicy, swizzled buffer | |||
| 8231 | DAG.getTargetConstant(0, DL, MVT::i1), // idxen | |||
| 8232 | }; | |||
| 8233 | unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : | |||
| 8234 | AMDGPUISD::TBUFFER_STORE_FORMAT; | |||
| 8235 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 8236 | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | |||
| 8237 | M->getMemoryVT(), M->getMemOperand()); | |||
| 8238 | } | |||
| 8239 | ||||
| 8240 | case Intrinsic::amdgcn_buffer_store: | |||
| 8241 | case Intrinsic::amdgcn_buffer_store_format: { | |||
| 8242 | SDValue VData = Op.getOperand(2); | |||
| 8243 | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | |||
| 8244 | if (IsD16) | |||
| 8245 | VData = handleD16VData(VData, DAG); | |||
| 8246 | unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); | |||
| 8247 | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); | |||
| 8248 | unsigned IdxEn = getIdxEn(Op.getOperand(4)); | |||
| 8249 | SDValue Ops[] = { | |||
| 8250 | Chain, | |||
| 8251 | VData, | |||
| 8252 | Op.getOperand(3), // rsrc | |||
| 8253 | Op.getOperand(4), // vindex | |||
| 8254 | SDValue(), // voffset -- will be set by setBufferOffsets | |||
| 8255 | SDValue(), // soffset -- will be set by setBufferOffsets | |||
| 8256 | SDValue(), // offset -- will be set by setBufferOffsets | |||
| 8257 | DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy | |||
| 8258 | DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen | |||
| 8259 | }; | |||
| 8260 | setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); | |||
| 8261 | ||||
| 8262 | unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? | |||
| 8263 | AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; | |||
| 8264 | Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; | |||
| 8265 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 8266 | updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); | |||
| 8267 | ||||
| 8268 | // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics | |||
| 8269 | EVT VDataType = VData.getValueType().getScalarType(); | |||
| 8270 | if (VDataType == MVT::i8 || VDataType == MVT::i16) | |||
| 8271 | return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); | |||
| 8272 | ||||
| 8273 | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | |||
| 8274 | M->getMemoryVT(), M->getMemOperand()); | |||
| 8275 | } | |||
| 8276 | ||||
| 8277 | case Intrinsic::amdgcn_raw_buffer_store: | |||
| 8278 | case Intrinsic::amdgcn_raw_buffer_store_format: { | |||
| 8279 | const bool IsFormat = | |||
| 8280 | IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; | |||
| 8281 | ||||
| 8282 | SDValue VData = Op.getOperand(2); | |||
| 8283 | EVT VDataVT = VData.getValueType(); | |||
| 8284 | EVT EltType = VDataVT.getScalarType(); | |||
| 8285 | bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); | |||
| 8286 | if (IsD16) { | |||
| 8287 | VData = handleD16VData(VData, DAG); | |||
| 8288 | VDataVT = VData.getValueType(); | |||
| 8289 | } | |||
| 8290 | ||||
| 8291 | if (!isTypeLegal(VDataVT)) { | |||
| 8292 | VData = | |||
| 8293 | DAG.getNode(ISD::BITCAST, DL, | |||
| 8294 | getEquivalentMemType(*DAG.getContext(), VDataVT), VData); | |||
| 8295 | } | |||
| 8296 | ||||
| 8297 | auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); | |||
| 8298 | SDValue Ops[] = { | |||
| 8299 | Chain, | |||
| 8300 | VData, | |||
| 8301 | Op.getOperand(3), // rsrc | |||
| 8302 | DAG.getConstant(0, DL, MVT::i32), // vindex | |||
| 8303 | Offsets.first, // voffset | |||
| 8304 | Op.getOperand(5), // soffset | |||
| 8305 | Offsets.second, // offset | |||
| 8306 | Op.getOperand(6), // cachepolicy, swizzled buffer | |||
| 8307 | DAG.getTargetConstant(0, DL, MVT::i1), // idxen | |||
| 8308 | }; | |||
| 8309 | unsigned Opc = | |||
| 8310 | IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; | |||
| 8311 | Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; | |||
| 8312 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 8313 | updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); | |||
| 8314 | ||||
| 8315 | // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics | |||
| 8316 | if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) | |||
| 8317 | return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); | |||
| 8318 | ||||
| 8319 | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | |||
| 8320 | M->getMemoryVT(), M->getMemOperand()); | |||
| 8321 | } | |||
| 8322 | ||||
| 8323 | case Intrinsic::amdgcn_struct_buffer_store: | |||
| 8324 | case Intrinsic::amdgcn_struct_buffer_store_format: { | |||
| 8325 | const bool IsFormat = | |||
| 8326 | IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; | |||
| 8327 | ||||
| 8328 | SDValue VData = Op.getOperand(2); | |||
| 8329 | EVT VDataVT = VData.getValueType(); | |||
| 8330 | EVT EltType = VDataVT.getScalarType(); | |||
| 8331 | bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); | |||
| 8332 | ||||
| 8333 | if (IsD16) { | |||
| 8334 | VData = handleD16VData(VData, DAG); | |||
| 8335 | VDataVT = VData.getValueType(); | |||
| 8336 | } | |||
| 8337 | ||||
| 8338 | if (!isTypeLegal(VDataVT)) { | |||
| 8339 | VData = | |||
| 8340 | DAG.getNode(ISD::BITCAST, DL, | |||
| 8341 | getEquivalentMemType(*DAG.getContext(), VDataVT), VData); | |||
| 8342 | } | |||
| 8343 | ||||
| 8344 | auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); | |||
| 8345 | SDValue Ops[] = { | |||
| 8346 | Chain, | |||
| 8347 | VData, | |||
| 8348 | Op.getOperand(3), // rsrc | |||
| 8349 | Op.getOperand(4), // vindex | |||
| 8350 | Offsets.first, // voffset | |||
| 8351 | Op.getOperand(6), // soffset | |||
| 8352 | Offsets.second, // offset | |||
| 8353 | Op.getOperand(7), // cachepolicy, swizzled buffer | |||
| 8354 | DAG.getTargetConstant(1, DL, MVT::i1), // idxen | |||
| 8355 | }; | |||
| 8356 | unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? | |||
| 8357 | AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; | |||
| 8358 | Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; | |||
| 8359 | MemSDNode *M = cast<MemSDNode>(Op); | |||
| 8360 | updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); | |||
| 8361 | ||||
| 8362 | // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics | |||
| 8363 | EVT VDataType = VData.getValueType().getScalarType(); | |||
| 8364 | if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) | |||
| 8365 | return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); | |||
| 8366 | ||||
| 8367 | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | |||
| 8368 | M->getMemoryVT(), M->getMemOperand()); | |||
| 8369 | } | |||
| 8370 | case Intrinsic::amdgcn_raw_buffer_load_lds: | |||
| 8371 | case Intrinsic::amdgcn_struct_buffer_load_lds: { | |||
| 8372 | unsigned Opc; | |||
| 8373 | bool HasVIndex = IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds; | |||
| 8374 | unsigned OpOffset = HasVIndex ? 1 : 0; | |||
| 8375 | SDValue VOffset = Op.getOperand(5 + OpOffset); | |||
| 8376 | auto CVOffset = dyn_cast<ConstantSDNode>(VOffset); | |||
| 8377 | bool HasVOffset = !CVOffset || !CVOffset->isZero(); | |||
| 8378 | unsigned Size = Op->getConstantOperandVal(4); | |||
| 8379 | ||||
| 8380 | switch (Size) { | |||
| 8381 | default: | |||
| 8382 | return SDValue(); | |||
| 8383 | case 1: | |||
| 8384 | Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN | |||
| 8385 | : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN | |||
| 8386 | : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN | |||
| 8387 | : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET; | |||
| 8388 | break; | |||
| 8389 | case 2: | |||
| 8390 | Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN | |||
| 8391 | : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN | |||
| 8392 | : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN | |||
| 8393 | : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET; | |||
| 8394 | break; | |||
| 8395 | case 4: | |||
| 8396 | Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN | |||
| 8397 | : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN | |||
| 8398 | : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN | |||
| 8399 | : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET; | |||
| 8400 | break; | |||
| 8401 | } | |||
| 8402 | ||||
| 8403 | SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); | |||
| 8404 | ||||
| 8405 | SmallVector<SDValue, 8> Ops; | |||
| 8406 | ||||
| 8407 | if (HasVIndex && HasVOffset) | |||
| 8408 | Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL, | |||
| 8409 | { Op.getOperand(5), // VIndex | |||
| 8410 | VOffset })); | |||
| 8411 | else if (HasVIndex) | |||
| 8412 | Ops.push_back(Op.getOperand(5)); | |||
| 8413 | else if (HasVOffset) | |||
| 8414 | Ops.push_back(VOffset); | |||
| 8415 | ||||
| 8416 | Ops.push_back(Op.getOperand(2)); // rsrc | |||
| 8417 | Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset | |||
| 8418 | Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset | |||
| 8419 | unsigned Aux = Op.getConstantOperandVal(8 + OpOffset); | |||
| 8420 | Ops.push_back( | |||
| 8421 | DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol | |||
| 8422 | Ops.push_back( | |||
| 8423 | DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8)); // swz | |||
| 8424 | Ops.push_back(M0Val.getValue(0)); // Chain | |||
| 8425 | Ops.push_back(M0Val.getValue(1)); // Glue | |||
| 8426 | ||||
| 8427 | auto *M = cast<MemSDNode>(Op); | |||
| 8428 | MachineMemOperand *LoadMMO = M->getMemOperand(); | |||
| 8429 | MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); | |||
| 8430 | LoadPtrI.Offset = Op->getConstantOperandVal(7 + OpOffset); | |||
| 8431 | MachinePointerInfo StorePtrI = LoadPtrI; | |||
| 8432 | StorePtrI.V = nullptr; | |||
| 8433 | StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; | |||
| 8434 | ||||
| 8435 | auto F = LoadMMO->getFlags() & | |||
| 8436 | ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); | |||
| 8437 | LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, | |||
| 8438 | Size, LoadMMO->getBaseAlign()); | |||
| 8439 | ||||
| 8440 | MachineMemOperand *StoreMMO = | |||
| 8441 | MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, | |||
| 8442 | sizeof(int32_t), LoadMMO->getBaseAlign()); | |||
| 8443 | ||||
| 8444 | auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops); | |||
| 8445 | DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); | |||
| 8446 | ||||
| 8447 | return SDValue(Load, 0); | |||
| 8448 | } | |||
| 8449 | case Intrinsic::amdgcn_global_load_lds: { | |||
| 8450 | unsigned Opc; | |||
| 8451 | unsigned Size = Op->getConstantOperandVal(4); | |||
| 8452 | switch (Size) { | |||
| 8453 | default: | |||
| 8454 | return SDValue(); | |||
| 8455 | case 1: | |||
| 8456 | Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE; | |||
| 8457 | break; | |||
| 8458 | case 2: | |||
| 8459 | Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT; | |||
| 8460 | break; | |||
| 8461 | case 4: | |||
| 8462 | Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD; | |||
| 8463 | break; | |||
| 8464 | } | |||
| 8465 | ||||
| 8466 | auto *M = cast<MemSDNode>(Op); | |||
| 8467 | SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); | |||
| 8468 | ||||
| 8469 | SmallVector<SDValue, 6> Ops; | |||
| 8470 | ||||
| 8471 | SDValue Addr = Op.getOperand(2); // Global ptr | |||
| 8472 | SDValue VOffset; | |||
| 8473 | // Try to split SAddr and VOffset. Global and LDS pointers share the same | |||
| 8474 | // immediate offset, so we cannot use a regular SelectGlobalSAddr(). | |||
| 8475 | if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) { | |||
| 8476 | SDValue LHS = Addr.getOperand(0); | |||
| 8477 | SDValue RHS = Addr.getOperand(1); | |||
| 8478 | ||||
| 8479 | if (LHS->isDivergent()) | |||
| 8480 | std::swap(LHS, RHS); | |||
| 8481 | ||||
| 8482 | if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND && | |||
| 8483 | RHS.getOperand(0).getValueType() == MVT::i32) { | |||
| 8484 | // add (i64 sgpr), (zero_extend (i32 vgpr)) | |||
| 8485 | Addr = LHS; | |||
| 8486 | VOffset = RHS.getOperand(0); | |||
| 8487 | } | |||
| 8488 | } | |||
| 8489 | ||||
| 8490 | Ops.push_back(Addr); | |||
| 8491 | if (!Addr->isDivergent()) { | |||
| 8492 | Opc = AMDGPU::getGlobalSaddrOp(Opc); | |||
| 8493 | if (!VOffset) | |||
| 8494 | VOffset = SDValue( | |||
| 8495 | DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, | |||
| 8496 | DAG.getTargetConstant(0, DL, MVT::i32)), 0); | |||
| 8497 | Ops.push_back(VOffset); | |||
| 8498 | } | |||
| 8499 | ||||
| 8500 | Ops.push_back(Op.getOperand(5)); // Offset | |||
| 8501 | Ops.push_back(Op.getOperand(6)); // CPol | |||
| 8502 | Ops.push_back(M0Val.getValue(0)); // Chain | |||
| 8503 | Ops.push_back(M0Val.getValue(1)); // Glue | |||
| 8504 | ||||
| 8505 | MachineMemOperand *LoadMMO = M->getMemOperand(); | |||
| 8506 | MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); | |||
| 8507 | LoadPtrI.Offset = Op->getConstantOperandVal(5); | |||
| 8508 | MachinePointerInfo StorePtrI = LoadPtrI; | |||
| 8509 | LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; | |||
| 8510 | StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; | |||
| 8511 | auto F = LoadMMO->getFlags() & | |||
| 8512 | ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); | |||
| 8513 | LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, | |||
| 8514 | Size, LoadMMO->getBaseAlign()); | |||
| 8515 | MachineMemOperand *StoreMMO = | |||
| 8516 | MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, | |||
| 8517 | sizeof(int32_t), Align(4)); | |||
| 8518 | ||||
| 8519 | auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); | |||
| 8520 | DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); | |||
| 8521 | ||||
| 8522 | return SDValue(Load, 0); | |||
| 8523 | } | |||
| 8524 | case Intrinsic::amdgcn_end_cf: | |||
| 8525 | return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, | |||
| 8526 | Op->getOperand(2), Chain), 0); | |||
| 8527 | ||||
| 8528 | default: { | |||
| 8529 | if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = | |||
| 8530 | AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) | |||
| 8531 | return lowerImage(Op, ImageDimIntr, DAG, true); | |||
| 8532 | ||||
| 8533 | return Op; | |||
| 8534 | } | |||
| 8535 | } | |||
| 8536 | } | |||
| 8537 | ||||
| 8538 | // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: | |||
| 8539 | // offset (the offset that is included in bounds checking and swizzling, to be | |||
| 8540 | // split between the instruction's voffset and immoffset fields) and soffset | |||
| 8541 | // (the offset that is excluded from bounds checking and swizzling, to go in | |||
| 8542 | // the instruction's soffset field). This function takes the first kind of | |||
| 8543 | // offset and figures out how to split it between voffset and immoffset. | |||
| 8544 | std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( | |||
| 8545 | SDValue Offset, SelectionDAG &DAG) const { | |||
| 8546 | SDLoc DL(Offset); | |||
| 8547 | const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset(); | |||
| 8548 | SDValue N0 = Offset; | |||
| 8549 | ConstantSDNode *C1 = nullptr; | |||
| 8550 | ||||
| 8551 | if ((C1 = dyn_cast<ConstantSDNode>(N0))) | |||
| 8552 | N0 = SDValue(); | |||
| 8553 | else if (DAG.isBaseWithConstantOffset(N0)) { | |||
| 8554 | C1 = cast<ConstantSDNode>(N0.getOperand(1)); | |||
| 8555 | N0 = N0.getOperand(0); | |||
| 8556 | } | |||
| 8557 | ||||
| 8558 | if (C1) { | |||
| 8559 | unsigned ImmOffset = C1->getZExtValue(); | |||
| 8560 | // If the immediate value is too big for the immoffset field, put only bits | |||
| 8561 | // that would normally fit in the immoffset field. The remaining value that | |||
| 8562 | // is copied/added for the voffset field is a large power of 2, and it | |||
| 8563 | // stands more chance of being CSEd with the copy/add for another similar | |||
| 8564 | // load/store. | |||
| 8565 | // However, do not do that rounding down if that is a negative | |||
| 8566 | // number, as it appears to be illegal to have a negative offset in the | |||
| 8567 | // vgpr, even if adding the immediate offset makes it positive. | |||
| 8568 | unsigned Overflow = ImmOffset & ~MaxImm; | |||
| 8569 | ImmOffset -= Overflow; | |||
| 8570 | if ((int32_t)Overflow < 0) { | |||
| 8571 | Overflow += ImmOffset; | |||
| 8572 | ImmOffset = 0; | |||
| 8573 | } | |||
| 8574 | C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); | |||
| 8575 | if (Overflow) { | |||
| 8576 | auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); | |||
| 8577 | if (!N0) | |||
| 8578 | N0 = OverflowVal; | |||
| 8579 | else { | |||
| 8580 | SDValue Ops[] = { N0, OverflowVal }; | |||
| 8581 | N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); | |||
| 8582 | } | |||
| 8583 | } | |||
| 8584 | } | |||
| 8585 | if (!N0) | |||
| 8586 | N0 = DAG.getConstant(0, DL, MVT::i32); | |||
| 8587 | if (!C1) | |||
| 8588 | C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); | |||
| 8589 | return {N0, SDValue(C1, 0)}; | |||
| 8590 | } | |||
| 8591 | ||||
| 8592 | // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the | |||
| 8593 | // three offsets (voffset, soffset and instoffset) into the SDValue[3] array | |||
| 8594 | // pointed to by Offsets. | |||
| 8595 | void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, | |||
| 8596 | SelectionDAG &DAG, SDValue *Offsets, | |||
| 8597 | Align Alignment) const { | |||
| 8598 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 8599 | SDLoc DL(CombinedOffset); | |||
| 8600 | if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { | |||
| 8601 | uint32_t Imm = C->getZExtValue(); | |||
| 8602 | uint32_t SOffset, ImmOffset; | |||
| 8603 | if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) { | |||
| 8604 | Offsets[0] = DAG.getConstant(0, DL, MVT::i32); | |||
| 8605 | Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); | |||
| 8606 | Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); | |||
| 8607 | return; | |||
| 8608 | } | |||
| 8609 | } | |||
| 8610 | if (DAG.isBaseWithConstantOffset(CombinedOffset)) { | |||
| 8611 | SDValue N0 = CombinedOffset.getOperand(0); | |||
| 8612 | SDValue N1 = CombinedOffset.getOperand(1); | |||
| 8613 | uint32_t SOffset, ImmOffset; | |||
| 8614 | int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); | |||
| 8615 | if (Offset >= 0 && | |||
| 8616 | TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) { | |||
| 8617 | Offsets[0] = N0; | |||
| 8618 | Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); | |||
| 8619 | Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); | |||
| 8620 | return; | |||
| 8621 | } | |||
| 8622 | } | |||
| 8623 | Offsets[0] = CombinedOffset; | |||
| 8624 | Offsets[1] = DAG.getConstant(0, DL, MVT::i32); | |||
| 8625 | Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); | |||
| 8626 | } | |||
| 8627 | ||||
| 8628 | // Handle 8 bit and 16 bit buffer loads | |||
| 8629 | SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, | |||
| 8630 | EVT LoadVT, SDLoc DL, | |||
| 8631 | ArrayRef<SDValue> Ops, | |||
| 8632 | MemSDNode *M) const { | |||
| 8633 | EVT IntVT = LoadVT.changeTypeToInteger(); | |||
| 8634 | unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? | |||
| 8635 | AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; | |||
| 8636 | ||||
| 8637 | SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); | |||
| 8638 | SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, | |||
| 8639 | Ops, IntVT, | |||
| 8640 | M->getMemOperand()); | |||
| 8641 | SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); | |||
| 8642 | LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); | |||
| 8643 | ||||
| 8644 | return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); | |||
| 8645 | } | |||
| 8646 | ||||
| 8647 | // Handle 8 bit and 16 bit buffer stores | |||
| 8648 | SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, | |||
| 8649 | EVT VDataType, SDLoc DL, | |||
| 8650 | SDValue Ops[], | |||
| 8651 | MemSDNode *M) const { | |||
| 8652 | if (VDataType == MVT::f16) | |||
| 8653 | Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); | |||
| 8654 | ||||
| 8655 | SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); | |||
| 8656 | Ops[1] = BufferStoreExt; | |||
| 8657 | unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : | |||
| 8658 | AMDGPUISD::BUFFER_STORE_SHORT; | |||
| 8659 | ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9); | |||
| 8660 | return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, | |||
| 8661 | M->getMemOperand()); | |||
| 8662 | } | |||
| 8663 | ||||
| 8664 | static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, | |||
| 8665 | ISD::LoadExtType ExtType, SDValue Op, | |||
| 8666 | const SDLoc &SL, EVT VT) { | |||
| 8667 | if (VT.bitsLT(Op.getValueType())) | |||
| 8668 | return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); | |||
| 8669 | ||||
| 8670 | switch (ExtType) { | |||
| 8671 | case ISD::SEXTLOAD: | |||
| 8672 | return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); | |||
| 8673 | case ISD::ZEXTLOAD: | |||
| 8674 | return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); | |||
| 8675 | case ISD::EXTLOAD: | |||
| 8676 | return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); | |||
| 8677 | case ISD::NON_EXTLOAD: | |||
| 8678 | return Op; | |||
| 8679 | } | |||
| 8680 | ||||
| 8681 | llvm_unreachable("invalid ext type")::llvm::llvm_unreachable_internal("invalid ext type", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 8681); | |||
| 8682 | } | |||
| 8683 | ||||
| 8684 | SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { | |||
| 8685 | SelectionDAG &DAG = DCI.DAG; | |||
| 8686 | if (Ld->getAlign() < Align(4) || Ld->isDivergent()) | |||
| 8687 | return SDValue(); | |||
| 8688 | ||||
| 8689 | // FIXME: Constant loads should all be marked invariant. | |||
| 8690 | unsigned AS = Ld->getAddressSpace(); | |||
| 8691 | if (AS != AMDGPUAS::CONSTANT_ADDRESS && | |||
| 8692 | AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && | |||
| 8693 | (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) | |||
| 8694 | return SDValue(); | |||
| 8695 | ||||
| 8696 | // Don't do this early, since it may interfere with adjacent load merging for | |||
| 8697 | // illegal types. We can avoid losing alignment information for exotic types | |||
| 8698 | // pre-legalize. | |||
| 8699 | EVT MemVT = Ld->getMemoryVT(); | |||
| 8700 | if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || | |||
| 8701 | MemVT.getSizeInBits() >= 32) | |||
| 8702 | return SDValue(); | |||
| 8703 | ||||
| 8704 | SDLoc SL(Ld); | |||
| 8705 | ||||
| 8706 | assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&(static_cast <bool> ((!MemVT.isVector() || Ld->getExtensionType () == ISD::NON_EXTLOAD) && "unexpected vector extload" ) ? void (0) : __assert_fail ("(!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && \"unexpected vector extload\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 8707, __extension__ __PRETTY_FUNCTION__)) | |||
| 8707 | "unexpected vector extload")(static_cast <bool> ((!MemVT.isVector() || Ld->getExtensionType () == ISD::NON_EXTLOAD) && "unexpected vector extload" ) ? void (0) : __assert_fail ("(!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && \"unexpected vector extload\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 8707, __extension__ __PRETTY_FUNCTION__)); | |||
| 8708 | ||||
| 8709 | // TODO: Drop only high part of range. | |||
| 8710 | SDValue Ptr = Ld->getBasePtr(); | |||
| 8711 | SDValue NewLoad = DAG.getLoad( | |||
| 8712 | ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr, | |||
| 8713 | Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(), | |||
| 8714 | Ld->getMemOperand()->getFlags(), Ld->getAAInfo(), | |||
| 8715 | nullptr); // Drop ranges | |||
| 8716 | ||||
| 8717 | EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); | |||
| 8718 | if (MemVT.isFloatingPoint()) { | |||
| 8719 | assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&(static_cast <bool> (Ld->getExtensionType() == ISD:: NON_EXTLOAD && "unexpected fp extload") ? void (0) : __assert_fail ("Ld->getExtensionType() == ISD::NON_EXTLOAD && \"unexpected fp extload\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 8720, __extension__ __PRETTY_FUNCTION__)) | |||
| 8720 | "unexpected fp extload")(static_cast <bool> (Ld->getExtensionType() == ISD:: NON_EXTLOAD && "unexpected fp extload") ? void (0) : __assert_fail ("Ld->getExtensionType() == ISD::NON_EXTLOAD && \"unexpected fp extload\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 8720, __extension__ __PRETTY_FUNCTION__)); | |||
| 8721 | TruncVT = MemVT.changeTypeToInteger(); | |||
| 8722 | } | |||
| 8723 | ||||
| 8724 | SDValue Cvt = NewLoad; | |||
| 8725 | if (Ld->getExtensionType() == ISD::SEXTLOAD) { | |||
| 8726 | Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, | |||
| 8727 | DAG.getValueType(TruncVT)); | |||
| 8728 | } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || | |||
| 8729 | Ld->getExtensionType() == ISD::NON_EXTLOAD) { | |||
| 8730 | Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); | |||
| 8731 | } else { | |||
| 8732 | assert(Ld->getExtensionType() == ISD::EXTLOAD)(static_cast <bool> (Ld->getExtensionType() == ISD:: EXTLOAD) ? void (0) : __assert_fail ("Ld->getExtensionType() == ISD::EXTLOAD" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 8732, __extension__ __PRETTY_FUNCTION__)); | |||
| 8733 | } | |||
| 8734 | ||||
| 8735 | EVT VT = Ld->getValueType(0); | |||
| 8736 | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); | |||
| 8737 | ||||
| 8738 | DCI.AddToWorklist(Cvt.getNode()); | |||
| 8739 | ||||
| 8740 | // We may need to handle exotic cases, such as i16->i64 extloads, so insert | |||
| 8741 | // the appropriate extension from the 32-bit load. | |||
| 8742 | Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); | |||
| 8743 | DCI.AddToWorklist(Cvt.getNode()); | |||
| 8744 | ||||
| 8745 | // Handle conversion back to floating point if necessary. | |||
| 8746 | Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); | |||
| 8747 | ||||
| 8748 | return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); | |||
| 8749 | } | |||
| 8750 | ||||
| 8751 | static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO, | |||
| 8752 | const SIMachineFunctionInfo &Info) { | |||
| 8753 | // TODO: Should check if the address can definitely not access stack. | |||
| 8754 | if (Info.isEntryFunction()) | |||
| 8755 | return Info.hasFlatScratchInit(); | |||
| 8756 | return true; | |||
| 8757 | } | |||
| 8758 | ||||
| 8759 | SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { | |||
| 8760 | SDLoc DL(Op); | |||
| 8761 | LoadSDNode *Load = cast<LoadSDNode>(Op); | |||
| 8762 | ISD::LoadExtType ExtType = Load->getExtensionType(); | |||
| 8763 | EVT MemVT = Load->getMemoryVT(); | |||
| 8764 | ||||
| 8765 | if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { | |||
| 8766 | if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) | |||
| 8767 | return SDValue(); | |||
| 8768 | ||||
| 8769 | // FIXME: Copied from PPC | |||
| 8770 | // First, load into 32 bits, then truncate to 1 bit. | |||
| 8771 | ||||
| 8772 | SDValue Chain = Load->getChain(); | |||
| 8773 | SDValue BasePtr = Load->getBasePtr(); | |||
| 8774 | MachineMemOperand *MMO = Load->getMemOperand(); | |||
| 8775 | ||||
| 8776 | EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; | |||
| 8777 | ||||
| 8778 | SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, | |||
| 8779 | BasePtr, RealMemVT, MMO); | |||
| 8780 | ||||
| 8781 | if (!MemVT.isVector()) { | |||
| 8782 | SDValue Ops[] = { | |||
| 8783 | DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), | |||
| 8784 | NewLD.getValue(1) | |||
| 8785 | }; | |||
| 8786 | ||||
| 8787 | return DAG.getMergeValues(Ops, DL); | |||
| 8788 | } | |||
| 8789 | ||||
| 8790 | SmallVector<SDValue, 3> Elts; | |||
| 8791 | for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { | |||
| 8792 | SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, | |||
| 8793 | DAG.getConstant(I, DL, MVT::i32)); | |||
| 8794 | ||||
| 8795 | Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); | |||
| 8796 | } | |||
| 8797 | ||||
| 8798 | SDValue Ops[] = { | |||
| 8799 | DAG.getBuildVector(MemVT, DL, Elts), | |||
| 8800 | NewLD.getValue(1) | |||
| 8801 | }; | |||
| 8802 | ||||
| 8803 | return DAG.getMergeValues(Ops, DL); | |||
| 8804 | } | |||
| 8805 | ||||
| 8806 | if (!MemVT.isVector()) | |||
| 8807 | return SDValue(); | |||
| 8808 | ||||
| 8809 | assert(Op.getValueType().getVectorElementType() == MVT::i32 &&(static_cast <bool> (Op.getValueType().getVectorElementType () == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented." ) ? void (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 8810, __extension__ __PRETTY_FUNCTION__)) | |||
| 8810 | "Custom lowering for non-i32 vectors hasn't been implemented.")(static_cast <bool> (Op.getValueType().getVectorElementType () == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented." ) ? void (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 8810, __extension__ __PRETTY_FUNCTION__)); | |||
| 8811 | ||||
| 8812 | Align Alignment = Load->getAlign(); | |||
| 8813 | unsigned AS = Load->getAddressSpace(); | |||
| 8814 | if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && | |||
| 8815 | Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { | |||
| 8816 | return SplitVectorLoad(Op, DAG); | |||
| 8817 | } | |||
| 8818 | ||||
| 8819 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 8820 | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 8821 | // If there is a possibility that flat instruction access scratch memory | |||
| 8822 | // then we need to use the same legalization rules we use for private. | |||
| 8823 | if (AS == AMDGPUAS::FLAT_ADDRESS && | |||
| 8824 | !Subtarget->hasMultiDwordFlatScratchAddressing()) | |||
| 8825 | AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI) ? | |||
| 8826 | AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; | |||
| 8827 | ||||
| 8828 | unsigned NumElements = MemVT.getVectorNumElements(); | |||
| 8829 | ||||
| 8830 | if (AS == AMDGPUAS::CONSTANT_ADDRESS || | |||
| 8831 | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { | |||
| 8832 | if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) { | |||
| 8833 | if (MemVT.isPow2VectorType()) | |||
| 8834 | return SDValue(); | |||
| 8835 | return WidenOrSplitVectorLoad(Op, DAG); | |||
| 8836 | } | |||
| 8837 | // Non-uniform loads will be selected to MUBUF instructions, so they | |||
| 8838 | // have the same legalization requirements as global and private | |||
| 8839 | // loads. | |||
| 8840 | // | |||
| 8841 | } | |||
| 8842 | ||||
| 8843 | if (AS == AMDGPUAS::CONSTANT_ADDRESS || | |||
| 8844 | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || | |||
| 8845 | AS == AMDGPUAS::GLOBAL_ADDRESS) { | |||
| 8846 | if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && | |||
| 8847 | Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && | |||
| 8848 | Alignment >= Align(4) && NumElements < 32) { | |||
| 8849 | if (MemVT.isPow2VectorType()) | |||
| 8850 | return SDValue(); | |||
| 8851 | return WidenOrSplitVectorLoad(Op, DAG); | |||
| 8852 | } | |||
| 8853 | // Non-uniform loads will be selected to MUBUF instructions, so they | |||
| 8854 | // have the same legalization requirements as global and private | |||
| 8855 | // loads. | |||
| 8856 | // | |||
| 8857 | } | |||
| 8858 | if (AS == AMDGPUAS::CONSTANT_ADDRESS || | |||
| 8859 | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || | |||
| 8860 | AS == AMDGPUAS::GLOBAL_ADDRESS || | |||
| 8861 | AS == AMDGPUAS::FLAT_ADDRESS) { | |||
| 8862 | if (NumElements > 4) | |||
| 8863 | return SplitVectorLoad(Op, DAG); | |||
| 8864 | // v3 loads not supported on SI. | |||
| 8865 | if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) | |||
| 8866 | return WidenOrSplitVectorLoad(Op, DAG); | |||
| 8867 | ||||
| 8868 | // v3 and v4 loads are supported for private and global memory. | |||
| 8869 | return SDValue(); | |||
| 8870 | } | |||
| 8871 | if (AS == AMDGPUAS::PRIVATE_ADDRESS) { | |||
| 8872 | // Depending on the setting of the private_element_size field in the | |||
| 8873 | // resource descriptor, we can only make private accesses up to a certain | |||
| 8874 | // size. | |||
| 8875 | switch (Subtarget->getMaxPrivateElementSize()) { | |||
| 8876 | case 4: { | |||
| 8877 | SDValue Ops[2]; | |||
| 8878 | std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); | |||
| 8879 | return DAG.getMergeValues(Ops, DL); | |||
| 8880 | } | |||
| 8881 | case 8: | |||
| 8882 | if (NumElements > 2) | |||
| 8883 | return SplitVectorLoad(Op, DAG); | |||
| 8884 | return SDValue(); | |||
| 8885 | case 16: | |||
| 8886 | // Same as global/flat | |||
| 8887 | if (NumElements > 4) | |||
| 8888 | return SplitVectorLoad(Op, DAG); | |||
| 8889 | // v3 loads not supported on SI. | |||
| 8890 | if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) | |||
| 8891 | return WidenOrSplitVectorLoad(Op, DAG); | |||
| 8892 | ||||
| 8893 | return SDValue(); | |||
| 8894 | default: | |||
| 8895 | llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 8895); | |||
| 8896 | } | |||
| 8897 | } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { | |||
| 8898 | unsigned Fast = 0; | |||
| 8899 | auto Flags = Load->getMemOperand()->getFlags(); | |||
| 8900 | if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, | |||
| 8901 | Load->getAlign(), Flags, &Fast) && | |||
| 8902 | Fast > 1) | |||
| 8903 | return SDValue(); | |||
| 8904 | ||||
| 8905 | if (MemVT.isVector()) | |||
| 8906 | return SplitVectorLoad(Op, DAG); | |||
| 8907 | } | |||
| 8908 | ||||
| 8909 | if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), | |||
| 8910 | MemVT, *Load->getMemOperand())) { | |||
| 8911 | SDValue Ops[2]; | |||
| 8912 | std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); | |||
| 8913 | return DAG.getMergeValues(Ops, DL); | |||
| 8914 | } | |||
| 8915 | ||||
| 8916 | return SDValue(); | |||
| 8917 | } | |||
| 8918 | ||||
| 8919 | SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { | |||
| 8920 | EVT VT = Op.getValueType(); | |||
| 8921 | if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256) | |||
| 8922 | return splitTernaryVectorOp(Op, DAG); | |||
| 8923 | ||||
| 8924 | assert(VT.getSizeInBits() == 64)(static_cast <bool> (VT.getSizeInBits() == 64) ? void ( 0) : __assert_fail ("VT.getSizeInBits() == 64", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 8924, __extension__ __PRETTY_FUNCTION__)); | |||
| 8925 | ||||
| 8926 | SDLoc DL(Op); | |||
| 8927 | SDValue Cond = Op.getOperand(0); | |||
| 8928 | ||||
| 8929 | SDValue Zero = DAG.getConstant(0, DL, MVT::i32); | |||
| 8930 | SDValue One = DAG.getConstant(1, DL, MVT::i32); | |||
| 8931 | ||||
| 8932 | SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); | |||
| 8933 | SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); | |||
| 8934 | ||||
| 8935 | SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); | |||
| 8936 | SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); | |||
| 8937 | ||||
| 8938 | SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); | |||
| 8939 | ||||
| 8940 | SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); | |||
| 8941 | SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); | |||
| 8942 | ||||
| 8943 | SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); | |||
| 8944 | ||||
| 8945 | SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); | |||
| 8946 | return DAG.getNode(ISD::BITCAST, DL, VT, Res); | |||
| 8947 | } | |||
| 8948 | ||||
| 8949 | // Catch division cases where we can use shortcuts with rcp and rsq | |||
| 8950 | // instructions. | |||
| 8951 | SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, | |||
| 8952 | SelectionDAG &DAG) const { | |||
| 8953 | SDLoc SL(Op); | |||
| 8954 | SDValue LHS = Op.getOperand(0); | |||
| 8955 | SDValue RHS = Op.getOperand(1); | |||
| 8956 | EVT VT = Op.getValueType(); | |||
| 8957 | const SDNodeFlags Flags = Op->getFlags(); | |||
| 8958 | ||||
| 8959 | bool AllowInaccurateRcp = Flags.hasApproximateFuncs(); | |||
| 8960 | ||||
| 8961 | // Without !fpmath accuracy information, we can't do more because we don't | |||
| 8962 | // know exactly whether rcp is accurate enough to meet !fpmath requirement. | |||
| 8963 | if (!AllowInaccurateRcp) | |||
| 8964 | return SDValue(); | |||
| 8965 | ||||
| 8966 | if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { | |||
| 8967 | if (CLHS->isExactlyValue(1.0)) { | |||
| 8968 | // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to | |||
| 8969 | // the CI documentation has a worst case error of 1 ulp. | |||
| 8970 | // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to | |||
| 8971 | // use it as long as we aren't trying to use denormals. | |||
| 8972 | // | |||
| 8973 | // v_rcp_f16 and v_rsq_f16 DO support denormals. | |||
| 8974 | ||||
| 8975 | // 1.0 / sqrt(x) -> rsq(x) | |||
| 8976 | ||||
| 8977 | // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP | |||
| 8978 | // error seems really high at 2^29 ULP. | |||
| 8979 | if (RHS.getOpcode() == ISD::FSQRT) | |||
| 8980 | return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); | |||
| 8981 | ||||
| 8982 | // 1.0 / x -> rcp(x) | |||
| 8983 | return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); | |||
| 8984 | } | |||
| 8985 | ||||
| 8986 | // Same as for 1.0, but expand the sign out of the constant. | |||
| 8987 | if (CLHS->isExactlyValue(-1.0)) { | |||
| 8988 | // -1.0 / x -> rcp (fneg x) | |||
| 8989 | SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | |||
| 8990 | return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); | |||
| 8991 | } | |||
| 8992 | } | |||
| 8993 | ||||
| 8994 | // Turn into multiply by the reciprocal. | |||
| 8995 | // x / y -> x * (1.0 / y) | |||
| 8996 | SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); | |||
| 8997 | return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); | |||
| 8998 | } | |||
| 8999 | ||||
| 9000 | SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, | |||
| 9001 | SelectionDAG &DAG) const { | |||
| 9002 | SDLoc SL(Op); | |||
| 9003 | SDValue X = Op.getOperand(0); | |||
| 9004 | SDValue Y = Op.getOperand(1); | |||
| 9005 | EVT VT = Op.getValueType(); | |||
| 9006 | const SDNodeFlags Flags = Op->getFlags(); | |||
| 9007 | ||||
| 9008 | bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || | |||
| 9009 | DAG.getTarget().Options.UnsafeFPMath; | |||
| 9010 | if (!AllowInaccurateDiv) | |||
| 9011 | return SDValue(); | |||
| 9012 | ||||
| 9013 | SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); | |||
| 9014 | SDValue One = DAG.getConstantFP(1.0, SL, VT); | |||
| 9015 | ||||
| 9016 | SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); | |||
| 9017 | SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); | |||
| 9018 | ||||
| 9019 | R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); | |||
| 9020 | SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); | |||
| 9021 | R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); | |||
| 9022 | SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); | |||
| 9023 | SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); | |||
| 9024 | return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); | |||
| 9025 | } | |||
| 9026 | ||||
| 9027 | static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, | |||
| 9028 | EVT VT, SDValue A, SDValue B, SDValue GlueChain, | |||
| 9029 | SDNodeFlags Flags) { | |||
| 9030 | if (GlueChain->getNumValues() <= 1) { | |||
| 9031 | return DAG.getNode(Opcode, SL, VT, A, B, Flags); | |||
| 9032 | } | |||
| 9033 | ||||
| 9034 | assert(GlueChain->getNumValues() == 3)(static_cast <bool> (GlueChain->getNumValues() == 3) ? void (0) : __assert_fail ("GlueChain->getNumValues() == 3" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 9034, __extension__ __PRETTY_FUNCTION__)); | |||
| 9035 | ||||
| 9036 | SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); | |||
| 9037 | switch (Opcode) { | |||
| 9038 | default: llvm_unreachable("no chain equivalent for opcode")::llvm::llvm_unreachable_internal("no chain equivalent for opcode" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 9038); | |||
| 9039 | case ISD::FMUL: | |||
| 9040 | Opcode = AMDGPUISD::FMUL_W_CHAIN; | |||
| 9041 | break; | |||
| 9042 | } | |||
| 9043 | ||||
| 9044 | return DAG.getNode(Opcode, SL, VTList, | |||
| 9045 | {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, | |||
| 9046 | Flags); | |||
| 9047 | } | |||
| 9048 | ||||
| 9049 | static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, | |||
| 9050 | EVT VT, SDValue A, SDValue B, SDValue C, | |||
| 9051 | SDValue GlueChain, SDNodeFlags Flags) { | |||
| 9052 | if (GlueChain->getNumValues() <= 1) { | |||
| 9053 | return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); | |||
| 9054 | } | |||
| 9055 | ||||
| 9056 | assert(GlueChain->getNumValues() == 3)(static_cast <bool> (GlueChain->getNumValues() == 3) ? void (0) : __assert_fail ("GlueChain->getNumValues() == 3" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 9056, __extension__ __PRETTY_FUNCTION__)); | |||
| 9057 | ||||
| 9058 | SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); | |||
| 9059 | switch (Opcode) { | |||
| 9060 | default: llvm_unreachable("no chain equivalent for opcode")::llvm::llvm_unreachable_internal("no chain equivalent for opcode" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 9060); | |||
| 9061 | case ISD::FMA: | |||
| 9062 | Opcode = AMDGPUISD::FMA_W_CHAIN; | |||
| 9063 | break; | |||
| 9064 | } | |||
| 9065 | ||||
| 9066 | return DAG.getNode(Opcode, SL, VTList, | |||
| 9067 | {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, | |||
| 9068 | Flags); | |||
| 9069 | } | |||
| 9070 | ||||
| 9071 | SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { | |||
| 9072 | if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) | |||
| 9073 | return FastLowered; | |||
| 9074 | ||||
| 9075 | SDLoc SL(Op); | |||
| 9076 | SDValue Src0 = Op.getOperand(0); | |||
| 9077 | SDValue Src1 = Op.getOperand(1); | |||
| 9078 | ||||
| 9079 | SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); | |||
| 9080 | SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); | |||
| 9081 | ||||
| 9082 | SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); | |||
| 9083 | SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); | |||
| 9084 | ||||
| 9085 | SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); | |||
| 9086 | SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); | |||
| 9087 | ||||
| 9088 | return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); | |||
| 9089 | } | |||
| 9090 | ||||
| 9091 | // Faster 2.5 ULP division that does not support denormals. | |||
| 9092 | SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { | |||
| 9093 | SDLoc SL(Op); | |||
| 9094 | SDValue LHS = Op.getOperand(1); | |||
| 9095 | SDValue RHS = Op.getOperand(2); | |||
| 9096 | ||||
| 9097 | SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); | |||
| 9098 | ||||
| 9099 | const APFloat K0Val(llvm::bit_cast<float>(0x6f800000)); | |||
| 9100 | const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); | |||
| 9101 | ||||
| 9102 | const APFloat K1Val(llvm::bit_cast<float>(0x2f800000)); | |||
| 9103 | const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); | |||
| 9104 | ||||
| 9105 | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); | |||
| 9106 | ||||
| 9107 | EVT SetCCVT = | |||
| 9108 | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); | |||
| 9109 | ||||
| 9110 | SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); | |||
| 9111 | ||||
| 9112 | SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); | |||
| 9113 | ||||
| 9114 | // TODO: Should this propagate fast-math-flags? | |||
| 9115 | r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); | |||
| 9116 | ||||
| 9117 | // rcp does not support denormals. | |||
| 9118 | SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); | |||
| 9119 | ||||
| 9120 | SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); | |||
| 9121 | ||||
| 9122 | return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); | |||
| 9123 | } | |||
| 9124 | ||||
| 9125 | // Returns immediate value for setting the F32 denorm mode when using the | |||
| 9126 | // S_DENORM_MODE instruction. | |||
| 9127 | static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, | |||
| 9128 | const SDLoc &SL, const GCNSubtarget *ST) { | |||
| 9129 | assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE")(static_cast <bool> (ST->hasDenormModeInst() && "Requires S_DENORM_MODE") ? void (0) : __assert_fail ("ST->hasDenormModeInst() && \"Requires S_DENORM_MODE\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 9129, __extension__ __PRETTY_FUNCTION__)); | |||
| 9130 | int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) | |||
| 9131 | ? FP_DENORM_FLUSH_NONE3 | |||
| 9132 | : FP_DENORM_FLUSH_IN_FLUSH_OUT0; | |||
| 9133 | ||||
| 9134 | int Mode = SPDenormMode | (DPDenormModeDefault << 2); | |||
| 9135 | return DAG.getTargetConstant(Mode, SL, MVT::i32); | |||
| 9136 | } | |||
| 9137 | ||||
| 9138 | SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { | |||
| 9139 | if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) | |||
| 9140 | return FastLowered; | |||
| 9141 | ||||
| 9142 | // The selection matcher assumes anything with a chain selecting to a | |||
| 9143 | // mayRaiseFPException machine instruction. Since we're introducing a chain | |||
| 9144 | // here, we need to explicitly report nofpexcept for the regular fdiv | |||
| 9145 | // lowering. | |||
| 9146 | SDNodeFlags Flags = Op->getFlags(); | |||
| 9147 | Flags.setNoFPExcept(true); | |||
| 9148 | ||||
| 9149 | SDLoc SL(Op); | |||
| 9150 | SDValue LHS = Op.getOperand(0); | |||
| 9151 | SDValue RHS = Op.getOperand(1); | |||
| 9152 | ||||
| 9153 | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); | |||
| 9154 | ||||
| 9155 | SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); | |||
| 9156 | ||||
| 9157 | SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, | |||
| 9158 | {RHS, RHS, LHS}, Flags); | |||
| 9159 | SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, | |||
| 9160 | {LHS, RHS, LHS}, Flags); | |||
| 9161 | ||||
| 9162 | // Denominator is scaled to not be denormal, so using rcp is ok. | |||
| 9163 | SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, | |||
| 9164 | DenominatorScaled, Flags); | |||
| 9165 | SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, | |||
| 9166 | DenominatorScaled, Flags); | |||
| 9167 | ||||
| 9168 | const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | | |||
| 9169 | (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | | |||
| 9170 | (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); | |||
| 9171 | const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); | |||
| 9172 | ||||
| 9173 | const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); | |||
| 9174 | ||||
| 9175 | if (!HasFP32Denormals) { | |||
| 9176 | // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV | |||
| 9177 | // lowering. The chain dependence is insufficient, and we need glue. We do | |||
| 9178 | // not need the glue variants in a strictfp function. | |||
| 9179 | ||||
| 9180 | SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); | |||
| 9181 | ||||
| 9182 | SDNode *EnableDenorm; | |||
| 9183 | if (Subtarget->hasDenormModeInst()) { | |||
| 9184 | const SDValue EnableDenormValue = | |||
| 9185 | getSPDenormModeValue(FP_DENORM_FLUSH_NONE3, DAG, SL, Subtarget); | |||
| 9186 | ||||
| 9187 | EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, | |||
| 9188 | DAG.getEntryNode(), EnableDenormValue).getNode(); | |||
| 9189 | } else { | |||
| 9190 | const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE3, | |||
| 9191 | SL, MVT::i32); | |||
| 9192 | EnableDenorm = | |||
| 9193 | DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, | |||
| 9194 | {EnableDenormValue, BitField, DAG.getEntryNode()}); | |||
| 9195 | } | |||
| 9196 | ||||
| 9197 | SDValue Ops[3] = { | |||
| 9198 | NegDivScale0, | |||
| 9199 | SDValue(EnableDenorm, 0), | |||
| 9200 | SDValue(EnableDenorm, 1) | |||
| 9201 | }; | |||
| 9202 | ||||
| 9203 | NegDivScale0 = DAG.getMergeValues(Ops, SL); | |||
| 9204 | } | |||
| 9205 | ||||
| 9206 | SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, | |||
| 9207 | ApproxRcp, One, NegDivScale0, Flags); | |||
| 9208 | ||||
| 9209 | SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, | |||
| 9210 | ApproxRcp, Fma0, Flags); | |||
| 9211 | ||||
| 9212 | SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, | |||
| 9213 | Fma1, Fma1, Flags); | |||
| 9214 | ||||
| 9215 | SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, | |||
| 9216 | NumeratorScaled, Mul, Flags); | |||
| 9217 | ||||
| 9218 | SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, | |||
| 9219 | Fma2, Fma1, Mul, Fma2, Flags); | |||
| 9220 | ||||
| 9221 | SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, | |||
| 9222 | NumeratorScaled, Fma3, Flags); | |||
| 9223 | ||||
| 9224 | if (!HasFP32Denormals) { | |||
| 9225 | SDNode *DisableDenorm; | |||
| 9226 | if (Subtarget->hasDenormModeInst()) { | |||
| 9227 | const SDValue DisableDenormValue = | |||
| 9228 | getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT0, DAG, SL, Subtarget); | |||
| 9229 | ||||
| 9230 | DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, | |||
| 9231 | Fma4.getValue(1), DisableDenormValue, | |||
| 9232 | Fma4.getValue(2)).getNode(); | |||
| 9233 | } else { | |||
| 9234 | const SDValue DisableDenormValue = | |||
| 9235 | DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT0, SL, MVT::i32); | |||
| 9236 | ||||
| 9237 | DisableDenorm = DAG.getMachineNode( | |||
| 9238 | AMDGPU::S_SETREG_B32, SL, MVT::Other, | |||
| 9239 | {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); | |||
| 9240 | } | |||
| 9241 | ||||
| 9242 | SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, | |||
| 9243 | SDValue(DisableDenorm, 0), DAG.getRoot()); | |||
| 9244 | DAG.setRoot(OutputChain); | |||
| 9245 | } | |||
| 9246 | ||||
| 9247 | SDValue Scale = NumeratorScaled.getValue(1); | |||
| 9248 | SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, | |||
| 9249 | {Fma4, Fma1, Fma3, Scale}, Flags); | |||
| 9250 | ||||
| 9251 | return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); | |||
| 9252 | } | |||
| 9253 | ||||
| 9254 | SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { | |||
| 9255 | if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) | |||
| 9256 | return FastLowered; | |||
| 9257 | ||||
| 9258 | SDLoc SL(Op); | |||
| 9259 | SDValue X = Op.getOperand(0); | |||
| 9260 | SDValue Y = Op.getOperand(1); | |||
| 9261 | ||||
| 9262 | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); | |||
| 9263 | ||||
| 9264 | SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); | |||
| 9265 | ||||
| 9266 | SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); | |||
| 9267 | ||||
| 9268 | SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); | |||
| 9269 | ||||
| 9270 | SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); | |||
| 9271 | ||||
| 9272 | SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); | |||
| 9273 | ||||
| 9274 | SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); | |||
| 9275 | ||||
| 9276 | SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); | |||
| 9277 | ||||
| 9278 | SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); | |||
| 9279 | ||||
| 9280 | SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); | |||
| 9281 | SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); | |||
| 9282 | ||||
| 9283 | SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, | |||
| 9284 | NegDivScale0, Mul, DivScale1); | |||
| 9285 | ||||
| 9286 | SDValue Scale; | |||
| 9287 | ||||
| 9288 | if (!Subtarget->hasUsableDivScaleConditionOutput()) { | |||
| 9289 | // Workaround a hardware bug on SI where the condition output from div_scale | |||
| 9290 | // is not usable. | |||
| 9291 | ||||
| 9292 | const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); | |||
| 9293 | ||||
| 9294 | // Figure out if the scale to use for div_fmas. | |||
| 9295 | SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); | |||
| 9296 | SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); | |||
| 9297 | SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); | |||
| 9298 | SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); | |||
| 9299 | ||||
| 9300 | SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); | |||
| 9301 | SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); | |||
| 9302 | ||||
| 9303 | SDValue Scale0Hi | |||
| 9304 | = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); | |||
| 9305 | SDValue Scale1Hi | |||
| 9306 | = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); | |||
| 9307 | ||||
| 9308 | SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); | |||
| 9309 | SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); | |||
| 9310 | Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); | |||
| 9311 | } else { | |||
| 9312 | Scale = DivScale1.getValue(1); | |||
| 9313 | } | |||
| 9314 | ||||
| 9315 | SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, | |||
| 9316 | Fma4, Fma3, Mul, Scale); | |||
| 9317 | ||||
| 9318 | return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); | |||
| 9319 | } | |||
| 9320 | ||||
| 9321 | SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { | |||
| 9322 | EVT VT = Op.getValueType(); | |||
| 9323 | ||||
| 9324 | if (VT == MVT::f32) | |||
| 9325 | return LowerFDIV32(Op, DAG); | |||
| 9326 | ||||
| 9327 | if (VT == MVT::f64) | |||
| 9328 | return LowerFDIV64(Op, DAG); | |||
| 9329 | ||||
| 9330 | if (VT == MVT::f16) | |||
| 9331 | return LowerFDIV16(Op, DAG); | |||
| 9332 | ||||
| 9333 | llvm_unreachable("Unexpected type for fdiv")::llvm::llvm_unreachable_internal("Unexpected type for fdiv", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 9333); | |||
| 9334 | } | |||
| 9335 | ||||
| 9336 | SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { | |||
| 9337 | SDLoc DL(Op); | |||
| 9338 | StoreSDNode *Store = cast<StoreSDNode>(Op); | |||
| 9339 | EVT VT = Store->getMemoryVT(); | |||
| 9340 | ||||
| 9341 | if (VT == MVT::i1) { | |||
| 9342 | return DAG.getTruncStore(Store->getChain(), DL, | |||
| 9343 | DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), | |||
| 9344 | Store->getBasePtr(), MVT::i1, Store->getMemOperand()); | |||
| 9345 | } | |||
| 9346 | ||||
| 9347 | assert(VT.isVector() &&(static_cast <bool> (VT.isVector() && Store-> getValue().getValueType().getScalarType() == MVT::i32) ? void (0) : __assert_fail ("VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 9348, __extension__ __PRETTY_FUNCTION__)) | |||
| 9348 | Store->getValue().getValueType().getScalarType() == MVT::i32)(static_cast <bool> (VT.isVector() && Store-> getValue().getValueType().getScalarType() == MVT::i32) ? void (0) : __assert_fail ("VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 9348, __extension__ __PRETTY_FUNCTION__)); | |||
| 9349 | ||||
| 9350 | unsigned AS = Store->getAddressSpace(); | |||
| 9351 | if (Subtarget->hasLDSMisalignedBug() && | |||
| 9352 | AS == AMDGPUAS::FLAT_ADDRESS && | |||
| 9353 | Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) { | |||
| 9354 | return SplitVectorStore(Op, DAG); | |||
| 9355 | } | |||
| 9356 | ||||
| 9357 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 9358 | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 9359 | // If there is a possibility that flat instruction access scratch memory | |||
| 9360 | // then we need to use the same legalization rules we use for private. | |||
| 9361 | if (AS == AMDGPUAS::FLAT_ADDRESS && | |||
| 9362 | !Subtarget->hasMultiDwordFlatScratchAddressing()) | |||
| 9363 | AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI) ? | |||
| 9364 | AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; | |||
| 9365 | ||||
| 9366 | unsigned NumElements = VT.getVectorNumElements(); | |||
| 9367 | if (AS == AMDGPUAS::GLOBAL_ADDRESS || | |||
| 9368 | AS == AMDGPUAS::FLAT_ADDRESS) { | |||
| 9369 | if (NumElements > 4) | |||
| 9370 | return SplitVectorStore(Op, DAG); | |||
| 9371 | // v3 stores not supported on SI. | |||
| 9372 | if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) | |||
| 9373 | return SplitVectorStore(Op, DAG); | |||
| 9374 | ||||
| 9375 | if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), | |||
| 9376 | VT, *Store->getMemOperand())) | |||
| 9377 | return expandUnalignedStore(Store, DAG); | |||
| 9378 | ||||
| 9379 | return SDValue(); | |||
| 9380 | } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { | |||
| 9381 | switch (Subtarget->getMaxPrivateElementSize()) { | |||
| 9382 | case 4: | |||
| 9383 | return scalarizeVectorStore(Store, DAG); | |||
| 9384 | case 8: | |||
| 9385 | if (NumElements > 2) | |||
| 9386 | return SplitVectorStore(Op, DAG); | |||
| 9387 | return SDValue(); | |||
| 9388 | case 16: | |||
| 9389 | if (NumElements > 4 || | |||
| 9390 | (NumElements == 3 && !Subtarget->enableFlatScratch())) | |||
| 9391 | return SplitVectorStore(Op, DAG); | |||
| 9392 | return SDValue(); | |||
| 9393 | default: | |||
| 9394 | llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 9394); | |||
| 9395 | } | |||
| 9396 | } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { | |||
| 9397 | unsigned Fast = 0; | |||
| 9398 | auto Flags = Store->getMemOperand()->getFlags(); | |||
| 9399 | if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, | |||
| 9400 | Store->getAlign(), Flags, &Fast) && | |||
| 9401 | Fast > 1) | |||
| 9402 | return SDValue(); | |||
| 9403 | ||||
| 9404 | if (VT.isVector()) | |||
| 9405 | return SplitVectorStore(Op, DAG); | |||
| 9406 | ||||
| 9407 | return expandUnalignedStore(Store, DAG); | |||
| 9408 | } | |||
| 9409 | ||||
| 9410 | // Probably an invalid store. If so we'll end up emitting a selection error. | |||
| 9411 | return SDValue(); | |||
| 9412 | } | |||
| 9413 | ||||
| 9414 | SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { | |||
| 9415 | SDLoc DL(Op); | |||
| 9416 | EVT VT = Op.getValueType(); | |||
| 9417 | SDValue Arg = Op.getOperand(0); | |||
| 9418 | SDValue TrigVal; | |||
| 9419 | ||||
| 9420 | // Propagate fast-math flags so that the multiply we introduce can be folded | |||
| 9421 | // if Arg is already the result of a multiply by constant. | |||
| 9422 | auto Flags = Op->getFlags(); | |||
| 9423 | ||||
| 9424 | SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); | |||
| 9425 | ||||
| 9426 | if (Subtarget->hasTrigReducedRange()) { | |||
| 9427 | SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); | |||
| 9428 | TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); | |||
| 9429 | } else { | |||
| 9430 | TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); | |||
| 9431 | } | |||
| 9432 | ||||
| 9433 | switch (Op.getOpcode()) { | |||
| 9434 | case ISD::FCOS: | |||
| 9435 | return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); | |||
| 9436 | case ISD::FSIN: | |||
| 9437 | return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); | |||
| 9438 | default: | |||
| 9439 | llvm_unreachable("Wrong trig opcode")::llvm::llvm_unreachable_internal("Wrong trig opcode", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 9439); | |||
| 9440 | } | |||
| 9441 | } | |||
| 9442 | ||||
| 9443 | SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { | |||
| 9444 | AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); | |||
| 9445 | assert(AtomicNode->isCompareAndSwap())(static_cast <bool> (AtomicNode->isCompareAndSwap()) ? void (0) : __assert_fail ("AtomicNode->isCompareAndSwap()" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 9445, __extension__ __PRETTY_FUNCTION__)); | |||
| 9446 | unsigned AS = AtomicNode->getAddressSpace(); | |||
| 9447 | ||||
| 9448 | // No custom lowering required for local address space | |||
| 9449 | if (!AMDGPU::isFlatGlobalAddrSpace(AS)) | |||
| 9450 | return Op; | |||
| 9451 | ||||
| 9452 | // Non-local address space requires custom lowering for atomic compare | |||
| 9453 | // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 | |||
| 9454 | SDLoc DL(Op); | |||
| 9455 | SDValue ChainIn = Op.getOperand(0); | |||
| 9456 | SDValue Addr = Op.getOperand(1); | |||
| 9457 | SDValue Old = Op.getOperand(2); | |||
| 9458 | SDValue New = Op.getOperand(3); | |||
| 9459 | EVT VT = Op.getValueType(); | |||
| 9460 | MVT SimpleVT = VT.getSimpleVT(); | |||
| 9461 | MVT VecType = MVT::getVectorVT(SimpleVT, 2); | |||
| 9462 | ||||
| 9463 | SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); | |||
| 9464 | SDValue Ops[] = { ChainIn, Addr, NewOld }; | |||
| 9465 | ||||
| 9466 | return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), | |||
| 9467 | Ops, VT, AtomicNode->getMemOperand()); | |||
| 9468 | } | |||
| 9469 | ||||
| 9470 | //===----------------------------------------------------------------------===// | |||
| 9471 | // Custom DAG optimizations | |||
| 9472 | //===----------------------------------------------------------------------===// | |||
| 9473 | ||||
| 9474 | SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, | |||
| 9475 | DAGCombinerInfo &DCI) const { | |||
| 9476 | EVT VT = N->getValueType(0); | |||
| 9477 | EVT ScalarVT = VT.getScalarType(); | |||
| 9478 | if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) | |||
| 9479 | return SDValue(); | |||
| 9480 | ||||
| 9481 | SelectionDAG &DAG = DCI.DAG; | |||
| 9482 | SDLoc DL(N); | |||
| 9483 | ||||
| 9484 | SDValue Src = N->getOperand(0); | |||
| 9485 | EVT SrcVT = Src.getValueType(); | |||
| 9486 | ||||
| 9487 | // TODO: We could try to match extracting the higher bytes, which would be | |||
| 9488 | // easier if i8 vectors weren't promoted to i32 vectors, particularly after | |||
| 9489 | // types are legalized. v4i8 -> v4f32 is probably the only case to worry | |||
| 9490 | // about in practice. | |||
| 9491 | if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { | |||
| 9492 | if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { | |||
| 9493 | SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); | |||
| 9494 | DCI.AddToWorklist(Cvt.getNode()); | |||
| 9495 | ||||
| 9496 | // For the f16 case, fold to a cast to f32 and then cast back to f16. | |||
| 9497 | if (ScalarVT != MVT::f32) { | |||
| 9498 | Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, | |||
| 9499 | DAG.getTargetConstant(0, DL, MVT::i32)); | |||
| 9500 | } | |||
| 9501 | return Cvt; | |||
| 9502 | } | |||
| 9503 | } | |||
| 9504 | ||||
| 9505 | return SDValue(); | |||
| 9506 | } | |||
| 9507 | ||||
| 9508 | SDValue SITargetLowering::performFCopySignCombine(SDNode *N, | |||
| 9509 | DAGCombinerInfo &DCI) const { | |||
| 9510 | SDValue MagnitudeOp = N->getOperand(0); | |||
| 9511 | SDValue SignOp = N->getOperand(1); | |||
| 9512 | SelectionDAG &DAG = DCI.DAG; | |||
| 9513 | SDLoc DL(N); | |||
| 9514 | ||||
| 9515 | // f64 fcopysign is really an f32 copysign on the high bits, so replace the | |||
| 9516 | // lower half with a copy. | |||
| 9517 | // fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y) | |||
| 9518 | if (MagnitudeOp.getValueType() == MVT::f64) { | |||
| 9519 | SDValue MagAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, MagnitudeOp); | |||
| 9520 | SDValue MagLo = | |||
| 9521 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, | |||
| 9522 | DAG.getConstant(0, DL, MVT::i32)); | |||
| 9523 | SDValue MagHi = | |||
| 9524 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, | |||
| 9525 | DAG.getConstant(1, DL, MVT::i32)); | |||
| 9526 | ||||
| 9527 | SDValue HiOp = | |||
| 9528 | DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOp); | |||
| 9529 | ||||
| 9530 | SDValue Vector = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp); | |||
| 9531 | ||||
| 9532 | return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector); | |||
| 9533 | } | |||
| 9534 | ||||
| 9535 | if (SignOp.getValueType() != MVT::f64) | |||
| 9536 | return SDValue(); | |||
| 9537 | ||||
| 9538 | // Reduce width of sign operand, we only need the highest bit. | |||
| 9539 | // | |||
| 9540 | // fcopysign f64:x, f64:y -> | |||
| 9541 | // fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1) | |||
| 9542 | // TODO: In some cases it might make sense to go all the way to f16. | |||
| 9543 | SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, SignOp); | |||
| 9544 | SDValue SignAsF32 = | |||
| 9545 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector, | |||
| 9546 | DAG.getConstant(1, DL, MVT::i32)); | |||
| 9547 | ||||
| 9548 | return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0), | |||
| 9549 | SignAsF32); | |||
| 9550 | } | |||
| 9551 | ||||
| 9552 | // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) | |||
| 9553 | ||||
| 9554 | // This is a variant of | |||
| 9555 | // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), | |||
| 9556 | // | |||
| 9557 | // The normal DAG combiner will do this, but only if the add has one use since | |||
| 9558 | // that would increase the number of instructions. | |||
| 9559 | // | |||
| 9560 | // This prevents us from seeing a constant offset that can be folded into a | |||
| 9561 | // memory instruction's addressing mode. If we know the resulting add offset of | |||
| 9562 | // a pointer can be folded into an addressing offset, we can replace the pointer | |||
| 9563 | // operand with the add of new constant offset. This eliminates one of the uses, | |||
| 9564 | // and may allow the remaining use to also be simplified. | |||
| 9565 | // | |||
| 9566 | SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, | |||
| 9567 | unsigned AddrSpace, | |||
| 9568 | EVT MemVT, | |||
| 9569 | DAGCombinerInfo &DCI) const { | |||
| 9570 | SDValue N0 = N->getOperand(0); | |||
| 9571 | SDValue N1 = N->getOperand(1); | |||
| 9572 | ||||
| 9573 | // We only do this to handle cases where it's profitable when there are | |||
| 9574 | // multiple uses of the add, so defer to the standard combine. | |||
| 9575 | if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || | |||
| 9576 | N0->hasOneUse()) | |||
| 9577 | return SDValue(); | |||
| 9578 | ||||
| 9579 | const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); | |||
| 9580 | if (!CN1) | |||
| 9581 | return SDValue(); | |||
| 9582 | ||||
| 9583 | const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | |||
| 9584 | if (!CAdd) | |||
| 9585 | return SDValue(); | |||
| 9586 | ||||
| 9587 | // If the resulting offset is too large, we can't fold it into the addressing | |||
| 9588 | // mode offset. | |||
| 9589 | APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); | |||
| 9590 | Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); | |||
| 9591 | ||||
| 9592 | AddrMode AM; | |||
| 9593 | AM.HasBaseReg = true; | |||
| 9594 | AM.BaseOffs = Offset.getSExtValue(); | |||
| 9595 | if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) | |||
| 9596 | return SDValue(); | |||
| 9597 | ||||
| 9598 | SelectionDAG &DAG = DCI.DAG; | |||
| 9599 | SDLoc SL(N); | |||
| 9600 | EVT VT = N->getValueType(0); | |||
| 9601 | ||||
| 9602 | SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); | |||
| 9603 | SDValue COffset = DAG.getConstant(Offset, SL, VT); | |||
| 9604 | ||||
| 9605 | SDNodeFlags Flags; | |||
| 9606 | Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && | |||
| 9607 | (N0.getOpcode() == ISD::OR || | |||
| 9608 | N0->getFlags().hasNoUnsignedWrap())); | |||
| 9609 | ||||
| 9610 | return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); | |||
| 9611 | } | |||
| 9612 | ||||
| 9613 | /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset | |||
| 9614 | /// by the chain and intrinsic ID. Theoretically we would also need to check the | |||
| 9615 | /// specific intrinsic, but they all place the pointer operand first. | |||
| 9616 | static unsigned getBasePtrIndex(const MemSDNode *N) { | |||
| 9617 | switch (N->getOpcode()) { | |||
| 9618 | case ISD::STORE: | |||
| 9619 | case ISD::INTRINSIC_W_CHAIN: | |||
| 9620 | case ISD::INTRINSIC_VOID: | |||
| 9621 | return 2; | |||
| 9622 | default: | |||
| 9623 | return 1; | |||
| 9624 | } | |||
| 9625 | } | |||
| 9626 | ||||
| 9627 | SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, | |||
| 9628 | DAGCombinerInfo &DCI) const { | |||
| 9629 | SelectionDAG &DAG = DCI.DAG; | |||
| 9630 | SDLoc SL(N); | |||
| 9631 | ||||
| 9632 | unsigned PtrIdx = getBasePtrIndex(N); | |||
| 9633 | SDValue Ptr = N->getOperand(PtrIdx); | |||
| 9634 | ||||
| 9635 | // TODO: We could also do this for multiplies. | |||
| 9636 | if (Ptr.getOpcode() == ISD::SHL) { | |||
| 9637 | SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), | |||
| 9638 | N->getMemoryVT(), DCI); | |||
| 9639 | if (NewPtr) { | |||
| 9640 | SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); | |||
| 9641 | ||||
| 9642 | NewOps[PtrIdx] = NewPtr; | |||
| 9643 | return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); | |||
| 9644 | } | |||
| 9645 | } | |||
| 9646 | ||||
| 9647 | return SDValue(); | |||
| 9648 | } | |||
| 9649 | ||||
| 9650 | static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { | |||
| 9651 | return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || | |||
| 9652 | (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || | |||
| 9653 | (Opc == ISD::XOR && Val == 0); | |||
| 9654 | } | |||
| 9655 | ||||
| 9656 | // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This | |||
| 9657 | // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit | |||
| 9658 | // integer combine opportunities since most 64-bit operations are decomposed | |||
| 9659 | // this way. TODO: We won't want this for SALU especially if it is an inline | |||
| 9660 | // immediate. | |||
| 9661 | SDValue SITargetLowering::splitBinaryBitConstantOp( | |||
| 9662 | DAGCombinerInfo &DCI, | |||
| 9663 | const SDLoc &SL, | |||
| 9664 | unsigned Opc, SDValue LHS, | |||
| 9665 | const ConstantSDNode *CRHS) const { | |||
| 9666 | uint64_t Val = CRHS->getZExtValue(); | |||
| 9667 | uint32_t ValLo = Lo_32(Val); | |||
| 9668 | uint32_t ValHi = Hi_32(Val); | |||
| 9669 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 9670 | ||||
| 9671 | if ((bitOpWithConstantIsReducible(Opc, ValLo) || | |||
| 9672 | bitOpWithConstantIsReducible(Opc, ValHi)) || | |||
| 9673 | (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { | |||
| 9674 | // If we need to materialize a 64-bit immediate, it will be split up later | |||
| 9675 | // anyway. Avoid creating the harder to understand 64-bit immediate | |||
| 9676 | // materialization. | |||
| 9677 | return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); | |||
| 9678 | } | |||
| 9679 | ||||
| 9680 | return SDValue(); | |||
| 9681 | } | |||
| 9682 | ||||
| 9683 | // Returns true if argument is a boolean value which is not serialized into | |||
| 9684 | // memory or argument and does not require v_cndmask_b32 to be deserialized. | |||
| 9685 | static bool isBoolSGPR(SDValue V) { | |||
| 9686 | if (V.getValueType() != MVT::i1) | |||
| 9687 | return false; | |||
| 9688 | switch (V.getOpcode()) { | |||
| 9689 | default: | |||
| 9690 | break; | |||
| 9691 | case ISD::SETCC: | |||
| 9692 | case AMDGPUISD::FP_CLASS: | |||
| 9693 | return true; | |||
| 9694 | case ISD::AND: | |||
| 9695 | case ISD::OR: | |||
| 9696 | case ISD::XOR: | |||
| 9697 | return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); | |||
| 9698 | } | |||
| 9699 | return false; | |||
| 9700 | } | |||
| 9701 | ||||
| 9702 | // If a constant has all zeroes or all ones within each byte return it. | |||
| 9703 | // Otherwise return 0. | |||
| 9704 | static uint32_t getConstantPermuteMask(uint32_t C) { | |||
| 9705 | // 0xff for any zero byte in the mask | |||
| 9706 | uint32_t ZeroByteMask = 0; | |||
| 9707 | if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; | |||
| 9708 | if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; | |||
| 9709 | if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; | |||
| 9710 | if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; | |||
| 9711 | uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte | |||
| 9712 | if ((NonZeroByteMask & C) != NonZeroByteMask) | |||
| 9713 | return 0; // Partial bytes selected. | |||
| 9714 | return C; | |||
| 9715 | } | |||
| 9716 | ||||
| 9717 | // Check if a node selects whole bytes from its operand 0 starting at a byte | |||
| 9718 | // boundary while masking the rest. Returns select mask as in the v_perm_b32 | |||
| 9719 | // or -1 if not succeeded. | |||
| 9720 | // Note byte select encoding: | |||
| 9721 | // value 0-3 selects corresponding source byte; | |||
| 9722 | // value 0xc selects zero; | |||
| 9723 | // value 0xff selects 0xff. | |||
| 9724 | static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { | |||
| 9725 | assert(V.getValueSizeInBits() == 32)(static_cast <bool> (V.getValueSizeInBits() == 32) ? void (0) : __assert_fail ("V.getValueSizeInBits() == 32", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 9725, __extension__ __PRETTY_FUNCTION__)); | |||
| 9726 | ||||
| 9727 | if (V.getNumOperands() != 2) | |||
| 9728 | return ~0; | |||
| 9729 | ||||
| 9730 | ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); | |||
| 9731 | if (!N1) | |||
| 9732 | return ~0; | |||
| 9733 | ||||
| 9734 | uint32_t C = N1->getZExtValue(); | |||
| 9735 | ||||
| 9736 | switch (V.getOpcode()) { | |||
| 9737 | default: | |||
| 9738 | break; | |||
| 9739 | case ISD::AND: | |||
| 9740 | if (uint32_t ConstMask = getConstantPermuteMask(C)) { | |||
| 9741 | return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); | |||
| 9742 | } | |||
| 9743 | break; | |||
| 9744 | ||||
| 9745 | case ISD::OR: | |||
| 9746 | if (uint32_t ConstMask = getConstantPermuteMask(C)) { | |||
| 9747 | return (0x03020100 & ~ConstMask) | ConstMask; | |||
| 9748 | } | |||
| 9749 | break; | |||
| 9750 | ||||
| 9751 | case ISD::SHL: | |||
| 9752 | if (C % 8) | |||
| 9753 | return ~0; | |||
| 9754 | ||||
| 9755 | return uint32_t((0x030201000c0c0c0cull << C) >> 32); | |||
| 9756 | ||||
| 9757 | case ISD::SRL: | |||
| 9758 | if (C % 8) | |||
| 9759 | return ~0; | |||
| 9760 | ||||
| 9761 | return uint32_t(0x0c0c0c0c03020100ull >> C); | |||
| 9762 | } | |||
| 9763 | ||||
| 9764 | return ~0; | |||
| 9765 | } | |||
| 9766 | ||||
| 9767 | SDValue SITargetLowering::performAndCombine(SDNode *N, | |||
| 9768 | DAGCombinerInfo &DCI) const { | |||
| 9769 | if (DCI.isBeforeLegalize()) | |||
| 9770 | return SDValue(); | |||
| 9771 | ||||
| 9772 | SelectionDAG &DAG = DCI.DAG; | |||
| 9773 | EVT VT = N->getValueType(0); | |||
| 9774 | SDValue LHS = N->getOperand(0); | |||
| 9775 | SDValue RHS = N->getOperand(1); | |||
| 9776 | ||||
| 9777 | ||||
| 9778 | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); | |||
| 9779 | if (VT == MVT::i64 && CRHS) { | |||
| 9780 | if (SDValue Split | |||
| 9781 | = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) | |||
| 9782 | return Split; | |||
| 9783 | } | |||
| 9784 | ||||
| 9785 | if (CRHS && VT == MVT::i32) { | |||
| 9786 | // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb | |||
| 9787 | // nb = number of trailing zeroes in mask | |||
| 9788 | // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, | |||
| 9789 | // given that we are selecting 8 or 16 bit fields starting at byte boundary. | |||
| 9790 | uint64_t Mask = CRHS->getZExtValue(); | |||
| 9791 | unsigned Bits = llvm::popcount(Mask); | |||
| 9792 | if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && | |||
| 9793 | (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { | |||
| 9794 | if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { | |||
| 9795 | unsigned Shift = CShift->getZExtValue(); | |||
| 9796 | unsigned NB = CRHS->getAPIntValue().countr_zero(); | |||
| 9797 | unsigned Offset = NB + Shift; | |||
| 9798 | if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. | |||
| 9799 | SDLoc SL(N); | |||
| 9800 | SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, | |||
| 9801 | LHS->getOperand(0), | |||
| 9802 | DAG.getConstant(Offset, SL, MVT::i32), | |||
| 9803 | DAG.getConstant(Bits, SL, MVT::i32)); | |||
| 9804 | EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); | |||
| 9805 | SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, | |||
| 9806 | DAG.getValueType(NarrowVT)); | |||
| 9807 | SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, | |||
| 9808 | DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); | |||
| 9809 | return Shl; | |||
| 9810 | } | |||
| 9811 | } | |||
| 9812 | } | |||
| 9813 | ||||
| 9814 | // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) | |||
| 9815 | if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && | |||
| 9816 | isa<ConstantSDNode>(LHS.getOperand(2))) { | |||
| 9817 | uint32_t Sel = getConstantPermuteMask(Mask); | |||
| 9818 | if (!Sel) | |||
| 9819 | return SDValue(); | |||
| 9820 | ||||
| 9821 | // Select 0xc for all zero bytes | |||
| 9822 | Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); | |||
| 9823 | SDLoc DL(N); | |||
| 9824 | return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), | |||
| 9825 | LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); | |||
| 9826 | } | |||
| 9827 | } | |||
| 9828 | ||||
| 9829 | // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> | |||
| 9830 | // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) | |||
| 9831 | if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { | |||
| 9832 | ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); | |||
| 9833 | ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); | |||
| 9834 | ||||
| 9835 | SDValue X = LHS.getOperand(0); | |||
| 9836 | SDValue Y = RHS.getOperand(0); | |||
| 9837 | if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X || | |||
| 9838 | !isTypeLegal(X.getValueType())) | |||
| 9839 | return SDValue(); | |||
| 9840 | ||||
| 9841 | if (LCC == ISD::SETO) { | |||
| 9842 | if (X != LHS.getOperand(1)) | |||
| 9843 | return SDValue(); | |||
| 9844 | ||||
| 9845 | if (RCC == ISD::SETUNE) { | |||
| 9846 | const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); | |||
| 9847 | if (!C1 || !C1->isInfinity() || C1->isNegative()) | |||
| 9848 | return SDValue(); | |||
| 9849 | ||||
| 9850 | const uint32_t Mask = SIInstrFlags::N_NORMAL | | |||
| 9851 | SIInstrFlags::N_SUBNORMAL | | |||
| 9852 | SIInstrFlags::N_ZERO | | |||
| 9853 | SIInstrFlags::P_ZERO | | |||
| 9854 | SIInstrFlags::P_SUBNORMAL | | |||
| 9855 | SIInstrFlags::P_NORMAL; | |||
| 9856 | ||||
| 9857 | static_assert(((~(SIInstrFlags::S_NAN | | |||
| 9858 | SIInstrFlags::Q_NAN | | |||
| 9859 | SIInstrFlags::N_INFINITY | | |||
| 9860 | SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, | |||
| 9861 | "mask not equal"); | |||
| 9862 | ||||
| 9863 | SDLoc DL(N); | |||
| 9864 | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, | |||
| 9865 | X, DAG.getConstant(Mask, DL, MVT::i32)); | |||
| 9866 | } | |||
| 9867 | } | |||
| 9868 | } | |||
| 9869 | ||||
| 9870 | if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) | |||
| 9871 | std::swap(LHS, RHS); | |||
| 9872 | ||||
| 9873 | if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && | |||
| 9874 | RHS.hasOneUse()) { | |||
| 9875 | ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); | |||
| 9876 | // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) | |||
| 9877 | // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) | |||
| 9878 | const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); | |||
| 9879 | if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && | |||
| 9880 | (RHS.getOperand(0) == LHS.getOperand(0) && | |||
| 9881 | LHS.getOperand(0) == LHS.getOperand(1))) { | |||
| 9882 | const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; | |||
| 9883 | unsigned NewMask = LCC == ISD::SETO ? | |||
| 9884 | Mask->getZExtValue() & ~OrdMask : | |||
| 9885 | Mask->getZExtValue() & OrdMask; | |||
| 9886 | ||||
| 9887 | SDLoc DL(N); | |||
| 9888 | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), | |||
| 9889 | DAG.getConstant(NewMask, DL, MVT::i32)); | |||
| 9890 | } | |||
| 9891 | } | |||
| 9892 | ||||
| 9893 | if (VT == MVT::i32 && | |||
| 9894 | (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { | |||
| 9895 | // and x, (sext cc from i1) => select cc, x, 0 | |||
| 9896 | if (RHS.getOpcode() != ISD::SIGN_EXTEND) | |||
| 9897 | std::swap(LHS, RHS); | |||
| 9898 | if (isBoolSGPR(RHS.getOperand(0))) | |||
| 9899 | return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), | |||
| 9900 | LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); | |||
| 9901 | } | |||
| 9902 | ||||
| 9903 | // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) | |||
| 9904 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 9905 | if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && | |||
| 9906 | N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { | |||
| 9907 | uint32_t LHSMask = getPermuteMask(DAG, LHS); | |||
| 9908 | uint32_t RHSMask = getPermuteMask(DAG, RHS); | |||
| 9909 | if (LHSMask != ~0u && RHSMask != ~0u) { | |||
| 9910 | // Canonicalize the expression in an attempt to have fewer unique masks | |||
| 9911 | // and therefore fewer registers used to hold the masks. | |||
| 9912 | if (LHSMask > RHSMask) { | |||
| 9913 | std::swap(LHSMask, RHSMask); | |||
| 9914 | std::swap(LHS, RHS); | |||
| 9915 | } | |||
| 9916 | ||||
| 9917 | // Select 0xc for each lane used from source operand. Zero has 0xc mask | |||
| 9918 | // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. | |||
| 9919 | uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; | |||
| 9920 | uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; | |||
| 9921 | ||||
| 9922 | // Check of we need to combine values from two sources within a byte. | |||
| 9923 | if (!(LHSUsedLanes & RHSUsedLanes) && | |||
| 9924 | // If we select high and lower word keep it for SDWA. | |||
| 9925 | // TODO: teach SDWA to work with v_perm_b32 and remove the check. | |||
| 9926 | !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { | |||
| 9927 | // Each byte in each mask is either selector mask 0-3, or has higher | |||
| 9928 | // bits set in either of masks, which can be 0xff for 0xff or 0x0c for | |||
| 9929 | // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise | |||
| 9930 | // mask which is not 0xff wins. By anding both masks we have a correct | |||
| 9931 | // result except that 0x0c shall be corrected to give 0x0c only. | |||
| 9932 | uint32_t Mask = LHSMask & RHSMask; | |||
| 9933 | for (unsigned I = 0; I < 32; I += 8) { | |||
| 9934 | uint32_t ByteSel = 0xff << I; | |||
| 9935 | if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) | |||
| 9936 | Mask &= (0x0c << I) & 0xffffffff; | |||
| 9937 | } | |||
| 9938 | ||||
| 9939 | // Add 4 to each active LHS lane. It will not affect any existing 0xff | |||
| 9940 | // or 0x0c. | |||
| 9941 | uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); | |||
| 9942 | SDLoc DL(N); | |||
| 9943 | ||||
| 9944 | return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, | |||
| 9945 | LHS.getOperand(0), RHS.getOperand(0), | |||
| 9946 | DAG.getConstant(Sel, DL, MVT::i32)); | |||
| 9947 | } | |||
| 9948 | } | |||
| 9949 | } | |||
| 9950 | ||||
| 9951 | return SDValue(); | |||
| 9952 | } | |||
| 9953 | ||||
| 9954 | SDValue SITargetLowering::performOrCombine(SDNode *N, | |||
| 9955 | DAGCombinerInfo &DCI) const { | |||
| 9956 | SelectionDAG &DAG = DCI.DAG; | |||
| 9957 | SDValue LHS = N->getOperand(0); | |||
| 9958 | SDValue RHS = N->getOperand(1); | |||
| 9959 | ||||
| 9960 | EVT VT = N->getValueType(0); | |||
| 9961 | if (VT == MVT::i1) { | |||
| 9962 | // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) | |||
| 9963 | if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && | |||
| 9964 | RHS.getOpcode() == AMDGPUISD::FP_CLASS) { | |||
| 9965 | SDValue Src = LHS.getOperand(0); | |||
| 9966 | if (Src != RHS.getOperand(0)) | |||
| 9967 | return SDValue(); | |||
| 9968 | ||||
| 9969 | const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); | |||
| 9970 | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); | |||
| 9971 | if (!CLHS || !CRHS) | |||
| 9972 | return SDValue(); | |||
| 9973 | ||||
| 9974 | // Only 10 bits are used. | |||
| 9975 | static const uint32_t MaxMask = 0x3ff; | |||
| 9976 | ||||
| 9977 | uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; | |||
| 9978 | SDLoc DL(N); | |||
| 9979 | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, | |||
| 9980 | Src, DAG.getConstant(NewMask, DL, MVT::i32)); | |||
| 9981 | } | |||
| 9982 | ||||
| 9983 | return SDValue(); | |||
| 9984 | } | |||
| 9985 | ||||
| 9986 | // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) | |||
| 9987 | if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && | |||
| 9988 | LHS.getOpcode() == AMDGPUISD::PERM && | |||
| 9989 | isa<ConstantSDNode>(LHS.getOperand(2))) { | |||
| 9990 | uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); | |||
| 9991 | if (!Sel) | |||
| 9992 | return SDValue(); | |||
| 9993 | ||||
| 9994 | Sel |= LHS.getConstantOperandVal(2); | |||
| 9995 | SDLoc DL(N); | |||
| 9996 | return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), | |||
| 9997 | LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); | |||
| 9998 | } | |||
| 9999 | ||||
| 10000 | // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) | |||
| 10001 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 10002 | if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && | |||
| 10003 | N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { | |||
| 10004 | uint32_t LHSMask = getPermuteMask(DAG, LHS); | |||
| 10005 | uint32_t RHSMask = getPermuteMask(DAG, RHS); | |||
| 10006 | if (LHSMask != ~0u && RHSMask != ~0u) { | |||
| 10007 | // Canonicalize the expression in an attempt to have fewer unique masks | |||
| 10008 | // and therefore fewer registers used to hold the masks. | |||
| 10009 | if (LHSMask > RHSMask) { | |||
| 10010 | std::swap(LHSMask, RHSMask); | |||
| 10011 | std::swap(LHS, RHS); | |||
| 10012 | } | |||
| 10013 | ||||
| 10014 | // Select 0xc for each lane used from source operand. Zero has 0xc mask | |||
| 10015 | // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. | |||
| 10016 | uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; | |||
| 10017 | uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; | |||
| 10018 | ||||
| 10019 | // Check of we need to combine values from two sources within a byte. | |||
| 10020 | if (!(LHSUsedLanes & RHSUsedLanes) && | |||
| 10021 | // If we select high and lower word keep it for SDWA. | |||
| 10022 | // TODO: teach SDWA to work with v_perm_b32 and remove the check. | |||
| 10023 | !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { | |||
| 10024 | // Kill zero bytes selected by other mask. Zero value is 0xc. | |||
| 10025 | LHSMask &= ~RHSUsedLanes; | |||
| 10026 | RHSMask &= ~LHSUsedLanes; | |||
| 10027 | // Add 4 to each active LHS lane | |||
| 10028 | LHSMask |= LHSUsedLanes & 0x04040404; | |||
| 10029 | // Combine masks | |||
| 10030 | uint32_t Sel = LHSMask | RHSMask; | |||
| 10031 | SDLoc DL(N); | |||
| 10032 | ||||
| 10033 | return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, | |||
| 10034 | LHS.getOperand(0), RHS.getOperand(0), | |||
| 10035 | DAG.getConstant(Sel, DL, MVT::i32)); | |||
| 10036 | } | |||
| 10037 | } | |||
| 10038 | } | |||
| 10039 | ||||
| 10040 | if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) | |||
| 10041 | return SDValue(); | |||
| 10042 | ||||
| 10043 | // TODO: This could be a generic combine with a predicate for extracting the | |||
| 10044 | // high half of an integer being free. | |||
| 10045 | ||||
| 10046 | // (or i64:x, (zero_extend i32:y)) -> | |||
| 10047 | // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) | |||
| 10048 | if (LHS.getOpcode() == ISD::ZERO_EXTEND && | |||
| 10049 | RHS.getOpcode() != ISD::ZERO_EXTEND) | |||
| 10050 | std::swap(LHS, RHS); | |||
| 10051 | ||||
| 10052 | if (RHS.getOpcode() == ISD::ZERO_EXTEND) { | |||
| 10053 | SDValue ExtSrc = RHS.getOperand(0); | |||
| 10054 | EVT SrcVT = ExtSrc.getValueType(); | |||
| 10055 | if (SrcVT == MVT::i32) { | |||
| 10056 | SDLoc SL(N); | |||
| 10057 | SDValue LowLHS, HiBits; | |||
| 10058 | std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); | |||
| 10059 | SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); | |||
| 10060 | ||||
| 10061 | DCI.AddToWorklist(LowOr.getNode()); | |||
| 10062 | DCI.AddToWorklist(HiBits.getNode()); | |||
| 10063 | ||||
| 10064 | SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, | |||
| 10065 | LowOr, HiBits); | |||
| 10066 | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); | |||
| 10067 | } | |||
| 10068 | } | |||
| 10069 | ||||
| 10070 | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); | |||
| 10071 | if (CRHS) { | |||
| 10072 | if (SDValue Split | |||
| 10073 | = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, | |||
| 10074 | N->getOperand(0), CRHS)) | |||
| 10075 | return Split; | |||
| 10076 | } | |||
| 10077 | ||||
| 10078 | return SDValue(); | |||
| 10079 | } | |||
| 10080 | ||||
| 10081 | SDValue SITargetLowering::performXorCombine(SDNode *N, | |||
| 10082 | DAGCombinerInfo &DCI) const { | |||
| 10083 | if (SDValue RV = reassociateScalarOps(N, DCI.DAG)) | |||
| 10084 | return RV; | |||
| 10085 | ||||
| 10086 | SDValue LHS = N->getOperand(0); | |||
| 10087 | SDValue RHS = N->getOperand(1); | |||
| 10088 | ||||
| 10089 | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); | |||
| 10090 | SelectionDAG &DAG = DCI.DAG; | |||
| 10091 | ||||
| 10092 | EVT VT = N->getValueType(0); | |||
| 10093 | if (CRHS && VT == MVT::i64) { | |||
| 10094 | if (SDValue Split | |||
| 10095 | = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) | |||
| 10096 | return Split; | |||
| 10097 | } | |||
| 10098 | ||||
| 10099 | // Make sure to apply the 64-bit constant splitting fold before trying to fold | |||
| 10100 | // fneg-like xors into 64-bit select. | |||
| 10101 | if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) { | |||
| 10102 | // This looks like an fneg, try to fold as a source modifier. | |||
| 10103 | if (CRHS && CRHS->getAPIntValue().isSignMask() && | |||
| 10104 | shouldFoldFNegIntoSrc(N, LHS)) { | |||
| 10105 | // xor (select c, a, b), 0x80000000 -> | |||
| 10106 | // bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b))) | |||
| 10107 | SDLoc DL(N); | |||
| 10108 | SDValue CastLHS = | |||
| 10109 | DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1)); | |||
| 10110 | SDValue CastRHS = | |||
| 10111 | DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2)); | |||
| 10112 | SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS); | |||
| 10113 | SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS); | |||
| 10114 | SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32, | |||
| 10115 | LHS->getOperand(0), FNegLHS, FNegRHS); | |||
| 10116 | return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect); | |||
| 10117 | } | |||
| 10118 | } | |||
| 10119 | ||||
| 10120 | return SDValue(); | |||
| 10121 | } | |||
| 10122 | ||||
| 10123 | SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, | |||
| 10124 | DAGCombinerInfo &DCI) const { | |||
| 10125 | if (!Subtarget->has16BitInsts() || | |||
| 10126 | DCI.getDAGCombineLevel() < AfterLegalizeDAG) | |||
| 10127 | return SDValue(); | |||
| 10128 | ||||
| 10129 | EVT VT = N->getValueType(0); | |||
| 10130 | if (VT != MVT::i32) | |||
| 10131 | return SDValue(); | |||
| 10132 | ||||
| 10133 | SDValue Src = N->getOperand(0); | |||
| 10134 | if (Src.getValueType() != MVT::i16) | |||
| 10135 | return SDValue(); | |||
| 10136 | ||||
| 10137 | return SDValue(); | |||
| 10138 | } | |||
| 10139 | ||||
| 10140 | SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, | |||
| 10141 | DAGCombinerInfo &DCI) | |||
| 10142 | const { | |||
| 10143 | SDValue Src = N->getOperand(0); | |||
| 10144 | auto *VTSign = cast<VTSDNode>(N->getOperand(1)); | |||
| 10145 | ||||
| 10146 | if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && | |||
| 10147 | VTSign->getVT() == MVT::i8) || | |||
| 10148 | (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && | |||
| 10149 | VTSign->getVT() == MVT::i16)) && | |||
| 10150 | Src.hasOneUse()) { | |||
| 10151 | auto *M = cast<MemSDNode>(Src); | |||
| 10152 | SDValue Ops[] = { | |||
| 10153 | Src.getOperand(0), // Chain | |||
| 10154 | Src.getOperand(1), // rsrc | |||
| 10155 | Src.getOperand(2), // vindex | |||
| 10156 | Src.getOperand(3), // voffset | |||
| 10157 | Src.getOperand(4), // soffset | |||
| 10158 | Src.getOperand(5), // offset | |||
| 10159 | Src.getOperand(6), | |||
| 10160 | Src.getOperand(7) | |||
| 10161 | }; | |||
| 10162 | // replace with BUFFER_LOAD_BYTE/SHORT | |||
| 10163 | SDVTList ResList = DCI.DAG.getVTList(MVT::i32, | |||
| 10164 | Src.getOperand(0).getValueType()); | |||
| 10165 | unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? | |||
| 10166 | AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; | |||
| 10167 | SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), | |||
| 10168 | ResList, | |||
| 10169 | Ops, M->getMemoryVT(), | |||
| 10170 | M->getMemOperand()); | |||
| 10171 | return DCI.DAG.getMergeValues({BufferLoadSignExt, | |||
| 10172 | BufferLoadSignExt.getValue(1)}, SDLoc(N)); | |||
| 10173 | } | |||
| 10174 | return SDValue(); | |||
| 10175 | } | |||
| 10176 | ||||
| 10177 | SDValue SITargetLowering::performClassCombine(SDNode *N, | |||
| 10178 | DAGCombinerInfo &DCI) const { | |||
| 10179 | SelectionDAG &DAG = DCI.DAG; | |||
| 10180 | SDValue Mask = N->getOperand(1); | |||
| 10181 | ||||
| 10182 | // fp_class x, 0 -> false | |||
| 10183 | if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { | |||
| 10184 | if (CMask->isZero()) | |||
| 10185 | return DAG.getConstant(0, SDLoc(N), MVT::i1); | |||
| 10186 | } | |||
| 10187 | ||||
| 10188 | if (N->getOperand(0).isUndef()) | |||
| 10189 | return DAG.getUNDEF(MVT::i1); | |||
| 10190 | ||||
| 10191 | return SDValue(); | |||
| 10192 | } | |||
| 10193 | ||||
| 10194 | SDValue SITargetLowering::performRcpCombine(SDNode *N, | |||
| 10195 | DAGCombinerInfo &DCI) const { | |||
| 10196 | EVT VT = N->getValueType(0); | |||
| 10197 | SDValue N0 = N->getOperand(0); | |||
| 10198 | ||||
| 10199 | if (N0.isUndef()) { | |||
| 10200 | return DCI.DAG.getConstantFP( | |||
| 10201 | APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)), SDLoc(N), | |||
| 10202 | VT); | |||
| 10203 | } | |||
| 10204 | ||||
| 10205 | if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || | |||
| 10206 | N0.getOpcode() == ISD::SINT_TO_FP)) { | |||
| 10207 | return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, | |||
| 10208 | N->getFlags()); | |||
| 10209 | } | |||
| 10210 | ||||
| 10211 | if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { | |||
| 10212 | return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, | |||
| 10213 | N0.getOperand(0), N->getFlags()); | |||
| 10214 | } | |||
| 10215 | ||||
| 10216 | return AMDGPUTargetLowering::performRcpCombine(N, DCI); | |||
| 10217 | } | |||
| 10218 | ||||
| 10219 | bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, | |||
| 10220 | unsigned MaxDepth) const { | |||
| 10221 | unsigned Opcode = Op.getOpcode(); | |||
| 10222 | if (Opcode == ISD::FCANONICALIZE) | |||
| 10223 | return true; | |||
| 10224 | ||||
| 10225 | if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { | |||
| 10226 | auto F = CFP->getValueAPF(); | |||
| 10227 | if (F.isNaN() && F.isSignaling()) | |||
| 10228 | return false; | |||
| 10229 | return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); | |||
| 10230 | } | |||
| 10231 | ||||
| 10232 | // If source is a result of another standard FP operation it is already in | |||
| 10233 | // canonical form. | |||
| 10234 | if (MaxDepth == 0) | |||
| 10235 | return false; | |||
| 10236 | ||||
| 10237 | switch (Opcode) { | |||
| 10238 | // These will flush denorms if required. | |||
| 10239 | case ISD::FADD: | |||
| 10240 | case ISD::FSUB: | |||
| 10241 | case ISD::FMUL: | |||
| 10242 | case ISD::FCEIL: | |||
| 10243 | case ISD::FFLOOR: | |||
| 10244 | case ISD::FMA: | |||
| 10245 | case ISD::FMAD: | |||
| 10246 | case ISD::FSQRT: | |||
| 10247 | case ISD::FDIV: | |||
| 10248 | case ISD::FREM: | |||
| 10249 | case ISD::FP_ROUND: | |||
| 10250 | case ISD::FP_EXTEND: | |||
| 10251 | case AMDGPUISD::FMUL_LEGACY: | |||
| 10252 | case AMDGPUISD::FMAD_FTZ: | |||
| 10253 | case AMDGPUISD::RCP: | |||
| 10254 | case AMDGPUISD::RSQ: | |||
| 10255 | case AMDGPUISD::RSQ_CLAMP: | |||
| 10256 | case AMDGPUISD::RCP_LEGACY: | |||
| 10257 | case AMDGPUISD::RCP_IFLAG: | |||
| 10258 | case AMDGPUISD::DIV_SCALE: | |||
| 10259 | case AMDGPUISD::DIV_FMAS: | |||
| 10260 | case AMDGPUISD::DIV_FIXUP: | |||
| 10261 | case AMDGPUISD::FRACT: | |||
| 10262 | case AMDGPUISD::LDEXP: | |||
| 10263 | case AMDGPUISD::CVT_PKRTZ_F16_F32: | |||
| 10264 | case AMDGPUISD::CVT_F32_UBYTE0: | |||
| 10265 | case AMDGPUISD::CVT_F32_UBYTE1: | |||
| 10266 | case AMDGPUISD::CVT_F32_UBYTE2: | |||
| 10267 | case AMDGPUISD::CVT_F32_UBYTE3: | |||
| 10268 | return true; | |||
| 10269 | ||||
| 10270 | // It can/will be lowered or combined as a bit operation. | |||
| 10271 | // Need to check their input recursively to handle. | |||
| 10272 | case ISD::FNEG: | |||
| 10273 | case ISD::FABS: | |||
| 10274 | case ISD::FCOPYSIGN: | |||
| 10275 | return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); | |||
| 10276 | ||||
| 10277 | case ISD::FSIN: | |||
| 10278 | case ISD::FCOS: | |||
| 10279 | case ISD::FSINCOS: | |||
| 10280 | return Op.getValueType().getScalarType() != MVT::f16; | |||
| 10281 | ||||
| 10282 | case ISD::FMINNUM: | |||
| 10283 | case ISD::FMAXNUM: | |||
| 10284 | case ISD::FMINNUM_IEEE: | |||
| 10285 | case ISD::FMAXNUM_IEEE: | |||
| 10286 | case AMDGPUISD::CLAMP: | |||
| 10287 | case AMDGPUISD::FMED3: | |||
| 10288 | case AMDGPUISD::FMAX3: | |||
| 10289 | case AMDGPUISD::FMIN3: { | |||
| 10290 | // FIXME: Shouldn't treat the generic operations different based these. | |||
| 10291 | // However, we aren't really required to flush the result from | |||
| 10292 | // minnum/maxnum.. | |||
| 10293 | ||||
| 10294 | // snans will be quieted, so we only need to worry about denormals. | |||
| 10295 | if (Subtarget->supportsMinMaxDenormModes() || | |||
| 10296 | denormalsEnabledForType(DAG, Op.getValueType())) | |||
| 10297 | return true; | |||
| 10298 | ||||
| 10299 | // Flushing may be required. | |||
| 10300 | // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such | |||
| 10301 | // targets need to check their input recursively. | |||
| 10302 | ||||
| 10303 | // FIXME: Does this apply with clamp? It's implemented with max. | |||
| 10304 | for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { | |||
| 10305 | if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) | |||
| 10306 | return false; | |||
| 10307 | } | |||
| 10308 | ||||
| 10309 | return true; | |||
| 10310 | } | |||
| 10311 | case ISD::SELECT: { | |||
| 10312 | return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && | |||
| 10313 | isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); | |||
| 10314 | } | |||
| 10315 | case ISD::BUILD_VECTOR: { | |||
| 10316 | for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { | |||
| 10317 | SDValue SrcOp = Op.getOperand(i); | |||
| 10318 | if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) | |||
| 10319 | return false; | |||
| 10320 | } | |||
| 10321 | ||||
| 10322 | return true; | |||
| 10323 | } | |||
| 10324 | case ISD::EXTRACT_VECTOR_ELT: | |||
| 10325 | case ISD::EXTRACT_SUBVECTOR: { | |||
| 10326 | return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); | |||
| 10327 | } | |||
| 10328 | case ISD::INSERT_VECTOR_ELT: { | |||
| 10329 | return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && | |||
| 10330 | isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); | |||
| 10331 | } | |||
| 10332 | case ISD::UNDEF: | |||
| 10333 | // Could be anything. | |||
| 10334 | return false; | |||
| 10335 | ||||
| 10336 | case ISD::BITCAST: | |||
| 10337 | return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); | |||
| 10338 | case ISD::TRUNCATE: { | |||
| 10339 | // Hack round the mess we make when legalizing extract_vector_elt | |||
| 10340 | if (Op.getValueType() == MVT::i16) { | |||
| 10341 | SDValue TruncSrc = Op.getOperand(0); | |||
| 10342 | if (TruncSrc.getValueType() == MVT::i32 && | |||
| 10343 | TruncSrc.getOpcode() == ISD::BITCAST && | |||
| 10344 | TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { | |||
| 10345 | return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); | |||
| 10346 | } | |||
| 10347 | } | |||
| 10348 | return false; | |||
| 10349 | } | |||
| 10350 | case ISD::INTRINSIC_WO_CHAIN: { | |||
| 10351 | unsigned IntrinsicID | |||
| 10352 | = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | |||
| 10353 | // TODO: Handle more intrinsics | |||
| 10354 | switch (IntrinsicID) { | |||
| 10355 | case Intrinsic::amdgcn_cvt_pkrtz: | |||
| 10356 | case Intrinsic::amdgcn_cubeid: | |||
| 10357 | case Intrinsic::amdgcn_frexp_mant: | |||
| 10358 | case Intrinsic::amdgcn_fdot2: | |||
| 10359 | case Intrinsic::amdgcn_rcp: | |||
| 10360 | case Intrinsic::amdgcn_rsq: | |||
| 10361 | case Intrinsic::amdgcn_rsq_clamp: | |||
| 10362 | case Intrinsic::amdgcn_rcp_legacy: | |||
| 10363 | case Intrinsic::amdgcn_rsq_legacy: | |||
| 10364 | case Intrinsic::amdgcn_trig_preop: | |||
| 10365 | return true; | |||
| 10366 | default: | |||
| 10367 | break; | |||
| 10368 | } | |||
| 10369 | ||||
| 10370 | [[fallthrough]]; | |||
| 10371 | } | |||
| 10372 | default: | |||
| 10373 | return denormalsEnabledForType(DAG, Op.getValueType()) && | |||
| 10374 | DAG.isKnownNeverSNaN(Op); | |||
| 10375 | } | |||
| 10376 | ||||
| 10377 | llvm_unreachable("invalid operation")::llvm::llvm_unreachable_internal("invalid operation", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 10377); | |||
| 10378 | } | |||
| 10379 | ||||
| 10380 | bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, | |||
| 10381 | unsigned MaxDepth) const { | |||
| 10382 | MachineRegisterInfo &MRI = MF.getRegInfo(); | |||
| 10383 | MachineInstr *MI = MRI.getVRegDef(Reg); | |||
| 10384 | unsigned Opcode = MI->getOpcode(); | |||
| 10385 | ||||
| 10386 | if (Opcode == AMDGPU::G_FCANONICALIZE) | |||
| 10387 | return true; | |||
| 10388 | ||||
| 10389 | std::optional<FPValueAndVReg> FCR; | |||
| 10390 | // Constant splat (can be padded with undef) or scalar constant. | |||
| 10391 | if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { | |||
| 10392 | if (FCR->Value.isSignaling()) | |||
| 10393 | return false; | |||
| 10394 | return !FCR->Value.isDenormal() || | |||
| 10395 | denormalsEnabledForType(MRI.getType(FCR->VReg), MF); | |||
| 10396 | } | |||
| 10397 | ||||
| 10398 | if (MaxDepth == 0) | |||
| 10399 | return false; | |||
| 10400 | ||||
| 10401 | switch (Opcode) { | |||
| 10402 | case AMDGPU::G_FADD: | |||
| 10403 | case AMDGPU::G_FSUB: | |||
| 10404 | case AMDGPU::G_FMUL: | |||
| 10405 | case AMDGPU::G_FCEIL: | |||
| 10406 | case AMDGPU::G_FFLOOR: | |||
| 10407 | case AMDGPU::G_FRINT: | |||
| 10408 | case AMDGPU::G_FNEARBYINT: | |||
| 10409 | case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND: | |||
| 10410 | case AMDGPU::G_INTRINSIC_TRUNC: | |||
| 10411 | case AMDGPU::G_INTRINSIC_ROUNDEVEN: | |||
| 10412 | case AMDGPU::G_FMA: | |||
| 10413 | case AMDGPU::G_FMAD: | |||
| 10414 | case AMDGPU::G_FSQRT: | |||
| 10415 | case AMDGPU::G_FDIV: | |||
| 10416 | case AMDGPU::G_FREM: | |||
| 10417 | case AMDGPU::G_FPOW: | |||
| 10418 | case AMDGPU::G_FPEXT: | |||
| 10419 | case AMDGPU::G_FLOG: | |||
| 10420 | case AMDGPU::G_FLOG2: | |||
| 10421 | case AMDGPU::G_FLOG10: | |||
| 10422 | case AMDGPU::G_FPTRUNC: | |||
| 10423 | case AMDGPU::G_AMDGPU_RCP_IFLAG: | |||
| 10424 | case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0: | |||
| 10425 | case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1: | |||
| 10426 | case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2: | |||
| 10427 | case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3: | |||
| 10428 | return true; | |||
| 10429 | case AMDGPU::G_FNEG: | |||
| 10430 | case AMDGPU::G_FABS: | |||
| 10431 | case AMDGPU::G_FCOPYSIGN: | |||
| 10432 | return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1); | |||
| 10433 | case AMDGPU::G_FMINNUM: | |||
| 10434 | case AMDGPU::G_FMAXNUM: | |||
| 10435 | case AMDGPU::G_FMINNUM_IEEE: | |||
| 10436 | case AMDGPU::G_FMAXNUM_IEEE: { | |||
| 10437 | if (Subtarget->supportsMinMaxDenormModes() || | |||
| 10438 | denormalsEnabledForType(MRI.getType(Reg), MF)) | |||
| 10439 | return true; | |||
| 10440 | ||||
| 10441 | [[fallthrough]]; | |||
| 10442 | } | |||
| 10443 | case AMDGPU::G_BUILD_VECTOR: | |||
| 10444 | for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) | |||
| 10445 | if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) | |||
| 10446 | return false; | |||
| 10447 | return true; | |||
| 10448 | case AMDGPU::G_INTRINSIC: | |||
| 10449 | switch (MI->getIntrinsicID()) { | |||
| 10450 | case Intrinsic::amdgcn_fmul_legacy: | |||
| 10451 | case Intrinsic::amdgcn_fmad_ftz: | |||
| 10452 | case Intrinsic::amdgcn_sqrt: | |||
| 10453 | case Intrinsic::amdgcn_fmed3: | |||
| 10454 | case Intrinsic::amdgcn_sin: | |||
| 10455 | case Intrinsic::amdgcn_cos: | |||
| 10456 | case Intrinsic::amdgcn_log_clamp: | |||
| 10457 | case Intrinsic::amdgcn_rcp: | |||
| 10458 | case Intrinsic::amdgcn_rcp_legacy: | |||
| 10459 | case Intrinsic::amdgcn_rsq: | |||
| 10460 | case Intrinsic::amdgcn_rsq_clamp: | |||
| 10461 | case Intrinsic::amdgcn_rsq_legacy: | |||
| 10462 | case Intrinsic::amdgcn_div_scale: | |||
| 10463 | case Intrinsic::amdgcn_div_fmas: | |||
| 10464 | case Intrinsic::amdgcn_div_fixup: | |||
| 10465 | case Intrinsic::amdgcn_fract: | |||
| 10466 | case Intrinsic::amdgcn_ldexp: | |||
| 10467 | case Intrinsic::amdgcn_cvt_pkrtz: | |||
| 10468 | case Intrinsic::amdgcn_cubeid: | |||
| 10469 | case Intrinsic::amdgcn_cubema: | |||
| 10470 | case Intrinsic::amdgcn_cubesc: | |||
| 10471 | case Intrinsic::amdgcn_cubetc: | |||
| 10472 | case Intrinsic::amdgcn_frexp_mant: | |||
| 10473 | case Intrinsic::amdgcn_fdot2: | |||
| 10474 | case Intrinsic::amdgcn_trig_preop: | |||
| 10475 | return true; | |||
| 10476 | default: | |||
| 10477 | break; | |||
| 10478 | } | |||
| 10479 | ||||
| 10480 | [[fallthrough]]; | |||
| 10481 | default: | |||
| 10482 | return false; | |||
| 10483 | } | |||
| 10484 | ||||
| 10485 | llvm_unreachable("invalid operation")::llvm::llvm_unreachable_internal("invalid operation", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 10485); | |||
| 10486 | } | |||
| 10487 | ||||
| 10488 | // Constant fold canonicalize. | |||
| 10489 | SDValue SITargetLowering::getCanonicalConstantFP( | |||
| 10490 | SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { | |||
| 10491 | // Flush denormals to 0 if not enabled. | |||
| 10492 | if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) { | |||
| 10493 | return DAG.getConstantFP(APFloat::getZero(C.getSemantics(), | |||
| 10494 | C.isNegative()), SL, VT); | |||
| 10495 | } | |||
| 10496 | ||||
| 10497 | if (C.isNaN()) { | |||
| 10498 | APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); | |||
| 10499 | if (C.isSignaling()) { | |||
| 10500 | // Quiet a signaling NaN. | |||
| 10501 | // FIXME: Is this supposed to preserve payload bits? | |||
| 10502 | return DAG.getConstantFP(CanonicalQNaN, SL, VT); | |||
| 10503 | } | |||
| 10504 | ||||
| 10505 | // Make sure it is the canonical NaN bitpattern. | |||
| 10506 | // | |||
| 10507 | // TODO: Can we use -1 as the canonical NaN value since it's an inline | |||
| 10508 | // immediate? | |||
| 10509 | if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) | |||
| 10510 | return DAG.getConstantFP(CanonicalQNaN, SL, VT); | |||
| 10511 | } | |||
| 10512 | ||||
| 10513 | // Already canonical. | |||
| 10514 | return DAG.getConstantFP(C, SL, VT); | |||
| 10515 | } | |||
| 10516 | ||||
| 10517 | static bool vectorEltWillFoldAway(SDValue Op) { | |||
| 10518 | return Op.isUndef() || isa<ConstantFPSDNode>(Op); | |||
| 10519 | } | |||
| 10520 | ||||
| 10521 | SDValue SITargetLowering::performFCanonicalizeCombine( | |||
| 10522 | SDNode *N, | |||
| 10523 | DAGCombinerInfo &DCI) const { | |||
| 10524 | SelectionDAG &DAG = DCI.DAG; | |||
| 10525 | SDValue N0 = N->getOperand(0); | |||
| 10526 | EVT VT = N->getValueType(0); | |||
| 10527 | ||||
| 10528 | // fcanonicalize undef -> qnan | |||
| 10529 | if (N0.isUndef()) { | |||
| 10530 | APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); | |||
| 10531 | return DAG.getConstantFP(QNaN, SDLoc(N), VT); | |||
| 10532 | } | |||
| 10533 | ||||
| 10534 | if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { | |||
| 10535 | EVT VT = N->getValueType(0); | |||
| 10536 | return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); | |||
| 10537 | } | |||
| 10538 | ||||
| 10539 | // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), | |||
| 10540 | // (fcanonicalize k) | |||
| 10541 | // | |||
| 10542 | // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 | |||
| 10543 | ||||
| 10544 | // TODO: This could be better with wider vectors that will be split to v2f16, | |||
| 10545 | // and to consider uses since there aren't that many packed operations. | |||
| 10546 | if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && | |||
| 10547 | isTypeLegal(MVT::v2f16)) { | |||
| 10548 | SDLoc SL(N); | |||
| 10549 | SDValue NewElts[2]; | |||
| 10550 | SDValue Lo = N0.getOperand(0); | |||
| 10551 | SDValue Hi = N0.getOperand(1); | |||
| 10552 | EVT EltVT = Lo.getValueType(); | |||
| 10553 | ||||
| 10554 | if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { | |||
| 10555 | for (unsigned I = 0; I != 2; ++I) { | |||
| 10556 | SDValue Op = N0.getOperand(I); | |||
| 10557 | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { | |||
| 10558 | NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, | |||
| 10559 | CFP->getValueAPF()); | |||
| 10560 | } else if (Op.isUndef()) { | |||
| 10561 | // Handled below based on what the other operand is. | |||
| 10562 | NewElts[I] = Op; | |||
| 10563 | } else { | |||
| 10564 | NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); | |||
| 10565 | } | |||
| 10566 | } | |||
| 10567 | ||||
| 10568 | // If one half is undef, and one is constant, prefer a splat vector rather | |||
| 10569 | // than the normal qNaN. If it's a register, prefer 0.0 since that's | |||
| 10570 | // cheaper to use and may be free with a packed operation. | |||
| 10571 | if (NewElts[0].isUndef()) { | |||
| 10572 | if (isa<ConstantFPSDNode>(NewElts[1])) | |||
| 10573 | NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? | |||
| 10574 | NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); | |||
| 10575 | } | |||
| 10576 | ||||
| 10577 | if (NewElts[1].isUndef()) { | |||
| 10578 | NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? | |||
| 10579 | NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); | |||
| 10580 | } | |||
| 10581 | ||||
| 10582 | return DAG.getBuildVector(VT, SL, NewElts); | |||
| 10583 | } | |||
| 10584 | } | |||
| 10585 | ||||
| 10586 | unsigned SrcOpc = N0.getOpcode(); | |||
| 10587 | ||||
| 10588 | // If it's free to do so, push canonicalizes further up the source, which may | |||
| 10589 | // find a canonical source. | |||
| 10590 | // | |||
| 10591 | // TODO: More opcodes. Note this is unsafe for the _ieee minnum/maxnum for | |||
| 10592 | // sNaNs. | |||
| 10593 | if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { | |||
| 10594 | auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); | |||
| 10595 | if (CRHS && N0.hasOneUse()) { | |||
| 10596 | SDLoc SL(N); | |||
| 10597 | SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, | |||
| 10598 | N0.getOperand(0)); | |||
| 10599 | SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); | |||
| 10600 | DCI.AddToWorklist(Canon0.getNode()); | |||
| 10601 | ||||
| 10602 | return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); | |||
| 10603 | } | |||
| 10604 | } | |||
| 10605 | ||||
| 10606 | return isCanonicalized(DAG, N0) ? N0 : SDValue(); | |||
| 10607 | } | |||
| 10608 | ||||
| 10609 | static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { | |||
| 10610 | switch (Opc) { | |||
| 10611 | case ISD::FMAXNUM: | |||
| 10612 | case ISD::FMAXNUM_IEEE: | |||
| 10613 | return AMDGPUISD::FMAX3; | |||
| 10614 | case ISD::SMAX: | |||
| 10615 | return AMDGPUISD::SMAX3; | |||
| 10616 | case ISD::UMAX: | |||
| 10617 | return AMDGPUISD::UMAX3; | |||
| 10618 | case ISD::FMINNUM: | |||
| 10619 | case ISD::FMINNUM_IEEE: | |||
| 10620 | return AMDGPUISD::FMIN3; | |||
| 10621 | case ISD::SMIN: | |||
| 10622 | return AMDGPUISD::SMIN3; | |||
| 10623 | case ISD::UMIN: | |||
| 10624 | return AMDGPUISD::UMIN3; | |||
| 10625 | default: | |||
| 10626 | llvm_unreachable("Not a min/max opcode")::llvm::llvm_unreachable_internal("Not a min/max opcode", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 10626); | |||
| 10627 | } | |||
| 10628 | } | |||
| 10629 | ||||
| 10630 | SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG, | |||
| 10631 | const SDLoc &SL, SDValue Src, | |||
| 10632 | SDValue MinVal, | |||
| 10633 | SDValue MaxVal, | |||
| 10634 | bool Signed) const { | |||
| 10635 | ||||
| 10636 | // med3 comes from | |||
| 10637 | // min(max(x, K0), K1), K0 < K1 | |||
| 10638 | // max(min(x, K0), K1), K1 < K0 | |||
| 10639 | // | |||
| 10640 | // "MinVal" and "MaxVal" respectively refer to the rhs of the | |||
| 10641 | // min/max op. | |||
| 10642 | ConstantSDNode *MinK = dyn_cast<ConstantSDNode>(MinVal); | |||
| 10643 | ConstantSDNode *MaxK = dyn_cast<ConstantSDNode>(MaxVal); | |||
| 10644 | ||||
| 10645 | if (!MinK || !MaxK) | |||
| 10646 | return SDValue(); | |||
| 10647 | ||||
| 10648 | if (Signed) { | |||
| 10649 | if (MaxK->getAPIntValue().sge(MinK->getAPIntValue())) | |||
| 10650 | return SDValue(); | |||
| 10651 | } else { | |||
| 10652 | if (MaxK->getAPIntValue().uge(MinK->getAPIntValue())) | |||
| 10653 | return SDValue(); | |||
| 10654 | } | |||
| 10655 | ||||
| 10656 | EVT VT = MinK->getValueType(0); | |||
| 10657 | unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; | |||
| 10658 | if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) | |||
| 10659 | return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal); | |||
| 10660 | ||||
| 10661 | // Note: we could also extend to i32 and use i32 med3 if i16 med3 is | |||
| 10662 | // not available, but this is unlikely to be profitable as constants | |||
| 10663 | // will often need to be materialized & extended, especially on | |||
| 10664 | // pre-GFX10 where VOP3 instructions couldn't take literal operands. | |||
| 10665 | return SDValue(); | |||
| 10666 | } | |||
| 10667 | ||||
| 10668 | static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { | |||
| 10669 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) | |||
| 10670 | return C; | |||
| 10671 | ||||
| 10672 | if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { | |||
| 10673 | if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) | |||
| 10674 | return C; | |||
| 10675 | } | |||
| 10676 | ||||
| 10677 | return nullptr; | |||
| 10678 | } | |||
| 10679 | ||||
| 10680 | SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, | |||
| 10681 | const SDLoc &SL, | |||
| 10682 | SDValue Op0, | |||
| 10683 | SDValue Op1) const { | |||
| 10684 | ConstantFPSDNode *K1 = getSplatConstantFP(Op1); | |||
| 10685 | if (!K1) | |||
| 10686 | return SDValue(); | |||
| 10687 | ||||
| 10688 | ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); | |||
| 10689 | if (!K0) | |||
| 10690 | return SDValue(); | |||
| 10691 | ||||
| 10692 | // Ordered >= (although NaN inputs should have folded away by now). | |||
| 10693 | if (K0->getValueAPF() > K1->getValueAPF()) | |||
| 10694 | return SDValue(); | |||
| 10695 | ||||
| 10696 | const MachineFunction &MF = DAG.getMachineFunction(); | |||
| 10697 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 10698 | ||||
| 10699 | // TODO: Check IEEE bit enabled? | |||
| 10700 | EVT VT = Op0.getValueType(); | |||
| 10701 | if (Info->getMode().DX10Clamp) { | |||
| 10702 | // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the | |||
| 10703 | // hardware fmed3 behavior converting to a min. | |||
| 10704 | // FIXME: Should this be allowing -0.0? | |||
| 10705 | if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) | |||
| 10706 | return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); | |||
| 10707 | } | |||
| 10708 | ||||
| 10709 | // med3 for f16 is only available on gfx9+, and not available for v2f16. | |||
| 10710 | if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { | |||
| 10711 | // This isn't safe with signaling NaNs because in IEEE mode, min/max on a | |||
| 10712 | // signaling NaN gives a quiet NaN. The quiet NaN input to the min would | |||
| 10713 | // then give the other result, which is different from med3 with a NaN | |||
| 10714 | // input. | |||
| 10715 | SDValue Var = Op0.getOperand(0); | |||
| 10716 | if (!DAG.isKnownNeverSNaN(Var)) | |||
| 10717 | return SDValue(); | |||
| 10718 | ||||
| 10719 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 10720 | ||||
| 10721 | if ((!K0->hasOneUse() || | |||
| 10722 | TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && | |||
| 10723 | (!K1->hasOneUse() || | |||
| 10724 | TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { | |||
| 10725 | return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), | |||
| 10726 | Var, SDValue(K0, 0), SDValue(K1, 0)); | |||
| 10727 | } | |||
| 10728 | } | |||
| 10729 | ||||
| 10730 | return SDValue(); | |||
| 10731 | } | |||
| 10732 | ||||
| 10733 | SDValue SITargetLowering::performMinMaxCombine(SDNode *N, | |||
| 10734 | DAGCombinerInfo &DCI) const { | |||
| 10735 | SelectionDAG &DAG = DCI.DAG; | |||
| 10736 | ||||
| 10737 | EVT VT = N->getValueType(0); | |||
| 10738 | unsigned Opc = N->getOpcode(); | |||
| 10739 | SDValue Op0 = N->getOperand(0); | |||
| 10740 | SDValue Op1 = N->getOperand(1); | |||
| 10741 | ||||
| 10742 | // Only do this if the inner op has one use since this will just increases | |||
| 10743 | // register pressure for no benefit. | |||
| 10744 | ||||
| 10745 | if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && | |||
| 10746 | !VT.isVector() && | |||
| 10747 | (VT == MVT::i32 || VT == MVT::f32 || | |||
| 10748 | ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { | |||
| 10749 | // max(max(a, b), c) -> max3(a, b, c) | |||
| 10750 | // min(min(a, b), c) -> min3(a, b, c) | |||
| 10751 | if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { | |||
| 10752 | SDLoc DL(N); | |||
| 10753 | return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), | |||
| 10754 | DL, | |||
| 10755 | N->getValueType(0), | |||
| 10756 | Op0.getOperand(0), | |||
| 10757 | Op0.getOperand(1), | |||
| 10758 | Op1); | |||
| 10759 | } | |||
| 10760 | ||||
| 10761 | // Try commuted. | |||
| 10762 | // max(a, max(b, c)) -> max3(a, b, c) | |||
| 10763 | // min(a, min(b, c)) -> min3(a, b, c) | |||
| 10764 | if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { | |||
| 10765 | SDLoc DL(N); | |||
| 10766 | return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), | |||
| 10767 | DL, | |||
| 10768 | N->getValueType(0), | |||
| 10769 | Op0, | |||
| 10770 | Op1.getOperand(0), | |||
| 10771 | Op1.getOperand(1)); | |||
| 10772 | } | |||
| 10773 | } | |||
| 10774 | ||||
| 10775 | // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) | |||
| 10776 | // max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0) | |||
| 10777 | if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { | |||
| 10778 | if (SDValue Med3 = performIntMed3ImmCombine( | |||
| 10779 | DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true)) | |||
| 10780 | return Med3; | |||
| 10781 | } | |||
| 10782 | if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) { | |||
| 10783 | if (SDValue Med3 = performIntMed3ImmCombine( | |||
| 10784 | DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true)) | |||
| 10785 | return Med3; | |||
| 10786 | } | |||
| 10787 | ||||
| 10788 | if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { | |||
| 10789 | if (SDValue Med3 = performIntMed3ImmCombine( | |||
| 10790 | DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false)) | |||
| 10791 | return Med3; | |||
| 10792 | } | |||
| 10793 | if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) { | |||
| 10794 | if (SDValue Med3 = performIntMed3ImmCombine( | |||
| 10795 | DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false)) | |||
| 10796 | return Med3; | |||
| 10797 | } | |||
| 10798 | ||||
| 10799 | // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) | |||
| 10800 | if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || | |||
| 10801 | (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || | |||
| 10802 | (Opc == AMDGPUISD::FMIN_LEGACY && | |||
| 10803 | Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && | |||
| 10804 | (VT == MVT::f32 || VT == MVT::f64 || | |||
| 10805 | (VT == MVT::f16 && Subtarget->has16BitInsts()) || | |||
| 10806 | (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && | |||
| 10807 | Op0.hasOneUse()) { | |||
| 10808 | if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) | |||
| 10809 | return Res; | |||
| 10810 | } | |||
| 10811 | ||||
| 10812 | return SDValue(); | |||
| 10813 | } | |||
| 10814 | ||||
| 10815 | static bool isClampZeroToOne(SDValue A, SDValue B) { | |||
| 10816 | if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { | |||
| 10817 | if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { | |||
| 10818 | // FIXME: Should this be allowing -0.0? | |||
| 10819 | return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || | |||
| 10820 | (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); | |||
| 10821 | } | |||
| 10822 | } | |||
| 10823 | ||||
| 10824 | return false; | |||
| 10825 | } | |||
| 10826 | ||||
| 10827 | // FIXME: Should only worry about snans for version with chain. | |||
| 10828 | SDValue SITargetLowering::performFMed3Combine(SDNode *N, | |||
| 10829 | DAGCombinerInfo &DCI) const { | |||
| 10830 | EVT VT = N->getValueType(0); | |||
| 10831 | // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and | |||
| 10832 | // NaNs. With a NaN input, the order of the operands may change the result. | |||
| 10833 | ||||
| 10834 | SelectionDAG &DAG = DCI.DAG; | |||
| 10835 | SDLoc SL(N); | |||
| 10836 | ||||
| 10837 | SDValue Src0 = N->getOperand(0); | |||
| 10838 | SDValue Src1 = N->getOperand(1); | |||
| 10839 | SDValue Src2 = N->getOperand(2); | |||
| 10840 | ||||
| 10841 | if (isClampZeroToOne(Src0, Src1)) { | |||
| 10842 | // const_a, const_b, x -> clamp is safe in all cases including signaling | |||
| 10843 | // nans. | |||
| 10844 | // FIXME: Should this be allowing -0.0? | |||
| 10845 | return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); | |||
| 10846 | } | |||
| 10847 | ||||
| 10848 | const MachineFunction &MF = DAG.getMachineFunction(); | |||
| 10849 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 10850 | ||||
| 10851 | // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother | |||
| 10852 | // handling no dx10-clamp? | |||
| 10853 | if (Info->getMode().DX10Clamp) { | |||
| 10854 | // If NaNs is clamped to 0, we are free to reorder the inputs. | |||
| 10855 | ||||
| 10856 | if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) | |||
| 10857 | std::swap(Src0, Src1); | |||
| 10858 | ||||
| 10859 | if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) | |||
| 10860 | std::swap(Src1, Src2); | |||
| 10861 | ||||
| 10862 | if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) | |||
| 10863 | std::swap(Src0, Src1); | |||
| 10864 | ||||
| 10865 | if (isClampZeroToOne(Src1, Src2)) | |||
| 10866 | return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); | |||
| 10867 | } | |||
| 10868 | ||||
| 10869 | return SDValue(); | |||
| 10870 | } | |||
| 10871 | ||||
| 10872 | SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, | |||
| 10873 | DAGCombinerInfo &DCI) const { | |||
| 10874 | SDValue Src0 = N->getOperand(0); | |||
| 10875 | SDValue Src1 = N->getOperand(1); | |||
| 10876 | if (Src0.isUndef() && Src1.isUndef()) | |||
| 10877 | return DCI.DAG.getUNDEF(N->getValueType(0)); | |||
| 10878 | return SDValue(); | |||
| 10879 | } | |||
| 10880 | ||||
| 10881 | // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be | |||
| 10882 | // expanded into a set of cmp/select instructions. | |||
| 10883 | bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, | |||
| 10884 | unsigned NumElem, | |||
| 10885 | bool IsDivergentIdx, | |||
| 10886 | const GCNSubtarget *Subtarget) { | |||
| 10887 | if (UseDivergentRegisterIndexing) | |||
| 10888 | return false; | |||
| 10889 | ||||
| 10890 | unsigned VecSize = EltSize * NumElem; | |||
| 10891 | ||||
| 10892 | // Sub-dword vectors of size 2 dword or less have better implementation. | |||
| 10893 | if (VecSize <= 64 && EltSize < 32) | |||
| 10894 | return false; | |||
| 10895 | ||||
| 10896 | // Always expand the rest of sub-dword instructions, otherwise it will be | |||
| 10897 | // lowered via memory. | |||
| 10898 | if (EltSize < 32) | |||
| 10899 | return true; | |||
| 10900 | ||||
| 10901 | // Always do this if var-idx is divergent, otherwise it will become a loop. | |||
| 10902 | if (IsDivergentIdx) | |||
| 10903 | return true; | |||
| 10904 | ||||
| 10905 | // Large vectors would yield too many compares and v_cndmask_b32 instructions. | |||
| 10906 | unsigned NumInsts = NumElem /* Number of compares */ + | |||
| 10907 | ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; | |||
| 10908 | ||||
| 10909 | // On some architectures (GFX9) movrel is not available and it's better | |||
| 10910 | // to expand. | |||
| 10911 | if (!Subtarget->hasMovrel()) | |||
| 10912 | return NumInsts <= 16; | |||
| 10913 | ||||
| 10914 | // If movrel is available, use it instead of expanding for vector of 8 | |||
| 10915 | // elements. | |||
| 10916 | return NumInsts <= 15; | |||
| 10917 | } | |||
| 10918 | ||||
| 10919 | bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const { | |||
| 10920 | SDValue Idx = N->getOperand(N->getNumOperands() - 1); | |||
| 10921 | if (isa<ConstantSDNode>(Idx)) | |||
| 10922 | return false; | |||
| 10923 | ||||
| 10924 | SDValue Vec = N->getOperand(0); | |||
| 10925 | EVT VecVT = Vec.getValueType(); | |||
| 10926 | EVT EltVT = VecVT.getVectorElementType(); | |||
| 10927 | unsigned EltSize = EltVT.getSizeInBits(); | |||
| 10928 | unsigned NumElem = VecVT.getVectorNumElements(); | |||
| 10929 | ||||
| 10930 | return SITargetLowering::shouldExpandVectorDynExt( | |||
| 10931 | EltSize, NumElem, Idx->isDivergent(), getSubtarget()); | |||
| 10932 | } | |||
| 10933 | ||||
| 10934 | SDValue SITargetLowering::performExtractVectorEltCombine( | |||
| 10935 | SDNode *N, DAGCombinerInfo &DCI) const { | |||
| 10936 | SDValue Vec = N->getOperand(0); | |||
| 10937 | SelectionDAG &DAG = DCI.DAG; | |||
| 10938 | ||||
| 10939 | EVT VecVT = Vec.getValueType(); | |||
| 10940 | EVT VecEltVT = VecVT.getVectorElementType(); | |||
| 10941 | EVT ResVT = N->getValueType(0); | |||
| 10942 | ||||
| 10943 | unsigned VecSize = VecVT.getSizeInBits(); | |||
| 10944 | unsigned VecEltSize = VecEltVT.getSizeInBits(); | |||
| 10945 | ||||
| 10946 | if ((Vec.getOpcode() == ISD::FNEG || | |||
| 10947 | Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { | |||
| 10948 | SDLoc SL(N); | |||
| 10949 | SDValue Idx = N->getOperand(1); | |||
| 10950 | SDValue Elt = | |||
| 10951 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx); | |||
| 10952 | return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt); | |||
| 10953 | } | |||
| 10954 | ||||
| 10955 | // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) | |||
| 10956 | // => | |||
| 10957 | // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) | |||
| 10958 | // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) | |||
| 10959 | // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt | |||
| 10960 | if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) { | |||
| 10961 | SDLoc SL(N); | |||
| 10962 | SDValue Idx = N->getOperand(1); | |||
| 10963 | unsigned Opc = Vec.getOpcode(); | |||
| 10964 | ||||
| 10965 | switch(Opc) { | |||
| 10966 | default: | |||
| 10967 | break; | |||
| 10968 | // TODO: Support other binary operations. | |||
| 10969 | case ISD::FADD: | |||
| 10970 | case ISD::FSUB: | |||
| 10971 | case ISD::FMUL: | |||
| 10972 | case ISD::ADD: | |||
| 10973 | case ISD::UMIN: | |||
| 10974 | case ISD::UMAX: | |||
| 10975 | case ISD::SMIN: | |||
| 10976 | case ISD::SMAX: | |||
| 10977 | case ISD::FMAXNUM: | |||
| 10978 | case ISD::FMINNUM: | |||
| 10979 | case ISD::FMAXNUM_IEEE: | |||
| 10980 | case ISD::FMINNUM_IEEE: { | |||
| 10981 | SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, | |||
| 10982 | Vec.getOperand(0), Idx); | |||
| 10983 | SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, | |||
| 10984 | Vec.getOperand(1), Idx); | |||
| 10985 | ||||
| 10986 | DCI.AddToWorklist(Elt0.getNode()); | |||
| 10987 | DCI.AddToWorklist(Elt1.getNode()); | |||
| 10988 | return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags()); | |||
| 10989 | } | |||
| 10990 | } | |||
| 10991 | } | |||
| 10992 | ||||
| 10993 | // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) | |||
| 10994 | if (shouldExpandVectorDynExt(N)) { | |||
| 10995 | SDLoc SL(N); | |||
| 10996 | SDValue Idx = N->getOperand(1); | |||
| 10997 | SDValue V; | |||
| 10998 | for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { | |||
| 10999 | SDValue IC = DAG.getVectorIdxConstant(I, SL); | |||
| 11000 | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC); | |||
| 11001 | if (I == 0) | |||
| 11002 | V = Elt; | |||
| 11003 | else | |||
| 11004 | V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); | |||
| 11005 | } | |||
| 11006 | return V; | |||
| 11007 | } | |||
| 11008 | ||||
| 11009 | if (!DCI.isBeforeLegalize()) | |||
| 11010 | return SDValue(); | |||
| 11011 | ||||
| 11012 | // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit | |||
| 11013 | // elements. This exposes more load reduction opportunities by replacing | |||
| 11014 | // multiple small extract_vector_elements with a single 32-bit extract. | |||
| 11015 | auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); | |||
| 11016 | if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() && | |||
| 11017 | VecSize > 32 && VecSize % 32 == 0 && Idx) { | |||
| 11018 | EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); | |||
| 11019 | ||||
| 11020 | unsigned BitIndex = Idx->getZExtValue() * VecEltSize; | |||
| 11021 | unsigned EltIdx = BitIndex / 32; | |||
| 11022 | unsigned LeftoverBitIdx = BitIndex % 32; | |||
| 11023 | SDLoc SL(N); | |||
| 11024 | ||||
| 11025 | SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); | |||
| 11026 | DCI.AddToWorklist(Cast.getNode()); | |||
| 11027 | ||||
| 11028 | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, | |||
| 11029 | DAG.getConstant(EltIdx, SL, MVT::i32)); | |||
| 11030 | DCI.AddToWorklist(Elt.getNode()); | |||
| 11031 | SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, | |||
| 11032 | DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); | |||
| 11033 | DCI.AddToWorklist(Srl.getNode()); | |||
| 11034 | ||||
| 11035 | EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger(); | |||
| 11036 | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl); | |||
| 11037 | DCI.AddToWorklist(Trunc.getNode()); | |||
| 11038 | ||||
| 11039 | if (VecEltVT == ResVT) { | |||
| 11040 | return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc); | |||
| 11041 | } | |||
| 11042 | ||||
| 11043 | assert(ResVT.isScalarInteger())(static_cast <bool> (ResVT.isScalarInteger()) ? void (0 ) : __assert_fail ("ResVT.isScalarInteger()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 11043, __extension__ __PRETTY_FUNCTION__)); | |||
| 11044 | return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT); | |||
| 11045 | } | |||
| 11046 | ||||
| 11047 | return SDValue(); | |||
| 11048 | } | |||
| 11049 | ||||
| 11050 | SDValue | |||
| 11051 | SITargetLowering::performInsertVectorEltCombine(SDNode *N, | |||
| 11052 | DAGCombinerInfo &DCI) const { | |||
| 11053 | SDValue Vec = N->getOperand(0); | |||
| 11054 | SDValue Idx = N->getOperand(2); | |||
| 11055 | EVT VecVT = Vec.getValueType(); | |||
| 11056 | EVT EltVT = VecVT.getVectorElementType(); | |||
| 11057 | ||||
| 11058 | // INSERT_VECTOR_ELT (<n x e>, var-idx) | |||
| 11059 | // => BUILD_VECTOR n x select (e, const-idx) | |||
| 11060 | if (!shouldExpandVectorDynExt(N)) | |||
| 11061 | return SDValue(); | |||
| 11062 | ||||
| 11063 | SelectionDAG &DAG = DCI.DAG; | |||
| 11064 | SDLoc SL(N); | |||
| 11065 | SDValue Ins = N->getOperand(1); | |||
| 11066 | EVT IdxVT = Idx.getValueType(); | |||
| 11067 | ||||
| 11068 | SmallVector<SDValue, 16> Ops; | |||
| 11069 | for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { | |||
| 11070 | SDValue IC = DAG.getConstant(I, SL, IdxVT); | |||
| 11071 | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); | |||
| 11072 | SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); | |||
| 11073 | Ops.push_back(V); | |||
| 11074 | } | |||
| 11075 | ||||
| 11076 | return DAG.getBuildVector(VecVT, SL, Ops); | |||
| 11077 | } | |||
| 11078 | ||||
| 11079 | unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, | |||
| 11080 | const SDNode *N0, | |||
| 11081 | const SDNode *N1) const { | |||
| 11082 | EVT VT = N0->getValueType(0); | |||
| 11083 | ||||
| 11084 | // Only do this if we are not trying to support denormals. v_mad_f32 does not | |||
| 11085 | // support denormals ever. | |||
| 11086 | if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || | |||
| 11087 | (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && | |||
| 11088 | getSubtarget()->hasMadF16())) && | |||
| 11089 | isOperationLegal(ISD::FMAD, VT)) | |||
| 11090 | return ISD::FMAD; | |||
| 11091 | ||||
| 11092 | const TargetOptions &Options = DAG.getTarget().Options; | |||
| 11093 | if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || | |||
| 11094 | (N0->getFlags().hasAllowContract() && | |||
| 11095 | N1->getFlags().hasAllowContract())) && | |||
| 11096 | isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { | |||
| 11097 | return ISD::FMA; | |||
| 11098 | } | |||
| 11099 | ||||
| 11100 | return 0; | |||
| 11101 | } | |||
| 11102 | ||||
| 11103 | // For a reassociatable opcode perform: | |||
| 11104 | // op x, (op y, z) -> op (op x, z), y, if x and z are uniform | |||
| 11105 | SDValue SITargetLowering::reassociateScalarOps(SDNode *N, | |||
| 11106 | SelectionDAG &DAG) const { | |||
| 11107 | EVT VT = N->getValueType(0); | |||
| 11108 | if (VT != MVT::i32 && VT != MVT::i64) | |||
| 11109 | return SDValue(); | |||
| 11110 | ||||
| 11111 | if (DAG.isBaseWithConstantOffset(SDValue(N, 0))) | |||
| 11112 | return SDValue(); | |||
| 11113 | ||||
| 11114 | unsigned Opc = N->getOpcode(); | |||
| 11115 | SDValue Op0 = N->getOperand(0); | |||
| 11116 | SDValue Op1 = N->getOperand(1); | |||
| 11117 | ||||
| 11118 | if (!(Op0->isDivergent() ^ Op1->isDivergent())) | |||
| 11119 | return SDValue(); | |||
| 11120 | ||||
| 11121 | if (Op0->isDivergent()) | |||
| 11122 | std::swap(Op0, Op1); | |||
| 11123 | ||||
| 11124 | if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) | |||
| 11125 | return SDValue(); | |||
| 11126 | ||||
| 11127 | SDValue Op2 = Op1.getOperand(1); | |||
| 11128 | Op1 = Op1.getOperand(0); | |||
| 11129 | if (!(Op1->isDivergent() ^ Op2->isDivergent())) | |||
| 11130 | return SDValue(); | |||
| 11131 | ||||
| 11132 | if (Op1->isDivergent()) | |||
| 11133 | std::swap(Op1, Op2); | |||
| 11134 | ||||
| 11135 | SDLoc SL(N); | |||
| 11136 | SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); | |||
| 11137 | return DAG.getNode(Opc, SL, VT, Add1, Op2); | |||
| 11138 | } | |||
| 11139 | ||||
| 11140 | static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, | |||
| 11141 | EVT VT, | |||
| 11142 | SDValue N0, SDValue N1, SDValue N2, | |||
| 11143 | bool Signed) { | |||
| 11144 | unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; | |||
| 11145 | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); | |||
| 11146 | SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); | |||
| 11147 | return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); | |||
| 11148 | } | |||
| 11149 | ||||
| 11150 | // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high | |||
| 11151 | // multiplies, if any. | |||
| 11152 | // | |||
| 11153 | // Full 64-bit multiplies that feed into an addition are lowered here instead | |||
| 11154 | // of using the generic expansion. The generic expansion ends up with | |||
| 11155 | // a tree of ADD nodes that prevents us from using the "add" part of the | |||
| 11156 | // MAD instruction. The expansion produced here results in a chain of ADDs | |||
| 11157 | // instead of a tree. | |||
| 11158 | SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N, | |||
| 11159 | DAGCombinerInfo &DCI) const { | |||
| 11160 | assert(N->getOpcode() == ISD::ADD)(static_cast <bool> (N->getOpcode() == ISD::ADD) ? void (0) : __assert_fail ("N->getOpcode() == ISD::ADD", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 11160, __extension__ __PRETTY_FUNCTION__)); | |||
| 11161 | ||||
| 11162 | SelectionDAG &DAG = DCI.DAG; | |||
| 11163 | EVT VT = N->getValueType(0); | |||
| 11164 | SDLoc SL(N); | |||
| 11165 | SDValue LHS = N->getOperand(0); | |||
| 11166 | SDValue RHS = N->getOperand(1); | |||
| 11167 | ||||
| 11168 | if (VT.isVector()) | |||
| 11169 | return SDValue(); | |||
| 11170 | ||||
| 11171 | // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall | |||
| 11172 | // result in scalar registers for uniform values. | |||
| 11173 | if (!N->isDivergent() && Subtarget->hasSMulHi()) | |||
| 11174 | return SDValue(); | |||
| 11175 | ||||
| 11176 | unsigned NumBits = VT.getScalarSizeInBits(); | |||
| 11177 | if (NumBits <= 32 || NumBits > 64) | |||
| 11178 | return SDValue(); | |||
| 11179 | ||||
| 11180 | if (LHS.getOpcode() != ISD::MUL) { | |||
| 11181 | assert(RHS.getOpcode() == ISD::MUL)(static_cast <bool> (RHS.getOpcode() == ISD::MUL) ? void (0) : __assert_fail ("RHS.getOpcode() == ISD::MUL", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 11181, __extension__ __PRETTY_FUNCTION__)); | |||
| 11182 | std::swap(LHS, RHS); | |||
| 11183 | } | |||
| 11184 | ||||
| 11185 | // Avoid the fold if it would unduly increase the number of multiplies due to | |||
| 11186 | // multiple uses, except on hardware with full-rate multiply-add (which is | |||
| 11187 | // part of full-rate 64-bit ops). | |||
| 11188 | if (!Subtarget->hasFullRate64Ops()) { | |||
| 11189 | unsigned NumUsers = 0; | |||
| 11190 | for (SDNode *Use : LHS->uses()) { | |||
| 11191 | // There is a use that does not feed into addition, so the multiply can't | |||
| 11192 | // be removed. We prefer MUL + ADD + ADDC over MAD + MUL. | |||
| 11193 | if (Use->getOpcode() != ISD::ADD) | |||
| 11194 | return SDValue(); | |||
| 11195 | ||||
| 11196 | // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer | |||
| 11197 | // MUL + 3xADD + 3xADDC over 3xMAD. | |||
| 11198 | ++NumUsers; | |||
| 11199 | if (NumUsers >= 3) | |||
| 11200 | return SDValue(); | |||
| 11201 | } | |||
| 11202 | } | |||
| 11203 | ||||
| 11204 | SDValue MulLHS = LHS.getOperand(0); | |||
| 11205 | SDValue MulRHS = LHS.getOperand(1); | |||
| 11206 | SDValue AddRHS = RHS; | |||
| 11207 | ||||
| 11208 | // Always check whether operands are small unsigned values, since that | |||
| 11209 | // knowledge is useful in more cases. Check for small signed values only if | |||
| 11210 | // doing so can unlock a shorter code sequence. | |||
| 11211 | bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32; | |||
| 11212 | bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32; | |||
| 11213 | ||||
| 11214 | bool MulSignedLo = false; | |||
| 11215 | if (!MulLHSUnsigned32 || !MulRHSUnsigned32) { | |||
| 11216 | MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 && | |||
| 11217 | numBitsSigned(MulRHS, DAG) <= 32; | |||
| 11218 | } | |||
| 11219 | ||||
| 11220 | // The operands and final result all have the same number of bits. If | |||
| 11221 | // operands need to be extended, they can be extended with garbage. The | |||
| 11222 | // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is | |||
| 11223 | // truncated away in the end. | |||
| 11224 | if (VT != MVT::i64) { | |||
| 11225 | MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS); | |||
| 11226 | MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS); | |||
| 11227 | AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS); | |||
| 11228 | } | |||
| 11229 | ||||
| 11230 | // The basic code generated is conceptually straightforward. Pseudo code: | |||
| 11231 | // | |||
| 11232 | // accum = mad_64_32 lhs.lo, rhs.lo, accum | |||
| 11233 | // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi | |||
| 11234 | // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi | |||
| 11235 | // | |||
| 11236 | // The second and third lines are optional, depending on whether the factors | |||
| 11237 | // are {sign,zero}-extended or not. | |||
| 11238 | // | |||
| 11239 | // The actual DAG is noisier than the pseudo code, but only due to | |||
| 11240 | // instructions that disassemble values into low and high parts, and | |||
| 11241 | // assemble the final result. | |||
| 11242 | SDValue One = DAG.getConstant(1, SL, MVT::i32); | |||
| 11243 | ||||
| 11244 | auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS); | |||
| 11245 | auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS); | |||
| 11246 | SDValue Accum = | |||
| 11247 | getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo); | |||
| 11248 | ||||
| 11249 | if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) { | |||
| 11250 | SDValue AccumLo, AccumHi; | |||
| 11251 | std::tie(AccumLo, AccumHi) = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32); | |||
| 11252 | ||||
| 11253 | if (!MulLHSUnsigned32) { | |||
| 11254 | auto MulLHSHi = | |||
| 11255 | DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One); | |||
| 11256 | SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo); | |||
| 11257 | AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); | |||
| 11258 | } | |||
| 11259 | ||||
| 11260 | if (!MulRHSUnsigned32) { | |||
| 11261 | auto MulRHSHi = | |||
| 11262 | DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One); | |||
| 11263 | SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi); | |||
| 11264 | AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); | |||
| 11265 | } | |||
| 11266 | ||||
| 11267 | Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi}); | |||
| 11268 | Accum = DAG.getBitcast(MVT::i64, Accum); | |||
| 11269 | } | |||
| 11270 | ||||
| 11271 | if (VT != MVT::i64) | |||
| 11272 | Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum); | |||
| 11273 | return Accum; | |||
| 11274 | } | |||
| 11275 | ||||
| 11276 | SDValue SITargetLowering::performAddCombine(SDNode *N, | |||
| 11277 | DAGCombinerInfo &DCI) const { | |||
| 11278 | SelectionDAG &DAG = DCI.DAG; | |||
| 11279 | EVT VT = N->getValueType(0); | |||
| 11280 | SDLoc SL(N); | |||
| 11281 | SDValue LHS = N->getOperand(0); | |||
| 11282 | SDValue RHS = N->getOperand(1); | |||
| 11283 | ||||
| 11284 | if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) { | |||
| 11285 | if (Subtarget->hasMad64_32()) { | |||
| 11286 | if (SDValue Folded = tryFoldToMad64_32(N, DCI)) | |||
| 11287 | return Folded; | |||
| 11288 | } | |||
| 11289 | ||||
| 11290 | return SDValue(); | |||
| 11291 | } | |||
| 11292 | ||||
| 11293 | if (SDValue V = reassociateScalarOps(N, DAG)) { | |||
| 11294 | return V; | |||
| 11295 | } | |||
| 11296 | ||||
| 11297 | if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) | |||
| 11298 | return SDValue(); | |||
| 11299 | ||||
| 11300 | // add x, zext (setcc) => uaddo_carry x, 0, setcc | |||
| 11301 | // add x, sext (setcc) => usubo_carry x, 0, setcc | |||
| 11302 | unsigned Opc = LHS.getOpcode(); | |||
| 11303 | if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || | |||
| 11304 | Opc == ISD::ANY_EXTEND || Opc == ISD::UADDO_CARRY) | |||
| 11305 | std::swap(RHS, LHS); | |||
| 11306 | ||||
| 11307 | Opc = RHS.getOpcode(); | |||
| 11308 | switch (Opc) { | |||
| 11309 | default: break; | |||
| 11310 | case ISD::ZERO_EXTEND: | |||
| 11311 | case ISD::SIGN_EXTEND: | |||
| 11312 | case ISD::ANY_EXTEND: { | |||
| 11313 | auto Cond = RHS.getOperand(0); | |||
| 11314 | // If this won't be a real VOPC output, we would still need to insert an | |||
| 11315 | // extra instruction anyway. | |||
| 11316 | if (!isBoolSGPR(Cond)) | |||
| 11317 | break; | |||
| 11318 | SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); | |||
| 11319 | SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; | |||
| 11320 | Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::USUBO_CARRY : ISD::UADDO_CARRY; | |||
| 11321 | return DAG.getNode(Opc, SL, VTList, Args); | |||
| 11322 | } | |||
| 11323 | case ISD::UADDO_CARRY: { | |||
| 11324 | // add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc | |||
| 11325 | if (!isNullConstant(RHS.getOperand(1))) | |||
| 11326 | break; | |||
| 11327 | SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; | |||
| 11328 | return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args); | |||
| 11329 | } | |||
| 11330 | } | |||
| 11331 | return SDValue(); | |||
| 11332 | } | |||
| 11333 | ||||
| 11334 | SDValue SITargetLowering::performSubCombine(SDNode *N, | |||
| 11335 | DAGCombinerInfo &DCI) const { | |||
| 11336 | SelectionDAG &DAG = DCI.DAG; | |||
| 11337 | EVT VT = N->getValueType(0); | |||
| 11338 | ||||
| 11339 | if (VT != MVT::i32) | |||
| 11340 | return SDValue(); | |||
| 11341 | ||||
| 11342 | SDLoc SL(N); | |||
| 11343 | SDValue LHS = N->getOperand(0); | |||
| 11344 | SDValue RHS = N->getOperand(1); | |||
| 11345 | ||||
| 11346 | // sub x, zext (setcc) => usubo_carry x, 0, setcc | |||
| 11347 | // sub x, sext (setcc) => uaddo_carry x, 0, setcc | |||
| 11348 | unsigned Opc = RHS.getOpcode(); | |||
| 11349 | switch (Opc) { | |||
| 11350 | default: break; | |||
| 11351 | case ISD::ZERO_EXTEND: | |||
| 11352 | case ISD::SIGN_EXTEND: | |||
| 11353 | case ISD::ANY_EXTEND: { | |||
| 11354 | auto Cond = RHS.getOperand(0); | |||
| 11355 | // If this won't be a real VOPC output, we would still need to insert an | |||
| 11356 | // extra instruction anyway. | |||
| 11357 | if (!isBoolSGPR(Cond)) | |||
| 11358 | break; | |||
| 11359 | SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); | |||
| 11360 | SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; | |||
| 11361 | Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; | |||
| 11362 | return DAG.getNode(Opc, SL, VTList, Args); | |||
| 11363 | } | |||
| 11364 | } | |||
| 11365 | ||||
| 11366 | if (LHS.getOpcode() == ISD::USUBO_CARRY) { | |||
| 11367 | // sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc | |||
| 11368 | auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); | |||
| 11369 | if (!C || !C->isZero()) | |||
| 11370 | return SDValue(); | |||
| 11371 | SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; | |||
| 11372 | return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args); | |||
| 11373 | } | |||
| 11374 | return SDValue(); | |||
| 11375 | } | |||
| 11376 | ||||
| 11377 | SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, | |||
| 11378 | DAGCombinerInfo &DCI) const { | |||
| 11379 | ||||
| 11380 | if (N->getValueType(0) != MVT::i32) | |||
| 11381 | return SDValue(); | |||
| 11382 | ||||
| 11383 | if (!isNullConstant(N->getOperand(1))) | |||
| 11384 | return SDValue(); | |||
| 11385 | ||||
| 11386 | SelectionDAG &DAG = DCI.DAG; | |||
| 11387 | SDValue LHS = N->getOperand(0); | |||
| 11388 | ||||
| 11389 | // uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc | |||
| 11390 | // usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc | |||
| 11391 | unsigned LHSOpc = LHS.getOpcode(); | |||
| 11392 | unsigned Opc = N->getOpcode(); | |||
| 11393 | if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) || | |||
| 11394 | (LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) { | |||
| 11395 | SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; | |||
| 11396 | return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); | |||
| 11397 | } | |||
| 11398 | return SDValue(); | |||
| 11399 | } | |||
| 11400 | ||||
| 11401 | SDValue SITargetLowering::performFAddCombine(SDNode *N, | |||
| 11402 | DAGCombinerInfo &DCI) const { | |||
| 11403 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | |||
| 11404 | return SDValue(); | |||
| 11405 | ||||
| 11406 | SelectionDAG &DAG = DCI.DAG; | |||
| 11407 | EVT VT = N->getValueType(0); | |||
| 11408 | ||||
| 11409 | SDLoc SL(N); | |||
| 11410 | SDValue LHS = N->getOperand(0); | |||
| 11411 | SDValue RHS = N->getOperand(1); | |||
| 11412 | ||||
| 11413 | // These should really be instruction patterns, but writing patterns with | |||
| 11414 | // source modifiers is a pain. | |||
| 11415 | ||||
| 11416 | // fadd (fadd (a, a), b) -> mad 2.0, a, b | |||
| 11417 | if (LHS.getOpcode() == ISD::FADD) { | |||
| 11418 | SDValue A = LHS.getOperand(0); | |||
| 11419 | if (A == LHS.getOperand(1)) { | |||
| 11420 | unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); | |||
| 11421 | if (FusedOp != 0) { | |||
| 11422 | const SDValue Two = DAG.getConstantFP(2.0, SL, VT); | |||
| 11423 | return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); | |||
| 11424 | } | |||
| 11425 | } | |||
| 11426 | } | |||
| 11427 | ||||
| 11428 | // fadd (b, fadd (a, a)) -> mad 2.0, a, b | |||
| 11429 | if (RHS.getOpcode() == ISD::FADD) { | |||
| 11430 | SDValue A = RHS.getOperand(0); | |||
| 11431 | if (A == RHS.getOperand(1)) { | |||
| 11432 | unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); | |||
| 11433 | if (FusedOp != 0) { | |||
| 11434 | const SDValue Two = DAG.getConstantFP(2.0, SL, VT); | |||
| 11435 | return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); | |||
| 11436 | } | |||
| 11437 | } | |||
| 11438 | } | |||
| 11439 | ||||
| 11440 | return SDValue(); | |||
| 11441 | } | |||
| 11442 | ||||
| 11443 | SDValue SITargetLowering::performFSubCombine(SDNode *N, | |||
| 11444 | DAGCombinerInfo &DCI) const { | |||
| 11445 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | |||
| 11446 | return SDValue(); | |||
| 11447 | ||||
| 11448 | SelectionDAG &DAG = DCI.DAG; | |||
| 11449 | SDLoc SL(N); | |||
| 11450 | EVT VT = N->getValueType(0); | |||
| 11451 | assert(!VT.isVector())(static_cast <bool> (!VT.isVector()) ? void (0) : __assert_fail ("!VT.isVector()", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 11451, __extension__ __PRETTY_FUNCTION__)); | |||
| 11452 | ||||
| 11453 | // Try to get the fneg to fold into the source modifier. This undoes generic | |||
| 11454 | // DAG combines and folds them into the mad. | |||
| 11455 | // | |||
| 11456 | // Only do this if we are not trying to support denormals. v_mad_f32 does | |||
| 11457 | // not support denormals ever. | |||
| 11458 | SDValue LHS = N->getOperand(0); | |||
| 11459 | SDValue RHS = N->getOperand(1); | |||
| 11460 | if (LHS.getOpcode() == ISD::FADD) { | |||
| 11461 | // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) | |||
| 11462 | SDValue A = LHS.getOperand(0); | |||
| 11463 | if (A == LHS.getOperand(1)) { | |||
| 11464 | unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); | |||
| 11465 | if (FusedOp != 0){ | |||
| 11466 | const SDValue Two = DAG.getConstantFP(2.0, SL, VT); | |||
| 11467 | SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | |||
| 11468 | ||||
| 11469 | return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); | |||
| 11470 | } | |||
| 11471 | } | |||
| 11472 | } | |||
| 11473 | ||||
| 11474 | if (RHS.getOpcode() == ISD::FADD) { | |||
| 11475 | // (fsub c, (fadd a, a)) -> mad -2.0, a, c | |||
| 11476 | ||||
| 11477 | SDValue A = RHS.getOperand(0); | |||
| 11478 | if (A == RHS.getOperand(1)) { | |||
| 11479 | unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); | |||
| 11480 | if (FusedOp != 0){ | |||
| 11481 | const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); | |||
| 11482 | return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); | |||
| 11483 | } | |||
| 11484 | } | |||
| 11485 | } | |||
| 11486 | ||||
| 11487 | return SDValue(); | |||
| 11488 | } | |||
| 11489 | ||||
| 11490 | SDValue SITargetLowering::performFMACombine(SDNode *N, | |||
| 11491 | DAGCombinerInfo &DCI) const { | |||
| 11492 | SelectionDAG &DAG = DCI.DAG; | |||
| 11493 | EVT VT = N->getValueType(0); | |||
| 11494 | SDLoc SL(N); | |||
| 11495 | ||||
| 11496 | if (!Subtarget->hasDot7Insts() || VT != MVT::f32) | |||
| 11497 | return SDValue(); | |||
| 11498 | ||||
| 11499 | // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> | |||
| 11500 | // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) | |||
| 11501 | SDValue Op1 = N->getOperand(0); | |||
| 11502 | SDValue Op2 = N->getOperand(1); | |||
| 11503 | SDValue FMA = N->getOperand(2); | |||
| 11504 | ||||
| 11505 | if (FMA.getOpcode() != ISD::FMA || | |||
| 11506 | Op1.getOpcode() != ISD::FP_EXTEND || | |||
| 11507 | Op2.getOpcode() != ISD::FP_EXTEND) | |||
| 11508 | return SDValue(); | |||
| 11509 | ||||
| 11510 | // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, | |||
| 11511 | // regardless of the denorm mode setting. Therefore, | |||
| 11512 | // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2. | |||
| 11513 | const TargetOptions &Options = DAG.getTarget().Options; | |||
| 11514 | if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || | |||
| 11515 | (N->getFlags().hasAllowContract() && | |||
| 11516 | FMA->getFlags().hasAllowContract())) { | |||
| 11517 | Op1 = Op1.getOperand(0); | |||
| 11518 | Op2 = Op2.getOperand(0); | |||
| 11519 | if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | |||
| 11520 | Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | |||
| 11521 | return SDValue(); | |||
| 11522 | ||||
| 11523 | SDValue Vec1 = Op1.getOperand(0); | |||
| 11524 | SDValue Idx1 = Op1.getOperand(1); | |||
| 11525 | SDValue Vec2 = Op2.getOperand(0); | |||
| 11526 | ||||
| 11527 | SDValue FMAOp1 = FMA.getOperand(0); | |||
| 11528 | SDValue FMAOp2 = FMA.getOperand(1); | |||
| 11529 | SDValue FMAAcc = FMA.getOperand(2); | |||
| 11530 | ||||
| 11531 | if (FMAOp1.getOpcode() != ISD::FP_EXTEND || | |||
| 11532 | FMAOp2.getOpcode() != ISD::FP_EXTEND) | |||
| 11533 | return SDValue(); | |||
| 11534 | ||||
| 11535 | FMAOp1 = FMAOp1.getOperand(0); | |||
| 11536 | FMAOp2 = FMAOp2.getOperand(0); | |||
| 11537 | if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | |||
| 11538 | FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | |||
| 11539 | return SDValue(); | |||
| 11540 | ||||
| 11541 | SDValue Vec3 = FMAOp1.getOperand(0); | |||
| 11542 | SDValue Vec4 = FMAOp2.getOperand(0); | |||
| 11543 | SDValue Idx2 = FMAOp1.getOperand(1); | |||
| 11544 | ||||
| 11545 | if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || | |||
| 11546 | // Idx1 and Idx2 cannot be the same. | |||
| 11547 | Idx1 == Idx2) | |||
| 11548 | return SDValue(); | |||
| 11549 | ||||
| 11550 | if (Vec1 == Vec2 || Vec3 == Vec4) | |||
| 11551 | return SDValue(); | |||
| 11552 | ||||
| 11553 | if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) | |||
| 11554 | return SDValue(); | |||
| 11555 | ||||
| 11556 | if ((Vec1 == Vec3 && Vec2 == Vec4) || | |||
| 11557 | (Vec1 == Vec4 && Vec2 == Vec3)) { | |||
| 11558 | return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, | |||
| 11559 | DAG.getTargetConstant(0, SL, MVT::i1)); | |||
| 11560 | } | |||
| 11561 | } | |||
| 11562 | return SDValue(); | |||
| 11563 | } | |||
| 11564 | ||||
| 11565 | SDValue SITargetLowering::performSetCCCombine(SDNode *N, | |||
| 11566 | DAGCombinerInfo &DCI) const { | |||
| 11567 | SelectionDAG &DAG = DCI.DAG; | |||
| 11568 | SDLoc SL(N); | |||
| 11569 | ||||
| 11570 | SDValue LHS = N->getOperand(0); | |||
| 11571 | SDValue RHS = N->getOperand(1); | |||
| 11572 | EVT VT = LHS.getValueType(); | |||
| 11573 | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | |||
| 11574 | ||||
| 11575 | auto CRHS = dyn_cast<ConstantSDNode>(RHS); | |||
| 11576 | if (!CRHS) { | |||
| 11577 | CRHS = dyn_cast<ConstantSDNode>(LHS); | |||
| 11578 | if (CRHS) { | |||
| 11579 | std::swap(LHS, RHS); | |||
| 11580 | CC = getSetCCSwappedOperands(CC); | |||
| 11581 | } | |||
| 11582 | } | |||
| 11583 | ||||
| 11584 | if (CRHS) { | |||
| 11585 | if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && | |||
| 11586 | isBoolSGPR(LHS.getOperand(0))) { | |||
| 11587 | // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 | |||
| 11588 | // setcc (sext from i1 cc), -1, eq|sle|uge) => cc | |||
| 11589 | // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 | |||
| 11590 | // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc | |||
| 11591 | if ((CRHS->isAllOnes() && | |||
| 11592 | (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || | |||
| 11593 | (CRHS->isZero() && | |||
| 11594 | (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) | |||
| 11595 | return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), | |||
| 11596 | DAG.getConstant(-1, SL, MVT::i1)); | |||
| 11597 | if ((CRHS->isAllOnes() && | |||
| 11598 | (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || | |||
| 11599 | (CRHS->isZero() && | |||
| 11600 | (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) | |||
| 11601 | return LHS.getOperand(0); | |||
| 11602 | } | |||
| 11603 | ||||
| 11604 | const APInt &CRHSVal = CRHS->getAPIntValue(); | |||
| 11605 | if ((CC == ISD::SETEQ || CC == ISD::SETNE) && | |||
| 11606 | LHS.getOpcode() == ISD::SELECT && | |||
| 11607 | isa<ConstantSDNode>(LHS.getOperand(1)) && | |||
| 11608 | isa<ConstantSDNode>(LHS.getOperand(2)) && | |||
| 11609 | LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && | |||
| 11610 | isBoolSGPR(LHS.getOperand(0))) { | |||
| 11611 | // Given CT != FT: | |||
| 11612 | // setcc (select cc, CT, CF), CF, eq => xor cc, -1 | |||
| 11613 | // setcc (select cc, CT, CF), CF, ne => cc | |||
| 11614 | // setcc (select cc, CT, CF), CT, ne => xor cc, -1 | |||
| 11615 | // setcc (select cc, CT, CF), CT, eq => cc | |||
| 11616 | const APInt &CT = LHS.getConstantOperandAPInt(1); | |||
| 11617 | const APInt &CF = LHS.getConstantOperandAPInt(2); | |||
| 11618 | ||||
| 11619 | if ((CF == CRHSVal && CC == ISD::SETEQ) || | |||
| 11620 | (CT == CRHSVal && CC == ISD::SETNE)) | |||
| 11621 | return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), | |||
| 11622 | DAG.getConstant(-1, SL, MVT::i1)); | |||
| 11623 | if ((CF == CRHSVal && CC == ISD::SETNE) || | |||
| 11624 | (CT == CRHSVal && CC == ISD::SETEQ)) | |||
| 11625 | return LHS.getOperand(0); | |||
| 11626 | } | |||
| 11627 | } | |||
| 11628 | ||||
| 11629 | if (VT != MVT::f32 && VT != MVT::f64 && | |||
| 11630 | (!Subtarget->has16BitInsts() || VT != MVT::f16)) | |||
| 11631 | return SDValue(); | |||
| 11632 | ||||
| 11633 | // Match isinf/isfinite pattern | |||
| 11634 | // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) | |||
| 11635 | // (fcmp one (fabs x), inf) -> (fp_class x, | |||
| 11636 | // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) | |||
| 11637 | if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { | |||
| 11638 | const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); | |||
| 11639 | if (!CRHS) | |||
| 11640 | return SDValue(); | |||
| 11641 | ||||
| 11642 | const APFloat &APF = CRHS->getValueAPF(); | |||
| 11643 | if (APF.isInfinity() && !APF.isNegative()) { | |||
| 11644 | const unsigned IsInfMask = SIInstrFlags::P_INFINITY | | |||
| 11645 | SIInstrFlags::N_INFINITY; | |||
| 11646 | const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | | |||
| 11647 | SIInstrFlags::P_ZERO | | |||
| 11648 | SIInstrFlags::N_NORMAL | | |||
| 11649 | SIInstrFlags::P_NORMAL | | |||
| 11650 | SIInstrFlags::N_SUBNORMAL | | |||
| 11651 | SIInstrFlags::P_SUBNORMAL; | |||
| 11652 | unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; | |||
| 11653 | return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), | |||
| 11654 | DAG.getConstant(Mask, SL, MVT::i32)); | |||
| 11655 | } | |||
| 11656 | } | |||
| 11657 | ||||
| 11658 | return SDValue(); | |||
| 11659 | } | |||
| 11660 | ||||
| 11661 | SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, | |||
| 11662 | DAGCombinerInfo &DCI) const { | |||
| 11663 | SelectionDAG &DAG = DCI.DAG; | |||
| 11664 | SDLoc SL(N); | |||
| 11665 | unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; | |||
| 11666 | ||||
| 11667 | SDValue Src = N->getOperand(0); | |||
| 11668 | SDValue Shift = N->getOperand(0); | |||
| 11669 | ||||
| 11670 | // TODO: Extend type shouldn't matter (assuming legal types). | |||
| 11671 | if (Shift.getOpcode() == ISD::ZERO_EXTEND) | |||
| 11672 | Shift = Shift.getOperand(0); | |||
| 11673 | ||||
| 11674 | if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { | |||
| 11675 | // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x | |||
| 11676 | // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x | |||
| 11677 | // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x | |||
| 11678 | // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x | |||
| 11679 | // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x | |||
| 11680 | if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { | |||
| 11681 | SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), | |||
| 11682 | SDLoc(Shift.getOperand(0)), MVT::i32); | |||
| 11683 | ||||
| 11684 | unsigned ShiftOffset = 8 * Offset; | |||
| 11685 | if (Shift.getOpcode() == ISD::SHL) | |||
| 11686 | ShiftOffset -= C->getZExtValue(); | |||
| 11687 | else | |||
| 11688 | ShiftOffset += C->getZExtValue(); | |||
| 11689 | ||||
| 11690 | if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { | |||
| 11691 | return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, | |||
| 11692 | MVT::f32, Shifted); | |||
| 11693 | } | |||
| 11694 | } | |||
| 11695 | } | |||
| 11696 | ||||
| 11697 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | |||
| 11698 | APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); | |||
| 11699 | if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { | |||
| 11700 | // We simplified Src. If this node is not dead, visit it again so it is | |||
| 11701 | // folded properly. | |||
| 11702 | if (N->getOpcode() != ISD::DELETED_NODE) | |||
| 11703 | DCI.AddToWorklist(N); | |||
| 11704 | return SDValue(N, 0); | |||
| 11705 | } | |||
| 11706 | ||||
| 11707 | // Handle (or x, (srl y, 8)) pattern when known bits are zero. | |||
| 11708 | if (SDValue DemandedSrc = | |||
| 11709 | TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) | |||
| 11710 | return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); | |||
| 11711 | ||||
| 11712 | return SDValue(); | |||
| 11713 | } | |||
| 11714 | ||||
| 11715 | SDValue SITargetLowering::performClampCombine(SDNode *N, | |||
| 11716 | DAGCombinerInfo &DCI) const { | |||
| 11717 | ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); | |||
| 11718 | if (!CSrc) | |||
| 11719 | return SDValue(); | |||
| 11720 | ||||
| 11721 | const MachineFunction &MF = DCI.DAG.getMachineFunction(); | |||
| 11722 | const APFloat &F = CSrc->getValueAPF(); | |||
| 11723 | APFloat Zero = APFloat::getZero(F.getSemantics()); | |||
| 11724 | if (F < Zero || | |||
| 11725 | (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { | |||
| 11726 | return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); | |||
| 11727 | } | |||
| 11728 | ||||
| 11729 | APFloat One(F.getSemantics(), "1.0"); | |||
| 11730 | if (F > One) | |||
| 11731 | return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); | |||
| 11732 | ||||
| 11733 | return SDValue(CSrc, 0); | |||
| 11734 | } | |||
| 11735 | ||||
| 11736 | ||||
| 11737 | SDValue SITargetLowering::PerformDAGCombine(SDNode *N, | |||
| 11738 | DAGCombinerInfo &DCI) const { | |||
| 11739 | if (getTargetMachine().getOptLevel() == CodeGenOpt::None) | |||
| 11740 | return SDValue(); | |||
| 11741 | switch (N->getOpcode()) { | |||
| 11742 | case ISD::ADD: | |||
| 11743 | return performAddCombine(N, DCI); | |||
| 11744 | case ISD::SUB: | |||
| 11745 | return performSubCombine(N, DCI); | |||
| 11746 | case ISD::UADDO_CARRY: | |||
| 11747 | case ISD::USUBO_CARRY: | |||
| 11748 | return performAddCarrySubCarryCombine(N, DCI); | |||
| 11749 | case ISD::FADD: | |||
| 11750 | return performFAddCombine(N, DCI); | |||
| 11751 | case ISD::FSUB: | |||
| 11752 | return performFSubCombine(N, DCI); | |||
| 11753 | case ISD::SETCC: | |||
| 11754 | return performSetCCCombine(N, DCI); | |||
| 11755 | case ISD::FMAXNUM: | |||
| 11756 | case ISD::FMINNUM: | |||
| 11757 | case ISD::FMAXNUM_IEEE: | |||
| 11758 | case ISD::FMINNUM_IEEE: | |||
| 11759 | case ISD::SMAX: | |||
| 11760 | case ISD::SMIN: | |||
| 11761 | case ISD::UMAX: | |||
| 11762 | case ISD::UMIN: | |||
| 11763 | case AMDGPUISD::FMIN_LEGACY: | |||
| 11764 | case AMDGPUISD::FMAX_LEGACY: | |||
| 11765 | return performMinMaxCombine(N, DCI); | |||
| 11766 | case ISD::FMA: | |||
| 11767 | return performFMACombine(N, DCI); | |||
| 11768 | case ISD::AND: | |||
| 11769 | return performAndCombine(N, DCI); | |||
| 11770 | case ISD::OR: | |||
| 11771 | return performOrCombine(N, DCI); | |||
| 11772 | case ISD::XOR: | |||
| 11773 | return performXorCombine(N, DCI); | |||
| 11774 | case ISD::ZERO_EXTEND: | |||
| 11775 | return performZeroExtendCombine(N, DCI); | |||
| 11776 | case ISD::SIGN_EXTEND_INREG: | |||
| 11777 | return performSignExtendInRegCombine(N , DCI); | |||
| 11778 | case AMDGPUISD::FP_CLASS: | |||
| 11779 | return performClassCombine(N, DCI); | |||
| 11780 | case ISD::FCANONICALIZE: | |||
| 11781 | return performFCanonicalizeCombine(N, DCI); | |||
| 11782 | case AMDGPUISD::RCP: | |||
| 11783 | return performRcpCombine(N, DCI); | |||
| 11784 | case AMDGPUISD::FRACT: | |||
| 11785 | case AMDGPUISD::RSQ: | |||
| 11786 | case AMDGPUISD::RCP_LEGACY: | |||
| 11787 | case AMDGPUISD::RCP_IFLAG: | |||
| 11788 | case AMDGPUISD::RSQ_CLAMP: | |||
| 11789 | case AMDGPUISD::LDEXP: { | |||
| 11790 | // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted | |||
| 11791 | SDValue Src = N->getOperand(0); | |||
| 11792 | if (Src.isUndef()) | |||
| 11793 | return Src; | |||
| 11794 | break; | |||
| 11795 | } | |||
| 11796 | case ISD::SINT_TO_FP: | |||
| 11797 | case ISD::UINT_TO_FP: | |||
| 11798 | return performUCharToFloatCombine(N, DCI); | |||
| 11799 | case ISD::FCOPYSIGN: | |||
| 11800 | return performFCopySignCombine(N, DCI); | |||
| 11801 | case AMDGPUISD::CVT_F32_UBYTE0: | |||
| 11802 | case AMDGPUISD::CVT_F32_UBYTE1: | |||
| 11803 | case AMDGPUISD::CVT_F32_UBYTE2: | |||
| 11804 | case AMDGPUISD::CVT_F32_UBYTE3: | |||
| 11805 | return performCvtF32UByteNCombine(N, DCI); | |||
| 11806 | case AMDGPUISD::FMED3: | |||
| 11807 | return performFMed3Combine(N, DCI); | |||
| 11808 | case AMDGPUISD::CVT_PKRTZ_F16_F32: | |||
| 11809 | return performCvtPkRTZCombine(N, DCI); | |||
| 11810 | case AMDGPUISD::CLAMP: | |||
| 11811 | return performClampCombine(N, DCI); | |||
| 11812 | case ISD::SCALAR_TO_VECTOR: { | |||
| 11813 | SelectionDAG &DAG = DCI.DAG; | |||
| 11814 | EVT VT = N->getValueType(0); | |||
| 11815 | ||||
| 11816 | // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) | |||
| 11817 | if (VT == MVT::v2i16 || VT == MVT::v2f16) { | |||
| 11818 | SDLoc SL(N); | |||
| 11819 | SDValue Src = N->getOperand(0); | |||
| 11820 | EVT EltVT = Src.getValueType(); | |||
| 11821 | if (EltVT == MVT::f16) | |||
| 11822 | Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); | |||
| 11823 | ||||
| 11824 | SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); | |||
| 11825 | return DAG.getNode(ISD::BITCAST, SL, VT, Ext); | |||
| 11826 | } | |||
| 11827 | ||||
| 11828 | break; | |||
| 11829 | } | |||
| 11830 | case ISD::EXTRACT_VECTOR_ELT: | |||
| 11831 | return performExtractVectorEltCombine(N, DCI); | |||
| 11832 | case ISD::INSERT_VECTOR_ELT: | |||
| 11833 | return performInsertVectorEltCombine(N, DCI); | |||
| 11834 | case ISD::LOAD: { | |||
| 11835 | if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) | |||
| 11836 | return Widended; | |||
| 11837 | [[fallthrough]]; | |||
| 11838 | } | |||
| 11839 | default: { | |||
| 11840 | if (!DCI.isBeforeLegalize()) { | |||
| 11841 | if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) | |||
| 11842 | return performMemSDNodeCombine(MemNode, DCI); | |||
| 11843 | } | |||
| 11844 | ||||
| 11845 | break; | |||
| 11846 | } | |||
| 11847 | } | |||
| 11848 | ||||
| 11849 | return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); | |||
| 11850 | } | |||
| 11851 | ||||
| 11852 | /// Helper function for adjustWritemask | |||
| 11853 | static unsigned SubIdx2Lane(unsigned Idx) { | |||
| 11854 | switch (Idx) { | |||
| 11855 | default: return ~0u; | |||
| 11856 | case AMDGPU::sub0: return 0; | |||
| 11857 | case AMDGPU::sub1: return 1; | |||
| 11858 | case AMDGPU::sub2: return 2; | |||
| 11859 | case AMDGPU::sub3: return 3; | |||
| 11860 | case AMDGPU::sub4: return 4; // Possible with TFE/LWE | |||
| 11861 | } | |||
| 11862 | } | |||
| 11863 | ||||
| 11864 | /// Adjust the writemask of MIMG instructions | |||
| 11865 | SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, | |||
| 11866 | SelectionDAG &DAG) const { | |||
| 11867 | unsigned Opcode = Node->getMachineOpcode(); | |||
| 11868 | ||||
| 11869 | // Subtract 1 because the vdata output is not a MachineSDNode operand. | |||
| 11870 | int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; | |||
| 11871 | if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) | |||
| 11872 | return Node; // not implemented for D16 | |||
| 11873 | ||||
| 11874 | SDNode *Users[5] = { nullptr }; | |||
| 11875 | unsigned Lane = 0; | |||
| 11876 | unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; | |||
| 11877 | unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); | |||
| 11878 | unsigned NewDmask = 0; | |||
| 11879 | unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; | |||
| 11880 | unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; | |||
| 11881 | bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || | |||
| 11882 | Node->getConstantOperandVal(LWEIdx)) | |||
| 11883 | ? true | |||
| 11884 | : false; | |||
| 11885 | unsigned TFCLane = 0; | |||
| 11886 | bool HasChain = Node->getNumValues() > 1; | |||
| 11887 | ||||
| 11888 | if (OldDmask == 0) { | |||
| 11889 | // These are folded out, but on the chance it happens don't assert. | |||
| 11890 | return Node; | |||
| 11891 | } | |||
| 11892 | ||||
| 11893 | unsigned OldBitsSet = llvm::popcount(OldDmask); | |||
| 11894 | // Work out which is the TFE/LWE lane if that is enabled. | |||
| 11895 | if (UsesTFC
| |||
| 11896 | TFCLane = OldBitsSet; | |||
| 11897 | } | |||
| 11898 | ||||
| 11899 | // Try to figure out the used register components | |||
| 11900 | for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); | |||
| 11901 | I != E; ++I) { | |||
| 11902 | ||||
| 11903 | // Don't look at users of the chain. | |||
| 11904 | if (I.getUse().getResNo() != 0) | |||
| 11905 | continue; | |||
| 11906 | ||||
| 11907 | // Abort if we can't understand the usage | |||
| 11908 | if (!I->isMachineOpcode() || | |||
| 11909 | I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) | |||
| 11910 | return Node; | |||
| 11911 | ||||
| 11912 | // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. | |||
| 11913 | // Note that subregs are packed, i.e. Lane==0 is the first bit set | |||
| 11914 | // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit | |||
| 11915 | // set, etc. | |||
| 11916 | Lane = SubIdx2Lane(I->getConstantOperandVal(1)); | |||
| 11917 | if (Lane == ~0u) | |||
| 11918 | return Node; | |||
| 11919 | ||||
| 11920 | // Check if the use is for the TFE/LWE generated result at VGPRn+1. | |||
| 11921 | if (UsesTFC && Lane == TFCLane) { | |||
| 11922 | Users[Lane] = *I; | |||
| 11923 | } else { | |||
| 11924 | // Set which texture component corresponds to the lane. | |||
| 11925 | unsigned Comp; | |||
| 11926 | for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { | |||
| 11927 | Comp = llvm::countr_zero(Dmask); | |||
| 11928 | Dmask &= ~(1 << Comp); | |||
| 11929 | } | |||
| 11930 | ||||
| 11931 | // Abort if we have more than one user per component. | |||
| 11932 | if (Users[Lane]) | |||
| 11933 | return Node; | |||
| 11934 | ||||
| 11935 | Users[Lane] = *I; | |||
| 11936 | NewDmask |= 1 << Comp; | |||
| 11937 | } | |||
| 11938 | } | |||
| 11939 | ||||
| 11940 | // Don't allow 0 dmask, as hardware assumes one channel enabled. | |||
| 11941 | bool NoChannels = !NewDmask; | |||
| 11942 | if (NoChannels
| |||
| 11943 | if (!UsesTFC
| |||
| 11944 | // No uses of the result and not using TFC. Then do nothing. | |||
| 11945 | return Node; | |||
| 11946 | } | |||
| 11947 | // If the original dmask has one channel - then nothing to do | |||
| 11948 | if (OldBitsSet == 1) | |||
| 11949 | return Node; | |||
| 11950 | // Use an arbitrary dmask - required for the instruction to work | |||
| 11951 | NewDmask = 1; | |||
| 11952 | } | |||
| 11953 | // Abort if there's no change | |||
| 11954 | if (NewDmask == OldDmask) | |||
| 11955 | return Node; | |||
| 11956 | ||||
| 11957 | unsigned BitsSet = llvm::popcount(NewDmask); | |||
| 11958 | ||||
| 11959 | // Check for TFE or LWE - increase the number of channels by one to account | |||
| 11960 | // for the extra return value | |||
| 11961 | // This will need adjustment for D16 if this is also included in | |||
| 11962 | // adjustWriteMask (this function) but at present D16 are excluded. | |||
| 11963 | unsigned NewChannels = BitsSet + UsesTFC; | |||
| 11964 | ||||
| 11965 | int NewOpcode = | |||
| 11966 | AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); | |||
| 11967 | assert(NewOpcode != -1 &&(static_cast <bool> (NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && "failed to find equivalent MIMG op") ? void (0) : __assert_fail ("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 11969, __extension__ __PRETTY_FUNCTION__)) | |||
| 11968 | NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&(static_cast <bool> (NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && "failed to find equivalent MIMG op") ? void (0) : __assert_fail ("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 11969, __extension__ __PRETTY_FUNCTION__)) | |||
| 11969 | "failed to find equivalent MIMG op")(static_cast <bool> (NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && "failed to find equivalent MIMG op") ? void (0) : __assert_fail ("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 11969, __extension__ __PRETTY_FUNCTION__)); | |||
| 11970 | ||||
| 11971 | // Adjust the writemask in the node | |||
| 11972 | SmallVector<SDValue, 12> Ops; | |||
| 11973 | Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); | |||
| 11974 | Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); | |||
| 11975 | Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); | |||
| 11976 | ||||
| 11977 | MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); | |||
| 11978 | ||||
| 11979 | MVT ResultVT = NewChannels == 1 ? | |||
| 11980 | SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : | |||
| 11981 | NewChannels == 5 ? 8 : NewChannels); | |||
| 11982 | SDVTList NewVTList = HasChain
| |||
| 11983 | DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); | |||
| 11984 | ||||
| 11985 | ||||
| 11986 | MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), | |||
| 11987 | NewVTList, Ops); | |||
| 11988 | ||||
| 11989 | if (HasChain
| |||
| 11990 | // Update chain. | |||
| 11991 | DAG.setNodeMemRefs(NewNode, Node->memoperands()); | |||
| 11992 | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); | |||
| 11993 | } | |||
| 11994 | ||||
| 11995 | if (NewChannels
| |||
| 11996 | assert(Node->hasNUsesOfValue(1, 0))(static_cast <bool> (Node->hasNUsesOfValue(1, 0)) ? void (0) : __assert_fail ("Node->hasNUsesOfValue(1, 0)", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 11996, __extension__ __PRETTY_FUNCTION__)); | |||
| 11997 | SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, | |||
| 11998 | SDLoc(Node), Users[Lane]->getValueType(0), | |||
| ||||
| 11999 | SDValue(NewNode, 0)); | |||
| 12000 | DAG.ReplaceAllUsesWith(Users[Lane], Copy); | |||
| 12001 | return nullptr; | |||
| 12002 | } | |||
| 12003 | ||||
| 12004 | // Update the users of the node with the new indices | |||
| 12005 | for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { | |||
| 12006 | SDNode *User = Users[i]; | |||
| 12007 | if (!User) { | |||
| 12008 | // Handle the special case of NoChannels. We set NewDmask to 1 above, but | |||
| 12009 | // Users[0] is still nullptr because channel 0 doesn't really have a use. | |||
| 12010 | if (i || !NoChannels) | |||
| 12011 | continue; | |||
| 12012 | } else { | |||
| 12013 | SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); | |||
| 12014 | DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); | |||
| 12015 | } | |||
| 12016 | ||||
| 12017 | switch (Idx) { | |||
| 12018 | default: break; | |||
| 12019 | case AMDGPU::sub0: Idx = AMDGPU::sub1; break; | |||
| 12020 | case AMDGPU::sub1: Idx = AMDGPU::sub2; break; | |||
| 12021 | case AMDGPU::sub2: Idx = AMDGPU::sub3; break; | |||
| 12022 | case AMDGPU::sub3: Idx = AMDGPU::sub4; break; | |||
| 12023 | } | |||
| 12024 | } | |||
| 12025 | ||||
| 12026 | DAG.RemoveDeadNode(Node); | |||
| 12027 | return nullptr; | |||
| 12028 | } | |||
| 12029 | ||||
| 12030 | static bool isFrameIndexOp(SDValue Op) { | |||
| 12031 | if (Op.getOpcode() == ISD::AssertZext) | |||
| 12032 | Op = Op.getOperand(0); | |||
| 12033 | ||||
| 12034 | return isa<FrameIndexSDNode>(Op); | |||
| 12035 | } | |||
| 12036 | ||||
| 12037 | /// Legalize target independent instructions (e.g. INSERT_SUBREG) | |||
| 12038 | /// with frame index operands. | |||
| 12039 | /// LLVM assumes that inputs are to these instructions are registers. | |||
| 12040 | SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, | |||
| 12041 | SelectionDAG &DAG) const { | |||
| 12042 | if (Node->getOpcode() == ISD::CopyToReg) { | |||
| 12043 | RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); | |||
| 12044 | SDValue SrcVal = Node->getOperand(2); | |||
| 12045 | ||||
| 12046 | // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have | |||
| 12047 | // to try understanding copies to physical registers. | |||
| 12048 | if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { | |||
| 12049 | SDLoc SL(Node); | |||
| 12050 | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | |||
| 12051 | SDValue VReg = DAG.getRegister( | |||
| 12052 | MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); | |||
| 12053 | ||||
| 12054 | SDNode *Glued = Node->getGluedNode(); | |||
| 12055 | SDValue ToVReg | |||
| 12056 | = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, | |||
| 12057 | SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); | |||
| 12058 | SDValue ToResultReg | |||
| 12059 | = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), | |||
| 12060 | VReg, ToVReg.getValue(1)); | |||
| 12061 | DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); | |||
| 12062 | DAG.RemoveDeadNode(Node); | |||
| 12063 | return ToResultReg.getNode(); | |||
| 12064 | } | |||
| 12065 | } | |||
| 12066 | ||||
| 12067 | SmallVector<SDValue, 8> Ops; | |||
| 12068 | for (unsigned i = 0; i < Node->getNumOperands(); ++i) { | |||
| 12069 | if (!isFrameIndexOp(Node->getOperand(i))) { | |||
| 12070 | Ops.push_back(Node->getOperand(i)); | |||
| 12071 | continue; | |||
| 12072 | } | |||
| 12073 | ||||
| 12074 | SDLoc DL(Node); | |||
| 12075 | Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, | |||
| 12076 | Node->getOperand(i).getValueType(), | |||
| 12077 | Node->getOperand(i)), 0)); | |||
| 12078 | } | |||
| 12079 | ||||
| 12080 | return DAG.UpdateNodeOperands(Node, Ops); | |||
| 12081 | } | |||
| 12082 | ||||
| 12083 | /// Fold the instructions after selecting them. | |||
| 12084 | /// Returns null if users were already updated. | |||
| 12085 | SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, | |||
| 12086 | SelectionDAG &DAG) const { | |||
| 12087 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 12088 | unsigned Opcode = Node->getMachineOpcode(); | |||
| 12089 | ||||
| 12090 | if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && | |||
| ||||
| 12091 | !TII->isGather4(Opcode) && | |||
| 12092 | AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) { | |||
| 12093 | return adjustWritemask(Node, DAG); | |||
| 12094 | } | |||
| 12095 | ||||
| 12096 | if (Opcode == AMDGPU::INSERT_SUBREG || | |||
| 12097 | Opcode == AMDGPU::REG_SEQUENCE) { | |||
| 12098 | legalizeTargetIndependentNode(Node, DAG); | |||
| 12099 | return Node; | |||
| 12100 | } | |||
| 12101 | ||||
| 12102 | switch (Opcode) { | |||
| 12103 | case AMDGPU::V_DIV_SCALE_F32_e64: | |||
| 12104 | case AMDGPU::V_DIV_SCALE_F64_e64: { | |||
| 12105 | // Satisfy the operand register constraint when one of the inputs is | |||
| 12106 | // undefined. Ordinarily each undef value will have its own implicit_def of | |||
| 12107 | // a vreg, so force these to use a single register. | |||
| 12108 | SDValue Src0 = Node->getOperand(1); | |||
| 12109 | SDValue Src1 = Node->getOperand(3); | |||
| 12110 | SDValue Src2 = Node->getOperand(5); | |||
| 12111 | ||||
| 12112 | if ((Src0.isMachineOpcode() && | |||
| 12113 | Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && | |||
| 12114 | (Src0 == Src1 || Src0 == Src2)) | |||
| 12115 | break; | |||
| 12116 | ||||
| 12117 | MVT VT = Src0.getValueType().getSimpleVT(); | |||
| 12118 | const TargetRegisterClass *RC = | |||
| 12119 | getRegClassFor(VT, Src0.getNode()->isDivergent()); | |||
| 12120 | ||||
| 12121 | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | |||
| 12122 | SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); | |||
| 12123 | ||||
| 12124 | SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), | |||
| 12125 | UndefReg, Src0, SDValue()); | |||
| 12126 | ||||
| 12127 | // src0 must be the same register as src1 or src2, even if the value is | |||
| 12128 | // undefined, so make sure we don't violate this constraint. | |||
| 12129 | if (Src0.isMachineOpcode() && | |||
| 12130 | Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { | |||
| 12131 | if (Src1.isMachineOpcode() && | |||
| 12132 | Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) | |||
| 12133 | Src0 = Src1; | |||
| 12134 | else if (Src2.isMachineOpcode() && | |||
| 12135 | Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) | |||
| 12136 | Src0 = Src2; | |||
| 12137 | else { | |||
| 12138 | assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)(static_cast <bool> (Src1.getMachineOpcode() == AMDGPU:: IMPLICIT_DEF) ? void (0) : __assert_fail ("Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 12138, __extension__ __PRETTY_FUNCTION__)); | |||
| 12139 | Src0 = UndefReg; | |||
| 12140 | Src1 = UndefReg; | |||
| 12141 | } | |||
| 12142 | } else | |||
| 12143 | break; | |||
| 12144 | ||||
| 12145 | SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); | |||
| 12146 | Ops[1] = Src0; | |||
| 12147 | Ops[3] = Src1; | |||
| 12148 | Ops[5] = Src2; | |||
| 12149 | Ops.push_back(ImpDef.getValue(1)); | |||
| 12150 | return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); | |||
| 12151 | } | |||
| 12152 | default: | |||
| 12153 | break; | |||
| 12154 | } | |||
| 12155 | ||||
| 12156 | return Node; | |||
| 12157 | } | |||
| 12158 | ||||
| 12159 | // Any MIMG instructions that use tfe or lwe require an initialization of the | |||
| 12160 | // result register that will be written in the case of a memory access failure. | |||
| 12161 | // The required code is also added to tie this init code to the result of the | |||
| 12162 | // img instruction. | |||
| 12163 | void SITargetLowering::AddIMGInit(MachineInstr &MI) const { | |||
| 12164 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 12165 | const SIRegisterInfo &TRI = TII->getRegisterInfo(); | |||
| 12166 | MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); | |||
| 12167 | MachineBasicBlock &MBB = *MI.getParent(); | |||
| 12168 | ||||
| 12169 | MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); | |||
| 12170 | MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); | |||
| 12171 | MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); | |||
| 12172 | ||||
| 12173 | if (!TFE && !LWE) // intersect_ray | |||
| 12174 | return; | |||
| 12175 | ||||
| 12176 | unsigned TFEVal = TFE ? TFE->getImm() : 0; | |||
| 12177 | unsigned LWEVal = LWE->getImm(); | |||
| 12178 | unsigned D16Val = D16 ? D16->getImm() : 0; | |||
| 12179 | ||||
| 12180 | if (!TFEVal && !LWEVal) | |||
| 12181 | return; | |||
| 12182 | ||||
| 12183 | // At least one of TFE or LWE are non-zero | |||
| 12184 | // We have to insert a suitable initialization of the result value and | |||
| 12185 | // tie this to the dest of the image instruction. | |||
| 12186 | ||||
| 12187 | const DebugLoc &DL = MI.getDebugLoc(); | |||
| 12188 | ||||
| 12189 | int DstIdx = | |||
| 12190 | AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); | |||
| 12191 | ||||
| 12192 | // Calculate which dword we have to initialize to 0. | |||
| 12193 | MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); | |||
| 12194 | ||||
| 12195 | // check that dmask operand is found. | |||
| 12196 | assert(MO_Dmask && "Expected dmask operand in instruction")(static_cast <bool> (MO_Dmask && "Expected dmask operand in instruction" ) ? void (0) : __assert_fail ("MO_Dmask && \"Expected dmask operand in instruction\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 12196, __extension__ __PRETTY_FUNCTION__)); | |||
| 12197 | ||||
| 12198 | unsigned dmask = MO_Dmask->getImm(); | |||
| 12199 | // Determine the number of active lanes taking into account the | |||
| 12200 | // Gather4 special case | |||
| 12201 | unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask); | |||
| 12202 | ||||
| 12203 | bool Packed = !Subtarget->hasUnpackedD16VMem(); | |||
| 12204 | ||||
| 12205 | unsigned InitIdx = | |||
| 12206 | D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; | |||
| 12207 | ||||
| 12208 | // Abandon attempt if the dst size isn't large enough | |||
| 12209 | // - this is in fact an error but this is picked up elsewhere and | |||
| 12210 | // reported correctly. | |||
| 12211 | uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; | |||
| 12212 | if (DstSize < InitIdx) | |||
| 12213 | return; | |||
| 12214 | ||||
| 12215 | // Create a register for the initialization value. | |||
| 12216 | Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); | |||
| 12217 | unsigned NewDst = 0; // Final initialized value will be in here | |||
| 12218 | ||||
| 12219 | // If PRTStrictNull feature is enabled (the default) then initialize | |||
| 12220 | // all the result registers to 0, otherwise just the error indication | |||
| 12221 | // register (VGPRn+1) | |||
| 12222 | unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; | |||
| 12223 | unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); | |||
| 12224 | ||||
| 12225 | BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); | |||
| 12226 | for (; SizeLeft; SizeLeft--, CurrIdx++) { | |||
| 12227 | NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); | |||
| 12228 | // Initialize dword | |||
| 12229 | Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | |||
| 12230 | BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) | |||
| 12231 | .addImm(0); | |||
| 12232 | // Insert into the super-reg | |||
| 12233 | BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) | |||
| 12234 | .addReg(PrevDst) | |||
| 12235 | .addReg(SubReg) | |||
| 12236 | .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); | |||
| 12237 | ||||
| 12238 | PrevDst = NewDst; | |||
| 12239 | } | |||
| 12240 | ||||
| 12241 | // Add as an implicit operand | |||
| 12242 | MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); | |||
| 12243 | ||||
| 12244 | // Tie the just added implicit operand to the dst | |||
| 12245 | MI.tieOperands(DstIdx, MI.getNumOperands() - 1); | |||
| 12246 | } | |||
| 12247 | ||||
| 12248 | /// Assign the register class depending on the number of | |||
| 12249 | /// bits set in the writemask | |||
| 12250 | void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, | |||
| 12251 | SDNode *Node) const { | |||
| 12252 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 12253 | ||||
| 12254 | MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | |||
| 12255 | ||||
| 12256 | if (TII->isVOP3(MI.getOpcode())) { | |||
| 12257 | // Make sure constant bus requirements are respected. | |||
| 12258 | TII->legalizeOperandsVOP3(MRI, MI); | |||
| 12259 | ||||
| 12260 | // Prefer VGPRs over AGPRs in mAI instructions where possible. | |||
| 12261 | // This saves a chain-copy of registers and better balance register | |||
| 12262 | // use between vgpr and agpr as agpr tuples tend to be big. | |||
| 12263 | if (!MI.getDesc().operands().empty()) { | |||
| 12264 | unsigned Opc = MI.getOpcode(); | |||
| 12265 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); | |||
| 12266 | for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), | |||
| 12267 | AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { | |||
| 12268 | if (I == -1) | |||
| 12269 | break; | |||
| 12270 | MachineOperand &Op = MI.getOperand(I); | |||
| 12271 | if (!Op.isReg() || !Op.getReg().isVirtual()) | |||
| 12272 | continue; | |||
| 12273 | auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); | |||
| 12274 | if (!TRI->hasAGPRs(RC)) | |||
| 12275 | continue; | |||
| 12276 | auto *Src = MRI.getUniqueVRegDef(Op.getReg()); | |||
| 12277 | if (!Src || !Src->isCopy() || | |||
| 12278 | !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) | |||
| 12279 | continue; | |||
| 12280 | auto *NewRC = TRI->getEquivalentVGPRClass(RC); | |||
| 12281 | // All uses of agpr64 and agpr32 can also accept vgpr except for | |||
| 12282 | // v_accvgpr_read, but we do not produce agpr reads during selection, | |||
| 12283 | // so no use checks are needed. | |||
| 12284 | MRI.setRegClass(Op.getReg(), NewRC); | |||
| 12285 | } | |||
| 12286 | ||||
| 12287 | // Resolve the rest of AV operands to AGPRs. | |||
| 12288 | if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) { | |||
| 12289 | if (Src2->isReg() && Src2->getReg().isVirtual()) { | |||
| 12290 | auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg()); | |||
| 12291 | if (TRI->isVectorSuperClass(RC)) { | |||
| 12292 | auto *NewRC = TRI->getEquivalentAGPRClass(RC); | |||
| 12293 | MRI.setRegClass(Src2->getReg(), NewRC); | |||
| 12294 | if (Src2->isTied()) | |||
| 12295 | MRI.setRegClass(MI.getOperand(0).getReg(), NewRC); | |||
| 12296 | } | |||
| 12297 | } | |||
| 12298 | } | |||
| 12299 | } | |||
| 12300 | ||||
| 12301 | return; | |||
| 12302 | } | |||
| 12303 | ||||
| 12304 | if (TII->isMIMG(MI)) { | |||
| 12305 | if (!MI.mayStore()) | |||
| 12306 | AddIMGInit(MI); | |||
| 12307 | TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr); | |||
| 12308 | } | |||
| 12309 | } | |||
| 12310 | ||||
| 12311 | static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, | |||
| 12312 | uint64_t Val) { | |||
| 12313 | SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); | |||
| 12314 | return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); | |||
| 12315 | } | |||
| 12316 | ||||
| 12317 | MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, | |||
| 12318 | const SDLoc &DL, | |||
| 12319 | SDValue Ptr) const { | |||
| 12320 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 12321 | ||||
| 12322 | // Build the half of the subregister with the constants before building the | |||
| 12323 | // full 128-bit register. If we are building multiple resource descriptors, | |||
| 12324 | // this will allow CSEing of the 2-component register. | |||
| 12325 | const SDValue Ops0[] = { | |||
| 12326 | DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), | |||
| 12327 | buildSMovImm32(DAG, DL, 0), | |||
| 12328 | DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), | |||
| 12329 | buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), | |||
| 12330 | DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) | |||
| 12331 | }; | |||
| 12332 | ||||
| 12333 | SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, | |||
| 12334 | MVT::v2i32, Ops0), 0); | |||
| 12335 | ||||
| 12336 | // Combine the constants and the pointer. | |||
| 12337 | const SDValue Ops1[] = { | |||
| 12338 | DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), | |||
| 12339 | Ptr, | |||
| 12340 | DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), | |||
| 12341 | SubRegHi, | |||
| 12342 | DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) | |||
| 12343 | }; | |||
| 12344 | ||||
| 12345 | return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); | |||
| 12346 | } | |||
| 12347 | ||||
| 12348 | /// Return a resource descriptor with the 'Add TID' bit enabled | |||
| 12349 | /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] | |||
| 12350 | /// of the resource descriptor) to create an offset, which is added to | |||
| 12351 | /// the resource pointer. | |||
| 12352 | MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, | |||
| 12353 | SDValue Ptr, uint32_t RsrcDword1, | |||
| 12354 | uint64_t RsrcDword2And3) const { | |||
| 12355 | SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); | |||
| 12356 | SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); | |||
| 12357 | if (RsrcDword1) { | |||
| 12358 | PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, | |||
| 12359 | DAG.getConstant(RsrcDword1, DL, MVT::i32)), | |||
| 12360 | 0); | |||
| 12361 | } | |||
| 12362 | ||||
| 12363 | SDValue DataLo = buildSMovImm32(DAG, DL, | |||
| 12364 | RsrcDword2And3 & UINT64_C(0xFFFFFFFF)0xFFFFFFFFUL); | |||
| 12365 | SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); | |||
| 12366 | ||||
| 12367 | const SDValue Ops[] = { | |||
| 12368 | DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), | |||
| 12369 | PtrLo, | |||
| 12370 | DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), | |||
| 12371 | PtrHi, | |||
| 12372 | DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), | |||
| 12373 | DataLo, | |||
| 12374 | DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), | |||
| 12375 | DataHi, | |||
| 12376 | DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) | |||
| 12377 | }; | |||
| 12378 | ||||
| 12379 | return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); | |||
| 12380 | } | |||
| 12381 | ||||
| 12382 | //===----------------------------------------------------------------------===// | |||
| 12383 | // SI Inline Assembly Support | |||
| 12384 | //===----------------------------------------------------------------------===// | |||
| 12385 | ||||
| 12386 | std::pair<unsigned, const TargetRegisterClass *> | |||
| 12387 | SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, | |||
| 12388 | StringRef Constraint, | |||
| 12389 | MVT VT) const { | |||
| 12390 | const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); | |||
| 12391 | ||||
| 12392 | const TargetRegisterClass *RC = nullptr; | |||
| 12393 | if (Constraint.size() == 1) { | |||
| 12394 | const unsigned BitWidth = VT.getSizeInBits(); | |||
| 12395 | switch (Constraint[0]) { | |||
| 12396 | default: | |||
| 12397 | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | |||
| 12398 | case 's': | |||
| 12399 | case 'r': | |||
| 12400 | switch (BitWidth) { | |||
| 12401 | case 16: | |||
| 12402 | RC = &AMDGPU::SReg_32RegClass; | |||
| 12403 | break; | |||
| 12404 | case 64: | |||
| 12405 | RC = &AMDGPU::SGPR_64RegClass; | |||
| 12406 | break; | |||
| 12407 | default: | |||
| 12408 | RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); | |||
| 12409 | if (!RC) | |||
| 12410 | return std::pair(0U, nullptr); | |||
| 12411 | break; | |||
| 12412 | } | |||
| 12413 | break; | |||
| 12414 | case 'v': | |||
| 12415 | switch (BitWidth) { | |||
| 12416 | case 16: | |||
| 12417 | RC = &AMDGPU::VGPR_32RegClass; | |||
| 12418 | break; | |||
| 12419 | default: | |||
| 12420 | RC = TRI->getVGPRClassForBitWidth(BitWidth); | |||
| 12421 | if (!RC) | |||
| 12422 | return std::pair(0U, nullptr); | |||
| 12423 | break; | |||
| 12424 | } | |||
| 12425 | break; | |||
| 12426 | case 'a': | |||
| 12427 | if (!Subtarget->hasMAIInsts()) | |||
| 12428 | break; | |||
| 12429 | switch (BitWidth) { | |||
| 12430 | case 16: | |||
| 12431 | RC = &AMDGPU::AGPR_32RegClass; | |||
| 12432 | break; | |||
| 12433 | default: | |||
| 12434 | RC = TRI->getAGPRClassForBitWidth(BitWidth); | |||
| 12435 | if (!RC) | |||
| 12436 | return std::pair(0U, nullptr); | |||
| 12437 | break; | |||
| 12438 | } | |||
| 12439 | break; | |||
| 12440 | } | |||
| 12441 | // We actually support i128, i16 and f16 as inline parameters | |||
| 12442 | // even if they are not reported as legal | |||
| 12443 | if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || | |||
| 12444 | VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) | |||
| 12445 | return std::pair(0U, RC); | |||
| 12446 | } | |||
| 12447 | ||||
| 12448 | if (Constraint.startswith("{") && Constraint.endswith("}")) { | |||
| 12449 | StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); | |||
| 12450 | if (RegName.consume_front("v")) { | |||
| 12451 | RC = &AMDGPU::VGPR_32RegClass; | |||
| 12452 | } else if (RegName.consume_front("s")) { | |||
| 12453 | RC = &AMDGPU::SGPR_32RegClass; | |||
| 12454 | } else if (RegName.consume_front("a")) { | |||
| 12455 | RC = &AMDGPU::AGPR_32RegClass; | |||
| 12456 | } | |||
| 12457 | ||||
| 12458 | if (RC) { | |||
| 12459 | uint32_t Idx; | |||
| 12460 | if (RegName.consume_front("[")) { | |||
| 12461 | uint32_t End; | |||
| 12462 | bool Failed = RegName.consumeInteger(10, Idx); | |||
| 12463 | Failed |= !RegName.consume_front(":"); | |||
| 12464 | Failed |= RegName.consumeInteger(10, End); | |||
| 12465 | Failed |= !RegName.consume_back("]"); | |||
| 12466 | if (!Failed) { | |||
| 12467 | uint32_t Width = (End - Idx + 1) * 32; | |||
| 12468 | MCRegister Reg = RC->getRegister(Idx); | |||
| 12469 | if (SIRegisterInfo::isVGPRClass(RC)) | |||
| 12470 | RC = TRI->getVGPRClassForBitWidth(Width); | |||
| 12471 | else if (SIRegisterInfo::isSGPRClass(RC)) | |||
| 12472 | RC = TRI->getSGPRClassForBitWidth(Width); | |||
| 12473 | else if (SIRegisterInfo::isAGPRClass(RC)) | |||
| 12474 | RC = TRI->getAGPRClassForBitWidth(Width); | |||
| 12475 | if (RC) { | |||
| 12476 | Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); | |||
| 12477 | return std::pair(Reg, RC); | |||
| 12478 | } | |||
| 12479 | } | |||
| 12480 | } else { | |||
| 12481 | bool Failed = RegName.getAsInteger(10, Idx); | |||
| 12482 | if (!Failed && Idx < RC->getNumRegs()) | |||
| 12483 | return std::pair(RC->getRegister(Idx), RC); | |||
| 12484 | } | |||
| 12485 | } | |||
| 12486 | } | |||
| 12487 | ||||
| 12488 | auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | |||
| 12489 | if (Ret.first) | |||
| 12490 | Ret.second = TRI->getPhysRegBaseClass(Ret.first); | |||
| 12491 | ||||
| 12492 | return Ret; | |||
| 12493 | } | |||
| 12494 | ||||
| 12495 | static bool isImmConstraint(StringRef Constraint) { | |||
| 12496 | if (Constraint.size() == 1) { | |||
| 12497 | switch (Constraint[0]) { | |||
| 12498 | default: break; | |||
| 12499 | case 'I': | |||
| 12500 | case 'J': | |||
| 12501 | case 'A': | |||
| 12502 | case 'B': | |||
| 12503 | case 'C': | |||
| 12504 | return true; | |||
| 12505 | } | |||
| 12506 | } else if (Constraint == "DA" || | |||
| 12507 | Constraint == "DB") { | |||
| 12508 | return true; | |||
| 12509 | } | |||
| 12510 | return false; | |||
| 12511 | } | |||
| 12512 | ||||
| 12513 | SITargetLowering::ConstraintType | |||
| 12514 | SITargetLowering::getConstraintType(StringRef Constraint) const { | |||
| 12515 | if (Constraint.size() == 1) { | |||
| 12516 | switch (Constraint[0]) { | |||
| 12517 | default: break; | |||
| 12518 | case 's': | |||
| 12519 | case 'v': | |||
| 12520 | case 'a': | |||
| 12521 | return C_RegisterClass; | |||
| 12522 | } | |||
| 12523 | } | |||
| 12524 | if (isImmConstraint(Constraint)) { | |||
| 12525 | return C_Other; | |||
| 12526 | } | |||
| 12527 | return TargetLowering::getConstraintType(Constraint); | |||
| 12528 | } | |||
| 12529 | ||||
| 12530 | static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { | |||
| 12531 | if (!AMDGPU::isInlinableIntLiteral(Val)) { | |||
| 12532 | Val = Val & maskTrailingOnes<uint64_t>(Size); | |||
| 12533 | } | |||
| 12534 | return Val; | |||
| 12535 | } | |||
| 12536 | ||||
| 12537 | void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, | |||
| 12538 | std::string &Constraint, | |||
| 12539 | std::vector<SDValue> &Ops, | |||
| 12540 | SelectionDAG &DAG) const { | |||
| 12541 | if (isImmConstraint(Constraint)) { | |||
| 12542 | uint64_t Val; | |||
| 12543 | if (getAsmOperandConstVal(Op, Val) && | |||
| 12544 | checkAsmConstraintVal(Op, Constraint, Val)) { | |||
| 12545 | Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); | |||
| 12546 | Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); | |||
| 12547 | } | |||
| 12548 | } else { | |||
| 12549 | TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | |||
| 12550 | } | |||
| 12551 | } | |||
| 12552 | ||||
| 12553 | bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { | |||
| 12554 | unsigned Size = Op.getScalarValueSizeInBits(); | |||
| 12555 | if (Size > 64) | |||
| 12556 | return false; | |||
| 12557 | ||||
| 12558 | if (Size == 16 && !Subtarget->has16BitInsts()) | |||
| 12559 | return false; | |||
| 12560 | ||||
| 12561 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | |||
| 12562 | Val = C->getSExtValue(); | |||
| 12563 | return true; | |||
| 12564 | } | |||
| 12565 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { | |||
| 12566 | Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); | |||
| 12567 | return true; | |||
| 12568 | } | |||
| 12569 | if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { | |||
| 12570 | if (Size != 16 || Op.getNumOperands() != 2) | |||
| 12571 | return false; | |||
| 12572 | if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) | |||
| 12573 | return false; | |||
| 12574 | if (ConstantSDNode *C = V->getConstantSplatNode()) { | |||
| 12575 | Val = C->getSExtValue(); | |||
| 12576 | return true; | |||
| 12577 | } | |||
| 12578 | if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { | |||
| 12579 | Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); | |||
| 12580 | return true; | |||
| 12581 | } | |||
| 12582 | } | |||
| 12583 | ||||
| 12584 | return false; | |||
| 12585 | } | |||
| 12586 | ||||
| 12587 | bool SITargetLowering::checkAsmConstraintVal(SDValue Op, | |||
| 12588 | const std::string &Constraint, | |||
| 12589 | uint64_t Val) const { | |||
| 12590 | if (Constraint.size() == 1) { | |||
| 12591 | switch (Constraint[0]) { | |||
| 12592 | case 'I': | |||
| 12593 | return AMDGPU::isInlinableIntLiteral(Val); | |||
| 12594 | case 'J': | |||
| 12595 | return isInt<16>(Val); | |||
| 12596 | case 'A': | |||
| 12597 | return checkAsmConstraintValA(Op, Val); | |||
| 12598 | case 'B': | |||
| 12599 | return isInt<32>(Val); | |||
| 12600 | case 'C': | |||
| 12601 | return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || | |||
| 12602 | AMDGPU::isInlinableIntLiteral(Val); | |||
| 12603 | default: | |||
| 12604 | break; | |||
| 12605 | } | |||
| 12606 | } else if (Constraint.size() == 2) { | |||
| 12607 | if (Constraint == "DA") { | |||
| 12608 | int64_t HiBits = static_cast<int32_t>(Val >> 32); | |||
| 12609 | int64_t LoBits = static_cast<int32_t>(Val); | |||
| 12610 | return checkAsmConstraintValA(Op, HiBits, 32) && | |||
| 12611 | checkAsmConstraintValA(Op, LoBits, 32); | |||
| 12612 | } | |||
| 12613 | if (Constraint == "DB") { | |||
| 12614 | return true; | |||
| 12615 | } | |||
| 12616 | } | |||
| 12617 | llvm_unreachable("Invalid asm constraint")::llvm::llvm_unreachable_internal("Invalid asm constraint", "llvm/lib/Target/AMDGPU/SIISelLowering.cpp" , 12617); | |||
| 12618 | } | |||
| 12619 | ||||
| 12620 | bool SITargetLowering::checkAsmConstraintValA(SDValue Op, | |||
| 12621 | uint64_t Val, | |||
| 12622 | unsigned MaxSize) const { | |||
| 12623 | unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); | |||
| 12624 | bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); | |||
| 12625 | if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || | |||
| 12626 | (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || | |||
| 12627 | (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { | |||
| 12628 | return true; | |||
| 12629 | } | |||
| 12630 | return false; | |||
| 12631 | } | |||
| 12632 | ||||
| 12633 | static int getAlignedAGPRClassID(unsigned UnalignedClassID) { | |||
| 12634 | switch (UnalignedClassID) { | |||
| 12635 | case AMDGPU::VReg_64RegClassID: | |||
| 12636 | return AMDGPU::VReg_64_Align2RegClassID; | |||
| 12637 | case AMDGPU::VReg_96RegClassID: | |||
| 12638 | return AMDGPU::VReg_96_Align2RegClassID; | |||
| 12639 | case AMDGPU::VReg_128RegClassID: | |||
| 12640 | return AMDGPU::VReg_128_Align2RegClassID; | |||
| 12641 | case AMDGPU::VReg_160RegClassID: | |||
| 12642 | return AMDGPU::VReg_160_Align2RegClassID; | |||
| 12643 | case AMDGPU::VReg_192RegClassID: | |||
| 12644 | return AMDGPU::VReg_192_Align2RegClassID; | |||
| 12645 | case AMDGPU::VReg_224RegClassID: | |||
| 12646 | return AMDGPU::VReg_224_Align2RegClassID; | |||
| 12647 | case AMDGPU::VReg_256RegClassID: | |||
| 12648 | return AMDGPU::VReg_256_Align2RegClassID; | |||
| 12649 | case AMDGPU::VReg_288RegClassID: | |||
| 12650 | return AMDGPU::VReg_288_Align2RegClassID; | |||
| 12651 | case AMDGPU::VReg_320RegClassID: | |||
| 12652 | return AMDGPU::VReg_320_Align2RegClassID; | |||
| 12653 | case AMDGPU::VReg_352RegClassID: | |||
| 12654 | return AMDGPU::VReg_352_Align2RegClassID; | |||
| 12655 | case AMDGPU::VReg_384RegClassID: | |||
| 12656 | return AMDGPU::VReg_384_Align2RegClassID; | |||
| 12657 | case AMDGPU::VReg_512RegClassID: | |||
| 12658 | return AMDGPU::VReg_512_Align2RegClassID; | |||
| 12659 | case AMDGPU::VReg_1024RegClassID: | |||
| 12660 | return AMDGPU::VReg_1024_Align2RegClassID; | |||
| 12661 | case AMDGPU::AReg_64RegClassID: | |||
| 12662 | return AMDGPU::AReg_64_Align2RegClassID; | |||
| 12663 | case AMDGPU::AReg_96RegClassID: | |||
| 12664 | return AMDGPU::AReg_96_Align2RegClassID; | |||
| 12665 | case AMDGPU::AReg_128RegClassID: | |||
| 12666 | return AMDGPU::AReg_128_Align2RegClassID; | |||
| 12667 | case AMDGPU::AReg_160RegClassID: | |||
| 12668 | return AMDGPU::AReg_160_Align2RegClassID; | |||
| 12669 | case AMDGPU::AReg_192RegClassID: | |||
| 12670 | return AMDGPU::AReg_192_Align2RegClassID; | |||
| 12671 | case AMDGPU::AReg_256RegClassID: | |||
| 12672 | return AMDGPU::AReg_256_Align2RegClassID; | |||
| 12673 | case AMDGPU::AReg_512RegClassID: | |||
| 12674 | return AMDGPU::AReg_512_Align2RegClassID; | |||
| 12675 | case AMDGPU::AReg_1024RegClassID: | |||
| 12676 | return AMDGPU::AReg_1024_Align2RegClassID; | |||
| 12677 | default: | |||
| 12678 | return -1; | |||
| 12679 | } | |||
| 12680 | } | |||
| 12681 | ||||
| 12682 | // Figure out which registers should be reserved for stack access. Only after | |||
| 12683 | // the function is legalized do we know all of the non-spill stack objects or if | |||
| 12684 | // calls are present. | |||
| 12685 | void SITargetLowering::finalizeLowering(MachineFunction &MF) const { | |||
| 12686 | MachineRegisterInfo &MRI = MF.getRegInfo(); | |||
| 12687 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 12688 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | |||
| 12689 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); | |||
| 12690 | const SIInstrInfo *TII = ST.getInstrInfo(); | |||
| 12691 | ||||
| 12692 | if (Info->isEntryFunction()) { | |||
| 12693 | // Callable functions have fixed registers used for stack access. | |||
| 12694 | reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); | |||
| 12695 | } | |||
| 12696 | ||||
| 12697 | assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),(static_cast <bool> (!TRI->isSubRegister(Info->getScratchRSrcReg (), Info->getStackPtrOffsetReg())) ? void (0) : __assert_fail ("!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 12698, __extension__ __PRETTY_FUNCTION__)) | |||
| 12698 | Info->getStackPtrOffsetReg()))(static_cast <bool> (!TRI->isSubRegister(Info->getScratchRSrcReg (), Info->getStackPtrOffsetReg())) ? void (0) : __assert_fail ("!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 12698, __extension__ __PRETTY_FUNCTION__)); | |||
| 12699 | if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) | |||
| 12700 | MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); | |||
| 12701 | ||||
| 12702 | // We need to worry about replacing the default register with itself in case | |||
| 12703 | // of MIR testcases missing the MFI. | |||
| 12704 | if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) | |||
| 12705 | MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); | |||
| 12706 | ||||
| 12707 | if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) | |||
| 12708 | MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); | |||
| 12709 | ||||
| 12710 | Info->limitOccupancy(MF); | |||
| 12711 | ||||
| 12712 | if (ST.isWave32() && !MF.empty()) { | |||
| 12713 | for (auto &MBB : MF) { | |||
| 12714 | for (auto &MI : MBB) { | |||
| 12715 | TII->fixImplicitOperands(MI); | |||
| 12716 | } | |||
| 12717 | } | |||
| 12718 | } | |||
| 12719 | ||||
| 12720 | // FIXME: This is a hack to fixup AGPR classes to use the properly aligned | |||
| 12721 | // classes if required. Ideally the register class constraints would differ | |||
| 12722 | // per-subtarget, but there's no easy way to achieve that right now. This is | |||
| 12723 | // not a problem for VGPRs because the correctly aligned VGPR class is implied | |||
| 12724 | // from using them as the register class for legal types. | |||
| 12725 | if (ST.needsAlignedVGPRs()) { | |||
| 12726 | for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { | |||
| 12727 | const Register Reg = Register::index2VirtReg(I); | |||
| 12728 | const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); | |||
| 12729 | if (!RC) | |||
| 12730 | continue; | |||
| 12731 | int NewClassID = getAlignedAGPRClassID(RC->getID()); | |||
| 12732 | if (NewClassID != -1) | |||
| 12733 | MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); | |||
| 12734 | } | |||
| 12735 | } | |||
| 12736 | ||||
| 12737 | TargetLoweringBase::finalizeLowering(MF); | |||
| 12738 | } | |||
| 12739 | ||||
| 12740 | void SITargetLowering::computeKnownBitsForTargetNode(const SDValue Op, | |||
| 12741 | KnownBits &Known, | |||
| 12742 | const APInt &DemandedElts, | |||
| 12743 | const SelectionDAG &DAG, | |||
| 12744 | unsigned Depth) const { | |||
| 12745 | Known.resetAll(); | |||
| 12746 | unsigned Opc = Op.getOpcode(); | |||
| 12747 | switch (Opc) { | |||
| 12748 | case ISD::INTRINSIC_WO_CHAIN: { | |||
| 12749 | unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | |||
| 12750 | switch (IID) { | |||
| 12751 | case Intrinsic::amdgcn_mbcnt_lo: | |||
| 12752 | case Intrinsic::amdgcn_mbcnt_hi: { | |||
| 12753 | const GCNSubtarget &ST = | |||
| 12754 | DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); | |||
| 12755 | // These return at most the (wavefront size - 1) + src1 | |||
| 12756 | // As long as src1 is an immediate we can calc known bits | |||
| 12757 | KnownBits Src1Known = DAG.computeKnownBits(Op.getOperand(2), Depth + 1); | |||
| 12758 | unsigned Src1ValBits = Src1Known.countMaxActiveBits(); | |||
| 12759 | unsigned MaxActiveBits = std::max(Src1ValBits, ST.getWavefrontSizeLog2()); | |||
| 12760 | // Cater for potential carry | |||
| 12761 | MaxActiveBits += Src1ValBits ? 1 : 0; | |||
| 12762 | unsigned Size = Op.getValueType().getSizeInBits(); | |||
| 12763 | if (MaxActiveBits < Size) | |||
| 12764 | Known.Zero.setHighBits(Size - MaxActiveBits); | |||
| 12765 | return; | |||
| 12766 | } | |||
| 12767 | } | |||
| 12768 | break; | |||
| 12769 | } | |||
| 12770 | } | |||
| 12771 | return AMDGPUTargetLowering::computeKnownBitsForTargetNode( | |||
| 12772 | Op, Known, DemandedElts, DAG, Depth); | |||
| 12773 | } | |||
| 12774 | ||||
| 12775 | void SITargetLowering::computeKnownBitsForFrameIndex( | |||
| 12776 | const int FI, KnownBits &Known, const MachineFunction &MF) const { | |||
| 12777 | TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); | |||
| 12778 | ||||
| 12779 | // Set the high bits to zero based on the maximum allowed scratch size per | |||
| 12780 | // wave. We can't use vaddr in MUBUF instructions if we don't know the address | |||
| 12781 | // calculation won't overflow, so assume the sign bit is never set. | |||
| 12782 | Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); | |||
| 12783 | } | |||
| 12784 | ||||
| 12785 | static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, | |||
| 12786 | KnownBits &Known, unsigned Dim) { | |||
| 12787 | unsigned MaxValue = | |||
| 12788 | ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); | |||
| 12789 | Known.Zero.setHighBits(llvm::countl_zero(MaxValue)); | |||
| 12790 | } | |||
| 12791 | ||||
| 12792 | void SITargetLowering::computeKnownBitsForTargetInstr( | |||
| 12793 | GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, | |||
| 12794 | const MachineRegisterInfo &MRI, unsigned Depth) const { | |||
| 12795 | const MachineInstr *MI = MRI.getVRegDef(R); | |||
| 12796 | switch (MI->getOpcode()) { | |||
| 12797 | case AMDGPU::G_INTRINSIC: { | |||
| 12798 | switch (MI->getIntrinsicID()) { | |||
| 12799 | case Intrinsic::amdgcn_workitem_id_x: | |||
| 12800 | knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); | |||
| 12801 | break; | |||
| 12802 | case Intrinsic::amdgcn_workitem_id_y: | |||
| 12803 | knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); | |||
| 12804 | break; | |||
| 12805 | case Intrinsic::amdgcn_workitem_id_z: | |||
| 12806 | knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); | |||
| 12807 | break; | |||
| 12808 | case Intrinsic::amdgcn_mbcnt_lo: | |||
| 12809 | case Intrinsic::amdgcn_mbcnt_hi: { | |||
| 12810 | // These return at most the wavefront size - 1. | |||
| 12811 | unsigned Size = MRI.getType(R).getSizeInBits(); | |||
| 12812 | Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); | |||
| 12813 | break; | |||
| 12814 | } | |||
| 12815 | case Intrinsic::amdgcn_groupstaticsize: { | |||
| 12816 | // We can report everything over the maximum size as 0. We can't report | |||
| 12817 | // based on the actual size because we don't know if it's accurate or not | |||
| 12818 | // at any given point. | |||
| 12819 | Known.Zero.setHighBits( | |||
| 12820 | llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize())); | |||
| 12821 | break; | |||
| 12822 | } | |||
| 12823 | } | |||
| 12824 | break; | |||
| 12825 | } | |||
| 12826 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: | |||
| 12827 | Known.Zero.setHighBits(24); | |||
| 12828 | break; | |||
| 12829 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: | |||
| 12830 | Known.Zero.setHighBits(16); | |||
| 12831 | break; | |||
| 12832 | } | |||
| 12833 | } | |||
| 12834 | ||||
| 12835 | Align SITargetLowering::computeKnownAlignForTargetInstr( | |||
| 12836 | GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, | |||
| 12837 | unsigned Depth) const { | |||
| 12838 | const MachineInstr *MI = MRI.getVRegDef(R); | |||
| 12839 | switch (MI->getOpcode()) { | |||
| 12840 | case AMDGPU::G_INTRINSIC: | |||
| 12841 | case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { | |||
| 12842 | // FIXME: Can this move to generic code? What about the case where the call | |||
| 12843 | // site specifies a lower alignment? | |||
| 12844 | Intrinsic::ID IID = MI->getIntrinsicID(); | |||
| 12845 | LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); | |||
| 12846 | AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); | |||
| 12847 | if (MaybeAlign RetAlign = Attrs.getRetAlignment()) | |||
| 12848 | return *RetAlign; | |||
| 12849 | return Align(1); | |||
| 12850 | } | |||
| 12851 | default: | |||
| 12852 | return Align(1); | |||
| 12853 | } | |||
| 12854 | } | |||
| 12855 | ||||
| 12856 | Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { | |||
| 12857 | const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); | |||
| 12858 | const Align CacheLineAlign = Align(64); | |||
| 12859 | ||||
| 12860 | // Pre-GFX10 target did not benefit from loop alignment | |||
| 12861 | if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() || | |||
| 12862 | getSubtarget()->hasInstFwdPrefetchBug()) | |||
| 12863 | return PrefAlign; | |||
| 12864 | ||||
| 12865 | // On GFX10 I$ is 4 x 64 bytes cache lines. | |||
| 12866 | // By default prefetcher keeps one cache line behind and reads two ahead. | |||
| 12867 | // We can modify it with S_INST_PREFETCH for larger loops to have two lines | |||
| 12868 | // behind and one ahead. | |||
| 12869 | // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. | |||
| 12870 | // If loop fits 64 bytes it always spans no more than two cache lines and | |||
| 12871 | // does not need an alignment. | |||
| 12872 | // Else if loop is less or equal 128 bytes we do not need to modify prefetch, | |||
| 12873 | // Else if loop is less or equal 192 bytes we need two lines behind. | |||
| 12874 | ||||
| 12875 | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | |||
| 12876 | const MachineBasicBlock *Header = ML->getHeader(); | |||
| 12877 | if (Header->getAlignment() != PrefAlign) | |||
| 12878 | return Header->getAlignment(); // Already processed. | |||
| 12879 | ||||
| 12880 | unsigned LoopSize = 0; | |||
| 12881 | for (const MachineBasicBlock *MBB : ML->blocks()) { | |||
| 12882 | // If inner loop block is aligned assume in average half of the alignment | |||
| 12883 | // size to be added as nops. | |||
| 12884 | if (MBB != Header) | |||
| 12885 | LoopSize += MBB->getAlignment().value() / 2; | |||
| 12886 | ||||
| 12887 | for (const MachineInstr &MI : *MBB) { | |||
| 12888 | LoopSize += TII->getInstSizeInBytes(MI); | |||
| 12889 | if (LoopSize > 192) | |||
| 12890 | return PrefAlign; | |||
| 12891 | } | |||
| 12892 | } | |||
| 12893 | ||||
| 12894 | if (LoopSize <= 64) | |||
| 12895 | return PrefAlign; | |||
| 12896 | ||||
| 12897 | if (LoopSize <= 128) | |||
| 12898 | return CacheLineAlign; | |||
| 12899 | ||||
| 12900 | // If any of parent loops is surrounded by prefetch instructions do not | |||
| 12901 | // insert new for inner loop, which would reset parent's settings. | |||
| 12902 | for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { | |||
| 12903 | if (MachineBasicBlock *Exit = P->getExitBlock()) { | |||
| 12904 | auto I = Exit->getFirstNonDebugInstr(); | |||
| 12905 | if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) | |||
| 12906 | return CacheLineAlign; | |||
| 12907 | } | |||
| 12908 | } | |||
| 12909 | ||||
| 12910 | MachineBasicBlock *Pre = ML->getLoopPreheader(); | |||
| 12911 | MachineBasicBlock *Exit = ML->getExitBlock(); | |||
| 12912 | ||||
| 12913 | if (Pre && Exit) { | |||
| 12914 | auto PreTerm = Pre->getFirstTerminator(); | |||
| 12915 | if (PreTerm == Pre->begin() || | |||
| 12916 | std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH) | |||
| 12917 | BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) | |||
| 12918 | .addImm(1); // prefetch 2 lines behind PC | |||
| 12919 | ||||
| 12920 | auto ExitHead = Exit->getFirstNonDebugInstr(); | |||
| 12921 | if (ExitHead == Exit->end() || | |||
| 12922 | ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH) | |||
| 12923 | BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) | |||
| 12924 | .addImm(2); // prefetch 1 line behind PC | |||
| 12925 | } | |||
| 12926 | ||||
| 12927 | return CacheLineAlign; | |||
| 12928 | } | |||
| 12929 | ||||
| 12930 | LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__)) | |||
| 12931 | static bool isCopyFromRegOfInlineAsm(const SDNode *N) { | |||
| 12932 | assert(N->getOpcode() == ISD::CopyFromReg)(static_cast <bool> (N->getOpcode() == ISD::CopyFromReg ) ? void (0) : __assert_fail ("N->getOpcode() == ISD::CopyFromReg" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 12932, __extension__ __PRETTY_FUNCTION__)); | |||
| 12933 | do { | |||
| 12934 | // Follow the chain until we find an INLINEASM node. | |||
| 12935 | N = N->getOperand(0).getNode(); | |||
| 12936 | if (N->getOpcode() == ISD::INLINEASM || | |||
| 12937 | N->getOpcode() == ISD::INLINEASM_BR) | |||
| 12938 | return true; | |||
| 12939 | } while (N->getOpcode() == ISD::CopyFromReg); | |||
| 12940 | return false; | |||
| 12941 | } | |||
| 12942 | ||||
| 12943 | bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode *N, | |||
| 12944 | FunctionLoweringInfo *FLI, | |||
| 12945 | UniformityInfo *UA) const { | |||
| 12946 | switch (N->getOpcode()) { | |||
| 12947 | case ISD::CopyFromReg: { | |||
| 12948 | const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); | |||
| 12949 | const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); | |||
| 12950 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); | |||
| 12951 | Register Reg = R->getReg(); | |||
| 12952 | ||||
| 12953 | // FIXME: Why does this need to consider isLiveIn? | |||
| 12954 | if (Reg.isPhysical() || MRI.isLiveIn(Reg)) | |||
| 12955 | return !TRI->isSGPRReg(MRI, Reg); | |||
| 12956 | ||||
| 12957 | if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) | |||
| 12958 | return UA->isDivergent(V); | |||
| 12959 | ||||
| 12960 | assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N))(static_cast <bool> (Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm (N)) ? void (0) : __assert_fail ("Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 12960, __extension__ __PRETTY_FUNCTION__)); | |||
| 12961 | return !TRI->isSGPRReg(MRI, Reg); | |||
| 12962 | } | |||
| 12963 | case ISD::LOAD: { | |||
| 12964 | const LoadSDNode *L = cast<LoadSDNode>(N); | |||
| 12965 | unsigned AS = L->getAddressSpace(); | |||
| 12966 | // A flat load may access private memory. | |||
| 12967 | return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; | |||
| 12968 | } | |||
| 12969 | case ISD::CALLSEQ_END: | |||
| 12970 | return true; | |||
| 12971 | case ISD::INTRINSIC_WO_CHAIN: | |||
| 12972 | return AMDGPU::isIntrinsicSourceOfDivergence( | |||
| 12973 | cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); | |||
| 12974 | case ISD::INTRINSIC_W_CHAIN: | |||
| 12975 | return AMDGPU::isIntrinsicSourceOfDivergence( | |||
| 12976 | cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); | |||
| 12977 | case AMDGPUISD::ATOMIC_CMP_SWAP: | |||
| 12978 | case AMDGPUISD::ATOMIC_LOAD_FMIN: | |||
| 12979 | case AMDGPUISD::ATOMIC_LOAD_FMAX: | |||
| 12980 | case AMDGPUISD::BUFFER_ATOMIC_SWAP: | |||
| 12981 | case AMDGPUISD::BUFFER_ATOMIC_ADD: | |||
| 12982 | case AMDGPUISD::BUFFER_ATOMIC_SUB: | |||
| 12983 | case AMDGPUISD::BUFFER_ATOMIC_SMIN: | |||
| 12984 | case AMDGPUISD::BUFFER_ATOMIC_UMIN: | |||
| 12985 | case AMDGPUISD::BUFFER_ATOMIC_SMAX: | |||
| 12986 | case AMDGPUISD::BUFFER_ATOMIC_UMAX: | |||
| 12987 | case AMDGPUISD::BUFFER_ATOMIC_AND: | |||
| 12988 | case AMDGPUISD::BUFFER_ATOMIC_OR: | |||
| 12989 | case AMDGPUISD::BUFFER_ATOMIC_XOR: | |||
| 12990 | case AMDGPUISD::BUFFER_ATOMIC_INC: | |||
| 12991 | case AMDGPUISD::BUFFER_ATOMIC_DEC: | |||
| 12992 | case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: | |||
| 12993 | case AMDGPUISD::BUFFER_ATOMIC_CSUB: | |||
| 12994 | case AMDGPUISD::BUFFER_ATOMIC_FADD: | |||
| 12995 | case AMDGPUISD::BUFFER_ATOMIC_FMIN: | |||
| 12996 | case AMDGPUISD::BUFFER_ATOMIC_FMAX: | |||
| 12997 | // Target-specific read-modify-write atomics are sources of divergence. | |||
| 12998 | return true; | |||
| 12999 | default: | |||
| 13000 | if (auto *A = dyn_cast<AtomicSDNode>(N)) { | |||
| 13001 | // Generic read-modify-write atomics are sources of divergence. | |||
| 13002 | return A->readMem() && A->writeMem(); | |||
| 13003 | } | |||
| 13004 | return false; | |||
| 13005 | } | |||
| 13006 | } | |||
| 13007 | ||||
| 13008 | bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, | |||
| 13009 | EVT VT) const { | |||
| 13010 | switch (VT.getScalarType().getSimpleVT().SimpleTy) { | |||
| 13011 | case MVT::f32: | |||
| 13012 | return hasFP32Denormals(DAG.getMachineFunction()); | |||
| 13013 | case MVT::f64: | |||
| 13014 | case MVT::f16: | |||
| 13015 | return hasFP64FP16Denormals(DAG.getMachineFunction()); | |||
| 13016 | default: | |||
| 13017 | return false; | |||
| 13018 | } | |||
| 13019 | } | |||
| 13020 | ||||
| 13021 | bool SITargetLowering::denormalsEnabledForType(LLT Ty, | |||
| 13022 | MachineFunction &MF) const { | |||
| 13023 | switch (Ty.getScalarSizeInBits()) { | |||
| 13024 | case 32: | |||
| 13025 | return hasFP32Denormals(MF); | |||
| 13026 | case 64: | |||
| 13027 | case 16: | |||
| 13028 | return hasFP64FP16Denormals(MF); | |||
| 13029 | default: | |||
| 13030 | return false; | |||
| 13031 | } | |||
| 13032 | } | |||
| 13033 | ||||
| 13034 | bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, | |||
| 13035 | const SelectionDAG &DAG, | |||
| 13036 | bool SNaN, | |||
| 13037 | unsigned Depth) const { | |||
| 13038 | if (Op.getOpcode() == AMDGPUISD::CLAMP) { | |||
| 13039 | const MachineFunction &MF = DAG.getMachineFunction(); | |||
| 13040 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 13041 | ||||
| 13042 | if (Info->getMode().DX10Clamp) | |||
| 13043 | return true; // Clamped to 0. | |||
| 13044 | return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); | |||
| 13045 | } | |||
| 13046 | ||||
| 13047 | return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, | |||
| 13048 | SNaN, Depth); | |||
| 13049 | } | |||
| 13050 | ||||
| 13051 | // Global FP atomic instructions have a hardcoded FP mode and do not support | |||
| 13052 | // FP32 denormals, and only support v2f16 denormals. | |||
| 13053 | static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { | |||
| 13054 | const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); | |||
| 13055 | auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); | |||
| 13056 | if (&Flt == &APFloat::IEEEsingle()) | |||
| 13057 | return DenormMode == DenormalMode::getPreserveSign(); | |||
| 13058 | return DenormMode == DenormalMode::getIEEE(); | |||
| 13059 | } | |||
| 13060 | ||||
| 13061 | // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe | |||
| 13062 | // floating point atomic instructions. May generate more efficient code, | |||
| 13063 | // but may not respect rounding and denormal modes, and may give incorrect | |||
| 13064 | // results for certain memory destinations. | |||
| 13065 | bool unsafeFPAtomicsDisabled(Function *F) { | |||
| 13066 | return F->getFnAttribute("amdgpu-unsafe-fp-atomics").getValueAsString() != | |||
| 13067 | "true"; | |||
| 13068 | } | |||
| 13069 | ||||
| 13070 | TargetLowering::AtomicExpansionKind | |||
| 13071 | SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { | |||
| 13072 | unsigned AS = RMW->getPointerAddressSpace(); | |||
| 13073 | if (AS == AMDGPUAS::PRIVATE_ADDRESS) | |||
| 13074 | return AtomicExpansionKind::NotAtomic; | |||
| 13075 | ||||
| 13076 | auto SSID = RMW->getSyncScopeID(); | |||
| 13077 | ||||
| 13078 | auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) { | |||
| 13079 | OptimizationRemarkEmitter ORE(RMW->getFunction()); | |||
| 13080 | LLVMContext &Ctx = RMW->getFunction()->getContext(); | |||
| 13081 | SmallVector<StringRef> SSNs; | |||
| 13082 | Ctx.getSyncScopeNames(SSNs); | |||
| 13083 | auto MemScope = SSNs[RMW->getSyncScopeID()].empty() | |||
| 13084 | ? "system" | |||
| 13085 | : SSNs[RMW->getSyncScopeID()]; | |||
| 13086 | ORE.emit([&]() { | |||
| 13087 | return OptimizationRemark(DEBUG_TYPE"si-lower", "Passed", RMW) | |||
| 13088 | << "Hardware instruction generated for atomic " | |||
| 13089 | << RMW->getOperationName(RMW->getOperation()) | |||
| 13090 | << " operation at memory scope " << MemScope | |||
| 13091 | << " due to an unsafe request."; | |||
| 13092 | }); | |||
| 13093 | return Kind; | |||
| 13094 | }; | |||
| 13095 | ||||
| 13096 | bool HasSystemScope = | |||
| 13097 | SSID == SyncScope::System || | |||
| 13098 | SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"); | |||
| 13099 | ||||
| 13100 | switch (RMW->getOperation()) { | |||
| 13101 | case AtomicRMWInst::FAdd: { | |||
| 13102 | Type *Ty = RMW->getType(); | |||
| 13103 | ||||
| 13104 | if (Ty->isHalfTy()) | |||
| 13105 | return AtomicExpansionKind::CmpXChg; | |||
| 13106 | ||||
| 13107 | if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) | |||
| 13108 | return AtomicExpansionKind::CmpXChg; | |||
| 13109 | ||||
| 13110 | if (AMDGPU::isFlatGlobalAddrSpace(AS) && | |||
| 13111 | Subtarget->hasAtomicFaddNoRtnInsts()) { | |||
| 13112 | if (Subtarget->hasGFX940Insts()) | |||
| 13113 | return AtomicExpansionKind::None; | |||
| 13114 | ||||
| 13115 | if (unsafeFPAtomicsDisabled(RMW->getFunction())) | |||
| 13116 | return AtomicExpansionKind::CmpXChg; | |||
| 13117 | ||||
| 13118 | // Always expand system scope fp atomics. | |||
| 13119 | if (HasSystemScope) | |||
| 13120 | return AtomicExpansionKind::CmpXChg; | |||
| 13121 | ||||
| 13122 | if (AS == AMDGPUAS::GLOBAL_ADDRESS && Ty->isFloatTy()) { | |||
| 13123 | // global atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, gfx11+. | |||
| 13124 | if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) | |||
| 13125 | return ReportUnsafeHWInst(AtomicExpansionKind::None); | |||
| 13126 | // global atomic fadd f32 rtn: gfx90a, gfx940, gfx11+. | |||
| 13127 | if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) | |||
| 13128 | return ReportUnsafeHWInst(AtomicExpansionKind::None); | |||
| 13129 | } | |||
| 13130 | ||||
| 13131 | // flat atomic fadd f32: gfx940, gfx11+. | |||
| 13132 | if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() && | |||
| 13133 | Subtarget->hasFlatAtomicFaddF32Inst()) | |||
| 13134 | return ReportUnsafeHWInst(AtomicExpansionKind::None); | |||
| 13135 | ||||
| 13136 | // global and flat atomic fadd f64: gfx90a, gfx940. | |||
| 13137 | if (Ty->isDoubleTy() && Subtarget->hasGFX90AInsts()) | |||
| 13138 | return ReportUnsafeHWInst(AtomicExpansionKind::None); | |||
| 13139 | ||||
| 13140 | // If it is in flat address space, and the type is float, we will try to | |||
| 13141 | // expand it, if the target supports global and lds atomic fadd. The | |||
| 13142 | // reason we need that is, in the expansion, we emit the check of address | |||
| 13143 | // space. If it is in global address space, we emit the global atomic | |||
| 13144 | // fadd; if it is in shared address space, we emit the LDS atomic fadd. | |||
| 13145 | if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() && | |||
| 13146 | Subtarget->hasLDSFPAtomicAdd()) { | |||
| 13147 | if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) | |||
| 13148 | return AtomicExpansionKind::Expand; | |||
| 13149 | if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) | |||
| 13150 | return AtomicExpansionKind::Expand; | |||
| 13151 | } | |||
| 13152 | ||||
| 13153 | return AtomicExpansionKind::CmpXChg; | |||
| 13154 | } | |||
| 13155 | ||||
| 13156 | // DS FP atomics do respect the denormal mode, but the rounding mode is | |||
| 13157 | // fixed to round-to-nearest-even. | |||
| 13158 | // The only exception is DS_ADD_F64 which never flushes regardless of mode. | |||
| 13159 | if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) { | |||
| 13160 | if (!Ty->isDoubleTy()) | |||
| 13161 | return AtomicExpansionKind::None; | |||
| 13162 | ||||
| 13163 | if (fpModeMatchesGlobalFPAtomicMode(RMW)) | |||
| 13164 | return AtomicExpansionKind::None; | |||
| 13165 | ||||
| 13166 | return RMW->getFunction() | |||
| 13167 | ->getFnAttribute("amdgpu-unsafe-fp-atomics") | |||
| 13168 | .getValueAsString() == "true" | |||
| 13169 | ? ReportUnsafeHWInst(AtomicExpansionKind::None) | |||
| 13170 | : AtomicExpansionKind::CmpXChg; | |||
| 13171 | } | |||
| 13172 | ||||
| 13173 | return AtomicExpansionKind::CmpXChg; | |||
| 13174 | } | |||
| 13175 | case AtomicRMWInst::FMin: | |||
| 13176 | case AtomicRMWInst::FMax: | |||
| 13177 | case AtomicRMWInst::Min: | |||
| 13178 | case AtomicRMWInst::Max: | |||
| 13179 | case AtomicRMWInst::UMin: | |||
| 13180 | case AtomicRMWInst::UMax: { | |||
| 13181 | if (AMDGPU::isFlatGlobalAddrSpace(AS)) { | |||
| 13182 | if (RMW->getType()->isFloatTy() && | |||
| 13183 | unsafeFPAtomicsDisabled(RMW->getFunction())) | |||
| 13184 | return AtomicExpansionKind::CmpXChg; | |||
| 13185 | ||||
| 13186 | // Always expand system scope min/max atomics. | |||
| 13187 | if (HasSystemScope) | |||
| 13188 | return AtomicExpansionKind::CmpXChg; | |||
| 13189 | } | |||
| 13190 | break; | |||
| 13191 | } | |||
| 13192 | default: | |||
| 13193 | break; | |||
| 13194 | } | |||
| 13195 | ||||
| 13196 | return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); | |||
| 13197 | } | |||
| 13198 | ||||
| 13199 | TargetLowering::AtomicExpansionKind | |||
| 13200 | SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { | |||
| 13201 | return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS | |||
| 13202 | ? AtomicExpansionKind::NotAtomic | |||
| 13203 | : AtomicExpansionKind::None; | |||
| 13204 | } | |||
| 13205 | ||||
| 13206 | TargetLowering::AtomicExpansionKind | |||
| 13207 | SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { | |||
| 13208 | return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS | |||
| 13209 | ? AtomicExpansionKind::NotAtomic | |||
| 13210 | : AtomicExpansionKind::None; | |||
| 13211 | } | |||
| 13212 | ||||
| 13213 | TargetLowering::AtomicExpansionKind | |||
| 13214 | SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const { | |||
| 13215 | return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS | |||
| 13216 | ? AtomicExpansionKind::NotAtomic | |||
| 13217 | : AtomicExpansionKind::None; | |||
| 13218 | } | |||
| 13219 | ||||
| 13220 | const TargetRegisterClass * | |||
| 13221 | SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { | |||
| 13222 | const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); | |||
| 13223 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); | |||
| 13224 | if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) | |||
| 13225 | return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass | |||
| 13226 | : &AMDGPU::SReg_32RegClass; | |||
| 13227 | if (!TRI->isSGPRClass(RC) && !isDivergent) | |||
| 13228 | return TRI->getEquivalentSGPRClass(RC); | |||
| 13229 | else if (TRI->isSGPRClass(RC) && isDivergent) | |||
| 13230 | return TRI->getEquivalentVGPRClass(RC); | |||
| 13231 | ||||
| 13232 | return RC; | |||
| 13233 | } | |||
| 13234 | ||||
| 13235 | // FIXME: This is a workaround for DivergenceAnalysis not understanding always | |||
| 13236 | // uniform values (as produced by the mask results of control flow intrinsics) | |||
| 13237 | // used outside of divergent blocks. The phi users need to also be treated as | |||
| 13238 | // always uniform. | |||
| 13239 | // | |||
| 13240 | // FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis? | |||
| 13241 | static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, | |||
| 13242 | unsigned WaveSize) { | |||
| 13243 | // FIXME: We assume we never cast the mask results of a control flow | |||
| 13244 | // intrinsic. | |||
| 13245 | // Early exit if the type won't be consistent as a compile time hack. | |||
| 13246 | IntegerType *IT = dyn_cast<IntegerType>(V->getType()); | |||
| 13247 | if (!IT || IT->getBitWidth() != WaveSize) | |||
| 13248 | return false; | |||
| 13249 | ||||
| 13250 | if (!isa<Instruction>(V)) | |||
| 13251 | return false; | |||
| 13252 | if (!Visited.insert(V).second) | |||
| 13253 | return false; | |||
| 13254 | bool Result = false; | |||
| 13255 | for (const auto *U : V->users()) { | |||
| 13256 | if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { | |||
| 13257 | if (V == U->getOperand(1)) { | |||
| 13258 | switch (Intrinsic->getIntrinsicID()) { | |||
| 13259 | default: | |||
| 13260 | Result = false; | |||
| 13261 | break; | |||
| 13262 | case Intrinsic::amdgcn_if_break: | |||
| 13263 | case Intrinsic::amdgcn_if: | |||
| 13264 | case Intrinsic::amdgcn_else: | |||
| 13265 | Result = true; | |||
| 13266 | break; | |||
| 13267 | } | |||
| 13268 | } | |||
| 13269 | if (V == U->getOperand(0)) { | |||
| 13270 | switch (Intrinsic->getIntrinsicID()) { | |||
| 13271 | default: | |||
| 13272 | Result = false; | |||
| 13273 | break; | |||
| 13274 | case Intrinsic::amdgcn_end_cf: | |||
| 13275 | case Intrinsic::amdgcn_loop: | |||
| 13276 | Result = true; | |||
| 13277 | break; | |||
| 13278 | } | |||
| 13279 | } | |||
| 13280 | } else { | |||
| 13281 | Result = hasCFUser(U, Visited, WaveSize); | |||
| 13282 | } | |||
| 13283 | if (Result) | |||
| 13284 | break; | |||
| 13285 | } | |||
| 13286 | return Result; | |||
| 13287 | } | |||
| 13288 | ||||
| 13289 | bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, | |||
| 13290 | const Value *V) const { | |||
| 13291 | if (const CallInst *CI = dyn_cast<CallInst>(V)) { | |||
| 13292 | if (CI->isInlineAsm()) { | |||
| 13293 | // FIXME: This cannot give a correct answer. This should only trigger in | |||
| 13294 | // the case where inline asm returns mixed SGPR and VGPR results, used | |||
| 13295 | // outside the defining block. We don't have a specific result to | |||
| 13296 | // consider, so this assumes if any value is SGPR, the overall register | |||
| 13297 | // also needs to be SGPR. | |||
| 13298 | const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); | |||
| 13299 | TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( | |||
| 13300 | MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); | |||
| 13301 | for (auto &TC : TargetConstraints) { | |||
| 13302 | if (TC.Type == InlineAsm::isOutput) { | |||
| 13303 | ComputeConstraintToUse(TC, SDValue()); | |||
| 13304 | const TargetRegisterClass *RC = getRegForInlineAsmConstraint( | |||
| 13305 | SIRI, TC.ConstraintCode, TC.ConstraintVT).second; | |||
| 13306 | if (RC && SIRI->isSGPRClass(RC)) | |||
| 13307 | return true; | |||
| 13308 | } | |||
| 13309 | } | |||
| 13310 | } | |||
| 13311 | } | |||
| 13312 | SmallPtrSet<const Value *, 16> Visited; | |||
| 13313 | return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); | |||
| 13314 | } | |||
| 13315 | ||||
| 13316 | bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const { | |||
| 13317 | SDNode::use_iterator I = N->use_begin(), E = N->use_end(); | |||
| 13318 | for (; I != E; ++I) { | |||
| 13319 | if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) { | |||
| 13320 | if (getBasePtrIndex(M) == I.getOperandNo()) | |||
| 13321 | return true; | |||
| 13322 | } | |||
| 13323 | } | |||
| 13324 | return false; | |||
| 13325 | } | |||
| 13326 | ||||
| 13327 | bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, | |||
| 13328 | SDValue N1) const { | |||
| 13329 | if (!N0.hasOneUse()) | |||
| 13330 | return false; | |||
| 13331 | // Take care of the opportunity to keep N0 uniform | |||
| 13332 | if (N0->isDivergent() || !N1->isDivergent()) | |||
| 13333 | return true; | |||
| 13334 | // Check if we have a good chance to form the memory access pattern with the | |||
| 13335 | // base and offset | |||
| 13336 | return (DAG.isBaseWithConstantOffset(N0) && | |||
| 13337 | hasMemSDNodeUser(*N0->use_begin())); | |||
| 13338 | } | |||
| 13339 | ||||
| 13340 | MachineMemOperand::Flags | |||
| 13341 | SITargetLowering::getTargetMMOFlags(const Instruction &I) const { | |||
| 13342 | // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load. | |||
| 13343 | if (I.getMetadata("amdgpu.noclobber")) | |||
| 13344 | return MONoClobber; | |||
| 13345 | return MachineMemOperand::MONone; | |||
| 13346 | } | |||
| 13347 | ||||
| 13348 | bool SITargetLowering::checkForPhysRegDependency( | |||
| 13349 | SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, | |||
| 13350 | const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const { | |||
| 13351 | if (User->getOpcode() != ISD::CopyToReg) | |||
| 13352 | return false; | |||
| 13353 | if (!Def->isMachineOpcode()) | |||
| 13354 | return false; | |||
| 13355 | MachineSDNode *MDef = dyn_cast<MachineSDNode>(Def); | |||
| 13356 | if (!MDef) | |||
| 13357 | return false; | |||
| 13358 | ||||
| 13359 | unsigned ResNo = User->getOperand(Op).getResNo(); | |||
| 13360 | if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1) | |||
| 13361 | return false; | |||
| 13362 | const MCInstrDesc &II = TII->get(MDef->getMachineOpcode()); | |||
| 13363 | if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) { | |||
| 13364 | PhysReg = AMDGPU::SCC; | |||
| 13365 | const TargetRegisterClass *RC = | |||
| 13366 | TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo)); | |||
| 13367 | Cost = RC->getCopyCost(); | |||
| 13368 | return true; | |||
| 13369 | } | |||
| 13370 | return false; | |||
| 13371 | } | |||
| 13372 | ||||
| 13373 | void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const { | |||
| 13374 | assert(Subtarget->hasAtomicFaddInsts() &&(static_cast <bool> (Subtarget->hasAtomicFaddInsts() && "target should have atomic fadd instructions") ? void (0) : __assert_fail ("Subtarget->hasAtomicFaddInsts() && \"target should have atomic fadd instructions\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 13375, __extension__ __PRETTY_FUNCTION__)) | |||
| 13375 | "target should have atomic fadd instructions")(static_cast <bool> (Subtarget->hasAtomicFaddInsts() && "target should have atomic fadd instructions") ? void (0) : __assert_fail ("Subtarget->hasAtomicFaddInsts() && \"target should have atomic fadd instructions\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 13375, __extension__ __PRETTY_FUNCTION__)); | |||
| 13376 | assert(AI->getType()->isFloatTy() &&(static_cast <bool> (AI->getType()->isFloatTy() && AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && "generic atomicrmw expansion only supports FP32 operand in flat " "address space") ? void (0) : __assert_fail ("AI->getType()->isFloatTy() && AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && \"generic atomicrmw expansion only supports FP32 operand in flat \" \"address space\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 13379, __extension__ __PRETTY_FUNCTION__)) | |||
| 13377 | AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS &&(static_cast <bool> (AI->getType()->isFloatTy() && AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && "generic atomicrmw expansion only supports FP32 operand in flat " "address space") ? void (0) : __assert_fail ("AI->getType()->isFloatTy() && AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && \"generic atomicrmw expansion only supports FP32 operand in flat \" \"address space\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 13379, __extension__ __PRETTY_FUNCTION__)) | |||
| 13378 | "generic atomicrmw expansion only supports FP32 operand in flat "(static_cast <bool> (AI->getType()->isFloatTy() && AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && "generic atomicrmw expansion only supports FP32 operand in flat " "address space") ? void (0) : __assert_fail ("AI->getType()->isFloatTy() && AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && \"generic atomicrmw expansion only supports FP32 operand in flat \" \"address space\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 13379, __extension__ __PRETTY_FUNCTION__)) | |||
| 13379 | "address space")(static_cast <bool> (AI->getType()->isFloatTy() && AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && "generic atomicrmw expansion only supports FP32 operand in flat " "address space") ? void (0) : __assert_fail ("AI->getType()->isFloatTy() && AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && \"generic atomicrmw expansion only supports FP32 operand in flat \" \"address space\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 13379, __extension__ __PRETTY_FUNCTION__)); | |||
| 13380 | assert(AI->getOperation() == AtomicRMWInst::FAdd &&(static_cast <bool> (AI->getOperation() == AtomicRMWInst ::FAdd && "only fadd is supported for now") ? void (0 ) : __assert_fail ("AI->getOperation() == AtomicRMWInst::FAdd && \"only fadd is supported for now\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 13381, __extension__ __PRETTY_FUNCTION__)) | |||
| 13381 | "only fadd is supported for now")(static_cast <bool> (AI->getOperation() == AtomicRMWInst ::FAdd && "only fadd is supported for now") ? void (0 ) : __assert_fail ("AI->getOperation() == AtomicRMWInst::FAdd && \"only fadd is supported for now\"" , "llvm/lib/Target/AMDGPU/SIISelLowering.cpp", 13381, __extension__ __PRETTY_FUNCTION__)); | |||
| 13382 | ||||
| 13383 | // Given: atomicrmw fadd ptr %addr, float %val ordering | |||
| 13384 | // | |||
| 13385 | // With this expansion we produce the following code: | |||
| 13386 | // [...] | |||
| 13387 | // br label %atomicrmw.check.shared | |||
| 13388 | // | |||
| 13389 | // atomicrmw.check.shared: | |||
| 13390 | // %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr) | |||
| 13391 | // br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private | |||
| 13392 | // | |||
| 13393 | // atomicrmw.shared: | |||
| 13394 | // %cast.shared = addrspacecast ptr %addr to ptr addrspace(3) | |||
| 13395 | // %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared, | |||
| 13396 | // float %val ordering | |||
| 13397 | // br label %atomicrmw.phi | |||
| 13398 | // | |||
| 13399 | // atomicrmw.check.private: | |||
| 13400 | // %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr) | |||
| 13401 | // br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global | |||
| 13402 | // | |||
| 13403 | // atomicrmw.private: | |||
| 13404 | // %cast.private = addrspacecast ptr %addr to ptr addrspace(5) | |||
| 13405 | // %loaded.private = load float, ptr addrspace(5) %cast.private | |||
| 13406 | // %val.new = fadd float %loaded.private, %val | |||
| 13407 | // store float %val.new, ptr addrspace(5) %cast.private | |||
| 13408 | // br label %atomicrmw.phi | |||
| 13409 | // | |||
| 13410 | // atomicrmw.global: | |||
| 13411 | // %cast.global = addrspacecast ptr %addr to ptr addrspace(1) | |||
| 13412 | // %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global, | |||
| 13413 | // float %val ordering | |||
| 13414 | // br label %atomicrmw.phi | |||
| 13415 | // | |||
| 13416 | // atomicrmw.phi: | |||
| 13417 | // %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ], | |||
| 13418 | // [ %loaded.private, %atomicrmw.private ], | |||
| 13419 | // [ %loaded.global, %atomicrmw.global ] | |||
| 13420 | // br label %atomicrmw.end | |||
| 13421 | // | |||
| 13422 | // atomicrmw.end: | |||
| 13423 | // [...] | |||
| 13424 | ||||
| 13425 | IRBuilder<> Builder(AI); | |||
| 13426 | LLVMContext &Ctx = Builder.getContext(); | |||
| 13427 | ||||
| 13428 | BasicBlock *BB = Builder.GetInsertBlock(); | |||
| 13429 | Function *F = BB->getParent(); | |||
| 13430 | BasicBlock *ExitBB = | |||
| 13431 | BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); | |||
| 13432 | BasicBlock *CheckSharedBB = | |||
| 13433 | BasicBlock::Create(Ctx, "atomicrmw.check.shared", F, ExitBB); | |||
| 13434 | BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB); | |||
| 13435 | BasicBlock *CheckPrivateBB = | |||
| 13436 | BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB); | |||
| 13437 | BasicBlock *PrivateBB = | |||
| 13438 | BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB); | |||
| 13439 | BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB); | |||
| 13440 | BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB); | |||
| 13441 | ||||
| 13442 | Value *Val = AI->getValOperand(); | |||
| 13443 | Type *ValTy = Val->getType(); | |||
| 13444 | Value *Addr = AI->getPointerOperand(); | |||
| 13445 | PointerType *PtrTy = cast<PointerType>(Addr->getType()); | |||
| 13446 | ||||
| 13447 | auto CreateNewAtomicRMW = [AI](IRBuilder<> &Builder, Value *Addr, | |||
| 13448 | Value *Val) -> Value * { | |||
| 13449 | AtomicRMWInst *OldVal = | |||
| 13450 | Builder.CreateAtomicRMW(AI->getOperation(), Addr, Val, AI->getAlign(), | |||
| 13451 | AI->getOrdering(), AI->getSyncScopeID()); | |||
| 13452 | SmallVector<std::pair<unsigned, MDNode *>> MDs; | |||
| 13453 | AI->getAllMetadata(MDs); | |||
| 13454 | for (auto &P : MDs) | |||
| 13455 | OldVal->setMetadata(P.first, P.second); | |||
| 13456 | return OldVal; | |||
| 13457 | }; | |||
| 13458 | ||||
| 13459 | std::prev(BB->end())->eraseFromParent(); | |||
| 13460 | Builder.SetInsertPoint(BB); | |||
| 13461 | Builder.CreateBr(CheckSharedBB); | |||
| 13462 | ||||
| 13463 | Builder.SetInsertPoint(CheckSharedBB); | |||
| 13464 | CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {}, | |||
| 13465 | {Addr}, nullptr, "is.shared"); | |||
| 13466 | Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB); | |||
| 13467 | ||||
| 13468 | Builder.SetInsertPoint(SharedBB); | |||
| 13469 | Value *CastToLocal = Builder.CreateAddrSpaceCast( | |||
| 13470 | Addr, | |||
| 13471 | PointerType::getWithSamePointeeType(PtrTy, AMDGPUAS::LOCAL_ADDRESS)); | |||
| 13472 | Value *LoadedShared = CreateNewAtomicRMW(Builder, CastToLocal, Val); | |||
| 13473 | Builder.CreateBr(PhiBB); | |||
| 13474 | ||||
| 13475 | Builder.SetInsertPoint(CheckPrivateBB); | |||
| 13476 | CallInst *IsPrivate = Builder.CreateIntrinsic( | |||
| 13477 | Intrinsic::amdgcn_is_private, {}, {Addr}, nullptr, "is.private"); | |||
| 13478 | Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB); | |||
| 13479 | ||||
| 13480 | Builder.SetInsertPoint(PrivateBB); | |||
| 13481 | Value *CastToPrivate = Builder.CreateAddrSpaceCast( | |||
| 13482 | Addr, | |||
| 13483 | PointerType::getWithSamePointeeType(PtrTy, AMDGPUAS::PRIVATE_ADDRESS)); | |||
| 13484 | Value *LoadedPrivate = | |||
| 13485 | Builder.CreateLoad(ValTy, CastToPrivate, "loaded.private"); | |||
| 13486 | Value *NewVal = Builder.CreateFAdd(LoadedPrivate, Val, "val.new"); | |||
| 13487 | Builder.CreateStore(NewVal, CastToPrivate); | |||
| 13488 | Builder.CreateBr(PhiBB); | |||
| 13489 | ||||
| 13490 | Builder.SetInsertPoint(GlobalBB); | |||
| 13491 | Value *CastToGlobal = Builder.CreateAddrSpaceCast( | |||
| 13492 | Addr, | |||
| 13493 | PointerType::getWithSamePointeeType(PtrTy, AMDGPUAS::GLOBAL_ADDRESS)); | |||
| 13494 | Value *LoadedGlobal = CreateNewAtomicRMW(Builder, CastToGlobal, Val); | |||
| 13495 | Builder.CreateBr(PhiBB); | |||
| 13496 | ||||
| 13497 | Builder.SetInsertPoint(PhiBB); | |||
| 13498 | PHINode *Loaded = Builder.CreatePHI(ValTy, 3, "loaded.phi"); | |||
| 13499 | Loaded->addIncoming(LoadedShared, SharedBB); | |||
| 13500 | Loaded->addIncoming(LoadedPrivate, PrivateBB); | |||
| 13501 | Loaded->addIncoming(LoadedGlobal, GlobalBB); | |||
| 13502 | Builder.CreateBr(ExitBB); | |||
| 13503 | ||||
| 13504 | AI->replaceAllUsesWith(Loaded); | |||
| 13505 | AI->eraseFromParent(); | |||
| 13506 | } | |||
| 13507 | ||||
| 13508 | LoadInst * | |||
| 13509 | SITargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { | |||
| 13510 | IRBuilder<> Builder(AI); | |||
| 13511 | auto Order = AI->getOrdering(); | |||
| 13512 | ||||
| 13513 | // The optimization removes store aspect of the atomicrmw. Therefore, cache | |||
| 13514 | // must be flushed if the atomic ordering had a release semantics. This is | |||
| 13515 | // not necessary a fence, a release fence just coincides to do that flush. | |||
| 13516 | // Avoid replacing of an atomicrmw with a release semantics. | |||
| 13517 | if (isReleaseOrStronger(Order)) | |||
| 13518 | return nullptr; | |||
| 13519 | ||||
| 13520 | LoadInst *LI = Builder.CreateAlignedLoad( | |||
| 13521 | AI->getType(), AI->getPointerOperand(), AI->getAlign()); | |||
| 13522 | LI->setAtomic(Order, AI->getSyncScopeID()); | |||
| 13523 | LI->copyMetadata(*AI); | |||
| 13524 | LI->takeName(AI); | |||
| 13525 | AI->replaceAllUsesWith(LI); | |||
| 13526 | AI->eraseFromParent(); | |||
| 13527 | return LI; | |||
| 13528 | } |